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Preface

The European Conference on Machine Learning and Principles and Practice of
Knowledge Discovery in Databases, ECML PKDD 2010, was held in Barcelona,
September 20–24, 2010, consolidating the long junction between the European
Conference on Machine Learning (of which the first instance as European work-
shop dates back to 1986) and Principles and Practice of Knowledge Discovery
in Data Bases (of which the first instance dates back to 1997). Since the two
conferences were first collocated in 2001, both machine learning and data min-
ing communities have realized how each discipline benefits from the advances,
and participates to defining the challenges, of the sister discipline. Accordingly,
a single ECML PKDD Steering Committee gathering senior members of both
communities was appointed in 2008.

In 2010, as in previous years, ECML PKDD lasted from Monday to Fri-
day. It involved six plenary invited talks, by Christos Faloutsos, Jiawei Han,
Hod Lipson, Leslie Pack Kaelbling, Tomaso Poggio, and Jürgen Schmidhuber,
respectively. Monday and Friday were devoted to workshops and tutorials, orga-
nized and selected by Colin de la Higuera and Gemma Garriga. Continuing from
ECML PKDD 2009, an industrial session managed by Taneli Mielikainen and
Hugo Zaragoza welcomed distinguished speakers from the ML and DM indus-
try: Rakesh Agrawal, Mayank Bawa, Ignasi Belda, Michael Berthold, José Luis
Flórez, Thore Graepel, and Alejandro Jaimes. The conference also featured a dis-
covery challenge, organized by András Benczúr, Carlos Castillo, Zoltán Gyöngyi,
and Julien Masanès.

From Tuesday to Thursday, 120 papers selected among 658 submitted full
papers were presented in the technical parallel sessions. The selection process
was handled by 28 area chairs and the 282 members of the Program Committee;
additional 298 reviewers were recruited. While the selection process was made
particularly intense due to the record number of submissions, we heartily thank
all area chairs, members of the Program Committee, and additional reviewers
for their commitment and hard work during the short reviewing period. The
conference also featured a demo track, managed by Ulf Brefeld and Xavier Car-
reras; 12 demos out of 24 submitted ones were selected, attesting to the high
impact technologies based on the ML and DM body of research.

Following an earlier tradition, seven ML and seven DM papers were distin-
guished by the program chairs on the basis of their exceptional scientific quality
and high impact on the field, and they were directly published in the Machine
Learning Journal and the Data Mining and Knowledge Discovery Journal, re-
spectively. Among these papers, some were selected by the Best Paper Chair
Hiroshi Motoda, and received the Best Paper Awards and Best Student Paper
Awards in Machine Learning and in Data Mining, sponsored by Springer.



VI Preface

A topic widely explored from both ML and DM perspectives was graphs, with
motivations ranging from molecular chemistry to social networks. The point of
matching or clustering graphs was examined in connection with tractability and
domain knowledge, where the latter could be acquired through common pat-
terns, or formulated through spectral clustering. The study of social networks
focused on how they develop, overlap, propagate information (and how infor-
mation propagation can be hindered). Link prediction and exploitation in static
or dynamic, possibly heterogeneous, graphs, was motivated by applications in
information retrieval and collaborative filtering, and in connection with random
walks.

Frequent itemset approaches were hybridized with constraint programming
or statistical tools to efficiently explore the search space, deal with numerical
attributes, or extract locally optimal patterns. Compressed representations and
measures of robustness were proposed to optimize association rules. Formal con-
cept analysis, with applications to pharmacovigilance or Web ontologies, was
considered in connection with version spaces.

Bayesian learning features new geometric interpretations of prior knowledge
and efficient approaches for independence testing. Generative approaches were
motivated by applications in sequential, spatio-temporal or relational domains,
or multi-variate signals with high dimensionality. Ensemble learning was used to
support clustering and biclustering; the post-processing of random forests was
also investigated.

In statistical relational learning and structure identification, with motivating
applications in bio-informatics, neuro-imagery, spatio-temporal domains, and
traffic forecasting, the stress was put on new learning criteria; gradient ap-
proaches, structural constraints, and/or feature selection were used to support
computationally effective algorithms.

(Multiple) kernel learning and related approaches, challenged by applications
in image retrieval, robotics, or bio-informatics, revisited the learning criteria and
regularization terms, the processing of the kernel matrix, and the exploration
of the kernel space. Dimensionality reduction, embeddings, and distance were
investigated, notably in connection with image and document retrieval.

Reinforcement learning focussed on ever more scalable and tractable ap-
proaches through smart state or policy representations, a more efficient use of
the available samples, and/or Bayesian approaches.

Specific settings such as ranking, multi-task learning, semi-supervised learn-
ing, and game-theoretic approaches were investigated, with some innovative ap-
plications to astrophysics, relation extraction, and multi-agent systems. New
bounds were proved within the active, multi-label, and weighted ensemble learn-
ing frameworks.

A few papers aimed at efficient algorithms or computing environments, e.g.,
related to linear algebra, cutting plane algorithms, or graphical processing units,
were proposed (with available source code in some cases). Numerical stability
was also investigated in connection with sparse learning.



Preface VII

Among the applications presented were review mining, software debugging/
process modeling from traces, and audio mining.

To conclude this rapid tour of the scientific program, our special thanks go
to the local chairs Ricard Gavaldà, Elena Torres, and Estefania Ricart, the Web
and registration chair Albert Bifet, the sponsorship chair Debora Denato, and
the many volunteers that eagerly contributed to make ECML PKDD 2010 a
memorable event.

Our last and warmest thanks go to all invited speakers and other speakers, to
all tutorial, workshop, demo, industrial, discovery, best paper, and local chairs,
to the area chairs and all reviewers, to all attendees — and overall, to the au-
thors who chose to submit their work to the ECML PKDD conference, and thus
enabled us to build up this memorable scientific event.

July 2010 José L Balcázar
Francesco Bonchi
Aristides Gionis

Michèle Sebag
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Eyke Hüllermeier



Table of Contents – Part I XXI

Clustering Vessel Trajectories with Alignment Kernels under Trajectory
Compression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 296

Gerben de Vries and Maarten van Someren

Adaptive Bases for Reinforcement Learning . . . . . . . . . . . . . . . . . . . . . . . . . 312
Dotan Di Castro and Shie Mannor

Constructing Nonlinear Discriminants from Multiple Data Views . . . . . . . 328
Tom Diethe, David Roi Hardoon, and John Shawe-Taylor

Learning Algorithms for Link Prediction Based on Chance
Constraints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 344

Janardhan Rao Doppa, Jun Yu, Prasad Tadepalli, and Lise Getoor

Sparse Unsupervised Dimensionality Reduction Algorithms . . . . . . . . . . . . 361
Wenjun Dou, Guang Dai, Congfu Xu, and Zhihua Zhang

Asking Generalized Queries to Ambiguous Oracle . . . . . . . . . . . . . . . . . . . . 377
Jun Du and Charles X. Ling

Analysis of Large Multi-modal Social Networks: Patterns and a
Generator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 393

Nan Du, Hao Wang, and Christos Faloutsos

A Cluster-Level Semi-supervision Model for Interactive Clustering . . . . . . 409
Avinava Dubey, Indrajit Bhattacharya, and Shantanu Godbole

Software-Defect Localisation by Mining Dataflow-Enabled Call
Graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 425

Frank Eichinger, Klaus Krogmann, Roland Klug, and Klemens Böhm
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Marcos André Gonçalves, Ańısio Lacerda, Edleno Silva de Moura,
Gisele L. Pappa, Adriano Veloso, and Nivio Ziviani

Solving Structured Sparsity Regularization with Proximal Methods . . . . . 418
Sofia Mosci, Lorenzo Rosasco, Matteo Santoro,
Alessandro Verri, and Silvia Villa

Exploiting Causal Independence in Markov Logic Networks: Combining
Undirected and Directed Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 434

Sriraam Natarajan, Tushar Khot, Daniel Lowd, Prasad Tadepalli,
Kristian Kersting, and Jude Shavlik

Improved MinMax Cut Graph Clustering with Nonnegative
Relaxation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 451

Feiping Nie, Chris Ding, Dijun Luo, and Heng Huang

Integrating Constraint Programming and Itemset Mining . . . . . . . . . . . . . 467
Siegfried Nijssen and Tias Guns

Topic Modeling for Personalized Recommendation of Volatile Items . . . . 483
Maks Ovsjanikov and Ye Chen

Conditional Ranking on Relational Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . 499
Tapio Pahikkala, Willem Waegeman, Antti Airola,
Tapio Salakoski, and Bernard De Baets

Author Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 515



Table of Contents – Part III

Regular Papers

Efficient Planning in Large POMDPs through Policy Graph Based
Factorized Approximations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

Joni Pajarinen, Jaakko Peltonen, Ari Hottinen, and
Mikko A. Uusitalo

Unsupervised Trajectory Sampling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
Nikos Pelekis, Ioannis Kopanakis, Costas Panagiotakis, and
Yannis Theodoridis

Fast Extraction of Locally Optimal Patterns Based on Consistent
Pattern Function Variations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

Frédéric Pennerath

Large Margin Learning of Bayesian Classifiers Based on Gaussian
Mixture Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

Franz Pernkopf and Michael Wohlmayr

Learning with Ensembles of Randomized Trees: New Insights . . . . . . . . . . 67
Vincent Pisetta, Pierre-Emmanuel Jouve, and Djamel A. Zighed

Entropy and Margin Maximization for Structured Output Learning . . . . 83
Patrick Pletscher, Cheng Soon Ong, and Joachim M. Buhmann

Virus Propagation on Time-Varying Networks: Theory and
Immunization Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

B. Aditya Prakash, Hanghang Tong, Nicholas Valler,
Michalis Faloutsos, and Christos Faloutsos

Adapting Decision DAGs for Multipartite Ranking . . . . . . . . . . . . . . . . . . . 115
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Mining Billion-Node Graphs:
Patterns, Generators and Tools

Christos Faloutsos
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What do graphs look like? How do they evolve over time? How to handle a graph
with a billion nodes? We present a comprehensive list of static and temporal
laws, and some recent observations on real graphs (like, e.g., “eigenSpokes”).
For generators, we describe some recent ones, which naturally match all of the
known properties of real graphs. Finally, for tools, we present “oddBall” for
discovering anomalies and patterns, as well as an overview of the PEGASUS
system which is designed for handling Billion-node graphs, running on top of
the “hadoop” system.
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Structure Is Informative:
On Mining Structured Information Networks

Jiawei Han
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Many objects in the real world are interconnected, forming complex information
networks. There have been a lot of studies on mining homogeneous information
networks where objects and links are either treated as of the same type, such as
friends linking with friends, or treated indiscriminatively, without structural or
type distinction. However, real-world objects and links often belong to distinct
types, such as students, professors, courses, departments, teach and advise in
a university network, and such typed networks form structured, heterogeneous
information networks.

We explore methodologies on mining such structured information networks
and introduce several interesting new mining methodologies, including integrated
ranking and clustering, classification, role discovery, data integration, data vali-
dation, and similarity search. We show that structured information networks are
informative, and link analysis on such networks becomes powerful at uncovering
critical knowledge hidden in large networks.
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Since the inception of the field if AI, one of the visions of artificial intelligence has
been robust, intelligent, general-purpose robots that interact with the real world.
We have made useful progress in that direction, but there is still a long way to
go. I will characterize one view of how we might achieve this goal, describe some
intermediate results, and characterize important technical and methodological
problems that must be solved to make that vision real.

J.L. Balcázar et al. (Eds.): ECML PKDD 2010, Part I, LNAI 6321, p. 3, 2010.
c© Springer-Verlag Berlin Heidelberg 2010



Mining Experimental Data for Dynamical
Invariants - From Cognitive Robotics to

Computational Biology

Hod Lipson

Mechanical & Aerospace Engineering and Computing & Information Science
Cornell University

hod.lipson@cornell.edu

For centuries, scientists have attempted to identify and document analytical laws
that underlie physical phenomena in nature. Despite the prevalence of computing
power, the process of finding natural laws and their corresponding equations has
resisted automation. A key challenge to finding analytic relations automatically
is defining algorithmically what makes a correlation in observed data important
and insightful. By seeking dynamical invariants, we go from finding just predic-
tive models to finding deeper conservation laws. We demonstrated this approach
by automatically searching motion-tracking data captured from various physical
systems, ranging from simple harmonic oscillators to chaotic double-pendula.
Without any prior knowledge about physics, kinematics, or geometry, the algo-
rithm discovered Hamiltonians, Lagrangians, and other laws of geometric and
momentum conservation. The discovery rate accelerated as laws found for sim-
pler systems were used to bootstrap explanations for more complex systems,
gradually uncovering the ”alphabet” used to describe those systems. Applica-
tions to modeling physical and biological systems will be shown.
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Learning is the gateway to understanding intelligence and to reproducing it in
machines. A classical example of learning algorithms is provided by regular-
ization in Reproducing Kernel Hilbert Spaces. The corresponding architecture
however is different from the deep hierarchies found in the brain. I will sketch a
new attempt (with S. Smale) to develop a mathematics for hierarchical kernel
machines centered around the notion of a recursively defined derived kernel and
directly suggested by the neuroscience of the visual cortex.

Relevant papers can be downloaded from
http://cbcl.mit.edu/publications/index-pubs.html
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To build a creative agent that never stops generating non-trivial & novel &
surprising data, we need two learning modules: (1) an adaptive predictor or
compressor or model of the growing data history as the agent is interacting
with its environment, and (2) a general reinforcement learner. The LEARNING
PROGRESS of (1) is the FUN or intrinsic reward of (2). That is, (2) is motivated
to invent interesting things that (1) does not yet know but can easily learn. To
maximize expected reward, in the absence of external reward (2) will create more
and more complex behaviors that yield temporarily surprising (but eventually
boring) patterns that make (1) quickly improve. We discuss how this principle
explains science & art & music & humor, and how to scale up previous toy
implementations of the theory since 1991, using recent powerful methods for (1)
prediction and (2) reinforcement learning.
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Abstract. The whole computer hardware industry embraced multicores.
For these machines, the extreme optimisation of sequential algorithms is
no longer sufficient to squeeze the real machine power, which can be
only exploited via thread-level parallelism. Decision tree algorithms ex-
hibit natural concurrency that makes them suitable to be parallelised.
This paper presents an approach for easy-yet-efficient porting of an im-
plementation of the C4.5 algorithm on multicores. The parallel porting
requires minimal changes to the original sequential code, and it is able
to exploit up to 7× speedup on an Intel dual-quad core machine.

Keywords: parallel classification, C4.5, multicores, structured parallel
programming, streaming.

1 Introduction

Computing hardware has evolved to sustain an insatiable demand for high-end
performances along two basic ways. On the one hand, the increase of clock fre-
quency and the exploitation of instruction-level parallelism boosted the comput-
ing power of the single processor. On the other hand, many processors have been
arranged in multi-processors, multi-computers, and networks of geographically
distributed machines. This latter solution exhibits a superior peak performance,
but it incurs in significant software development costs. In the last two decades,
the parallel computing research community aimed at designing languages and
tools to support the seamless porting of applications and the tuning of perfor-
mances [3,13,21,22]. These languages, apart from few exceptions that also focus
on code portability [13,22], require a redesign of the application logic in an ex-
plicitly parallel language or model.

Up to now, clock speed and algorithmic improvements have exhibited a bet-
ter performance/cost trade-off than application redesign, being the possibility
to preserve the existing code its most important component. Data mining is
not an exception in this regard. By surveying the papers in the main scientific
conferences and journals, there is a diminishing number of proposals for parallel
implementations of data mining algorithms in the last few years. After all, only
a small percentage of data analysis projects can afford the cost of buying (and

J.L. Balcázar et al. (Eds.): ECML PKDD 2010, Part I, LNAI 6321, pp. 7–23, 2010.
� Springer-Verlag Berlin Heidelberg 2010



8 M. Aldinucci, S. Ruggieri, and M. Torquati

maintaining) a parallel machine and a data mining software capable of exploit-
ing it. In most cases, data reduction techniques (such as sampling, aggregation,
feature selection) can mitigate the problem while waiting the advancement in
memory and computational power of low-cost workstations.

Nowadays, however, this vision should be reinterpreted. After years of continual
improvement of single core chips trying to increase instruction-level parallelism,
hardware manufacturers realised that the effort required for further improvements
is no longer worth the benefits eventually achieved. Microprocessor vendors have
shifted their attention to thread-level parallelism by designing chips with multi-
ple internal cores, known as Multicore or Chip Multiprocessors [19]. However,this
process does not always translate into greater CPU performance: multicore are
small-scale but full-fledged parallel machines and they retain many of their us-
age problems. In particular, sequential code will get no performance benefits from
them. A workstation equipped with a quad-core CPU but running sequential code
is wasting 3/4 of its computational power. Developers, including data miners, are
then facing the challenge of achieving a trade-off between performance and human
productivity (total cost and time to solution) in developing and porting applica-
tions to multicore. Parallel software engineering engaged this challenge trying to
design tools, in the form of high-level sequential language extensions and coding
patterns, aiming at simplifying the porting of sequential codes while guaranteeing
the efficient exploitation of concurrency [2,3,13,22].

This paper focuses on achieving this trade-off on a case study by adopting a
methodology for the easy-yet-efficient porting of an implementation of the C4.5
decision tree induction algorithm [15] onto multicore machines. We consider the
YaDT (Yet another Decision Tree builder) [17] implementation of C4.5, which is
a from-scratch and efficient C++ version of the well-known Quinlan’s entropy-
based algorithm. YaDT is the result of several data structure re-design and
algorithmic improvements over Efficient C4.5 [16], which is in turn is a patch to
the original C4.5 implementation improving its performance mainly for the cal-
culation of the entropy of continuous attributes. In this respect, we believe that
YaDT is a quite paradigmatic example of sequential, already existing, complex
code of scientific and commercial interest. In addition, YaDT is an example of
extreme algorithmic sequential optimisation, which makes it unpractical to de-
sign further optimisations. Nevertheless, the potential for improvements is vast,
and it resides in the idle core CPUs on the user’s machine.

Our approach for parallelising YaDT is based on the FastFlow programming
framework [1], a recent proposal for parallel programming over multicore plat-
forms that provides a variety of facilities for writing efficient lock-free parallel
patterns, including pipeline parallelism, task parallelism and Divide&Conquer
(D&C) computations. Besides technical features, FastFlow offers an important
methodological approach that will lead us to parallelise YaDT with minimal
changes to the original sequential code, yet achieving up to 7× boost in perfor-
mance on a Intel dual-quad core. MIPS, FLOPS and speedup have not to be the
only metrics in software development. Human productivity, total cost and time
to solution are equally, if not more, important.
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The rest of the paper is organised as follows. In Sect. 2, the FastFlow pro-
gramming environment is introduced. We recall in Sect. 3 the C4.5 decision tree
construction algorithm, including the main optimisations that lead to YaDT.
Then the parallelisation of YaDT is presented in detail in Sect. 4, followed by ex-
perimental evaluation and discussion in Sect. 5. Finally, we report related works
in Sect. 6, and summarise the contribution of the paper in the conclusions.

2 The FastFlow Parallel Programming Environment

FastFlow is a parallel programming framework aiming to simplify the develop-
ment of efficient applications for multicore platforms, being these applications
either brand new or ports of existing legacy codes. The key vision underneath
FastFlow is that effortless development and efficiency can be both achieved by
raising the level of abstraction in application design, thus providing designers
with a suitable set of parallel programming patterns that can be compiled onto
efficient networks of parallel activities on the target platforms. To fill the ab-
straction gap, as shown in Fig. 1, FastFlow is conceptually designed as a stack
of layers that progressively abstract the shared memory parallelism at the level
of cores up to the definition of useful programming constructs and patterns.

Multi-core and many-core
cc-UMA or cc-NUMA featuring sequential or weak consistency

Simple streaming networks (building blocks)
Lock-free SPSC queues and general threading model 

Arbitrary streaming networks (building blocks)
Lock-free SPSC, SPMC, MPSC, MPMC queues 

Streaming networks patterns
Skeletons: Pipeline, farm, D&C, ...

Simulation
 Montecarlo

Accelerator
self-offloading

Autonomic
Behav.Skeletons 

Efficient applications for multicore and manycore
Smith-Waterman, N-queens, QT, C4.5, FP-Growth, ...
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Fig. 1. FastFlow layered architecture with pattern examples

At the lowest tier of the FastFlow system we have the architectures that it tar-
gets: cache-coherent multiprocessors, and in particular commodity homogeneous
multicore (e.g. Intel core, AMD K10, etc.).

The second tier provides mechanisms to define simple streaming networks
whose run-time support is implemented through correct and efficient lock-free
Single-Producer-Single-Consumer (SPSC) queues. This kind of queues do not
requires any lock or memory barrier,1 and thus they constitute a solid ground
for a low-latency synchronisation mechanism for multicore. These synchronisa-
tions, which are asynchronous and non-blocking, do not induce any additional
1 For Total Store Order processors, such as Intel core, AMD 10.
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cache invalidation as it happens in mutual exclusion primitives (e.g. locks and
interlocked operations), and thus do not add any extra overhead.

The third tier generalises one-to-one to one-to-many (SPMC), many-to-one
(MPSC), and many-to-many (MPMC) synchronisations and data flows, which
are implemented using only SPSC queues and arbiter threads. This abstraction
is designed in such a way that arbitrary networks of activities can be expressed
while maintaining the high efficiency of synchronisations.

The next layer up, i.e., high-level programming, provides a programming frame-
work based on parallelism exploitation patterns (a.k.a. skeletons [5]). They are
usually categorised in three main classes: Task, Data, and Stream Parallelism.
FastFlow specifically focuses on Stream Parallelism, and in particular provides:
farm, farm-with-feedback (i.e. Divide&Conquer), pipeline, and their arbitrary
nesting and composition. These high-level skeletons are actually factories for
parametric patterns of concurrent activities, which can be instantiated with
sequential code (within white circles in Fig. 1) or other skeletons, then cross-
optimised and compiled together with lower FastFlow tiers. The skeleton
disciplines concurrency exploitation within the generated parallel code: the pro-
grammer is not required to explicitly interweave the business code with concur-
rency related primitives.

We refer to [1] for implementation details. FastFlow is open source available
at http://sourceforge.net/projects/mc-fastflow/ under LGPLv3 license.

3 Decision Trees: From C4.5 to YaDT

A decision tree is a classifier induced by supervised learning from a relation T
called the training set. Tuples in T are called cases. An attribute C of the relation
is called the class, while the remaining ones A1, . . . , Am are called the predictive
attributes. The domain of an attribute dom(Ai) can be discrete, namely a finite
set of values, or continuous, namely the set of real numbers. Also, the special
value unknown is allowed in dom(Ai) to denote unspecified or unknown values.
The domain of the class dom(C) = {c1, . . . , cNC} is discrete and it does not
include the unknown value.

A decision tree is a tree data structure consisting of decision nodes and leaves.
A leaf specifies a class value. A decision node specifies a test over one of the
predictive attributes, which is called the attribute selected at the node. For each
possible outcome of the test, a child node is present. A test on a discrete attribute
A has h possible outcomes A = d1, . . . , A = dh, where d1, . . .dh are the known
values in dom(A). A test on a continuous attribute has 2 possible outcomes,
A ≤ t and A > t, where t is a threshold value determined at the node.

3.1 The C4.5 Tree-Induction Algorithm

The C4.5 decision tree induction algorithm [15] is a constant reference in the
development and analysis of novel proposals of classification models [12]. The

http://sourceforge.net/projects/mc-fastflow/
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core2 algorithm constructs the decision tree top-down. Each node is associated
with a set of weighted cases, where weights are used to take into account unknown
attribute values. At the beginning, only the root is present, with associated the
whole training set T . At each node a D&C algorithm is adopted to select an
attribute for splitting. We refer the reader to the method node::split in Fig. 2
from the YaDT implementation of the algorithm.

Let T be the set of cases associated at the node. For every c ∈ dom(C), the
weighted frequency freq(c, T ) of cases in T whose class is c is computed (�2.� –
throughout the paper, we use the �M.n to reference line n from the pseudo-code
in Fig. M). If all cases in T belong to the same class or the number of cases
in T is less than a certain value then the node is set to a leaf (�2.�-�). If T
contains cases belonging to two or more classes, then the information gain of
each attribute at the node is calculated (�2.�-�). Since the information gain of
a discrete attribute selected in an ancestor node is necessarily 0, the number of
attributes to be considered at a node is variable (denoted by getNoAtts in �2.�).

For a discrete attribute A, the information gain of splitting T into subsets
T1, . . . , Th, one for each known value of A, is calculated 3. For A continuous,
cases in T with known value for A are first ordered w.r.t. such an attribute. Let
v1, . . . , vk be the ordered values of A for cases in T . Consider for i ∈ [1, k−1] the
value v = (vi + vi+1)/2 and the splitting of T into cases T v

1 whose value for the
attribute A is lower or equal than v, and cases T v

2 whose value is greater than
v. For each value v, the information gain gainv is computed by considering the
splitting above. The value v′ for which gainv′ is maximum is set to be the local
threshold and the information gain for the attribute A is defined as gainv′ .

The attribute A with the highest information gain is selected for the test at
the node (�2.�). When A is continuous, the threshold of the split is computed
(�2.�-	
) as the greatest value of A in the whole training set T that is below the
local threshold. Finally, let us consider the generation of the child nodes (�2.	�-
	�). When the selected attribute A is discrete, a child node for each known value
from dom(A) is created, and cases in T are partitioned over the child nodes on
the basis of the value of attribute A. When A is continuous two child nodes are
created, and cases from T with known value of A are partitioned accordingly to
the boolean result of the test A ≤ t, where t is the threshold of the split. Cases
in T whose value for attribute A is unknown are added to the set of cases of
every child, but their weights are rebalanced.

3.2 From C4.5 to YaDT

The original Quinlan’s implementation of C4.5 maintains the training set as an
array of cases. Each case is an array of attribute values. The decision tree is
grown depth-first. The computation of information gain takes O(r) operations

2 In this paper, we concentrate on the growth phase of the algorithm. The subsequent
prune phase is computationally less expensive.

3 As follows: gain(T,T1, . . . , Th) = info(T ) −∑h
i=1

|Ti|
|T | × info(Ti), where info(S) =

−∑NC
j=1

freq(cj,S)

|S| × log2(
freq(cj,S)

|S| ) is the entropy function.
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void node::split () {
2. computeFrequencies();

if (onlyOneClass() || fewCases())
2. set as leaf () ;

else {
2. for(int i=0;i<getNoAtts();++i)

gain[ i]= gainCalculation(i) ;
2. int best = argmax(gain);

if (attr [best ]. isContinuous())
2. findThreshold(best);

ns=attr[best ]. nSplits () ;
2. for(int i=0;i<ns;++i)

childs .push back(
2. new node(selectCases(best,i)));

}
2. }

Fig. 2. The original YaDT node splitting
procedure

bool node::splitPre() {
3. computeFrequencies();

if (onlyOneClass() || fewCases()) {
3. set as leaf () ;

return true;
3. }

return false;
3. } void node::splitAtt( i ) {

gain[ i]= gainCalculation(i) ;
3. } void node::splitPost() {

int best = argmax(gain);
3. if (attr [best ]. isContinuous())

findThreshold(best);
3. ns=attr[best ]. nSplits () ;

for(int i=0;i<ns;++i)
3. childs .push back(

new node(selectCases(best,i)));
3. }

Fig. 3. Partitioning of the node:: split

method into three steps

for discrete attributes, where r = |T | is the number of cases at the node; and
O(r log r) operations for continuous attributes, where sorting is the predominant
task. Finally, searching for the threshold of the selected continuous attribute
(�2.	
) requires O(|T |) operations, where T is the whole training set. This linear
search prevents the implementation being truly a D&C computation.

Efficient C4.5 (EC4.5) [16] is a patch software improving the efficiency of C4.5
in a number of ways. Continuous attribute values in a case are stored as indexes
to the pre-sorted elements of the attribute domain. This allows for adopting
a binary search of the threshold in the set of domain values at �2.	
, with a
computational cost of O(log d) operations where d = maxi|dom(Ai)|. At each
node, EC4.5 calculates the information gain of continuous attributes by choosing
the best among three strategies accordingly to an analytic comparison of their
efficiency: the first strategy adopts quicksort; the second one adopts counting
sort, which exploits the fact that in lower nodes of the tree continuous attributes
ranges tend to be narrow; the third strategy calculates the local threshold using
a main-memory version of the RainForest [7] algorithm, without any sorting.

YaDT [17] is a from scratch C++ implementation of C4.5. It inherits the op-
timisations of EC4.5, and adds further ones, such as searching the local thresh-
old for continuous attributes by splitting at boundary values (Fayyad and Irani
method). Concerning data structures, the training set is now stored by columns,
since most of the computations scan data by attribute values. Most importantly,
the object oriented design of YaDT allows for encapsulating the basic operations
on nodes into a C++ class, with the advantage that the growing strategy of the
decision tree can now be a parameter (depth first, breadth first, or any other
top-down growth). By default, YaDT adopts a breadth first growth – which has
a less demanding memory occupation. Its pseudo-code is shown in Fig. 4 as
method tree::build. Experiments from [16,17] show that YaDT reaches up to
10× improvement over C4.5 with only 1/3 of its memory occupation.
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void tree :: build() {
4. queue<node > q;

node root = new node( allCases );
4. q.push(root);

while( !q.empty() ) {
4. node n = q.front();

q.pop();
4. n−>split();

for(int i=0;i<n−>nChilds();++i)
4. q.push( n−>getChild(i) );

}
4. }

Fig. 4. YaDT tree growing procedure

void tree :: build ff () {
5. node root = new node( allCases );

E=new ff emitter(root,PAR DEGREE);
5. std :: vector<ff worker > w;

for(int i=0;i<PAR DEGREE;++i)
5. w.push back( new ff worker());

ff farm<ws scheduler>
5. farm(PAR DEGREE QSIZE);

farm.add workers(w);
5. farm.add emitter(E);

farm.wrap around();
5. farm.run and wait end();

}

Fig. 5. YaDT-FF D&C setup

void ff emitter :: svc(void task) {
6. if (task == NULL) {

task=new ff task(root,BUILD NODE);
6. int r = root−>getNoCases();

setWeight(task, r) ;
6. return task;

}
6. node n = task−>getNode();

nChilds = n−>nChilds();
6. if (noMoreTasks() && !nChilds)

return NULL;
6. for(int i=0; i < nChilds; i++) {

node child = n−>getChild(i);

6. ctask=new ff task(child,BUILD NODE);
int r = child−>getNoCases();

6. setWeight(ctask, r) ;
ff send out(ctask);

6. }
return FF GO ON;

6. }

6. void ff worker :: svc(void task) {
node n = task−>getNode();

6. n−>split();
return task;

6. }

Fig. 6. Emitter and Worker definition for the NP strategy

4 Parallelising YaDT

We propose a parallelisation of YaDT, called YaDT-FF, obtained by stream
parallelism. Each decision node is considered a task that generates a set of sub-
tasks; these tasks are arranged in a stream that flows across a farm-with-feedback
skeleton which implements the D&C paradigm. The FastFlow D&C schema is
shown in the top-right corner of Fig. 1. Tasks in the stream are scheduled by an
emitter thread towards a number of worker threads, which process them in par-
allel and independently, and return the resulting tasks back to the emitter. For
the parallelisation of YaDT, we adopt a two-phases strategy: first, we accelerate
the tree::build method (see Fig. 4) by exploiting task parallelism among node
processing, and we call this strategy Nodes Parallelisation (NP); then, we add
the parallelisation of the node::split method (see Fig. 2) by exploiting par-
allelism also among attributes processing, and we call such a strategy Nodes &
Attributes Parallelisation (NAP). The two strategies share the same basic setup
method, tree::build ff shown in Fig. 5, which creates an emitter object (�5.�-
�) and an array of worker objects (�5.�-�). The size of the array, PAR DEGREE, is
the parallelism degree of the farm. The root node of the decision tree is passed
to the constructor of the emitter object, so that the stream can be initiated from
it. The overall farm parallelisation is managed by the FastFlow layer through
a ff farm object, which creates feedback channels between the emitter and the
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void ff emitter :: svc(void task) {
7. if (task == NULL ) {

if (root−>splitPre()) return NULL;
7. int r = root−>getNoCases();

int c = root−>getNoAtts();
7. for(int i=0;i<c;++i) {

task=new ff task(root,BUILD ATT);
7. task−>att = i;

setWeight(task, r) ;
7. ff send out(task);

}
7. root−>attTasks = c;

return FF GO ON;
7. }

node n = task−>getNode();
7. if (task−>isBuildAtt()) {

if (−−n−>attTasks>0)
7. return FF GO ON;

n−>splitPost();
7. }

nChilds = n−>Childs();
7. if (noMoreTasks() && !nChilds)

return NULL;
7. for(int i=0; i < nChilds; i++) {

node child = n−>getChild(i);
7. int r = child−>getNoCases();

int c = child−>getNoAtts();
7. if (!buildAttTest(r,c)) {

ctask=new ff task(child,BUILD NODE);
7. setWeight(ctask, r) ;

ff send out(ctask);
7. } else {

if (child−>splitPre()) continue;
7. for(int j=0;j<c;++j) {

ctask=new ff task(child,BUILD ATT);
7. ctask−>att = j;

setWeight(ctask, r) ;
7. ff send out(ctask);

}
7. child−>attTasks = c;

}
7. return FF GO ON;

}
7.

void ff worker :: svc(void task) {
7. node n = task−>getNode();

if (task−>isBuildAtt())
7. n−>splitAtt(task−>att);

else
7. n−>split();

return task;
7. }

Fig. 7. Emitter and Worker definition for the NAP strategy

workers (�5.�-		). Parameters of ff farm include: the size QSIZE of each worker
input queue, and the scheduling policy (ws scheduler), which is based on tasks
weights. Basically, such a policy assigns a new task to the worker with the lowest
total weight of tasks in its own input FIFO queue. The emitter class ff emitter
and the worker class ff worker define the behaviour of the farm parallelisation
through the class method svc (short name for service) that is called by the Fast-
Flow run-time to process input tasks. Different parallelisation strategies can be
defined by changing only these two methods. The implementation of the NP and
the NAP strategies are shown in Fig. 6 and Fig. 7 respectively.

NP strategy (Fig. 6). At start-up the ff emitter::svc method is called by
the FastFlow run-time with a NULL parameter (�6.�). In this case, a task for
processing the root node is built, and its weight is set to the number of cases at
the root (�6.�-�). Upon receiving in input a task coming from a worker, the emit-
ter checks the termination conditions (�6.	
), and then produces in output the
sub-tasks corresponding to the children of the node (�6.	�-	�). The ff send out
method of the FastFlow runtime allows for queueing tasks without returning
from the method. Finally, the FF GO ON tag in the return statement (�6.	�) tells
the run-time that the computation is not finished (this is stated by returning
NULL), namely further tasks must be waited for from the input channel. The
ff worker::svc method for a generic worker (�6.��-��) merely calls the node
splitting algorithm node::split, and then it immediately returns the computed
task back to the emitter. The overall coding is extremely simple and intuitive
– almost a rewriting of the original tree::build method. Moreover, it is quite
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generalisable to any top-down tree-growing algorithm with greedy choice of the
splitting at each node. The weighted scheduling policy is the most specific part;
in particular, for the use of weights that are linear in the number of cases at the
node. This is motivated by the experimental results of [16, Fig. 1], which show
how the YaDT implementation of node::split exhibits a low-variance elapsed
time per case for the vast majority of nodes.

NAP strategy (Fig. 7). The NAP strategy builds over NP. For a given de-
cision node, the emitter follows a D&C parallelisation over its children, as in
the case of the NP strategy. In addition, for each child node, the emitter may
decide to parallelise the calculation of the information gains in the node::split
method (�2.�-�). In such a case, the stopping criterion at �2.� must be evaluated
prior to the parallelisation, and the creation of the child nodes must occur after
all the information gains are computed. This leads to partitioning the code of
node::split into three methods, as shown in Fig. 3.

For the root node, attribute parallelisation is always the case (�7.�-	
). A task
with label BUILD ATT is constructed for each attribute, with the field att record-
ing the attribute identifier (the index i). Tasks are weighted and queued. The
information about how many tasks are still to be completed is maintained in the
attTasks field of the decision node – such a field is added to the original node
class. Upon receiving in input a task coming from a worker, the emitter checks
whether it concerns the processing of an attribute (�7.	�). If this is the case
(�7.	�-�
), the attTasks counter is decremented until the last attribute task ar-
rives, and then the node::splitPostmethod is called to evaluate the best split.
At this point, the emitter is given a processed node (either from a worker, or as
the result of the node::splitPost call). Unless the termination conditions occur
(�7.��), the emitter proceeds with outputing tasks. The buildAttTest at �7.��

controls for each child node whether to generate a single node processing task, or
one attribute processing task for each attribute at the child node. In the former
case (�7.��-�	), we proceed as in the NP strategy; in the latter case (�7.��-��),
we proceed as for the root node4. Based on the task label, the ff worker::svc
method for a generic worker (�7.��-�	) merely calls the node splitting procedure
or the information gain calculation for the involved attribute.

Let us discuss in detail two relevant issues. Let r be the number of cases and
c the number of attributes at the node.

The first issue concerns task weights. Node processing tasks are weighted with
r (�7.�
), as in the NP strategy. Although attribute processing tasks have a finer
grain, which suggests a lower weight, there exists a synchronisation point – all
attribute tasks must be processed before the emitter can generate tasks for the
child nodes. By giving a lower weight, we run the risk that all attribute tasks
are assigned to the most unloaded worker, thus obtaining a sequential execution
of the attribute tasks. For these reasons, attribute processing tasks are weighted
with r as well (�7.�,�7.��).

4 Notice that tasks for node processing are labelled with BUILD NODE, while tasks for
attribute processing are labelled with BUILD ATT.
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The second issue concerns the test buildAttTest, which decides whether to
perform nodes or attributes parallelisation. We have designed and experimented
three cost models. Attribute parallelisation is chosen respectively when:

– (α < r) the number of cases is above some hand-tuned threshold value α;
– (|T | < c r log r) the average grain of node processing (quicksort is r log r on

average) is higher than a threshold that is dependent on the training set.
Intuitively, the threshold should be such that the test is satisfied at the root
node, which is the coarser-grained task, and for nodes whose size is similar.
Since the average grain of processing an attribute at the root is |T | log |T |,
we fix the threshold to a lower bound for such a value, namely to |T |;

– (|T | < c r2) the worst-case grain of node processing (quicksort is r2) is higher
than a threshold that is dependent on the training set. As in the previous
case, the threshold is set to |T |. The higher value cr2, however, leads to
selecting attributes processing more often than the previous case, with the
result of task over-provisioning.

All tests are monotonic in the number r of cases at the node. Hence, if the nodes
parallelisation is chosen for a node, then it will be chosen for all of its descen-
dants. As we will see in Sec. 5, the third cost model shows the best performance.

5 Performance Evaluation

In this section we show the performances obtained by YaDT-FF. The datasets
used in the tests and their characteristics are reported in Table 1. They are
publicly available from the UCI KDD archive, apart from SyD10M9A which
is synthetically generated using function 5 of the QUEST data generator. All
presented experimental results are taken performing 5 runs, excluding the higher
and the lower value obtained and computing the average of the remaining ones.

Experimental framework. All experiments were executed on two different In-
tel workstation architectures: Nehalem) a dual quad-core Xeon E5520 Nehalem
(16 HyperThreads) @2.26GHz with 8MB L3 cache and 24 GBytes of main mem-
ory with Linux x86 64. Harpertown) a dual quad-core Xeon E5420 Harpertown
@2.5GHz 6MB L2 cache and 8 GBytes of main memory, with Linux x86 64.
They are a quite standard representative of current and immediately preceding

Table 1. Training sets used in experiments, and size of the induced decision tree

No. of attributes Tree

T name |T | NC discr. contin. total size depth

Census PUMS 299,285 2 33 7 40 122,306 31
U.S. Census 2,458,285 5 67 0 67 125,621 44
KDD Cup 99 4,898,431 23 7 34 41 2,810 29
Forest Cover 581,012 7 44 10 54 41,775 62
SyD10M9A 10,000,000 2 3 6 9 169,108 22
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Fig. 8. NP strategy speedup. Nehalem box (left), Harpertown box (right).

generation of (low-cost) server boxes. The Nehalem-based machine exploits Si-
multaneous MultiThreading (SMT, a.k.a. HyperThreading) with 2 contexts per
core and the novel Quickpath interconnect equipped with a distributed cache
coherency protocol. SMT technology makes a single physical processor appear
as two logical processors for the operating system, but all execution resources
are shared between the two contexts: caches of all levels, execution units, etc.

Performance. Let us start considering the NP strategy, i.e., the parallelisation
of nodes processing. The obtained speedup is shown in Fig. 8. The maximum
speedup is similar on both architectures, and quite variable from a dataset to
another; it ranges from 1.34 to 3.54 (with an efficiency of 45%). As one would
expect, exploiting inter-nodes parallelism alone is not enough to reach a close
to optimal speedup, because a large fraction of the computing time is spent in
the coarse-grained nodes (those in the higher levels of the tree), thus lacking
parallelism. This phenomenon has been already observed in previous work on
the parallelisation of decision tree construction over distributed memory archi-
tectures [9]. These systems, however, suffer from load balancing problems, which
we will handle later on, and high costs of communications, which in shared mem-
ory architectures do not occur. Summarising, although the NP strategy yields a
modest speedup, it is worth noting that the effort required to port the sequential
code was minimal.

The NAP strategy aims at increasing the available parallelism by exploiting
concurrency also in the computation of the information gain of attributes. This
is particularly effective for nodes with many cases and/or attributes, because
it reduces the sequential fraction of the execution. As presented in Sec. 4, the
emitter relies on a cost model in order to decide whether to adopt attributes
parallelisation. We have tested the three cost models discussed in Sec. 4. Fig. 12
shows that the test |T | < cr2 provides the best performance for almost all
datasets. This is justified by the fact that the test exhibits an higher task over-
provisioning if compared to the test |T | < cr log r, and it is dataset-tailored if
compared to α < r. In all of the remaining experiments, we use that model.

The speedup of YaDT-FF with the NAP strategy is shown in Fig. 9. It
ranges from 4 to 7.5 (with an efficiency of 93%). The speedup gain over the NP
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Fig. 9. NAP strategy speedup. Nehalem box (left), Harpertown box (right).
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strategy is remarkable. Only for the Census PUMS dataset, the smallest dataset
as for number of cases, the speedup gain is just +12% over NP. Notice that the
SyD10M9A dataset apparently benefits from a super-linear speedup. Actually,
this happens because the speedup is plotted against the number of farm workers.
Hence, the fraction of work done by the emitter thread is not considered, yet
not negligible as shown in Fig. 14.

YaDT-FF also exhibits a good scalability with respect to both the number of
attributes (Fig. 10) and to the number of cases (Fig. 11) in the training set. The
plots refer to subsets of the SyD10M9A dataset possibly joined with randomly
distributed additional attributes. In the former case, the maximum speedup (7×)
is reached as soon as the number of attributes doubles the available hardware
parallelism (18 attributes for 8 cores). In the latter case, the achieved speedup
increases with the number of cases in the training set.

Load-balancing. The parallelisation of decision tree construction algorithms
may suffer from load balancing issues due to the difficulties in predicting the
time needed for processing a node or a sub-tree. This is exacerbated in the
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parallelisation of the original C4.5 implementation, because of the linear search
of the threshold (�2.	
). Fig. 14 shows that load balancing is not a critical issue
for YaDT-FF with the NAP strategy. We motivate this by two main reasons: 1)
the NAP strategy produces a significant over-provisioning of tasks with respect
to the number of cores; these tasks continuously flow (in a cycle) from the emitter
to the workers and they are subject to online scheduling within the emitter; 2)
FastFlow communications are asynchronous and exhibit very low overhead [1].
This makes it possible to sustain all the workers with tasks to be processed for
the entire run. This also reduces the dependence of the achieved speedup from
the effectiveness of the scheduling policy. Nevertheless, such dependence exists.

Fig. 13 shows results for three different scheduling policies: 1) Dynamic Round-
Robin (DRR); 2) On-Demand (OD); 3) Weighted Scheduling (WS). The DRR
policy schedules a task to a worker in a round-robin fashion, skipping workers
with full input queue (with size set to 4096). The OD policy is a fully online
scheduling, i.e., a DDR policy where each worker has an input queue of size
1. The WS policy is a user-defined scheduling that can be set up by assigning

Total Execution Time (sec.)

T name |T | < cr2 α < r |T | < cr log r

Census PUMS 0.85 0.85 0.91
U.S. Census 3.28 3.51 3.35
KDD Cup 99 3.76 3.80 3.77
Forest Cover 2.64 2.66 2.73
SyD10M9A 16.90 16.68 18.16

Effectiveness of buildAttTest(c,r) for different at-
tributes parallelisation cost models. |T | = no. of
cases in the training set, c = no. of attributes at the
node, r = no. of cases at the node, and α = 1000.
Bold figures highlight the best results.

Fig. 12. Attributes parallelisation
tests (Nehalem, 7 worker threads)
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Table 2. YaDT vs YaDT-FF on a Nehalem quad-core (E= Emitter, W=Worker)

1E+1W 1E+2W 1E+3W

T name Seq.Time (S) Time (S) Max Boost

Census PUMS 4.46 4.3 2.37 1.69 2.64×
U.S. Census 17.67 17.97 11.17 7.8 2.26×
KDD Cup 99 18.11 17.26 9.12 6.67 2.71×
Forest Cover 16.99 16.97 8.74 5.86 2.90×
SyD10M9A 103.21 93.95 52.34 39.37 2.62×

weights to tasks through calls to the setWeight method. YaDT-FF adopts a WS
policy, with the weight of a task set to the number r of cases at the node.

It is immediate to observe from Fig. 13 that all the scheduling policies are
fairly efficient. WS exhibits superior performance because it is tailored over the
YaDT-FF algorithm; it actually behaves as a quite efficient online scheduling.
Finally, we show in Fig. 15 how often nodes parallelisation has been chosen by
the emitter against the attributes parallelisation (we recall that the test |T | <
cr2 was fixed). Black stripes lines in the figure denote attributes parallelisation
choices whereas white stripes denote nodes parallelisation ones. As expected, the
former occurs more often when processing the top part of the decision tree (from
left to the right, in the figure).

Simultaneous MultiThreading. We briefly evaluate the benefits achieved
using the Nehalem HyperThreaded box. SMT is essentially a memory latency
hiding technique that is effective when different threads in a core exhibit a shared
working set that induces high cache hit rate. However, even in non-ideal con-
ditions, SMT is able to moderately increase instructions per clock-cycle count,
hence the overall performance, by partially hiding costly memory operations with
threads execution. The comparison between the two graphs in Fig. 9 shows that
several datasets benefit of (about) 30% improvement due to SMT; some others,
such as Census PUMS and KDD Cup, show only a modest benefit (about 12%).
These figures match the expected benefit for this kind of architectures [19]. As
future work, we believe that the effectiveness of SMT can be further improved
by devising a cache-aware weighted scheduling policy.

6 Related Work

Over the last decade, parallel computing aimed at addressing three main classes
of data mining issues: 1) solve inherently distributed problems, e.g., mining of
datasets that are bound to specific sites due to privacy issues; 2) manage larger
datasets by exploiting the aggregate memories of different machines; 3) decrease
the processing time of mining algorithms. In many cases, the latter two issues
have been jointly addressed by trying to bring in-core datasets that are out-of-
core on a single machine. Such an approach, which often requires the redesign
of the algorithms or the introduction of new scalable data structures, is loosing
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interest with the ever-increasing availability of main memory space. Our work
distinguishes from this approach, even if it clearly belongs to the third class.

Considering the parallelisation methodology, related works can be categorised
as follow: 1) exploiting attributes parallelism by partitioning the training set by
columns and then adopting data parallelism [11,18]; 2) exploiting nodes par-
allelism by independently building different nodes or sub-trees adopting task
parallelism [6]; 3) combining the two above in various fashions [20,23]. Several
works focus on distributed-memory machines, including SPRINT [18], ScalParC
[11], pCLOUDS [20], and the approach of [6]. The use of scalable data structures
and of efficient load balancing techniques, trying to minimise costly data redistri-
bution operations, are the most important factors to obtain good performance.
As an example, the earliest SPRINT parallel algorithm adopts scalable SLIQ
data structure for representing the dataset, but it suffers from communication
bottlenecks addressed in the successor system ScalParC. pCLOUDS [20] com-
bines both the data parallel and the task parallel approaches. It exploits data
parallelism for large decision nodes, then it switches to a task parallel approach
as soon as the nodes become small enough. The proposal of [6] categorises tasks
in three different classes: large, intermediate and small ones. Large tasks process
a decision node. Intermediate tasks process a sub-tree up to a given number of
nodes. Small tasks sequentially process the whole sub-tree of a node. YaDT-FF
takes inspiration from the two latter works and distinguish from them for: 1)
it does not need the redesign of the sequential algorithm but rather an easy-
yet-efficient porting of the existing code; 2) it targets multicore rather than
distributed memory machines; 3) it adopts an effective cost model for deciding
whether to parallelise on nodes or on attributes. Few works target data mining
systems on multicore [4,8,10,14], but none specifically decision tree algorithms.

7 Conclusions

Nowadays, and for foreseeable future, the performance improvement of a single
core will no longer satisfy the ever increasing computing power demand. For
this, computer hardware industry shifted to multicore, and thus the extreme
optimisation of sequential algorithms is not longer sufficient to squeeze the real
machine power. Software designers are then required to develop and to port
applications on multicore. In this paper, we have presented the case study of
decision tree algorithms, porting YaDT using the FastFlow parallel programming
framework. The strength of our approach consists in the minimal change of
the original code with, at the same time, a non-trivial parallelisation strategy
(nodes and attributes parallelism plus weighted problem-aware load balancing)
and notable speedup. Eventually, we want to stress the results in the case of a
low cost quad-core architecture that may be currently present in the desktop PC
of any data analyst. Table 2 shows that the parallelisation of YaDT boosts up
to 2.9×, with no additional cost to buy a specific parallel hardware.



22 M. Aldinucci, S. Ruggieri, and M. Torquati

References

1. Aldinucci, M., Meneghin, M., Torquati, M.: Efficient Smith-Waterman on multi-
core with FastFlow. In: Proc. of the Euromicro Conf. on Parallel, Distributed and
Network-based Processing (PDP), pp. 195–199. IEEE, Pisa (2010)

2. Asanovic, K., Bodik, R., Demmel, J., Keaveny, T., Keutzer, K., Kubiatowicz, J.,
Morgan, N., Patterson, D., Sen, K., Wawrzynek, J., Wessel, D., Yelick, K.: A view
of the parallel computing landscape. CACM 52(10), 56–67 (2009)

3. Blumofe, R.D., Joerg, C.F., Kuszmaul, B.C., Leiserson, C.E., Randall, K.H., Zhou,
Y.: Cilk: An efficient multithreaded runtime system. Journal of Parallel and Dis-
tributed Computing 37(1), 55–69 (1996)

4. Buehrer, G.T.: Scalable mining on emerging architectures. Phd thesis, Columbus,
OH, USA (2008)

5. Cole, M.: Bringing skeletons out of the closet: A pragmatic manifesto for skeletal
parallel programming. Parallel Computing 30(3), 389–406 (2004)

6. Coppola, M., Vanneschi, M.: High-performance data mining with skeleton-based
structured parallel programming. Parallel Computing 28(5), 793–813 (2002)

7. Gehrke, J.E., Ramakrishnan, R., Ganti, V.: RainForest — A framework for fast
decision tree construction of large datasets. Data Mining and Knowledge Discov-
ery 4(2/4), 127–162 (2000)

8. Ghoting, A., Buehrer, G., Parthasarathy, S., Kim, D., Nguyen, A., Chen, Y.K.,
Dubey, P.: Cache-conscious frequent pattern mining on a modern processor. In:
Proc. of the Intl. Conf. on Very Large Data Bases (VLDB), pp. 577–588 (2005)

9. Han, E., Srivastava, A., Kumar, V.: Parallel formulation of inductive classification
parallel algorithm. Tech. rep., Department Computer and Information Science,
University of Minnesota (1996)

10. Jin, R., Yang, G., Agrawal, G.: Shared memory parallelization of data mining algo-
rithms: Techniques, programming interface, and performance. IEEE Transactions
on Knowledge and Data Engineering 17, 71–89 (2005)

11. Joshi, M., Karypis, G., Kumar, V.: ScalParC: A new scalable and efficient parallel
classification algorithm for mining large datasets. In: Proc. of IPPS/SPDP, pp.
573–579. IEEE, Los Alamitos (1998)

12. Lim, T., Loh, W., Shih, Y.: A comparison of prediction accuracy, complexity, and
training time of thirthy-tree old and new classification algorithms. Machine Learn-
ing Journal 40, 203–228 (2000)

13. Park, I., Voss, M.J., Kim, S.W., Eigenmann, R.: Parallel programming environment
for OpenMP. Scientific Programming 9, 143–161 (2001)

14. Pisharath, J., Zambreno, J., Ozisikyilmaz, B., Choudhary, A.: Accelerating data
mining workloads: Current approaches and future challenges in system architecture
design. In: Proc. of Workshop on High Performance and Distributed Mining (2006)

15. Quinlan, J.R.: C4.5: Programs for Machine Learning. Morgan Kaufmann, San Ma-
teo (1993)

16. Ruggieri, S.: Efficient C4.5. IEEE Transactions on Knowledge and Data Engineer-
ing 14, 438–444 (2002)

17. Ruggieri, S.: YaDT: Yet another Decision tree Builder. In: 16th IEEE Int. Conf.
on Tools with Artificial Intelligence (ICTAI), pp. 260–265. IEEE, Los Alamitos
(2004)



Porting Decision Tree Algorithms to Multicore Using FastFlow 23

18. Shafer, J.C., Agrawal, R., Mehta, M.: SPRINT: A scalable parallel classifier for
data mining. In: Proc. of the Intl. Conf. on Very Large Data Bases (VLDB), pp.
544–555 (1996)

19. Sodan, A.C., Machina, J., Deshmeh, A., Macnaughton, K., Esbaugh, B.: Paral-
lelism via multithreaded and multicore CPUs. IEEE Computer 43(3), 24–32 (2010)

20. Sreenivas, M.K., Alsabti, K., Ranka, S.: Parallel out-of-core divide-and-conquer
techniques with application to classification trees. In: Proc. of IPPS/SPDP, pp.
555–562. IEEE, Los Alamitos (1999)

21. Thies, W., Karczmarek, M., Amarasinghe, S.P.: StreamIt: A language for streaming
applications. In: Horspool, R.N. (ed.) CC 2002. LNCS, vol. 2304, pp. 179–196.
Springer, Heidelberg (2002)

22. Vanneschi, M.: The programming model of ASSIST, an environment for paral-
lel and distributed portable applications. Parallel Computing 28(12), 1709–1732
(2002)

23. Zaki, M., Ho, C.T., Agrawal, R.: Parallel classification for data mining on shared-
memory multiprocessors. In: Proc. of the Intl. Conf. on Data Engineering (ICDE),
pp. 198–205. IEEE, Los Alamitos (1999)
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Abstract. Concept drift is a common challenge for many real-world
data mining and knowledge discovery applications. Most of the exist-
ing studies for concept drift are based on centralized settings, and are
often hard to adapt in a distributed computing environment. In this pa-
per, we investigate a new research problem, P2P concept drift detection,
which aims to effectively classify drifting concepts in P2P networks. We
propose a novel P2P learning framework for concept drift classification,
which includes both reactive and proactive approaches to classify the
drifting concepts in a distributed manner. Our empirical study shows
that the proposed technique is able to effectively detect the drifting con-
cepts and improve the classification performance.

Keywords: Concept drift, classification, peer-to-peer (P2P) networks,
distributed classification.

1 Introduction

Recent years have witnessed a surge of emerging research for data mining and
machine learning in peer-to-peer (P2P) environments [1,2,3]. This includes dis-
tributed classification in P2P networks, referred to “P2P classification”, which
aims to exploit the resources of all peers to collaboratively learn an accurate
classification model that is representative of the entire network’s data. P2P clas-
sification is a rapidly growing research topic in data mining due to its rich ap-
plications, such as user preference mining, recommendation systems, automated
document organization, etc. In general, it has many open challenges, such as mas-
sive number of peers, arbitrarily connected and dynamic peers, and so on [4].
With consideration of the properties of P2P environments, an ideal P2P classi-
fication scheme should typically be: anytime (produce an answer at any time),
asynchronous (peer dependencies are low), decentralized, highly scalable, tol-
erant of peer failures (failures should not result in catastrophic outcome) and
privacy preserving (private data should not be revealed).

Besides the above mentioned challenges, another critical challenge for P2P
classification is concept drift [2], which is an important problem in many data
mining and machine learning applications. Concept drift refers to the learning
problem where the target concept to be predicted, changes over time in some un-
foreseen behaviors. It is commonly found in many dynamic environments, such
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as data streams, P2P systems, etc. Real-world examples include network intru-
sion detection, spam detection, fraud detection, epidemiological, and climate or
demographic data, etc. It is crucial to address the concept drift problem in P2P
classification, as the inability to adapt swiftly to the drifted concept often results
in significant loss of classification accuracy.

Although concept drift has been actively studied, concept drift in a P2P
environment has some fundamental difference from that of a typical centralized
setting. Typical scenarios only model concept drift from a single source of data.
In P2P networks, each peer can be viewed as an independent data source. Hence,
P2P concept drift affects different peers in diverse ways, such as varying degree
or varying time occurrence.

An ideal classification algorithm that deals with the problem of concept drift in
a P2P setting should possess the aforementioned desirable properties for learning
in a P2P setting, and also be able to adapt swiftly to the changes in concepts,
without adversely affecting the peers. Although there has been much work on
P2P classification [1,2,3], most do not address the problem of concept drift, and
those that do simply assume the concept drift scenario of a centralized setting;
i.e., all peers are affected in the same manner at the same time.

Most of the existing approaches that deal with concept drifts [5,6,7,8,9,10,11]
are based on a centralized setting and cannot be easily adapted for a P2P envi-
ronment. While the ensemble-based solution seems to be a viable option, existing
works do not consider the problem of distributed concept drifts that may oc-
cur in a P2P environment. They are also not designed to be efficient for the
demanding environment of P2P networks.

To address the above challenges, this paper presents a novel concept drift
adaptation framework for performing distributed classification in P2P environ-
ments, and makes the following contributions:

– To the best of our knowledge, we are the first to formally examine the prob-
lem of concept drift for distributed classification in P2P environments. We
illustrate the difference from the conventional centralized single-source con-
cept drifts, and investigate their effects on the P2P classification problem.

– We propose a novel P2P classification framework to address the concept
drift issue in a P2P environment, which includes both reactive and proactive
adaptation approaches. Our framework is based on the ensemble paradigm,
which mines meta data of different peers to achieve reactive and proactive
concept drift adaptation.

– We theoretically and empirically justify the efficacy of our approach. In ad-
dition, we demonstrate that two aspects are crucial to the mutual benefits
of peers, i.e., (1) the sharing of knowledge, and (2) the judicious choice on
the usage of relevant knowledge.

The rest of this paper is organized as follows. We introduce the problem of
concept drift and related work in Section 2. Section 3 presents our framework
for learning with drifting concepts in P2P networks. The proposed framework is
empirically examined in Section 4 and Section 5 concludes this paper.
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2 Background and Related Work

2.1 Background

We first introduce the setup of classification in a P2P environment. Let us de-
note by D = [(xt,1, . . . , xt,d)�

t=1] a training data set, and y = [y1, . . . , y�]T the
corresponding class labels, where � denotes the total number of training data
instances, d denotes the dimensionality of data points, yt ∈ Y, and Y denotes
the class label space; e.g., Y = {+1,−1} for binary classification. Typically,
each training instance (x, y) is drawn from some unknown but i.i.d. distribution
P (x, y). Suppose there are N peers in the P2P network, each sample is a parti-
tion Di of D where � =

∑
i �i. The goal of P2P classification is to collaboratively

learn a global prediction function f : X → Y from the training data of all peers,
which maps a d-dimensional vector x = (x1, . . . , xd)T ∈ X to a corresponding
class label y ∈ Y of a target concept.

Consider a non-stationary environment where the target concept may change.
We are given a series of training datasets {D1, . . . , Dt}, where t is the current
time period, and Dt was drawn from some unknown probability distribution
Pt(x, y). Given such a scenario, concept drift is defined as the change of the
underlying unknown probability distribution, i.e., Pt−1(x, y) �= Pt(x, y), which
has occurred from time period t − 1 to t. This obsoletes the models that were
built on the old training data, and thus causes their prediction accuracy to drop.
In addition, as each peer is sub-sampling from the changing unknown probability
distribution, different peers may be affected differently by the same change in
concept; e.g., due to a delayed concept drift, varying degree of drift, etc. Hence,
an ideal classification solution for a concept drifting P2P network should possess
the desired properties stated in the beginning of the paper, and should be able
to promptly adapt to the concept drift without introducing adverse effects.

2.2 Related Work

Classification in P2P networks has been recently addressed by several stud-
ies [1,2,3]. While most of them were proposed to learn the concepts in an incre-
mental manner, only the P2P decision tree [2] has been partially demonstrated
on the concept drifting data. However, since the concept drift problem is not
their focus, their experiments only assume some simple scenarios where concept
drift occurs simultaneously for all peers and only the suddenly changing concept
drift problem was examined.

In literature, the issue of concept drift has been actively studied in the context
of data stream classification [5,6,7,8,9,10,11]. These approaches can be broadly
divided into single models and ensemble-based approaches.

The category of single model based studies includes CVFDT [6], which is based
on the VFDT that incrementally builds a decision tree based on the incoming
data. New subtrees are constructed when the old subtrees become outdated and
the latter is replaced when the former achieves better accuracy. The incremental
aspect of the P2P decision tree [2] bears some resemblance to this approach. An-
other work by Xu et al. [11] is also based on single model, but their work focuses
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on learning from multiple streams, examining how the streams can be combined
for handling the concept drift in a centralized manner. These approaches are
however not suitable for P2P environments due to the nature of their central-
ized settings, which often bring many difficulties and require much effort for any
extension of such work.

Another work whose setting is quite similar to ours was done by Chen et al. [5].
They explored the web mining task from multiple distributed data streams. At
each distributed site, a local Bayesian Network (BN) model is learned and a
subset of the relevant observations are sent to a centralized site. The centralized
site then uses these partial observations to construct a BN model and link up with
BN models of the distributed sites to obtain a collective BN model. However,
their drawback is that a centralized site is required, which is often not available
in a P2P environment.

Recently, ensemble approaches have been widely proposed for solving the con-
cept drift problem [7,8,9,10,12]. In general, models are constructed on every new
chunk of data and different model selection or weighting schemes are explored.
One early ensemble based solution for learning drifting concepts was proposed
by Street and Kim [8]. They proposed a simple solution to construct a classifier
on every chunk of data, which the results are combined with majority voting.
When the ensemble is completed, old models are replaced if their performance
on the latest data chunk is lower than that of the new models. In the work by
Wang et al. [10], models are also constructed on every new data chunk and the
models are weighted according to their performance. In addition, pruning based
on cost-sensitive and prediction confidence were explored to improve the efficacy.

More recently, ensemble solutions based on dynamic weighting have also been
proposed. The dynamic weighted majority approach [7] maintains an ensemble
of classifiers and creates new ones when global predictions are incorrect. Sim-
ilarly, the weights of individual models are reduced when their predictions are
incorrect. After every evaluation, the weights are normalized to prevent over-
emphasizing on the latest models. When the weights of the models fall below
a given threshold, the models are removed, but the last classifier is excluded.
Tsymbal et al. [9] proposed three dynamic weighting schemes; viz., (1) dynamic
selection—only best model is selected, (2) dynamic voting—weighted majority
based on accuracy, and (3) dynamic voting with selection—only the top half of
the models are selected for weighted majority voting. In addition, they adopted
an instance-based k-nearest neighbour weighting scheme for the models. For each
instance, its k nearest neighbour is selected and used for weighting the mod-
els. They empirically showed better performance than a simple weighted voting
approach.

It is important to note that all the above approaches are essentially reactive,
i.e., they only adapt to the drift after it happened. Efforts have also been made on
exploring proactive solutions, which try to predict the change in concept before
it happens. In the RePro [12] system, models are re-constructed when the stored
historical models cannot correctly predict the new coming data. In addition,
models are only stored when they are conceptually different from those existing
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Fig. 1. Flowchart of the RePCoDE Framework

ones. In their study, the reactive approach chooses the best model that matches
the latest data, while the proactive approach constructs a Markov Chain using
historical data to predict the next possible concept given that the concept has
occurred. The RePro system first uses the proactive approach to find suitable
models and then falls back to the reactive approach when none is found.

While the existing ensemble solutions seem promising, they are unsuitable or
insufficient for being deployed in the P2P environment due to several reasons.
First, these approaches are based on centralized settings and only monitor a
single stream. Due to the nature of P2P networks and the problem of distributed
concept drifting, each peer should be treated as a separate data (sub) stream.
In addition, the information of relationship between peers are also not utilized.
They also do not carefully address the properties of the P2P network such as
the massive size of the network and communication cost. Hence, they are not
optimized for solving the concept drift challenge in such scenarios.

3 RePCoDE Framework

3.1 Overview

In this section, we propose a Reactive and Proactive Concept Drift detection
Ensemble (RePCoDE) framework for learning drifting concepts in P2P networks.

We first start by stating some basic assumptions for learning with concept drifts
in a P2P environment. First, we assume that the data of all peers are drawn from
the same unknown underlying probability distribution where the concept changes
from time to time. However, concepts may not always drift instantaneously in all
peers (some delays can occur). Also, we assume that for all peers, data arrive se-
quentially, but are grouped together and processed in chunks, each consisting of
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Algorithm 1. RePCoDE Framework.
input: number of nearest neighbour voters k, number of proactive voters f ,

length of past statistics sequence b, proactive/reactive ratio λ, max
propagation delay w, drift detection threshold T ;

1 Last propagated model ML = ∅;
2 current data chunk Dt = ∅;
3 current model Mt = ∅;
4 current data statistics St = ∅;
5 propagation delay count Pdelay = w;
6 while stream not end do
7 if new data chunk Dt arrives then
8 Mt = construct classification model based on Dt;
9 St = compute statistics on Dt;

10 ML = check propagation conditions using Algorithm 2;
11 if new remote peer’s model Mr and statistics Sr arrives then
12 Index model Mr using Sr;
13 if new test dataset Dtest arrives then
14 predicted class labels y = predict class labels of Dtest using Algorithm 3;

n data instances. In addition, we assume the time taken to gather each chunk is
a single time period/step. Figure 1 gives an overview of the processes in our pro-
posed solution. We briefly describe the idea of our approach below.

First, each peer monitors its own data stream and builds a classification model
for every chunk of incoming labeled data. Next, it computes statistics of the
data and uses them for indexing the corresponding classifier. If concept drift has
occurred since last propagation or propagation waiting time reaches zero, one
then propagates its current model together with data statistics to other peers.

Further, upon receiving the models and data statistics from other peers, each
peer indexes the models using the corresponding data statistics. Contrary to
most existing studies, our approach requires the propagation of data statistics
in order to achieve the proactive adaptation. Due to the possibly large number of
models indexed, we first choose the most relevant models and then weight them
according to their performance on the most current data chunk. In addition, we
also try to match the local data stream with that of other peers to select models
that might better represent future data.

Finally, the class labels of unseen coming data are predicted using these se-
lected models based on the weighted majority voting. The pseudo code of our
algorithm is provided in Algorithm 1. For the remainder of this section, we first
present detailed descriptions of the main phases of our proposed framework; viz.,
(1) training phase and (2) prediction phase, and then analyze time complexity
and communication cost of our approach.

3.2 Training Phase

In a continuous manner, each peer independently gathers data and their corre-
sponding labels until the size of the specified chunk n is reached. Each peer then
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constructs a local classification model based on the latest data chunk. As ReP-
CoDE is an ensemble based approach, it is possible to use any type of classifica-
tion algorithms such as decision tree, neural networks, Support Vector Machine,
etc, for the model construction. However, due to the high frequency and short
gap of data arrival, the algorithm used must have very low time complexity. In
addition, as the models may need to be propagated at a later stage, we also
need to consider the size of the resultant classification model. Hence, to meet
the above two criteria, we choose the state-of-the-art linear SVM classification
algorithm [13] in our experiments. A linear SVM model, consisting of only a
single data vector, can be built in linear time complexity.

In addition to model construction, statistics of the data chunks are also com-
puted. These statistics are concise representation of the data chunks, which are
computed for the following reasons: (1) to facilitate the searching of models built
using similar data, and (2) to reduce the communication cost required for prop-
agation together with their respective models. Although there are many possible
methods (such as Gaussian Mixture Model, clustering, etc.) to compute the
statistics, we simply consider the linear SVM model which represents the deci-
sion hyperplane due to several reasons: (1) to streamline the model construction
and statistics computation process, and (2) its low time and space complexity,
and (3) its good ability of representing the training data in a separating manner.

Using the data statistics, the local models are then indexed locally. The index
method used here has to be distance-aware, such as locality sensitive hashing
(LSH) [14]. The purpose is to speed up the process of model retrieval and fil-
tering. As the number of models can be infinite, we limit the size of the index
m to control the space complexity of the framework. In this work, we adopt
a simple yet computationally efficient replacement strategy for handling index
overflow—to simply discard the oldest models, i.e., the newest model replaces
the oldest in the index. For efficiency and suitability, LSH [14] is adopted for
indexing in our implementation.

In addition to the indexing of local models, propagation conditions are also
validated. Here, we propose two criteria for propagation: (1) presence of concept
drift, and (2) propagation waiting delay. The first criterion uses the detection of
concept drift to decide whether the local models should be propagated to other
peers. Here, concept drift is examined by measuring the difference of the classi-
fication accuracy / prediction outputs between the last propagated model and
the latest model from the latest data. Given a concept drift threshold T ∈ [0, 1],
the latest model and its data statistics are propagated to other peers if the dif-
ference is greater than T . By comparing with the last propagated model, we are
able to detect both the sudden and gradual concept drifts. In the presence of
gradual concept drifts, the difference in accuracy will slowly build up as more
models are built and will eventually trigger the model propagation. Needless
to say, for sudden concept drifts, the difference in accuracy will immediately
satisfy the propagation criteria. Moreover, as a backup plan to insure against
failure of concept drift detection, we impose a propagation waiting delay condi-
tion. By assuming the absence of any model propagation for w time steps, the
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Algorithm 2. Check propagation conditions.
input : Current data chunk Dt, Current model Mt, data statistics St, last

propagated model ML, propagation delay count Pdelay, max
propagation delay w, drift detection threshold T ;

output: Last propagated model ML, propagation delay count Pdelay;
1 if Pdelay > 0 then
2 ycurrent = predict Dt using Mt;
3 ylast = predict Dt using ML;
4 if ylast − ycurrent > T then
5 propagate Mt and St;
6 Pdelay = w;
7 else Pdelay = Pdelay − 1
8 else
9 propagate Mt and St;

10 Pdelay = w;

latest model and statistics are propagated to the network, regardless of whether
concept drift has been detected or not. The propagation waiting delay condition
ensures regular updates of peers’ data trends and provides additional models to
improve accuracy performance of the ensemble solution. An outline is provided
in Algorithm 2.

As for the remote models, upon receiving the models and statistics from other
peers, each peer indexes the remote models using the corresponding data statis-
tics in the same manner similar to the processing of local models.

3.3 Prediction Phase

As mentioned earlier, our proposed framework adapts to concept drift using
both reactive and proactive techniques. Hence, the models used for prediction
are selected based on two criteria: (1) distance between the model’s statistics
and the statistics of the latest (local) data chunk (reactive) and (2) similarity
between the sequence of statistics of the models and the sequence of statistics of
the local peer’s data, i.e., pattern matching of concept drift trends (proactive).
This process is outlined in Algorithm 3.

First, a peer retrieves the statistics of the latest data. Then the statistics are
used to retrieve max(k, f ∗ 2) models from the index, where k is the number of
nearest-neighbour voters and f is the number of proactive voters. The models
retrieved have statistics that are the nearest (out of all indexed models) in terms
of Euclidean distance to the statistics of the latest data chunk. Out of all the
retrieved models, we select only the top k models for the reactive prediction
component. Here, the basic assumption is that if the models have statistics
similar to the most current data, they are more likely to be trained on similar
data and hence, achieve better accuracy for the most current data. In addition,
the accuracy of each of the chosen models is validated using the most current
labeled data chunk, which is then set as the weights of the model for weighted
majority voting. Finally, the sum of all weights of selected models is normalized
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Algorithm 3. Prediction.
input : test dataset Dtest, number of nearest neighbour voters k, number of

proactive voters f , length of past statistics sequence b, current data
chunk Dt, current data statistics St, proactive/reactive ratio λ;

output: Predicted Labels y;
1 model set Mset = ∅, reactive weights Wreactive = ∅, reactive model set

Mreactive = ∅, Similarity Score Wsim = ∅, proactive weights Wproactive = ∅,
proactive model set Mproactive = ∅, local past data statistics sequence Slocal = ∅;

2 Mset = retrieve from index max(k, 2f) models nearest to St, in ascending order;
Mreactive, Wreactive = find top k most accurate models and their weights from
Mset based on Dt;

3 Slocal = retrieve b past data statistics of local peer, e.g., {St−b, St−b+1, . . . , St};
4 for i = 1 to 2f do
5 Stemp = retrieve b past data statistics of Mset[i];
6 Wsim[i] = compute sequence similarity between Slocal and Stemp);
7 Mproactive, Wproactive = find top f most similar models and their weights from

Mset, Wsim;
8 y = predict labels of Dtest using models in Mreactive and Mproactive based on

weighted majority voting (Wreactive, Wproactive) with ratio λ;

to 1 such that the weights of all models becomes a distribution. Note here that
this approach is similar to previous works [7,9], which is a reactive technique as it
is only based on what has happened; i.e., based on the latest labeled data chunk
which is already observed. Hence, adaptation to the concept drift only starts
after the drift is known/detected. However, the sharing of the different peers’
models will allow the ensemble to achieve much better adaptation to concept
drifts compared to only using local models. An ensemble solution also performs
better when more (relevant, generalization error less than 50%) models are used.

It is obvious that using the reactive approach, there is still be an initial drop
in accuracy when concept drift first starts. However, if we assume that the same
concept drift occurs at different time steps for different peers, then it may be
possible to learn from the concept drift patterns of peers’ whose concept drift
has already occurred. Hence, we propose the following proactive technique to
select models that may be representative of the future data. First, we backtrack
b time steps and retrieve the statistics of the data up until the most current
time step. We define this as a sequence of the local data statistics. Next, for
each model retrieved that is not constructed locally, we first check the existence
of a later model received from the same peer. Then, in a similar manner, we
backtrack to b earlier models received from the same peer and create a sequence
of remote data statistics. Then, we compute the similarity of the two sequences
to obtain a similarity score. In our implementation, we used the dynamic time
warping (DTW) algorithm to perform similarity matching [15]. Once the simi-
larity matching has been performed for all models retrieved from the index, we
select f later models whose sequence of statistics is the most similar to the local
sequence. These later models are termed as proactive models as they are deemed
to be indicative of future data. Here, we assume that peers experiences concept
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drifts in the same patterns and the sequence similarity matching searches for
peers who had similar concept drifts experience. The similarity score obtained
is used to weigh the importance of the proactive models. Similar to the reactive
approach, we also normalize the sum of the weights of all proactive models such
that the weights of all models becomes a distribution.

As the proactive and reactive approaches select models and assign weights
(importance of classifiers) based on different criteria, they result in different
ensembles of classifiers with different voting weights. This leads us to one last
question—how do we combine the reactive and proactive approaches? In this
paper, we allow users to set a ratio parameter λ ∈ [0, 1] that determines their
relative importance. With λ = 0, only the reactive approach is used, and on
the contrary, with λ = 1, only the proactive approach is used. Finally, the class
labels of unlabelled data are obtained by performing weighted majority voting
based on both the selected reactive and proactive models, where the balance
between the two approach is determined by λ.

3.4 Complexity Analysis

For the model construction phase, we analyse the time complexity with respect
to only a single data chunk since data are possibly infinite. For each model con-
struction (Linear SVM), the time complexity is O(log(1/ε)nd) for an ε-accurate
solution where n is the size of the data chunk [13]. For computation of data
statistics, no additional cost is incurred. For indexing the model based on LSH,
suppose we have L hash tables and τ is the cost of computing one function, then
the cost is O(Lτ) for each model. Hence, the total cost for model construction
is O(log(1/ε)nd+ Lτ).

The time complexity to predict a dataset Dtest of size nt is as follows (c.f.,
Algorithm 3). First, we retrieve max(k, 2f) models from the LSH index, which
cost O(dm1/c2

), where m is the size of the index and c is the approximation
factor. To evaluate the accuracy of the models, the cost is O(max(k, 2f)nd).
Next, the past data statistics are retrieved and sequence similarity computed,
which cost O(2fb) and O(2fdb2) respectively. The cost of retrieving the top
k and f models is O(k) and O(f) respectively. Finally, the cost of predicting
with k + f models is O((k + f)dnt). Hence, the total cost for prediction is
O(dm1/c2

+ max(k, 2f)nd+ 2fb+ fdb2 + k + f + (k + f)dnt).

3.5 Communication Cost

The only communication cost incurred is the cost of propagating the data statis-
tics and models. Hence, the cost of propagation for each model (including its data
statistics) is O(d), as the Linear SVM model consist of only a single vector and
since the Linear SVM model is used as the data statistics to represent the data,
no additional cost is incurred. However, note that factors such as concept drift
detection threshold and propagation waiting delay can affect the frequency of
model propagation and hence increase the communication cost.
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4 Experimental Results

We conduct extensive experiments for evaluation under varying distributed con-
cept drift scenarios in order to examine how the sharing of knowledge among
peers can improve concept drift adaptation and how our proposed approach
performs better than other baseline approaches.

4.1 Experimental Setup

For evaluating the competing approaches, we assume a feedback type of concept
drift system [16,17,18] where data arrive first followed by their class labels, which
are made known after some time. This method of evaluation allows us to compare
the accuracy of the competing approaches in the presence of concept drifts and
also how quickly they can adapt to the drifts.

The P2P concept drift problems are simulated using the moving hyperplane
synthetic data generator [6], which has been widely used in concept drift works,
for simulating gradual concept drifts environments. The moving hyperplane
generator – a hyperplane in d-dimensional space is expressed by the equation∑d

i=1 aixi = a0, where ai is the weight of the attribute xi. Data instances sat-
isfying

∑d
i=1 aixi ≥ a0 are labelled as positive and negative otherwise. Concept

drifts are achieved by changing the weights of the attributes and the direction
of change [6]. To simulate varying occurrence of concept drifts in peers, they are
split into equal groups g and the drift occurrence of each sequential group is
delayed by S time steps. For instance, suppose there are 5 groups, and concept
drift occurs at time step t1 for group 1. Then concept drift will occur at time
step t1 + S for group 2 and t1 + 2S for group 3 and so on. Note that every peer
will draw a sample from the same concept (same a weights) although the master
data stream is constantly drifting.

Experiments are conducted over 50 time steps, each with a data chunk of
size n. Error is measured using the prequential methods, i.e., each data chunk
is first used to test the classifier, and then used as the training data. Results
presented are the average of all peers, over 10 independent runs. We used the
LIBLINEAR [13] linear SVM package as the base classifier for all approaches
and the LSHKIT [14] LSH library for the index in RePCoDE. All algorithms are
implemented in C++. Default parameters are as follows: number of peers N =
100, proactive voters f = 20, nearest neighbour voters k = 20, proactive/reactive
ratio λ = 0.5, propagation waiting delay w = 4, number of dimensions for
moving hyperplane d = 50, number of drifting dimensions = 30, weight change
per attribute for moving hyperplane = 0.05, probability of change in direction
for the weights = 10%. All parameters for LIBLINEAR are as default, except
for ε = 0.01. The number of peer groups g is 5 and the number of time shifts
S is 4.

We compare RePCoDE to the following approaches — (1) single local classifier
(Single) — the classifier used for prediction is trained on the most current local
data chunk , (2) weighted ensemble of most recent local classifiers (Local) —
the most recent local models are weighted and used for prediction, (3) weighted
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Fig. 2. Error on moving hyperplane
dataset

Fig. 3. Effect of proactive/reactive ratio
λ on accuracy

ensemble of most recent local & remote classifiers (Global) — the most recent
local and remote models are weighted and used for prediction, and (4) weighted
ensemble of most accurate local & remote classifiers (Weighted) [8] — all models
are weighted using the latest data chunk and the top most accurate models are
used for prediction. The number of models used for Local, Global and Weighted
is equal to the total number of models (nearest neighbour and proactive) used
for RePCoDE. The different approaches are compared based on average error
rate of every peer, average model propagated per time step (e.g., 0.5 average
number of models sent means that every peer will propagate 1 model every 2
time steps) and computation time cost incurred.

4.2 Comparison

Here, we compare the error rates of the various approaches on a gradually drift-
ing concept in a P2P network and presented the results in Figure 2. Observe
that except in the beginning where other peers’ knowledge is not yet available,
RePCoDE achieves lower error for the rest of the experiment, followed by Global,
Single, Local and Weighted. As Global is based on the most recent models of
all peers, it is likely to include models of peers who have already experienced
concept drift, and models of those who may be delayed even more than itself.
Hence it has a higher error rate compared to RePCoDE. One possible reason
Local has higher error rates than Single could be attributed to its inclusion of the
outdated models. The only unexpected result is the Weighted approach, since
the models chosen are the best on the current data chunk. This implies that the
best model at current time step may not be the best for the next time step and
hence the need for proactive approaches.

4.3 Parameter Sensitivity

Here, we varied various parameters, from both the approach and the environment
to see how they affect the approaches.
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(a) Accuracy (b) Communication

Fig. 4. Effect of drift detection threshold T on accuracy and communication costs

Reactive/Proactive Ratio λ. This experiment examines the effect of the Re-
active/Proactive Ratio on the error rate. The Reactive/Proactive ratio λ varies
from 0 to 1 and results are presented in Figure 3. Observe that neither of the
extreme values perform well, meaning that using only the reactive or proactive
approach is not sufficient. One has to combine both approaches to achieve low
error rates. Empirically, a value that is somewhere in the middle is a good choice.

Drift Detection Threshold T . To understand how the concept drift detection
affects RePCoDE, we set the propagation waiting delay to a large number such
that it will not be activated, and varied the drift detection threshold T from 0 to
0.5. The results on accuracy and communication cost are presented in Figure 4.
We see that as T increases, the error rate of all approaches except for Single and
Local increase, with ReCoDE being affected the most, and the communication
cost also decreases. This is because less concept drifts are detected, hence re-
ducing the models propagated, affecting both communication and accuracy — a
typical accuracy vs. cost trade off problem. As ReCoDE depends on the concept
drift trends of other peers for the proactive approach to work well, with the
failure to detect concept drifts, accuracy will be greatly affected (unless ratio is
adjusted). However, note the lower error rates when concept drifts are properly
detected. In addition, note that Single and Local are not affected as they are
only based on the local models.

Propagation waiting delay w. Here, we study how the propagation waiting
delay w can help ensure RePCoDE maintain high accuracy in the event of failure
to detect concept drifts. We set the drift detection threshold T to 1 (i.e., no
drift will be detected) and varied w from 2 to 10. The error rate and total
communication cost are presented in Table 1. Results show that as w reduces,
RePCoDE’s error rate decreases, but the communication cost increases.

Number of nearest neighbour voters k. The results in Figure 5 show the
error rate and time cost with respect to the number of nearest neighbour voters
k varying from 5 to 50. The results show that a small number of k is sufficient
to achieve satisfactory error rate, as error rate does not decrease further when
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Table 1. Effect of propagation waiting delay w on accuracy and communication costs

Propagation waiting delay w 2 4 6 8 10
Error Rate 0.1805 0.2452 0.3092 0.3736 0.4368

Total Comm. Cost 0.3400 0.2000 0.1400 0.1200 0.1000

(a) Accuracy (b) Time

Fig. 5. Effect of number of nearest neighbour voters k on accuracy and time costs

(a) Accuracy (b) Time

Fig. 6. Effect of number of proactive voters f on accuracy and time costs

k exceeds 25. In addition, as k increases, time cost increases linearly and with a
small coefficient.

Number of proactive models f . The results in Figure 6 shows the error
rate and time cost, as the number of proactive voters f is varied from 5 to
50. The results show that a small number of f is required. Initially, error rate
decreases sharply with the increase in f but starts to gradually increase as f
increase further. This implies that only a smaller number of proactive voters
are able to predict the concept drift of the current peer. Similar to the nearest
neighbour voters k, time cost for proactive voting increases linearly and with a
small coefficient as f increases.
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(a) Accuracy (b) Accuracy

Fig. 7. Effects of weight change and concept drift shift on accuracy

Amount of weight change a. This is to study how the increase in weight
change for the drifting concept affects error rate (c.f., Figure 7(a)). The amount
of weight change per dimension varies from 0.05 to 0.25. The results show that
error rates of all approaches decrease with respect to the increase of weight
change. The effects on ReCoDE, Single and Weighted are more gradual, while
Local and Global are more sensitive. This coincides with the results presented
in [10], where the larger weight increase can give more importance to certain
dimensions making the problem easier to learn.

Number of time shifts S. This experiment examines how the delay in con-
cept drift among peers affects error rates(c.f., Figure 7(b)). The number of time
shift/delay S for different groups of peers is varied from 0 to 10. Observe that the
error rate of Global and Weighted increases as S increases. This is because they
are using the models of all peers, and as S increases, the mismatch in concepts
among peers increases causing the increase in error. On the other hand, Single
and Local are insensitive to the time shift as they are based only on local mod-
els. The error rate of RePCoDE only starts to gradually increase as S exceeds
6 and the increment is less than that of Global and Weighted, while achieving
the lowest error rate. This demonstrates that RePCoDE is able to handle the
problem of delayed occurrence of concept drift in P2P environments.

5 Conclusion

This paper studied the concept drift problem for distributed classification in
P2P environments. We proposed a novel Reactive and Proactive Concept Drift
detection Ensemble (RePCoDE) framework, which is both efficient and accu-
rate to overcome the concept drift issue for P2P classification. Experimental
results showed that RePCoDE performs better than existing approaches that
often can hardly handle concept drift in P2P environments. However, in or-
der to achieve high accuracy, RePCoDE has to accurately detect concept drifts,
which is dependent on the static drift detection threshold, and is prone to higher
communication cost. In the event of poor concept drift detection, classification
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accuracy could be affected due to the inaccurate proactive voters and the static
combination of proactive and reactive voters. In future work, we plan to study
dynamic thresholds to reduce communication cost and ensure high accuracy at
all times, and the dynamic combination of proactive and reactive voters.
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Abstract. When faced with the task of building accurate classifiers, ac-
tive learning is often a beneficial tool for minimizing the requisite costs
of human annotation. Traditional active learning schemes query a hu-
man for labels on intelligently chosen examples. However, human effort
can also be expended in collecting alternative forms of annotation. For
example, one may attempt to learn a text classifier by labeling words
associated with a class, instead of, or in addition to, documents. Learn-
ing from two different kinds of supervision adds a challenging dimension
to the problem of active learning. In this paper, we present a unified
approach to such active dual supervision: determining which feature or
example a classifier is most likely to benefit from having labeled. Em-
pirical results confirm that appropriately querying for both example and
feature labels significantly reduces overall human effort—beyond what is
possible through traditional one-dimensional active learning.

1 Introduction

Active learning has been often used to reduce the amount of supervision re-
quired for effective learning. Traditionally, active learning research has focused
on querying an oracle for labels on potentially informative examples. However,
labeling effort may be better spent on providing alternative forms of supervi-
sion. Consider, for example, the task of sentiment detection, where given a piece
of text as input, the desired output is a label that indicates whether this text
expresses a positive or negative opinion. This problem can be cast as a typical
binary text classification task, where a learner is trained on a set of documents
that have been labeled based on the sentiment expressed in them. Alternatively,
one could provide labeled features: for example, in the domain of movie reviews,
words that evoke positive sentiment (e.g., “mesmerizing”, “thrilling”, etc.) may
be labeled positive, while words that evoke negative sentiment (e.g., “boring”,
“disappointing”, etc.) may be labeled negative. Through this kind of annotation
a human conveys prior linguistic experience with a word by a sentiment label
that reflects the emotion that the word evokes. The general setting of learning
from both labels on examples and features is referred to as dual supervision.

J.L. Balcázar et al. (Eds.): ECML PKDD 2010, Part I, LNAI 6321, pp. 40–55, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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This setting arises more broadly in tasks where, in addition to labeled doc-
uments, it is possible to provide domain knowledge in the form of words or
phrases [26] or more sophisticated linguistic features that associate strongly
with a class. Recent work [5,23,12] has demonstrated that feature supervision
can greatly reduce the number of labels required to build high-quality classifiers.
In general, example and feature supervision are complementary, rather than
redundant.

This difference in information naturally leads to the problem of active dual
supervision, or, how best to query a human resource to collect document la-
bels and feature labels simultaneously, with the objective of building the highest
quality model at the lowest cost. Much of the literature on active learning has fo-
cused on example-only annotation for classification problems. Less attention has
been devoted to simultaneously acquiring alternative forms of supervisory do-
main knowledge. An exception, Sindhwani et al. apply classical uncertainty and
experimental design-based active learning schemes to select labels for examples
and features separately [24]. The present paper makes the following significant
improvements over this prior work:

– Sindhwani et al. [24], at each iteration, randomly acquire a label for either an
example or feature, and then probe the corresponding active learner. Here,
we propose a holistic approach to active dual supervision based on an Ex-
pected Utility (estimated risk minimization) framework—within which, by
optimizing the trade-offs between the costs and benefits of the different types
of acquisitions, we deterministically select the most informative examples or
features for labeling.

– We provide an instantiation of this framework for a recently introduced
generative approach to dual supervision, instead of the graph-based dual su-
pervision models used by Sindhwani et al. This generative approach, Pooling
Multinomials [12], is comparable in performance to graph-based approaches
and does not rely on unlabeled data. This is important for the present work.
The Pooling Multinomials approach used here can be trained rapidly in an
online fashion, rendering the otherwise computationally complex Expected
Utility framework tractable.

Empirical results show that not only are we effective at actively selecting features
for labeling, but that our unified approach to active dual supervision is better
than the active learning of either instances or features in isolation.1

2 Dual Supervision

Most work in supervised learning has focused on learning from examples, each
represented by a set of feature values and a class label. In dual supervision we
consider an additional aspect: labels of features, which convey prior knowledge
on associations of features to particular classes. This paper focuses solely on text

1 A preliminary version of this work appeared in [15].
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classification and all features represent term-frequencies of words; therefore, we
use feature and word interchangeably.

While the active learning schemes explored in this paper are broadly appli-
cable to any learner that can support dual supervision, we choose to focus on
active learning for the Pooling Multinomials classifier [12] described below.

2.1 Pooling Multinomials

We introduce the Pooling Multinomials classifier as an approach to incorporate
prior lexical knowledge into supervised learning for improved text classification.
In the context of sentiment analysis, such lexical knowledge is available as the
prior sentiment-polarity of words, while for classification, this knowledge comes
from a human’s term/class associations. Pooling Multinomials classifies unla-
beled examples just as in multinomial Näıve Bayes classification, by predicting
the class with the maximum likelihood, given by argmaxcjP (cj)

∏
i P (wi|cj);

where P (cj) is the prior probability of class cj , and P (wi|cj) is the probability
of word wi appearing in a document of class cj . In the absence of background
knowledge about the class distribution, we estimate the class priors P (cj) solely
from the training data. However, unlike regular Näıve Bayes, the conditional
probabilities P (wi|cj) are computed using both labeled examples and labeled
features. Given two models built using labeled examples and labeled features,
the multinomial parameters of such models can be aggregated through a convex
combination, P (wi|cj) = αPe(wi|cj) + (1 − α)Pf (wi|cj); where Pe(wi|cj) and
Pf (wi|cj) represent the probability assigned by using the example labels and
feature labels respectively, and α is the weight for combining these distribu-
tions. The weight indicates a level of confidence in each source of information,
and Melville et al. [12] explore ways of automatically selecting this weight. How-
ever, in order to avoid confusion of our results with the choice of weight-selection
mechanism, here we make the simplifying assumption that the two experts based
on instance and feature labels are equally valuable, and as such set α to 0.5. The
derivation and details of these models are not directly relevant to this paper,
but can be found in [12].

Note that, though Pooling Multinomials is based on a Näıve Bayes generative
model, it is a state-of-the-art approach for text classification. Our empirical
results show that Pooling Multinomials outperforms linear SVMs, a popular
technique for performing text classification that lacks a mechanism for handling
feature labels. Melville et al. demonstrated that Pooling Multinomials performs
better than alternative approaches to incorporating labeled features [12].

2.2 Experimental Setup

We conduct experiments on four binary text classification data set. The movies
data set (2,000 examples, 5,000 features), introduced by Pang et al. [16] poses
the task of classifying sentiment in movie reviews as positive or negative. Politics
(107 examples, 1500 features) is based on posts from political blogs that were
labeled as expressing positive or negative sentiments towards presidential can-
didates [12]. The Baseball (1,988 examples, 1,500 features) and Science (20,000
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examples, 1,500 features) data sets are drawn from the 20-newsgroups2 text col-
lection where the task is to assign messages into the newsgroup in which they
appeared. When performing analysis on these data sets, we use a bag-of-words
representation, where documents are represented by term frequencies of the most
frequent terms across all documents. All subsequent experiments present results
averaged over 10-folds of cross validation.

2.3 Learning from Example vs. Feature Labels

Dual supervision makes it possible to learn from labeled examples and labeled
features simultaneously. As in most supervised learning tasks, one would expect
more labeled data of either form to lead to more accurate models. In this section
we explore the influence of increased number of instance labels and feature labels
independently, and also in tandem.

As with any active learning research, in order to study the effect of increasing
number of labels we simulate a human oracle labeling data. In the case of ex-
amples this is straightforward, since all examples in these data sets have labels.
However, in the case of features, we do not have a gold-standard set of feature
labels. Ideally, we should have a human expert in the loop labeling each feature
selected. However, such a manual process is not feasible for large scale, repeat-
able experiments. In order to simulate human responses to queries for feature
labels, we construct a feature oracle in the following manner (as done in [5,24]).
The information gain of words with respect to the known true class labels in
the data set is computed using binary feature representations. Next, out of all
available terms representing the data, the top ∼ 1

5 as ranked by information
gain are assigned a label. This label is the class in which the word appears more
frequently, corrected by the differences in base rate. The oracle returns a “don’t
know” response for the remaining words. As a result, this oracle simulates a hu-
man domain expert who is able to recognize and label the relevant task-specific
words while being unable to assign a label to non-polar terms.

To demonstrate the basic value of dual supervision, Fig. 1 compares three
schemes: Instances-then-features, Features-then-instances, and Passive Interleav-
ing on the Movies data set. All three begin with a base set of training data,
including labels for 10 randomly selected instances and 10 randomly selected
features. As the name suggests, Instances-then-features, provides labels for ran-
domly selected instances until all instances have been labeled, and then switches
to labeling features. Similarly, Features-then-instances acquires labels for ran-
domly selected features first and then switches to getting instance labels. In
Passive Interleaving we probabilistically switch between issuing queries for ran-
domly chosen instance and feature labels. In particular, at each step we choose
to query for an instance with probability 0.36, otherwise we query for a feature
label. The instance-query rate of 0.36 is selected based on the ratio of available
instances (1,800) to available features (5,000) in the Movies set. For the learn-
ing curves presented in Fig. 1, the x-axis corresponds to the number of queries
issued. As discussed earlier, in the case of features, the oracle may respond to a
2 http://archive.ics.uci.edu/ml/

http://archive.ics.uci.edu/ml/
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query with a class label or may issue a “don’t know” response, indicating that
no label is available. As such, the number of feature-queries on the x-axis does
not correspond to the number of actual known feature labels. We would expect
that on average 1 in 5 feature-label queries prompts a response from the feature
oracle that results in a known feature label being provided.

At the end of the learning curves, each method has labels for all available
instances and features; and as such, the last points of all three curves are identi-
cal. The results show that fixing the number of labeled features, and increasing
the number of labeled instances steadily improves classification accuracy. This
is what one would expect from traditional supervised learning curves. More in-
terestingly, the results also indicate that we can fix the number of instances, and
improve accuracy by labeling more features. Finally, results on Passive Inter-
leaving show that though both feature labels and example labels are beneficial
by themselves, dual supervision which exploits the interaction of examples and
features does in fact benefit from acquiring both types of labels concurrently.
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Fig. 1. Comparing the effect of instance and feature label acquisition in dual
supervision

For all results above, we are selecting instances and/or features to be labeled
uniformly at random. Based on previous work in active learning one would expect
that we can select instances to be labeled more efficiently, by having the learner
decide which instances it is most likely to benefit from. The results in this section
suggests that actively selecting features to be labeled may also be beneficial.
Furthermore, the Passive Interleaving results suggest that an ideal active dual
supervision scheme would actively select both instances and features for labeling.
We begin by exploring active learning for feature labels in the next section, and
then consider the simultaneous selection of instances and features in Sec. 4.
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3 Acquiring Feature Labels

Traditional active learning has primarily focused on selecting unlabeled instances
to be labeled. The dual-supervision setting adds an additional aspect to active
learning where labels may be acquired for features as well. In this section we
focus on the task of active learning applied only to feature-label acquisition.

3.1 Feature Uncertainty vs. Certainty

In the traditional active learning setting, Uncertainty Sampling has earned a
reputation as an effective and intuitive technique for selecting instances to get
labeled [8]. In this approach, labels are requested for instances for which the
current model gives the highest degree of uncertainty—which for binary clas-
sification with 0/1 loss are those instances nearest to the current classification
boundary. Despite its simplicity, Uncertainty Sampling is often quite effective in
practice, and has therefore become a standard for comparison for active learning
research. This raises the question of whether one can apply the same principle
to feature-label acquisition: select unlabeled features that the current model is
most uncertain about.

Much like instance uncertainty, feature uncertainty can be measured in differ-
ent ways, depending on the underlying method used for dual supervision. Since
Pooling Multinomials builds a multinomial Näıve Bayes model, we can directly
use the model’s conditional probabilities of each feature f given a class. For ease
of exposition we refer to the two classes in binary classification as postive (+) and
negative (-), without loss of generality. Given the probabilities of f belonging to
the positive and negative class, P (f |+) and P (f |−), we compute the uncertainty
for f using the absolute value of the log-odds ratio, i.e.,

abs

(
log
(
P (f |+)
P (f |−)

))
(1)

The smaller this value, the more uncertain the model is about the feature’s class
association. In every iteration of active learning we can select the features with
the lowest certainty scores. We refer to this approach as Feature Uncertainty.

Though Uncertainty Sampling for features seems like an appealing notion,
it may not lead to better models. If a classifier is uncertain about a feature,
it may have insufficient information about this feature and may indeed benefit
from learning its label. However, it is also quite likely that a feature has a
low certainty score because it does not carry much discriminative information
about the classes. In the context of sentiment detection, one would expect that
neutral/non-polar words will appear to be uncertain words. For example, words
such as “the” which are unlikely to help in discriminating between classes, are
also likely to be considered the most uncertain. As we shortly report, on the
Movies dataset, Feature Uncertainty ends up wasting queries on such words
ending up with performance inferior to random feature queries. What works
significantly better is an alternative strategy that acquires labels for features
in descending order of the score in Eq 1. We refer to this approach as Feature
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Certainty. A similar approach provided the best results in previous work [24].
We further improve on these results by the method described below.

3.2 Expected Feature Utility

The intuition underlying the feature certainty heuristic is that it serves to con-
firm or correct the orientation of model probabilities on different words during
the active learning process. One can argue that feature certainty is also sub-
optimal in that queries may be wasted simply confirming confident predictions,
which is of limited utility to the model. An alternative to using a certainty-based
heuristic, is to directly estimate the expected value of acquiring each feature la-
bel. Such Expected Utility (Estimated Risk Minimization) approaches have been
applied successfully to traditional active learning [19], and to active feature-value
acquisition [14]. In this section we describe how this Expected Utility framework
can be adapted for feature-label acquisition.

At every step of active learning for features, the next feature selected for label-
ing is the one that will result in the highest estimated improvement in classifier
performance. Since the true labels of the unlabeled features are unknown prior
to acquisition, it is necessary to estimate the potential impact of every feature
query for all possible outcomes.3 Hence, the decision-theoretic optimal policy is
to ask for feature labels which, once incorporated into the data, will result in
the highest increase in classification performance in expectation.

If fj is the label of the j-th feature, and qj is the query for this feature’s label,
then the Expected Utility of a feature query qj can be computed as:

EU(qj) =
K∑

k=1

P (fj = ck)U(fj = ck) (2)

Where P (fj = ck) is the probability that fj will be labeled with class ck, and
U(fj = ck) is the utility to the model of knowing that fj has the label ck. In
practice, the true values of these two quantities are unknown, and the main chal-
lenge of any Expected Utility approach is to accurately estimate these quantities
from the data currently available.

A direct way to estimate the utility of a feature label is to measure expected
classification accuracy. However, small changes in the probabilistic model that
result from acquiring a single additional feature label may not be reflected by
a change in accuracy. Therefore, we use a finer-grained measure of classifier
performance, Log Gain, which is computed as follows. For a model induced
from a training set T , let P̂ (ck|xi) be the probability estimated by the model
that instance xi belongs to class ck; and I is an indicator function such that
I(ck, xi) = 1 if ck is the correct class for xi and I(ck, xi) = 0, otherwise. Log
Gain is then defined as:

3 In the case of binary classification, the possible outcomes are a positive or negative
label for a queried feature.
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LG(xi) = −
K∑

k=1

I(ck) log P̂ (ck|xi) (3)

Then the utility of a classifier, U , can be measured by summing the Log Gain for
all instances in the training set T . A lower value of Log Gain indicates a better
classifier performance. We present an empirical comparison of different utility
measures in Sec. 5.

In Eq. 2, apart from the measure of utility, we also do not know the true
probability distribution of labels for the feature under consideration. This too
can be estimated from the training data, by seeing how frequently the word ap-
pears in documents of each class. In the instance-based multinomial Näıve Bayes
model we already collect these statistics in order to determine the conditional
probability of a class given a word, i.e. P (fj |ck). We can use these probabilities
to get an estimate of the feature label distribution, P̂ (fj = ck) = P (fj |ck)∑K

k=1 P (fj |ck) .
Given the estimated values of the feature-label distribution and the utility of

a particular feature query outcome, we can now estimate the Expected Utility of
each unknown feature, selecting the features with the highest Expected Utility
for labeling.

Though theoretically appealing, this approach can be computationally inten-
sive if Expected Utility estimation is performed on all unknown features. In the
worst case this requires building and evaluating models for each possible out-
come of each unlabeled feature. In a setting with m features and K classes,
this approach requires training O(mK) classifiers. However, the complexity of
the approach can be significantly alleviated by only applying Expected Utility
evaluation to a sub-sample of all unlabeled features. Given the large number of
features with no true class labels, selecting a sample of available features uni-
formly at random may be sub-optimal. Instead we select a sample of features
based on Feature Certainty. In particular we select the top 100 unknown features
that the current model is most certain about, and identify the features in this
pool with the highest Expected Utility. We refer to this approach as Feature
Utility. We use Feature Certainty to sub-sample the available feature queries,
since this approach is more likely to select features for which the label is known
by the oracle.

3.3 Active Learning with Feature Labels

We ran experiments comparing the three different active learning approaches
described above on the Movies data set. Here we begin with a model trained on
a random selection of 10 labeled features and 100 labeled instances.

The experiments in this section focus only on the selection of features to be
labeled— in each iteration of active learning we select the next 10 feature-label
queries, based on Feature Uncertainty, Feature Certainty, or Feature Utility. As
a baseline, we also compare to the performance of a model that selects features
uniformly at random. Our results are presented in Fig. 2.
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Fig. 2. Comparing different active learning approaches for acquiring feature labels

The results show that Feature Uncertainty performs worse than random sam-
pling; however, the converse approach of Feature Certainty does remarkably well.
This is in line with out discussion above in Sec. 3.1 The results for Feature Utility
show that estimating the expected impact of potential labels for features does
in fact perform much better than feature certainty. The results confirm that de-
spite our crude estimations in Eq. 2, Feature Utility is an effective approach to
active learning of feature labels. Furthermore, we demonstrate that by applying
the approach to only a small sub-sample of certain features, we are able to make
this method computationally feasible to use in practice. Increasing the size of
the sample of candidate feature queries is likely to improve performance, at the
cost of increased time in selecting queries.

4 Active Dual Supervision

In the previous section we demonstrated that actively selecting informative fea-
tures to be labeled performs significantly better than random selection. This
conclusion is congruent with the rich body of work showing the benefits over
random selction of actively selecting instances for labeling. Furthermore, we
have demonstrated in Sec. 2 that randomly selecting both feature and instance
labels in tandem is better than either in isolation. An ideal active scheme should
be able to assess if an instance or feature would be more beneficial at each step,
and select the most informative instance or feature for labeling.

Fortunately, the Expected Utility method is very flexible, capable of address-
ing both types of acquisition within a single framework. Since the measure of
utility is independent of the type of supervision and only dependent on the
resulting classifier, we can estimate the expected utility of different forms of
acquisitions in the same manner. For instance, Saar-Tsechansky et al. [20] use
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such an approach to estimate the utility of acquiring class labels and feature
values (not labels), within one unified framework. A similar technique is utilized
here, yielding a holistic approach to active dual supervision, where the Expected
Utility of an instance or feature label query, q, can be computed as

EU(q) =
K∑

k=1

P (q = ck)
U(q = ck)

ωq
(4)

where ωq is the cost of the query q, P (q = ck) is the probability of the instance
or feature queried being labeled as class ck, and utility U can be computed
as in Eq. 3. By evaluating instances and features in the same units, and by
measuring utility per unit cost of acquisition, such a framework facilitates explicit
optimization of the trade-offs between the costs and benefits of the different types
of acquisitions. For the sake of simplicity, we assume equal costs of acquisitions
in this paper, i.e., ωq = 1. But in principle this framework can be used even
if the cost of acquiring a feature label is different from the cost of acquiring
an instance label. We refer to this combined instance and feature acquisition
approach simply as Expected Utility. As before, we speed up query selection by
first sub-sampling 100 features based on certainty and 100 instances at random,
and then evaluate the Expected Utility on this candidate set.

Experiments are performed as before, comparing Expected Utility to Feature
Utility and Passive Interleaving. Recall that Passive Interleaving corresponds to
probabilistically interleaving queries for randomly chosen, not actively chosen,
examples and features. For completeness, we also compare with an instance-
only active learning method. Namely, we use Uncertainty Sampling [8], which
has been shown to be a computationally efficient and effective approach in the
literature. In particular, we select unlabeled examples to be labeled in order of
decreasing uncertainty, measured in terms of the margin, as done in [13]. The
margin on an unlabeled example is defined as the absolute difference between
the class probabilities predicted by the classifier for the given example, i.e.,
|P (+|x)−P (−|x)|. We refer to the selection of instances based on this uncertainty
as Instance Uncertainty, in order to distinguish it from Feature Uncertainty.

We compare the performance of any two methods, A and B, by computing
the percentage reduction in classification error rate obtained by A over B at each
acquisition phase and report the average reduction over all acquisition phases.
We refer to this average as the average percentage error reduction. The reduction
in error obtained with policy A over the error of policy B is considered to be

Table 1. Error reduction(%) of active learning approaches compared to Passive Inter-
leaving

Data Set Instance Uncertainty Feature Utility Expected Utility
Movies 9.90 31.18 36.52
Science −3.88 13.05 25.24
Baseball −101.98 −2.59 39.61
Politics −7.04 −7.16 1.48
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Fig. 3. Comparing Expected Utility to alternative label acquisition strategies
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significant if the errors produced by policy A are lower than the corresponding
errors (i.e., at the same acquisition phase) produced by policy B, according to
a paired t-test (p < 0.05) across all the acquisition phases [13]. In our experi-
ments, we compare all active methods using Passive Interleaving as our baseline
(B). Our results are summarized in Table 1, where statistically significant im-
provements over Passive Interleaving are shown in bold. We also present learning
curves on three datasets in Fig. 3.

We observe that actively selecting instances or features for labeling is bet-
ter than randomly selecting either. In general, effectively selecting features’
labels, via Feature Utility, does even better than actively selecting only instances.
However, in some cases, the advantage of actively selecting only one type of su-
pervision is out-weighed by randomly selecting both instances and features in
tandem. This phenomenon can be seen for Baseball in Fig. 3(b), where Uncer-
tainty Sampling is clearly less effective than Passive Interleaving; even Feature
Utility’s initial advantage is lost by randomly selecting some instance labels in
Passive Interleaving. However, by estimating the benefit of each type of acqui-
sition at each step, the holistic Expected Utility approach is able to outperform
active learning on instances and features in isolation, as well as randomly in-
terleaving instance-labels with feature-labels. The savings from using Expected
Utility for active dual supervision can be quite substantial. For instance, this
approach achieves an accuracy of 75% on Movies with only 350 queries, while
Passive Interleaving requires 10 times the number of queries to reach the same
performance. The average reduction in error using Expected Utility over Passive
Interleaving ranges from a 1.5% on Politics to 40% on Baseball.

5 Choice of Utility Measure

Up to now, in order to evaluate the utility of a potential label, we have measured
the average log gain (Eq. 3) calculated on the training set by a classifier trained
with the inclusion of the associated labeling. However, there are alternative ways
to measure utility. One obvious choice is to measure utility based on classifica-
tion accuracy on the training set. Both log gain and accuracy are “supervised”
utilities measures, meaning that they are computed on examples for which we
have labels. In contrast, in previous work in the traditional instance labeling
setting, Roy and McCallum [19] use two “unsupervised” measures, computed
on the pool of unlabeled examples. Their motivating objective is different from
our desire to estimate directly the expected improvement in generalization per-
formance. Instead, they try to “select those examples which maximizes [sic] the
sharpness of the learner’s posterior belief about the unlabeled examples” [19].
Namely, they use entropy and (1 − argmaxck

P̂ (ck|x)), where P̂ (ck|x) is the re-
sulting classifier’s predicted probability for class ck . We will refer to the latter
measure as maximum posterior. Lower values of these measures correspond to
higher utilities in their setting.

We ran experiments as before for Feature Utility and the combined Expected
Utility on the Movies data set, comparing five different measures of utility: log
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gain, accuracy, and entropy estimated on the training set, as well entropy and
maximum posterior on the unlabeled pool. The results for Expected Utility are
presented in Fig. 4. The performance of entropy and maximum posterior on
the unlabeled pool, and accuracy are indistinguishable in the figure, and do not
perform as well as the other measures. The results on Feature Utility (not shown)
show a similar trend except that accuracy performs better than entropy and
maximum posterior on the unlabeled pool, while still doing worse than log gain.
By incorporating the predicted class probabilities, log gain is able to capture
small changes in the classifier that may lead to an improvement that may not
be reflected by a change in classification accuracy. Hence it tends to perform
better than measuring utility based on accuracy. The unsupervised measures
used by Roy and McCallum do not perform as well as they are focused on
selecting examples that on average will make the predictions of the model the
most certain on the not-yet-labeled examples. These results empirically support
the use of log gain in the Expected Utility framework. For a deeper theoretical
discussion of this measure see [20].

0 50 100 150 200 250 300 350 400

55

60

65

70

75

80

Number of Queries

A
cc

ur
ac

y

 

 

Log Gain
Accuracy
Entropy (training set)
Entropy (unlabeled pool)
Max. Posterior

Fig. 4. Comparing different measures of utility. Accuracy, entropy (unlabeled) and
max. posterior overlap.

6 Related Work

Active learning in the context of dual supervision models is a new area of research
with very little prior work, to the best of our knowledge. Most prior work in ac-
tive learning has focused on pooled-based techniques, where examples from an
unlabeled pool are selected for labeling [3]. In contrast, active feature-value ac-
quisition [14] and budgeted learning [11] focus on estimating the value of acquir-
ing missing features, but do not deal with the task of learning from feature labels.
Raghavan and Allan [17] and Raghavan et al. [18] study the problem of tandem
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learning where they combine uncertainty sampling for instances along with co-
occurence based interactive feature selection. Godbole et al. [7] propose notions
of feature uncertainty and incorporate the acquired feature labels, into learning by
creating one-term mini-documents. Druck et al. [6] perform active learning via fea-
ture labeling using several uncertainty reduction heuristics. Sindhwani et al. [24]
also study the problem of active dual supervision, applied to a graph-based dual
supervision method. They explore various heuristic approaches to active learning
for instances and features separately. In order to interleave selections from both
instances and features, they randomly probe an active instance learner or an ac-
tive feature learner for the next query. In contrast, we take a holistic approach to
active dual supervision, where by estimating the potential value of features and
instances on the same scale, we select the type of acquisition that is most likely to
benefit our classifier. In contemporaneous work, Attenberg et al. [1] propose active
dual supervision as one possible solution to the cold start problem often faced by
active learners in settings with high class skew. Additionally, they propose tasking
human domain experts with seeking and finding useful feature values directly, as
opposed to the query/respose approach seen here.

While in principle the Expected Utility-based techniques presented here could
be applied to any technique for dual supervision, Pooling Multinomials is well
suited for our approach, since it can be implemented to be update-able (without
retraining), making the computations in Expected Utility extremely efficient. It is
a challenge to efficiently implement Expected Utility for the graph-based method
used by Sindhwani et al., and this is a promising direction for future work.

Learning from labeled examples and features via dual supervision is itself a
new area of research. Sindhwani et al. [22] use a kernel-based framework to build
dual supervision into co-clustering models. Sindhwani and Melville [23] apply
similar ideas for graph-based sentiment analysis. Note that, dual supervision
should not be confused with Co-Training [2], in which the description of examples
can be divided into two distinct views i.e. disjoint feature sets. There have also
been previous attempts at using only feature supervision, mostly along with
unlabeled documents. Much of this work [21,25,10,4] has focused on using labeled
features to generate pseudo-labeled examples that are then used with well-known
models. In contrast, Druck et al. [5] constrain the outputs of a multinomial
logistic regression model to match certain reference distributions associated with
labeled features. In a similar vein, Liang et al. [9] learn from labeled examples
and constrains on model predictions.

7 Conclusions and Future Work

This paper presents a unified framework for active dual supervision, where the
relative benefit of each type of acquisition is assessed based on the expected im-
provement of the resulting classifier.We demonstrated that not only is combining
example and feature labels beneficial for modeling, but that actively selecting
the most informative examples and features for labeling can significantly reduce
the burden of labeling such data. For simplicity, we did not consider the differ-
ent costs of acquiring labels. Presumably labeling a feature versus labeling an



54 J. Attenberg, P. Melville, and F. Provost

instance could incur very different costswhich could be monetary costs or time
taken for each annotation. The general Expected Utility framework we present
can directly handle such cost-benefit trade-offs, and empirically validating this is
an avenue for future work. Furthermore, the mixing of multinomials based on la-
beled features and labeled examples exerts a strong influence on the probability
estimates produced, and therefore the choices made in active learning. Another
direction for future work is the investigation of the mixing parameter, α, and its
influence on active dual supervision.

Human oracles may be able to provide a much richer set of background in-
formation than can be expressed via individual token polarities. For instance,
“yeah” and “right” may both be terms denoting a positive sentiment polarity,
while “yeah, right” may be used with sarcasm with a negative connotation4. Ex-
tending models to incorporate higher order information from oracles is another
good direction for future work.

The Expected Utility framework we propose is general, in that it can be
applied to any learning algorithm that supports dual supervision. However, it
is a significant challenge to devise methods to efficiently estimate the terms in
Eq. 4 that are appropriate to the learner of choice. As shown in Sec. 5, even the
choice of measure of utility is not obvious, and can make a significant difference
in results. As such, adapting this framework to other learners, such as the graph
based approach in [24], is a challenging, but promising direction to explore.
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Abstract. In this paper we present and study a new class of regularized
kernel methods for learning vector fields, which are based on filtering the
spectrum of the kernel matrix. These methods include Tikhonov regu-
larization as a special case, as well as interesting alternatives such as
vector valued extensions of L2-Boosting. Our theoretical and experimen-
tal analysis shows that spectral filters that yield iterative algorithms,
such as L2-Boosting, are much faster than Tikhonov regularization and
attain the same prediction performances. Finite sample bounds for the
different filters can be derived in a common framework and highlight dif-
ferent theoretical properties of the methods. The theory of vector valued
reproducing kernel Hilbert space is a key tool in our study.

Keywords: Vector-valued Functions; Multi-task; Regularization; Spec-
tral Filtering; Kernels.

1 Introduction

In this paper we study theoretical and computational properties of a class of
kernel methods for learning a vector valued function. These methods are based
on filtering the spectrum of the kernel matrix rather than empirical risk min-
imization. The idea of using kernel methods for vector field learning has been
considered in [1] where the framework of vector valued reproducing kernel Hilbert
spaces was adopted and the representer theorem for Tikhonov regularization was
generalized to the vector valued setting. Our work can be seen as an extension
of the work in [1] aimed in particular at: 1) investigating the application of
spectral filtering schemes [2] to learning vector fields; 2) establishing consistency
and finite sample bounds for Tikhonov regularization as well as for all spec-
tral filters in the setting of vector valued learning. One of the main outcomes
of our study is that iterative algorithms based on spectral filtering outperform
Tikhonov regularization from the computational perspective, while preserving
the good prediction performances.
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Classical supervised learning focuses on the problem of estimating functions
with scalar outputs: a real number in regression and one between two possible
labels in binary classification. The starting point of our investigation is the ob-
servation that in many practical problems it is convenient to model the object of
interest as a function with multiple outputs. In machine learning, this problem
typically goes under the name of multi-task or multi-output learning and has
recently attracted a certain attention. It is interesting to recognize at least two
classes of problems with multiple output functions. The first class, that we might
call multi-task learning, corresponds to the situation in which we have to solve
several standard scalar learning problems (each with its own training set) that
we assume to be related, so that we can expect to obtain a better solution if
we attempt to solve them simultaneously. Application in user recommendation
systems can be taken as an example. The second class of problems corresponds
to learning vector valued functions. This situation is better described as a su-
pervised learning problem where the outputs are vector valued and we have a
single training set. For example, a practical problem is that of estimating the
velocity field of an incompressible fluid from scattered spatial measurements.

The two problems are clearly related. Indeed, we can view tasks as components
of a vector valued function or equivalently learning each component of a vector
valued function as one of many scalar tasks. Nonetheless, there are also some
differences that make the two problems different both from a practical and a
theoretical point of view. For example, in multi-task learning the input points
for each task can be represented by different features and the sample size might
vary from one task to the other. In particular, each task can be sampled in a
different way so that, in some situations, by assuming that the tasks are highly
correlated, we can essentially augment the number of effective points available
for each individual task. This effect does not occur while learning vector fields
where each component is sampled at the same input points. Since the sampling
procedures are different, the error analyses for multi-task and vector valued
learning are also different. The latter case is closer to the scalar setting, whereas
in the multi-task case the situation is more complex: one might have different
cardinalities for the various tasks or be interested to evaluate the individual
performance of each task.

In this paper, we focus primarily on vector field learning as a natural extension
of the classical scalar setting. In particular, some of the theoretical results are
specific to vector valued functions, but many of the computational ideas we dis-
cuss apply to general multi-task problems. We propose a new class of algorithms
to learn multi-output functions, called spectral filters, that cannot be described
in terms of penalized empirical risk minimization. Each algorithm performs a
different filtering of the spectrum of the kernel matrix, designed to suppress con-
tributions corresponding to small eigenvalues. These algorithms are motivated
by the results connecting learning theory and regularization of ill-posed prob-
lems [3] and the relations between stability and generalization [4,5]. We provide
a detailed computational analysis that takes into account the specific form of
the kernel as well the regularization parameter choice step, from which it is clear
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that the various methods have different computational properties. The bound
on the excess risk further illustrates these differences. Our experiments confirm
that iterative spectral filters, that can be seen as extensions of L2 boosting [6]
are often preferable to Tikhonov regularization.

The plan of the paper follows. After discussing previous work in the next
subsection, in Sect.2 we recall some basic concepts. in Sect.3 we present the class
of algorithms under study, while in Sect.4 we review examples of kernels. The
finite sample bound on the excess risk and computational issues are discussed
in Sect.5. The experimental analysis is conducted in Sect.6 and we conclude in
Sect.7 proposing some future work.

1.1 Previous Work

Several recent works considered multi-output learning, especially multi-task, and
proposed a variety of approaches. Starting from the work of [7], related ideas have
been developed in the context of regularization methods [8], Gaussian processes
[9,10]. The specific problem of learning a vector valued function has received
less attention in machine learning. In statistics we mention the Curds & Whey
method [11], Reduced Rank Regression [12], Filtered Canonical y-variate Re-
gression [13] and Partial Least Squares [14]. Estimating vector fields is common
in the context of geophysics and goes under the name of co-kriging [15]. Some
attempts to extend machine learning algorithms from the scalar to the vector
setting have been made [16,17]. A study of vector valued learning with kernel
methods is started in [1], where regularized least squares are analyzed from the
computational point of view. The error analysis of vector valued Tikhonov regu-
larization is given in [18]. To the best of our knowledge the application of spectral
filtering techniques to vector field learning has not yet been studied.

2 Basic Concepts

We start by presenting the setup of the problem, as well as the basic notions
behind the theory of vector valued reproducing kernels.

Supervised Learning. The problem of supervised learning amounts to infer-
ring an unknown functional relation given a finite training set of input-output
pairs z = {(xi, yi)}n

i=1 that are assumed to be identically and independently
distributed according to a fixed, but unknown probability measure ρ(x, y) =
ρX(x)ρ(y|x) on Z = X × Y. Here we are interested in vector valued learning
where Y ⊆ RT . A learning algorithm is a map from a training set z to an esti-
mator fz : X → Y. A good estimator should generalize to future examples and,
if we choose the square loss, this translates into the requirement of having small
expected risk

E(f) =
∫
X×Y

‖y − f(x)‖2
Tdρ(x, y) ,

where ‖ · ‖T denotes the euclidean norm in RT . The ideal estimator is the min-
imizer of the expected risk, that is the regression function fρ(x) =

∫
Y yρ(y|x),
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but cannot be directly calculated since ρ is unknown. Further, the search for a
solution is often restricted to some space of hypotheses H. In this case the best
attainable error is E(fH) = inff∈H E(f). The quality of an estimator can then
be assessed considering the distribution of the excess risk, E(fz) − E(fH), and in
particular we say that an estimator is consistent if

lim
n→∞

P [ E(fz) − E(fH) ≥ ε] = 0

for all positive ε. A more quantitative result is given by finite sample bounds,

P [ E(fz) − E(fH) ≥ ε(η, n)] ≤ 1 − η , 0 < η ≤ 1 .

In the following we’ll be interested into hypotheses space defined by a kernel.

Vector Valued RKHS. The development of the theory of RKHS in the vector
case is essentially the same as in the scalar case and we refer to [1,19] for further
details and references. We consider functions having values in some euclidean
space Y ⊆ RT with scalar product (norm) 〈·, ·〉T , (‖·‖T ). A RKH space is a
Hilbert space of functions f : X → RT , with scalar product (norm) denoted by
〈·, ·〉Γ (‖·‖Γ ), defined by a matrix valued kernel Γ : X × X → B(RT ), where
B(RT ) is the space of T × T positive semi-definite matrices.
The kernel Γ has the following reproducing property: for all c ∈ RT and x ∈ X

〈f(x), c〉T = 〈f, Γ (·, x)c〉Γ . (1)

We assume throughout that supx∈X ||Γ (x, x)|| = κ < ∞, where ‖·‖ is the oper-
ator norm, which implies ‖f(x)‖T ≤ κ‖f‖Γ . Similarly to the scalar case, it can
be shown that for any reproducing kernel Γ , a unique RKHS can be defined.

3 Learning Vector Fields with Spectral Filtering

In this section we present the new class of algorithms that we study in this
paper. Towards this end it is instructive to preliminarily recall the main features
of Tikhonov regularization for scalar and vector problems.

3.1 Tikhonov Regularization

In the scalar case, Tikhonov regularization [20,21] in a RKHS H, with kernel K,
corresponds to the minimization problem

min
f∈H

{ 1
n

n∑
i=1

(yi − f(xi))2 + λ‖f‖2
H} .

Its solution is given by

fλ
z (·) =

n∑
i=1

K(xi, ·)ci with (K + λnI)c = y , (2)
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with Kij = K(xi, xj), y = (y1, . . . , yn), ci ∈ R and c = (c1, . . . , cn). The final
estimator fz is determined by a parameter choice λn = λ(n, z), so that fz = fλ

z .
In the case of vector valued output, i.e. Y ⊆ RT , the simplest idea is to

consider a näıve extension of Tikhonov regularization, reducing the problem
to learning each component independently. Namely, the solution is assumed to
belong to H = H1 × H2 · · · × HT , where the spaces H1,H2, . . . ,HT are RKHS
with norms ‖·‖H1 , . . . , ‖·‖HT . Then f = (f1, . . . , fT ) and ‖f‖2

Γ =
∑T

j=1 ‖f j‖2
Hj

and Tikhonov regularization amounts to solving the following problem

min
f1∈H1,...,fT ∈HT

{ 1
n

n∑
i=1

T∑
j=1

(yj
i − f j(xi))2 + λ

T∑
j=1

‖f j‖2
Hj } , (3)

which is equivalent to solve T independent scalar problems. Within the frame-
work of vector valued RKHSs, the choice above corresponds to a diagonal matrix
valued kernel of the form Γ (x, x′) = diag(K1(x, x′), . . . ,KT (x, x′)).

Recently, a regularization scheme of the form (3) has been studied in [1] for
general matrix valued kernels. In this case there is no straightforward decomposi-
tion of the problem and one of the main results in [1] shows that the regularized
solution can be written as

fλ
z (·) =

n∑
i=1

Γ (·, xi)ci with (Γ + λnI)C = Y , (4)

where ci ∈ RT , C = (c1, . . . , cn), Y = (y1, . . . , yn) and the kernel matrix Γ is a
n × n block matrix, where each block is a T × T scalar matrix, so that Γ is a
nT × nT scalar matrix.

The above discussion highlights a first interesting observation. Assuming the
components of the vector field to be independent results in a block diagonal
kernel matrix. Conversely, working with a non-diagonal matrix, hence with a
general kernel, it is possible to exploit the functional relations that exists among
the components of the vector field.

3.2 Regularization via Spectral Filtering

We present the class of regularized kernel methods under study, referring to [2,22]
for the scalar case. We call these methods spectral filters because they achieve
a stable, hence generalizing, solution by filtering out the unstable components
of the kernel matrix, that is the directions corresponding to small eigenvalues.
The interpretation of regularization as a way to restore stability is classical in ill-
posed inverse problems, where many algorithms besides Tikhonov regularization
are used [23]. The connection between learning and regularization theory of ill-
posed problems [3] motivates considering spectral filtering techniques.

Adding a penalty to the empirical risk has a stabilizing effect from a numerical
point of view, since it transforms the problem from ΓC = Y to (Γ+λnI)C = Y.
Hence, the penalty reduces the instability due to the eigenvectors corresponding
to the small eigenvalues of the kernel matrix.
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The idea of spectral filtering algorithms is that other regularized matrices
gλ(Γ) besides (Γ + λnI)−1 can be defined. Each algorithm corresponds to a
specific filter function and in general there is no natural interpretation in terms
of penalized empirical risk minimization. The matrix valued function gλ(Γ) is
described by a scalar function gλ using spectral calculus. More precisely, if Γ =
USU∗ is the eigendecomposition of Γ with S = diag(σ1, . . . , σn), then gλ(S) =
diag(gλ(σ1), . . . , gλ(σn)) and gλ(Γ) = Ugλ(S)U∗. For example, in the case of
Tikhonov regularization gλ(σ) = 1

σ+nλ .
Suitable choices of filter functions gλ define estimators of the form (4) with

coefficients given by
C = gλ(Γ)Y . (5)

From the computational perspective, a key point that we show in the following is
that many filter functions allow to compute the coefficients C without explicitly
computing the eigen-decomposition of Γ.

Clearly not all filter functions are admissible. Roughly speaking, as λ decreases
an admissible filter function gλ(Γ) should approximate Γ−1 and its condition
number should increase.

Remark 1. Note that in the scalar case, manipulations of the kernel matrix have
been extensively used to define (and learn) new kernels to be used in Tikhonov
regularization [24]. In the approach we present here, rather than defining a new
kernel, each spectral filter gλ defines an algorithm which is not based on empirical
risk minimization.

3.3 Examples of Spectral Regularization Algorithms

We proceed giving several examples of spectral filtering algorithms.

L2 Boosting. In the scalar setting this method has been interpreted as a way
to combine weak classifiers corresponding to splines functions at the training
set points [6] and is called Landweber iteration in inverse problems literature
[23]. The method can also be seen as the gradient descent minimization of the
empirical risk on the whole RKHS, with no further constraint. Regularization is
achieved by early stopping of the iterative procedure, hence the regularization
parameter is the number of iterations.
The coefficients (5) can be found by setting C0 = 0 and considering for i =
1, . . . , t the following iteration

Ci = Ci−1 + η(Y − ΓCi−1) ,

where the step size η can be chosen to make the iterations converge to the
minimizer of the empirical risk, see below. If we use (4) to write the empirical
risk as ‖ΓC−Y‖2, it is easy to see that this is simply gradient descent. Further,
it is can be shown by induction that the solution at the t−th iteration is given
by

Ct = η

t−1∑
i=0

(I − ηΓ)iY ,
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and it follows that the filter function is Gλ(σ) = η
∑t−1

i=0(I − ησ)i. Interestingly,
this filter function has another interpretation that can be seen recalling that,
given a matrix A, ‖A‖ ∈ (0, 1) (|| · || is the operator norm),

∑∞
i=0 A

i = 1
I−A . If we

replaceA with I−ηΓ and ‖I−ηΓ‖ < 1, we get Γ−1 = η
∑∞

i=0(I−ηΓ)i. Therefore,
the filter function of L2 Boosting corresponds to the truncated power series
expansion of Γ−1. The last reasoning also shows a possible way to choose the
step-size. In fact, choosing η = 1/σmax, where σmax is the maximum eigenvalue
of the kernel matrix Γ, we are guaranteed that ‖I − ηΓ‖ < 1.

Accelerated L2 Boosting. This method is also called the ν-method and it is
particularly interesting since it is significantly faster than L2 boosting. Usually,
it can find the same solution in only

√
t steps. The coefficients are found by set-

ting C0 = 0, ω1 = (4ν + 2)/(4ν + 1), C1 = C0 + ω1
n (Y − ΓC0) and considering

for i = 2, . . . , t the iteration given by

Ci = Ci−1 + ui(Ci−1 − Ci−2) +
ωi

n
(Y − ΓCi−1) .

The derivation of the filter function is considerably more complicated and is
given in [23], where the parameters ν, ωi and ui are also defined. The filter
function is shown to be Gt(σ) = pt(σ) with pt a polynomial of degree t − 1.
This method can be proved to be faster than L2 boosting since the ν-method
can find in

√
t steps the same solution found by L2 boosting after t iterations.

regularization parameter is the square root of the iteration number rather than
the iteration number itself.

Iterated Tikhonov. This method is a combination of Tikhonov regularization
and L2 boosting where we set C0 = 0 and consider for i = 1, . . . , t the iteration
(Γ + nλI)Ci = Y + nλCi−1. The filter function is:

Gλ(σ) =
(σ + nλ)t − (nλ)t

σ(σ + nλ)t
.

This methods is motivated by the desire to circumvent some of the limitations
of Tikhonov regularization, namely a saturation effect that prevents exploiting
the smoothness of the target function beyond a given critical value– see [23,2]
for further details.

Truncated Singular Values Decomposition. This method is akin to a pro-
jection onto the first principal components in a vector valued setting. The number
of components depends on the regularization parameter. The filter function is
defined as Gλ(σ) = 1/σ if σ ≥ λ/n and 0 otherwise.

4 Matrix Valued Kernels

In this section, we briefly review some matrix valued kernels for vector fields learn-
ing - see [25,26,27]. In particular we discuss a class of kernels that leads to a faster
implementation of spectral filtering algorithms. Before doing this we give an ex-
ample of a general kernel that we will consider in our experimental section.
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Divergence free and curl free fields. These kernels have been used in [28]
for the problem of reconstructing divergence-free or curl-free vector fields and
they can be used only for vector fields whose input and the output spaces have
the same dimensions. The divergence-free kernel is

Γdf(x, x′) =
1
σ2 e

− ||x−y||2
2σ2 Ax,x′ (6)

where

Ax,x′ =
(x− x′)(x − x′)T

σ2 +
(

(T − 1) − ||x− x′||2
σ2

)
I

and the curl-free is

Γcf(x, x′) =
1
σ2 e

− ||x−x′||2
2σ2

(
I − (x− x′)(x − x′)T

σ2

)
. (7)

It is possible to consider a convex linear combination of these two kernels for
learning any vector field and for reconstructing its divergence-free and curl-free
parts separately (see the experiments in Sect.6).

4.1 Design of Decomposable Kernels.

A general class of kernels consists of kernels of the form

Γ (x, x′) = K(x, x′)A (8)

where K is a scalar kernel and A a positive semidefinite T × T matrix that
encodes how the outputs are related. This class of kernels allows to decouple the
role played by the input and output spaces. As we show in Sect.5.1, it is possible
to derive more efficient learning schemes using these kernels. The role of the
matrix A can be understood by linking it to a regularizer on the components of
the vector field.

Proposition 1. Let Γ be a product kernel of the form in (8). Then the norm
of any function in the corresponding RKHS can be written as

||f ||2Γ =
T∑

�,q=1

A†
�q < f �, f q >K , (9)

where A† is the pseudoinverse of A.

Proof. A function in the RKHS defined by the matrix valued kernel Γ = KA
can be written as f(x) =

∑
i Γ (x, xi)ci =

∑
i K(x, xi)Aci with ci ∈ RT , so that

the �-th component is f �(x) =
∑

i

∑T
t=1K(x, xi)A�tc

t
i , where cti ∈ R is the t-th

component of ci. Therefore, each f � belongs to HK and it is a linear combination
of the coefficients {ci}n

i=1 that depends on the �-th row of the matrix A.
The norm of f is ||f ||2Γ =

∑
i,j

∑T
�,q=1K(xi, xj)c�iA�qc

q
j and the scalar products

between its components are given by 〈f �, f q〉K =
∑

i,j

∑T
t,s=1K(xi, xj)A�tc

t
iAqsc

s
j .

Combining these expressions, it is straightforward to obtain (9). ��
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The above result shows how to design a kernel by defining a penalty on the
components of the vector field.

Common similarity. This kernel forces the components of the vector field to
be similar to their average, Γω(x, x′) = K(x, x′)(ω1 + (1 − ω)I). In fact, it is
straightforward to show that the corresponding regularizer is

Aω

T∑
�=1

||f �||2K +Bω

T∑
�=1

||f � − 1
T

T∑
q=1

f q||2K , (10)

where Aω and Bω are coefficients that depend on ω.

Graph regularization. A regularizer that forces stronger or weaker similarity
between the components [29] is defined as

1
2

T∑
�,q=1

||f � − f q||2KM�q +
T∑

�=1

||f �||2KM�� , (11)

whereM is a T×T positive weight matrix. The corresponding kernel is Γ = KL†,
where L = D −M and D�q = δ�q

(∑T
h=1M�h +M�q

)
.

Output components clustering. This regularizer is based on the idea of
grouping the components into r clusters and enforcing the components in each
cluster to be similar to their average [25]

J(f) = ε1

r∑
c=1

∑
l∈I(c)

||f l − fc||2K + ε2

r∑
c=1

mc||fc||2K , (12)

where fc is the mean of the components in cluster c and I(c) is the index set
of the components that belong to cluster c. Simple calculations show that the
corresponding kernel is Γ = KG†, whereGlq = ε1δlq+(ε2−ε1)Mlq andMlq = 1

mc

if components l and q belong to the same cluster c of cardinality mc, Mlq = 0
otherwise.

5 Computational and Sample Complexity

We present a computational complexity analysis of the spectral filters taking
into account the choice of kernel. We show that for a specific class of matrix
valued kernels it is possible to greatly reduce the computational complexity
of the algorithms. Finally, we give the bound on the excess risk that leads to
consistency.

5.1 Faster Implementation for Decomposable Kernels

The main point we make in this section is that, for kernels of the form Γ = KA,
we can use the eigen-sytem of the matrix A to define a new coordinate system
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where the problem can be solved in a computational faster way. The outcome of
this analysis is that the vector field learning problem can be reduced to solving
T scalar regression problems.

If we denote with u1, . . . , uT the eigenvectors of A, we can write the vector
C = (c1, . . . , cn), with ci ∈ RT , as C =

∑T
j=1 c̃

j ⊗ uj, where ⊗ is the tensor
product and c̃j = (〈c1, uj〉T , . . . , 〈cn, uj〉T ). Similarly Y =

∑T
j=1 ỹ

j ⊗ uj, with
ỹj = (〈y1, uj〉T , . . . , 〈yn, uj〉T ). The above transformations are simply rotations
in the output space. Moreover the kernel matrix Γ is given by the tensor product
of the n× n scalar kernel matrix K and A, that is Γ = K ⊗A.
If we denote with λi, vi (i = 1, . . . , n), the eigenvalues and eigenvectors of K and
with σj (j = 1, . . . , T ) the eigenvalues of A, we have the following result.

Proposition 2. The solution of the vector valued problem C = gλ(Γ)Y can be
obtained by solving T scalar problems

c̃j = gλ(σjK)ỹj , j = 1, . . . , T . (13)

Proof. Substituting the expressions for C and Y into C = gλ(Γ)Y, we obtain

T∑
j=1

c̃j ⊗ uj =
T∑

j=1

gλ(K ⊗A)ỹj ⊗ uj .

Working in the eigen-system vi ⊗uj (i = 1, . . . , n and j = 1, . . . , T ) of the matrix
K ⊗ A and recalling that the spectral filters operate on the eigenvalues of the
kernel matrix, we have

T∑
j=1

c̃j ⊗ uj =
T∑

j=1

n∑
i=1

gλ(λiσj)〈ỹj , vi〉vi ⊗ uj =
T∑

j=1

gλ(σjK)ỹj ⊗ uj .

Since the eigenvectors uj are orthonormal, the two sides of the equation must
be equal term by term. It follows that c̃j = gλ(σjK)ỹj for j = 1, . . . , T . ��

The above equation shows that in the new coordinate system {u1, . . . , uT }, we
have to solve T essentially independent problems. Indeed, after rotating the
outputs (and the coefficients) the only coupling is the rescaling of each kernel
matrix by σj . For example, in the case of Tikhonov regularization, the j-th
component is found solving c̃j = (σjK + λnI)−1ỹj = (K + λ

σj
nI)−1 ỹj

σj
and we

see that the scaling term is changing the scale of the regularization parameter
and of the outputs. The above calculation shows that all kernels of this form
allow for a simple implementation at the price of the eigen-decomposition of the
matrix A. Also, it shows that the coupling among the different tasks can be seen
as a rotation and rescaling of the output points.

5.2 Regularization Path and Computational Complexity

Here we discuss the complexity of the whole regularization path for Tikhonov
regularization and accelerated L2 boosting, since this algorithm turns out to be
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among the fastest. The regularization path is the set of solutions corresponding
to many parameter values.

On one hand, when using Tikhonov regularization, for each value of the reg-
ularization parameter the solution is found by inverting a nT × nT matrix. On
the other, most iterative methods require only matrix vector multiplications, and
each step corresponds to a solution for a value of the regularization parameter, so
that at step N we have computed the entire regularization path up to N . There-
fore, in general, if we consider N parameter values we will have O(N(nT )3) time
complexity for Tikhonov regularization and O(N(nT )2) for iterative methods.

In the special case of kernels of the form Γ = KA, we can diagonalize the
matrix A and then work in a new coordinate system where the kernel matrix is
block diagonal and all the blocks are the same, up to a rescaling. In this case
the complexity of the vector field algorithm is essentially the same of T scalar
problems – O(TNn3) for Tikhonov and O(TNn2) for iterative methods – plus
the cost of computing the eigen-decomposition of A, which is O(T 3).

5.3 Sample Complexity

Our main theoretical result is a finite sample bound on the excess risk for all
algorithms based on spectral filtering. This result immediately leads to consis-
tency and can be proven in a unified framework. Each algorithm is characterized
by specific constants that might change from one algorithm to the other and
we refer to [22] for their computation. In particular, here we underline to role
played by the one of such constants, namely the qualification number r, which
controls the best achievable learning rate of the corresponding algorithm, as is
illustrated in the following theorem. We need to assume that the input space is a
separable metric space (not necessarily compact) and that the output space is a
bounded set in RT , that is supy∈Y ||y||T = M < ∞. For the sake of simplicity we
also assume that a minimizer of the expected risk on H exists and denote it with
fH. Let us also define the integral operator TΓ f(x) =

∫
X Γ (x, x′)f(x′)ρ(x′).

Theorem 1. Assume ||(TΓ )−νfH||Γ ≤ R, where ν = r − 1
2 . If

1
2

≤ r ≤ r and λn = Cn− 1
2r+1 log

4
η
,

then, for fz = fλn
z , we have, with probability 1 − η,

E(fz) − E(fH) ≤ C′n− 2r
2r+1 log2 4

η
, (14)

where C, C’ are constants that depend on R and r, but not on n.

The index r describes the simplicity of the field estimation problem and r >
1/2 implies that fH exists. The simpler the problem (r large), the faster the
learning rate. The qualification number r represents how much each specific filter
can exploit the simplicity of the learning problem. Tikhonov regularization, for
instance, has a qualification number r = 1, that yields a rate proportional to
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n− 2
3 , while for some iterative algorithms, such as the ν-method, the qualification

number r can be arbitrarily large, yielding a bound arbitrarily close to n−1. Note
that the result above directly leads to consistency, since the limit for n → ∞ is
zero and, even when the expected risk does not achieve a minimum in H, one can
still show that there is a parameter choice ensuring convergence to inff∈H E(f).
If the kernel is universal [30,27,31], then universal consistency [32] is ensured. In
particular, note that the results in [31] allow to work on a non compact domain,
at least if the kernel is well-behaved. Due to space reasons, we omit the proof
which will be included in a longer version of this paper.

6 Empirical Analysis

We present a synthetic 2-dimensional vector field estimation problem in order
to illustrate the benefits of using matrix valued kernels and the computational
advantages of iterative spectral filters with respect to Tikhonov regularization.
We consider the setting of [28] and first compare our vector valued regression
approach with estimating each component of the field independently, in both
cases using the ν-method, which is the fastest algorithm when the matrix valued
kernel is not of the form Γ = KA. Finally, we compare the computation time of
Tikhonov regularization and the ν-method to show that the latter is significantly
faster and scales better with the number of training points.

The vector field is generated from a scalar field defined by the sum of 5
gaussians centered at (0, 0), (1, 0), (0, 1), (−1, 0) and (0,−1) respectively. The
covariances are all set to be 0.45I, where I is the 2 × 2 identity matrix. We com-
pute the gradient of the scalar field and its perpendicula field. We then consider
a convex combination of these two vector fields, controlled by a parameter γ.
Examples of the resulting fields for γ = 0 and γ = 1 are shown in Fig.1.

Firstly, we consider the noiseless case. The vector field is constructed speci-
fying a value of the parameter γ. The field is then computed on a 70 × 70 grid
over the square [−2, 2] × [−2, 2]. The models are trained on a uniform random

Gamma = 1Gamma = 0

Fig. 1. Visualization of the 2-dimensional vector field for γ = 0, resulting in a
divergence-free field, and for γ = 1 that yields a curl-free field
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Fig. 2. Noiseless case. Test errors for the proposed vector valued approach (VVR) and
for learning each component of the field independently (INDEP) as a function of the
number of training points used for learning. Solid lines represent average test error,
while dotted lines show the average test error plus/minus one standard deviation.

sample of points from this grid and their predictions on the whole grid (except
the training points) compared to the correct field. The number of training ex-
amples is varied from 10 to 600. For each cardinality of the training set, the
training and prediction process is repeated 10 times with a different randomiza-
tion of the training points. We use a convex combination of the divergence-free
(6) and curl-free (7) kernels, controlled by the parameter γ̃. We adopt a 5-fold
cross validation to select the optimal number of iterations for the ν-method and
the parameter γ̃. The width, σ, of these kernels was set to be 0.8.

We use an angular measure of error to compare two fields [33]. If vo = (v1
o , v

2
o)

and ve = (v1
e , v

2
e) are the original and estimated fields, we consider the trans-

formation v → ṽ = 1
||(v1,v2,1)||(v

1, v2, 1). The error measure is then err =
arccos(ṽe · ṽo). This error measure was derived by interpreting the vector field
as a velocity field and it is convenient because it handles large and small signals
without the amplification inherent in a relative measure of vector differences.

The results for the noiseless case are reported in Fig.2, which clearly shows the
advantage of using a vector valued approach with the combination of curl-free
and divergence-free kernels. We present only the results for the field generated
with γ = 0 and γ = 0.5 since for the remaining fields the errors are set within
these two examples. The prediction errors of the proposed approach via the
ν-method are always lower than the errors obtained by regressing on each com-
ponent independently, even when the training set is very large. The average value
of the estimated parameter γ̃, converges to the true value of γ as the number
of training points increases (result not shown for brevity), indicating that it is
possible for the model to learn the field decomposition in an automatic way.

We then consider the case with normal noise whose standard deviation is inde-
pendent from the signal and is chosen to be 0.3. We follow the same experimental



Vector Field Learning via Spectral Filtering 69

0 150 300 450 600
0

0.1

0.2

0.3

0.4

0.5

0.6

Number of training points

T
es

t E
rr

or

γ = 0

 

 

VVR
INDEP

0 150 300 450 600
0

0.1

0.2

0.3

0.4

0.5

0.6

Number of training points

T
es

t E
rr

or

γ = 0.5

 

 

VVR
INDEP

INDEPENDENT NOISE = 0.3

Fig. 3. Independent noise of standard deviation 0.3. Test errors for the proposed vector
valued approach (VVR) and for learning each component of the field independently
(INDEP) as a function of the number of training points used for learning. Solid lines
represent average test error, while dotted lines show the average test error plus/minus
one standard deviation.

0 100 200 300 400
0

200

400

600

800
Cross−Validation Time

Number of training points

T
im

e 
[s

]

 

 

TIKHONOV
NU

0 100 200 300 400
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Number of training points

T
es

t e
rr

or

Independent Noise = 0.3
Test Error

 

 

TIKHONOV
NU

Fig. 4. (Left) Independent noise of standard deviation 0.3. Test errors for the proposed
vector valued approach solved with Tikhonov regularization or the ν-method. (Right)
Computation time for the whole regularization path for the ν-method and for Tikhonov
regularization. The experiment was performed on Matlab on a desktop PC with AMD
Athlon X2 64 3.2GHz and 2GB RAM.

protocol adopted for the noiseless case. The results are reported in Fig.3 and in-
dicate that also in the presence of noise the proposed approach consistently out-
performs regressing on each component independently. The advantage is stronger
when fewer training points are available, but it is still present even at higher train-
ing set cardinalities. Again, the estimated value for the parameter γ̂ well
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approximates the true value used for the creation of the vector field, indicating
that it is possible for the model to learn the field decomposition in an automatic
way also in presence of noise (result not shown for brevity).

In Fig.4 we compare Tikhonov regularization and the ν-method on the field
generated with γ = 0. In the left panel are reported the test errors as a function
of the number of training examples in the case with independent normal noise of
standard deviation 0.3. We clearly see that the two algorithms perform equiva-
lently. In the right plot are shown the cross validation learning times for Tikhonov
regularization and the ν-method. For both methods, both the parameter γ̂ and
the regularization parameter have been estimated. For Tikhonov regularization
50 values of the regularization parameter, between 10−5 and 10−2, were assessed,
while for the ν-method the iterations up to 500 were evaluated. The experimental
results confirm our complexity analysis: the ν-method is significantly faster than
Tikhonov regularization, while preserving its good generalization performance.

7 Conclusions

In this paper we considered the problem of learning vector valued functions and
proposed a class of regularized kernel methods based on spectral filtering of the
kernel matrix. Tikhonov regularization and L2 boosting are examples of methods
falling in our framework. The complexity and empirical analysis showed the
advantages of iterative algorithms with respect to the more standard Tikhonov
regularization. A similar conclusion can be drawn comparing the learning rates
of the spectral filters.
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Abstract. As an alternative to vector representations, a recent trend
in image classification suggests to integrate additional structural infor-
mation in the description of images in order to enhance classification
accuracy. Rather than being represented in a p-dimensional space, im-
ages can typically be encoded in the form of strings, trees or graphs and
are usually compared either by computing suited metrics such as the
(string or tree)-edit distance, or by testing subgraph isomorphism. In
this paper, we propose a new way for representing images in the form of
strings whose symbols are weighted according to a TF-IDF-based weight-
ing scheme, inspired from information retrieval. To be able to handle
such real-valued weights, we first introduce a new weighted string edit
distance that keeps the properties of a distance. In particular, we prove
that the triangle inequality is preserved which allows the computation of
the edit distance in quadratic time by dynamic programming. We show
on an image classification task that our new weighted edit distance not
only significantly outperforms the standard edit distance but also seems
very competitive in comparison with standard histogram distances-based
approaches.

1 Introduction

Classification of images is of considerable interest in many image processing
and computer vision applications. A common approach to represent the image
content is to use histograms of color, texture and edge direction features (1; 2).
Although they are computationally efficient, such histograms only use global
information and so provide a crude representation of the image content. The
current trend in image classification is towards the use of the bag-of-visual-words
model that comes from the bag-of-words representation of text documents (3).
This model requires four basic stages: (i) keypoints detection (ii) description,
(iii) codebook creation and (iv) image representation. Keypoints refer to small
regions of interest in the image. They can be sampled densely (4), randomly (5) or
extracted with various detectors (6). Once extracted, keypoints are characterized
� This work is part of the ongoing ANR SATTIC 07-1 184534 research project and
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using a local descriptor, the most widely used being SIFT (7). A visual codebook
is then learned over the collection of descriptors of a training set typically by
using the k-means algorithm (8). Each cluster gives a visual word and each image
can then be mapped into this new space of visual words leading to a bag-of-
visual-words. Each word can be weighted either according to its frequency in the
image, or using more sophisticated techniques such as mutual-information-based
binarization (9) or TF-IDF-based weighting (Term Frequency-Inverse Document
Frequency) (10; 11). Whatever the weighting scheme, two images are usually
compared in a classification task by computing either a dot product or a given
distance (e.g. L1, L2, L∞) between their corresponding weighted feature vectors
in the considered vector space.

Although working in a vector space brings many advantages, it does not allow
the integration of additional structural information or topological relationships
between the objects of the images. To overcome this drawback, an alternative
to the vector representation-based approaches consists in representing images in
the form of structured data such as strings, trees, or graphs. For instance, in
order to code the topological relationship of so-called iconic objects in an image,
the 2D string representation (12; 13; 14) uses the relative location of the visual
words in the original 2D-space to build a graph of similarities. The comparison
between two images coded in the form of strings is then achieved by searching
for the largest common subsequence that satisfies a clique in that graph. In order
to represent binary objects, Freeman (15) codes the boundaries of such objects
in the form of sequences of symbols. Extending this principle in (16), Daliri
proposes to map each contour of the objects into a string whose components
are pairs of symbols, the first one representing the angle computed between the
contour point and its neighbors and the other describing the normalized distance
from the center of mass.

In the previous two approaches, the comparison between two images is achieved
by computing the edit distance (17) between the corresponding string represen-
tations. Let us recall that the standard edit distance between two structured data
x and y is defined as the less costly set of edits needed to transform x into y, with
the allowable edit operations being insertion, deletion, or substitution of symbols.
If a usual way to use the edit distance is to assign a unit cost to each of the edit
operations, many efforts have been made during the past few years to automat-
ically learn more performing edit costs. In this context, a recent line of research
has investigated the ways to model those costs in the form of the parameters
of probabilistic state machines, such as pair-Hidden Markov models, stochastic
transducers, or probabilistic automata (18; 19; 20; 21). The resulting stochastic
edit distance (usually learned using an EM-based approach) can either be used
in more performing neighborhood-based classifiers, or wrapped into edit kernels
for improving Support Vector Machines (22).

While all the previously cited works mainly dealt with the improvement of
weighted edit distances where the weights concern the edit operations between
two symbols, we can note that no effort has been really made to develop new
weighted edit distances where the weights are assigned to the symbols themselves.
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And yet, such distances would allow us to take advantage of both vector and struc-
tured approaches. The objective of this paper is to fill this gap by presenting a
new weighted symbols-based edit distance (Section 2). By allowing each symbol
to be real-valued, this opens the door to new image representations. In this con-
text, we propose a new way to encode images in the form of strings whose symbols
are real-valued according to a TF-IDF weighting scheme (Section 3). A series of
experiments is carried out in Section 4 that shows that our new weighted edit
distance not only significantly outperforms the standard edit distance but also
seems very competitive in comparison with standard histogram distances-based
approaches. Before concluding, we propose an original way to automatically learn
the costs of the edit operations, by taking into account the number of edges sepa-
rating the visual words in a minimum spanning tree built on the visual codebook.
Plugged in our weighted edit distance, we show that these edit costs allow us to
improve the classification accuracy.

2 Weighted Edit Distance

In its basic form, the Levenshtein distance (or edit distance (17)) between two
strings x(T ) and y(V ) of length T and V is defined as the minimum number
of edits needed to transform x(T ) into y(V ), with the allowable edit operations
being insertion, deletion, or substitution of a single character. Using the dynamic
programming Algorithm 1, the edit distance D(T, V ) is computable in O(T ×V )
and boils down to filling in a (T + 1) × (V + 1) matrix.

Rather than simply counting the number of required edit operations to change
x(T ) into y(V ), the additive term 1 in the expressions d1, d2 and d3 in Algorithm
1 can be replaced by the value of an edit cost function c(xr, yk) that takes into
account the nature of the symbols xr, yk ∈ Σ∪{λ} involved in the edit operation,
where Σ is the alphabet and λ the empty symbol. In this case, the edit distance
between x(T ) and y(V ) becomes the minimum cost of all sequences of edit
operations which transform x(T ) into y(V ). As mentioned in (17), D(T, V )
remains a metric if the edit cost function c(xr, yk) satisfies the two properties of
positive definiteness and symmetry. It is computable in O(T ×V ) if the triangle
inequality is also fulfilled.

Rather than allowing the use of weights on each edit operation (as usually
done in the literature), we propose in this section to authorize the management
of weighted symbols during the calculation of the edit distance. By this way, an
edit operation becomes a transformation of a weighed symbol into another one.
This enables us to take into account the TF-IDF of each symbol of a string-
structured image as a weight, and to compute the edit distance between two
images represented with such strings of weighted symbols. We propose in the
following an edit cost function that is able to manage at once two symbols and
their corresponding weights. Henceforth, a string x(T ) will be composed of T
weighted symbols x1 . . .xT where ∀i = 1..T,xi = (xi, wxi) is made of a symbol
xi ∈ Σ and a weight wxi ∈ R∗

+.



Weighted Symbols-Based Edit Distance 75

Input: Two strings x(T ) and y(V )
Output: Edit Distance D(T, V ) between x(T ) and y(V )
D(0, 0) ← 0;1

for r=1 to T do2

D(r, 0) ← D(r − 1, 0) + 1;3

end4

for k=1 to V do5

D(0, k) ← D(0, k − 1) + 1;6

end7

for r=1 to T do8

for k=1 to V do9

if (xr = yk) then10

D(r, k) = D(r − 1, k − 1);11

end12

else13

d1 ← D(r − 1, k − 1) + 1;14

d2 ← D(r − 1, k) + 1;15

d3 ← D(r, k − 1) + 1;16

D(r, k) ← min(d1, d2, d3);17

end18

end19

end20

Return D(T, V );21

Algorithm 1. Edit distance algorithm that returns the number of edit oper-
ations required to change a string x(T ) into another y(V ).

Definition 1. The edit cost function c : ((Σ×R∗
+)∪ ({λ} × {0}))× ((Σ×R∗

+)∪
({λ} × {0})) → R+ is defined as follows1:
Let the symbols a, b and the positive reals n,m be the components of two weighted
symbols a = (a, n) and b = (b,m)

c(a,b) =
{

max(n,m) if a �= b
|n−m| otherwise

Plugging this function in an edit distance algorithm, we obtain the Algorithm 2.
The underlying idea of the function c is graphically described in Figure 1. The
edit cost between two weighted symbols (a, n) and (b,m) is close to the one
computed between two strings where a and b are “virtually” repeated n and m
times respectively. An alternative to our cost function would have consisted in
actually repeating each symbol according to its corresponding weight. Despite
the fact that this would quadratically increase (in the average of the weights)
the algorithmic complexity of the edit distance calculation, this would lead to a
loss of information by discarding the decimal part of the weight. We will show
this behavior in the experimental part of this paper.

1 Note that the weight of the empty string λ is always equal to 0 such that λ = (λ, 0).
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Input: Two strings x(T ) and y(V )
Output: Edit Distance D(T, V ) between x(T ) and y(V )
D(0, 0) ← 0;1

for r=1 to T do2

D(r, 0) ← D(r − 1, 0) + c(xr, λ);3

end4

for k=1 to V do5

D(0, k) ← D(0, k − 1) + c(λ,yk);6

end7

for r=1 to T do8

for k=1 to V do9

d1 ← D(r − 1, k − 1) + c(xr,yk);10

d2 ← D(r − 1, k) + c(xr, λ);11

d3 ← D(r, k − 1) + c(λ,yk);12

D(r, k) ← min(d1, d2, d3);13

end14

end15

Return D(T, V );16

Algorithm 2. Weighted edit distance algorithm that returns the minimum
cost required to change a weighted string x(T ) into another y(V ).

Proposition 1. Given the edit cost function c of Definition 1, Algorithm 2 is a
generalization of Algorithm 1.

Proof. Algorithm 2 generalizes Algorithm 1 if, for two unweighted strings, they
both return the same edit distance. Two symbols a = (a, n) and b = (b,m) are
unweighted if n = m = 1. In this case, c(a,b) returns

– either |n − m| = 0 if a = b (and so lines 10 and 11 of Algorithm 1 and line
10 of Algorithm 2 are the same),

– or max(n,m) = 1 if a �= b (and so lines 14, 15 and 16 of Algorithm 1 are the
same as lines 10, 11 and 12 of Algorithm 2).

Therefore, the two algorithms return the same edit distance for two unweighted
strings. ��

Proposition 2. Given the edit cost function c, Algorithm 2 returns a true dis-
tance function between x(T ) and y(V ) computable in O(|T | × |V |).

Proof. The edit distance computed from an edit cost function c is a metric if c
fulfills the following two conditions, ∀x,y, z ∈ (Σ × R∗

+) ∪ ({λ} × {0}):

1. c(x,y) = 0 if and only if x = y (associated with the fact that wx ∈ R∗
+,

this defines the positive definiteness). This is true because c(x,y) = 0 only
if |wx − wy| = 0, i.e. when x = y and wx = wy, so when x = y. On the
other hand, this can not occur when x �= y because, except for λ, the weight
of a symbol belongs to R∗

+, so max(wx, wy) cannot be equal to 0 in this case.
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Fig. 1. Intuitive idea of the calculation of the edit distance between two weighted
symbols

2. c(x,y) = c(y,x) (symmetry). This is always true because the two functions
max(wx, wy) and |wx − wy| fulfill the symmetry condition.

Moreover, the edit distance is computable in O(T × V ) by the Algorithm 2 if c
also satisfies the triangle inequality c(x,y) ≤ c(x, z) + c(z,y) (see (17)). Since
the output of c depends on the nature of the input symbols, let us study the
different possible configurations:

1. If the symbols x, y, z are the same, the function c always returns |n − m|,
that is the Manhattan function. Therefore, the property holds because the
Manhattan function is a metric (d1).

2. If the symbols x, y, z are different, the function c always returns max(n,m),
that is a specific case of the Tchebychev function. Therefore, the property
holds because the Tchebychev function is a metric (d∞).

3. If x = y and x �= z, one must satisfymax(wx, wz)+max(wz , wy) ≥ |wx−wy |.
This holds because max(wx, wz) +max(wz , wy) ≥ max(wx, wy) (cf case 2)
and max(wx, wy) ≥ |wx − wy |, ∀wx, wy ∈ R∗

+.
4. If y = z and x �= y, one must satisfymax(wx, wz)+|wz −wy| ≥ max(wx, wy).

6 subcases must be studied:
– If wz ∈ [wx, wy ] we must prove that wz + wy − wz ≥ wy ⇒ wy ≥ wy ,

that is always true.
– If wz ≤ wx ≤ wy we must prove that wx +(wy −wz) ≥ wy , that is always

true because wx − wz ≥ 0.
– If wx ≤ wy ≤ wz we must prove that wz + wz − wy ≥ wy. Since wz +
wz − wy = 2wz − wy ≥ 2wz − wz = wz ≥ wy , the property holds.

– If wz ∈ [wy, wx] we must prove that wx +(wz −wy) ≥ wx, that is always
true because wz − wy ≥ 0.

– If wz ≤ wy ≤ wx we must prove that wx+(wy −wz) ≥ wx, that is always
true because wy − wz ≥ 0.

– If wy ≤ wx ≤ wz we must prove that wz + wz − wy ≥ wx. Since wz +
wz − wy = 2wz − wy ≥ 2wz − wz = wz ≥ wx, the property holds.

5. If x = z and x �= y, one must satisfy |wx−wz|+max(wz , wy) ≥ max(wx, wy).
By symmetry, this case is proved as for case 4 ��
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3 Image Representation as a String of Weighted Symbols

As seen in the introduction, the representation of an image as a bag-of-visual-
words has become the reference method in the field of image classification, in-
spired by the bag-of-words representation in text. Given a vocabulary defined
by V = {v1, . . . , vj , . . . , v|V|}, an image ai is represented as a vector of weights
ui = (ui,1, . . . , ui,j, . . . , ui,|V|). Each component ui,j of ui gives the weight of the
visual word vj in the image ai.

Unlike a text document, an image does not have a natural visual vocabulary.
In the bag-of-visual-words approach, visual words represent small patches with
a characteristic shape, texture or color that often appear in a reference image
collection. Consequently, a visual vocabulary depends on the reference image
collection and on the three following elements: the patch detector, the local de-
scriptor and the patch classification method. The way of calculating ui,j weights
also plays an important role in the image representation. The natural weighting
is the number of occurrences of a visual word vj in the image. This representa-
tion as an occurrence histogram is not the most efficient one and other strategies
have been proposed (9). We choose to use a TF-IDF weighting scheme which has
been shown to be relevant for image classification (10; 11). The method consists
in multiplying a term tfi,j giving the representativeness of word vj in image ai

to a term idfj giving the discriminative power of this word in the reference col-
lection. Thus, the weight ui,j = tfi,jidfj is high if the word appears frequently
in the image and rarely in the reference collection.

Based on this vector bag-of-visual-words representation, we propose a new
representation of an image as a string of weighted symbols. We first expose this
new representation. Then we present a way to implement it.

3.1 The Proposed Representation

The principle of our representation is to consider the visual words as symbols
whose weight is equal to the TF-IDF weight used in the vector representation.
The question is how to structure the symbols as an ordered string.

Let us first note that visual words with zero TF-IDF weight are not taken into
account in the string construction. Indeed, this happens when the term is not
present in the image or when it appears in most of the documents which means
it is not discriminative. This is consistent with the weighted distance previously
defined which admits only one zero weighted symbol (the empty symbol λ).
Then, the string associated with an image will have a length T equal to the
number of visual words appearing at least once in this image.

Let us come to the question of symbol order which provides structural infor-
mation and so can enhance the image representation. For that purpose, we must
choose an order that takes into account visual words characteristics and possibly
their distribution in the image. This is a difficult choice because of the high vari-
ability of the visual content of an image: two images of similar visual content can
have different visual words spatial distributions. To circumvent this difficulty, we
propose to use only the global characteristics of the visual vocabulary. For exam-
ple, we can use the principle that if some visual words (i.e. symbols) are similar,
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it may be interesting to allow substitutions between them in the string. Such
substitutions may occur if the corresponding symbols are close in the strings.
Thus, the chosen order must group similar visual words. We finally propose to
sort the symbols in descending order of their IDF discriminative power. The
most discriminative symbols (those that are rare in the collection) will be at the
beginning of the string while the less discriminative ones (those that are most
common in the collection) will be at the end. This choice is based on the (quite
likely) assumption that two similar symbols have a similar IDF discriminative
power. Note that such an order is global to all strings since the discriminative
power is defined from the entire collection.

Thus, the string x1 . . .xr . . .xT associated with a given image ai is composed
of T symbols xr = (xr , wxr) with:⎧⎨⎩ j = ordidf (r)

xr = vj

wxr = ui,j

(1)

where ordidf (r) represents the position j of symbol xr in the original vector ui.
A summary of the proposed representation is given in Figure 2.

Fig. 2. Image representation as a string of weighted symbols

3.2 A Practical Implementation

In practice, to obtain the string associated with an image, we must choose the
three different elements required to build the visual vocabulary (the patch detec-
tor, the local descriptor and the patch classification method) plus the TF-IDF
weighting. Of course these choices depend on the nature of the images and the
task to achieve. The four chosen elements are presented below.

The patch detector. We extract patches sampled in a 10×10 cells regular grid
so as to extract 100 patches per image. This dense sampling was found to be
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more efficient than salient point detection for image classification, since salient
points do not cover all the image spatial domain and lead to an incomplete
description (4; 9). Moreover, dense sampling may produce a very large number
of features.

The local descriptor. We choose to describe patches using a color descriptor.
We transform the RGB components of the patch into three normalized com-
ponents defined as R

R+G+B , G
R+G+B and R+G+B

3×255 . This color space presents two
main advantages. First, it makes the first two variables independent of the third
one representing the luminance. Second, it is very easy to compute. From the
normalized components of a patch, we compute 6 features equal to the mean
and the standard deviation of the three values.

The patch classification method. We learn a visual vocabulary V applying
a k-means algorithm over all the computed patches on training images. We get
k clusters of features whose centers represent k visual words, k being the size
of the visual vocabulary. Local patches of images are mapped to their closest
visual words using the euclidean distance. In our experiments, we extracted
roughly 100000 patches and worked with different vocabulary sizes.

The TF-IDF weighting. Several formulations exist to calculate tfi,j and idfj ,
but the okapi one proposed by Robertson et al.(23) is often reported superior to
others in classification problems. We apply a modified version implemented in
the lemur software2 proposed by (24):

tfi,j =
k1ni,j

ni,j + k2(1 − b+ b |ai|
aavg

)

where ni,j is the occurrence of the word vj in the image ai, |ai| the number of
visual words used to represent image ai, aavg the average number of visual words
per image in the collection A. k1, k2 and b are three constants.

idfj = log
|A| − |{ai|vj ∈ ai}| + 0.5

|{ai|vj ∈ ai}| + 0.5
.

A main disadvantage of this formula is that it can be possibly negative, which
has been discussed in (25). This happens when a term appears in more than half
of the documents. Thus, we choose to floor the IDF values to 0.

4 Experiments

4.1 Experimental Protocol

To assess the relevance of the new edit distance computed with our TF-IDF-
based weighting scheme, we carried out a series of experiments in image classifica-
tion. The reference image database is the SIMPLIcity collection3 (26), containing

2 http://www.lemurproject.com
3 http://wang.ist.psu.edu/~jwang/test1.zip

http://www.lemurproject.com
http://wang.ist.psu.edu/~jwang/test1.zip
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Fig. 3. Examples extracted from the SIMPLIcity collection

1000 images extracted from the COREL database. Each image (384×256 pixels)
belongs to one of 10 meaningful categories: African people, beaches, buildings,
buses, dinosaurs, elephants, flowers, food, horses and mountains (see Figure 3).
Note that the different categories are equally distributed, each of them composed
of 100 images.

Classification was performed using the 1-Nearest Neighbor (1-NN) rule. We
conducted a 10-fold cross-validation to estimate the classifier accuracy. In order
to evaluate our weighted edit distance (WED), we divided the experiments into
two parts. The first series of experiments aims to analyze how the WED behaves
compared to the standard edit distance (ED) and how weighting the symbols
contributes to improve the image classification results. The second set of exper-
iments compares the WED with the common metrics usually applied on feature
vectors, i.e. the normalized dot product and different Minkowski distances such
as the L1, L2, and L∞. In this case, images are no more represented in the form
of strings but rather by (unordered) vectors whose components are the TF-IDF
weights of the visual vocabulary. To assess the impact of the visual vocabulary
size, we carried out the experiments with an increasing number of visual words,
from 20 to 80.

4.2 Weighted Edit Distance versus Standard Edit Distance

To compare the WED with the standard ED, we performed two series of exper-
iments. First, the ED was applied on the same strings of symbols as for WED
without considering their corresponding weights. Figure 4 clearly shows that our
WED outperforms the classic ED. Whatever the alphabet size, the difference is
statistically significant using a Student paired-t test (note that the highest p-
value is equal to 0.02 for an alphabet size of 60 symbols). These results are not so
surprising since by discarding the weights, we removed a part of the information
about the symbols. Even if the standard ED is not able to deal with such real-
valued weights, a fairer comparison would consist in converting each weighted
symbol into a substring where the considered symbol would be repeated a num-
ber of times corresponding to its weight. But since weights are real valued, we
set the number of repetitions to the integer value of the corresponding weight.
As we can see on Figure 4, once again, WED performs better than the ED with
repetitions.
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Fig. 4. Comparison between WED and the standard edit distance, computed either
omitting the real weights (ED) or by repeating the symbols according to their corre-
sponding weights (ED with repetitions).

Moreover, it is important to note that repeating the symbols generates larger
string sizes that leads to a dramatic increase of the algorithmic complexity of the
edit distance calculation. Indeed, the complexity becomes O(�wx�×�wy�×T×V ),
where T and V still denote the lengths of the original strings x(T ) and y(V ),
�wx� and �wy� being the average of the integer values of the weights.

4.3 Weighted Edit Distance versus Vector Space Metrics

Figure 5 compares the performance of the WED with that of classical vector
space metrics, i.e. Minkowski distances (L1, L2, L∞) and the normalized dot
product. Several remarks can be made. First, WED is very efficient compared
to the other metrics, particularly for small vocabularies. Indeed, it provides the
best global behavior by returning the highest classification accuracy for vocabu-
laries smaller than 60, and remaining competitive after. We can also note that for
small vocabulary sizes WED significantly outperforms the normalized dot prod-
uct, which is most often used to measure similarities between bags-of-words.
Second, we can observe that the L1 returns the closest results to WED ones.
This behavior can be easily explained by the fact that when symbols are ordered
(that is the case in our string-based representation), the L1 is equivalent to the
edit distance if the substitutions between two different symbols are not allowed.
Therefore, the difference between the two curves WED and L1 directly comes
from the possibility to substitute symbols in the structured strings.
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Fig. 5. Comparison between WED, the normalized dot product and some Minkowski
metrics

4.4 Plugging Learned Edit Costs in the WED

So far, we mainly concentrated our efforts to take into account real-valued sym-
bols in a new weighted edit distance. In this context, we paid little attention
to the cost of the edit operations (insertion, deletion and substitution) that
were set to 1 for all the previous experiments. However, as we explained in the
introduction of this paper, there exists a huge literature about how to learn
those edit costs often in the form of the parameters of stochastic state machines
(18; 19; 20; 21; 27). The main drawback of these probabilistic approaches is
that the returned parameters “only” satisfy constraints of statistical distribu-
tion, and so often do not fulfill the properties of a distance (the symmetry and
the triangle inequality are often not ensured). Therefore, the resulting models
provide a learned stochastic edit similarity rather than a true edit distance. To
keep a distance function and also to allow the algorithm to compute the WED
in quadratic time, we propose in the following a simple solution to determine
efficient edit costs.

As explained in Section 3, the visual symbols used for the string compari-
son correspond to the centers of the clusters computed by a k-means algorithm.
These centers are described by some coordinates in a 6-dimensional color space.
Intuitively, it means that two centers are close in this space if their corresponding
colors are close. When comparing (with an edit distance) two strings, it seems
more relevant to favor substitutions of such symbols. This means that the sub-
stitution cost should vary according to the distance between one symbol and
another.
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Fig. 6. Effect of the MST-based substitution costs on the performance of WED

To represent these distances, we decided to compute a Minimum Spanning
Tree (MST) between the symbols (i.e. the center of the clusters) in the 6D space.
We considered the complete simple undirected graph G = (V , E, γ) where V is
the set of visual words (vertices), E is the set of all edges in G and γ : e ∈ E → R
is a function which assigns a weight to each edge of the graph. We considered here
that γ(v1, v2) = L2(v1, v2) where L2(v1, v2) is the Euclidean distance between
the visual words v1 and v2. Let us recall that a spanning tree of G is a subgraph
of G (a tree) which connects all the vertices together. A minimum spanning tree
is a spanning tree with weight (the sum of the weights of all the edges in the
tree) less than or equal to the weight of every other spanning tree.

To set the cost of the substitution between two given symbols xr and yk,
noted σ(xr , yk), we used the number of edges between xr and yk in the MST.
The cost of the insertion and deletion operations is left to 1. To be integrated into
the edit distance calculation, σ(xr , yk) is just multiplied to the edit cost function
c(xr,yk) in line 10 of Algorithm 2. To ensure that this extended version of WED
remains a true distance computable in quadratic time, we must prove that the
substitution cost function σ provided by the MST is also a distance.

Proposition 3. The substitution cost function σ is a metric.

Proof. Let us prove the three properties of a distance:

– Since the MST is an undirected graph, σ(x, y) = σ(y, x), and so the symme-
try property holds.

– If x �= y, by construction the number of edge in the MST between x and y is
at least equal to 1. On the other hand, if x = y then σ(x, y) = 0. Therefore,
the positive definiteness holds.

– Since σ(x, y) is associated to a path of the MST, this path is minimal. There-
fore, σ(x, y) ≤ σ(x, z) + σ(z, y) and so the triangle inequality holds. ��
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The results of the classification task using the cost function σ in our WED are given
in Figure 6. The figure shows that using these substitution costs instead of the naive
ones used in the previous section allows us to always improve the classification
accuracy and to increase the difference with the L1 distance, in favor of WED.

5 Conclusion

In this paper, we have presented a new string edit distance in which symbols
are allowed to be weighted. This metric opens the door to a better use of bag-
of-visual-words-based image representations which are often constrained to be
compared by vector space metrics. By organizing the visual words in the form
of a string, it allows us to take into account additional structural information in
the description of images. In this paper, we showed that our new edit distance
is very competitive with the state of the art vector space metrics on an image
classification task when the symbols are weighted by a TF-IDF measure inspired
from information retrieval. We also proposed an extension of our approach by
automatically determining the substitution costs from a minimum spannig tree
built on the alphabet of visual-words. Even if we used our weighted distance
with a nearest neighbor classifier, note that it can be easily integrated in edit
kernels for which there exists a huge literature (see (22) for instance). Moreover,
we claim that this distance could be applied to other fields (for example in
molecular biology) where one might want to ease or make more difficult some
operations on some specific parts of the string or of more complex structured
data (e.g. trees or graphs). To be able to manage these more general cases, our
approach should be extended to the tree or graph edit distances.
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Abstract. Association rule mining is an important branch of data mining re-
search that aims to extract important relations from data. In this paper, we develop
a new framework for mining association rules based on minimal predictive rules
(MPR). Our objective is to minimize the number of rules in order to reduce the
information overhead, while preserving and concisely describing the important
underlying patterns. We develop an algorithm to efficiently mine these MPRs.
Our experiments on several synthetic and UCI datasets demonstrate the advan-
tage of our framework by returning smaller and more concise rule sets than the
other existing association rule mining methods.

1 Introduction

The huge amounts of data collected today provide us with an opportunity to better un-
derstand the behavior and structure of many natural and man-made systems. However,
the understanding of these systems may not be possible without automated tools that
enable us to extract the important patterns in the data and present them in a concise and
easy to understand form.

Rule induction methods represent a very important class of knowledge discovery
tools. The advantage of these methods is that they represent the knowledge in terms of
if-then rules that are easy to interpret by humans. This can facilitate the process of dis-
covery and utilization of new practical findings. As an example, consider a knowledge
discovery problem in medicine. Assume a rule mining algorithm identifies a subpopula-
tion of patients that respond better to a certain treatment than the rest of the patients. If
the rule clearly and concisely defines this subpopulation, it can speed up the validation
process of this finding and its future utilization in patient-management.

Association rule mining is a very popular data mining technique to extract rules from
the data. The original framework [1] has been extended to mine patterns from various
domains [28,4,16]. The key strength of association rule mining is that it searches the
space of rules completely by examining all patterns that occur frequently in the data.
However, the main disadvantage is that the number of association rules it finds is often
very large. Moreover, many rules are redundant because they can be naturally explained
by other rules. This may hinder the discovery process and the interpretability of the
results. The objective of this work is to filter out these redundant rules and provide
the user with a small set of rules that are sufficient to capture the essential underlying
structure of the data.
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In this work, we focus on the problem of mining association rules that target a specific
class variable of interest. We call these rules the class association rules. To achieve
our goal, we first introduce the concept of the minimal predictive rules (MPR) set that
assures a good coverage of the important patterns with very small number of rules. After
that, we propose an algorithm for mining these rules. Briefly, our method builds the
MPR set by examining more general rules first and gradually testing and adding more
specific rules to the set. The algorithm relies on a statistical significance test to ensure
that every rule in the result is significantly better predictor than any of its generalizations.

2 Methodology

In this section, we first define basic terminology used throughout the paper. After that,
we present an example illustrating the challenges of rule mining and the limitations of
existing methods. Next, we propose the minimal predictive rules (MPR) framework to
address them. Finally, we present an algorithm for mining the MPRs.

2.1 Definitions

Our work focuses on mining relational databases, where each record is described by a
fixed number of attributes. We assume that all attributes have discrete values (numeric
attributes must be discretized [14]). We call an attribute value pair an item and a con-
junction of items a pattern (sometimes patterns are also called itemsets). If a pattern
contains k items, we call it a k-pattern (an item is a 1-pattern). We say that pattern P ′

is a subpattern of pattern P if P ′⊂ P (P is a superpattern of P ′). A rule is defined as
R: A⇒c, where A is a pattern and c is the class label that R predicts. We say that rule
R′: A′⇒c′ is a subrule of rule R: A⇒c if c′=c and A′⊂ A.

A pattern P can be viewed as defining a subpopulation of the instances (records)
that satisfy P . Hence, we sometimes refer to pattern P as group P . If P ′ is a subpattern
of P , then P ′ is a supergroup of P . Note that the empty pattern Φ defines the entire
population. The support of pattern P , denoted as sup(P ), is the ratio of the number of
records that contain P to the total number of records: sup(P ) ≈ Pr(P ). The confidence
of rule R: A⇒c is the posterior probability of class c in group A: conf (R) = sup(A ∪
c)/sup(A) ≈ Pr(c|A). Note that confidence of the empty rule is the prior probability of
the class: conf (Φ⇒c) ≈ Pr(c).

2.2 Example

Assume our objective is to identify populations which are at high risk of developing
coronary heart disease (CHD). Assume that our dataset contains 200 instances and that
the CHD prior is Pr(CHD)=30%. We want to evaluate the following 3 rules:

R1: Family history=yes ⇒ CHD
[sup=50%, conf =60%]

R2: Family history=yes ∧ Race=Caucasian ⇒ CHD
[sup=20%, conf =55%]

R3: Family history=yes ∧ Race=African American ⇒ CHD
[sup=20%, conf =65%]
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From the above rules, we can see that a positive family history is probably an impor-
tant risk factor for CHD because the confidence of R1 (60%) is two times higher than
CHD prior (30%). However, the problem is that we expect many rules that contain a
positive family history in their antecedents to have a high confidence as well. So how
can we know which of these rules are truly important for describing the CHD condition?

The original association rules framework [1] outputs all the frequent rules that have
a higher confidence than a minimum confidence threshold (min conf ). For instance, if
we set min conf =50%, all of three rules will be returned to the user.

In order to filter out some of the uninteresting associations, the original support-
confidence framework is sometimes augmented with a correlation measure. Commonly,
a χ2 test is used to assure that there is a significant positive correlation between the
condition of the rule and its consequent [8,24,21,18]. However, because the posteriors
of all three rules are much higher than the prior, we expect all of them to be statistically
significant! Moreover, these rules will be considered interesting using most existing
interestingness measures [15]. The main problem with this approach is that it evaluates
each rule individually without considering the relations between the rules. For example,
if we are given rule R2 by itself, we may think it is an important rule. However, by
looking at all three rules, we can see that R2 should not be reported because it is more
specific than R1 (applies to a smaller population) and has a lower confidence.

To filter out such redundant rules, [6] defined the confidence improvement constraint:
imp(A ⇒ c) = conf (A ⇒ c) − max

A′⊂A
{conf (A′ ⇒ c)} > min imp

In practice, it is not clear how to specify this min imp parameter. So the common con-
vention is to set to zero ([18,17]). This means that we only report the rules that have a
higher confidence than all of their subrules. If we applied the confidence improvement
constraint to our working example, rule R2 will be removed and rule R3 will be retained.
However, R3 may also be unimportant and its observed improvement in the confidence
can be due to chance rather than actual causality. In fact, there is a high chance that
a refinement of a rule, even by adding random items, leads to a better confidence. We
will see later in the analysis in section 2.4 and in the experimental evaluation that the
confidence improvement constraint can still output many spurious rules. So should we
report rule R3? To answer this question, we define the minimal predictive rules concept.

2.3 Minimal Predictive Rules (MPR)

Definition 1. A rule R: A⇒c is a minimal predictive rule (MPR) if and only if R
predicts class c significantly better than all its sub-rules.
This definition implies that every item in the condition (A) is an important contributor
to the predictive ability of the rule. We call these rules minimal because removing any
non-empty combination of items from the condition would cause a significant drop
in the predictability of the rule. An MPR can be viewed as defining a “surprising”
subpopulation, where the posterior probability of class c in the group A (Pr(c|A)) is
unexpected and cannot be explained by any convex combinations of A’s subpatterns.

The MPR significance test: In order to check if a rule is significant with respect to
its subrules, we use the binomial distribution as follows: Assume we are interested in
testing the significance of ruleR:A⇒c. Assume that groupA containsN instances, out
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of which Nc instances belong to class c. Assume Pc represents the highest confidence
achieved by any subrule of R: Pc = maxA′⊂A Pr(c|A′). The null hypothesis presumes
that Nc is generated from N according to the binomial distribution with probability Pc.
The alternative hypothesis presumes that the true underlying probability that generated
Nc is significantly higher than Pc. Hence, we perform a one sided significance test (we
are interested only in increases in the proportion of c) and calculate a p-value as follows:

p = Prbinomial(x ≥ Nc|N,Pc)

If this p-value is significant (smaller than a significance level α), we conclude that R
significantly improves the predictability of c over all its subrules, hence is an MPR.

Fig. 1. The MPR significance test for rule R3

Example: Going back to our CHD example, rule R3 covers 40 instances, out of which
26 have CHD. For R3 to be an MPR, it should be significantly more predictive than all
its simplifications, including rule R1. By applying the MPR significance test we get:
Prbinomial(x ≥ 26|40, 0.6) = 0.317. As illustrated in Figure 1, we can see that R3
is not an MPR at significance level α = 0.05. On the other hand, if we use the same
binomial significance test to evaluate each rule individually against the CHD prior (by
always setting Pc=Pr(CHD)), the p-values we get for R1, R2 and R3 are respectively,
5.13e-10, 8.54e-4 and 5.10e-6, meaning that all three rules are (very) significant!.

2.4 Spurious Patterns and Redundant Rules

In this section, we discuss and analyze the serious problem of redundancy in association
rules. This problem is due to the manner in which large numbers of spurious rules
are formed by adding irrelevant items to the antecedent of other rules. We show the
deficiencies of the current approaches to dealing with this problem. Finally, we show
how MPR can overcome the problem.

Consider a Bayesian belief network example in Figure 2, where we have a causal
relation between variableX1 and the class variableC. Assume that itemX1=1 is highly
predictive of class c1, so that Pr(C=c1 | X1=1) is significantly larger than Pr(C=c1).
Assume we have another variableX2 that is completely independent of C: X2 ⊥⊥ C. If
we add any instantiation v2 of variable X2 to item X1=1, the posterior distribution of
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Fig. 2. Illustrating the redundancy problem in association rules

c1 is Pr(C=c1 | X1=1 ∧ X2=v2) ≈ Pr(C=c1 | X1=1), i.e., conf (X1=1 ∧ X2=v2 ⇒ c1)
≈ conf (X1=1 ⇒ c1).

More generally, if we have many irrelevant variables such that Xi ⊥⊥ C: i ∈ {2..n},
the network structure implies that Pr(C=c1 | X1=1 ∧ X2=v2 ... ∧ Xn=vn) ≈ Pr(C=c1
| X1=1) for every possible instantiation Xi=vi. Clearly, the number of such spurious
rules can become huge, which can easily overwhelm the user and prevent him from
understanding the real patterns and causalities in the data.

Even by requiring the complex rules to have a higher confidence [6,17,18] or lift
score [9] than their simplifications, the problem still exists and many of these redundant
rules can easily satisfy this constraint. In fact, if Xi is a binary variable and conf (X1=1
∧ Xi=0 ⇒ c1) < conf (X1=1 ⇒ c1), then we know for sure that conf (X1=1 ∧ Xi=1
⇒ c1) > conf (X1=1 ⇒ c1). The same situation happens if we use the lift score instead
of the confidence! Post-pruning the rules individually based on their correlations with
the class (e.g. using the χ2 test [8,24,21,18]) or based on their difference from the prior
(e.g. using our binomial test) is not going to not help in this case.

Our frameworks tackles this problem because every item in an MPR should signif-
icantly contribute to improving the predictability of the rule. This means that if rule
R: Xq1=vq1 ... ∧ Xqk

=vqk
⇒C=c is an MPR, then there should exist a path from each

variable Xqi to the class C that is not blocked (d-separated) by the other variables in
the rule:Xqi not ⊥⊥ C | {Xq1 , Xqi−1 , ... , Xqi+1 , Xqk

}. Therefore, redundant rules are
likely to be filtered out.

2.5 The Algorithm

In this section we explain our algorithm for mining the MPR set. The algorithm is
outlined in Figure 3. Briefly, the algorithm explores the space by performing a level
wise Apriori-like search. At each level (l), we first remove the candidate l-patterns that
do not pass the minimum support threshold (line 6). Then we extract all MPRs from
these frequent l-patterns (line 7). Finally, we generate the candidates for the next level
(line 8).

Extracting MPRs. The process of testing if a rule P ⇒ c is an MPR is not trivial
because the definition requires us to check the rule against all its proper subrules. This
would require to check 2l subpatterns if P has length l. Our algorithm avoids this ineffi-
ciency by caching the statistics needed to perform the check within the (l-1)-subpatterns
from the previous level. This part of the algorithm is outlined in Figure 4.
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Algorithm 1: Mine all MPRs

Input: dataset: D, minimum support: min sup
Output: minimal predictive rules: MPR

// global data structure
01: MPR=Φ, tbl max conf =hashtable()

// the prior distribution of the classes
02: tbl max conf [h(Φ)]=calculate class distribution(Φ, D)
03: Cand=generate 1 patterns()
04: l = 1
05: while (Cand �= Φ)

// remove candidates that are not frequent
06: FP[l]=prune infrequent(Cand, D, min sup)

// find all MPRs at level l
07: extract MPR(FP[l], D)

// generate candidate (l+1) patterns
08: Cand=generate candidates(FP[l])
09: l = l + 1
10: MPR=FDR correction(MPR)
11: return MPR

Fig. 3. The algorithm for mining MPRs from a dataset

To explain the method, it is useful to envision the progress of the algorithm as gradu-
ally building a lattice structure level by level, starting from the empty pattern Φ. An ex-
ample lattice is shown in Figure 5. Every frequent l-pattern P is a node in the lattice with
l children: one child for each of its (l-1)-subpatterns. The key idea of our algorithm is to
store in each node P the maximum confidence score for every class that can be obtained
in the sublattice with top P (including P itself):max confP [c]=max(Pr(c |P ′)): ∀P ′ ⊆
P . These max conf values are computed from the bottom up as algorithm progresses.
Initially, max confΦ for the empty pattern is set to be the prior distribution of the
class variable. In order to compute max confP for pattern P , we first compute confP

(line 2), the distribution of the class variable in group P : confP [c]=Pr(c | P ). Then
we use the max conf values of P ’s direct children to compute max conf childrenP

(line 3) so that max conf childrenP [c]=max(Pr(c | P ′)): ∀ P ′ ⊂ P . Finally, we
compute max confP by taking the element-wise maximum of two arrays: confP and
max conf childrenP (line 4).

After assigning the max conf value for pattern P , we want to check if P forms an
MPR. So for each class label c, we perform the MPR significance test to check if P
predicts c significantly better than max conf childrenP [c]. If the test is positive, we
add the rule P ⇒ c to the set of MPRs (line 8).

Please note that in our pseudo-code, we do not explicitly build the lattice. Instead, we
use a hash table tbl max conf (Figure 3: line 1) to provide direct access to the max conf
values, so that tbl max conf [h(P )]=max confP , where h is a hash function. Also note
that none of the functions (calculate class distribution, is MPP and lossless pruning)
requires another scan on the data because we can collect the class specific counts during
the same scan that counts the pattern.
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Algorithm 2: extract MPR (FP[l], D)

//add pattern P ∈ FP[l] to MPR (a global variable) if P is
significantly more predictive than all its subpatterns
1: for each P ∈ FP[l]
2: conf =calculate class distribution(P, D)
3: max conf children=max {tbl max conf [h(Sl−1)]} : Sl−1⊂P
4: max conf =max{ conf, max conf children }
5: tbl max conf [h(P )]=max conf
6: for each class label c
7: if ( is MPR(P, c, max conf children, D) )
8: MPR=MPR ∪ (P ⇒ c)
9: lossless pruning(P, max conf, D, FP[l])

Function is MPR(P, c, max conf children, D)
//return true if P predicts c significantly better than all its subpatterns
N=count(P , D)
Nc=count(P ∪ c, D)
p value=Prbinomial(x ≥ Nc | N , max conf children[c])
if(p value < α)

return true
return false

Function lossless pruning(P, max conf, D, FP[l])
//prune P if it cannot produce any MPR
for each class label c

Nc=count(P ∪ c, D)
p value=Prbinomial(x ≥ Nc | Nc, max conf [c])
//exit if P can potentially produce an MPR for any class c
if(p value < α)

return ;
//Prune P
remove(P , FP[l])

Fig. 4. The algorithm for extracting MPRs from the frequent patterns at level l

Figure 5 illustrates the algorithm using a small lattice on a dataset that contains 200
instances from class c1 and 300 instances from class c2. For each pattern P (node), we
show the number of instances in each class, the distribution of the classes (conf ) and
the maximum confidence from P ’s sublattice (max conf ). Let us look for example at
pattern I1 ∧ I2. This pattern is predictive of class c2: conf (I1 ∧ I2 ⇒ c2) = 0.75. How-
ever, this rule is not an MPR since it does not significantly improve the predictability
of c2 over the subrule I2 ⇒ c2: Prbinomial(x ≥ 75|100, 0.7) = 0.16 (not significant at
α=0.05). The MPRs from this example are: I1 ⇒ c1, I2 ⇒ c2 and I1 ∧ I3 ⇒ c1.

Mining at low support. It is well know that the performance of the Apriori algorithm
highly depends on the minimum support (min sup) parameter. However, setting this
parameter is not straightforward because the optimal min sup can vary greatly across
different datasets. In fact, [11,9] argued that it is sometimes of interest to mine low
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Fig. 5. An illustrative example showing the lattice associated with frequent pattern I1 ∧ I2 ∧ I3.
The MPRs are shaded.

support patterns. Therefore, in order not to miss any important pattern, the user may
choose a low min sup value. However, low min sup raises two important concerns.
First, the algorithm may return a huge number of rules, most which are very complex.
Second, the algorithm may take very long time to finish.

In the following we argue that the MPR framework and our algorithm address both
of these concerns. First, by requiring each MPR to be significantly better than all its
subrules, the algorithm is biased towards choosing simple rules over more complex
rules. Moreover, the MPR significance test incorporates the pattern’s support because
the chance of passing the test is lower for low support patterns. This acts as if the
min sup filter was built into the statistical significance test. Hence, very low support
patterns are likely to be filtered out unless they are extremely predictive (with a very
surprising distribution).

Second, the MPR significance test can help us to prune the search space. This early
pruning is implemented by the lossless pruning function in Figure 4. The idea is that we
can prune pattern P if we guarantee that P cannot produce any MPR. However, because
the pruning is applied while generating the patterns, we do not know what subgroupsP
will generate further in the lattice. To overcome this, let us define the optimal subgroup
P ∗

ci
in group P with respect to class ci to be the subgroup that contains all the instances

from ci and none of the instances from any other classes. Clearly, P cannot generate
any subgroup better than P ∗

ci
for predicting class ci. Now, we prune P if for every class

ci, P ∗
ci

is not significant with respect to the best confidence so far max conf [ci]. Please
note that this pruning technique does not miss any MPR because the lossless pruning
test is anti-monotonic.
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As an example, consider patternP = I1∧I2∧I3 in Figure 5. This pattern contains 15
examples, 5 from class c1 and 10 from class c2. BothP ∗

c1
andP ∗

c2
are not significant with

respect to the current best predictions 0.6 and 0.75 (respectively). Therefore, there is no
need to further explore P ’s subgroups and the entire sublattice can be safely pruned.

Correcting for multiple testing. When multiple rules are tested in parallel for signifi-
cance, it is possible to learn a number of false rules by chance alone. This is a common
problem for all techniques that rely on statistical tests. For example, assume we have
10,000 random items (independent of the class variable). If we test the significance of
each of them with a significance level α=0.05, then we expect about 500 items to be
significant just by chance!

One approach to deal with the multiple hypothesis testing problem is to adjust the
significance level at which each rule is tested. The most common way is the Bonfer-
roni correction [25], which divides the significance level (α) by the number of tests
performed. This approach is not suitable for rule mining because the number of rules
tested is usually very large, resulting in an extremely low α and hence very few rules
discovered. The other more recent approach, directly controls the false discovery rate
(FDR) [7]: the expectation of the proportion of false discoveries in the result. We adopt
the FDR correction method because it is less stringent and more powerful (has a lower
Type II error) than the Bonferroni correction. We apply FDR as a post-processing step
(Figure 3: line 10). It takes as input all potential MPRs with their p-values and outputs
a subset of MPRs that satisfy the FDR criteria.

3 Experiments

In this section we present our experimental evaluation, first on synthetic datasets with
known underlying patterns, and after that on several UCI classification datasets [2]. The
experiments compare the performance of MPR against the following methods:

– complete: The set of all rules that cover more than min sup examples in the data.
We filter out useless rules by only including the ones that positively predict the
class label (with a lift score [15] higher than one).

– closed: A subset of complete that corresponds to non-redundant rules based on the
concept of closed frequent patterns [3].

– corr chi: A subset of complete that contains the rules with significant positive cor-
relations between the condition and conclusion according to the χ2 test [8,24,21].

– prior binom: A subset of complete that contains the rules that are significantly
different from the prior according to the binomial statistical test (section 2.3).

– prior FDR: A subset of prior binom that is post-processed using the false discov-
ery rate (FDR) technique [7] to correct for the multiple testing problem.

– conf imp: A subset of complete that satisfies the confidence improvement con-
straint [6,18,17]: each rule should have a higher confidence than all its subrules.

For all methods, we set the minimum support threshold (min sup) to 10% the number
of records in the dataset (unless otherwise stated). For the methods that use a statistical
test: corr chi, prior binom, prior FDR and MPR, we use the conventional significance
level α = 0.05.
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Fig. 6. Three Bayesian belief networks used to generate synthetic datasets: syn rand, syn1 and
syn2 (from left to right)

3.1 Experiments on Synthetic Data

The experiments on synthetic data (generated from pre-defined patterns) allow us to
judge more objectively the quality of the algorithms’ outputs by comparing the original
and recovered patterns.

Data description. The synthetic data were generated from the three Bayesian belief
networks (BBNs) in Figure 6. Each network consists of 20 random binary variables
{X1, ..., X20} and two class labels c1 and c2. The three networks are:

– syn rand: In this network, all the attribute variablesXi and the class variableC are
independent (syn rand does not contain any pattern).

– syn1: In this network, X1=1 is more frequent in class c1: Pr(X1=1 | C=c1)=0.8
> Pr(X1=1 | C=c2)=0.4 and item X2=1 is more frequent in class c2: Pr(X2=1 |
C=c2)=0.7 > Pr(X2=1 | C=c1)=0.3. Besides, the distribution of the class variable
C is more biased towards c2: Pr(C=c2)=0.6. The attributes {X3, ..., X20} are inde-
pendent of each other and the class variable C.

– syn2: The main pattern in syn2 is a conjunction of X1=1 and X2=1 that predicts
class c1: Pr(C=c1 | X1=1 and X2=1)=0.8. For all other values of X1 and X2, the
two classes (c1 and c2) are equally likely. The attributes {X3, ..., X20} are indepen-
dent of each other and the class variable C.

The datasets we analyze consist of 1000 examples randomly generated from these three
networks.

Results: Table 1 summarizes the number of rules that each method produces on the
three synthetic datasets. First notice that the number of rules in complete and closed
are the same for all these datasets (since very few correlations exist). Also notice that
corr chi and prior binom have similar results. This shows that the choice of the statis-
tical test does not matter much and that the real problem with these approaches is that
they evaluate each rule separately without considering the nested structure of the rules.

Let us look first at the results on the syn rand dataset, which we know does not
contain any pattern. MPR does not output any rule which is what we expect given that
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Table 1. The number of rules for the different methods on the synthetic datasets

Dataset complete closed corr chi prior binom prior FDR conf imp MPR

syn rand 9,763 9,763 516 651 0 4,748 0
syn1 9,643 9,643 2,989 3,121 2,632 4,254 6
syn2 9,868 9,868 1,999 2,225 422 3,890 5

the class is independent of all attributes. On the other hand, conf imp returns a huge
number of rules. In fact, conf imp returns almost half the total number of associations.
This result agrees with our analysis in section 2.4. prior FDR correctly removes all
false positives from prior binom on this random data.

Now consider the syn1 dataset. Our algorithm extracts the following 6 MPRs: {X1=1
⇒ c1, X1=0 ⇒ c2, X2=1 ⇒ c2, X2=0 ⇒ c1, X1=0 ∧ X2=1 ⇒ c2, X1=1 ∧ X2=0 ⇒
c1}1. In comparison, all other methods extract a vast number of rules. For example,
even by using the FDR correction, the number of rules is 2,632 rules!

Table 2. The syn2 dataset: on the left is the set of all MPRs, in the middle is the top 5 prior binom
rules (out of 2,225 rules) and on the right is the top 5 conf imp rules (out of 3,890 rules)

MPR prior binom conf imp
X1=1 ∧ X2=1 ⇒ c1 X1=1 ∧ X2=1 ⇒ c1 X1=1 ∧ X2=1 ∧ X8=0 ⇒ c1

[ sup=26.5%, conf =81.1% ] [ sup=26.5%, conf =81.1% ] [ sup=12.3%, conf =85.4% ]

X2=1 ⇒ c1 X1=1 ∧ X2=1 ∧ X14=0 ⇒ c1 X1=1 ∧ X2=1 ∧ X14=0 ⇒ c1
[ sup=50.1%, conf =66.7% ] [ sup=14.5%, conf =84.8% ] [ sup=14.5%, conf =84.8% ]

X1=1 ⇒ c1 X1=1 ∧ X2=1 ∧ X13=1 ⇒ c1 X1=1 ∧ X2=1 ∧ X13=1 ⇒ c1
[ sup=51.2%, conf =63.9% ] [ sup=13.4%, conf =84.3% ] [ sup=13.4%, conf =84.3% ]

X2=0 ⇒ c2 X1=1 ∧ X2=1 ∧ X9=1 ⇒ c1 X1=1 ∧ X2=1 ∧ X9=1 ⇒ c1
[ sup=49.9%, conf =51.5% ] [ sup=14.1%, conf =83.7% ] [ sup=14.1%, conf =83.7% ]

X1=0 ⇒ c2 X1=1 ∧ X2=1 ∧ X8=0 ⇒ c1 X1=1 ∧ X2=1 ∧ X18=0 ⇒ c1
[ sup=48.8%, conf =49.0% ] [ sup=12.3%, conf =85.4% ] [ sup=13.9%, conf =83.5% ]

Finally, let us look more closely at the results on the syn2 dataset. Table 2 shows all
MPRs (left), the top 5 ranked rules for prior binom (same for prior FDR) according
to the p-values (center) and the top 5 ranked rules for conf imp according to the confi-
dence (right). Notice that prior binom correctly ranks the real pattern (X1=1 ∧ X2=1)
at the top. However, the following rules are redundant. For conf imp, the real pattern is
buried inside many spurious rules. This example clearly shows the deficiencies of these
methods in concisely representing the actual patterns. On the contrary, by investigating
the small number of MPRs, we can easily recover the structure of the underlying BBN.

3.2 Experiments on UCI Datasets

Data description. To further test the different methods, we use 9 public datasets from
the UCI Machine Learning repository [2]. We discretize the numeric attributes into

1 The last 2 rules combine the evidence of the two main patterns, hence improve the predictabil-
ity. For example, Pr(c1|x1=1 ∧ x2=0) > Pr(c1|x1=1).
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Table 3. UCI Datasets characteristics

dataset # attributes # items # records # classes

Adults 14 154 32,561 2
Heart disease 13 33 303 2

Lymphography 18 57 142 2
Pima diabetes 8 19 768 2
Breast cancer 9 41 286 2
Dermatology 12 47 366 6

Wine 13 39 178 3
Glass 10 22 214 2
Credit 15 69 690 2

Table 4. The number of rules for the different algorithms on several UCI datasets

Dataset complete closed corr chi prior binom prior FDR conf imp MPR

Adults 2,710 2,042 2,616 2,620 2,619 374 152
Heart disease 5,475 5,075 4,820 4,825 4,784 1,021 79

Lymphography 31,594 5,840 15,740 15,032 11,627 978 24
Pima diabetes 466 448 345 350 337 144 36
Breast cancer 420 379 122 124 44 158 10
Dermatology 5,350 3,727 3,820 3,717 3,544 2,076 96

Wine 1,140 1,057 975 971 968 520 116
Glass 2,327 1,141 2,318 2,311 2,311 97 20
Credit 8,504 3,271 6,885 6,964 6,839 926 49

Average 6,443 2,553 4,182 4,102 3,675 699 65

intervals by minimizing the entropy based on the minimum description length principle
[14] (supervised discretization). Table 3 shows the main characteristics of the datasets.
The number of items in column 3 is the number of all distinct attribute value pairs.

Results. Table 4 shows the number of rules for each method on the 9 UCI datasets.
First notice that evaluating the rules individually based on their statistical significance
(corr chi, prior binom and prior FDR) does not help much in reducing the number of
rules (even by using the FDR correction). It is clear from the table that the number of
MPRs is much smaller than the number of rules in the other approaches. On average,
MPRs are about two orders of magnitude smaller than complete and about one order of
magnitude smaller than conf imp.

Now we need a way to check if this small set of MPRs can adequately describe
the datasets. However, we do not know what are the real patterns for these datasets.
Hence, to evaluate the usefulness of the rules, we use the classification accuracy of the
corresponding rule based classifier. We define two simple classifiers:

– Weighted confidence classification (w conf ): To classify instance x, we weight each
rule that satisfy x by its confidence and we choose the class that maximizes this
weighted sum:

w conf (x) = arg max
ci

{
∑
x⊆A

conf (A ⇒ ci) }
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– Highest confidence classification (h conf ): We classify instance x according to the
highest confidence rule that satisfy x (this method is used in [20]):

h conf (x) = argmax
ci

{ max
x⊆A

conf (A ⇒ ci) }

We compare the classification accuracies obtained by using all association rules, using
conf imp rules (this approach was used in [17] for classification), and using MPRs2. All
of the reported results are obtained using 5-folds cross validation. Remember that the
lift score for all rules is bigger than one (the condition and consequent of each rule are
positively correlated). Hence, w conf consults only predictive rules.

Table 5. The classification accuracies (%) for complete, conf imp and MPR using two rule clas-
sification techniques: weighted confidence classification (w conf ) and highest confidence classi-
fication (h conf )

complete conf imp MPR
Dataset w conf h conf w conf h conf w conf h conf

Adults 77.3 75.9 80.6 75.9 80.8 75.9
Heart disease 80.9 80.5 80.2 80.5 82.2 81.5

Lymphography 81.2 83.6 71.8 83.6 86.2 85.9
Pima diabetes 71.4 74.4 72.8 74.4 71.8 72.9
Breast cancer 73.8 72.0 74.1 72.0 72.4 73.4
Dermatology 68.0 69.4 58.2 69.4 63.4 65.6

Wine 88.8 93.3 86.4 93.3 88.2 92.8
Glass 94.4 100 93.5 100 95.8 100
Credit 80.4 85.4 76.7 85.4 77.8 85.4

Average 79.6 81.6 77.1 81.6 79.8 81.5

From Table 5, we can see that MPR does not sacrifice the classification accuracy.
On average, all approaches produce comparable results for both w conf and h conf. An
important benefit of using the compact set of MPRs for classification is that the clas-
sification time is very fast. For example, consider the Lymphography dataset. Instead
of consulting 31,594 rules to classify each instance, MPR summarizes the classifier in
only 24 rules. It is interesting to see that these 24 rules outperform the complete set of
rules for both w conf and h conf.

Please note that we are not claiming that our approach can outperform the state-of-
the-art frequent pattern-based classifiers [13,10]. Our objective is just to show that even
though MPRs provide a huge compression of the association rules, they can still capture
the essential underlaying patterns in the data by providing comparable classification
performance to using all association rules.

Mining at low support. In this section, we study the performance and the output of
the different methods under different support thresholds. Due to the space limitation,
we only show the results on the Heart disease dataset.

2 corr chi, prior binom and prior FDR gave similar classification results as complete, hence we
excluded them from this table to save space.
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(a) (b)

Fig. 7. The execution times (a) and the number of rules (b) of the algorithms on the heart disease
dataset for different support thresholds

Figure 7:a shows the execution times using a Dell Precision T7500 machine with an
Intel Xeon 3GHz CPU and 16GB of RAM. All algorithms are implemented in matlab.
The “without pruning” chart corresponds to the execution of the Apriori algorithm that
relies only on the support of the patterns to prune the search space. The “with pruning”
chart corresponds to the execution of the algorithm that applies the additional MPR
pruning technique in section 2.5.

We can see that the execution time of Apriori exponentially blows up for low support
values. On the other hand, the MPR pruning controls the complexity and the execution
time increases very slowly for low support values. For example, when the absolute
support threshold is 15, which corresponds to min sup = 5% on this dataset, applying
the MPR pruning makes the algorithm about 6 times faster.

Figure 7:b shows the number of rules generated by the different methods. To im-
prove the visibility, we did not include closed, prior binom and corr chi in this graph.
We can see that the output of MPR does not change much when min sup is very low.
For example, by changing min sup from 10% (absolute support = 30) to 5% (absolute
support=15), the number of MPRs increases from 79 to 83 rules. In comparison, the
same change causes the number of all association rules to increase from 5,475 to about
20,000 rules! Clearly, this large number of rules is overwhelming the user.

To summarize, our framework relieves the user from the burden of deciding the op-
timal min sup by allowing him to conservatively set the support very low without dras-
tically affecting the performance or the results of the algorithm.

4 Related Research

Several research attempts have been made to reduce the large number of association
rules in order to make the results more suitable for knowledge discovery. Constrained
associations rules methods [22] allow the user to define his own constraints and retrieve
the rules that match these constraints. An opposite approach [23] mines the rules that
are most different from the user’s expectations. Maximal frequent itemsets [19] is a
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lossy compression of the frequent itemsets and cannot be used to generate rules. The
profile based approach [27] is another lossy compression method.

The work in [6] aimed to reduce the number of class association rules by defining
the confidence improvement constraint. This constraint was adopted by [18,17]. As we
showed in the analysis and experiments, this approach can still generate many redundant
rules. [21] defined the concept of direction setting (DS) rules in order to make browsing
the class association rules easier for the user. However, their objective is different from
ours because non-DS rules can indeed be significant MPRs. [5] extends the problem
of association rule mining to the problem of mining contrasting sets. [26] defines a
measure to rank the patterns by predicting the support of a pattern from the support of its
subpatterns and measuring the deviation between the actual support and the prediction.

5 Conclusion

In this paper, we have developed a new framework for mining association rules based on
the minimal predictive rules (MPR) concept. We showed that our method can produce
a small set of predictive rules. Most importantly, each rule in the result is important
because it concisely describes a distinct pattern that cannot be explained by any other
rule in the set.

Motivated by our results, we plan to investigate the benefits of MPR for classifi-
cation. In particular, we plan on incorporating the MPRs as additional features with
the SVM classifier and comparing it against the state-of-the-art classifiers [13,10]. In
addition, we plan to apply our method for anomaly detection in categorical data [12].
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Abstract. We define a class of Euclidean distances on weighted graphs,
enabling to perform thermodynamic soft graph clustering. The class can
be constructed form the “raw coordinates” encountered in spectral clus-
tering, and can be extended by means of higher-dimensional embeddings
(Schoenberg transformations). Geographical flow data, properly condi-
tioned, illustrate the procedure as well as visualization aspects.

Keywords: average commute time distance, metastability, migratory
flow, multidimensional scaling, Schoenberg transformations, shortest-path
distance, spectral clustering, thermodynamic clustering, quasi-symmetry.

1 Introduction

In a nutshell (see e.g. Shi and Malik (2000); Ng, Jordan and Weiss (2002); von
Luxburg (2007) for a review), spectral graph clustering consists in

A) constructing a features-based similarity or affinity matrix between n objects
B) performing the spectral decomposition of the normalized affinity matrix, and

representing the objects by the corresponding eigenvectors or raw coordinates
C) applying a clustering algorithm on the raw coordinates.

The present contribution focuses on (C) thermodynamic clustering (Rose et al.
1990; Bavaud 2009), an aggregation-invariant soft K-means clustering based
upon Euclidean distances between objects. The latter constitute distances on
weighted graphs, and are constructed from the raw coordinates (B), whose form
happens to be justified from presumably new considerations on equivalence be-
tween vertices (Section 3.3). Geographical flow data illustrate the theory (Section
4). Once properly symmetrized, endowed with a sensible diagonal and normal-
ized, flows define an exchange matrix (Section 2), that is an affinity matrix (A)
which might be positive definite or not.

A particular emphasis is devoted to the definition of Euclidean distances on
weighted graphs and their properties (Section 3). For instance, diffusive and
chi-square distances are focused, that is zero between equivalent vertices.
Commute-time and absorption distances are not focused, but their values be-
tween equivalent vertices possess an universal character. All these distances,
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c© Springer-Verlag Berlin Heidelberg 2010



104 F. Bavaud

whose relationships to the shortest-path distance on weighted graphs is partly
elucidated, differ in the way eigenvalues are used to scale the raw coordinates. Al-
lowing further Schoenberg transformations (Definition 3) of the distances still ex-
tends the class of admissible distances on graphs, by means of a high-dimensional
embedding familiar in the Machine Learning community.

2 Preliminaries and Notations

Consider n objects, together with an exchange matrix E = (eij), that is a n× n
non-negative, symmetric matrix, whose components add up to unity (Berger and
Snell 1957). E can be obtained by normalizing an affinity of similarity matrix,
and defines the normalized adjacency matrix of a weighted undirected graph
(containing loops in general), where eij is the weight of edge (ij) and fi =∑n

j=1 eij is the relative degree or weight of vertex i, assumed strictly positive.

2.1 Eigenstructure

P = (pij) with pij = eij/fi is the transition matrix of a reversible Markov chain,
with stationary distribution f . The t-step exchange matrix is E(t) = ΠP t, where
Π is the diagonal matrix containing the weights f . In particular, assuming the
chain to be regular (see e.g. Kijima 1997)

E(0) = Π E(2) = EΠ−1E . E(∞) = ff ′

P is similar to the symmetric, normalized exchange matrix Π− 1
2EΠ− 1

2 (see e.g.
Chung 1997), and share the same eigenvalues 1 = λ0 ≥ λ1 ≥ λ2 ≥ . . .λn−1 ≥ −1.
It is well-known that the second eigenvalue λ1 attains its maximum value 1 iff
the graph contains disconnected components, and λn−1 = −1 iff the graph is
bipartite. We note U ′ΛU the spectral decomposition of the normalized exchange
matrix, where Λ is diagonal and contains the eigenvalues, and U = (uiα) is
orthonormal and contains the normalized eigenvectors. In particular, u0 =

√
f is

the eigenvector corresponding to the trivial eigenvalue λ0 = 1. Also, the spectral
decomposition of higher-order exchange matrices reads Π− 1

2E(t)Π− 1
2 = UΛtU ′.

2.2 Hard and Soft Partitioning

A soft partition of the n objects into m groups is specified by a n×mmembership
matrix Z = (zig), whose components (obeying zig ≥ 0 and

∑m
g=1 zig = 1) quan-

tify the membership degree of object i in group g. The relative volume of group
g is ρg =

∑
i fizig. The components θgh =

∑
i fizigzih of the m×m matrix Θ =

Z ′ΠZ measure the overlap between groups g and h. In particular, θgg/ρg ≤ 1
measures the hardness of group g. The components agh =

∑
ij eijzigzjh of the

m×m matrix A = Z ′EZ measure the association between groups g and h.
A group g can also be specified by the objects it contains, namely by the dis-

tribution πg with components πg
i = fizig/ρg, obeying

∑
i π

g
i = 1 by construction.

The object-group mutual information

I(O, Z) = H(O) + H(Z) − H(O, Z) = −∑i fi ln fi −
∑

g ρg ln ρg +
∑

ig fizig ln(fizig)
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measures the object-group dependence or cohesiveness (Cover and Thomas 1991).
A partition is hard if each object belongs to an unique group, that is if the

memberships are of the form zig = I(i ∈ g), or equivalently if z2
ig = zig for all

i, g, or equivalently if θgg = ρg for all g, or still equivalently if the overall softness
H(Z|O) = H(Z) − I(O,Z) takes on its minimum value of zero.

Also, H(O) ≤ lnn, with equality iff fi = 1/n, that is if the graph is regular.

2.3 Spectral versus Soft Membership Relaxation

In their presentation of the Ncut-driven spectral clustering, Yu and Shi (2003)
(see also Nock et al. 2009) determine the hard n×m membership Z maximizing

ε[Z] =
m∑

g=1

agg

ρg
=
∑

g

agg

θgg
= tr(X ′EX) where X [Z] = Z Θ− 1

2 [Z]

under the constraint X ′ΠX = I. Relaxing the hardness and non-negativity con-
ditions, they show the solution to be ε[Z0] = 1 +

∑m−1
α=1 λα, attained with an

optimal “membership” of the form Z0 = X0RΘ
1
2 where R is any orthonormal

m × m matrix and X0 = (1, x1, . . . , xα, . . . , xm−1) is the n × m matrix formed
by the unit vector followed by of the first raw coordinates (Sec. 3.3). The above
spectral relaxation of the memberships, involving the eigenstructure of the nor-
malized exchange matrix, completely differs from the soft membership relaxation
which will be used in Section 3.2, preserving positivity and normalization of Z.

3 Euclidean Distances on Weighted Graphs

3.1 Squared Euclidean Distances

Consider a collection of n objects together with an associated pairwise distance.
A successful clustering consists in partitioning the objects into m groups, such
that the average distances between objects belonging to the same (different)
group are small (large). The most tractable pairwise distance is, by all means, the
squared Euclidean distance Dij =

∑q
c=1(xic − xjc)2, where xic is the coordinate

of object i in dimension c. Its virtues follow from Huygens principles∑
j

pjDij = Dip +Δp Δp =
∑

j

pjDjp =
1
2

∑
ij

pipjDij (1)

where pi represents a (possibly non positive) signed distribution, i.e. obeying∑
i pi = 1, Dip is the squared Euclidean distance between i and the centroid

of coordinates x̄pc =
∑

i pixic, and Δp the average pairwise distance or inertia.
Equations (1) are easily checked using the coordinates, although the latter do not
explicitly appear in the formulas. To that extent, squared Euclidean distances
enable a feature-free formalism, a property shared with the kernels of Machine
Learning, and to the “kernel trick” of Machine Learning amounts an equivalent
“distance trick” (Schölkopf 2000; Williams 2002), as expressed by the well-known
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Classical Multidimensional Scaling (MDS) procedure. Theorem 1 below presents
a weighted version (Bavaud 2006), generalizing the uniform MDS procedure
(see e.g. Mardia et al. 1979). Historically, MDS has been developed from the
independent contributions of Schoenberg (1938b) and Young and Householder
(1938). The algorithm has been popularized by Torgeson (1958) in Data Analysis.

Theorem 1 (weighted classical MDS). The dissimilarity square matrix D
between n objects with weights p is a squared Euclidean distance iff the scalar
product matrix B = − 1

2HDH
′ is (weakly) positive definite (p.d.), where H is

the n × n centering matrix with components hij = δij − pj. By construction,
Bij = − 1

2 (Dij − Dip − Djp) and Dij = Bii + Bjj − 2Bij. The object coordi-

nates can be reconstructed as xiβ = μ
1
2
β p

− 1
2

i viβ for β = 1, 2, . . ., where the μβ

are the decreasing eigenvalues and the viβ are the eigenvectors occurring in the
spectral decomposition K = VMV ′ of the weighted scalar product or kernel
K with components Kij = √

pipjBij. This reconstruction provides the optimal
low-dimensional reconstruction of the inertia associated to p

Δ =
1
2

∑
ij

pipjDij = tr(K) =
∑
β≥1

μβ .

Also, the Euclidean (or not) character of D is independent of the choice of p.

3.2 Thermodynamic Clustering

Consider the overall objects weight f , defining a centroid denoted by 0, together
with m soft groups defined by their distributions πg for g = 1, . . . ,m, with
associated centroids denoted by g. By (1), the overall inertia decomposes as

Δ =
∑

i fiDi0 =
∑

ig fizigDi0 =
∑

g ρg

∑
i πg

i Di0 =
∑

g ρg[Dg0 + Δg] = ΔB + ΔW

whereΔB[Z] =
∑

g ρgDg0 is the between-groups inertia, andΔW [Z] =
∑

g ρgΔg

the within-groups inertia. The optimal clustering is then provided by the n×m
membership matrix Z minimizing ΔW [Z], or equivalently maximizing ΔB[Z].
The former functional can be shown to be concave in Z (Bavaud 2009), implying
the minimum to be attained for hard clusterings.

Hard clustering is notoriously computationally intractable and some kind of
regularization is required. Many authors (see e.g. Huang and Ng (1999) or Filip-
pone et al. (2008)) advocate the use of the c-means clustering, involving a power
transform of the memberships. Despite its efficiency and popularity, the c-means
algorithm actually suffers from a serious formal defect, questioning its very log-
ical foundations: its objective function is indeed not aggregation-invariant, that
is generally changes when two groups g and h supposed equivalent in the sense
πg = πh are merged into a single group [g∪h] with membership zi[h∪g] = zih+zjh

(Bavaud 2009).
An alternative, aggregation-invariant regularization is provided by the ther-

modynamic clustering, minimizing over Z the free energy F [Z] = ΔW [Z]+TI[Z],
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where I[Z] ≡ I(O,Z) is the objects-groups mutual information and T > 0 the
temperature (Rose et al. 1990; Rose 1998; Bavaud 2009). The resulting member-
ship is determined iteratively through

zig =
ρg exp(−Dig/T )∑m

h=1 ρh exp(−Dih/T )
(2)

and converges towards a local minimum of the free energy. Equation (2) amounts
to fitting Gaussian clusters in the framework of model-based clustering.

3.3 Three Nested Classes of Squared Euclidean Distances

Equation (2) solves the K-way soft graph clustering problem, given of course the
availability of a sound class of squared Euclidean distances on weighted graphs.
Definitions 2 and 3 below seem to solve the latter issue.

Consider a graph possessing two distinct but equivalent vertices in the sense
their relative exchange is identical with the other vertices (including themselves).
Those vertices somehow stand as duplicates of the same object, and one could
as a first attempt require their distance to be zero.

Definition 1 (Equivalent vertices; focused distances). Two distinct ver-
tices i and j are equivalent, noted i ∼ j, if eik/fi = ejk/fj for all k. A distance
is focused if Dij = 0 for i ∼ j.

Proposition 1. i ∼ j iff xiα = xjα for all α ≥ 1 such that λα �= 0, where
xiα = uiα/

√
fi is the raw coordinate of vertex i in dimension α.

The proof directly follows from the substitution eik → fiejk/fj in the identity∑
k f

− 1
2

i eikf
− 1

2
k ukα = λαuiα. Note that the condition trivially holds for the triv-

ial eigenvector α = 0, in view of f− 1
2

i ui0 ≡ 1 for all i. It also holds trivially for
the “completely connected” weighted graph e

(∞)
ij = fifj, where all vertices are

equivalent, and all eigenvalues are zero, except the trivial one.
Hence, any expression of the form Dij =

∑
α≥1 gα(f− 1

2
i uiα − f

− 1
2

j ujα)2 with
gα ≥ 0 constitutes an admissible squared Euclidean distance, obeying Dij = 0
for i ∼ j, provided gα = 0 if λα = 0. The quantities gα are non-negative, but
otherwise arbitrary; however, it is natural to require the latter to depend upon
the sole parameters at disposal, namely the eigenvalues, that is to set gα = g(λα).

Definition 2 (Focused and Natural Distances on Weighted Graphs).
Let E be the exchange matrix associated to a weighted graph, and define Es :=
Π− 1

2 (E − E(∞))Π− 1
2 , the standardized exchange matrix. The class of focused

squared Euclidean distances on weighted graphs is

Dij = Bii +Bjj − 2Bij , where B = Π− 1
2KΠ− 1

2 and K = g(Es)

where g(λ) is any non-negative sufficiently regular real function with g(0) = 0.
Dropping the requirement g(0) = 0 defines the more general class of natural
squared Euclidean distances on weighted graphs.

If g(1) is finite, K can also be defined as K = g(Π− 1
2EΠ− 1

2 ) = Ug(Λ)U ′.
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First, note the standardized exchange matrix to result from a “centering” (elim-
inating the trivial eigendimension) followed by a “normalization”:

es
ij =

eij − fifj√
fifj

=
∑
α≥1

λαuiαujα . (3)

Secondly, B is the matrix of scalar products appearing in Theorem 1. The re-
sulting optimal reconstruction coordinates are

√
g(λα)xiα, where the quantities

xiα = f
− 1

2
i uiα are the raw coordinates of vertex i in dimension α = 1, 2, . . . ap-

pearing in Proposition 1 - which yields a general rationale for their widespread
use in clustering and low-dimensional visualization. Thirdly, the matrix g(Es)
can be defined, for g(λ) regular enough, as the power expansion in (Es)t with
coefficients given by the power expansion of g(λ) in λt, for t = 0, 1, 2, . . .. Fi-
nally, the two variants of B appearing in Definition 2 are identical up to a matrix
g(1)1n1′

n, leaving D unchanged.
If g(1) = ∞, the distance between vertices belonging to distinct irreducible

components becomes infinite: recall the graph to be disconnected iff λ1 = 1.
Such distances will be referred to as irreducible.

Natural distances are in general not focused. The distances between equivalent
vertices are however universal, that is independent of the details of the graph or of
the associated distance (Proposition 2). To demonstrate this property, consider
first an equivalence class J := {k | k ∼ j} containing at least two equivalent
vertices. Aggregating the vertices in J results in a new ñ× ñ exchange matrix Ẽ
with ñ = (n−|J |−1), with components ẽJJ =

∑
ij∈J eij , ẽJk = ẽkJ =

∑
j∈J ejk

for k /∈ J and f̃J =
∑

j∈J fj , the other components remaining unchanged.

Proposition 2. Let D be a natural distance and consider a graph possessing an
equivalence class J of size |J | ≥ 2. Consider two distinct elements i ∼ j of J
and let k /∈ J . Then

Dij = g(0)(
1
fi

+
1
fj

) DjJ = g(0)(
1
fi

− 1
f̃J

) ΔJ = g(0)
|J | − 1
f̃J

.

Moreover, the Pythagorean relation Dkj = DkJ +DjJ holds.

Proof: consider the eigenvalues λ̃β and eigenvectors ũβ, associated to the ag-
gregated graph Ẽ, for β = 0, . . . , ñ. One can check that, due to the collinearity
generated by the |J | equivalent vertices,

• ñ among the original eigenvalues λα coincide with the set of aggregated
eigenvalues λ̃β (non null in general), with corresponding eigenvectors ujβ =

f
1
2
j f̃

− 1
2

J ũJβ for j ∈ J and ukβ = ũkβ for k /∈ J
• |J − 1| among the original eigenvalues λα are zero. Their corresponding

eigenvectors are of the form ujγ = hjγ for j ∈ J and ukγ = 0 for k /∈ J ,
where the hγ constitute the |J |−1 columns of an orthogonal |J |×|J | matrix,

the remaining column being (f
1
2
j f̃

−
1
2

J )j∈J .
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Identities in Proposition 2 follow by substitution. For instance,

Dij =
ñ∑

β=1

g(λβ)(
uiβ√
fi

− ujβ√
fj

)2 + g(0)
|J|−1∑
γ=1

(
hiγ√
fi

− hjγ√
fj

)2 = g(0) (
1
fi

+
1
fj

) .

General at it is, the class of squared Euclidean distances on weighted graphs of
Definition 2 can still be extended: a wonderful result of Schoenberg (1938a), still
apparently little known in the Statistical and Machine Learning community (see
however the references in Kondor and Lafferty (2002); Hein et al. (2005)) asserts
that the componentwise correspondence D̃ij = φ(Dij) transforms any squared
Euclidean distance D into another squared Euclidean distance D̃, provided that

i) φ(D) is positive with φ(0) = 0
ii) odd derivatives φ′(D), φ′′′(D),... are positive
iii) even derivatives φ′′(D), φ′′′′(D),... are negative.

For example, φ(D) = Da (for 0 < a ≤ 1) and φ(D) = 1 − exp(−bD) (for b > 0)
are instances of such Schoenberg transformations (Bavaud 2010).

Definition 3 (Extended Distances on Weighted Graphs). The class of
extended squared Euclidean distances on weighted graphs is

D̃ij = φ(Dij)

where φ(D) is a Schoenberg transformation (as specified above), and Dij is a
natural squared Euclidean distance associated to the weighted graph E, in the
sense of Definition 2.

3.4 Examples of Distances on Weighted Graphs

The chi-square distance. The choice g(λ) = λ2 entails, together with (3)

Δ = tr(K) = tr((Es)2) =
∑
ij

(eij − fifj)2

fifj
= χ2

which is the familiar chi-square measure of the overall rows-columns dependency
in a (square) contingency table, with distance Dχ

ij =
∑

k f
−1
k (f−1

i eik −f−1
j ejk)2,

well-known in the Correspondence Analysis community (Lafon and Lee 2006;
Greenacre 2007 and references therein). Note that Dχ

ij = 0 for i ∼ j, as it must.

The diffusive distance. The choice g(λ) = λ is legitimate, provided the ex-
change matrix is purely diffusive, that is p.d. Such are typically the graphs re-
sulting from inter-regional migrations (Sec. 4) or social mobility tables (Bavaud
2008). As most people do not change place or status during the observation time,
the exchange matrix is strongly dominated by its diagonal, and hence p.d.

Positive definiteness also occurs for graphs defined from the affinity matrix
exp(−βDij) (Gaussian kernel), as in Belkin and Niyogi (2003), among many
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others. Indeed, distances derived from the Gaussian kernel provide a prototypical
example of Schoenberg transformation (see Definition 3). By contrast, the affinity
I(Dij ≤ ε2) used by Tenenbaum et al. (2000) is not p.d.

The corresponding distance, together with the inertia, plainly read

D
dif
ij =

eii

f2
i

+
ejj

f2
j

− 2
eij

fifj
Δdif =

∑
i

eii

fi
− 1 .

The “frozen” distance. The choice g(λ) ≡ 1 produces, for any graph, a result
identical to the application of any function g(λ) (with g(1) = 1) to the purely
diagonal “frozen” graph E(0) = Π , namely (compare with Proposition 2):

D
fro
ij =

1
fi

+
1
fj

for i �= j D
fro
i0 =

1
fi

− 1 Δfro = n− 1 .

This “star-like” distance (Critchley and Fichet 1994) is embeddable in a tree.

The average commute time distance. The choice g(λ) = (1 − λ)−1 cor-
responds to the average commute time distance; see Fouss et al. (2007) for a
review and recent results. The amazing fact that the latter constitutes a squared
Euclidean distance has only be recently explicitly recognized as such, although
the key ingredients were at disposal ever since the seventies.

Let us sketch a derivation of this result: on one hand, consider a random
walk on the graph with probability transition matrix P = Π−1E, and let Tj

denotes the first time the chain hits state j. The average time to go from i to j
is mij = Ei(Tj), with mii = 0, where Ei(.) denotes the expectation for a random
walk started in i. Considering the state following i yields for i �= j the relation
mij = 1+

∑
k pikmkj , with solution (Kemeny and Snell (1976); Aldous and Fill,

draft chapters) mij = (yjj − yij)/fj, where Y = Π−1∑
t≥0(E

(t) − E(∞)) =
(E(0) −E+E(∞))−1Π is the so-called fundamental matrix of the Markov chain.
On the other hand, Definition 2 yields K = (I − Es)−1 = Π

1
2 (E(0) − E +

E(∞))−1Π
1
2 = Π

1
2Y Π− 1

2 , and thus B = Y Π−1 = Π−1Y . Hence

Dcom
ij = Bii +Bjj − 2Bij =

yii

fi
+
yjj

fj
− yij

fj
− yij

fj
= mij +mji

which is the average time to go from i to j and back to i, as announced.
Consider, for future use, the Dirichlet form E(y) = 1

2

∑
ij eij(yi − yj)2, and

denote by y0 the solution of the “electrical” problem miny∈Cij E(y), where Cij

denotes the set of vectors y such that yi = 1 and yj = 0. Then y0
k = Pk(Ti <

Tj), where Pk(.) denotes the probability for a random walk started at k. Then
Dcom

ij = 1/E(y0) (Aldous and Fill, chapter 3).

The shortest-path distance. Let Γij be the set of paths with extremities i
and j, where a path γ ∈ Γij consists of a succession of consecutive unrepeated
edges denoted by α = (k, l) ∈ γ, whose weights eα represent conductances.
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Their inverses are resistances, whose sum is to be minimized by the shortest path
γ0 ∈ Γij (not necessarily unique) on the weighted graphE. This setup generalizes
the unweighted graphs framework, and defines the shortest path distance

D
sp
ij = min

γ∈Γij

∑
α∈γ

1
eα

.

We believe the following result to be new - although its proof simply combines a
classical result published in the fifties (Beurling and Deny 1958) with the above
“electrical” characterization of the average commute time distance.

Proposition 3. Dsp
ij ≥ Dcom

ij with equality for all i, j iff E is a weighted tree.

Proof: let γ0 ∈ Γij be the shortest-path between i and j. Consider a vector y
and define dyα = yl − yk for an edge α = (k, l). Then

|yi − yj |
(a)

≤
∑

α∈γ0

|dyα|=
∑

α∈γ0

√
eα

|dyα|√
eα

(b)

≤ (
∑

α∈γ0

eα(dyα)2)
1
2 (
∑

α∈γ0

1
eα

)
1
2

(c)

≤
√

E(y)
√

D
sp
ij

Hence Dsp
ij ≥ (yi −yj)2/E(y) for all y, in particular for y0 defined above, showing

D
sp
ij ≥ Dcom

ij . Equality holds iff (a) y0 is monotonously decreasing along the path
γ0, (b) for all α ∈ γ0, dy0

α = c/eα for some constant c, and (c) dy0
αeα = 0 for all

α /∈ γ0. (b), expressing Ohm’s law U = RI in the electrical analogy, holds for
y0, and (a) and (c) hold for a tree, that is a graph possessing no closed path.

The shortest-path distance is unfocused and irreducible. Seeking to determine
the corresponding function g(λ) involved in Definition 2, and/or the Schoenberg
transformation φ(D) involved in Definition 3, is however hopeless:

Proposition 4. Dsp is not a squared Euclidean distance.
Proof: a counter-example is provided (Deza and Laurent (1997) p. 83) by the
complete bipartite graph K2,3 of Figure 1:

Fig. 1. Bipartite graph K2,3, associated exchange matrix and shortest-path distance

The eigenvalues occurring in Theorem 1 are μ1 = 3, μ2 = 2.32, μ3 = 2, μ4 = 0
and μ5 = −0.49, thus ruling out the possible squared Euclidean nature of Dsp.

The absorption distance. The choice g(λ) = (1−ρ)/(1−ρλ) where 0 < ρ < 1
yields the absorption distance: consider a modified random walk, where, at each
discrete step, a particle at i either undergoes with probability ρ a transition
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i → j (with probability pij) or is forever absorbed with probability 1 − ρ into
some additional “cemetery” state. The quantities vij(ρ) = “average number of
visits from i to j before absorption” obtain as the components of the matrix (see
e.g. Kemeny and Snell (1976) or Kijima (1997))

V (ρ) = (I − ρP )−1 = (Π − ρE)−1Π with fivij = fjvji and
∑

i

fivij =
fj

1 − ρ
.

Hence K = g(Π− 1
2EΠ− 1

2 ) = (1−ρ)Π
1
2V Π− 1

2 and Bij = (1−ρ)vij/fj, measur-
ing the ratio of the average number of visits from i to j over its expected value
over the initial state i. Finally,

Dabs
ij (ρ) =

vii(ρ)
fi

+
vjj(ρ)
fj

− 2
vij(ρ)
fj

.

By construction, limρ→0D
abs(ρ) = Dfro and limρ→1(1 − ρ)−1Dabs(ρ) = Dcom.

Also, limρ→1D
abs(ρ) ≡ 0 for a connected graph.

The “sif” distance. The choice g(λ) = λ2/(1 −λ) is the simplest one insuring
an irreducible and focused squared Euclidean distance. Identity λ2/(1 − λ) =
1/(1 − λ) − λ− 1 readily yields (wether Ddif is Euclidean or not)

D
sif
ij = Dcom

ij −D
dif
ij −D

fro
ij .

4 Numerical Experiments

4.1 Inter-cantonal Migration Data

The first data set consists of the numbers N = (nij) of people inhabiting the
Swiss canton i in 1980 and the canton j in 1985 (i, j = 1, . . . , n = 26), with
a total count of 6′039′313 inhabitants, 93% of which are distributed over the
diagonal. N can be made brutally symmetric as 1

2 (nij + nji) or √
nijnji, or,

more gently, by fitting a quasi-symmetric model (Bavaud 2002), as done here.
Normalizing the maximum likelihood estimate yields the exchange matrix E.
Raw coordinates xiα = uiα/

√
fi are depicted in Figure 2. By construction, they

do not depend of the form of the function g(λ) involved in Definition 2, but they
do depend on the form of the Schoenberg transformation D̃ = φ(D) involved
in Definition 3, where they obtain as solutions of the weighted MDS algorithm
(Theorem 1) on D̃, with unchanged weights f (Figure 3 (a) and (b)).

Iterating (2) from an initial n×m membership matrix Zinit (with m ≤ n) at
fixed T yields a membership Z0(T ), which is by construction a local minimizer of
the free energy F [Z, T ]. The number M(Z0) ≤ m of independent columns of Z0
measures the number of effective groups: equivalent groups, that is groups whose
columns are proportional, could and should be aggregated, thus resulting in M
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Fig. 2. Proportion of Swiss-German speakers in the 26 Swiss cantons (left), and raw
coordinates xiα associated to the inter-cantonal migrations, in dimensions α = 1, 2
(center) and α = 3, 4 (right). Colours code the linguistic regions, namely: 1 = German,
2 = mainly German, 3 = mainly French, 4 = French and 5 = Italian. The central
factorial map reconstructs fairly precisely the geographical map, and emphasizes the
linguistic German-French barrier, known as “Röstigraben”. The linguistic isolation of
the sole Italian-speaking canton, intensified by the Alpine barrier, is patent.

Fig. 3. Raw coordinates extracted from weighted MDS after applying Schoenberg
transformations D̃ = φ(Dcom) with φ(D) = D0.7 (a), and φ(D) = 1 − exp(−bD) with
b = 1/(4Δcom) (b). Decrease of the number of effective groups with the temperature
(c); beside the main component, two microscopic groups of size ρ2 = 6 · 10−4 and
ρ3 = 2 · 10−45 survive at Trel = 2. (d) is the so-called rate-distortion function of Infor-
mation Theory; its discontinuity at Tcrit = 0.406 betrays a phase transition between
a cold regime with numerous clusters and a hot regime with few clusters (Rose et al.
1990; Bavaud 2009). Behaviour of the overall softness H(Z|O) (e) (Section 2.2) and of
the clusters-regions variation of information (f) (see text).
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distinct groups, without changing the free energy, since both the intra-group
dispersion and the mutual information are aggregation-invariant (Bavaud 2009).
In practice, groups g and h are judged as equivalent if their relative overlap
(Section 2.2) obeys θgh/

√
θggθhh ≥ 1 − 10−10.

Define the relative temperature as Trel = T/Δ. One expects M = 1 for Trel �
1, and M = n for Trel � 1, provided of course that the initial membership
matrix contains at least n columns. We operate a soft hierarchical descendant
clustering scheme, consisting in starting with the identity membership Zinit = I
for some Trel � 1, iterating (2) until convergence, and then aggregating the
equivalent columns in Z0(T ) into M effective groups. The temperature is then
slightly increased, and, choosing the resulting optimum Z0(T ) as the new initial
membership, (2) is iterated again, and so forth until the emergence of a single
effective group (M = 1) in the high temperature phase Trel ≥ 1.

Numerical experiments (Figure 3) actually conform to the above expecta-
tions, yet with an amazing propensity for tiny groups ρg � 1 to survive at
high temperature, that is before to be aggregated in the main component. This
metastable behaviour is related to the locally optimal nature of the algorithm;
presumably unwanted in practical applications, it can be eliminated by forcing
group coalescence if, for instance, H(Z) or F [Z] −Δ become small enough.

The softness measure of the clustering H(Z|O) is expected to be zero in
both temperature limits, since both the identity matrix and the single-group
membership matrix are hard. We have attempted to measure the quality of the
clustering Z with respect to the regional classification R of Figure 2 by the
“variation of information” index H(Z) + H(R) − 2I(Z,R) proposed by Meila
(2005). Further investigations, beyond the scope of this paper, are obviously
still to be conducted in this direction.

The stability of the effective number of clusters around Trel = 1 might en-
courage the choice of the solution with M = 7 clusters. Rather disappointingly,
the latter turns out (at Trel = 0.8, things becoming even worse at higher tem-
perature) to consist of one giant main component of ρ1 > 0.97, together with
6 other practically single-object groups (UR, OW, NW, GL, AI, JU), totalizing
less than three percent of the total mass (see also Section 5).

4.2 Commuters Data

The second data set counts the number of commuters N = nij between the
n = 892 French speaking Swiss communes, living in commune i and working in
commune j in 2000. A total of 733′037 people are involved, 49% of which are
distributed over the diagonal. As before, the exchange matrix E is obtained after
fitting a quasi-symmetric model to N . The first two dimensions α = 1, 2 of the
raw coordinates xiα = uiα/

√
fi are depicted in Figure 4 a). The objects cloud

consists of all the communes (up, left) except a single one (down, right), namely
“Roche d’Or” (JU), containing 15 active inhabitants, 13 of which work in Roche
d’Or. Both the very high value of the proportion of stayers eii/fi and the low
value of the weight fi make Roche d’Or (together with other communes, to a
lesser extent) quasi-disconnected from the rest of the system, hence producing,
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Fig. 4. Raw coordinates associated to the unmodified exchange matrix E are unable
to approximate the geographical map (a), in contrast to (b), (c) and (d), based upon
the diagonal-free exchange matrix Ê. Colours code the cantons, namely BE=brown,
FR=black, GE=orange, JU=violet, NE=blue, VD=green, VS=red. In particular, the
central position of VD (compare with Figure 2) is confirmed. (e) and (f) represent the
low-dimensional coordinates obtained by MDS from D̂jump (4).

in accordance to the theory, eigenvalues as high as λ1 = .989, λ2 = .986, ... ,
λ30 > .900...

Theoretically flawless as is might be, this behavior stands as a complete geo-
graphical failure. As a matter of fact, commuters (and migration)-based graphs
are young, that is E is much closer to its short-time limit E(0) than to its equi-
librium value E(∞). Consequently, diagonal components are huge and equivalent
vertices in the sense of Definition 1 cannot exist: for k = i �= j, the proportion
of stayers eii/fi is large, while eij/fj is not.

Attempting to consider the Laplacian E−E(0) instead of E does not improve
the situation: both matrices indeed generate the same eigenstructure, keeping the
order of eigenvalues unchanged. A brutal, albeit more effective strategy consists
in plainly destroying the diagonal exchanges, that is by replacing E by the
diagonal-free exchange matrix Ê, with components and associated weights

êij =
eij − δijeii

1 −
∑

k ekk
f̂i =

fi − eii

1 −
∑

k ekk
.

Defining Ê as the new exchange matrix yields (Sections 2 and 3) new weights f̂ ,
eigenvectors Û , eigenvalues Λ̂ (with λ̂n = 0), raw coordinates X̂ and distances
D̂, as illustrated in Figure 4 b), c) and d).
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However, an example of equivalent nodes in the sense of Definition 1 is still
unlikely to be found, since 0 = êii/f̂i �= êij/f̂j in general. A weaker concept of
equivalence consists in comparing i �= j by means of their transition probabilities
towards the other vertices k �= i, j, that is by means of the Markov chain con-
ditioned to the event that the next state is different. Such Markov transitions
approximate the so-called jump process, if existing (see e.g. Kijima (1997) or
Bavaud (2008)). Their associated exchange matrix is precisely given by Ê.

Definition 4 (Weakly equivalent vertices; weakly focused distances).
Two distinct vertices i and j are weakly equivalent, noted i

w∼ j, if êik/f̂i =
êjk/f̂j for all k �= i, j,. A distance is weakly focused if Dij = 0 whenever i w∼ j.

By construction, the following “jump” distance is squared Euclidean and weakly
focused:

D̂
jump
ij =

∑
k | k �=i,j

f̂k(
êik

f̂if̂k

− êjk

f̂j f̂k

)2 =
∑

k

1

f̂k

(
êik

f̂i

− êjk

f̂j

)2 −
ê2ij

f̂if̂j

(
1

f̂i

+
1

f̂j

) . (4)

The restriction k �= i, j in (4) complicates the expression of Djump in terms
of the eigenstructure (Û , Λ̂), and the existence of raw coordinates x̂iα, adapted
to the diagonal-free case, and justified by an analog of Proposition 1, remains
open. In any case, jump distances (4) are well defined, and yield low-dimensional
coordinates of the 892 communes by weighted MDS (Theorem 1) with weights
f̂ , as illustrated in Figure 4 e) and f).

Fig. 5. Comparison between the clustering obtained from D̂sif (in red) and D̂jump (in
green): evolution of the number of effective clusters with the temperature (a), rate-
distortion function (b) and overall softness measure (c). In (b), Δ̂jump has been multi-
plied by a factor five to fit to the scale.

5 Conclusion

Our first numerical results confirm the theoretical coherence and the tractabil-
ity of the clustering procedure presented in this paper. Yet, further investiga-
tions are certainly required: in particular, the precise role that the diagonal
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components of the exchange matrix should play into the construction of distances
on graphs deserves to be thoroughly elucidated. Also, the presence of fairly
small clusters in the clustering solutions of Section 4, from which the normalized
cut algorithm Ncut was supposed to prevent, should be fully understood. Our
present guess is that small clusters are inherent to the spatial nature of the
data under consideration: elongated and connected clouds as those of Figure 4
cannot miraculously split into well-distinct groups, irrespectively of the details
of the clustering algorithm (classical chaining problem). This being said, squared
Euclidean are closed under addition and convex mixtures. Hence, an elementary
yet principled remedy could simply consist in adding spatial squared Euclidean
distances to the flow-induced distances investigated in the present contribution.
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Abstract. Monitoring the variables of real world dynamical systems is a difficult
task due to their inherent complexity and uncertainty. Particle Filters (PF) perform
that task, yielding probability distribution over the unobserved variables. How-
ever, they suffer from the curse of dimensionality problem: the necessary num-
ber of particles grows exponentially with the dimensionality of the hidden state
space. The problem is aggravated when the initial distribution of the variables
is not well known, as happens in global localization problems. In this paper we
present two new adaptive sampling mechanisms for PFs for systems whose vari-
able dependencies can be factored into a Dynamic Bayesian Network. The novel
PFs, developed over the proposed sampling mechanisms, exploit the strengths of
other existing PFs. Their adaptive mechanisms 1) modify or establish probabilis-
tic links among the subspaces of hidden variables that are independently explored
to build particles consistent with the current measurements and past history, and
2) tune the performance of the new PFs toward the behaviors of several exist-
ing PFs. We demonstrate their performance on some complex dynamical system
estimation problems, showing that our methods successfully localize and track
hidden states, and outperform some of the existing PFs.

1 Introduction

Estimating the hidden state of a multivariate dynamical system remains a large chal-
lenge. While the Dynamic Bayesian Network (DBN) formalism provides an excellent
way to represent such systems, performing inference in these models is difficult, and
approximations are usually necessary. Among the most popular approximate inference
methods for DBNs are Particle Filters (PFs): point-mass approximations of the hidden
state distribution, which are calculated with sequential Monte Carlo simulation tech-
niques, usually combining importance sampling and weighted resampling steps [1].

In spite of their popularity, PFs can be difficult to apply to new problems. One of
the core challenges arises from the familiar curse of dimensionality: in even modest
dimensionality spaces, there are high chances that many or most particles will fall into
near-zero probability regions of the state space, leading to serious particle depletion and
quickly driving the PF off track. This problem is evident, for example, in multi-object
tracking tasks [2]. The difficulty is exacerbated when the distribution used to initialize
the values of the particles is unlikely to generate particles that have high-probability.

The dimensionality/depletion difficulty can be reduced with a careful choice of the
initialization, importance sampling and weighted resampling distributions, but doing so

J.L. Balcázar et al. (Eds.): ECML PKDD 2010, Part I, LNAI 6321, pp. 119–134, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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is not always straightforward. For example, in global localization problems it is difficult
to define a tight initialization proposal distribution. Efficient sampling and resampling
proposals developed around specific properties of the dynamics of the problem require
extensive domain knowledge and/or generate PFs for specific types of problems [3,4].

The general approaches that have recently appeared in [5,6] overcome some of the
inherent difficulties of the standard PF for DBNs [7] using two complementary strate-
gies. The PF of [5] follows the ancestral ordering of the variables to serialize sampling
and resampling steps. Whereas, the PFs in [6] parallelize the sampling step to sample
different subspaces of hidden variables independently. The serialization in [5] leads to
elimination of those particles whose already sampled hidden variables are not proba-
bilistically consistent with some of the measurements. This process avoids sampling
their remaining hidden variables. However, it can drive the PF off track when a prema-
ture specialization of the survived particles makes it impossible to sample values for
the remaining hidden variables consistent with the measurements. The parallelization
presented by the authors in [6] lets their PFs create particles that are probabilistically
consistent with the measurements associated with each subspace of hidden variables.
However, it can continuously reset the PFs when the parallel sampled measurement
likely values of their hidden variables are inconsistent with the past history.

The two sampling mechanisms presented in this paper combine the benefits of the
previous strategies [5,6,7] by automatically adapting the serialization/parallelization
level of the proposal distributions used to sample the values of the hidden variables.
They are developed within the serial importance sampling methodology and so the de-
veloped PFs that incorporate those mechanisms have a firm probabilistic foundation.

The characteristics of the new mechanisms, which represent two new points in the
spectrum of already existing sampling strategies, are the following. First, they allow
an automatic adaptation of the PF behavior towards the PFs in [5,6,7]. Second, they
help to overcome problems of poor particle initialization, improving state localization
and convergence when the initial particle sample is far from the target distribution. And
third, they need fewer particles than some of the existing methods.

Finally, this paper also analyzes in depth the characteristics of the PFs presented in
[5,6,7] and states the old and new techniques under a unified formalism.

2 Particle Filter Fundamentals

Our core contribution is the development of two new proposal distributions that support
the definition of PFs for DBNs that adapt their behaviors towards the serial PF of [5],
the parallel PF of [6], and the standard PF of [7]. In this section we introduce a uniform
notation and formalism in which to state the previous and new PFs.

2.1 Definitions and Notation

In this paper, a capital letter U represents a random variable, a boldface capital letter U
– a set of random variables, a lowercase letter u – the specific value of the corresponding
random variable U , and a lowercase bold letter u – an assignment of the values to the
variables of its set U . We also define P(U) as a partition of U .
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A Bayesian Network (BN) is an annotated directed graph that encodes the probability
distribution of a set of random variables V . DBNs model the distribution of a sequence
of sets of variables. A set of variables belonging to the kth time slice is represented as
Vk and the total set of variables up to the current time slice t is V0:t . To distinguish
hidden and observed variables, we use X , Xt and X0:t to denote the former, and Y , Yt

and Y0:t for the latter. The graph is completely defined by the sets of parents of all its
variables: Pak(V ) represents the subset of the parents of variable V that belong to time
slice k and pak(V ) their assignment to particular values. Similarly, we also define the
set of children of a variable and their assignments by Chk(V ) and chk(V ).

Probability distributions will be represented as p(·), q(·) and r(·): the first related
with the probabilities of the problem and the others with the proposal distributions
used to sample the values of the particles from. The operation a ∼ q(·) represents sam-
pling a according to q(·). The operation Ep(X |·)[X ] represents the expected value of X

with respect to p(X |·). And δ(·) and δ j
i are respectively the Dirac and Kronecher delta

functions.
A PF approximates the probability p

(
X|y

)
of a set of hidden variables X given the

values of the measurements Y by the point mass distribution ∑N
i=1 w(x(i))δ(X −x(i)),

where x(i) are the values of the variables in X in the i-th particle, w(x(i)) their weights,

and N the number of particles. Additionally, x(i), x
(i)
0:t and pa(i)

k (V ) represent the assign-
ments of X , X0:t and Pak(V ) to the values they have in the i-th particle.

Finally, in this paper we only consider DBNs whose variables have parents belong-
ing to the current or previous time slice (∀V ∈Vt ∧ ∀k /∈{t, t − 1} Pak(V ) = /0). This
restriction upon the structure of the DBN factors the joint probability of the set of hid-
den and observation variables up to time slice t as Eq. (1) shows.

p(X0:t ,Y0:t)=p(Xt ,Yt |X0:t−1,Y0:t−1)p(X0:t−1,Y0:t−1)
p(Xt ,Yt |X0:t−1,Y0:t−1)= ∏

X∈Xt

p(X |Pat−1(X),Pat(X))∏
Y∈Yt

p(Y |Pat−1(Y ),Pat(Y )) (1)

2.2 Importance Sampling (IS) and Weighted Resampling (WR)

The values of the particles x(i) and their weights w(x(i)) used to approximate the prob-
ability distribution p(X|y) as ∑N

i=1 w(x(i))δ(X −x(i)) are obtained by means of a se-
quential combination of importance sampling and weighted resampling steps [8]. The
way of proceeding for each step is detailed in the following subsections, in order to
state the serial, parallel, standard and adaptive PFs under a unified perspective. In short,
IS is used to create the particles while WR is carried out to increment the number of
particles in the regions of high interest and reduce them in the others.

Importance Sampling is used to (1) create new particles by means of a proposal
distribution q(X|y) that generates their values (x(i) ∼ q(X|y)) and (2) calculate their
weights as w(x(i))∝p(x(i)|y)/q(x(i)|y).

The IS operation can be carried out sequentially exploiting the independence as-
sumptions imposed by the structure of the DBN and therefore the recursive factoriza-
tion of the joint presented in Eq. (1). The following two IS steps, whose development is
detailed in [6,8,9], emerge from different choices of posterior distributions p(X|y).
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– When p(X0:t |y1:t) is the posterior distribution to be approximated by the point mass

representation ∑N
i=1 w(x(i)

0:t)δ(X0:t −x
(i)
0:t) the IS step can obtain the values x

(i)
t (of

the hidden variables Xt of the current time slice t) associated with each particle x
(i)
0:t

by means of the proposal q(x(i)
t |x0:t−1,y1:t) and calculate their weights w(x(i)

0:t)
with Eq. (2). As this IS step is responsible for estimating the probability of the
trajectory X0:t of the hidden variables, we will call it hereafter “Trajectory” IS or
TIS.

– When p(Xt |y1:t) is the posterior distribution to be approximated by the point mass

representation ∑N
i=1 w(x(i)

t )δ(Xt −x
(i)
t ) the IS step can obtain the values x

(i)
t (of

the hidden variables Xt of the current time slice t) of the particle x
(i)
t by means of

the proposal q(x(i)
t |y1:t) and calculate their weights w(x(i)

t ) with Eq. (3). As this
IS step is responsible for estimating the probability of the hidden state Xt at the
current time slice t, we will call it hereafter “Instantaneous” IS or IIS.

w(x(i)
0:t) ∝

∏
Y∈Yt

p
(

y|pa(i)
t−1(Y ),pa(i)

t (Y )
)

∏
X∈Xt

p
(

x(i)|pa(i)
t−1(X),pa(i)

t (X)
)

q
(
x

(i)
t |x0:t−1,y1:t

) w(x(i)
0:t−1) (2)

w(x(i)
t ) ∝

N

∑
j=1

(
w(x( j)

t−1)∏
Y∈Yt

p
(
y|pa( j)

t−1(Y ),pa(i)
t (Y )

)
∏

X∈Xt

p
(
x(i)|pa( j)

t−1(X),pa(i)
t (X)

))
q
(
x

(i)
t |y1:t

) (3)

Note that both IS use a proposal q(x(i)
t |·) in each time iteration t to sequentially generate

only the values x
(i)
t associated with the hidden variables Xt that belong to the time slice

t. They also obtain the weights of the whole particle (w(x(i)
0:t) in TIS and w(x(i)

t ) in IIS)

based on the values of the weights of the particle up to the previous time slice (w(x(i)
0:t−1)

in TIS and w(x( j)
t−1) in IIS), and the values of the hidden and observed variables at t and

t−1 (x(i)
t , y, pa(i)

t (V ) and pa(k)
t−1(V )). Finally, in both numerators also appears the joint

distribution (introduced in Eq. (1)) of the current time variables given their parents.
The main computational difference, which affects the number of operations of the se-

lected IS step, appears in the numerator of the expressions used to calculate the weights:
the IIS Eq. (3) has a summation that doesn’t appear in the TIS Eq. (2). The total com-

putational cost also depends on the proposal distribution q(x(i)
t |·) used to sample the

values of x
(i)
t , and so, IIS is not necessary computationally more costly than TIS. More-

over, selecting the appropriated proposals both IS steps can be equivalent. Besides,
Eq. (3) can be simplified taking out of the summation those variables that don’t have
hidden parents belonging to the previous time slice (V ∈ Vt s.t.Pat−1(V )∩Xt−1 = /0).

It is also important to mention that although the two types of IS estimate the proba-
bility of a different set of hidden variables (X0:t in TIS and Xt in IIS), both can be used
to estimate the values of the current state variables Xt , because the trajectory X0:t also
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includes them. However, the search space of TIS is significantly larger, and so the num-
ber of necessary particles in IIS should be smaller. Another interesting fact to consider
is that TIS can be used to estimate any Xk with k ≤ t from the approximated distribution
p(X0:t |y1:t) and so the estimated values of Xk can take into account the measurements
up to t. In IIS the values of Xk have to be estimated from p(Xk|y1:k) and so they can
only take into account the measurements up to k.

Weighted Resampling is used to approximate a p(X|y) that is already approximated
by an existing point-mass representation ∑N

i=1 w(x(i))δ(X −x(i)) by another point-
mass representation ∑N

i=1 w(x′(i))δ(X −x′(i)). The WR operation works by redistribut-
ing the set of existing weighted particles (x(i),w(x(i))) using a resampling strategy
(such as multinomial, systematic or residual sampling) that for each x′(i) picks a x( j)

according to the r(x( j)) values obtained with a selected r(X) function. The weights
w(x′(i)) of the new set of particles x′(i) are calculated as w(x( j))/r(x( j)).

The usual election of r(X) in TIS-based PFs is r(x( j)
0:t ) = w(x( j)

0:t ) because this WR

step applied after TIS eliminates the particles with negligible w(x( j)
0:t ) and populates

the hidden space X0:t with equally weighted particles distributed according to w(x( j)
0:t ).

Thus, it focuses the PF to explore those regions that look more promising so far. The

same approach can be used in IIS-based PFs making r(x( j)
t ) = w(x( j)

t ).
Finally, it is worth mentioning that a combined sequential implementation of IS with

the usual WR steps can delete those particles that were so far negligible for the WR

step according to w(x( j)
0:t ) in TIS and w(x( j)

t ) in IIS but whose information could be
important taking into account the future measurements (y f with f > t). For that reason
some PFs avoid the WR step or perform it every now and then [10].

3 General PFs for DBN

In this section we present the three general PFs whose behavior we want to dynamically
approximate with the new adaptive parallel/serial sampling proposals. We also analyze
their behavior to justify later the benefits we expect from the new adaptive mechanisms.

3.1 Standard PF (KLPF)

The PF presented in [7] (that we will call KLPF after their authors Koller and Lenner)
approximates the posterior p(X0:t |y1:t) using for each time step a TIS step followed by

a WR step. The TIS proposal q(x(i)
t |·) is the product of the transition priors presented in

Eq. (4) and so the values of each X in Xt can be sampled from p(X |pa(i)
t−1(X),pa(i)

t (X))
using the ancestral ordering of the hidden variables within the time slice t. The WR

r(X0:t) function is the usual choice: r(x( j)
0:t ) = w(x( j)

0:t ). So, according to Eq. (2), the

selected proposal and WR step, w(x(i)
0:t) = ∏Y∈Yt p(y|pa(i)

t−1(Y ),pa(i)
t (Y )).

q(x(i)
t |·) = ∏

X∈Xt

p(X |pa(i)
t−1(X),pa(i)

t (X)) (4)
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The choices of q(·) and r(·) make the TIS generation of the values x
(i)
t probabilisti-

cally consistent with the values of x
(i)
t−1 and the WR selection of the survival particles

probabilistically consistent with the current measurements. Once KLPF falls off track

the chances to recover are small because the values of the future x
(i)
f ( f > t) will depend

on the current off-track x
(i)
t . That is, KLPF is good for building particles x

(i)
0:t probabilis-

tically consistent firstly with the past hidden history x
(i)
0:t−1 and secondary with the new

measurements yt .

3.2 Serial PF (SPF)

The PF presented in [5] approximates p(X0:t |y1:t) dividing the operations of each
time step t in a serial of alternating partial TIS and WR steps. The alternation is
imposed by the ancestral ordering of the variables V ∈ Vt : when V is hidden v(i) ∼
p(V |pa(i)

t−1(V ),pa(i)
t (V )), when V is observed the particles built up to the moment are

weighted resampled according to p(v|pa(i)
t−1(V ),pa(i)

t (V )).

Overall SPF uses the same q(x(i)
t |·) as KLPF with WR steps based on the likelihood

of each Y ∈ Yt between the sampling of the X ∈ Xt according to the transition priors.
Each partial TIS makes the sampled x(i) probabilistically consistent with the already
sampled hidden variables. Each partial WR selects the particles which are probabilis-

tically consistent with the given y. Thus, SPF is good for building particles x
(i)
0:t alter-

natively probabilistically consistent with the already sampled hidden history and used
measurements. SPF will also fall offtrack easily when the likelihood of each measure-
ment and the product of the likelihoods take significantly different values.

3.3 Parallel PFs (PPF)

The PFs described in [6] approximate either p(X0:t |y1:t) or p(Xt |y1:t) using for each
time step respectively a TIS or IIS step, followed optionally by a WR step. The TIS or

IIS proposal q(x(i)
t |·,) is presented in Eq. (5) and (6). It groups the X ∈ Xt in subsets

X belonging to a defined1 disjoint partition P(Xt). And it independently samples the
values of the hidden variables within each subset X from a mixture model of the prod-
uct of transition priors where each mixture component is weighted with the product of
the expected likelihoods2 of the measurements Y associated with the X ∈ X . When ap-

plied, the WR r(·) function is the usual choice: r(x( j)
0:t ) = w(x( j)

0:t ) or r(x( j)
t ) = w(x( j)

t ).

q
(
x

(i)
t |·
)

=∏
X∈P (Xt)

(
N

∑
j=1

(
αX

j ∏
X∈X

p
(

x|pa( j)
t−1(X),pa(i)

t (X)
)))

(5)

1 The partition is constructed based on the DBN structure with the rules presented in [6].
2 While the value of any hidden X ∈ Pat(V ) in pa( j)

t (V ) is the value of X in the j-th particle,

the value associated with the same X ∈ Pat(V ) in pa∗( j)
t (V ) is E

p(X |pa( j)
t−1(X),pa∗( j)

t (X))
[X ]. The

expectations are needed because the value of X won’t be sampled until the component of the
mixture is selected according to αX

j .
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αX
j ∝ ∏

Y∈Cht(X)∧X∈X

p
(

y|pa( j)
t−1(Y ),pa∗( j)

t (Y )
)

(6)

The choice of q(·) makes the IS generation of the values x
(i)
t probabilistically con-

sistent with the expected likelihood of the measurements associated with each of the
disjoint subsets of hidden variables X defined by P(Xt). However, the independence
imposed by the factorization of the proposal can lead to creation of particles that are

not consistent with the previous time step particles (x(i)
0:t−1 or x

(i)
t−1). When no particle

is consistent, the numerators of Eq. (2) or Eq. (3) will make all the weights zero and
the PPF will be automatically reset. This behavior is positive when the PPF is losing
track but unnecessary when that is not the case. So the PPFs are good for building par-

ticles (x(i)
0:t or x

(i)
t ) probabilistically consistent firstly with different subsets of current

measurements and secondly with the previous time step particles (x(i)
0:t−1 or x

(i)
t−1).

The choice of r(·) influences the elimination of particles with negligible weights by
WR. However, this choice also decrements the sampling possibilities of the independent
mixture proposals. So disabling the WR step increases the PPFs sampling possibilities
facilitating the PPFs reset when the measurements subsets contradict the hidden history.

4 Adaptive Sampling Mechanisms for DBN

Optimal IS steps are those that minimize the variance of the weights [10]. In the design

of PFs for DBNs this requirement implies that the sampling proposal q(x(i)
t |·) samples

the new values of Xt simultaneously taking into account the values of x
(i)
t−1 and yt .

However, this is rarely possible and so non-optimal proposals are usually selected.
The sampling proposals used in KLPF, SPF and PPFs are not optimal. Nevertheless,

these proposals exhibit several complementary positive probabilistic behaviors. KLPF

and SPF build particles probabilistically consistent firstly with x
(i)
t−1 and secondly with

the current measurements yt , while the PPFs build particles probabilistically consistent

firstly with yt and secondly with x
(i)
t−1. Besides, KLPF builds particles consistent with

all the current measurements yt , SPF builds particles incrementally consistent with each
measurement y ∈ yt , and PPFs build them probabilistically consistent with subsets of
measurements and of hidden variables.

We believe that a PF that simultaneously takes advantage of several of those behav-
iors should be closer to the optimal PF. Based on that intuition we have developed two
novel sampling mechanisms that adapt the proposal towards the behavior of some of the
general PFs while the PF is running. In the following section we present the adapting
proposals, the mechanisms that control the adaptation and the PFs based on these two.

4.1 Adaptive Proposals

In this section we present two proposals that let the PFs based on them adapt the behav-
ior towards two different types of PFs. Both are based on the adaptation of the parallel
proposal3 of Eq. (5) towards the behavior obtained in KLFP or SPF by the simultaneous
use of TIS based on the proposal of Eq. (4) and WR based on the values of the weights.

3 We adapt the parallel proposal toward the other behaviors due to its higher complexity.
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Grouped Parallel Proposal: The parallel proposal of Eq. (5) divides the Yt used to

pick the values x
(i)
t−1 to sample from the disjoint subsets X according to a given P (Xt).

The P (Xt) definition is not unique, but it must at least fulfill a set of restrictions im-
posed by the DBN structure [6]. The basic disjoint subsets of X ∈ Xt and Y ∈ Yt im-
posed by the DBN structure and defined by the partitions, named hereafter as P DBN(Xt)
and P DBN(Yt ), can be grouped to define new pairs of partitions (P ′(Xt),P ′(Yt)).

As different pairs of partitions modify the behavior of the parallel proposal presented
in Eq. (5), the grouping of the existing subsets to define new partitions and the use of
the different partition pairs (P (Xt),P (Yt )) in each time step of the PPFs makes the
PPFs achieve a dynamic sampling behavior.

This simple idea is exploited by our first adaptive proposal. Originally we use the pro-
posal of Eq. (5) with the pair (P DBN(Xt),P DBN(Yt)), and in a posterior time step we join
two of the subsets of the previous partition pair to define a new pair (P ′(Xt),P ′(Yt)) to
be used in Eq. (5). The grouping adaptation can continue until all the sets are joined and
the final possible pair (P F(Xt) = Xt ,P F(Yt) = Yt) is reached. Or stopped to restart
the process from the pair (P DBN(Xt),P DBN(Yt)) when the mechanism that controls the
adaptation considers it beneficial.

This adaptive proposal makes a PPF based on (P DBN(Xt),P DBN(Yt)) adapt its be-
havior toward the KLPF. This is due to the fact that by each grouping step we make
a subset of hidden and observation variables bigger and sample the hidden variables
within that subspace according to its associated measurements. In the limit it samples
all the current hidden values from the same previous particle and picks the selected ones
according to the product of likelihoods4 of all the measurements.

Linked Serial Proposal: Another way of adapting the behavior of the parallel pro-
posal of Eq. (5) consists of imposing an ordering {O1,O2, ...,O|P (Xt )|} on the subsets
of hidden variables defined by the partition (Ok = X ∈ P (Xt)), and sample the hidden
variables within each subset following that order and a mixture model of the product
of the prior transitions whose weights take into account the product of the expected
likelihoods and which particles were sampled in the previous subsets. This way of pro-
ceeding, that links the chances of picking the elements of a particle with the already
selected ones, is defined by Eq. (7) and (8), where jz represent the particle selected for
the same particle in the previous subsets, αOk

j is the product of expected likelihoods
defined in (6), and γ ∈ [0,1] the proposal parameter used to modify the linking level.

q
(
x

(i)
t |·
)

= ∏
k=1:|P (Xt)|

(
N

∑
j=1

(
βOk

j ∏
X∈Ok

p
(

x|pa( j)
t−1(X),pa(i)

t (X)
)))

(7)

βOk
j = γαOk

j +
(1 − γ)

k ∑
z=1:k−1

δ jz
j (8)

This adaptive proposal makes a PF based on it adapt its behavior from PPF to SPF
and vice versa. This is due to the fact that when γ = 1 the proposal behaves as the orig-
inal parallel proposal, and as the values of γ is decreased the particles used to sample

4 There is a small additional difference: this new proposal based on Eq. (5) uses the “expected”

likelihoods p(y|pa( j)
t−1(Y ),pa∗( j)

t (Y )) while KLPF uses the actual ones p(y|pa( j)
t−1(Y ),pa( j)

t (Y )).
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the hidden variables within each Ok has a higher dependency on which particles were
already used to sample the previously sampled subset of hidden variables. As the sub-
sets of observed variables used to calculate the αX

j don’t change, this adaptive proposal
samples the values within each subset taking into account the different subsets of obser-
vations and so it makes the PFs based on it behave more closely to SPF than to KLPF.
In the limit, when γ = 0, the only set of measurements considered to select the particles
is that associated with the first subspace of the ordering, ignoring the effect of the rest.

4.2 Adaptive Control Mechanism

The PFs based on the two adapting proposals presented in the previous section need a
mechanism that modifies their behavior by means of the grouping process used in the
first case or the linking parameter γ in the second. The current mechanisms consist of:

1. Initializing the new proposals to work according to the original parallel one. That
is, the grouped parallel proposal uses Eq. (5) with (P DBN(Xt),P DBN(Yt)) and the
linked serial proposal uses Eq. (7) with (P DBN(Xt),P DBN(Yt )) and γ = 1.

2. In each time step of the PF, if there is a w(·) �= 0, the proposal adapts its behavior
away from the original parallel one. In the grouped parallel proposal two of the
current independent subsets are picked randomly and joined. In the linked serial
proposal the ordering of the subsets is randomly determined and γ is decremented
a selected amount Δγ up to a selected threshold γmin.

3. In each time step of the PF, if all w(·) = 0, the proposals are reset to its original
value (step 1).

The insight behind the selected mechanism is the following. On one hand, starting with
the original parallel proposal and returning to it when the PF have just lost track (w(·) =
0) increments the chances to start from a better initial distribution or recover based on
the measurements. On the other hand, moving away from the original parallel proposal
when the PF is keeping track lets it increase their capacity of being probabilistically
consistent with the past history. The random selection of the sets to group or the ordering
of the existing sets is used to avoid prioritizing some possibilities over others.

4.3 The Complete Adaptive Particle Filters

The first step, before carrying out the filtering steps of the novel PFs, consists of 1)
defining the disjoint partitions (P DBN(Xt),P DBN(Yt)), 2) creating the original particles

x(i)
0 using an initialization proposal, and 3) setting up the original values of the selected

proposal (either Eq. (5) and (6) with P DBN(Xt), or Eq. (7) and (8) with a random
ordering Ok = X ∈ P DBN(Xt) and γ = 1). Next, and in each time step t:

1. The PF samples the values of the hidden variables x
(i)
t using one of the new propos-

als as its currently setup. In short, we calculate either in parallel αX
j or sequentially

βOr
j and use those values to select a component of the mixtures and sample the

hidden values associated with that component from the product of transition priors.
2. The PF calculates the w(·) of each particle using either Eq. (2) or (3) depending on

what posterior we are approximating and Eq. (5) or (7) depending on what proposal
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we are using. The numerator can be zero when the values of the hidden variables
in the current time slice are non probabilistically consistent with the ones of the
previous time slice and/or the measurements. The denominator can’t, because we
have generated it with the proposal. So, the final w(·)≥0.

3. If any w(·) > 0 then adapt the selected proposal away from the original parallel
one. In the grouped parallel proposal two of the current independent subsets are
picked randomly and joined. In the linked serial proposal the next ordering of the
subsets is randomly determined and γ is decremented by a selected amount Δγ up
to a selected threshold γmin. Go to step 1.

4. If all w(·) = 0, the proposals are reset to its original value (P DBN(Xt) in the grouped
parallel and γ = 1 in the linked serial). Go to step 1.

The computational cost of the new adaptive PFs depends on the expressions used for
calculating the numerator (TIS or IIS) and denominator (group parallel or linked serial
proposal) of (2) or (3). The new TIS PFs need less computation than their IIS coun-
terparts. The corresponding PPFs need more/less computations than the ones with the
grouping/linked proposals. KLPF and SPF are less computational demanding.

5 Related Work

Our novel PFs, called GPF and LPF after their “Grouping” and ‘Linked” sampling
proposals, represent new points in the spectrum of Monte Carlo sequential importance
sampling strategies that adapt their behavior from the parallel PF in [6] to either the
standard PF in [7] or the serial PF in [5], as Fig. 1 represents.

PPF

SPF
KLPF

GPF
LPF

Fig. 1. Relationships among the behaviors of the different PFs

They are not the first adaptive PFs as there exist others that dynamically change the

number of particles [11,12,13], change the transition model p(X |pa(i)
t−1(X),pa(i)

t (X))
[13,14], enable and disable the WR step [10,13], or use a WR step with an r(·) function
whose values are adapted/smoothed with the previous time step weights [15,16]. Our
approach is different: we make use of adaptive sampling proposals controlled by an
adaptive mechanism to modify the novel PF behaviors towards several general PFs.

Finally, the idea of using a proposal that samples form the past history and current
measurements simultaneously has also been used in the mixture Monte Carlo PF [17],
which can’t be generally used because sampling new values from the current measure-
ments is not always possible.
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6 Experimental Results

The following results compare the new PFs (GPF and LPF with Δγ = 0.05 and γmin =
0.1) with KLPF, SPF and PPFs using two sets of experiments. The first set, performed
with simulated data compare the performance of the PFs using the Root Mean Square
Error (RMSE) between the mean value of the particle estimates for each PF and the true
value of the hidden variables at the last step of the simulation. In the second, carried
out with real world data, we use the PFs to score the structure of a DBN given the
measurements. In both cases, the PFs with parallel sampling possibilities (PPF, GPF,
LPF) outperform the rest (KLPF and SPF) on average. Besides, the novel GPF and LPF
and the old PPF can change their relative performance based on the task.

6.1 Simulated Experiments

This section compares all the PFs, working with a limited number of particles, in two
complex real problems modeled by different DBNs. We have selected them because
the structures of their DBNs, with multiple hidden variables that can be sampled in
parallel, let them benefit significantly from PFs with parallel sampling possibilities.
In both cases, we want to localize a set of G mobile objects given the information
provided by the existing sensors. To be able to distinguish the variables related with the
l-th object, in this section some variable names have a subindex (Vl).

In the first problem, each mobile object (Ml) is repelled from another (Mk) by a
common unknown force (F), and the position of each mobile is observed by a different
sensor (Sl). The PFs have to estimate the probability of the hidden variables (Ml,F)
given the measurements (Sl) for the DBN whose structure5 is defined by Pat−1(Ml) =
{Ml,Mrem(l,G)+1,F}, Pat−1(F)= {F} and Pat(Sl)= {Ml}. The structure of this DBN
lets us divide the hidden variables in G+1 groups, each with a hidden variable, and
assign to the αX

j of each group the estimated likelihoods of the measurement associated

with each hidden variable (α{F}
j ∝1 and α{Ml}

j ∝p
(
sl |pa∗( j)

t

(
Sl
))

). The difficulty of this
problem originates from the high coupling of the Ml variables imposed by Pat−1(Ml).

The second problem is an abstraction of a sea rescue problem where an Unmanned
Air Vehicle (UAV) has to track several objects that are in the water and whose initial
positions are not completely known. The objects (Ml) move with the direction of the
sea current and wind (E) and the sensors, which are onboard the UAV (U), are only able
to detect (Dl) the mobiles that are within a circular area of the UAV and provide their
position (Sl) when detected. The PFs have to estimate the probability of the hidden vari-
ables (Ml , E) given the observed ones (U , Dl , Sl) for the DBN whose structure is defined
by Pat−1(Ml) = {Ml,E}, Pat−1(E) = {E}, Pat(Dl) = {Ml,U} and Pat(Sl) = {Ml,Dl}.
Again, the structure of this DBN let us divide the hidden variables in G+1 groups, each
with a hidden variable, and assign to the αX

j of each group the product of the estimated

likelihoods of the measurements associated with each hidden variable (α{E}
j ∝ 1 and

α{Ml}
j ∝ p

(
dl|pa∗( j)

t

(
Dl
))

p
(
sl |pa∗( j)

t

(
Sl
))

). This problem is less coupled than the previ-
ous, but it is also difficult: it has multiple measurements per hidden variable and when
the object is outside the circular area its position is not observed.

5 In the following, rem(a,b) represents the remainder of dividing a by b.
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For each problem, we obtain the observations and the real values of the hidden vari-
ables from a simulation based on its probability model. Then we run each PF with a
given number of particles and 50 different sets of initial particles (the same for each PF
to compare their behavior under the same initial conditions). And finally, we measure at
the last step of the simulation the performance of each PF using the Root Mean Square
Error (RMSE) between the mean value of the particle estimates and the true value.

The complete experiment setup consists of running for each problem the 8 PFs with
3 different number of particles, 3 different initialization region proposals and the same
50 sets of initial particles. The 8 PFs configurations are: KLPF, “Instantaneous” GPF,
“Trajectory” GPF, “Instantaneous” LPF, “Trajectory” LPF, “Instantaneous” PPF, “Tra-
jectory” PPF, and SPF. The tested number of particles N are 20, 50, 100. The 3 initial-
ization proposals are uniform rectangular regions of different sizes around the actual
initial value: the second quadruples the area of the first, and the third quadruples the
area of the second. Each of the 50 sets of initial particles is created for each problem
for a combination of initialization proposal and number of particles.

Figure 2 shows the results as ratios of the RMSE obtained by each PF (x-axis) and
the RMSE obtained by the “Instantaneous” PPF for each problem (Fig. 2a and Fig.
2b), number of particles (figure row), initialization region (figure column) and initial
particle set (y-axis). Mid-grey (orange) ratios represent the equality. They are shown
as reference in the sixth column of each figure as the ratio of RMSE( “Instantaneous”
PPF)/RMSE( “Instantaneous” PPF)=1. Darker gray (red) shows that RMSE of the “In-
stantaneous” GPF is better and lighter (yellow) that it is worse. Ratios bigger that 10
or smaller than 1/10 are represented in black and white, and the difference between
ratios>1 and ratios<1 is easily observed by not using the gray levels (colors) around
the mid-gray (orange) one.

As the ratios in Fig. 2 show the improvement with respect to the “Instantaneous” PPF,
we can’t quantify how well each of the PFs is actually doing. This information appears
in Fig. 3 that divides the results of each PF in each configuration in “convergent” (white)
and “divergent” (black) based on their RMSE values and a fixed threshold.

Fig. 2 shows that the selected PF usually outperforms, many times with ratios>10,
KLPF (first dark column) and SPF (last dark column) in both problems and all config-
urations. The same happens when any of the PFs with parallel sampling possibilities is
selected: KLPF and SPF rarely outperform GPF, LPF, and PPF. The worst behavior of
KLPF and SPF with respect to the others is also illustrated in Fig. 3, where the results
of KLPF and SPF are also usually classified as divergent.

The relations among the PFs with parallel sampling possibilities change with the
problem and number of particles: For problem 1, Fig. 2a shows that the PFs compete:
the LPFs (columns 4 and 5) are usually worst, and the GPF (columns 2 and 3) behav-
ior improves as we increment the number of particles and decrement the area of the
initialization proposal. This behavior is not followed by 20 particles and the third ini-
tialization proposal configuration. However, many of the solutions are divergent in the
corresponding graphic in Fig. 3a and for that reason we don’t consider the ratios that
meaningful in that case. For problem 2, Fig. 2b shows that the adaptive PFs are usually
better than the original PPF. Moreover, the behavior of GPF is maintained through all
the configurations, while the behavior of the LPF improves with the number of particles.
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Fig. 2. Ratios of the RMSE of each PF and the RMSE of the “Instantaneous” PPF. In the x-axis, 1
is KLPF, 2 -“Instantaneous” GPF, 3 - “Trajectory” GPF, 4 - “Instantaneous” LPF, 5 -“Trajectory”
LPF, 6 - “Instantaneous” PPF, 7 - “Trajectory” PPF, and 8 - SPF
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Fig. 3. “Convergent” (white) and “divergent” (black) experiments for all the PFs

Finally, Fig. 3 shows that GPF usually converges (and does it more often than the others
except for problem 1 with small number of particles and wider initialization proposal),
and that LPF and SPF have similar convergent numbers of experiments.

So, for the selected problems GPF is usually the best (except in problem 1 with
just a few particles and extremely wide initialization regions), followed in problem 1
by PPF and in problem 2 by sometimes PPF and others LPF. Besides, the number of
convergent runs in a configuration for the adaptive PFs is rarely worse than for the fixed
PPF, and so, although the latter can obtain punctually better values, overall the adaptive
PFs produce a convergent run at least as often as the PPF.

6.2 Real Data

For the real data experiment we have used a functional Magnetic Resonance Imaging
(fMRI) dataset [18]. FMRI signal represents the Blood Oxygenation Level Dependent
(BOLD) response measured in a small rectangular region of the brain (voxel). BOLD
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Fig. 4. The network for a subset of regions of interest (ROIs) from the Talairach anatomical atlas
database. ROI names are replaced by short labels since they are not significant for our work. Note
that each ROI is observed through its indirect measurement by fMRI.
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Fig. 5. Cross validation log likelihood score plots for the PFs. Not displayed points mean that the
kernel density estimator did not produce a valid result.

response is itself governed by the underlying hidden neural activity. To model genera-
tion of the BOLD signal from neural activity we have used the hemodynamic forward
model based on a coupled system of ordinary differential equations [19].

The number of voxel measurements collected per time point in a typical fMRI ex-
periment is too large to model directly. Thus voxel time courses were averaged on a
per Region of Interest (ROI) basis. ROIs were selected according to the widely used
Talairach database [20].

In order to obtain the underlying structure of the DBN, we have used the approach
that treats fMRI data as fully observed and quantizes it into categorical representa-
tion [18]. Among the discovered DBN families we have used several most significant
ones according to the cross validation procedure (t-test with p-value of 0.05). This re-
sulted in a DBN of 42 hidden variables per slice. Figure 4 shows a small portion of the
hidden structure of the DBN we use. The observation nodes are not shown.

All PFs were run on this dataset for 50 time points (100 seconds with 2 seconds
fMRI sampling rate). Since the ground truth for neural activity of ROIs is unknown in
this dataset, for evaluation we have used cross validation log likelihood based on kernel
density estimators with Gaussian kernels and automatically chosen variance value using
a cross validation procedure [21].

The results6 for 20 runs using 20 and 50 particles are shown in Figure 5. LPFs (stars)
show higher score (better), followed by GPFs (triangles) and PPFs (circles). KLPF (as-
terisks) has considerably lower mean score. Note how the score decreases as the number
of particles grows. This is an expected behavior with Parzen window estimators, that is

6 SPF is missing because the kernel density estimator didn’t produce valid results.
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due to the smoother and generally wider estimates in the cases of more data that lead to
lower probability values.

In part these results support the observations obtained on simulated data: the PFs with
parallel sampling possibilities (GPFs, LPFs, and PPFs) have improved performance
over the other tested PFs. However, as Figure 5 shows, the adaptive LPFs outperform
GPFs and PPFs. This means that the benefit of the use of adaptive PFs depends on the
problem. Besides, in this case, the PPF performance can be considered a lower bound
of GPFs and LPFs, because the results of the adaptive PFs are not usually worse than
the results of the fixed PPFs.

7 Conclusions

We present a set of adaptive PFs to estimate the trajectory or current state of the hidden
variables of a DBN. They use two adaptive proposals to sample in parallel/serial the
values of changing/static-linked subsets of hidden variables to build a whole particle
whose weight is updated according to the proposal and the estimation problem.

Our PFs explore different subspaces of the state space while performing the sam-
pling step, and the whole space as a block while updating the weights. In the grouping
parallel proposal the variables in the subsets change dynamically while in the linked
serial proposal the variables are maintained and the subsets randomly linked. Each pro-
posals is used to develop two different PFs that adapt their behavior from the parallel
PF in [6] to the standard PF in [7] or the serial PF in [5].

The tests used to compare the new and the old PFs show that, with a reduced number
of particles when the particles are initialized in spread regions, all the PFs with parallel
sampling possibilities (the novel PFs and the old parallel PF) usually outperform the
standard and serial PF. Besides, the new PFs usually demonstrate a behavior similar or
better than the parallel PF. The different behavior of the adaptive PFs in the different
problems implies that different adaptive PFs are good for different DBNs. Determining
the best method for each DBN type requires further study which is left for future work.

Finally, it is worth mentioning that the results of the adaptive PFs also depend on
their adaptation mechanism. The one that we are testing so far moves more slowly
from the parallel PF to the others than the other way around (it resets completely).
Besides, we decide the direction of the movement only taking into account if there is at
least one particle whose weight is not zero. Although it is enough for letting the novel
PFs outperform the already existing PFs, we are planning to explore the use of better-
balanced and softer decision (for instance, based in the number of effective particles
[10]) mechanisms in our future work.
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Abstract. Bagging, boosting and Random Forests are classical ensem-
ble methods used to improve the performance of single classifiers. They
obtain superior performance by increasing the accuracy and diversity
of the single classifiers. Attempts have been made to reproduce these
methods in the more challenging context of evolving data streams. In
this paper, we propose a new variant of bagging, called leveraging bag-
ging. This method combines the simplicity of bagging with adding more
randomization to the input, and output of the classifiers. We test our
method by performing an evaluation study on synthetic and real-world
datasets comprising up to ten million examples.

1 Introduction

Data Stream real time analytics are needed to manage data generated at an
increasing rate from sensor applications, measurements in network monitoring
and traffic management, log records or click-streams in web exploring, manufac-
turing processes, call detail records, email, blogging, twitter posts and others. In
fact, all data generated can be considered as streaming data or as a snapshot of
streaming data, since it is obtained from an interval of time.

In the data stream model, data arrive at high speed, and algorithms that
process them must do so under very strict constraints of space and time. Conse-
quently, data streams pose several challenges for data mining algorithm design.
First, algorithms must make use of limited resources (time and memory). Second,
they must deal with data whose nature or distribution changes over time.

Bagging and Boosting are ensemble methods used to improve the accuracy
of classifier methods. Non-streaming bagging [7] builds a set of M base mod-
els, training each model with a bootstrap sample of size N created by draw-
ing random samples with replacement from the original training set. Each base
model’s training set contains each of the original training exampleK times where
P (K = k) follows a binomial distribution. This binomial distribution for large
values of N tends to a Poisson(1) distribution, where Poisson(1)= exp(−1)/k!.
Using this fact, Oza and Russell [25,24] proposed Online Bagging, an online
method that instead of sampling with replacement, gives each example a weight
according to Poisson(1).

Boosting algorithms combine multiple base models to obtain a small general-
ization error. Non-streaming boosting builds a set of models sequentially, with
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the construction of each new model depending on the performance of the previ-
ously constructed models. The intuitive idea of boosting is to give more weight to
misclassified examples, and reducing the weight of the correctly classified ones.

From studies appearing in the literature [25,24,6], Online Bagging seems to
perform better than online boosting methods. Why bagging outperforms boost-
ing in the data stream setting is still an open question. Adding more random
weight to all instances seems to improve accuracy more than adding weight to
misclassified instances. In this paper we focus on randomization as a power-
ful tool to increase accuracy and diversity when constructing an ensemble of
classifiers. There are three ways of using randomization:

– Manipulating the input data
– Manipulating the classifier algorithms
– Manipulating the output targets

In this paper we focus on randomizing the input data and the output prediction
of online bagging. The paper is structured as follows: related work is presented
in Section 2. Leveraging bagging is discussed in Section 3. An experimental
evaluation is conducted in Section 4. Finally, conclusions and suggested items
for future work are presented in Section 5.

2 Related Work

Breiman [7] introduced bagging classification using the notion of an order-correct
learner. An order-correct learner φ at the input x is a predictor that if input x
results in a class more often than any other class, then φ will also predict this class
at x more often than any other class. An order-correct learner is not necessarily
an accurate predictor but its aggregated predictor is optimal. If a predictor is
good because it is order-correct for most inputs x then aggregation can transform
it into a nearly optimal predictor. The vital element to gain accuracy is the
instability of the prediction method. A learner is unstable if a small change in
the input data leads to large changes in the output.

Friedman [16] explained that bagging works by reducing variance without
changing the bias. There are several definitions of bias and variance for classi-
fication, but the common idea is that bias measures average error over many
different training sets, and variance measures the additional error due to the
variation in the model produced by using different training sets.

Domingos [13] claimed that Breiman’s line of reasoning is limited, since we
may never know a priori whether a learner is order-correct for a given example
or not, and what regions of the instance space will be order-correct or not. He
explained bagging’s success showing that bagging works by effectively changing
a single-model learner to another single-model learner, with a different implicit
prior distribution over models, one that is less biased in favor of simple models.

Some work in the literature shows that bagging asymptotically performs some
smoothing on the estimate. Friedman and Hall [15] used an asymptotic truncated
Taylor series of the estimate to show that in the limit of infinite samples, bagging
reduces the variance of non-linear components.
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Bühlmann and Yu [10], analyzed bagging using also asymptotic limiting distri-
butions, and they proposed subagging as a less expensive alternative to bagging.
Subagging uses subsampling as an alternative aggregation scheme. They claimed
that subagging is as accurate as bagging but uses less computation.

Grandvalet[19] explained the performance of bagging by the goodness and
badness of highly influential examples, in situations where the usual variance
reduction argument is questionable. He presented an experiment showing that
bagging increases the variance of decision trees, and claimed that bagging does
not simply reduce variance in its averaging process.

In [6] two new state-of-the-art bagging methods were presented: ASHT Bag-
ging using trees of different sizes, and ADWIN Bagging using a change detector
to decide when to discard underperforming ensemble members.

Breiman [8] proposed Random Forests as a method to use randomization on
the input and on the internal construction of the decision trees. Random Forests
are ensembles of trees with the following characteristics: the input training set
is obtained by sampling with replacement, the nodes of the tree only may use
a fixed number of random attributes to split, and the trees are grown without
pruning. Abdulsalam et al. [1] presented a streaming version of random forests
and Saffari et al. [26] presented an online version.

3 Leveraging Bagging

In this section, we present a new online leveraging bagging algorithm, improving
Online Bagging of Oza and Russell. The pseudo-code of Online Bagging of Oza
and Russell is listed in Algorithm 1.

We leverage the performance of bagging, with two randomization improve-
ments: increasing resampling and using output detection codes.

Resampling with replacement is done in Online Bagging using Poisson(1).
There are other sampling mechanisms:

– Lee and Clyde [23] uses the Gamma distribution (Gamma(1,1)) to obtain a
Bayesian version of Bagging. Note that Gamma(1,1) is equal to Exp(1).

– Bulhman and Yu [10] proposes subagging, using resampling without
replacement.

Algorithm 1. Oza and Russell’s Online Bagging for M models
1: Initialize base models hm for all m ∈ {1, 2, ..., M}
2: for all training examples do
3: for m = 1, 2, ..., M do
4: Set w = Poisson(1)
5: Update hm with the current example with weight w
6: anytime output:
7: return hypothesis: hfin(x) = arg maxy∈Y

∑T
t=1 I(ht(x) = y)
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Fig. 1. Poisson Distribution

Our proposal is to increase the weights of this resampling using a larger value
λ to compute the value of the Poisson distribution. The Poisson distribution is
used to model the number of events occurring within a given time interval.

Figure 1 shows the probability function mass of the distribution of Poisson
for several values of λ. The mean and variance of a Poisson distribution is λ. For
λ = 1 we see that 37% of the values are zero, 37% are one, and 26% are values
greater than one. Using a weight of Poisson(1) we are taking out 37% of the
examples, and repeating 26% of the examples, in a similar way to non streaming
bagging. For λ = 6 we see that 0.25% of the values are zero, 45% are lower than
six, 16% are six, and 39% are values greater than six. Using a value of λ > 1
for Poisson(λ) we are increasing the diversity of the weights and modifying the
input space of the classifiers inside the ensemble. However, the optimal value of
λ may be different for each dataset.

Our second improvement is to add randomization at the output of the ensem-
ble using output codes. Dietterich and Bakiri [12] introduced a method based
on error-correcting output codes, which handles multiclass problems using only
a binary classifier. The classes assigned to each example are modified to create
a new binary classification of the data induced by a mapping from the set of
classes to {0,1}. A variation of this method by Schapire [27] presented a form of
boosting using output codes.

We assign to each class a binary string of length n and then build an ensemble
of n binary classifiers. Each of the classifiers learns one bit for each position in
this binary string. When a new instance arrives, we assign x to the class whose
binary code is closest. We can view an error-correcting code as a form of voting
in which a number of incorrect votes can be corrected.

We use random output codes instead of deterministic codes. In standard en-
semble methods, all classifiers try to predict the same function. However, using
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output codes each classifier will predict a different function. This may reduce
the effects of correlations between the classifiers, and increase diversity of the
ensemble.

We implement random output codes in the following way: we choose for each
classifier m and class c a binary value μm(c) in a uniform, independent, and
random way. We ensure that exactly half of the classes are mapped to 0. The
output of the classifier for an example is the class which has more votes of its
binary mapping classes. Table 1 shows an example for an ensemble of 6 classifiers
in a classification task of 3 classes.

Table 1. Example matrix of random output codes for 3 classes and 6 classifiers

Class 1 Class 2 Class 3
Classifier 1 0 0 1
Classifier 2 0 1 1
Classifier 3 1 0 0
Classifier 4 1 1 0
Classifier 5 1 0 1
Classifier 6 0 1 0

We use the strategy of [6] to deal with concept drift. ADWIN [3] is a change
detector and estimator that solves in a well-specified way the problem of tracking
the average of a stream of bits or real-valued numbers. ADWIN keeps a variable-
length window of recently seen items, with the property that the window has
the maximal length statistically consistent with the hypothesis “there has been
no change in the average value inside the window”.

ADWIN is parameter- and assumption-free in the sense that it automatically
detects and adapts to the current rate of change. Its only parameter is a confi-
dence bound δ, indicating how confident we want to be in the algorithm’s output,
inherent to all algorithms dealing with random processes.

Also important for our purposes, ADWIN does not maintain the window explic-
itly, but compresses it using a variant of the exponential histogram technique.

Algorithm 2. Leveraging Bagging for M models
1: Initialize base models hm for all m ∈ {1, 2, ..., M}
2: Compute coloring μm(y)
3: for all training examples (x, y) do
4: for m = 1, 2, ..., M do
5: Set w = Poisson(λ)
6: Update hm with the current example with weight w and class μm(y)
7: if ADWIN detects change in error of one of the classifiers then
8: Replace classifier with higher error with a new one
9: anytime output:

10: return hypothesis: hfin(x) = arg maxy∈Y

∑T
t=1 I(ht(x) = μt(y))



140 A. Bifet, G. Holmes, and B. Pfahringer

This means that it keeps a window of length W using only O(logW ) memory
and O(logW ) processing time per item.

Algorithm 2 shows the pseudo-code of our Leveraging Bagging. First we build
a matrix with the values of μ for each classifier and class. For each new instance
that arrives, we give it a random weight of Poisson(k). We train the classifier
with this weight, and when a change is detected, the worst classifier of the
ensemble of classifiers is removed and a new classifier is added to the ensemble.
To predict the class of an example, we compute for each class c the sum of the
votes for μ(c) of all the ensemble classifiers, and we output as a prediction the
class with the most votes.

4 Comparative Experimental Evaluation

Massive Online Analysis (MOA) [4] is a software environment for implementing
algorithms and running experiments for online learning from data streams. All
algorithms evaluated in this paper were implemented in the Java programming
language by extending the MOA software.

We use the experimental framework for concept drift presented in [6]. Con-
sidering data streams as data generated from pure distributions, we can model
a concept drift event as a weighted combination of two pure distributions that
characterizes the target concepts before and after the drift. This framework de-
fines the probability that a new instance of the stream belongs to the new concept
after the drift based on the sigmoid function.

Definition 1. Given two data streams a, b, we define c = a ⊕W
t0 b as the data

stream built by joining the two data streams a and b, where t0 is the point of
change, W is the length of change, Pr[c(t) = b(t)] = 1/(1 + e−4(t−t0)/W ) and
Pr[c(t) = a(t)] = 1 − Pr[c(t) = b(t)].

In order to create a data stream with multiple concept changes, we can build new
data streams joining different concept drifts, i. e. (((a⊕W0

t0 b) ⊕W1
t1 c) ⊕W2

t2 d) . . ..

4.1 Datasets for Concept Drift

Synthetic data has several advantages – it is easier to reproduce and there is
little cost in terms of storage and transmission. For this paper we use the data
generators most commonly found in the literature.

SEA Concepts Generator. This artificial dataset contains abrupt concept
drift, first introduced in [28]. It is generated using three attributes, where
only the two first attributes are relevant. All the attributes have values be-
tween 0 and 10. The points of the dataset are divided into 4 blocks with
different concepts. In each block, the classification is done using f1 + f2 ≤ θ,
where f1 and f2 represent the first two attributes and θ is a threshold value.
The most frequent values are 9, 8, 7 and 9.5 for the data blocks. In our
framework, SEA concepts are defined as follows:
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(((SEA9 ⊕W
t0 SEA8) ⊕W

2t0 SEA7) ⊕W
3t0 SEA9.5)

Rotating Hyperplane. This data was used as a testbed for CVFDT versus
VFDT in [22]. Examples for which

∑d
i=1 wixi ≥ w0 are labeled positive,

and examples for which
∑d

i=1 wixi < w0 are labeled negative. Hyperplanes
are useful for simulating time-changing concepts, because we can change the
orientation and position of the hyperplane in a smooth manner by changing
the relative size of the weights.

Random RBF Generator. This generator was devised to offer an alternate
complex concept type that is not straightforward to approximate with a
decision tree model. The RBF (Radial Basis Function) generator works as
follows: A fixed number of random centroids are generated. Each center has
a random position, a single standard deviation, class label and weight. New
examples are generated by selecting a center at random, taking weights into
consideration so that centers with higher weight are more likely to be chosen.
A random direction is chosen to offset the attribute values from the central
point. Drift is introduced by moving the centroids with constant speed.

LED Generator. This data source originates from the CART book [9]. An im-
plementation in C was donated to the UCI [2] machine learning repository
by David Aha. The goal is to predict the digit displayed on a seven-segment
LED display, where each attribute has a 10% chance of being inverted. The
particular configuration of the generator used for the experiments (led) pro-
duces 24 binary attributes, 17 of which are irrelevant.

4.2 Real-World Data

The UCI machine learning repository [2] contains some real-world benchmark
data for evaluating machine learning techniques. We consider three of the largest:
Forest Covertype, Poker-Hand, and Electricity.

Forest Covertype. Contains the forest cover type for 30 x 30 meter cells ob-
tained from US Forest Service (USFS) Region 2 Resource Information Sys-
tem (RIS) data. It contains 581, 012 instances and 54 attributes, and it has
been used in several papers on data stream classification [18,25].

Poker-Hand. Consists of 1, 000, 000 instances and 11 attributes. Each record
of the Poker-Hand dataset is an example of a hand consisting of five playing
cards drawn from a standard deck of 52. Each card is described using two
attributes (suit and rank), for a total of 10 predictive attributes. There is
one class attribute that describes the “Poker Hand”.

Electricity is another widely used dataset described by M. Harries [20] and
analysed by Gama [17]. This data was collected from the Australian New
South Wales Electricity Market. In this market, prices are not fixed and are
affected by demand and supply of the market. They are set every five min-
utes. The ELEC dataset contains 45, 312 instances. The class label identifies
the change of the price relative to a moving average of the last 24 hours.
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Table 2. Comparison of Hoeffding Tree, Online bagging and ADWIN bagging. Accuracy
is measured as the final percentage of examples correctly classified over the 1 or 10
million test/train interleaved evaluation. Time is measured in seconds, and memory in
MB. The best individual accuracies are indicated in boldface.

Hoeffding Tree Online Bagging ADWIN Bagging
Time Acc. Mem. Time Acc. Mem. Time Acc. Mem.

RBF(0,0) 0.97 88.10 ± 0.34 141.37 27.35 91.59 ± 0.11 2656.28 27.16 91.58 ± 0.11 3311.22
RBF(50,0.001) 0.97 30.93 ± 0.03 178.30 25.48 32.89 ± 0.04 2894.04 0.25 41.64 ± 0.04 5481.12
RBF(10,0.001) 0.97 80.23 ± 0.15 137.30 26.90 83.39 ± 0.10 2759.74 26.07 83.41± 0.08 3579.72
RBF(50,0.0001) 0.98 35.25 ± 0.09 166.22 27.85 44.48 ± 0.07 3245.18 0.73 60.54± 0.07 5519.06
RBF(10,0.0001) 0.97 80.95 ± 0.14 132.80 27.86 84.59 ± 0.12 2682.15 26.83 84.78± 0.11 3481.96
LED(50000) 1.94 68.50 ± 0.29 22.99 50.93 69.00 ± 0.16 544.15 5.10 73.08± 0.08 541.42
SEA(50) 0.49 86.48 ± 0.06 5.32 12.13 86.83 ± 0.06 86.66 10.23 87.59± 0.29 107.13
SEA(50000) 0.49 86.45 ± 0.07 5.55 12.12 86.79 ± 0.06 91.43 6.32 88.32± 0.14 99.49
HYP(10,0.001) 1.45 80.70 ± 1.44 85.62 57.85 83.05 ± 1.49 2017.98 28.08 90.74± 0.21 2822.05
HYP(10,0.0001) 1.26 84.12 ± 0.75 85.43 48.91 85.88 ± 0.80 1913.85 36.05 91.23± 0.12 3145.88
CovType 2.65 80.70 27.46 59.83 83.93 345.62 4.80 84.91 486.00
Electricity 0.09 79.20 0.98 3.12 82.66 5.88 1.16 84.51 7.13
Poker 0.59 77.10 11.62 13.85 82.29 171.13 0.39 70.68 202.99
CovPokElec 5.69 77.65 62.63 138.09 82.67 1247.47 7.74 76.40 1367.09

74.03 Acc. 77.15 Acc. 79.24 Acc.
0.01 RAM-Hours 2.98 RAM-Hours 1.48 RAM-Hours
2.86 avg. rank 1.79 avg. rank 1.36 avg. rank

Nemenyi significance: Online Bagging Hoeffding Tree; ADWIN Bagging  Hoeffding Tree;

Table 3. Comparison of ADWIN Half subagging, ADWIN subagging, and ADWIN bagging
using all instances. Accuracy is measured as the final percentage of examples correctly
classified over the 1 or 10 million test/train interleaved evaluation. Time is measured in
seconds, and memory in MB. The best individual accuracies are indicated in boldface.

ADWIN Half subagging ADWIN Subagging ADWIN Bagging WT
Time Acc. Mem. Time Acc. Mem. Time Acc. Mem.

RBF(0,0) 23.99 91.22 ± 0.09 3986.69 24.07 91.43 ± 0.11 3896.28 31.50 91.36 ± 0.16 3198.21
RBF(50,0.001) 0.16 43.81 ± 0.03 4887.80 0.16 43.93 ± 0.02 5244.13 0.45 43.66 ± 0.03 6627.15
RBF(10,0.001) 23.28 83.14 ± 0.09 4133.80 23.26 83.29 ± 0.08 4132.29 30.11 83.04 ± 0.16 3353.40
RBF(50,0.0001) 0.37 56.61 ± 0.05 4927.20 0.41 57.07 ± 0.06 5296.05 2.55 72.31 ± 0.08 6682.20
RBF(10,0.0001) 23.14 85.07 ± 0.16 4090.61 23.18 85.12 ± 0.12 4091.19 32.88 84.57 ± 0.11 3272.87
LED(50000) 1.50 73.05 ± 0.07 478.39 1.83 73.11 ± 0.08 515.13 12.28 73.06 ± 0.07 616.17
SEA(50) 4.83 87.43 ± 0.27 82.08 6.13 87.51 ± 0.28 98.79 19.95 87.88 ± 0.36 153.28
SEA(50000) 2.91 87.98 ± 0.17 75.05 3.60 88.17 ± 0.18 92.18 12.46 88.55 ± 0.24 136.75
HYP(10,0.001) 17.81 90.27 ± 0.17 2510.85 20.50 90.35 ± 0.17 2739.65 50.60 90.59 ± 0.20 3786.17
HYP(10,0.0001) 22.51 90.65 ± 0.09 2605.25 23.49 90.73 ± 0.11 2886.55 59.75 91.10 ± 0.12 4075.18
CovType 1.82 82.03 507.03 2.18 82.55 525.32 17.74 88.47 505.22
Electricity 0.57 82.45 6.91 0.62 83.38 7.42 1.99 86.67 8.82
Poker 0.38 69.24 215.07 0.38 69.99 230.15 1.61 77.35 213.41
CovPokElec 3.27 74.16 1647.06 3.37 74.94 1411.78 22.30 82.18 1527.23

78.36 Acc. 78.68 Acc. 81.49 Acc.
1.04 RAM-Hours 1.13 RAM-Hours 2.74 RAM-Hours
2.79 avg. rank 1.64 avg. rank 1.57 avg. rank

Nemenyi significance: ADWIN SubaggingADWIN Half subagging; ADWIN Bagging WTADWIN Half sub-

agging;

We use normalized versions of these datasets, so that the numerical values are
between 0 and 1. With the Poker-Hand dataset, the cards are not ordered, i.e.
a hand can be represented by any permutation, which makes it very hard for
propositional learners, especially for linear ones. We use a modified version,
where cards are sorted by rank and suit, and have removed duplicates. This
dataset loses about 171, 799 examples, and comes down to 829, 201 examples.
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Fig. 2. Accuracy on the SEA data with three concept drifts
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on on the SEA data with three concept drifts, plotting 576 pairs of classifiers

These datasets are small compared to synthetic datasets we consider. Another
important fact is that we do not know when drift occurs or indeed if there is
any drift. We may simulate concept drift, joining the three datasets, merging
attributes, and supposing that each dataset corresponds to a different concept

CovPokElec = (CoverType ⊕5,000
581,012 Poker) ⊕5,000

1,000,000 ELEC

As all examples need to have the same number of attributes, we simply concate-
nate all the attributes, and set the number of classes to the maximum number
of classes of all the datasets.

4.3 Results

We ran three experimental evaluations to test our new leveraging method using
25 classifiers. In the first, in order to understand why online bagging works, we
compare the original Online Bagging, with the ADWIN Bagging presented in [6],
and with two different resampling stategies

– half subagging
– without replacement or subagging
– without taking out all instances (WT)

The second experiment measures accuracy improvement of leveraging bagging.
And finally, the third experiment compares our method against online Random
Forests.

We use the datasets explained in the previous sections for evaluation. The
experiments were performed on 2.66 GHz Core 2 Duo E6750 machines with 4
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Fig. 4. Runtime and memory on the SEA data with three concept drifts
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GB of memory. The evaluation methodology used was Interleaved Test-Then-
Train on 10 runs and 25 classifiers: every example was used for testing the
model before using it to train. This interleaved test followed by train procedure
was carried out on 10 million examples from the hyperplane and RandomRBF
datasets, and one million examples from the SEA dataset. The parameters of
these streams are the following:

– RBF(x,v): RandomRBF data stream of 5 classes with x centroids moving
at speed v.

– HYP(x,v): Hyperplane data stream of 5 classes with x attributes changing
at speed v.

– SEA(v): SEA dataset, with length of change v.
– LED(v): LED dataset, with length of change v.

The Nemenyi test [11] is used for computing significance: it is an appropriate
test for comparing multiple algorithms over multiple datasets, being based on
the average ranks of the algorithms across all datasets. We use a p-value of
0.05. Under the Nemenyi test, {x,y}"{z} indicates that algorithms x and y are
statistically significantly more likely to be more favourable than z.

In [5] we introduced the use of RAM-Hours as an evaluation measure of the
resources used by streaming algorithms. Every GB of RAM deployed for 1 hour
equals one RAM-Hour.

Tables 2, 3 and 4 report the final accuracy, and speed of the classification mod-
els induced on the synthetic data and the real datasets: Forest CoverType,
Poker Hand, Electricity and CovPokElec. Accuracy is measured as the
final percentage of examples correctly classified over the test/train interleaved
evaluation. Time is measured in seconds, and memory in MB. All experiments
are performed using leveraging bagging with Poisson(6), since empirically this
was determined to be the best value. We implemented Online Bayesian Bagging,
but we don’t report the results as they are similar to those using Poisson(1).

We use as a base learner for our experiments the Hoeffding Naive Bayes Tree
(hnbt). Hoeffding trees [14] are state-of-the-art in classification for data streams
and they perform prediction by choosing the majority class at each leaf. Their
predictive accuracy can be increased by adding naive Bayes models at the leaves
of the trees. A Hoeffding Naive Bayes Tree [21] works by performing a naive
Bayes prediction per training instance, and comparing its prediction with the
majority class. Counts are stored to measure how many times the naive Bayes
prediction gets the true class correct as compared to the majority class. When
performing a prediction on a test instance, the leaf will only return a naive Bayes
prediction if it has been more accurate overall than the majority class, otherwise
it resorts to a majority class prediction.

Table 2 reports the accuracy, speed and memory of a Hoeffding Naive Bayes
Tree(hnbt), compared with online bagging of Hoeffding Naive Bayes Tree and
ADWINbagging of Hoeffding Naive Bayes Trees. We observe that online bagging im-
proves the accuracy of a single Hoeffding Naive Bayes Tree from 74.03% to 77.15%.
ADWIN bagging improves this result getting 79.24%. In terms of memory and speed,
the single Hoeffding Naive Bayes Tree is much faster and needs less memory.
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Table 4. Comparison of Leveraging Bagging without using Random Output Codes,
Leveraging Bagging using Random Output Codes, and Leveraging Bagging giving
more weight to missclassified examples. The best individual accuracies are indicated in
boldface.

Leveraging Bagging Leveraging Bagging MC Leveraging Bagging ME
Time Acc. Mem. Time Acc. Mem. Time Acc. Mem.

RBF(0,0) 56.51 91.05 ± 0.06 2862.03 133.63 91.07 ± 0.03 3980.25 23.22 90.11 ± 0.38 5492.83
RBF(50,0.001) 3.31 58.21 ± 0.05 7333.89 181.04 56.64 ± 0.07 6511.17 0.17 44.67 ± 0.02 7674.30
RBF(10,0.001) 61.77 82.45 ± 0.07 2997.72 212.74 82.62 ± 0.06 6518.94 22.89 83.77± 0.15 5153.45
RBF(50,0.0001) 21.55 80.48 ± 0.02 7421.81 73.84 78.42 ± 0.04 5155.42 0.38 58.58 ± 0.07 7375.62
RBF(10,0.0001) 64.86 83.94 ± 0.07 2899.91 249.36 86.00 ± 0.17 7847.99 22.30 86.35± 0.24 5180.18
LED(50000) 27.64 73.10 ± 0.09 714.17 121.15 71.67 ± 0.16 491.14 1.56 73.11± 0.08 647.63
SEA(50) 92.88 88.65 ± 0.15 354.51 96.59 88.50 ± 0.18 362.56 1.27 87.64 ± 0.16 58.92
SEA(50000) 75.12 88.69 ± 0.11 324.51 80.78 88.51 ± 0.10 336.27 1.02 87.31 ± 0.13 59.10
HYP(10,0.001) 409.89 88.66 ± 0.38 11307.98 189.75 88.01 ± 0.43 5537.68 3.89 91.02± 0.07 2047.55
HYP(10,0.0001) 405.58 89.36 ± 0.13 11838.65 207.66 88.63 ± 0.27 5873.24 4.28 91.19± 0.05 2014.43
CovType 49.45 91.29 559.57 43.88 92.53 368.29 1.62 90.96 479.49
Electricity 6.23 88.41 11.11 6.85 87.98 11.56 0.16 88.41 5.88
Poker 32.42 98.03 194.48 47.25 98.76 194.62 0.27 75.87 208.08
CovPokElec 167.47 95.23 1610.18 185.44 95.83 1204.34 2.25 81.80 1360.60

85.54 Acc. 85.37 Acc. 80.77 Acc.
20.17 RAM-Hours 22.04 RAM-Hours 0.87 RAM-Hours

1.79 avg. rank 2.00 avg. rank 2.14 avg. rank

We ran experiments to test three different bagging strategies: subagging (
resampling without replacement), half subagging (resampling without replace-
ment half of the instances), and bagging without taking out any instance. We
implement this third strategy using 1+Poisson(1) instead of Poisson. We tested
the three strategies on ADWIN bagging. Table 3 shows, for these bagging strate-
gies, their accuracy, speed and memory. We observe that using subagging we
get faster methods but less accurate. If we use all instances, it seems that we
improve accuracy but not speed or the memory used.

The learning curves and model growth curves for the Sea dataset are plotted
in Figures 2 and 4. We observe that for this data stream the new leveraging
bagging methods need more time and memory than the other methods, but
they are more accurate.

We use the Kappa statistic κ [6] to show how using Leveraging Bagging with
λ = 6, we increase the diversity of the ensemble. When two classifiers agree on
every example then κ = 1, and when their predictions coincide purely by chance,
then κ = 0.

The Kappa-Error diagram is a scatterplot where each point corresponds to a
pair of classifiers. The x coordinate of the pair is the κ value for the two classifiers.
The y coordinate is the average of the error rates of the two classifiers.

Figure 3 shows the Kappa-Error diagram for the SEA dataset with three
concept drifts and 25 classifiers. We observe that for this dataset the Kappa
statistic for Leveraging Bagging is lower than for Online Bagging, showing the
higher diversity of the output of the classifiers of the Leveraging Bagging method.

Table 4 reports the accuracy, speed and memory of the new Levering Bag-
ging methods using hnbt. We compare Levering Bagging with Levering Bagging
MC without using Random Ouput Codes, and Levering Bagging ME giving
more weight to missclassified examples. In this last method, if an instance is
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Table 5. Comparison of methods using Random Forests: Leveraging Bagging without
using Random Output Codes, Online Bagging, and ADWIN bagging. Accuracy is mea-
sured as the final percentage of examples correctly classified over the 1 or 10 million
test/train interleaved evaluation. Time is measured in seconds, and memory in MB.
The best individual accuracies are indicated in boldface.

RF Leveraging Bagging RF Online Bagging RF ADWIN Bagging
Time Acc. Mem. Time Acc. Mem. Time Acc. Mem.

RBF(0,0) 45.75 90.70 ± 0.05 2193.41 24.99 90.33 ± 0.11 1624.37 24.59 90.31 ± 0.10 1939.25
RBF(50,0.001) 3.54 55.56 ± 0.06 1835.02 24.32 31.31 ± 0.03 1453.76 0.11 34.18 ± 0.02 1177.31
RBF(10,0.001) 49.21 82.13 ± 0.06 2152.77 24.84 81.84 ± 0.09 1691.17 23.93 81.81 ± 0.08 2020.98
RBF(50,0.0001) 23.92 77.77 ± 0.03 2478.19 24.64 39.72 ± 0.08 1783.48 0.39 48.53 ± 0.11 1497.54
RBF(10,0.0001) 51.93 83.45 ± 0.07 2181.24 24.92 82.74 ± 0.05 1702.03 23.95 82.73 ± 0.05 2065.70
LED(50000) 20.90 67.83 ± 0.74 286.48 11.46 60.22 ± 0.71 148.12 3.02 66.12 ± 0.66 166.40
SEA(50) 189.36 87.86 ± 0.13 760.45 63.31 86.86 ± 0.06 176.44 60.39 86.98 ± 0.06 190.24
SEA(50000) 186.40 87.74 ± 0.09 728.12 63.30 86.78 ± 0.06 168.49 59.96 86.88 ± 0.06 185.48
HYP(10,0.001) 143.84 86.09 ± 0.36 5059.25 27.86 80.45 ± 1.47 1484.37 25.39 83.18 ± 0.68 1562.69
HYP(10,0.0001) 132.58 86.73 ± 0.37 4826.40 27.73 83.43 ± 0.89 1460.90 26.30 84.08 ± 0.57 1607.33
CovType 6.98 87.81 162.88 16.05 74.71 130.50 1.07 76.47 140.29
Electricity 2.55 86.85 5.52 1.36 80.08 2.94 0.60 82.44 4.32
Poker 7.38 75.72 92.94 22.69 74.07 88.94 0.44 65.96 81.23
CovPokElec 11.12 73.43 448.82 32.28 68.22 383.78 2.11 69.73 429.11

80.69 Acc. 72.91 Acc. 74.24 Acc.
5.51 RAM-Hours 1.30 RAM-Hours 0.89 RAM-Hours
1.00 avg. rank 2.71 avg. rank 2.29 avg. rank

Nemenyi significance: RF Leveraging BaggingRF Online Bagging; RF Leveraging BaggingRF

ADWIN Bagging;

misclassified it is accepted with a weight of one. If not, it is accepted with
probability eT /(1− eT ), where the error estimate eT is computed as a smoothed
version of the proportion of misclassified examples using the estimation of ADWIN
that is monitoring the error. We observe that the accuracy of the two Leveraging
bagging methods are similar and that they are 6% more accurate than the ADWIN
bagging. When leveraging bagging is used to give more weight to missclassified
examples, it does not seem to increase accuracy. However it improves the need
for RAM-Hours, so the Leveraging Bagging ME is a very good classifier when
resources are scarce.

Finally, we compare our methods with Random Forests. We build Random
Forests using Hoeffding Naive Bayes Trees in the following way: let n be the
number of attributes, we select for each node,

√
(n) attributes randomly, and

we only keep statistics of these attributes. The splits of the node are made using
the best of these attributes, and the predictions at the leaves are made using
only the statistics of these attributes.

We compare using the three bagging methods: online bagging, ADWIN bagging,
and leveraging bagging using 25 classifiers. The results are shown in Table 5. We
see that RandomForests are, for many datasets, twice as fast and use half of the
memory. However their accuracy is 5% below that of using standard Hoeffding
Naive Bayes trees. To obtain the same accuracy as the Hoeffding Naive Bayes
trees, we only need to increase the number of classifiers of the ensemble. We
can observe that using our new leveraging bagging we increase the accuracy of
Random Forests.
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5 Conclusions

We have presented a new leveraging bagging method, that uses randomization on
the weights of the instances of the input stream, to improve the accuracy of the
ensemble classifier. Using random output codes, we may use a binary classifier
without losing accuracy. We tested subagging, half subagging, and bagging with-
out replacement, and these methods performed faster but they are marginally
less accurate. Finally, we have compared our method with Random Forests with
improved results.
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Abstract. Hierarchical clustering methods are widely used in various scientific
domains such as molecular biology, medicine, economy, etc. Despite the maturity
of the research field of hierarchical clustering, we have identified the following
four goals which are not yet fully satisfied by previous methods: First, to guide the
hierarchical clustering algorithm to identify only meaningful and valid clusters.
Second, to represent each cluster in the hierarchy by an intuitive description with
e.g. a probability density function. Third, to consistently handle outliers. And
finally, to avoid difficult parameter settings. With ITCH, we propose a novel clus-
tering method that is built on a hierarchical variant of the information-theoretic
principle of Minimum Description Length (MDL), referred to as hMDL. Inter-
preting the hierarchical cluster structure as a statistical model of the data set, it
can be used for effective data compression by Huffman coding. Thus, the achiev-
able compression rate induces a natural objective function for clustering, which
automatically satisfies all four above mentioned goals.

1 Introduction

Since dendrograms and similar hierarchical representations provide extremely useful
insights into the structure of a data set, hierarchical clustering has become very popu-
lar in various scientific disciplines, such as molecular biology, medicine, or economy.
However, well-known hierarchical clustering algorithms often either fail to detect the
true clusters that are present in a data set, or they identify invalid clusters, which are
not existing in the data set. These problems are particularly dominant in the presence of
noise and outliers and result in the questions “How can we decide if a given represen-
tation is really natural, valid, and therefore meaningful?” and “How can we enforce a
hierarchical clustering algorithm to identify only the meaningful cluster structure?”

Information Theory for Clustering. We give the answer to these questions by relating
the hierarchical clustering problem to that of information theory and data compression.
Imagine you want to transfer the data set via an extremely expensive and small-banded
communication channel. Then you can interpret the cluster hierarchy as a statistical
model of the data set, which defines more or less likely areas of the data space. The
knowledge of these probabilities can be used for an efficient compression of the data
set: Following the idea of (optimal) Huffman coding, we assign few bits to points in
areas of high probability and more bits to areas of low probability. The interesting ob-
servation is the following: the compression becomes the more effective, the better our
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(a) Data set:
Δ display outliers.

(b) Hierarchical
representation.

(c) Cluster contents on each level
modeled by PDFs.

Fig. 1. Contributions of ITCH

statistical model, the hierarchical cluster structure, fits to the data. This so-called Mini-
mum Description Length (MDL) principle has recently received increasing attention in
the context of partitioning (i.e. non-hierarchical) clustering methods. Note that it can
not only be used to assess and compare the quality of the clusters found by different
algorithms and/or varying parameter settings. Rather, we use this concept as an ob-
jective function to implement clustering algorithms directly using simple but efficient
optimization heuristics.

In this paper, we extend the idea of MDL to the hierarchical case and develop hMDL
for hierarchical cluster structures. Whereas previous MDL approaches can only eval-
uate the result of partitioning clustering methods, our new hMDL criterion is able to
assess a complete cluster hierarchy. Moreover, hMDL can be used in combination with
an optimization heuristic to exactly determine that cluster hierarchy, which optimizes
the data compression according to the MDL criterion.

Challenges and Contributions. With an assessment condition for cluster hierarchies,
we develop a complete hierarchical clustering approach on top of the idea of hMDL.
This proposed algorithm ITCH (Information-Theoretic Cluster Hierarchies) yields nu-
merous advantages, out of which we demonstrate the following four:

1. All single clusters as well as their hierarchical arrangement are guaranteed to be
meaningful. Nodes only are placed in the cluster hierarchy if they improve the
data compression. This is achieved by optimizing the hMDL criterion. Moreover, a
maximal consistency with partitioning clustering methods is obtained.

2. Each cluster is represented by an intuitive description of its content in form of a
Gaussian probability density function (PDF). Figure 1(c) presents an example of a
3-stage hierarchy. The output of conventional methods is often just the (hierarchi-
cal) cluster structure and the assignment of points.

3. ITCH is outlier-robust. Outliers are assigned to the root of the cluster hierarchy or
to an appropriate inner node, depending on the degree of outlierness. For example,
in Figures 1(a) and 1(b) the outlier w.r.t. the three red clusters at the bottom level is
assigned to the parent cluster in the hierarchy, marked by a red triangle.

4. ITCH is fully automatic as no difficult parameter settings are necessary.

To the best of our knowledge, ITCH is the only clustering algorithm that meets all of
the above issues by now. The remainder of this paper is organized as follows: Sec-
tion 2 gives a brief survey of related work. Section 3 presents a derivation of our hMDL
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criterion and introduces the ITCH algorithm. Section 4 documents the advantages of
ITCH on synthetic and real data sets. Section 5 summarizes the paper.

2 Related Work

Hierarchical Clustering. One of the most widespread approaches to hierarchical clus-
tering is the Single Link algorithm [12] and its variants [14]. The resulting hierarchy
obtained by the merging order is visualized as a tree, which is called dendrogram. Cuts
through the dendrogram at various levels obtain partitioning clusterings. However, for
complex data sets it is hard to define appropriate splitting levels, which correspond to
meaningful clusterings. Furthermore, outliers may cause the well-known Single Link
effect. Also, for large data sets, the fine scale visualization is not appropriate. The algo-
rithm OPTICS [1] avoids the Single Link effect by requiring a minimum object density
for clustering, i.e. MinPts number of objects are within a hyper-sphere with radius ε.
Additionally, it provides a more suitable visualization, the so-called reachability plot.
However, the problem that only certain cuts represent useful clusterings still remains
unsolved.

Model-based Clustering. For many applications and further data mining steps, it is
essential to have a model of the data. Hence, clustering with PDFs, which goes back
to the popular EM algorithm [8], is a widespread alternative to hierarchical clustering.
After a suitable initialization, EM iteratively optimizes a mixture model of K Gaussian
distributions until no further significant improvement of the log-likelihood of the data
can be achieved. Usually a very fast convergence is observed. However, the algorithm
may get stuck in a local maximum of the log-likelihood. Moreover, the quality of the
clustering result strongly depends on an appropriate choice of K , which is a non-trivial
task in most applications. And even with a suitable choice of K the algorithm is very
sensitive w.r.t. noise and outliers.

Model-based Hierarchical and Semi-supervised Clustering. [22] proposes a hierar-
chical extension of EM to speed up query processing in an object recognition applica-
tion. In [6] a hierarchical variant of EM is applied for image segmentation. Goldberger
and Roweis [9] focus on reducing the number of clusters in a mixture model. The con-
sistency with the initial clustering is assured by the constraint that objects belonging
to the same initial cluster must end up after the reduction in the same new cluster as
well. Each of these approaches needs a suitable parameter setting for the number of
hierarchy levels. Clustering respecting some kind of hierarchy can also be regarded as
semi-supervised clustering, i.e. clustering with side information. In most of some re-
cently published papers [13,4,3], this information is introduced by constraints on the
objects and typically consists of strong expert knowledge. In contrast, ITCH does not
consider any external information. The data itself is our single source of knowledge.

Information Theory in the Field of Clustering. Only a few papers on compression
based clustering, that avoid difficult parameter settings have been published so far. X-
Means [16], G-Means [11] and RIC [5] focus on avoiding the choice of K in partition-
ing clustering by trying to balance data likelihood and model complexity. This sensitive
trade-off can be rated by model selection criteria, among them the Akaike Information
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Criterion (AIC), the Bayesian Information Criterion (BIC) and Minimum Description
Length (MDL) [10]. X-Means provides a parameter-free detection of spherical Gaus-
sian clusters by a top-down splitting algorithm, which integrates K-Means clustering
and BIC. G-Means extends this idea to detect non-spherical Gaussian clusters. The
model selection criterion of RIC is based on MDL, which allows to define a coding
scheme for outliers and to identify non-Gaussian clusters.

There is a family of further closely related ideas, such as Model-based Clustering [2],
the work of Still and Bialek [20] and the so-called Information Bottleneck Method [21],
introduced by Tishby et al. This technique aims at providing a quantitative notation of
meaningful or relevant information. The authors formalize this perception by finding
the best tradeoff between accuracy and complexity when clustering a random variable
X , given a joint probability distribution between X and an observed relevant variable
Y . It is used for clustering terms and documents [19]. However, all parameter-free al-
gorithms mentioned so far, do not provide any cluster hierarchy. One recent paper [7]
presents a new method for clustering based on compression. In the first step, this method
determines a parameter-free, universal, similarity distance, computed from the lengths
of compressed data files. Afterwards a hierarchical clustering method is applied. In
contrast to ITCH, this work was not designed to handle outliers in an appropriate way.
Furthermore, no description of the content of a cluster is available.

3 Information-Theoretic Hierarchical Clustering

The clustering problem is highly related to that of data compression: The detected clus-
ter structure can be interpreted as a PDF fΘ(x) where Θ = {θ1, θ2, ...} is a set of
parameters, and the PDF can be used for an efficient compression of the data set n. It is
well-known that the compression by Huffman coding is optimal if the data distribution
really corresponds to fΘ(x). Huffman coding represents every point x by a number of
bits which is equal to the negative binary logarithm of the PDF:

Cdata(x) = − log2(fΘ(x)).

The better the point set corresponds to fΘ(x), the smaller the coding costs Cdata(x)
are. Hence, Cdata(x) can be used as the objective function in an optimization algo-
rithm. However, in data compression,Θ serves as a code book which is required to de-
code the compressed data set again. Therefore, we need to complement the compressed
data set with a coding of this code book, the parameter set Θ. When, for instance, a
Gaussian Mixture Model (GMM) is applied, Θ corresponds to the weights, the mean
vectors and the variances of the single Gaussian functions in the GMM. Considering
Θ in the coding costs is also important for the clustering problem, because neglecting
it leads to overfitting. For partitioning (non-hierarchical) clustering structures, several
approaches have been proposed for the coding of Θ [16,17,18] (cf. Section 2). These
approaches differ from each other because there is no unambiguous and natural choice
for a distribution function, which can be used for the Huffman coding of Θ, and differ-
ent assumptions lead to different objective functions. In case of the hierarchical cluster
structure in ITCH, a very natural distribution function for Θ exists: With the only ex-
ception of the root node, every node in the hierarchy has a parent node. This parent
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node is associated with a PDF which can naturally be used as a code book for the mean
vector (and indirectly also for the variances) of the child node. The coding costs of the
root node, however, are not important, because every valid hierarchy has exactly one
root node with a constant number of parameters, and therefore, the coding costs of the
root node are always constant.

3.1 Hierarchical Cluster Structure

In this Section, we formally introduce the notion of a hierarchical cluster structure
(HCS). A HCS contains clusters {A,B, ...} each of which is represented by a Gaus-
sian distribution function. These clusters are arranged in a tree:

Definition 1 (Hierarchical Cluster Structure). (1) A HCS is a tree T = (N , E)
consisting of a set of nodes N = {A,B, ...} and a set of directed edges E = {e1, e2, ...}
where A is a parent of B (B is a child of A) iff (A,B) ∈ E . Every node C ∈ N is
associated with a weight WC and a Gaussian PDF defined by the parameters μC and
ΣC such that the sum of the weights equals one:∑

C∈N
WC = 1.

(2) If a path from A to B exists in T (or A = B) we call A an ancestor of B (B a
descendant of A) and write B # A.
(3) The level lC of a node C is the height of the descendant subtree. If C is a leaf, then
C has level lC = 0. The root has the highest level (length of the longest path to a leaf).

The PDF which is associated with a cluster C is a multivariate Gaussian in a
d-dimensional data space which is defined by the parameters μC and ΣC (where μC =
(μC,1, ..., μC,d)T is a vector from a d-dimensional space, called the location parameter,
and ΣC is a d× d covariance matrix) by the following formula:

N(μC , ΣC , x) =
1√

(2π)d · |ΣC |
· e−

1
2 (x−μC)T·Σ−1

C ·(x−μC).

For simplicity we restrict ΣC = diag(σ2
C,1, ..., σ

2
C,d) to be diagonal such that the mul-

tivariate Gaussian can also be expressed by the following product:

N(μC , ΣC , x) =
∏

1≤i≤d

N(μC,i, σ
2
C,i, xi)

=
∏

1≤i≤d

1√
2πσ2

C,i

· e
− (xi−μi)

2

2σ2
C,i .

Since we require the sum of all weights in a HCS to be 1, a HCS always defines
a function whose integral is ≤ 1. Therefore, the HCS can be interpreted as a com-
plex, multimodal, and multivariate PDF, defined by the mixture of the Gaussians of the
HCS T = (N , E):

fT (x) = max
C∈N

{WC N(μC , ΣC , x)} with
∫

Rd

fT (x)dx ≤ 1.
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If the Gaussians of the HCS do not overlap much, then the integral becomes close to 1.
The operations, described in Section 3.3, assign each point x ∈ DB to a cluster of

the HCS T = (N , E). We distinguish between the direct and the indirect association.
A point is directly associated with that cluster C ∈ N the probability density of which
is maximal at the position of x, and we write C = Cl(x) and also x ∈ C, with:

Cl(x) = arg max
C∈N

{WC ·N(μC , ΣC , x)} .

As we have already stated in the introduction, one of the main motivations of our hi-
erarchical, information-theoretic clustering method ITCH is to represent a sequence of
clustering structures which range from a very coarse (unimodal) view to the data dis-
tribution to a very detailed (multi-modal) one, and that all these views are meaningful
and represent an individual complex PDF. The ability to cut a HCS at a given level L is
obtained by the following definition:

Definition 2 (Hierarchical Cut). A HCS T ′ = (N ′, E ′) is a hierarchical cut of a HCS
T = (N , E) at level L (in symbols: T ′ = HCL(T )), if the following properties hold:
(1) N ′ = {A ∈ N |lA ≥ L},
(2) E ′ = {(A,B) ∈ E|lA > lB ≥ L},
(3) For each A ∈ N ′ the following properties hold:

W ′
A =

{
WA if lA > L∑

B∈N ,B�AWB otherwise,

where WC and W ′
C is the weight of node C in T and T ′, respectively.

(4) Analogously, for the direct association of points to clusters the following property
holds: Let x be associated with Cluster B in T , i.e. Cl(x) = B. Then in T ′, x is
associated with:

Cl′(x) =
{
B if lB ≥ L
A|B # A ∧ lA = L otherwise.

Here, the weights of the pruned nodes are automatically added to the leaf nodes of
the new HCS, which used to be the ancestors of the pruned nodes. Therefore, the sum
of all weights is maintained (and still equals 1), and the obtained tree is again a HCS
according to Definition 1. The same holds for the point-to-cluster assignments.

3.2 Generalization of the MDL Principle

Now we explain how the MDL principle can be generalized for hierarchical clustering
and develop the new objective function hMDL. Following the traditional MDL prin-
ciple, we compress the data points according to their negative log likelihood corre-
sponding to the PDF which is given by the HCS. In addition, we penalize the model
complexity by adding the code length of the HCS parameters to the negative log like-
lihood of the data. The better the PDFs of child nodes fit into the PDFs of the parent,
the less the coding costs will be. Therefore, the overall coding costs corresponds to
the natural, intuitive notion of a good hierarchical representation of data by distribu-
tion functions. The discrete assignment of points to clusters allows us to determine the
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(a) Exact coding
of μB .

(b) Inexact coding
of μB .

(c) Different
Gaussians w.r.t.
different grid positions.

(d) All possible values
for recovered μB .

Fig. 2. Optimization of the grid resolution for the hMDL criterion

coding costs of the points clusterwise and dimensionwise, as explained in the follow-
ing: The coding costs of the points associated with the clusters C ∈ N of the HCS
T = (N , E) corresponds to:

Cdata = − log2

∏
x∈DB

max
C∈N

{
WC

∏
1≤j≤d

N(μC,j , σ
2
C,j , xj)

}
.

Since every point x is associated with that cluster C in the HCS which has maximum
probability density, we can rearrange the terms of the above formula and combine the
costs of all points that are in the same cluster:

= −
∑

x∈DB

log2

(
WCl(x)

∏
1≤j≤d

N(μCl(x),j , σ
2
Cl(x),j, xj)

)

= −
((∑

C∈N
nWC log2WC

)
+
( ∑

x∈DB;

∑
1≤j≤d

log2N(μCl(x),j, σ
2
Cl(x),j , xj)

))

= −
∑

C∈N

(
nWC log2WC +

∑
x∈C;

∑
1≤j≤d

log2N(μC,j , σ
2
C,j , xj)

)
.

The ability to model the coding costs of each cluster separately allows us now, to focus
on a single cluster, and even on a single dimension of a single cluster. A common inter-
pretation of the term −nWC log2WC , which actually comes from the weight a single
Gaussian contributes to the GMM, is a Huffman coding of the cluster ID. We assume
that every point carries the information which cluster it belongs to, and a cluster with
many points gets a shortly coded cluster ID. These costs are referred to the ID cost of a
cluster C. Lets consider two clusters, A and B, where B # A. We now want to derive
the coding scheme for the cluster B and its associated points. Several points are asso-
ciated with B, where the overall weight of assignment sums up to WB . When coding
the parameters of the associated PDF of B, i.e. μB , and σB , we have to consider two
aspects: (1) The precision both parameters should be coded to minimize the overall de-
scription length depends on WB , as well as on σB . For instance, if only few points are
associated with clusterB and/or the variance σB is very large, then it is not necessary to
know the position of μB very precisely and vice versa. (2) The knowledge of the PDF
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of clusterA can be exploit for the coding of μB , because for likely positions (according
to the PDF of A) we can assign fewer bits. Basically, model selection criteria, such as
the Bayesian Information Criterion (BIC) or the Aikake Information Criterion (AIC)
already address the first aspect, but not the hierarchical aspect. To make this paper self
contained, we consider both aspects. In contrast to BIC, which uses the natural loga-
rithm, we use the binary logarithm to represent the code length in bits. For simplicity,
we assume that our PDF is univariate and the only parameter is its mean value μB . We
neglect σB by assuming e.g. some fixed value for all clusters. We drop these assump-
tions at the end of this section. When the true PDF of cluster B is coded inexactly by
some parameter μ̃B , the coding costs for each point x (which truly belongs to the dis-
tribution N(μB , σ

2
B, x)) in B is increased compared to the exact coding of μB , which

would result in cex bits per point:

cex =
∫ +∞

−∞
− log2(N(μB , σ

2
B, x)) ·N(μB, σ

2
B , x) dx = log2(σB

√
2π · e).

If μ̃B instead of μB is applied for compression, we obtain:

c(μ̃B , μB) =
∫ +∞

−∞
− log2(N(μ̃B, σ

2
B , x)) ·N(μB, σ

2
B, x)dx.

The difference is visualized in Figure 2(a) and 2(b) respectively: In 2(a) μ̃B of the
coding PDF, depicted by the Gaussian function, fits exactly to μB of the data distri-
bution, represented by the histogram. This causes minimum code lengths for the com-
pressed points but also a considerable effort for the coding of μB . In Figure 2(b) μB

is coded by some regular quantization grid. Thereby, the costs for the cluster points
slightly increase, but the costs for the location parameter decreases. The difference be-
tween μ̃B and μB depends on the bit resolution and on the position of the quantiza-
tion grid. One example is depicted in Figure 2(b) by five vertical lines, the Gaussian
curve is centered by the vertical line closest to μB . We derive lower and upper limits of
μ̃B ∈ [μB −1/2b...μB +1/2b] from the number of bits b, spent for coding μ̃B . The real
difference between μB and μ̃B depends again on the grid position. Not to prefer clusters
that are incidentally aligned with the grid cells, we average over all possible positions
of the discretization grid. Figure 2(c) presents five different examples of the infinitely
many Gaussians that could be recovered w.r.t. different grid positions. Note that all po-
sitions inside the given interval have equal probability. Hence, the average coding costs
for every possible position of μ̃B can be expressed by the following integral:

cappx(b) = 2b−1
∫ μB+1/2b

μB−1/2b

c(μ̃B , μB) dμ̃B

=
1
2

log2(π · e · σ2
B) +

1
2

+
log2 e
6σ2

B

· 4−b.

Coding all n · WB coordinates of the cluster points as well as the parameter μB (ne-
glecting the ID cost) requires then the following number of bits:

Cappx(B) = cappx(b) · n ·WB + b.

The optimal number bopt of bits is determined by setting the derivation of the above
term to zero.
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d
db
Cappx(B) = 0 =⇒ bopt =

1
2

log2(
n ·WB

3 · σ2
B

).

The unique solution to this equation corresponds to a minimum, as can easily be seen
by the second derivative.

Utilization of the Hierarchical Relationship. We do not want to code the (inexact) po-
sition of μB without the prior knowledge of the PDF associated with clusterA. Without
this knowledge, we would have to select a suitable range of values and code μB at the
determined precision b assuming e.g. a uniform distribution inside this range. In con-
trast, μB is a value taken from the distribution function of clusterA. Hence, the number
of bits used for coding of μB corresponds to the overall density around the imprecise
interval defined by μB , i.e.

chMDL(μB) = − log2

∫ μB+1/2b

μB−1/2b

N(μA, σ
2
A, x) dx.

Figure 2(d) visualizes the complete interval of all possible values for the recovered
mean value (marked in red) and illustrates the PDF of the clusterA, which is the prede-
cessor of clusterB. μ̃B can be coded by determining the whole area under the PDF ofA
where μ̃B could be. The area actually corresponds to a probability value. The negative
logarithm of this probability represents the required code length for μB . The costs for
coding all points of cluster B and μB then corresponds to

cappx(b) · n ·WB + chMDL(μB).

Note, that it is also possible to optimize b directly by setting the derivative of this for-
mula to zero. However, this is impossible in an analytic way, and the difference to the
optimum which is obtained by minimizing Cappx(B) is negligible. In addition, if the
parent A of B is not the root of the HCS, μB causes some own ID cost. In this case,
μB is a sample from the complex distribution function of the hierarchical cut (cf. Defi-
nition 2), which prunes the complete level of B and all levels below. Hence, the weight
of these levels is added to the new leaf nodes (after cutting), and the ID costs of μB

correspond to:
− log2 (

∑
X�A

WX).

A similar analysis can be done for the second parameter of the distribution function,
σB . Since it is not straightforward to select a suitable distribution function for the Huff-
man coding of variances, one can apply a simple trick: Instead of coding σB , we code
yB = μB ± v · σB , where v is a constant close to zero. Then, yB is also a sample
from the distribution function N(μA, σ

2
A, x) and can be coded similar to μB . There-

fore, chMDL(σB) = chMDL(μB), and we write chMDL(param) for the coding costs
per parameter instead. In general, if the PDF, which is associated with a cluster has r
parameters, then the optimal number of bits can be obtained by the formula:

bopt =
1
2

log2(
n ·WB

3 · r · σ2
B

).

And the overall coding costs are:
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ChMDL(B) = cappx(b) · n ·WB + r · chMDL(param)

Until now, only the trade-off between coding costs of points and the parameters of the
assigned cluster are taken into account. If we go above the lowest level of the HCS, we
have to trade between coding costs of parameters at a lower level and coding costs of
the parameters at the next higher level. This can be done in a similar way as before: Let
bB be the precision, which has already been determined for the representation of μB

and σB , the parameters for cluster B, which is a subcluster of A. However, this is the
minimum coding costs assuming that μA and σA have been stored at maximum preci-
sion, and that μB and σB are also given. Now, we assume that μB is an arbitrary point
selected from the distribution function N(μA, σ

2
A, x) and determine an expectation for

the cost: ∫ +∞

−∞
− log2

∫ μB+1/2bB

μB−1/2bB

N(μA, σ
2
A, x)dx N(μA, σ

2
A, μB)dμB .

Finally, we assume that μA is also coded inexactly by its own grid with resolution bA.
Then the expected costs are:

2bA−1
∫ μA+1/2bA

μA−1/2bA

∫ +∞

−∞

(
− log2

∫ μB+1/2bB

μB−1/2bB

N(y, σ2
A, x) dx

)
·

·N(μA, σ
2
A, μB) dμB dy.

Since it is analytically impossible to determine the optimal value of bA, we can easily
get an approximation of the optimum by simply treating μB and σB like the points
which are directly associated with the cluster A. The only difference is the follow-
ing. While the above integral considers that the PDF varies inside the interval [μB −
1/2bB , μB + 1/2bB ] and determines the average costs in this interval, treating the pa-
rameters as points only considers the PDF value at one fixed position. This difference is
negligible provided that σB < σA, which makes sense as child clusters should usually
be much smaller (in terms of σ) than their parent cluster.

Coding Costs for a Cluster. Summarizing, the coding costs for a cluster can be ob-
tained as follows: (1) Determine the optimal resolution parameter for each dimension
according to the formula:

bopt =
1
2

log2(
n ·WB + r · #ChildNodes(B)

3 · r · σ2
B

).

(2) Determine the coding costs for the data points and the parameters according to:

ChMDL(B) = cappx(b) · n ·WB + r · chMDL(param)

(3) Add the costs obtained in step (2) to the ID costs of the points (−nWB log2(WB))
and of the parameters (− log2(

∑
X�AWX)). Whereas the costs determined in (2) are

individual in each dimension the costs in (3) occur only once per stored point or param-
eter set of a cluster.

Coding Costs for the HCS. The coding costs for all clusters sum up to the overall
coding costs of the hierarchy where we define constant ID costs for the parameters of
the root:
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hMDL =
∑

C∈N

(
ChMDL(C) − nWC log2(WC) − log2(

∑
X�parent of C

WX)
)

·

3.3 Obtaining and Optimizing the HCS

We optimize our objective function in an EM-like clustering algorithm ITCH. Reas-
signment of objects and re-estimation of the parameters of the HCS are done inter-
changeably until convergence. Starting from a suitable initialization, ITCH periodically
modifies the HCS.

Initialization of the HCS. Clustering algorithms that follow the EM-scheme have to
be suitable initialized before starting with the actual iterations of E- and M-step. An
established method is to initialize with the result of a K-Means clustering. This is typi-
cally repeated several times with different seeds and the result with best mean squared
overall deviation from the cluster centers is taken. Following this idea, ITCH uses a
initialization hierarchy determined by a bisecting K-Means algorithm taking the hMDL
value of the HCS as a stopping criterion for partitioning. First, a root node that contains
all points is created. Then this root node is partitioned into two subclusters by applying
K-Means with K = 2. This is done recursively until the hMDL of the binary HCS
does not improve anymore within three steps. This ensures not to get stuck in a local
minimum. Finally, after the best hierarchy is selected, μC and ΣC are determined for
each node C according to Section 3.2, and equal weights are assigned to the nodes, to
ensure that clusters compeed likewise for the data points.

E-step and M-step. Whenever an object is associated directly to a cluster C then it
is also indirectly associated with every ancestor of C. Nevertheless, points can also
be directly associated not only to leaf nodes but also to inner nodes of the HCS. For
instance, if a point Pi is an outlier w.r.t. any of the clusters at the bottom level of the
HCS, then Pi has to be associated with an inner node or even the root. As established in
Section 3.1, the clusters at all levels of the HCS compete for the data points. A point x
is directly associated with that Cluster C ∈ N the probability density function of which
is maximal:

Cl(x) = arg max
C∈N

{WC ·N(μC , ΣC , x)} .

In the E-step of our hierarchical clustering algorithm, the direct association Cl(x) for
every object x is updated. Whereas, in the E-step only the direct association is used
in the M-step which updates the location and scale parameters of all clusters we use
both the direct and indirect association. The motivation is the following: The distribu-
tion function of every node in the HCS should always represent the whole data set in
this branch of the tree, and the root node should even represent the complete data set.
Therefore, for the location and scale parameters, all directly and indirectly associated
objects are considered, as in the following formulas:

μC =

∑
B∈N ,B�C

(∑
x∈B x

)∑
B∈N ,B�C |B| , σ2

C,j =

∑
B∈N ,B�C

(∑
x∈B(xj − μC,j)2

)∑
B∈N ,B�C |B|

ΣC = diag(σ2
C,1, ..., σ

2
C,d).

In contrast, the weight WC of each cluster should reflect the strenght of the individual
Gaussian in the overall mixture of the HCS and sum up to 1 in order to define a valid
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PDF with an integral over the complete data space of 1. Therefore, we use the direct
associations for calculating the cluster weight with WC = |C|.

Rearrangement of the HCS
The binary HCS that results from the ini-

C

(a) Initial. (b) Deletion.

C´

(c) Collapse.

Fig. 3. Restructure operations of ITCH

tialization, does not limit our generality.
ITCH is flexible enough to convert the ini-
tial HCS into a general one. Given a binary
hierarchy, which is deeper than any n-ary
hierarchy with n > 2, ITCH aims in flatten-
ing the HCS as far as the rearrangement im-
proves our hMDL criterion. Therefore we
trade off the two operations delete or col-
lapse a node to eliminate clusters that do
not pay off any more. Figure 3 visualizes
the operations for an extract of a given HCS. By deleting a cluster C, the child nodes of
C become child nodes of the parent of C (Figure 3(b)). By collapsing C, all of its child
nodes are merged into a new cluster C′ (including C), and therefore all of their child
nodes become child nodes of C′ (Figure 3(c)). Afterwards all points are redistributed,
and E- and M-step are performed alternately until convergence. ITCH rearranges the
HCS in an iterative way. In each iteration we tentatively delete/collapse each node in the
HCS and perform E- and M-steps. Then first, the node and the operation that improves
the hMDL criterion best is selected and second, the corresponding local neighborhood
(parent, child and sibling nodes) is processed. These two steps are performed alternately
until convergence.

4 Experimental Evaluation

Since ITCH is a hybrid approach combining the benefits of hierarchical and model-
based clustering, we compare to algorithms of both classes to demonstrate the effec-
tiveness of ITCH. We selected Single Link (SL) which probably is the most common
approach to hierarchical clustering. As especially on noisy data, SL suffers from the so-
called Single Link effect, we additionally compare to OPTICS, a more outlier-robust
hierarchical clustering algorithm. Unless otherwise mentioned, OPTICS is parameter-
ized with ε = 10, 000 and MinPts = 10. For an extensive description of parameter-
ization strategies, we refer to [1]. Furthermore, we compare to RIC, an outlier-robust
and parameter-free state-of-the-art algorithm to model-based clustering. In all plots, we
mark cluster points by circles and outliers by triangles respectively. To relieve evalua-
tion w.r.t. outliers, we added a color bar below the dendrograms of SL and the reacha-
bility plots of OPTICS, where colors refer to the class labels in the original data.

4.1 Synthetic Data

Experiments on DS1 demonstrate the superiority of ITCH on hierarchical data sets.
DS1 comprises about 3,500 2-dimensional points that form a hierarchy of 12 clusters
with outliers at different levels of the hierarchy. Seven Gaussian clusters are located at
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(a) Synthetic data set DS1.

cut at reachabilitycut at reachability

distance = 10

(b) Result of OPTICS. (c) Result of RIC.

Cut 1 Cut 2

(d) Result of SL. (e) Cut 1. (f) Cut 2.

(g) Result of ITCH including the PDFs for each cluster at level 0 and 1.

Fig. 4. Experimental evaluation on synthetic data set DS1

the bottom level (Figure 4(a)). Experiments on DS2 indicate the limitations of exist-
ing approaches to form meaningful clusters in extremely noisy non-hierarchical data.
DS2 is composed of two Gaussian clusters with 1,650 points each, overlapping in the
marginal area without any global outliers. The quantitative evaluation of the results is
always performed w.r.t. the “true” hierarchies present in these data sets.

Experimental Evaluation on DS1. As Clusters can be recognized as valleys in the
reachability plot, OPTICS yields a satisfactory result (Precision: 94.8% Recall: 95.4%
w.r.t. reachability distance < 10). But without our added color bar it would be impossi-
ble to spot the outliers since high distance peaks can also be caused by the usual jumps
(Figure 4(b)). At a first glance, the SL-hierarchy (Figure 4(d)) reflects the true hierar-
chy quite well. However, a closer look at the data partitioning w.r.t. different cuts does
not lead to meaningful clusters. Figure 4(e) illustrates the data that refers to a cut re-
sulting in seven clusters. SL identifies only five clusters and three outliers (Precision:
70.0% Recall: 85.9%). The four clusters on the left side are wrongly combined into two
clusters. Even at a much deeper split (Figure 4(f)) this effect remains for the orange
cluster. Actually, the cluster quality is getting worse (Precision: 8.5% Recall: 9.0%) as
the multiple outliers w.r.t. the three subclusters on the right side cause the well-known
SL effect. Even though, each outlier is assigned to a single cluster the points marked
by a red circle are not identified as outliers. Altogether, it is extremely hard to find the
right parameter to cut through the dendrogram which gives a meaningful cluster repre-
sentation. In order to apply RIC to the hierarchical data set, we preprocessedDS1 with
SL and applied RIC as postprocessing step in each level of the hierarchy. Figure 4(c)
demonstrates the result when applying RIC to Cut 1 of the SL dendrogram (Precision:
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(a) Result of RIC. (b) Result of OPTICS. (c) Result of SL.

(d) Result of ITCH including the PDFs for both clusters at level 0.

Fig. 5. Experimental evaluation on synthetic data set DS2

94,9% Recall: 92,2%). It is obvious that even RIC fails to successfully filter out all out-
liers. More precisely, RIC assigns points (marked by a dark blue and orange triangle
in the original data) that obviously are outliers w.r.t. two clusters on the left upper and
lower side misleadingly to clusters. Also a majority of the red outliers are incorrectly
identified as cluster points. ITCH is the best method to detect the true cluster hierarchy
including outliers fully automatically (Precision: 93.8% Recall: 97.5%), and ITCH pro-
vides meaningful models on the data for each level of the hierarchy (Figure 4(g)).

Experimental Evaluation on DS2. Figure 5(a) demonstrates that RIC merges the two
Gaussian clusters into only one cluster (Precision: 50.0% Recall: 100.0%). Also with
OPTICS, it is impossible to detect the true structure of DS2. The color bar in Fig-
ure 5(b) indicates that OPTICS assigns the points in an almost arbitrary order. Even
when increasing the parameter for the minimum object density per cluster to a large
value, OPTICS fails in detecting two clusters. SL miscarries due to the massive SL ef-
fect (Figure 5(c)). Here, OPTICS is not suitable to cure that problem. Moreover, the
hierarchies generated by OPTICS and SL are overly complex but do not capture any
cluster structure. Hence, it is not possible to evaluate these results in a quantitative fash-
ion. Only ITCH discovers a meaningful result without requiring any input parameters
(Precision: 99.2% Recall: 99.7%). All clusters that do not pay off w.r.t. our hMDL are
pruned and hence, only two Gaussian clusters remain in the resulting flat hierarchy
which are described by an intuitive description in form of a PDF (Figure 5(d)).

4.2 Real World Data

Finally, we show the practical application of ITCH on real data sets available at UCI1.

Glass Data. The Glass Identification data set comprises nine numerical attributes repre-
senting different glass properties. 214 instances are labelled according to seven different
types of glass that form a hierarchy as presented in Figure 6(a). ITCH perfectly sepa-
rates window glass from non window glass. Additionally, tableware and containers are

1 http://archive.ics.uci.edu/ml/

http://archive.ics.uci.edu/ml/
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29 headlamps9 tableware13 containers0 vehicle76 building17 vehicle70 building

float processed non float processed

window glass non window glass

glass types

(a) Hierarchy in the original data set.

(b) Result of SL. (c) Result of OPTICS. (d) Result of ITCH.

Fig. 6. Hierarchical clustering of 9-dimensional glass data (214 instances)

almost perfectly separated from headlamps. The four subclusters of window glass are
very similar. Hence, ITCH arranges them at the same level. Some outliers are directly
assigned to window glass. In contrast to ITCH, neither SL nor OPTICS separates win-
dow glass from non window glass perfectly (Figures 6(b) and 6(c)). Containers and
tableware do not form discrete clusters but are constituted as outliers instead. In the
dendrogram only the headlamps can be identified, whereas in the reachability plot two
clusters are visible. Nevertheless, both approaches do not reflect the original hierarchy
successfully. As it is not clear where to define an adequate cut through the dendro-
gram we applied RIC at the bottom level. This results in only two clusters without any
separation between window glass or non window glass.

Cancer Data. The high-dimensional Breast Cancer Wisconsin data set contains 569
instances each describing 30 different characteristics of the cell nuclei, where each in-
stance is either labelled by benign (blue) or malignant (red). OPTICS and SL both fail to
detect a clear cluster structure in this data set (Figures 7(a) and 7(b)). Hence, we applied
RIC on top of a K-Means clustering with K=15. As stated by the authors we chose K
large enough compared to the number of classes. However, RIC also fails and results
in three mixed clusters. In contrast, despite the high dimensionality of the data, ITCH
almost perfectly separates the benign from the malignant objects which are then split

(a) Result of SL. (b) Result of OPTICS. (c) Result of ITCH.

Fig. 7. Hierarchical clustering of 30-dimensional breast cancer data (569 instances)
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into different subclusters (Figure 7(c)). This result is consistent with previous findings
as the two classes exhibit a degree of overlap with each other [15].

4.3 Stability of ITCH

Since we do not want to rely on single results we ad-
glass
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glass
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cancer

3 89%DS1
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0.12%
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3.89%

Fig. 8. Stability of the ITCH result
over 20 runs

ditionally tested the stability of ITCH over 20 runs
for each data set. Figure 8 shows the variance of the
hMDL value in percent depending on the mean value.
The result of ITCH is highly stable within DS1, DS2
having only a variance of 0.03% and 0.12%, respec-
tively. Also in the real world data sets the result of
ITCH shows only little variance.

5 Conclusions

We have introduced a new hierarchical clustering method to arrange only natural, valid,
and meaningful clusters in a hierarchical structure – ITCH. ITCH is based on an ob-
jective function for clustering that was guided by the information-theoretic idea of data
compression. We have shown that without difficult parameter settings ITCH finds the
real cluster hierarchy effectively, and that it provides accurate and intuitive interpretable
information in a wide variety of domains, even in the presence of outliers.

Acknowledgements. We thank Johannes Huber for assisting us with the evaluation.
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Abstract. Query logs of search engines record a huge amount of data
about the actions of the users who search for information on the Web.
Hence, they contain a wealth of valuable knowledge about the users’
interests and preferences, as well as the implicit feedback that Web
searchers provide when they click on the results obtained for their queries.

In this paper we propose a general and completely unsupervised
methodology for query-log analysis, which consists of aggregating multi-
ple graph representations of a query log, tailored to capturing different
semantic information. The combination is carried out by applying sim-
ple but efficient graph-mining techniques. We show that our approach
achieves very good performance for two different applications, which are
classifying query transitions and recognizing spam queries.

1 Introduction

The Web-search experience is nowadays part of the life of a continuously grow-
ing number of people. According to a recent study released by ComScore1, the
global Web-Search Market has increased by 41% in 2009, reaching more than 113
billion searches. Unique users and penetration2 have experienced an impressive
growth in the last decade. The most up-to-date estimations report the Internet
is currently used by more than one fourth of the whole world population. More-
over, the highest growth rates have been observed within those segments of the
world market where penetration is still very low.

The results of these studies provide clear evidence of the fact that, despite
the massive user adoption and the maturity of the services offered by the Web
industry, further efforts are still needed to conquer those fractions of the market
where the Web experience is newer and penetration less exhaustive.

Commercial search engines attempt to improve the appeal and the usability
of their services by offering tools like query recommendation, user profiling and
� Part of this work was done while visiting Yahoo! Research Labs, Barcelona.
1 http://www.comscore.com/
2 http://www.internetworldstats.com/stats.htm

J.L. Balcázar et al. (Eds.): ECML PKDD 2010, Part I, LNAI 6321, pp. 168–183, 2010.
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spam detection. They invest considerable amounts of resources in the develop-
ment of instruments for gathering novel knowledge about the users’ interests.

In this scenario, query-log analysis is broadly applied to obtain useful insights
about the way users refine their queries, and the search strategies they apply
to satisfy their information needs. Recent studies [7,17,20] have shown that the
wealth of information stored in search logs can be successfully used to build a
very accurate characterization of query reformulation types, which is a key step
towards improving the service provided by search engines and developing inno-
vative web-search paradigms. However, the most commonly adopted approaches
share a major limitation, which is to be found in the usage of supervised learning,
be it as a sole learning mechanism, or combined with classifiers and exact look-
up on dictionaries. These editorial resources are very costly, and thus difficult to
obtain for specific languages or cultures.

In this paper, we study the problem of developing effective approaches for
query-log analysis. We aim to develop methods that are simple and at the same
time able to deal with huge data volumes. The approach we propose is completely
unsupervised and based on the map/reduce paradigm.

We use graph structures to build compact and navigable representations of the
information extracted from query logs. The idea of inferring graphs from query
logs has been extensively explored by recent research [5,6,7,12,14,24]. The above
works focus on the analysis of a single graph, which tipically captures only some
particular aspects of the interactions between users and search engines. None
of these approaches is able to exploit exhaustively the huge amount of hidden
information available in the log.

In this work, we propose to analyze query-log data through the joint mining
of multiple graphs, as the combination of them is the ultimate wisdom-of-crowds
approach. More specifically, our main contributions are listed below.

– We present Coniunge et Impera, a general framework for query-log analysis,
designed to provide an effective support for the execution of many tasks that
are relevant from a search-engine point of view. The fundamental building
blocks of our framework consist of (i) a collection of graph projections ex-
tracted from a query log according to different semantic criteria, and (ii) a
set of operations to be used for mining and maintenance purposes.

– Concerning the choice of the graph representations, we build three graphs
that relate queries according to various types of information: common words,
common clicked results, session information. The definitions we use are in-
troduced by Baeza-Yates [2].

– The toolbox built for graph analysis includes set operations and more com-
plex graph operations, like extraction of subgraphs, connected components
and articulation points. The choice of the operations was driven by the ap-
plications we had in mind, which are extensively described in the paper.
Although interesting results can be obtained by applying operations as sim-
ple as set operations, we will show that more complex graph algorithms are
needed to exploit all the wealth of information enclosed in the graphs.
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– The operations are also used for the maintenance of the framework: for ex-
ample, the union of two graphs can be computed to merge the data extracted
from consecutive snapshots of a query log. The extraction of subgraphs can
be applied to restrict the analysis to a subset of queries satisfying some
particular conditions.

– To demonstrate the practical applicability and usefulness of our method, we
analyze a large query log provided by a commercial search engine and we
show how to customize our approach for two different applications, namely,
classifying query transitions and recognizing spam queries.

We remark the fact that our work aims at providing a general instrument that
can be useful for many different problems. For this reason, we impose no restric-
tions on the building blocks of our system, and we intentionally leave room for
extensions. For example, more complex graph definitions could be introduced to
analyze the semantics behind queries at a finer granularity.

It is also worth to observe that the approach we follow is completely unsuper-
vised: it does not require the usage of any knowledge bases or other expensive edi-
torial resources. This characteristic makes the method very general and applicable
to different data, without any kind of linguistic and culture-specific issues.

The remainder of the paper is organized as follows. Section 2 discusses previ-
ous work. In section 3, we present the definitions used to extract different graphs
from raw logs. Section 4 introduces the set of instruments that we included in
our framework for mining and maintenance purposes. Various examples of the
practical usefulness of the chosen operations are provided. Next, we show how to
customize the Coniunge et Impera methodology for classifying query transitions
(see Section 5) and for detecting spam queries (Section 6). Finally, Section 7
offers our concluding remarks.

2 Related Work

Inferring graphs from query logs. The idea of extracting a graph structure
from query-logs has been introduced in the last decade. The attention on the
possibilities offered by using graphs to mine different semantic information im-
plicitly contained in query-logs was formalized by the work of Baeza-Yates [2].
Here five different types of such graphs, relying on different criteria to connect
queries by edges (e.g. common words, common clicked URLs), are studied.

Click graphs [6,12,24] have been extensively used for various purposes. A click
graph is a query-document bipartite graph, where a query is connected to the
documents that were clicked in the associated result list.

Inspired by the works on click graphs, Baeza-Yates and Tiberi [5] propose a
novel way to represent queries in a vector space based on a graph derived from
the query-click bipartite graph. This graph is then used to find similar queries.

Starting from the click graph, Castillo et al. [10] define two alternative graphs,
the view graph and the anti-click graph. In the view graph the edge set of the
click graph is replaced with the one containing edges that relate a query to
the documents whose URL has been viewed in the answer list returned to the
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user, but not necessarily clicked. The view graph is a generalization of the click
graph since each click is also a view. The anti-click graph intends to capture the
negative feedback that users implicitly give to a top-ranked document when they
ignore it by clicking on documents ranked below. This graph contains one edge
between a query and any not-clicked documents ranked higher than one clicked
by the user.

Boldi et al. [7] introduce the query-flow graph, which models user behavioral
patterns and query dependencies. In this graph, a directed edge from one query
to another means that the two queries are likely to be part of the same search
mission. Any path over the query-flow graph may be seen as a searching behavior,
whose likelihood is given by the strength of the edges along the path.
Similarity or distance between queries. Projecting query-logs on graphs
is not the only way to infer semantic relations from implicit user feedback. The
most explored approach consists of defining a similarity function between queries.

Raghavan and Sever [21] propose to measure the similarity between two
queries through the mining of the differences in the ordering of the documents
retrieved. Due to a matter of scalability, this technique is not of practical use
when one has to deal with the whole Web.

Wen et al. [24] cluster similar queries to support recommendations for queries
frequently submitted to search engines. They use several notions of query dis-
tance, based either on the keywords composing the query text or on the set of
common clicked URLs.

Fonseca et al. [15] use association rules to discover related queries. Their
approach views the log as a set of transactions, thus failing in discovering the
most interesting related queries, which are the ones submitted by different users.
It also encounters problems in determining successive query sessions that belong
to the same search process.

Baeza-Yates et al. [3,4] introduce a term-weight vector model to represent
queries. In this model, a weight is assigned to each term occurring in the content
of the Web pages clicked after a query, depending on the number of occurrences
of the query within the log and on the number of clicks of the documents which
the term appears in.

3 Preliminaries

3.1 Query Graphs

We analyze query-log data by building different query graphs to capture the vari-
ous semantic aspects of the relations between queries. We use the term query graph
to refer to a graph G = (V,E,wV , wE) extracted from a snapshot of a search-
engine log, such that the set of nodes V comprises all the distinct queries appear-
ing in the log, whereas the edges in the set E denote the existence of a particular
semantic relation between queries, depending on a specific criterion considered in
the graph definition. The weighting functions WV : V → N and WE : E → R
are respectively used to associate nodes and edges with a weight whose meaning
changes depending on the information used to generate the graph.
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Table 1. Graph definitions: Summary

Graph feature Word graph Session graph Click graph

Edge Common words Consecutive appear-
ance in a session

Common clicked re-
sults

Node weight # Occurrences # Sessions # Occurrences

Edge weight # Common words in
the text of qi and qj

# Sessions in which qi

and qj appear sequen-
tially

Cosine similarity of
the vectors of URLs
clicked for qi and qj

(a) (b)

(c)

Fig. 1. Sample graphs for audrey hepburn: Word (a), Click (b) and Session (c) graph

In this paper, we generate three query graphs using the definitions of Word
Graph, Session Graph and Click Graph (called Url Cover Graph in the original
paper) formalized by Baeza-Yates [2]. We summarize the definitions in Table 1
and give an example of each graph in Figure 1.

Dataset. We studied a sample log of early 2008 from the Yahoo! UK search en-
gine. The raw data consisted of a sequence of annotated sessions, containing more
than 20 million distinct queries. Following [2] and [7], we removed the queries
containing non-English characters. Motivated by preliminary assessments, we
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Table 2. Basic statistics

Graph # Nodes # Edges # Isolated nodes # CC Size of largest CC

Word graph 801 876 565 095 123 121 423 135 942 649 298
Click graph 801 876 21 971 751 161 344 195 379 549 217
Session graph 801 876 6, 654 614 25 657 26 199 775 096

filtered out the queries with less than 5 occurrences in the log, and we retained
a common subset of queries to avoid the dishomogeneties caused by the different
definitions. Table 2 reports statistics about the three graphs we built.

4 A Software Framework for Query-Log Graphs

We now describe the algorithms included in our framework. We carefully studied
the operations that were necessary for the purposes of (i) data mining, and
(ii) manteinance of the framework. We selected a collection of initially minimal
and crucial mining tools that are listed below. The presentation is intentionally
informal and descriptive. The list should by no means be considered exhaustive.
Different operations might be needed for different applications.

A recent work [16] proposes a formal algebra that manipulates graphs as basic
units of information, maintaining the same basic characteristics and the same
expressive power as the relational algebra. We don’t follow a similar approach
because we aim at handling complex graph problems, which cannot be efficiently
represented and studied by means of relational algebra.

4.1 Operations

We use both binary operations and unary operations.
Binary operations. The binary operations are the fundamental set operations
that can be applied on graphs: union, intersection, difference.

– Union. Given two query graphsG andH , their union is represented by a graph
F = G ∪H such that V (F ) = V (G) ∪ V (H) and E(F ) = E(G) ∪ E(H).
Example. The union of two graphs is a critical operation for the mainte-
nance of our framework: it is necessary to merge data extracted from different
snapshots of the log. Updates are needed from time to time to regenerate
the graphs, given that the information extracted from query logs suffers a
slow aging effect, as demonstrated in [18].

– Difference. The set difference of two graphs G and H is a graph F = G \H
such that V (F ) = V (G) \ V (H) and E(F ) = E(G) \ E(H).
Example: Similar queries. Identifying queries that express closely related
information needs is crucial task for generating query recommendations [4].
In the Coniunge et Impera framework, a very simple solution for the problem
of detecting queries that are semantically, but not sintactically similar con-
sists of computing the set difference between the Click graph and the Word
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graph: the edges included in the result connect queries that have common
clicked results, and thus are likely to be related to the same topic despite the
fact that their texts have no common words. The edge weights of the click
graph can be used to filter out the least significant relations.

– Intersection. The intersection of two graphsG andH is a graph F = G ∩H
such that V (F ) = V (G) ∩ V (H) and E(F ) = E(G) ∩ E(H).
Example: Finding logical sessions. Identifying changes in the search
mission, that is, in the information need [7,17] expressed by a user within
a given session, is a critical issue for modeling user behavior and predicting
user satisfaction. To detect different search missions within a user session, we
compute the set difference between the Session graph and the intersection
of the Click graph and the Word graph.

Note. The set operations can be applied on graphs that have weights both on
the nodes and on the edges. We impose no restrictions on how to combine the
weights, as the best choice depends on the particular task that one has in mind.

Unary operations. We consider the following unary operations:

– Node filter. Given a query graph G and a mathematical condition c, this
operation returns a query graph H corresponding to the induced subgraph
of G whose vertex set is formed by all the vertices in V (G) associated with
weights satisfying c.

– Edge filter. Given a query graph G and a mathematical condition c, this
operation returns the (non-induced) subgraph of G whose vertex set includes
all the vertices in V (G), while the set of edges is formed by the edges in E(G)
associated with a weight that satisfies the specified condition.
Examples. We used the filter operations in the preliminary phases of our
study, when we extensively analyzed the structural properties of the graphs
extracted from the log. We tested various thresholds on the weights of nodes
and edges, to study the differences between the resulting denser or sparser
versions of the graphs.
The filter operations allow to select portions of the graphs that are relevant
for a particular application. For example, if we aim to detect similar queries,
we can apply an edge filter on the Click graph, selecting the edges with a
large weight. In the Click graph, a large-weight edge indicates a significant
degree of similarity in the results clicked for the two queries. We applied this
idea in our methods for detecting error corrections (see Section 5).
An opposite filter is needed to identify spam queries, i.e., queries that at-
tract a high number of spam pages in their result set. The heuristic we
developed for this application, which is presented in Section 6, exploits the
fact that a low-weight edge in the Click graph is indication of a relation of
very poor quality between the queries connected by such edge. The clicked
results shared by these queries are usually spam or multi-topical URLs. The
queries containing these URLs in their set of answers are included into a
base set of spam candidates.
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– Connected components. This operation takes a query graph G and re-
turns a set of graphs S = {G1, G2, . . . , Gk}, such that, for each i = 1, 2, . . . , k,
Gi is isomorphic to a maximal connected subgraph of G.
Example: Clustering queries. The computation of the connected compo-
nents in the Session graph and/or in the Click graph is required for the task
of clustering queries, which is useful for many purposes, such as re-ranking,
query recommendation, and finding logical sessions.

– Biconnected components. This operation takes a query graph G and re-
turns a set of graphs S = {G1, G2, . . . , Gk} such that, for each i = 1, 2, . . . , k,
G is isomorphic to a maximal biconnected subgraph of G.

– Articulation points. Given a query graphG, this operation returns a set of
query instancesS = {q1, q2, . . . , qk} such thatS ⊆ V (G) and, for i = 1, 2, . . . , k
qi is an articulation point inG. An articulation pointmay belong to one or more
biconnected component.
Example: Polysemic queries. Polysemic queries [19,23] are related by a
syntactic point of view (for instance, they share one or more common words
in their text representations), but they cover unrelated semantic aspects.
Articulation points in the Click graph and/or in the Word graph are natural
candidates for word polysemy.

4.2 Graph Extraction and Representation

The raw data we analyzed consisted of a set of annotated sessions, containing
20 million distinct queries.

For efficiency and scalability, we used Hadoop’s MapReduce3 to extract the
query graphs. MapReduce [13] is a popular programming model for processing
large-scale data. This model allows users to write map/reduce components that
are scheduled to distributed resources for processing, with a transparent handling
of problems like parallelization, network communication, and fault tolerance.

Due to lack of space, we do not describe the three algorithms we implemented
to generate the graphs. Our procedures cascade a sequence of 3-5 MapReduce
jobs, which are used to gather the specific data that is needed to interconnect
queries and to create the adjacency list of each query.

We ran the MapReduce routines on a server with 3G RAM. We needed 2
hours to generate the Session graph and 4 hours to create the Word graph and
the Click graph. The time required for the Session graph was lower because
the particular format of the input data made the extraction of the information
required for this graph immediate. Altogether, the time used for generating the
three graphs is less than half a day for our sample log. We also observe that our
toolbox allows an incremental construction of the query graphs.

The operations included in our framework are complex and procedural by na-
ture; they require global computations that involve all the nodes in a graph. This
consideration oriented us towards the choice of compressed graph representations
to store and manipulate our data.

3 http://hadoop.apache.org/common/docs/current/mapred_tutorial.html

http://hadoop.apache.org/common/docs/current/mapred_tutorial.html
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Compressed graph representations have become very attractive, as they allow
to overcome the limitations encountered by many modern applications, whose
storage requirements exceed the capacity of the faster memories.

Web search uses graphs as natural models for the Web structure. Several
algorithms that are used by search engines to rank pages, discover communities
and so on are run on these Web graphs.

For graph representation, we use Webgraph [9], a framework that obtains
state-of-the-art results in terms of compression through the combination of sev-
eral mechanisms, such as node reordering, differential encoding, compact interval
representations, and references to similar adjacency lists.

Starting from a raw input of ∼ 30GB, we obtained three representations of
the following sizes: 500M for the Word graph, 500M for the Click graph, and
20M for the Session graph.

Exploting the fact that our graphs are compact and can be efficiently kept in
main memory for navigation purposes, we developed main-memory implementa-
tions of our algorithms. Due to lack of space, we omit details about the specific
realizations, which are all based on standard algorithms. All the operations re-
quire time linear in the size of the input graphs. In our experiments, we reported
running times in the order of minutes for all the algorithms implemented.

We also explored the possibility of developing MapReduce realizations for
our algorithms. We decomposed each operation into a series of MapReduce pro-
cesses, adopting an approach similar to [11]. The obtained implementations are
still inefficient, mostly because many operations are based on graph traversal,
which requires a large number of iterations because a mapper can only read a
random record for each map operation. J.Ekanayake [1] has recently developed
i-MapReduce, a streaming-based framework that supports iterative MapReduce
computations. We plan to explore the usage of this instrument in future work.

5 Classifying Query Transitions

We now show how to apply our methodology to the task of classifying query
transitions. By transition we mean a pair of queries that a user submitted con-
secutively to a search engine. The analysis of these query sequences is extremely
important for the purpose of understanding how the users reformulate their
queries to gather information of better quality.

Retrieving information from the Web is a process that requires a continual
interaction between the user and the search engine. Only in half of the cases
an information need is satisfied with just a single query [22]. In the other cases,
the user submits a refined query, because she is not satisfied with the documents
obtained in the first attempt. This might happen for various reasons, for example
because the former query contained errors, or it was either too general or too
specific for the purpose the user had in mind. A transition between queries that
are part of the same search mission is usually referred to as a query reformulation.

Characterizing query reformulation patterns is a task of critical importance
to improve the relevance of web-search results, or to refine tools for query
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recommendation. Following the taxonomy introduced and used in [7,8], we focus
on the task of recognizing the following types of query transitions:

– Error correction: the user is trying a different spelling or capitalization of
a query. Example: audry hepburn, audrey hepburn.

– Generalization: the second query is more general than the first one.
Example: audrey hepburn quotes, audrey hepburn.

– Specialization: the first query is more specific than the second one.
Example: audrey hepburn films, audrey hepburn breakfast tiffany s.

– Parallel move: the user is modifying her query to search for something
related but not equivalent. Example: audrey hepburn, sophia loren.

– Different mission: the user is trying to satisfy a completely different in-
formation need. Example: audrey hepburn, runners world.

The last two types of query transitions, Parallel move and Different mission,
can be considered as belonging to a broader category, which comprises the tran-
sitions that represent a change in the information need expressed by the user.
In the work of Jones et al. [17], these two transition types are both labeled as
Different chain. We adopt the same approach, aggregating Parallel move and
Different mission into a more general category, which we call Different goal. In
the remainder of this section we describe how to extract and aggregate infor-
mation from the Word graph, the Click graph and the Session graph to classify
query transitions.

5.1 Unsupervised Approach to Query Transition Classification

Our method for classifying query transitions combines three independent heuris-
tics, which are tailored to labelling non-overlapping sets of transitions. This is
an extremely advantageous characteristic, which implies that the three building
blocks of our approach can be either applied in parallel, for example on a grid,
or they can be executed consecutively in a sequential setting, from the most
to the least aggressive approach, so that the amount of data to be analyzed is
drastically reduced at each step.

Algorithm 1: Identifying different goals. Our first algorithm aims at recog-
nizing transitions between two queries that express a different search goal. The
algorithm computes the set difference between the Session graph and the union
of the Click graph and the Word graph. This corresponds to filtering the edges of
the Session graph to retain only the transitions connecting two queries that have
no common clicked results and no common words in their text representations.

Algorithm 2: Error corrections with no common words. An Error cor-
rection is a query reformulation that the user submits to fix a typo, usually
trying a different spelling or capitalization of a query. Our second algorithm
detects error corrections involving queries with no words in common.
Step 1: Edge filter on the Click Graph. We start from the Click graph and
we filter out the edges whose weight is less than 0.3. In this way, we only retain
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the top 10% strongest semantic relations, which is useful because in the case of
an error correction the search goal remains the same.
Step 2: Intersection with the Session graph. We intersect the subset of
the Click graph that was computed in the previous step with the Session graph:
This is needed to identify query transitions.
Step 3: Set difference with the Word graph. We compute the set difference
between the subgraph obtained at the previous step and the Word graph: this
is required to remove transitions with common words. (These transitions are
considered by our third algorithm).
Step 4: Filter by Click labels. We refine the partial result obtained in the
previous step by selecting the edges whose type label in the Click graph is equal
to 2, meaning that the set of results clicked for the first query is strictly contained
in the set of answers associated with the second query. Upon detecting errors
in the text of the query submitted by a user, search engines suggest the proper
spelling, presenting the top-ranked answers of the correct formulation in the
first positions of the result list. This practice makes the above condition on click
labels very likely to be satisfied by error-correction transitions.
Step 4: Filter by edit distance. Finally, we use Levehnstein distance to isolate
error corrections from other cases. We retain only the transitions for which the
edit distance between the two queries is no greater than 0.2. The threshold was
chosen after experimenting with different values (0.2, 0.3, 0.4): As expected, the
lower the threshold, the more we are effective in isolating error corrections from
other reformulations.

Algorithm 3: Transitions involving queries with common words. Our
last algorithm analyzes the transitions involving queries with common words in
their text representations.
Step 1: Intersection between the Session graph and the Word graph.
This is needed to isolate the set of transitions we want to focus on. Many types of
reformulations are characterized by overlapping query texts. A number of tests
are applied to distinguish the various cases.
Step 2. The text of the first query is a subset of the text of the second query:
then we label the transition as Specialization.
Step 3. The text of the first query is a superset of the text of the second query:
then we label the transition as Generalization.
Step 4. We use edit distance to isolate error corrections.

5.2 Evaluation

We used an annotated query-flow graph [8] extracted from the same log snapshot
as the ground truth for evaluating the quality of results. This graph originally
contained ∼ 21M nodes and ∼ 43M edges. Restricting to the nodes included in
our query graphs, we extracted a subgraph that contains ∼ 3.5M edges.

The model introduced by Boldi et al. [8] and used to annotate the edges
of the query-flow graph is able to produce an automatic classification of query
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Table 3. Classification of query transitions: quality of results

Transition type TP TN FP FN Precision Recall Accuracy

Different Goal 2 594 560 318 125 516 501 4 970 0.834 0.998 0.848
Generalization 58 627 3 366 295 2 660 6 574 0.956 0.899 0.997
Specialization 179 774 2 827 724 19 426 639 0.999 0.296 0.878
Error Correction 60 330 3 249 459 21 685 102 682 0.736 0.370 0.964

reformulation types with an accuracy as high as 92%. This method represents
the state of the art for classifying query transitions: However, we remark the fact
that this is a supervised approach, based on machine learning from a human-
labeled log sample.

To evaluate the quality of our method, we compared the classification generated
by our algorithms with the labels associated to the same transitions in the query-
flow graph. We computed True Positives, True Negatives, False Positives, False
Negatives, Precision, Recall, and Accuracy. Results are shown in Table 3.

We report the global evaluation of our methodology in Table 3. We remark
two main results. The first one is that every part of our methodology relies on
merging the information coming from at least two different query graphs. The
second one is that the approach is totally unsupervised, and uses operations
which are linear in the size of the graphs involved. Moreover, since the subsets
of transitions labeled by each heuristic do not overlap, the number of edges to
consider decreases at each step.

Altogether, the labels obtained with our method agreed with those assigned
to the same transitions in the query-flow graph in 84% of the cases. More specif-
ically, we obtained very good results in the cases of generalization and different
goal, for which we measured an accuracy respectively of 99 and 85%. On the
other end, we noticed a very low recall in the case of specialization and error
correction. Since the query-flow graph was labeled using a model, we wondered
whether this poor accuracy could be induced by errors in the query-flow graph
rather than in our methodology.

To investigate this hypothesis, we manually evaluated a random sample of
the transitions for which our method and the one based on the query-flow graph
did not agree. We selected 1K transitions labeled as specialization in the query-
flow graph, and 1K transitions labeled as error correction. We considered the
transitions divided into buckets according to their frequency of occurrence in
the log. Three human assessors were asked to evaluate the transitions, assigning
them one of the reformulation types considered in this study.

We assumed the manual assessment to be the golden truth for the sample, and
we measured how well the two automatic classification methods (ours, and the
one using the query-flow graph) agreed with the golden truth. The evaluation
gave the following results: the labels produced by our method agreed with the
ones assigned by human assessors in 80.4% of cases, while the query-flow-graph
labels resulted equal to the ground truth in 12.8% of cases.
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To evaluate the statistical significance of this result, we associated each auto-
matic method with a vector that has a cell for each sampled transition, contain-
ing a 1 if the label assigned by the method agreed with the ground truth, and
a 0 otherwise. We them performed a Wilcoxon signed-rank test, comparing the
positive differences between the judgements obtained for the two methods. The
test determined a statistical significance at p � 1% for the difference between
our methodology and the query-flow graph.

Hence, we believe that the actual precision of our approach is higher than the
one obtained with this experiment, and that the disagreement with the query-
flow graph is due to errors in the model used by the latter method to train the
classifier.

6 A Heuristic for Detecting Spam Queries

Spam queries [10] are queries that generate a high number of spam pages in
the top positions of their lists of answers. Identifying these queries can uncover
meaningful information for the task of designing more robust spam-detection
algorithms. We now focus on detecting queries that have collected many spam
results. Spam pages typically include many unrelated keywords or links, adver-
tising and machine-generated content. These characteristics make spam pages
likely to be selected as answers for very different queries, which may express
unrelated or poorly related information needs.

We use the Click graph to identify candidate spam pages. Given that spam
pages often cover a large number of unrelated topics, we follow the approach
suggested in [5] to identify multitopical URLs. In the Click graph, low-weight
edges indicate a poor-quality relation between the involved queries. In our ex-
periment, we consider all the edges whose weight is < 0.005; in this way, we
isolate the least significant 25% edges in the graph.

We count each edge as a spamicity vote for all the URLs in the intersection of
the result sets associated with the two queries. We consider the top 200 URLs
that obtain the highest number of votes. All the queries that have one of these
URLs in their result set form a clique in the Click graph. We retain the groups
of queries that are also mutually connected in the other graphs.

As a result, we obtain a list of 9 140 queries. We filter out the queries that
have more than 1K occurrences to get rid of navigational queries. We then sort
the queries by decreasing degree in the Click graph and we select the top 10%
of the queries with highest degree: the intuition is that queries that form small
dense subgraphs in the three graphs, while maintaining many connections to
other nodes in the graph, are good spam candidates. In the end, we extract a
set of 928 queries.

6.1 Experimental Evaluation

The above method led us to isolate 928 queries. We tested the effectiveness
of our strategy by conducting an experimental evaluation aimed to assess the
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Table 4. (a): Top categories obtained from Yahoo! Directory (b): Examples of spam
queries extracted from the graphs

(a)

Level 1 Level 2

Regional Shopping
Business and Economy US States
Entertainment Countries
Arts Business
Society and Culture Music
Recreation Movies
Computers and Internet TV Shows
News and Media Humanities
Government Actors

(b)

Query Spam 1st Category Cat.

filma shqiptar 5 Video 1
pro wresting 1 Entertainment 11
shapely figures 5 Entertaniment 9
video eyewear 3 Business 11
ana visi 2 Entertainment 1
make money 6 Entertainment 10
spanked cutie 5 Recreation 10
suger babes 4 Adult 1
pin up girls 4 Art/Shopping 11

spamicity of the selected queries. For each query, we manually evaluated its
ability of attracting spam results by resubmitting it to the Yahoo! search engine
and counting the number of spam pages obtained within the top ten results.
We marked as spam every query containing at least one spam result in the top
answers.

Given that no agreement on a univocal definition of spam page has been
reached so far, we enforced the strength of our judgements following the label-
ing guidelines used in the construction of the WEBSPAM-UK20074 collection,
which is a Web spam dataset built through the collaborative effort of a team of
volunteers to advance research on Web spam detection.

We matched the top results obtained for each query selected by our algorithm
against the Yahoo! Directory. Table 4(a) shows the most frequent categories
associated with the results returned for the queries. Only the top levels are
considered: Level 1 is the top category, Level 2 the second highest category. The
main categories obtained include Shopping, Business, Movies, Sex and Adult
galleries.

The results obtained in the assessment phase are really encouraging: two thirds
of the evaluated queries collected at least one spam result, and thus were marked
as spam queries. A few examples are shown in Table 4(b), which reports, for
each query, the number of spam results, the main category assigned by Yahoo!
Directory and the number of different categories associated.

The inspection of the categories obtained for our sample set makes us notice
that most of the queries analyzed, even those that are not classified as spam,
are associated with (top) results related to adult, celebrities, video or shopping.
We believe this is a confirmation of the effectiveness of our strategy for selecting
queries that are characterized by a significant degree of spamicity, or, if not
spam, by the covering a broad set of topics.

The peculiar nature of the queries discovered by our heuristic suggests an
immediate application of the tool to developing parental filters.

4 http://www.yr-bcn.es/webspam/datasets/uk2007/guidelines/

http://www.yr-bcn.es/webspam/datasets/uk2007/guidelines/
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6.2 Conclusions

In this work we have introduced the idea of combining different graph represen-
tations of query logs coming from different relevance signals, to be able to tackle
different problems related to queries in a completely unsupervised manner. This
is very important in cases where we do not have enough labeled data such as in
non-popular languages.

The combination of the graph is done with very simple operations over graphs.
In spite of the simplicity of the approach we show that we can obtain very good
results for two different applications as detecting the type of a query transition
or query spam. The former can be used to adapt the ranking of new queries,
whereas the results obtained in the latter case could be used directly in the
design of parental filters.

Further work includes scalability issues of the methods proposed, testing our
implementation in an iterative map/reduce scenario as well as apply these ideas
to other applications. In fact, the same ideas could be applied to the identifi-
cation of polysemic queries, the recognition of logical sessions (missions) or for
query recommendations. We believe that the approach introduced in this paper
will be a valid support for the analysis of the huge amount of data stored in the
logs of search engines. Our methodology can provide efficient methods for com-
bining different aspects of the same multi-faceted scenario and acquiring novel
knowledge that might not be obtained through other methods, in particular if
we have the restriction of having to use unsupervised methods.
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Abstract. The discovery of process models out of system traces is a
problem that has received significant attention in the last years. In this
work, a theory for the derivation of a Petri net from a set of traces is
presented. The method is based on the theory of abstract interpretation,
which has been applied successfully in other areas. The principal applica-
tion of this theory is Process Mining, an area that tries to incorporate the
use of formal models both in the design and use of information systems.

1 Introduction

Traces are everywhere: from information systems that store their continuous
executions, to any type of health care applications that record each patient’s
history. The transformation of a set of traces into a mathematical model that
can be used for a formal reasoning is therefore of great value.

This paper proposes methods to build a process model representing the causal
relations between the events in the trace, i.e., whether the event a occurs before
b and after c or d. The goal is to construct a graph modeling all these orderings
in a concise form. Among many of the graph formalisms that exist nowadays, we
have selected Petri nets (PN) [14] for representing a set of traces. The reasons
for this selection are: sound mathematical model, clear semantics, succinctness,
ability of representing concurrent and conflict behavior among others.

The problem of deriving a PN out of a set of traces (called log) is one of
the main areas of Process Mining [19]. More concretely, the goal is to obtain a
PN whose behavior contains all the traces in the log, but maybe more. Within
this area, several algorithms have been proposed to accomplish this task [4,20,5],
most of them based on the theory of regions [10]. Informally, the theory of regions
tries to map structures in the state-based or language-based representation of
a system into places of the derived PN. However, given the well-known state
explosion problem, algorithms that are defined at the level of the states will
suffer when dealing with large systems exhibiting a high degree of concurrency.

Abstract interpretation [8] is a generic approach for the static analysis of
complex systems. The underlying notion in abstract interpretation is that of
upper approximation: to provide an abstraction of a complex behavior with less
details. A property about a system such as an invariant is in some way an
abstraction: it represents all the states of the system that satisfy the property.

Intuitively, abstract interpretation defines a procedure to compute an upper
approximation for a given behavior of a system. This definition guarantees (a)
the termination of the procedure and (b) that the result is conservative. An

J.L. Balcázar et al. (Eds.): ECML PKDD 2010, Part I, LNAI 6321, pp. 184–199, 2010.
c© Springer-Verlag Berlin Heidelberg 2010



Process Mining Meets Abstract Interpretation 185

y

x

y

x

y

x

y

x
(0,0)

(1,1)

(2,4)

Exact set Interval Octagon Convex
polyhedron

Interval Octagon Convex
polyhedron

0 ≤ x ≤ 2 0 ≤ x ≤ 2 y − x ≥ 0
0 ≤ y ≤ 4 0 ≤ y − x ≤ 2 x − 2y ≥ 0

3x − y ≤ 2

Fig. 1. Approximating a set of values (left) with several abstract domains

important decision is the choice of the kind of upper approximation to be used,
which is called the abstract domain. For a given problem, there are typically
several abstract domains available. Each abstract domain provides a different
trade-off between precision (proximity to the exact result) and efficiency.

There are many problems where abstract interpretation can be applied, sev-
eral of them oriented towards the compile-time detection of run-time errors in
software. For example, some analysis based on abstract interpretation can dis-
cover numeric invariants among the variables of a program. Also, it has been
applied to extract invariants from a PN [6]. Several abstract domains can be
used to describe the invariants: intervals [7], octagons [13], convex polyhedra [9],
among others. These abstract domains provide different ways to approximate
sets of values of numeric variables. For example, Figure 1 shows how these ab-
stract domains can represent the set of values of a pair of variables x and y.

In this work we present an approach for deriving a PN from a log, based on the
theory of abstract interpretation. The contributions are: 1) a theory for deriving
PNs out of a set of traces, 2) a technique to allow for the partitioning of the set
of events into groups. The relations inside the groups and between groups can
be detected and the corresponding causalities computed, 3) a sampling strategy
that can be applied to detect the relations on a small set of instances instead of
the whole set, and 4) a prototype tool implementing all the theory of the paper.

1.1 An Introductory Example

Let us provide a simple example to illustrate the theory of this paper. The ex-
ample is taken from [17] and considers the process of handling customer orders.
The starting point in Process mining is a set of traces representing the log of a
system. In our example, the log contains seven traces with the following activi-
ties: r=register, s=ship, sb=send bill, p=payment, ac=accounting, ap=approved,
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1  r,s,sb,p,ac,ap,c
2  r,sb,em,p,ac,ap,c
3  r,sb,p,em,ac,rj,rs,c
4  r,em,sb,p,ac,ap,c
5  r,sb,s,p,ac,rj,rs,c
6  r,sb,p,s,ac,ap,c
7  r,sb,p,em,ac,ap,c

(a) (c)(b)

r ≥ em + s

em

r

s

ap + rs ≥ c

r ≥ em + s

p ≥ ac

.
.
.

s

p
rj rs

sb

em ac

ap

c
r

(d)

Fig. 2. Derivation of PNs using abstract interpretation: (a) log, (b) some invariants
obtained, (c) from invariants to PN arcs, (d) mined Petri net

c=close, em=express mail, rj=rejected, and rs=resolve. Part of these traces is
shown in Figure 2(a), whilst Figure 2(b) shows some invariants that have been
extracted from these traces using the theory of abstract interpretation. These in-
equalities can be obtained under the domain of convex polyhedra (see Figure 1),
and relate the number of occurrences between events, e.g., r ≥ em+ s indicates
that the number of occurrences of r is always greater or equal than the sum of oc-
currences of em and s. Each invariant can be converted into a set of arcs in a PN,
as it is shown in Figure 2(c). The final PN that covers all the traces in the log is
presented in Figure 2(d) (see Section 2.1 for the formal semantics of a PN). It ac-
cepts the language defined by the expression1: r; (sb; p)||(em|s); ac; (rj; rs)|ap; c,
where ||, | and ; denote interleaving, union and concatenation operators.

1.2 Related Work

Besides the work related to the theory of regions cited above [4,20,5], there are
other approaches for process mining. In [19], an algorithm (called α-algorithm)
to derive a restricted class of Petri nets was presented. The α-algorithm has been
extended in [22] to enable a wider class of nets. Other techniques like [21] derive
models that are easily transformed to a Petri net.

2 Preliminaries

Some mathematical notation is provided for the understanding of the paper.
Given a set T , we denote P(T ) as the powerset over T , i.e. the set of possible
1 For the reader not familiar with Petri nets: a transition (box) in a PN is enabled if

every input place (circle) holds a token (black dot). If enabled, the transition can
fire, removing tokens from its input places and adding tokens to its output places.



Process Mining Meets Abstract Interpretation 187

subsets of elements of T . A sequence σ ∈ T ∗ is a called trace. Given a trace
σ = t1, t2, . . . , tn, and a natural number 0 ≤ k ≤ n, the trace t1, t2, . . . , tk is
called the prefix of length k in σ. Given a set of traces L, we denote Pref (L) the
set of all prefixes for traces in L. Finally, given a trace σ, #(σ, e) computes the
number of times that event e occurs in σ.

2.1 Logs and Petri Nets

Definition 1 (Log). A log over a set of activities T is a set L ∈ P(T ∗).

Definition 2 (Petri net [14]). A Petri net is a tuple (P, T, F,M0) where
P and T represent finite sets of places and transitions, respectively, and
F : (P × T ) ∪ (T × P ) → N is the weighted flow relation. The initial marking
M0 ∈ N|P | defines the initial state of the system.

The sets of input and output transitions of place p in PN N are denoted by
•p and p•, respectively. A transition t ∈ T is enabled in a marking M if
∀p ∈ P : M [p] ≥ F (p, t). Firing an enabled transition t in a marking M leads
to the marking M ′ defined by M ′[p] = M [p] − F (p, t) + F (t, p), for p ∈ P , and
is denoted by M t→ M ′. The set of all markings reachable from the initial mark-
ing m0 is called its Reachability Set. The Reachability Graph of PN (RG(PN))
is an automaton in which the set of states is the Reachability Set, the arcs are
labeled with the transitions of the net and an arc (m1, t,m2) exists if and only
if m1

t→ m2. We use L(PN) as a shortcut for L(RG(PN)), i.e. the language of
the reachability graph of the net. Finally, a place p in a PN is redundant if its
removal does not changes L(PN). Figure 2(d) contains an example of a PN such
that σ = r, s, sb, p, ap, c ∈ L(PN).

2.2 Convex Polyhedra

As suggested in Section 1.1, the convex polyhedra domain provides the necessary
inequalities for the purposes of this paper. It can be described as the set of
solutions of a set of linear inequality constraints with rational (Q) coefficients.
Let P be a polyhedron over Qn, then it can be represented as the solution to
the system of m inequalities P = {X |AX ≤ B} where A ∈ Qm×n and B ∈ Qm.

The domain of convex polyhedra provides the operations required in abstract
interpretation. In this paper, we will mainly use the following two operations:

y

x

P QP Q

Meet (∩): Given convex polyhedra P and
Q, computes R = P ∩ Q. Notice that this
operation is exact, e.g., the intersection of two
convex polyhedra is always a convex polyhedra,
implying that R does not contain any point
outside P ∩Q.
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y

x

P Q

P

Q

Join (∪): Given convex polyhedra P and Q,
computes R = P ∪ Q. Unfortunately the union
of convex polyhedra is not necessarily a convex
polyhedron. Therefore, the union of two convex
polyhedra is approximated by the convex hull,
the smallest convex polyhedron that includes

both operands. The example on the left shows in gray the zone added by com-
puting the convex hull of P and Q.

3 From Logs to Petri Nets via Extraction of Invariants

This section will set the basis for the approach presented in this paper. The
underlying idea can be stated informally: for each trace of the log and each
prefix of the trace, a vector describing the number of firings of each event for the
prefix is computed2. All these vectors are then inserted as n-dimensional points
in the theory of convex polyhedra, where n is the number of events considered.
Finally, a polyhedron is computed such that contains all these points, and its
set of constraints represents invariants for the system.

3.1 Derivation of Invariants from Logs

We introduce the main element to link traces from a log L and convex polyhedra:

Definition 3 (Parikh vector). Given a trace σ ∈ {t1, t2, . . . , tn}∗, the Parikh
vector of σ is defined as σ̂ = (#(σ, t1),#(σ, t2), . . . ,#(σ, tn)).

Any component of a Parikh vector can be seen as a constraint
for the n-dimensional point that it defines. Hence, a Parikh vector
σ̂ = (#(σ, t1),#(σ, t2), . . . ,#(σ, tn)) can be seen as the following polyhedron:

Pσ̂ = (x1 = #(σ, t1)) ∩ (x2 = #(σ, t2)) ∩ . . . ∩ (xn = #(σ, tn))

where each variable xi denotes the number of occurrences of ti in σ, i.e.,
xi = #(σ, ti)3. For each prefix σ of a trace in L, a polyhedron Pσ̂ can be ob-
tained. Given all possible prefixes σ1, σ2, . . . , σm of traces in L, the polyhedra
Pσ̂1 , Pσ̂2 , . . . , Pσ̂k

can be found4. Finally, the polyhedron

P =
⋃

i∈{1...m}
Pσ̂i

can be seen as the convex-hull of the points represented by the polyhedra
Pσ̂1 , Pσ̂2 , . . . , Pσ̂m

, thus representing completely the behavior of the log. As Sec-
tion 2.2 explains, a polyhedron can be described as the set of solutions of a
2 We use the terms event and transition as synonyms in this paper.
3 Hence a point σ̂ is represented as the polyhedron Pσ̂ that defines it.
4 Here k is in practice significantly smaller than

∑
σ∈L |σ| since many prefixes of

different traces in L share the same Parikh vector.
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Pref(L)

m:  ...

...

1:  a

3:  a,x

4:  a,c,e

2:  a,c

5:  a,c,e,a

(a)

Log L

1:  a,c,e,b,d,x,e,a,c, ...

...

3:  a,x,c,y,e,b,...

2:  a,c,e,a,x,c,y, ...

(b) (c)

Parikh vectors

3:  (1,0,0,0,0,1,0,0)

4:  (1,0,1,0,1,0,0,0)

2:  (1,0,1,0,0,0,0,0)
1:  (1,0,0,0,0,0,0,0)

...

5:  (2,0,1,0,1,0,0,0)

(a,b,c,d,e,x,y,z)

(d)

Causality const.

...

e + 1 ≥ a + b

a ≥ c

c + d ≥ e

c + d ≥ y

Fig. 3. From traces to invariants: (a) Initial log, (b) corresponding m prefixes of the
log, (c) Parikh vectors associated to the prefixes, and (d) derived causality constraints

conjunction of linear inequality constraints. These constraints can be obtained
from P in state-of-the-art libraries for convex polyhedra [11]. Hence from P one
can obtain the set of m constraints representing it:

a11 · x1 + a12 · x2 + . . . + a1n · xn ≤ b1

a21 · x1 + a22 · x2 + . . . + a2n · xn ≤ b2
... ≤

...
am1 · x1 + am2 · x2 + . . . + amn · xn ≤ bm

each one of these constraints models invariants that the system (i.e., the log)
satisfy.

Example 1. Figure 3(a) shows part of a log containing several traces on the
events a, b, c, d, e, x, y and z5. Once the prefixes of the traces are found (Fig-
ure 3(b)), corresponding Parikh vectors are converted into polyhedra. A unique
polyhedron is derived by performing a join operation on the polyhedra, and the
related invariants are extracted, some of them shown in Figure 3(d).

As it was said in Section 2.2, the join operator to obtain the convex-hull may
introduce extra points not belonging to any prefix in L, which may in turn
invalidate some of the invariants that hold only for the points in L. How severe
is this limitation and how can be alleviated is a topic for future investigation. In
practice, however, the effects of these spurious points where not observed in the
experiments shown in Section 6.

3.2 From Invariants to Petri Nets

If we split the coefficients into positive and negative coefficients, constraint i can
be represented in the following way:∑

aij>0

aij · xj +
∑

aij<0

aij · xj ≤ bi

5 This log contains 100 traces of length 50 each. The reader can inspect the log by
following the reference provided in [2].
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that can be transformed into:∑
aij>0

aij · xj − bi ≤
∑

aij<0

−aij · xj

A constraint i is a causality constraint if the following conditions hold:

– There is at least one positive coefficient, and
– bi ≤ 0

Hence causality constraints can be described as:∑
aij>0

aij · xj + ci ≤
∑

aij<0

−aij · xj (1)

with ci = −bi ≥ 0. The intuition behind causality constraints is that they
represent real causalities observed in the log which can be explicit in the derived
PN. Hence if we assume indices n1, . . .nk range over the indices of variables
with negative coefficients and p1, . . . pl range over the variables with positive
coefficients, (1) can be modeled in a PN as:

....

....

xn1
xp1

xplaipl

ci

ain1
aip1

aink

xnk

where ci inside the place denotes ci tokens, and aij in an arc represents the
weighted flow relation F for the arc (see Def. 2).

Example 2. Following the example in the previous section (shown in Figure 3),
causality constraints can be selected and the corresponding places and arcs in-
troduced, deriving the Petri net shown in Figure 4. For instance the place labeled
p is obtained from the constraint c+ d ≥ y.

Finally, a necessary property in the area of Process Mining that relates the set
of traces possible in the PN and the ones in the log can be established:

Theorem 1. Let PN = (P, T, F,M0) and L be a Petri net and a log, respectively,
such that L(PN) ⊇ L, and the i-th causal constraint from L as described in (1).
Then the PN′ = (P ′, T, F ′,M ′

0) defined as

P ′ = P ∪ {p}

F ′ = F ∪ {tj
aij−→ p | aij < 0} ∪ {p aij−→ tj | aij > 0}

M ′
0[q] =

{
M0[q] if q �= p
ci otherwise

where p /∈ P , satisfies L(PN) ⊇ L(PN′) ⊇ L.
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c

e

b

a

d p

x

y z

Fig. 4. Petri net derived from the causality constraints shown in Figure 3(d)

Proof. The inclusion L(PN) ⊇ L(PN′) is well-known in Petri net theory from the
fact that P ⊂ P ′, F ⊂ F ′ andM0 ≤ M ′

0. The inclusion L(PN′) ⊇ L can be shown
by induction on the length of traces in L, and we sketch here the proof. First,
if a trace σ = σ′t ∈ L satisfies σ′ ∈ L(PN′) but σ /∈ L(PN′), then t ∈ p• because
transitions not in the postset of the new place inserted p will also be enabled by
firing σ′ in PN’. Second, the induction can now be used to prove that p will have
enough tokens to also enable t, hence contradicting the hypothesis σ /∈ L(PN′).
For |σ| = 1 it trivially holds. Assume it is true for |σ| ≤ n − 1, let us consider
|σ| = n, with σ = σ′xt. If x /∈ •p or t /∈ p•, applying the induction hypothesis
on σ′ the statement on p holds. If x ∈ •p and t ∈ p•, the induction hypothesis
guarantees that after σ′, either some other place q �= p is disabling t or t is
enabled. Hence, by firing x the enabling state of t cannot change, contradicting
the disabling of t after σ′ in PN’. �

The addition of places and arcs corresponding to causality constraints
is applied starting from the net PNinit

def
= (∅, T, ∅, ∅), which accepts

the language T ∗. In summary, the flow for Process Mining will fol-
low the steps Log

abstract interpretation−→ Convex Polyhedra
causality constraints−→ PN.

The next corollary follows from Theorem 1 and L ⊆ L(PNinit):

Corollary 1. Let PN be the net obtained after adding to PNinit all the places
and arcs corresponding to causality constraints in the polyhedron P derived from
L. Then L(PN) ⊇ L.

3.3 Derivation of Unbounded Places

Perhaps one of the main theoretical results of this work has been already pre-
sented in the example of the previous section. Informally, the derivation of places
and arcs from causality constraints may produce unbounded places in the Petri
net, i.e. places where no bound is possible on their number of tokens. For in-
stance, the place p in Figure 4 may have k tokens when k firings of the sequence
ac occur and no firing of y occurs, for any natural number k.

4 Process Mining of Large Logs

The approach presented in the previous section cannot be applied for logs ex-
tracted from industrial/real-life applications, where either the number of events
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Consumer2

Producer

Inter−group

Consumer1

Fig. 5. Detection of groups of related events: Producer, Consumer1 and Consumer2 are
tightly related, whereas the transitions within the Inter-group area are loosely related

or the number of Parikh vectors in the traces or both might be too large for grow-
ing polyhedra straightaway. For these situations, a divide-and-conquer strategy
is required. A possible strategy is presented in this section: instead of a blind
search for causality constraints on the whole set of events T , groups of events
that are tightly related are identified, and causality constraints are divided into
intra-group and inter-group. For instance, on a log representing a producer and
a pair of consumers, intra-group relations might provide the causalities within
the three gray zones depicted in Figure 5, whereas inter-group relations might
derive the causalities within the corresponding area shown in the figure.

4.1 Identification of Groups of Tightly Coupled Events

For determining the partition of T into groups, several techniques can be applied.
In this paper, two different techniques are used:

– Principal Component Analysis (PCA) [12] is an exploratory data analysis
technique that, given a data set of possibly correlated variables, tries to select
a subset of variables that is uncorrelated (called principal components) and
which accounts for as much of the variability in the data as possible.

– Firing causalities is an ad hoc technique to extract causalities between two
events from the Parikh vectors considered in the previous section.

In the remainder of this section we explain them in detail:

Principal Component Analysis can be applied to select the partition
on T = {t1, . . . , tn}. The steps are i) the set of Parikh vectors σ̂1, . . . , σ̂m is
transformed to the set σ̂′

1, . . . , σ̂
′
m so that σ̂′

i = (#(σi, t1)/t1, . . . ,#(σi, tn)/tn),
where ti is the mean for number of occurrences of ti in the set of Parikh
vectors of L, ii) compute the correlation matrix A ∈ [−1 . . . + 1]n×n using
the data set found at i) [12]. This matrix measures the amount of correla-
tion between variables ti and tj : when |A(i, j)| � 1 then both variables are
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highly correlated. Finally, iii) the number of groups is decided by finding
the eigenvalues and eigenvectors of A: the eigenvalues are sorted according
to their value (the highest eigenvalue explains the highest correlation and so
on), and only the most important (those that explain the important amount
of correlation) are taken6. For each selected eigenvalue λi, we can select
the leader of the group for λi by looking at the corresponding eigenvector
α1 · x1 + . . . + αn · xn: the leader will be the transition ti for which absolute
value of the coefficient αi is maximal [12]. A transition tj such that |A(i, j)| � 1
will be incorporated to the group led by ti. Transitions not assigned to any
group can be considered as independent events that may be left out of the
analysis. This way, a natural noise filtering is accomplished by using this method.

Firing causalities between two events ti and tj can be extracted by consid-
ering the maximal distance (in number of firings) between both events in any
possible Parikh vector. Formally, we build the matrix M ∈ Zn×n such that
M(i, j) = max{#(σk, ti) − #(σk, tj) | 1 ≤ k ≤ m}. There is a causality between
ti and tj if M(i, j) > 0 and M(j, i) ≤ 0.

4.2 Intra-group Causality Constraints

The information obtained from the two previous techniques can be combined to
form the groups. Intuitively, events ti and tj will belong to the same group if

– ti leads a group and has a high correlation with tj or vice versa, or
– there is a firing causality relating ti and tj

Once a group is identified, the Parikh vectors can be projected into the events
of the group and the technique presented in Section 3 can be applied for the
projected Parikh vectors.

Example 3. Following with the running example used in the previous section
(see the resulting PN in Figure 4), we will show how the same Petri net can be
obtained by the hierarchical approach presented in this section. Using the firing
causalities, we will find the pairwise causalities a → c, b → d, x → y and y → z.
With PCA, more complex relations will be detected: e related with a and b, and
also e related with c and d. Hence, two groups are selected: g1 = {a, b, c, d, e} and
g2 = {x, y, z}. Projecting the Parikh vectors into each group of events will give
the causality constraints only relating the events in the group, e.g., for group g1
the constraints a ≤ c, b ≤ d, e+ 1 ≤ a+ b and c+ d ≤ e will be obtained. These
constraints correspond to the subnet to the left of place p in Figure 4. The right
subnet corresponds to group g2.

4.3 Inter-group Causality Constraints

The causalities between different groups might be detected by applying a hierar-
chical approach: for each group gi = {ti1, . . . , ti|gi|}, a new variable hi is created

6 Threshold values are used both for deciding whether |A(i, j)| � 1 and for selecting
the correlation ratio explained by the selected eigenvalues.
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such that it represents the sum of firings of the transitions in the group for each
Parikh vector. By using the sum of the firings, relations between group’s firings
might be revealed. Afterwards, the same strategy of Section 3 can be applied to
detect causalities between these new variables introduced.

Formally, given the groups g1, . . . , gk and a set of Parikh vectors σ̂1, . . . , σ̂m,
a new set of hierarchical Parikh vectors σ̂h

1 , . . . , σ̂
h
m is created such that

σ̂h
i = (

∑
t∈g1

#(σi, t), . . . ,
∑
t∈gk

#(σi, t))

and now convex polyhedra can be created representing the hierarchical Parikh
vectors:

P
σ̂h

i

= (h1 =
∑
t∈g1

#(σi, t)) ∩ . . . ∩ (hk =
∑
t∈gk

#(σi, t))

And in the same way as Section 3.1, a set of invariants can be extracted from
the union of the m polyhedra build as explained above.

a11 · h1 + a12 · h2 + . . . + a1k · hk ≤ b1

a21 · h1 + a22 · h2 + . . . + a2k · hk ≤ b2
... ≤

...
am1 · h1 + am2 · h2 + . . . + amk · hk ≤ bm

These invariants provide relations between groups of variables. Intuitively,
invariants where the constant bi is small denote relevant causalities between
groups, whilst invariants with a large constant represent loose causalities possibly
originated by the length of the traces in the log. Hence, only these invariants
with small constant are used7.

When a set of groups are identified to be related, the same technique of
Section 4.2 applied for a group can be now applied for the set of groups: the
Parikh vectors are projected into the variables that belong to any of the groups
related, and causality constraints that relate these variables can be extracted.

The general algorithm is presented as Algorithm 1. The functions used in the
algorithm are next defined:

– InvariantMining is the invariant derivation technique from Section 3.1.
– ComputeGroups is the group derivation technique explained in Section 4.1.
– SelectLowConstant is a function that given a set of invariants, chooses those

ones having a small constant.
– NonZeroCoefs is a function that given an invariant, return these variables

that have non-zero coefficients, i.e., the variables that define the invariant.

7 Several threshold criteria can be applied to limit the number of invariants to consider.
For instance, one can greedily take invariants as far as the constant lies within the
order of the previous one.
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Algorithm 1. GroupMining
Input: Parikh vectors σ̂1, . . . , σ̂m,
Output: Invariant set I containing inter and intra-group causality constraints
begin1

I = ∅2

{g1, . . . , gk} = ComputeGroups(σ̂1, . . . , σ̂m)3

foreach group gi do4

I = I ∪ InvariantMining(σ̂1|gi , . . . , σ̂m|gi)5

end6

H = SelectLowConstant(InvariantMining(σ̂h
1 , . . . , σ̂h

m))7

foreach invariant i ∈ H do8

{g1, . . . , gl} = NonZeroCoefs(i)9

I = I ∪ InvariantMining(σ̂1|g1,...,gl , . . . , σ̂m|g1,...,gl)10

end11

end12

Example 4. Let us show the relation between the two only groups g1 and g2
found in Example 3. By creating two sum variables h1 and h2 as explained in
Section 4.3 and building the polyhedron that corresponds to the union of the
polyhedra representing the projection of the Parikh vectors into these variables,
the constraint h2 ≤ h1 is detected, meaning that the number of firings in the
group g2 is always less or equal than the number of firings of group g1. By pro-
jecting now the Parikh vectors into these groups and extracting the causality
constraints that relate both groups of variables, the constraint y ≤ c + d will
be extracted, which corresponds to the place p shown in Figure 4. Notice that
although for this toy example we ended up by building polyhedra for the whole
set of events, in general this will not be the case for real systems. For instance,
we experimented with several systems like the one used in our running exam-
ple, working in parallel. The approach presented in this paper was able to find
the intra and inter-group relations for each individual system, thus avoiding to
project into the whole set of events. In section 6 we provide such experiments.

5 Sampling

Orthogonal to the approach presented in the previous section, this section in-
troduces a technique to avoid dealing with a large number of polyhedra and use
instead a limited amount that might be enough for extracting the important re-
lations between the events. For instance, if the log contains ten thousand traces
of length a hundred, then in the worst case the techniques presented in the pre-
vious sections will be dealing with a million of polyhedra that must be joined, a
scenario that often can not be completed successfully with existing libraries for
abstract interpretation.

The general algorithm for applying sampling is shown as Algorithm 2. In order
to avoid operations with a large number of polyhedra, one can randomly select
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Algorithm 2. Sampling
Input: Parikh vectors σ̂1, . . . , σ̂m, number of samplings p, sampling size s
Output: Invariant set I
begin1

I = ∅2

for i ← 1 to p do3

P = empty domain4

for j ← 1 to s do5

r =Random(1 . . . m)6

compute Pσ̂r7

P = P ∪ Pσ̂r8

end9

I1 = Invariants(P )10

foreach invariant i ∈ I1 do11

if i satisfies σ̂1, . . . , σ̂m then I = I ∪ {i}12

end13

end14

end15

with uniform probability a small set (s) of Parikh vectors that will be converted
to polyhedra and joined (lines 5-9). Once the join operation for the s vectors
has been done, the set of invariants that denote properties for the Parikh vectors
considered must be verified on each one of the Parikh vectors not considered in
the join, and only those invariants that are true for all the Parikh vectors will be
accepted (lines 10-13). This sampling technique can be applied more than once,
i.e., one can apply p samplings in order to find the relations on a set of events
(external loop starting at line 3).

Sampling and the strategy presented in the previous section can be applied
jointly. This will be accomplished by simply substituting the calls to Invariant-
Mining in Algorithm 1 by calls to the function Sampling with a user-defined
sampling size and number of samplings. In the experiments, this joint use of
these strategies has enabled dealing with large specifications.

6 Experiments

The theory has been implemented in the prototype tool aim, which is written in
C/C++ and uses the Apron library for Convex Polyhedra manipulation [11]. For
the PCA method which requires computation of eigenvalues and eigenvectors,
the ALGLIB library [1] was used. Some conclusions can be drawn from applying
the tool on some well-known benchmarks within the Process Mining domain.

The benchmarks applied are synthetic logs publicly available within the web-
site [3]. These logs have been used by other algorithms and therefore will be
considered in this paper to perform a comparison with two other tools for the
same purpose. The tools are: genet, which implements algorithms based on
the theory of regions and supports the mining of k-bounded PNs [5], and the
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Table 1. PN derivation from logs

Log Information genet ILPMiner aim

Log |T | #traces #Parikh P/F Time P/F Time P/F Time
a12f0n00 1 12 200 17 11/25 0.1 11/25 1 11/27 0
a12f0n00 5 12 1800 17 11/25 0.1 11/25 0.7 12/30 0
a22f0n00 1 22 100 750 19/49 0.3 19/49 3 19/48 20
a22f0n00 5 22 900 3290 19/49 0.3 19/49 23 16/38 2
a32f0n00 1 32 100 1377 32/75 718 31/73 25 34/84 33
a32f0n00 5 32 900 5543 31/73 1 31/73 112 31/68 6
a42f0n00 1 42 100 1211 memout 44/109 154 41/88 16
a42f0n00 5 42 900 4326 timeout 44/101 1557 49/118 77

ILPMiner [20] (within ProM), that uses the language version of the theory of
regions for the same purpose. For using genet, an automaton representing all
the traces is the input of the tool. Several algorithms exists to transform the log
into an automaton [18]. For both tools we used the default parameters.

The comparison is shown in Table 1. For each log, we report the number of
events (|T |), the number of traces and the number of Parikh vectors obtained
after removing repetitions. The number of places discovered (P ) and the number
of arcs (F ) is then provided, together with the CPU time (measured in a desktop
computer) in seconds. For testing each tool, we limited the amount of memory
and time that could be used to 1Gb and 10000 seconds respectively.

For the experiments, we run the tool applying 5 samplings with sampling
size a number between 50 and 100, depending on the log. This light sampling
application allowed to derive PNs sometimes within two orders of magnitude less
CPU time than other methods. Notice that genet has both memory (memout)
and time (timeout) problems with the last two logs. On the other hand, aim
invests considerably more time in deriving a PN for a22f0n00 1, which may be
due to the particular structure of the polyhedra built on that log.

A second point to consider is the quality of the information obtained. The
PNs derived with aim most of the time have the same arcs and places of the
other tools. Sometimes extra causalities might be obtained like in a12f0n00 1
or a42f0n00 5. These denote redundant causalities (unnecessary places in the
model) that can be removed by a final application of well-known PN methods
for redundant places removal [16]. More elaborated quality measures, like the
one presented in [15], are restricted to a particular class of Petri nets and hence
cannot be used in our general setting.

Table 2 reports experiments with two logs that represent the activity of a
system of producers and consumers where components are synchronized through
unbounded places (see Figure 5). For ProdCons 1, the PN derived by aim is the
one shown in Figure 4. The traces for ProdCons 3 contain the interleaving of
three independent instances of PNs like the one in Figure 4. Both genet and the
Parikh Miner have problems in dealing with these logs: genet cannot derive
the unbounded place in ProdCons 1 and received a timeout for ProdCons 3,
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Table 2. PN derivation from two logs obtained from a Producers/Consumers system

Log Information genet ILPMiner aim

Log |T | #traces #Parikh P/F Time P/F Time P/F Time
ProdCons 1 8 50 3756 7/16 14 0/0 5 8/19 7
ProdCons 3 24 50 4910 timeout 0/0 182 24/57 36

whereas the ILPMiner did not obtain any relation between the activities of the
log8. In contrast, aim was able to discover the exact PN in both logs.

7 Conclusions and Future Work

A novel theory for deriving a PN from a set of traces has been presented. The
results obtained are promising when compared with some of the approaches in
the literature for the same task. The current work is mainly focused in obtaining
a mature implementation of the first prototype. Also, other strategies to comple-
ment the ones described in this paper will be investigated. Finally, the derivation
of other graph formalisms will be explored.
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Abstract. Bayesian reinforcement learning (RL) is aimed at making more ef-
ficient use of data samples, but typically uses significantly more computation.
For discrete Markov Decision Processes, a typical approach to Bayesian RL is to
sample a set of models from an underlying distribution, and compute value func-
tions for each, e.g. using dynamic programming. This makes the computation
cost per sampled model very high. Furthermore, the number of model samples
to take at each step has mainly been chosen in an ad-hoc fashion. We propose
a principled method for determining the number of models to sample, based on
the parameters of the posterior distribution over models. Our sampling method is
local, in that we may choose a different number of samples for each state-action
pair. We establish bounds on the error in the value function between a random
model sample and the mean model from the posterior distribution. We compare
our algorithm against state-of-the-art methods and demonstrate that our method
provides a better trade-off between performance and running time.

1 Introduction

Reinforcement learning (RL) attempts to find an optimal way of behaving in an un-
known environment, often assumed to be a Markov Decision Process (MDP). By inter-
acting with the environment, an RL agent learns more about its dynamics and rewards;
this information can be used to shape the agent’s behavior or policy. Traditional RL
methods are typically based on estimating the expected value of the agent’s long-term
return (also called a value function). However, in some applications one would also like
to have an estimate of the agent’s uncertainty, in addition to the expectation of the re-
turns. Bayesian RL methods attempt to provide such estimates by maintaining either a
distribution over models, e.g.(Asmuth et al., 2009; Dearden et al., 1999; Poupart et al.,
2006; Price & Boutilier, 2003; Strens, 2000), or a distribution over value functions, e.g.
(Engel et al., 2003). The first category of methods is often called model-based Bayesian
RL and will be the focus of our paper. The Bayesian approach allows incorporating
prior knowledge about the MDP (if available), in the form of a prior. Bayesian ap-
proaches have also been proposed as a method that can potentially use small amounts
of data; hence, they could be useful in applications where the data is difficult to obtain.
Several Bayesian RL method emphasize the use of the distribution as a tool for for-
mulating good exploration policies, e.g. (Duff, 2003; Asmuth et al., 2009; Wang et al.,

J.L. Balcázar et al. (Eds.): ECML PKDD 2010, Part I, LNAI 6321, pp. 200–214, 2010.
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2005). However, recent work (Kolter & Ng, 2009) has cast doubt on the effectiveness
of Bayesian exploration. However, even if exploration is not the main emphasis, having
uncertainty estimates in the performance of a policy is still quite useful.

Most model-based Bayesian RL methods work by maintaining a distribution over
model parameters, which is initialized with a prior and updated based on data obtained
from the real environment. The algorithms usually sample a batch of models from this
distribution and the value function is computed for each of these sampled models. This
can make the computation cost for each iteration very high, especially for large systems.
The number of sampled models is often chosen in an ad-hoc fashion, based on compu-
tation time constraints. Models are re-sampled periodically, either at fixed intervals, or
when their likelihood drops below a certain threshold. Recent work has attempted to
make this choice in a more principled way. In (Asmuth et al., 2009), the authors pro-
pose an algorithm (BOSS) which aims to ensure enough exploration; they prove that if
one samples Θ( 1

δ ln 1
δ) models, then with probability at least 1− δ one of these models

will yield a value function that is optimistic compared to the true underlying model.
They also provide theoretically a value for the number of data samples that have to be
gathered before new models should be sampled. However, the computation of both the
number of models and the number of samples is difficult and for their empirical results,
the authors resort to choosing these values manually.

In this paper, we propose a new method for determining the number of model sam-
ples to take, in the context of discrete MDPs, based on the parameters of the posterior
distribution over models. Furthermore, we argue that one should sample locally: the
number of transition models to sample for each state-action pair should depend on the
statistical properties of the posterior distribution for that particular state-action pair,
rather than being fixed over the entire MDP. We overcome the difficulty of combin-
ing these different numbers of transition samples by constructing a merged MDP as
in (Asmuth et al., 2009). We use an optimistic approach to resolve the exploration-
exploitation dilemma. We provide a method for dynamically determining when to re-
sample and re-compute the solution to the merged MDP. This decision is based on the
difference between the mean of the posterior last used for sampling and the mean of
the current posterior distribution. Our method exploits the statistical properties of the
posterior distribution and the proposed score can be computed very quickly.

We motivate our approach by first providing theoretical bounds for the difference in
value function between a random model sampled from a Dirichlet distribution and the
mean of the distribution. The tightness of the bounds depends directly on the variance
of the posterior distribution; hence, the variance directly affects the decision of when
and how much to sample in our proposed algorithms.

The paper is structured as follows. Sec. 2 presents necessary background and no-
tation. In Sec. 3 we present bounds on the difference between the value function of
the mean of a distribution over MDPs, compared to a randomly sampled model. Sec.
4 presents two algorithms for determining the number of models and the frequency of
sampling them, based on these bounds. Sec. 5 contains an empirical comparison of the
proposed algorithms against other Bayesian RL methods. Sec. 6 contains a discussion
and avenues for future work.
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2 Background

A finite Markov Decision Process (MDP) M = 〈S,A,P,R〉 consists of a finite set of states
S; a finite set of actions A; a transition function P : S×A→ Dist(S), where Dist(X) is
the set of distributions over X ; and a reward function R : S×A×S→R (see (Puterman,
1994) for more details). A policy is a function π : S→Dist(A). The value of a state s∈ S
given a policy π is defined as V π(s) = Eπ (∑∞

i=0 γiri
)
, where 0≤ γ< 1 is a discount factor

and ri a random variable representing the reward received at time step i when starting
from state s and choosing actions according to policy π. The values for all states can be
computed by solving the following system of Bellman linear equations:

V π(s) = ∑
s′∈S

P(s,π(s))(s′)
[
R(s,π(s),s′)+ γV π(s′)

]
The optimal value function is defined as: V ∗(s) = maxπ V π(s),∀s ∈ S and obeys the
following system of non-linear equations:

V ∗(s) = max
a∈A

∑
s′∈S

P(s,a)(s′)
[
R(s,a,s′)+ γV ∗(s′)

]
If the model of the MDP (i.e. R and P) is known, several well-known methods can be
used to solve this system, e.g. dynamic programming and linear programming.

In reinforcement learning (RL) (Sutton & Barto, 1998) the model of the MDP is usu-
ally assumed to be unknown. Traditional model-based RL methods rely on maintaining
a model estimate which is updated based on the data obtained by the agent in its interac-
tion with the environment. In Bayesian RL, instead of maintaining just one model, one
maintains a distribution over models. In this paper we assume that the reward model
is known; this is often the case in RL, as rewards are provided by the designer of the
system to define the task at hand. The transition model P, on the other hand, is unknown.

For any s,s′ ∈ S and a ∈ A let θ(s,a,s′) be a random variable representing the prob-
ability of a particular model for the transition probability from s to s′ under a. Given a
prior distribution Pr(θ) (representing initial knowledge about θ) and an observed tran-
sition s →a s′, one can compute the posterior distribution Pr(θ|s,a,s′) using Bayes’
Theorem. Usually, the prior and posterior distributions are chosen to be in the same
family of distributions. For discrete MDPs, the preferred choice is to use a Dirichlet
distribution as a prior/posterior, which is a parameterized distribution conjugate to the
multinomial distribution. This is a natural choice since the parameters of a Dirichlet
distribution function as “counts” (i.e. the parameter for θ(s,a,s′) can be interpreted as
the number of times the transition s→a s′ has been observed). A typical approach is to
sample at each step a number of models from the distribution over models, compute the
optimal value function for each sample model, and then use these values to choose the
next action.

The Dirichlet distribution is parameterized by a set of real numbers α = (α1, · · · ,αN),
where N is the order of the Dirichlet distribution. Let α0 = ∑N

i=1 αi. The Dirichlet is the
conjugate prior of the Multinomial distribution (a multivariate generalization of the bi-
nomial distribution) with parameters p1 = α1/α0, · · · , pN = αN/α0. In a finite MDP,
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a Dirichlet distribution Dir(α(s,a)) of order N = |S| can be maintained for each state-

action pair (s,a), where α(s,a)
s′ is the parameter for transition s →a s′. We refer to the

mean (or mean model) of a Dirichlet distribution Dir(α(s,a)) as the multinomial distri-

bution µ(s,a) ∈Dist(S) where µ(s,a)(si) = α(s,a)
i /α(s,a)

0 . The marginals of this multinomial

have variance given by σ2
(s,a)(si)

=
α(s,a)(si)

(α(s,a)
0 −α(s,a)(si)

)(
α(s,a)

0

)2
(α(s,a)

0 +1)
. Throughout the learning pro-

cess we will maintain a set of Dirichlet distributions parameterized by state-action pairs:
{Dir(α(s,a))}s∈S.a∈A.

3 Bounding the Value Function

As the agent gathers experience by interacting with the environment, the expected dis-
tance between a random sample and the mean model should go down. As this expected
distance goes down, the number of required samples should also go down. Further-
more, once enough experience has been obtained, the change in model estimates should
change less and less, implying that the need to resample should decrease. These are the
main ideas of the algorithms presented in the next section, but we begin by providing
a probabilistic bound on the difference between a random sample and the mean model,
formalizing the intuition just mentioned.

Let α(s,a) be the parameters for s∈ S and a∈ A with α(s,a)
0 = ∑s′∈S α(s,a)

s′ ; µ(s,a)(s′) and
σ2

(s,a)(s′) are the expected value and variance, respectively, for any s′ ∈ S.
A well-known way to measure the difference between two probability distributions

over the same domain is the total variation distance. Given two state distributions P,Q∈
Dist(S), their total variation distance (TV) is defined as:

TV (P,Q) =
1
2 ∑

s∈S

|P(s)−Q(s)|

Clearly 0 ≤ TV (P,Q) ≤ 1 for any P,Q. We can now easily obtain the following two
inequalities (stated without proof), where V1 and V2 are the value functions for two
MDPs that differ only in their transition probabilities (P1 and P2, respectively):

Lemma 1. For any policy π,

|V π
1 (s)−V π

2 (s)| ≤ 2γRmax

1− γ
max
s∈S

max
a∈A

TV (P1(s,a),P2(s,a))

For the optimal value function:

|V ∗1 (s)−V ∗2 (s)| ≤ 2γRmax

1− γ
max
s∈S

max
a∈A

max
b∈A

TV (P1(s,a),P2(s,b))

Both these inequalities can be bounded by the trivial upper bound 2γRmax
1−γ , which is very

loose. We would like to be able to tighten the bounds of Lemma 1 by using information
from the Dirichlet distribution. In particular, given a sampled transition model X(s,a)
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from Dir(α(s,a)) and a real number m > 1, we would like to know with what probabil-
ity 2TV (µ(s,a),X(s,a)) < 1/m. One approach is to examine, for each s′ ∈ S, with what
probability |X(s,a)(s′)−µ(s,a)(s′)|< 1/(Nm), where N = |S|.

A simple application of Chebyshev’s inequality yields the following result.

Pr

(
|X(s,a)(s′)−µ(s,a)(s′)| ≥

1
mN

)
≤ σ2

(s,a)(s′)(mN)2

Now we can obtain a lower bound for the total variation being less than 1/2m as follows:

Pr

(
2TV (X(s,a),µ(s,a))<

1
m

)
≥ ∏

s′∈S

Pr

(
|X(s,a)(s′)−µ(s,a)(s′)|<

1
mN

)
≥ ∏

s′∈S

(
1−σ2

(s,a)(s′)(mN)2
)
≥ 1−∑

s′∈S

(
σ2

(s,a)(s′)(mN)2
)

= 1− (mN)2 ∑
s′∈S

σ2
(s,a)(s′) (1)

where the second to last line follows by Weierstrass’ product inequality. Let us examine
the sum of the variances:

∑
s′∈S

σ2
(s,a)(s′) = ∑

s′∈S

α(s,a)
s′

(
α(s,a)

0 −α(s,a)
s′

)
(

α(s,a)
0

)2(
α(s,a)

0 + 1
) =

∑s′∈S α(s,a)
s′

(
α(s,a)

0 −α(s,a)
s′

)
(

α(s,a)
0

)2(
α(s,a)

0 + 1
)

=
α(s,a)

0 ∑s′∈S α(s,a)
s′(

α(s,a)
0

)2(
α(s,a)

0 + 1
) − ∑s′∈S

(
α(s,a)

s′

α(s,a)
0

)2

α(s,a)
0 + 1

=
1

α(s,a)
0 + 1

(
1− ∑

s′∈S

µ2
(s,a)(s′)

)

Therefore we have:

Pr

(
2TV (X(s,a),µ(s,a))<

1
m

)
≥ 1− (mN)2

α(s,a)
0 + 1

(
1−

N

∑
i=1

µ2
(s,a)(s′)

)
(2)

Note that if α(s,a)
0 + 1� (mN)2 we get better bounds on the total variation distance. In

other words, in order to have tighter bounds on the Total Variation distance between
a sampled model and the mean model, we need to have chosen action a from state s
enough times in the learning process.

4 Algorithms for Smart Sampling

In this section we use the result above to construct two algorithms that determine the
number of sampled models, as well as to decide when to sample new models.

The previous section indicates that the number of sampled models should depend
directly on the variance of the underlying model distribution. Given a multinomial sam-
ple X = (X1, · · · ,XN) ∼ Dir(α(s,a)), the marginals Xs′ are Binomial distributions with
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expected value µ(s,a)(s′) and variance σ2
(s,a)(s′). Given a set of K model samples {Xi}K

i=1,
for each of the marginals the mean model can be computed as follows:

µ̂K
(s,a)(s′) =

1
K

K

∑
i=1

Xi
s′

Additionally, for each of the marginals the variance can be computed as follows:

(
σ̂K

(s,a)(s′)

)2
= Var

(
1
K

K

∑
i=1

Xi
s′

)
=

1
K2 Var

(
K

∑
i=1

Xi
s′

)

=
1

K2

K

∑
i=1

(
σ2

(s,a)(s′)

)
Since the Xis are drawn independently

=
σ2

(s,a)(s′)

K
Since the Xis are identically distributed (3)

By the strong law of large numbers, limK→∞ µ̂K
(s,a)(s′) = µ(s,a)(s′), but we would like to

determine how many model samples would be “good enough”. To achieve this we try

to bring the variance for each of the marginals below some constant ε:
(

σ̂K
(s,a)(s′)

)2
≤ ε.

To obtain this, for each state-action pair (s,a) we must then set the number of sampled
models as follows:

K(s,a) = max
s′∈S

⌈
σ2

(s,a)(s′)

ε

⌉
Although the mean model is readily obtainable from the known posterior parameters, a
lower variance is a good indication that we have a good enough approximation of the
posterior distribution.

Based on this bound, each state-action pair may have a different number of required
samples. In previous methods, if K was the desired number of samples, then K model
samples were taken from each state-action pair, and these were combined in the obvious
way to form K sampled models. Our situation is slightly more complicated and we
cannot form a set of distinct models. We follow the approach of (Asmuth et al., 2009)
and construct a merged MDP m#. The state space in m# is the same as the original MDP,
but we expand the actions. For each state-action pair (s,a), let {T(s,a)(i)}1≤i≤K(s,a) be

the set of sampled models from (s,a). Each state s in MDP m# has ∑a∈A K(s,a) actions.
Action ai, j, for 1 ≤ i ≤ K(s, j) and 1 ≤ j ≤ A, corresponds to the sampled transition
T(s, j)(i). As in (Asmuth et al., 2009), we assume the rewards are known in advance for
simplicity and for sake of comparison, but the uncertainty about them is encoded in the
transitions.

In (Asmuth et al., 2009), if in m# the optimal action choice from state s is ai, j, then the
agent chooses action a j in the real MDP. This is an optimistic approach that is the basis
of their exploration strategy. With this exploration policy the authors can determine a
formal choice of K to obtain a near-optimal behavior with high probability. We follow
this optimistic exploratory strategy in our approach.
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As in most previous work, we do not sample models at every iteration. Instead, we
fix a number B beforehand and resample every time a state-action pair has been tried
B times during learning. In (Asmuth et al., 2009) the authors determine what the value
of B needs to be in order for the model distribution to be “close” to the true model.
Although proven theoretically, in practice they set this value manually. We follow this
approach for our initial algorithm: SmartSampler.

Algorithm 1. SmartSampler(ε,B)
1: Choose a starting state s1
2: For all (s,a) ∈ S×A, qCounts(s,a)← 0
3: reSample← T RUE
4: for all timesteps t = 1,2,3, · · · do
5: if reSample then
6: For all (s,a) ∈ S×A, sample K(s,a) transitions from the posterior

7: Combine all the samples into the merged MDP m#

8: Solve m# and extract π#

9: reSample← FALSE
10: end if
11: Extract at from π#(st)
12: Perform action at and observe reward rt and next state st+1
13: qCounts(st ,at)← qCounts(st ,at)+1
14: Update posterior based on (st ,at ,rt ,st+1)
15: if qCounts(st ,at) = B then
16: reSample← T RUE
17: end if
18: end for

The SmartSampler algorithm chooses how many model samples to take for each
state-action pair, based on the parameters of the posterior distribution. Establishing
when we should resample and re-compute a solution to the resulting MDP m# is still
unresolved. We propose determining when to sample by examining the change in the
distribution of the mean models of the posteriors. We use the standard score as inspira-
tion for determining this change. Specifically, we wish to determine how many standard
deviations the mean model of the current posterior is from the mean model of the poste-
rior used the last time model sampling was performed. For any (s,a)∈ S×A, let Pt(s,a)
be the mean transition distribution for (s,a) of the posterior at time t. Let timestep t be
the last time we sampled a model from our posterior to obtain m#. Given a maximum
threshold parameter δ, we will resample at time step t ′ only when

∑
s′∈S

|Pt(s,a)(s′)−Pt′(s,a)(s′)|
σ(s,a)(s′)

> δ

Note that the standard deviation σ(s,a)(s′) used is the one computed from the poste-
rior at timestep t (i.e. when we last sampled models). This measure of change takes
into account both changes in the transition distribution as well as changes in the vari-
ance. In this way, if we start with a confident prior that is already quite close to the true
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Algorithm 2. SmarterSampler(ε,δ)
1: Choose a starting state s1
2: reSample← T RUE
3: lastSamp← 1
4: for all timesteps t = 1,2,3, · · · do
5: if reSample then
6: For all (s,a) ∈ S×A, sample K(s,a) transitions from α(s,a)

7: Combine all the samples into the merged MDP m#

8: Solve m# and extract π#

9: lastSamp← t
10: end if
11: Extract at from π#(st)
12: Perform action at and observe reward rt and next state st+1
13: Update posterior based on (st ,at ,rt ,st+1)
14: if ∑s′∈S

|Pt(st ,at)(s′)−PlastSamp(st ,at )(s′)|
σ(s,a)(s′)

> δ then

15: reSample← T RUE
16: end if
17: end for

model, we will resample very infrequently. Furthermore, as the algorithm gathers more
information, the number of times we need to resample decreases. Algorithm Smarter-
Sampler summarizes this approach.

5 Experimental Results

We compare our algorithm only against the BOSS algorithm of (Asmuth et al., 2009),
because it is similar in spirit and the efficacy of BOSS against other algorithms was
already established in (Asmuth et al., 2009). Additionally, we compare against a Naive
Bayesian algorithm that uses the same parameters as BOSS. For this approach, K indi-
cates the number of global model samples to take (as in BOSS); however, the sampled
models are not combined into a merged MDP m#; instead, each one is solved inde-
pendently and the maximum value for each state-action pair is used. The B parameter
indicates how many iterations should pass before resampling; thus, every B iterations
the naive algorithm will sample K models. All algorithms were implemented in Matlab;
for fairness and consistency, the algorithms use the same code where possible. For all
domains, we started with a uniform prior; that is, for every pair of states s,s′ ∈ S and

Fig. 1. Problem domains, from left to right: Chain, 6x6 maze, Dearden maze, larger maze
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Fig. 2. Cumulative reward versus iteration (top left), cumulative reward versus time (top right),
number of samples per iteration (bottom left), sum of discounted rewards during testing (bottom
right). Chain problem.

action a, the Dirichlet parameter was set to α(s,a)
s′ = 1/|S|. All results are averaged over

10 runs.
We ran experiments on a number of domains shown in Figure 1. The chain domain

from (Strens, 2000) has 5 states and 2 actions; the action has the desired effect with 0.8
probability and has the opposite effect with 0.2 probability; in the figure the transitions
are labeled with the action name and the reward. The 6x6 maze domain from (Russell
& Norvig, 1994) has 36 states and 4 actions (up, down, left, right); the agent starts at
the cell marked ’S’ and aims to reach the goal ’G’, trying to avoid the trap states ’T’;
the action moves the agent in the desired direction with probability 0.8, and the rest
of the time the agent moves in a direction perpendicular to the desired direction, where
moving into a wall will maintain the agent in the same state; each move has a cost of
0.001, and the agent receives a terminal reward of −1 or +1 for entering a trap or the
goal state, respectively, whereupon the agent is placed back in the start state. The first
maze domain is from (Dearden et al., 1999) and has 56 states; the agent moves in the
desired direction with probability 0.9, and the rest of the time the agent moves in a
direction perpendicular to the desired direction, where moving into a wall will maintain
the agent in the same state; the agent receives a penalty of −10 for entering a trap state
’T’ and upon entering the goal state, receives a terminal reward of 1 for every flag ’F’
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Cumulative discounted testing reward for maze6x6

Naive Bayes (K=7, B=20)
BOSS (K=7, B=30)
SmartSampler (eps=0.50, B=5)
SmarterSampler (eps=0.30, delta=1.00)

Fig. 3. Cumulative reward versus iteration (top left), cumulative reward versus time (top right),
number of samples per iteration (bottom left), sum of discounted rewards during testing (bottom
right). 6x6 maze problem.

the agent has caught. The larger maze domain is similar, but with extra flags, which
increases the state size to 240. We plot the cumulative reward received during learning
versus iteration and the cumulative reward received throughout learning versus time
(top 2 graphs in each figure). In previous algorithms, the number of transition models
sampled for each state-action pair was the same. In our methods they vary, so we also
plot the total number of transition models sampled versus iteration. Finally, we tested
the policy at 10 evenly spaced intervals for 1000 iterations throughout the learning
process and plot the sum of discounted rewards for each test episode. The results for
the chain problem are illustrated in Figure 2; for the 6x6 maze in Figure 3; for the maze
problem in Figure 4; and for the larger maze in Figure5.

We ran each of the algorithms with varying parameters and picked the ones that gave
the best balance between training reward accumulation, testing reward accumulation
and running time. We can see that both the SmartSampler and SmarterSampler have a
clear advantage over BOSS in terms of return and time; although the Naive Bayes algo-
rithm seems to generate fairly good returns, it is extremely slow compared to the other
algorithms. In the larger domains, the advantage of using SmarterSampler becomes
more evident. In both the 6x6 maze and the maze problem of (Dearden et al., 1999) we
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Fig. 4. Cumulative reward versus iteration (top left), cumulative reward versus time (top right),
number of samples per iteration (bottom left), sum of discounted rewards during testing (bottom
right). Maze from (Dearden et al., 1999).

can see that SmarterSampler is performing the best exploration in the least amount of
time; both BOSS and SmartSampler appear to get stuck on a “safe” policy with little
returns. SmarterSampler is once again able to obtain higher returns both during training
and during testing, with a reasonable running time.

We also plot the effect of varying the parameters of the SmarterSampler algorithm in
Figures 6 and 7. As expected, there is a tradeoff between rewards obtained (both during
training and during testing) and the running time of the algorithm. We can also see that
the algorithm is not too sensitive to small changes in the parameters, which makes it a
robust choice for model-based Bayesian exploration.

6 Discussion and Future Work

We presented an approach to Bayesian RL based on a bound on the difference between
the value function of a model sampled from a Dirichlet distribution and the mean of that
distribution. There has already been work on bounding the difference in value functions
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between two systems with equal state spaces but different dynamics. In (Müller, 1997),
a generalized theory for bounding the difference in value function (up to a finite hori-
zon) is presented, using various probability metrics (such as the Kantorovich metric)
along with structural properties of the value function. The result is theoretically pleas-
ing, but it is somewhat involved and does not provide an algorithm for computing the
bounds. The paper by (Ferns et al., 2004) introduces bisimulation metrics for MDPs.
These metrics are based on the Kantorovich probability metric, and in fact, can be
viewed as a slightly modified instance of the bounds of (Müller, 1997). Other related
papers performed sensitivity analysis of the effect of varying dynamics on a stochastic
system, e.g. (Hinderer, 2005) and (Smith & McCardle, 2002). We relied on total varia-
tion in this paper because it is easy to compute (a big asset in the context of Bayesian
RL) and still gives powerful results in the particular case of the Dirichlet distribution.
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Fig. 5. Cumulative reward versus iteration (top left), cumulative reward versus time (top right),
number of samples per iteration (bottom left), sum of discounted rewards during testing (bottom
right). Larger maze.

Although in (Asmuth et al., 2009) the authors demonstrated how to choose these val-
ues in order to guarantee near-optimal exploration with high probability, the values are
very difficult to compute, and the authors resorted to choosing them manually in prac-
tice. We presented a method for choosing these values dynamically by using statistics
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Fig. 6. SmarterSampler. Cumulative reward versus iteration (top left), cumulative reward versus
time (top right), number of samples per iteration (bottom left), sum of discounted rewards during
testing (bottom right). Chain problem.

of the posterior distribution. again, computing these values is cheap and our experimen-
tal results demonstrate that they produce superior performance, both in terms of returns
and running time. Although the UCRL algorithm from (Auer, 2000) is intended for
the undiscounted reward case, our algorithms also have strong connections to it and it
merits further investigation and an empirical comparison.

We motivated our algorithms by first providing theoretical bounds on the difference
in value function between the mean model and a random sample from the posterior
distribution over models, when this posterior is a Dirichlet distribution. Although we
used the Dirichlet for our experimental results, our algorithm can hold for any other type
of distribution, as long as we can compute the means and variances of the marginals of
the mean model.

For simplicity, we assumed that the reward function was known beforehand, but our
method can be adapted easily to the case when the rewards are not known. If we assume
there is a finite set of possible rewards, we can also maintain a distribution over reward
models and use similar techniques for determining when and how much to sample. This
situation would be of particular interest when the rewards are stochastic.
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Fig. 7. SmarterSampler. Cumulative reward versus iteration (top left), cumulative reward versus
time (top right), number of samples per iteration (bottom left), sum of discounted rewards during
testing (bottom right). Chain problem.
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Abstract. The prediction of structured outputs in general and rankings
in particular has attracted considerable attention in machine learning in
recent years, and different types of ranking problems have already been
studied. In this paper, we propose a generalization or, say, relaxation of
the standard setting, allowing a model to make predictions in the form
of partial instead of total orders. We interpret such kind of prediction as
a ranking with partial abstention: If the model is not sufficiently certain
regarding the relative order of two alternatives and, therefore, cannot
reliably decide whether the former should precede the latter or the other
way around, it may abstain from this decision and instead declare these
alternatives as being incomparable. We propose a general approach to
ranking with partial abstention as well as evaluation metrics for mea-
suring the correctness and completeness of predictions. For two types of
ranking problems, we show experimentally that this approach is able to
achieve a reasonable trade-off between these two criteria.

1 Introduction

The problem of “learning to rank” has recently attracted considerable attention
in machine learning, and different types of ranking problems have been studied,
both theoretically and empirically. Roughly speaking, the goal of methods devel-
oped in this field is to learn a “ranker” that outputs predictions in the form of a
ranking of a set of alternatives. Thus, learning to rank can be seen as a specific
type of structured output prediction [1].

A ranking is commonly understood as a strict total order, i.e., an irreflexive,
asymmetric, and transitive relation. In this paper, we propose a generalization
of the standard setting, allowing a model to make predictions in the form of
partial instead of total orders. We interpret such kind of prediction as a ranking
with partial abstention: If the ranker is not sufficiently certain regarding the
relative order of two alternatives and, therefore, cannot reliably decide whether
the former should precede the latter or the other way around, it may abstain
from this decision and instead declare these alternatives as being incomparable.
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The notion of abstention is actually well-known for conventional classification,
and the corresponding extension is usually referred to as classification with a
reject option [2,3,4]: The classifier is allowed to abstain from a prediction for a
query instance in case it is not sure enough. An abstention of this kind is an
obvious means to avoid unreliable predictions. Needless to say, the same idea
does also make sense in the context of ranking. In fact, one may even argue
that a reject option becomes even more interesting here: While a conventional
classifier has only two choices, namely to predict a class or to abstain, a ranker
can abstain to a certain degree: The order relation predicted by the ranker can
be more or less complete or, stated differently, more or less partial, ranging
from a total order (conventional ranking) to the empty relation in which all
alternatives are incomparable. Later on, we will express the degree of abstention
of a ranker more precisely in terms of a degree of completeness of the partial
order it predicts.

The main contribution of this paper is a general approach to ranking with
partial abstention, which is applicable to different types of ranking problems. In
a nutshell, our approach consists of two main steps. First, a preference relation is
derived that specifies, for each pair of alternatives a and b, a degree of preference
for a over b and, vice versa, a degree of preference for b over a. The idea is that,
the more similar these two degrees are, the more uncertain the learner is. Then,
in a second step, a partial order maximally compatible with this preference
relation, in a sense to be specified later on, is derived as a prediction. In order
to realize the first step, we make use of ensemble learning techniques, although
other possibilities are conceivable.

The remainder of the paper is organized as follows. In the next section, we
briefly review some important ranking problems. Our approach to ranking with
partial abstention is then detailed in Section 3. In Section 4, we address the
question of how to evaluate predictions in the form of partial orders and propose
suitable performance metrics for measuring the correctness and completeness of
such predictions. Section 5 is devoted to experimental studies. For two types
of ranking problems, we show that our approach is indeed able to achieve a
reasonable trade-off between these two criteria. The paper ends with a couple of
concluding remarks in Section 6.

2 Ranking Problems

Following [5], we distinguish three types of ranking problems that have been stud-
ied extensively in the machine learning literature, namely label ranking [6,7,8],
instance ranking [9], and object ranking [10], to be described in more detail in
the following.

2.1 Label Ranking

Like in the conventional setting of supervised learning (classification), we assume
to be given an instance space X and a finite set of labels Y = {y1, y2, . . . , yk}.
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In label ranking, the goal is to learn a “label ranker” in the form of an X→ SY

mapping, where the output space SY is given by the set of all total orders
(permutations) of the set of labels Y (the notation is leaned on the common
notation Sk for the symmetric group of order k). Thus, label ranking can be
seen as a generalization of conventional classification, where a complete ranking

yπ−1
x (1) �x yπ−1

x (2) �x . . . �x yπ−1
x (k)

is associated with an instance x instead of only a single class label. Here, πx is
a permutation of {1, 2, . . . , k} such that πx(i) is the position of label yi in the
ranking associated with x.

The training data T used to induce a label ranker typically consists of a set
of pairwise preferences of the form yi �x yj , suggesting that, for instance x, yi

is preferred to yj . In other words, a single “observation” consists of an instance
x together with an ordered pair of labels (yi, yj).

To measure the predictive performance of a label ranker, a loss function on
rankings is needed. In principle, any distance or correlation measure on rankings
(permutations) can be used for that purpose. An important example is Kendall’s
tau, which counts the number of pairs of labels that are incorrectly ordered and
normalizes this number to the interval [−1,+1]: For two permutations π and σ,
let c be the number of correctly ordered pairs (i, j) ∈ {1, . . . , k}2, i.e., the pairs
(i, j) with i < j and (π(i)−π(j))(σ(i)−σ(j)) > 0. Likewise, let d be the number
of incorrectly ordered pairs, i.e., the pairs (i, j) with (π(i)−π(j))(σ(i)−σ(j)) <
0. Kendall’s tau, expressing a degree of correlation between π and σ, is then
given by

τ =
c− d

k(k − 1)/2
(1)

This coefficient assumes the extreme value 1 if σ = π and the value −1 if σ is
the reversal of π.

2.2 Instance Ranking

This setting proceeds from the setting of ordinal classification, where an instance
x ∈ X belongs to one among a finite set of classes Y = {y1, y2, . . . , yk} and,
moreover, the classes have a natural order: y1 < y2 < . . . < yk. Training data
consists of a set T of labeled instances. As an example, consider the assignment
of submitted papers to categories reject, weak reject, weak accept, and accept.

In contrast to conventional classification, the goal is not to learn a classifier
but a ranking function f(·). Given a subset X ⊂ X of instances as an input,
the function produces a ranking, i.e., a (strict) total order �, of these instances
as an output (typically by assigning a score to each instance and then sorting
by scores).

For the case k = 2, this problem is well-known as the bipartite ranking prob-
lem. The case k > 2 has recently been termed multipartite ranking [9]. As an
example, consider the task of a reviewer who has to rank the papers according to
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their quality, possibly though not necessarily with the goal of partitioning this
ranking into the above four categories.

Thus, the goal of instance ranking is to produce a ranking� in which instances
from higher classes precede those from lower classes. Different types of accuracy
measures have been proposed for predictions of this kind. Typically, they count
the number of ranking errors, that is, the number of pairs (x,x′) ∈ X ×X such
that x is ranked higher than x′ even though the former belongs to a lower class
than the latter. In the two-class case, this amounts to the well-known AUC, the
area under the ROC-curve [11]:

AUC(�, X) =
1

|P | · |N |
∑
x∈P

∑
x′∈N

{
1 if x � x′

0 if x′ � x
, (2)

where P ⊂ X is the set of positive and N ⊂ X the set of negative examples in
X .1 Its generalization to multiple (ordered) classes is known as the concordance
index or C-index in statistics [12].

2.3 Object Ranking

In the setting of object ranking, there is no supervision in the sense that no
output or class label is associated with an object. The goal in object ranking
is to learn a ranking function f(·) which, given a subset Z of an underlying
referential set Z of objects as an input, produces a ranking of these objects as an
output. Again, this is typically done by assigning a score to each instance and
then sorting by scores.

Objects z ∈ Z are commonly though not necessarily described in terms of an
attribute-value representation. As training information, an object ranker has ac-
cess to exemplary rankings or pairwise preferences of the form z � z′ suggesting
that z should be ranked higher than z′. This scenario is also known as “learning
to order things” [10].

The performance of an object ranker can again be measured in terms of a
distance function or correlation measure on rankings. In contrast to the setting
of label ranking, however, the number of items to be ordered in the context of
object ranking is typically much larger. Therefore, one often prefers measures
that put more emphasis on the top of a ranking while paying less attention
to the bottom [13]. In Web search, for example, people normally look at the
top-10 results while ignoring the rest. Besides, the target is often not a “true”
ranking but instead a single object or a subset of relevant objects, for example
a set of documents relevant to a query. Evaluation measures especially tailored
toward these types of requirements have been proposed in information retrieval.
Typical examples include precision and recall as well as normalized discounted
cumulative gain (NDCG) [14].

1 Note that we assume 	 to be a strict order. If ties are allowed, then these are
typically counted by 1/2.
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3 Ranking with Partial Abstention

As explained above, the set of alternatives, say, A, to be ordered by a ranker
depends on the type of ranking problem. In label ranking, A is a fixed set of
labels Y, whereas in instance ranking, it is a subset X of the instance space X. A
ranking on A is a strict, total, asymmetric, and transitive relation �, specifying
for all pairs a, b ∈ A whether a precedes b, denoted a � b, or b precedes a.
The key property of transitivity can be seen as a principle of consistency: If a
is preferred to b and b is preferred to c, then a must be preferred to c.

A partial order � on A is a generalization that sticks to this consistency
principle but is not necessarily total. If, for two alternatives a and b, neither
a � b nor b � a, then these alternatives are considered as incomparable, written
a⊥b. Note that, in the following, we still assume strictness of �, even of this is
not always mentioned explicitly.

3.1 Partial Orders in Learning to Rank

As mentioned before, our idea is to make use of the concept of a partial order
in a machine learning context, namely to generalize the problem of learning
to rank. More specifically, the idea is that, for each pair of alternatives a and
b, the ranker can decide whether to make a prediction about the order relation
between these labels, namely to hypothesize that a precedes b or that b precedes
a, or to abstain from this prediction. We call a ranker having this possibility of
abstention a ranker with partial reject option. Note, however, that for different
pairs of alternatives, the reject decisions cannot be made independently of each
other. Instead, the pairwise predictions should of course be consistent in the sense
of being transitive and acyclic. In other words, a ranker with a (partial) reject
option is expected to make a prediction in the form of a (strict) partial order
� on the set of alternatives. This partial order is considered as an incomplete
estimation of an underlying (ground-truth) order relation �: For alternatives
a, b ∈ A, a � b corresponds to the prediction that a � b (and not b � a) holds,
whereas a⊥b indicates an abstention on this pair of alternatives.

In this section, we propose a method that enables a ranker to make predictions
of such kind. Roughly speaking, our approach consists of two main steps, to be
detailed in the forthcoming subsections:

– The first step is the prediction of a preference relation P that specifies, for
each pair of alternatives a and b, a degree of uncertainty regarding their
relative comparison.

– In the second step, a (strict) partial order maximally compatible with this
preference relation is derived.

3.2 Prediction of a Binary Preference Relation

Let P be an A ×A → [0, 1] mapping, so that P (a, b) is a measure of support
for the order (preference) relation a � b. We assume P to be reciprocal, i.e.,

P (b,a) = 1− P (a, b)
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for all a, b ∈ A. A relation of that kind can be produced in different ways. For ex-
ample, some ranking methods explicitly train models that compare alternatives
in a pairwise way, e.g., by training a single classifier for each pair of alternatives
[15]. If these models are able to make probabilistic predictions, these can be used
directly as preference degrees P (a, b).

However, since probability estimation is known to be a difficult problem, we
like to emphasize that our method for predicting strict partial orders does only
assume an ordinal structure of the relation P . In fact, as will be seen below, the
partial order induced by P is invariant toward monotone transformations of P .
In other words, only the order relation of preference degrees is important, not
the degrees themselves: If P (a, b) > P (a′, b′), then a � b is considered as more
certain than a′ � b′.

Here, we propose a generic approach that allows one to turn every ranker
into a partial ranker. To this end, we resort to the idea of ensembling. Let L
be a learning algorithm that, given a set of training data, induces a model M
that in turn makes predictions in the form of rankings (total orders) � of a set
of alternatives A. Now, instead of training a single model, our idea is to train
k such models M1, . . . ,Mk by resampling from the original data set, i.e., by
creating k bootstrap samples and giving them as input to L. Consequently, by
querying all these models, k rankings �1, . . . ,�k will be produced instead of a
single prediction.

For each pair of alternatives a and b, we then define the degree of preference
P (a, b) in terms of the fraction of rankings in which a precedes b:

P (a, b) =
1
k
|{i |a �i b}| (3)

Thus, P (a, b) = 1 suggests a consensus among the ensemble members, since
all of them agree that a should precede b. On the other hand, P (a, b) ≈ 1/2
indicates a highly uncertain situation.

3.3 Prediction of a Strict Partial Order Relation

On the basis of the preference relation P , we seek to induce a (partial) order
relation � on A, that we shall subsequently also denote by R. Thus, R is an
A×A→ {0, 1} mapping or, equivalently, a subset of A×A, where R(a, b) = 1,
also written as (a, b) ∈ R or aR b, indicates that a � b.

The simplest idea is to let aR b iff P (a, b) = 1. The relationR thus defined is
indeed a (strict) partial order, but since a perfect consensus (P (a, b) ∈ {0, 1}) is
a strong requirement, most alternatives will be declared incomparable. Seeking
a prediction that is as informative as possible, it is therefore natural to reduce
the required degree of consensus. We therefore proceed from an “α-cut” of the
relation P , defined as

Rα = {(a, b) | P (a, b) ≥ α} (4)

for 0 < α ≤ 1. A cut of that kind provides a reasonable point of departure, as
it comprises the most certain preference statements while ignoring those com-
parisons (a, b) with P (a, b) < α. However, it is not necessarily transitive and
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may even contain cycles. For example, suppose a �1 b �1 c, b �2 c �2 a and
c �3 a �3 b. Clearly, P (a, b) = P (b, c) = P (c,a) = 2/3, rendering R2/3 a cycli-
cal relation. While transitivity is easily enforced by computing the transitive
closure of Rα, absence of cycles is not as easily obtained. Intuitively, it seems
natural that for larger α, cycles become less probable. However, as the example
shows, even for α > 1/2, cycles can still occur. Furthermore, the larger α, the
less informative the corresponding Rα.

Consequently, we propose to look for a minimal α (denote it as α∗) such that
the transitive closure of Rα (denote it as Rα) is a strict partial order relation
[16]. This Rα∗ will be the predicted strict partial order relation R, and we call
α∗ the consensus threshold. By minimizing this threshold, we maximize Rα as
well as its transitive closureRα, and thereby also the information extracted from
the ensemble on the basis of which P was computed. In the remainder of this
section, we deal with the problem of computing α∗ in an efficient way.

3.4 Determination of an Optimal Threshold

Suppose that P can assume only a finite number of values. In our case, according
to (3), this set is given by D = {0, 1/k, 2/k, . . . , 1}, and its cardinality by k+ 1,
where k is the ensemble size. Obviously, the domain of α can then be restricted
to D. The simplest approach, therefore, it to test each value in D, i.e., to check
for each value whether Rα is acyclic, and hence Rα a partial order. Of course,
instead of trying all values successively, it makes sense to exploit a monotonicity
property: If Rα is not acyclic, then Rβ cannot be acyclic either, unless β > α.
Consequently, α∗ can be found in at most log2(k+1) steps using bisection. More
specifically, by noting that α∗ is lower-bounded by

αl =
1
k

+ max
a,b

min (P (a, b), P (b,a)) (5)

and trivially upper-bounded by αu = 1, one can repeatedly update the bounds
as follows, until αu − αl < 1/k:

(i) set α to the middle point between αl and αu

(ii) compute Rα

(iii) compute Rα (e.g., using the Floyd-Warshall’s algorithm [17])
(iv) if Rα is a partial order, set αu to α
(v) else set αl to α

This procedure stops with α∗ = αl. The complexity of this procedure is not
worse than the transitive closure operation, i.e., it is at most O(|A|3).

As shown in [16], the same result can be computed with another algorithm
that is conceptually simpler (though equally costly in terms of complexity, at
least theoretically). This algorithm operates on an |A|×|A| matrix R initialized
with the entries P (a, b) (recall that A is the set of alternatives). It repeatedly
performs a transitive closure operation at all the levels of D simultaneously:

R(a, b)← max
(
R(a, b),max

c∈A
(min(R(a, c),R(c, b)) )

)
(6)
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for all a, b ∈ A, until no further changes occur. These transitive closure oper-
ations can be seen as a correction of inconsistences in P (a is to some degree
preferred to b, which in turn is to some degree preferred to c, but a is not suf-
ficiently preferred to c). Since these inconsistencies do not occur very often, the
number of update operations needed to stabilize R is normally quite small; in
practice, we found that we rarely need more then one or two iterations.

Algorithm 1
Require: training data T , test data D, ensemble size k, base learner L
Ensure: a matrix R encoding partial order information for alternatives in D (R(i, j) =

1 means di 	 dj , where di, dj ∈ D)

1: initialize R as zero matrix
2: generate k bootstrap samples from T
3: constitute the ensemble with k rankers trained using L
4: get k rankings of alternatives in D
5: for each of k rankings do
6: for every pair of alternatives di, dj ∈ D do
7: if di 	 dj then
8: set R(i, j) := R(i, j) + 1/k
9: end if

10: end for
11: end for
12: repeat
13: for every entry in R do
14: R(i, j) := max (R(i, j), maxk∈D(min(R(i, k),R(k, j)) ))
15: end for
16: until No entry in R is changed.
17: for every entry in R do
18: α := maxi,j min(R(i, j),R(j, i))
19: end for
20: for every entry in R do
21: if R(i, j) > α then
22: R(i, j) := 1
23: end if
24: end for

By construction, thresholding the final relation R at a level α will yield the
transitive closure of relation Rα in (4). Therefore, α∗ can be taken as

α∗ =
1
k

+ max (R(a, b) |R(a, b) ≤ R(b,a)) , (7)

which is obviously the smallest α that avoids cycles. The whole procedure is
summarized in Algorithm 1.

Finally, we note that, as postulated above, α∗ in (7) yields a maximal partial
order as a prediction. In principle, of course, any larger value can be used as well,
producing a less complete relation and, therefore, a more “cautious” prediction.
We shall come back to this issue in Section 4.
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3.5 Illustrating Example

We illustrate our approach by means of a small two-dimensional toy example for
the case of bipartite ranking. Suppose that the conditional class distributions of
the positive and the negative class are two overlapping Gaussians. A training
data set may then look like the one depicted in Fig. 1 (left), with positive ex-
amples as black and negative examples as white dots. Given a new set of query
instances X to be ranked, one may expect that a learner will be uncertain for
those instances lying close to the overlap region, and may hence prefer to abstain
from comparing them.

1

3

2 5

4

Fig. 1. Left: training data and ensemble models; right: partial order predicted for a set
of five query instances

More specifically, suppose that a linear model is used to train a ranker.
Roughly speaking, this means fitting a separating line and sorting instances
according to their distance from the decision boundary. Fig. 1 (left) shows sev-
eral such models that may result from different bootstrap samples. Now, consider
the five query instances shown in the right picture of Fig. 1. Whereas all these
models will rank instance 1 ahead of 2, 3 and 4, and these in turn ahead of
5, instances 2, 3 and 4 will be put in various orders. Applying our approach as
outlined above, with a proper choice of the threshold α, may then yield the strict
partial order indicated by the arrows in the right picture of Fig. 1. A prediction
of that kind agrees with our expectation: Instance 1 is ranked first and instance
5 last; instance 2, 3 and 4 are put in the middle, but the learner abstains from
comparing them in a mutual way.

4 Evaluation Measures

If a model is allowed to abstain from making predictions, it is expected to reduce
its error rate. In fact, it can trivially do so, namely by rejecting all predictions, in
which case it avoids any mistake. Clearly, this is not a desirable solution. Indeed,
in the setting of prediction with reject option, there is always a trade-off between
two criteria: correctness on the one side and completeness on the other side. An
ideal learner is correct in the sense of making few mistakes, but also complete in the
sense of abstaining but rarely. The two criteria are normally conflicting: increasing
completeness typically comes along with reducing correctness and vice versa.
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4.1 Correctness

As a measure of correctness, we propose a quantity that is also known as the
gamma rank correlation [18] in statistics, although it is not applied to partial
orders. Instead, it is used as a measure of correlation between rankings (with
ties). As will be seen, however, it can also be used in a more general way.

Let �∗ be the ground-truth relation on the set of alternatives A. If this relation
is a total order, like in label ranking, then a �∗ b if a precedes b and b �∗ a
if b precedes a; exactly one of these two cases is true, i.e., we never have a⊥∗b.
Interestingly, in the case of instance ranking, it is not entirely clear whether the
ground-truth is a total or a partial order. The goal of most learning algorithms
for AUC maximization is to sort instances x according to their probability of
belonging to the positive class, P(y = 1 |x).2 Seen from this point of view,
the underlying ground-truth is assumed to be a complete order. On the other
hand, this complete order is never known and, therefore, can never be used as
a reference for evaluating a prediction. Instead, only the class information is
provided, and given a concrete test sample, evaluation measures like AUC do
not care about the relative order of instances from the same class. In that sense,
the ground-truth is treated like a partial order: a �∗ b whenever a is positive
and b negative (or, in the multi-class case, if the class of a is higher than the
class of b), while a⊥∗b when a and b belong to the same class.

Now, let � be a predicted (strict) partial order, i.e., a prediction of �∗. We
call a pair of alternatives a and b concordant if they ought to be compared,
because ¬(a⊥∗b), and are indeed compared in the correct way, that is,

(a �∗ b ∧ a � b) ∨ (b �∗ a ∧ b � a) .

Likewise, we call a and b discordant if they ought to be compared, but the
comparison is incorrect, that is,

(a �∗ b ∧ b � a) ∨ (b �∗ a ∧ a � b) .

Note that, if a⊥∗b (there is no need to compare a and b) or a⊥b (abstention
on a and b), then the two alternatives are neither concordant nor discordant.

Given these notions of concordance and discordance, we can define

CR(�,�∗) =
|C| − |D|
|C|+ |D| , (8)

where C and D denote, respectively, the set of concordant and discordant pairs
of alternatives. Obviously, CR(�,�∗) = 1 for �∗=� and CR(�,�∗) = −1 if �
is the inversion of �∗.

It is also interesting to mention that (8) is indeed a proper generalization of
commonly used measures for the complete (non-partial) case, in the sense of
reducing to these measures if � is a total order. In particular, it is easy to see
that (8) reduces to Kendall’s tau (1) in the case of label ranking (where �∗ is
a total order, too), and to the AUC measure (2) in the case of instance ranking
(where �∗ is a partial order).
2 Indeed, this prediction maximizes the expected AUC on a test set.
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4.2 Completeness

To measure the degree of completeness of a prediction, a straightforward idea
is to punish the abstention from comparisons that should actually be made
(while ignoring or, say, tolerating comparisons that are made despite not being
necessary). This leads to the following measure of completeness:

CP(�) =
|C|+ |D|
| �∗ |

(9)

5 Experimental Results

As mentioned before, our method described in Section 3 can be applied to differ-
ent ranking problems in a generic way. In this section, we present experimental
results for two of the ranking problems outlined in Section 2, namely instance
ranking and label ranking.

5.1 Instance Ranking

To test our method in the instance ranking scenario, we have selected a set
of 16 binary classification data sets from the UCI repository and the Statlog
collection3. We have used logistic regression as a base learner and produced
ensembles of size 10.

Table 1. Results for instance ranking: mean values and standard deviations for cor-
rectness and completeness

correctness correctness
data set #attr. #inst. with abstention w/o abstention completeness
breast 9 286 0.330±0.150 0.318±0.141 0.578±0.074
breast-w 9 699 0.988±0.014 0.987±0.015 0.982±0.015
horse colic 22 368 0.734±0.135 0.697±0.142 0.790±0.044
credit rating 15 690 0.858±0.062 0.827±0.065 0.888±0.038
credit german 20 1000 0.610±0.088 0.568±0.084 0.741±0.060
pima diabetes 8 768 0.684±0.084 0.666±0.086 0.819±0.047
heart statlog 13 270 0.811±0.102 0.797±0.101 0.890±0.060
hepatitis 19 155 0.709±0.292 0.697±0.271 0.797±0.084
ionosphere 34 351 0.771±0.174 0.722±0.190 0.814±0.098
kr-vs-kp 36 3196 0.992±0.006 0.980±0.007 0.991±0.006
labor 16 57 0.990±0.049 0.985±0.060 0.989±0.052
mushroom 22 8124 1.000±0.000 1.000±0.000 0.808±0.017
thyroid disease 29 3772 0.890±0.071 0.883±0.070 0.928±0.040
sonar 60 206 0.684±0.224 0.575±0.271 0.575±0.056
tic-tac-toe 9 958 0.253±0.127 0.221±0.120 0.908±0.013
vote 16 435 0.981±0.032 0.976±0.036 0.913±0.035

3 www.ics.uci.edu/~mlearn/MLRepository.html, lib.stat.cmu.edu/

www.ics.uci.edu/~mlearn/MLRepository.html
lib.stat.cmu.edu/
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The values reported in Table 1 are averages over five repetitions of a 10-fold
cross-validation. Comparing the correctness of predictions in terms of (8), it
can be seen that our approach of partial abstention generally leads to improved
performance. In fact, it is never worse and yields better results most of the
time, sometimes with significant margins. Moreover, this gain in performance
comes with an acceptable loss in terms of completeness. Indeed, the degrees of
completeness are quite high throughout, often significantly above 90%.
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Fig. 2. Instance ranking with partial abstention: Trade-off between correctness and
completeness for selected data sets

We conducted a second experiment with the aim to investigate the trade-
off between correctness and completeness. As was mentioned earlier, and to
some extent already confirmed by our first experiment, we expect a compromise
between both criteria insofar as it should be possible to increase correctness at
the cost of completeness. To verify this conjecture, we varied the threshold α in
(4) in the range [α∗, 1]. Compared to the use of α∗, larger thresholds will make
the predictions increasingly incomplete; at the same time, however, they should
also become more correct. Indeed, the results we obtained are well in agreement
with these expectations. Fig. 2 shows typical examples of the trade-off between
correctness and completeness for two data sets.

Finally, it is interesting to look at the maximal chains of a predicted partial
order. A maximal chain of a partially ordered set X is a maximal subset C ⊂ X
that is totally ordered, like the set of elements depicted as black nodes in the
following partial order:
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The remaining elements X \ C can then be considered as those that cannot
be inserted into the order in a reliable way, and are hence ignored. Since each
maximal chain is a total order, it can be visualized in terms of an ROC curve.
A typical example for the sonar data set is shown in Fig. 3. As can be seen, the
curves for the maximal chains tend to dominate the original ROC curve for this
data, suggesting that the ranking of elements in the individual chains is indeed
more reliable than the ranking of the complete data.
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Fig. 3. ROC curves for the maximal chains of a predicted partial order (dashed lines)
and the complete data (solid line) for the sonar data

5.2 Label Ranking

In view of a lack of benchmark data for label ranking, we resorted to multi-class
data sets from the UCI repository and turned them into label ranking data by
following the procedure proposed in [15]: A naive Bayes classifier is first trained
on the complete data set. Then, for each example, all the labels present in the
data set are ordered with respect to the predicted class probabilities (in the case
of ties, labels with lower index are ranked first).4

The setting of this experiment is similar to the one we did for instance ranking.
We performed five repetitions of a 10-fold cross-validation and used an ensemble
size of 10. As a label ranking method, we used the ranking by pairwise comparison
approach [15], again with logistic regression as a base learner.

The results, summarized in Table 2, convey the same message as before: Cor-
rectness can be improved at the cost of completeness, and compared to the case
of instance ranking, the loss in completeness is even much smaller here; see also
Fig. 4, in which we show the same kind of trade-off curves as for the case of
instance ranking.
4 The data sets are available at www.uni-marburg.de/fb12/kebi/research

www.uni-marburg.de/fb12/kebi/research
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Table 2. Results for label ranking: mean values and standard deviations for correctness
and completeness

correctness correctness
data set #attr. #classes #inst. with abstention w/o abstention completeness
iris 4 3 150 0.910±0.062 0.885±0.068 0.991±0.063
wine 13 3 178 0.940±0.051 0.921±0.053 0.988±0.067
glass 9 6 214 0.892±0.039 0.882±0.042 0.990±0.030
vowel 10 11 528 0.657±0.019 0.647±0.019 0.988±0.016
vehicle 18 4 846 0.858±0.026 0.854±0.025 0.992±0.039
authorship 70 4 841 0.941±0.016 0.910±0.015 0.989±0.043
pendigits 16 10 10992 0.933±0.002 0.932±0.002 0.999±0.005
segment 18 7 2310 0.938±0.006 0.934±0.006 0.998±0.011
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Fig. 4. Label ranking with partial abstention: Trade-off between correctness and com-
pleteness for selected data sets

6 Conclusions and Future Work

In this paper, we have addressed the problem of “reliable” prediction in the
context of learning to rank. In this regard, we have made the following main
contributions:

– Based on the idea of allowing a learner to abstain from an uncertain com-
parison of alternatives, together with the requirement that predictions are
consistent, we have proposed a relaxation of the conventional setting in which
predictions are given in terms of partial instead of total orders.
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– We have proposed a generic approach to predicting partial orders or, accord-
ing to our interpretation, ranking with partial abstention, which is applicable
to different types of ranking problems.

– We have introduced reasonable measures for evaluating the performance of
a ranker with (partial) reject option, namely measures of correctness and
completeness. These measures are proper generalizations of conventional and
commonly used measures for total orders.

– Empirically, we have shown that our method is indeed able to trade off accu-
racy against completeness: The correctness of a prediction can be increased
at the cost of reducing the number of alternatives that are compared.

The extension from predicting total to predicting partial orders as proposed in
this paper opens the door for a multitude of further studies. Here, we mention
just one example of an interesting direction for future work, which concerns
the type of target order �∗ to be predicted. In this paper, we have essentially
assumed that the target is a complete order, and a prediction in terms of a partial
order � an incomplete estimation thereof, even though it was already mentioned
that, in the case of instance ranking (AUC maximization), the target may also be
considered as a partial order. However, even in that case, our evaluation measure
does not penalize the prediction of an order relation between two instances a and
b from the same class. In other words, we do not penalize the case where a � b
even though a⊥∗b. Now, if �∗ is a true partial order, it clearly makes sense
to request, not only the correct prediction of order relations a �∗ b between
alternatives, but also of incomparability relations a⊥∗b. Although the difference
may look subtle at first sight, the changes will go beyond the evaluation of
predictions and instead call for different learning algorithms. In particular, in
this latter scenario, a⊥b will be interpreted as a prediction that a and b are
incomparable (a⊥∗b), and not as a rejection of the decision whether a �∗ b
or b �∗ a. Nevertheless, the two settings are of course related, and we plan to
elaborate on their connection in future work.
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9. Fürnkranz, J., Hüllermeier, E., Vanderlooy, S.: Binary decomposition methods for
multipartite ranking. In: Proceedings ECML/PKDD–2009, European Conference
on Machine Learning and Knowledge Discovery in Databases, Bled, Slovenia (2009)

10. Cohen, W., Schapire, R., Singer, Y.: Learning to order things. Journal of Artificial
Intelligence Research 10, 243–270 (1999)

11. Fawcett, T.: An introduction to ROC analysis. Pattern Recognition Letters 27(8),
861–874 (2006)

12. Gnen, M., Heller, G.: Concordance probability and discriminatory power in pro-
portional hazards regression. Biometrika 92(4), 965–970 (2005)

13. Fagin, R., Kumar, R., Sivakumar, D.: Comparing top k lists. SIAM Journal of
Discrete Mathematics 17(1), 134–160 (2003)

14. Manning, C., Raghavan, P., Schütze, H.: Introduction to Information Retrieval.
Cambridge University Press, Cambridge (2008)
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Abstract. Domain adaptation (DA) using labeled data from related
source domains comes in handy when the labeled patterns of a target
domain are scarce. Nevertheless, it is worth noting that when the predic-
tive distribution P (y|x) of the domains differs, which establishes Negative
Transfer [19], DA approaches generally fail to perform well. Taking this
cue, the Predictive Distribution Matching SVM (PDM-SVM) is proposed
to learn a robust classifier in the target domain (referred to as the target
classifier) by leveraging the labeled data from only the relevant regions
of multiple sources. In particular, a k-nearest neighbor graph is itera-
tively constructed to identify the regions of relevant source labeled data
where the predictive distribution maximally aligns with that of the target
data. Predictive distribution matching regularization is then introduced
to leverage these relevant source labeled data for training the target clas-
sifier. In addition, progressive transduction is adopted to infer the label
of target unlabeled data for estimating the predictive distribution of the
target domain. Finally, extensive experiments are conducted to illustrate
the impact of Negative Transfer on several existing state-of-the-art DA
methods, and demonstrate the improved performance efficacy of our pro-
posed PDM-SVM on the commonly used multi-domain Sentiment and
Reuters datasets.

Keywords: Domain Adaptation, Negative Transfer, Predictive Distri-
bution Matching, Progressive Transduction.

1 Introduction

Sentiment classification is an important task [3] for the marketer to predict sen-
timent polarity (e.g. positive or negative) of user reviews collected for different
products. For instance, there are different categories of products from Amazon:
books, DVDs, electronics and kitchen appliances. Users’ comments of these prod-
ucts are usually described by some common words. Traditional machine learning
algorithms can be used to train a sentiment classifier from manually labeled feed-
backs for each of these reviews. When a category of products does not have much
labeled reviews (referred to as target domain), Domain Adaptation (DA) meth-
ods come into hand as these methods can leverage labeled reviews from some
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related products referred to as source domains. Besides sentiment classification,
DA methods have also been applied in many real applications ranging from
Natural Language Processing [13,4,9], text categorization [17], visual concept
detection [11,10], WiFi localization [17] and remote sensing [5].

One of the major challenges of leveraging source domains to train a target
classifier lies on the dissimilarity of predictive distribution among different do-
mains which will be illustrated by an example in Section 3.2. However, many
works on DA are assuming that the predictive distribution between target and
source domains is the same [12,8,16,20]. However, Bruzzone and Marconcini [5]
explained that when there are limited labeled data, these labeled data do not
represent the general population especially for imbalance problem, and introduce
a bias in estimating the predictive distribution (e.g. by Näıve Bayes Classifier).
In most cases, the target domain has very few labeled data and source domains
might have different class distribution from the target one. Thus, this might
easily lead to dissimilarity of the predictive distribution between the domains.

In addition, the true class distribution of the target domain is unknown as the
labeled data are limited, therefore re-sampling strategies (e.g. SMOTE [6]) for
adjusting the source domain to have the same class distribution with the target
domain might not be directly applicable in this setting.

Since the predictive distribution of the source domains might differ from the
target domain, the classifier directly trained with all labeled data from multiple
source domains might not classify well on unlabeled data in the target domain.
Direct transferring of knowledge from the source domains to the target domain
may also lead to adverse effects, which is referred to as negative transfer [19].
In this work, we propose a novel DA method, namely Predictive Distribution
Matching Support Vector Machine (PDM-SVM), to address the challenges arisen
from the difference in predictive distribution among multiple domains.

The main contributions in this paper are as follows: 1) A k-nearest neigh-
bor graph is iteratively constructed to identify relevant source labeled data that
have high similarity in predictive distribution of the target data. Then we ex-
ploit this dependency to define the so-called predictive distribution matching
regularization that leverages only relevant source labeled patterns to train the
target classifier. 2) We demonstrate how to infer the pseudo-labels of target unla-
beled patterns by the use of progressive transduction which eventually learns the
predictive distribution of the target domain. 3) We illustrate how the negative
transfer affects SVMs trained with source domains, Semi-Supervised Learning
(SSL) and DA methods when the source and target domains have dissimilar class
distribution in Section 3.2. We show that our PDM-SVM approach can handle
this problem and significantly outperform those methods in the comprehensive
experiments on Sentiment and Reuters datasets.

2 Related Works

Initial work of leveraging labeled patterns from a source domain for the target
domain was proposed to minimize the weighted empirical risk for both the source
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and target domains [21], which does not consider the distribution difference
between the two domains. To address this, several instance weighting methods
[13] had been proposed, but these methods usually require considerable amount
of target labeled data in order to robustly re-weighting the training instances.

However, target labeled patterns are scarce. Instead of using many target
labels, several methods [4,9,17,18] had been proposed to extract some useful fea-
tures to be augmented in the original feature space. For example, a heuristic
method was proposed in [4] to identify some pivot features representing common
feature structure between different domains to learn an embedded space. Then
this space is augmented to the original input feature vector for domain adap-
tation. Another example is Feature Augmentation (FA) [9], which augments
features belonging to the same domain by twice that of the original features so
that data within the same domains would be treated as more similar than data
in different domains.

Recent DA works [8,16,20,10] are taking up the challenge of learning from
multiple source domains. Crammer et al. [8] assumed that the distribution of
multiple sources is the same, and the change of output labels is a result of vary-
ing noise. Luo et al. [16] maximized the consensus of predictions from multiple
sources. In [20], the authors proposed a Multiple Convex Combination of SVM
(M-SVM) trained from multiple source domains and a target domain. However,
some source domains may not be useful for knowledge transfer. In [10], a domain-
dependent regularizer was proposed to enforce that the prediction of the target
classifier on target unlabeled data is close to the prediction of source classifiers
from similar sources only. Recently, Domain Adaptation SVM (DASVM) [5] was
proposed to tackle the mismatch of the predictive distribution between the do-
mains by removing all source labeled patterns progressively; meanwhile, using
Progressive Transductive SVM(PTSVM) [7] to infer the label of target unla-
beled patterns by using all remaining source and target labeled data. However,
when there are many overlapping sources and target data, and the label of some
source labeled data are not consistent with the label of the target data, all these
methods might not perform well.

DA is also similar to several learning paradigms such as multi-task learning
and multi-view learning. The major difference between DA and multi-task learn-
ing is that DA learns a classifier for a specific task in the target domain whereas
multi-task simultaneously learns for multiple tasks. For multi-view learning, a
classifier is trained for each source domain and labels the unlabeled data when
all these source classifiers agree on the predicted output of the unlabeled data to
a certain degree, thus assuming the source domains have the same distribution.

3 Predictive Distribution Matching SVM

3.1 Preliminaries and Problem Statements

Throughout the rest of this paper, whenever superscript s and t appear in the
contents, they represent source domain and target domain respectively. A sum-
mary of all important symbols can be found in Table 1.
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Table 1. Symbol Definition

Symbol Definition
m Total number of domains, the first (m-1) domains represent source domains and

the last domain, mth domain, is the target domain
x Feature vector of a data
y Class Label for the data x or pseudo-label which is a class label that can be

learned for a particular x that is described in Section 3.5,
nr Number of labeled data in rth domain. For the target domain, it is the combi-

nation of labeled and pseudo-labeled data
n

∑m
r=1 nr

Ds
L ∪m−1

r=1 {xr
i , yr

i }
nr , all labeled data in all source domains

Dt
L {xi, yi}nm , all labeled data in target domain

DL Ds
L ∪ Dt

L
xu

i Feature vector of ith unlabeled data in target domain
DU All unlabeled data in target domain

P (x) Marginal distribution
P (y|x) Predictive distribution

Recall that labeled patterns of one domain can be drawn from the joint dis-
tribution P (x, y) = P (y|x)P (x). We also let P (x) be the marginal distribution
of the input sets {xi}nr in the rth domains. DA methods usually assume that
P t(x) of the target domain and P s(x) of the source domain are different. Then
the task of DA is to predict the labels yt

i ’s corresponding to the inputs xt
i’s in

the target domain. Notice that DA is different from Semi-Supervised Learning
(SSL). SSL methods employ both labeled and unlabeled data to achieve better
prediction performance, in which the labeled and unlabeled data are usually
assumed to be drawn from the same domain. It is also worth noting that the
common assumption in many DA methods [12,8,16,20] is that P s(x) �= P t(x),
but the source and target domains share the same predictive distribution, i.e.,
P s(y|x) = P t(y|x), where P s(y|x) and P t(y|x) are the predictive distribution of
the source and target domains, respectively. This is also referred to as covariate
shift [2]. Hence in this work, we attempt to solve domain adaptation in the setting
where the predictive distribution is not to be preserved, i.e. P s(y|x) �= P t(y|x).
This can be materializing by diverse class distribution and limited samples in
each domain, and by class label inconsistency among different domains.

3.2 An Illustrating Example

Before we introduce our proposed method, in this subsection, we first study
how the dissimilarity of the class distribution between the target and source
domains affects Domain Adaptation (DA) and Semi-Supervised Learning (SSL)
methods. Suppose that there are very few labeled data but a lot of unlabeled
data in the target domain, we vary Positive Class Ratio (PCR) of the source
domains. Here, PCR defines the percentage of positive class data in the source
domains. For example, PCR = 0.1 implies that 10% of the data are positive.
Note that when PCR is skewed towards either extremes, the class distribution
of the source domains becomes very imbalanced. As mentioned in Section 1,
when the data is imbalanced, the limited labeled data might introduce a bias
in estimating the predictive distribution. Thus, the difference in the predictive
distribution between the target and source domains might occur. To study this,
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we train two SVM models: SVM T trained with only labeled data Dt
L from target

domain; SVM S trained with only labeled data Ds
L from all source domains. We

include two SSL methods: Transduction SVM (TSVM) [15], trained with the
labeled data from all the source and target domains, DL, and unlabeled data in
target domain, DU ; LapSVM [1], the training set is the same as TSVM. We also
compare with a DA algorithm: SVM ST [21], is a SVM trained with DL.

Here, we will demonstrate the trends of different SVM-based algorithms ac-
cording to different PCR settings on Sentiment dataset. The task is to classify
whether the reviews are positive or negative. The target domain is the reviews of
Electronics while the source domains are the reviews of Book, DVDs and Kitchen
appliances. In the present setup, the test set is designed to contain equal amount
of positive and negative data. The source domains however possess different PCR
values. The details of other experimental setup will be described in Section 4.

Testing accuracy of different methods against varying PCR in the source do-
mains are reported in Figure 1. Firstly, it is worth to observe that by using both
the source and target data, the TSVM, LapSVM and SVM ST can perform bet-
ter than SVM S and SVM T which use only source and target data respectively.
Secondly, one can observe that most methods perform optimally for PCR of 0.5
(i.e. the source and target domains have the same ratio of positive and negative
data). However, the performances of all methods dropped sharply when the PCR
is skewed toward either extremes (i.e. the source domains are very imbalanced,
or the source and target domains have different class distribution), which implies
P s(y|x) and P t(y|x) would most likely be dissimilar [5]. In addition, leveraging
source labeled data from other domains lead to adverse effects on domain adap-
tation, which is regarded as negative transfer [19]. It is clear that those values
below the line of SVM T can be indicated as negative transfer, as the accuracy
of a classifier borrowing labeled data from other source domains performs worse
than just using the available target labeled data. The possible reason is that
the source and target domains have different predictive distribution, when the
source and target domains are combined together as a training set, which rep-
resents another predictive distribution and does not reflect the true population
of its own domain. Therefore, all classifiers trained with this training set might
have poorer generalization performance.

Interestingly, it can be observed that most of the values reported for the
SSL methods are above the SVM T value. A possible reason might be these
two methods use target unlabeled data as the regularization. TSVM enforces
unlabeled data to have same class ratio as labeled dataset. Therefore when PCR
is 0.5, TSVM will classify the unlabeled data into half of them as positive and
another half as negative which is the true class distribution for the unlabeled
data. Hence this might cause it to perform the best when PCR setting is 0.5.
In other PCR settings, TSVM classifies the unlabeled data into the same class
ratio as the PCR setting, and suffers poorer classification performance.

Note, LapSVM assumes that if two patterns are close together in high density
region, these patterns should have similar predictive outputs. If the manifold
assumption holds strongly, LapSVM should perform well in all PCR settings.
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Fig. 1. Testing accuracies on Sentiment Data with varying PCR in source domains and
Electronics as target domain

However, from our experiences, this is not the case on Sentiment dataset because
two reviews with similar comments can have different meanings. For example,
“I really like this” and “I dare you would really like this”. For the former sen-
tence, it is a positive feedback whereas the latter sentence is a totally negative
comment. Thus, LapSVM achieves lower accuracy than just using supervised
labeled information (i.e. SVM ST) in some PCR settings. We also observe that
LapSVM performs better than TSVM at both extreme ends of PCR settings,
it is possibly because manifold regularization [1] on imbalanced data might be
more robust than cluster assumption in TSVM [15].

3.3 Predictive Distribution Matching across Multiple Domains

From all the observations in Section 3.2, we are motivated to introduce a new DA
method by using target unlabeled data and explicitly considering the predictive
distribution of both the source and target data for multi-domain learning. Here,
we define a regularizer such that two similar patterns xr

i and xc
j from the rth and

cth domains respectively would produce similar predictive outputs for a positive
transfer (i.e. two patterns have a high relevance measured by W rc

ij ):

Ω(f) =
1
n2

m∑
r,c=1

nr∑
i=1

nc∑
j=1

(f(xr
i ) − f(xc

j))
2W rc

ij , (1)

where nr and nc are the number of patterns in the rth and cth domains respec-
tively. Here, xr

i is the ith data in the rth domain and xc
j is the jth data in the

cth domain. The similarity W rc
ij to measure a positive transfer of two patterns

xr
i and xc

j is defined as follows:

W rc
ij =

v∑
z=1

P r(yz|xr
i )P

c(yz|xc
j)I [yi = yj ]D[r 
= c]S(xr

i ,x
c
j), (2)

where v is the number of classes, P r(y|xr
i ) is the predictive distribution of the

rth domain on pattern xr
i which can be estimated by means of Näıve Bayes

Classifier on labeled data, while I(·) and D(·) are indicator functions. Here,
S(xr

i ,x
c
j) measures the similarity between patterns xr

i and xc
j , and is defined as

the weight of an edge in a graph constructed by k nearest neighbors.
In this work, we also define the predictive distribution matching score for two

nearby patterns xr
i and xc

j as
∑v

z=1 P
r(yz|xr

i )P
c(yz|xc

j) for measuring the simi-
larity of the predictive distribution of two patterns, where

∑v
z=1 P

r(yz|xr
i ) and
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z=1 P

c(yz |xc
j) are both equal to 1. Moreover, those patterns not in the same

class will be disconnected, as the indicator function I[yi = yj ] returns a logic of
1 if both labels are the same, otherwise it returns 0. Intuitively, this indication
function can be viewed as a pairwise constraint that two patterns in the same
class can be linked together whereas two patterns belonging to different class
should not be linked [22]. As we do not assume manifold assumption in each
domain, we use an indicator function D[r �= c] to allow only data in different
domains to be connected. Note that if the target domain follows manifold as-
sumption, the manifold regularizer can be easily added into our formulation. But
in this paper, we do not assume manifold property in any dataset and hence our
method can apply in general cases.

From the definition of W rc
ij in (2), two similar patterns from different do-

mains having a high response of the predictive distribution matching score and
the same class label would share similar predictive outputs. Therefore, we can
identify relevant source labeled data from the data having high similar predictive
distribution for domain adaptation.

3.4 Proposed Formulation

In our regularization framework, the decision function is learnedby minimizing the
following regularized risk functional: f∗=arg minf γA‖f‖2 + 1

n

∑n
i=1 �(yi, f(xi)),

where �(yi, f(xi)) denotes the loss function and γA controls the smoothness of the
solutions. In this paper, we employ hinge loss function of SVM as �(·). Together
with our proposed data-dependent regularizer in (1), the regulated risk functional
for domain adaptation is then formulated as:

min
f

γIΩ(f) + γA||f ||2 +
1
n

n∑
i=1

�(yi, f(xi)), (3)

where γI regulates the decision function f(x) according to our proposed regu-
larizer (1) for multiple source domain adaptation. We refer our proposed method
to as Predictive Distribution Matching SVM (PDM-SVM). Note that our reg-
ularizer can be easily added into other standard regularization frameworks. We
use SVM as our formulation since we are investigating and comparing with other
SVM-based methods.

By defining a Laplacian matrix L = D −W where W is a n× n matrix with
entries defined in (2) and D is a n × n diagonal matrix with diagonal entry
Dii =

∑n
j=1Wij , the resultant optimization problem (3) can be formulated as

LapSVM formulation [1]. Thus allowing us to take advantage of existing LapSVM
algorithm to solve (3) by using (2) as the Laplacian matrix L in the algorithm.
By duality, the minimization problem (3) is equivalent to the dual problem:

max
α∈�n

n∑
i=1

αi − 1
2
α′Y K

(
2γAI +

2γI

n2
LK

)−1

Y α, (4)

where Y = diag(y1, . . . , yn) ∈ �(n×n), K is the n× n kernel matrix and I is an
identity matrix . The decision function is defined as follows:

f(x) =
n∑

i=1

βiK(x, xi), (5)
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where β = (2γAI+2 γI

n2LK)−1Y α. For more details of the derivations, interested
reader may refer to [1].

3.5 Progressive Transduction on DU

One of major challenges of domain adaptation is that the prediction distribution
P t(y|x) cannot be well-estimated with limited labeled data in the target domain.
Therefore, many existing DA algorithms [12,17] assume that the target domain
and the sources domains share the same prediction distribution, i.e., P s(y|x) =
P t(y|x). However, as illustrated in Figure 1, when the predictive distribution
varies across domains, DA and SSL methods may have impaired performance. In
this subsection, we propose to use progressive transduction method for acquiring
the additional labeled data to estimate P t(y|x).

Progressive transduction is to progressively label certain number of unlabeled
data with pseudo-label which are the most confident predicted outputs in cur-
rent iteration. These learned pseudo-labeled data are then used to estimate the
predictive distribution P t(y|x). After that, we apply the learned P t(y|x) to our
proposed regularizer (1) for multiple source domains adaptation and train a new
classifier with the newly added pseudo-labeled data using (4). The progressive
transduction step is then repeated until it reaches the stopping criterion.

In jth iteration, a classifier is trained using the available labeled and pseudo-
labeled data using (4). Then the classifier predicts the unlabeled data using
decision function (5). Let us group these unlabeled data into their predicted
classes and assign them with labels accordingly before sorting the positive set in
decreasing order and negative set in increasing order as follows:

T j
+ = {(xu

i ,+)|xu
i ∈ Dj

u, f
j(xu

i ) ≥ f j(xu
i+1) ≥ 0}, (6)

T j
− = {(xu

i ,−)|xu
i ∈ Dj

u, f
j(xu

i ) ≤ f j(xu
i+1) < 0}, (7)

where Dj
u = Du\Bj−1 and Bj are all the pseudo-labeled data from the start of

initialization to the current jth iteration, which is defined as follows:

Bj = Bj−1 ∪Bj
+ ∪B

j
−, (8)

where Bj−1 is all the pseudo-labeled data from the start of initialization to the
(j − 1)th iteration and the current jth iteration’s pseudo-labeled data are from
Bj

+ and Bj
− which are defined as follows:

Bj
+ = {(xu

i , y
u
i ) ∈ T j

+|1 ≤ i ≤ P j
+}, (9)

Bj
− = {(xu

i , y
u
i ) ∈ T j

−|1 ≤ i ≤ P j
−}, (10)

where P j
+ = min(p, |T j

+|), P
j
− = min(p, |T j

−|), p is a hyper-parameter. Hence,
the pseudo-labeled set Bj

+ contains data with the highest p predictive values in
T j

+ and Bj
− contains data with the lowest p predictive values in T j

−. Therefore,
the pseudo-labeled data learned from the current iteration are the most confi-
dent predicted labels as they are the furthest away from the decision boundary.
Then these pseudo-labeled patterns are being incorporated as part of training
set in (4). As these pseudo-labeled data and the target labeled domain are from
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Algorithm 1(PDM-SVM)
1. Initialize B0 = ∅,F t = ∅, M=m% of unlabeled data
2. While |Bj−1| < M
3. Build Bj using (8)
4. Train the classifier F t in (4) using DL and Bj

5. if |DL| + |Bj | >= Θ
6. Train a classifier F t in (4) using Dt

L and Bj

the same domain, their predictive distribution P t(y|x) is re-estimated to com-
pute W rc

ij in (2) for the target domain in each iteration. When m% of the entire
unlabeled data are incorporated as part of the training set, the whole progres-
sive transduction process terminates. After that, if the size of the combination
of target labeled dataset and pseudo-labeled dataset is larger than a certain
threshold Θ, then SVM is trained using only the target labeled data and the
pseudo-labeled patterns so the final classifier would consist only target data to
represent the true distribution for the target data. The detailed algorithm of
PDM-SVM is presented in Algorithm 1. Finally, the final trained classifier is
used to classify the test data using decision function (5).

3.6 Demonstration of PDM-SVM on a Synthetic Dataset

Besides the dissimilarity of class distribution among multi-domains, here we also
consider the class label inconsistence from multi-domains, where each domain
has its own modality. We generate a synthetic dataset (Figure 2) to depict how
PDM-SVM uses the predictive distribution similarities between two patterns
from different domains to construct a graph. In this dataset, there are three
labeled source domains and a target domain that contain only unlabeled data.

Figure 2(a) depicts the target domain. Figure 2(b) shows the first two source
domains having their positive and negative data overlapping with the target
positive and negative data respectively and the third source domain having its
negative data overlapping with the target negative data, but its positive data
are near to the target negative data. Intuitively, those target data close to the
positive data of the third source will be classified as positive, which is undesirable.
However, this is the case for SVM ST and its decision boundary is depicted in
Figure 2(c) by a thinner curve line. As the entire dataset is formed from several
domains, and each domain has its own modality, the dataset could become a
multi-modality problem. Hence, traditional DA methods which cannot handle
multi-modal datasets would fail as the classifier trained with all labeled data has
incorrect decision boundary. Whereas, PDM-SVM can classify all the target data
correctly, and its decision boundary is shown by the thicker curve line. This is
because PDM-SVM can iteratively construct a graph to identify relevant source
data as shown in Figure 2(d).

Figure 2 (d) shows that PDM-SVM can construct a graph using the predictive
distribution similarity between two patterns from different domains. The lower
rectangular box depicts the connections of one target pseudo-labeled learned by
PDM-SVM with several source data points which demonstrates that PDM-SVM
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Fig. 2. PDM-SVM demonstration using a Synthetic dataset. The data are in 2-
Dimension represented by two features, F1 and F2 respectively.
(a) Target domain with 500 positive and 500 negative instances. (b)Three source do-
mains related to the target domain except the positive data of the third source domain
near to the target negative data. Each domain consists of 150 positive and 50 negative
instances (c) The decision boundary of SVM ST and PDM-SVM. The space below
the decision boundary is classified as positive, whereas the other side is classified as
negative. (d)The graph’s connections between labeled and pseudo-labeled data which
are learned by PDM-SVM in the final iteration.
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can identify pseudo-labeled data from the constructed graph. The upper rectan-
gular box depicts negative data mainly in the third domain where data closer to
other data in different domains are connected and data that are further apart
from the data in other domains are not connected. When certain regions hav-
ing many nodes with high predictive distribution values are connected together,
these regions can be used to reflect the predictive output of the target regions.
Hence, the pseudo-labeled data can be learned from these regions and eventually
PDM-SVM can learn a classifier using these pseudo-labeled data.

4 Experiments

In this Section, we investigate several existing state-of-the-art SVM-based meth-
ods, DA methods and the proposed PDM-SVM under a multi-domain setting
of differing predictive distribution and scare target labels. SSL methods are also
considered in the present study to see how they perform when they use target
unlabeled data as part of their training. Note that DA methods (e.g. [13]) that
require considerable number of target labels to function and cater only to single
source domain are omitted. Here, apart from investigating the methods consid-
ered in Section 3.2, we also include additional DA learning algorithms such as:
M-SVM, [20], is a linear combination of SVMs trained with Ds

L’s and Dt
L; FA,

[9], is trained with DL; DASVM, [5], is trained with DL and DU .

4.1 Experimental Setup

The parameters of the DA methods are configured by means of k-fold cross-
source domains validation as suggested in [14] (an extension of k-fold cross vali-
dation for domain adaptation) and are tabulated in Table 2. For methods using
only labeled data, i.e. SVM S, SVM B, SVM ST, M-SVM and FA, each parti-
tion represents a source domain in k-fold cross-source domains validation. For
methods using both labeled and unlabeled data, i.e. TSVM, LapSVM, DASVM
and PDM-SVM, the kth source domain is used as the labeled data in the kth
fold evaluation, while the rest are used as unlabeled data and for validation.

Table 2. Parameter Settings

Classifiers Parameter Settings
SVM S, TSVM, C is chosen by cross-validation.
SVM ST, M-SVM,
FA & DASVM
LapSVM γA and γI are chosen by cross-validation. Using 6 nearest
& PDM-SVM neighbors and normalized Laplacian matrix to construct the graph. The

weight for Laplacian matrix is based on cosine distances, as commonly used
in text classification.

SVM T & SVM B C is fixed as 1 since the labeled data are limited. For example, in Reuters
dataset setting, the target domain will only consist two labeled data.

Other parameters p in DASVM and PDM-SVM is fixed as 5. β is fixed as 3.10−2 for DASVM
which is the same value used in [5]. m and Θ for PDM-SVM are set as 20%
and 50, respectively.
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4.2 Datasets

In the present study, we consider two datasets namely Sentiment and Reuters-
21578. Sentiment is a popular multi-domain benchmark dataset, defined in [3]. It
is typically used in the context of DA and consisted of even positive and negative
class distribution, hence it is used here to synthesize diverse PCR settings for
investigating the robustness of SSL and DA methods. Reuters dataset, on the
other hand, allows us to study the efficacy of SSL and DA methods in the
presence of uneven class distribution in each domain.

In the experimental study, we further pre-process the datasets by extract-
ing only the single-terms, removing all stopwords, normalizing each feature and
performing stemming. Finally, each feature of a review is represented by its
respective tf-idf value, and linear kernel is used in the experiments.

Multi-Domain Sentiment Dataset. It is generated from Amazon.com com-
prising four categories of product reviews: Book, DVDs, Electronics and Kitchen
appliances. Each category of product review is considered as a domain and com-
prises of 1000 positive and 1000 negative reviews. For each task, we used one
dataset as target domain while the rest as related source domains. For a target
domain, we randomly selected 10 positive and 10 negative instances as labeled
data and keeping the rest as unlabeled data. In regards to each source domain,
we randomly selected 200 to form the labeled data. To study the mismatch in
predictive distribution between the source and target domains, 9 different PCR
settings are generated for investigations. The 9 PCR settings are chosen from 0.1
to 0.9 at an incremental of 0.1 step size. For example, in a setting of PCR of 0.1,
out of the 200 data selected for each source domain, 20 positive data are selected
while the rest make up the negative data. To study the performance of an ideal
SVM ST with prior knowledge on class distribution, we consider here additional
SVM B classifier. For each source domain, SVM B re-samples the data to have
the same PCR as the target domain. Let ρ and η be the number of positive and
negative samples in each source domain respectively. Since our target unlabeled
data has equal number of positive and negative samples, then for each PCR
setting, the classifier re-samples both positive and negative samples as min(ρ, η)
in each source domain. Thus all domains have the same class distribution.

Multi-Domain Reuters Dataset. 3 out of 4 main categories of the dataset
namely People, Organizations and Exchanges are considered in the present study,
thus resulting 3 tasks being experimented: People versus Organizations, People
versus Exchanges and Organizations versus Exchanges. Places category is not
used due to the vast instances belonging to this category that overwhelms all
other categories, thus making the study fruitless. Further, in each main cate-
gory, the subcategory with largest dataset is used as target domain while the
remaining 4 largest subcategories as related source domains. Then in each task,
the xth largest subcategory of a main category is labeled as positive while the
xth largest subcategory from another main category is labeled as negative. All
data in the source domains are used as labeled data and for the target domain,
one positive and one negative data are randomly selected to form the labeled



Predictive Distribution Matching SVM for Multi-domain Learning 243

data while the rest are used as unlabeled data. Note that this dataset has uneven
positive and negative samples in each subcategory, hence the testing distribution
is imbalanced and the predictive distribution of the source domains is quite di-
verse with respect to one another. Furthermore, since it is not always feasible to
re-sample the source domains to match the SVM B setting, it is not considered
in the study of this dataset.

4.3 Results and Discussions

We first study the performance of various classifiers with varying PCR in the
source domains on Sentiment dataset. For the sake of conciseness, Figure 3 de-
picts the testing accuracies on Sentiment data for 9 different PCR settings in the
source domains, with Electronics and Kitchen Appliances as the target domain.
Note that PCR of the target unlabeled dataset is confirmed at approximately
0.5, hence when the PCR of the source domains is also in the region of 0.5, the
predictive distribution of the source domains is most likely to be similar to the
target unlabeled dataset. The rest of the PCR settings on the other hand would
likely result in mismatch of predictive distribution between the source and target
domains. Each of the four domains in the Sentiment dataset will take turns to
be used as the target domain. Their detailed results for PCR at 0.3, 0.5 and 0.7
are then reported in Table 3.

SVM_T SVM_S TSVM LapSVM SVM_ST FA DASVM PDM−SVM
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Fig. 3. Testing accuracies on Sentiment dataset for varying PCR in source domains.
(a) Target domain is Electronics (b) Target domain is Kitchen Appliances.

As shown in Figure 3, at both extreme ends of the PCR settings, for the
same labeled and unlabeled data, LapSVM and TSVM are found to underper-
form DASVM and PDM-SVM. This is expected since LapSVM and TSVM do
not consider the predictive distribution mismatch between different domains.
Furthermore, TSVM is shown to underperform SVM T since P (y) of unlabeled
differs significantly from that of labeled data at PCR = 0.1 and 0.9. Apart
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from the extreme ends of PCR settings, it can also be observed that DA meth-
ods including SVM ST and FA underperform SVM T on some of the imbalance
PCR settings, indicating the presence of negative transfer. This is because both
SVM ST and FA require predictive distribution of the source and target do-
mains to be similar, but the predictive distribution of imbalance PCR settings is
quite diverse. From Table 3, when the predictive distribution of the source do-
mains is similar to target domain (i.e. PCR≈0.5), SVM S, SVM ST and FA are
shown to outperform SVM T on all datasets. This implies that additional source
labeled data can be useful for improving testing accuracy when the predictive
distribution between source and target domain matches.

In all PCR settings, SVM B is reported with better accuracies than many DA
methods including SVM ST, FA, M-SVM and DASVM. This implies re-sampling
of the source domains to match the target predictive distribution is important
for transfer learning to work well. In contrast, PDM-SVM can be observed to
outperform all other classifiers, implying the predictive distribution matching
of source and target domains in the PDM-SVM is deemed to be effective. In
particular, even under extreme conditions of PCR settings in the source domain,
PDM-SVM reported up to 28% accuracy improvements over the other classifiers.

As shown in Figure 3, each classifier displayed similar performance trends
on the subgraph where most of the classifiers (excluding LapSVM, DASVM
and PDM-SVM) showed sharp declining accuracies when the PCR is skewed
toward either extremes. It can be observed that SVM ST, FA and SVM S gave
the best accuracy of around 75% at PCR=0.5 and the worst accuracy in the

Table 3. Testing accuracies on Sentiment data set for PCR at 0.3, 0.5 and 0.7 in the
source domains. The values below the accuracy results are the standard deviation.

Target PCR SVM T SVM S SVM B TSVM LapSVM SVM ST M-SVM FA DASVM PDM-SVM

Book 0.3 58.51 59.91 69.11 68.65 68.89 62.4 57.8 56.27 66.25 74.47
±2.31 ±1.25 ±1.34 ±0.71 ±1.24 ±1.37 ±3.12 ±1.48 ±4.61 ±2.06

0.5 58.51 70.88 71.77 72.8 71.14 71.77 69.08 71.48 65.35 74.23
±2.31 ±1.57 ±1.24 ±1.19 ±1.28 ±1.24 ±1.55 ±1.73 ±2.93 ±1.17

0.7 58.51 58.98 69.11 69.39 61.15 61.05 58.96 55.9 62.4 72.71
±2.31 ±1.18 ±1.34 ±0.93 ±2.57 ±1.27 ±2.23 ±1.11 ±1.11 ±1.58

DVDs 0.3 60.1 60.73 72.1 70.05 70.74 63.7 59.74 56.74 67.86 75.64
±2.40 ±2.16 ±1.24 ±0.94 ±1.21 ±2.24 ±3.02 ±1.84 ±3.61 ±1.32

0.5 60.1 73 73.24 74.3 73.06 73.24 68.75 73.18 71.58 75.94
±2.40 ±1.07 ±0.93 ±1.34 ±1.18 ±0.93 ±2.05 ±0.90 ±3.51 ±1.46

0.7 60.1 61.04 72.1 71.38 63.03 63.45 60.9 57.53 67.01 75.19
±2.40 ±1.86 ±1.24 ±0.88 ±2.55 ±2.01 ±1.76 ±1.44 ±6.94 ±3.32

Electronic 0.3 61.78 61.54 74.37 73.35 74.42 65.64 61.7 60.07 71.55 78.55
±2.56 ±2.34 ±1.10 ±1.10 ±0.93 ±1.88 ±1.69 ±1.95 ±2.48 ±0.98

0.5 61.78 74.67 75.36 78.79 75.08 75.36 70.03 75.17 74.88 78.84
±2.56 ±1.85 ±1.67 ±1.14 ±1.48 ±1.67 ±2.59 ±1.63 ±1.65 ±1.05

0.7 61.78 68.52 74.37 73.7 65.22 71.11 63.67 65.47 72.01 77.76
±2.56 ±1.70 ±1.10 ±1.17 ±1.29 ±1.64 ±2.26 ±2.68 ±3.11 ±1.03

Kitchen 0.3 62.47 67.16 75.8 75.29 74.72 70.84 63.49 64.23 69.91 79.06
±2.62 ±1.83 ±1.38 ±0.75 ±1.32 ±1.75 ±2.59 ±1.91 ±2.01 ±1.12

0.5 62.47 77.96 78.34 80.94 77.88 78.34 74.85 78.29 75.91 81.15
±2.62 ±1.01 ±0.96 ±1.28 ±0.86 ±0.96 ±0.98 ±1.16 ±2.06 ±1.34

0.7 62.47 65.88 75.8 74.39 64.75 68.97 62.26 62.7 74.72 80.01
±2.62 ±1.96 ±1.38 ±0.91 ±2.37 ±1.50 ±1.37 ±2.27 ±3.81 ±1.68
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region of 50% at PCR=0.1 and 0.9. Note that this marks a large difference
in accuracies of up to 25%. Other methods also displayed significant variance
in accuracy under the diverse PCR settings. As opposed to existing approaches
suffering in performances due to the effect of negative transfer, on the other hand,
PDM-SVM can effectively identify useful knowledge from multi-source domains
by means of prediction distribution matching, thus achieving robust prediction
performances in the target domain on the Sentiment data. In particular, PDM-
SVM can still give readily stable results, and the accuracies are within 5% across
all the PCR settings. This demonstrates the robustness of PDM-SVM under
different PCR settings by benefiting from the positive transfer.
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Fig. 4. Testing accuracies on Reuters data sets. (a)People versus Organizations
(b)People versus Exchanges (c)Organizations versus Exchanges

Last but not least, we further experiment the classifiers on Reuters dataset
with uneven class distribution in each domain. The results are reported in Fig-
ure 4. It can be observed that both PDM-SVM and DASVM had outperformed
all other classifiers considered, see Figure 4(b,c). PDM-SVM on the other hand
is competitive to DASVM. Interestingly, Figure 4(a) also indicated that PDM-
SVM attained significant improvement in accuracy over DASVM. In all the ex-
periments, SVM S is shown to be competitive to some DA methods: SVM ST,
M-SVM and FA. It appears that most of the labels in the source domains are
consistent with the target domain. This may be the reason why DASVM had
performed well on the Reuters dataset while most DA methods outperform-
ing SSL methods and SVM T, whereas LapSVM and TSVM outperformed the
other counterparts on Sentiment dataset. SSL methods on the other hand had
performed much worse than the others on Reuters dataset. This is likely due
to the manifold assumption and cluster assumption failing to hold on Reuters
dataset. Overall, PDM-SVM is able to perform robustly and outperform all clas-
sifiers considered on both datasets, due to success of the predictive distribution
matching regularizer in the identification of relevant data from source domains.

5 Conclusion

In this paper, we have presented a formalization of predictive distribution match-
ing for addressing the effects of differing predictive distributions between related
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domains. We address this problem by leveraging multiple domains to identify
high predictive density regions, in which the class label represents the target
class label in the same regions. Furthermore, we also present how to estimate
the predictive distribution P t(y|x) of the target domain by using progressive
transduction. On the other hand, empirical results obtained showed that while
most DA methods suffer from the effect of negative transfer when the problem
domains have mismatched predictive distributions, the proposed PDM-SVM re-
ported robust prediction accuracy for diverse levels of PCR results on the dataset
considered. In addition, PDM-SVM is shown capable of generating a substantial
improvement over existing methods in most cases.
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Abstract. The goal of this paper is threefold. It first describes a novel
way of measuring disagreement between rankings of a finite set X of n ≥
1 elements, that can be viewed as a (mass transportation) Kantorovich
metric, once the collection rankings of X is embedded in the set Kn of n×
n doubly-stochastic matrices. It also shows that such an embedding makes
it possible to define a natural notion of median, that can be interpreted
in a probabilistic fashion. In addition, from a computational perspective,
the convexification induced by this approach makes median computation
more tractable, in contrast to the standard metric-based method that
generally yields NP-hard optimization problems. As an illustration, this
novel methodology is applied to the issue of ranking aggregation, and is
shown to compete with state of the art techniques.

1 Introduction

Formulated more than two centuries ago in the context of emerging social sci-
ences and voting theories [Fis73], the problem of aggregating binary relations,
(pre-) orders in particular, has recently received much attention in the machine-
learning literature, see [HFCB08], [FKM+03] or [MPPB07] for instance. Various
modern applications sparked off the revival of interest in this issue, ranging from
e-commerce to information retrieval through spam-fighting and database mid-
dleware. Indeed, in a wide variety of information systems now, input or output
data take the form of an ordered list of items: search-engines, recommending
systems, etc. Numerous tasks such as the design of meta-search engines, collabo-
rative filtering, or combining results from multiple databases have motivated the
development of new results in this domain, dedicated to three topics essentially:
the extension of the notion of consensus among rankings [FKM+06], the de-
sign of efficient algorithmic procedures for computing such median rankings, see
[MM09] or [BFB09], and the building of probabilistic models on sets of rankings
[LL03].

The present paper addresses all these aspects of the consensus problem, from
an original angle. Its primary purpose is to show how the problem of measuring
disagreement between rankings can be cast in terms of discrete mass transporta-
tion problems, by embedding the set of permutations in a convenient convex set
of matrices. We prove that the continuum of metrics thus defined includes some
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classical permutation metrics, such as the Hamming distance, the Spearman ρ
distance or the Spearman footrule distance. From the perspective of rank ag-
gregation, a novel (probabilistic) notion of median is next defined and related
computational issues are tackled, taking advantage of the convexification step.

The paper is organized as follows. Notations are set out in Section 2, where
most concepts involved in the subsequent analysis are introduced and an exam-
ple motivating the present approach is also discussed. A novel way of measuring
agreement between rankings is then proposed in Section 3, together with a def-
inition of a probabilistic version of the notion of median ranking in Section 4.
Results describing the computational complexity of the aggregation method pro-
posed are stated in Section 5, while an illustrative application is presented in
Section 6 Technical details are deferred to the Appendix.

2 Preliminary Background

It is the purpose of this section to introduce the main concepts and definitions
that shall be used throughout the paper.

2.1 First Definitions and Notation

We start off by recalling some definitions and setting out the notations needed
in the subsequent analysis. Here and throughout, I{E} denotes the indicator
function of any event E .

Rankings and matrix spaces. Let n ≥ 1. We denote by Sn the symmetric
group of order n, i.e. the group of permutations of {1, . . . , n}, and by Mn(R)
the space of n × n matrices with real entries. Any permutation σ ∈ Sn can be
classically represented by the matrix

Mσ = (I{σ(i) = j})1≤i, j≤n ,

in Mn(R), whose entry Mσ
i,j indicates whether rank j is assigned to the object

indexed by i or not. The elements of the set Σn = {Mσ : σ ∈ Sn} are called
permutation matrices.

Medians. Given a collection Π = {σ1, . . . , σK} ⊂ Sn of permutations (one
commonly uses the term profile in social choice theory), the issue of summarizing
the orders defined by Π ’s elements, by a ”consensual” (pre-) order, is called the
aggregation problem. The so-termed metric approach is the most popular method
for defining such a consensus. It assumes that a certain distance δ on the set Sn

is given. One calls a median ranking for the profile Π with respect to a subset
R ⊂ Sn any ranking σ∗ ∈ R such that:

K∑
k=1

d(σ∗, σk) = min
σ∈R

K∑
k=1

d(σ, σk). (1)
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The study of metrics on rankings has a long history, for instance one may refer
to Chapter 11 in [DD09] for an excellent account of distances on permutations.
The following distances, originally introduced in the context of nonparametric
hypothesis testing, are among the most widely used.

• The Kendall τ distance. Counting the number of ”discording pairs”, it is
given by: ∀(σ1, σ2) ∈ S2

n,

dτ (σ1, σ2) =
∑

1≤i<j≤n

I{(σ1(i)− σ2(i)) · (σ1(j)− σ2(j)) < 0}.

• The Spearman ρ distance. It corresponds to the l2-metric: ∀(σ1, σ2) ∈
S2

n,

d2(σ1, σ2) =

(
n∑

i=1

(σ1(i)− σ2(i))
2

)1/2

.

• The Spearman footrule distance. This is actually the l1-distance be-
tween rank vectors: ∀(σ1, σ2) ∈ S2

n,

d1(σ1, σ2) =
n∑

i=1

|σ1(i)− σ2(i)| .

• The Hamming distance. This is the l0-distance between rank vectors:
∀(σ1, σ2) ∈ S2

n,

d0(σ1, σ2) =
n∑

i=1

I{σ1(i) �= σ2(i)} .

Many other distances could be considered, such as the Cayley/Kemeny distance
[Kem59], or so-termed word metrics more generally [How00]. The major barrier
to practical implementation of this approach lies in the fact that it generally
leads to NP-hard problems, see [Hud08] or [Wak98]. Notice in addition that
uniqueness of the median is not guaranteed in general. One may easily check for
instance that, considering the Kendall τ distance, any permutation σ ∈ Sn is a
median with respect to the set Sn (see also the example given below).

Remark 1. (The ordinal approach) Metric-based techniques are by no means
the sole approach to rank aggregation. The so-termed “ordinal approach” in-
cludes a wide variety of techniques for combining rankings or, more generally,
binary relations. They return to the famous “Arrow’s voting paradox” and con-
sist of a series of duels (i.e. pairwise comparisons) as in Condorcet’s methods
or successive tournaments as in the celebrated proportional voting Hare system.
Special attentions has recently been paid to such techniques in the context of
preference learning (“Ranking by Pairwise Comparison” methods); see [HFCB08]
for instance.
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2.2 A Simple Example

The following example shows that, beyond the computational difficulties above
mentioned, the metric-based approach may have important drawbacks. Let us
regard the problem of aggregating/summarizing the permutations described by
the rank vectors (1, 2, 3) and (3, 2, 1) in S3 for instance. Considering Kendall
τ medians with respect to S3 is clearly not informative, any permutation ex-
cept those two permutations being a median. Looking at the hexagon in Fig. 1,
providing a natural representation of S3 (adjacent vertices are at Kendall τ
distance one from each other), one inevitably longs to define the median in the
middle of the line segment connecting the opposite vertices. In other terms, the
major drawback of the aforementioned metric-based approach does not lie in the
metric considered itself, but rather in the fact that the search for a ”barycenter”
is restricted to the ”curve-shaped” set Sn. The view developed subsequently
provides a rigorous meaning to a definition of a median in the interior of the
hexagon. We are going to incorporate some uncertainty/fuzziness to the notion
of median ranks by enlarging/convexifying the original ensemble Sn, and next
define well adapted metrics on the larger space thus obtained.

(1, 2, 3)

(1, 3 , 2) (3, 1, 2)

(3, 2, 1)

(2, 1, 3) (2, 3, 1)

Fig. 1. Representation of the symmetric group S3 as a regular hexagon

2.3 Convexification/Randomization

For clarity, we first recall the following definition.

Definition 1. (Double stochasticity) A matrix A = (ai,j) ∈ Mn(R) with
nonnegative entries is said to be doubly stochastic if and only if

∀i ∈ {1, . . . , n},
∑
j=1

ai,j =
∑
j=1

aj,i = 1.

The set Kn of such doubly stochastic matrices is a convex subset of Mn(R).

Permutation matrices are special cases of doubly stochastic matrices. For clarity,
let us recall the following celebrated result (see, for instance, [HJ85, p.539]).

Theorem 1 (Birkhoff–Von Neumann). The set Kn is the convex hull of the
set of permutation matrices Σn:

Kn = conv (Σn) .

In addition, Σn corresponds to the set of Kn’s extremal points.
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Identifying Sn with Σn, its embedding in Kn is a natural way of ”convexifying”
the rank aggregation problem. From the ranking perspective, the entry ai,j of
a doubly stochastic matrix A can be interpreted as a marginal probability that
rank j be assigned to the object No. i. Two standard ways of randomly generating
a ranking from such a matrix are reviewed in subsections 4.1 and 4.2.

3 Kantorovich Distances

We now introduce a general framework for measuring dissimilarity between rank-
ings, following in the footsteps of the so-termed mass transportation approach
to defining metrics between probability measures [Rac91].

3.1 Definitions and Properties

We suppose now that we are given a certain (nonnegative) cost function, that is
to say a mapping c : {1, . . . , n}2 × {1, . . . , n}2 → R+ ∪ {+∞}, c((i, j), (k, l))
representing the cost of moving one mass unit from (i, j) to (k, l). The technical
conditions listed below shall be required in the subsequent analysis.

(i) (Diagonal terms) For all (i, j) in {1, . . . , n}2,

c ((i, j), (i, j)) = 0.

(ii) (Symmetry) For all (i, j), (k, l) in {1, . . . , n}2,

c ((i, j), (k, l)) = c ((k, l), (i, j)) .

(iii) (Triangular inequality) The cost function c on {1, . . . , n}2 fulfills
the condition: for all (i, j), (k, l) and (s, t) in {1, . . . , n}2,

c((i, j), (k, l)) ≤ c((i, j), (s, t)) + c((s, t), (k, l)).

(iv) (Non diagonal terms) For all (i, j) �= (k, l) in {1, . . . , n}2,

c ((i, j), (k, l)) > 0.

Remark 2. Condition (iii)guarantees that the cost function c satisfies the (stronger
in appearance) reduction property, meaning that

c((i, j), (k, l)) = inf
h≥1

ch((i, j), (k, l)),

where, denoting by Pm((i, j), (k, l)) the set of all paths of length m, {(um, vm) :
m = 0, . . . , }, connecting (i, j) to (k, l), i.e. such that (u0, v0) = (i, j) and
(uh+1, vh+1) = (k, l), we set: ∀h ≥ 1,

ch((i, j), (k, l))=inf

{
h+1∑
m=1

c((um−1, vm−1)(um, vm)) : (u, v) ∈ Pm((i, j), (k, l))

}
.

Roughly, reduction amounts to state that no mass movement should be cheaper
whenever performed in several steps rather than in one step.
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Equipped with the notion of (symmetric and reduced) cost function, we may
now define the concept of Kantorovich pseudo-metric on Kn.

Proposition 1. (Mass transportation distance) Let c be a cost function
on {1, . . . , n}2 fulfilling conditions (i) − (iii), A = (ai,j) and A′ = (a′i,j)
two elements of K2

n. If one defines the Kantorovich optimal transportation cost
related to cost function c and real value p ≥ 1 by:

dc,p(A,A′) = min
Φ∈M(A,A′)

μ1/p
c,p (Φ), (2)

with
μc,p(Φ) =

∑
(i,j)∈{1, ..., n}2

(k,l)∈{1, ..., n}2

c ((i, j), (k, l))p
Φ ((k, l), (i, j)) ,

and where the set M(A,A′) denotes the collection of mappings (”transportation
plans”) Φ : {1, . . . , n}2×{1, . . . , n}2 → [0, 1] such that: ∀(i, j) ∈ {1, . . . , n}2,∑
(k,l)∈{1, ..., n}2

Φ((i, j), (k, l)) = ai,j and
∑

(k,l)∈{1, ..., n}2

Φ((k, l), (i, j)) = a′i,j . (3)

Then dc,p is a pseudo-metric on Kn: it satisfies the separability, symmetry and
triangular inequality properties, but might fail to be always finite.

Obviously, dc,p being a pseudo-metric on Kn, it is a pseudo-metric on Sn (iden-
tified as Σn) as well, we set in this case dc,p(Mσ1 ,Mσ2) = dc,p(σ1, σ2), with
a slight abuse of notation. Before showing several important examples of such
pseudo-metrics, a few remarks are in order.

Remark 3. (Normalization) For the sake of simplicity, this definition above
uses a slightly different convention than in the classical mass transportation set-
ting (see, for instance, [RR98, Vil09]). Indeed A and A′ do not define probability
measures on {1, . . . , n}2, their mass with respect to the counting measure being
equal to n (it would simply suffice to divide the latter by n for leading back to
the usual setup).

Remark 4. (Monge vs. Kantorovich) When the search for transportation
plans with minimum cost is restricted to plans Φ taking their values in {0, 1} (one
does not try to divide the mass described by the entries of the initial matrix to
transport it, assigning new locations to the original entries being sufficient in this
situation), the problem is said of Monge’s type. We point out that, even when
both the initial and final distributions of mass are described by permutation
matrices Mσ1 and Mσ2 , OTP’s for the Kantorovich problem are not Monge
transportation plans in general. Indeed, consider for instance the simple case
where n = 2 and the cost is constant, equal to some fixed scalar γ > 0, except
on the diagonal {(i, j) = (k, l)} where it is 0 (as required by condition (i)).
It is easy to see that the optimal transportation cost between ι = (1 2) and
τ = (2 1) is 21/pγ (identifying Σn with Sn). Additionally, observe that every
transportation plan achieves this cost and only two of them are of Monge type.
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Remark 5. (On uniqueness) It should be pointed up that optimal transporta-
tion plans are not necessarily unique (refer for instance to the example mentioned
in the preceding remark).

Remark 6. (Ranking Stability) In the same way as Wasserstein-Kantorovich
probability metrics turned to be quite adapted to the study of stability of
stochastic models such as queuing systems (see [Rac91]), the optimal proper-
ties of distances dc,p(., .) make them very useful for investigating the stability of
ranking algorithms/models in a proper way. By a ranking algorithm, we mean
here a mapping σ : D �→ σD that assigns a permutation σD ∈ Sn to any train-
ing data sample DN of size N ≥ 1, allowing for ranking n objects, indexed by
i = 1, . . . , n. The nature of the sample may vary depending on the application
considered (collaborative filtering or nonparametric scoring for instance), it can
be made of preferences, rankings, binary data, etc. (see [CV09] and the refer-
ences therein for instance). The definition below does not require to specify the
nature of the training data however. Given a cost function c on {1, . . . , n}2, we
define the instability measure as:

InstabN (σ) = EDN ,D′
N

[
dc,p(σDN , σD′

N
)
]
,

where D′
N denotes an independent copy of the sample and EDN ,D′

N
[.] denotes the

expectation taken with respect to (D,D′). We mention incidentally that such an
instability measure can be estimated through a standard resampling scheme. By
drawing data with replacement among the original sample, one may get B ≥ 1
bootstrap replicates D∗(1), . . . , D∗(B) of the sample DN . A bootstrap estimate
of InstabN (σ) is then given by:

̂InstabN (σ) =
2

B(B − 1)

∑
1≤b<b′≤B

dc,p(σD∗(b) , σD∗(b′)).

3.2 Examples

As proof of relevance of the approach embraced in this paper, we now show
that some widely used metrics for measuring disagreement between rankings on
{1, . . . , n}, can be viewed as restrictions to Σn of a Kantorovich distance (for
an adequate choice of the cost function). A few important examples are listed
below.

1. Hamming distance. It corresponds to the cost function

cH ((i, j), (k, l)) =

⎧⎪⎨⎪⎩
0 if i = k, j = l

1 if i = k, j �= l

+∞ otherwise
,

with p = 1 in the sense that: ∀(σ1, σ2) ∈ S2
n, δH(σ1, σ2) = dcH,1(σ1, σ2).
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2. Spearman footrule distance. It corresponds to the cost function

c ((i, j), (k, l)) =

{
|j − l| if i = k

+∞ otherwise
,

with p = 1.
3. Spearman ρ metric. It corresponds to the same cost function as above,

except that p = 2 here.

The assertions above are easy to prove, M(Mσ1 ,Mσ2) containing, in each case,
a single element only.

Beyond the fact they can be seen as extensions of numerous permutation
distances, the major advantage of the collection of Kantorovich pseudo-metrics
lies in the considerable flexibility it provides for measuring disagreement between
rankings. By choosing the cost properly, one may attach much more importance
to the top ranks than to the others for instance, which makes sense in various
rank aggregation tasks.

However, we suspect that not every classical distance on permutations can be
recovered as a Kantorovich distance. Let us first introduce the following notions.

Definition 2. A function f defined on K2
n is said ’right-invariant’ (respectively,

’left-invariant’), when: ∀σ ∈ Sn, ∀A ∈ Kn,

f(A · σ,A′ · σ) = f(A,A′) (respectively, f(σ · A, σ ·A′) = f(A,A′))

where A · σ = (Ai,σ(j)) (respectively, σ · A = (Aσ(i),j)). The function f is said
bi-invariant when it is right-invariant and left-invariant both at the same time.

Equipped with these definitions, we state the following result, relating invariance
properties of a cost function to those of the related pseudo-metric. Owing to
space limitations, the proof is omitted and left to the reader.

Proposition 2. Let c be a cost function fulfilling conditions (i) − (iv) and n
denote a large enough integer. The pseudo-metric dc is bi-invariant if and only
if the function c is bi-invariant when Sn acts on {1, . . . , n}2 on the right by
(i, j) · σ = (i, σ(j)) (respectively, on the left by σ · (i, j) = (σ(i), j)).

Corollary 1. There exists a nonnegative integer n0, such that for all n ≥ n0,
the Cayley distance between two permutations in Sn (defined as the minimum
number of transpositions to be composed with one of them to turn it into the
other) is not the restriction to Σn of any Kantorovich distance on Kn.

4 From Medians in Kn to Median Rankings

Now the concept of Kantorovich metric between rankings has been introduced,
our main goal is to use it in order to define and compute medians, summarizing
a profile of rankings, in Kn first, and in Sn next.
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Definition 3. Let n ≥ 1 and let A1, . . . , AN be N ≥ 1 elements of Kn. Any
matrix A∗ ∈ Kn such that

N∑
m=1

dc,p(A∗, Am) = inf
A∈Kn

N∑
m=1

dc,p(A,Am) (4)

is called a median matrix for the profile {A1, . . . , AN}.

Remark 7. (On existence) We point out that medians, in the sense of Defini-
tion 3, always exist. Indeed, for any (A1, . . . , AN ) ∈ KN

n , N ≥ 1, the mapping
A ∈ Mn(R) �→

∑N
m=1 dc(A,Am) is continuous, the infimum over the compact

set Kn being thus achieved. In contrast, regarding uniqueness, we underline that
in general several medians may exist.

By means of this definition, given a profile (Am)1≤m≤N in Sn, we end up with a
summary median matrix A∗ in Kn, which, in general, does not lie in Σn. This is
the convexification step. When trying to summarize the statistical properties of
the profile, all the useful information is encoded in this ’central matrix’. However,
when willing to perform certain specific tasks related to rank aggregation, it is
desirable to recover a ranking, not a matrix in Kn. We review below two popular
approaches for building a ’median ranking’ based on a median matrix.

4.1 The Mallows Model

Let A∗ = (a∗i,j) ∈ Kn be fixed. A flexible approach is to generate a ranking σ,
of which permutation matrix Mσ is ’close to A∗’ (in the sense of a Kantorovich
pseudo-metric dc,p), consists in drawing at random an element from Sn so that
the smaller the distance dc,p(A∗,Mσ), the larger the probability of occurence.
This is exactly the purpose of the celebrated Mallows model [Mal57, Dia89], that
consists, in our context, to consider the distribution given by: ∀σ ∈ Sn,

P {σ} =
1
Z

exp (−θdc,p(Mσ, A∗)) ,

where Z is a normalization constant and θ is a positive parameter. When 1/θ is
small compared to the distance dc,p(A∗, Σn) only the nearest profiles are given
a chance to be drawn, when it is large more distant profile are likely to appear.
The main drawback of this model lies in its huge computational complexity, in
O(n!) namely.

When 1/θ tends to 0, the Mallows model degenerates towards the uniform
distribution on the set {σ ∈ Sn : dc,p(A∗,Mσ) = dc,p(A∗, Σn)}, where we set
dc,p(A∗, Σn) = minM∈Σn dc,p(A∗,M) by definition.

4.2 Variants of the Luce Model

Probabilistic approach. A more lightweight approach consists in reinterpret-
ing the median matrix entries as scores and relying then on an adaptation of
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the Luce model, see [Luc59, Pla75]. More precisely, we start off with choosing
randomly the object i1 ranked first, by drawing according to the distribution
on {1, . . . , n} defined by the column (a∗i,1)1≤i≤n of A∗, then we generate the
object ranked second among the remaining ones {1, . . . , n} \ {i1} according to
the distribution (a∗i,1 + a∗i,2)/(2 − a∗i1,1) for i �= i1, and so on and so forth. For-
mally, the distribution of the ranking σ drawn from this model can be written
as,

P
{
σ−1(1, . . . , n) = (i1, . . . , in)

}
=

n∏
k=1

fk(ik; ik−1, . . . , i1),

for all permutation (i1, . . . , in) of (1, . . . , n), where

fk(ik; ik−1, . . . , i1) =

∑k
j=1 a

∗
ik,j∑

i�∈{i1,...,ik−1}
∑k

j=1 a
∗
i,j

.

Of course, in a dual fashion, we could draw at random the rank assigned to the
object 1, according to the distribution (a∗1,j)1≤j≤n, etc.

Greedy approach. A greedy version of the approach described above can also
be considered. Precisely, it consists in using the model

P
{
σ−1(1, . . . , n)=(i1, . . . , in)

}
=

n∏
k=1

gk(ik; ik−1, . . . , i1)

where

gk(ik; ik−1, . . . , i1) =
I
{∑k

j=1 a∗
ik,j = maxi�∈{i1,...,ik−1}

∑k
j=1 a∗

i,j

}
∑

i′ �∈{i1,...,ik−1} I
{∑k

j=1 a∗
i′,j = maxi�∈{i1,...,ik−1}

∑k
j=1 a∗

i,j

}
The computational cost of both procedures is linear in the size of A∗ (i.e.
O(n2)), insofar as the sums si,k =

∑k
j=1 ai,j are precomputed.

5 Computational Aspects

It is the purpose of this section to investigate the computional complexity of
the key ingredients of the methodology proposed precedingly: distances and
medians.

5.1 Computing Kantorovich Distances in Kn

To compute dc,p with no other assumptions on the cost c than (i), (ii), (iii)
and (iv), we make use of linear programming via an interior-point method
[BGLS03], which solves the minimization problem (2) in weak polynomial time.
If c only takes integer values, then the Edmonds-Karp algorithm is known to
solve the problem in O(n2(m + n2 logn)) time, m denoting the number of en-
tries ((i, j), (k, l)) where the cost is finite (there are at most n4 such entries),
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see [KV00]. However, for some specific choices of c, the computational cost may
reduce to O(n), as it is the case for the Hamming and Spearman distances
restricted to Σn, as already seen in Section 3.

5.2 Computing Median Matrices

In absence of any further assumptions on c (except conditions (i)−(iv)) and p, we
resort to general non-linear programming method for solving the minimization
problem (4), with no guarantee of convergence to an optimal solution. For specific
cost functions and configurations, one can compute the median matrix efficiently,
in polynomial time, as claimed in the next proposition.

Proposition 3. Let N ∈ N∗ and σm are permutations of Sn for m ∈ 1 . . .n.
Assume also that ∀i ∈ 1 . . .n, m �= m′ implies σm(i) �= σm′(i). Then, equipped
with the cost cH, M̄ = 1/n

∑N
m=1M

σm is a median matrix of (Mσm)m∈1...N for
dcH . It can be computed with complexity O(n2N ∧ nN log(nN)).

6 Applications to Rank Aggregation

The advantages of the approach to the ’consensus issue’ proposed in the pre-
ceding sections are now illustrated on numerical experiments related to the so-
termed ’rank aggregation task’ for meta-search engines in the context of Infor-
mation Retrieval (IR) applications.

6.1 Datasets

Our experimental study is based on the LETOR database ([LXQ+07]). It is
a public data repository, created for evaluating ranking algorithms. There are
two ’rank aggregation’ datasets in LETOR: MQ2007-agg and MQ2008-agg. Both
datasets are of the same format, but differ in size and in number of ranks
to be aggregated. A query q is submitted to N search engines; each engine
outputs a list of pairs (document, score). Each line of the database is of the
form:

Relevance QueryId ScoreEngine1 ... ScoreEngineN DocId

where Relevance is an integer between 0 (irrelevant) and 2 (highly relevant).
With our previous notations, n changes at each query, we denote it by nq,
whereasN is constant within the dataset (21 for MQ2007-agg, 25 for MQ2008-agg).
Table 1 contains some basic statistics about the data: the number of queries,
engines, the average number of documents by query and the max number of
documents by query. The goal is to find, for each query in the dataset, the best
possible ranking, ranking accuracy being assessed by the means of the Normal-
ized Discounted Cumulative Gain (NDCG) measure ([JK02]). Recall that the
DCG, up to rank r, is defined by

DCGr(σ) =
r∑

i=1

2rel(σ−1(i)) − 1
log2(1 + i)

,
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where rel denotes the relevance of document i for a given query, and σ the sought
aggregated ranking. Now NDCGr is the same quantity normalized so that we
have NDCGr(σ) = 1 for the best ranking.

LETOR provides a benchmark with the BordaCount method ([AM01]).

Table 1. Datasets statistics

dataset MQ2007-agg MQ2008-agg
#queries 1692 784
#engines 21 25
#avgdocs 41.1 19.4
#maxdocs 147 121

6.2 Implementation Details

The (huge) size of the datasets considered lead us to rule out general cost func-
tions and the use of the Mallows model. Instead, we chose the Hamming cost
cH and used Proposition 3 for median computations (when the hypothesis of
disjoint supports of Proposition 3 is not satisfied, the computed ’median’ solely
consists of an approximation of the optimum). We then tested and compared
the models of section 4.2 (except the Mallows model, too demanding in regards
to the dataset size) to extract a ranking from the computed median matrix. For
the degenerate Mallows model, we used the Hungarian method (Kuhn-Munkres
algorithm) [Mun57]. It has complexity O(n3

q), where nq denotes the number of
documents associated to query q.

6.3 Results

LETOR datasets are organized into training, validation and test set. However,
since, like BordaCount our method is unsupervised, we used the whole dataset
as a test set without restriction.

The tables above show that, for both datasets, rank aggregation based on the
Hamming-Kantorovich distance in Kn lead to competitive results, compared to
the BordaCount procedure.

Table 2. Results comparisons on the MQ2007-agg dataset

NDCG @1 @2 @3 @4 @5 @6 @7 @8 @9 @10
BordaCount 0.1902 0.2014 0.2081 0.2128 0.2188 0.2247 0.2312 0.2377 0.2444 0.2507
LUCE Greedy 0.1980 0.2058 0.2137 0.2229 0.2301 0.2379 0.2441 0.2505 0.2575 0.2648
LUCE Random 0.2275 0.2328 0.2406 0.2450 0.2515 0.2578 0.2623 0.2683 0.2745 0.2814
Mallows-∞ 0.1920 0.2044 0.2100 0.2170 0.2226 0.2283 0.2346 0.2419 0.2471 0.2535
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Table 3. Results comparisons on the MQ2008-agg dataset

NDCG @1 @2 @3 @4 @5 @6 @7 @8 @9 @10
BordaCount 0.2368 0.2806 0.3080 0.3432 0.3713 0.3888 0.3992 0.3724 0.1643 0.1694
LUCE Greedy 0.2026 0.2563 0.3058 0.3426 0.3752 0.3936 0.4030 0.3749 0.1567 0.1644
LUCE Random 0.2188 0.2726 0.3005 0.3279 0.3498 0.3691 0.3833 0.3579 0.1456 0.1508
Mallows-∞ 0.1937 0.2374 0.2787 0.3176 0.3487 0.3703 0.3841 0.3587 0.1459 0.1541

7 Conclusion

In this paper, we have provided a novel family of distances between rankings of
a finite number of elements, which can be viewed as mass transportation dis-
tances, by the means of an embedding of the set of permutation matrices Σn

in the set Kn of doubly-stochastic matrices. This convexification step is also
shown to be a key ingredient for defining a new and flexible concept of median,
reflecting a consensus among a finite number of rankings. Although the freedom
in the choice of the cost function may lead to optimize a variety of tasks in
the ranking context such as stability evaluation or ranking prediction, a simple
application of this approach based on the Hamming cost yielded promising re-
sults, competing with those produced by the BordaCount method on LETOR
benchmark datasets. Truth be told, this choice has been mainly motivated by
computational convenience. Algorithmic issues concerning distance/median com-
putation and properties of the median (Pareto efficiency, etc.), depending on
the conditions fulfilled by the underlying cost, will be the subject of further
research.

Appendix - Technical Proofs

Proof of Proposition 1

Observe first that, for any (A,A′) ∈ K2
n, the quantity dc(A,A′) is well-defined

as a minimum, since the functional μc is linear (hence continuous) on {Φ :
{1, . . . , n}4 → R} and thus continuous on M(A,A′) as well, which space is
compact. Therefore a transportation plan Φ∗ achieves the minimum (2). It is
called an optimal transportation plan (OTP). The symmetry of dc immediately
results from the symmetry of the cost function c. The separability of dc is an easy
consequence of hypothesis (i) and (iv) for c. Let us finally prove the triangular
inequality for dc. Assume that A, A′ and A′′ are three given matrices in Kn. Let
us denote by Φ1 an OTP from A to A′′, and by Φ2 an OTP from A′′ to A′. From
the gluing lemma [Vil09, p.23] there exists a map Φ132 from {1, . . . , n}3 to [0, 1]
such that ∀(i, j, k, l) ∈ {1, . . . , n}4,∑

(k,l)∈{1,...,n}2

Φ132 ((i, j), (r, s), (k, l)) = Φ1 ((i, j), (r, s))
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and ∑
(i,j)∈{1,...,n}2

Φ132 ((i, j), (r, s), (k, l)) = Φ1 ((r, s), (k, l))

Let Φ ((i, j), (k, l)) =
∑

(r,s)∈{1,...,n}2 Φ132 ((i, j), (r, s), (k, l)), then, triangular in-
equality of c and Minkowski inequality implies:

dc,p(A,A′) ≤ μ1/p
c,p (Φ)

=

⎛⎜⎜⎜⎜⎜⎜⎝
∑

(i,j)∈{1,...,n}2

(k,l)∈{1,...,n}2

(r,s)∈{1,...,n}2

c ((i, j), (k, l))p
Φ132 ((k, l), (r, s), (i, j))

⎞⎟⎟⎟⎟⎟⎟⎠

1/p

≤ dc(A,A′′) + dc(A′′, A′)

Proof of Corollary 1

The Caley distance is bi-invariant. By virtue of Proposition 2, the cost c itself
is bi-invariant. Now, under the action

(σ, σ′) ∈ Sn×Sn �→
((

(i, j), (k, l)
)
∈ {1, . . . , n}4 �→

(
(σ(i), σ′(j)), (σ(k), σ′(l))

))
,

the set {1, . . . , n}4 has 4 distinct orbits. The first orbit is the diagonal Dn =
{
(
(i, j), (i, j)

)
: (i, j) ∈ {1, . . . , n}2}, the 3 other orbits are Hn = {

(
(i, j), (i, l)

)
:

j �= l}, Vn = {
(
(i, j), (k, j)

)
} and On = {

(
(i, j), (k, l)

)
: i �= k, j �= l}. On

Dn, the cost c is necessarily zero due to condition (i). From S2
n invariance of

c, we know that c takes a constant value h over Hn, (over Vn and over On

respectively). Triangular inequality implies that o ≤ h+ v, but also that h ≤ 2o
and v ≤ 2o. We now distinguish two cases. Either o < +∞ or else o = +∞. If
o = +∞ then either v or h is infinite, in which case we have already seen that it
corresponds to the Hamming distance on permutations (which is obviously bi-
invariant too and different from the Cayley distance), since we rule out the case
where o = v = h = +∞. If o < +∞, then h and v are also finite. Since both h and
v are finite, invariance also leads to h = v using (Mσ)T = (Mσ)−1. Considering
the distance between a transposition matrix and the identity, we deduce that
h = v = 1/2. Now, considering the matrix corresponding to a length 3-cycle we
deduce that 3o ≤ 2 (otherwise the cost of transportation from the identity to
the cycle using only horizontal or vertical movements is larger than n whereas
Cayley distance is equal to n − 1). But now there is a contradiction with the
length n cycle whose transportation cost to the identity is less than 2n/3 instead
of n− 1 for the Cayley distance.

Proof of Proposition 3

It easy to see that the transportation distance between two vectors v and w in
Rn induced by the cost c(i, j) = I{i �= j]} is

∑n
i=1 |wi − vi|/2. Consider a fixed
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row index i in 1 . . .n. By definition of cH, the transportation plan should not
mix rows (otherwise the transportation cost would be infinite). The cost induced
by row i between the matrix Mσ and M , where σ denotes any permutation of
Sn and M any matrix in Kn, is then: 1−M(i, σ(i)). Hence, we have:∑

m

dcH(M,Mσm) ≥
∑

i

∑
m

(1−M(i, σm(i))) .

Now, since M is doubly stochastic, we may write∑
i

∑
m

(1−M(i, σm(i))) = nN−
∑

i

∑
m

M(i, σm(i)) ≥ Nn−
∑
m

∑
i

M̄(i, σm(i))

. Since all the σm(i)’s are distinct (i being fixed), we have∑
m

dcH(M,Mσm) ≥
∑
m

dcH(M̄,Mσm).

If log(nN) ≤ n, one may store all the matricesMσm using a dictionary structure,
where each lookup costs at most log(nN). Otherwise, one can simply sum up
the matrices Mσm .
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Abstract. Embedding probability distributions into a sufficiently rich
(characteristic) reproducing kernel Hilbert space enables us to take higher
order statistics into account. Characterization also retains effective statis-
tical relation between inputs and outputs in regression and classification.
Recent works established conditions for characteristic kernels on groups
and semigroups. Here we study characteristic kernels on periodic domains,
rotation matrices, and histograms. Such structured domains are relevant
for homogeneity testing, forward kinematics, forward dynamics, inverse
dynamics, etc. Our kernel-based methods with tailored characteristic ker-
nels outperform previous methods on robotics problems and also on a
widely used benchmark for recognition of human actions in videos.

Keywords: Characteristic kernels, Locally compact Abelian groups, Ro-
tation matrices, Semigroups, Recognition of human actions in videos.

1 Introduction

Kernel methods solve difficult non-parametric problems by embedding data
points in higher-dimensional reproducing kernel Hilbert spaces (RKHS). This
property makes kernel methods useful and strong tools to be used in different
tasks. They were successfully applied to a wide range of learning tasks such
as regression and classification [16]. Recent studies focused on mapping random
variables into RKHS to collect linear statistics in RKHS which in turn were used
to derive their meaning in the original space [8], [19], [20]. When the embedding
is injective, the RKHS is said to be characteristic [5]. Such mappings allow for
testing whether two distributions coincide [8],[9], or for finding the most pre-
dictive subspace in regression [6]. The most predictive (effective) subspace in
regression is obtained by isolating the features that capture the statistical rela-
tionship between inputs and targets.

Characteristic kernels are defined on non-compact and complex domains.
Sriperumbudur et al. [20] showed that a continuous shift-invariant R-valued
positive definite kernel on Rn is characteristic if and only if the support of its
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Fourier transform is the entire Rn. Fukumizu et al. [7] extended Fourier anal-
ysis to groups and semigroups and obtained necessary conditions for defining
characteristic kernels on spaces other than Rn.

The main contribution of this paper is empirical evaluation of characteristic
kernels. We investigate characteristic kernels on structured domains (groups/
semigroups) for various kernel-based methods: Maximum Mean Discrepancy
(MMD) [8], [9] as a non-parametric hypothesis test, Support Vector Regres-
sion with ε-insensitive loss function (ε-SVR) [18], Gaussian Process Regression
(GPR) [14] as a non-parametric regression method, and Support Vector Ma-
chines (SVM) [16] to classify human actions in videos. We provide experimental
evidence that these kernel-based methods with appropriate kernels lead to sig-
nificant performance gains.

Section 2 briefly reviews kernel-based methods. Section 3 introduces novel
characteristic kernels on periodic data, the orthogonal group SO(3), and his-
tograms. Section 4 experimentally confirms their theoretical advantages: we ob-
tain state-of-the-art results in homogeneity testing, forward kinematics, forward
dynamics, inverse dynamics, and recognition of human actions in videos.

2 Kernel-Based Learning Methods

In this section we briefly review some of kernel-based methods that we use to
investigate our characteristic kernels.

2.1 A Non-parametric Statistical Test

One basic statistic on Euclidean space is the mean. By embedding the distribu-
tions into RKHS, the corresponding factor is the mean element. The distance be-
tween mapped mean elements is known as Maximum Mean Discrepancy (MMD)
[8], [9]. The definition of MMD is given in the following theorem:
Theorem 1. Let (X ,B) be a metric space, and let P,Q be two Borel probability
measures defined on X . Then P = Q if and only if MMD(P,Q) = 0, where

MMD(P,Q) :=‖ μP − μQ ‖H
=‖ EP [k(x, .)]− EQ[k(y, .)] ‖H

= (Ex,x′′∼P [k(x, x′′)] +Ey,y′′∼Q[k(y, y′′)]− 2Ex∼P,y∼Q[k(x, y)])
1
2 (1)

One application of MMD is homogeneity testing, which tests whether the samples
were drawn from different distributions. We compare MMD to another two-
sample test suited for periodic distributions, namely, the Uniform Scores Test
(UST) [4]. UST is not a kernel-based method.

Uniform Scores Test (UST). UST [4] is a two-sample test which tests
whether distributions of circular data coincide. In UST each distribution is rep-
resented by a radius. The null hypothesis is rejected if the summation of radii is
too large. Here we define UST more precisely.
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Suppose we have ni samples where i = 1, 2, .., r. We treat sample n1 =
{θ1, ..., θn} as linear data, re-arrange them in ascending order, and assign rank
ri to each θi. The circular rank of θi is then defined as γi = 2πri/n, for
i = 1, ..., n. We denote γi as the uniform score corresponding to θi. We take
all N = n1 + ... + nr data values as a single sample and calculate their circular
ranks. Let γij denote the circular rank of θij among all the data. For each sample
ni, i = 1, ..., r, we calculate

Ci =
ni∑

j=1

cosγij , Si =
ni∑

j=1

sinγij (2)

and hence the test statistics

Wr = 2
r∑

i=1

(C2
i + S2

i )/ni (3)

If Wr is too large, we reject the null hypothesis that the distributions are
identical.

2.2 Non-parametric Regression Methods for Model Learning

The task of regression is to learn the input/target mapping, to predict target
values for query inputs.

Support Vector Regression with ε-Insensitive Loss function (ε-SVR)
The goal of ε-SVR regression is to find a mapping function f(x) which for each
training input x deviates from its target by at most ε, and simultaneously is as
flat as possible. According to [19], f(x) is

l∑
i=1

(αi − α∗
i )K(xi, x) + b. (4)

where K(xi, x) = φ(xi)Tφ(x), and i ranges over the training points. The solution
of a quadratic optimization problem determines the quantities α∗

i , αi, and b.

GaussianProcessesRegression (GPR). Gaussian ProcessRegression (GPR)
[14] uses a linear model to find a latent function f(x). Uncertainty is modeled prob-
abilistically by:

f ∼ N(0, ΦΣΦT ) ∼ N(0,K) (5)

where matrix Φ describes transformation columns φ(x) for all cases in the training
set, Σ is the covariance matrix of the weights, and K is a positive semidefinite
matrix with elements Ki,j = k(xi, xj) for some covariance function k(., .).
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2.3 Classification: Support Vector Machines

Consider the problem of separating the training set into two classes. If we assume
that the two classes can be separated by a hyperplane w.x + b = 0 in some
space H, and that we have no prior knowledge about the data distribution, then
the optimal hyperplane maximizes the margin [16]. Optimal values for w and
b can be found by solving a constrained minimization problem, using Lagrange
multipliers αi(i = 1, .., l). The classifier is defined as:

f(x) = sgn

(
l∑

i=1

αiyiK(xi, x) + b

)
(6)

where K is the kernel mapping data points to RKHS H, and αi and b are found
using an SVC learning algorithm. Those xi with nonzero αi are called the support
vectors.

3 Characteristic Kernels on Structured Domains

Characteristic kernels were defined on non-compact domain like entire Rn. Sripe-
rumbudur et al. [20] showed that if and only if the support of Fourier transform
of a shift invariant positive definite kernel is the entire Rn, this kernel is char-
acteristic. A question that naturally arises is whether characteristic kernels can
be defined on spaces besides Rn. Several such domains constitute topological
groups/semigroups. Fukumizu et al. [7] based on extensions of Fourier analysis
to groups and semigroups established necessary and sufficient conditions of in-
troducing characteristic kernels. Our main contribution in this paper is to study
these characteristic kernels defined by their algebraic structure and assess them
in relevant applications. For the sake of this purpose, thanks to the established
conditions and theorems by Fukumizu et al. [7] we define our proper character-
istic kernels. We investigate characteristic kernels on Locally Compact Abelian
(LCA) groups (periodic data), Compact Groups (rotation matrices), and Abelian
Semigroups (histogram-based data). In this section we clarify our characteris-
tic kernels, thereafter relevant experiments and evaluations will be discussed in
section 4.

3.1 Shift Invariant Characteristic Kernels on LCA Groups

Periodic domains are examples of Locally Compact Abelian groups which we
consider in this study. To define our proper characteristic kernels on periodic
domains, we use Theorems 7 and 8 of [7] which describe necessary and sufficient
conditions for kernels on LCA groups to be characteristic, as well as Corollary 9
of [7] on the multiplication of shift-invariant characteristic kernels, which is again
a characteristic kernel. Our novel characteristic kernels on periodic domains are:

1. k1(x, y) =
∏l

i=1(π − (xi − yi)mod 2π)2,
2. k2(x, y) =

∏l
i=1(cosh(π − (xi − yi)mod2π),
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3. k3(x, y) =
∏l

i=1(− log(1− 2α cos(xi − yi) + α2),
4. k4(x, y) =

∏l
i=1(1− α2)/(1− 2α cos(xi − yi) + α2),

where l denotes the input dimension. Periodic domains are relevant for two-
sample testing, and in regression tasks like forward kinematics, forward dynam-
ics, and inverse dynamics. In the case of forward dynamics besides periodic data
we have torques which do not belong to periodic domain. We work with the
following justified characteristic kernels in that case:

1. k5(x, y) =
∏m

i=1(π − (xi − yi)mod 2π)2 ·Gaussian(xm,..,l, ym,..,l),
2. k6(x, y) =

∏m
i=1(cosh(π − (xi − yi)mod2π) ·Gaussian(xm,..,l, ym,..,l),

3. k7(x, y) =
∏m

i=1(− log(1− 2α cos(xi − yi) + α2) ·Gaussian(xm,..,l, ym,..,l),
4. k8(x, y) =

∏m
i=1(1−α2)/(1−2α cos(xi−yi)+α2) ·Gaussian(xm,..,l, ym,..,l).

3.2 Characteristic Kernels on Compact Groups

Famous examples of non-Abelian topological groups are the ones consisting of
matrices, such as the orthogonal group SO(3). According to Theorems 11 and
12 of [7], we define proper kernels on rotation matrices {A,B} ∈ R3. Let cos θ =
1
2Tr[B

−1A], and 0 ≤ θ ≤ π, we formulate the characteristic kernels as follows:

k1(A,B) =
1

sin θ

∞∑
n=0

sin((2n+ 1)θ)
(2n+ 1)3

=
πθ(π − θ)

8 sin θ
. (7)

k2(A,B) =
∞∑

n=0

α2n+1 sin((2n+ 1)θ)
(2n+ 1) sin θ

=
1

2 sin θ
arctan

(
2α sin θ
1− α2

)
. (8)

3.3 Characteristic Kernels on Abelian Semigroups

Now consider histograms as an example of Abelian semigroups such as (Rn
+,+).

Theorems 13 and 14 of [7] obtain necessary and sufficient conditions for tailored
kernels for histogram-based information. Let a = (ai)n

i=1 and b = (bi)n
i=1, (ai ≥

0, bi ≥ 0) be non-negative measures on n points. We use the following character-
istic kernel:

k(a, b) = e−β
∑n

i=1

√
ai+bi . (9)

where β ≥ 0 and X ∈ R. Another tailored kernel for histogram-based data which
is not a characteristic kernel is Generalized Histogram Intersection (GHI) kernel.
In [1] GHI was introduced as a positive-definite kernel:

KGHI(a, b) =
m∑

i=1

min{| aβ
i |, | b

β
i |}, (a, b) ∈ X × X (10)

We compare the results of these two kernels in human action classification task
in section 4.4.
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4 Experiments and Evaluations

Now we confirm theoretical advantages of characteristic kernels on various prac-
tical applications.

4.1 MMD for Two-Sample Testing

One application of MMD is for two-sample tests, which involve testing the null
hypothesis H0 : P = Q versus H1 : P �= Q. Two-sample tests require a measure
of distance between probabilities and a notion of whether this distance is statis-
tically significant. Our MMD test determines the test threshold by the bootstrap
procedure [8]. In this study we consider this application of MMD to compare
two artificially generated distributions of periodic nature. Suppose we obtain the
first sample from a uniform distribution P. The other sample is drawn from a
perturbed uniform distribution Q : 1+sin(ωx). For higher perturbation frequen-
cies ω (where 1/ω is smaller), it becomes harder to discriminate Q from P— see
Figure 1.

Figure 2 shows the acceptance percentage of null hypothesis with MMD during
1000 runs with a user-defined significance level 0.05. The quality of MMD as a

(a) uniform distribution (b) 1 + sin(x) distribution

(c) 1 + sin(3x) (d) 1 + sin(6x)

Fig. 1. (a)represents an example of circular data [0, 2π) with uniform distribution, (b),
(c), and (d) are periodic data with distribution 1 + sin(ωx) and ω equal to 1, 3, and
6 respectively. Higher perturbation frequencies make the perturbed distribution much
closer to the uniform distribution, and the discrimination more difficult.
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Fig. 2. Acceptance percentage of H0 : P = Q for MMD and UST, with user-defined
significance level of 0.05 during 1000 runs, and 1

ω
= 0, 1

6
, 1

5
, 1

4
, 1

3
, 1

2
, and 1. P is a

uniform distribution of circular data, and Q is 1 + sin(ωx).

statistic depends on the richness of RKHS H which is defined by a measurable
kernel. Characteristic kernels [5], [6] yield an RKHS for which probabilities have
unique images. Here we use characteristic kernels k1, k2, k3, and k4 in MMD with
l = 1 and hyper-parameter α = 0.9 for kernels k3 and k4. MMD discriminated
subtle changes between the distributions with the justified characteristic kernels
on periodic domain. This can be seen from different acceptance percentage of
H0 in Figure 2. MMD has the best performance with k4 which needs tuning
a hyper-parameter α. We compared the result of MMD with UST. We observe
that UST can not deal with subtle nonlinear changes in distributions. It gives
true results when P and Q are either completely similar or dissimilar.

4.2 Applications of Regression

Given a training set of data points D = {(x1, y1), ...(xl, yl)} where the xi ∈ Rn

are inputs and the yi ∈ R1 are the corresponding targets, the task of regression
is to learn the input/target mapping, to predict target values for query inputs.
Fukimuzu et al. [5], [6] showed that characterization allows us to derive a contrast
function for estimation of the effective subspace. The effective subspace can help
to retain the statistical relationship between x and y by isolating the features
that capture this relation. We evaluated characteristic kernels k1, k2, k3, and k4
in forward kinematics and inverse dynamics for datasets with periodic nature.
For forward dynamics problem, characteristic kernels k5, k6, k7, and k8 are used.

Forward kinematics. Kinematics studies motion ignoring the forces which
cause it. The forward kinematics of a revolute robot arm are described by the
function T = f(θ, φ), where θ is the vector of joint angles, φ are the param-
eters describing the kinematics of the arm, and T is the 4 × 4 homogeneous
transformation matrix [2].
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Fig. 3. The result of ε-SVR for forward kinematics task on Kin-8fm, Kin-8fh, Kin-
8nm, and Kin-8nh datasets. The results of ε-SVR is based on characteristic kernels
k1, k2, k3, k4 (section 3.1), and Gaussian kernel with ε = 0.01, α = 0.9, for k3, and
k4, and σ = 10 for Gaussian kernel.

We use the 8 input Kin dataset (http://www.cs.utoronto.ca/~delve/data/
kin/desc.html). It is generated from a realistic simulation of the forward kine-
matics of an 8 link all-revolute robot arm. The task is to predict the distance of
the end-effector from a target, given the angular position of the 8 joints, the link
twist angles, link lengths and link offset distances. Combinations of the following
attributes are considered in datasets:

1. output : highly nonlinear (n) vs. fairly linear (f)
2. predicted value : medium noise (m) vs. high noise(h)

We use a training set of size 1024, 4096 test instances and the validation set
of size 3072. The hyper-parameters α and σ in kernels k3, k4, and Guassian
kernel respectively were tuned during the 5-fold leave-one-out cross validation
procedure. Support vector regression with ε insensitive loss function (ε− SV R)
is used as our non-parametric regression method. A run consisted of model selec-
tion, training and testing, and the confidence interval over Mean Squared Errors
(MSE) results are obtained over 10 runs. In this task the input dimension is 8. l
is set to 8 in the formula of our characteristic kernels of section 3.1. In Figure 3,
the results of ε− SV R with ε = 0.01 on four datasets of 8-input Kin (Kin-8fm,
Kin-8fh, Kin-8nm, and Kin-8nh) are depicted. Figure 3 demonstrates that tai-
lored characteristic kernels on the LCA group work better than Gaussian kernel
which is just characteristic. We compared our best results on the above datasets
to the results given by GPR [14], K-Nearest Neighbor (K-NN), Linear Regres-
sion (LR), Multi-Layer Perceptrons (MLP) with single hidden layer and early
stopping [14], and mixtures of experts trained by Bayesian methods (HME)[22].
The results reported in Table 1. Results of 22 methods (by Ghahramani) on
the same datasets are available at http://www.cs.toronto.edu/~delve/data/
kin/desc.html. The reported results show that GPR obtained better results

http://www.cs.utoronto.ca/~delve/data/kin/desc.html
http://www.cs.utoronto.ca/~delve/data/kin/desc.html
http://www.cs.toronto.edu/~delve/data/kin/desc.html
http://www.cs.toronto.edu/~delve/data/kin/desc.html
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Table 1. Best results of ε-SVR with characteristic kernel k4 in comparison with re-
ported results on the Kin family of datasets. Our results are obtained with ε = 0.01 in
ε-SVR and the kernel k4 with hyper-parameter α = 0.9. Rounded standard deviation
of MSEs are also reported.

Method Kin-8fm Kin-8fh Kin-8nm Kin-8nh

ε-SVR 0.001 ± 0.0001 0.001± 0.0001 0.002± 0.0001 0.002± 0.0001

GPR 0.25 ± 0.0001 0.02 ± 0.01 0.43 ± 0.1 0.1 ± 0.2

HME 0.26 ± 0.0001 0.03 ± 0.01 0.48 ± 0.3 0.28± 0.2

KNN 0.29 ± 0.0001 0.08 ± 0.01 0.65 ± 0.1 0.45 ± 0.2

LR 0.28 ± 0.0001 0.06 ± 0.01 0.65 ± 0.1 0.45 ± 0.2

MLP 0.26 ± 0.0001 0.03 ± 0.02 0.42 ± 0.01 0.1 ± 0.2

than LR, as it captures the nonlinear relationship between data points by a
Gaussian kernel and the affect of noise with probabilistic nature of the method.
This draws the attention to our datasets which are generated by fairly linear
and nonlinear movements of robot arm in combination with noise. Moreover the
results of GPR in comparison with HME as another Bayesian based method is
better which shows the superiority of kernel-based methods. The nonlinearities
captured by MLP and GPR produced comparable results with better perfor-
mance for GPR. Our results showed that ε− SV R and a tailored characteristic
kernel on periodic data outperforms the other methods. This highlights the fact
that in kernel-based methods selection of an appropriate kernel according to the
nature of available data leads to significant performance gains. Our results with
tailored characteristic kernels for periodic data confirm this fact.

Forward dynamics. To simulate robot control systems, forward dynamics
computes joint accelerations and actuator torques, given position and velocity
state [2]. We used the 8 input Pumadyn dataset at http://www.cs.utoronto.
ca/~delve/data/pumadyn/desc.html. It was synthetically generated from a re-
alistic simulation of the dynamics of a Puma560 robot arm. The task is to pre-
dict the angular acceleration of the robot arm links, given angular positions,
velocities, torques. The combination of fairly linear and nonlinear movements of
robot arm with unpredictability captured by medium or high amount of noise
generate 4 datasets (Pdyn-8fm, Pdyn-8fh, Pdyn-8nm, and Pdyn-8nh). We used
characteristic kernels k5, k6, k7, and k8 in this task. All the settings are like in
the forward kinematics case. Figure 4 shows the justified characteristic kernels
have better performance than Gaussian kernel. We compared our best results
to those obtained by GPR [14], K-Nearest Neighbor (K-NN), Linear Regression
(LR), MLP with early stopping and single hidden layer [14], mixtures of experts
trained by Bayesian methods (HME) [22] in Table 2. Results of 25 methods
(by Ghahramani) are available at http://www.cs.toronto.edu/~delve/data/
pumadyn/desc.html. Like the reported results in the forward kinematics case,

http://www.cs.utoronto.ca/~delve/data/pumadyn/desc.html
http://www.cs.utoronto.ca/~delve/data/pumadyn/desc.html
http://www.cs.toronto.edu/~delve/data/pumadyn/desc.html
http://www.cs.toronto.edu/~delve/data/pumadyn/desc.html
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Fig. 4. The result of ε-SVR for forward dynamics task on Pdyn-8fm, Pdyn-8fh, Pdyn-
8nm, and Pdyn-8nh. The results of ε-SVR is based on characteristic kernels k5, k6, k7,
and k8 (section 3.1) with ε = 0.01, α = 0.9 for k7, and k8 respectively, and σ = 10 for
Gaussian kernel.

Table 2. Best results of our ε-SVR with characteristic kernel k8, as well as earlier
reported results on the Pumadyn family of datasets. The results are obtained with
ε = 0.01 in ε-SVR and the kernel k8 with hyper-parameter α = 0.9. Rounded standard
deviation of MSEs are also reported.

Method P-8fm P-8fh P-8nm P-8nh

ε-SVR 0.01±0.0001 0.01 ±0.0001 0.01 ±0.0001 0.01 ±0.0001

GPR 0.39 ± 0.001 0.05 ± 0.1 0.32± 0.01 0.03 ± 0.2

HME 0.41 ± 0.001 0.06 ± 0.1 0.37 ± 0.5 0.04 ± 0.3

KNN 0.41 ± 0.001 0.15 ± 0.1 0.52 ± 0.01 0.3 ± 0.1

LR 0.48 ± 0.001 0.08 ± 0.1 0.55 ± 0.01 0.48 ± 0.1

MLP 0.4 ± 0.001 0.06 ± 0.2 0.35 ± 0.01 0.033± 0.1

the results of kernel based method GPR are better than those of linear Regres-
sion, and is better than HME method which is a Bayesian method. The results
of GPR and MLP are comparable although the performance of GPR is better.
The best outcome is for our ε-SVR method with justified characteristic kernels
on datasets. ε-SVR captures the nonlinearity, and the relation of observations
with tailored characteristic kernels.

Inverse Dynamics. Finding sufficiently accurate dynamic models of rigid body
equations in automatic robot control is difficult due to unmodeled nonlinearities,
complex friction and actuator dynamics. Imprecise prediction of joint torques
leads to poor control performance and may even damage the system. Learning
more precise inverse dynamics models from measured data by regression is an
interesting alternative. Here we compare ε−SV R and GPR as regression meth-
ods for computing inverse dynamics, which could be used for automatic robot
control (e.g., [13]).
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The inverse dynamic model [2] is given in the rigid-body formulation u =
M(q)q̈+F (q, q̇), where q, q̇, q̈ are joint angles, angular velocities and angular ac-
celerations of the robot. M(q) denotes the inertia matrix and F (q, q̇) the internal
forces. Let us define the inverse dynamic model by u = f(q, q̇, q̈); the regression
task is to learn f .

We use the 7-DOF SARCOS anthropomorphic robot arm data http://www.
gaussianprocess.org/gpml/data. Each observation in the data set consists of
21 input features (7 joint positions, 7 joint velocities, and 7 joint accelerations)
and the corresponding 7 joint torques for the 7-DOF. There are two disjoint sets,
one for training and one for testing. We use only 1100 examples of the training
set for training, but the entire test set for testing. Results are shown in terms
of normalized Mean Squared Errors (nMSEs) defined as MSE divided by target
variance. Results of ε − SV R and GPR are shown in Figure 5. ε − SV R and
GPR with tailored characteristic kernels work better than with the Gaussian
kernel. Their results are comparable with slightly better performance in ε-SVR.
The larger errors for the 5th and 6th DOF show that nonlinearities (e.g. hydrolic
cables, complex friction) can not be approximated well using just the rigid body
functions. This is an example of the difficulty of using an analytical model for
control in practice.

(a) Results of ε − SV R with tailored
characteristic kernels on periodic do-
mains and Gaussian kernel with ε = 0.01
and α = 0.5 for k3, and k4, and σ = 21
for Gaussian kernel.

(b) Results of GPR with the same tai-
lored characteristic kernels are used in
ε − SV R and Gaussian kernel.

Fig. 5. The results of ε-SVR and GPR with characteristic kernels k1, k2, k3, k4, and
Gaussian kernel on SARCOS dataset

Yeung et al. [21] investigated different training sample sizes for GPR. They
achieved the same result as reported in the current paper with GPR and Gaus-
sian kernel over training set of size 1100 with the mean of nMSE = 1.06 and
the standard deviation of nMSE = 0.12. They further improved their results
by multi-task learning and reported the mean of nMSE =0.35 and the standard

http://www.gaussianprocess.org/gpml/data
http://www.gaussianprocess.org/gpml/data
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deviation of nMSE= 0.49 for multi-task GPR. From our improvement for both ε-
SVR and GPR with tailored characteristic kernels in comparison with Gaussian
kernel (Figure 5) we expect to see a performance boost in multi-task learning,
but this is a topic of future work.

4.3 Rotation Matrices in Forward Kinematics

As mentioned before the task in forward kinematics is to find T = f(θ, φ),
where T a the 4×4 homogeneous rotation matrix ( an example of SO(3) group).
We considered the solution of the regression task with ε-SVR and the tailored
characteristic kernels on rotation matrices of formula 7, 8, and Gaussian kernel
on Kin-8nh dataset. We obtained the following results:

1. k1(A,B) ⇒ MSE = 0.009

2. k2(A,B) with α = 0.9 ⇒ MSE = 0.006

3. Gaussian kernel with σ = 0.05 ⇒ MSE = 0.005

Unexpectedly, Gaussian kernel worked better than justified kernels on the SO(3)
group.

4.4 Abelian Semigroups: Classification of Human Actions

One example of Abelian semigroups are histograms. As many authors in com-
puter vision area are working with kernel-based methods and histograms (for
example, see the recent VOC2006 object classification challenge), it is worth
studying kernel classes suitable for histogram-based information. We use the ac-
tion descriptors introduced by Danafar and Gheissari [3], which are histograms
of optical flow and capture both local and global information about actions.
These feature vectors are described in Figure 6. We use the challenging human
action video database of KTH [17]. It contains 6 types of human actions: walk-
ing, jogging, running, boxing, hand waving, and hand clapping, performed by 25
people in four different scenarios: outdoors (s1), outdoors with scale variations
(s2), outdoors with different clothes (s3), and indoors (s4). Some samples from
this dataset are shown in Figure 7.

Our action recognition approach is based on SVM. The database is divided
into three parts: training, testing and validation. 8 subjects were used for train-
ing, 9 for test and 8 for validation. The validation data is first used to tune the
hyper-parameter β of GHI kernel and our defined characteristic kernel with a
5-fold leave-one-out cross validation procedure. Danafar and Gheissari [3] recog-
nized actions with SVMs and the GHI Kernel.

The crucial condition an SVM kernel should satisfy is to be positive definite,
meaning that the SVM problem is convex, and hence the solution of its objec-
tive function is unique. Characteristic kernels have positive definite property and
have been shown to be more discriminative; because characterization can capture



276 S. Danafar, A. Gretton, and J. Schmidhuber

Fig. 6. The features used in our supervised classifier are described in [3]; a single feature
vector (right) is computed for each sequence by concatenating data coming from each
frame of the sequence (left). In each frame, Harris interest points are used to recover a
tight bounding box, which is vertically partitioned in three regions. The topmost 1/5
of the bounding box approximately contains the head and the neck. The middle 2/5
contains the torso and hands, and the bottom 2/5 of the bounding box contains the
legs. Such segmentation is obviously approximated, and the resulting features would
still be usable in cases where the assumptions are not met. Flow data in each region is
summarized in separate histograms for the horizontal and vertical directions.

Fig. 7. Example images from video sequences in KTH dataset

effective statistical and discriminative relationship between response variables
from an explanatory variables [5], [6]. Our reported accuracy of 93.1% obtained
with characteristic kernels is a very significant improvement with respect to the
accuracy of 83.5% reported in [3], obtained using Histogram Intersection Kernel
in the same setting. We also compared our characteristic kernel for histogram-
based data to the Gaussian kernel, which is also characteristic but is not tailored
to histogram-based data. In our experiments, the accuracy of Gaussian kernel
is 33.8% which is much lower than our result of 93.1%. Confusion matrices in
the three cases are reported in Figure 8. Therefore we conclude that our exper-
imental results are due to our kernel being both characteristic and suitable for
histogram-based data; removing any of the two properties results in a significant
performance loss.
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(a) Results of GHI kernel
as a positive definite kernel
with β = 1 and overall ac-
curacy rate of 85.3%.

(b) Results of Gaussian ker-
nel as a characteristic kernel
with σ = 21 and overall ac-
curacy rate of 33.8%.

(c)Results of the tailored
characteristic kernel on
histogram-based data with
β = 0.001 and overall
accuracy rate of 93.1%.

Fig. 8. Confusion matrices obtained on the KTH dataset with descriptors [3], using
SVM and the indicated kernels. Figure(a) shows the recognition rates of histogram
Intersection kernel which is a positive definite but not a characteristic kernel. Figure
(b) denotes the result of a characteristic kernel (Gaussian) which is not tailored to
histogram-based information. Figure (c) is the result of characteristic kernel which is
tailored to histograms.

Table 3. Recognition results of various methods on the KTH dataset. The recognition
rate reported by Jhuang et al. (2007) is obtained on video sequences from scenarios 1
and 4 only. Other reported rates are on all scenarios.

Method Recognition rate %

SVM by charac. Kernel 93.1

Lin et al. [11] 93.4

Schindler and Van Gool [15] 92.7

Jhuang et al. [10] 91.7

Danafar & Gheissari [3] 85.3

Niebles et al. [12] 83.3

Schüldt et al. [17] 71.7

In Table 3 recognition results of various methods on the KTH dataset are
compared. Our overall rate exceeds previously reported results and is comparable
to 93.4% reported rate in [11], demonstrating superiority of our method. In [15]
and [11], the authors benefited from stronger feature vectors as combination of
shape and motion and reported high accuracy rates rather than motion feature
which is used here. This concludes that the achievement of higher recognition
rate with stronger histogram-based feature vector is promising.

5 Conclusion

We studied empirically characteristic kernels on structured domains, yielding
powerful kernel-based methods for structured data. Characteristic kernels for
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periodic domains and SO(3) were applied to homogeneity testing, forward kine-
matics, forward dynamics, and inverse dynamics for robotics. Our methods out-
performed other published methods on the 8-input Kin forward kinematics data
set, and the 8-input Pumadyn forward dynamics data set. We also used tailored
characteristic kernels on histogram-based action descriptors to recognize human
actions in video. Our results on the KTH database of human actions are com-
parable to or better than those of previous state-of-the-art methods. Ongoing
work aims at improving inverse dynamics results through multi-task kernel-based
learning with our tailored characteristic kernels.
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Abstract. In multi-label classification (MLC), each instance is associ-
ated with a subset of labels instead of a single class, as in conventional
classification, and this generalization enables the definition of a multitude
of loss functions. Indeed, a large number of losses has already been pro-
posed and is commonly applied as performance metrics in experimental
studies. However, even though these loss functions are of a quite different
nature, a concrete connection between the type of multi-label classifier
used and the loss to be minimized is rarely established, implicitly giv-
ing the misleading impression that the same method can be optimal for
different loss functions. In this paper, we elaborate on risk minimization
and the connection between loss functions in MLC, both theoretically
and empirically. In particular, we compare two important loss functions,
namely the Hamming loss and the subset 0/1 loss. We perform a regret
analysis, showing how poor a classifier intended to minimize the sub-
set 0/1 loss can become in terms of Hamming loss and vice versa. The
theoretical results are corroborated by experimental studies, and their
implications for MLC methods are discussed in a broader context.

1 Introduction

The setting of multi-label classification (MLC) which, in contrast to conven-
tional (single-label) classification, allows an instance to belong to several classes
simultaneously, has received increasing attention in machine learning in recent
years [1,2,3,4,5,6]. In particular, several approaches aiming at the exploitation
of dependencies between class labels have been proposed. Even though the goal
itself is clearly worthwhile, and empirically, many approaches have indeed been
shown to improve predictive performance, a thorough theoretical analysis of the
MLC setting is still missing.
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Indeed, the notion of “label dependence” is often used in a purely intu-
itive manner. In this paper, we will argue that a careful distinction should be
made between two different but related forms of statistical dependence in MLC,
namely conditional and unconditional dependence. Moreover, we will establish a
close connection between conditional label dependence and loss minimization. In
MLC, a multitude of loss functions can be considered, and indeed, a large num-
ber of losses has already been proposed and is commonly applied as performance
metrics in experimental studies. However, even though these loss functions are
of a quite different nature, a concrete connection between the type of multi-label
classifier used and the loss to be minimized is rarely established, implicitly giv-
ing the misleading impression that the same method can be optimal for different
loss functions.

More specifically, this paper extends our previous work [7], in which we ana-
lyzed the connection between conditional label dependence and risk minimization
for three loss functions commonly used in MLC problems: Hamming, rank and
subset 0/1 loss. According to our results, the first two losses can in principle be
minimized without taking conditional label dependence into account, which is
not the case for the subset 0/1 loss.

In this paper, we further elaborate on the relationship between the Hamming
and subset 0/1 loss. Our main theoretical result states that, even though we can
establish mutual bounds for these loss functions, the bounds are not very tight.
On the contrary, we can show that the minimization of subset 0/1 loss may come
along with a very high regret in terms of Hamming loss and vice versa. As will
be discussed in more detail later on, these results have important implications
and suggest that previous experimental studies have often been interpreted in
an incorrect way.

Let us also remark that the analysis performed in this paper is simplified by
assuming an unconstrained hypothesis space. This allows for an analysis with
respect to the joint conditional distribution alone. Regarding related work, we
mention that generalization bounds have already been considered for problems
with structured outputs. Some of these results apply directly to MLC as a special
case [8,9]. Moreover, it is worth mentioning that a similar problems can be found
in information theory, namely bitwise and codeword decoding [10]. One can easily
notice that the bitwise and codeword decoding correspond to Hamming loss and
subset 0/1 loss minimization, respectively.

The structure of the paper is the following. Section 2 introduces the MLC
problem in a formal way. Section 3 contains the main theoretical results concern-
ing the bound and regret analysis. In Section 4, we present some experimental
results confirming our theoretical claims. The last section concludes the paper.

2 Multi-Label Classification

In this section, we describe the MLC problem in more detail and formalize it
within a probabilistic setting. Along the way, we introduce the notation used
throughout the paper.
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2.1 Problem Statement

Let X denote an instance space, and let L = {λ1, λ2, . . . , λm} be a finite set
of class labels. We assume that an instance x ∈ X is (non-deterministically)
associated with a subset of labels L ∈ 2L; this subset is often called the set of
relevant labels, while the complement L\L is considered as irrelevant for x. We
identify a set L of relevant labels with a binary vector y = (y1, y2, . . . , ym), in
which yi = 1⇔ λi ∈ L. By Y = {0, 1}m we denote the set of possible labelings.

We assume observations to be generated independently and randomly ac-
cording to a probability distribution p(X,Y) on X × Y, i.e., an observation
y = (y1, . . . , ym) is the realization of a corresponding random vector Y =
(Y1, Y2, . . . , Ym). We denote by px(Y) = p(Y |x) the conditional distribution
of Y given X = x, and by p(i)

x (Yi) = p(i)(Yi |x) the corresponding marginal
distribution of Yi:

p(i)
x (b) =

∑
y∈Y:yi=b

px(y)

A multi-label classifier h is an X → Y mapping that assigns a (predicted) label
subset to each instance x ∈ X . Thus, the output of a classifier h is a vector

h(x) = (h1(x), h2(x), . . . , hm(x)).

The problem of MLC can be stated as follows: Given training data in the form of
a finite set of observations (x,y) ∈ X × Y, drawn independently from p(X,Y),
the goal is to learn a classifier h : X → Y that generalizes well beyond these
observations in the sense of minimizing the risk with respect to a specific loss
function.

2.2 Label Dependence

As already announced in the introduction, we propose to distinguish two types
of dependence. We call the labels Y unconditionally independent if and only if

p(Y) =
m∏

i=1

p(i)(Yi). (1)

On the other hand, the labels are conditionally independent if the joint posterior
distribution is the product of the marginals:

px(Y) =
m∏

i=1

p(i)
x (Yi)

Obviously, both types of dependence are related to each other, since

p(Y) =
∫
X

px(Y)dP(x) .

Nevertheless, unconditional dependence does not imply nor is implied by con-
ditional dependence.
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It has been widely established in statistics that exploiting unconditional label
dependence can improve the generalization performance, because unconditional
label dependence mainly originates from a similar structure of the different mod-
els [11]. The same arguments have played a key role in the development of related
areas like multi-task learning and transfer learning, where task i and task j as
well their models are assumed to be related [12]. As we will show the conditional
dependence is rather connected with loss functions and their minimizers.

Let us remind that the joint distribution of a random vector Y = (Y1, . . . , Ym)
can be expressed by the product rule of probability:

p(Y) = p(Y1)
m∏

i=2

p(Yi|Y1, . . . , Yi−1)

If Y1, . . . , Ym are independent, then the product rule simplifies to (1).

2.3 Loss Functions

The performance in MLC is perhaps most frequently reported in terms of the
Hamming loss, which is defined as the fraction of labels whose relevance is in-
correctly predicted:1

LH(y,h(x)) =
1
m

m∑
i=1

�yi �= hi(x)�. (2)

Another natural loss function in the MLC setting is generalization of the well-
known 0/1 loss from the conventional to the multi-label setting:

Ls(y,h(x)) = �y �= h(x)�. (3)

This loss function is referred to as subset 0/1 loss. Admittedly, it may appear
overly stringent, especially in the case of many labels. Moreover, since making
a mistake on a single label is punished as hardly as a mistake on all labels,
it does not discriminate well between “almost correct” and completely wrong
predictions. However, mainly because of the fact that it is so extreme, it is
especially relevant for our discussion about label dependence. Besides, as will be
seen in more detail later on, it is a strong complement to the Hamming loss.

3 Analysis of Hamming and Subset 0/1 Loss

In this section, we analyze the Hamming and the subset 0/1 loss. The analysis
is performed by assuming an unconstrained hypothesis space. This allows us to
simplify the analysis by considering the conditional distribution for a given x.
First, we recall the risk minimizers of the two loss functions, already presented
in [7], and then show that, despite being different in general, they may coincide
under specific conditions. Further, we derive mutual bounds for the two loss
functions. Finally, we will show how poorly a classifier intended to minimize the
subset 0/1 loss can perform in terms of Hamming loss and vice versa.
1 For a predicate P , the expression �P � evaluates to 1 if P is true and to 0 if P is

false.
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3.1 Risk Minimization

The risk of a classifier h is defined as the expected loss over the joint distribution
p(X,Y):

RL(h) = EXYL(Y,h(X)), (4)

where L(·) is a loss function on multi-label predictions. A risk-minimizing model
h∗ is given by

h∗ = argmin
h

EXYL(Y,h(X)) = arg min
h

EX[EY|XL(Y,h(X)] (5)

and determined in a pointwise way by the Bayes optimal decisions

h∗(x) = arg min
y

EY|XL(Y,y). (6)

For the Hamming loss (2), it is easy to see that the risk minimizer (6) is obtained
by

h∗
H(x) = (hH1(x), . . . , hHm(x)),

where
hHi(x) = arg max

b∈{0,1}
p(i)

x (b) (i = 1, . . . ,m). (7)

The Bayes prediction for (3) is also straight-forward. As for any other 0/1 loss,
it simply consists of predicting the mode of the distribution:

h∗
s(x) = argmax

y∈Y
px(y) (8)

As one of the most important consequences of the above results we note that,
according to (7), a risk-minimizing prediction for the Hamming loss can be ob-
tained from the marginal distributions p(i)

x (Yi) (i = 1, . . . ,m) alone. In other
words, it is not necessary to know the joint label distribution px(Y) on Y. For
finding the minimizer (8), on the other hand, the joint distribution must obvi-
ously be known. These results suggest that taking conditional label dependence
into account is less important for Hamming loss than for subset 0/1 loss.

Despite the differences noted above, we can show that the two risk minimizers
coincide under specific conditions. More specifically, we can show the following
proposition.

Proposition 1. The Hamming loss and subset 0/1 have the same risk mini-
mizer, i.e., h∗

H(x) = h∗
s(x), if one of the following conditions holds:

(1) Labels Y1, . . . , Ym are conditionally independent, i.e., px(Y) =
∏m

i=1 px(Yi).
(2) The probability of the mode of the joint probability is greater or equal than

0.5, i.e., px(h∗
s(x)) ≥ 0.5.

Proof. (1) Since the joint probability of any combination of y is given by the
product of marginal probabilities, the highest value of this product is given by the
highest values of the marginal probabilities. Thus, the joint mode is composed
of the marginal modes.
(2) If px(h∗

s(x)) ≥ 0.5, then px(h∗si
(x)) ≥ 0.5, i = 1, . . . ,m, and from this it

follows that h∗si
(x) = h∗Hi

(x). ��
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As a simple corollary of this proposition, we have the following.

Corollary 1. In the separable case (i.e., the joint conditional distribution is
deterministic, px(Y) = �Y = y�, where y is a binary vector of size m), the risk
minimizers of the Hamming loss and subset 0/1 coincide.

Proof. If px(Y) = �Y = y�, then px(Y) =
∏m

i=1 px(Yi). In this case, we also
have px(h∗

s(x)) ≥ 0.5. Thus, the result follows from both (1) and (2) in Propo-
sition 1. ��

3.2 Bound Analysis

So far, we have looked at the minimizers of Hamming and subset 0/1 loss and
we have seen that these minimizers may coincide under special conditions. In
general, however, they are different and, therefore, will call for different classi-
fiers. Another natural question one may ask is the following: If we fix a classifier
and we know, say, its subset 0/1 loss, can we say anything about its Hamming
loss? This question is answered by the following proposition.

Proposition 2. For all distributions of Y given x, and for all models h, the
expectation of the subset 0/1 loss can be bounded in terms of the expectation of
the Hamming loss as follows:

1
m

EY[Ls(Y,h(x))] ≤ EY[LH(Y,h(x))] ≤ EY[Ls(Y,h(x))] (9)

Proof. For a fixed x ∈ X , we can express the expected loss as follows:

EY[L(Y,h(x))] =
∑
y∈Y

p(y)L(y,h(x))

Suppose we can express an MLC loss in terms of an aggregation G : {0, 1}m →
[0, 1] of the standard zero-one losses L0/1 on individual labels (as used in con-
ventional classification):

L(y,h(x)) = G(L0/1(y1, h1(x)), . . . , L0/1(ym, hm(x))) . (10)

Indeed, the subset 0/1 loss and the Hamming loss can be written, respectively,
as

Gmax(a) = Gmax(a1, . . . , am) = max{a1, . . . , am}

Gmean(a) = Gmean(a1, . . . , am) =
1
m

(a1 + . . . + am).

This immediately leads to the above lower and upper bound for the Hamming
loss. The proposition then immediately follows from the fact that 1

mGmax(a) ≤
Gmean(a) ≤ Gmax(a) for all a ∈ [0, 1]m. ��
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Interestingly, it turns out that the location of the Hamming loss between the
bounds in (9) is in direct correspondence with the conditional dependence be-
tween the labels, and when the dependence structure of the conditional distri-
bution of Y is given, the difference between Hamming loss and subset 0/1 loss
can be determined in a more precise way. Roughly speaking, the less (more)
dependent the labels are, the more the Hamming loss moves toward the lower
(upper) bound. Without going into detail, we note that more precise estimations
of the difference between subset 0/1 loss and Hamming loss can be derived with
the help of copulas [13].

Nevertheless, we need to emphasize that a complete analysis of the relation-
ship between bound (9) and conditional label dependence has to take additional
factors into account. One of these factors is the hypothesis space one considers;
the lower bound will become more tight when restricting to certain hypothesis
spaces. Another important factor is the interplay between conditional and un-
conditional label dependence. For example, in case of full positive dependence
between all labels, estimating the Hamming loss might still be more simple than
estimating the subset 0/1 loss, implying that the upper bound will not behave as
an equality. The analysis of this section mainly provides insights on the behavior
of the different loss functions for the underlying distribution. Yet, we realize that
the picture might look different in terms of estimated performance after training
on a finite set of examples.

3.3 Regret Analysis

Some of the previous results may suggest that, for learning a risk minimizing
classifier, either loss functions can be used as a proxy of the other one. For
example, the bounds in (9) may suggest that a low subset 0/1 loss will also
imply a low Hamming loss. On the other hand, one may argue that the bounds
themselves are rather weak, and reckon that the concrete difference in terms of
Hamming and subset 0/1 loss may become quite high. In this section, we present
a regret analysis showing that minimization of Hamming loss does not guarantee
good performance in terms of subset 0/1 loss and vice versa.

The regret of a classifier h with respect to a loss function Lz is defined as
follows:

rLz (h) = RLz(h)−RLz(h∗
z), (11)

where R is the risk given by (4), and h∗
z is the Bayes-optimal classifier with

respect to the loss function Lz.
In the following, we consider the regret with respect to the Hamming loss,

given by
rH(h) = EXYLH(Y,h(X))− EXYLH(Y,h∗

H(X)),

and the subset 0/1 loss, given by

rH(h) = EXYLs(Y,h(X))− EXYLs(Y,h∗
s(X)).

Since both loss functions are decomposable with respect to individual instances,
we analyze the expectation over Y for a given x. The first result concerns the
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highest value of the regret in terms of the subset 0/1 loss for h∗
H(X), the optimal

strategy for the Hamming loss.

Proposition 3. The following upper bound holds:

EYLs(Y,h∗
H(x))− EYLs(Y,h∗

s(x)) < 0.5.

Moreover, this bound is tight, i.e.,

sup
p

(EYLs(Y,h∗
H(x))− EYLs(Y,h∗

s(x))) = 0.5,

where the supremum is taken over all probability distributions on Y.

Proof. Since the risk of any classifier h is within the range [0, 1], the maximal
value of the regret is 1. However, according to the second part of Proposition 1,
both risk minimizers coincide if EYLs(Y,h∗

s(x)) ≤ 0.5. Consequently, the regret
must be (strictly) smaller than 0.5. To prove the tightness of the bound, we show
that, for any δ ∈ (0, 1

6 ), there is a probability distribution p that yields the regret
0.5− δ. Define p as follows:

p(y) =

⎧⎨⎩
1
2 − δ, if y = (a1, . . . , ak−1, āk+1, . . . , ām)
1
2 − δ, if y = (ā1, . . . , āk−1, ak+1, . . . , am)
2δ, if y = (a1, . . . , ak−1, ak+1, . . . , am)

where ai ∈ {0, 1} and āi = 1− ai. Such a distribution can be constructed for all
m > 1. Obviously,

h∗
s(x) = (a1, . . . , ak−1, āk+1, . . . , ām) or

h∗
s(x) = (ā1, . . . , āk−1, ak+1, . . . , am)

and
h∗

H(x) = (a1, . . . , ak−1, ak+1, . . . , am)

Finally, we thus obtain

EYLs(Y,h∗
H(x)) = 1− 2δ

and
EYLs(Y,h∗

s(x)) = 0.5− δ,
which immediately proves the proposition. ��
The second result concerns the highest value of the regret in terms of the Ham-
ming loss for h∗

s(X), the optimal strategy for the subset 0/1 loss.

Proposition 4. The following upper bound holds for m > 3:

EYLH(Y,h∗
s(x))− EYLH(Y,h∗

H(x)) <
m− 2
m+ 2

.

Moreover, this bound is tight, i.e.

sup
p

(EYLH(Y,h∗
s(x))− EYLH(Y,h∗

H(x))) =
m− 2
m+ 2

,

where the supremum is taken over all probability distributions on Y.
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Proof. Because of space limitations, we only show how to construct the distri-
bution for which the regret is close to the given bound.

Let ai ∈ {0, 1} and āi = 1 − ai. If am = (a1, a2, . . . , am) is a {0, 1}-vector of
length m, then ām denotes the vector (ā1, ā2, . . . , ām). Furthermore, let dH(a, b)
denote the Hamming distance, given by

dH(a, b) =
m∑

i=1

|ai − bi|

for all a, b ∈ {0, 1}m. Now, consider a joint probability distribution defined as
follows:

p(y) =

⎧⎨⎩
1

m+2 + δ if y = am
1

m+2 −
δ

m+1 if dH(y, ām) ≤ 1
0 otherwise

,

where δ > 0. Hence, we obtain:

EYLH(Y,h∗
s(x)) =

1
m+ 2

− δ

m+ 1
+m

( 1
m+ 2

− δ

m+ 1
)m− 1

m
,

EYLH(Y,h∗
H(x)) =

1
m+ 2

+ δ +m
( 1
m+ 2

− δ

m+ 1
) 1
m

.

The difference is then given by

EYLH(Y,h∗
s(x))− EYLH(Y,h∗

H(x)) =
m− 2
m+ 2

− δ
(m− 1
m+ 1

+ 1
)
.

Since this holds for any δ > 0, the regret is close to the bound. ��

As we can see, the regret is quite high in both cases, suggesting that a single
classifier will not be able to perform equally well in terms of both loss functions.
Instead, a classifier specifically tailored for the Hamming (subset 0/1) loss will
indeed perform much better for this loss than a classifier trained to minimize
the subset 0/1 (Hamming) loss.

3.4 Summary and Implications of Theoretical Results

Our theoretical results so far can be summarized as follows:

– The risk minimizers of Hamming and subset 0/1 loss have a different struc-
ture: In the latter case, the minimizer is the mode of a joint distribution on
the label space, whereas in the former, it is a combination of the modes of
(one-dimensional) marginal distributions.

– Under specific conditions, these two types of loss minimizers are provably
equivalent, though in general, they will produce different predictions.

– The Hamming loss is upper-bounded by the subset 0/1 loss, which in turn
is bounded by the Hamming loss multiplied by the number of labels m.
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– Minimization of the subset 0/1 loss may cause a high regret for the Hamming
loss and vice versa.

These results have a number of implications, not only from a theoretical but also
from a methodological and empirical point of view:

– The idea to exploit label dependencies, one of the main research topics in
MLC, should be reconsidered in a careful way, distinguishing the two types
of dependence mentioned above. The conditional dependence, for example,
is arguably more related to non-decomposable (with respect to labels) losses
like subset 0/1 loss than to decomposable ones like Hamming. This distinc-
tion is largely ignored in papers on that topic.

– A careful distinction between loss functions seems to be even more important
for MLC than for standard classification, and one cannot expect the same
MLC method to be optimal for different types of losses. Surprisingly, new
methods are often proposed without explicitly saying what loss they intend
to minimize. Instead, they are typically shown to perform well across a wide
spectrum of different loss functions, casting some doubts on the reliability
of such studies.

4 Experimental Studies

To corroborate our theoretical results by means of empirical evidence, this sec-
tion presents a number of experimental studies, using both synthetic and bench-
mark data. As MLC methods, two meta-techniques will be employed, namely
the Binary Relevance (BR) and the Label Power-set (LP) classifier. These meth-
ods are commonly used as baselines in experimental studies and are of a quite
complementary nature [4]. Besides, we will also propose a simple modification
of LP that allows for adapting this approach to any loss function. We present
results on three artificial data sets pointing to some important pitfalls often en-
countered in experimental studies of MLC. Finally, we present some results on
benchmark data sets and discuss them in the light of these pitfalls.

In the experimental study, we used the WEKA [14] and Mulan [6] packages.

4.1 Binary Relevance and Label Power-Set Classifier

BR is arguably the simplest approach to MLC. It trains a separate binary clas-
sifier hi(·) for each label λi. Learning is performed independently for each label,
ignoring all other labels. At prediction time, a query instance x is submitted to
all binary classifiers, and their outputs are combined into an MLC prediction.

Obviously, BR is tailored for Hamming loss minimization or, more generally,
every loss whose risk minimizer can be expressed solely in terms of marginal
distributions; as shown in [7], this also includes the rank loss. However, BR does
not take label dependence into account, neither conditional nor unconditional,
and this is what it is most often criticized for. Indeed, as suggested by our theo-
retical results, BR will in general not be able to yield risk minimizing predictions
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for losses like subset 0/1. Moreover, one may suspect that, even though it can
minimize Hamming loss theoretically, exploiting label dependencies may still be
beneficial practically.

LP reduces the MLC problem to multi-class classification, considering each
label subset L ∈ L as a distinct meta-class. The number of these meta-classes
may become as large as |L| = 2m, although it is often reduced considerably by
ignoring label combinations that never occur in the training data. Nevertheless,
the large number of classes produced by this reduction is generally seen as the
most important drawback of LP.

Since prediction of the most probable meta-class is equivalent to prediction
of the mode of the joint label distribution, LP is tailored for the subset 0/1
loss. Interestingly, however, it can easily be extended to any other loss function,
given that the underlying multi-class classifier f(·) does not only provide a class
prediction but a reasonable estimate of the probability of all meta-classes (label
combinations), i.e., f(x) ≈ px(Y). Given a loss function L(·) to be minimized,
an optimal prediction can then be derived in an explicit way:

h∗(x) = argmin
y

EY|XL(Y,y)

In particular, LP can be improved for the Hamming loss, simply by computing
the marginal distributions and combining the marginal modes into a single MLC
prediction. In this regard, we note that computing margins is not harder than
searching the mode of px(Y). We refer to this modification of LP as LP+.

Practically, we improve LP+ by regularizing the (joint) probability estimation.
To this end, we make use of shrinking. In Bayesian inference, it is well-known
that the estimated parameters are shrunk toward the prior distribution. We
mimic such kind of shrinkage by means of a regularized probability estimate:

p̃x(y) = αp̂x(y) + (1− α)p̂(y),

where p̂x(y) is given by LP, p̂(y) is a prior estimated from the training data,
and α is the shrinkage parameter. This parameter can be determined empirically
so as to maximize performance on the test set: For given α, the accuracy of the
classifier is estimated on a validation set, and an optimal α is found through
line-search. In the following, we use α = 0.95.

4.2 Artificial Data

We consider three artificial data sets, each one reflecting a typical situation for
MLC. In each case, we generated 30 training and testing folds, each containing
1000 instances.

The first data set represents the case of conditional independence. Data are
drawn uniformly from the square x ∈ [−0.5, 0.5]2. The label distribution is
given by the product of the marginal distributions defined by px(yi) = 1

/
(1 +

exp(−fi(x)), where the fi are linear functions: f1(x) = x1+x2, f2(x) = −x1+x2,
f3(x) = x1−x2. The cardinality of labels (the average number of relevant labels
for an instance) is 1.503.
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In the second data set, the labels are dependent. Data are drawn from the
univariate uniform distribution x ∈ [−0.5, 0.5]. The joint distribution is obtained
by applying the product rule of probability:

px(Y) = px(Y1)
3∏

i=2

px(Yi|Y1, . . . , Yi−1),

where the probabilities are modeled by linear functions in a similar way as before:
f1(x) = x, f2(y1, x) = −x − 2y1 + 1, f3(y2, y1, x) = x + 12y1 − 2y2 − 11. The
cardinality of labels for this data set is 1.314.

The results of the experiment are reported for both data sets in Table 1. All
approaches are used with linear support vector machine as base learner. In the
case of LP+, we used the approach of [15] to turn SVM scores into probabil-
ities, thus obtaining an estimation of the joint distribution and its marginals.
Since the true data generating process is known, we also report the loss of the
Bayes-optimal classifier. In the case of the independent data, we observe that
both approaches perform equally well in terms of both loss functions. For the
dependent data, however, we see that BR and LP are tailored toward differ-
ent loss functions. As expected, the former performs well in terms of Hamming
loss, whereas the latter is superior in terms of subset 0/1 loss. As expected,
LP+ is able to adapt to both loss functions. Overall, the results are in complete
agreement with our theoretical findings.

Table 1. Results on two artificial data sets: conditionally independent (left) and con-
ditionally dependent (right). Standard errors are given in parentheses.

Conditional independence Conditional dependence
classifier Hamming loss subset 0/1 loss Hamming loss subset 0/1 loss

BR 0.4208(.0014) 0.8088(.0020) 0.3900(.0015) 0.7374(.0021)
LP 0.4212(.0011) 0.8101(.0025) 0.4227(.0019) 0.6102(.0033)
LP+ 0.4181(.0013) 0.8093(.0021) 0.3961(.0033) 0.6135(.0034)

B-O 0.4162 0.8016 0.3897 0.6029

In the literature, LP is often shown to outperform BR even in terms of Ham-
ming loss. Given our results so far, this is somewhat surprising and calls for
an explanation. We argue that results of that kind should be considered with
caution, mainly because a meta learning technique (such as BR and LP) must
always be considered in conjunction with the underlying base learner. In fact,
differences in performance should not only be attributed to the meta but also
to the base learner. In particular, since BR uses binary and LP multi-class clas-
sification, they are typically applied with different base learners, and hence are
not directly comparable.

We illustrate this by means of an example. For simplicity, suppose that data is
generated without noise (whence the risk of the Bayes optimal classifier for both
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Hamming and subset 0/1 loss is 0), and consider a problem with two-dimensional
instances x = (x1, x2) ∈ X = [−1, 1]2 and two labels: y1 = �x1 < 0� and y2 =
�x1 > 0� � �x2 > 0�, where � is the exclusive (logical) disjunction. Obviously,
using a linear base learner, BR is not able to solve this problem properly, whereas
LP, using a multi-class extension of the linear support vector machine (based on
a one-vs-one decomposition) yields almost perfect predictions. However, this
multi-class extension is no longer a truly linear classifier. Instead, several linear
classifiers are wrapped in a decomposition and an aggregation procedure, yielding
a more complex classifier that can produce non-linear decision boundaries. And
indeed, giving BR access to a more complex base learner, like a rule ensemble
[16], it is able to solve the problem equally well; see results and the scatter plot
of data in Fig. 1.
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classifier Hamming subset 0/1
loss loss

BR Linear SVM 0.2399(.0097) 0.4751(.0196)
BR MLRules 0.0011(.0002) 0.0020(.0003)
LP Linear SVM 0.0143(.0020) 0.0195(.0011)
B-O 0 0

Fig. 1. Plot of the data set composed of two labels: the first label is obtained by a
linear model, while the second label represents the exclusive disjunction. The table
contains results of three classifiers on this data set.

4.3 Benchmark Data

The second part of the experiments was performed on a collection of 8 MLC
data sets.2 In the case of the Reuters data, we used the preprocessed version as
in [5]. A summary of the data sets and their properties are given in Table 2.

Table 2. Data sets used in the experiment

data set # inst. # attr. # labels card. data set # inst. # attr. # labels card.

image 2000 135 5 1.236 yeast 2417 103 14 4.237
scene 2407 294 6 1.074 genbase 662 1186 27 1.252
emotions 593 72 6 1.868 slashdot 3782 1079 22 1.181
reuters 7119 243 7 1.241 medical 978 1449 45 1.245

2 Data sets are taken from http://mlkd.csd.auth.gr/multilabel.html and
http://www.cs.waikato.ac.nz/~jmr30/#datasets

http://mlkd.csd.auth.gr/multilabel.html
http://www.cs.waikato.ac.nz/~jmr30/#datasets
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Table 3. Results for Hamming loss. Ranks of classifiers are given in parentheses

BR SVM BR MLRules LP+ pSVM LP pSVM LP SVM

image 0.1980 (4) 0.1928(2) 0.1888(1) 0.2021(5) 0.1954(3)
scene 0.1071 (5) 0.0871(1) 0.0919(3) 0.0950(4) 0.0891(2)
emotions 0.2049 (1) 0.2080(2) 0.2091(3) 0.2232(5) 0.2119(4)
reuters 0.0663 (5) 0.0479(1) 0.0565(2) 0.0596(3) 0.0628(4)
yeast 0.2016 (1) 0.2086(3) 0.2156(4) 0.2523(5) 0.2075(2)
genbase 0.0008 (1) 0.0015(5) 0.0011(3) 0.0012(4) 0.0010(2)
slashdot 0.0480 (2) 0.0402(1) 0.0534(4) 0.0631(5) 0.0481(3)
medical 0.0102 (1) 0.0106(2) 0.0132(4) 0.0135(5) 0.0115(3)

Avg. Rank 2.7 2.1 2.75 4.25 3.2

Table 4. Results for subset 0/1 loss. Ranks of classifiers are given in parentheses

BR SVM BR MLRules LP+ pSVM LP pSVM LP SVM

image 0.7670 (5) 0.6705(4) 0.5595(2) 0.5600(3) 0.5315(1)
scene 0.4757 (5) 0.4221(4) 0.3299(2) 0.3303(3) 0.3008(1)
emotions 0.7538 (4) 0.7622(5) 0.7353(2) 0.7386(3) 0.6846(1)
reuters 0.3735 (5) 0.2684(4) 0.2391(1) 0.2406(2) 0.2676(3)
yeast 0.8552 (4) 0.8643(5) 0.8155(2) 0.8159(3) 0.7460(1)
genbase 0.0211 (1.5) 0.0332(5) 0.0257(3.5) 0.0257(3.5) 0.0211(1.5)
slashdot 0.6560 (2) 0.6721(3) 0.6819(4) 0.6835(5) 0.5460(1)
medical 0.3405 (2) 0.3497(3) 0.3630(4.5) 0.3630(4.5) 0.3119(1)

Avg. Rank 3.56 4.13 2.63 3.38 1.31

We used BR and LP with linear support vector machines as base learner,
and additionally BR with MLRules and LP+ based on the probabilistic SVM.
Results of a 3-fold cross-validation are given for Hamming loss in Table 3 and for
subset 0/1 loss in Table 4. Overall, the results are again in agreement with our
expectations. In particular, LP achieves better results for the subset 0/1 loss,
while BR is on average superior in terms of Hamming loss.

Let us have a closer look at the results for the scene data set. As reported
in [17], LP outperforms BR on this data set in terms of Hamming loss; both
methods were used with linear SVM as base learner. Although our results here
give the same picture, note that BR with MLRules outperforms both approaches.
As pointed out above, comparing LP and BR with the same base learner is
questionable and may lead to unwarranted conclusions.

Let us underline that LP+ outperforms LP using probabilistic SVM in terms
of the Hamming loss on all datasets. This confirms our theoretical claims and
justifies the modification of LP. Also shrinking used in LP+ improves the results
for the subset 0/1 loss. However, let us notice that probabilistic SVM performs
worse than classical SVM in the case of classification. We can observe that, in
terms of the subset 0/1 loss, the latter is much better than the former. Moreover,
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the latter receives good results for Hamming loss minimization on some data sets.
We suppose that, for these data sets, one of the conditions that imply equivalence
of the risk minimizers will hold (cf. Proposition 1).

5 Conclusions

In this paper, we have addressed a number of issues related to loss minimization
in multi-label classification. In our opinion, this topic has not received enough
attention so far, despite the increasing interest in MLC in general. However,
as we have argued in this paper, empirical studies of MLC methods are often
meaningless or even misleading without a careful interpretation, which in turn
requires a thorough understanding of underlying theoretical conceptions.

In particular, by looking at the current literature, we noticed that papers
proposing new methods for MLC, and for exploiting label dependencies, rarely
distinguish between the type of loss function to be minimized. Instead, a new
method is often shown to be better than existing ones “on average”, evaluating on
a number of different loss functions. Our technical results in this paper, already
summarized in Section 3.4 and therefore not repeated here, indicate that studies
of that kind might be less illuminative than they could be. First, we have shown
that the type of loss function has a strong influence on whether or not, and
perhaps to what extent, an exploitation of conditional label dependencies can
be expected to yield a true benefit. Consequently, some loss functions will be
more suitable than others for showing the benefit of label dependencies. Second,
using the example of Hamming and subset 0/1 loss, we have shown that loss
functions in MLC cover a broad spectrum, and that minimizing different losses
will normally require different estimators. Consequently, one cannot expect an
MLC method to perform equally well for various losses of different type.

Our focus on Hamming and subset 0/1 loss can be justified by their comple-
mentarity, and by noting that these losses can be considered representative of
decomposable and non-decomposable loss functions, respectively. Besides, they
are among the most well-known and frequently used performance measures in
MLC. Nevertheless, looking at other loss functions is of course worthwhile and
holds the promise to gain further insight into the nature of MLC. Expanding
our studies in this direction is therefore on our agenda for future work.
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Abstract. In this paper we apply a selection of alignment measures,
such as dynamic time warping and edit distance, to the problem of clus-
tering vessel trajectories. Vessel trajectories are an example of moving
object trajectories, which have recently become an important research
topic. The alignment measures are defined as kernels and are used in the
kernel k-means clustering algorithm. We investigate the performance of
these alignment kernels in combination with a trajectory compression
method. Experiments on a gold standard dataset indicate that compres-
sion has a positive effect on clustering performance for a number of align-
ment measures. Also, soft-max kernels, based on summing all alignments,
perform worse than classic kernels, based on taking the score of the best
alignment.

Keywords: alignment kernels, trajectory compression, trajectory clus-
tering.

1 Introduction

Largely due to the ubiquity of GPS receivers, moving object trajectories have
become an important research topic. To gain insight into the behavior of moving
objects, such as vessels, it can be useful to cluster their trajectories into groups
of similar movement patterns. Essentially, moving object trajectories are a kind
of multivariate time-series. Furthermore, they have the property that they are
usually different in temporal length, distance traveled and the number of data
points. Alignment methods, such as dynamic time warping or edit distance, are
designed to handle these kinds of variations. Thus, such methods can make a
suitable similarity measure for clustering moving object trajectories.

We cannot use these similarities directly in the standard, and very popular,
k-means clustering method, because this method requires an explicitly defined
feature space. Kernel k-means [17] is a more recent k-means based clustering
algorithms that deals with similarities directly, provided they are defined as
kernels. Defining these alignments as kernels also has the advantage that they
can potentially be used in other kernel based machine learning settings.

Computing alignment kernels can be expensive, because of the number of
elements in a trajectory. However, vessel trajectories have the property that
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they are very regular. Without losing much information they can be compressed
very well with trajectory compression techniques such as [10]. Computing an
alignment between two compressed trajectories can be a lot cheaper, because
of the reduction in data points. But, the quality of the alignment does not
necessarily have to be the same. Compression loses information and may have a
bad effect on the alignment.

In this paper we define different alignment kernels for moving object trajecto-
ries. The kernels are based on a number of well-known alignment measures. We
consider two kernel versions of these measures, a classic and a soft-max one. Not
all of these kernels are proper kernels, since they are not positive semi-definite.
However, for simplicity, we refer to all of them as kernels. Furthermore, all ker-
nels can be used with the kernel k-means clustering algorithm that we use in our
experiment. The goal of this experiment is to investigate the performance of the
different defined kernels on the task of clustering vessel trajectories. Kernels are
computed on uncompressed and compressed trajectories to discover the influ-
ence of trajectory compression on this task. A number of the alignment kernels
show better performance when the trajectories are compressed first.

The rest of the paper is organized as follows. In Sect. 2 we discuss related work
in the fields of trajectory clustering and kernel methods for time-series. Section 3
contains the technical definitions: three kinds of alignments, two kinds of kernel
definitions based on these alignments, kernel k-means clustering and trajectory
compression. Our experiment and the results of clustering a hand-labeled set
of vessel trajectories is described in Sect. 4. We end with some conclusions and
directions for future work.

2 Related Work

We have not seen work on clustering moving object trajectories using an align-
ment kernel based approach. A number of studies address clustering time series
data, see [14] for an overview. More specifically, there are a number of papers
researching the problem of clustering trajectories, mostly coming from the Mov-
ing Object Database community [8,13,15,16,19]. None of these studies consider
the influence of compression on the clustering task. Also, these papers are not
comparative studies between similarity measures. The authors of [19] take an
alignment based approach, as we do in this paper, but use a density based clus-
tering algorithm. Also, [15] takes a density based approach but computes the
distance between trajectories based on the area between them. In [13], compres-
sion based on the minimum description length principle is applied to trajectories
first and then density based clustering is used to discover sub-trajectories. Tra-
jectories are first converted into a grid based representation and then clustered
using fuzzy c-means in [16]. A route similarity function very similar to dynamic
time warping is described in [1]. Very different is the somewhat older [8], in
which the authors use a mixture of regression models based approach. Most of
the above papers use a density based clustering algorithm, which assumes that
clusters are not (densely) connected. However, we do not know whether this is
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actually the case when using alignment based similarities, therefore, we prefer
kernel k-means.

There is also a body of work on using alignment kernels for time-series, for
instance [5,9,11,12]. This work is mostly in the context of classification of hand-
writing data using support vector machines. Both [11] and [12] use an alignment
kernel based on Dynamic Time Warping (DTW). However, [12] uses the soft-
max version defined in [5], whereas [11] uses a more classic version of DTW. In
the following we will consider both types.

3 Trajectory Alignment Kernels

In this section we first define the notion of a moving object trajectory. Then
we look at alignments and define different kernels for them. We also briefly
review the kernel k-means clustering algorithm. Finally, we give the trajectory
compression algorithm that we have used.

3.1 Trajectories

A moving object trajectory is defined in Definition 1 below. Note that trajectories
include time.

Definition 1. A moving object trajectory in 2-dimensional space is represented
by a sequence of vectors: T = 〈x1, y1, t1〉, . . . , 〈xn, yn, tn〉. Where xi and yi rep-
resent the position of the object at time ti. The length of a trajectory, i.e. the
number of vectors, is denoted as: |T |. Furthermore, let Ti = 〈xi, yi, ti〉.

The sample rate of trajectories is not fixed, thus the difference between consecu-
tive values ti, ti+1 is not the same. Also, there are more dimensions to trajectories
that can be derived from the x, y, t information that we do not consider, such
as speed and direction. In some tasks and applications these attributes might
be more relevant than the absolute position x, y and time t. In principle these
dimensions could just be added to the 〈x, y, t〉 vector, but we have not considered
this for the clustering task that we will define in Sect. 4. In the following we refer
to a vector 〈xi, yi, ti〉 as trajectory element or point.

3.2 Alignments

We define three types of alignments between two trajectories. Based on these
alignment we define kernels that express similarity between trajectories in Sect.
3.3. We start with the simplest alignment, which can be considered to be the
baseline alignment. The goal of an alignment is to bring the elements of two
sequences, e.g. trajectories, in a correspondence, typically with the aim to max-
imize (or minimize) a scoring function defined on this correspondence.

Assume in the following that there is a function sub(Si, Tj) that gives a score
to substituting the trajectory element Si with Tj. This score represents the
similarity between these two elements. To enhance readability, we will not make
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use of superscripts to indicate the specific type of alignment when this cannot
lead to confusion.

We define different alignments for two trajectories below, following the nota-
tion and definitions from [18].

Definition 2. An alignment π, possibly with gaps, of p ≥ 0 positions between
two trajectories S and T is a pair of p-tuples:

π = ((π1(1), . . . , π1(p)), (π2(1), . . . , π2(p))) ∈ N2p .

The idea behind this definition is that the alignment encodes p elements in each
trajectory that are aligned to each other. That is, the π1(i)th element in S is
aligned to the π2(i)th element in T . Multiple elements of S can be aligned to one
element in T and vice versa. Furthermore, not all elements have to be aligned
to an element in the other trajectory, in this case an element is a gap.

Shortest Sequence Alignment. One of the simplest alignments defined on two
sequences with discrete elements is the Longest Common SubSequence (LCSS)
measure. It is defined as the length of the longest sequence of elements existing
in both sequences, whereby gaps are allowed. Definition 3 differs from other
definitions [9,19] of LCSS for sequences with continuous elements, i.e. elements
with continuous values, because we will not use a threshold in our substitution
function. On first glance the resulting measure does not have much in common
with LCSS, thus to avoid confusion we redub it: Shortest Sequence Alignment
(SSA).

Definition 3. An SSA alignment πSSA is an alignment according to Definition
2, with the additional constraints that:

p = min(|S|, |T |)

and

1 ≤ π1(1) < π1(2) < . . . < π1(p) ≤ |S| ,
1 ≤ π2(1) < π2(2) < . . . < π2(p) ≤ |T | .

Intuitively this means that all elements of the shortest sequence are aligned
with different unique elements in the other sequence, hence Shortest Sequence
Alignment.

Dynamic Time Warping. A very popular alignment method more specifically
designed for time-series is Dynamic Time Warping (DTW). In Definition 4 we
follow [5].

Definition 4. A DTW alignment πDTW is an alignment according to Definition
2, but has the additional constraints that there are unitary increments and no
simultaneous repetitions, thus ∀(1 ≤ i ≤ p− 1),

π1(i+ 1) ≤ π1(i) + 1, π2(j + 1) ≤ π2(j) + 1
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and

(π1(i+ 1)− π1(i)) + (π2(i+ 1)− π2(i)) ≥ 1 .

Furthermore,

1 = π1(1) ≤ π1(2) ≤ . . . ≤ π1(p) = |S| ,
1 = π2(1) ≤ π2(2) ≤ . . . ≤ π2(p) = |T | .

This means that all elements in both trajectories are aligned, which might require
repeating elements from a trajectory, but in the alignment we cannot simulta-
neously repeat an element in both trajectories. Furthermore, the start and end
of trajectories are aligned by default.

Edit Distance. Edit distances are a popular method for comparing similarity
of strings. This similarity is computed in terms of the number of substitutions,
deletions and insertions that are required to transform one string into another
string. We define (Definition 5 and 6) a version for continuous elements similar
to how [4] defines it for time-series. However we chose to consider fixed gap
penalties, i.e. deletion and insertion costs, because this seems more natural in
the trajectory case.1

Definition 5. An edit distance alignment πED is an alignment according to
Definition 2, but also has the constraints:

1 ≤ π1(1) < π1(2) < . . . < π1(p) ≤ |S| ,
1 ≤ π2(1) < π2(2) < . . . < π2(p) ≤ |T | .

This means that not all elements have to be aligned and there is no repetition
of elements.

We define a score function for the three types of alignments below in Definition
6. Note that the function is the same for DTW and SSA alignments.

Definition 6. The score for an alignment π of type φ of two trajectories S and
T is equal to:

sφ(π) =

⎛⎝ |π|∑
i=1

sub(Sπ1(i), Tπ2(i))

⎞⎠+ g(|S| − |π|) + g(|T | − |π|) ,

where g = 0 if φ = SSA,DTW and g < 0 if φ = ED.

1 In [4] the gap penalties are essentially the value of the gapped element minus a fixed
constant. For trajectories this would mean that something on the edge of the map
would have a higher penalty than in the middle, which we think is counter-intuitive.
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Considering the three types of alignments that are defined above, we note that
the most important difference is in how they treat gaps. In the SSA case gaps get
no penalty, in the DTW case gaps are treated by repeating a trajectory element,
and thus get a score according to the substitution function sub, and in the edit
distance case gaps have a fixed penalty g.

3.3 Alignment Kernels

Below we will give two different ways to create a kernel to express similarity
between trajectories, using the alignments defined above. The first type of kernel
is based on taking the score of the alignment that maximizes the score function.
This differs from the second kernel which takes the soft-max of the scores of all
alignments.

First, we define the substitution function to be the negative of the L2 norm,
i.e. the regular Euclidean distance, in Definition 7. Other functions are possible
here, but we have not experimented with this. Note that x and y are of the same
dimension, but t is not directly comparable to x and y, hence in the experiments
we apply a weight to t to make it comparable. In practice, this weight will depend
on the domain and goal of one’s application.

Definition 7.

sub(〈xi, yi, ti〉, 〈xj , yj , tj〉) = −‖〈xi − xj , yi − yj , ti − tj〉‖ .

Above, in Sect. 3.2, we have defined a number of alignments between two trajec-
tories and their score functions. However, this does not give a similarity between
two trajectories yet, because there are a lot of possible alignments, and corre-
sponding scores, for one type of alignment.

One option for similarity between two trajectories is to take the score of
the alignment that maximizes the respective score function s. We will call this
similarity Simmax and define it below in Definition 8. This similarity corresponds
to the typical way that DTW and edit distance are defined.

Definition 8. Given two trajectories S and T , let Πφ
S,T be the set of all possible

alignments between these trajectories under a certain alignment measure φ, then

Simφ
max(S, T ) = max

π∈Πφ
S,T

sφ(π) .

However, it has been argued [5,18] that taking the soft-max2 of the scores of
all possible alignments leads to better kernels, because all scores are taken into
account. We will call this alignment score Simsum, because the sum over all
possible alignments is taken. It is given in Definition 9 below.

Definition 9. Given two trajectories S and T , let Πφ
S,T be the set of all possible

alignments between these trajectories under a certain alignment measure φ, then

Simφ
sum(S, T ) =

∑
π∈Πφ

S,T

exp(sφ(π)) .

2 Given a set of positive scalars Z = z1, . . . , zn, the soft-max of Z is log
∑

ezi .
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These similarities are not kernels yet. We define a kernel based on Simmax in
Definition 10.

Definition 10. For all trajectories T i and T j in a set of trajectories T , we
compute the Kφ

max-kernel for an alignment measure φ as:

Kφ
max(i, j) = Simφ

max(T
i, T j) ,

furthermore we normalize and make a kernel out of Kφ
max by:

Kφ
max = 1− Kφ

max

min(Kφ
max)

.

The kernel based on Simsum is given in Definition 11.

Definition 11. For all trajectories T i and T j in a set of trajectories T , we
compute, and normalize, the Kφ

sum-kernel for an alignment measure φ as:

Kφ
sum(i, j) =

Simφ
sum(T i, T j)√

Simφ
sum(T i, T i)Simφ

sum(T j , T j)
.

The Kmax kernels are not proper kernels in the sense that they are not Positive
Semi-Definite (PSD). However it has been observed that non-PSD kernels can
still work well in practice (for DTW for instance in [11]). We notice this in our
experiment in Sect. 4 as well. The soft-max version of the DTW alignment kernel
was proven to be PSD in [5] given a proper substitution function (e.g. the one
we have defined). Furthermore, we conjecture that similar proofs are possible for
the other two soft-max kernels we define, because they are very similar to either
DTW or Smith-Waterman, for which there is a proof in [18].

The authors of [5,18] also notice that the soft-max type of kernel often suffers
from the diagonal dominance issue and they remedy this by taking the logarithm
of this kernel. We have experimented with taking the logarithm, but this did not
improve results.

The classic alignment similarities, Simmax, are efficiently computable via a
dynamic programming approach. By replacing the max-sum algebra with a sum-
product algebra we can do the same for the Simsum versions. This is shown for
DTW in [5]. We can see that this works when we, for instance, work out SimDTW

sum
as in (1).

SimDTW
sum (S, T ) =

∑
π∈ΠS,T

exp(
|π|∑
i=1

sub(Sπ1(i), Tπ2(i)))

=
∑

π∈ΠS,T

|π|∏
i=1

exp(sub(Sπ1(i), Tπ2(i))) . (1)

To sum up, we have now defined a number of kernel functions. Two for the SSA
measure: KSSA

max and KSSA
sum . Two for the DTW measure: KDTW

max and KDTW
sum . And

a family of kernels for the edit distance measure, since these are parameterized
by the value of the gapping penalty g: KED

max and KED
sum.
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3.4 Kernel K-Means

Because the focus of the paper is on alignments, we use the relatively simple
kernel k-means algorithm [17]. More advanced kernel based algorithms exist,
such as weighted kernel k-means [6] and support vector clustering [2].

The kernel version of k-means works in exactly the same way as regular k-
means. This means that we start out with a random initialization of k clusters
and at each iteration try to minimize the distance between the cluster centers
and objects in the clusters until we arrive at a stable clustering (Definition 12).

Definition 12. A clustering C of a set of objects O into k partitions is:

C = {c1, . . . , ck} ,

such that for all o ∈ O, o is exactly in one ci, where ci ⊆ O.

The difference lies in how the distance from an object to a cluster center is
calculated. This is done using the assumption that a kernel represents a dot-
product in a higher dimensional feature space. Without explicitly knowing this
feature space, the distance from an object to a cluster center can be calculated
with these dot-products, as in Definition 13.

Definition 13. Let K be a kernel computed for a set of objects O and C a
clustering of O. The distance from an object oi ∈ O to the center of a cluster
c ∈ C is computed by:

K(i, i)− 2
|c|
∑
oj∈c

K(i, j) +
1
|c|2

∑
oj ,ok∈c

K(j, k) .

Because different random initializations can lead to different stable partitions C,
the kernel k-means clustering is run a number of times. The partitioning with
the lowest intra cluster spread is kept as the final clustering.

3.5 Trajectory Compression

For trajectory compression we use the Piecewise Linear Segmentation (PLS)
method proposed in [10], which is an advanced version of a classic line simplifi-
cation algorithm [7]. The algorithm, given in Algorithm 1, compresses a trajec-
tory T by finding the point 〈xi, yi, ti〉 that has the largest error Eμ, as defined
in Definition 14. If this error is larger than a given threshold ε then we keep
this point and recursively apply the same procedure on the two sub-trajectories
created by splitting T at that point. Thus the result of applying trajectory com-
pression to a trajectory T is that the compressed trajectory TC is a subset of
the points that are in T , always including the start and end points. This subset
contains the most salient points of the trajectory. Thus, contrary to smoothing
or resampling, existing points are not altered and no new points are created.

In Definition 14, the error Eμ is defined as the Euclidean distance between a
point 〈xi, yi, ti〉 and the closest point on the line 〈x1, y1, t1〉, 〈xn, yn, tn〉, where
the influence of the temporal dimension is weighed using the parameter μ.
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Algorithm 1. pls(T, ε)
1 We use end to indicate the index of the last element of a trajectory.
2 dmax = 0, imax = 0
3 for i = 2 to end − 1 do
4 d = Eμ(Ti, T1, Tend)
5 if d > dmax then
6 imax = i, dmax = d
7 end
8 end
9 if dmax ≥ ε then
10 A = pls(T1, . . . , Timax , ε), B = pls(Timax , . . . , Tend , ε)
11 TC = A,B2, . . . , Bend

12 else
13 TC = T1, Tend

14 end
15 return TC

Definition 14

Eμ(〈xi, yi, ti〉, 〈x1, y1, t1〉, 〈xn, yn, tn〉) = ‖〈xi − x′i, yi − y′i, μ(ti − t′i)〉‖ ,

where 〈x′i, y′i, t′i〉 is the closest point on the line-segment 〈x1, y1, t1〉, 〈xn, yn, tn〉
in terms of the Euclidean distance.

4 Evaluation

In this section we will present a number of experiments to test the performance
of the different combinations of alignment measures and kernels on the task
of clustering a set of vessel trajectories. We especially investigate the effect of
applying a compression algorithm to these trajectories as a preprocessing step.

4.1 Dataset

Our experimental dataset consist of 716 vessel trajectories originally gathered
using the Automatic Identification System (AIS). A domain expert has par-
titioned these trajectories into 8 different clusters, creating a gold standard
G = g1, . . . , g8. The clusters are very different in size, ranging from 8 to 348. The
average length of a trajectory is a sequence of 300 〈x, y, t〉 vectors. Trajectories
are delimited either by the vessel leaving the area of observation or the vessel
stopping. For all trajectories t1 is set to 0. We illustrate the clustering in Fig. 1.
The general direction of movement for each of the 8 clusters is indicated with an
arrow. Note that we only plotted the x and y dimensions and not t. The position
data of the vessels was originally collected in a latitude, longitude format but has
been converted, using a suitable map projection, to allow for normal Euclidean
geometry.
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Fig. 1. An overview of the vessel trajectory dataset with the 8 different clusters of the
gold standard indicated with shades of gray and an arrow giving the general direction.
A solid dot indicates the start of a trajectory and an asterix indicates the end.

4.2 Experimental Setup

As test datasets we constructed 4 random subsets from the 716 vessels set. From
each cluster in the gold standard we randomly extracted up to 20 trajectories.
Some clusters contained fewer elements in which case we took them all. This
resulted in 4 datasets of 138 trajectories. We did this to allow for reasonable
computation times for the experiments.

Because it is unclear how to weigh the time dimension against the space
dimensions, we have defined a number of settings for this. In the first setting we
treated the trajectories as if they were sampled with a fixed sample rate. This
means that some positions had to be linearly interpolated between two positions
from the original data. In this setting a trajectory is a sequence of 〈x, y〉 points
and time is implicitly represented by the fixed time interval between these points.
We introduce this condition, because DTW is commonly applied to fixed sample
rate time-series. Furthermore, by decreasing the sample rate we get a baseline
form of compression to compare to Algorithm 1. In the other settings we tested
4 weights w for the time dimension. So that a trajectory essentially becomes:
T = 〈x1, y1, wt1〉, . . . , 〈xn, yn, wtn〉. As weights we took w = 0, 1

3 ,
2
3 , 1. With

w = 0 we ignore the time dimension and with the other weights we increasingly
weigh the time dimension more heavily. The w = 1 setting means that the
average difference between two points in the space dimension is roughly equal
to the average difference in the time dimension.3

3 To enhance readability we do not give the actual values for the weights, because
they depend on the units that the dimensions are in.
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To investigate the influence of trajectory compression on the clustering per-
formance we used 4 compression settings. The first setting being ε = 0, thus,
we apply no compression. In the other settings we applied Algorithm 1 to each
trajectory with ε = 25, 50, 100 m, respectively. We set the μ parameter to a value
that we determined earlier and did not vary it for these experiments, however,
it is a potential parameter to tune. In the fixed sample rate setting we set the
sample rate to be (very) roughly equal to the compression rate achieved under
the different compression settings, see Table 1. We set the sample rate for the
no compression case to the average temporal distance between two consecutive
trajectory samples in the uncompressed dataset, again see Table 1.

Table 1. Average compression rate and corresponding sample rate for different ε
settings

No compression ε = 25 m ε = 50 m ε = 100 m

Compression rate (%) 0 96 97 98
sample rate (Hz) 0.1 0.01 0.002 0.001

For each of the different combinations of settings, i.e. for each combination of
subset, time setting and compression setting, we computed a number of kernels.
Two for the SSA measure: KSSA

max and KSSA
sum . Two for the DTW measure: KDTW

max
and KDTW

sum . And 10 for the Edit measure; five times KED
max and five times KED

sum,
with g = −0.01,−0.025,−0.05,−0.075,−0.1.

We used each of these kernels as input for the kernel k-means clustering algo-
rithm. The kernel k-means algorithm is run 100 times with random initializations
and we keep the clustering with minimal intra cluster spread. This process is re-
peated 10 times. We set k = 8, i.e. the same amount of clusters as in the gold
standard. Thus for each kernel we get 10 clusterings that we evaluate against
the gold standard G according to the scoring function in Definition 15, taken
from [14]. The intuition behind this definition is that we take the best F1-score4

for each cluster gi in the gold standard G and average over these scores.

Definition 15. The score of a clustering C of size k with respect to a gold
standard G of size k is:

score(C,G) =
1
k

k∑
i=1

max
1≤j≤k

2|gi ∩ cj |
|gi|+ |cj |

.

4.3 Results

In the results below the mean of a kernel is computed over the scores for the 4
subsets with 10 repeats each, thus for each kernel N = 40. Per kernel we sta-
tistically compare the scores for the high compression/low sample rates settings
4 The F1-score is the harmonic mean between precision and recall.
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to the scores for the no compression/high sample rate setting using a two-tailed
student t-test with p < 0.05.

We do not give all the mean scores because of space constraints. Also, discus-
sion of the presented results is postponed to Sect. 5. First we will look at the
performance of the different kernels under trajectory compression. Therefore we
look at the time setting for which the highest scores are achieved. In Table 2 we
give the results for the 14 kernels under the time setting w = 0. Scores in bold
indicate a significant difference between that clustering score, according to the
above defined test, and the clustering score for the no compression case, with the
bold score being higher. Scores in italic indicate a significant difference between
that score and the score for the no compression case, with the score in italic
being lower. For completeness we give the mean score of 40 random clusterings,
which is 0.24.

The best performing kernels for our clustering task are the KED
max kernels.

With the right g setting they can achieve a perfect clustering, e.g. a score of
1.0.5 These kernels perform better on the compressed trajectories than on the
uncompressed trajectories. However, theKED

sum kernels perform worse on the com-
pressed trajectories. The KDTW

max kernel also performs better on the compressed
data. However, it does not perform as much better on the compressed data as
the KED

max kernels. Both shortest sequence alignment kernels perform a lot worse
than the other kernels. The KED

sum and KDTW
sum kernels perform almost identical

in the uncompressed case.

Table 2. Value of score for 14 different kernels under time setting w = 0

Kernel No compression ε = 25m ε = 50 m ε = 100 m

max, SSA 0.52 0.34 0.35 0.42
max, DTW 0.87 0.90 0.91 0.91
max, ED, g = −0.01 0.91 0.92 0.93 0.94
max, ED, g = −0.025 0.88 1.0 1.0 1.0
max, ED, g = −0.05 0.88 1.0 1.0 1.0
max, ED, g = −0.075 0.88 0.93 0.97 0.99
max, ED, g = −0.1 0.87 0.90 0.89 0.96
sum, SSA 0.52 0.34 0.35 0.33
sum, DTW 0.87 0.82 0.85 0.87
sum, ED, g = −0.01 0.87 0.62 0.63 0.65
sum, ED, g = −0.025 0.87 0.64 0.64 0.63
sum, ED, g = −0.05 0.87 0.63 0.63 0.66
sum, ED, g = −0.075 0.87 0.64 0.63 0.66
sum, ED, g = −0.1 0.87 0.64 0.63 0.67

Next we will look at the effect of the different time settings. In Table 3 we give a
selection of kernel results for the fixed sample rate time setting. We have included

5 This is the rounded average of all 40 runs, not all runs get a score of 1.0.
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the two edit distance kernels with the best performance and also added the best
performing kernel6 (KED

max,g=−0.05) for the w = 0 setting. Bold and italic have a
similar meaning as in the previous table. Furthermore, + indicates a significant
difference with the corresponding value from Table 2 if this difference is positive.
This is similar for − but the difference is negative. We can see that there are
better performing kernels in the w = 0 setting. Table 3 also shows that low
frequency fixed sample rates (≤ 0.01 Hz) do not degrade the performance of a
number of kernels and sometimes even improve it.

Table 3. Value of score for a selection of 7 different kernels under the fixed sample
rate setting

Kernel 0.1 Hz 0.01 Hz 0.002 Hz 0.001 Hz

max, SSA 0.47− 0.46+ 0.47+ 0.45+

max, DTW 0.87 0.87− 0.87− 0.87−

max, ED, g = −0.01 0.95+ 0.94 0.97+ 0.94
max, ED, g = −0.05 0.87− 0.87− 0.87− 0.87−

sum, SSA 0.48− 0.39− 0.29− 0.26−

sum, DTW 0.86− 0.71− 0.70− 0.75−

sum, ED, g = −0.01 0.86− 0.62 0.61− 0.59−

In Table 4 we give the results for a selection of kernels for the setting w = 1
3 .

We have taken the same edit distance kernels as in Table 3, which also includes
the best performing one for this setting. Again, + and − indicate statistical
significance compared to the same kernel for the w = 0 setting. We see that
there are better performing kernels in the w = 0 setting.

Table 4. Value of score for a selection of 7 different kernels under time setting w = 1
3

Kernel No compression ε = 25m ε = 50 m ε = 100 m

max, SSA 0.52 0.36+ 0.42+ 0.52+

max, DTW 0.87− 0.89− 0.89− 0.90
max, ED, g = −0.01 0.89− 0.82− 0.80− 0.80−

max, ED, g = −0.05 0.88 0.95− 0.98− 0.99−

sum, SSA 0.51 0.33 0.35 0.33
sum, DTW 0.83− 0.82 0.84 0.86
sum, ED, g = −0.01 0.83− 0.63 0.64 0.65

The performance for the time settings w = 2
3 , 1 is worse than the results for

w = 1
3 . Thus, we did not consider it necessary to include them. We furthermore

remark that the difference in mean score between the best performing kernel in
6 Based on the non-rounded scores.
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the w = 0 setting (KED
max,g=−0.05, ε = 50 m, score = 1.0) and the best performing

kernel in the fixed sample rate setting (KED
max,g=−0.01, 10 Hz, score = 0.95) is

significant.
We give some results on computation time in Table 5. These computation

times are for running our MatLab implementation of the DTW alignment ker-
nels7 on an AMD Phenom II X4 955 (3.2 Ghz) cpu system with 4 GB of ram.
The computation time for a kernel on the full dataset would be around a fac-
tor 40 larger. This does not make it intractable, but did not allow us enough
flexibility in performing experiments.

Table 5. Running time for computing one DTW kernel. In the compression cases, the
computation time needed for compression is included.

Kernel type No compression ε = 25m ε = 50m ε = 100m

max 330s 2.4s 1.9s 1.7s
sum 356s 2.6s 2.1s 1.8s

4.4 Performance on the Full Dataset

We have also computed a set of kernels on the full dataset. Because of long
computation time we did not do this for the no compression/high sample rate
setting. We used the same kernel k-means settings as before, which results in
10 clusterings per kernel. In general we see the same performance differences as
above, but the absolute numbers are lower. The highest performance, 0.86, is
achieved by KED

max with g = −0.075 under the w = 2
3 and ε = 50 m settings.

However, this score does not differ significantly from the best score, 0.85, in the
w = 0 setting, which is for KED

max with g = −0.025 and ε = 25 m.

5 Conclusions and Future Work

The main result is that the KED
max and KDTW

max kernels perform better on the
compressed trajectories, even though we see from Tables 1 and 5 that the dataset
is reduced by 96% or more, and kernel computation time is at least 100 times
faster. The trajectory compression algorithm works by recursively retaining the
most salient elements of a trajectory, reducing noise. Removing so many points
from the trajectories can have a negative influence on the alignments. However,
in our dataset, similar trajectories have similar salient elements, vessels stop
and turn in the same places due to geographical and legislative constraints.
This means that similar compressed trajectories can be aligned well. In such
a setting applying trajectory compression as a preprocessing step can reduce
computational costs significantly and, at the same time, improve performance.

7 The results are comparable for other kernels.
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That the KED
max kernels perform better than the KDTW

max kernels on the com-
pressed trajectories can be explained by how gaps are treated. In the edit distance
case only a relatively small gap penalty is added for unaligned points. However,
in the DTW case, all points have to be aligned. Because of compression, con-
secutive points in a trajectory can be very far apart, and repeating an element
can lead to a high penalty. For the KED

sum kernels the relatively small gap penalty
actually seems to work against them, since bad alignments still have a relatively
high score: the worst score is a summing of just gap penalties. These high scores
are a relatively big, but meaningless, part of the sum. This does not happen in
the KDTW

sum case, bad alignments do not get such a relatively high score. So, we
see that the KDTW

sum kernels perform almost as well as KDTW
max versions. The al-

most identical performance of the KED
sum and KDTW

sum kernels in the uncompressed
case is because the amount of points in a trajectory is so high that there are
very little gaps compared to aligned elements, and thus the influence of how the
DTW and edit kernels treat gaps is very small.

The main reason for shortest sequence alignment kernels to perform so much
worse is that a trajectory of a small number of elements can still be very similar
to a trajectory with a lot more elements, because we do not penalize gaps. In
most cases, such trajectories are actually not very similar.

Inspection of the dataset shows that the best performance being in the w = 0
setting is not so strange. Within one cluster most trajectories actually have
similar speeds, and time is thus not so important, the sequence of the 〈x, y〉 points
is enough. We have not investigated what happens if we do not set each start
time of the trajectory to 0, but, for instance, temporally align them differently,
this is something for future work.

In future work we would also like to look at other types of movement data to
test the influence of trajectory compression. Especially data with less structure
than vessel trajectories and a larger role of the temporal component. Further-
more, it would be interesting to look at other types of clustering methods with
these alignments, for instance density based ones. Finally, we would like to look
at similarity measures from computational geometry, as for instance in [3,15].
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Abstract. We consider the problem of reinforcement learning using
function approximation, where the approximating basis can change dy-
namically while interacting with the environment. A motivation for such
an approach is maximizing the value function fitness to the problem
faced. Three errors are considered: approximation square error, Bellman
residual, and projected Bellman residual. Algorithms under the actor-
critic framework are presented, and shown to converge. The advantage
of such an adaptive basis is demonstrated in simulations.

1 Introduction

Reinforcement Learning (RL) [4] is an approach for solving Markov Decision
Processes (MDPs), when interacting with an unknown environment. One of the
main obstacles in applying RL methods is how to cope with a large state space.
In general, the underlying methods are based on dynamic programming, and in-
clude adaptive schemes that mimic either value iteration, such as Q-learning, or
policy iteration, such as Actor-Critic (AC) methods. While the former attempts
to directly learn the optimal value function, the latter are based on quickly
learning the value of the currently used policy, followed by a slower policy im-
provement step. In this paper we focus on AC methods.

There are two major problems when solving MDPs with a large state space.
The first is the storage problem, i.e., it is impractical to store the value function
and the optimal action explicitly for each state. The second is generalization:
some notion of similarity between states is needed since most states are not
visited or visited only a few times. Thus, these issues are addressed by the Func-
tion Approximation (FA) approach [4] that involves approximating the value
function by functional approximators with a smaller number of parameters in
comparison to the original number of states. The success of this approach rests
mainly on selecting appropriate features and on a proper choice of the approxi-
mation architecture. In a linear approximation architecture, the value of a state
is determined by linear combination of the low dimensional feature vector. In
the RL context, linear architectures enjoy convergence results and performance
guarantees (e.g., [4]).

The approximation quality depends on the choice of the basis functions. In this
paper we consider the possibility of tuning the basis functions on-line, under the
AC framework. As mentioned before, an agent interacting with the environment
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is composed of two sub-systems. The first is a critic, that estimates the value
function for the states encountered. This sub-system acts on a fast time scale.
The second is an actor that based on the critic output, and mainly the temporal-
difference (TD) signal, improves the agent’s policy using gradient methods. The
actor operates on a second time scale, slower than the time-scale of the critic.
Bhatnagar et al. [5] proved that such an algorithm with an appropriate relation
between the time scales, converges1.

The main contributions of this work are the following. First, we suggest an AC
algorithm, based on [5], where a third time scale is added that is slower than both
the critic and the actor, minimizing some error criteria while adapting the critic’s
basis functions to better fit the problem. Convergence of such an architecture is
guaranteed, and simulations show that a dramatic improvement can be achieved
using basis adaptation. Second, in a more general view, we suggest a framework
that converts algorithms with a linear FA to adaptive basis algorithms, where
the original algorithm and its convergence proof are used in the adaptive base
algorithm.

There are several works done in the area of adaptive bases. We mention here
several noticeable works which are similar in spirit to our work. The first work
is of Menache et al. [12]. Two algorithms were suggested for adaptive bases by
the authors: one algorithm is based on gradient methods for least-squares TD
(LSTD) of Bradtke and Barto [2], and the other algorithm is based on the cross
entropy method. Both algorithms were demonstrated in simulations to achieve
better performance than their fixed basis counterparts but no convergence guar-
antees were supplied. Yu and Bertsekas [18] suggested several algorithms for
two main problem classes: policy evaluation and optimal stopping. The former
is closer to our work than the latter so we focus on this class. Three target
functions were considered in that work: mean TD error, Bellman error, and pro-
jected Bellman error. The main difference between [18] and our work (besides
the policy improvement) is the following. The algorithmic variants suggested in
[18] are in the flavor of the LSTD and LSPE algorithms [3], while in our work
the algorithms are TD based, thus, in our work no matrix inversion is involved.
Another related class of algorithms with adaptive bases are those concerning of
direct policy improvement (or actor only algorithms) [8,9]. In these works, rather
than adapting the basis functions of the value function, the basis functions of
the policy function are adapted, yet not in multiple time scales fashion as in our
work.

The paper is organized as follows. In Section 2 we define some preliminaries
and outline the framework. In Section 3 we introduce the algorithms suggested
1 Using multiple time scales may pose a convergence drawback at first sight. Two

approaches may be applied in order to overcome this problem. First, a recent work
of Mokkadem and Pelletier [13] have demonstrated that combining the algorithm
iterates with an averaging method leads to convergence rate in distribution that is
the same as the optimal rate. Second, in multiple time scales the rate between the
time steps of the slower and faster time scales should converge to 0. Thus, time scales
which are close, operate on the fast time scale, and satisfy the condition above, are
easy to find for any practical needs.



314 D. Di Castro and S. Mannor

for adaptive bases. In Section 4 we show the convergence of the algorithms
suggested, while in Section 5 we demonstrate the algorithms in simulations. In
Section 6 we discuss the results.

2 Preliminaries

In this section, we introduce the framework, review actor-critic algorithms,
overview multiple time scales stochastic approximation (MTS-SA), and state
a related theorem which will be used later in proving the main results.

2.1 The Framework

We consider an agent interacting with an unknown environment that is modeled
by a Markov Decision Process (MDP) in discrete time with a finite state set X
and an action set U where N � |X |. Each selected action u ∈ U of the agent
determines a stochastic transition matrix Pu = [Pu(y|x)]x,y∈X , where y is the
state followed the state x.

For each state x ∈ X the agent receives a corresponding reward g(x) that
depends only on the current state2. The agent maintains a parameterized policy
function which is a probabilistic function, denoted by μθ(u|x), mapping an obser-
vation x ∈ X into a probability distribution over the controls U . The parameter
θ ∈ IRKθ is a tunable parameter where μθ(u|x) is a differentiable function w.r.t.
θ. We note that for different values of θ, different probability distributions over
U may be associated for each x ∈ X . We denote by x0, u0, g0, x1, u1, g1, . . . a
state-action-reward trajectory where the subindex specifies time.

Under each policy induced by μθ(u|x), the environment and the agent in-
duce together a Markovian transition function, denoted by Pθ(y|x), satisfying
Pθ(y|x) =

∑
u μθ(u|x)Pu(y|x). The Markovian transition function Pθ(y|x) in-

duces a stationary distribution over the state space X , denoted by D(θ). This
distribution induces a natural norm, denoted by ‖·‖D(θ), which is a weighted

norm and is defined by ‖x‖2D(θ) � x�D(θ)x. Note that when the parameter θ
changes, the norm changes as well. We denote by Eθ[·] the expectation operator
w.r.t. the measures Pθ(y|x) and D(θ). There are several performance criteria
investigated in the RL literature that differ mainly on their time horizon and
the treatment of future rewards [4]. In this work we focus on average reward
criteria defined by ηθ = Eθ[g(x)]. The agent’s goal is to find the parameter θ
that maximizes ηθ. Similarly, define the (differential) value function as

J(x) � Eθ

[
τ∑

n=0

(g(xn)− ηθ)

∣∣∣∣∣ x0 = x

]
, (1)

where τ � min{k > 0|xk = x∗} and x∗ is some recurrent state for all policies,
we assume to exist. Define the Bellman operator as TJ(x) = r− η+ Eθ[J(y)|x].
2 Generalizing the results presented here to state-action rewards is straight forward.
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Thus, based on (1) it is easy to show the following connection between the
average reward to the value function under a given policy [3], i.e.,

J(x) = g(x)− η + Eθ[J(y)|x] � TJ(x), (2)

For later use, we denote by TJ and J the column representations of J(x) and
TJ(x), respectively.

We define the Temporal Difference (TD) [4,15] signal of the state x followed
by the state y as d (x, y) = g(x) − η + J(y) − J(x), where for a specific time n
we abbreviate d (xn, xn+1) as dn. Based on (2) we can see that

Eθ[d(x, y)|x] = 0, and Eθ[d(x, y)] = 0. (3)

Based on this property, a wide family of algorithms known as TD algorithms
exist [4], where common to all these algorithms is solving (3) iteratively.

Notational comment: from now on, we omit the dependency on θ whenever it
is clear from the context.

2.2 Actor-Critic Algorithms

A well known class of RL approaches is the so called actor-critic (AC) algo-
rithms, where the agent is divided into two components, an actor and a critic.
The critic functions as a state value estimator using the so called TD-learning
algorithm, whereas the actor attempts to select actions based on the TD sig-
nal estimated by the critic. These two components solve their own optimization
problems separately interacting with each other.

The critic typically uses a function approximator which approximates the
value function in a subspace of a reduced dimension RKr . Define the basis matrix

Φ � [φk(xn)]1≤n≤N,1≤k≤Kr ∈ RN×Kr , (4)

where its columns span the subspace RKr . Thus, the approximation of the value
function is J̃(x, r) � φ (x)� r, where r is the solution of the following quadratic
program r = arg minr′∈RKr ‖Φr′ − J‖2D. This solution yields the linear projection
operator,

Π = Φ
(
Φ�DθΦ

)−1
Φ�Dθ (5)

that satisfies
J̃(r) = ΠJ. (6)

where J̃(r) is the vector representation of J̃(x, r). Abusing notations, we define
the (state dependent) projection operator on J(x) as J̃(x) = ΠJ(x).

As mentioned above, the actor receives the TD signal from the critic, where
based on this signal, the actor tries to select the optimal action. As described
in Section 2.1, the actor maintains a policy function μθ(u|x). In the following,
we state a theorem that serves as the foundation for the policy gradient algo-
rithms described later. The theorem relates the gradient w.r.t. θ of the average
reward, ∇θηθ, to the TD signal, d(x, y). Define the likelihood ratio derivative as
ψθ(x, u) � ∇θμθ(u|x)/μθ(u|x). We omit the dependency of ψ on x, u, and θ
through the paper. The following assumption states that ψ is bounded.
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Assumption 1. For all x ∈ X, u ∈ U , and θ ∈ RKθ , there exists a positive
constant, Bψ, such that ‖ψ‖2 ≤ Bψ, ‖∇θψ‖2 ≤ Bψ.

Based on this, we present the following lemma that relates the gradient of η to
the TD signal [5].

Lemma 2. The gradient of the average reward (w.r.t. to θ) can be expressed by
∇θη =E[ψθ(x, u)d(x, y)].

2.3 Multiple Time Scales Stochastic Approximation

Stochastic approximation (SA), and in particular the ODE approach [10], is
a widely used method for investigating the asymptotic behavior of stochastic
iterates. For example, consider the following stochastic iterate

ϕn+1 = ϕn + αnG(ϕn, ζn+1), (7)

where {ζn+1} is some random process and {αn} are step sizes that form a positive
series satisfying conditions to be defined later. The key idea of the technique is
the following. Suppose that the iterate (7) can be decomposed into a mean
function, denoted by F (·), and a noise term (usually a martingale difference
noise), denoted by Mn+1,

ϕn+1 = ϕn + αn (F (ϕn) +Mn+1) , (8)

and suppose that the effect of the noise weakens due to repeated averaging.
Consider the following ordinary differential equation (ODE)

ϕ̇t = F (ϕt), (9)

where the dot above a variable stands for a time derivative. Then, a typical
result of the ODE method in the SA theory suggests that the asymptotic limit
of (8) and (9) are identical.

The theory of SA considers an iterate, which may be in some finite dimensional
Euclidean space. Sometimes, we need to deal with several multidimensional it-
erates, dependent one on the other, and where each iterate operates on different
timescale. Surprisingly, this type of SA, called multiple time scale SA (MTS-
SA), is sometimes easier to analyze, with respect to the same iterates operate on
single timescale. The first analysis of two time-scales SA algorithms was given
by Borkar in [6] and later expanded to MTS by Leslie and Collins in [11]. In
the following we describe the problem of MTS-SA, state the related ODEs, and
finally state the conditions under which MTS-SA iterates converge. We follow
the definitions of [11].

Consider L dependent SA iterates as the following

ϕ
(i)
n+1 = ϕ(i)

n + α(i)
n

(
F (i)

(
ϕ(1)

n , . . . , ϕ(N)
n

)
+M

(i)
n+1

)
, 1 ≤ i ≤ L, (10)

where ϕ(i)
n ∈ Rdi , and F (i) : R⊗L

j=1dj → Rdi . The following assumption contains
a standard requirement for MTS-SA step size.
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Assumption 3. (MTS-SA step size assumptions)
1. For 1 ≤ n ≤ L, we have

∑∞
n=0 α

(i)
n =∞,

∑∞
n=0

(
α

(i)
n

)2
<∞,

2. For 1 ≤ n ≤ L− 1, we have limn→∞ α
(i)
n /α

(i+1)
n = 0.

We interpret the second requirement in the following way: the higher the index
i of an iterate, it operates on higher time scale. This is because that there exists
some n0 such that for all n > n0 the step size of the i-th iterate is larger uniformly
then the step size of the iterates 1 ≤ j ≤ i− 1. Thus, the i-th iterate advances
more than any of the iterates 1 ≤ j ≤ i − 1, or in other words, it operates on
faster time scale. The following assumption aggregates the main requirement for
the MTS-SA iterates.

Assumption 4. (MTS-SA iterate assumptions)

1. F (i) (·) are globally Lipschitz continuous,
2. For 1 ≤ i ≤ L, we have supn

∥∥∥ϕ(i)
n

∥∥∥ <∞.

3. For 1 ≤ i ≤ L,
∑n

k=0 a
(i)
k M

(i)
k+1 converges a.s.

4. (The ODEs requirements)
(a) Denote ϕ(i→j) � (ϕ(i), . . . , ϕ(j)). Define the L-th ODE system to be{

ϕ̇
(1→L−1)
t = 0,
ϕ̇

(L)
t = F (L)(ϕ(1)

t , . . . , ϕ
(L)
t ),

(11)

and suppose the initial condition ϕ
(1→L−1)
t

∣∣∣
t=0

= ϕ0. Then, there exists

a Lipschitz continuous function ξ(L)(ϕ0) such that the ODE system (11)
converges to the point (ϕ0, ξ

(L)(ϕ0)).
(b) Define the i-th ODE system, i = L− 1, . . . , 1, to be{

ϕ̇
(1→i−1)
t = 0,
ϕ̇

(i)
t = F (i)(ϕ(1), . . . , ϕ(i−1), ϕ(i), ξ(i+1)(ϕ0, ϕ

(i))),
(12)

where ξ(i+1)(·, ·) is determined by the (i+1)-th ODE system, and suppose
the initial condition ϕ

(1→i−1)
t

∣∣∣
t=0

= ϕ0. Then, there exists a Lipschitz

continuous function ξ(i)(ϕ0) such that the ODE system (12) converges
to the point (ϕ0, ξ

(i)).

The requirements 1 and 2 are common conditions for SA iterates to converge.
Requirement 3 ensures that the noise term asymptotically vanishes. Requirement
4 is defined recursively where requirement (a) is the initial requirement related
to the L-th ODE, and requirement (b) describes the i-th ODE system that
is recursively based on the (i + 1)-th ODE system, going from i = L − 1 to
i = 1. Requirement 4 ensures that for each time scale i there exists a Lipschitz
convergent function, where the slower time scales 1, . . . , i−1 are static and where
for the faster time scales i+ 1, . . . , L there exists a function ξ(j+1→L)(·) (which
is the solution of the i+ 1 ODE system). Based on these requirements, we cite
the following theorem due to Leslie and Collins [11].
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Theorem 5. Consider the iterates (10) and suppose Assumption 3 and 4 hold.
Then, the asymptotic behavior of the iterates (10) converge to the invariant set
of the dynamic system

ϕ̇
(1)
t = F (1)

(
ϕ

(1)
t , ξ(2)

(
ϕ

(1)
t

))
, (13)

where ξ(2)(·) is determined by requirement 4 of Assumption 4.

3 Main Results

In this section we present the main theoretical results of the work. We start by
introducing adaptive bases and show the algorithms that are derived by choos-
ing different approximating schemes. We note that below we adopt different
types of criteria in order to adapt the basis functions. A discussion on the dif-
ferent approximation schemes and their relation to a linear FA can be found in
Schoknecht [14].

3.1 Adaptive Bases

The motivation for adaptive bases is the following. Consider a domain expert that
chooses a basis for the critic in order to approximate the value function. The basis
which the domain expert chooses with no prior knowledge might not be suitable
for the problem at hand, thus, it may lead the agent to poor performance.
Therefore, the domain expert might prefer to choose a parameterized basis that
has additional flexibility that is controlled by a small set of parameters.

We propose to consider a basis that is linear in some of the parameters but
has several other parameters that allow greater flexibility. In other words, we
consider bases that are linear with respect to some of the terms (related to the
fast time scale), and nonlinear with respect to the rest (related to the slow time
scale). The idea is that one does not lose much from such an approach in general
if it fails, but in many cases it is possible to obtain better fitness and thus a
better performance, due to this additional flexibility. Mathematically,

J̃(x, r, s) = φ (x, s)� r, s ∈ RKs , (14)

where r is a linear parameter related to the fast time scale, and s is the non-
linear parameter related to the slow time scale. In the view of (4), we note that
from now on the matrix Φ depends on s, i.e., Φ ≡ Φs, and in matrix form we
have J̃ = Φsr, but for the ease of exposition we drop the dependency on s.

An example for an adaptive base is the trigonometric adaptive base, e.g.,
{sin(xs/d)}Kr

d=1
⋃
{cos(xs/d)}Kr

d=1. In this basis, the linear dimension is 2Kr but
it is controlled by the scalar s. Another example is the RBF3 adaptive base, i.e.,
{exp{−(x−sd)�A(x−sd)}Kr

d=1, where the basis functions centers are determined
by the nonlinear parameter sd. We note that in contrast to previous works using
3 Radial Basis Functions; see [15].
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RBFs, in the current RBF formulation the linear and nonlinear parameters of
the RBFs changes on different time scales. The following assumption is needed
for proving later results.

Assumption 6. The columns of the matrix Φ are linearly independent, Kr <
N , and Φr �= e, where e is a vector of 1’s. Moreover, the functions φ (x, s) and
∂φ (x, s) /∂si for 1 ≤ i ≤ Ks are Liphschitz in s with a coefficient Lφ, and
bounded with coefficient Bφ.

Notation comment: for ease of exposition, we drop the dependency on xn, e.g.,
φn ≡ φ(xn, sn), gn ≡ g(xn). Denote φ � φ(x, s), φ′ � φ(y, s) (where as in Section
2.1, y is the state followed the state x), φ′n � φ(xn+1, sn), dn � d(xn, xn+1), and
d � d(x, y). Thus, d = g − η + φ′�r − φ�r and dn = gn − ηn + φ′�n rn − φ�n rn.

3.2 Minimum Mean Square Error and TD

Assume a basis parameterized as in (14). The mean square error (MSE) is defined
as

MSE =
1
2
E
[(
J̃(x)− J(x)

)2
]
.

The gradients with respect to r and s are

∇rMSE =
1
2
E
[(
J̃(x)− J(x)

)
φ
]
≈ E [dφ] , (15)

∂MSE
∂si

= E

[(
J̃(x)− J(x)

) ∂J̃(x)
∂si

]
≈ E

[
d
∂φ�

∂si
r

]
, (16)

where in the approximation we use the bootstrapping method (see [15] for a
disussion) in order to get the well known TD algorithm (i.e., substituting J ≈
T J̃). We use SA in order to solve the stochastic equations (15) and (16), which
together with Theorem 2 is the basis for the following algorithm. For technical
reasons, we add an requirement that the iterates for θ and s are bounded, which
practically is not constraining4.

Algorithm 7. Adaptive basis TD (ABTD).

ηn+1 = ηn + α(3)
n (gn − ηn) , (17)

rn+1 = rn + α(3)
n dnφn, (18)

θn+1 = H
(θ)
P

[
θn + α(2)

n ψndn

]
, (19)

si,n+1 = H
(s)
P

[
si,n + α(1)

n dn
∂φ�n
∂si

rn

]
, i = 1, . . . ,Ks, (20)

where H(θ)
P and H(s)

P are projection operators into a non-empty open constraints
set whenever θn /∈ Hp and s /∈ Hs, respectively, and the step size series {α(i)

n }
for i = 1, 2, 3 satisfy Assumption 3.
4 See Kushner and Yin [10] for a discussion on constrained SA.
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We note that this algorithm is an AC algorithm with three time scales: the usual
two time scales, i.e., choosing {α(1)

n }∞n=1 ≡ 0 yields Algorithm 1 of [5], and the
third iterates is added for the basis adaptation, which is the slowest.

3.3 Minimum Square Bellman Error

The Square Bellman Error (BE) is defined as

BE =
1
2
E
[(
T J̃(x)− J̃(x)

)2
]
.

The gradients with respect to r and s are

∇rBE = E [d (φ′ − φ)] ,
∂BE
∂si

= E
[
d

(
∂φ′�

∂si
− ∂φ�

∂si

)
r

]
.

Based on this we have the following SA algorithm, that is similar to Algorithm
7 except for the iterates for rn and sn.

Algorithm 8. - Adaptive Basis for Bellman Error (ABBE). Consider the iter-
ates for η and θ in Algorithm 7. The iterates for r and si are

rn+1 = rn − α(3)
n dn (φ′n − φn) ,

si,n+1 =H(s)
P

[
si,n − α(1)

n dn

(
∂φ′n
∂si

− ∂φn

∂si

)�
rn

]
, i = 1, . . . ,Ks.

3.4 Minimum Square Projected Bellman Error

The Projected Bellman Error (PBE) is defined as

PBE = E
[(
ΠT J̃(x) − J̃(x)

)2
]

= E [dφ]′ (E [φφ′])−1 E [dφ] ,

where the projection operator is defined in (5) and where the second equal-
ity was proved by Sutton et al. [16], Section 4. We note that the projection
operator is independent of r but dependent on the basis parameter s. Define
w = (E [φφ′])−1 E [dφ]. Thus, w is the solution to the equation (E [φφ′])w =
E [dφ], which yields PBE = w′E [dφ]. Define similarly to Section 6.3.3 of [4]
Ar+ b � E [dφ], where A = E[φ(φ′−φ)�] and b = E[φ(g− η)]. Define A(i) to be
the i-th column of A. For later use, we give here the gradient of w with respect
to r and s in implicit form

(
E
[
φφ�

]) ∂

∂ri
w = A(i),

E
[
φφ�

] ∂

∂si
w +

∂

∂si
E
[
φφ�

]
w =

∂A

∂si
r +

∂b

∂si
.
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Denote by An, As
i,n,bsi,n,wn, wr

i,n, and ws
i,n the estimators at time n of A, ∂A/∂si,

∂b/∂si, w, ∂w/∂ri, and ∂w/∂si, respectively. Define A(i)
n to be the i-th column

of An. Thus, the SA iterations for these estimators are

An+1 = An + α(4)
n

(
φn (φn − φn+1)

� −An

)
,

As
i,n+1 = As

i,n + α(4)
n

(
∂φn

∂si
(φn − φn+1)

� +φn
∂

∂si
(φn − φn+1)

� −As
i,n

)
,

bsi,n+1 = bsi,n + α(4)
n

(
g
∂φn

∂si
− bsi,n

)
,

wn+1 = wn + α(4)
n

(
φndn − φnφ

�
nwn

)
,

wr
i,n+1 = wr

i,n + α(4)
n

(
A(i)

n − φnφ
�
nw

r
i,n

)
,

ws
i,n+1 = ws

i,n + α(4)
n

(
As

i,nrn + bsi,n −
(
∂

∂si

(
φnφ

�
n

))
wn − φnφ

�
nw

s
i,n

)
.

where
{
α

(4)
n

}
satisfies Assumption 3. Next, we compute the gradient of the

objective function PBE with respect to r and s and suggest a gradient descent
algorithm to find the optimal value. Thus,

∂PBE
∂ri

= E [dφ]�
∂

∂ri
w� + w� ∂

∂ri
E [dφ] ,

∂PBE
∂si

=
∂w�

∂si
E [dφ] + w� ∂E [dφ]

∂si
.

The following algorithm gives the SA iterates for r and s, where the iterates
for η and θ are the same as in Algorithms 7 and 8 and therefore omitted. This
algorithm has four time scales: estimators, critic, actor, and basis adaptation
correspond to the step sizes {α(4)

n }, {α(3)
n }, {α(2)

n }, and {α(1)
n }, respectively.

Algorithm 9. - Adaptive Basis for PBE (ABPBE). Consider the iterates for η
and θ in Algorithm 7. The iterates for r and s are

ri,n+1 = ri,n − α(3)
n

(
dnφ

�
nw

r
i,n + w�

nA
(i)
n ri,nrn

)
,

si,n+1 = si,n − α(1)
n

(
dnφ

�
nw

s
i,n +

(
As

i,nrn + bsi,n
)�
wn

)
, i = 1, . . . ,Ks.

4 Analysis

In this section we prove the convergence of the previous section Algorithm 7
and 8. We omit the convergence proof of Algorithm 9 that is similar to the
convergence proof of Algorithm 8.
4.1 Convergence of ABTD

We begin by stating a theorem regarding the ABTD convergence. Due to space
limitations, we give only a proof sketch based on the convergence proof of The-
orem 2 of Bhatnagar et al. [5]. The self-contained proof under more general
conditions is left for the long version of this work.
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Theorem 10. Consider Algorithm 7 and suppose Assumption 1, 3, and 6, hold.
Then, the iterates (17)-(20) of Algorithm 7 converge w.p. 1 to a point that locally
maximizes η and solves the equation E[d∇sφ

�r] = 0.

Proof. (Sketch) There are three time-scales in (17)-(20), therefore, we wish to
use Theorem 5, i.e., we need to prove that the requirements of Assumption 4 are
valid w.r.t. to all iterations, i.e., ηn, rn, θn, and sn.
Requirement 1-4 w.r.t. iterates ηn, rn, θn. Bhatnagar et al. proved in [5]
that (17)-(19) converge for a specific s. Assumption 6 implies that the require-
ments 1-4 of Assumption 4 are valid regarding the iterates of ηn, rn and θn

uniformly for all s ∈ IRKs . Therefore, it is sufficient to prove that on top of
(17)-(19) iterate (20) also converges, i.e., that requirements 1-4 of Assumption
4 are valid w.r.t. sn.
Requirement 1 w.r.t. iterate sn. Define the σ-algebra Fn � σ(ηk, rk, θk, sk :
k ≤ n), and define F

(η)
n � E[gn − ηn|Fn], F (r)

n � E[dnφn|Fn], F (θ)
n � H

(θ)
P

E[ψndn|Fn], F (si)
n � H

(s)
P E[dn

∂φ�
n

∂si
rn|Fn], and M (si)

n+1 � H
(s)
P [(dn

∂φ�
n

∂si
rn)−F (si)

n ].
Thus, (20) can be expressed as

si,n+1 = si,n + α(1)
n

(
F (si)

n +M
(si)
n+1

)
. (21)

Trivially, using Assumption 6, F (r)
n , F (θ)

n , and F (s)
n are Liphschitz, with respect

to s, with coefficients B2
φ, Lφ, and Lφ, respectively. Also, F (si)

n is Liphschitz
with respect to η, r, and θ with coefficients 1, Bφ, and 1, respectively. Thus,
requirement 1 of Assumption 4 is satisfied.
Requirements 2 and 3 w.r.t. iterate sn. By construction, the iterate sn is
bounded. Requirement 3 of Assumption 4 is valid using the boundedness of the
martingale difference noise M (si)

n+1 that implies, using the martingale convergence
theorem [4], that the martingale

∑
n α

(3)
n M

(si)
n+1 converges.

Requirement 4 w.r.t. iterate sn. Using the result of Bhatnagar et al. [5], the
fast time scales converge w.r.t. the slow time scale. Thus, Requirement 4 is valid
based on the fact that the iterates (17)-(19) converge. ��

4.2 Convergence of Adaptive Basis for Bellman Error

We begin by stating the theorem followed by its proof.

Theorem 11. Consider Algorithm 8 and suppose that Assumption 1, 3, and 6,
hold. Then Algorithm 8 converge w.p. 1 to a point that locally maximizes η and
locally minimizes E[d2].

Proof. (Sketch) To use Theorem 5 we need to check that Assumption 4 is valid.
Define the σ-algebra Fn � σ(ηk, rk, θk, sk : k ≤ n), and define F (η)

n � E[gn −
ηn|Fn], M (η)

n+1 � (gn − ηn) − F
(η)
n , F (r)

n � −E[dn(φn+1 − φn)|Fn], M (r)
n+1 �

−(dn(φn+1 − φn)) − F
(r)
n , F (θ)

n � E[ψndn|Fn], M (θ)
n+1 � (ψndn) − F

(θ)
n , F (si)

n �
−E[dn(∂φ�

n+1
∂si

rn − ∂φ�
n

∂si
rn)|Fn], and M (si)

n+1 � −(dn(∂φ�
n+1

∂si
rn)− ∂φ�

n

∂si
rn))− F (si)

n .
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On the fast time scale (which is related to a(3)
n ), as in Theorem 10, ηn converges

to E[g(x)]. On the same time scale we need to show that the iterate for rn
converges. Using the above definitions, we can write the iteration rn as

rn+1 = rn + α(3)
n

(
F (r)

n +M
(r)
n+1

)
. (22)

We use Theorem 2.2 of Borkar and Meyn [7] to achieve this. Briefly, this theorem
states that given an iteration as (22), this iteration is bounded w.p.1 if

(A1) The process F (r)
n is Lipschitz, the function F∞(σ) � limσ→∞ F (r)(σr)/r

is Lipschitz, and F∞(σ) is asymptotically stable in the origin.
(A2) The sequence M (r)

n+1 is a martingale difference noise and for some C0

E
[
(M (r)

n+1)
2|Fn

]
≤ C0(1 + ‖rn‖2).

Trivially, the function F (r)
n is Lipschitz continuous, and we have

lim
σ→∞

F (r)(σr)/r = −E
[
(φ′ − φ)(φ′ − φ)�|

]
r.

Thus, it is easy to show, using Assumption 6, that the ODE ṙ = F
(r)
∞ has a

unique global asymptotically stable point at the origin and (A1) is valid. For
(A2) we have

E
[∥∥∥M(n+ 1)(r)

∥∥∥2
∣∣∣∣Fn

]
≤ E

[
‖dn (φ′n − φn)‖2

∣∣∣Fn

]
≤ 2

(
Bg +Bη + 4B2

φrn
)2 � K ′′(1 + ‖rn‖2),

where the first inequality results from the inequality E[(x− E[x])2] ≤ E[x2], and
the second inequality follows from the uniform boundedness of the involved vari-
ables. We note that the related ODE for this iteration is given by ṙ = F (r), and
the related Lyapunov function is given by E[d2]. Next, we need show that under
the convergence of the fast time scales for ηn and rn, the slower iterate for θ con-
verges. The proof of this is identical to that of Theorem 2 of [5] and is therefore
omitted. We are left with proving that if the fast time scales converge, i.e., the
iterates ηn, rn, and θn, then the iterate s(i)n converge as well. The proof follows
similar lines as of the proof for s(i)n in the proof of Theorem 10, whereas here the
iterate sn converge to the stable point of the ODE ṡ = ∇sE[d(x, y)2]. ��

5 Simulations

In this section we report empirical results applying the algorithms on two types
of problems: Garnet problems [1] and the mountain car problem.
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5.1 Garnet problems

The garnet
5 problems [1,5] are a class of randomly constructed finite MDPs

serving as a test-bench for RL algorithms. A garnet problem is characterized
by four parameters and is denoted by garnet(X,U,B, σ). The parameter X is
the number of states, U is the number of actions, B is the branching factor, and
σ is the variance of each transition reward. When constructing such a problem,
we generate for each state a reward, distributed according to N (0, 1). For each
state-action the reward is distributed according to N (g(x), σ2). The transition
matrix for each action is composed of B non-zero terms. We consider the same
garnet problems as those simulated by [5]. For the critic’s feature vector, we use
the basis functions φ(x, s) = cos

(
x
ds+ �x,d

)
, where x = 1, . . . , N , 1 ≤ d ≤ Kr,

s ∈ R1, and �x,d are i.i.d. uniform random phases. Note that only one parameter
in this simulation controls the basis functions. The actor’s feature vectors are of
size Ka × |U |, and are constructed as

ξ(x, u) � (

Ka×(u−1)︷ ︸︸ ︷
0, . . . , 0 , φ(x, s(t = 0)),

Ka×(|U|−u)︷ ︸︸ ︷
0, . . . , 0 ).

The policy function is μ(u|x, θ) = eθ�ξ(x,u)/
∑

u′∈U e
θ�ξ(x,u′). Bhatnagar et al.

[5] reported simulation results for two garnet problems: garnet(30, 4, 2, 0.1)
and garnet(100, 10, 3, 0.1). We based our simulations on these results where
the time steps are identical to those of [5]. The garnet(30, 4, 2, 0.1) problem
(Fig. 1 left pane) was simulated for Kr = 4 (two lower graphs) and Kr = 12
(two upper graphs), where each graph is an average of 100 repeats. The gar-

net(100, 10, 3, 0.1) problem (Fig. 1 right pane) was simulated for Kr = 4 (two
lower graphs) and Kr = 12 (two upper graphs), where each graph is an average
of 100 repeats. We can see that in such problems there is an evident advantage
to an adaptive base, which can achieve additional fitness to the problem, and
thus even for low dimensional problems the adaptation may be crucial.

Fig. 1. Results for garnet(30, 4, 2, 0.1) (left pane) and garnet(100, 10, 3, 0.1) (right
pane) where circled graphs are for adaptive bases. In each graph the lower two graphs
are for Kr = 4 and the upper graphs are for Kr = 12. See the text for detail.

5 Brevity for Generic Average Reward Non-stationary Environment Test-bench.
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5.2 The Mountain Car

The mountain car task (see [15] for details) is a physical problem where a car
is positioned randomly between two mountains (see Fig. 2 left pane) and needs
to climb the right mountain, but the engine of the car does not support such a
straight climb. Thus, the car needs to accumulate sufficient gradational energy,
by applying back and forth actions, in order to succeed.

We applied the adaptive basis TD algorithm on this problem. We chose the
critic basis functions to be radial basis functions (RBF) (see [15]), where the
value function is represented by

∑M
i=1 ri exp{−(p−s(p)

i )2/s2p,i− (v−s(v)
i )2/s2v,i}.

The centers of the RBFs are parameterized by (s(p)
i , s

(v)
i )M

i=1 while the variance
is represented by (s2p,i, s

2
v,i)

M
i=1. In the right pane of Fig. 2 we present simulation

results for 4 cases: SARSA (blue dash) which is based on the implementation
of example 8.2 of [15], AC (red dash-dot) with 64 basis functions uniformly
distributed on the parameter space, ABTD with 64 basis functions (magenta
dotted) where both the location and the variance of the basis functions can
adapt, ABAC with 16 basis functions (black solid) with the same adaptation.
We see that the adaptive basis gives a significant advantage in performance.
Moreover, we see that even with a small number of parameters, the performance
is not affected. In the middle pane, the dynamics of a realization of the basis
functions is presented where the dots and circles are the initial positions and final
positions of the basis functions, respectively. The circle sizes are proportional to
the basis functions standard deviations, i.e., (sp,i, sv,i)M

i=1 .

Fig. 2. (Left pane) illustration of the mountain car task. (Middle pane) Realiza-
tion of ABTD with 16 basis functions where the red dots are the basis functions initial
position and the circles are their final position. The radii are proportional to the vari-
ance. The rectangle represents the bounded parameter set of the car. (Right pane)
Simulation results for the mountain car problem with solutions of SARSA (blue dash),
AC (red dash-dot), AB-AC with 64 basis functions (magenta dotted), and AB-AC with
16 basis functions (black solid).

5.3 The Performance of Multiple Time Scales vs. Single Time Scale

In this section we discuss the differences in performance between the MTS al-
gorithm to the STS algorithms. Unlike mistakenly thought, neither MTS al-
gorithms nor STS algorithms have advantage in terms of convergence. This
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Fig. 3. Results for garnet(30, 5, 5, 0.1) for Kr = 8. The upper diamond red graph is
MTS ABTD algorithm, the circled green graph is STS ABTD acting on slow time scale,
the blue crossed line is MTS static basis AC algorithm as in [5], and the black stared
line is STS ABTD acting on fast time scale. Each graph is average of 100 simulation
runnings.

difference comes from the fact that both methods perform the gradient algorithm
differently, thus, they may result different trajectories. In Fig. 3 we can see a case
on a garnet(30,5,5,0.1) where the MTS ABTD algorithm (upper red diamond
graph) has an advantage over STS ABTD algorithms or MTS static basis AC
algorithm as in [5] (rest of the graphs). We note that this is not always the case
and it depends on the problem parameters or the initial conditions.

6 Discussion

We introduced three new AC based algorithms where the critic’s basis is adap-
tive. Convergence proofs, in the average reward case, were provided. We note
that the algorithms can be easily transformed to discounted reward. When con-
sidering other target functions, more AC algorithms with adaptive basis can
be devised, e.g., considering the objective function ‖E[dφ]‖2 yields A�TD and
GTD(0) algorithms [17]. Also, mixing the different algorithm introduced in here,
can yield new algorithms with some desired properties. For example. we can
devise an algorithm where the linear part is updated similar to (18) and the
non-linear part is updated similar to (21). Convergence of such algorithms will
follow the same lines of proof as introduced here.

An interesting question in the adaptive bases context is the following. How
well do adaptive base algorithms cope with increased dimensionality when the
intrinsic dimensionality stays small?

To conclude, the advantage of adaptive bases is evident: they relieve the do-
main expert from the task of carefully designing the basis. Instead, he may choose
a flexible base, where one use algorithms as introduced here to adapt the base
to the problem at hand. From a methodological point of view, the method we
introduced in this paper demonstrates how to easily transform an existing RL
algorithm to an adaptive base algorithm. The analysis of the original problem
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is used to show convergence of the faster time scale and the slow time scale is
used for modifying the basis, analogously to “code reuse” concept in software
engineering.
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Abstract. There are many situations in which we have more than
one view of a single data source, or in which we have multiple sources
of data that are aligned. We would like to be able to build classifiers
which incorporate these to enhance classification performance. Kernel
Fisher Discriminant Analysis (KFDA) can be formulated as a convex
optimisation problem, which we extend to the Multiview setting
(MFDA) and introduce a sparse version (SMFDA). We show that our
formulations are justified from both probabilistic and learning theory
perspectives. We then extend the optimisation problem to account
for directions unique to each view (PMFDA). We show experimental
validation on a toy dataset, and then give experimental results on a
brain imaging dataset and part of the PASCAL 2007 VOC challenge
dataset.

Keywords: Fisher Discriminant Analysis, Convex Optimisation, Multi-
view Learning, Kernel methods.

1 Introduction

We consider related but subtly differing settings within the domain of super-
vised learning. In Multi-View Learning (MVL), we have multiple views of the
same underlying semantic object, which may be derived from different sensors,
or different sensing techniques. In Multi-Source Learning (MSL), we have mul-
tiple sources of data which come from different sources but whose label space is
aligned. Finally, in Multiple Kernel Learning (MKL), we have multiple kernels
built from different feature mappings of the same data source. In general, any
algorithm built to solve any of the three problems will also solve the others, but
this may not be in the most optimal or desirable manner. For example, MKL
algorithms do not make any attempt to integrate the sources of information from
each view, and work by simply placing weights over the kernels [1]. Anecdotally,
it seems that in many practical situations in which the number of kernels is small,
the performance of MKL algorithms can actually be worse than simply choos-
ing the best kernel through a heuristic method such as cross-validation (CV)1.
1 Amongst others, this topic was discussed at the NIPS 2009 Workshop “Understand-

ing Multiple Kernel Learning Methods”.
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In the MVL or MSL paradigm, we are assuming that the number of views or
sources is typically small (i.e. 2 → 10), and hence another viewpoint is needed
in which the sources are combined more usefully. The basic idea of MVL is to
introduce one function per view which only uses the features from that view, and
then jointly optimize these functions such that learning is enhanced. In MVL, we
are also usually interested in having weight vectors and loadings for each of the
views, which we do not have when we concatenate features (or equivalently sum
kernel matrices), or take convex combinations of kernels as in the MKL setting.
Without loss of generality, we will assume that we are in the MVL setting for
the rest of the paper.

Canonical Correlation Analysis (CCA) and Kernel Canonical Correlation
Analysis (KCCA) [7] attempt to integrate two sources of information by max-
imising the correlations between projections of each view. They are unsupervised
techniques, and as such are not ideally suited to a classification setting. A com-
mon way of performing classification on two-view data using KCCA is to use
the projected data from one of the views as input to a standard classification
algorithm, such as a Support Vector Machine (SVM). However, as with Prin-
cipal Components Analysis (PCA), the subspace that is learnt through such
unsupervised methods may not always align well with the label space.

SVM-2K [5] was an attempt to take this to its logical conclusion by combining
this two stage learning into a single optimisation. The algorithm introduces the
constraint of similarity between two 1-dimensional projections which identify
two distinct SVMs in the two feature spaces. However SVM-2K requires extra
parameters (the C-parameter for each SVM, and another mixing parameter,
along with any kernel parameters) that the methods presented here will not
require. In addition, it is not easy to see how the SVM-2K formulation can
be generalised to more than two views. There has been one related approach
that tries to find the optimum combination of Fisher classifiers [8] using the
MKL architecture [1]. In its initial form this problem is non-convex, although
the authors do recast the problem in terms of a semi-definite programme (SDP),
at the expensive of an increase in the problem scale. In addition, the MKL
architecture means that the output of the algorithm is a single weight vector
for the convex combination of kernels. The formulation presented here has some
similarities to that of [8], except cast here in the MVL framework and also
providing additional modelling flexibility.

2 Preliminaries

We first review the convex formulation of Kernel Fisher Discriminant Analysis
(KFDA) in the form given by [13]. Let (x, y) ∼ S be an input-output pair from an
m-sample S with x ∈ Rn and y ∈ {−1,+1}. Let X = (x1, . . . ,xm)′ be the input
vectors stored in matrix X as row vectors, and y = (y1, . . . ,ym)′ be a vector of
outputs, where ′ denote the transpose of vectors or matrices. For simplicity we
always assume that the examples are already projected into the kernel defined
feature space F , so that the kernel matrix K has entries K[i, j] = 〈xi,xj〉. The
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explicit feature mapping is defined as φ : x→ φ(x) ∈ F . Furthermore we define
1 ∈ Rm as the vector of all ones and I ∈ Rm×m the m−dimensional identity
matrix.

To proceed, we can use the fact that KFDA minimises the variance of the
data along the projection whilst maximising the separation of the classes. If
we characterise the variance within a vector of slack variables ξ ∈ Rn, we can
directly minimise the variance as follows,

min
α,ξ

‖ξ‖2 + μα′Kα

s.t. Kα + 1b = y + ξ

ξ′ec = 0 for c = −1,+1, where ec
i =

{
1 if yi = c
0 otherwise. (1)

3 Convex Multiview Fisher Discriminant Analysis

Here the convex formulation for KFDA given above will be extended to mul-
tiple views. Given p “views” of the same data source, or alternatively p
aligned data sources, to form an m−sample S with input output p + 1 tuples
(x(1),x(2), . . . ,x(p), y). It is assumed that each view has already been projected
into a feature space Fd, so that the kernel matrix Kd for that view has entries
Kd[i, j] =

〈
x(d)i,x(d)j

〉
. The explicit feature mapping for a each view is defined

as φd : x(d) → φd(x(d)) ∈ Fd. Given matrices of inputs Xd = [x(d)1, . . . ,x(d)m]′,
the formulation (1) is extended to find p dual weight vectors αd, d = 1, . . . , p.
The concatenation of these weight vectors will be denoted by α̃ = [α′

1, . . . ,α
′
p]′.

The convex form of Multiview Fisher Discriminant Analysis (MFDA) is given in
equation (2) below. The goal is now to minimise the variance of the data along
the projection whilst maximising the distance between the average outputs for
each class over all of the views.

min
αd,b,ξ

L(ξ) + μP(α̃),

s.t.
p∑

d=1

(Kdαd + 1bd) = y + ξ, d = 1, . . . , p

ξ′ec = 0 for c = 1, 2, (2)

where L(·) and P(·) are the loss function and regulisation function respectively,
as follows,

L(ξ) = ‖ξ‖22 , (3)

P(α̃) =
p∑

d=1

(α′
dKdαd). (4)

The first constraint in (2) ensures that the average loss between the output
and its class label is minimised. The second constraint ensures that the average
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output for each class is each label. The classification function on a set of examples
x(d),i from views d = 1, . . . , p now becomes,

f(x(d),i) = sgn

(
p∑

d=1

f(x(d)i)

)
= sgn

(
p∑

d=1

Kd[:, i]′αd + bd

)
. (5)

Clearly (2) collapses to (1) for p = 1. Observe that the solutions given will,
in the linearly separable case, be equivalent to summing kernels. Meaning that
viewed in the primal form, the result is the standard criterion in the space de-
fined by the concatenation of the features, and the norm of the full weight vector
is given by (4). However this formulation leads to two main advantages. Firstly,
it provides a flexible framework that allows for different noise models and regu-
larisation functions. Secondly, explicit weight vectors are available for each view,
which allows the calculation of implicit weightings over the views (see Section
3.2 below). In the non-linearly separable case, the equivalence breaks down, as
the optimisation ties the views together through the shared slack variables.

Further intuition on the operation of the algorithm is as follows. Given two
views x(1) and x(2), and using the standard �2 loss function, MFDA is trying to
minimise the summed errors committed:

∥∥f1(x(1)) + f(x(2))− y
∥∥2

2. So if some
slack is added to one of the examples, e.g. x(1)i, then the algorithm will try
to push the corresponding example x(2)i the other way to try to minimise the
overall slack. This can be seen as “view disagreement” which means that the
algorithm tries to use information from both views to aid the classification.
However of course the algorithm can “give up” and allow the slack to be big for
that example, meaning that x(1) and x(2) can be pushed the same way.

It is actually possible to state the problem as the reverse - saying that normally
in MVL the goal is to search for view agreement, which would (for example)
be minimising

∥∥f(x(1))− f(x(2))
∥∥2

2 (ignoring the labels). This is one particular
form of the so-called “Co-Training” problem, which in order to work requires
that each of the views are sufficient for classification, and methods that use
this break down when there is significant view disagreement. A recent paper
tried to get around this by learning separate classifiers and then looking for
view agreement/disagreement between them, before combining them into a final
classifier (a form of bootstrapping)[3]. MFDA should have an advantage over
this as it is directly optimising the combined classifier. However, we also provide
an alternative ‘Private’ method with separate slacks for each view as well as the
overall slacks (see Section 3.4 to follow). Essentially, if there is a “trouble” point
in view x(1), but not in view x(2), the disagreement can be soaked up by the
private slack, allowing the two views to move into agreement with zero shared
slack.

3.1 Probabilistic Interpretation

Following the analysis of [13], it is possible to view the KFDA algorithm from a
probabilistic point of view. It is known that Fisher Discriminant Analysis (FDA)
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is Bayes optimal for two Gaussian distributions with equal covariance in the
input space. The data may not fall naturally into this model, but it may be the
case that for certain feature spaces (e.g. the space defined by the Radial Basis
Function (RBF) kernel), the examples projected into a manifold in this space
may be well approximated by Gaussian distributions with diagonal covariance2.
In this case KFDA would be Bayes optimal in the feature space.

Consider data generated according to a Gaussian noise model, yi =
sgn (xiw + ni) where n is assumed to be an independently and identically dis-
tributed (i.i.d.) random variable (noise) with mean 0 and variance σ2. If one
considers KFDA as regression on to the labels, then a Gaussian noise model
with known variance σ would result in the following expression for the like-
lihood: Pr(y|α) = exp(−‖ξ‖22). If a prior over the weights with hyperpa-
rameters μ is used, the log of the posterior is simply log(Pr(y|α)Pr(α|μ)) =
−‖ξ‖22− log(Pr(α|μ)). The choice of prior then becomes equivalent to the choice
of regularisation function, which will be discussed in Section 3.3. When viewed
in this way the outputs produced by KFDA can be interpreted as probabilities,
which in turn makes it possible to assign confidence to the final classifications.

This view of KFDA also motivates the Multiview extension of the algorithm.
We can extend and combine the graphical interpretations of [2] and [6] using
the above definitions as seen in Figure 1. Note that explicit mixing weights
β paramaterised by ρ are shown (dotted). Note that due to the optimisation
(which constrains the functions over each feature space with the shared slack
variable) and the fact that we have separate α vectors for each view, we are able
to drop the mixing weights β from our formulation. Under the assumption that
the kernels are normalised, we can calculate these weights post-hoc as will be
shown in Section 3.2. Taking the approach of Näıve Bayes Probabilistic Label
Fusion (NBF) [9], the first step is to assume conditional independence between
classifiers given a class label. Suppose the set of labels s = {s1, . . . , sp} are given
from p classifiers for a given point xi. Denoting Pr(sd) as the probability that
classifier Dd labels an example xi in class ωc ∈ Ω, (in this case Ω = {−1,+1}),
then the likelihood of the classifiers given a label is,

Pr(s|ωc) = Pr(s1, . . . , sp|ωc) =
p∏

d=1

Pr(sd|ωc). (6)

The posterior probability needed to label xi is then given by,

Pr(ωc|s) =
Pr(ωc)Pr(s|ωc)

Pr(s)
=

1
Z

Pr(ωc)
p∏

d=1

Pr(sd|ωc), (7)

2 After (empirical) whitening has been performed on the data. It may also be neces-
sary to restrict to the main eigenvalues as the eigenvectors corresponding to smaller
eigenvalues will start to be very random. In the space spanned by the top eigenvectors
the data will then have diagonal covariance.
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Fig. 1. Plates diagram showing the hieararhical Bayesian interpretation of MFDA. β
are the hypothetical mixing parameters with prior weights ρ if an explicit mixing was
used - in the case of MFDA these are fixed and hence can be removed, but can be
calculated post-hoc.

where Z is a normalisation constant. Assume a uniform prior over labels, the log
posterior is then given by,

log(Pr(ωc|s)) ∝
p∑

d=1

log(Pr(sd|ωc)). (8)

This implies that by directly optimising this sum, we are optimising the NBF over
KFDA classifiers, which is precisely the motivation for both the objective func-
tion and the classification function for MFDA, both of which will be described
in the next Section. At first glance it seems that this conditional independence
assumption could be problematic, as this assumption is seldom true. However,
Kuncheva made the point that despite this NBF is experimentally observed to
be surprisingly accurate and efficient [9]. However, it does open the door to fur-
ther possibilities for combining KFDA classifiers, but this is outside the scope
of the present work.

3.2 Implicit Weighting

In order to determine the importance of each of the views after training, it is
possible to calculate the implicit weighting of each view simply through the
weighted sum of the absolute values of the classification functions. This is justi-
fied by the intuition made in Section 3.1 that the outputs of each classifier can be
interpreted as probabilities, with the assumption that each kernel is normalised
as per [16], i.e. trace(Kd) = m, d = 1, . . . , p. This in turn means that the overall
confidence of the classifier can be calculated as the sum of the log probabilities
that the function f(x(d)i) for classifier d on example i give the class label ωc.

βd ≈
1
Z

∑
c∈Ω

log(Pr(sd|ωc)) =
∑m

i=1 |Kd[:, i]′αd + bd|∑m
i=1
∑p

d=1 |Kd[:, i]′αd + bd|
. (9)
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3.3 Regularisation and Loss Functions

The natural choices for the regularisation function P(α̃) would either be the
sum of the �2-norms of the primal weight vectors (as in (4)), or the sum of
the �2-norms of the dual weight vector P(α̃) =

∑p
d=1 ‖αd‖22. Potentially more

interesting is the �1-norm of the dual weight vector, P(α̃) =
∑p

d=1 ‖αd‖1, as
this choice leads to sparse solutions due to the fact that the �1-norm can be seen
as an approximation to the (pseudo) �0-norm. In the rest of the chapter the �1-
norm regularisation method is denoted as Sparse Multiview Fisher Discriminant
Analysis (SMFDA).

In some situations these regularisation functions P(·) may be too simplistic, in
which case additional domain knowledge can be incorporated into the function.
For example, there is reason to believe a-priori that most of the views are likely
not to be useful, but the individual weights in that view are, then P(α̃) = ‖A‖2,1
could be used where A = [α1, . . . ,αp] is α̃ reshaped as a matrix of weights and
the block (r, p)-norm of A is defined as ‖A‖r,p = (

∑m
i=1 ‖αi‖rp)1/p. Another

example would be a situation it may be desirable to impose sparsity on some
views but not others. For two views, this would simply be P(α̃) = ‖α1‖22+‖α2‖1
in order to promote sparsity in the second view but not the first. One could also
promote sparsity in the primal version of one view by passing in the explicit
features for that view (if available) and penalising X′

dαd. In this way any mixture
of linear with nonlinear features and primal with dual sparsity can be combined
across the views, all in a single optimisation framework. One can also pre-specify
the weights of views by parameterising them, if one has a strong prior belief that
a view will be more or less useful, but it in general it is not necessary or helpful
to do this.

Following [13] the assumption of a Gaussian noise model can also be removed,
resulting in different loss functions on the slacks ξ. For example, if a Laplacian
noise model is chosen ‖ξ‖22 can be replaced with ‖ξ‖1 in the objective function.
The advantage of this is if the �1-norm regulariser from above is chosen, the
resulting optimisation is a linear programme, which can be solved efficiently
using methods such as column generation. From a modelling perspective, it may
be advantageous to choose a noise model that is robust to outliers, such as
Huber’s Robust loss, which can easily be used in the framework presented here.

3.4 Incorporating Private Directions

The above formulations seek to find the projection that is maximally discrimina-
tive averaged across views. However these problems are very tightly constrained,
and optimisation may be difficult in situations where one or more of the views
is not informative of the labels (i.e. is essentially noise). This leads to consid-
ering the allowance of some extra slack ζd that is private to each view, which
is similar to the approach taken by [11] to probabilistic latent space modelling.
This leads to the following formulation which we term Private Multiview Fisher
Discriminant Analysis (PMFDA),
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min
αd,b,ξ,ζd

L(ξ, ζ̃, τ) + μP(αd), d = 1, . . . , p

s.t. Kdαd + 1b = y + ξ + ζd d = 1, . . . , p
1′

iξ = 0 i = 1, 2, (10)

with ζ̃ = [ζ ′
1, . . . , ζ

′
p]

′. The regularisation function P(·) is as before (4), and the
loss function is updated to incorporate ζd as follows,

L(ξ, ζ̃, τ) = ‖ξ‖22 + τ

p∑
d=1

‖ζd‖
2
2. (11)

Note the extra parameter τ which enables the tuning of the relative importance
of private or shared slacks. If τ = 1 the penalties of the private slack for an
example i are proportional to ξi/p, which means that the more views that are
added, the less each view is allowed to dominate. In the experiments conducted
here this was simply set heuristically to 0.1 to allow a small amount of leeway
for each view.

3.5 Generalisation Error Bound for MFDA

We now construct a generalisation error bound for MFDA by applying the fol-
lowing results from [15] and [10] and extending to the Multiview case. The first
bounds the difference between the empirical and true means (Theorem 3 in [15]).

Theorem 1 (Bound on the true and empirical means). Let Sd be a view
of a sample of m points drawn independently according to a probability distri-
bution Pd, where Rd is the radius of the ball in the feature space Fd containing
the support of the distribution. Consider the mean vector μd and the empirical
estimate μ̂d defined as

μd = EPd
[φ(xd)] ,

μ̂d = Êxd
[φ(xd)] =

1
p

p∑
d=1

φ(xd). (12)

Then with probability at least 1− δ over the choice of Sd, we have

‖μ̂d − Exd
[φ(xd)]‖ ≤ Rd√

m

(
2 +

√
2 ln

1
δ

)
. (13)

Consider the covariance matrix Σd and the empirical estimate Σ̂d defined as

Σd = E [(φ(xd)− μd)(φ(xd)− μd)
′] ,

Σ̂d = Ê [(φ(xd)− μ̂d)(φ(xd)− μ̂d)
′] . (14)

The following corollary bounds the difference between the empirical and true
covariance (Corollary 6 in [15]).
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Corollary 1 (Bound on the true and empirical covariances). Let Sd be
an m sample from Pd as above, where Rd is as defined above. Provided m ≥
(2 +

√
2 ln 2/δ)2, we have

∥∥∥Σ̂d −Σd

∥∥∥
F
≤ 2R2

d√
m

(
2 +

√
2 ln

2
δ

)
, (15)

The following Lemma is connected with the classification algorithm “Robust
Minimax Classification” developed by [10], adapted here for MFDA.

Lemma 1. Let μd be the mean of a distribution and Σd its covariance matrix,
wd �= 0, b given, such that w′

dμd + b ≤ 0 and Δ ∈ [0, 1), then if

− (w′
dμd + b) ≥ κ(Δ)

√
w′

dΣdwd,

where κ(Δ) =
√

Δ
1−Δ , then

Pr (w′
dφ(xd) + b ≤ 0) ≥ Δ

In order to provide a true error bound we must bound the difference between
this estimate and the value that would have been obtained had the true mean
and covariance been used.

Theorem 2 (Main). Let Sd be a view of a sample of m points drawn from Pd

as above, where Rd is the radius of the ball in the feature space Fd containing
the support of the distribution. Let μ̂d (μd) be the empirical (true) mean of a
sample of m points from the view Sd, Σ̂d (Σd) its empirical (true) covariance
matrix, wd �= 0, ‖w‖2 = 1, and b given, such that w′

dμd + b ≤ 0 and Δ ∈ [0, 1).
Then with probability 1− δ over the draw of the random sample, if

− (w′
dμ̂d + b) ≥ κ(Δ)

√
w′

dΣ̂dwd d = 1, . . . , p,

then

Pr ((w′
dφd(xd) + b) > 0) < 1−Δ,

where

Δ =
(w′

dμ̂d + b−Ad)
2

w′
dΣ̂dwd +Bd + (w′

dμ̂d + b −Ad)
2 ,

such that ‖μ̂d − μd‖ ≤ Ad where Ad = Rd√
m

(
2 +

√
2 ln 2m

δ

)
,

and
∥∥∥Σ̂d −Σd

∥∥∥
F
≤ Bd where Bd = 2R2

d√
m

(
2 +

√
2 ln 4m

δ

)
.
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Proof. (sketch). First we re-arrange w′
dμd + b ≥ κ(Δ)

√
w′

dΣdwd from Lemma 1
for each view in terms of κ(Δ):

κ(Δ) =
w′

dμd + b√
w′

dΣwd

. (16)

These quantities are in terms of the true means and covariances. In order to
achieve an upper bound we need the following sample compressed results for the
true and empirical means (Theorem 1) and covariances (Corollary 1):

‖μ̂d − Exd
[μ̂d(xd)]‖ ≤ Ad =

Rd√
m

(
2 +

√
2 ln

2m
δ

)
,

∥∥∥Σ̂d −Σd

∥∥∥
F
≤ Bd =

2R2
d√
m

(
2 +

√
2 ln

4m
δ

)
.

Given equation (16) we can use the empirical quantities for the means and
covariances in place of the true quantities. However, in order to derive a genuine
upper bound we also need to take into account the upper bounds between the
empirical and true means. Including these in the expression above for κ(Δ) by
replacing δ with δ/2, to derive a lower bound, we get:

κ(Δ) =
w′

dμ̂dSd
+ b−Ad√

w′
dΣ̂dwd +Bd

.

Finally, making the substitution κ(Δ) =
√

Δ
1−Δ and solving for Δ yields the

result. ��
The following Proposition upper bounds the generalisation error of Multiview
Fisher Discriminant Analysis (MFDA).

Proposition 1. Let wd, b, be the (normalised) weight vector and associated
threshold returned by the Multiview Fisher Discriminant Analysis (MFDA) when
presented with a view of the training set Sd. Furthermore, let Σ̂+

d (Σ̂−
d ) be the

empirical covariance matrices associated with the positive (negative) examples of
the m training samples from Sd projected using wd. Then with probability at least
1 − δ over the draw of all the views of the random training set Sd, d = 1, . . . , p
of m training examples, the generalisation error R is bounded by

R ≤ max(1−Δ+, 1−Δ−)

where Δj, j = +,− such that

Δj =
j

((∑p
d=1(w

′
dμ̂

j
Sd

+ b)− Cj
)2
)

(∑p
d=1 w′

dΣ̂
j
dwd

)
+Dj +

(
j(
∑p

d=1 w′
dμ̂

j
Sd

+ b)− Cj
)2 ,

where Cj =
∑p

d=1 Rd√
mj

(
2 +

√
2 ln 4mp

δ

)
, Dj = 2

∑p
d=1 R2

d√
mj

(
2 +

√
2 ln 8mp

δ

)
.
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Proof. For the negative part of the proof we require w′
dμ̂

−
d +b ≥ κ(Δ)

√
w′

dΣ̂
−
d wd

which is a straight forward application of Theorem 2 with δ replaced with δ/2.

For the positive part, observe that we require w′
dμ̂

+
d − b ≥ κ(Δ)

√
w′

dΣ̂
+
d wd,

hence, a further application of Theorem 2 with δ replaced by δ/2 suffices. Finally,
we take a union bound over the p views such that m is replaced by mp. ��

3.6 Experiments: Toy Data

In order to show that MVL methods can be beneficial, and demonstrate the va-
lidity of the outlined methods, experiments were first conducted with simulated
toy data. A data source S was created by taking two 1−dimensional Gaussian
distributions (S+, S−) which were well separated, which was then split into 100
train and 50 test points. The source S was embedded into 2−dimensional views
through complementary linear projections (φ1, φ2) to give new “views” X1,X2.
Differing levels of independent “measurement noise” were added to each view
(n1, n2), and identical “system noise” was added to both views (nS). A third
view was constructed of pure noise to simulate a faulty sensor (X3). The labels
y were calculated as the sign of the original data source.

S = {S+, S−} (source)
S+ ∼ N (5, 1), S− ∼ N (−5, 1)
y = sgn(S) (labels)
φ1 = [1,−1], φ2 = [−1, 1] (projections)
n1 ∼ N (0, 5)2, n2 ∼ N (0, 3)2 (meas. noise)
nS ∼ N (0, 2)2 (system noise)
X1 = φ′1S + n1 + nS (view 1)
X2 = φ′2S + n2 + nS (view 2)
X3 = nS (view 3)

X1 and X2 are noisy views of the same signal, with correlated noise, which
can be a typical problem in multivariate signal processing (e.g. sensors in close
proximity). Linear kernels were used for each view. A small value for the regu-
larisation parameter μ = 10−3 was chosen heuristically for all the experiments.
Table 1 gives an overview of the results on the toy dataset. Comparisons were
made against: KFDA on each of the views (denoted as f(1), f(2) and f(3) re-
spectively); summing the classification functions of these (fsum); summing the
kernels of each view (ksum); followed by MFDA, PMFDA and SMFDA. Note
that an unweighted sum of kernels is equivalent to concatenating the features
before creating a single kernel. The table shows the test error over 10 random
repeats of the experiment in first column, followed by the implicit weightings for
each of the algorithms calculated via (9). Note that the ksum method returns
single m−dimensional weight vector, and unless a kernel with an explicit fea-
ture space is used it is not possible to recalculate the implicit weightings over the
features. In this case, since linear kernels are used the weightings have been calcu-
lated. For the three methods outlined in this paper (MFDA, PMFDA, SMFDA),
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Table 1. Test errors over ten runs on the toy dataset. Methods described in the text.
W (·) refers to the implicit weightings given by each algorithm for each of the views.
Note that the weightings closely match the actual SNR.

Method Test error W (1) W (2) W (3)
f(a) 0.19 1.00 0.00 0.00
f(b) 0.10 0.00 1.00 0.00
f(c) 0.49 0.00 0.00 1.00
fsum 0.39 0.33 0.33 0.33
ksum 0.04 0.29 0.66 0.05
MFDA 0.04 0.29 0.66 0.05

PMFDA 0.04 0.29 0.66 0.05
SMFDA 0.04 0.29 0.66 0.05
Actual 0.35 0.65 0.00
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Fig. 2. Weights given by MFDA and SMFDA on the toy dataset. Notice that many of
the weights for SMFDA are close to zero, indicating sparse solutions. Also notice that
most of the weights for view 3 (pure noise) are close to zero.

as expected the performance is roughly equivalent to the ksum method. The last
row in the table (actual) is the empirical Signal to Noise Ratio (SNR) calculated
as SNRd =

∑
(X′

dXd)/var(S −Xd) for view d, which as can be seen is closely
matched by the weightings given.

The sparsity of SMFDA can be seen in figure 2. The sparsity level quoted in
the figure is the proportion of the weights below 10−5.
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4 Experiments

4.1 VOC 2007 DATASET

The sets of features (“views”) used can be found in [17], with an extra feature
extraction method known as Scale Invariant Feature Transformation (SIFT)
[12]. RBF kernels were constructed for each of these feature sets, the RBF
width parameter was set using a heuristic method3. The Pattern Analysis,
Statistical Modelling and Computational Learning (PASCAL) Visual Object
Classes (VOC) 2007 challenge database was used which contains 9963 images,
each with at least 1 object. The number of objects in each image ranges from 1
to 20, with, for instance, objects of people, sheep, horses, cats, dogs etc. For a
complete list of the objects, and description of the data set see the VOC 2007
challenge website4.
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Fig. 3. Average precision recall curves for 3 VOC 2007 datasets for SMFDA plotted
against PicSOM results

Figure 3 shows Recall-Precision curves for SMFDA with 1, 2, 3 or 11 kernels
and PicSOM [17], and Table 2 shows the balanced error rate (the average of
the errors on each class) and overall average precision for the PicSOM, KFDA

3 For each setting of the width parameter, histograms of the kernel values were created.
The chosen kernel was the one whose histogram peak was closest to 0.5 (i.e. furthest
from 0 and 1).

4 http://www.pascal-network.org/challenges/VOC/voc2007/workshop/index.html
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using cross-validation to choose the best single kernel, and SMFDA. For the
purposes of training, a random subset of 200 irrelevant images was used rather
than the full training set. Results for three of the object classes (cat, cow, dog)
are presented. The results show that, in general, adding more kernels into the
optimisation can assist in recall performance. For each object class, the subsets
of kernels (i.e. 1,2, or 3) were chosen by the weights given by SMFDA on the 11
kernels. The best single kernel (based on SIFT features) performs well alone, yet
the improvement in some cases is quite marked. Results are competitive with
the PicSOM algorithm, which uses all 11 feature extraction methods, and all of
the irrelevant images.

Table 2. Balanced Error Rate (BER) and Average Precision (AP) for four of the VOC
challenge datasets, for four different methods: PicSOM, KFDA with cross validation
(KFDA CV), and SMFDA

Dataset → Cat Cow Horse
Method ↓ BER AP BER AP BER AP
PicSOM n/a 0.18 n/a 0.12 n/a 0.48
KFDA CV 0.26 0.36 0.32 0.14 0.22 0.51
SMFDA 0.26 0.36 0.27 0.15 0.19 0.58

4.2 Neuroimaging Dataset

This section describes analysis of functional Magnetic Resonance Imaging (fMRI)
data5 that was acquired from 16 subjects who viewed image stimuli from two
categories (pleasant (+ve) and unpleasant (-ve)). The images were presented in
6 blocks of 42 images (7 volumes) per category. The image stimuli are repre-
sented using SIFT features [12], and conventional pre-processing was applied to
the fMRI data with linear kernels. A leave-subject-out paradigm was used where
15 subjects are combined for training and a single subject is withheld for testing.
This gave a total of 42 × 2 × 15 = 1260 training and 42× 2 = 84 testing fMRI
volumes and paired image stimuli. In the following experiment, the following
comparisons were made: An SVM on the fMRI data (single view); KCCA on
the fMRI + Image Stimuli (two views) followed with an SVM trained on the
fMRI data projected into the learnt KCCA semantic space; MFDA on the fMRI
+ Image Stimuli (two views). The results are given in Table 3 where it can be
observed that on average MFDA performs better than both the SVM (which is
a single view approach), and the KCCA/SVM which similarly to MFDA incor-
porates two views into the learning process. In this case the label space is clearly
not well aligned with the KCCA projections, whereas a supervised method such
as MFDA is able to find this alignment.

5 Data donated by Mourão-Miranda et. al. [14].
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Table 3. In the following table the leave-one-out errors for each subject are presented.
The following methods are compared: SVM on the fMRI data alone; KCCA analysis
on the two views fMRI and Image Stimuli followed by an SVM on the projected fMRI
data; the proposed MFDA on the two views fMRI+Image.

Sub. SVM KCCA/SVM MFDA
1 0.1310 0.1667 0.1071
2 0.1905 0.2739 0.1429
3 0.2024 0.1786 0.1905
4 0.1667 0.2125 0.1548
5 0.1905 0.2977 0.2024
6 0.1667 0.1548 0.1429
7 0.1786 0.2262 0.1905
8 0.2381 0.2858 0.2143
9 0.3096 0.3334 0.2619
10 0.2977 0.3096 0.2262
11 0.1191 0.1786 0.1429
12 0.1786 0.2262 0.1667
13 0.2500 0.2381 0.0714
14 0.4405 0.4405 0.2619
15 0.2500 0.2977 0.2738
16 0.1429 0.1905 0.1860

Mean: 0.2158±0.08 0.2508±0.08 0.1860±0.06

5 Conclusions

KFDA can be formulated as a convex optimisation problem, which we extended
to the Multiview setting MFDA using justifications from a probabilistic point of
view. We also provide a generalisation error bound. A sparse version SMFDA was
then introduced, and the optimisation problem further extended to account for
directions unique to each view PMFDA. Experimental validation was shown on a
toy dataset, followed by experimental results on part of the PASCAL 2007 VOC
challenge dataset and a fMRI dataset, showing that the method is competitive
with state-of-the-art methods whilst providing additional benefits.

Mika et. al. [13] demonstrate that their convex formulation of KFDA can
easily be extended to both multi-class problems and regression problems, simply
by updating the final two constraints. The same is also true of MFDA and its
derivatives, which enhances its flexibility. The possibility of replacing the Näıve
Bayes Fusion method for combining classifiers is another interesting avenue for
research.

Finally, for the special case of SMFDA there is the possibility of using a
stagewise optimisation procedure similar to the Least Angle Regression Solver
(LARS) [4] which would have the benefit of computing the full regularisation
path.
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Abstract. In this paper, we consider the link prediction problem, where
we are given a partial snapshot of a network at some time and the goal
is to predict the additional links formed at a later time. The accuracy
of current prediction methods is quite low due to the extreme class skew
and the large number of potential links. Here, we describe learning al-
gorithms based on chance constrained programs and show that they ex-
hibit all the properties needed for a good link predictor, namely, they
allow preferential bias to positive or negative class; handle skewness in
the data; and scale to large networks. Our experimental results on three
real-world domains—co-authorship networks, biological networks and ci-
tation networks—show significant performance improvement over base-
line algorithms. We conclude by briefly describing some promising future
directions based on this work.

1 Introduction

Network analysis, performed in domains including social networks, biological net-
works, transaction networks, and the web, has received a lot of interest in recent
years. These networks evolve over time and it is a challenging task to under-
stand the dynamics that drives their evolution. Link prediction is an important
research direction within this area. The goal here is to predict the potential fu-
ture interaction between two nodes, given a partial view of the current state of
the network.

This problem occurs in several domains. In many cases, we are interested in
the links that are likely to form in the future. For example, in citation networks
describing collaboration among scientists, we want to predict which pairs of
authors are likely to collaborate in future; in social networks, we would want to
predict new friendships; in query graphs, we want to predict the related queries
in the context of web search and in biological networks we want to predict
which proteins are likely to interact. On the other hand, we may be interested
in anomalous links; for example, in financial transaction networks, the unlikely
transactions might indicate fraud, and on the web, they might indicate spam.

There is a large literature on link prediction. Early approaches to this prob-
lem are based on defining a measure for analyzing the proximity of nodes in the
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network [1,19,14]. For example, shortest path, common neighbors, Katz mea-
sure, Adamic-adar etc., all fall under this category. More recently, Sarkar et al.
[22] gave a theoretical justification of these link prediction heuristics. Liben-
Nowell and Klienberg studied the usefulness of all these topological features by
experimenting on bibliographic datasets [14]. It was found that, no one mea-
sure is superior in all cases. Statistical relational models were also tried with
some success [7,8,24,20]. Recently, the link prediction problem is studied in the
supervised learning framework by treating it as an instance of binary classifi-
cation [9,11,4,25,27]. These methods use the topological and semantic measures
defined between nodes as features for learning classifiers. Given a snapshot of
the social network at time t for training, they consider all the links present at
time t as positive examples and consider a large sample of absent links (pair
of nodes which are not connected) at time t as negative examples. The learned
classifiers performed consistently across all the datasets unlike heuristic meth-
ods which were inconsistent, although the accuracy of prediction is still very
low. There are several reasons for this low prediction accuracy. One of the main
reasons is the huge class skew associated with link prediction. In large networks,
it’s not uncommon for the prior link probability on the order of 10−4 or less,
which makes the prediction problem very hard, resulting in poor performance.
In addition, as networks evolve over time, the negative links grow quadratically
whereas positive links grow only linearly with new nodes. Further, in some cases
we are more concerned with link formation, the problem of predicting new posi-
tive links, and in other cases we are more interested in anomalous link detection
[21], the problem of detecting unlikely links. In general, we need the following
properties for a good link predictor: allow preferential bias to the appropriate
class; handle skewness in the data; scale to large networks.

Chance-constraints and Second-Order Cone Programs(SOCPs) [15] are a spe-
cial class of convex optimization problems that have become very popular lately,
due to the efficiency with which they can be solved using fast interior point
methods. They are used in a variety of settings such as feature selection [3],
dealing with missing features [23], classification and ordinal regression algo-
rithms that scale to large datasets [18], and formulations to deal with unbalanced
data [17,10]. In this work, we give a scalable cost-sensitive formulation based on
chance-constraints which satisfies all the requirements needed for learning a good
link predictor mentioned above and show how it can be used for link prediction to
significantly improve performance. The chance constraints can be converted into
deterministic ones using Chebyschev-Cantelli inequality, resulting in a SOCP.
The complexity of SOCPs is moderately higher than linear programs and they
can be solved using general purpose SOCP solvers like SeDuMi1 or YALMIP2.

The main contributions of this paper include: 1. We identify important require-
ments of the link prediction task and propose a new cost-sensitive formulation
based on chance constraints satisfying all the requirements. We describe its con-
nections to other frameworks like biased classification and uneven margin

1 http://sedumi.ie.lehigh.edu
2 http://users.isy.liu.se/johanl/yalmip/
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algorithms. 2. We perform a detailed evaluation on multiple datasets from three
real-world domains–co-authorship networks, biological networks and citation
networks– to investigate the effectiveness of our methods. We show significant im-
provement in link prediction accuracy.

2 Cost-Sensitive Learning for Link Prediction

In this work, we consider the link prediction problem as an instance of binary
classification. We are given training data D = {(x1, y1), (x2, y2), · · · , (xn, yn)}
where, each xi ∈ �n is a feature vector defined between two nodes and yi ∈
{−1,+1} is the corresponding label that stands for the presence or absence of
an edge between the two nodes. In our case, we have a huge class imbalance prob-
lem, i.e., the number of negative examples � the number of positive examples.
There are two different ways of addressing the class imbalance problem. In the
first approach, it is turned into a balanced problem either by over-sampling the
minority class or under-sampling the majority class. However, both these sam-
pling methods have their drawbacks. By doing under-sampling, we lose some
information and over-sampling introduces noise into the data. In the second ap-
proach, class imbalance problem is addressed by reducing it to a cost-sensitive
learning problem where misclassification costs are unknown. Then, the ratio of
misclassification costs is varied to find out the best decision function based on
the validation set. In this work, we will follow the second approach which is con-
sidered to be more principled. In particular we are interested in a cost-sensitive
formulation in the max-margin framework. We require a solution which is scal-
able to large data sets; this is very important for the link prediction task. For
now, we work with only linear decision functions of the form f(x) = wTx − b.
However, all the formulations described in this work can be kernelized to con-
struct non-linear classifiers.

Cost-Sensitive Learning Problem: In the traditional binary classification
problem, all misclassifications are considered to be of the same cost, i.e., C12 =
C21 where, C12 is the misclassification cost of predicting a data point of class 1
as class 2 and C21 the misclassification cost of predicting a data point of class 2
as class 1. However, this assumption is not true for many real-world applications
like medical domains e.g., predicting whether a patient has breast cancer or not.
In these problems, some mistakes are considered more costly than others and
are studied under cost-sensitive framework. In a cost-sensitive learning problem,
we are given a set of training examples, along with the misclassification costs.
The goal of learning is to find a hypothesis that minimizes the expected cost of
misclassification.

3 Clustering-Based Cost-Sensitive Formulation

In this formulation, we assume that class conditional densities of positive and
negative points can be modeled as mixture models with component distribu-
tions. Let k1 and k2 denote the number of components in the mixture model
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for positive and negative class respectively and say k = k1 + k2. We can cluster
the positive and negative points separately, and estimate the first and second
order moments (μ,Σ) of all the clusters. Given these second order moments, our
goal is to find a discriminating hyperplane wTx − b = 0, which separates these
positive and negative clusters in such a way that it minimizes the expected cost
of misclassification. To this end, consider the following formulation:

min
w,b,ηi

1
2
‖w‖22 + Creg

{
C12

k1∑
i=1

ηi + C21
k∑

i=k1+1

ηi

}
s.t. Pr(Xi ∈ H2) ≤ ηi, : ∀i = 1, · · · , k1

Pr(Xi ∈ H1) ≤ ηi : ∀i = k1 + 1, · · · , k
0 ≤ ηi ≤ 1 : ∀i = 1, · · · , k

(1)

Here Xi, ∀i = 1, · · · , k1 and Xi, ∀i = k1 + 1, · · · , k are random variables cor-
responding to the components of the mixture models for positive and negative
classes respectively; H1 and H2 denote the positive and negative half spaces
i.e., H1(w, b) =

{
x|wT x− b ≥ 0

}
and H2(w, b) =

{
x|wTx− b ≤ 0

}
; ηi stands

for the probability with which any point drawn from a mixture component lies
on the wrong side of the hyperplane. The objective function consists of two terms:
the first term 1

2 ‖w‖
2
2 is the standard squared-norm regularizer and second term

C12
∑k1

i=1 ηi + C21
∑k

i=k1+1 ηj is the empirical expected cost of misclassification.
Creg is the regularization parameter that controls the trade off between empirical
error and generalization error.

The above probabilistic constraints can be written as deterministic constraints
using multivariate Chebyshev-Cantelli inequality [10].

3.1 Conversion of Chance-Constraint to Second-Order Cone
Constraint

This conversion can be done in several different ways [12,10]. We present the
variant based on a multi-variate generalization of Chebyschev-Cantelli inequality
[16] which is stated below.

Theorem 1. Let Z be a random variable whose second order moments are
(μ, σ2). Then for any t > 0,

Pr(Z − μ ≥ t) ≤ σ2

σ2+t2

We can use the above theorem to do this conversion. Let X be an n-dimensional
random variable with second order moments (μ,Σ). By applying the above the-
orem to random variable −wTx, w ∈ �n and with t = wTμ− b, we get

Pr(−wTX ≥ −b) ≤ wTΣw

wTΣw + (wTμ− b)2 (2)



348 J.R. Doppa et al.

Now, satisfying the constraint Pr(wTX − b ≥ 0) ≥ η is same as satisfying
Pr(−wTX ≥ −b) ≤ 1− η. By applying Theorem 1, we can satisfy Pr(−wTX ≥
−b) ≤ 1− η if:

wTΣw

wTΣw + (wTμ− b)2 ≤ 1− η (3)

Re-arranging the terms in the above inequality gives us:

wTμ− b ≥ κ
√
wTΣw (4)

where, κ =
√

η
1−η .

3.2 Separable Case

By using the above conversion with X = Xi and η = 1− ηi and re-writing it in
the standard SOCP form, we get the following formulation:

min
w,b,ηi

C12
k1∑

i=1

ηi + C21
k∑

i=k1+1

ηj

s.t. wTμi − b ≥ 1 + κi

√
wTΣiw : ∀i = 1, · · · , k1

b− wTμi ≥ 1 + κi

√
wTΣiw : ∀i = k1 + 1, · · · , k

0 ≤ ηi ≤ 1 : ∀i = 1, · · · , k
W ≥ ‖w‖2

(5)

where, κi =
√

1−ηi

ηi
; W is a user-defined parameter which plays similar role

as Creg in the previous formulation. The geometric interpretation of the above
constraints is that of finding a hyperplane which separates the positive and
negative ellipsoids whose centers are at μi, shapes determined by Σi, and the
sizes of the ellipsoids, i.e., κi (see Figure 1) to be classified correctly in order to
minimize the expected cost of misclassification.

3.3 Non-separable Case

In the above formulation, if the means of the clusters are not separable, then
the optimization problem is infeasible. For example, in the worst case say ηi is
1 for some of the non-separable ellipsoids; but even in this worst case the con-
straints require the means μi of these ellipsoids to lie on the correct side of the
hyperplane, i.e., wTμi − b ≥ 1 and wTμi − b ≥ −1. To avoid this problem, we
can introduce slack variables ξi as in soft-margin SVM formulation and fix the
values of η1 and η2, the false-positive and false-negative probabilities, to very
small values (say 0.1). Note that, η1 and η2 are shared by all the clusters of
positive and negative classes respectively. In this case the objective function will
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Fig. 1. Geometric interpretation of SOCP formulation

be replaced with slack variables ξi instead of ηi in the separable case and leads
to the following formulation:

min
w,b,ηi

C12
k1∑

i=1

ξi + C21
k∑

i=k1+1

ξj

s.t. wTμi − b ≥ 1− ξi + κ1

√
wTΣiw : ∀i = 1, · · · , k1

b− wTμi ≥ 1− ξi + κ2

√
wTΣiw : ∀i = k1 + 1, · · · , k

ξi ≥ 0 : ∀i = 1, · · · , k
W ≥ ‖w‖2

(6)

We can see that cost-sensitive SVM is now a special case of this formulation
when we consider each data point as a cluster, i.e., the covariance matrix is null.
By solving the above SOCP problem using standard SOCP solvers like SeDuMi,
we get the optimum values of w and b, and a new data point x can be classified
as sign(wTx− b).

3.4 Unbalanced Data

In the case of skewed class distribution, one class will have more representative
data points (majority class) when compared to the other class (minority class).
We can handle the unbalanced problem in three different ways.

1) Cost-Sensitive classification: we can transform the unbalanced problem
into a cost-sensitive learning problem where costs are unknown and by varying
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the costs based on a validation set to find the best discriminating hyperplane(CS-
SOCP). More specifically, we need to vary the ratio Cmin/Cmaj where, Cmin and
Cmaj corresponds to the misclassification costs of minority and majority class.

2) Biased classification: we can vary the preferential bias for each class η1
and η2 instead of varying the misclassification costs and try to find a maximum-
margin hyperplane in the biased classification framework (B-SOCP) [17].

3) Classification with Uneven margins: we can vary the positive margin
(τ+) and negative margin (τ−) to find the best decision function in the Uneven
Margin framework (PAUM) [13]. In the uneven margin setting, the constraints
in the above formulation will become wTμi − b ≥ τ+ − ξi + κ1

√
wTΣiw and

b−wTμi ≥ τ−− ξi +κ2
√
wTΣiw for positive and negative clusters respectively.

We will empirically evaluate these three frameworks for different kinds of link
prediction problems.

3.5 Advantages of CCP for Link Prediction

There are several advantages of using chance-constrained programs for the link
prediction.

Scalability: The SOCP formulation based on chance constraints is scalable to
large datasets because the number of constraints in this formulation is linear in
the number of clusters, whereas the number of constraints in the SVM formula-
tion (QP problem) is linear in the number of data points. In addition, there are
very efficient interior point algorithms for solving SOCP.

Missing Links: As described before, we consider a large sample of node pairs
which are not connected at time t as negative examples. However, some of these
negative examples may be noisy, i.e., the link may exist, but was simply not
observed at time t. In the case of SVMs the gemoetric interpretation of dual
is that of finding the distance between two convex hulls corresponding to the
positive and negative points respectively [2]. Conversely, the interpretation of
dual for SOCP formulation is that of finding distance between two convex hulls
corresponding to the positive and negative ellipsoids. In the presence of noisy
labels, The SVM solution is much more sensitive to noisy labels than the solution
with ellipsoids.

Missing features: Chance-constrained programs can naturally handle missing
features [23]. The key idea here is to use chance constraints to deal with uncer-
tainty in the missing values based on the second order moments. The Gaussian
assumption allows us to use EM to impute the missing values. The resulting
formulation again leads to an SOCP problem.

Applications: We can use this framework for several applications like recom-
mendations, collaborative filtering, online advertisement and marketing, and
anomalous link discovery in financial networks, terrorist networks, power grids
and disease transmission networks.
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4 Experimental Results and Discussion

In this section, we describe our experimental setup, description of datasets, fea-
tures used for learning the classifier, evaluation methodology, followed by our
results and discussion.

4.1 Datasets

We use three different kinds of real-world domains namely co-authorship net-
works, biological networks, and citation networks for evaluating our learning
algorithms.

Co-authorship networks. In co-authorship networks, we want to predict which
pair of authors are likely to collaborate in future. We use two different co-
authorship networks:

1) DBLP dataset: we use a dataset which was generated using DBLP collec-
tion of computer science articles3, and contains all the papers from the proceed-
ings of 28 conferences related to machine learning, data mining and databases
from 1997 to 2006.

2) Genetics dataset: The genetics dataset contains articles published in
14 journals related to genetics and molecular biology from 1996 to 2005. The
genetics dataset was generated from the popular PubMed database4.

For each dataset we have the data for 10 years. We consider the data from first
9 years for training and the data from the 10th year for testing. We consider
all the links formed in the 9th year as positive training examples and among
all the negative links (those links that are not formed in the first 9 years), we
randomly collect a large sample and label them as negative training examples.
Note that the features of these training examples are constructed based on the
first 8 years of data. Similarly for the test set, we consider all the links that are
formed during the 10th year as positive examples and collect a sample of all the
negative links as negative examples. Also the features of these testing examples
are constructed based on the first 9 years of data.

Biological networks. We use two biological networks, a protein-protein inter-
action network5 and a metabolic network6. The details are described below:

1) Metabolic network: This network contains 668 nodes and 2782 links. In
the metabolic network, proteins are represented as nodes, and an edge indicates
that the two proteins are enzymes that catalyze successive reactions between
them. This dataset has several features for each protein based on gene expression,
localization, phylogenetic profiles and chemical compatibility along with some
kernel features as well.

2) Protein-protein interaction network: This network contains 2617
nodes and 8844 edges. Each protein is described by a 76 dimensional feature

3 http://dblp.uni-trier.de/
4 http://www.ncbi.nlm.nih.gov/entrez
5 http://noble.gs.washington.edu/proj/maxent/
6 http://web.kuicr.kyoto-u.ac.jp/supp/yoshi/ismb05/
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vector, where each feature indicates whether the protein is related to a particu-
lar function or not.

Since we do not have temporal information for either of these networks, we
will choose a random two thirds of the data for training and the remaining one
third for testing.

Citation networks. For the citation prediction task, we used the KDD Cup
20037 dataset which contains the citation network for both training and testing
periods separately. Also for each paper we have all the information including
the title, authors, abstract and textual content of the paper. We consider two
different kinds of prediction tasks.

1) Complete bibliography prediction: Given a new paper we want to
predict the complete bibliography of the paper, i.e., all those papers in the
training which will be cited by this paper. In this task, we connect this new
paper to all the previous papers written by its authors before the prediction for
constructing features.

2) Partial bibliography prediction: In this task, given a new paper and
its partial bibliography, we want to predict the remaining entries.

We sample roughly 10 times the number of positive links from the pool of
absent links resulting in a positive to negative class ratio of 1:10. The exact
number of positive and negative examples used for different link prediction tasks
are shown in Table 1.

Table 1. Details of training and testing data for different link prediction tasks

Prediction Task Training Testing

# positives # negatives # positives # negatives
DBLP 1404 14040 1021 10210

Genetics 2422 24220 3017 30170
Metabolic network 618 6180 928 9280
Protein network 1966 19660 2948 29480

Complete citation 3000 30000 3000 30000
Partial citation 3000 30000 3000 30000

4.2 Feature Description

We use two different kinds of features between two nodes, namely content features
and structural features.

The content feature function φcont : �d × �d �→ �n is defined based on the
attributes of the two nodes. For example, in the case of co-authorship networks
the features of each author corresponds to occurrences of a particular word in the
author’s papers. The content feature function could be the kronecker product
of these binary vectors. Similarly for friend recommendation problems in social

7 http://www.cs.cornell.edu/projects/kddcup/datasets.html
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networks, content features will be defined based on the user profiles – geographic
location, college/university, work place, hobbies/interests, browsing/navigation
history on the network etc. In the case of protein-protein networks, content
features can be defined as the Kronecker product of the features of each protein.
Therefore, weights on each of these kronecker features will tell us how likely
those proteins will interact.

The structural feature function φstruct : Gn1,n2 �→ �m is defined over the local
subgraph around the two nodes n1 and n2. One can also call them relational
features, e.g., approximate Katz measure which is calculated on the ensemble
of paths between two nodes (say upto depth 4), number of common neighbors,
social connectivity which shows how connected these two nodes are with the
other nodes in their neighborhood etc., which are meaningful for each network.
For example, in the citation prediction task the network between papers and au-
thors is very complex, i.e., links are between one paper and another–paper1 cites
paper2, and between an author and a paper–author1 writes paper1. Therefore,
these complex multi-way relationships could be used to define relational features
which will be useful for our link prediction task.

4.3 Evaluation

We use the precision and recall metrics from Information Retrieval context
for evaluation, and compare the chance-constraints based algorithms, namely
cost-sensitive SOCP (CS-SOCP), biased SOCP (B-SOCP) against cost-sensitive
SVMs8 (CS-SVM) and perceptron with uneven margins (PAUM) [13]. We rank
all the test examples according to the margin of the classifiers and calculate pre-
cision and recall from top-k by varying the value of k. Here, precision is defined as
the percentage of true-positive links that are predicted correctly among the top-k
and recall is defined as the percentage of true-positive links that are predicted
correctly out of the total true-positive links. Note that, majority of the appli-
cations of link prediction algorithms are in recommendation systems like movie
recommendations in Netflix, music recommendation engines like last.fm, friends
suggestions in social networks etc. Therefore, link prediction algorithms should
be evaluated based on the quality of the top-k recommendations produced by
them. According to the above definitions of precision and recall, precision need
not always monotonically decrease with k. We report the precision and recall
curves by varying the value of k along the x-axis. We also report the AUC
values calculated for top 20% of the total testing links (see Table 2).

We use k1 = k2 = 100 clusters for all clustering-based SOCP formulations and
k-means++9, a variant of k-means algorithm which is fast and proven to be near
optimal for clustering in our experiments. We observe that the number of clusters
will not make much difference in the results as long as they are not too small a
number of clusters. As the number of clusters increases SOCP based algorithms
will tend to move closer towards their SVM counterparts. Note that, SOCP and

8 LIBSVM with -wi option to specify costs.
9 http://en.wikipedia.org/wiki/K-means++
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Table 2. AUC values for top 20% of the total testing links for different learning
algorithms

CS-SOCP B-SOCP CS-SVM PAUM
DBLP 0.4019 0.3707 0.3186 0.0682
Genetics 0.2314 0.1981 0.1526 0.0638
Metabolic 0.619 0.6183 0.6447 0.0816
Protein 0.2754 0.2786 0.2471 0.1274
Complete citation 0.3684 0.3186 0.3252 0.3586
Partial citation 0.4994 0.469 0.5356 0.3607

Table 3. Training and classification time results

Training time Classification time
CS-SVM CS-SOCP CS-SVM CS-SOCP

DBLP 39.68s 0.69s 7.64s 0.46s
Genetics 3m 34s 9s 1m 44s 27s
Metabolic 15.1s 4.89s 7.31s 4.29s
Protein 42m 23s 56.64s 1m 53s 19.64s
Complete citation 3m 17.6s 8.92s 1m 16.6s 13.92s
Partial citation 5m 19.5s 10.21s 1m 3.3s 13.78s

SVM based algorithms are exactly the same when we consider each data point as
a cluster, i.e., the covariance matrix is null. We use diagonal covariance for our
SOCP experiments. We report the best results for CS-SVM and CS-SOCP by
varying the ratio C+/C− on validation set. Similarly, we give the best results for
B-SOCP by varying η1 and η2 . For PAUM, we pick the best values for τ− from
{−1.5,−1,−0.5, 0, 0.1, 0.5, 1} and for τ+ from {−1,−0.5, 0, 0.1, 0.5, 1, 2, 5, 10, 50}
based on the validation set. We run PAUM for a maximum of 1000 iterations or
until convergence.

4.4 Results and Discussion

The precision and recall curves for all the 6 datasets are shown in Figures 2,3 and
4. As we can see, both CS-SOCP and B-SOCP outperform CS-SVM in precision
and recall for majority of the datasets namely, DBLP, genetics, complete and par-
tial bibliographic prediction tasks. Particularly, they achieve significantly higher
recall on the complete bibliography prediction task (72.4% and 66.16% com-
pared to 52.53% of CS-SVM) and partial bibliographic prediction task (82.96%
and 75.13% compared to 70.13% of CS-SVM). Similarly, if we look at the AUC
values in Table 2, SOCP based algorithms significantly outperform the other
algorithms on 4 out of 6 prediction tasks, including the protein-protein interac-
tion network which is a very high-dimensional dataset. We conjecture that noisy
labels for the missing links (explained in the previous section) might have con-
tributed to the bad performance of CS-SVM in both these tasks. Also note that
the prediction accuracies significantly improve in the case of partial prediction
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Fig. 2. Precision and Recall curves for Co-authorship networks (a) DBLP (b) Genetics
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task compared to the complete prediction task because of additional information
in the form of partial references of each paper. These results show the strength of
rich information present in the link structure. It is important to note that, even
in the other cases like metabolic and protein networks, performance of SOCP
formulations are comparable to CS-SVM. In our experiments, we noticed that
behavior of PAUM was not consistent across all the datasets. For example, it
had the best performance for complete bibliographic prediction task and worst
performance for the metabolic network. This may be partly due to our restricted
search over the margin space. It appears that varying costs or probabilities might
be easier than varying margins to handle the problem of unbalanced data. Since
one of the main advantages of SOCP based formulations is scaling, we report
the training and classification time10 of both CS-SVM and CS-SOCP for all the
datasets in Table 3 (m stands for mins and s for secs). Note that, training time
for CS-SOCP includes clustering time and time taken to solve the SOCP prob-
lem. We can see that CS-SOCP is orders of magnitude faster than CS-SVM.
Furthermore, CS-SOCP requires less time for classification when compared to
that of CS-SVM. Since the learned link predictors need to be deployed in real-
time systems like recommendation engines, it is important to have low test time
computational cost. Note that, the classification time in SVMs is proportional to
the number of support vectors and support vectors grow linearly with size of the
data. On the other hand, the number of support vectors in CS-SOCP is bounded
by the number of clusters k and does not depend on the size of the data.

5 Conclusions and Future Work

In this work, we proposed a new cost-sensitive formulation based on chance
constraints and described its connections to other frameworks like biased clas-
sification and uneven margin algorithms. We showed how learning algorithms
based on chance-constraints can be used to solve different kinds of link prediction
problems and showed empirical evidence with experiments on several real-world
datasets. It is interesting to note that we could formulate link-prediction as a
complex structured prediction problem with exponential number of constraints.
The manner in which the absent links are sampled to be used as negative exam-
ples for our classification problem, is roughly equivalent to randomly sampling
the constraints for the structured prediction problem [6,5]. We believe that this
is a very fruitful direction towards solving some of these hard problems. Wick
et al. use similar ideas for their SampleRank algorithm and got some impres-
sive results [26]. In future, we would like to extend the current framework to
a relational setting similar to Taskar’s work [24]. However, formulating it as
relational or structured prediction poses an enormous inference problem, espe-
cially in large networks. One possible approach is to take a middle path between
complete independence and arbitrary relational structure.

10 All experiments were run on a machine with 2GB RAM and 2.16 GHz Intel dual
core processor.
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Abstract. Principal component analysis (PCA) and its dual—principal coordi-
nate analysis (PCO)—are widely applied to unsupervised dimensionality reduc-
tion. In this paper, we show that PCA and PCO can be carried out under regression
frameworks. Thus, it is convenient to incorporate sparse techniques into the re-
gression frameworks. In particular, we propose a sparse PCA model and a sparse
PCO model. The former is to find sparse principal components, while the latter
directly calculates sparse principal coordinates in a low-dimensional space. Our
models can be solved by simple and efficient iterative procedures. Finally, we
discuss the relationship of our models with other existing sparse PCA methods
and illustrate empirical comparisons for these sparse unsupervised dimensional-
ity reduction methods. The experimental results are encouraging.

1 Introduction

Unsupervised dimensionality reduction methods are widely used in many applications
such as image processing, microarray data analysis, information retrieval, etc. PCA [13]
and PCO (or the classical multidimension scaling) [9,16] are two classical unsupervised
techniques for dimensionality reduction. PCA aims to find the principal components
(PCs) with the largest variance, while PCO directly calculates the coordinate configu-
rations in the dimension-reduced space.

However, it is sometimes difficult to interpret the results with PCA, because each
principal component is a linear combination of all the original variables and its loadings
are typically nonzero. Many approaches have been developed to deal with this drawback
of PCA. Recently, a sparse approach has been introduced. Roughly speaking, the ap-
proach is to impose some sparsity constraints such as lasso [19] and elastic net [22] to
loadings, then some of loadings are naturally zero. There are mainly two families of
sparse PCA methods in the literature. The first one uses the maximum-variance prop-
erty of principal components, such as SCoTLASS [14], DSPCA [2], sPCA-rSVD [17],
SOCA [20], sPCA-DC [18], etc. The other family is based on regression-type problems
such as sparse PCA [23].

In this paper we develop a new sparse PCA model to achieve sparseness. Our model
is built on the notion of optimal scoring, which was originally used to carry out the
Fisher discriminant analysis [11]. Recently, Clemmensen [1] proposed a sparse dis-
criminant analysis method by optimal scoring. Zhang and Dai [21] showed that some

J.L. Balcázar et al. (Eds.): ECML PKDD 2010, Part I, LNAI 6321, pp. 361–376, 2010.
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unsupervised learning methods, such as spectral clustering and PCA, can be cast into an
optimal scoring framework. This work immediately motivates our sparse PCA model.
An advantage of our model over the other sparse PCA methods is that our model can
achieve more sparseness when the total explained variance of principal components
is approximately same. Moreover, since our sparse PCA is derived from the optimal
scoring, it is more appropriately applied to discriminant analysis problems.

When applying these sparse PCA methods, we are able to obtain sparse principal
loadings. However, the coordinate configurations in the dimension-reduced space are
not necessarily sparse. In practical applications, it would be sometimes interesting to
find sparse principal coordinates. As we know, however, there is no work about this
theme. In this paper we present a sparse PCO model. In particular, we exploit the
Eckart-Young theorem [3], because the theorem shows a dual relationship between the
conventional PCA model and the conventional PCO model. Moreover, we note that
it also provides a regression framework to perform PCO. Introducing the elastic net
penalty for principal coordinates into this framework, we devise our sparse PCO.

The rest of this paper is organized as follows. Sections 2 and 3 present our sparse
PCA and PCO models respectively. Section 4 discusses the relationship of our sparse
models with other existing sparse PCA methods. In Section 5, we conduct our experi-
mental evaluations. Finally, we give our conclusions in Section 6.

2 Sparse PCA

Optimal scoring was first introduced by Hastie [11] to formulate the Fisher linear dis-
criminant analysis as a multiple linear regression problem. In recent work, Zhang and
Dai [21] extended the concept of optimal scoring to unsupervised learning problems
and developed a framework for unsupervised clustering. Based on the optimal scoring
framework, we now develop our sparse principal component analysis model, namely
sparse PCA via optimal scoring (sPCA-OS).

First of all, we list some notations. Throughout this paper, Im denotes the m × m
identity matrix, 1m the m × 1 of ones, and 0 the zero matrix or vector whose dimen-
sionality is dependent upon the context.

For an n × m matrix A = [aij ], let vec(A) = (a11, . . . , an1, a12, . . . , anm)T be

the nm× 1 vector, ‖A‖F = ‖vec(A)‖2 =
√∑

i,j a
2
ij be the Frobenius norm of A or

the 2-norm of vec(A), and ‖A‖1 =
∑

i,j |aij | be the 1-norm of vec(A). In addition,
A⊗B = [aijB] represents the Kronecker product of A and B, and

On×m = {A : A ∈ Rn×m and ATA = Im}.

2.1 Optimal Scoring for PCA

We are given an n×p data matrix X = [xij ], where n is the number of observations and
p is the number of variables. Let Y = [y1, . . . ,yq] be an n × q sample scoring matrix
such that 1T

nY = 0 and YT Y = Iq and W = [w1, . . . ,wq] be a p× q weight matrix.
For dimensionality reduction problems, q represents the number of PCs (or loadings)
and must be less than p.
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Without loss of generality, suppose that X is centered; that is, 1T
nX = 0. The frame-

work of optimal scoring for unsupervised learning is then defined by

min
Y,W

{
f(Y,W) ≡ 1

2
‖Y−XW‖2F +

δ2

2
tr(WT W)

}
subject to 1T

nY = 0 and YT Y = Iq . Zhang and Dai [21] proved that the minimum
of f is obtained when Y is the n × q matrix of the top orthonormal eigenvectors of
X(XT X + δ2Ip)−1XT and W = (XT X + δ2Ip)−1XT Y. Obviously, W can be
treated as a non-orthogonal matrix of loadings and then XW is the low-dimensional
principal coordinate matrix of X.

Let r = min{n, p}, we make the full singular value decomposition (SVD) [7] of X
as X = UDVT , where U = [u1, . . . ,un] (n×n) and V = [v1, . . . ,vp] (p×p) are
orthogonal matrices, and D = diag(d1, . . . , dr) (n×p) is a diagonal matrix with d1 ≥
d2 ≥ · · · ≥ dr ≥ 0. We then obtain the minimizers of f(Y,W) as Y = [u1, . . . ,uq]
and W = V1(D2

1+δ2Iq)−1D1, where V1 = [v1, . . . ,vq] and D1 = diag(d1, . . . , dq).
This immediately leads us to the following theorem.

Theorem 1. Assume that Y is an n × q optimal scoring matrix and W is a p × q
loading matrix. Consider

(Ŷ,Ŵ) = argmin
Y,W

f(Y,W) (1)

under the constraints 1T
nY = 0 and YT Y = Iq . Then ŵj ∝ vj for j = 1, . . . , q.

Zou [23] proposed a regression approach for solving PCA. Theorem 1 shows that we
can develop an alternative regression formulation of PCA.

2.2 Sparse PCA via Optimal Scoring

It is natural to impose a sparse penalty to the loading matrix W. Particularly, we exploit
the elastic net in our sPCA-OS method. That is, we consider the following optimization
problem:

argmin
Y,W

1
2
‖Y−XW‖2F +

δ2

2
‖W‖2F +

q∑
j=1

λj‖wj‖1

s.t. 1T
nY = 0 and YT Y = Iq, (2)

where δ is applied to all the q components and the λj is used to let each loading wj has
different degree of sparseness.

Problem (2) can be solved by an iternative procedure. First, with fixed Y, the op-
timization problem (2) is converted into the conventional elastic net problem [22];
namely,

min
W

1
2

q∑
j=1

‖yj−Xwj‖22+
δ2

2

q∑
j=1

‖wj‖22+
q∑

j=1

λj‖wj‖1.
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This problem can be decomposed into q separable optimization problems; that is, for
j = 1, . . . , q, we have

min
wj

1
2
‖yj−Xwj‖22 +

δ2

2
‖wj‖22+λj‖wj‖1. (3)

Second, with fixed W, we can ignore the penalty terms in the optimization problem (2)
and it becomes a Procrustes problem [5] as follows:

argmin
Y

1
2

q∑
j=1

‖yj −Xwj‖22 (4)

s.t. 1T
nY = 0 and YT Y = Iq.

This problem is easily solved in a closed form (see, e.g., Gower and Dijksterhuis [10]).
Let the thin SVD [7] of XW be ΨΔΦT where Ψ (n×q) and Φ (q×q) satisfy ΨT Ψ =
Iq and ΦT Φ = Iq and Δ (q×q) is the diagonal matrix with nonnegative entries. Then
XW = ΨΔΦT is a solution of (4). The procedure for solving our sPCA-OS is sum-
marized in Algorithm 1.

Algorithm 1. SparsePCA via Optimal Scoring(sPCA-OS)

1: Initialize a Y subject to 1T
nY = 0 and YT Y = Iq .

2: With a fixed Y = [y1, . . . ,yq], solve the elastic net problems for j = 1, . . . , q:

argmin
wj

1
2
‖yj −Xwj‖2

2 +
δ2

2
‖wj‖2

2 + λj‖wj‖1.

3: With a fixed W = [w1, . . . ,wq], perform the thin SVD of XW as XW = ΨΔΦT and
update Y by Y = ΨΦT .

4: Repeat Steps 2 and 3 until convergence.

3 Sparse PCO

Although W obtained via Algorithm 1 is sparse, the coordinate matrix Z = XW is
not necessarily sparse. However, it would be also interesting in the situation that Z is
sparse. We thus attempt to develop a sparse PCO algorithm in which the coordinate
matrix is sparse. First of all, we present the following theorem.

Theorem 2. Let the full SVD of X be X= UDVT where U ∈ On×n,V=[v1, . . . ,vp]
∈ Op×p and D = diag(d1, . . . , dr) with r = min{n, p} and d1 ≥ d2 ≥ . . . ≥ dr ≥ 0.
Assume that g is defined by

g(A,Z) = ‖X− ZAT ‖2F + γ‖Z‖2F (5)

where A ∈ Op×q , Z ∈ Rn×q and γ ≥ 0. Then the minimum of g is obtained when
A = [v1, . . . ,vq] and Z = 1

1+γ XA.
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The proof of this theorem is given in Appendix A. When γ = 0, Theorem 2 degen-
erates to the Eckart-Young theorem [3,15].

Theorem 2 shows that Z is just the coordinate matrix up to the constant 1
1+γ . In

order to make Z sparse, we impose the elastic net penalty on it. Accordingly, we have
our sparse PCO model which is defined by the following optimization problem:

min
A∈Op×q,Z∈Rn×q

1
2
‖X− ZAT ‖2F +

γ1

2
‖Z‖2F + γ2‖Z‖1, (6)

where γ1 > 0 and γ2 > 0 are regularization parameters. We also resort to an alterna-
tively iterative procedure to solve the problem (6).

With a fixed Z, the optimization problem (6) becomes

min
A∈Op×q

1
2
‖X− ZAT ‖2F ,

which is a reduced rank Procrustes problem illustrated by Zou [23]. Suppose that the
thin SVD of XT Z is XTZ = ΨΔΦT . Then A = ΨΦT is the solution of this Pro-
crustes problem.

With a fixed A, the optimization problem (6) degenerates to

min
β

1
2
‖α− (A⊗ In)β‖22 +

γ1

2
‖β‖22 + γ2‖β‖1, (7)

where α = vec(X) and β = vec(Z). Since (A⊗In)T (A⊗In) = (ATA)⊗In = Iqn,
this problem can be directly solved via the soft thresholding algorithm [19,22].

In summary, we have our SPCO algorithm which is given in Algorithm 2.

Algorithm 2. Sparse PCO (SPCO)
1: Give X and initialize A.
2: Fix A and solve the elastic net problem w.r.t. β.

min
β

1
2
‖α − (A⊗In)β‖2

2 +
γ1

2
‖β‖2

2 + γ2‖β‖1.

3: Fix β and perform the thin SVD of XT Z as XT Z = ΨΔΦT and update A by A = ΨΦT .
4: Repeat Step 2 and 3 until convergence.

4 Related Work

In the literature [20], the authors illustrated the relationship among SCoTLASS [14],
sPCA-rSVD [17], the SPCA method of Zou et al. [23] (called sPCA-ZHT), and the
SPCA method of Witten et al. [20] (called SPCA-WTH). We further discuss the rela-
tionship of our sPCA-OS and SPCO with these existing sparse PCA methods.



366 W. Dou et al.

First, the SPCA method of Zou et al. [23] (SPCA-ZHT) is defined as

min
W∈Rp×q

1
2
‖X−XWAT ‖2F +

γ1

2
‖W‖2F +

q∑
j=1

γ2,j‖wj‖1,

s.t. AT A = Iq.

Comparing this model with our SPCO model in (6), a connection between these two
models is immediately obtained via letting Z = XW. In our SPCO, we devise a differ-
ent penalty term

γ1

2
tr(WT XTXW) + γ2‖XW‖1,

which can be regarded as a weighted norm of W with respect to X.
Since A (p×q) is orthogonal, there exists a p×(p−q) matrix A0 such that AT

0 A0 =
Ip−q and AT A0 = 0. Thus,

‖X−XWAT ‖2F = ‖XA0‖2F + ‖XA−XW‖2F .

This implies that SPCA-ZHT is equivalent to

min
W∈Rp×q

1
2
‖XA−XW‖2F +

γ1

2
‖W‖2F +

q∑
j=1

γ2,j‖wj‖1,

s.t. ATA = Iq,

which with (2) together shows an interesting connection between SPCA-ZHT and our
sPCA-OS by setting Y = XA. However, in our model we employ the constraint
ATXT XA = Iq .

Second, when q = 1, the sPCA-rSVD model of Shen & Huang [17] is defined as

min
A∈Rp×q

1
2
‖X− ZAT ‖2F +

γ1

2
‖A‖2F + γ2‖A‖1,

s.t. ZT Z = Iq.

We see that there is a duality between sPCA-rSVD and SPCO, in which the roles of Z
and A are exchanged.

We now study the relationship of sPCA-OS with SPCA-WTH [20] and SCoTLASS
[14]. Assume q = 1, we write (2) for sPCA-OS as

min
y,w

f(y,w) = ‖y −Xw‖22,

s.t. ‖w‖22 ≤ c1, ‖w‖1 ≤ c2, ‖y‖22 = 1,

which can be used to associate sPCA-OS with SPCA-WTH and SCoTLASS, because
SPCA-WTH is based on the following problem

max
u,v

uTXv,

s.t. ‖v‖22 ≤ 1, ‖v‖1 ≤ c2, ‖u‖22 ≤ 1,
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while SCoTLASS is based on the problem:

max
w

wT XTXw,

s.t. ‖w‖22 ≤ c1, ‖w‖1 ≤ c2.

5 Experiments

In this section we compare our sPCA-OS and SPCO algorithms with two closely related
sparse PCA methods, i.e., SPCA-ZHT [23] and SPCA-WTH [20]. The experiments are
conducted on the pitprops dataset, two synthetic datasets, six UCI datasets and one
gene microarray dataset. Following the setting in [17,23], we also employ cumulative
percentage of explained variance (CPEV) as an evaluation criterion.

5.1 Evaluations on the Pitprops Dataset

The pitprops dataset was first put forward by Jeffers [12] for difficulty of interpret-
ing PCs. The dataset consists of 13 variables and 180 observations, and has become
a standard example illustrating the potential difficulty of interpreting principal compo-
nents. Jeffers [12] suggested explaining the first six components. Thus, we also select
the first six PCs to analyze SPCA-ZHT, SPCA-WTH and sPCA-OS. Similar to [23],
the corresponding regularized parameters are identified on the basis of that each sparse
approximation explains almost the same amount of variance as the ordinary PC does.
Tables 1-3 show the experimental results with these sparse PCA methods.

It is seen from Tables 1-3 that with regard to CPEV, the sPCA-OS method should
be competitive with the other two sparse PCA methods, because the values of CPEV
for SPCA-ZHT, SPCA-WTH and sPCA-OS are 75.76%, 75.22% and 75.47%, respec-
tively. Moreover, sPCA-OS and SPCA-ZHT have higher sparseness than SPCA-WTH
on the whole, specially as the number of principal components increases. In addition,
Figure 1 shows the corresponding variation of variance with respect to the different
principal components. It is also worth mentioning that unlike SPCA-WTH, the vari-
ances of sPCA-OS and SPCA-ZHT strictly monotonously decrease.

5.2 Evaluations on Two Synthetic Datasets

We also conduct our comparison on the synthetic dataset employed in [23]. In particular,
three hidden factors are first created as follows:

v1 ∼ N (0, 290), v2 ∼ N (0, 300), v3 = −0.3v1 + 0.925v2 + ε, ε ∼ N (0, 1),

where v1, v2 and ε are mutually independent. Then, 10 observed variables x1, . . . , x10
are generated by:

xi = vj + εji , εji ∼ N (0, 1),

where j = 1 corresponds to i = 1, 2, 3, 4, j = 2 corresponds to i = 5, 6, 7, 8, and
j = 3 corresponds to i = 9, 10, and the εji are independent of each other. From the
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Table 1. The first six PCs obtained by SPCA-ZHT on the pitprops dataset

Variable PC1 PC2 PC3 PC4 PC5 PC6
topdiam -0.4796 0 0 0 0 0
length -0.4689 0 0 0 0 0
moist 0 0.7769 0 0 0 0
testsg 0 0.6289 0 0 0 0
ovensg 0.1903 0 0.6551 0 0 0
ringtop 0 0 0.6048 0 0 0
ringbut -0.2802 0 0.4528 0 0 0
bowmax -0.3401 -0.0312 0 0 0 0
bowdist -0.4148 0 0 0 0 0
whorls -0.3844 0 0 0 0 0
clear 0 0 0 -1 0 0
knots 0 0 0 0 -1 0
diaknots 0 0 0 0 0 1

CPEV(%) 28.06 42.06 55.16 62.61 69.45 75.76

Table 2. The first six PCs obtained by SPCA-WTH on the pitprops dataset

Variable PC1 PC2 PC3 PC4 PC5 PC6
topdiam 0 -0.6974 0 0 0 0
length 0 -0.6988 0 0 0 0
moist 0 0 0.6825 0 0 0
testsg 0 0 0.6967 0 0 0
ovensg 0 0.1494 0 0 0.2810 0.4391
ringtop 0 0 0 0 0.4995 0
ringbut -0.8099 0 0 0 0 0
bowmax 0 0 0 -0.2208 0 0
bowdist 0 -0.0544 0 -0.2752 0 -0.8740
whorls -0.5214 0 0 0 0 -0.0021
clear 0 0 0 0 -0.8195 0.1054
knots 0 0 0 0.8152 0 -0.1795
diaknots 0.2687 0 0 0 0 0

CPEV(%) 14.49 30.89 46.37 57.99 68.12 75.22

formulation above, it is interesting to note that the three hidden factors have about
the same variances, and the variables (x1, x2, x3, x4) are independent of the variables
(x5, x6, x7, x8). Moreover, as the mixed roles, the variables (x9, x10) have closed rela-
tionship with the variables (x5, x6, x7, x8).

We implement classical PCA, SPCA-ZHT, SPCA-WTH and sPCA-OS on the 500
synthetic points here. Table 4 summarizes the comparison results. Obviously, unlike
PCA, the three sparse PCA algorithms have the correct sparse representations
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Table 3. The first six PCs obtained by sPCA-OS on the pitprops dataset

Variable PC1 PC2 PC3 PC4 PC5 PC6
topdiam 0.6304 0 0 0 0 0
length 0.6092 0 0 0 0 0
moist 0 0 0 0.6894 0 0
testsg 0 0 0 0.7244 0 0
ovensg -0.4739 0 0 0 0 0
ringtop 0 0 0 0 0 0.8517
ringbut 0 0 0 0 0 0.5240
bowmax 0 0 0 0 0.5033 0
bowdist 0 0.7976 0 0 0 0
whorls 0 0.0599 -0.4074 0 0 0
clear 0 0 0.9135 0 0 0
knots 0 0 0 0 0 0
diaknots 0.0832 -0.6002 0 0 0 0

CPEV(%) 23.42 40.60 53.69 62.76 70.25 75.47
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Fig. 1. Variation of variance (%) corresponding to the principal components on the pitprops
dataset

recovering the same hidden factors. Moreover, the variance of nonzero loadings of sPCA-
OS is less than those of the other two sparse PCA. This shows that our sPCA-OS should
be more robust than SPCA-ZHT and SPCA-WTH. This agrees with that our sPCA-
OS based on the optimal scoring can capture the underlying discriminative property
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Table 4. Results of the simulation example: loadings and variance

PCA SPCA-ZHT SPCA-WTH sPCA-OS
PC1 PC2 PC1 PC2 PC1 PC2 PC1 PC2

X1 -0.0901 -0.4767 0 0.3945 -0.0024 0 0 -0.4982
X2 -0.0875 -0.5107 0 0.6348 -0.7270 0 0 -0.5028
X3 -0.0886 -0.4719 0 0.4789 -0.4704 0 0 -0.5007
X4 -0.0856 -0.4801 0 0.4604 -0.5001 0 0 -0.4983
X5 0.4134 -0.0840 0.3616 0 0 -0.1826 0.5292 0
X6 0.3948 -0.1266 0.3831 0 0 -0.8578 0.5328 0
X7 0.3991 -0.1442 0.4218 0 0 -0.4115 0.4538 0
X8 0.4047 -0.1173 0.7380 0 0 -0.2481 0.4798 0
X9 0.3996 0.0270 0 0 0 0 0 0
X10 0.3996 0.0221 0 0 0 0 0 0

CPEV(%) 61.03 94.01 60.86 75.27 36.50 72.71 61.59 79.66
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Fig. 2. Sparse results of SPCO on the synthetic dataset: (a) principal coordinate on the first prin-
cipal component; (b) principal coordinate on the second principal component

in datasets. In addition, our CPEV is higher than the others, when all the sparse PCA
algorithms keep the same number of nonzero loadings.

In order to reveal the effectiveness of SPCO, we also generate another synthetic
dataset via the following Gaussian distributions:

G1 ∼ N (10 ∗ 150, I50), G2 ∼ N (−10 ∗ 150, 9 ∗ I50), G3 ∼ N (0, 17 ∗ I50).

Obviously, G2 is more close to G3 in comparison with G1. This synthetic dataset
consists of 30 points with 50 variables, and each 10 points corresponds to one distribu-
tion. Without loss of generality, the points (x(i−1)∗10+1, . . . ,xi∗10) are sampled from
Gi, i = 1, 2, 3. The results of implementing SPCO are shown in Figure 2, where the i-th
coordinate correspond to the i-th point. Figure 2 (a) depicts that the nonzero coordinates
correspond to the first 10 points, while the coordinates for the other points are zeros.
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Figure 2 (b) depicts that the coordinates for the first 10 points are zeros, but the nonzero
coordinates are associated with the other points. In essence, it also tells us an appealing
property that SPCO can effectively capture the underlying relationship among data by
strengthening zero or nonzero coordinates. We also carry out the similar experiments
with the three sparse PCA algorithms. Unfortunately, the resulting principal coordinates
are not sparse so that the property mentioned above does not remain.

5.3 Evaluations on Classification

In this experiment, we conduct the comparison of the four sparse dimensionality re-
duction algorithms in classification problems. We first implement sPCA-OS, SPCO,
SPCA-ZHT and SPCA-WTH for dimensionality reduction. Then, we perform classi-
fication respectively on the dimensionality-reduced data matrices by simply applying
nearest neighbor classifier.

Our experiments are implemented on six UCI datasets, the details of which are sum-
marized in Table 5.

In order to make comparison fair, we keep CPEV as equal as possible when we
carry out the four dimensionality reduction methods. This can be done by adjusting
the regularization parameters. Note that for SPCO, there is no obvious effect on the
explained variance when varying the regularization parameter λ. For each dataset, we
randomly sample 90% of the instances for training and the remaining 10% for test. This
procedure is repeated 20 times for each dataset, and the evaluation criteria are reported
in the classification accuracy rate(%) and corresponding standard deviation.

The classification results are listed in Table 6. We find that when the explained vari-
ance obtained from the four sparse dimensionality reduction methods are nearly equal,
our sPCA-OS and SPCO outperform SPCA-ZHT and SPCA-WTH on the whole. It also
successfully confirms that as shown in [21], our sPCA-OS based on optimal scoring can
effectively detect the underlying discriminative information among data, and that SPCO
can also effectively detect the underlying distribution among data.

It should be also worth mentioning here that the sparsity of the loadings obtained by
sPCA-OS, SPCA-ZHT, SPCA-WTH are different when keeping approximately same
explained variance. In particular, Figure 3 depicts the sparsity of loadings obtained by
sPCA-OS, SPCA-ZHT and SPCA-WTH on the six UCI datasets. Obviously, the similar
conclusion for the pitprops dataset can be followed here.

Table 5. The summaries of datasets. (c—the number of classes, p—the number of the variables
and n—the number of instances.).

Datasets c p n

dermatology 6 34 358
segmentation 7 18 2310
glass 6 9 214
letter 10 16 1978
pageblocks 5 10 5473
pendigits 10 16 7494
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Table 6. Classification results using the four sparse methods on the different datasets. (“CPEV”
for “the cumulative percentage of explained variance”, “acc” for “the accuracy of classification”
and “std” for “the standard deviation”.).

Dataset CPEV acc(± std) Algorithm

dermatology

34.67 80.54 (±3.39) SPCA-ZHT
34.70 80.02 (±3.46) SPCA-WTH
34.64 82.43(±5.48) sPCA-OS
35.97 83.56(±5.48) SPCO

segmentation

70.70 66.52(±2.25) SPCA-ZHT
73.00 70.80(±1.53) SPCA-WTH
73.35 77.80(±1.53) sPCA-OS
71.04 71.13(±0.94) SPCO

glass

82.14 45.78(±5.95 ) SPCA-ZHT
82.10 45.81(±4.95) SPCA-WTH
82.01 46.87(±6.42 ) sPCA-OS
82.69 47.56(±6.00 ) SPCO

letter

81.34 60.96(±2.74 ) SPCA-ZHT
81.30 63.04(±2.74) SPCA-WTH
81.67 64.26(±1.78) sPCA-OS
80.80 63.12(±2.93) SPCO

pageblocks

67.83 93.83(±0.48) SPCA-ZHT
67.90 94.03(±0.31) SPCA-WTH
67.90 93.80(±0.45) sPCA-OS
67.62 94.35(±0.43) SPCO

pendigits

82.86 93.02(±0.76) SPCA-ZHT
82.50 93.48(±0.57) SPCA-WTH
82.80 93.18(±0.58) sPCA-OS
82.63 93.67(±0.61) SPCO

5.4 Application in Gene Microarray

The SRBCT microarray dataset [8] has 2308 genes (variables) and 63 samples (obser-
vations). We implement SPCO on this dataset to explore sparse representation of the
original data in a dimensionality-reduced space. Here q is the number of principal co-
ordinates and it is also the dimensionality of the low-dimensional space.

Similarly, a new evaluation criterion, i.e., cumulative percentage of zero coordinates
(CPZC) is defined to measure SPCO, and it is the ratio of the number of zero coordinates
to the total number of coordinates in the dimensionality-reduced data matrix.

A sequence of principal coordinates are taken from q = 3 to q = 63. As shown in
Figure 4, the CPEV of the principal component A increases sharply while the CPZC of
data matrix Z in the low-dimensional space dramatically declines, when q is set from 3
to 10. When q > 20, however, the obtained CPZC is nearly same while the CPEV still
increases steadily. Thus, in practice, we can choose a suitable q through the trade-off
between CPEV and CPZC.
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Fig. 3. The sparsity of loadings obtained by sPCA-OS, SPCA-ZHT and SPCA-WTH on the six
UCI datasets
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6 Conclusion

In this paper we have developed a new SPCA method to compute sparse principal com-
ponents and an SPCO method to compute sparse principal coordinates. Our SPCA is
built on the optimal scoring theorem, while SPCO is based on the Eckart-Young the-
orem. Since the optimal scoring theorem and the Eckart-Young theorem respectively
provide the theoretical foundation to carry out the conventional PCA and PCO by
regression-type problems, our SPCA and SPCO can be efficiently solved by existing
algorithms for sparse regression models such that in [4,6,19,22]. There are a lot of
treatments for sparse PCA in the literature. To our knowledge, however, we have first
provided an attempt for sparse PCO. In our future work, we will dig out the potential
application of our sparse PCO method in multivariate data analysis.
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A The Proof of Theorem 2

Consider the Lagrange function

L(Z,A,C) =
1
2

[
‖X−ZAT ‖2F + γ‖Z‖2F − tr(C(AT A−Iq))

]
,

where C is a q×q symmetric matrix of Lagrange multipliers. The first-order conditions
are

∂L

∂Z
= (ZAT −X)A + γZ = 0,

∂L

∂A
= (AZT −XT )Z−AC = 0, (8)

∂L

∂C
= ATA− Iq = 0,

which yield

Z =
1

1 + γ
XA.

Premultiplying both sides of (8) by AT then gives

C = ZT Z− ZT XA = −γZTZ.

Hence, (8) can be rewritten as

(XT X)A = A(AT XT XA).

Suppose that the full SVD of AT XTXA is AT XTXA = GΛGT where G is an
orthogonal q×q matrix and Λ is a diagonal q×q matrix with the eigenvalues (singular
values) of AT XTXA on its diagonal. Then we have

(XT X)AG = AGΛ,

which implies that AG is the orthogonal eigenvector matrix of XT X and the diagonal
entries of Λ are its corresponding eigenvalues.

Now given Z = 1
1+γ XA, we have

g(A,Z) = tr(XT X)− 1
1 + γ

tr(ATXT XA)

= tr(XT X)− 1
1 + γ

tr(Λ).

In order to minimize g, we should maximize tr(Λ). We thus take Λ = diag(d1, . . . , dq).
Moreover, we can also let A = [v1, . . . ,vq].
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Abstract. Asking generalized queries (by regarding some features as
don’t-care) in active learning has been proposed and studied recently.
As each generalized query is equivalent to a set of specific ones, the an-
swers from the oracle can usually provide more information thus speeding
up the learning effectively. However, as the answers to the generalized
queries might be uncertain, previous studies often assume that the or-
acle is capable of providing (accurate) probabilistic answers. This as-
sumption, however, is often too stringent in real-world situations. In this
paper, we make a more realistic assumption that the oracle can only
provide (non-probabilistic) ambiguous answers, similar to the setting in
multiple-instance learning. That is, the generalized query is labeled pos-
itive if at least one of the corresponding specific queries is positive, and
is labeled negative otherwise. We therefore propose an algorithm to con-
struct the generalized queries and improve the learning model with such
ambiguous answers in active learning. Empirical study shows that, the
proposed algorithm can significantly speed up the learning process, and
outperform active learning with either specific queries or inaccurately
answered generalized queries.

1 Introduction

Active learning, as an effective paradigm to speed up the learning process, has
been intensively studied in recent years. In most traditional active learning stud-
ies, the learner usually regards the specific examples directly as queries, and
requests the corresponding labels from the oracle. For instance, given a pro-
statitis patient data set, the learner usually presents the entire patient example,
such as {ID = 7354288, name = John, age = 50, gender = male, weight = 230,
blood-type = AB, fever = yes, painful-urination = yes, · · · } (with all the fea-
tures), to the oracle, and requests the corresponding label whether this patient
has prostatitis or not. However, in this case, many features (such as ID, name,
blood-type, and so on) might be irrelevant to prostatitis diagnosis. Not only
could queries like this confuse the oracle, but each answer responded from the
oracle is also applicable for only one specific example.

In many real-world active learning applications, the oracles are often human
experts, thus they are usually capable of answering more general queries. For
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c© Springer-Verlag Berlin Heidelberg 2010
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instance, given the same patient data set, the learner could ask a generalized
query, such as “are men between 45 and 55 with fever and painful-urination likely
to have prostatitis?”, where only four features (gender, age, fever and painful-
urination) are provided, and all the rest are considered as don’t-care. Not only
are such generalized queries more natural and relevant, each generalized query
can often represent a set of specific examples, thus the answer for the query is
also applicable to all these examples. This allows the active learner to improve
learning more effectively.

However, when asking such generalized queries in active learning, the answers
are often uncertain. For instance, the answer could be “yes, with 80% probabil-
ity” that men between 45 and 55 with fever and painful-urination are likely to
have prostatitis. In the ideal situation, the oracle is expected to provide such ac-
curate probabilistic answers for the generalized queries, in order to improve the
learning model accordingly. This requirement, however, is usually too stringent
in reality. Instead, generalized queries are often responded with ambiguous an-
swers in real-world situations. For instance, if the query is “are women (or boys
under 10) likely to have prostatitis”, the specialist (oracle) would always respond
“No”, indicating none of such people would have this disease. However, if the
query is “are men between 45 and 55 likely to have prostatitis”, the answer would
often be “Yes”, indicating some of such people indeed have this disease, but the
accurate proportion (probability) is unknown. Clearly, such generalized queries
and ambiguous answers commonly occur in our daily life, thus it is reasonable
and desired to study them together.

In this paper, therefore, we make a more realistic assumption that the ora-
cle can only provide ambiguous (non-probabilistic) answers to the generalized
queries. That is: the oracle labels the query as negative if (and only if) all the
examples represented by this query are negative; otherwise the query is always
labeled as positive. The similar setting of ambiguous answers has been exten-
sively studied in multiple-instance learning [1], and applied to many real-world
applications, such as drug activity prediction [1], content-based image retrieval
[2] and text categorization [3]; see Section 2 for more details.

In active learning scenario, such setting of ambiguous answers is reasonable
yet flexible. On one hand, even though the oracle is still required to answer
generalized queries, the answer only needs to be “Yes (positive)” or “No (neg-
ative)”, which is more natural and applicable in real-world situations. On the
other hand, such ambiguous answers can also be regarded as a more general form
of the specific (accurate) answers. Specifically, when some features are discov-
ered as don’t-care and the query is generalized, the answer is indeed ambiguous
(“Yes” indicates at least one specific example is positive, whereas “No” indicates
all corresponding examples are negative). However, when no don’t-care feature
is discovered and the query turns to be a specific one, such “Yes-No” response
naturally becomes the accurate answer to the specific query. Therefore, such
setting of ambiguous answers is more flexible than the regular setting in active
learning, yet still applicable in many real-world situations.
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In this paper, by assuming that the oracle is capable of providing such am-
biguous answers to the generalized queries, we propose a novel method to, first
construct the generalized queries, and then update the learning model accord-
ing to the ambiguous answers. Empirical study on UCI ([4]) data sets shows
that, the proposed method can significantly speed up the learning process, and
outperform active learning with either specific queries or inaccurately answered
generalized queries.

The rest of the paper is organized as follows. Section 2 reviews previous works
on active learning and multiple-instance learning. Section 3 describes our algo-
rithm to ask generalized queries and improve the learning model with ambiguous
answers. In Section 4, empirical study is conducted on real-world UCI data sets
to verify the superiority of the proposed method. Section 5 presents conclusions.

2 Related Work

Most previous studies of active learning can be categorized into two types: the
pool-based active learning and the membership query.1 In the pool-based active
learning, a pool of unlabeled examples is given, among which the learner can
choose the examples and request the corresponding labels [7]. Briefly speaking,
the pool-based active leaner first evaluates each example in the pool, to decide
which one can maximumly improve the performance of the current model. Then
the learner acquires its label from the oracle, and update the learning model
accordingly. The process repeats, until some stop criterion is met. On the other
hand, active learning with membership queries (or direct query construction)
can directly construct examples (without the need of the pool) and request the
corresponding labels from the oracle [8,9]. Previous research shows that, in most
situations, both of these two types of active learning can significantly reduce the
number of labeled examples needed, compared with labeling examples randomly.

Without the restriction of the pool, membership query can always construct
the optimal queries to improve the performance of the current model. However,
in reality, these optimal queries might be unrealistic thus hard to be answered by
the oracle (such as, handwritten character recognition, text classification, and so
on). Therefore, the pool-based active learning is extensively studied in recently
years. In this paper, the proposed learning algorithm can be adapt to both of
these two types, and we will use pool-based setting for illustration.

The essence of active learning lies in measuring the “goodness” of the unla-
beled examples. Many criteria have been proposed in the literature. Uncertainty
sampling [7] considers the most uncertain example as most valuable, and has been
extensively studied and widely used in many previous studies [10,11,6,12,13].
Query-by-committee (QBC) [14] is a more theory-based approach, and considers
the example that minimizes the version space as optimal. In addition, other crite-
ria, such as variance reduction [15], Fisher information ratio [16], and estimated
error reduction [17], are also elaborately designed and well accepted.
1 Stream-based active learning [5] is considered as another type in some literatures. In

essence, it could be viewed as an online version of the pool-based active learning [6].
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Most previous works of active learning assume that the oracle could only
answer specific queries, with all features provided. [18,19] consider a more natural
situation that the oracle is capable of answering generalized queries, and propose
a novel algorithm to ask such queries and improve the learning model. However,
as the answers for such generalized queries are often uncertain, it is also assumed
in [18,19] that the oracle could provide (accurate) probabilistic answers to those
queries. This assumption, however, is too stringent in many real-world situations.

On the other hand, a more relaxed assumption has been studied in multiple-
instance learning ([1]), where examples are given in bags and oracle is only
required to provide one ambiguous answer for each bag. More specifically, given
a bag of unlabeled examples, the oracle will respond negative if (and only if)
these examples are all negative, and respond positive otherwise. In this set-
ting, it is more likely for the learner to be responded with a positive answer;
and more importantly, such positive answer only indicates that at least one
example in the given bag is positive, but the true label of each specific exam-
ple is still unknown. Many algorithms, such as diverse density [20], citation kNN
[21], multiple-decision tree [22] and multiple-instance logistic regression [23], have
been developed to tackle such ambiguous answers, so as to predict labels of the
future unseen bags. Despite of the ambiguity of the answers, multiple-instance
learning has been applied to many real-world applications, such as drug activity
prediction [1], content-based image retrieval [2], and text categorization [3].

In this paper, we apply such ambiguous oracle to active learning with gen-
eralized queries. More specifically, in active learning, the learner always tends
to construct generalized queries and request the corresponding labels from the
oracle. However, the oracle is only capable of respond with ambiguous answers.
That is, given a generalized query, the oracle will respond negative if (and only
if) the examples represented by the query are all negative, and respond positive
otherwise. Such setting of ambiguous oracle relaxes the stringent assumptions in
the previous studies of active learning with generalized queries, and is applicable
to more real-world situations.

It is also worth noting that, our study in this paper is not a simple combination
of active learning and multiple instances learning.2 Instead of aiming to improve
the predictive performance on the unseen bags of examples in multiple-instance
learning, in this paper, we still attempt to improve the predictive performance on
the unseen specific examples (as in traditional supervised setting). In addition,
we also consider generalized queries in active learning scenario, thus the problem
we are attempting to solve is more complex and difficult.

3 Algorithm

In this section, we design active learning algorithm to ask generalized queries and
further improve the predictive performance based on the responded ambiguous
answers. Specifically, we use logistic regression as the base active learner, due to
2 [24] categorizes multiple-instance active learning into four scenarios, and develops a

novel algorithm to deal with one of those formulations.
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its good performance in probability estimation and the convenience of designing
objective function (see Section 3.1 for details).

The learning process can be roughly broken into the following two steps in
each iteration:

– Step 1: Based on the current training and unlabeled data sets, the learner
constructs a generalized query (according to certain objective function).

– Step 2: After obtaining the ambiguous answer of the generalized query, the
learner updates the learning model (according to certain objective function).

In the above two steps, objective functions are required for both constructing the
generalized queries and updating the learning model. Therefore, in the rest of
this section, we first design a universal objective function for both of the above
two steps; and then present the implementation details for each of them.

3.1 Objective Function

In each learning iteration, when constructing the generalized query, the optimal
query is expected to be the one that yields the best performance of the learning
model; likewise, when updating the learning model, the optimal model parame-
ters are also the ones that yield the best predictive performance. Therefore, we
can design one universal objective function to evaluate and optimize both the
generalized queries and the model parameters.

In the current setting, the desired objective function needs to suit all of the
following requirements: 1) logistic regression; 2) active learning; 3) generalized
queries; and 4) ambiguous answers.

In the traditional supervised learning, maximum likelihood is commonly used
to train a logistic regression classifier. Thus, it could also be considered as the
most primitive objective function to find the optimal queries and model param-
eters, as follows:

< q,w >opt= arg max
q,w

∑
(xi,yi)∈D

log p(yi|xi; q,w) (1)

where, < q,w >opt denotes the tuple of optimal query q and model parameter
w, xi and yi denote the ith example in the given training data set D. This
primitive objective function satisfies the requirement of logistic regression.

In active learning, however, the labeled training data set is usually small,
thus the classifier trained via maximum likelihood alone (Equation 1) might be
unreliable. In addition to the training data, we are often given a large amount
of unlabeled data in active learning (for the pool-based setting), and this set of
data can also help to evaluate the generalized queries and the model parameters.
Intuitively, if the query (q) can indeed improve the performance of the learning
model, the updated model would also be more confident in predicting all the un-
labeled data; likewise, if the parameter (w) can indeed yield a high-performance
model, the model would also predict unlabeled data more confidently. There-
fore, in addition to the maximum likelihood on the labeled training data, the
predictive certainty (calculated by entropy) on the unlabeled data can also be
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considered as an additional measurement. This yields a more sophisticated ob-
jective function, as follows:

< q, w >opt = arg max
q,w

∑
(xi,yi)∈D

log p(yi|xi; q,w) − α
∑

xj∈U,y∈{0,1}
H(p(y|xj ; q,w))

= arg max
q,w

∑
(xi,yi)∈D

log p(yi|xi; q,w)

+α
∑
xj∈U

∑
y∈{0,1}

p(y|xj ; q, w) log p(y|xj ; q,w) (2)

where xj denotes the jth unlabeled example in the given unlabeled data set U ,
and α represents a trade-off parameter to balance the influence of the labeled
and unlabeled data. This objective function satisfies the requirement of active
learning.3

In our current setting, however, instead of requesting the labels for specific ex-
amples, the active learner always attempts to ask generalized queries. Moreover,
these generalized queries are often responded with ambiguous answers by the
oracle. Equation 2 therefore cannot suit this requirement. Instead, under cur-
rent conditions, in each learning iteration, there always exist three data (query)
sets: the initial training data set D, the query set Q which contains all the
previous queries asked by the learner (one in each iteration), and the current
unlabeled data set U . Therefore, in the tth learning iteration, the query qt and
the model parameter wt can be optimized by: maximizing the likelihood with
respect to both the initial training data D and the query set Q, and minimizing
the predictive uncertainty with respect to the unlabeled data U , as follows:

< qt,wt >opt= arg max
q,w

α1

∑
(xi,yi)∈D

log p(yi|xi; qt,wt)

+ α2

∑
(qk,yk)∈Q

log p(yk|qk; qt,wt) (3)

+ α3

∑
xj∈U

∑
y∈{0,1}

p(y|xj ; qt, wt) log p(y|xj ; qt,wt)

where all the notations are the same as in the previous objective functions, and
α1, α2 and α3 represent the trade-off parameters to balance the influence of the
three data (query) sets.

This objective function suits all the requirements in our current setting, and is
applied to both query searching and model updating in each learning iteration,
as follows.

– In the query searching step, the objective function is applied to find the opti-
mal query (qopt). Specifically, given one candidate query (and the estimated
label, see Section 3.2 for details), Equation 3 can be regarded as a univariate

3 The similar objective function has been applied in semi-supervised learning [25]
and batch mode active learning [26]; and these previous studies have shown its
applicability in real-world applications.
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Fig. 1. The framework of the proposed algorithm

function of the model parameter w (denoted by f(w)). Thus, gradient de-
cent can be directly applied to find the optimized f(w). Thereafter, among
all the candidate queries, the one that yields the maximum f(w) is chosen
and regarded as the optimal query (qopt).

– In the model updating step, the objective function is applied to find the
optimal model parameter (wopt). Specifically, given the optimal query (qopt)
and the true label provided by the oracle, Equation 3 is optimized in a similar
way, and the optimal model parameter (wopt) can be determined.

This entire process is also illustrated in Figure 1. However, there are still some
issues to be solved during this learning process, such as, how to search the
candidate queries, how to estimate the posterior probability for each specific
example (p(y|x)) and each generalized query (p(y|q)), how to set the trade-off
parameters (α1, α2 and α3) and so on. We will describe the details and answer
these questions in the following sections.

3.2 Constructing Generalized Queries

In each active learning iteration, constructing the optimal generalized query can
be implemented by searching the best one in the query space (according to
Equation 3). However, two issues need to be solved at this stage: how to search
in the query space, and how to estimate the labels for the candidate queries. We
will provide solutions for these two problems in this subsection.

In most traditional active learning studies, each unlabeled example is directly
regarded as a candidate query. Thus, in each iteration, the query space simply
contains all the current unlabeled examples, and exhaustive search is usually ap-
plied directly. However, when asking generalized queries, each unlabeled example
can generate a set of candidate generalized queries, due to the existence of the
don’t-care features. For instance, given a specific example with d features, there
exist

(
d
1

)
generalized queries with one don’t-care feature,

(
d
2

)
generalized queries
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with two don’t-care features, and so on. Thus, altogether 2d corresponding gener-
alized queries could be constructed from each specific example. Therefore, given
an unlabeled data set with l examples, the entire query space would be 2dl. This
query space is quite large (grows exponentially to the feature dimension), thus
exhaustively evaluating every candidate is no longer realistic. Instead, we apply
greedy search to find the optimal query in each iteration.

Specifically, for each unlabeled example (with d features), we first construct
all the generalized queries with only one don’t-care feature (i.e.,

(
d
1

)
= d queries),

and choose the best as the current candidate. Then, based only on this candidate,
we continue to construct all the generalized queries with two don’t-care features
(i.e.,

(
d−1
1

)
= d−1 queries), and again only keep the best. The process repeats to

greedily increase the number of don’t-care features in the query, until no better
query can be generated. The last generalized query thus is regarded as the best
for the current unlabeled example. We conduct the same procedure on all the
unlabeled examples, thus we can find the optimal generalized query based on
the whole unlabeled set.

With such greedy search strategy, the computation complexity of searching is
thus O(d2) with respect to the feature dimension d. This indicates an exponential
improvement over the complexity of the original exhaustive search (Θ(2d)). Note
that, it is true that such local greedy search cannot guarantee finding the true
optimal generalized query in the entire query space, but the empirical study (see
Section 4) will show it still works effectively in most cases.

With greedy search, all these candidate queries are expected to be evaluated
by Equation 3, such that the optimal one could be determined. Note that, if
the true labels for these candidate queries are known, the evaluation process
can be implemented in exactly the same way as we will describe in Section
3.3. However, all the candidate queries are not yet labeled at the current stage,
thus the objective function cannot be directly applied. Here, we use a simple
strategy to estimate the label probabilities of these queries, and then evaluate
them accordingly.

Specifically, given a specific query (with no don’t-care feature), we simply
assume that it is equally likely to be labeled positive or negative, thus we evaluate
the query by regarding its label as 0.5 positive and 0.5 negative. However, in
terms of the generalized queries with don’t-care features, as they are expected to
be responded with ambiguous answers (negative if all the examples represented
are negative, and positive otherwise), we also attempt to estimate the probability
of such ambiguous answer. More specifically, we suppose that each generalized
query with n don’t-care features can be represented by 2n specific examples,4

and each of these specific example is still equally likely to be positive or negative.
Thus the probability of such generalize query being negative would be calculate
as 0.52n

(i.e., the probability of all the examples represented being negative), and
the probability of being positive would consequently be (1 − 0.52n

). Therefore,

4 See Section 3.3 for details why and how each generalized query can be represented
by this many examples.
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for each candidate query, we apply this simple strategy to estimate its label
probability and make the evaluation accordingly.

To summarize, in each learning iteration, we use greedy search to select can-
didate queries from the entire query space, and evaluate these candidates (with
the estimated labels) according to Equation 3. The optimal query thus could be
discovered.

3.3 Updating Learning Model

After discovering the optimal generalized query in each iteration, the active
learner requests the corresponding label from the oracle, and then updates the
learning model (i.e., optimize the model parameter w according to Equation 3).
However, as the active learner always tends to ask generalized queries, and is
always responded with ambiguous answers, the objective function is difficult to
be directly specified.

Specifically, with logistic regression, the posterior probability for each example
x can be specified as

p(y = 1|x) = σ(wT x) =
1

1 + e−wT x
(4)

Therefore, in Equation 3, the part to maximize the log likelihood on the original
training data D (i.e., the first term in Equation 3) is easy to calculate, so is the
part to minimize the predictive uncertainty (entropy) on the unlabeled data U
(i.e., the last term in Equation 3). However, it is difficult to specify the posterior
probability for all the previous queries (i.e., p(y|q), as in the middle term of
Equation 3), due to the generalization of these queries and the ambiguity of the
answers. We will solve this issue in this subsection.

The basic idea to estimate the posterior probability for each query (p(y|q))
works as follows:

– We first specify each generalized query with a set of representative examples,
the posterior probability for each of these examples thus can be presented
as in Equation 4.

– Then, we combine the probabilities of all these representative examples to-
gether, to form the probability for the corresponding generalized query.

More specifically, as generalized queries contain don’t-care features, each gen-
eralized query can often represent a set of specific examples. For instance, if
“temperature” is the don’t-care feature in a generalized query, this query rep-
resents infinite examples with any temperature values (while keeping other fea-
tures unchanged). Therefore, it seems difficult to find appropriate representative
examples to specify the generalized queries.

However, in our current setting, the classifier is always a linear seperator
(due to logistic regression) and the labels of the generalized queries are negative
if (and only if) all the corresponding examples are negative (due to ambigu-
ous oracle). Under these conditions, we can have an intuition that, given any
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generalized query with one don’t-care feature, if (and only if) the corresponding
example with the maximum value (for the don’t-care feature) and the one with
the minimum value are both negative, the generalized query will be labeled
negative. For instances, we suppose “temperature” is the only don’t-care feature,
and its valid range is [94F, 108F ]. Thus, a generalized query {age = 65, gender
= male, temperature = ∗, · · · } will definitely be labeled as negative, if (and
only if) the two specific examples, {age = 65, gender = male, temperature =
94F, · · · } and {age = 65, gender = male, temperature = 108F, · · · }, are both
negative. This intuition can be illustrated in Figure 2.

This figure illustrates the label of a generalized query
{x1 = 2, x2 = ∗} (where the valid range of x2 is
[−1, 2]) with respect to three linear separators. Line
“Query” denotes all the examples represented by the
generalized query, where “A” {x1 = 2, x2 = 2}
and “B” {x1 = 2, x2 = −1} represent two specific
examples with the maximum and minimum values
for the don’t-care feature x2. Lines “f1(x1,y1)=0”,
“f2(x1,x2)=0” and “f3(x1,x2)=0” represent three lin-
ear separators in the given 2-D space, and all of them
can only provide ambiguous answers for the queries.
We can clearly see that, “f3(x1,x2)” can simultane-
ously label both “A” and “B” as negativea, it con-
sequently labels the query as negative; whereas both
“f1(x1,x2)” and “f2(x1,x2)” always label at least one
of “A” and “B” as positive, they label the query as
positive consequently.

a We suppose all the examples above the linear sepa-
rators are positive, and the ones below are negative.

Fig. 2. An illustration for representing generalized queries with specific examples

This illustration indicates that, given a generalized query with one don’t-care
feature, as long as the labels of the two specific examples (with maximum and
minimum values for the don’t-care feature) are known, the label for query can be
easily determined.5 Therefore, we can simply represent such generalized query by
these two specific examples in the learning process. Furthermore, we can extend
the conclusion that, given a generalized query with two don’t-care features, four
examples with the combinations of the min and max values for the two features
could be used to represent the query; and further, a generalized query with n
don’t-care features would be specified by 2n examples.

Now, we are able to specify any generalized query with a set of represen-
tative examples, and the posterior probability for these specific examples can

5 Note that, in active learning, the minimum and maximum values of any feature can
be reliably estimated from both the labeled and unlabeled data.
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also be presented through Equation 4. Next, we will combine all these probabili-
ties together, to form the posterior probability for the corresponding generalized
query.

As we have introduced in Section 1, in the current setting, the ambiguous or-
acle provides negative answer only when all the corresponding specific examples
are negative, and provides positive answer otherwise. This mechanism is similar
to the labeling process in multi-instance learning (MIL). Therefore, we can sim-
ply apply the existing combining functions in MIL, to form the probabilities of
the generalized queries. More specifically, we will apply the noise-or function [20]

p(y = 1|q) = 1 −
n∏

k=1

(1 − p(y = 1|xk)) (5)

to form the probability of the generalized query, where q denotes the generalized
query and (x1, · · · ,xn) denotes the corresponding n representative examples.
The probability for any generalized query therefore can be specified.6

To formalize, given the optimal generalized query (and the true ambiguous
label) in each iteration, by combining Equations 3, 4 and 5, the optimal model
parameter w can be determined by minimizing the following error function:

𝐸(w) = −𝛼1

∑

(x,𝑦)∈𝐷

{𝑦𝑖 log 𝜎(w𝑇x𝑖) + (1− 𝑦𝑖) log(1− 𝜎(w𝑇x𝑖))}

−𝛼2

∑

(𝑞𝑘,𝑦𝑘)∈𝑄

{𝑦𝑘 log(1−
∏

x𝑘𝑖∈𝑞𝑘

(1− 𝜎(w𝑇x𝑘𝑖)) + (1− 𝑦𝑘)
∑

x𝑘𝑖∈𝑞𝑘

log(1− 𝜎(w𝑇x𝑘𝑖))}

−𝛼3

∑

x𝑗∈𝑈

{𝜎(w𝑇x𝑗) log 𝜎(w
𝑇x𝑗) + (1− 𝜎(w𝑇x𝑗)) log(1− 𝜎(w𝑇x𝑗))}

(6)

where σ(wTxi) can be further specified by Equation 4, and xik denotes the
representative example for query qk. In addition, gradient decent is applied to
implement optimization, and the gradient of the error function with respect to
w can be calculated:

∇E(w) = −α1

∑
(xi,yi)∈D

{(yi − σ(wT xi))xi}

−α2

∑
(qk,yk)∈Q

{ (1 −∏xki∈qk
(1 − σ(wT xki)) − yk)

∑
xki∈qk

σ(wT xki)xki

1 −∏xki∈qk
(1 − σ(wT xik))

}

−α3

∑
xj∈U

{(log σ(wT xj)
1 − σ(wT xj)

)σ(wT xj)(1 − σ(wT xj))xj} (7)

Consequently, in each learning iteration, given the optimal generalized query
and the ambiguous answer, the optimal model parameter can be obtained, and
the learning model can be updated.

6 Note that, other combining functions, such as the softmax function [23] p(y = 1|q) =∑n
k=1 p(y=1|xk)ep(y=1|xk)∑n

k=1 ep(y=1|xk) , can also be applied to form the probability of the generalized

queries.
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In the next section, we will conduct empirical study to discuss the setting for
the trade-off parameters α1, α2 and α3, and compare the proposed algorithm
with the traditional ones.

4 Empirical Study

In this section, we empirically study the performance of the proposed algorithm
with generalized queries and ambiguous answers, and compare it with the exist-
ing active learning algorithms on seven real-world data sets from UCI Machine
Learning Repository [4].

4.1 Experimental Configurations

We conduct experiments with two settings of the trade-off parameters (α1, α2
and α3) for Equation 3. Specifically, we first consider a uniform parameter set-
ting, that is, α1 = α2 = α3 (the corresponding algorithm is denoted by “AL-
GQA(u)”). We can notice from Equation 3 that, all the three terms (i.e., log
likelihood on D, log likelihood on Q, and predictive entropy on U) are speci-
fied by the summation of the examples (queries) in each corresponding set. It
therefore indicates that, with uniform trade-off parameters, those three terms
are implicitly weighed by the number of examples (queries) in the correspond-
ing set. For instance, in the initial learning iterations, D and Q usually contain
fewer examples (queries), which consequently yields lower implicit weights on
the first and second terms (i.e., log likelihood on D and Q); on the other hand,
U usually contains a large amount of examples, thus the third term (i.e., pre-
dictive entropy on U) will be weighted higher. To compensate for this effect, we
consider another non-uniform parameter setting: α1 = 1/|D|, α2 = 1/|Q|7, and
α3 = 1/|U |, where |D|, |Q| and |U | denote the size of the corresponding data
(query) sets (the algorithm is denoted by “AL-GQA(n)”).

We also conduct experiments on active learning with specific queries (uncer-
tainty sampling [7]; denoted by “AL-US”) and active learning with inaccurately
answered generalized queries [18] (denoted by “AL-GQN”) for comparison. More
specifically, “AL-US” always asks one specific example in each learning itera-
tion, and the answer to the example is always accurate; whereas “AL-GQN”
tends to ask generalized queries, and is always responded with inaccurate prob-
abilistic answers (with up to 30% noise). In contrast, the proposed algorithms
“AL-GQA(u)” and “AL-GQA(n)” also tend to ask generalized queries in each
iteration, but are always responded with ambiguous (non-probabilistic) answers.

All of the seven UCI data sets have numeric features, binary class and no
missing values. Information on these data sets is tabulated in Table 1. Each
whole data set is first split randomly into three disjoint subsets: the training set,
the unlabeled set, and the test set. The test set is always 25% of the whole data
set. To make sure that active learning can possibly show improvement when the
7 When the query set Q is empty (i.e., |Q| = 0), we directly set α2 = 0, indicating

that the empty query set plays no role in this situation.
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Table 1. The seven UCI data sets used in the experiments

Dataset No. of Attributes No. of Examples Class Distribution Training Size
breast-w 9 699 458/241 1/20
diabetes 8 768 500/268 1/10
heart-statlog 13 270 150/120 1/10
hepatitis 19 155 32/123 1/5
ionosphere 33 351 126/225 1/20
sonar 60 208 97/111 1/5
spambase 57 4601 1813/2788 1/100

unlabeled data are labeled and included into the training set, we choose a small
training set for each data set such that the “maximum reduction” of the error
rate8 is large enough (greater than 10%). The training sizes of the seven UCI
data sets range from 1/100 to 1/5 of the whole sets, also listed in Table 1. The
unlabeled set is the whole set taking away the test set and the training set.

As for all the UCI data sets, we have neither true target functions nor human
oracles to answer the generalized queries, we simulate the target functions by
constructing learning models on the entire data sets in the experiments. The sim-
ulated target function provides ambiguous answer to each generalized query. The
experiment is repeated 10 times on each data set (i.e., each data set is randomly
split 10 times), and the experimental results are recorded for comparison.

4.2 Experimental Results

Based on the seven tested UCI data sets, Figure 3 plots the learning curves of
the four algorithms, and presents the summary of t-test (the paired two-tailed
t-test with a 95% confidence level) for comparison (where each entry, w/t/l,
means that the algorithm in the corresponding row wins on w data sets, ties
on t data sets, and loses on l data sets, compared with the algorithm in the
corresponding column). We therefore can make some clear observations from
these experimental results:

– On most tested data sets, both “AL-GQA(u)” and “AL-GQA(n)” perform
significantly better than “AL-US”. This demonstrates the superiority of ac-
tive learning with generalized queries and ambiguous answers to the tradi-
tional specific-query based learning.

– On most tested data sets, both “AL-GQA(u)” and “AL-GQA(n)” perform
significantly better than “AL-GQN”. This indicates that, compared with
inaccurate probabilistic answers, ambiguous answers are often more effective
in speeding up active learning with generalized queries.

8 The “maximum reduction” of the error rate is the error rate on the initial training
set D alone (without any benefit of the unlabeled examples) subtracting the error
rate on D plus all the unlabeled data in U with correct labels. The “maximum
reduction” roughly reflects the upper bound on error reduction that active learning
can achieve.
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Fig. 3. Learning curves and summary of t-test of the four algorithms on seven UCI
data sets

– “AL-GQA(u)” and “AL-GQA(n)” work comparably well on most tested data
sets. Note that, “AL-GQA(u)” usually starts from lower error rates in the
initial iteration (without asking any queries), and then keeps improving the
predictive performance; whereas, “AL-GQA(n)” often has rather high error
rates in the initial iteration, but the predictive performance can be promptly
improved once it starts asking queries.

To conclude, the experimental results clearly demonstrates the advantage of gen-
eralized queries and ambiguous answers: such type of active learning is superior
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in speeding up the learning process, compared with active learning with either
specific queries or inaccurately answered generalized queries.

5 Conclusions

In this paper, we assume that the active learner can ask generalized queries, and
the oracle is capable of respond with ambiguous answers (i.e., positive if at least
one corresponding specific example is positive, and negative otherwise). After
demonstrating the wide applicability of this setting, we develop a novel algorithm
to ask generalized queries and update learning model with ambiguous answers in
active learning. Empirical study on UCI data sets demonstrates the superiority
of such type of active learning, and shows that the proposed algorithms can
significantly speed up the learning process, compared with active learning with
either specific queries or inaccurately answered generalized queries.
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Abstract. On-line social networking sites often involve multiple rela-
tions simultaneously. While people can build an explicit social network
by adding each other as friends, they can also form several implicit so-
cial networks through their daily interactions like commenting on peo-
ple’s posts, or tagging people’s photos. So given a real social networking
system which changes over time, what can we say about people’s social
behaviors ? Do their daily interactions follow any pattern ? The ma-
jority of earlier work mainly mimics the patterns and properties of a
single type of network. Here, we model the formation and co-evolution
of multi-modal networks emerging from different social relations such
as ”who-adds-whom-as-friend” and ”who-comments-on-whose-post” si-
multaneously. The contributions are the following : (a) we propose a
new approach called EigenNetwork Analysis for analyzing time-evolving
networks, and use it to discover temporal patterns with people’s social
interactions; (b) we report inherent correlation between friendship and
co-occurrence in on-line settings; (c) we design the first multi-modal
graph generator xSocial1 that is capable of producing multiple weighted
time-evolving networks, which match most of the observed patterns so
far. Our study was performed on two real datasets (Nokia FriendView
and Flickr) with 100,000 and 50,000,000 records respectively, each of
which corresponds to a different social service, and spans up to two years
of activity.

Keywords: Social Network Analysis, Graph Generator, Multi-modal
Networks.

1 Introduction

Research of real world complex networks, like social networks [24], biological
networks[11], topology [15] of WWW and Internet raises many significant and
important problems. What patterns do the human-to-human interactions follow
in large-scale social networks ? How can we use such patterns to facilitate existing
applications, such as anomaly detection [1] [18] and collective classification [8],
and make further innovations?
1 http://research.nokia.com/people/hao_ui_wang/index.html
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As a result of the widespread adoption of Web 2.0 technology, social net-
working sites or services(SNS) are becoming ubiquitous and penetrate into every
corner of people’s daily lives. In such systems, people often belong to multiple so-
cial networks because of different person-to-person interactions. For example, in
Nokia FriendView(http://betalabs.nokia.com/apps/nokia-friend-view),
Flickr(www.flickr.com), Facebook(www.facebook.com), eBay(www.ebay.com),
LinkedIn(www.linkedin.com), and Twitter(www.twitter.com), they all provide
the basic function that enables people to add each other as friends through their
content and conversations, which contributes to the emergence of our first type
of social network, namely, the ”friend network” or the ”buddy network”.

In addition, they also allow people to participate in specific activities. In
FriendView, we can comment on the posts written by our colleagues. In Flickr,
we can tag the photos uploaded by our friends. In eBay, we can rate the prod-
ucts sold by our partners. As a consequence, interactions with people centered
around content form another type of social network called the ”comment net-
work” or the ”participation network” from such activities as ”commenting-on-
posts”, ”tagging-photos” and ”rating-products”. Therefore, these two types of
social networks describe different facets of the same social networking system.
For each of them, recent research has reported fascinating patterns, like [26]
or lognormal [7] or Double Pareto LogNormal (DPLN) distribution [25] for the
degree, as well as small and shrinking diameter [20].

In this paper, we are interested in answering the following questions:

– Do human social interactions and behaviors follow any temporal pattern ? Is
there any regularity inherent in the daily activities of individuals and groups?
Can we use such patterns to make predictions of their future behaviors ?

– Given a real social networking site, is there any correlation between the
buddy network and the participation network ? For instance, can we infer
the friendship between two people in buddy network according to the discrete
observations of their co-occurrence in the participation network ?

– How can we produce an intuitive generator that will mimic the behaviors,
and correlations of these networks within a real social networking site simul-
taneously ? Most existing generators try to mimic the skewed distribution
of degree or weight of only a single network, and thus fail to incorporate
the possible correlations with other networks. Here, we want a multi-modal
graph generator, which should describe the way in which the different so-
cial networks discussed above could co-evolve over time through the local
interactions and activities between individuals.

Answering these questions can have many practical applications. First, identi-
fying meaningful patterns hidden in human activities contributes to classifying
people into different groups according to the similarity of their social behaviors,
based on which we can have a deep insight about the composition and evolution
of the network they belong to. Discovering new patterns also helps to discard un-
realistic graph models. Second, knowing the correlation between different social
relations is good for us to design better systems that further expand the range
of human interactions by offering particular friend or product recommendations
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according to specific user context. Finally, intuitive graph models are also vital
for simulation studies of routing algorithms when it is hard or even impossible
to collect large real data, for understanding how the macro and global patterns
of networks can emerge through the micro and local interactions among people
over time, and for compressing and summarizing the real networks by model
parameters.

The paper is then organized as follows. Section 2 reviews related work. Section
3 presents our observed patterns. Section 4 describes the xSocial model in detail.
Section 5 gives the conclusion.

2 Related Work

In this section, we mainly survey the various discovered properties of real world
networks, and several well-known graph generators.

2.1 Network Patterns

Many interesting patterns that real graphs follow have been discovered in recent
work like the power-law distribution of the number of messages(photos), power
law comment distribution, power law interval distribution[16], power law degree
distribution[26], power law edge-weight distribution[24], power law node-weight
distribution[24], Snapshot Power Law(SPL)[22], Clique Participation Law(CPL)
[13], Clique-Degree Power Law(CDPL)[13], Triangle Weight Law[13], Eigenvalue
PowerLaw(EPL)[2], shrinking diameter[20], and oscillating connected component
(GCC&NLCC)[22]. These patterns are important for us to understand the static
and temporal properties of real world networks, to identify authorities and sub-
groups, as well as to refine routing algorithms and recommendations. Moreover,
they are also vital for eliminating unrealistic graph generators and guiding us to
design better ones, because ideally a graph model should be able to mimic all these
patterns as many as possible.

2.2 Graph Generators

Generally, the graph generators of recent literature can be mainly classified as
emergent graph models, and generative graph models. The basic principle of
emergent graph models is that the macro network properties should emerge from
the micro interactions of nodes over time. This type of models include Erdös-
Rényi(ER) model [14], small-world model [27], BA model [6], Copy model [9],
Random Multiplication Model [9], Forest Fire model [20], ’butterfly’ model [22],
and ’RTG’ model [2]. [See [5] and [9] for a detailed review and discussion].
Recently, Goetz [16] also provides models to mimic the evolving and spreading
mechanism of blog systems. Moreover, research from the fields of economics
and game theory also brought utility-based models [17][4][12][13] where each
node tries to optimize a specific utility function, and the network structure can
arise from the collective strategic activities of all the nodes. Generative graph
models often assume a global mathematic rule and perform iterations of such rule
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recursively until the generated networks meet several properties of real networks.
Such models include kronecker multiplication model [19] and tensor model [3].

In summary, the majority of earlier graph generators often focused on model-
ing some main properties of only one single network. For example, [27][6][20][22]
are limited in trying to model unweighted networks, and cannot be generalized
to weighted networks. Goetz[16] describes the evolving process of blogs, but fail
to incorporate the weights. Although RTG[2] can generate weighted graphs, it
still only focused on one single network. As to the generative models, they usu-
ally cannot mimic the micro mechanism of node and edge addition, which makes
it hard for us to understand the inherent natural process of real networks. In
contrast, our work not only considers to mimic most of the known patterns, such
as generating weighted networks from local nodes’ interactions, but also focuses
on co-evolution of different networks simultaneously.

3 Tools and Observations

In this section, we seek to find patterns inherent in large-scale on-line social
networking sites. We first give a preliminary description of Nokia FriendView
and Flickr datasets, and then we present the proposed EigenNetwork analysis
method, and the discovered CoParticipation Friendship Correlation pattern.

3.1 Data Description

The datasets that we have analyzed include the interaction records from Nokia
FriendView, and Flickr. Nokia FriendView is a location-enhanced experimental
microblogging application and service operated by Nokia Beta Labs from the
beginning of November 2008 to the end of September 2009 when the service was
finished. It allows users to post messages about their status and activities from
GPS-enabled Nokia S60 phones or from the web. Any two users can add each other
to their buddy list through email request and confirmation. The users can also
comment on the status messages posted by the buddies in their social network.
As a result, we use three different types of record, < usrID,msgID, postT ime,
length >, < usrID, buddyID, addT ime >, < userID,msgID, commentT ime,
length >, to describe these actions respectively.

Here, the edge weight of buddy network is the total number of comment times
between them. For the dataset, there are 34,980 users, 20,873 buddy links, 62,736
status messages, and 22,251 comments [10]. The unique feature of this dataset
is that it has recorded a complete evolving process of a social networking site
from the very beginning to the end, over the course of 11 months. The detailed
records enable us to have a deep insight about the way that people interact
with each other. In the Flickr dataset (where people can upload photos, add
contacts, and comment on or tag photos), we use similar tuples as Friend View
to describe the data which includes about 542,105 users, 46,668,661 contact links,
101,520,484 photos, and 8,999,983 comments from 2005 to 2007. Because these
datasets belong to different services, have different scales, and were collected
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from different time, the diversity of our data can thus be guaranteed. Notice we
only use the encrypted user id in this study, and restrict our interest only in the
statistical findings within the data.

3.2 EigenNetwork Analysis

While the activities and interactions where each of us is involved every day
appear nearly random, intuition tells that there also seems to be some regular
recurrence of patterns, especially when we take the temporal, spatial, and social
context into consideration. For instance, we may check several emails, and see
some news after arriving at the office in the morning. Then we might chat with
our friends through instant messaging during the working hours, and in the
evening, we might write blogs, make comments, upload photos, or even play
on-line games. Since a social network is inherently the collection of people and
their interactions, analyzing the temporal behaviors of individuals and subgroups
can help us to have a deep insight about the overall composition of the entire
network.

We formulate our approach as follows. Given graph G, for ∀eij ∈ E(G), we
characterize the temporal activity of all the edges by a two-dimensional E ×D
binary matrix M, where E = |E(G)|, and D is the total number of days that
graph G has been in study.

M(p, q) =

⎡⎢⎢⎣
0 0 1 0 ...
0 1 0 0 ...
1 0 1 1 ...
... ... ... ... ...

⎤⎥⎥⎦ (1)

Therefore, the pth row represents the behavior of a particular edge eij spanning
the D days. On a specific day q, if node vi and vj has at least one interaction
with each other, then M(p, q) = 1; otherwise M(p, q) = 0. We then do Singular
Value Decomposition(SVD) on matrix M and it is factorized as

M = U ×Σ × V T (2)

where the columns of D-by-K matrix V form a set of orthonormal input basis
vectors for M, the columns of E-by-K matrix U form a set of corresponding
orthonormal output basis vectors, and the diagonal values in K-by-K matrix Σ
are the singular values arranged in the descending order by which each corre-
sponding input is multiplied to give a corresponding output.

By intuition, the SVD on matrix M implicitly decomposes the E edges into
K groups. Each column (or singular vector) i of the E-by-K matrix U describes
the extent to which each edge of G participates in the ith group. Every column
j of the D-by-K matrix V shows the extent to which the jth group is active on
each day. The nonnegative real numbers on the diagonal of the K-by-K matrix
Σ indicates the strength of each group. For each singular value si, the energy
of si is defined as s2i , so we keep the first few strongest singular values whose
sum covers 80-90 percentile of the total energy. Here, we build matrix M for
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Fig. 1. The 1st and 2nd singular vector of matrix V that describe the corresponding
daily activities of the 1st and 2nd subgraph consisting of the selected edges in the
participation network (formed by the comment relation) of FriendView (a-b), and Flickr
(c-d) respectively

the participation network which emerges from the comment interactions among
users in FriendView and Flickr respectively. M(p, q) = 1 means that for the pth
edge eij , at least one of the two nodes (vi and vj) commented on the messages
or photos posted by the other one on the qth day.

Figure 1 shows the top two singular vectors of the matrix V from FriendView
and Flickr. In Figure 1(a-b), we have two groups of edges that show different
patterns of behavior. The first group of Figure 1(a) has basically a periodic
pattern, while the second group of Figure 1(b) appears more bursty, where the
spike occurs on the 14th day. Based on the complete records of FriendView,
it was discovered that the 14th day was just during the week that Nokia did
lots of advertising work to promote FriendView by calling for more open beta
testers. For Flickr, both of the two groups shown in Figure 1(c-d) behave pe-
riodically. There is a clear trend of overall growth in the amplitude with some
oscillation. We guess this may be caused by the quickly increased popularity and
fast development of Flickr as more and more users joined in the system after the
year 2006.

Figure 2 further presents the evolving process of the subgraph G1
x and G2

x

consisting of the selected edges that actively participate in the 1st and 2nd
singular vector of matrix U . Being active means that we only keep the set of
edges whose sum of the energy (which is the square of the corresponding value)
covers 80-90 percentile of the total energy. In Figure 2, the evolving pattern of
G1

x and G2
x are clearly different. Subgraph G1

x contains a size-4 clique (complete
graph) where each blue-square node has connections with each other. This clique
remains stable in topology and in total number of activities over the whole
period, except for G1

2 where five edges shown in red had significantly increased
number of activities, and for G1

3 where the the number of their activities dropped
back. For ∀eij ∈ E(G1

x), x > 1, red color of eij indicates that its weight (which
is the total number of times that node vi and vj interact with each other in
the xth month) is significantly higher than its previous value in graph G1

x−1, and
green color means the reverse. We made further investigations into the egocentric
subgraph of around such 4 blue-square nodes in the entire network. Their average
degree, and node betweenness [24] are 39 and 0.42 respectively. Because degree,
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Fig. 2. The evolving process of the subgraph G1
x and G2

x consisting of the selected
edges belonging to the 1st(top row) and 2nd(bottom row) singular vector of matrix U
in the participation network of FriendView. ∀G1

x (G2
x) where x > 1, red indicates that

the weight (representing the number of times that two users comment on each other’s
messages) is at least an order of magnitude higher than its previous value in G1

x−1

(G2
x−1), green means the reverse, and black shows the same level.

and node betweenness are two popular measures to quantify a node’s authority
or centrality in a social network, the subgraph formed from these active edges
in the 1st singular vector of matrix U actually represents the central part or the
core of FriendView’s participation network.

We see that in November, 2008 and January, 2009, there are two significant
increases in the number of interactions as most edges in the subgraph are red
compared with the previous graph, which also coincides with the two spikes in
Figure 1 (a). Moreover, because the open beta testing for FriendView actually
finished in September, 2009, in Figure 2, the subgraph becomes sparse, when
the interactions between users dropped gradually, and also conforms with the
decreasing trend in Figure 1(a). In contrast, the subgraph G2

x is loosely con-
nected. In the beginning, it only consisted of several separated edges. Notice in
Figure 1(b), there is a bursty in the first month when Nokia did a lot of pub-
licity work. As a result, there were many separated short-term interactions at
that time.

Therefore, because subgraphs formed by the selected edges from the singular
vectors of matrix U (which are also the eigenvectors of M×MT ) hold differ-
ent local temporal patterns, and represent different compositions of the overall
network, they are defined as the EigenNetworks, and our methodology is thus
called EigenNetwork analysis.

Observation 1. EigenNetwork. The EigenNetworks can reveal local composi-
tions of real world social networks, and hold different temporal patterns over
time.
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3.3 CoParticipation-Friendship Correlation

In real social networking sites like FriendView or Flickr, on the one hand, peo-
ple spend their daytime in following the updated status of their friends in the
explicit buddy network. On the other hand, people are also the major players in
the implicit participation network that emerges from the activities we adopt. As
a consequence, is there any correlation between these two types of interaction ?
Will the reoccurrence of one particular implicit activity contribute to a formation
of the corresponding explicit interaction ? More specifically, can we quantify the
extent to which two people will become friends in the buddy network according
to the discrete observations of their co-occurrences in the corresponding partic-
ipation network ? An underlying premise is that the probability for two people
to become friends increases with the number of activities in which they have
engaged together.
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Fig. 3. The probability P (k) of being friends as a function of the number of co-
commented messages k in Friend View (a), and photos in Flickr (b) respectively. For
each k, red curve indicates the actual probability of being friends, and blue curve shows
the expected value in random graphs. The outliers are marked by red circles.

Figure 3 shows this basic relationship in red color for FriendView and Flickr
respectively, that is, the probability P (k) of two people to become friends as a
function of the total number of times that they have participated in k common
activities. P (k) is calculated as follows. We first find all tuples < i, j, k > such
that node vi and vj have k participated activities in common. Then P (k) is the
fraction of such tuples for a given k that node vi and vj are also friends in the
buddy network. We see that when k is roughly small (k < 30), P (k) has a strictly
monotonic increase as k increases. However, as k becomes large, the marginal
effect diminishes as k increases.

Moreover, we would also like to evaluate how this empirical correlation com-
pares to the corresponding result if comments were produced randomly with
the same background distribution in real datasets. Specifically, for each node vi,
while we keep the number of posts(photos) on which she would comment the



Analysis of Large Multi-modal Social Networks 401

same as that in real dataset, we let her randomly choose among the posts(photos)
this time. We then use P0(k) to denote the expected probability for a pair of
nodes to become friends. If P (k) > P0(k), we say that the correlation is over-
represented in the data compared to chance;on the other hand, if P (k) < P0(k),
then this correlation is underrepresented. To quantify the significance of P (k)
being over-or-underrepresented, we use the surprise[21] S(k) which is defined as

S(k) = Δ(k)× (P (k)− P0(k))/
√
Δ(k)× P (k)× (1− P (k)) (3)

whereΔ(k) is the total number of tuples that have k common posts(photos). S(k)
indicates the number of standard deviations by which the actual number of pairs
being friends deviates from the expected number in random graphs. In Figure 3,
the plots in blue dash-line describe P0(k) vs. k in random graphs for FriendView
and Flickr respectively. According to the Cental Limit Theorem, the distribution
of each S(k) conforms approximately to a standard normal distribution, and it
is expected on the order of tens to already be significant (S(k) = 6 gives a p-
value of 10−8 approximately)[21]. However, in our datasets, we have found that
the average S(k) for k < 60 and P (k) �= 0 is 54.0 and 371.6 for FriendView
and Flickr respectively, which is much larger and means that this correlation is
statistically significant.

There are also some outliers(marked by red circles). The existence of such
outliers means that although two people have engaged in many common activ-
ities together, they are still not friends yet. We guess this might be caused by
users’ ignorance or unawareness of each other. These types of users may only
care about the messages or photos themselves by ignoring other people’s com-
ments at all. As a result, one possible application of the correlation shown in
Figure 3 may be to help us with better recommendation systems, especially for
the situation where k is large, because as k continuously increases , the number
of pairs who have k activities together decreases significantly, which makes it
easier to give specific recommendations.

Observation 2. CoParticipation-Friendship Correlation(CPF). Given
a real social networking site, the probability P (k) of being friends for any pairwise
persons increases with their k activities in common. Although the marginal effect
diminishes as k increases, the effect remains significant.

4 xSocial Model

Next, we present our xSocial model where the ”x” means that it is a multi-modal
graph generator that mimics real social networking sites to produce the buddy
network and the participation network simultaneously. The guiding principle is
that based on our understanding of existing patterns, we will devise a set of
simple rules that each user would follow, and the entire social network will arise
and evolve through the local interactions between individuals over time. Notice
that this is actually a very challenging task, because the majority of prior work
mostly focused on modeling only a single network. Our work is different as all
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the synthetic networks generated by xSocial should follow both the old and the
new patterns mentioned in the previous section.

4.1 Model Description

xSocial model consists of the following four essential components:

– It is designed by using agent-based modeling approach. We have a set A of
n distinct agents, each of which has a preference value fi.

– At each time, every agent performs three independent actions(write a mes-
sage, add a friend and comment on a message) guided by the one-dimensional
random walk mechanism.

– An agent chooses his friends either by their popularity or by the number of
messages on which they have commented together, which is determined by
his preference fi.

– An agent can also follow the updated status of his friends by putting com-
ments on the corresponding newly written messages.

Preference Value. For any agent ai ∈ A, fi ∈ (0, 1) represents two different
behaviors of people while they are using on-line social networking services. fi

approaching to 1 means the agent likes to follow those active agents who have
already written many messages, and continuously put new messages, while fi

close to 0 indicates that he is interested in and pays more attention to the
comments put by other agents.

Random Walk. In every step, each agent does a random walk on a line, and
then chooses to write a message, or add a friend, or comment on a message
whenever the walk returns to the origin (at state 0). We use three integers: Sw,
Sa, and Sc to represent the state of the corresponding action respectively. The
initial state of Sw, Sa, and Sc is 0. For each variable, there are two types of
transition. An agent ai adds or subtracts 1 from the variable’s current state
with probability pi and 1 − pi respectively. The agent ai performs the corre-
sponding action whenever Sw, Sa, or Sc returns to 0 again. Newman [23] shows
that the inter-posting times follow a power-law distribution with exponent -1.5.
Intuitively, the random walk reflects how frequently an agent uses the social net-
working service. On the one hand, when the probability pi approaches to 0 or 1,
the agents may just use the system in the very beginning, and never come back,
just like that most users only register an account for curiosity in the beginning,
but almost seldom use the service later. On the other hand, when pi is near 0.5,
the corresponding agents are relatively active users who can successively use the
service, although they may be distracted by some random events to the nearby
state around the origin.

Add a friend. For ∀ai ∈ A, once ai.Sa hits zero, he decides to expand his
buddy network by exploring more friends. With probability fi, ai trusts word-of-
mouth and chooses an agent aj proportionally with the number of messages she
has written, because the user who has published many messages will naturally
attract attention of others so that she can expand the number of her followers.



Analysis of Large Multi-modal Social Networks 403

Once she has more followers, she would probably like to publish even more
messages. In the opposite case, with probability 1 − fi, ai picks an agent ak

proportionally with the number of messages on which they have put comments
together.

Make a comment. For ∀ai ∈ A, when ai decides to comment on some other
messages at the moment ai.Sc = 0, she prefers the candidates newly written by
her friends, because for most social networking services, we can often receive a
notification once any one of our friends has updated her status. Therefore, ai

chooses the message proportionally with #comments+1
age+1 , where #comments is the

number of existing comments on such message, and age is the number of times
since its publication. As a result, the newly written messages which already have
many comments will be chosen with very high probability.

Algorithm 1. xSocial Model
Input: A, T , time ← 0
while time < T do1

foreach ai ∈ A do2
with probability pi, add ai.Sw, ai.Sa, and ai.Sc by 1;otherwise, subtract them all3
by 1;
if ai.Sw = 0 then ai writes a message;4
if ai.Sa = 0 then5

if SampleUniform(0, 1) < fi then6
the probability of ai choosing aj is P (ai → aj) ∝ #messages(aj);7
(#messages is the number of aj ’s messages);8

else9
the probability of ai choosing aj is P (ai → aj) ∝ #cocomments(ai, aj);10
(#cocomments is the number of messages commented together);11

if ai.Sc = 0 then12
the probability of ai choosing a message oj is P (ai → oj) ∝ #comments+1

age+1 ;13

time ← time + 1;14

In summary, all these four major components in our xSocial model include
very simple rules without assuming any prior sophisticated distributions or con-
straints. However, as we will show in the next section, both the buddy net-
work and the participation network generated by this simple model can still
match most patterns found on the real datasets. Pseudocode for xSocial is shown
in algorithm 1.

4.2 Model Analysis

The xSocial model incorporates the interlinked evolving process of buddy net-
work and participation network together, which is much more challenging to
model jointly than separately. On the one hand, because the majority of exist-
ing graph generators mostly considers modeling a single type of network, there
is no natural model to compare with our model. On the other hand, since the
xSocial model also uses random walk to determine when to put a message or
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photo, for this point, we can at least make a comparison to the ZC model [16].
However, as we will show as follows, even ZC model still cannot give the correct
distribution of the number of messages that users have posted. In Figure 4, ZC
model actually gives a folded normal distribution for people’s posting behavior
with 0 mean and T deviation where T is the number of times that random walk
repeats. In contrast, our xSocial model matches the power law exponents well :
-1.95 vs. -2.07 in Figure 6(m) and 6(q).

Because normal distribution and power-law distribution corresponds to two
extreme cases : a homogeneous network, vs. a heterogeneous network, we believe
that this difference arises as a result of the different random walk behaviors.
In ZC model, the probability for an agent to change his state is all set to 0.5,
then each agent has equal opportunity to cross zero (make a post), although
they may be distracted by some random events to the nearby state. However,
this only models the behavior of active users who frequently use the system
although they can be away from his computer for some random distractions.
However, a real social networking site not only includes active users, but also
involve lots of inactive users. These users just register an account for curiosity
in the beginning, but seldom come back and use the system later. As a result,
the probability of a random walk to change state in xSocial is designed to be
different for each agent, which essentially enhances the system’s heterogeneity.
Because such heterogeneity significantly increases the model complexity, rigorous
mathematical proofs are our current ongoing work.

4.3 Model Validation

How accurate is our model? A model is considered to be good if it is able to
produce patterns and properties similar to those found in real world networks as
many as possible. We simulated the model 15,000 times with 100,000 agents. For
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Fig. 5. Comparison of the weighted buddy network, between the two real graphs (top
two rows) for FriendView and Flickr, and our synthetic graph (bottom row)

each agent ai, as fi and pi are independently and uniformly chosen at random
from 0 to 1, there is inherently no user-predefined parameters for xSocial to set.

We check with Edge-Weight Distribution[24], Node-Weight Distribution[24],
as well as TWL[13] for weighted network, and Degree Distribution[26], SPL[22],
CPL[13], CDPL[13], GCC&NLCC[22], as well as EPL[2] for unweighted network.
For each agent, we check with the distribution of the number of written posts,
and the CoParticipation Friendship Correlation(CPF). For each post, we check
with the distribution of the number of received comments.

Figure 5 and 6 show the related old and new patterns of the buddy network for
Flickr and FriendView as well as for xSocial results, respectively. Figure 7 further
compares the participation network (formed by the comment relation) between
the real graph and the synthetic graph. Because we have similar observations on
Flickr for the basic known patterns, here, we have to only present the results on
FriendView in Figure 6(m)∼(p) and in Figure 7 due to the limit of space.

According to [22], there often exists a gelling point corresponding to the spike
in the early stage of the growing network in Figure 6(s) and in Figure 7(h), after
which several small connected components start to fuse into a giant connected
component, and the 2nd and 3rd connected component remain constant size
with small oscillations.

We see that the gelling point in Figure 6(o) and in Figure 7(d) is not as clear
as in Figure 6(s) and in Figure 6(h), probably because the data was collected as
a snapshot by month, and the data at the gelling point could be absorbed by
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Fig. 6. Comparison of the weighted buddy network cont’d, between the two real graphs
from (a) to (h), and (m) to (p) for FriendView and Flickr, and our synthetic graphs
from (i) to (l), and (q) to (t)

the later networks. By contrast, the synthetic networks are more fine-grained.
However, after the gelling point, the size of the connected components keeps con-
stant, showing that the synthetic networks coincide with the real networks. The
effective diameter of the weighted buddy network and participation network of
FirendView is approximately 9 and 10, while xSocial gives 9.7 and 9.5 respec-
tively. In all cases, xSocial can give skewed distributions for both the buddy
network and participation network which are remarkably close to the real ones.
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Fig. 7. Qualitative comparison of the comment network, between the real graph (top
row), and our synthetic graph (bottom row)

5 Conclusion

We study multi-modal networks formed by friend and comment relations in two
different datasets which have over 50 million records and span the course of 2
years. The main contributions are: (a) we proposed the EigenNetwork approach
to analyzing time-evolving networks, and revealed that there exists temporal
regularity with people’s on-line social interactions; (b) we discovered inherent
correlations between friendship and occurrence in on-line social networking set-
tings; (c) we design the first multi-modal graph generator xSocial that stands
out from the rest, because it does not include any user predefined parameters, it
only uses local information, and it is capable of describing the co-evolving pro-
cess of multiple weighted social networks that match the old and new patterns
observed so far.

References

1. Aggarwal, C.C., Yu, P.S.: Outlier detection with uncertain data. In: SDM, pp.
483–493 (2008)

2. Akoglu, L., Faloutsos, C.: Rtg: A recursive realistic graph generator using random
typing. In: PKDD, pp. 13–28 (2009)

3. Akoglu, L., McGlohon, M., Faloutsos, C.: Rtm: Laws and a recursive generator for
weighted time-evolving graphs. In: ICDM, pp. 701–706 (2008)

4. Albers, S., Eilts, S., Even-Dar, E., Mansour, Y., Roditty, L.: On nash equilibria
for a network creation game. In: SODA, pp. 89–98 (2006)

5. Albert, R., Barabasi, A.-L.: Statistical mechanics of complex networks. Reviews of
Modern Physics (2002)

6. Barabasi, A.L., Albert, R.: Emergence of scaling in random networks.
Science 286(5439), 509–512 (1999)

7. Bi, Z., Faloutsos, C., Korn, F.: The ”DGX” distribution for mining massive, skewed
data. In: KDD (August 2001), Runner up for Best Paper Award



408 N. Du, H. Wang, and C. Faloutsos

8. Bilgic, M., Getoor, L.: Effective label acquisition for collective classification. In:
KDD, pp. 43–51 (2008)

9. Chakrabarti, D., Faloutsos, C.: Graph mining: Laws, generators, and algorithms.
ACM Comput. Surv. 38(1) (2006)

10. Chin, A.: Finding Cohesive Subgroups and Relevant Members in the Nokia Friend
View Mobile Social Network. CSE (4), 278–283 (2009)

11. Chung, F., Lu, L., Dewey, T.G., Galas, D.J.: J. Comput. Biol.10(5), 677–687 (2003)
12. Demaine, E.D., Hajiaghayi, M., Mahini, H., Zadimoghaddam, M.: The price of

anarchy in network creation games. In: PODC, pp. 292–298 (2007)
13. Du, N., Faloutsos, C., Wang, B., Akoglu, L.: Large human communication net-

works: patterns and a utility-driven generator. In: KDD 2009, pp. 269–278 (2009)
14. Erdos, P., Renyi, A.: On the evolution of random graphs. Publ. Math. Inst. Hun-

gary. Acad. Sci. 5, 17–61 (1960)
15. Faloutsos, M., Faloutsos, P., Faloutsos, C.: On power-law relationships of the in-

ternet topology. In: SIGCOMM, pp. 251–262 (August-September 1999)
16. Goetz, M., Leskovec, J., Mcglohon, M., Faloutsos, C.: Modeling blog dynamics. In:

ICWSM 2009 (2009)
17. Laoutaris, N., Poplawski, L.J., Rajaraman, R., Sundaram, R., Teng, S.-H.:

Bounded budget connection (bbc) games or how to make friends and influence
people, on a budget. CoRR (2008)

18. Lee, J.-G., Han, J., Li, X.: Trajectory outlier detection: A partition-and-detect
framework. In: ICDE 2008, pp. 140–149 (2008)

19. Leskovec, J., Chakrabarti, D., Kleinberg, J.M., Faloutsos, C.: Realistic, mathemat-
ically tractable graph generation and evolution, using kronecker multiplication. In:
Jorge, A.M., Torgo, L., Brazdil, P.B., Camacho, R., Gama, J. (eds.) PKDD 2005.
LNCS (LNAI), vol. 3721, pp. 133–145. Springer, Heidelberg (2005)

20. Leskovec, J., Kleinberg, J., Faloutsos, C.: Graphs over time: densification laws,
shrinking diameters and possible explanations. In: KDD 2005, pp. 177–187 (2005)

21. Leskovec, J., Hunttenlocher, D., Kleinberg, J.: Signed Networks in Social Media.
In: CHI, pp. 1361–1370 (2010)

22. McGlohon, M., Akoglu, L., Faloutsos, C.: Weighted graphs and disconnected com-
ponents: patterns and a generator. In: KDD 2008, pp. 524–532 (2008)

23. Newman, M.E.J.: Power laws, pareto distributions and zipf’s law. Contemporary
Physics 46, 323 (2005)
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Abstract. Semi-supervised clustering models, that incorporate user provided
constraints to yield meaningful clusters, have recently become a popular area
of research. In this paper, we propose a cluster-level semi-supervision model for
inter-active clustering. Prototype based clustering algorithms typically alternate
between updating cluster descriptions and assignment of data items to clusters.
In our model, the user provides semi-supervision directly for these two steps. As-
signment feedback re-assigns data items among existing clusters, while cluster
description feedback helps to position existing cluster centers more meaning-
fully. We argue that providing such supervision is more natural for exploratory
data mining, where the user discovers and interprets clusters as the algorithm
progresses, in comparison to the pair-wise instance level supervision model, par-
ticularly for high dimensional data such as document collection. We show how
such feedback can be interpreted as constraints and incorporated within the k-
means clustering framework. Using experimental results on multiple real-world
datasets, we show that this framework improves clustering performance signifi-
cantly beyond traditional k-means. Interestingly, when given the same number of
feedbacks from the user, the proposed framework significantly outperforms the
pair-wise supervision model.

1 Introduction

While clustering has been one of the most effective tools for exploratory data mining
for decades, it is widely accepted that the clusters generated without any supervision
often do not lead to meaningful insights for the user. Accordingly, there has been a
lot of interest in recent years in developing semi-supervised clustering models that can
accommodate supervision from the user to guide the clustering process[4]. In the most
popular model for semi-supervised clustering, the user provides must-link and cannot-
link constraints over pairs of data instances [17]. It has been shown that such constraints
can significantly improve clustering performance beyond that of unsupervised models.

An interesting feature of this instance-level model is that the constraints are indepen-
dent of each other, and also of all other instances in the dataset. However, it is straight
forward to imagine example datasets, as in Figure 1, where the same pair of instances
may be ‘must-linked’ or ‘cannot-linked’ depending on the other instances present in the
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Fig. 1. Cluster examples involving the same pair of instances, shown in white. Based on the other
instances in the dataset, in (a) they are must-linked to belong to the same cluster, while in (b) they
are cannot-linked.

dataset. Therefore, such independent constraints required by the instance-level model
can only be provided when the human supervisor can visualize the space of all the data
instances and then decide on the desired shape of the clusters, as in most illustrative ex-
amples for instance-level supervision [4]. Such visualization of data items is difficult,
if not impossible, in high dimensions, for example when clustering a collection of text
documents. A pair of documents, one on the English soccer league and the other on
the Spanish soccer league, would belong to the same cluster if the document collection
is on different types of sports, but not in a different collection that discusses different
European soccer leagues. Thus providing constraints on this pair of documents is not
possible using independent pair-wise constraints without visualizing or understanding
the document collection in its entirety.

In this paper, as an alternative we propose an interactive cluster-level semi-supervision
framework for clustering, where such conditional constraints can be provided by the hu-
man supervisor. Prototype or model based clustering algorithms typically iterate over
two steps — assignment of data points to clusters, and adjustment of clusters to mini-
mize distortion. In our model, the user provides two different types of feedback, aimed
directly at supervising these two different steps, while the algorithm executes. Using
assignment feedback, the user moves a data point from one of the current clusters to
another. Using cluster description feedback, the user modifies the feature vector of any
current cluster to make it more meaningful. Such an interactive framework is particularly
useful for exploring large high-dimensional data sets when the clusters are not known
in advance. The current set of clusters provides the user with a summarized, aggregated
view of the entire dataset. Conditioned on this current set of clusters, and also enabled
by the summary that it provides, he then re-assigns and re-adjusts this clustering as he
thinks appropriate. The algorithm learns from this feedback, and from other feedbacks
provided in earlier stages, to re-cluster the dataset, which the user can again inspect and
critique. The iterative process continues until the user is satisfied with the clustering.
The basic idea of interaction for clustering [6,12], interpreted as pair-wise constraints,
was proposed as early as 1999, but to the best of our knowledge, there has not been any
follow-up work around cluster-level supervision to address large dimensionality of the
data.
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We show how both these types of feedback can be interpreted as constraints and
incorporated within the k-means formulation, and the assignment and update steps can
be modified to minimize constraint violation while maintaining low distortion error.
Though we focus on the k-means objective function for this paper, we believe that a
similar semi-supervision framework can be built around other model-based clustering
objective functions as well.

The rest of the paper is organized as follows. In Section 2, we illustrate and motivate
the two types of feedback using examples, followed by a review of related work in Sec-
tion 3. We formalize the problem in Section 4, followed by the inter-active clustering
algorithm in Section 5. Possible models for the supervisor and the issue of convergence
are discussed in Section 6, and then our experimental evaluation is described in Sec-
tion 7. We end with concluding remarks and possible future directions in Section 8.

2 Cluster-Level Supervision: An Example

In this section, we present an illustrative example of cluster-level supervision. Though
the example is for document collections, we believe that the framework also offers
similar advantages for other high dimensional domains.

Consider a very large collection of postings on a vehicle related mailing list. An
analyst wishes to understand the issues being discussed, and, in order to do so, decides
to partition the posts into k clusters, using the first stage of the algorithm, which is
completely unsupervised. Note that he does not have any idea of possible issues ahead
of time, apart from that they all relate to vehicles. On inspecting the cluster descriptions
— the top words in decreasing order of weight (or importance) for the cluster — he
finds that one cluster (c1) is about {Yamaha, Honda, car, bike, GM}, while another (c2)
is about {parts, power-steering, door, power-windows}. Using his domain knowledge,
he understands that the c1 is about Bikes & Cars, while c2 is about Car Parts.

In the first scenario, he likes these cluster descriptions, and goes on to inspect some
of the individual posts contained in them. He notices that some posts ‘truly’ relating
to c1 (Bikes & Cars) — for example a few mentioning ‘the best part about Honda’ —
have been assigned incorrectly by the algorithm to the Car Parts cluster c2. He corrects
this by appropriately re-assigning these posts to c1. We call this an assignment feedback
from the user, where he moves a data instance from one existing cluster to another. The
clustering algorithm learns from this feedback — to add ‘part’ to the description of the
first cluster c1 as well, possibly with a small weight — so that other similar posts get
correctly assigned.

In the second scenario, the user decides that he would rather prefer cluster c1 to be
about Bikes and cluster c2 to be about Cars & Car Parts. To achieve this, he adjusts
the description of the clusters, by changing c1’s description to {Yamaha, Honda, bike}
and c2’s description to {car, GM, power-steering, door, power-windows, Honda}. We
call this a cluster description feedback, where the user directly modifies the features in
the cluster description according to his preference. Observe that it would not have been
possible for the user to create these new cluster descriptions, without knowing the sum-
maries provided by the existing cluster descriptions. Again, the algorithm learns from
this feedback to correctly reassign the posts to appropriate clusters. We will assume in
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our formulation that the user provides a new weight vector for the cluster description,
but in practice the user need not specify weights explicitly. For example, in a working
system, he may simply rank order the top few features, or click and drag a weight curve
over them. However, the details of the user interface is outside the scope of this paper,
and we intend to investigate this in future work.

In general, the user is expected to provide both these types of feedback to the algo-
rithm inter-actively, as new clusters emerge and documents get assigned to them. At any
stage, the algorithm considers all feedback provided so far, even those at earlier stages,
to recluster the documents.

We note that it is possible to provide cluster description feedback indirectly through
assignment feedback, and vice versa. Re-assignment of points to centroids will auto-
matically result from cluster description changes and similarly, many assignment con-
straints will lead to movement of the centroid in the next iteration. However we will see
how using them directly to achieve the intended effect saves the user considerable time
and effort.

3 Related Work

There has been a lot of research over the last decade on clustering with constraints
[4]. The most popular approach provides pair-wise instance-level supervision, which
is either used to learn distance metrics [19,16,2] or to provide additional constraints
for the clustering algorithm [17,18,5,9,10,11]. Other work on cluster-level constraints
looks to control size and balancing of clusters [9,1], or to find alternative clusters [14].
In contrast, we look to provide on-line supervision on descriptions and data assignments
for existing clusters.

The idea of assignment feedback is closely related to active learning [7,8]. However,
active learning assumes the classes in the data to be known apriori, while in our frame-
work the user aims to simultaneously discover the clusters and the assignments to them
in the spirit of exploratory data mining.

The concept of active supervision for clustering has been explored [15,6,3,12] but
mostly for pair-wise constraints. Cohn et. al.[6] proposed the idea of inter-active cluster-
ing as early as 1999 in an unpublished manuscript. Though they suggest the possible use
of cluster-item assignment feedback, the proposed model only incorporates pair-wise
constraints. Similarly, desJardins et. al.[12] explore how user interaction with clusters,
visualized in a two-dimensional space, can be interpreted as pair-wise constraints for
clustering. To the best of our knowledge, the idea of using assignment feedback in con-
junction with description feedback on current clusters to address high-dimensionality
of the data is novel in the literature.

Many clustering objective functions more sophisticated than k-means distortion have
been proposed. For example, co-clustering[13] looks to cluster the features and the
items simultaneously. Note that this paper does not propose a new clustering objective
function. Using k-means as an illustrative example, we have shown how cluster-level
inter-action can be used to improve unsupervised clustering. Such interaction can be
built on top of co-clustering and other proto-type based clustering models as well.
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4 Problem Formulation

In the traditional k-means problem, we have a set of n data points {x1, . . . , xn}, each
drawn from domainX . A clustering of these data points is defined by k clusters {c1, . . . ,
ck}with corresponding centers {μ1, . . . , μk}, and an assignment δ(ci, xj) of data points
to clusters. We will consider each data point and the cluster center to be defined as
weight vectors over the features of X . Given such a clustering C, we can measure the
distortion error for C as the summed distance of data points from their corresponding
cluster centers:

Ex(C, δ) =
∑

i

∑
j

(μi − xj)2δ(μi, xj) (1)

Typically, given the set of data points, the goal of k-means clustering is to find the k
cluster centers and an assignment of data points to clusters such that the total distortion
error is minimized. In the rest of the formulation, we will not distinguish between clus-
ters and centers. For example, we will use the notation μ to refer to both a center and
its corresponding cluster.

In our version of the problem, we additionally have two different types of feedback
provided by the user.

We have a set F a of l assignment feedbacks, provided by the user possibly over
different stages of the inter-active procedure. The ith assignment feedback fa

i can be
represented as {xa

i ,μ
a
i , μ

a
i }, indicating that data point xa

i is assigned by the user to a
specific cluster μa

i from the set of current clusters μa
i .

We also have a set F d of m cluster description feedbacks obtained from the user,
again over various stages of the inter-active process. For the ith such feedback fd

i ,
we assume that the user observes the top t features of a cluster ordered by weight
(od

i ) and provides his preferred feature vector (pd
i ) for it as feedback. We call t the

observed description length for cluster description feedback. Accordingly, we represent
fd

i as {od
i , p

d
i }, where od

i is an ordered set of features and pd
i is a weight vector over all

features.
Though each feedback is provided at a specific stage of the interaction for a specific

set of clusters C, it is desirable to make use of it at later stages when the current set of
clusters is C′, depending on how different C′ is from C. Therefore, at any stage of the
clustering, we consider all feedbacks that have been provided up to that stage.

In the presence of these two sets of feedbacks from the user, our reformulated cluster-
ing goal is to conform with these feedbacks as much as possible, while still maintaining
low distortion error. In order to capture this in our objective function, we associate one
constraint for each feedback and a penalty that the clustering algorithm has to pay for
violating that constraint.

Let us first consider an assignment feedback fa
i . The most specific constraint that

arises from it is that every time the current set of clusters exactly matches μa
i , the data

point xa
i always has to be assigned to the specific cluster μa

i from among them. The
penalty for violating this constraint is the distance between μa

i and the cluster δ(xa
i )

to which xa
i is assigned instead. (Note that, without ambiguity, we have overloaded

the symbol δ to use δ(xa
i ) as a function that returns a specific cluster.) However, this

very specific interpretation would render this constraint irrelevant at later stages of the
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clustering when the current set of clusters is even slightly different from μa
i . To get

around this, we define the relevance Ra
i (C) of an assignment constraint fa

i , given a
current set of clusters C, as the ‘similarity’ of C with the set of clusters μa

i specified in
the feedback. For a ‘similar’ set of clusters C, there is no penalty when xa

i is assigned
to the cluster Na

i (C) which is ‘nearest’ to μa
i in the current cluster set C. If, however,

xa
i is assigned to some cluster δ(xa

i ) which is different fromNa
i (C), then the clustering

algorithm has to pay a penalty equal to the distance between δ(xa
i ) and Na

i (C). The
total assignment error takes into account both the penalty and the current relevance of
the constraint. The higher the relevance, the higher is the assignment error for violating
the constraint.

In summary, the clustering error associated with an assignment feedback fa
i is cap-

tured as

Ea
i (C, δ) = (δ(xa

i )−Na
i (C))2 ×Ra

i (C) (2)

The total error for the entire set of assignment feedbacks F a is obtained by summing
over the errors for the individual feedbacks: Ea(C, δ) =

∑l
i=1E

a
i (C, δ).

The relevance of the current set of clustersC to the feedback clusters μa
i is measured

using the best mappingMa
i (C) between the two sets of clusters. The weakness of such

a mapping can be measured by the summed distances between mapped clusters from
the two sets. The relevance is then defined using an exponential function as

Ra
i (C) = exp(−(

∑
μ∈C

(μ−Ma
i (μ))2) (3)

Let us now consider a cluster description feedback fd
i ∈ F d. The most specific

constraint that can be associated with fd
i is that for any cluster μ from the current set

of clusters C, if the observed description of μ is the same as the description od
i in the

feedback, then the center μ of the cluster should match the user preferred weight vector
pd

i . Recall that the observed description is the ordered set top(μ, t) of top t features
of μ. In case the current and preferred weight vectors (μ and pd

i ) over features do not
match, the clustering algorithm has to pay a penalty equal to the distance between the
two weight vectors.

As for the assignment feedback, the specificity of this interpretation would make
fd

i irrelevant for most clusters at later stages, where the top feature sequence top(μ, t)
does not exactly match od

i . We deal with this, as before, by introducing a relevance
measure Rd

i (μ) for each cluster description feedback fd
i and any cluster μ. The higher

the relevance of the feedback for any cluster, the higher is the description error for not
conforming with it. The relevance Rd

i (μ) of a description feedback may be measured
using various similarity measures defined for ordered sets:

Rd
i (μ) = RankSim(top(μ, t), od

i ) (4)

For simplicity, we presently define RankSim(s1, s2) to be 1 if the unordered sets cor-
responding to s1 and s2 match, and 0 otherwise. We are investigating better measures
than reward subset matches, such as Jaccard Similarity.
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In summary, the clustering error associated with each cluster description feedback
fd

i is given as:

Ed
i (C, δ) = λi

∑
μ∈C

(μ− pd
i )

2 ×Rd
i (μ) (5)

where λi is the strength of the ith cluster description feedback. To appreciate the use
of λi, observe that for assignment feedback, the algorithm can typically satisfy the user
by assigning the feedback point to the user specified cluster. However, for description
feedback, the points currently assigned to a cluster also affect the position of its new
center in conjunction with the user specified description. λi is used to specify the rela-
tive importance of the user’s feedback and the assigned points. We further elaborate on
the role of λi in Section 5.

The total error for the entire set of cluster description feedbacks F d is obtained by
summing over the errors for the individual feedbacks: Ed(C, δ) =

∑m
i=1 E

d
i (C, δ).

Finally, the total clustering error is the sum of the errors due to distortion, assignment
constraints and cluster description constraints:

E(C, δ) = Ex(C, δ) + Ea(C, δ) + Ed(C, δ) (6)

Our goal is to find the optimal combination of clusters and assignments that minimize
this total error.

5 Interactive Clustering Algorithm

In this section, we look at an algorithm that iteratively alternates between interacting
with the user to acquire feedback and minimizing the total error in Equation (6) con-
sidering all the feedback obtained from the user so far over all stages of the algorithm.
Algorithms for proto-type or model based clustering typically follow an iterative alter-
nating optimization style, where each step consists of two sub-steps - prototype update
and re-assignment. In the following subsections, we describe how these two steps can
be modified to handle user feedback, and how the user interacts with the algorithm to
provide feedback.

Cluster Update: In the cluster update sub-step, the existing clusters C are updated
based on the current assignment δ of data points to clusters, and the current relevance
Ra(C) and Rd(C) of the feedbacks F a and F d. Unfortunately, the different clusters
cannot be updated independently as for the traditional k-means algorithm. This is be-
cause the feedbacks introduce dependencies across clusters. As a result, we cyclically
update each of the k clusters keeping the other k−1 clusters fixed. This procedure is re-
peated until all the clusters stabilize. When the other k−1 clusters are held fixed, along
with the assignments and the feedback relevances, updating cluster μi to minimize to-
tal error becomes a quadratic optimization problem. Solving it leads to the following
update step:

μ =
1
Z
×
∑

x

xδ(x, μ) +
l∑

i=1

Ra
i (C)[δ(xa

i , μ)Na
i (C) +
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∑
μ′
I(μ′, Na

i (C))δ(xa
i , μ

′)μ′] +
m∑

i=1

λiR
u
i (μ)pd

i

where I() is the indicator function, and Z is an appropriate normalization term.
The update rule may be interpreted as follows.
The first term shows the traditional movement of the cluster towards the centroid

of the data points currently assigned to it. The second and third terms demonstrate the
dependence on the other current centers brought about by the assignment constraints.
An assignment feedback fa

i is relevant for cluster μ either if the feedback data point xa
i

is currently assigned to this cluster, or if μ is the currently preferred cluster Na
i (C) for

feedback fa
i . In the first case, the cluster μ moves towards that current cluster Na

i (C)
which is the currently preferred cluster for the feedback fa

i . This is reflected by the
second term. In the other case, cluster μ tries to move closer to that cluster μ′ to which
the feedback point xa

i is currently assigned. This is reflected by the third term. Both
of these movements are influenced by the current relevance Ra

i (C) of the assignment
feedback in question.

The effect of the cluster description feedbacks is captured by the last term. For any
description feedback fd

i that is relevant for this cluster, the cluster moves closer to the
preferred description pd

i in the feedback. As before, this movement is also tempered by
the relevance Ru

i (μ) of the feedback for this cluster.
Finally, the updated position of the cluster is the net effect of the influence of all

the relevant assignment and description constraints, as well as all of the data points
currently assigned to this cluster. Observe that in the update rule, the user preferred
description pd

i for a description feedback behaves similarly to any other data point as-
signed to the cluster, and would have minimal effect in determining its new position
without the weighting term λi.

Once all of the k clusters have been iteratively updated and have stabilized, the rele-
vanceRa andRd of the assignment and description constraints is recalculated based on
the updated cluster positions, according to Equation (3) and Equation (4) respectively.

Point Reassignment: In the re-assignment step, the assignment δ of the data points is
recalculated based on the updated cluster positions and the current relevance of the con-
straints. The contribution to clustering error by assigning a data point x to an existing
cluster μ can be calculated by considering the distance from the cluster, and, for any
assignment feedback fa

i specified on the point x, the distance of μ from the currently
preferred cluster Na

i (C) for the feedback, and its current relevance Ra
i (C):

(μ− x)2 +
l∑

i=1

Ra
i (C)I(x, xa

i )(μ−Na
i (C))2

where I() is again the indicator function. The point is then assigned to that cluster μ
among the k current clusters for which this assignment error is minimized. Observe
that cluster description feedbacks do not influence the assignment of data points. Also
observe that, unlike cluster updates, the reassignment of each data point can still be
done independently of the other data points, as in the traditional k-means algorithm.
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Algo InteractiveCluster
Params: Set of data points X, Int k

1. Initialize F a and F d to empty set

% Initialize clusters
2. Initialize k clusters in C
3. Iterate n times or until convergence
4. Assign each data point in X to nearest cluster
5. Recompute k clusters from assigned data points

% Start inter-active k-means
6. Iterate until user is satisfied with C

7. Acquire new feedback and add to F a and F d

8. Iterate n times or until convergence
9. Iteratively update each of k clusters in C

based on relevance Ra, Rd and assignment δ

10. Re-calculate relevance Ra, Rd, based on updated clusters C
11. Re-calcluate assignment of data points in X

based on updated clusters C and relevance Ra

12. Return k clusters C and assignment δ

Fig. 2. High level pseudo-code describing the cluster-level inter-active k-means (CLIKM)
algorithm

User Interaction: At each stage, after minimizing total error in Equation (6) consid-
ering all the feedback obtained so far, the algorithm returns the new set of clusters for
inspection. The user browses over the new cluster descriptions and assignments and
provides fresh feedback on them. While it may be possible for the user to inspect all
cluster descriptions, or at least the ones that have changed significantly since his pre-
vious inspection, it is extremely unlikely that he can inspect cluster assignments of all
data items. We will assume that he can provide provide only nf = na + nd feedbacks
at each interaction stage, where na is the number of assignment feedbacks and nd is
the number of description feedbacks. We assume nd = k, which means he inspects all
clusters, but na & n, where n is the number of data points. Currently, we assume the
the user randomly selects na data points for inspecting and providing feedback. How-
ever, it is possible to do better than this, as in the case of active learning [7]. While we
have done initial work on actively selecting the data points for presenting to the user for
feedback, this is largely a subject of future research.

The overall cluster-level interactive k-means algorithm (CLIKM) is shown in Fig-
ure 2. The algorithm starts by creating an initial set of clusters in steps 2-5, based
only on distortion error. Then at every step, it updates the clusters (step 9), recalculates
the relevance of all feedbacks (step 10) and then re-assigns the data points based on
the updated clusters and the relevance of the all constraints acquired so far (step 11).
These steps are repeated until convergence based on the current set of feedbacks. The
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algorithm terminates when the user is satisfied with the current clustering. Otherwise,
the algorithm acquires more feedback from the user (step 7) and reclusters the data
points based on the feedback set, which now additionally includes the most recently
received feedbacks.

6 A Supervisor Model

Large-scale evaluations with interactive algorithms with human supervisors require a lot
of time and effort. In this section, as a substitute, we describe a parameterized supervisor
model for our framework, based on gold-standard cluster labels on data points.

The challenge is that cluster-level supervision is conditioned on the current set of
clusters, which may be different from the true clusters in the gold-standard. We assume
that the supervisor is able to construct a correspondence between the true clusters T in
the gold standard and the current clustersC available at any stage of the interactive pro-
cess. This correspondence is found using a maximum weighted matching between the
true clusters and the current clusters in bipartite graph, where the edge weight between
a true cluster t and a current cluster c is the number of data points from t in c.

As the first supervisor parameter, we control the supervisor’s knowledge about the
exact description of a true cluster t using a parameter p ∈ [0, 1]. When averaging over
documents in a true cluster t to construct its description, any specific document is in-
cluded in the average computation with probability p, so that the user only has partial
knowledge of t’s description for p < 1.0.

The second supervisor parameter is a recognition threshold r for true clusters from
computed clusters. For exploratory data mining, the supervisor often becomes aware of
clusters existing in the data as they gradually emerge during the clustering process. We
assume that the supervisor recognizes a true cluster t from the current cluster c only if c
has ambiguity (measured as entropy over true clusters) below threshold r, and if t is the
majority true cluster within c. At any stage of the clustering algorithm, the supervisor
has a set Tr ⊆ T of recognized true clusters, and is able map current classes only to
these true clusters.

Now, when asked to provide assignment feedback for a data point x given current
clusters C and true clusters T , the supervisor first retrieves the true cluster t for x,
and then returns the corresponding current cluster. On the other hand, when asked for
description feedback on a current cluster c ∈ C, the supervisor first retrieves the corre-
sponding true cluster t, and then returns its inexact description based on his knowledge
level p. Note that the supervisor can provide feedback only if the relevant true cluster t
belongs in his recognized set of clusters Tr.

In the experimental evaluation of our interactive clustering algorithm in the next
section, we consider supervisors with different recognition levels, as well as different
levels of knowledge.

Convergence. An important issue that naturally arises for any interactive data mining
task is that of convergence. While emphasizing that a detailed investigation of supervi-
sor behavior and convergence is beyond the scope of this paper, here we briefly discuss
conditions under which convergence can be guaranteed in the context of our supervisor
model.
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At a high level, the interactive clustering process converges if and only if the su-
pervisor provides a consistent sequence of feedbacks. Here we provide a very strict
definition of consistency. A sequence of feedbacks is consistent if all of the following
conditions hold. First, the resulting sequence of recognized cluster sets is monotonically
non-decreasing, i.e., a cluster once recognized by the supervisor cannot be decided as
unrecognizable later. Secondly, for two cluster description feedbacks fd

i ≡ {od
i , p

d
i }

and fd
j ≡ {od

j , p
d
j} provided at two different stages of CLIKM, if they are provided

on the same recognized cluster (od
i = od

j ), then the preferred descriptions also are
the same (pd

i = pd
j ). Thirdly, for two assignment feedbacks fa

i ≡ {xa
i ,μ

a
i , μ

a
i } and

fa
j ≡ {xa

j ,μ
a
j , μ

a
j } provided at different stages, if they are provided for the same data

point (xa
i = xa

j ) given the same current set of clusters (μa
i = μa

j ), then the preferred
cluster also has to be the same (μa

i = μa
j ). Under the above conditions, the interactive

process is guaranteed to convergence.
We think that it is possible to relax the first two conditions, but note that third is

an absolute requirement. Also, the number of iterations to convergence for a consistent
feedback sequence depends on multiple factors, such as the rate of growth of the rec-
ognized cluster set, and for multiple assignment feedbacks on the same data point, the
similarity between their set of clusters.

7 Experiments

In this section, we experimentally evaluate the effectiveness of our proposed interac-
tive clustering framework. We considered two benchmark real-world text categorization
datasets from two different domains, Twenty Newsgroups1 and Reuters-215782. The
goal of the clustering task is to produce clusters that correspond to the gold-standard
categories. Generally, this is not expected of unsupervised clustering. We investigate
how accurately and efficiently the gold standard categories can be discovered when
provided with semi-supervision. We also investigate the relative impact of assignment
and cluster description feedback, and the effect of different supervisor parameters on
our cluster-level interactive framework. We next describe our datasets, baselines and
evaluation metrics before discussing experimental results.

Datasets: For our first dataset (8NG), we selected eight 20 Newsgroup classes (all of
rec.∗ and sci.∗) having 1000 documents each. Our second dataset (R10) was created
by selecting the top 10 categories from the Reuters-21578 corpus, and including all
train/test documents, resulting in a collection of 9118 documents. We pre-processed
all documents in a standard way using word stemming, and pruning stop-words and
infrequent words (occurring less than 5 times in the dataset). We have made the actual
processed datasets and their descriptions available online3.

1 http://people.csail.mit.edu/jrennie/20Newsgroups/
2 http://www.daviddlewis.com/resources/testcollections/
reuters21578/

3 http://www.godbole.net/shantanu/work/ecml10iclust.html

http://people.csail.mit.edu/jrennie/20Newsgroups/
http://www.daviddlewis.com/resources/testcollections/
http://www.godbole.net/shantanu/work/ecml10iclust.html
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Evaluation Metric: To evaluate a set of clusters against a gold-standard, we check the
correctness of clustering decisions over all pairs of data points. We report the standard
F1 measure and Adjusted Rand Index (ARI) over the pairwise clustering decisions. The
F1 measure is the harmonic mean of precision and recall over pairwise decisions. The
Adjusted Rand Index is defined as 2(ab−cd)/((a+d)(d+b)+(a+c)(c+b)) where a is
the number of true positive pairs, b is the number of true negative pairs, c is the number
of false positive pairs and d is the number of false negative pairs. We also evaluated
using Normalized Mutual Information and found the trends to be similar to that with F1
and ARI.

Baselines: As the first baseline for our cluster-level interactive k-means algorithm
(CLIKM), we consider completely unsupervised k-means (KM). We also compare
against pair-wise constrained clustering with instance-level must-link and cannot-link
constraints (PCC) [3]. For this comparison, we incrementally provide pair-wise con-
straints to PCC and cluster-level constraints to CLIKM and compare their performance
for the same number of provided constraints. Since PCC infers additional constraints
from the provided ones using transitivity of must-link constraints, the actual number of
constraints considered by PCC is much larger than the provided number. In contrast,
the actual and provided number of constraints is the same for CLIKM. While doing this
comparison, it needs to be borne in mind that the nature of the two constraints are quite
different from each other. First, since CLIKM constraints are conditioned on the current
set of clusters, they cannot be converted to an equivalent set of independent pair-wise
constraints over data points. Secondly, the supervisor effort required to provide these
two types of constraints will also be quite different, and can only be measured using
extensive user studies. Keeping in mind these differences, we study the relative perfor-
mance of PCC and CLIKM when given an equal — though not necessarily equivalent
— number of constraints.

Since all of these algorithms only find local optima, when comparing any two, we pro-
vide them with the same initialization. All the reported plots are averaged over 10 runs.

Parameter Settings: As default parameters, we set observed cluster description length
t = 10, supervisor recognition threshold r = 0.95 and knowledge level p = 0.25. The
strength of description feedback λ is set to be the average cluster size (n/k), so that
the importance of the supervisor’s feedback is roughly the same as that of the points
assigned to the cluster. We set the number of feedbacks at each step nf = 200 for
both CLIKM and PCC. (Trends are similar with nf = 100 and 200) For CLIKM,
description feedback is provided for all current clusters (nd = k), so that assignment
feedback is provided for na = 200 − k random data points. For PCC, must-link or
cannot-link feedback is provided for nf random pairs of data points. Recall that the
actual number of constraints considered by PCC is much larger than nf , since PCC
infers more constraints using transitivity of must-link constraints.

Experiment 1 - CLIKM vs Baselines: In our first experiment, we compare CLIKM with
point assignment and cluster description feedback, PCC with pair-wise item-level feed-
back, and KM on two datasets. The results are shown in Figure 3, where clustering
performance is plotted against the cumulative number feedbacks provided to PCC and
CLIKM. The trends are similar for F1 and ARI as the evaluation measure. Expectedly,
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(a) (b)

(c) (d)

Fig. 3. Performance (F1 and ARI) of CLIKM and PCC vs number of feedbacks from the user
against KM as baseline on 8NG (a,c) and R10 (b,d)

with increasing number of feedbacks, the performance CLIKM improves significantly
over unsupervised KM. Performance improves most sharply at the beginning, so that
after a few hundred feedbacks F1 increases from 0.22 to 0.4 for 8NG and from 0.4 to
0.47 for R10, and increases steadily, but at a slower rate, after that. This is because the
user is able to recognize all true clusters during the very first interaction with the de-
fault recognition threshold r = 0.95. Also observe that performance of CLIKM drops
slightly at a couple of places for R10 in Figure 3(b,d). This is due to the supervisor’s
inexact knowledge when providing description feedback (p = 0.25). We investigate the
effect of the user’s knowledge and recognition ability in greater detail later in the section.

Interestingly, the rate of performance improvement for CLIKM is significantly higher
than PCC for both datasets. One potential reason for this is that the space of constraints
is quadratic in the number of data items for PCC. In comparison, CLIKM needs at most
a linear number of constraints for each clustering iteration, and the number of iterations
is usually a constant. As a result, the user can drive the clustering towards his desired
state with significantly fewer feedbacks using CLIKM.

In the rest of our experiments, we report only F1 numbers. All trends are similar with
ARI.
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(a) (b)

Fig. 4. Effect of assignment and cluster description feedback on CLIKM for (a) 8NG and (b) R10

Experiment 2 - Ablation Study: In our second experiment, we perform an ablation study
to evaluate the impact of assignment and cluster description feedback separately. The
results are shown in Figure 4. The plots clearly shows that improvement brought about
by cluster description feedback on top of that from assignment feedback. It demon-
strates that cluster description feedback enables the user to guide the clustering much
faster than when empowered only with assignment feedback.

Experiment 3 - Varying Supervisor Parameters: The success of interactive clustering
depends a lot on the user’s ability to recognize desired clusters, his knowledge about
the correct description of these clusters and the strength of description feedback that he
sets. We evaluate this over the next two experiments.

First, in Table 1, we record the effect of providing description feedback to CLIKM
with different combinations of user knowledge p and strength of description feedback
λ, after it has already received 3000 assignment feedbacks. The first trend is that perfor-
mance improves with supervisor knowledge when λ is fixed, over all 3 columns. Recall
that λ = n/k corresponds to equally weighting user’s cluster description feedback and
the data points currently assigned to a cluster, so that the first two columns correspond to
weighting the feedback 10 times and 2 times lower than the data respectively. The rows
provide a more interesting insight. For reasonable supervisor knowledge, performance
improves with higher λ. However, when supervisor knowledge is weak (first two rows),
increasing λ hurts performance. This suggests that when the supervisor is not confident

Table 1. Clustering performance (F1) after 3000 feedbacks for varying user knowledge (p) and
user confidence (λ) on R10

λ = n/10k λ = n/2k λ = n/k

p=0.001 0.486 0.471 0.410
p=0.01 0.487 0.497 0.487
p=0.10 0.489 0.502 0.522
p=0.25 0.490 0.510 0.511
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Fig. 5. F1 using strong (r = 0.95) and weak supervisor (r = 0.9) for 8NG

about his knowledge of the clusters, he should allow the data to influence the clustering
more than his supervision.

Finally, we explore the impact of recognition threshold r of the supervisor. In Fig-
ure 5, we compare CLIKM performance with the default strong supervisor (r = 0.95)
against that with a weak supervisor (r = 0.9). For the strong supervisor, performance
improves significantly right at the beginning when all the true clusters are recognized
and description feedback is provided for them. For the weak supervisor, only 50% of
the true clusters are recognized at the first stage, and the rest at various later stages of
the inter-active process, as marked by the jumps in performance. The gap between the
two curves closes steadily as the inter-active process progresses.

Summary of Experiments: In summary, our experiments demonstrate that cluster-level
semi-supervision leads to significant and steady improvements in clustering accuracy
in comparison with unsupervised k-means. Improvements persist over varying levels
of supervisor knowledge and cluster recognition ability. The rate of improvement is
several times faster compared to that with an equal number pair-wise instance-level
constraints.

8 Conclusions

In this paper we have proposed a novel semi-supervised model for interactive cluster-
ing, where the user provides two different types of feedback that align naturally with the
update and assignment steps of prototype based clustering. Taking k-means as an ex-
ample, we have shown how such feedback can be incorporated within prototype based
objective functions as additional constraints to be satisfied. We have demonstrated the
effectiveness of our model for clustering two real-life benchmark text datasets. Interest-
ingly, our experiments show that performance increases significantly faster using this
cluster-level semi-supervision compared to pair-wise instance-level supervision.

The proposed model can be further improved, for example by considering the source
cluster in addition to the destination cluster for assignment feedback, and generalizing
cluster description feedback with better measures of rank similarity. We also intend to
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improve on our supervisor model for more detailed investigation of convergence, and
also better understand the cognitive load on the user for instance-level and cluster-level
semi-supervision.

We believe that cluster-level supervision can emerge as very promising alternative
to pair-wise instance-level supervision for high dimensional domains such as document
collections that cannot be easily visualized.
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Abstract. Defect localisation is essential in software engineering and is
an important task in domain-specific data mining. Existing techniques
building on call-graph mining can localise different kinds of defects. How-
ever, these techniques focus on defects that affect the controlflow and are
agnostic regarding the dataflow. In this paper, we introduce dataflow-
enabled call graphs that incorporate abstractions of the dataflow. Build-
ing on these graphs, we present an approach for defect localisation. The
creation of the graphs and the defect localisation are essentially data
mining problems, making use of discretisation, frequent subgraph min-
ing and feature selection. We demonstrate the defect-localisation quali-
ties of our approach with a study on defects introduced into Weka. As
a result, defect localisation now works much better, and a developer has
to investigate on average only 1.5 out of 30 methods to fix a defect.

1 Introduction

Software quality is a huge concern in industry and in the software-engineering
community. Software is rarely free from defects, and finding them is difficult.
Especially when projects are large, several developers make changes in the source
code, and a developer works with code somebody else has written, localising
defects is tedious. (Semi-)Automatic tools for defect localisation are desirable.
Clearly, such tools should be able to deal with many different kinds of defects.

In the past years, a number of studies has investigated defect localisation with
graph-mining techniques [3,5,7,8,18]. They build on the analysis of dynamic call
graphs (see [6] for an overview). One such graph is a concise representation
of a programme execution and reflects the method-invocation structure. The
localisation techniques do frequent subgraph mining with call graphs of correct
and of failing executions. The rationale for defect localisation is that patterns
occurring more frequently in graphs of failing executions contain methods which
are more likely to be defective. Techniques that incorporate the analysis of call
frequencies have proven to be more accurate and discover more types of defects
than techniques without this feature [7]. See Figure 1 for a simple call graph
representing a programme execution – each node stands for a method, edges
represent method calls, and edge weights represent method-call frequencies.

An important characteristic of the existing call-graph-based techniques is that
they merely analyse the call-graph structure and the call frequencies. They can
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void main()
void a()

67

void b()
2 5

int c(int p1, int p2)
3

Fig. 1. Example call graph with call frequencies (not dataflow enabled)

only localise defects which affect the call graph of a programme execution (simpli-
fied, the controlflow). While this is an important class of defects, Cheng et al. [3]
point out that the current techniques are agnostic regarding defects that in-
fluence the dataflow. We refer to such defects as dataflow-affecting bugs. They
influence the data exchanged between methods. For example, think of a method
which wrongly calculates some value, and which needs to be localised. A call-
graph-based technique can only recognise such a defect if the value affects a
control statement. Although this happens frequently, it might occur in methods
which are actually defect-free, leading to erroneous localisations.

Han and Gao identify software engineering and defect localisation as a ma-
jor area in domain-specific data mining [9]. They point out that the integration
of domain knowledge (in our case, the exact specification of call graphs) and
dedicated analysis techniques are crucial for the success of data mining in any
domain. In this paper, we present a call-graph-based technique which localises
both dataflow-affecting and call-graph-affecting bugs. The specification of the
underlying graphs is not obvious: On the one hand, a call graph is a compact
representation of an execution. On the other hand, dataflow-related information
refers to values of many method calls within one execution. This information
needs to be available at a level of detail which allows to locate defects. To il-
lustrate the difficulties, an edge in a call graph typically represents thousands
to millions of method calls. Annotating each edge with the method-call parame-
ters and method-return values of all invocations corresponding to it incurs huge
annotations and is not practical. In this paper we propose dataflow-enabled call
graphs (DEC graphs) which incorporate concise numeric dataflow information.

DEC graphs are augmentations of call graphs with abstractions of method-
call parameters and of method-return values. To obtain DEC graphs, we treat
different data types differently. In particular, we discretise numerical parameter
and return values. Figure 2 is a DEC graph corresponding to Figure 1. The call
from method b to method c is attributed with a tuple of integers, containing
the total number of calls and the numbers of calls with parameter and return
values falling into different intervals. (We explain the details later.) When the
DEC graphs are assembled, we do frequent subgraph mining with the graphs,
not considering the dataflow abstractions for the moment. We then analyse the
tuples of integers assigned to the edges with a feature-selection algorithm in the
different subgraphs mined separately. Finally, we derive a likelihood of defec-
tiveness for every method in the programme considered. These likelihoods form
a ranking of suspicious methods which can guide the manual debugging pro-
cess. We demonstrate the appropriateness and precision of our DEC-graph-based
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void main()
void a()

67

void b()
2 5

int c(int p1, int p2)
3, 3, 0, 1, 0, 2, 0, 3

Fig. 2. Example dataflow-enabled call graph (DEC graph)

approach for the localisation of defects. In a case study we evaluate the approach
using defects introduced into the Weka machine-learning suite [23].

All in all, our new technique for defect localisation features contributions at
different stages of the analysis process and in the application domain:

Dataflow-Enabled Call Graphs. We introduce DEC graphs as sketched be-
fore, featuring dataflow abstractions. We describe an efficient implementation of
their generation for Java programmes. To the best of our knowledge, this is the
first study considering the dataflow within call graphs for defect localisation.

A Defect-Localisation Approach for Dataflow-Affecting Bugs. We pre-
sent a defect localisation technique for DEC graphs. It is a case of weighted
graph mining, which ultimately identifies defective methods.

Results in Software Engineering. We demonstrate the usefulness of our
approach by means of defect-localisation experiments. Localisation works better
with DEC graphs, as compared to graphs that are not dataflow enabled. Some
defects can only be localised well with DEC graphs. Further, we describe and
evaluate extensions of our approach which improve the defect localisation.

Paper Outline: Section 2 introduces the fundamentals of call-graph-based de-
fect localisation. Sections 3 and 4 introduce DEC graphs and explain how we
use them for defect localisation. Section 5 contains the experimental evaluation,
Section 6 discusses related work, and Section 7 concludes.

2 Fundamentals of Call-Graph-Based Defect Localisation

In this section we first introduce our notion of bugs, followed by fundamentals
on call-graph-based defect localisation.

Types of Bugs in Software. In the field of debugging, one usually avoids
the terms bug and fault, but distinguishes between defects, infections and fail-
ures [26]. In this frequently-cited classification, defects are the places in the
source code which cause a problem, an infection is an incorrect programme
state (usually triggered by a defect), and failures are an observable incorrect
programme behaviour (e.g., a user experiences wrong calculations). In the con-
text of our study, we use a further differentiation, introduced in [6]:

– Crashing bugs lead to an unexpected termination of a programme. Exam-
ples include null-pointer exceptions and divisions by zero, which in various
programming languages are easy to localise with the help of a stack trace.
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Non-crashing bugs in turn display failing behaviour but do not provide any
hints. Non-crashing bugs are hard to localise and thus in the focus of graph-
mining-based defect-localisation approaches.

– Occasional bugs are failures whose occurrence depends on the input data of
a programme. Compared to non-occasional bugs, occasional bugs are harder
to find since they require more test cases to be reproduced.

– Structure-affecting bugs are infections which change the structure of a call
graph. This is, when comparing graphs from correct and failing executions,
certain graph substructures might or might not occur in either of the two
variants. Such infections typically occur when if statements have defects
or contain infected variables. In contrast, call-frequency-affecting bugs are
infections which change the call frequency of a certain substructure in fail-
ing executions, rather than completely missing or adding structures. Such
infections typically occur when loops are involved. Both structure-affecting
and call-frequency-affecting bugs are also called call-graph-affecting bugs.

As any call-graph-based technique, we focus on non-crashing and occasional
bugs. Opposed to other techniques, we consider dataflow-affecting bugs besides
call-graph-affecting bugs. Dataflow-affecting bugs manifest themself by infected
method-call parameters or return values, i.e., a method returns a wrong value.
Dataflow-affecting bugs might affect the structure of a call graph and/or the
call frequencies as a side effect. In this case, existing techniques can locate the
defects in principle. However, infected behaviour often appears in other methods
then those with the actual defect. This might disturb defect localisation. In such
cases, our dataflow-enabled technique can deliver more precise localisations.

Localising Call-Graph-Affecting Bugs. In the past years, a number of call-
graph-based techniques for defect localisation have been proposed [3,5,7,8,18].
Their basic idea is to mine for patterns in the call graph which are characteristic
for failing executions. Then, they derive some defectiveness likelihood for the
methods. We now briefly review the different call graph variants used, as well as
the corresponding defect-localisation techniques. [6] is a detailed survey.

Existing techniques focus on structure-affecting bugs [3,5,7,18] and call-
frequency-affecting bugs [7,8]. The graphs in [3,5,18] incorporate temporal in-
formation, the ones in [7,8] do not. In [6,7] we explain that the increased graph
size when temporal information is incorporated leads to scalability issues when
it comes to the mining. [3,8,18] build on call graphs where exactly one node rep-
resents a method, while [5,7] allow for more than one node. This promises more
precise results, as more detailed contexts of method calls can be included in the
analysis. At the same time, the size of the graphs increases, which also tends to
increase runtime [6]. In contrast to the other representations, the graphs in [7,8]
are weighted. Edge weights represent the number of corresponding method calls.

Besides different graph representations, the different approaches derive defec-
tiveness likelihoods in different ways. [18] builds on graph classification with
subgraph patterns. The authors first mine frequent subgraph patterns with
a variant of CloseGraph [25] before they use them to train a support-vector
machine (SVM). The authors consider the difference in accuracy between two
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SVMs – one built with graph patterns including a certain method and one with-
out them – as an evidence for defective methods. [3] builds on the same graphs,
but relies on discriminative subgraph mining with the LEAP algorithm [24].
This directly pinpoints suspicious subgraph-structures and thus methods that
are possibly defective. [5] derives defect likelihoods from support values of sub-
graph patterns in call graphs. Finally, [7] combines the idea from [5] to use
support-based structural likelihoods with the analysis of call frequencies. While
[5] incorporates only basic frequency-related information, [7,8] analyse call fre-
quencies by means of a feature-selection algorithm. It does so in a step subse-
quent to graph mining with the CloseGraph algorithm [25]. This analysis allows
to localise call-frequency-affecting and structure-affecting bugs. In [8] we suc-
cessfully investigate the usage of call graphs for the localisation of defects in
multithreaded programmes.

In this paper, we borrow concepts from both graph representations and local-
isation techniques from previous work. However, our graphs and our technique
are different as they are tailored for the localisation of dataflow-affecting bugs –
which is new in this study – in addition to call-graph-affecting ones. The shape
of our graphs is similar to those in [3,8,18], but without temporal information.
Furthermore, we generalise the concept of edge weights and their analysis [7,8]
by introducing tuples of weights incorporating dataflow abstractions.

3 Dataflow-Enabled Call Graphs (DEC Graphs)

In this section we introduce and specify dataflow-enabled call graphs (DEC
graphs) and explain how we obtain them. These graphs and their analysis (de-
scribed in the following section) are the core of our approach to localise dataflow-
affecting bugs. The basic idea of DEC graphs is to extend edges in call graphs
with tuples which are abstractions of method parameters and return values.
Obtaining these abstractions is a data-mining problem by itself: Huge amounts
of values from method-call monitoring need to be condensed to enable a later
analysis and ultimately the localisation of defects. We address this problem by
means of discretisation. In the following, we first explain how we derive pro-
gramme traces from programme executions. Next, we describe the structure of
our call graphs. We then explain the dataflow abstractions and explain why they
are useful for defect localisation. Finally, we say how we obtain the graphs from
programme traces and give a concrete example.

Derivation of Programme Traces. We employ the aspect-oriented program-
ming language AspectJ [13] to weave tracing functionality into Java programmes.
By defining so-called pointcuts in AspectJ, we instrument method calls. At each
call, we insert logging statements which save caller-callee relations. For each in-
vocation, we log call frequency and data values (parameters and return values)
that occur at runtime. Finally, we use this data to build call graphs.

When logging data values, we log primitive data types as they are, capture
arrays and collections by their size, and reduce strings to their length. Such an
abstraction from concrete dataflow has before successfully been used in the area
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of software performance prediction, e.g. [14]. Certainly, these simplifications can
be severe, but logging the full data would result in overly large amounts of data.
Our evaluation (Section 5) primarily studies primitive data types. A systematic
evaluation of arrays, collections and strings as well as techniques for complex
data types is subject to future work.

Call-Graph Structure. Based on the experience from previous studies [6], we
decide to make use of a total-reduction variant of call graphs. This allows for
better scalability of mining algorithms for large software projects and for an
on-the-fly generation. In such graphs, every individual method which is called
during a programme execution forms a single node (see Figure 1 for an example).

Dataflow Abstractions. As mentioned before, we use discretisation in order to
find an abstraction of method parameters and return values based on the values
monitored. Discretisation gives us a number of intervals for every parameter and
for the return value (we discuss respective techniques in the following). We then
count the number of method invocations falling into the intervals determined
and attribute these counts to the edges.

Definition 1. An edge-weight tuple in a dataflow-enabled call graph (DEC
graph) consists of the counts of method calls falling into the respective intervals:

(t, pi11 , p
i2
1 , ..., p

in1
1 , pi12 , p

i2
2 , ..., p

in2
2 , ..., pi1m, p

i2
m, ..., p

inm
m , ri1 , ri2 , ..., rinr )

where t is the total number of calls, p1, p2, ..., pm are the method-call parameters,
r is the method-return value and i1, i2, ..., inx (nx denotes the number of intervals
of parameter/return value x) are the intervals of the parameters/return values.

The idea is that values referring to an infection tend to fall into different intervals
than values which are not infected. For example, infected values might always be
lower than correct values. Alternatively, infected values might be outliers which
do not fall into the intervals of correct values as well. In order to be suited for
defect localisation, intervals must respect correct and failing programme execu-
tions as well as distributions of values. Generally, it might be counter-productive
to divide a value range like integer into intervals of equal size. Groups of close-by
values of the same class might fall into different intervals, which would compli-
cate defect localisation.

Derivation of Dataflow-Enabled Call Graphs (DEC Graphs). The CAIM
(class-attribute interdependence maximisation) algorithm [15] suits our require-
ments for intelligent discretisation: It (1) discretises single numerical attributes,
(2) takes classes associated with tuples into account (i.e., correct and failing
executions in our scenario) and (3) automatically determines a (possibly) mini-
mal number of intervals. Internally, the algorithm maximises the attribute-class
interdependence. Comparative experiments by the CAIM inventors have demon-
strated a high accuracy in classification settings.

In concrete terms, we let CAIM find intervals for every method parameter and
return value of every method call corresponding to a certain edge. We do so for
all edges in all call graphs belonging to the programme executions considered.



Software-Defect Localisation by Mining Dataflow-Enabled Call Graphs 431

We then assemble the edge-weight tuples as described in Definition 1. Exam-
ple 1 illustrates the discretisation. As we are faced with millions of method calls
from hundreds to thousands of programme executions, frequently consisting of
duplicate values, we pre-aggregate values during the execution. To avoid scal-
ability problems, we then utilise a proprietary implementation of CAIM which
is able to handle large amounts of data in pre-aggregated form. Note that the
dataflow abstractions in DEC graphs can only be derived for a set of executions,
as discretisation for a single execution is not meaningful.

Example 1. We consider the call of method c from method b in Figure 1 (Exec. 1
in Table 1) and three further programme executions (Exec. 2–4) invoking the
same method with a frequency of one to three. Method c has two parameters p1,
p2 and returns value r. A discretisation of p1, p2 and r based on the example val-
ues given in Table 1(a) leads to two intervals of p1 and r (pi1

1 , p
i2
1 and ri1 , ri2) and

three for p2 (pi1
2 , p

i2
2 , p

i3
2 ). See Table 1(b) for the exact intervals. The occurrences

of elements of edge-weight tuples can then be counted easily – see Table 1(c),
the discretised version of Table 1(a). The edge-weight tuple of b→ c in Exec. 1
then is as displayed in Figure 2, referring to (t, pi1

1 , p
i2
1 , p

i1
2 , p

i2
2 , p

i3
2 , r

i1 , ri2).

Table 1. Example discretisation for the call of int c(int p1, int p2) from b

(a) Example call data.

Exec. p1 p2 r class

1 2 43 12 correct
1 1 44 11 correct
1 3 4 9 correct

2 12 33 8 failing

3 23 27 6 failing
3 15 28 5 failing
3 16 23 7 failing

4 6 2 10 correct
4 11 47 13 correct

(b) Intervals generated.

Value Intervals

p1
i1 : [1, 11.5]
i2 : (11.5, 23]

p2

i1 : [2, 13.5]
i2 : (13.5, 38]
i3 : (38, 47]

r
i1 : [5, 8.5]
i2 : (8.5, 13]

(c) Discretised data.

Exec. p1 p2 r

1 i1 i3 i2
1 i1 i3 i2
1 i1 i1 i2
2 i2 i2 i1
3 i2 i2 i1
3 i2 i2 i1
3 i2 i2 i1
4 i1 i1 i2
4 i1 i3 i2

4 Localising Dataflow-Affecting Bugs

We now explain how to derive defect localisations from DEC graphs. We first
give an overview, then describe subgraph mining (Section 4.1) and the actual
defect localisation (Section 4.2) and two extensions (Sections 4.3 and 4.4).

Overview. Algorithm 1 works with a set of traces T of programme executions.
At first, it assigns a class (correct , failing) to every trace t ∈ T (Line 3), using
a test oracle. Then the procedure generates DEC graphs from every trace t
(Line 4). Next, the procedure derives frequent subgraphs of these graphs which
are used as contexts where defects are located (Line 6). The last step calculates
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Algorithm 1. Procedure of defect localisation with DEC graphs.
Input: a set of programme traces t ∈ T
Output: a method ranking based on each method’s likelihood to be defective P (m)
1: G = ∅ // initialise a set of DEC graphs
2: for all traces t ∈ T do
3: check if t was a correct execution and assign a class ∈ {correct , failing} to t
4: G = G ∪ {derive dataflow-enabled call graph(t)}
5: end for
6: SG = frequent subgraph mining(G)
7: calculate P (m) for all methods m; based on SG

a likelihood of containing a defect for every method m (Line 7). This facilitates a
ranking of the methods, which can be given to software developers. They would
then review the suspicious methods manually, starting with the one which is
most likely to be defective.

4.1 Frequent Subgraph Mining

As shown in Line 6 in Algorithm 1, we use frequent subgraph mining to derive
subgraphs which are frequent within the call graphs considered. This particular
step mines the pure graph structure only and ignores the edge-weight-tuples for
the moment. The subgraphs obtained serve as different contexts, and further
analyses are done for every subgraph context separately. This aims at a higher
precision than an analysis without such contexts. For example, a failure might
occur when method a is called from method b, only when method c is called
as well. Then, the defect might be localised only in call graphs containing all
methods mentioned, but not in graphs without method c.

We rely on the ParSeMiS implementation [21] of CloseGraph [25] for frequent
subgraph mining. CloseGraph has successfully been used in related studies [7,18].
In a set of graphsG, it discovers subgraphs with a user-defined minimum support.
For this value, we use min(|Gcorr|, |Gfail|)/2, where Gcorr and Gfail are the sets of
call graphs of correct and failing executions, respectively (G = Gcorr∪Gfail). This
ensures not to miss any structure which occurs in less then half of all executions
belonging to the smaller class. Preliminary experiments have shown that this
minimum support allows for both short runtimes and good results.

4.2 Entropy-Based Defect Localisation

Next, we calculate the likelihood that a method contains a defect (Line 7 in
Algorithm 1). The rationale is to identify methods which call other methods
with discriminative parameter values or which have return values discriminating
well between correct and failing executions. As mentioned before, we analyse
every edge-weight tuple in the DEC graphs in the context of every subgraph
mined. This aims at a high probability to actually reveal a defect, as every tuple
is typically investigated in many different contexts. We assemble a table which
contains the elements of the tuples of all edges in all subgraphs as columns
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Table 2. Example feature table. g1 refers to Exec. 1 from Example 1 (Figure 2)

Exec.
sg1 sg2

· · · classmain → b b → c main → a

t t
p
i1
1
t

p
i2
1
t

p
i1
2
t

p
i2
2
t

p
i3
2
t

ri1

t
ri2

t
t

g1 2 3 1.00 0.00 0.33 0.00 0.67 0.00 1.00 67 · · · correct
...

...
...

...
...

...
...

...
...

...
...

. . .
...

gn 2 9 1.00 0.00 0.33 0.00 0.67 0.67 0.33 0 · · · failing

and all programme executions (represented by their DEC graphs) as rows. The
table cells contain the tuple values: the total call frequencies t and normalised
interval frequencies. More precisely, we divide every interval frequency by the
corresponding t in order to obtain the ratio of calls falling into each interval.

Table 2 is an example table which assumes that two subgraphs were found
in the previous graph mining step, sg1 (main → b → c) and sg2 (main → a).
The first column lists the call graphs g ∈ G. The second column corresponds
to sg1 and edge main → b with the total call frequency t. The following eight
columns correspond to the second edge in this subgraph. Besides the total call
frequency t, these columns represent intervals and are derived from the frequen-
cies of parameter and return values. The very last column contains the class
correct or failing . If a certain subgraph is not contained in a call graph, the
corresponding cells have value 0, like gn , which does not contain sg2 .

After assembling the table, we employ the information-gain-ratio feature-
selection algorithm (GainRatio, [22]) in its Weka implementation [23] to calculate
the discriminativeness of the columns and thus of the different edge-weight-tuple
values. The GainRatio is a measure from information theory and builds – similar
to information gain – on entropy. Values of GainRatio are in the interval [0, 1].
High values indicate a table column affected by a defect. Previous work [7,8] has
shown that entropy-based measures are well-suited for defect localisation.

So far, we have derived defect likelihoods for every column in the table. How-
ever, we are interested in likelihoods for methods m, and every method corre-
sponds to more than one column in general. This is due to the fact that a method
can call several other methods and might itself be invoked from various other
methods, in the context of different subgraphs. Furthermore, methods might
have several parameters and a return value, each with possibly several intervals.
To obtain method likelihood P (m), we assign every column containing a total
frequency t or a parameter-interval frequency pi to the calling method and every
return-value-interval frequency ri to the callee method. We then calculate P (m)
as the maximum of the GainRatio values of the columns assigned to method m.
By doing so, we identify the defect likelihood of a method by its most suspicious
invocation and the most suspicious element of its tuple. Other invocations are
less important, as they might not be related to a defect. The call context of a
likely defective method and suspicious data values are supplementary informa-
tion which we report to software developers to ease debugging.
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Example 2 illustrates how our technique is able to localise dataflow-affecting
bugs based on the ratios of executions falling into the different intervals of the
method parameters and return values. Furthermore, it localises call-frequency-
affecting bugs based on the call frequencies in the edge-weight tuples. In addition,
our technique is able to localise most structure-affecting bugs as well: (1) The call
structure is implicitly contained in the feature tables (e.g., Table 2) – value 0 in-
dicates subgraphs not supported by an execution. (2) Such defects are frequently
caused by control statements (e.g., if) evaluating previously wrongly calculated
values. Our analysis based on dataflow can detect such situations more directly.

Example 2. The graphs g1 and gn in Table 2 display very similar values, but refer
to a correct and a failing execution. Assume that method c contains a defect
which occasionally leads to a wrongly calculated return value. This is reflected in
the columns ri1

t and ri2

t of b→ c in sg1 . The GainRatio measure will recognise
fluctuating values in these columns, leading to a high ranking of method c.

4.3 Follow-Up-Infection Detection

Call graphs of failing executions frequently contain infection-like patterns which
are caused by a preceding infection (not a defect). We call such patterns follow-
up infections. We now describe an extension (for Line 7 in Algorithm 1) which
detects certain follow-up infections and enhances the method ranking.

A follow-up infection occurs when a defective method m1 calls another meth-
od m2 which in turn calls method m3. m1 can often be localised because of
the call frequency associated with edge m1 → m2. However, m2 → m3 might
have a call frequency proportional to m1 → m2. Thus, m2 will have the same
GainRatio as m1. We make use of this observation and remove methods within
the same subgraph belonging to m2 → m3 from the ranking when the following
conditions hold: (1) GainRatio(m1 → m2) = GainRatio(m2 → m3) (we con-
sider the GainRatio values from columns belonging to total call frequencies and
parameters), and (2) m1 → m2 → m3 is not part of a cycle within any g ∈ G.
(2) is necessary as the origin of an infection cannot be determined within a cycle.
However, our detection is a heuristic which is helpful in practice (see Section 5).
In the presence of noise, this follow-up-infection detection might not work, and
– pathologically – two edges might have the same GainRatio value by chance.

4.4 Improvements for Structure-Affecting Bugs

The subgraphs mined in Line 6 in Algorithm 1 can be used for an enhanced lo-
calisation of structure-affecting bugs. There are two kinds of such bugs: (1) those
which lead to additional structures and (2) those leading to missing structures.
To deal with both of them, we use the support supp of every subgraph sg in
Gcorr and Gfail separately to define two intermediate rankings. The rationale is
that methods in subgraphs having a high support in either correct or failing
executions are more likely to be defective. We again use the maximum:

Pcorr(m) := max
m∈sg∈SG

supp(sg , Gcorr); Pfail(m) := max
m∈sg∈SG

supp(sg , Gfail)
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With these two values, we define a structural score as follows:

Pstruct(m) = |Pcorr(m)− Pfail(m)|

To integrate Pstruct into our GainRatio-based method ranking P (m) (in Line 7
in Algorithm 1), we calculate the average:

Pcomb(m) =
P (m) + Pstruct(m)

2

5 Experimental Evaluation

To investigate the defect-localisation capabilities of our approach, we use the
Weka [23] machine-learning suite, manually add a number of defects to it, in-
strument the code and execute it using test-input data. Finally, we compare
the defect ranking returned by our approach with the de-facto defect locations.
Overall, we carry out six experiments1:

(E1) Application of the new approach featuring DEC graphs,
(E2) —— with follow-up-infection detection,
(E3) —— with follow-up-infection detection and structural ranking,
(E4) the same approach with call graphs that are not dataflow enabled,
(E5) —— with follow-up-infection detection, and
(E6) —— with follow-up-infection detection and structural ranking.

Experimental Setting. Weka is a data-intensive open-source application with
a total of 19,938 methods and 301k lines of code (LOC). We introduce five
different kinds of defects. They are of the same types as the defects in related
evaluations, e.g., the Siemens programmes [10], which are often used [3,5,18] to
evaluate defect localisation techniques for C programmes. Yet, a single Siemens
programme comprises at most 566 LOC, which makes them unrealistically small
and makes defect localisation less challenging.

The defect types introduced to Weka are typical programming mistakes, are
non-crashing, occasional and dataflow-affecting and/or call-graph-affecting:

– Variable assignment. The assigned value of a variable differs from the correct
value. An example for such a defect is counter = a + b where the correct
code is counter = a.

– Off-by-one. This defect often happens when accessing an array or a collection.
For example, coll.get(i) is accessed instead of coll.get(i + 1).

– Return value. In this case, only the return statement of a method has a
defect. For example, return 0 is used instead of return bestValue.

– Loop iterations. This kind of defect affects the number of executions of a
loop. For example, a for loop uses the wrong counter variable or misses
an iteration: for(int i = 0; i < max; i++) instead of for(int i = 0;
i <= max; i++).

1 (E4–6) essentially are a comparison to [7] (“total reduction”). We use the same
localisation technique as with the DEC graphs for a fair comparison.
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– Branching condition. This kind of defect covers wrong comparisons like
a > b instead of a < b. Furthermore, the Boolean expressions and, or, true
and false can be easily misplaced in branching conditions.

In total, we evaluate ten separate defects (Defect 1–10) as well as six combi-
nations of two of these defects (Defects 11–16).2 The defects introduced are
4x variable assignment, 3x return value, 1x off-by-one, 1x loop condition and
1x branch condition. Variable-assignment defects include array manipulations,
string operations and inline variable assignments (e.g., doSth(op(a) + b)). Re-
turn values are manipulated by a value offset, returning a constant instead of a
variable and by returning a wrong constant. We introduce some kinds of defects
repeatedly to cover different characteristics of each defect. Defects 11–16 mimic
typical situations where a programme contains more than one defect.

We introduce all defects in weka.classifiers.trees.DecisionStump. This
class is the implementation of a decision-tree algorithm which comprises 18
methods. We emphasise that we instrument all 19,938 methods of Weka, and
all of them are potential subjects to defect locations. A typical execution of
DecisionStump involves a total of 30 methods.

We execute each defective version of Weka with 90 sets of sampled data from
the UCI machine-learning repository [1] and classify correct and failing execu-
tions of the programme. To this end, we first execute a correct reference version
of Weka with all 90 UCI data sets. After that, we execute the defective versions
with the same data. We then interpret any deviation in the output of the two
versions as a failure. The number of correct executions is in the same range as
the number of failing ones. They differ by a factor of 2.7 on average and by 5.3
in the worst case.

Experimental Results. We present the results – the ranking position which
pinpoints the actual defect – of the six experiments for all sixteen defects in
Table 3. This position quantifies the number of methods a software developer
has to review in order to find the defect (smaller numbers are preferred). We
compare the experimental results pairwise between DEC graphs (E1–3) and non-
DEC graphs (E4–6), as indicated by the arcs. A grey-coloured cell means worse
results, non-coloured cells mean same or improved results. Bold-face rankings
indicate same or improved results compared to the preceding row (separately
for DEC/non-DEC graphs). In programmes with more than one defect (i.e., De-
fects 11–16), we present numbers corresponding to the defect ranked best. This
reflects that a developer would first fix one defect, before applying our technique
again. Sometimes two or more methods have the same defect likelihood. In this
case, we use the worst ranking position for all methods with the same likelihood.
This is in line with the methodology of related studies [11].

The experiments clearly show the improved defect-localisation capabilities of
the new approach based on DEC graphs. Even without extensions (E1), a top
ranking is obtained in 15 out of 16 cases. We consider a method ranked top

2 We provide the defective programme versions online:
http://www.ipd.kit.edu/~eichi/papers/eichinger10software-defect/

http://www.ipd.kit.edu/~eichi/papers/eichinger10software-defect/
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Table 3. Defect-localisation results. (E2/3/5/6) incl. follow-up, (E3/6) incl. struct

Experiment \ Defect 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 ∅

(E1) DEC graphs 3 3 1 3 2 2 12 3 1 1 2 2 1 2 1 3 2.3
(E2) DEC graphs 2 2 1 2 2 2 9 2 1 1 2 2 1 2 1 2 1.9
(E3) DEC graphs 1 1 1 2 6 1 1 1 3 5 1 1 1 1 1 1 1.6

(E4) Non-DEC graphs 1 1 11 13 10 3 13 10 9 6 3 8 1 3 8 10 6.1
(E5) Non-DEC graphs 1 1 4 5 4 2 7 3 5 4 2 4 1 2 3 3 2.8
(E6) Non-DEC graphs 1 1 1 2 7 1 2 1 8 6 1 1 1 1 1 1 2.0

when a developer has to investigate only 3 methods out of the 30 ones actually
executed. With non-DEG graphs (E4), only 6 defects are ranked top. In only 5
out of 48 measurement points, compared to 26 out of 48 ones, the DEC-graph-
based approach is worse than the reference. DEC graphs have reached a top
ranking in 44 cases, whereas non-DEC graphs had a top ranking in only 28 cases.
When directly comparing DEC graphs (E1) with non-DEC graphs (E4) without
extensions, the defect localisation was better in 13 out of 16 cases. Furthermore,
looking at the average values (‘∅’), the number of methods to be investigated
could be reduced by more than half.

Using the follow-up detection (E2/5), the ranking could be improved in all
cases or has generated results of the same quality compared to the respective ini-
tial approach. This is remarkable, as the follow-up-infection detection is a heuris-
tic approach. The use of both the follow-up and structural extension (E3/6)
results in further improvements. For DEC graphs (E3) in comparison to (E2),
the extension improves the ranking in 9 cases and lowers the ranking in 3 cases,
i.e., better overall results. For non-DEC graphs (E6) in comparison to (E5), the
picture is similar: 10 improved cases and 3 worse ones.

Analysing the localisation capabilities per defect class results in an inhomo-
geneous picture when looking at (E1–3). For the variable-assignment Defects 1,
3, 5, 6, localisation is mostly fine; the off-by-one Defect 2 is well located; return-
value Defects 4, 8, 9 can be located with both approaches. Only for Defect 9
we achieve a further improvement compared to non-DEC graphs. The structural
extension is misleading for the localisation of branch-condition Defect 10, while
it enables the identification of the loop-iteration Defect 7 (a structure-affecting
bug; the changed loop condition hinders the loop from being executed and thus
other methods from being called).

Regarding the Weka versions with two defects (Defects 11–16), defect local-
isation always works better on average than for versions with only one defect
(E1–6). Our explanation is that defect localisation has a higher chance to be
correct when two methods have a defect.

Overall, the experiments show a large improvement of the ranking with the
new approach. In combination with follow-up detections and the structural rank-
ing (E3), results are best. Using the structural ranking leads to a slightly worse
ranking for some defects. The experiments also show that only 1.6 out of the
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19,938 methods of Weka (of which 30 methods are actually executed) must be in-
vestigated on average in order to find a defect (E3). The results promise a strong
reduction of time spent on defect localisation in software-engineering projects.

Improved Experimental Results using Static Analysis. Despite the good
results achieved so far, we investigate further improvements. One starting point
is the handling of methods with the same defect likelihood. As in related stud-
ies [11], we currently use the worst ranking position for all methods which have
the same defect likelihood. A second static ranking criterion helps distinguishing
methods with the same defect likelihood: We sort such methods decreasingly by
their size in lines of code (LOC)3. Research has shown that the size in LOC
frequently correlates with the defectiveness likelihood [20]. Applied to our ex-
periments, we can observe an improvement of the average ranking position as
follows: 2.3 to 1.9 (E1), 1.9 to 1.7 (E2), 1.6 to 1.5 (E3), 6.1 to 3.6 (E4), 2.8
to 2.6 (E5) and 2.0 to 1.9 (E6). Although the additional static ranking cri-
terion leads to improvements in all experiments, the non-DEC graphs (E4–6)
benefit from the improved ranking to a larger extent. As feature selection for
non-DEC graphs considers fewer columns, the defect likelihood of methods has
fewer different values than for DEC graphs, and this more frequently leads to
equal rankings. However, even after the combination with static analysis, de-
fect localisation with DEC graphs is always better on average than with non-
DEC graphs. The same observations as described in the preceding paragraphs
hold.

6 Related Work

Defect-localisation techniques are static or dynamic. Dynamic techniques rely
on the analysis of programme runs (like our approach) while static techniques
do not require any execution and investigate the source code only.

Static Analysis. Mining software repositories maps post-release failures from a
bug database to defects in static-source code. For example, [20] derives standard
code metrics and builds regression models which then predict possible post-
release failures. Such approaches require a large collection of defects and exten-
sive version-history data.

FindBugs [2] is an approach complementary to ours. Its static-code analyses
for Java generally cannot localise most dataflow-related defects. Regarding the
defects in our evaluation (Section 5), FindBugs recognises none of them. Instead,
it aims at defects like possible null-pointer accesses due to missing initialisation.

Dynamic Analysis. Approaches in this category are based on instrumentation,
like our approach. Such approaches tend to either have a large memory footprint
or do not capture all defects due to selective logging of executions.

Statistical defect localisation is a family of dynamic techniques which utilise
pattern detection on data values monitored during execution. Liblit et al. [16]

3 Here we use the sum of non-blank and non-comment LOC inside method bodies.
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analyse monitored data values using regression techniques to identify defective
code. Compared to our work, Liblit et al. record only three intervals for return
values of methods. We use a variable number of dynamically identified intervals
for data characterisations. The approach reduces its footprint by collecting only
small samples of executed programmes. A similar approach by Liu et al. [17] fo-
cuses on controlflow and instruments variables in condition statements. It then
calculates a ranking which yields high values when the evaluation of these state-
ments differs significantly in correct and failing executions. Opposed to our ap-
proach, none of these approaches takes structural properties of call graphs into
account. Hence, structure-affecting bugs can be detected less easily.

Analysis of execution traces is the basis for call-graph-based methods. Taran-
tula [11,12] is a technique using tracing and visualisation. To localise defects,
it utilises a ranking of programme components which are executed more of-
ten in failing programme executions. Though this technique is rather simple, it
produces good defect-localisation results. Our technique comprises the method-
invocation structure and dataflow information, which is not covered by [11,12].

Masri [19] performs a dynamic information-flow analysis to localise defects
in source code. Specifically, sub-paths of information flow of correct and failing
executions are compared, to rank defect positions. Information-flow sub-paths
comprise frequency, source and target types (e.g., branch, statement), and the
length of the information-flow path executed. Opposed to [19], our approach
deals with abstractions of data values in the dataflow analysis and not only
relies on the relation of correct and failing executions for defect localisation.

7 Conclusions and Future Work

Defect localisation is essential in software engineering, but very time-consuming.
(Semi-)Automated localisation therefore is desirable. We have presented an ap-
proach based on newly introduced dataflow-enabled call graphs (DEC graphs).
It outperforms existing techniques. It targets at defects which affect the dataflow
or the controlflow of a programme. Both technical contributions of our approach,
the generation and the analysis of DEC graphs, rely on data-mining techniques.
Our approach generates DEC graphs by means of meaningful discretisation and
derives defect localisations with a weighted graph-mining approach.

Our experiments have shown that the approach may significantly reduce the
time required to localise defects in software. On average, only 1.5 out of the 30
methods executed in the case-study system must be investigated to fix a defect.

Future work will extend the approach: (1) Currently, global variables are not
handled. Static code analysis might help to identify global variables that are
read within a method. They can then be treated like method-call parameters.
(2) We plan to investigate an integration with ideas from Masri’s approach [19].
Furthermore, as mentioned in Section 3, we will investigate non-primitive data
types and ‘real defects’, originating from open-source software projects [4].



440 F. Eichinger et al.

References

1. Asuncion, A., Newman, D.J.: UC Irvine Machine-Learning Repository,
http://archive.ics.uci.edu/ml/

2. Ayewah, N., Hovemeyer, D., Morgenthaler, J.D., Penix, J., Pugh, W.: Using Static
Analysis to Find Bugs. IEEE Softw. 25(5), 22–29 (2008)

3. Cheng, H., Lo, D., Zhou, Y., Wang, X., Yan, X.: Identifying Bug Signatures Using
Discriminative Graph Mining. In: Proc. Int. Symposium on Software Testing and
Analysis, ISSTA (2009)

4. Dallmeier, V., Zimmermann, T.: Extraction of Bug Localization Benchmarks from
History. In: Proc. Int. Conf. on Automated Software Engineering, ASE (2007)

5. Di Fatta, G., Leue, S., Stegantova, E.: Discriminative Pattern Mining in Software
Fault Detection. In: Proc. Int. Workshop on Software Quality Assurance (2006)
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Abstract. A new framework for the induction of logical decision trees
is presented. Differently from the original setting, tests at the tree nodes
are expressed with Description Logic concepts. This has a number of
advantages: expressive terminological languages are endowed with full
negation, thus allowing for a more natural division of the individuals at
each test node; these logics support the standard ontology languages for
representing knowledge bases in the Semantic Web. A top-down method
for inducing terminological decision trees is proposed as an adaptation
of well-known tree-induction methods. This offers an alternative way for
learning in Description logics as concept descriptions can be associated
to the terminological trees. A new version of the System TermiTIS,
implementing the methods, is experimentally evaluated on ontologies
from popular repositories.

1 Introduction

Among the other facets, the Semantic Web (SW) is a Web of Data1. Countless
structured data sets are distributed all over the Web and containing all kinds
of information. They are the property of companies or institutions that tend to
make them broadly accessible. Next generation knowledge bases are envisioned
to be based on shared ontologies and a number of distributed repositories that
contain resources which are annotated using the concepts and properties defined
in terms of such ontologies expressed through such standardized representations.

The collection of SW technologies (RDF/S, OWL, etc.) provides an environ-
ment where applications can query that data, draw inferences using vocabularies,
etc. They are ultimately based on Description Logics (DLs). These languages
constitute particular fragments of Predicate Logic (with extensions to higher
order logics for the most expressive ones). They differ from the clausal represen-
tations for having a variable-free syntax and especially the open-world semantics
[1] which makes them particularly well suited for Web-scale distributed scenarios.

These considerations justify the growing interest in investigating machine
learning and knowledge discovery methods that cope with these formalisms.

1 See http://www.w3.org/standards/semanticweb/data
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Early works on learning in DLs essentially focused on the learnability of termi-
nological languages, like Classic and its successors [2], that are the ancestors of
the current DL languages. More recently, DL concept learning approaches based
on refinement operators have been investigated [3]. In [4] a coverage algorithm is
presented whose downward operator exploits the notion of counterfactuals. This
has been exploited also for other related tasks, such as conceptual clustering
[5]. Since the algorithm works on examples expressed as most specific concepts
(MSCs) [1], it tends to provide correct yet excessively complex concepts defi-
nitions. To avoid this problem, other top-down refinement algorithm, based on
new downward operators, utilizes a syntactic heuristic to guide the search to-
wards correct definitions of limited complexity [6]. A similar approach is followed
in DL-Foil [7], which adapts the well-known learning method to the different
representation.

The induction of decision trees is among the most well-known machine learn-
ing techniques [8], also in its more recent extensions that are able to work with
more expressive logical representations in clausal form [9]. In this work, the
general framework is extended to to cope with yet more different logical repre-
sentations as those designed for formal Web ontologies. We adopt an expressive
DL language for representing the tests at the tree nodes of a logical decision tree.
This allows to express different concepts w.r.t. the original clausal representation
and is naturally compliant with the open-world semantics which is required by
the evolving distributed environments for SW applications.

The tree-induction algorithm adopts a classical top-down divide-and-conquer
strategy [10] which differs from previous DL concept learning methods based
on sequential covering or heuristic search, with the use of refinement operators
for DL concept descriptions [4, 7, 6]. Once a terminological tree is induced,
similarly to the logical decision trees, a definition of the target concepts can
be drawn exploiting the nodes in the tree structure. The algorithm has also a
useful side-effect: the suggestion of new intermediate concepts which may have
no definition in the current ontology. From a technical viewpoint, the likely
chance that an instance a might not be assigned2 to a given concept C (nor to
its complement) requires a different setting for the learning problem [7], that is
similar to learning with unknown class attributes [11], with a special treatment
of the cases of uncertain classification mentioned above.

The resulting system, TermiTIS (Terminological Tree Induction System),
ver. 1.2, was applied, for comparative purposes, to ontologies that have been
considered in previous experiments with other DL learning systems [4, 7]. As
they are real ontologies artificial learning problems were crafted by randomly
building concept descriptions and determining the respective training and test
sets. This also demonstrates the usage of the method as a means for performing
approximations of concepts across ontologies (even when they are described with
different languages [1]). Standard performance indices require that the class-
membership can be determined for each test instance. This is not possible when
the open-world semantics is assumed (as discussed before), then we resort to

2 For the open-world semantics, ¬C(a) does not necessarily follow from 
� C(a).
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different indices, measuring the alignment of the classification decided by the
inductive model with the one found deductively by a DL reasoner [7]. This
allows measuring the amount of unlabeled instances that may be ascribed to the
newly induced concepts (or to their complements), which may constitute a real
added value brought by inductive methods to DL reasoning, although this sort
of abductive conclusions would have to be validated by a domain expert.

The paper is organized as follows. After the next section introducing the
representation, in Sect. 3 the DL learning problem is formalized and discussed.
Sect. 4, presents the terminological tree model and the algorithms for growing
them and for deriving concept descriptions. In Sect. 5 the experiments proving
the effectiveness of the approach are reported. Finally, possible developments are
discussed in Sect. 6.

2 Description Logics: Syntax and Semantics

In this section we shortly recall syntax and semantics of the DL representation.
For brevity, we cannot report syntax and semantics of the various constructors,
which can be easily be found in the reference manual [1]. In turn, the DL con-
cept descriptions are straightforwardly mapped onto XML serializations of the
standard ontology languages.

Roughly, the terminological formalisms are concept-centric: they distinguish
concepts from relations that are used to describe restrictions on concepts. In a
DL language, primitive concepts NC = {C,D, . . .} are interpreted as subsets of
a domain of objects (resources) and primitive roles NR = {R,S, . . .} are inter-
preted as binary relations on such a domain (properties). Individuals represent
the objects through names chosen from the set NI = {a, b, . . .}. Complex con-
cept descriptions are built using atomic concepts and primitive roles by means
of specific constructors. The meaning of the descriptions is defined by an in-
terpretation I = (ΔI , ·I), where ΔI is the domain of the interpretation and
the functor ·I stands for the interpretation function, mapping the intension of
concepts and roles to their extension (respectively, a subset of the domain and
a relation defined on such domain).

The top concept ' is interpreted as the whole domain ΔI , while the bottom
concept ⊥ corresponds to ∅. Complex descriptions can be built in ALC using the
following constructors3. The language supports full negation: given any concept
description C, denoted ¬C, it amounts to ΔI \CI . The conjunction of concepts,
denoted with C1 �C2, yields an extension CI

1 ∩CI
2 and, dually, concept disjunc-

tion, denoted with C1 � C2, yields CI
1 ∪ CI

2 . Finally, there are two restrictions
on roles: the existential restriction, denoted with ∃R.C, and interpreted as the
set {x ∈ ΔI | ∃y ∈ ΔI : (x, y) ∈ RI ∧y ∈ CI} and the value restriction, denoted
with ∀R.C, whose extension is {x ∈ ΔI | ∀y ∈ ΔI : (x, y) ∈ RI → y ∈ CI}.
3 In fact, ALC corresponds to the fragment of first-order logic obtained by restricting

the syntax to formulae containing two variables. ALC has a modal logic counterpart,
namely the multi-modal version of the logic Km [1].
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Further constructors extend the expressiveness of the ALC language. We are
interested in the logic that constitutes the counterpart of OWL-DL ontology lan-
guage, namely SHOIQ(D), that extends ALC with transitive roles, role hierar-
chies, individual classes, inverse roles and qualified number restrictions. Besides,
concrete domains4 (D) with their specific semantics can be dealt with.

The set-theoretic notion of subsumption between concepts (or roles) can be
given in terms of the interpretations:

Definition 2.1 (subsumption). Given two concept descriptions C and D, C
is subsumed by D, denoted by C * D, iff for every interpretation I of T it holds
that CI ⊆ DI . Hence, C ≡ D amounts to C * D and D * C.

This notion may be easily extended to the case of role descriptions (for languages
admitting role-hierarchies).

A knowledge base K = 〈T ,A〉 contains two components: a TBox T and an
ABox A. T is a set of terminological axioms C * D, yet we will consider only
definitions A ≡ D, where A ∈ NC is a concept name (atomic) and D is a concept
description given in terms of the language constructors, meaning AI = DI . The
ABox A contains extensional assertions (ground facts) on concepts and roles,
e.g. C(a) and R(a, b), meaning, respectively, that aI ∈ CI and (aI , bI) ∈ RI .
Note that the unique names assumption is not necessarily made by default5.

An interpretation satisfying all the axioms in the knowledge base is said to be
a model for it. Hence, the usual notions of satisfiability, consistency, etc. apply
also for these logics. reasoning is generally performed by resorting to tableau
algorithms [1].

Example 2.1 (kinship). Given primitive concepts like Male and primitive roles
like hasChild, an example of TBox (in the proposed language) is:

T = { Female ≡ ¬Male,
Father ≡ Male � ∃hasChild.',
Mother ≡ Female� ∃hasChild.',
Parent ≡ Mother� Father }

The concept Father translates the sentence: ”a father is a male individual that
has some individual as his child” (' denotes the most general concept). It is
easy to see that Father * Parent, yet Parent �* Father.

Now, if we define a new concept:
FatherWithoutSons≡ Father� ∀hasChild.(¬Male)
then FatherWithoutSons* Father yet Father �* FatherWithoutSons.

ABox assertions are ground facts like:
Father(OEDIPUS), Male(OEDIPUS), hasChild.Male(JOCASTA,OEDIPUS),
∃hasChild.Female(OEDIPUS), ¬∀hasChild.Male(JOCASTA) and so on. ��
4 Concrete domains include basic data types, such as numerical types, strings, etc.,

but also more complex types, such as tuples of the relational calculus, spatial regions,
or time intervals.

5 Different individual names (that ultimately correspond to URIs in RDF/OWL) may
be mapped onto the same object (resource), if not explicitly forbidden.



446 N. Fanizzi, C. d’Amato, and F. Esposito

The most important inference service from the inductive point of view is instance
checking [1], that amounts to ascertain class-membership assertions: K |= C(a),
where K is the knowledge base a is an individual name and C is a concept
definition given in terms of the concepts accounted for in K. An important
difference with other FOL fragments is the open-world assumption (OWA) which
makes it more difficult to answer class-membership queries. Thus it may happen
that an object that cannot be proved to belong to a certain concept is not
necessarily a counterexample for that concept. That would only be interpreted6

as a case of insufficient (incomplete) knowledge for that assertion.

Example 2.2 (Oedipus’ family). Given a TBox T containing the kinship concept
definitions of the previous example and also the concept
MotherWithNoDaughter≡ Mother � ∀hasChild.¬Female
and the following ABox (using another atomic concept Parricide):

A = { Female(JOCASTA), Female(POLYNEIKES),
Male(OEDIPUS), Male(THERSANDROS),
hasChild(JOCASTA, OEDIPUS),
hasChild(JOCASTA, POLYNEIKES),
hasChild(OEDIPUS, POLYNEIKES),
hasChild(POLYNEIKES, THERSANDROS),
Parricide(OEDIPUS),¬Parricide(THERSANDROS)}

one may infer the truth for assertions such as Parent(OEDIPUS), but not for
MotherWithNoDaughter(POLYNEIKES) because it may well be that a daughter of
POLYNEIKES is merely not known.

In order to better appreciate the difference of ABox reasoning w.r.t. query
answering let us consider the classic reasoning problem [1]:
given the query (hasChild.(Parricide � hasChild.¬Parricide))(JOCASTA)?
(does Jocasta have a child that is a parricide and that, in turn, has a child that
is not a parricide ?), a query answering system under a closed-world semantics7

would return a negative answer (false) because it cannot prove the assertion
Parricide(POLYNEIKES). Conversely, by reasoning on the possible models of
the ABox, one may divide these interpretations into two classes: one contains
those satisfying Parricide(POLYNEIKES) and the other with the models of its
negation. In both cases JOCASTA can be recognized as an instance of the query
concept, hence the answer to the query is true. ��

This assumption is perfectly compatible with the typical scenario related to the
Semantic Web, where new resources may continuously be made available across
the Web, hence a complete knowledge cannot be assumed at any time.

Another useful inference service provided by the DL reasoners is concept re-
trieval : given a certain concept C, retrieve all the individuals that belong to it.
Formally: {a ∈ Ind(A) | K |= C(a)}.
6 Models could be constructed for both the membership and non-membership case.
7 Query answering on databases amounts to finite model checking [1] (i.e. evaluation

of a formula in a fixed finite model).
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3 Learning Problems in Description Logics

For the basic terminology on DL languages and terminologies see [1]. Given a DL
knowledge base K = (T ,A) as the source for the background knowledge, suppose
that an expert provides proper ABox assertions to deem some individuals as
examples (or counter-examples) of some new target concept for which one wants
to learn a definition in the form of a DL concept description:

Definition 3.1 (learning problem). Let K = (T ,A) be a DL knowledge base.
Given

– a (new) target concept name C;
– a set of positive and negative examples for C:
S+

C (A) = {a ∈ Ind(A) | K |= C(a)} and
S−

C (A) = {b ∈ Ind(A) | K |= ¬C(b)}

Build a concept description D so that the following relations are satisfied by the
definition C ≡ D:

– K |= C(a) ∀a ∈ S+
C (A) and

– K �|= C(b) ∀b ∈ S−
C (A)

Note that in this supervised concept learning task S+
C (A) and S−

C (A) (i.e. sets of
individuals) represent, resp., the sets of positive and negative examples, whereas
D is the hypothesis to be induced. In the original setting for logic decision trees
[9] multiple disjoint concepts are to be learned. In the case of DLs disjointness
must be explicitly stated as an axiom in the knowledge base. Note that this is
different from settings where negative examples are such that K �|= C(a), that
may be fulfilled by a single interpretation satisfying ¬C(a).

The example on the domain of cars employed in [9] to illustrate the task of
learning logical decision trees can be transposed as follows:

Example 3.1 (car checking). An engineer must check a set of cars. Each car is
made of several parts that may need be replaced. This can be done by either
their manufacturer or by the engineer himself. In the former case the car is an
instance of the SendBack concept, in the latter it belongs to the Fix concept.
In case no worn parts are detected, the car is Ok. The TBox T includes the
following background knowledge:

{ Gear * Replaceable,
Chain * Replaceable,

Engine * ¬Replaceable,
Wheel * ¬Replaceable } ⊆ T

Besides, since the target concepts are meant to be disjoint, the following axioms
must be added to T :

{SendBack * ¬(Fix � Ok),
Fix * ¬(Ok � SendBack),
Ok * ¬(SendBack� Fix)}
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The original examples can be encoded as the following set of assertions:

A′ = { Machine(M1), hasPart(M1, G1), Gear(G1), Worn(G1),
hasPart(M1, C1), Chain(C1), Worn(C1),
Machine(M2), hasPart(M2, E2), Engine(E2), Worn(E2),
hasPart(M2, C2), Chain(C2), Worn(C2),
Machine(M3), hasPart(M3, W2), Wheel(W3), Worn(W3),
Machine(M4) } ⊆ A

Then given this knowledge base and the example sets S+
C (A) = {M1, M3} and

S−
C (A) = {M2, M4}, a good definition for C = SendBack may be:

SendBack ≡ Machine� ∃hasPart.(Worn � ¬Replaceable)

A more general setting may be conceived to manage the case of refinement
problems, in which a definition for the target concept is already available but it
may be defective w.r.t. to some positive or negative examples [7, 6]. Note that
this task differs also from settings where the aim is building a classifier, rather
than DL concept definitions, through parametric and non-parametric statistical
methods [12, 13, 14]. These related settings will not be further discussed.

4 Terminological Decision Trees and Their Induction

First-order logical decision trees (FOLDTs) are defined [9] as binary decision
trees in which

1. the nodes contain tests in the form of conjunctions of literals;
2. left and right branches stand, resp., for the truth-value (resp. true and false)

determined by the test evaluation;
3. different nodes may share variables, yet a variable that is introduced in a

certain node must not occur in the right branch of that node.

Terminological decision trees (TDTs) extend the original definition, allowing DL
concept descriptions as (variable-free) node tests. Fig. 1 shows a TDT denoting
also the definition of the SendBack concept proposed in Ex. 3.1.

4.1 Classification

The TDTs can be used for classifying individuals. Fig. 2 shows the related classi-
fication procedure. It uses other functions: leaf() to determine whether a node
is a leaf of the argument tree, root() which returns the root node of the in-
put tree, and inode() which retrieves the test concept and the left and right
subtrees branching from a given internal node. Given an individual a, starting
from the root node, the algorithm checks the class-membership w.r.t. the test
concept Di in the current node, i.e. K |= Di(a), sorting a to the left branch if
the test is successful while the right branch is chosen if K |= ¬Di(a). Eventually
the classification is found as a leaf-node concept.
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∃hasPart.�

∃hasPart.Worn

∃hasPart.(Worn � ¬Replaceable)

SendBack ¬SendBack (� Fix)

¬SendBack (� Ok)

¬SendBack (� Machine)

Fig. 1. A TDT whose leftmost path corresponds to the DL concept definition
SendBack ≡ ∃hasPart.(Worn � ¬Replaceable). Other definitions can be associated to
the paths to leaves labeled with ¬SendBack that are related to other (disjoint) concepts.

function classify(a: individual, T : TDT, K: KB): concept;
begin

1. N ← root(T );
2. while ¬leaf(N, T ) do

(a) (D, Tleft, Tright) ← inode(N);
(b) if K |= D(a) then N ← root(Tleft)
(c) elseif K |= ¬D(a) then N ← root(Tright)
(d) else return �

3. (D, ·, ·) ← inode(N);
4. return D;

end

Fig. 2. Classification with TDTs

Note that the open-world semantics may cause unknown answers (failure of
both left and right branch tests) that can be avoided by considering a weaker
(default) right-branch test: K �|= Di(a). This differs from the FOLDTs where
the test actually consists of several conjunctions that occur in the path from the
root to the current node.

4.2 From Terminological Decision Trees to Concept Descriptions

Note that each node in a path may be used to build a concept description through
specializations. This can be given 1) by adding a conjunctive concept description,
2) by refining a sub-description in the scope of an existential, universal or number
restriction or 3) by narrowing a number restriction (which may be allowed by the
underlying language, e.g. ALN or ALCQ). No special care8 is to be devoted to
negated atoms and their variables. The underlying tableau reasoning algorithm
for reasoning with ALC is indeed sound and complete (see [1], Ch. 3).

8 We are considering expressive (and decidable) DL languages like ALCQ, that are
endowed with full negation, hence the situation is perfectly symmetric.
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function deriveDefinition(C: concept name, T : TDT): concept description;
begin

1. S ← associate(C, T,�);
2. return

⊔
D∈S D;

end

function associate(C: concept name; T : TDT; Dc: current concept description): set
of descriptions;
begin

1. N ← root(T );
2. (Dn, Tleft, Tright) ← inode(N);
3. if leaf(N, T )

then
(a) if Dn = C then

return {Dc};
else

return ∅;
else
(a) Sleft ← associate(C, Tleft, Dc � Dn);
(b) Sright ← associate(C, Tright, Dc � ¬Dn);
(c) return Sleft ∪ Sright;

end

Fig. 3. Mapping a TDT onto a DL concept description

For each target concept name C it is possible to derive a single concept
definition from a TDT. The algorithm (see Fig. 3) follows all the paths leading
to success nodes i.e. leaves labeled with C (the heads of the clauses in the original
setting) collecting the intermediate test concepts (formerly, the body literals).
In this way, each path yields a different conjunctive concept description. that
represents a different version of the target concept in conjunctive form Di =
Di

1 � · · · �Di
l . The final single description for the target concept is obtained as

the disjunctive description built with concepts from this finite set S = {Di}M
i=1.

Hence, the final definition is C ≡
⊔M

i=1Di. As an example, looking back at the
TDT depicted in Figure 1, a concept definition that may be extracted is

Ok ≡ ∃hasPart.' � ¬∃hasPart.Worn ≡ ∃hasPart.' � ∀hasPart.¬Worn

i.e. something that has exclusively parts which are not worn.
Like in the original logic tree induction setting, also internal nodes may be

utilized to induce new intermediate concepts.

4.3 Induction of TDTs

The subsumption relationship * induces a partial order on the space of DL
concept descriptions. Then, the learning task can be cast as a search for a solution
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of the problem in the partially ordered space. In such a setting, suitable operators
to traverse the search space are required [4, 6].

While existing DL concept induction algorithms generally adopt a separate-
and-conquer covering strategy, the TDT-learning algorithm adopts a divide-and-
conquer strategy [10]. It also tries to cope with the limitations of the other
learning systems, namely approximation and language-dependence. Indeed, since
the early works [2], instances are required to be transposed to the concept level
before the learning can start. This is accomplished by resorting to the compu-
tation, for each training individual, of the related MSC the individual belongs
to [1], which need not exist, especially for expressive DLs, and thus has to be
approximated. Even in an approximated version, the MSCs turn out to be ex-
tremely specific descriptions which affects both the efficiency of learning and
the effectiveness of the learned descriptions as this specificity easily leads to
overfitting the data [4].

The algorithms implemented by DL-Learner [6] partly mitigate these dis-
advantages being based on stochastic search using refinement operators and a
heuristic computed on the grounds of the covered individuals (and a syntactic
notion of concept length). Generate-and-test strategies may fall short when con-
sidering growing search spaces determined by more expressive languages. This
drawback is hardly avoidable and it has been tackled by allowing more interac-
tion with the knowledge engineer which can be presented with partial solutions
and then decide to stop further refinements.

Our TDT-induction algorithm adapts the classic schema implemented by
C4.5 [8] and Tilde [9]. A sketch of the main routine is reported in Fig. 4.
It reflects the standard tree induction algorithms with the addition of the treat-
ment of unlabeled training individuals. The three initial conditional statements
take care of the base cases of the recursion, namely:

1. no individuals got sorted to the current subtree root then the resulting leaf
is decided on the grounds of the prior probabilities of positive and negative
instances (resp. Pr+ and Pr−);

2. no negative individual yet a sufficient rate (w.r.t. the threshold θ) of positive
ones got sorted to the current node, then the leaf is labeled accordingly;

3. dual case w.r.t. to the previous one.

The second half of the algorithm (randomly) generates a set Specs of (satisfiable)
candidate descriptions (calling generateNewConcepts), that can specialize
the current description D when added as a conjunction. Then, the best one
(Dbest) is selected in terms of an improvement of the purity of the subsets of
individuals resulting from a split based on the test description. The (im)purity
measure is based on the entropic information gain [8] or on the Gini index which
was finally preferred. In the DL setting the problem is made more complex by
the presence of instances which cannot be labelled as positive or negative (see
[7]) whose contributions are considered as proportional to the prior distribution
of positive and negative examples.

Once the best description Dbest has been selected (calling selectBestCon-

cept), is is installed as the current subtree root and the sets of individuals sorted
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function induceTDTree(C: concept name; D: current description;
Ps, Ns, Us: set of (positive, negative, unlabeled) training individuals): TDT;

const θ; {purity threshold}
begin
Initialize new TDT T ;
if |Ps| = 0 and |Ns| = 0
then {pure leaf node}

if Pr+ ≥ Pr−
then T.root ← C
else T.root ← ¬C;
return T ;

if |Ns| = 0 and |Ps|/(|Ps| + |Ns| + |Us|) > θ then
begin T.root ← C; return T ; end

if |Ps| = 0 and |Ns|/(|Ps| + |Ns| + |Us|) > θ then
begin T.root ← ¬C; return T ; end

Specs ← generateNewConcepts(D, Ps,Ns);
Dbest ← selectBestConcept(Specs,Ps,Ns,Us);
((P l, N l, U l), (P r, Nr, Ur)) ← split(Dbest ,Ps,Ns,Us);
T.root ← Dbest ;
T.left ← induceTDTree(C, D � Dbest , P

l, N l, U l);
T.right ← induceTDTree(C,D � ¬Dbest , P

r, Nr , Ur);
return T ;
end

Fig. 4. The main routine for inducing terminological decision trees

to this node are subdivided according to their classification w.r.t. such a con-
cept. Note that unlabeled individuals must be sorted to both subtrees. Finally
the recursive calls for the construction of the subtrees are made, passing the
proper sets of individuals and the concept descriptions D�Dbest and D�¬Dbest

related to either path.

5 Experimental Evaluation

5.1 Experimental Setting

To test the new algorithm on real ontologies, the resulting system TermiTIS

was applied to a number of individual classification problems solved by inducing
TDTs w.r.t. random query concepts. To this purpose, a number of ontologies
represented in OWL concerning different domains have been selected9, namely:
FiniteStateMachines (FSM) concerning finite state machines, NewTesta-

mentNames (NTN) accounting for characters and places mentioned in that

9 The ontologies can be found in standard repositories: the Protégé li-
brary (http://protege.stanford.edu/plugins/owl/owl-library) and TONES
(http://owl.cs.manchester.ac.uk/repository).

http://protege.stanford.edu/plugins/owl/owl-library
http://owl.cs.manchester.ac.uk/repository
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Table 1. Facts concerning the ontologies employed in the experiments

ontology
DL

#concepts
#object #datatype

#individuals
language properties properties

FSM SOF(D) 20 10 7 37

MDM0.73 ALCHOF(D) 196 22 3 112

Wines ALCOF(D) 75 12 1 161

BioPax ALCIF(D) 74 70 40 323

hDisease ALCIF(D) 1498 10 15 639

NTN SHIF(D) 47 27 8 676

Financial ALCIF 60 16 0 1000

book, the BioPax glycolysis ontology (BioPax) describing the glycolysis path-
way from the EcoCyc database, the Wine ontology from a project describing
Wines and Food, the Financial ontology, built for eBanking applications and
two medical ontologies MDM0.73 and hDisease. Tab. 1 summarizes important
details concerning these ontologies, in terms of the numbers of concepts, object
and datatype properties and individuals. The sizes of the ontologies are to be
measured in terms of (thousands of) RDF triples.

Artificial learning problems were created generating 50 random queries per
ontology by composition of 2 through 8 concepts built by means of the lan-
guage constructors: complement (¬), intersection (�), union (�), universal (∀)
or existential (∃) restrictions. The general experiment design adopted a .632
bootstrap strategy. A standard reasoner10 was employed to decide on the real
class-membership (and non-membership) w.r.t. the query concepts.

The performance was evaluated comparing the classification of the test indi-
viduals w.r.t. the query concepts performed using both the induced trees and
the deductive instance-checking provided by the reasoner. The prior distribution
of positive and negative instances were computed for each ontology. The default
setting of the threshold (θ = .05) was considered.

5.2 Outcomes

Due to the open-world semantics, it may happen that the membership of an in-
dividual w.r.t. a query concept cannot be determined by a reasoner (see Sect. 2).
Then a three-way classification problems were considered and the induced model
was evaluated using the following indices also for allowing a comparison to the
outcomes of experiments with another DL concept learning system like DL-

Foil [7]. Essentially they measure the correspondence between the deductive
and inductive classification for the test instances w.r.t. the query concepts pro-
vided, resp., using a DL reasoner and the TDT algorithm (see Fig. 2):

– match rate, i.e. number of cases of individuals that got the same classification
with both modes;

10
Pellet ver. 2 (available at http://clarkparsia.com/pellet).

http://clarkparsia.com/pellet


454 N. Fanizzi, C. d’Amato, and F. Esposito

Table 2. Results: average values ± standard deviations

ontology
match commission omission induction
rate rate rate rate

FSM 96.68±01.98 00.99±01.35 00.02±00.18 02.31±00.51

MDM0.73 93.96±05.44 00.39±00.61 03.50±04.16 02.15±01.47

Wines 74.36±25.63 00.67±04.63 12.46±14.28 12.13±23,49

BioPax 96.51±06.03 01.30±05.72 02.19±00.51 00.00±00,00

hDisease 78.60±39.79 00.02±00.10 01.54±06.01 19.82±39.17

NTN 91.65±15.89 00.01±00.09 00.36±01.58 07.98±14.60

Financial 96.21±10.48 02.14±10.07 00.16±00.55 01.49±00.16

– omission error rate, amount of individuals for which the membership w.r.t.
the given query could not be determined using the TDT, while they can be
proven to belong to the query concept or to its complement;

– commission error rate, amount of individuals found to belong to the query
concept according to the induced TDT, while they can be proven to belong
to its complement and vice-versa;

– induction rate, amount of individuals found to belong to the query concept
or its complement according to the TDT, while either case is not logically
derivable from the knowledge base.

Tab. 2 reports the outcomes in terms of these indices. Preliminarily, we found
that the search procedure was accurate enough: it made few critical mistakes,
especially when the considered concepts are known to have many examples (and
counterexamples) in the ontology. However, it is important to note that, in each
experiment, the commission error was limited but not absent, as in the exper-
iments with other classification methods. The cases of queries for which this
measure was high are due to the limited amount of examples available (concepts
with narrow extensions). Even few mistakes provoked high error rates. This is
also due to the absence of axioms stating explicitly the disjointness between some
concepts. Also the omission error rates are quite low. They are comparable with
the amount of inductive conclusions that could be drawn with the induced defi-
nitions. Again these figures may vary as a consequence of the presence / absence
of knowledge about the disjunction of (sibling) concepts in the subsumption
hierarchies. In an ontology population perspective, the cases of induction are in-
teresting because they suggest new assertions which cannot be logically derived
by using a deductive reasoner yet they might be used to complete a knowledge
base, e.g. after being validated by an ontology engineer and/or a domain expert.
Better results were obtained on the same task with different inductive meth-
ods. Yet, like with DL-Foil we have the added value of having an intensional
definition of the target concepts.

The elapsed time was very limited: about 0.5 hour for a whole experiment on
a medium sized ontology (in terms of number of individuals) including the time
consumed by the reasoner for the deductive instance checks.
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BioPax

induced concept:
(Or (And physicalEntity protein) dataSource)

original concept:
(Or (And (And dataSource externalReferenceUtilityClass)

(ForAll ORGANISM (ForAll CONTROLLED phys icalInteraction)))

protein)

NTN

induced conceot:
(Or EvilSupernaturalBeing (Not God))

original concept:
(Not God)

Financial

induced concept:
(Or (Not Finished) NotPaidFinishedLoan Weekly)

original concept:
(Or LoanPayment (Not NoProblemsFinishedLoan))

Fig. 5. Examples of induced description for given target concepts employed for the
generation of training examples

A comparison with previous works is difficult because some of them con-
sider only binary problems so that standard accuracy measures can be applied.
However, as the unknown membership is inherent in the semantics of the rep-
resentation, it appears to be fairer to consider ternary problems distinguishing
counter-examples from those of uncertain membership. As we used the same
measures employed for the evaluation of DL-Foil [7], some comparison can be
made with that system (although a 10 fold cross-validation design was adopted
there). For all the three ontologies employed in the former experiment (BioPax,
NTN and Financial) the performance was improved (from 75% to over 90%
match rates while the commission errors, formerly up to 16-19% are reduced to a
few percentage points). Also in terms of variance, there is a significant reduction
of the standard deviation, a sign that the new method is also more stable.

5.3 Qualitative Evaluation

For some of the ontologies, we report in Figure 5 some examples of the concept
descriptions (in a Lisp-like syntax) that were learned during the experiments
and compare them to the original query concept that generated the examples
and counterexamples.

The same concepts have been processed by DL-Foil with the same results,
while former systems (such as YinYang [4]) tended to output accurate yet un-
necessarily long descriptions. Of course for a correct qualitative interpretation
of the value of these concepts some familiarity is assumed with the domain of
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the ontologies. However we notice that the induced concepts generally tend to be
slightly more complex than the original descriptions. This is not so when learning
from MSCs [2, 4]. Moreover, they are correct w.r.t. the individuals occurring in
the ontology: the extensions of the original and induced concepts, measured in
terms of the known instances (retrieval set), generally overlap.

6 Conclusions and Outlook

Introducing terminological decision trees, we investigated new methods (based
on logical decision trees) for learning concepts in expressive DLs representations
that support the standard Web ontology languages. In the TermiTIS system,
a top-down tree induction algorithm was implemented that is an adaptation of
standard tree induction methods to the issues related to the different represen-
tation. Indeed, as with the predecessor DL-Foil, it essentially makes use of a
different gain function which takes into account the open-world semantics. This
requires a different setting and a special treatment of the unlabeled individuals
which is similar to the semi-supervised learning problem [11] in a FOL context.

The presented experimental evaluation, applying the TermiTIS system to
the task of individual classification real ontologies (some had been already used
for experimenting DL-Foil) using the same performance indices, measuring
the alignment of the classifications decided by the induced TDTs with those
derived deductively by a DL reasoner. This allowed measuring the amount of
unlabeled instances that may be ascribed to the newly induced concepts (or to
their negations), which constituted a real added value brought by the inductive
method. The experiments made on various ontologies showed that the method
is quite effective, and its performance depends on the number (and distribution)
of the available training individuals. Besides, the procedure appears also robust
to noise since commission errors were limited.

Actually this sort of abductive assertions produced by the inductive method
should be evaluated by domain experts (e.g. those who supported the construc-
tion of the ontology). Namely, validated assertions may be employed in the task
of ontology population. This also allows for a more focused diagnosis of the
ontologies as it may elicit specific parts that would require some amendment.

We plan to extend this work in various directions. First of all the underlying
DL language is being extended. The method can already manage KBs repre-
sented in more expressive languages than ALCQ but use the concepts therein as
atoms and building new ones exclusively thorough ALCQ concept constructors.
More impurity indices have to be explored especially to better take into account
the uncertainty related to the unlabeled individuals.

Finally, the presented method may be the basis for alternative hierarchical
clustering algorithms where clusters would be formed grouping individuals on
the grounds of the invented subconcept instead of their similarity, as this may
be hardly defined with such complex representations.
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Abstract. We present a novel approach for classification using a discre-
tised function representation which is independent of the data locations.
We construct the classifier as a sum of separable functions, extending the
paradigm of separated representations. Such a representation can also be
viewed as a low rank tensor product approximation. The central learning
algorithm is linear in both the number of data points and the number of
variables, and thus is suitable for large data sets in high dimensions. We
show that our method achieves competitive results on several benchmark
data sets which gives evidence for the utility of these representations.

1 Introduction

We consider the basic binary classification problem, where one starts from a set
of labelled data,

D =
{
(xj ; yj)

}N

j=1
=
{

(xj
1, · · · , x

j
d; yj)

}N

j=1
, (1)

with yi ∈ {−1, 1} labelling the two classes and x a d-dimensional feature vector.
There exist numerous algorithms for classification (see e.g. [1,2]). Function based
methods for classifying data construct a function g(x) such that the sign of
g(xj) matches yj for the given data, and the sign of g(x) correctly predicts y for
other x. Since the data may contain errors, or may simply not provide enough
information, one cannot expect to completely satisfy this goal, so one tries to
minimise the classification error rates.

An approach using nonlinear functions in high dimensions typically has to
address the curse of dimensionality, where the complexity of the function repre-
sentation, which is the number of unknowns, typically grows exponentially with
the dimensions. For example, support vector machines are based on a data cen-
tred function representation using kernels. One of the reasons for the success
of this approach is that here the dimensionality turns up in the complexity of
the kernel computation but not in the complexity of the function representation
which essentially only depends on the number of data. One can view other ap-
proaches and how they address the curse of dimensionality in a similar fashion,
e.g. for neural networks the dimension turns up in the perceptron.
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In the last years numerical approaches using function representations based on
a sparse tensor product approach were successfully used in high dimensions [3,4].
These approaches are based, in an abstract fashion, on the approximation by a
sum of separable functions,

g(x) =
r∑

l=1

sl

d∏
i=1

gl
i(xi) , (2)

also known as low rank tensor decomposition or sparse tensor product approx-
imation. The number of terms r is called the (separation) rank. Note that the
coefficients sl are solely for later (computational) convenience, so that one can
scale the individual functions to ‖gl

i‖ = 1 in some suitable function norm, e.g. the
maximum norm. Since the sl depend on the gl

i they are not explicitly learned,
but are derived values. If one applies a log to such a function with r = 1 the
resulting approach is well known in the statistical literature as additive models.

Many methods are based on this formulation but differ in how they use it.
Sparse grid methods are based on a multi-scale tensor product basis where the
gl

i are combined from a set of orthogonal functions. Here basis functions of small
importance, justified by decay estimates exploiting hierarchical properties, are
omitted [4]. In the statistics literature, representations of the form (2) appear
under the names “parallel factorisation” or “canonical decomposition”, see [5]
for a review and further references. They are used primarily to analyse data on
a grid, typically in d = 3. Since the goal is to interpret data, constraints on
gl

i, such as positivity when one is interested in probabilities, are often imposed.
Similarly, since they only describe data on a grid, a general function is not built.

Following [6] we use sums of separable functions of the form (2) but without
constraints such as orthogonality or positivity on the gl

i. The resulting nonlinear
approximation method is called a separated representation [3]. The functions
gl

i may be constrained to a subspace, but are not restricted to come from a
particular basis set. This extra freedom allows one to find good approximations
with surprisingly small r, and reveals a much richer structure than one would
believe beforehand. Although there are at present no useful theorems on the size
r needed for a general class of functions, there are examples where removing
constraints produces expansions that are exponentially more efficient than one
would expect a priori, i.e. r = d instead of 2d or r = log d instead of d. These
example are discussed in detail in [3], we will sketch a few here as illustrations.

First, as a simple example, note that in the separated representation one can
have a two-term representation

d∏
i=1

φi(xi) +
d∏

i=1

(φi(xi) + φi+d(xi)) (3)

where {φj}2d
j=1 form an orthonormal set. To represent the same function as (3)

while requiring all factors to come from a master orthogonal set would force one
to multiply out the second term and thus obtain a representation with 2d terms.
Thus a function that would have r = 2d in an orthogonal basis may be reduced
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to r = 2. Second, consider the additive model
∑d

i=1 φi(xi), and note that it is
equal to

lim
h→0

1
2h

(
d∏

i=1

(1 + hφi(xi))−
d∏

i=1

(1 − hφi(xi))

)
. (4)

Thus we can approximate a function that naively would have r = d using only
r = 2 by choosing h small enough for a given approximation error ε. This formula
provides an example of converting addition to multiplication; it is connected to
exponentiation, since one could use exp(±hφi(xi)) instead of 1±hφi(xi). Third,
note that Gaussians are separable, since

exp(−c‖x− z‖2) =
d∏

i=1

exp(−c(xi − zi)2) . (5)

By expanding a radial function in Gaussians, one can obtain a separated repre-
sentation for it.

In a data mining context one can view such a representation as a sum of
different influences. Consider a case where several effects are responsible for the
overall distinction into two classes. Each rank in (2) now plays the role of one
such effect. This is a somewhat simplified view, as only products are considered
as summands in our approach and the interaction between different attributes
will not be just of product nature. On the other hand our algorithm optimises the
non-linear separated formulation in all ranks at the same time and has therefore
interaction between the different “effects”. In the end the goal is not to compute
summands describing effects, but to achieve the best compressed representation.
As mentioned above, addition can be converted to multiplication (4) and additive
representations of certain effects can therefore be represented more efficiently.
Also note again, that for r = 1 (2) falls back to an additive model. Overall, there
is some underlying structure present in machine learning applications which our
approach exploits at least implicitly.

The representation (2) provides a rich class of functions from which to con-
struct approximations, while also allowing algorithms that scale linearly in both
N and d. It is especially appropriate for the case where the dimension d is large,
but the underlying function that generated the data is fairly “simple”. One can
of course construct functions where the representation (2) would fail, in the sense
that r must be very large. It appears, however, that such bad functions do not
appear naturally. In some sense such bad functions are excluded by the very
nature of the problem we consider. For example, consider a “complicated” func-
tion, whose discretisation would require a grid with M points in each direction
and, thus, N = Md samples. Since Md is impossibly large for even moderate
values of M and d, we must assume N & Md and, therefore, the data cannot
describe such a function to begin with.

In [6] it was shown that such representations are effective as regression func-
tions. The goals of this paper are to present algorithms to construct classifiers
of the form (2), and to give numerical evidence that such representations are
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worth using as classifiers as well, which from a function point of view possess
quite different properties than regression functions.

To adapt the method to the classification problem we replace the least-squares
error by other more suited loss functions. We use log-likelihood estimation, which
in the sense of probability estimation is more appropriate and statistically sound
for classification than a least squares approach [1,2], and the hinge loss used for
support vector machines in a smooth variant introduced in [7].

These loss functions make a different solution strategy necessary. Instead of
an alternating least squares procedure, which at its core involves the solution
of a linear equation system “living” in one dimension xi, we now have a non-
quadratic function to minimise using non-linear minimisation algorithms. We
investigate both an alternating minimising procedure and a global minimisation
which optimises in all dimensions simultaneously. For both we need to formulate
a suitable regularised problem. This is necessary to avoid overfitting, but also
for numerical stabilisation. We extend the approach from [6] and also investigate
the use of ‖∇g(x)‖2 as a simple regularisation term to enforce smoothness.

In the following Section 2 we describe the regularised minimisation problem
while Section 3 contains the employed algorithms. After presenting numerical
results in Section 4 we conclude with an outlook.

2 Definition of the Problem

2.1 Loss Function

The representation of a function by sums of separable functions was studied
recently for regression [6]. We now adapt this approach for loss functions pre-
ferred in classification problems, the overall aim is to minimise the expected
classification error on test data. First is the negative log likelihood [1,2]

1
N

N∑
j=1

LLL(yj , g(xj)) =
1
N

N∑
j=1

log
(
1 + exp

(
−yjg(xj)

))
. (6)

Note that we use the encoding yi ∈ {−1, 1} for the classes instead of the encoding
yi ∈ {0, 1} often employed in the log likelihood approach.

As an alternative we also adapt the hinge loss used for support vector ma-
chines. Since this function is not differentiable at yg(x) = 1 one would need a
general descent method. Instead we use a smooth approximation to it proposed
by [7], which is inspired by the Huber loss,

LHH(y, t) =

⎧⎨⎩
0 if yt > 1 + h
(1+h−yt)2

4h if |1− yt| ≤ h
1− yt if yt < 1− h

(7)

where h is a parameter to be chosen, typically between 0.01 and 0.5; for h = 0
one obtains the hinge loss. Therefore one minimises in this case

1
N

N∑
j=1

LHH(yj , g(xj)). (8)
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Note that we are not actually minimising the hinge loss, but from a machine
learning point of view there is, besides tractability, no reason to prefer the hinge
loss over a smoothed version [7]. In other words, if one does not gain algorithmic
advantages using the hinge loss, like for support vector machines in the dual
optimisation, one can use a huberised version and expect comparable results.

In the following we describe our approach for the negative log likelihood (LL)
loss function (6), but one can replace it at every step with the huberised hinge
(HH) loss function (8).

2.2 Basis in One Dimension

Up to now we have not specified the representation for the one-dimensional
functions gl

i. For the above, and most of the following description, it is enough
to assume that we are given a function space of (finite) dimension Ml in which
to search for gl

i. For example, one could choose polynomials of some degree,
splines, or piecewise linear functions. This space may be different for each term l
in the sum, each attribute i, and in general also for each (l, i) pair. We next
choose some basis {φl

k}
Ml

k=1 for this function space, but we emphasise that the
main results are independent of the particular choice. The function gl

i will be
represented by the vector of its Ml coefficients cli(k) in its expansion into {φl

k}:

gl
i(xi) =

Ml∑
k

cli(k)φ
l
k(xi). (9)

In our numerical experiments in Section 4 we use a multi-scale basis of tent
functions on the interval [0, 1], as was used e.g. in [6,8]. On level 0 this consists
of the functions 1 and x. On level 1 we additionally include the tent function of
support 1 centred at 1/2, i.e. the line segments from (0, 0) to (1/2, 1) and then
to (1, 0). Level 2 adds two tent functions of width 1/2, centred at 1/4 and 3/4,
etc. This function space consists of piecewise linear functions.

We will solve for the values of cli(k) for all i, l and k, so those are the free
parameters with respect to which we minimise the error.

2.3 Avoiding Over-Fitting

There are two ways in which over-fitting can occur here. The first is when r
is too large. Since r is the main complexity parameter, it is natural to take a
parametric approach and choose r very low. As with all parametric methods,
various more-or-less justified tests, or simple cross-validation, can be used to
choose the appropriate r.

The second way over-fitting can occur is when there is over-fitting in the one-
dimensional functions gl

i. There are two natural ways to avoid over-fitting within
this framework. One is again to use a parametric approach, and choose M small.
Note that the discrete function space and the choice of its resolution can also be
viewed in the context of regularisation by projection [9,10].



Classification with Sums of Separable Functions 463

The other way is to use a nonparametric approach and incorporate regulari-
sation to encourage smoothness, as we describe next. We will use two different
strategies for regularisation, one in regard to the full function g, and one in
regard to the one-dimensional factors gl

i. Furthermore, regularisation is usually
also beneficial for the stability of the employed numerical solution strategy.

Global Regularisation. One possibility is to add a weighted regularisation
term to the loss function (6) or (8) which results in a new functional for the
minimisation

1
N

N∑
j=1

L(yj , g(xj)) + λ‖S(g(x))‖2. (10)

The particular choice of S depends on the chosen discrete function space, or,
viewed in the kernel context, the particular choice of S corresponds, under certain
conditions, to a reproducing Kernel Hilbert space (RKHS) and therefore defines
a function space (which is then discretised). The regularisation parameter λ has
to be chosen suitably as usual. Since we employ multi-scale linear functions as our
basis for g(x) we can only use first derivatives in S. Therefore we use ‖∇g(x)‖2
as a simple regularisation term. Although this does not define a RKHS, it was
shown to be a reasonable choice in [11,12].

Regularisation of One Factor. We will see in section 3.1 that for the alter-
nating minimisation procedure the problem collapses to one-dimensional sub-
problems in coordinate direction xi. Here one can use the global regularisation
term from the last section. But one can also encourage smoothness of the func-
tion g(x) just in regard to direction xi and assume here for the minimisation
that the other components have no influence on the smoothness of the function.
Furthermore one enforces regularisation separately for each summand gl

i(xi) in
(2) and not combined. Note that we present the resulting form of regularisation
in the following to completely formulate the problem setup. That this choice of
the regularisation term has in particular numerical advantages will be clearer
after the study of section 3.1, where the alternating minimisation procedure for
the one-dimensional problems is explained.

The one-dimensional function gl
i(xi) from (2) is using the basis functions φl

k –
we assume the same basis in all dimensions here – and will be represented by Ml

coefficients cli(k) according to (9). One now chooses a list of penalty weights γl
k

and adds to the one dimension problem (13)

λ
∑

l

s2l
∑

k

γl
k|cli(k)|2 . (11)

This approach was taken in [6] with a particular choice of weights. We use a
slight modification and choose the weights for one gl

i(x) by ‖S(gl
i(x))‖2. Due to

the orthogonality of the basis we have
∫
φl

k

′(x)φl
k̃

′(x)dx = δkk̃C(k), where the
constant C(k) depends on the size of the support of φl

k. Due to the choice of
‖S(φk(x))‖2 basis functions with small support will be penalised stronger than
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those with large support. This will penalise large local variance much stronger
than a change of the function over larger intervals.

Let us remark, that in the least-squares case the minimisation problem can be
ill-posed [13], but if each coefficient is penalised by some value larger than zero
the problem becomes well-posed; see [3] for discussion on controlling condition
number in this way. We conjecture that the situation is similar when minimising
log likelihood or the huberised hinge loss.

2.4 Sums of Separable Functions in the Learning Theory Context

This approach fits into the framework of Sobolev spaces, these were studied in
the learning theory context for example in [14]. This then gives us an infinite
function space, with bounds on its properties for learning, in which a discrete
approximation takes place, in our case by the use of sums of separable functions.

Such an approximation of an element from a function space by a linear com-
bination of functions from a given dictionary is much less studied in learning
theory. From the perspective of approximation theory in [15] bounds for conver-
gence rates for the problem of approximating a given function f from a Hilbert
space H by means of greedy algorithms are given and applied to the statistical
learning theory context.

In regard to approximation properties of our approach, some results are given
in [3] which show how other approaches can be formulated in the form of (2),
and how with increasing number of ranks r and increasing resolution M one can
approximate a function from a Sobolev space of certain smoothness arbitrarily
close. But the convergence order for these somewhat related approaches grows
exponentially in d.

To give theoretical results for our approach a characterisation of functions with
low separation rank (or tensors with a low rank decomposition) is needed, but
currently there is no characterisation of this kind. The examples above and in [3]
as well as the successful use of the related “parallel factorisation” or “canonical
decomposition” in statistics show that there are surprising mechanisms that
allow low separation rank. At this stage the lack of a complete theory should
not prevent a study of sums of separable functions for learning.

3 Minimisation Procedures

There are many algorithms for solving least-squares problems using representa-
tions like (2) described in the literature, see [5,16] for surveys. It is a non-trivial
problem and there is active research to improve convergence and reduce the
dependence on the starting guess.

These algorithms can be classified in three main groups: alternating
algorithms, which update only a subset of the unknowns at each step; derivative-
based methods, seeking an update for all the parameters simultaneously by suc-
cessive approximations; and direct (non-iterative) methods. The latter cannot
be applied in our setting.
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3.1 Alternating Minimisation Procedure

For the least squares error this approach is well-known as alternating least-
squares (als). The idea of partitioning the space of unknowns and solving the
optimisation alternatingly in these partitions is known under several other names
like coordinate descent and goes back at least to [17]. In the following we will
call it alternating minimisation procedure (amp).

Collapse to One-Dimensional Subproblems. We now assume that an initial
guess g of the form (2) is given, with some choice of representation for gl

i. We fix
the components in all directions but one, and so collapse to an one-dimensional
problem. For simplicity we describe the case for direction i = 1, and so fix gl

i for
i > 1. We define the (fixed) partial products from the remaining directions by

pl
j = sl

d∏
i=2

gl
i(x

j
i ) , l = 1, . . . , r, j = 1, . . . , N . (12)

The loss (6) then reduces to

1
N

N∑
j=1

log

(
1 + exp

(
−yj

r∑
l=1

pl
jg

l
1(x

j
1)

))
. (13)

To minimise (13) we must solve a one-dimensional non-linear problem involving
r one-dimensional functions gl

1, each described byMl coefficients. As a minimiser
one has the choice under several algorithms. We did experiments with the quasi-
Newton method BFGS, a non-linear CG-method, and a trust-region method (see
e.g. [18]). One could numerically estimate the needed derivatives (and hessian
for the trust-region method) of the loss function. But e.g. the derivative for the
log-likelihood with respect to cl1(k) can be given explicitly as

1
N

N∑
j=1

−yjslφ
l
k(xj

1)
exp

(
−yj

∑r
l=1 p

l
jg

l
1(x

j
1)
)

1 + exp
(
−yj

∑r
l=1 p

l
jg

l
1(x

j
1)
) , (14)

and the derivative of the regularisation terms is straightforward.
The minimisation finishes once a suitable stopping criteria for the employed

non-linear solver is fulfilled, e.g. the objective function does decrease smaller
than a given threshold. Since we have an outer iteration the stopping criteria for
the one-dimensional minimisation can be coarser than typically used. We then
re-normalise gl

1 and incorporate the norm into sl, this is not strictly necessary,
we need not normalise at all; we do so only to prevent over/under-flows.

Before we describe the full algorithm including the iteration over the dimen-
sions we now consider the computational cost bounds; exemplary for the BFGS-
method. Here we assume Ml = M for all l and that the cost to evaluate φl

k is
O(1), which is the case for our choice of basis functions. Therefore the cost to
evaluate a single gl

i at a single point is O(M). The computation count for one it-
eration of BFGS is O(r2M2) plus the costs for the evaluation of the loss function
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and the gradient for the iteration update and in particular the line search [18].
Given the pl

j , it costs O(rMN) to compute the loss function (13). To evaluate
(14) we compute the fraction

exp
(
−yj

∑r
l=1 p

l
jg

l
1(x

j
1)
)

1 + exp
(
−yj

∑r
l=1 p

l
jg

l
1(x

j
1)
) (15)

once for each j, again in O(rMN). Using that (now fixed) value we compute the
derivative with respect to a single cl1(k) in O(N). Since we have rM different
cl1(k), the total complexity for the computation of the derivatives for the loss
part is O(rMN).

The two regularisation alternatives have different costs. To compute the global
regularisation for the regularised loss (10) one needs O(r2M2) operations. The
prime of the regularisation needs O(r2M) each time, it simplifies for the em-
ployed multi-scale linear basis. The contribution of the other dimensions to the
regularisation term in (10) can be computed once at the beginning of the min-
imisation and needs O(d2r2M2) If we denote the number of BFGS iterations
by S and take it all together the cost to minimise the one-dimensional problem
with the global regularisation is

O((r2M2 + rMN)S + d2r2M2). (16)

The simpler regularisation term (11) only needs O(rM) operations for the eval-
uation of the regularised loss function and its prime. Which gives a total cost of

O((r2M2 + rMN)S). (17)

Alternating Improvement. If we can solve the one-dimensional subproblems,
then we can iteratively solve such problems to reduce the loss (6). The alternating
strategy [3,5,16] is to loop through the directions i = 1, . . . , d. One then repeats
this alternating process and monitors the change in the loss (6), or the regularised
loss (10), to detect convergence. It is certainly possible to hit local minima. Even
when we approach the true minima, we have no reason to expect any better than
linear convergence.

To account for the computational cost to set up these problems we assume
that the number of amp iterations is K. The cost to compute all pl

j for a single i
is then O(rdMN). It would appear that we have cost O(rd2MNK) in the outer
loop through the d directions. However, when we switch from, say, i = 1 to
i = 2, we can simply update pl

j by multiplying it by gl
1(x

j
1)/g

l
2(x

j
2), at cost

O(rMN). The total cost for the update in the amp formulation (without the
cost for solving the one-dimensional subproblems) is thus

O(drMNK) . (18)

If we incorporate this algorithm into the overall method and account for the
total cost we get

O(K(dr2M2 + drMN)S). (19)
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for the local regularisation from Section 2.3. The cost is linear in both d and N ,
and so the method is feasible for large data sets in high dimensions.

Using the global regularisation from Section 2.3 we observe a complexity of

O(K[(dr2M2 + drMN)S + d3r2M2]). (20)

Again linear in N , but in parts cubic in d, although the inner non-linear solver
is linear in d. Nevertheless, the complexity still suggests the method for large
data sets in high dimensions.

The computational complexity for a non-linear CG-method or the trust-region
method in regard to N and d are similar. Only the evaluation of the regularised
loss functions, their prime and hessian (for the trust-region method) depends on
these and there we have a linear scaling in N and d for the regularisation (11)
and linear in N and cubic in d for the regularisation (10).

The number of iterations needed in the non-linear solvers is the remaining
important computational aspect. These will depend implicitly on the complexity
of the function and therefore on the number of data. At this point we have not
investigated the non-linear solvers in detail but use well tested and publically
available implementations. Line-search procedures adopted to the problem and
suitable pre-conditioners for the non-linear CG approach are needed for a fully
efficient scheme. But for now we focus on the investigation of the accuracy and
representation power of our approach for classification problems. Therefore it is
enough to solve the non-linear problems to a sufficient degree in reasonable time.

Also note that we expect that after a few steps of the alternating procedure
we will have good starting values for the non-linear minimisation.

3.2 Global Minimisation Procedure

Alternating algorithms are in particular attractive for the least square loss be-
cause at their inner core a linear equation system needs to be solved. We here
use other loss functions and therefore have to use a non-linear minimisation pro-
cedure anyway, therefore one can consider treating the full problem (10) directly,
as it is also often used for least squares minimisation [5,16]. In the following we
will call it global minimisation procedure (gmp).

The amount of data and the dimensionality now have a different influence
on the computational complexity. Again we focus on the BFGS-algorithm. The
number of unknowns of our representation is drM , therefore the cost for one
BFGS-iteration is of the order O(d2r2M2) plus the cost for evaluating the reg-
ularised loss function (10) and its prime. It costs O(drMN) to evaluate the loss
function and O(d2r2M2) for the regularisation term. The same holds for one
partial derivative of which there are drM . In total we have for the complexity
of the algorithm

O((d2r2M2N + d2r3M3)S), (21)

where S is the number of BFGS-iterations.
Although the global minimisation procedure has the larger order of compu-

tational complexity it can be competitive if the number of iterations S is small.
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But for this often special care has to taken in the line search procedure. Fur-
thermore, implementing such an algorithm is often more cumbersome, especially
in regard to the needed derivative. As we will see in the numerical results us-
ing standard implementations of non-linear solver does not achieve the wanted
accuracy. Here further investigation of the procedures and their adaptation to
the particular loss function and problem setup are necessary, but out of scope
of this paper.

4 Numerical Results

In this section we give numerical results for several benchmark problems. Our
goal is to demonstrate that the representation (2) is powerful enough to build
good classifiers.

We compare against data used in the benchmark study [19], where the classi-
fication methods support vector machines with RBF-kernel (svm), classification
trees, linear discriminant analysis, quadratic discriminant analysis, neural net-
works, generalised linear models (glm), multinomial logit models, nearest neigh-
bours (nn), learning vector quantisation (lvq), flexible discriminant analysis,
mixture discriminant analysis, bagging, double bagging (dbagg), random forests
(rForst), and multiple additive regression trees were compared empirically1.

As in [19], we measure the classification performance using the prediction
error. Ten-fold cross-validation was performed ten-times; we report the means
and medians of the test set error rates of all 100 runs, whereas the standard
deviation and inter-quartile range are computed with regard to the ten-fold
results. For comparison we give the best result from the benchmark study and
note the rank of our approach in comparison to the other methods used.

The separation rank r, the discretisation level of the multi-scale basis (which
correlates with the basis size M) and the size of the regularisation parameter
were selected similar to [19]: we split the training data 2:1, train on the first two
thirds and evaluate on the last third to select good parameters. With these we
learn on all training data and evaluate on the as-yet-unseen test data. Note that
depending on the problem we used up to level 4 of the multi-scale basis and rank
r = 7, although often r ≤ 4 was sufficient.

It was observed that the test error is relatively unaffected by the value of h
in the huberised hinge loss, as long as it is not too large when it resembles more
the L2 loss [7]. In our experiments we observed this behaviour as well and use a
fixed h = 0.05.

Pre-processing of the data consists of omitting missing values, like in [19],
and scaling all data to [0, 1]d. We concentrate in this paper on data sets with
metric attributes. Therefore we use the five synthetic data sets and five real
ones, including one with some categorical variables which were transformed into
binary attributes. For binary attributes i we only use a linear function, i.e.
Mi = 2.

1 The data is available from (http://www.ci.tuwien.ac.at/∼meyer/benchdata/).
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4.1 Alternating and Global Minimisation

First we remark on the empirical behaviour of the two different minimisation
procedures. We consider the circle in a square (circle) and the two noisy spirals
(spirals) data sets from [19], both are two dimensional. One might expect
that in this low dimensional case there would not be too much difference in
the behaviour of the two minimisation procedures. But already here the global
optimisation procedure does not cope with the problem and produces worse
results. This does not depend on the employed non-linear solver.

To be more precise. Using the same minimisation procedure in a standard
implementation using standard line search procedures the alternating minimisa-
tion procedure achieves better results than the global minimisation procedure.
This observations does not depend on the non-linear solver nor which public
implementation was used. We expect that with a detailed investigation of the
minimisation problem and an adaption of the line search procedure the global
minimisation will perform better. There is active research in this regard in the
least-squares context [5,16,20].

In any case, not only does the alternating minimisation procedure show the
better order of computational complexity, it also achieves better correctness rates
as we can see in Table 1.

Somewhat promising are further results using a few iterations of the alternat-
ing procedure to compute a good starting point for the global minimiser. For
the spiral data set we achieve in this way a median of 0.1 (0.075) and mean of
0.22 (0.13) using the log-likelihood as a loss function. Although the huberised
hinge loss does not benefit from such an approach for this data set; nor do we
observe such an improvement for the circle data set.

For higher dimensional data sets the global minimisation performs, as one
would expect after these results, even worse. We therefore abstain form giving
detailed results for the global minimisation procedure in the following.

We also use the two dimensional spiral data set to illustrate the approach.
In Figure 1 we show the components gl

i(xi) of the solution for one instance
of the data set and the resulting classifier. One might not expect that with
just the sum of four product functions such a complicated classifier can be
obtained.

Table 1. Results on low dimensional synthetic data sets for both loss functions and
(A)lternating and (G)lobabl minimisation procedures. We give the mean (with stan-
dard deviation) and median (with inter-quartile range).

circle spirals

LL - A LL - G HH - A HH - G LL - A LL - G HH - A HH - G
mean 2.22 2.66 2.45 3.65 mean 0.25 0.53 1.03 2.79

(0.46) (0.39) (0.47) (0.47) (0.10) (0.28) (0.22) (0.57)
median 1.95 2.35 2.30 3.45 median 0.20 0.20 0.75 2.30

(0.61) (0.60) (0.80) (0.49) (0.16) (0.44) (0.29) (0.93)
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i = 1 i = 2

Fig. 1. Classifier with r = 4 using the multi-scale basis with level five produced using
the negative log likelihood error on one instance of the spiral data set. Left: The
function of the form (2) with r = 4 using the multi-scale basis with level five. Each
subplot shows a gl

i(xi). The magnitude sl has been distributed. Right: Value of the
classifier over the two-dimensional domain.

4.2 Results on Benchmark Data

We give the results of our experiments in Table 2 for the synthetic data sets and
Table 3 for the real ones. Our current code is a somewhat experimental python
implementation, whose purpose is to produce the approximation results that are
the main point of this paper. For one run on a data set the computational time
varied between a few seconds and a few hundred seconds, depending on the data
set, the rank, the degree and the regularisation parameter. In python, loops with
numerical computations are known to be inefficient and the algorithm consists
of a fair amount of loops over the data or the basis functions. We expect that
a proper implementation would decrease the runtime significantly. Therefore we
abstain for now from giving more detailed numbers for the computational times,
but will followup once a scaleable implementation is available.

Overall the log likelihood estimation performs somewhat better than the hu-
berised hinge loss, the latter might benefit from the h in its definition (7) chosen
depending on the data. The run time difference between these two loss functions
in our experiments did not appear to be significant.

The simple local regularisation method performs slightly better than the
global regularisation. For the twonorm, bupa liver and credit data set it re-
sults in smaller misclassification rates, while for the spirals and threenorm data
set the global regularisation method is better. In particular for some of the real
data the minimisation procedure had problems to converge for the global reg-
ularisation; again, better adapted non-linear solution strategies might improve
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Table 2. Results on synthetic data from the study [19]. We give the mean (with stan-
dard deviation) and median (with inter-quartile range) for the best results from [19],
our approach, and our rank in comparison to all 17 approaches used. We use log likeli-
hood estimation (LL), the huberised hinge loss (HH) and both forms of regularisation.

LL-Reg. (11) HH-Reg. (11) LL-Reg. (10) HH-Reg. (10)
data set best other SumSep rank SumSep rank SumSep rank SumSep rank

mean 2.66 svm 2.26 1 2.39 1 2.22 1 2.45 1
circle (0.44) (0.44) (0.46) (0.47)

median 2.50 svm 2.00 1 2.10 1 1.95 1 2.30 1
(0.49) (0.41) (0.62) (0.61) (0.80)

mean 0.17 nn 1.04 3 1.19 3 0.25 2 1.03 3
spirals (0.18) (0.22) (0.10) (0.22)

median 0.10 nn 0.90 3 1.10 3 0.20 2 0.75 3
(0.07) (0.22) (0.31) (0.16) (0.29)

mean 2.82 svm 3.61 5 4.08 5 12.04 17 6.37 12
twonorm (0.34) (0.34) (7.85) (1.34)

median 2.70 svm 3.40 5 3.85 5 5.50 10 5.90 11
(0.20) (0.40) (0.54) (8.93) (0.59)

mean 14.17 lvq 18.94 9 19.21 9 14.45 2 15.62 2
threenorm (0.98) (0.60) (0.40) (0.69)

median 13.70 lvq 18.95 8 19.10 9 14.40 2 15.40 2
(0.77) (0.98) (0.50) (0.79) (1.22)

mean 3.58 svm 5.44 2 5.92 2 4.85 2 5.43 2
ringnorm (0.58) (2.64) (0.31) (0.32)

median 2.90 svm 4.80 2 4.90 2 4.70 2 5.30 2
(0.70) (0.75) (0.61) (0.33) (0.31)

the results. The good performance of the simpler local regularisation is an indi-
cation that the limitation to a discrete function representation has a large effect
in the avoidance of overfitting, known as regularisation by projection in other
fields [9,10].

In comparison to the 17 other methods our approach achieves very competitive
results, here we look at the median as is done in [19]. For all data sets at least
one variant of our approach is in the top five and for eight of the data sets we
are in the top three. For six data sets, the majority, at least one version of our
procedure achieved better results than a support vector machine, which was the
best method in the referenced study [19].

5 Outlook

We described a new classification algorithm using sums of separable functions to
represent the classifier. Numerical evidence shows that typical data sets can be
efficiently described by this approach, which is the main message of this paper.

There are several extensions and generalisations possible. Foremost, instead
of the standard and publically available non-linear minimisation algorithms a
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Table 3. Results on real data from the study [19]. We give the mean (with standard
deviation) and median (with inter-quartile range) for the best results from [19], our
approach, and our rank in comparison to all 17 approaches used. We use log likelihood
estimation (LL), the huberised hinge loss (HH) and both forms of regularisation.

LL-Reg. (11) HH-Reg. (11) LL-Reg. (10) HH-Reg. (10)
data set best other SumSep rank SumSep rank SumSep rank SumSep rank

mean 2.28 rForst 3.30 5 3.21 4 3.33 5 3.66 6
cancer (0.24) (0.26) (0.22) (0.49)

median 1.49 rForst 2.94 4 2.92 3 2.92 3 2.94 4
(0.16) (0.25) (0.33) (0.34) (0.71)

mean 27.04 rForst 26.63 1 26.58 1 31.74 8 30.66 7
liver (1.48) (0.98) (1.50) (1.86)

median 27.02 rForst 25.71 1 25.71 1 30.56 6 30.56 6
(2.15) (2.52) (1.48) (2.80) (3.24)

mean 22.65 dbagg 23.70 9 24.73 10 27.11 11 26.43 11
credit (0.67) (0.87) (1.40) (1.10)

median 22.77 5 appr. 22.77 1 24.25 10 26.87 13 26.73 12
(0.20) (0.57) (0.87) (2.40) (0.72)

mean 5.93 svm 8.01 4 9.03 6 16.11 15 11.49 8
ionosphere (0.84) (0.63) (1.67) (2.23)

median 5.71 2 appr. 8.57 4 8.57 4 8.57 4 8.57 4
(0.70) (1.35) (0.95) (3.21) (4.32)

mean 22.37 2 appr. 23.37 5 23.35 5 23.08 5 24.10 9
diabetis (0.59) (0.52) (0.71) (0.73)

median 22.08 4 appr. 22.08 1 23.23 5 22.72 5 23.38 6
(0.26) (0.65) (0.80) (0.94) (0.41)

method more specifically tuned to the problem could be used, e.g. similar to
[20,21]. Second, the approach can easily be extended for categorical attributes xj .
One can use a basis of vectors rather than functions, and index their coordinates
by the categories of such an attribute. Third, if one formulates the loss (13)
using something besides negative log likelihood or the hinge loss used in support
vector machines one obtains a similar nonlinear optimisation problem which can
be treated analogously. Fourth, note that in [6] it was shown how to extend the
regression algorithm to vector-valued regression functions. By letting the vector
represent the probabilities of the data point being in the different classes, one
obtains a multi-class classifier that produces probabilities rather than a decision
on the class. Suitable multi-class loss functions for support vector machines or
penalised likelihood estimation can be found in [22]. Finally, one can use different
one-dimensional spaces for different attributes and for different l. For example,
if one assumes an almost normal distribution underlying the data, one might
use a suitable Gaussian for the l = 0 term, but another basis for other l to
approximate necessary adjustments.

Acknowledgements. The author cordially thanks Martin Mohlenkamp (Ohio
University) for helpful discussions and suggestions.
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Abstract. Model-free reinforcement learning (RL) is a machine learning
approach to decision making in unknown environments. However, real-
world RL tasks often involve high-dimensional state spaces, and then
standard RL methods do not perform well. In this paper, we propose
a new feature selection framework for coping with high dimensionality.
Our proposed framework adopts conditional mutual information between
return and state-feature sequences as a feature selection criterion, allow-
ing the evaluation of implicit state-reward dependency. The conditional
mutual information is approximated by a least-squares method, which
results in a computationally efficient feature selection procedure. The
usefulness of the proposed method is demonstrated on grid-world navi-
gation problems.

1 Introduction

Optimal decision making in unknown environment is a challenging task in the
machine learning community. Reinforcement learning (RL) is a popular frame-
work for this purpose, and has been actively studied. In RL, a policy (the decision
rule of an agent) is determined so that return (the sum of discounted rewards the
agent will receive) is maximized. So far, various RL approaches such as policy
iteration [1,2] and policy search [3,4,5] have been explored and demonstrated to
be promising in small- to medium-sized problems.

However, when the dimensionality of the state space is high, existing RL
approaches tends to perform poorly. Unfortunately, this critically limits the range
of applicability of RL in practice since real-world RL tasks such as robot control
often involve high-dimensional state spaces. To cope with high dimensionality of
the state space, choosing a subset of relevant features from the high-dimensional
state variables, i.e., feature selection, is highly useful.

For example, let us consider developing a security guard robot that can deal
with a variety of tasks such as navigation, patrol, and intruder detection. For this
purpose, the robot is equipped with various types of sensors such as position,
orientation, distance, vision, sound, smell, and temperature sensors. However,
when a security guard robot is engaged in a particular task such as navigation,
all the sensors may not be needed. Since sensors necessary for solving a task are

J.L. Balcázar et al. (Eds.): ECML PKDD 2010, Part I, LNAI 6321, pp. 474–489, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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different depending on the tasks, it is not possible to choose the subset of sensors
in advance. Thus, adaptive feature selection based on currently available data
samples is indispensable in this scenario.

Various feature selection strategies have been explored so far, which can be
categorized into the wrapper and filter approaches [6]. In the wrapper approach,
features are selected depending on the subsequent learning process such as least-
squares fitting of the value function [7,8,9]. A supervised dimensionality reduc-
tion method called neighborhood component analysis [10] was applied to feature
selection in RL [7], while the decomposition of value function approximation er-
ror into reward prediction error and transition prediction error was utilized for
feature selection in [9]. These wrapper methods would be useful for specific RL
frameworks such as policy iteration, but they may not be directly employed in
other frameworks such as policy search.

On the other hand, in the filter approach, features are selected independently
of subsequent learning processes [11,12]. More specifically, a subset of features
is chosen in an information-theoretic way that the remaining subset of features
is statistically independent of the outcome (typically, the rewards). Such an
information-theoretic approach is versatile as preprocessing of high-dimensional
data.

A supervised dimensionality reduction method called kernel dimension reduc-
tion (KDR) [13] was applied to feature selection in RL [11]. Based on the Markov
property of RL problems, their method evaluates the conditional independence
between the entire state features and a state subset which directly influences
rewards at the next time-step. However, since RL deals with sequential decision
making problems, there can exist an implicit dependency between state features
and rewards through the process of sequential decision making. This is illus-
trated using a simple example in Figure 1. A feature s(2) influences s(1) at the
next time-step which have a direct effect on rewards. Thus, features s(1) and s(2)

can be selected by KDR. However, s(3) cannot be selected by KDR since there is
no dependency between s(1) and s(3) in a single time-step, although it actually
influences rewards in two time-steps through s(2) and s(1).

The implicit dependency in the sequential process can be detected in princi-
ple by recursively evaluating the dependency between states and rewards [12].
However, such a recursive approach is computationally demanding particularly
when there exist cascaded dependency relations. For example, in Figure 1, two
recursions are needed to find the relevant features {s(1), s(2), s(3)}. First, s(2) is
selected due to its dependency to s(1), and then s(3) is chosen because of its de-
pendency to s(2). In addition, an assumption that the model of factored Markov
decision processes is available as a dynamic Baysian network was imposed in
[12], which may not be realistic.

In order to overcome the drawbacks of existing approaches, we introduce a new
framework of filter-type feature selection for RL. More specifically, we propose to
directly evaluate the independence between return and state-feature sequences
using the conditional mutual information [14]. In order to efficiently approxi-
mate the conditional mutual information from samples, we utilize a least-squares
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Fig. 1. An example of implicit dependency between state features and rewards. Each
row represents the time-step (n, n + 1, n + 2, . . .), and columns represent reward(r)
and state features (s(1), s(2), s(3), s(4)). Arrows indicate the dependency between two
variables; for example, an arrow from s

(2)
n to s

(1)
n+1 exists if s

(1)
n+1 depends on s

(2)
n . In

this example, a state feature s(3) does not have direct influence on the next reward rn,
but has indirect influence on rn+2 through s

(2)
n+1 and s

(1)
n+2.

(un-conditional) mutual information estimator which was proved to possess the
optimal convergence rate [15].

The rest of this paper is organized as follows. In Section 2, we mathematically
formulate the problem of RL. In Section 3, we describe our proposed feature
selection procedure. Experimental results are reported in Section 4, demonstrat-
ing the effectiveness of the proposed method in grid-world navigation. Finally,
we conclude in Section 5 by summarizing our contributions and describing fu-
ture work.

2 Formulation of RL

In this section, we formulate the RL problem as a Markov decision process
(MDP).

2.1 Markov Decision Process

Let us consider an MDP specified by (S,A, pT, pI, R, γ), where S (∈ Rv) is a set
of v-dimensional states, A (∈ R) is a set of one-dimensional actions, pT(s′|s, a)
(≥ 0) is the transition probability-density from state s to next state s′ when
action a is taken, pI(s) (≥ 0) is the probability density of initial states, R(s, a, s′)
(∈ R) is an immediate reward for transition from s to s′ by taking action a,
and γ (∈ (0, 1]) is the discount factor for future rewards. By following initial
probability pI, transition probability pT, and policy π, an MDP generates a
sequence of states, actions, and rewards as

s1, a1, r1, s2, a2, r2, s3, a3, r3, . . . ,

where the subscript indicates the time step. Let pπ(s|n) be the probability den-
sity of state s at time step n:
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pπ(s|n = 1) = pI(s),

pπ(s|n = 2) =
∫∫

pI(s1)π(a1|s1)pT(s|s1, a1)ds1da1,

pπ(s|n = 3) =
∫∫∫∫

pI(s1)π(a1|s1)pT(s2|s1, a1)

× π(a2|s2)pT(s|s2, a2)ds1da1ds2da2,

...

2.2 Optimal Policy

Let ηn (∈ R) be the return which is the sum of discounted rewards the agent
will receive when starting from the n-th time step:

ηn ≡
∞∑

n′=n

γn′−nR(sn′ , an′ , sn′+1).

Let pπ(η|s) be the probability density of return η when starting from a state s
and then following a policy π. Let V π(s) be the expected return:

V π(s) ≡
∫
ηpπ(η|s)dη.

The goal of RL is to learn the optimal policy π∗ that maximizes the expected
return V π(s):

π∗(·|s) ≡ argmax
π(·|s)

V π(s). (1)

2.3 Data Samples

We suppose that a dataset consisting of M episodes of N steps is available. The
agent initially starts from a randomly selected state s1 following the initial-state
probability density pI(s), and chooses an action based on a policy π(an|sn). Then
the agent makes a transition following pT(sn+1|sn, an), and receives a reward rn
(= R(sn, an, sn+1)). This is repeated for N steps—thus the training data Dπ is
expressed as

Dπ ≡ {dπ
n}N

n=1, (2)

where each time-step data dπ
n consists of M sets of 3-tuple elements observed at

each time step n as
dπ

n ≡ {(sπ
m,n, a

π
m,n, r

π
m,n)}M

m=1. (3)

Let ηπ
m,n be the return in the m-th episode defined by

ηπ
m,n ≡

N∑
n′=n

γn′−nrπ
m,n′ . (4)
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Fig. 2. An example of dependency between state features and returns. State features
s(1), s(2) and s(3) influence returns at the same time-step, e.g., from s

(3)
n to ηn.

3 Feature Selection via Conditional Mutual Information

In this section, we describe our proposed feature selection method.
Let ηn and sn = (s(1)n , s

(2)
n , . . . , s

(v)
n ) be the return and the state features at

the n-th time step. For u (≤ v) being the number of features we want to select,
our goal is to find a ‘subset’ zn = (z(1)

n , z
(2)
n , . . . , z

(u)
n )� of the state features sn

such that
ηn ⊥ sn | zn, ∀n = 1, 2, . . . , N. (5)

This means that, for all time steps, the return ηn is conditionally independent
of the entire state features sn given the subset zn.

The criterion (5) allows us to capture an indirect dependency from state
features to rewards r since returns η contain all subsequent rewards. This is
illustrated using a simple example in Figure 2. A state feature s(3) does not
influence a reward r at the next time-step, but it does affect a return η at the
same time-step since the return is the sum of discounted subsequent rewards,
i.e., ηn = rn + γrn+1 + γ2rn+2 + · · · .

3.1 Conditional Mutual Information

Mutual information (MI) is a popular measure of independence between random
variables [14]. Here, we use a variant of MI based on the squared-loss [15] defined
by

Iπ(η; z|n = n) ≡
∫∫ (

pπ(η, z|n)
pπ(η|n)pπ(z|n)

− 1
)2

pπ(η|n)pπ(z|n)dηdz, (6)

where Iπ(η; z|n = n) denotes MI between return η and features z at the n-th
time step when following a policy π. pπ(η, z|n) denotes the joint density of η and
z at the n-th time step, and pπ(η|n) and pπ(z|n) denote the marginal densities
of return η and features z at the n-th time step, respectively. Iπ(η; z|n = n) is
non-negative and is equal to zero if and only if

pπ(η, z|n) = pπ(η|n)pπ(z|n),
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Fig. 3. An example of dependency between returns and elements of states. State ele-
ments s(1), s(2), and s(3) directly influence the return η.

i.e., η and z are conditionally independent of each other given n.
We propose to use conditional MI Iπ(η; z|n) as our feature selection crite-

rion, which is defined as the average of MI Iπ(η; z|n = n) over time steps
n = 1, 2, . . . , N [14]:

Iπ(η; z|n) =
1
N

N∑
n=1

Iπ(η; z|n = n).

The conditional MI between returns and state features can be seen as a mea-
sure of dependency between returns and state-feature sequences as illustrated in
Figure 3.

The rationale behind the use of conditional MI for feature selection relies on
the following lemma (its proof is provided in Appendix).

Lemma 1.

Iπ(η; s|n)− Iπ(η; z|n) =
1
N

N∑
n=1

∫∫
pπ(η, z|n)2

pπ(η|n)pπ(z|n)2

×
(

pπ(η, s|z, n)
pπ(s|z, n)pπ(η|z, n)

− 1
)2

pπ(s|n)dsdη

≥ 0.

This lemma implies that Iπ(η; s|n) ≥ Iπ(η; z|n) and the equality holds if and
only if

pπ(η, s|z, n) = pπ(η|z, n)pπ(s|z, n), ∀n = 1, 2, . . . , N.

This is equivalent to Eq.(5), and thus Eq.(5) can be attained by maximizing
Iπ(η; z|n) with respect to z.
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3.2 Estimation of Conditional Mutual Information

Since Iπ(η; z|n) is not accessible, it needs to be estimated from data sam-
ples. Here, we employ a recently-proposed MI estimator called least-squares MI
(LSMI) [15] for approximating the conditional MI Iπ(η; z|n). A MATLAB R© im-
plementation of LSMI is available from

http://sugiyama-www.cs.titech.ac.jp/~sugi/software/LSMI/

The basic idea of LSMI is to estimate the ratio of probability densities wn(η, z) ≡
pπ(η,z|n)

pπ(η|n)pπ(z|n) contained in MI without going through density estimation of
pπ(η, z|n), pπ(η|n), and pπ(z|n). Since density estimation is known to be a hard
task [16], avoiding density estimation and directly estimating their ratio would
be preferable [17,18].

The density ratio function wn(η, z) is approximated by the following linear
model:

ŵn(η, z) ≡ α�
n ψn(η, z),

where αn = (αn,1, αn,2, . . . , αn,B)� are parameters to be learned, B is the num-
ber of parameters, and

ψn(η, z) = (ψn,1(η, z), ψn,2(η, z), . . . , ψn,B(η, z))�

are basis functions such that

ψn,b(η, z) ≥ 0, ∀b, ∀(η, z).

The parameter αn is determined so that the following squared error J0 is mini-
mized:

J0(αn) ≡ 1
2

∫∫
(ŵn(η, z)− wn(η, z))2 pπ(η|n)pπ(z|n)dηdz

=
1
2

∫∫
ŵ2

n(η, z)pπ(η|n)pπ(z|n)dηdz

−
∫∫

ŵn(η, z)pπ(η, z|n)dηdz + C,

where

C ≡ 1
2

∫∫
w2

n(η, z)pπ(η, z|n)dηdz

is a constant and thus can be safely ignored. Let us denote the first two terms
by J :

J(αn) ≡ J0(αn)− C

=
1
2
α�

n Hnαn − h�
n αn, (7)
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where

Hn ≡
∫∫

ψn(η, z)ψn(η, z)�pπ(η|n)pπ(z|n)dηdz,

hn ≡
∫∫

ψn(η, z)pπ(η, z|n)dηdz.

The expectations in Hn and hn are approximated by the empirical averages
using a one-step data sample dπ

n (see Eq.(3)).

Ĥn ≡
1
M2

M∑
m,m′=1

ψn(ηm,n, zm′,n)ψn(ηm,n, zm′,n)�,

ĥn ≡
1
M

M∑
m=1

ψn(ηm,n, zm,n).

Then the following optimization problem is obtained:

α̂n ≡ arg min
αn∈RB

[
1
2
α�

n Ĥnαn − ĥ
�
n αn +

λ

2
α�

n αn

]
, (8)

where a regularization term λα�
n αn/2 is included. Differentiating the above

objective function with respect to αn and equating it to zero, the solution can
be obtained analytically as

α̂n = (Ĥn + λIB)−1ĥn,

where IB denotes the B-dimensional identity matrix.
Using a density ratio estimator α̂�

n ψn(η, z), we can construct a conditional
MI estimator between return and state-feature sequences as

Îπ(η; z|n) ≡ 1
N

N∑
n=1

Îπ(ηn; zn), (9)

where Îπ(ηn; zn) is an MI estimator between returns and state features at the
n-th time step given as

Îπ(ηn; zn) ≡ 1
M2

M∑
m,m′=1

(
α̂�

n ψn(ηm,n, zm′,n)− 1
)2
. (10)

3.3 Feature Selection Algorithm

Finally, we describe how features are selected based on the conditional MI esti-
mator Îπ(η; z|n).

Forward selection and backward elimination would be two major strategies of
feature selection [6,19]. Here we employ forward selection since it was computa-
tionally more efficient and performed well in our preliminary experiments.
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�

�

�

�

Algorithm 1: ForwardSelection(u,Dπ)

//u : Number of features we want to choose
//Dπ : Data samples collected following π
//v : Number of all features
//I : Remaining feature indices
//J : Chosen feature indices
I ← {1, 2, . . . , v}
J ← {}
for u′ = 1, 2, . . . , u⎧⎪⎪⎪⎨⎪⎪⎪⎩

// Find the feature that maximizes the conditional mutual information
k ← arg max

i∈I

∑N
n=1 LSMI(dπ

n, {s(j)
n }j∈J ∪ s

(i)
n )

I ← I\k // Remove k from I
J ← J ∪ k // Add k to J

return (J )

Fig. 4. A pseudo code of the proposed feature selection algorithm with forward selec-
tion. By the LSMI function, MI between return and state features is computed using
the n-th time step data dπ

n.

Let J be the set of chosen feature indices. The forward selection algorithm
starts from the empty feature-index set J = {}. The index of the most relevant
feature, together with features whose indices are included in J , is sequentially
added to J at each iteration. The relevance of each state feature s(i) is evalu-
ated using the conditional MI estimator Îπ(η; z|n) described in Section 3.2. This
forward selection process is repeated u times, where u is the number of features
we want to choose.

A pseudo code of the proposed feature selection algorithm with forward se-
lection is described in Figure 4.

4 Numerical Experiments

In this section, we evaluate the performance of our proposed feature selection
method on a grid-world navigation problem illustrated in Figure 5. The two-
dimensional maze consists of walls (black cells) and target states (light-gray
cells). The goal of the task is to navigate an agent to the target location by
avoiding the walls.

4.1 Setup

The state space S consists of 14-dimensional discrete features s =
(s(1), s(2), . . . , s(14))�, where s(1), s(2) ∈ {1, 2, . . . , 10} are the horizontal and ver-
tical positions of the agent, respectively. s(3) ∈ {0, 1, 2, . . . , 20} is the remaining
battery level; it is initially set to 20 (fully charged) and is decreased by 1 at
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Fig. 5. A grid-world navigation problem. An agent is placed randomly in the grid-
world, and can move around in the white area based on the four actions: moving up,
down, left, or right at every time step. Black boxes in the middle represent walls through
which the agent cannot go, and target location to which we want to guide the agent is
the light-gray area at s(1) = 10.

every agent’s movement. The rest of features s(4), s(5), s(6), . . . , s(14) corresponds
to noise, each of which independently follows the Gaussian distribution with
different mean:

1
σnoise

√
2π

exp
(
− (s(i) − νi)2

2σ2
noise

)
, ∀i = 4, 5, 6, . . . , 14.

We set νi = i− 3 and σnoise = 1, and round the value of s(i) down to the nearest
integer for discretization. These additional dimensions of the state space may be
regarded as information brought by irrelevant sensors such as sound, smell, and
temperature sensors.

The action space A consists of four discrete actions, each of which corresponds
to the direction of the agent’s move: up, down, left, and right. For instance, if
the agent chooses the ‘right’-action, s(1) is incremented unless there is an wall
and the battery level (s(3)) is zero.

The reward +2 is given when the agent visits the target location; otherwise
the reward is zero:

R(s, a, s′) =

{
2 if s′(1) = 10,

0 otherwise.

The discount factor is set to γ = 0.95.
Data samples Dπ consisting M episodes with N = 20 steps are collected. The

initial position of the agent is set to

(s(1)
1 , s

(2)
1 ) = (1, β),
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where β is randomly chosen from {1, 2, . . . , 10}. Then, the agent follows a
stochastic policy π(a|s) defined by

π(a|s) =

{
0.7 if a = a∗,

0.1 otherwise.

where a∗ is ‘down’ when s(1) = 4 and 1 ≤ s(2) ≤ 4, a∗ is ‘up’ when s(1) = 4 and
7 ≤ s(2) ≤ 10, and a∗ is ‘right’ in other states. We compute the conditional MI
estimator Îπ(η; z|n) from the dataset Dπ (see Section 3.2). Gaussian kernels are
used as basis functions:

ψn,b(η, z) ≡ exp

(
−
‖(η, z�)� − μn,b‖2

2σ2
n

)
,

where μn,b and σn are the mean and standard deviation of the Gaussian kernel,
respectively. We set B = M , i.e., the number B of basis functions is equal to
the number M of episodes. The mean μn,b is selected from the dataset dπ

n as
μn,b = (ηπ

n,b, z
π
n,b

�)�. The standard deviation σn as well as the regularization
parameter λ (see Eq.(8)) is determined by cross-validation with respect to J (see
Eq.(7)) [15].

We compare the performance of our proposed method with the KDR-based
method [11]. The feature selection criterion used by the KDR-based method is
the conditional independence between states s and its subset sr which directly
influences rewards:

sr
n+1 ⊥ sn | zn, ∀n = 1, 2, . . . , N,

where sr = {s(1)} in the current navigation problem. This criterion is evaluated
using the conditional cross-covariance operator in a Gaussian reproducing kernel
Hilbert space.

Similarly to our proposed method, we implement the KDR-based method
based on the forward selection strategy: starting from the empty set J = {},
the index of the state feature s(i), which, together with features whose indices
are included in J , attains the above conditional independence the most is added
to J at every iteration. Following the suggestion in [13], we fix the width of the
Gaussian kernel to the median of the distance between all the data samples, and
fix the regularization parameter to 0.1.

To illustrate how the feature selection methods work in our grid-world navi-
gation task, we run the forward selection algorithms for 14 iterations to rank all
the state features. Let us consider the following two cases: the “without-gravel”
and “with-gravel” scenarios. In the “without-gravel” scenario, state features s(1)

and s(2) should have higher ranks because the horizontal position of the agent
s(1) determines the reward directly and its vertical position s(2) is necessary to
avoid walls in the middle of the maze.

On the other hand, in the “with-gravel” scenario, gravel exists in some grids
and the state feature s(4) detects the existence of gravel; when s(4) = 2, there
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(a) “Without-gravel” scenario
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(b) “With-gravel” scenario

Fig. 6. Feature selection performance in the grid-world navigation task. The graphs
depict the sum of ranks of relevant features averaged over 50 trials as a function of the
number M of episodes. The optimal values are 3 (=1 + 2) and 10 (= 1 + 2 + 3 + 4) in
the “without-gravel” and “with-gravel” scenarios, respectively.

exists gravel in the right grid of the agent. The agent can avoid the gravel area
by moving to the left when s(4) = 2; otherwise, it gets into the gravel area which
continues for 4 time steps (this is indicated by s(4) = 3). When the agent is in
the gravel area, the battery level s(3) is decreased by 3 at each step. Then, the
agent can not be able to reach the target place due to lack of battery (recall
that the battery level is decreased by 1 at each step outside the gravel area).
This indicates that the gravel-feature s(4) indirectly influences rewards after
several time steps through the battery level s(3) and the horizontal position s(1).
Therefore, in this case, in addition to s(1) and s(2), s(3) and s(4) should also have
higher ranks to avoid the gravel area.

4.2 Results

Figure 6(a) depicts the sum of ranks of the features s(1) and s(2) averaged over
50 trials as a function of the number M of episodes for the “without-gravel”
scenario. Since the features s(1) and s(2) should be ranked first and second, the
optimal value is 3 (= 1+2). The graph overall shows that the performance of both
the proposed and KDR-based methods improves as the number M of episodes
increases. The KDR-based method converges to the optimal value (= 3) at 40
episodes, while a small error remains in the proposed method. This difference
is caused by the fact that the battery level s(3) is occasionally ranked higher
than the position s(1) and s(2) in the proposed method. Since the battery level
is also somewhat relevant to returns, the result of the proposed method would
be reasonable.

Figure 6(b) depicts the sum of ranks of the features s(1), s(2), s(3), and s(4) av-
eraged over 50 trials as a function of the number M of episodes for the “with-
gravel” scenario.Unlike the case of the “without-gravel” scenario, the performance



486 H. Hachiya and M. Sugiyama

1 2 3 4 5 6 7 8 9 10 11 12 13 14
0

2

4

6

8

10

12

14

16

18

20

Rank

F
re

qu
en

cy
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(b) Proposed method

Fig. 7. Histograms of the rank of the feature s(4) in the “with-gravel” scenario. The
number M of episodes is fixed to 100 and the number of trials is 50.

improvement of the KDR-based method is very slow and is saturated after 60
episodes. This happened because evaluating the one-step dependency from the
gravel feature s(4) to the horizontal position s(1) cannot find the relevance of s(4)

to subsequent rewards.
Figure 7(a) depicts the histogram of the rank of the gravel-feature s(4) in

the “with-gravel” scenario when the number M of episodes is fixed to 100. The
graph shows that the KDR-based method ranks s(4) in lower positions, partic-
ularly in the range between 8 and 13. This implies that the feature s(4) is less
frequently selected by the KDR-based method and then the gravel cannot be
avoided properly.

On the other hand, the performance of the proposed method improves as the
number M of episodes increases, and approaches the optimal value (= 10) (see
Figure 6(b)). Figure 7(b)) shows that the proposed method ranks s(4) in higher
positions, particularly around 4. This was achieved because the proposed method
evaluates the dependency between returns η and s(4).

Overall, the proposed method was shown to be a promising feature selection
method in RL.

5 Conclusions

In real-world reinforcement learning problems, selecting a subset of relevant
attributes from the high-dimensional state variable is considerably important
since standard reinforcement learning methods do not perform well with high-
dimensional state spaces. An existing feature selection approach relies on the
conditional independence between state and its subset which directly influences
rewards. However, this is not appropriate when there is an indirect dependency
between states and rewards, which is often the case in practical RL scenarios.

To overcome this limitation, we proposed a new framework of feature selection
by considering the dependency between return and state-feature sequences. Our
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framework adopts conditional mutual information as the dependency measure,
and it is approximated using least-squares estimation. The effectiveness of the
proposed method was shown through experiments.
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Appendix: Proof of Lemma 1

Here, we give a proof of Lemma 1.
From the definition of conditional mutual information, we have

Iπ(η; s|n)− Iπ(η; z|n)

=
1
N

N∑
n=1

∫
pπ(η|n)

{∫ (
pπ(η, s|n)

pπ(η|n)pπ(s|n)
− 1
)2

pπ(s|n)ds

−
∫ (

pπ(η, z|n)
pπ(η|n)pπ(z|n)

− 1
)2

pπ(z|n)dz

}
dη

=
1
N

N∑
n=1

∫
pπ(η|n)

{∫ (
pπ(η, s|n)

pπ(η|n)pπ(s|n)

)2

pπ(s|n)ds− 2
∫
pπ(η, s|n)
pπ(η|n)

ds

−
∫ (

pπ(η, z|n)
pπ(η|n)pπ(z|n)

)2

pπ(z|n)dz + 2
∫
pπ(η, z|n)
pπ(η|n)

dz

}
dη

=
1
N

N∑
n=1

∫
pπ(η|n)

{∫ (
pπ(η, s|n)

pπ(η|n)pπ(s|n)

)2

pπ(s|n)ds

−
∫ (

pπ(η, z|n)
pπ(η|n)pπ(z|n)

)2

pπ(z|n)dz

}
dη

=
1
N

N∑
n=1

∫
pπ(η|n)

∫ (
pπ(η, s|n)

pπ(η|n)pπ(s|n)
− pπ(η, z|n)
pπ(η|n)pπ(z|n)

)2

pπ(s|n)dsdη.

To obtain the second equality above, we used∫
pπ(η, s|n)
pπ(η|n)

ds =
∫∫

pπ(η, z, z̄|n)
pπ(η|n)

dzdz̄ =
∫
pπ(η, z|n)
pπ(η|n)

dz,

where z̄ is the complement of z. To obtain the third equality, we used∫ (
pπ(η, z|n)

pπ(η|n)pπ(z|n)

)2

pπ(z|n)dz

=
∫

pπ(η, s|n)pπ(η, z|n)
pπ(η|n)2pπ(s|n)pπ(z|n)

pπ(s|n)ds.
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Since

pπ(s|z, n)pπ(z|n) = pπ(s, z|n) = pπ(s|n),
pπ(η, z|n)

pπ(η|z, n)pπ(z|n)
= 1,

pπ(η, s|n)
pπ(η|n)pπ(s|n)

=
pπ(η, s|n)pπ(η, z|n)

pπ(s|z, n)pπ(η|z, n)pπ(η|n)pπ(z|n)
,

we have

Iπ(η; s|n)− Iπ(η; z|n)

=
1
N

N∑
n=1

∫
pπ(η|n)

∫
pπ(η, z|n)2

pπ(η|n)2pπ(z|n)2

×
(

pπ(η, s|z, n)
pπ(s|z, n)pπ(η|z, n)

− 1
)2

pπ(s|n)dsdη,

=
1
N

N∑
n=1

∫∫
pπ(η, z|n)2

pπ(η|n)pπ(z|n)2

(
pπ(η, s|z, n)

pπ(s|z, n)pπ(η|z, n)
− 1
)2

pπ(s|n)dsdη,

which concludes the proof. (Q.E.D.)
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Abstract. One of the major tools of transcriptomics is the biclustering that si-
multaneously constructs a partition of both examples and genes. Several methods
have been proposed for microarray data analysis that enables to identify groups
of genes with similar expression pro?les only under a subset of examples. We
propose to improve the quality of these biclustering methods by adapting the ap-
proach of bagging to biclustering problems. The principle consists in generating
a set of biclusters and aggregating the results. Our method has been tested with
success on artificial and real datasets.

1 Introduction

The capacity of microarray to measure simultaneously the expression of a whole genome
under different experimental condition, is of great interest for biologists. Clustering
techniques are one of the major tools to analyse these data. They allow the discovery
of groups of genes that share a similar expression profile over all experimental condi-
tions. We assume that genes that share similar expression profiles, have close biological
functions. The clustering of gene expression over homogeneous conditions is therefore
a relevant tool for functional analyses [2]. With the classic methods of clustering, like
k-means, hierarchical clustering or self organizing maps, it is assume that genes in the
same cluster have a similar behavior over all conditions. However, when the experimen-
tal conditions are heterogeneous, it may be more appropriate to form clusters of genes
over only subset of conditions. In this case, biclustering methods are more adapted. For
example, when a set of genes participates in a cellular process that is active only in a
subset of conditions, or when a gene is implied in multiple pathways that may or not
be co-active under a subset of conditions. Biclustering methods allow the identification
of relevant groups of genes and conditions that cannot be identified by classic cluster-
ing techniques. These kinds of methods consist in simultaneous clustering on rows and
columns, to reorganize the data set into homogeneous blocks. It is an old approach but
over the last years it has attracted many authors, (see for instance; [12,13]).

In this paper, we try to improve the performance of biclustering algorithms by us-
ing the ensemble approach. The principle of ensemble methods is to construct a set
of models, then to aggregate them into a single model, generally by using generally a
voting scheme. It is well-known that these methods often perform better than a single
model (see for instance; [9]). Ensemble methods first appeared in supervised learning
problems. A combination of classifiers is more accurate than single classifiers [18].
A pioneer method, boosting, whose most popular algorithm adaboost, was developed

J.L. Balcázar et al. (Eds.): ECML PKDD 2010, Part I, LNAI 6321, pp. 490–505, 2010.
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mainly by Shapire [22]. The principle is to assign a weight to each training exam-
ple, then several classifiers are learned iteratively and between each learning step the
weight of examples is adjusted depending on the classifier results. The final classifier
is a weighted vote of classifiers constructed during the procedure. Boosting has been
used with success on several microarray datasets [7,17]. The other type of popular en-
semble methods, proposed by Breiman, is bagging [3]. The principle is to create a set
a classifiers based on bootstrap samples of the original data. This approach, and espe-
cially the random forest, is also efficient for microarray based classification [8]. In the
last years, several works have shown that ensemble methods can also be used in un-
supervised learning. The principle of boosting is exploited by Frossyniotis et al. [11]
in order to provide a consistent partitioning of the data. The boost-clustering approach
creates, at each iteration, a new training set using weighted random sampling from orig-
inal data, and a simple clustering algorithm is applied to provide new clusters. Dudoit
and Fridlyand [10] used bagging to improve the accuracy of clustering in reducing the
variability of PAM (Partitioning Around Medoids) results [15]. Their method has been
applied to leukemia and melanoma datasets and permitted to differentiate the different
subtypes of tissues. Strehl [23] have proposed an approach to combine multiple parti-
tioning obtained from different sources into a single one. They introduced three heuris-
tics to solve this problem: 1) a hypergraph partitioning algorithm that approximates the
maximum mutual information objective function with a constrained minimum cut, 2) a
cluster-based similarity partitioning algorithm that establishes a distance between ele-
ments based on the individual clustering, 3) a meta-clustering algorithm where groups
of clusters (meta-clusters) are identified and consolidated.

Since ensemble methods allow the improvement of the performance of supervised
classification and clustering, it is reasonable to think that they can also be used to tackle
the biclustering problem. In this paper, we propose in this paper a bagging approach
for the biclustering of microarray data. Although the problem of ensemble bicluster-
ing shares some traits with classic biclustering, there are two major issues which are
specific to ensemble methods. The first one is the generation of a collection of biclus-
ters. This raises the question of how to generate different biclusters and what is the
the source of diversity ? We have chosen the bagging approach to generate biclusters
from bootstrapped datasets. The second issue is about the aggregation function. How to
combine the different biclusters and resolve the label correspondence problem? Based
on the works of Sterhl and Ghosh [23], we propose a solution that consists in creating
meta-clusters of biclusters. Finally, for each gene and example, we compute the proba-
bilities of their belonging to each meta-cluster. We test our method both on artificial and
real data. The results on artificial data show that ensemble methods allow to improve
the accuracy of biclustering. The results obtained on real data show that ensemble bi-
clusters give a lower residue than classic biclusters. Moreover the ensemble biclusters
are also biologically more relevant with respect to the prior knowledge of data.

2 State of the Art

Consider the data matrix X = {E,G} where E = E1, . . . , EN is a set of N examples
represented by M-dimensional vectors and G = G1, . . . , GM is a set of M genes. A
bicluster B is a submatrix of X defined by a subset of examples and a subset of genes;
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B = {(EB, GB);EB ⊆ E,GB ⊆ G}.

A biclustering operator ΦK is a function that delivers one or several biclusters B0 =
∅, B1, . . . , BK given (Ei, Gj).

Note that a submatrix is considered as a bicluster if it presents a particular pattern.
There is no definition of what these patterns are. The choice of considering a submatrix
as a bicluster, is subjective and depends on the context. However there are some basic
patterns that can be used to identify a bicluster. They are called constant, additive and
multiplicative models. In constant models, all values in a bicluster are equal. In additive
and multiplicative models, there is an additive and multiplicative factor between rows
and columns respectively. Biclusters can also be identified by a mixture of these three
models. We also consider different bicluster structures. Biclusters can overlap on the
rows and/or columns, or present a tree or checkerboard structure. This diversity in the
nature of biclusters accounts for the fact that no biclustering algorithm can identify all
types of biclusters.

Several biclustering algorithms have been developed and applied to microarray anal-
ysis. Cheng and Church [6] were the first to propose an algorithm for this task. They
consider that biclusters follow an additive model and use a greedy iterative search to
minimizing the mean square residue. This algorithm identifies biclusters one by one.
They applied their method to yeast cell cycle data and identified several biologically
relevant biclusters. Lazzeroni and Owen [16] have proposed the popular plaid model.
They assume that biclusters are organized in layers and follow a given statistical model
incorporating additive two way ANOVA models. The search approach is iterative: Once
K − 1 layers (biclusters) have been identified, the Kth bicluster that minimizes a merit
function depending on all layers is selected. They also applied their method to yeast
data and found that genes in same biclusters share biological functions. Kluger et al.
[14] used a spectral approach for biclustering assuming that the data matrix contains
a checkerboard structure after normalization. This structure is identified by a singular
value decomposition. They applied their method to Lymphoma and Leukemia datasets
which contained different subtypes of cancer. On both datasets, conditions of the same
subtype have been grouped together into the same biclusters. Tanay et al. [24] have
developed SAMBA, an approach based on the graph theory coupled with statistical
modeling of the data. SAMBA, applied to a lymphoma dataset, produces biclusters
representing new concrete biological associations. Cheng et al. [5] have proposed the
pCluster method that has the advantage it can identify both additive and multiplica-
tive biclusters in presence of overlap. They validated their method on yeast cell-cycle
dataset using Gene Ontology annotations. Prelic et al. [21] made a comparative study
of different biclustering methods for gene expression. They used a very simple divide
and conquer the Bimax algorithm as a reference to investigate the usefulness of dif-
ferent biclustering algorithms. They concluded that Bimax produces results similar to
those of more complex methods. Abdullah et al. [1] proposed a graph-drawing-based
biclustering technique based on the crossing minimization paradigm. These algorithms
are the most popular ones used in bioinformatics but this list is not exhaustive. Madeira
and Oliveira [19] have published a good survey of biclustering methods for biological
data analysis and enumerated more than 15 used in this context. Note also a more recent
review of biclustering methods in data mining [4].
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3 Bagged Biclustering

The principle of bagged biclustering consists in applying a biclustering method on mul-
tiple bootstrapped datasets and aggregate the results. Our method can be divided into 3
steps. The first one is the construction of a collection of biclusters. These biclusters are
generated by the multiple application of a classic biclustering algorithm on bootstrapped
data. Then, a distance matrix between the obtained biclusters is computed based on their
similarity. This distance is used to make a hierarchical clustering of the biclusters. From
the resulting dendrogram, K meta-clusters of biclusters, are extracted. In the last step,
we compute for each element (examples and genes) the probabilities of its belonging
to each meta-cluster. If the probability is higher than a given threshold, the element is
assigned to the meta-cluster. At the end of the procedure, the K meta-clusters contain
a set of examples and genes that represent our final biclusters. Note that the number of
biclusters K is a parameter to be fixed before the computation. In the next section, we
describe in detail the three steps of our process.

3.1 Bicluster Collection Generation

The aim of this part is to generate a high number of different biclusters. To do so, we
generate bootstrap samples of the original data. A bootstrap sample is a random draw-
ing with replacement of the same size as the original data. It contains on average 68% of
the original elements. In the case of biclustering we should sample the data in both di-
mensions, genes and examples. If we do that, the bootstrap sample will contain 63% of
the original examples and 63% of the original genes, which means that the bootstrapped
data will contain only 46% of the original matrix. To keep the same proportion as in the
classic bootstrap, we decide to perform the bootstrap sample on only one dimension.
Since microarray data contain much many genes than examples, the bootstrap sample
will be done on genes. From the original dataX = {E,G}, R bootstrapped datasets are
generated {Xb = {E,Gb}, b = 1, ..., R}whereGb is a bootstrap sample ofG assumed
an iid sample.

On each of the R bootstrapped datasets, a biclustering algorithm,with the same pa-
rameters, is applied to produce K biclusters. We obtain a collection of KR biclusters
noted Bb that are used to identify meta-clusters.

3.2 Metacluster Identification

The objective is to identify K meta-clusters merging the similar biclusters. The idea
is that if two biclusters, generated from different bootstrapped data, are similar, it is
likely that they represent the same bicluster. All bootstrapped biclusters representing the
same bicluster should be grouped into a meta-cluster. The notion of similarity between
two biclusters depends on the number of elements (genes and examples) they have in
common. We use the Jaccard index to evaluate this similarity:

Sim(Bk, B�) =
|Bk ∩B�|
|Bk ∪B�|

=
|Bk ∩B�|E + |Bk ∩B�|G
|Bk ∪B�|E + |Bk ∪B�|G



494 B. Hanczar and M. Nadif

where |.|C corresponds to the cardinality computed on the set C. From this similarity,
we can define the dissimilarity between Bk and B� by d(Bk, B�) = 1− Sim(Bk, B�).
This distance belongs to [0, 1], 0 indicating that two biclusters are identical and 1 that
they have no element in common. From the distance matrix, a hierarchical clustering of
the bicluster is constructed using the average linkage. From the obtained dendrogram
we can identify K meta-clusters in cutting the dendrogram. Each meta-cluster Mg;
g = 1, . . . ,K , is a set of {Bb

1, ..., B
b
Kg
} where Kg is the cardinality of Mg. Note that

we do not consider trivial meta-clusters containing a few biclusters. Before deducing
these meta-clusters in the third step, we compute the probability of (Ei, Gj) belonging
to the meta-clustersM1, . . . ,MK . It is denoted pg(Ei, Gj) and can be estimated by the
proportion of biclusters of Mg containing (Ei, Gj). Note that the parameter K is the
same than the one used in bicluster collection generation step.

3.3 Bicluster Computation

The last step consists in computing the final biclusters of the original data. Each meta-
cluster is assigned to a bicluster. Then each element can be assigned to biclusters de-
pending on computed probabilities pg(Ei, Gj). We have to distinguish two cases. In the
first one we consider that there is no overlapping between the biclusters, i.e. (Ei, Gj)
belongs to at most one bicluster. If there are no probabilities superior to a given thresh-
old t then (Ei, Gj) is assigned to no bicluster. If there is at least one probability superior
to t then (Ei, Gj) is assigned to the bicluster B̂ belonging to the meta-cluster Mg and
maximizing the probability pg(Ei, Gj). Then ΦK(Ei, Gj) is equal to{

B0 = ∅ if pg(Ei, Gj) < t∀g
B̂ = arg maxMg pg(Ei, Gj) otherwise

In the second case, overlapping between two biclusters is possible, i.e. an element can
belong to several biclusters. If there are no probabilities superior to the threshold t then
the element is assigned to no bicluster. Otherwise, all biclusters whose corresponding
probabilities are higher than the threshold t are assigned to the element.

ΦK(Ei, Gj) =
{
B0 = ∅ if pg(Ei, Gj) < t∀g
Bk ∈Mg such as pg(Ei, Gj) ≥ t

Depending on the overlapping choice, we will use the first or the second case. Note that
we can mix these two cases if we want different overlapping choices for examples and
genes. For instance, a current choice in microarray analysis is to allow the overlapping
on the examples and not on the genes because of the disproportion between the number
of genes and examples. The function of the second case is used on examples and the
function of the first case on genes. The threshold t has a high influence on the bicluster
computation. The choice of its value will be discussed later.

4 Experiments on Artificial Data

In our simulation study, we evaluate the performance of bagged biclustering and com-
pare it to single biclustering. We performed our experiments on artificial and real datasets
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with five biclustering algorithms: Bimax [21], Cheng & Church [6], plaid model [16],
spectral biclustering [14] and Xmotifs [20]. This part concerns the results on artificial
data.

4.1 Generation of Artificial Datasets

The first part of our experiments is based on artificial data. These data cannot be consid-
ered as a reliable representation of real microarray data. Nevertheless they can be used
to measure the performance and behavior of the new methods in conventional cases.
The artificial data is a matrix with random values in which we included several biclus-
ters. The dataset contains M genes, N examples and K biclusters. In our simulations
M = 200, N = 100 and K = 2, 4, 6. The size of each bicluster is randomly chosen
between 10 examples by 20 genes to 20 examples by 40 genes. The partition on the
genes is defined by the classification M ×K matrix z defined by zik = 1 if the gene
i belongs to the bicluster Bk and 0 otherwise. In the same way, we consider the clas-
sification N × K matrix w = (wjk) representing the partition of the examples. The
partitions of biclusters are defined randomly. Note that from z and w, we can define
different cases of bicluster overlapping. The simplest one corresponds to no overlap-
ping structure. The second case consists in considering the presence of the overlapping
of genes. In the same way, we define the overlapping of examples. The last and most
complex case is total overlapping where genes and examples can belong to several bi-
clusters. An overlapping between biclusters can occur only in this last case. Note also
that a gene or example can belong to no bicluster. The total overlapping structure is the
most general case, so we consider only this situation in our experiments.

There is no general definition of what a bicluster is. The different algorithms used
search different models of biclusters. In our experiments we use five different bicluster-
ing algorithms. These algorithms do not identify biclusters of the same nature. For each
of them, we define a bicluster with the same model as the one used in the original paper
where the algorithm was published.

– Plaid model. We consider the more general model. The values of Xij belonging to
a bicluster Bk (layer) depend on 4 parameters: a constant μ0 describing the back-
ground layer, μk the average of Bk, αik and βjk allowing to identify respectively
a subset of genes and examples having identical responses. The values of Xij are
then represented as:Xij = μ0+

∑K
k=1 zikwjk(μk +αik +βjk). In our experiments,

all values belonging to biclusters are generated according to a uniform distribution
U [0, 5]. The values outside a bicluster, are generated according a uniform distribu-
tion U [−10, 10].

– CC model. For the Cheng and Church model, The values of Xij belonging to
a bicluster Bk depend on 3 parameters: μk the average of Bk, μik and μjk are
respectively the means of Ei and Gj belonging to the bicluster Bk. The values of
Xij are then represented as:Xij =

∑K
k=1 zikwjk(μik + μjk − μk). The values are

generated in the same manner that for the Plaid model.
– Xmotifs. we consider binary data and biclusters that depend on two parameters
α > 0 and β < 1 defined by the three following rules. A bicluster must contain
a number of examples superior to αN . All values in a bicluster are equal to (0 or
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1). If a gene does not belong to a bicluster, there is a maximum βN values that are
equal.

– Spectral biclustering. It is a special case since the data follow a checkboard struc-
ture. Each value belongs to a bicluster. The examples are partitioned into two clus-
ters and genes into K/2 clusters. Each bicluster is defined by its means value μk.
In our simulations, all values of a bicluster are chosen equal to their mean value.

– Bimax. The model used for Bimax is the simplest. The dataset is considered binary,
all values in a bicluster are equal to 1 and all values out of any bicluster are 0. Then,
biclusters are sub-matrices containing only 1s. Each Xij value is then defined by
Xij = zik × wjk.

Once the biclusters are defined and included in the dataset, we add a Gaussian noise
N(0, σ2). The variance permits to control the difficulty of the biclustering task.

4.2 Study Design

We evaluate the performance of each biclustering method by comparing the biclusters
obtained by different algorithms and true biclusters. We compute the error of bicluster-
ing by estimating the total number of misclassified values. Since this estimation should
not depend on the labellings of the biclusters, we enumerate all possible relabellings
and retain the label that gives the smallest error noted e. The study design used in our
experiment is the following:

1. Generate an artificial dataset X with K biclusters
2. Apply a biclustering algorithm on X to identify K biclusters
3. Compare the true biclusters to the biclusters obtained by the five algorithms and

compute the biclustering error noted esingle.
4. Apply the associated bagged biclustering of the five algorithms onX to identifyK

biclusters
5. Compare the true biclusters to the obtained biclusters and compute the biclustering

error noted ebagged.
6. Iterate steps 1-5 200 times and compute the means of esingle and ebagged.

4.3 Results on Artificial Data

The choice of the decision threshold t is crucial. A too small value of t may imply
that an element, belonging to a bicluster, will be assigned to no bicluster. The obtained
biclusters will be small and several genes will miss to be assigned. But we will be
highly confident that all identified genes and examples are really assigned to biclus-
ters. On the other hand, a too high value of t leads to assign an element to biclusters
not containing this element. The obtained biclusters will be large and tend to contain
all elements actually belonging to the biclusters. The risk is that they will also contain
false positives, i.e. elements wrongly assigned. The dependence of t on these differ-
ent situations implies its difficult choice. Here, in our experiments the assessing of
t is performed empirically, giving a good tradeoff between false and true positives.
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Fig. 1. ◦ : K = 2, � : K = 4, + : K = 6. Biclustering error of the Bimax algorithm in
function of the value of the decision threshold t. The dot line represents results for problems with
2 biclusters, the triangle line with 4 biclusters and the cross line with 6 biclusters.

Figure 1 shows the biclustering error in function of the decision threshold t with the Bi-
max algorithm. The three lines, dot, triangle and cross, represent respectively the results
on dataset containing 2, 4 and 6 biclusters. The behavior of the three curves is the same:
they are strongly decreasing from t = 0 to t ≈ 0.2 then the biclustering error increases
slowly. For all curves, the minimum error is around t = 0.2. We use this threshold in
our experiments. We employ the same procedure to assess the threshold for the other
algorithms.

We performed different experiments giving the same results for different values of
K = 2, 4, 6. Figure 2 and 3 show the biclustering error with the five algorithms: Bi-
max, Cheng & Church, plaid model, spectral biclustering and Xmotifs. For each algo-
rithm, three graphics represent the results on datasets containing 2,4 and 6 biclusters.
In each graphic, the error biclustering is computed in function of the quantity of noise
introduced in the dataset. The dot curve represents the error of the single biclustering
algorithm, the triangle curve the bagged biclustering. We see that in all cases the error
is naturally increasing with the noise. For Bimax, we see that at σ = 0.4 the error of
single biclustering ”jumps” from 0 to 1700. The error of the bagged biclustering in-
creases slowly to join the error of the single biclustering at σ = 1.8. We can interpret
this as follows: for σ ≤ 0.4 the biclustering problem is easy, the performance of bi-
clustering is maximal. For σ ≥ 1.8 the datasets are so noisy that all biclusterings are
meaningless, we have checked that the error is the same as a random biclustering. These
graphics show that bagged Bimax gives a better biclustering than single Bimax. We find
the same type of results in the major part of our experiments. The Cheng & Church al-
gorithm and Bimax have the same behavior. Error of single CC increases faster than
bagged CC. In plaid model results, we see that the error of the bagged plaid model is
lower than that of the single plaid model for σ < 1. For higher level of noise, σ ≥ 1,
the two algorithms give the same performance as ”random” biclustering. The results of
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Spectral biclustering are singular since the error does not jump for a given value of σ
but is regularly increasing with σ. The error curves of single and bagged spectral biclus-
tering are almost parallel. The error of bagged spectral biclustering is always below the
error of the single spectral biclustering. For Xmotifs results, the error curve of bagged
Xmotifs always begins below the curve of single Xmotifs, then joins it for higher levels
of noise. The results, including various biclustering algorithms and different number of
biclusters (not reported here), show that bagged biclustering gives better results than
single biclustering.

In these experiments on artificial data, we assume the knowledge of the true number
of biclusters, i.e. the number of meta-clusters, but in real data problems this number
is generally unknown. Here we show that a measure of clustering goodness, like the
within-group sum of squares criterion noted commonly W , also named within-group
inertia, can be used on the bagged bicluster dendogram to find an appropriated number
of meta-clusters. In our simulations we perform the agglomerative hierarchical clus-
tering on the biclusters and we try several cuts of the tree in order to obtain different
numbers of meta-clusters. For each cut, we compute W of the obtained partition of
bagged biclusters. The W criterion, depending on a partition, decreases with the num-
ber of meta-clusters, and so a scree plot with one or several elbows may used to propose
a cut of the dendrogram. For instance, the scree plots of Figure 4 express W computed
in function of the number of meta-clusters with the CC algorithm. From each scree plot,
we can retain the first elbow corresponding respectively to 2, 4 and 6 meta-clusters (rep-
resented with a dotted line in the graphics). Note that we have also tested the influence
of the number of bootstrap iterationsR on our method. Our simulations show that, when
R is large (R > 100), this parameter has no effect on the results of bagged biclustering.

5 Experiments on Real Data

We tested our approach on real microarray datasets. The evaluation is more subjective
than on artificial data since we cannot know the true biclusters. We rely on statistical
measures and the biological context of the datasets to evaluate the goodness of the
biclusters. In the following, we have applied the plaid and CC models and evaluate the
quality of a bicluster Bk by computing the Mean Square Residue (MSR) defined by

1
#Bk

∑
i,j

zikwjk(Xij − μik − μjk + μk)2.

The symbol # denotes the cardinality. We have computed the MSR for the biclusters in
single and bagged contexts. The partition of genes, extracted from biclusters, should be
coherent with known genetic information contained in public databases like KEGG. We
expect to find genes belonging to the same biological pathways in a bicluster. We have ap-
plied single biclustering algorithms and bagged biclustering to four microarray datasets.
These datasets are available online1 and their characteristics can be found in table 1.

Firstly, the Bimax, Xmotifs (after binarization process) and spectral algorithms, are
not commented in the following. Using both single and bagged versions they did not

1 http://algorithmics.molgen.mpg.de/Static/Supplements/CompCancer/datasets.htm
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Bimax algorithm

Cheng & Church algorithm

Plaid model algorithm

K = 2 K = 4 K = 6

Fig. 2. Biclustering error in function of noise variance on artificial data. The three graphic lines
correspond respectively to results with Bimax, CC algorithm and plaid model. The columns cor-
respond respectively to results with 2, 4 and 6 biclusters. Dot lines and triangle lines correspond
respectively to single and bagged biclustering.
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Spectral algorithm

Xmotifs algorithm

K = 2 K = 4 K = 6

Fig. 3. Biclustering error in function of noise variance on artificial data. The two graphic lines
correspond respectively to results with Spectral biclustering and Xmotifs. The columns corre-
spond respectively to results with 2, 4 and 6 biclusters. Dot lines and triangle lines correspond
respectively to single and bagged biclustering.

K = 2 K = 4 K = 6

Fig. 4. The within-group sum of squares in function of the number of meta-clusters with the CC
algorithm
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Brain cancer dataset 1

Brain cancer dataset 2

Lung cancer dataset

Plaid model CC algorithm

Fig. 5. MSR in function of the number of biclusters K. Dot line correspond to MSR of single
biclustering and triangle line of bagged biclustering.
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Multi tissue dataset 1

Plaid model CC algorithm

Fig. 6. MSR in function of the number of biclusters K. Dot line correspond to MSR of single
biclustering and triangle line of bagged biclustering.

find any biclusters from the 4 datasets. The type of biclusters sought by these methods,
are not suitable for our datasets.

Applying single and bagged biclustering with the plaid model and the CC models on
the four microarray datasets, we compute the MSR of results produced by each method
according different values of K . The number of bootstrap iterations for bagged biclus-
tering is R = 100. The figures 5 and 6 show the MSR of the single (dot lines) and
bagged (triangle lines) biclustering in function of the number of biclustersK . First col-
umn represents results with plaid model and second column with CC algorithm. The
results with the plaid model exhibit a lot of variability, but the MSR of bagged biclus-
tering is lower than single biclustering. In the four datasets there is a peak phenomenon,
MSR is firstly decreasing then increasing with the number of biclusters. The minimum
is around K = 12. For lung cancer dataset, MSR is strongly decreasing until K = 10
then is stable. In multi tissue dataset, the results are very variable, it is hard to see the
general behavior of MSR in function of K . The important point is that MSR of bagged
biclustering is below MSR of single biclustering. The only cases where the MSR of the
two approaches are equal is where MSR are at its maximum. That means for an optimal
number of biclusters, bagged biclustering produces better results than single biclus-
tering. The results with CC algorithm are clearer. All five graphics present the same
behavior and we note that the performance increases with the number of biclusters. The
MSR of single biclustering remains stable whereas the MSR of bagged biclustering
decreases strongly and becomes stable for high number of biclusters. In all datasets,
bagged biclustering is much better than single biclustering for K > 7.

We also compared single and bagged biclustering based on the coherence of the ob-
tained gene partition. If two genes are in the same bicluster, we can assume that these
two genes are biologically related. A good tool to check if there is an identified rela-
tion between two genes, is the pathway database of the Kyoto Encyclopedia of Genes
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Table 1. Characteristics of the datasets and number of over-represented pathways

Plaid model CC algorithm
Datasets #ex. #genes Single Bagged Single Bagged

Brain cancer 1 50 1377 8 18 19 25
Brain cancer 2 42 1379 10 26 3 14
Lung cancer 203 1543 12 20 15 19
Multi tissue 190 1363 4 15 26 41

and Genomes (KEGG). These pathways represent molecular interaction and reaction
networks for metabolism, various cellular processes, and human diseases. All genes in
the same pathway are considered biologically related. The number of over-represented
pathways is computed for each bicluster. We use the hypergeometric test to check if a
path is over-represented in a bicluster. Given pathway a PWi, let pi be the probability
that a gene belongs to the pathway PWi and Si = [piM ] ([.] denotes the integer part)
the number of genes belonging to PWi. The probability of obtaining k genes belonging
to the pathway PWi from a random selection ofA genes follows a hypergeometric law:

P (k, Si,M,A) =
Ck

Si
CA−k

M−Si

CA
M

.

Given a biclusterB = {E,G}, let Xi be the number of genes belonging to the pathway
PWi, the probability of obtaining at least Xi genes belonging to PWi by a random
selection is defined by:

Pr(k ≥ Xi) =
∑

x≥Xi

P (x, Si,M, |G|).

We compute this probability for all pathways and the Holm correction is applied to
address the problem of multiple comparisons. Finally all pathways with a corrected p-
value inferior to 0.05 is considered over-represented. We assume that the number of
over-represented pathways represents the biological information captured by the genes
of the biclusters. A good biclustering should provide high number of over-represented
pathways. We use this measure to compare the results of the different algorithms. The
chosen number of biclusters is the one that minimizes the MSR. In the table 1, we
report the number of over-expressed pathways in datasets and it appears clearly that
bagged biclusters contains much more over-expressed pathways and can be consider
more biologically relevant than single biclusters.

6 Conclusion

In this paper we have introduced the concept of ensemble methods for biclustering in
the context of microarray data. The proposed bagged biclustering generates a collection
of biclusters based on bootstrap samples of the original data. Then a distance matrix
between biclusters is computed based on the Jaccard index. From these distances we
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construct a dendrogram and identify meta-clusters. The probability to belong to each
meta-cluster is computed for each element (Ei, Gj). Finally the final biclusters are
built based on these probabilities. The performance of our method has been tested on
both artificial and real microarray data. On artificial data, we have shown that ensemble
method enables to strongly decrease the biclustering error compared to classic meth-
ods whatever the used biclustering algorithm, the number of biclusters and the chosen
noise level. On real data, bagged biclustering provides biclusters more relevant than sin-
gle biclustering according to their MSR value. In addition, we have noted that bagged
biclusters capture more biologic information since they contain more overexpressed
pathways. The use of our approach is a new powerful tool for microarray analysis and
should allow biologists to identify new relevant patterns in gene expression data.
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Abstract. Transcription control networks have a scale-free topological
structure: While most genes are involved in a reduced number of links, a
few hubs or key regulators are connected to a significantly large number
of nodes. Several methods have been developed for the reconstruction
of these networks from gene expression data, e.g. ARACNE. However,
few of them take into account the scale-free structure of transcription
networks. In this paper, we focus on the hubs that commonly appear in
scale-free networks. First, three feature selection methods are proposed
for the identification of those genes that are likely to be hubs and second,
we introduce an improvement in ARACNE so that this technique can
take into account the list of hub genes generated by the feature selection
methods. Experiments with synthetic gene expression data validate the
accuracy of the feature selection methods in the task of identifying hub
genes. When ARACNE is combined with the output of these methods,
we achieve up to a 62% improvement in performance over the original
reconstruction algorithm. Finally, the best method for identifying hub
genes is validated on a set of expression profiles from yeast.

Keywords: Transcription network, ARACNE, Automatic relevance de-
termination, Group Lasso, Maximum relevance minimum redundancy,
Scale-free, Hub.

1 Introduction

High-throughput molecular technologies like DNA microarrays allow researchers
to simultaneously measure the concentration of thousands of known molecules
(e.g. mRNAs) in a cellular population. This technological breakthrough has en-
couraged a systems biology approach to the analysis of complex cellular processes
[1,2]. The new paradigm focuses on the interactions between molecules, usually
represented by a network, and how these interactions give rise to cellular behav-
ior. In particular, functional properties are not in the molecules themselves but
they appear as a result of their coordinated interactions. A challenging task is
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then to reconstruct the network of molecule interactions from high-throughput
experimental data [3,4,5].

Transcription networks are a particular class of interaction networks in which
each node represents a different gene and each link corresponds to an interaction
between two genes at the transcription level. The network captures the regula-
tory role of certain genes whose final products, e.g. transcription factors, govern
the transcription rate of other genes. Transcription control networks display two
typical characteristics. First, they have a sparse connectivity matrix [6] and sec-
ond, they have a scale-free topological organization [7,4]. In particular, while
most genes are involved in only a reduced number of interactions, a few hubs
or key regulators are connected to a significantly large number of nodes. These
features can be observed in the transcription network displayed in Fig. 1.

Under the assumption that mRNA concentration is predictive of regulatory
molecule activity, several machine learning methods have been proposed for the
reconstruction of transcription networks from steady-state gene expression data.
Some examples are given by Bayesian network methods [8], mutual information
approaches [4,5] and linear regression techniques [9,10]. While most of these
methods enforce sparsity in the resulting interaction map, few of them actually
exploit the scale-free topological structure of transcription control networks. An
exception is the method described in [11] which is based on a scale-free prior
within a framework of Gaussian graphical models. However, this latter method
has a very high computational cost and is not feasible for large-scale problems.
As a more efficient approach in terms of computational time, we concentrate on
the hubs that commonly appear in transcription networks.

This paper is based on the assumption that reverse engineering methods can
be significantly improved by predicting beforehand those genes that are more
likely to be hubs or key regulators in the transcription network. For this task,
we introduce a multiple linear regression model which describes the interactions
between genes and transcriptional regulators. The model includes a coefficient
matrix which is expected to be columnwise sparse. A set of hub genes can then be
selected by identifying those columns of the regression matrix which have many
non-zero entries. In practice, this is equivalent to selecting those features that are
more relevant for solving the multiple regression problem. Three feature selection
methods are proposed for this task: The group Lasso regularization method [12],
the automatic relevance determination (ARD) approach [13] and the maximum
relevance minimum redundancy (MRMR) criterion [14]. The performance of the
different methods for identifying hub genes is evaluated in a series of experiments
with simulated gene expression data. The program SynTREN is used in the data
generation process [15]. These experiments indicate that the best performance
is obtained by the hub gene selection method based on the ARD technique.

In a second step, we show how the list of hub genes generated by the feature
selection methods can be used to significantly improve the results of ARACNE,
a state-of-the-art technique for reverse engineering transcription networks [4,16].
Another series of experiments with simulated gene expression data indicate that
a combination of ARACNE with the ARD feature selection method yields a 62%
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Fig. 1. Approximation of the transcriptional regulatory network of Escherichia coli.
Nodes represent genes and edges indicate a direct transcriptional interaction between
two genes. Diamond shaped nodes correspond to those genes selected by ARD, most
of them are key regulators or hubs in the network. Light-gray nodes are those genes
selected by the group Lasso approach, most of them are connected to the same hub
node and their expression levels are therefore highly correlated. The visualization of
the network was implemented using the software Cytoscape [18].

improvement in performance over the results of the original algorithm. Finally,
the ARD method for hub gene identification is run on a set of expression profiles
from Saccharomyces cerevisiae collected under different experimental conditions
[17]. This dataset contains 247 expression measurements for a total of 5520 genes.
An analysis of the the top ten genes identified by the ARD technique reveals a
large number of global transcriptional regulators.

2 A Linear Model of Transcription Control

First of all, we describe a linear regression model for steady-state gene expression
data. Transcription control in biological systems is a dynamic process typically
characterized by a set of differential equations. Michaelis Menten interaction
kinetics and the Hill equation [19,20] model the rate of production of a tran-
script X by the enzyme RNA polymerase P when activator A is required for
transcription:

d [X ]
dt

= Vm ·
[A]α

[A]α +KA
· [P ]
[P ] +KP

− δ [X ] , (1)

where δ is the degradation rate of transcript X , Vm is the maximum rate of
synthesis, KP and KA are activation thresholds, α is the Hill coefficient for
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cooperative binding and [·] stands for ”concentration of”. When competitive
inhibition occurs between the enzyme RNA polymerase P and the repressor R,
the rate of transcription is given by

d [X ]
dt

= Vm ·
[P ]

[P ] +KP

(
1 + [R]β /KR

) − δ [X ] , (2)

where KR is a repressor threshold and the parameter β is similar to α. When
steady-state conditions hold and molecule concentrations are far from saturating,
we obtain

[X ] =
Vm [A]α [P ]
δKAKP

, [X ] =
VmKR [P ]

δKP [R]β
, (3)

for the activation and repression cases, respectively. Taking logarithms, assuming
that activation and repression are both possible at the same time and considering
that mRNA concentration is predictive of final product concentration, we end
up with a linear model of transcript log-concentration

log [X ] =
m∑

i=1

bi log [Xi] + constant , (4)

where the bi are real coefficients and the Xi are the transcripts of the activators,
the repressors and the enzyme RNA polymerase. When X is a self-regulating
gene, log [X ] is included in the right-hand side of (4) with associated coefficient
bm+1. This autoregulatory term can be eliminated by algebraic simplification.
For this, bi is replaced by b′i = bi/(1− bm+1) where i = 1, . . . ,m and bm+1 is set
to zero.

The previous linear model is easily extended to account for all the transcripts
present in a biological system. Let X denote a d× n gene log-expression matrix
where each row corresponds to a different gene and each column represents
an independent sample obtained under steady-state conditions. Additionally,
let us assume that the rows of X have been centered so that they have zero
mean. Then, if the log-expression measurements are contaminated with additive
Gaussian noise, (4) suggests that X should approximately satisfy

X = BX + σE , (5)

where B is a d × d matrix of regression coefficients that links each gene to its
transcriptional regulators, σ is a positive constant that is determined by the level
of noise in X and E is a d×n matrix whose elements are i.i.d. random variables
that follow a standard Gaussian distribution. In this linear model, the diagonal
elements of B are all zero since any autoregulatory term in (5) can be eliminated
using the process described in the previous paragraph.

Note that the coefficient matrix B encodes the connectivity of the underlying
transcription network. In particular, let bij be the element in the i-th row and
j-th column of B, then bij �= 0 whenever gene j is a transcriptional regulator of
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gene i and bij = 0 otherwise. Consequently, B is constrained by the topological
structure of the network. Transcription networks are sparsely connected [6], with
most genes having only a few connections. However, a few hubs or key regulators
are connected to a significantly large number of genes [21]. Fig. 1 displays a
sample transcription network with these characteristics. Consequently, we may
expect B to be a sparse matrix whose rows typically have a few coefficients
different from zero and these non-zero coefficients are often clustered on a few
of the columns of B, where each of these columns corresponds to a different hub
gene or global regulator. We may say that B is a columnwise sparse matrix.
Note that the column of B that corresponds to RNA polymerase is the one with
more non-zero elements since this enzyme is involved in the production of all
the transcripts in any biological system.

Given X, the previous paragraph suggests a procedure for identifying those
genes that are more likely to be hubs in the transcription network. The method
consists in first, solving the multiple regression problem represented by (5) under
the assumption that B is columnwise sparse and second, identifying the columns
of this regression matrix with more non-zero coefficients. This is equivalent to
selecting the rows of X that are more relevant for solving the multiple regression
problem, i.e., we have to identify a reduced subset of genes whose expression
pattern accounts for the expression pattern of all the other genes in the network.

3 Hub Gene Selection Methods

Let k be an approximation of the number of hub genes in the transcription
network. We propose three linear methods for the identification of the k rows of
X that are more relevant for solving the multiple regression task. The proposed
techniques are based on extensions of standard sparse linear models [22,13] and
standard feature selection methods [14] to the multiple regression case.

3.1 Automatic Relevance Determination

In this section, we extend the automatic relevance determination (ARD) frame-
work [13] to enforce columnwise sparsity of matrix B in (5). The first step is to
assign a Gaussian prior to the rows of B. Let bi =

(
b1i , . . . , b

i−1
i , bi+1

i , . . . , bdi
)

be
the i-th row in this matrix, then its prior distribution is

P (bi|a) = (2π)−(d−1)/2
∏
j �=i

a
1/2
j exp

[
−aj(b

j
i )

2/2
]
, (6)

where a = (a1, . . . , ad) is a d-dimensional vector of hyperparameters. The prior
for the i-th column of B is then a zero-mean multivariate Gaussian distribution
with independent components that have an inverse variance given by ai. The
ARD method works by optimizing the evidence of the resulting Bayesian model
with respect to a = (a1, . . . , ad). During this process, some of the ai take an
infinite value and consequently, the resulting posterior for the corresponding
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rows of B is a point mass at zero. However, a direct optimization of the evidence
function under the ARD framework is very likely to get stuck into a sub-optimal
solution. To avoid this problem, we propose a greedy optimization method in
which all the ai are initially set to infinite and only k of these parameters are
optimized sequentially in a greedy manner.

The logarithm of the evidence of the resulting Bayesian model is

L(a) = −1
2

d∑
i=1

log |C−i| −
1
2

d∑
i=1

xt
iC

−1
−i xi + constant , (7)

where xi represents the transpose of the i-th row of X and

C = σ2I +
d∑

i=1

a−1
i xixt

i , C−i = σ2I +
d∑

j �=i

a−1
j xjxt

j . (8)

Following [23], we separate out the contribution of each aj on the total log-
evidence

L(a) = L(a−j) + �(aj)

= L(a−j) +
∑
i�=j

1
2

[
log aj − log(aj + sji) +

q2ji

aj + sji

]
, (9)

where sji = xt
jC

−1
−ijxj and qji = xt

jC
−1
−ijxi. For the computation of sji and qji

we use

sji =
ajSji

aj − Sji
, qji =

ajQji

aj − Sji
, (10)

Sji =Djj +
D2

ji

ai −Dii
, Qji =

aiDji

ai −Dii
, (11)

where Sji = xt
jC

−1
−i xj , Qji = xt

jC
−1
−i xi and Dji = xt

jC
−1xi. Note that when

ai = +∞, it is satisfied that Sji = Djj and Qji = Dji . Thus, it is only necessary
to compute Dii when ai < +∞ and with (10), (11) and matrix C−1 we can
compute all the sji and qji very efficiently.

A greedy process allows us to select the k most relevant rows of X. First, all
the components of a are initialized to +∞ and a copy of matrix C−1 is kept in
memory with initial value σ−2I. For j = 1, . . . , d such that aj = +∞, we compute
the increment in the log-evidence that can be achieved by optimizing L(a) with
respect to aj when a−j = (a1, . . . , aj−1, aj+1, . . . , ad) is kept fixed. The aj that
yields the highest increment is then updated so that L(a) is maximized. All the
optimizations are performed using a combination of golden section search and
successive parabolic interpolation. The main loop of the process is repeated until
k components of a are finite. For a particular j, we compute Dji for all i as the
product XC−1xj . Once an aj becomes finite, we efficiently update C−1 using

C−1
new = C−1

old −
C−1

oldxjxt
jC

−1
old

anew
j + xt

jC
−1
oldxj

. (12)
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Fig. 2. Pseudocode of the binary search process for finding M in the group Lasso
method. The figure displays the steps that are followed to obtain a value for M in (13)
so that the minimizer of this expression has exactly k non-zero columns. The function
groupLasso returns the number of non-zero columns in the minimizer of (13) when X
and M are equal to the arguments passed to this function.

To compute Dii for all i such that ai < +∞, we keep in memory a matrix F
whose components are xt

iC
−1xj for all ai and aj finite. When an aj becomes

finite, F is efficiently updated by using (12) and appending a new row and a new
column to the matrix. The required Dii values are then easily obtained from
the main diagonal of F. Once this greedy process is finished, the k hub genes
selected by the ARD method are represented by the k components of a that are
finite. The final computational cost of this technique is O(kd2n).

3.2 Group Lasso

An extension of the Lasso regularization method [22] denoted group Lasso [12]
is useful to obtain groupwise sparse linear models. Given (5), we can obtain a
columnwise sparse estimate of the coefficient matrix B as the minimizer of

‖ X−BX ‖2F subject to
d∑

i=1

‖ bi ‖2≤ M and diag(B) = 0 , (13)

where ‖ · ‖F and ‖ · ‖2 stand for the Frobenius and �2 norms, respectively, bi

is the i-th column of matrix B and M is a positive regularization parameter.
Since B is constrained by the sum of �2 norms, some of its non-relevant columns
will shrink to zero during the optimization process [12]. In this regularization
method, there is a direct relationship between M and the number of non-zero
columns in the resulting estimate of B. The larger M is, the more non-zero
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columns in the coefficient matrix estimate. Consequently, to select the k most
relevant rows of X, we perform a binary search on M so that the corresponding
minimizer of (13) has exactly k non-zero columns. This process is illustrated by
the pseudocode displayed in Fig. 2. The optimization problem involved by (13) is
efficiently solved using the gradient projection method described in [24]. The final
computational cost of the group Lasso method is O(d3). This is comparatively
much more expensive than the cost of the ARD approach when d� n, which is
often the case in practical applications.

3.3 Maximum Relevance Minimum Redundancy

The maximum relevance minimum redundancy (MRMR) criterion for feature
selection [14] is generalized in this section to the particular case of the multiple
regression problem displayed in (5). Let xi = (xi1, . . . , xin) be the i-th row of
X and let I(xi,xj) denote the empirical mutual information for genes i and j.
Now, suppose that S is a set that contains those genes already selected by the
method. The next gene to be selected is a gene j that is not yet in S and that
maximizes

1
d

d∑
i=1

I(xi,xj)−
1
|S|
∑
i∈S

I(xi,xj) . (14)

The redundancy term is here the same as in standard MRMR. However, the
relevance term is an average of the relevance terms for each of the d individual
regressions in (5). For the computation of the empirical mutual information,
I(xi,xj), we assume that the marginal distribution of the pairs {xik, xjk}n

k=1
is bivariate Gaussian. In consequence, I(xi,xj) = −0.5 log(1 − ρ̂2

ij), where ρ̂ij

is the empirical correlation of the vectors xi and xj . The final computational
cost of the MRMR method is O(d2n). Hence, MRMR is the most efficient of the
three feature selection methods analyzed in this paper.

4 Evaluation of the Hub Gene Selection Methods

The performance of the ARD, group Lasso and MRMR methods for identifying
hub genes is evaluated in a series of experiments with simulated steady-state gene
expression data. The program SynTREN [15] is used to generate synthetic gene
expression data from three different transcription control networks. Two of the
networks are from the organism Escherichia coli and they have 423 and 1330
genes, respectively [25,26]. The last network is from Saccharomyces cerevisiae
and has 690 genes [27]. 50 gene expression matrices with 250 measurements are
generated from each network using the following configuration for SynTREN:
All the noise levels are fixed to 0.3, transition functions are linear, the number
of burn in-cycles is fixed to 1000, complex interactions are deactivated and the
number of correlated externals is 0.
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To reduce the negative impact of outliers, we map each row of each gene
log-expression matrix to the standard Gaussian distribution. For this task, an
approximation of the probability integral transform is used in combination with
the standard Gaussian quantile function:

xmap
ij = Φ−1

[
Fn(xij)

n

n+ 1

]
for j = 1, . . . , n , (15)

where xij is the j-th element in the i-th row of a d×n gene log-expression matrix,
Φ−1 is the standard Gaussian quantile function, Fn is the empirical cumulative
distribution of the elements in the i-th row of the log-expression matrix and the
factor n/(n+ 1) guarantees that the argument passed to Φ−1 is lower than one.
The resulting data matrix is the input to the hub gene selection methods.

The ARD, group Lasso and MRMR methods are executed on each of the
gene expression matrices generated by the program SynTREN (after applying
the previous data preprocessing method). The parameter σ in the ARD approach
is initialized to 1 and k, the number of hub genes that each method must select,
is fixed to a reduced fraction of the total number of nodes in the underlying
transcription network, e.g. 5%. Hub genes are by definition highly connected
nodes in the network. Hence, as a measure of quality, we compute the average
connectivity of the genes selected by each method. For comparative purposes, we
also include in the analysis an extra method that only returns a list of k genes
selected randomly. The highest possible average connectivities that a method
can obtain are 17.27 and 37.31 for the small and large E. coli networks and
22.51 for the yeast network.

Table 1 summarizes the results of each feature selection method. The three
proposed methods perform significantly better than the random approach, with
ARD obtaining the best accuracy. For small networks, the results of MRMR and
ARD are more or less similar. However, ARD is much better than MRMR when
analyzing large transcription networks. Additionally, the Group Lasso method
performs rather poorly when compared with the MRMR and ARD approaches.
The reason for this poor performance is the propensity of the group Lasso method
for selecting genes whose expression patterns are very correlated. By contrast,
ARD and MRMR do not have this problem since these methods penalize the
selection of redundant features [23,14].

Finally, Fig. 1 displays a fraction of the transcription control network from
Escherichia coli with 423 genes. Those nodes with a diamond shape correspond
to the genes selected by the ARD method when trained on one of the synthetic
423 × 250 gene expression matrix generated by SynTREN. The figure clearly
shows that most of the genes selected by ARD are hubs or key regulators in the
network. Light-gray nodes are those genes selected by the group Lasso method.
In this method, most of the selected genes are connected to the same hub or key
regulator and in consequence, their expression patterns are highly correlated.
The nodes selected by MRMR, although not shown, are in this case very similar
to those selected by ARD.
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Table 1. Average connectivity and corresponding standard deviation for each method

Network Genes Random Lasso MRMR ARD

Small E. coli 423 2.54±0.77 7.23±0.40 13.31±0.77 14.01±0.71
Yeast 690 3.14±0.91 9.46±0.51 13.91±1.27 16.51±0.74

Large E. coli 1330 4.22±1.94 8.56±0.72 14.70±2.48 23.48±1.62

5 Combining ARACNE with the Output of a Hub Gene
Selection Method

In this section we describe how to improve the performance of ARACNE using
the output of the previous hub gene selection methods. First, we introduce the
original ARACNE algorithm. ARACNE is a state-of-the-art method for reverse
engineering transcription networks using only steady-state gene expression data
[4,16]. ARACNE belongs to a class of network reconstruction algorithms known
as mutual information networks [28]. In these methods, a connection between
two nodes is created if the corresponding transcript concentrations exhibit large
mutual information. The first step of ARACNE is to compute the empirical
mutual information for any two transcripts i and j, i.e. I(xi,xj). The connection
weight wij for any two genes i and j is initialized as wij = I(xi,xj). After this,
in a pruning step, ARACNE employs the data processing inequality to eliminate
indirect interactions between genes. This inequality states that when genes i and
j interact indirectly through gene k, it should be satisfied

I(xi,xj) ≤ min {I(xi,xk), I(xj ,xk)} . (16)

For each triplet of transcripts, ARACNE applies inequality (16) and sets wij

to zero when (16) holds for some k, otherwise wik is not changed. The last
step of ARACNE is to link each pair of genes i and j when wij is higher than
threshold θ > 0. Note that ARACNE enforces sparsity in the reconstructed
network first, by making use of the data processing inequality and second, by
means of the threshold θ. However, ARACNE does not take into account the
scale-free topological structure of transcription control networks.

Prediction errors in ARACNE are mainly due to the large variance displayed
by the mutual information estimates I(xi,xj) for any two genes i and j. This
excessive variance has its origin in the reduced number of measurements and
the high level of noise in gene expression data. The performance of ARACNE
can be significantly reduced by these random fluctuations in the estimation of
the mutual information. In particular, ARACNE may fail to eliminate some of
the indirect gene interactions. This occurs when genes i and j interact through
gene k indirectly but fluctuations in the mutual information estimation process
make I(xi,xj) larger than I(xi,xk) or I(xj ,xk). In a similar manner, ARACNE
may mistakenly remove a direct interaction between genes i and j when these
fluctuations in the estimation process make I(xi,xj) lower than I(xi,xk) and
I(xj ,xk) for some gene k.
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5.1 Modification of the Original ARACNE Method

Prior knowledge about the particular topology of the network can be very useful
to reduce the negative impact of random fluctuations in the estimation of the
mutual information. In particular, when the underlying network is scale-free
any arbitrary node is more likely to be connected to a hub node than to any
other ordinary node. This means that, on average, I(xi,xj) should be larger
when either i or j is a hub gene than when none of them is. Using this idea, we
propose to improve the performance of ARACNE as follows. After ARACNE has
computed the empirical mutual information for all genes, we update the mutual
information estimates as

Inew(xi,xj) =
{
Iold(xi,xj) +Δij if i ∈ SH or j ∈ SH

Iold(xi,xj) otherwise (17)

for i = 1, . . . , d, j = 1, . . . , d and j �= i, where SH is a set of hub genes andΔij is a
positive number that scales with the level of noise in the estimation of the mutual
information for transcripts i and j. Here, SH has been generated previously
by either the ARD, group Lasso, or MRM methods. The purpose of Δij is to
generate an increment in the mutual information estimate between genes i and
j when one of these genes is a hub. However, this increment has to be adjusted
with respect to the level of noise in Iold(xi,xj). In particular, when the number
of available gene expression measurements increases, the amount of noise in
Iold(xi,xj) decreases and Δij should decrease too. Otherwise, Inew(xi,xj) would
be asymptotically biased and the performance of the new ARACNE algorithm
would not improve as more data samples are available.

If we assume that the elements of xi and xj have a bivariate Gaussian marginal
distribution, then the first step of ARACNE will set

I(xi,xj) = −0.5 log(1− ρ̂2
ij) , (18)

where ρ̂ij is the empirical correlation between xi and xj . In this case, we can fix
a probabilistic upper bound on the noise in the estimation of I(xi,xj) using the
delta method, namely

Δij = n−1/2|ρ̂ij |Φ−1 (1− γ) , (19)

where we have approximated the sampling distribution of ρ̂ij by a Gaussian with
variance n−1(1 − ρ̂2

ij)
2 and mean ρ̂ij , n is the number of available expression

measurements, Φ−1 is the standard Gaussian quantile function and γ is a small
positive number that determines the probability of the actual noise being greater
than the upper bound.

The update rule described by (17) and (19) generates an increment in the
mutual information estimates when one of the two transcripts is a hub gene.
This increment is proportional to the uncertainty in the estimation of the mutual
information so that we can achieve a balance between the connectivity structure
given by the data and our prior assumption that the genes in SH should be
highly connected. The update rule guarantees that direct connections where one
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Table 2. Average AUC-PR and corresponding standard deviation for each method

Standard New ARACNE with
Network Genes ARACNE Random Lasso MRMR ARD

Small E. coli 423 0.41±0.03 0.28±0.05 0.41±0.04 0.57±0.04 0.56±0.03
Yeast 690 0.30±0.02 0.16±0.03 0.30±0.02 0.35±0.03 0.39±0.02

Large E. coli 1330 0.16±0.01 0.06±0.01 0.15±0.01 0.18±0.03 0.26±0.02

of the two transcripts is a hub gene are less likely to be mistakenly removed
during the pruning step of ARACNE. Furthermore, indirect links between two
transcripts regulated by a common hub gene are also more likely to be pruned
out during this step. Consequently, the new ARACNE algorithm should have an
improved performance over the original version of the method.

6 Evaluation of the New ARACNE Method

To evaluate the accuracy of the new ARACNE method based on a list of hub
genes, we perform a series of experiments with synthetic gene expression data.
The standard ARACNE algorithm is compared with four versions of the modified
method, each one corresponding to a different technique for obtaining the set SH

of hub genes: ARD, group Lasso, MRMR and the random approach. The data
used in these experiments are the 150 gene expression matrices generated for
the experiments of Sect. 4. Again, the data are transformed using the mapping
given by (15). The parameters of the gene selection methods are the same as
in Sect. 4. Mutual information in ARACNE is computed as in MRMR and γ is
fixed to d−1, where d is the number of genes in the network under analysis.

The performance of each reverse engineering technique is evaluated using the
area under the Precision-Recall curve (AUC-PR) which is obtained by altering
threshold θ [29]. The precision and the recall rates are computed by comparing
the edges of the true network with those edges inferred by the method under
analysis. Precision-Recall curves are preferred as a measure of quality over other
alternatives like Receiver Operating Characteristics (ROC) curves. The reason
for this is that the target class distribution in the network reconstruction problem
(edge, no edge) is very skewed and in this case Precision-Recall curves are more
suitable for evaluating the performance of a method [29].

Table 2 displays the average and the standard deviation of the AUC-PR mea-
sures obtained by each method in the experiments. The random approach de-
creases the performance of the standard ARACNE algorithm and the group
Lasso approach does not seem to provide any relevant improvement. However,
the MRMR and ARD feature selection methods give a significant boost to the
performance of the original ARACNE algorithm, with ARD obtaining the best
results: up to a 62% improvement for the E. coli network with 1330 genes.

Finally, Fig. 3 displays the Precision-Recall curves obtained by the different
network reconstruction methods when they are executed on a particular gene
expression matrix sampled from each of the three transcription control networks:
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Fig. 3. Precision-Recall curves for the network reconstruction methods when they are
run on a specific gene expression matrix sampled from: The small E. coli network (top
left), the yeast network (top right) and the large E. coli network (bottom). The best
performing method is the ARACNE algorithm which employs the list of hub genes
obtained by the ARD feature selection approach.

The small E. coli network, the yeast network and the large E. coli network. The
best performing method is the ARACNE algorithm that employs the list of hub
genes obtained by the ARD feature selection approach.

7 Experiments with Real Microarray Data

We evaluate the ability of the ARD method for selecting key regulators on a set
of expression profiles from Saccharomyces cerevisiae. This dataset contains 247
expression measurements for a total of 5520 genes and it is publicly available at
the Many Microbe Microarrays Database [17]. Before running the analysis, the
gene expression matrix is transformed using (15) and σ is fixed to 1.

Table 3 displays the top ten genes selected by the ARD technique and their
description at the Saccharomyces Genome Database. From the list of ten genes,
YOR224C, YBR289W and YBR160W are involved in transcription or in the
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Table 3. Top ten genes selected by ARD on the yeast dataset

Rank Gene Description

1 YOR224C RNA polymerase subunit.
2 YPL013C Mitochondrial ribosomal protein.
3 YGL245W Glutamyl-tRNA synthetase.
4 YPL012W Ribosomal RNA processing.
5 YER125W Ubiquitin-protein ligase.
6 YER092W Associates with the INO80 chromatin remodeling complex
7 YBR289W Subunit of the SWI/SNF chromatin remodeling complex.
8 YBR272C Involved in DNA mismatch repair.
9 YBR160W Catalytic subunit of the main cell cycle kinase.
10 YOR215C Unknown function.

regulation of transcription. YER092W is likely to be a regulator of transcription
and YPL013C, YGL245W and YPL012W could have some type of role in post-
transcriptional regulation. It is significant that the first gene selected by the
ARD method is a component of the RNA polymerase enzyme. In particular, the
linear model of transcription that is described in Sect. 2 precisely states that
the transcript concentration of RNA polymerase is the most informative feature
for solving the multiple regression problem given by (5). Since only 7 genes are
described at the Saccharomyces Genome Database as RNA polymerase subunits,
the probability of obtaining this result by chance is approximately 10−4. Finally,
note that YER125W is involved in the degradation of RNA polymerase [30] and
also regulates many cellular processes, including transcription.

8 Conclusions

Several machine learning methods are available in the literature for the reverse
engineering of transcription networks using only steady-state gene expression
data. Most of these methods enforce sparsity in the resulting interaction map.
However, few of them take into account the scale-free topology of transcription
networks. In this paper, we have focused on the hubs that commonly appear
in networks with a scale-free topological structure. Reverse engineering methods
can be significantly improved by predicting beforehand those genes that are likely
to be hubs or key regulators in the underlying network. For this task, we have
introduced a multiple linear regression model which describes the interactions
between genes and transcriptional regulators. The model includes a coefficient
matrix which is expected to be columnwise sparse. A set of hub genes can then
be selected by identifying those columns of the regression matrix which have
many non-zero entries. In practice, this is equivalent to selecting those features
that are more relevant for solving the multiple regression problem. Three feature
selection methods have been proposed for this task. The group Lasso method [12],
the automatic relevance determination (ARD) approach [13] and the maximum
relevance minimum redundancy (MRMR) criterion [14]. A series of experiments
with simulated gene expression data validate the capacity of these methods for
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identifying hub genes. The best results are obtained by the feature selection
method based on the ARD approach.

Additionally, the performance of ARACNE, a popular method for reverse
engineering transcription networks, has been improved by taking into account
the list of hub genes generated by the aforementioned feature selection methods.
Experiments with simulated gene expression data indicate that a combination
of ARACNE and the best feature selection method, ARD, yields up to a 62%
improvement in performance with respect to the original algorithm.

Finally, the best feature selection method, ARD, is validated using expression
profiles from yeast. This method obtains from an original set with thousands of
genes a final set of ten genes that includes many global mRNA regulators.
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Abstract. In this paper we propose a Bayesian model for multi-task
feature selection. This model is based on a generalized spike and slab
sparse prior distribution that enforces the selection of a common subset
of features across several tasks. Since exact Bayesian inference in this
model is intractable, approximate inference is performed through ex-
pectation propagation (EP). EP approximates the posterior distribution
of the model using a parametric probability distribution. This poste-
rior approximation is particularly useful to identify relevant features for
prediction. We focus on problems for which the number of features d
is significantly larger than the number of instances for each task. We
propose an efficient parametrization of the EP algorithm that offers a
computational complexity linear in d. Experiments on several multi-task
datasets show that the proposed model outperforms baseline approaches
for single-task learning or data pooling across all tasks, as well as two
state-of-the-art multi-task learning approaches. Additional experiments
confirm the stability of the proposed feature selection with respect to
various sub-samplings of the training data.

Keywords: Multi-task learning, feature selection, expectation propaga-
tion, approximate Bayesian inference.

1 Introduction

The automatic induction of a predictor for a dependent variable y given a feature
vector x can be a difficult task when the number of training instances is very
small and the number of explanatory variables is large. Examples of learning
applications with these characteristics include, among others, the classification
of microarray data [1] or the analysis of high-dimensional images [2]. Under
these circumstances, an underlying linear model is often considered, possibly in
an expanded feature space. A potential way of improving the robustness of these
models is to assume that only a small subset of the original features are relevant
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for prediction [3]. That is, the underlying linear model is assumed to be sparse
with many coefficients being equal to zero. The identification of the relevant
features is typically implemented by optimizing an objective function penalized
by a sparsity enforcing regularizer. Such a regularizer drives to zero some of the
coefficients during the optimization process. A common choice is the �1 norm of
the vector of model coefficients [4]. Within a Bayesian framework, sparsity can be
favored by considering sparse prior distributions for the coefficients of the linear
model. Examples of such priors include the Student’s t distribution, the Laplace
[2] and the spike and slab [5]. Among these, the spike and slab is the only prior
that can assign a non-zero probability to solutions with many coefficients being
equal to zero. Under this prior it is furthermore possible to specify intuitively
the fraction of coefficients that are a priori different from zero. The spike and
slab prior also provides a selective shrinkage of the model coefficients [6]: for high
sparsity levels, most of the coefficients are close to zero while a few of them have
significantly larger values. By contrast, other priors shrink towards zero all the
coefficients when the sparsity level is increased. Since exact Bayesian inference is
typically intractable under sparse priors, approximate algorithms have to be used
in practice. An alternative Bayesian approach for feature selection is automatic
relevance determination (ARD) [7]. However, ARD does not consider uncertainty
in the feature selection process nor does it provide a posterior probability of using
each feature for prediction

We address here prediction problems for which the number of instances is
typically small. In such cases, it may be beneficial for the induction to rely
on several distinct but related tasks. Microarray datasets offer examples of such
tasks for which the common objective is typically to discriminate between normal
and tumor samples, while tissue and RNA extraction protocols may differ across
tasks. Specifically, the multi-task approach proposed by Obozinski et al. assumes
that the distinct tasks share a reduced set of common relevant features [8]. They
propose to solve an optimization problem that minimizes a logistic loss function
combined with a term that penalizes the �1 norm of the vector of �2 norms of the
feature-specific coefficient vectors across the different tasks. Such a mixed norm
regularization drives to zero the same coefficients of the task-specific vectors
during the optimization process. This favors the selection of a common set of
features to describe each task. The amount of sparsity is determined in this
model by a hyper-parameter λ which has to be tuned by cross validation. In
particular, [8] gives an efficient path-following algorithm to find the potential
values of λ.

In a different work, Evgeniou and Pontil consider that the hyperplanes of
the distinct tasks are the linear combination of a common hyperplane and a
task-specific hyperplane [9]. They specifically propose to minimize a hinge loss
function that is penalized by two terms. The first term is proportional to the
hyper-parameter λ1 and penalizes the squared values of the �2 norms of the task-
specific hyperplanes. The second term is proportional to the hyper-parameter λ2
and penalizes the squared value of the �2 norm of the common hyperplane. These
two parameters are tuned by cross-validation and their ratio determines the
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contribution of the common hyperplane to each task. If λ1/λ2 is high, the task-
specific hyperplanes are penalized more and all the hyperplanes of the different
tasks tend to be equal to the common hyperplane. By contrast, when λ1/λ2 is
low, the common hyperplane is penalized more and the models for the different
tasks tend to be equal to task-specific hyperplanes.

In the present work, we propose a Bayesian model for multi-task feature se-
lection based on a generalization of the spike and slab prior distribution. This
generalized prior, detailed in Sect. 2, enforces the selection of a common sub-
set of features to describe each different task. Exact Bayesian inference in this
model is infeasible and approximate techniques have to be used in practice. We
consider here the expectation propagation (EP) algorithm [10], which is briefly
reviewed in Sect. 3. EP approximates the posterior distribution of the model us-
ing a parametric distribution that belongs to the exponential family. We detail
in Sect. 4 a specific posterior approximation for our multi-task Bayesian model.
We also introduce an efficient parametrization that guarantees that EP has a
time complexity that can be made linear in the number of features d, under the
assumption that d is significantly larger than the number of instances for each
task. EP also approximates the posterior probability of using each feature for
prediction. These probabilities are particularly useful to identify relevant fea-
tures. Finally, experiments reported in Sect. 5 are conducted on a collection of
multi-task learning problems. They show that our Bayesian model is competi-
tive with respect to baseline approaches of single-task learning and data pooling
across all tasks, and with respect to the multi-task learning methods [8,9] men-
tioned above. Additional experiments detail the stability of the various feature
selection methods under different sub-samplings of the training data.

2 Bayesian Multi-task Feature Selection

Following Obozinski et al. [8], we assume that the different tasks share a small sub-
set of common relevant features. To identify these features we define a Bayesian
model relying on a set of linear functions that discriminate between two class la-
bels. A set of k = 1, . . . ,K learning tasks are assumed to be available, each one
consisting of nk d-dimensional input samples Xk = {xk1, . . . ,xknk

} and the corre-
sponding class labels yk = {yk1, . . . , yknk

}, where yki ∈ {−1, 1}, ∀i, k. We further
assume that nk & d, ∀k. Given Xk and yk, let us consider the following labeling
rule:

yki =

{
1 if wT

k xki + εki ≥ 0
−1 otherwise,

(1)

where T denotes vector transpose, wk are the model coefficients for task k, and
a noise term εki is assumed to follow a standard Gaussian distribution. The
likelihood for wk is hence defined as:

P(yk|wk,Xk) =
nk∏
i=1

P(yki|wk,xki) =
nk∏
i=1

Φ(ykiwT
k xki) , (2)
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where Φ(·) denotes the cumulative probability function of a standard Gaussian
distribution. For notational convenience, we will remove the explicit conditional
dependence on Xk in the subsequent expressions. We consider a bias term by
extending each vector xki with a constant component equal to one. Each input
sample will also be assumed to have been multiplied by its corresponding label
yki and the result will be simply denoted by xki.

The prior distribution for the model coefficients wk is a generalization of the
spike and slab sparse prior distribution [5]. In particular, we assume that all
components of the vectors wk are independent. Binary latent variables γj, with
j = 1, . . . , d + 1 are introduced to indicate whether the j-th feature is used for
classification in each of the different tasks (γj = 1) or not (γj = 0)1. Given the
vector γ, the prior for each wk is

P(wk|γ) =
d+1∏
j=1

N (wkj |0, σ2
1j)

γjN (wkj |0, σ2
0j)

1−γj , (3)

where N (wkj |0, σ2
1j) denotes a Gaussian density with zero mean and variance

equal to σ2
1j . In a single task setting the prior (3) reduces to the standard spike

and slab prior. We set the spikes to be deltas centered at the origin, i.e. σ2
0j → 0,

∀j, to enforce sparsity among the components of each vector wk. The variances
of the slabs, σ2

1j , are set equal to one for j = 1, . . . , d. The variance of the slab
corresponding to the bias term, σ2

1(d+1), is set to a significantly larger value (e.g
10). Since we further assume that each feature can be used a priori independently
for classification, the prior on γ is simply defined as a multivariate Bernoulli
distribution:

P(γ) =
d+1∏
j=1

p
γj

0j(1 − p0j)1−γj , (4)

where p0j specifies the prior probability for γj = 1. The prior probability corre-
sponding to the bias component p0(d+1) is set equal to one in this model.

According to the above definitions, and given Xk and yk for k = 1, . . . ,K,
we can use the Bayes’ theorem to make inference about each wk and γ. Let
W = {w1, . . . ,wK} and Y = {y1, . . . ,yK} be two matrices summarizing the
model coefficients and the class labels of the different tasks, respectively. The
posterior for W and γ is

P(W,γ|Y) =
P(Y|W)P(W|γ)P(γ)

P(Y)
, (5)

where P(Y|W) =
∏K

k=1 P(yk|wk), P(W|γ) =
∏K

k=1 P(wk|γ) and P(Y) is just
a normalization constant, known as the model evidence, which can be used to
perform model selection under a Bayesian framework [11].
1 In the Bayesian model described in the present work a given feature need not be

strictly required for each task since only the prior distribution relies on the assump-
tion of features used by either all tasks or none.
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In this model the class label ynew
k ∈ {−1, 1} of a new unlabeled instance xnew

k

corresponding to the task k is computed using the predictive distribution:

P(ynew
k |xnew

k ,Y) =
∫ ∑

γ

P(ynew
k |xnew

k ,wk)P(W,γ|Y) dW . (6)

This probabilistic output is useful to quantify the uncertainty in the prediction.
Finally, those features with the highest contribution in all the classification

tasks can be identified using the posterior distribution for γ:

P(γ|Y) =
∫
P(W,γ|Y) dW . (7)

Unfortunately, the exact computation of (5), (6) and (7) is too expensive for
typical learning problems and have to be approximated. We rely here on ex-
pectation propagation [10], a fast algorithm for approximate Bayesian inference.
This algorithm is described in the next section.

3 Expectation Propagation

In the Bayesian model for multi-task feature selection described in Sect. 2, the
joint probability of W, γ and Y, i.e. the numerator in the right hand side of (5),
can be written as a product of several terms ti

P(W,γ,Y) = P(Y|W)P(W|γ)P(γ) =
∏

i

ti(W,γ) , (8)

where the first n = n1+. . .+nK terms correspond to P(Y|W), the next K(d+1)
terms correspond to P(W|γ) and the last term corresponds to P(γ). Expectation
propagation (EP) approximates each term ti in (8) by a corresponding simpler
term t̃i. These approximate terms are restricted to have the form of a parametric
probability distribution that belongs to the exponential family. They however
do not need to integrate to one. Once normalized with respect to W and γ, (8)
becomes the posterior distribution for the model parameters. Similarly, when
normalized with respect to W and γ, the product of the approximate terms t̃i
becomes the posterior approximation:

Q(W,γ) =
1
Z

∏
i

t̃i(W,γ) ≈ P(W,γ|Y) , (9)

where the normalization constant Z approximates P(Y), the model evidence.
Because of the closure property of the exponential family, Q has the same para-
metric form as the approximate terms t̃i. In practice, the form of Q is selected
first and the approximate terms t̃i are constrained by this form. EP iteratively
updates each approximate term t̃i, until the convergence of the posterior ap-
proximation Q, in such a way that t̃i

∏
j �=i t̃j is as close as possible to ti

∏
j �=i t̃j .

Closeness is defined here in terms of the Kullback-Leibler (KL) divergence. This
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procedure guarantees that each approximate term t̃i is similar to the corre-
sponding exact term ti in regions of high posterior probability, as defined by
the product of the other approximate terms [10]. The different steps of the EP
algorithm are:

1. Initialize all t̃i and Q to be uniform.
2. Repeat until Q converges:

(a) Select a t̃i to refine and compute Q\i ∝ Q
t̃i

.
(b) Update t̃i so that KL(tiQ\i||t̃iQ\i) is minimized.
(c) Compute an updated posterior approximation Qnew ∝ t̃iQ\i.

Whenever needed for model selection, an approximate model evidence can also
be computed by integrating the product of all t̃i’s.

When Q is assumed to be Gaussian, the first step of the EP algorithm is im-
plemented by setting the mean and the variance of all the approximate terms and
the posterior approximation Q equal to zero and +∞ respectively. In step 2-(a),
Q\i has the same form as Q because of the closure property of the exponential
family. The optimization problem of step 2-(b) is convex and it can be efficiently
solved by matching the sufficient statistics between tiQ\i and t̃iQ\i [11]. The EP
algorithm is not guaranteed to converge although extensive empirical evidence
shows that most of the times it converges to a fixed point solution [10]. Os-
cillations without convergence can be prevented by using damped updates [12].
Finally, the EP algorithm has shown an excellent performance in terms of its
computational cost versus its approximation accuracy when compared to other
approximate inference methods such as the Laplace approximation, variational
inference or Markov chain Monte Carlo sampling [10].

4 The Posterior Approximation

We propose to approximate the posterior (5) by the following parametric distri-
bution belonging to the exponential family:

Q(W,γ) =
K∏

k=1

N (wk|mk,Vk)
d+1∏
j=1

p
γj

j (1 − pj)1−γj , (10)

where N (·|mk,Vk) denotes a multivariate Gaussian distribution with mean vec-
tor mk and covariance matrix Vk. In (10), mk, Vk and p = (p1, . . . , pd+1)T are
free parameters that determine the posterior approximation. We denote tki the
exact term of the true posterior associated to the likelihood of the i-th training
instance of the k-th learning task:

tki(wk) = Φ(wT
k xki) , (11)

and t̃ki its associated approximate term. The definition of Q given in (10) con-
strains the form of t̃ki to be:

t̃ki(wk) = s̃ki exp
{
− 1

2ṽki

(
wT

k xki − m̃ki

)2}
, (12)
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where s̃ki, ṽki and m̃ki are free parameters. Both the exact term tki and its
approximation t̃ki do not depend on γ. This is known as the locality property of
EP [13]. Additionally, t̃ki can be written as a univariate Gaussian distribution
since each likelihood term only constrains the corresponding vector wk through
the direction of xki [10]. Similarly, we denote tkj the exact term corresponding
to the prior for the j-th component of wk:

tkj(wk,γ) = N (wkj |0, σ2
1j)

γjN (wkj |0, σ2
0j)

1−γj , (13)

and t̃kj its approximation. From (10), it follows that

t̃kj(wk,γ) = s̃kj p̃
γj

kj(1− p̃kj)1−γj exp
{
− 1

2ν̃kj
(wkj − μ̃kj)

2
}
, (14)

where s̃kj , p̃kj , ν̃ki and μ̃ki are free parameters. Again, t̃kj only depends on one
component of wk and γ because of the locality property of EP. Finally, the exact
term corresponding to the prior for γ is given by (4). This term can be estimated
exactly, i.e. t̃(γ) = t(γ) = P(γ). Since t̃(γ) has no free parameters, it does not
require updating.

From the definition of Q as the normalized product of all the approximate
terms, the parameters of the posterior approximation are:

Vk =
(
XkΛkXT

k + Δk

)−1
, mk = Vk (Xkηk + Δkμ̃k) ,

pj =
∏K

k=1 p̃kjp0j∏K
k=1 p̃kjp0j +

∏K
k=1(1− p̃kj)(1− p0j)

, for j = 1, . . . , d+ 1 , (15)

where we have defined Λk = diag(ṽ−1
k1 , . . . , ṽ

−1
knk

), Δk = diag(ν̃−1
k1 , . . . , ν̃

−1
k(d+1)),

ηk = (m̃k1/ṽk1, . . . , m̃knk
/ṽknk

)T , μ̃k = (μ̃k1, . . . , μ̃k(d+1))T and diag(·) denotes
a diagonal matrix.

4.1 Efficient EP Update Scheme

The EP algorithm iteratively updates the posterior approximation Q, which
includes the computation of K covariance matrices of size (d+1)×(d+1). Thus,
a straightforward implementation would have a time complexity in O(Kd2) for
each EP iteration. Since, in our context d� nk ∀k, we introduce an alternative
parametrization of the posterior approximation which provides a more efficient
updating scheme. This parametrization is similar to the one that arises in kernel
classifiers when the EP algorithm is written in terms of inner products [10].
Specifically, instead of explicitly storing the parameters mk and Vk of Q, we
define and store

Ak = XT
k VkXk , Bk = XT

k VkΔk , hk = XT
k mk , (16)

where Ak ∈ �nk,nk , Bk ∈ �nk,d, and h ∈ �nk . These new parameters are
updated after each EP iteration.
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The first step of the EP algorithm would typically set the approximate terms
to be uniform. Some iterations of the EP algorithm may however be saved if the
approximate terms are initialized in such a way that the Gaussian part of Q has
the same mean and variance as the exact prior for W:

ṽki = +∞ , m̃ki = 0 , hki = 0 , pj = p0j ,

ν̃kj = σ2
1jp0j , μ̃kj = 0 , Bk = XT

k , Ak = XT
k DXk , ∀k, i, j , (17)

where D = diag
(
σ2

11p01, . . . , σ
2
1(d+1)p0(d+1)

)
and Q has been initialized to the

normalized product of all approximate terms. The constants s̃ki and s̃kj of the
approximate terms can be set to any arbitrary positive value.

Let Q\ki denote the posterior approximation that results from removing from
Q the approximate likelihood term t̃ki. Furthermore, let m\ki

k and V\ki
k denote

the parameters of the resulting Gaussian approximation to the posterior of wk.
If we define

h
\ki
ki = xT

kim
\ki
k , λ

\ki
ki = xT

kiV
\ki
k xki , (18)

the step 2-(a) of the EP algorithm for these approximate terms becomes:

h
\ki
ki = hki +

(Ak)ii

ṽki − (Ak)ii
(hki − m̃ki) , λ

\ki
ki = (Ak)ii +

(Ak)2ii
ṽki − (Ak)ii

. (19)

Part of an updated posterior distribution Qnew may be computed:

hnew
ki = xT

kim
new
k = h

\ki
ki + αkiλ

\ki
ki , (20)

where

αki =
N (uki|0, 1)

Zki

1√
λ
\ki
ki + 1

, uki =
h
\ki
ki√

λ
\ki
ki + 1

, Zki = Φ(uki) . (21)

The updated approximate term t̃ki follows from

ṽki = λ
\ki
ki

(
1

αki(hnew
ki + αki)

− 1
)
, m̃ki = hnew

ki + αkiṽki ,

s̃ki = Zki

√
1 + λ

\ki
ki /ṽki exp

{
αki

2
λ
\ki
ki + 1

hnew
ki + αki

}
. (22)

Finally, Qnew results from updating the matrices Ak and Bk and the vector hk

using the Woodbury formula:

Anew
k = Ak −

(Ak)·,i(Ak)i,·

c−1
k + (Ak)ii

, Bnew
k = Bk −

(Ak)·,i(Bk)i,·

c−1
k + (Ak)ii

,

hnew
k = Anew

k ηk + Bnew
k μ̃k , (23)
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where ck = 1/ṽnew
ki − 1/ṽold

ki . The computational complexity of these updates is
in O(nkd).

The approximate terms t̃kj corresponding to the prior for W are updated
in parallel for each task k, as in [14]. For all j = 1, . . . , d + 1, t̃kj is removed
from Q and the posterior approximation Q\kj is computed . Given each Q\kj ,
the corresponding approximate terms are updated simultaneously. The updates
for such a parallel scheme are simpler as they only require the marginals of the
approximate posterior for wk. Once the parallel updates have been performed,
the posterior approximation for wk needs to be recomputed as the normalized
product of the approximate terms.

Given Q, the cost of computing the marginals of the posterior approximation
for wk is in O(n2

kd) when d � nk. Let vk = (vk1, . . . , vk(d+1))T be a vector
summarizing the variance of each marginal and mk a vector summarizing the
corresponding means:

vk = ν̃k − ν̃k ◦ ((XkLk ◦Xk)1) ◦ ν̃k , mk = ζ − ν̃k ◦
(
XkLkXT

k ζ
)
, (24)

where ◦ indicates the Hadamard element-wise product, ν̃k = (ν̃k1, . . . , ν̃k(d+1))T ,
1 is a vector of ones Lk = Λk − ΛkAkΛk and ζ = ν̃k ◦ (Xkηk + Δkμ̃k). Q\kj

is computed simultaneously for each approximate term t̃kj from (24). Let v\kj
kj

and m\kj
kj denote the variance and the mean of the posterior distribution of wkj

under each Q\kj . Let p\kj
j denote the parameter that determines the posterior

probability of γj = 1 in Q\kj . For each Q\kj , these parameters are defined as:

p
\kj
j =

pj/p̃kj

pj/p̃kj + (1− pj)/(1− p̃kj)
, ∀j , v

\kj
kj =

(
v−1

kj − ν̃
−1
kj

)−1
, ∀j ,

m
\kj
kj = v

\kj
kj

(
v−1

kj mkj − ν̃−1
kj μ̃kj

)−1
, ∀j . (25)

The corresponding approximate terms t̃kj are

ν̃kj = c−1
3 − v\ki

ki , ∀j , s̃kj = (G1 + G0)
√

1 + v
\ki
ki /ν̃kj exp

{
1
2
c21
c3

}
, ∀j ,

p̃kj =
G1

G1 + G0
, ∀j , μ̃kj = m

\kj
kj − c1

(
ν̃kj + v

\ki
ki

)
, ∀j , (26)

where

c1 = ρkja1 + (1 − ρkj)a0 , c2 = ρkj

[
a2
1 −

a1

m
\kj
kj

]
+ (1− ρkj)

[
a2
0 −

a0

m
\kj
kj

]
,

c3 = c21 − c2 , Zkj = p
\kj
j G1 + (1− p\kj

j )G0 ,

G0 = N (0|m\kj
kj , v

\kj
kj + σ2

0j) , G1 = N (0|m\kj
kj , v

\kj
kj + σ2

1j) ,

a0 = m
\kj
kj /

(
v
\kj
kj + σ2

0j

)
, a1 = m

\kj
kj /

(
v
\kj
kj + σ2

1j

)
,

ρkj = p
\kj
j G1/Zkj . (27)
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The parallel updates for the corresponding posterior distribution Qnew are

mnew
kj = m

\kj
kj − c1v

\kj
kj , ∀j , vnew

kj = v
\kj
kj

(
1− c3v\kj

kj

)
, ∀j ,

pnew
kj = p

\kj
j +

G1 − G0

Zkj
p
\kj
j (1− p\kj

j ) , ∀j . (28)

Finally, Qnew results from updating the matrices Ak and Bk:

Anew
k = Mk −Mk

(
Mk + Λ−1

k

)−1
Mk , (29)

Bnew
k = XT

k −Mk

(
Mk + Λ−1

k

)−1
XT

k , (30)

where Mk = XT
k Δ−1

k Xk ∈ �nk,nk . The computational complexity of these up-
dates is in O(n2

kd) since d� nk. The vector hk is updated as in (23).

4.2 Predictive Distribution and Feature Selection

The predictive distribution (6) can be approximated using Q as an estimate of
the exact posterior:

P(ynew
k |xnew

k ,Y) ≈ Φ

(
mT

k xnew
k√

(xnew
k )T Vkxnew

k + 1

)
, (31)

where mk can be obtained as in (24) and

(xnew
k )TVkxnew

k = (xnew
k )T Δ−1

k xnew
k − (xnew

k )T Δ−1
k XkLkXT

k Δ−1
k xnew

k .

Since mk is already computed once the model is estimated, the cost of evaluat-
ing (31) is in O(nkd).

The EP approximation of (7) is used to identify the most relevant features:

P(γ|Y) ≈
d+1∏
j=1

p
γj

j (1− pj)1−γj , (32)

where pj estimates the posterior probability of using attribute j for prediction
in all the tasks.

Assuming a constant number of EP iterations until convergence, a reason-
able assumption in practice, the time complexity of the EP algorithm is in
O(
∑K

k=1 n
2
kd). This complexity, linear in d, is good since d � nk, ∀k. Finally,

our actual EP implementation also relies on damped updates [12], as they seem
to improve the overall convergence.

5 Experiments

We detail here several multi-task experiments to assess the performance of the
Bayesian multi-task feature selection (BMFS) introduced in Sect. 2. Comparative
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results are reported with single-task learning (one classifier estimated indepen-
dently on each task) or data pooling across all tasks (one global classifier). In
both cases, those individual classifiers are estimated through the same EP pro-
cedure as in BMFS but with the original single-task spike and slab prior [5]. We
also present the performances of linear models regularized with a mixed norm [8]
(the �1/�2 method) and the regularized multi-task learning (RMLT) method [9]2.

5.1 Arabic Digits

A first batch of experiments is carried out using the dataset of Arabic hand-
written digits MADBase [15]. This dataset contains 70, 000 images of size 28×28
pixels of each Arabic digit written by 700 different writers. There are 10 images
of each digit (0 to 9) written by the same writer. Fig. 1 displays some examples
of the images contained in this dataset. We consider binary classification tasks to
discriminate each digit from the digit 0 for a particular writer, which is arguably
a difficult problem [15]. For each digit i versus digit 0 with i �= 0, we extract the
800 available images corresponding to 40 different writers (writers 601 to 640).
We thus consider 40 tasks (one per writer) with 20 samples per task. The data
for each task are randomly split 100 times into training and test sets, with 17
and 3 instances respectively, and the average prediction accuracy is reported.

Fig. 1. Arabic digits from 1 to 9 (left). The Arabic digit 0 written ten times by forty
different persons, with a strongly writer-dependent style (right).

In BMFS, single-task learning and pooling we set p0j = 5% for j = 1, . . . , d
to model our prior belief that an accurate classification may only depend on
a few pixels (approximately 40). In the �1/�2 method, λ is chosen using the
algorithm described in [8] by minimizing the cross-validation error3. Similarly,

2 As for BMFS, we consider a bias term in those multi-task methods by extending
each input sample with a constant component equal to one. Additionally, in the
�1/�2 method it is straightforward to not regularize the corresponding coefficient.

3 The parameters of this algorithm are ε = 0.02, λmax = λ0/500 and ξ =
min(10−3, 0.01λ), as suggested in [8].
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Table 1. Prediction error in % (and standard deviation) of each method on each binary
problem

Problem BMFS �1/�2 RMTL Single-Task Pooling

0 vs 1 0.5±0.4 1.3±0.7 4.0±2.1 3.2±1.2 2.1±1.1
0 vs 2 0.6±0.4 1.0±0.7 4.7±1.5 6.6±1.7 3.5±2.1
0 vs 3 1.6±0.7 2.3±0.8 4.5±1.8 5.0±1.4 4.5±1.8
0 vs 4 1.3±0.7 1.3±0.7 4.9±1.7 5.0±1.4 2.1±0.9
0 vs 5 1.0±0.6 1.6±0.8 7.3±2.2 9.2±1.9 8.0±3.4
0 vs 6 0.4±0.4 1.1±0.6 3.5±1.8 3.2±1.2 3.0±6.1
0 vs 7 0.5±0.4 1.2±0.7 3.5±1.4 6.1±1.6 3.5±1.6
0 vs 8 1.4±0.7 2.2±1.0 4.2±2.2 6.0±1.7 4.5±1.9
0 vs 9 1.2±0.7 1.4±0.7 5.0±1.5 3.8±1.3 3.5±1.4

Average 1.0±0.2 1.5±0.2 4.6±0.5 5.3±0.4 3.8±0.9

Fig. 2. Feature importance in gray scale as computed by EP for the Bayesian multi-
task approach (left), single-task learning (middle) and pooling (right). The multi-task
approach is the most confident method about the feature importance.

in the RMTL method λ1 and λ2 are chosen with a grid search over ten values
from 0.01 to 100 by cross-validation. The data are also normalized to have zero
mean and unit standard deviation on the training set.

Table 1 displays the prediction error of each method for each binary problem
of the form digit i vs digit 0 with i �= 0 averaged over the 40 different tasks.
The error of the best method for each binary problem is high-lighted in bold
face. BMFS obtains the best prediction error in all the problems investigated,
outperforming the �1/�2 and the RMTL methods, except for the problem 0 vs
4, where the �1/�2 method obtains similar results. The Bayesian approach also
outperforms single-task learning or data pooling in all cases. A Friedman rank
test (p-value = 6.1 · 10−81) and a Nemenyi post-hoc test (p-value = 7.6 · 10−5)
confirm that there is statistical evidence supporting a performance difference in
favor of BMFS when the average prediction error across the nine problems is
considered [16].

Fig. 2 shows the estimate of the relative importance of each feature (pixel) as
computed by EP in (32) for BMFS, single-task learning (we display the results for
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Table 2. Characteristics of the three prostate cancer microarray datasets

Name Normal Tumor Features Platform Ref.

Singh 50 52 12,626 HGU95Av2 [18]
Stuart 50 38 12,626 HGU95Av2 [19]
Welsh 9 25 12,625 HGU95A [20]

the first writer) and pooling. The figure displays the values of pj for j = 1, . . . , d
using a gray scale from white (pj = 0) to black (pj = 1). These results correspond
to a fixed train / test partition of the binary classification problem 0 vs 8. The
gray background color indicates a value for pj equal to 5%, i.e. the prior value
for γj = 1. The figure shows that BMFS allows us to be the most confident about
the relative importance of each feature. With single-task learning all pixels are
very close to the prior value, which is likely related to the reduced number of
training instances for each task. Pooling improves over single-task learning but
is still much less informative than BMFS. The smaller confidence obtained with
pooling is likely related to the estimation of a single hyperplane to describe all
the learning tasks. Similar observations can be made from the different binary
problems considered and the different train/test partitions.

5.2 Microarray Data

A second batch of experiments is carried out using three microarray prostate
cancer datasets described in Table 2, where each dataset is identified by the
first author of the corresponding reference. The Welsh dataset is made of gene
expression values. The Singh and Stuart original data are made of laser intensity
images from each microarray. The RMA preprocesing method [17] is used to
produce gene expression values from these images. The microarray technology
is common for Singh and Stuart but is slightly older for Welsh. We restrict our
attention to the 12, 600 features they have in common. For each dataset there
is one learning task to discriminate between normal and tumor samples. We
randomly split 100 times the data for each task into 2/3 (training) and 1/3
(test). In BMFS, we set p0j = 50/d, for j = 1, . . . , d, to model our prior belief
that only a few genes (50) may be relevant for classification . The data and the
hyper-parameters of the other multi-task methods are respectively normalized
and set as described in Sect. 5.1.

Table 3 reports balanced classification rates (BCR) for each method, aver-
aged over data partitions. This evaluation metric is the arithmetic mean of the
accuracy within each class (tumor, normal). It is preferred over standard accu-
racy to assess prediction performance from highly unbalanced classes [21]. It is
also the arithmetic mean between specificity and sensitivity, commonly used in
the medical domain. The table shows that BMFS obtains the best performance
for Welsh, the �1/�2 model is optimal for Singh and the RMTL method is op-
timal for Stuart. BMFS is overall the best method according to average results
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Table 3. BCR in % (and standard deviation) of each method on each prostate cancer
classification task

Task BMFS �1/�2 RMTL Single-Task Pooling

Singh 90.3±4.5 90.4±4.6 89.6±5.1 89.4±4.5 89.4±5.0
Stuart 78.6±6.3 76.9±5.5 80.0±5.7 77.7±6.3 79.8±6.0
Welsh 97.3±6.0 94.0±10.9 93.4±6.8 95.6±8.4 93.4±6.8
Average 88.7±2.9 87.0±3.9 87.6±3.3 87.5±3.2 87.5±3.3

over the three tasks. A Friedman rank test (p-value = 8.4 · 10−5) and a Nemenyi
post-hoc test (p-value = 3.5 ·10−3) confirm that these differences are statistically
significant.

Finally, we compare the different methods in terms of their stability for
identifying relevant features when the training data are slightly modified. The
Kuncheva stability index [22] measures to which extent T sets of m selected
features share common elements. Let Sm

i denote the set of the top m features
identified by a method from the i-th train/test partition. The Kuncheva index
over the several data partitions Am = {Sm

i : i = 1, . . . , T} is defined as

I(Am) =
2

T (T − 1)

T−1∑
i=1

T∑
j=i+1

|Sm
i ∩ Sm

j | − m2

d

m− m2

d

, (33)

where T = 100 is the number of training sets, d is the total number of features
and m2/d is the expected value of |Sm

i ∩ Sm
j | by chance. The index satisfies

−1 < I(Am) ≤ 1 and the closer to one, the larger the number of common
features in the different sets. A value of the index near zero indicates commonly
selected features at a chance level.
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Fig. 3. Stability (Kuncheva index) of the feature ranking implemented by each method
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Fig. 3 displays the stability of each method as a function of m. For BMFS,
pooling and single-task learning, features are ranked according to the vector p.
For the �1/�2 method, features are ranked according to the order in which they
are included in the active set of the path-following algorithm of [8]. For the
RMTL approach features are ranked according to the sum of the corresponding
squared coefficients of each hyperplane, i.e.

∑K
k=1 w

2
kj for feature j. This value

is used as an estimate of the relative feature importance. For the single-task
method, we display the value of the stability index averaged over the three
learning tasks. The figure shows that the �1/�2 method offers the most stable
selection for small subsets of features, followed by BMFS, whose selection is more
stable than the ones of single-task learning and data pooling.

6 Conclusion

We propose a novel Bayesian model for multi-task feature selection. This model
is based on a generalized spike and slab sparse prior distribution that enforces
the selection of a common subset of features to describe each task. Since ex-
act Bayesian inference is intractable for this model, approximate inference is
performed through expectation propagation (EP). We propose an original para-
metrization of the EP procedure which offers a linear complexity in the number
of features. Practical experiments on multi-task digit recognition and microarray
data classification illustrate the benefits of the proposed approach, as compared
to simple baselines and state-of-the-art multi-task approaches, in terms of pre-
dictive performance and stability of the feature selection.

Acknowledgment

T. Helleputte is funded by a FRIA grant (1.E091.07). Computations were run
on the INGRID cluster of the Center for Intensive Computation and Mass Stor-
age (Louvain). J. M. Hernández-Lobato is funded by the Spanish MCyT (prj.
TIN2007-66862-C02).

References

1. Dudoit, S., Fridlyand, J.: Classification in microarray experiments. In: Statisti-
cal Analysis of Gene Expression Microarray Data, pp. 93–158. Chapman and
Hall/CRC Press (2003)

2. Seeger, M., Nickisch, H., Pohmann, R., Schölkopf, B.: Optimization of k-space
trajectories for compressed sensing by Bayesian experimental design. Magnetic
Resonance in Medicine 63(1), 116–126 (2009)

3. Johnstone, I., Titterington, D.: Statistical challenges of high-dimensional data.
Philosophical Transactions of the Royal Society A: Mathematical, Physical and
Engineering Sciences 367(1906), 4237 (2009)

4. Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the
Royal Statistical Society. Series B (Methodological) 58(1), 267–288 (1996)



Expectation Propagation for Bayesian Multi-task Feature Selection 537

5. George, E.I., McCulloch, R.E.: Approaches for Bayesian variable selection. Statis-
tica Sinica 7(2), 339–373 (1997)

6. Ishwaran, H., Rao, J.: Spike and slab variable selection: frequentist and Bayesian
strategies. The Annals of Statistics 33(2), 730–773 (2005)

7. Tipping, M.E.: Sparse Bayesian learning and the relevance vector machine. Journal
of Machine Learning Research 1, 211–244 (2001)

8. Obozinski, G., Taskar, B., Jordan, M.: Joint covariate selection and joint sub-
space selection for multiple classification problems. Statistics and Computing, 1–22
(2009)

9. Evgeniou, T., Pontil, M.: Regularized multi–task learning. In: Proceedings of the
Tenth ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining, pp. 109–117. ACM, New York (2004)

10. Minka, T.: A Family of Algorithms for approximate Bayesian Inference. PhD thesis,
Massachusetts Institute of Technology (2001)

11. Bishop, C.M.: Pattern Recognition and Machine Learning (Information Science
and Statistics). Springer, Heidelberg (August 2006)

12. Minka, T., Lafferty, J.: Expectation-propagation for the generative aspect model.
In: Darwiche, A., Friedman, N. (eds.) Proceedings of the 18th Conference on Un-
certainty in Artificial Intelligence, pp. 352–359. Morgan Kaufmann, San Francisco
(2002)

13. Seeger, M.: Notes on Minka’s expectation propagation for Gaussian process classi-
fication. Technical report, University of Edinburgh (2002)

14. Gerven, M.V., Cseke, B., Oostenveld, R., Heskes, T.: Bayesian source localization
with the multivariate Laplace prior. In: Bengio, Y., Schuurmans, D., Lafferty, J.,
Williams, C.K.I., Culotta, A. (eds.) Advances in Neural Information Processing
Systems, vol. 22, pp. 1901–1909 (2009)

15. Abdleazeem, S., El-Sherif, E.: Arabic handwritten digit recognition. International
Journal on Document Analysis and Recognition 11(3), 127–141 (2008)
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Abstract. Multivariate multi-way ANOVA-type models are the default
tools for analyzing experimental data with multiple independent covari-
ates. However, formulating standard multi-way models is not possible
when the data comes from different sources or in cases where some covari-
ates have (partly) unknown structure, such as time with unknown align-
ment. The “small n, large p”, large dimensionality p with small number
of samples n, settings bring further problems to the standard multivari-
ate methods. We extend our recent graphical multi-way model to three
general setups, with timely applications in biomedicine: (i) multi-view
learning with paired samples, (ii) one covariate is time with unknown
alignment, and (iii) multi-view learning without paired samples.

Keywords: ANOVA, Bayesian latent variable modeling, data integra-
tion, multi-view learning, multi-way learning.

1 Introduction

Multivariate multi-way ANOVA-type methods are the default tool for analyzing
data with multiple covariates. A prototypical example in biomedical data anal-
ysis is studying the effects of disease and treatment in populations of biological
measurements. Formulating the data analysis as a linear model makes it possible
to ask if the covariates (“ways”, disease and treatment), or more interestingly,
their interactions have an effect on the data.

In the two-way case, to explain the covariate-related variation in one data
source, say x, the following linear model is usually assumed:

xj |(a,b) = μx + αx
a + βx

b + (αβ)x
ab + εj. (1)
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Here xj is a continuous-valued data vector, observation number j, and the a
and b (a = 0, . . . A and b = 0, . . . B) are the two independent covariates, such
as disease and treatment. The αx

a and βx
b are parameter vectors describing the

covariate-specific effects, called main effects. The (αβ)x
ab denotes the interac-

tion effect; the apparently complicated notation is standard, it simply means a
parameter vector. In the biomedical example this interaction is the most inter-
esting parameter, describing if the treatment has disease-specific effects (cures
the disease). These effects model the variation from the baseline level (called
grand mean) μx. The εj is a noise term. The traditional methods for finding
and testing the statistical significance of the effects of the covariates on the
data are Analysis of Variance (ANOVA) [4] and its multivariate generalization
(MANOVA).

A recurring problem in modern data analyses, especially in biomedical exper-
iments, is that the number of samples n is small and dimensionality p is large.
The “small n, large p” has recently gained increasing attention in the machine
learning community, whereas only a few methods for multi-way modelling have
been reported. The currently popular approaches, multi-task learning and multi-
label prediction that attempt to share statistical strength between related tasks
help if tasks are assumed related, but are not targeted for studying the effects
of multiple independent covariates in the data.

It is evident that with small sample-sizes, harsh dimension reduction is needed
and the modelling should be done in a low-dimensional latent factor space, say
xlat. In addition to trivial approaches such as a prior PCA dimension reduction,
two approaches exist for multivariate multi-way analysis in the case of “small
n, large p”-conditions. The first, intended for modelling the effects of multiple
covariates, is Sparse factor regression [10,14].

The second, hierarchical generative modelling approach [6] forms factors by
assuming the variables are grouped, and the variation of the latent variables is
generated by the external covariates p(xlat|a, b), in the spirit of linear models.

We will now extend multi-way modelling to three novel tasks which cannot be
solved by standard ANOVA-models or our earlier [6], and not easily by super-
vised regression/classification either. The associated machine learning problems
are illustrated in Figure 1.

We first consider multi-way analysis when the data comes from different
sources (“views”) with different domains (has unmatched data spaces). A typi-
cal biological example is using two or more measurement techniques or having
measurements from several tissues of each individual, the underlying experiment
having a multi-way experimental setup. We consider the “view” as an additional
“way” (or covariate) in the multi-way analysis. However, since different views
have different domains, a standard multi-way model is not applicable. The model
we present extends multi-view learning with paired samples into multi-way cases,
which has plenty of applications in modern molecular biological experiments in
terms of integration of multiple data sources. This first extension has already
been described in [5];. we include it for completeness.
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We then extend multi-way learning into cases where, for one of the “ways”, the
covariates have partly unknown structure. We concentrate on time, having an
unknown alignment; an intuitive application is learning of unknown alignments
with Hidden Markov Models (HMM) having linear chains. We consider “time
with unknown alignment” as one covariate in a multi-way model. An example
considered in this paper is having time-series measurements with unknown align-
ment from both healthy and diseased populations. The modelling task is to find,
based on data, the effect of time, the effect of the other covariate(s) (disease)
and, most interestingly, their interaction. The time alignment is learned at the
same time.

As a third extension we consider integrating multiple views in different do-
mains when even the samples are not paired. This almost impossible task be-
comes weakly possible if the experiments are similar in the sense of having a
similar covariate design. An example of “multi-view learning without paired
samples” is having a similar healthy-diseased time-series dataset with unknown
alignments from two species, man and mouse, with different variable-spaces. We
assume and search for some shared covariate-related behavior in the datasets.
We propose “view without paired samples” as a covariate for an extended multi-
way analysis. This makes it possible to evaluate statistical significance of shared
covariate-related behavior, in contrast to having only view-specific effects (inter-
action effect of “view” and other covariates). We choose the generative approach
[6] to extend multi-way modelling to the novel cases, because its hierarchical
structuring of the effects acting on latent variables makes the extensions reason-
able. The new modelling elements, the generative model of Canonical Correlation
Analysis (CCA) [1,7], a standard method for multi-view learning with paired
samples and unmatched dimensions, and the HMM-model, for time-dependent
covariates turn out to be fully compatible with the generative multi-way mod-
elling approach.

We will call the different types of covariates as follows: Covariates which can
in principle be studied with existing ANOVA-type methods are standard co-
variates; examples include disease, treatment, gender. “Time with unknown
alignment” is a special case of a covariate with unknown structure. “View”
is a view-covariate in the case of paired (co-occurring) samples, and “view
without paired samples” is a view-covariate in the case of no pairing between
the samples.

The key point why we need to distinguish view-covariates from the stan-
dard covariates is that it actually does not make sense to define main effects
for the view-covariates at all, since the domains of the views are different. How-
ever, it is sensible to define interaction effects between a view-covariate and a
standard covariate (including “time with unknown alignment”). This allows us
to rigorously decompose standard covariate effects into shared and view-specific
effects. Furthermore, this decomposition actually forms the connection between
the different views, allowing the multi-way problem to be formulated in the first
place.
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Fig. 1. Illustration of the four data analysis tasks in this paper. (a) Standard ANOVA
setup, but with large dimensionality (metabolites) compared to number of samples
(rows). (b) Extension to multi-view learning with paired samples. (c) Extension to
time with unknown alignment. (d) Extension to multi-view learning without paired
samples. The images represent data matrices, where rows are samples and columns are
variables. The illustration represents the experimental design of each task, composed
of a combination of standard covariates (disease, treatment), time-series information,
and integration of multiple views.
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The main message and contribution of this paper is that each of the three
introduced new machine learning problems is too complicated to be analyzed
with any existing method. We will show how to conceptualize each of these
problems as an extended multi-way modelling task involving novel covariates.
We then introduce a hierarchical generative model for each problem.

2 Model

We now present a unified framework to each of the novel tasks as an extended
multi-way model. In each case, it turns out that the model can be formulated as
a single hierarchical generative model, which guarantees that uncertainties are
propagated properly between the model parts. We use Gibbs sampling for the
computations.

The models need three components: (1) a regularized dimension reduction to
transform the modelling into low-dimensional latent factor spaces, (2) ANOVA-
type modelling of population priors acting on the low-dimensional latent factors,
(3) a proper structuring of the analysis setup according to the task. The structure
of the tasks and the methodological contributions of this paper are as follows:
(i) in the multi-view learning with paired samples case the co-occurring sources
are integrated with a generative model of CCA, (ii) in the time-covariate case
the means of the emission distributions of an HMM act as one of the latent
effects while HMM-alignment is done simultaneously, and (iii) in the case of
multi-view learning in different domains without paired samples, the views only
share common latent effects.

2.1 Multi-way Learning with Standard Covariates

Multi-way modelling [6] in a low-dimensional factor space requires two parts:
regularized dimension reduction and an ANOVA-model formulated as population
priors on the latent variables. In our model these parts are integrated into a single
generative model, shown in Figure 2 (a). The dimension reduction is done by a
factor analyzer that is regularized to find similarly behaving, correlated groups of
variables and the ANOVA-effects act on the factors, each representing a cluster
of variables.

Regularized Factor analyzer. The basis of the model is a Factor Analyzer
(FA). The hierarchical model implementing the factor analyzer is [6]

xlat
j ∼ N (0, I)

xj ∼ N (μ + Vxlat
j ,Λ) . (2)

Here xj is a p-dimensional data vector, V is the projection matrix, and xlat
j is the

latent variable, Λ is a diagonal residual variance matrix with diagonal elements
σ2

i , μ is the mean vector (parameters), I is the identity matrix andN denotes the
normal distribution with mean being the first argument and covariance matrix
being the second.
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a) b)

c) d)

Fig. 2. The introduced model variants. (a) The hierarchical latent-variable model for
standard multi-way learning with standard covariates, under “large p, small n” condi-
tions, (b) model for multi-view learning with paired samples, (c) time with unknown
alignment, (d) multi-view learning without paired samples, coupled only by shared
time-course (with unknown alignment) and shared multi-way experimental design.

Since a standard factor analyzer cannot be used when n & p, we regularize
projection matrix such that each variable comes from one factor only, implying
a clustering assumption. The cluster indices are drawn from a multinomial dis-
tribution. The ANOVA-effects are then modelled for each cluster of correlated
variables. Assuming the scales of the variables can be different, they need to be
learned from data as well. For simplicity, we use a point-estimate in this paper
for the scales, by scaling the variables to unit variance prior to the analysis. The
number of clusters is selected by predictive likelihood [6]. The computational
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complexity of the models is O(nKp+ pK2 +K3 + nZK2 +KZ2 + nZ2 + Z3),
where K is the number of clusters and Z is the number of CCA components.
The most complex part is the clustering step, being O(nKp). In small n large p
conditions, dimensionality p is the main bottleneck.

ANOVA-model on latent factors. In the two-way case, the samples have
two observed class covariates, a = 0, . . . , A and b = 0, . . . , B. The ANOVA-
modelling can now be done in the low-dimensional latent factor space,

xlat
j |(a,b) = αa + βb + (αβ)ab + noise. (3)

The ANOVA effects are set as population priors to the latent variables, which
in turn are given Gaussian priors αa, βb, (αβ)ab ∼ N (0, I). Note that the mean
μ is modelled in the actual data space (Equation (2)) and does not appear here.

We are now at the point where ANOVA-modelling is done in the latent factor
space where the linear ANOVA-model acts as population priors. We now move
into the advanced cases where “view”, “time with unknown alignment” and
“view without paired samples” are covariates. Gibbs-formulas have been derived
analogously to [5,6,7] and the standard HMM-formalism, and are omitted due
to space constraints.

2.2 Multi-view Learning with Paired Samples

We consider an ANOVA-type analysis when data comes from different views. If
the data domains of the two views were the same, one might want to write a
linear model

xd = μd + αa + βb + (αβ)ab + γd + (αγ)ad + (βγ)bd + (αβγ)abd + noise,

where a and b are the two standard independent covariates, and d denotes the
view. However, since the different views have different domains in general, a model
cannot be written as such. It turns out that if the samples are paired (co-occur),
it is possible to map the effects from latent effects to the actual data spaces x and
y with unknown (estimated from the data) projections fx and fy as

x = μx + fx(αa + βb + (αβ)ab) + fx(αx
a + βx

b + (αβ)x
ab) + ε,

y = μy + fy(αa + βb + (αβ)ab) + fy(αy
a + βy

b + (αβ)y
ab) + ε .

Here the fx and fy represent a chain of projections from latent variables into the
actual data spaces, shown in Figure 2 (b), for which the projection matrices are
estimated from the data; we will define them implicitly in Equation (5) below.

This model now presents a desired decomposition into shared main and inter-
action effects αa, βb, (αβ)ab, and to view-specific main and interaction effects
αx

a, βx
b , (αβ)x

ab. Equations are similar for y. Note in particular that it is not
meaningful to define a main effect for d since it is a view-effect (as discussed in
the introduction), but the possibility to define interaction effects of a standard
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covariate and a view-covariate, such as αx
a, allows ultimately the decomposi-

tion of effects into shared and view-specific ones. To our knowledge, there exist
no methods capable of decomposing the covariate effects into shared and view-
specific effects in a multi-way scenario.

We now fit the model into the extended multi-way modelling framework, de-
picted in Figure 2 (b). The integration of different domains takes place in the
low-dimensional latent factor spaces xlat and ylat. These factor spaces can be
integrated by combining the factor analyzers into a generative model of Bayesian
CCA [1,7]. This introduces a new hierarchy level where a latent variable z cap-
tures the shared variation between the views.

The generative model of BCCA has been formulated [1,7] for sample j as

zj ∼ N (0, I),
xlat

j ∼ N (Wxzj ,Ψx) , (4)

and likewise for y. Note that here we have assumed no mean parameter since the
mean of the data is estimated in the factor analysis part. The Wx is a projection
matrix from the latent variables zj , and Ψx is a matrix of marginal variances
modelling the source-specific effects not responding to external covariates. The
prior distributions were chosen as in [7]; Wx has an Automatic Relevance De-
termination (ARD) prior [2]; Ψx has an inverse Wishart prior.

Decomposition into shared and view-specific effects. The decomposition
into shared and view-specific effects is done by adding view-specific latent vari-
ables in addition to the shared ones, and the latent effects acting as population-
specific priors on shared and specific latent variables identify the effects. The
Bayesian CCA assumes that the data is generated by a sum of view-specific zx

and zy , and shared latent variables z, as shown in Figure 3. In practice, the
decomposition in Figure 3 can be implemented easily by restricting a column of
Wx to be zero for the y-specific components and vice versa for x. As a summary
the complete generative model is

α0 = 0,β0 = 0, (αβ)a0 = 0, (αβ)0b = 0
αa,βb, (αβ)ab,α

x
a,β

x
b , (αβ)x

ab ∼ N (0, I)
zj |j∈a,b ∼ N (αa + βb + (αβ)ab, I)
zx

j |j∈a,b ∼ N (αx
a + βx

b + (αβ)x
ab, I)

xlat
j ∼ N (Wx

sharedzj + Wx
specificz

x
j ,Ψ

x)

xj ∼ N (μx + Vxxlat
j ,Λx). (5)

2.3 Time with Unknown Alignment

We concentrate here on the case of a small number (∼ 10) of replicate time-series
from multiple populations, in the unfavorable conditions of short (∼ 10-20) time-
series and high dimensionality.
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n

A BA B A B

zzx zyΨx Ψy

a

b

xlat ylat

α βαβαx βxαβx
αy βyαβy

Fig. 3. The graphical model describing the decomposition of covariate effects into
shared and view-specific ones. The figure expands the top part of Figure 2 (b).

We consider “time with unknown alignment” as one covariate in an extended
multi-way model; a particular case is HMM-alignment. The extended multi-way
model with HMM-time as a covariate, is shown in Figure 2 (c). We assume
that the time operates on the latent variables as the other covariates, with the
unknown alignment modelled by HMM. This can be accomplished by having the
HMM emit values for the latent factors. In addition, there is another covariate
effect βb. The model becomes

xlat
j |state(j,t)=s,b ∼ N (αs + βb + (αβ)sb, I). (6)

Here αs is the effect of HMM-time in the multi-way model, that is the mean
in the Gaussian emission distribution of HMM-state s. The βb is the effect
of the other, observed, covariate b, and (αβ)sb is the interaction effect. Here
state(j, t) = s means that time-point t of sample j belongs to state s.

Assignments to HMM states are sampled according to a standard Bayesian
HMM formalism, the prior for the transition matrix of the linear HMM allowing
only self-transitions and transitions to the next state.

In biological case studies where time-series measurements are taken from mul-
tiple populations, e.g. healthy and diseased, there is a need for HMM alignment
when intervals between measurements are long and irregular within- and between
patients. In addition, patients are assumed to develop to different biological
states at individual times/ages. Previous works [3,11] have resorted to training a
separate HMM for each population and comparing them afterwards, additionally
restricting to strong feature selection, only allowing favorable n > p-conditions.

In our experiments, we will have 5 states, b = 0, ..., 4 of βb-effects for the
diseased, corresponding to the observed disease-development states in the time-
series. For simplicity, we do not consider the interaction effect, restricting to
xlat

j |state(j,t)=s,b ∼ N (αs+βb,I).As a summary, “time with unknown alignment”,
such as “HMM-time”, can be seen as one covariate in an extended multi-way
model, where the covariate assignments (alignment to HMM-states), are inferred
from the observed data. A main benefit of building a unified model is that after
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explaining away the effect of “aligned time”, αs, one can answer the following
statistical question: is there a difference in the populations, that is; is βb statisti-
cally significant for some b? Earlier HMM approaches training a separate model
for each population cannot fully rigorously answer this question.

2.4 Multi-view Learning without Paired Samples

Finally, we consider integrating data sources in different domains, without paired
samples, which is a much more difficult problem. In a similar case in [13], the
underlying assumption was an unobserved pairing between the samples, and the
pairing was found by iteratively alternating between searching for pairing and
maximizing dependencies between the sources by CCA. However, the assumption
of latent unknown pairing might be too restrictive in many cases, and the non-
generative solution in [13] cannot easily be extended to the present tasks.

We propose an alternative assumption, allowing to integrate multiple un-
matched data sources under the assumption of shared, underlying multi-way
covariate-related behavior. For brevity, we concentrate in this article on one
standard covariate, say, time with unknown alignment α, and the “view with-
out paired samples” is the other covariate. Again, since “view without paired
samples” is a view-covariate, it cannot be defined at all as a main effect due
to data domains being different. However, we can define an interaction effect of
time and “view without paired samples”. The model becomes

x = μx + fx(αa) + fx(αx
a) + ε,

y = μy + fy(αa) + fy(αy
a) + ε , (7)

where αa is the shared effect of time, and αx
a and αy

a are the view-specific time-
effects, and fx and fy are again functional mappings from latent states to actual
data spaces. The possibility to decompose the time-related behavior in the two
datasets into shared and view-specific covariate-related behaviors connects the
views.

To make the translational problem (presented below) more realistic, we con-
sider the time-covariate to be “HMM-time”. This allows us to study more flexible
translational cases with time-measurement having irregular intervals, and time-
spans being different [9], important in cross-species biological applications.

The model can be formulated as a graphical multi-way model with the tech-
niques presented in the previous sections. For simplicity, the view-specific time-
behavior is integrated out with Ψx and Ψy following [7], and we only search
for the shared effects in the simulations. The graphical model of the problem is
shown in Figure 2 (d). The key difference to the multi-view learning with paired
samples case in Figure 2 (b) is that since there is no known pairing of samples,
there is no latent variable zj shared by the samples from different views.

The learning algorithm faces a matching problem since a shared time behavior
might be identified in, e.g., cluster 1 of x and cluster 3 of y. For the model to
identify the effect as a shared effect, it should be found for the same cluster iden-
tity. We include a Metropolis-Hastings step in our Gibbs sampler that proposes
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to switch identities of two clusters, attempting to maximize similar time-related
behavior.

Related work in translational studies. A main application is translating
biological findings between experiments on model organisms and actual human
experiments [9,10]. The common setup is doing a similar experiment (time-series,
same disease) to the two different organisms and comparing the results. High-
dimensional biological measurements usually have different unmatched domains
in different species. Most multi-species approaches [9] are restricted to the subset
of variables that are a priori matched between the species. Since this assump-
tion is restrictive, we have wanted to consider the more general case where the
domains are different, making it possible to use all the data, and while doing so
to actually search for the matching of variables.

3 Results

3.1 Multi-view Learning with Paired Samples

Generated data. We integrate three data-sources, x, y and u, with pairing
between the samples, which have a two-way experimental setup, generated from
the model of Figure 2 (b). The datasets are 200-dimensional, there are three
clusters of variables in each dataset. The σi = 1 for each variable. The model is
learned by Gibbs sampling, with 2000 samples and 2000 burn-in samples. The
optimal number of clusters is found for each data source separately as explained
in [6], and always correctly recovered. Unless otherwise stated, these parameters
are the same throughout the results section. Effects α = +2, βy = +2 and
(αβ)x = +2 have been generated. We learned 4 components: one shared and
three source-specific. Shared and source-specific α, β and (αβ) are therefore to be
estimated. The model always finds the correct clusterings (data not shown). The
results in Figure 4 show how the model finds the generated effects as a function of
number of samples. According to the results, the model finds the generated effects
with relatively small sample-sizes, and the uncertainty decreases with increasing
sample-size. The shared effect is found with considerably less uncertainty since
there is evidence from both sources. In a typical biological dataset there may be
20-60 samples.

Lipidomic multi-tissue data. We now apply the method on an unpublished
lipidomic lung cancer study, where lipidomic measurements have been taken
from several tissues of mice. There are cancerous and healthy mice, and addi-
tionally half of both populations have been given a test anti-cancer drug. This
is a typical two-way setup with healthy untreated (10 mice), diseased untreated
(10), healthy treated (9), diseased treated (10) mice. The tissues have differ-
ent lipids. We first integrated the lung tissue (68 lipids) with spleen tissue (44
lipids). We learned 3 components, one shared and one for each view. According
to the results in Figure 5 (left), the model finds a shared disease effect α and
a shared treatment effect β. The result shows that the treatment enhances, not
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Fig. 4. The method finds the generated effects α = +2, βy = +2 and (αβ)x = +2
in a three-view, two-way study. The points show posterior means, and lines the 95%
posterior mass of the effects. The posterior distributions have been mirrored to have a
positive mean. A consistently non-zero posterior of the effects indicates a statistically
significant effect. This corresponds to a classical p-value being p < 0.05.
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Fig. 5. In the experiment on multi-tissue data (left), the method finds a disease effect α
and a treatment effect β shared between the two views, spleen (x) and lung (y) tissues.
(right) The shared HMM finds shared effects in two generated datasets (Section 3.3) in
different domain with no paired samples. A growing HMM-time effect was generated
in cluster 2. A consistently non-zero posterior implies an effect found.

diminishes the effect of the disease, therefore not being effective. In lung, for
instance, a cluster of 12 lipids containing ether lipids known to be co-regulated,
was coherently up-regulated due to disease, and additionally up-regulated by the
treatment. Another cluster of 13 lipids in lung was found down-regulated due
to the disease and additionally down-regulated due to treatment. The lipids of
the down-regulated cluster are thus negatively correlated with the up-regulated
clusters. The effect can be traced back to the clusters of lipids by identifying the
responsible elements in Wx, and to the actual lipids from Vx.
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No existing ANOVA-type methods are capable of decomposing covariate ef-
fects into shared and source-specific effects, when sources have different domains.
The possible comparison methods are 1) separate MANOVA-analysis for each
source including a dimension reduction, 2) concatenation of the sources and
MANOVA-analysis. These methods give only an overall p-value for the statisti-
cal significance of the effects. We compare the biological result to concatenating
the sources and using 50-50 MANOVA [8], which includes a prior PCA-dimension
reduction. The method gives p-values 0.01, 0.71 and 0.071, for α, β and (αβ),
respectively. The method only finds a statistically significant disease effect, not
finding the effect of treatment, showing the superior behavior of an integrated
dimension reduction in our model. The main difference is, however, that the
method cannot distinguish whether the effect is shared or source-specific.

3.2 Time with Unknown Alignment

Generated data. We show results on data generated from the model in Figure 2
(c). There are 5 HMM-states α, 23 replicate time-series from healthy and 21
from diseased population for which there are 3 disease states β. Each time-
series has a length of 5-15 time-points at random times (no matching of time-
points), dimensionality is p = 400. Disease state-type covariates bjt = {1, 2, 3}
are observed for the diseased patients, healthy patients only have HMM-states.
Effects α = 0,+0.5,+1,+1.5,+2 have been generated in the consecutive HMM-
states in the first cluster of α. In the disease states of β, effects β = −0.5,−1,−2
have been generated in the consecutive disease states, equally in the first cluster.
In the other clusters, there are no covariate-related effects, only structured noise
from the model. The model is able to identify the clusters correctly. The results
in Figure 6 (left) show that a proper HMM-alignment is achieved, and the model
found the generated, growing time-behavior α in cluster 1 and especially is able
to separate the correct descending disease-state behavior β related to the known
covariates.

Lipidomic time-series data. We then applied the model to a recently pub-
lished lipidomic dataset [12]. There are 71 healthy patients and 53 patients that
later developed into type 1 diabetes, there are 3-29 time-points in each time-
series, measured at irregular intervals. In addition, for the patients that later
developed into type 1 diabetes, the progress of the disease (disease state) is ob-
served at each time point and used here as a covariate b, with 5 disease states.
There are 53 lipids. We show results on 2 clusters in Figure 6 (right). The model
was capable of identifying the normal aging effects for clusters of similarly behav-
ing lipids (HMM-time effects), and it was able to separate disease state-related
effects for each cluster. The model found consistent clusters of lipids known to
be co-regulated. In Figure 3 of [12], the data analysis was done by univariate
t-tests for each lipid, and time was separated to bins of length 1 year. Our mul-
tivariate modelling was able to take into account that different individuals enter
age-related metabolic states at largely varying, individual times. In addition, the
model could separate the disease-state related behavior from the normal aging ef-
fects, all done for similarly behaving groups of lipids. Our results were consistent
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Fig. 6. (left) The HMM-model finds the effect of time with unknown alignment αs in
cluster 1 from two populations of generated data, and is able to separate a disease-
progression type effets β generated in the other population. (right) The HMM-model
separates normal aging αs for clusters of similarly behaving lipids, from effects re-
lated to known disease progression-states in a real lipidomics type 1 diabetes study. A
consistently non-zero posterior shown by box-plots implies an effect found.

with those in the paper. In addition, our model suggested that PC(14:0/18:2)
and PC(18:2/16:1) in cluster 4 have a strong down-regulation in the early disease
development states, and might act as early biomarkers of a developing disease.
This was not revealed by the prior analysis. Existing methods are limited to
training a separate HMM for each population, which is an appropriate approach
for classification, but cannot be used to rigorously compare the effects of disease
states in the data under the assumption that normal aging effects have to be
modelled (away) by a HMM-alignment.

3.3 Multi-view Learning without Paired Samples

We now show results of multi-way learning when the domains of multiple data
sources are different and samples have no pairing. We consider a non-trivial case
where we have two generated time-series datasets, with irregular lengths and
measurement times where we assume, however, that behavior of HMM-states is
similar. We can now search for similar HMM-behavior in two unpaired datasets
in different domains. We can make the assumption that in addition to view-
specific effects, there is a shared HMM-chain that emits latent variables xlat and
ylat, which in turn generate the actual data to different domains.

We have generated two data sets from the model with 10 and 11 replicate
time-series of irregular lengths between 8-12, and datasets have 100 and 110
variables, respectively. There are 3 clusters in each, and the corresponding xlat

and ylat have been generated according to the shared HMM-chain where the
effects 0,+0.5,+1,+1.5,+2 have been generated to the second factor (cluster) of
α in the five HMM-states of the shared HMM-chain, an x-specific time-effect
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in cluster 1, the third cluster (not shown) does not have effects. In this case
study, the specific time effect is integrated out with covariance matrices Ψx and
Ψy. According to the results in Figure 5 (right), the model was able to find
the shared HMM-time-related behavior from different domains without paired
samples, while x-specific effects were integrated out successfully.

The results of the simple case study show that in the case of underlying shared
HMM-states, connection between two views, even without paired samples, can
be formed by formulating the analysis as an ANOVA-type model over views.
This makes it possible to rigorously evaluate statistical significance of a similar
covariate-related behavior. To our knowledge, such a possibility has not been
proposed in any previous studies. To our knowledge, there exists no comparable
method to this modelling task, except training a separate HMM for each view,
which allows only qualitative comparison of the results.

4 Conclusions

We have extended multi-way learning to three novel cases: (i) multi-view learn-
ing with paired samples, where data comes from different domains, (ii) one of
the covariates has an unknown structure (iii) data comes from different domains
with no pairing of samples, but covariates are shared. In (i) we have shown
how covariate-related behavior can be decomposed into shared and view-specific
effects, when integrating data sources with paired samples. In (ii) we have pre-
sented a multi-way model where one of the covariates has an unknown structure
which can be learned jointly. In (iii) we have shown that it is possible to in-
tegrate multiple data sources without paired samples, if the datasets have a
similar covariate-structure. We have shown that unified hierarchical graphical
models can be used to structure each case as a graphical multi-way model.

Each of the presented multi-way models has direct applications for biological
experiments, but they also offer novel possibilities for other application domains
such as brain signal analysis (multi-way time-series in fMRI), detection prob-
lems in sensor fusion and cold-start problem in content-based retrieval given
second content descriptors etc. We showed that the models are capable of find-
ing ANOVA-type effects from real and simulated high-dimensional data, even
with small sample-sizes. The biological results were plausible, comparing to pre-
vious studies.
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of high-dimensional collinear data. Data Mining and Knowledge Discovery 19(2),
261–276 (2009)

7. Klami, A., Kaski, S.: Local dependent components. In: Ghahramani, Z. (ed.) Pro-
ceedings of ICML 2007, the 24th International Conference on Machine Learning,
pp. 425–432. Omni Press (2007)

8. Langsrud, O.: 50-50 multivariate analysis of variance for collinear responses. Jour-
nal of the Royal Statistical Society Series D-the Statistician 51, 305–317 (2002)

9. Lu, Y., Huggins, P., Bar-Joseph, Z.: Cross species analysis of microarray expression
data. Bioinformatics 25(12), 1476–1483 (2009)

10. Lucas, J., Carvalho, C., West, M.: A bayesian analysis strategy for cross-study
translation of gene expression biomarkers. Statistical Applications in Genetics and
Molecular Biology 8(1), 11 (2009)
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Abstract. In content-based image retrieval (CBIR) with relevance feed-
back we would like to retrieve relevant images based on their content
features and the feedback given by users. In this paper we view CBIR
as an Exploration-Exploitation problem and apply a kernel version of
the LinRel algorithm to solve it. By using multiple feature extraction
methods and utilising the feedback given by users, we adopt a strategy
of multiple kernel learning to find a relevant feature space for the kernel
LinRel algorithm. We call this algorithm LinRelMKL. Furthermore,
when we have access to eye movement data of users viewing images we
can enrich our (multiple) feature spaces by using a tensor kernel SVM.
When learning in this enriched space we show that we can significantly
improve the search results over the LinRel and LinRelMKL algorithms.
Our results suggest that the use of exploration-exploitation with multi-
ple feature spaces is an efficient way of constructing CBIR systems, and
that when eye movement features are available, they should be used to
help improve CBIR.

Keywords: content-based image retrieval, LinRel, images, eye move-
ments, multiple kernel learning, tensor kernel SVM.

1 Introduction

Assume we have a database D of images and would like to find an image x ∈ D
without having to conduct an exhaustive search of D. If we have not tagged
the images in the database, then we would need to retrieve images using some
content-based image retrieval (CBIR) system utilising relevance-feedback [9]; a
tool designed for accessing relevant images from a database using their content
such as colour, shape, texture etc., and receiving feedback from the user on
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the relevance of images presented so far. We will refer to content-based image
retrieval using relevance-feedback as CBIR throughout this paper. Using this
relevance information the CBIR system should find relevant images quickly. The
goal of the CBIR system is to produce the target image in the least number of
presented images.

In this paper, we view the underlying mechanics of a CBIR system as an
exploration-exploitation problem. We apply the LinRel algorithm [3], a linear
regression algorithm that efficiently carries out exploration-exploitation. LinRel

makes use of side information – typically various image features – to estimate
the relevance of an image. Since these estimates are imperfect, when selecting
possibly relevant images the algorithm needs to trade-off between high estimated
relevance and possible gain of information to improve the estimates.

Each image can be represented using many different feature extraction meth-
ods such as SIFT, histogram, colour, etc., and so its not clear which ones to use
for the LinRel algorithm – as some may be good for some search tasks but not
for others. A recent line of research, called multiple kernel learning (MKL) aims
at finding a good linear combination of feature spaces [15]. The idea is to find
the best weighting of feature spaces for a given classification task. By viewing
the relevance feedback as our classification outputs we can learn a combina-
tion of feature spaces using MKL, and present this new kernel to the kernelized
version of the LinRel algorithm. This removes the need of choosing explicitly
which feature spaces to use and also tackles the problem of combining feature
spaces with a non-uniform combination, unlike [8]. This algorithm will be called
LinRelMKL.

Finally, we will also assume that our CBIR system has access to an eye track-
ing device, allowing us to record users’ eye movements whilst they view images.1

This gives us an extra set of features for each image viewed. However, we do not
have access to the eye movement features for the images not shown by the CBIR
system. Therefore, we use a recent approach [11] of mapping the combination
of image features we have derived (using MKL) into the eye movement feature
spaces, using the tensor kernel support vector machine [12]. When used with
LinRel alone we call this algorithm LinRelTensor and when also combined
with MKL we call it LinRelMKLTensor.

We start with our problem definition in Section 2, followed by the LinRel,
MKL, and tensor learning algorithms in Section 3, 4 and 5, respectively. Section 6
describes our final CBIR system. The experiments are described in Section 7, with
concluding remarks in Section 8. We begin with some preliminary definitions.

Notation: Let x ∈ Rm be an m-dimensional row vector, with x� denoting
its transpose. Let φ : x → H ⊂ RM be a mapping into a high dimensional
feature space H. A kernel function will be defined as κ(I, I) = 〈φ(xI ), φ(xI)〉
and accessed using an index set I. The cardinality of I will be made clear from
context. We denote X = (x1, . . . ,xt)� as the matrix containing t row vectors
and I as the identity matrix. The covariance matrix can be written as X�X,

1 We will show later that having access to eye movement features can improve search
results.
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with its inverse as
(
X�X

)−1. The notation ‖x‖p will denote the p-norm of vector
x, where p = 1, 2.

2 Problem Definition

In content-based image retrieval (CBIR) with relevance feedback [24,8,19,18],
one can consider a model motivated by a filtering task, where a user wants to
find a set of images relevant to his query. When presented with a collage of
images, the user marks2 all images which are relevant to his query. The goal of
the search algorithm is to present as many relevant images as possible in early
iterations of the search.

Our work focuses on algorithms and experiments for this model. The online
algorithms build upon the LinRel algorithm proposed in [3, Section 4]. Before
discussing the LinRel algorithm we will describe the user model we consider,
the model for relevance scores and also the different image feature extraction
methods used throughout.

2.1 The User Model for the Filtering Task

We assume that the user is looking for a set of relevant images I in an image
database D. The relevance of an image is determined by the user query, about
which the search engine is informed only by relevance feedback. The goal of the
search engine is to present mostly relevant images to the user, and only a small
number of irrelevant images. The feedback of the user is given by a relevance
score y ∈ [0, 1], with 0 meaning not relevant, 1 meaning relevant, and possible
degrees of relevance for values in between. The relevance score can be given by
an explicit binary feedback (e.g. mouse clicks), or implicitly (e.g. by recorded
eye movements). The formal protocol for this model is outlined in Fig. 1.

– In each iteration t = 1, 2, . . .
• The search engine selects an image It ∈ D and presents it to the user.
• The user’s feedback is given by the relevance score yt ∈ {0, 1}.

Fig. 1. Original protocol for LinRel

The performance of the search engine is determined by the number of relevant
images returned in a certain number of iterations. We note that in the protocol
of Figure 1 only a single image is presented in each round and the relevance score
is binary. This is the original protocol used to develop the LinRel algorithm
in [3]. In a realistic CBIR setting, the protocol should be extended to Fig. 2.
2 This will be done explicitly using mouse clicks. An implicit score of relevance could

be found using eye movements. However we will not address this extension in the
current paper.
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– In each iteration t = 1, 2, . . .
• The search engine selects n images It,1, . . . , It,n ∈ D and presents them to

the user.
• For each presented image the search engine receives a relevance score yt,i ∈

[0, 1], i = 1, . . . , n.

Fig. 2. A CBIR protocol for LinRel

Thus the search engine described in Figure 2 needs to select a fixed number
n of images, with the relevance scores ranging between 0 and 1.

2.2 Modelling the Relevance Scores

To be able to learn about the user’s query from the relevance scores, we are
making assumptions about how the relevance scores are generated. We assume
that an image I is represented by a normalised vector xI ∈ Rd of features (see
subsection 2.3), with ‖xI‖2 = 1. Furthermore, we assume that the relevance
score yI of an image I is a random variable with expected value E[yI ] = xI ·w,
w ∈ Rm, such that the expected relevance score is a linear function of the image
features. The unknown weight vector w is essentially the representation of the
user’s query and determines the relevance of images.

2.3 Features Extracted from Images

The feature extraction methods can be found below in Table 1, with a detailed
description of each method given in [14]. For each image I we will assume that
each of the 11 feature extraction methods of Table 1 has been carried out. Hence,
for each image I we will have feature vectors xI,1, . . . ,xI,11.

A typical method of using all of these feature vectors would be to concate-
nate them together and construct a single kernel matrix, and run this through

Table 1. Visual features extracted from images

Feature dimensions
DCT coefficients of average colour in rectangular grid 12
CIE L*a*b* colour of two dominant colour clusters 6
Histogram of local edge statistics 80
Haar transform of quantised HSV colour histogram 256
Histogram of interest point SIFT features 256
Average CIE L*a*b* colour 15
Three central moments of CIE L*a*b* colour distribution 45
Histogram of four Sobel edge directions 20
Co-occurrence matrix of four Sobel edge directions 80
Magnitude of the 16 × 16 FFT of Sobel edge image 128
Histogram of relative brightness of neighbouring pixels 40
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a kernelized CBIR system [8]. This would correspond to a uniform weighting of
the feature vectors (i.e., kernels). However, it may be the case for some search
tasks that, for instance “Histogram of four Sobel edge direction” would be more
important than “CIE L*a*b* colour of two dominant colour clusters” features.
Using a uniform weighting only assumes that both features are equally impor-
tant. Therefore we will apply kernels for each of the feature extraction methods
outlined in Table 1, and apply MKL to find a linear combination of these feature
spaces (i.e., kernels). For certain search tasks, this linear combination results in
a non-uniform weighting, giving rise to higher weightings for more useful feature
extraction methods.

3 The LinRel Algorithm and Its “Kernelized”
Counterpart

In [3] the LinRel algorithm was devised for a slight variant of the model de-
scribed in the previous section. In this section we describe the LinRel algorithm
with the necessary modifications to accommodate our model. We restrict our-
selves to the case n = 1, i.e., only one image is presented to the user in each
iteration. The general case i.e., image collages, will be discussed later.

The user model for the filtering tasks (in particular the model for the relevance
scores) confronts the search engine with an exploration-exploitation trade-off.
Typically the search engine will maintain an implicit or explicit representation
of an estimate ŵ of the unknown weight vector w. When selecting the next image
for presentation to the user, the search engine might simply select the image with
highest estimated relevance score based on ŵ. But since the estimate ŵ might
be inaccurate, this exploitative choice might be suboptimal. Alternatively, the
search engine might exploratively select an image for which the user feedback
improves the accuracy of the estimate ŵ, enabling better image selections in
subsequent iterations.

In each iteration t, LinRel obtains an estimate ŵt by solving the linear
regression problem

yt ≈ Xt · ŵt,

where

yt =

⎛⎜⎝ y1
...

yt−1

⎞⎟⎠
is the column vector of relevance scores received so far, and

Xt =

⎛⎜⎝ x1
...

xt−1

⎞⎟⎠
is the matrix of row feature vectors of the images presented so far. Based on
the estimated weight vector ŵ, LinRel calculates an estimated relevance score
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ŷI = xI · ŵ for each image I that has not already been presented to the user. To
deal with the exploration-exploitation trade-off, LinRel selects for presentation
not the image with largest estimated relevance score, but the image with the
largest upper confidence bound for the relevance score. The upper confidence
bound for an image I is calculated as ŷI + cσ̂I , where σ̂I is an upper bound on
the standard deviation of the relevance estimate ŷI . The constant c is used to
adjust the confidence level of the upper confidence bound.

The rationale for using upper confidence bounds is that an image gets selected
if (a) its relevance score is indeed large, or (b) the estimated relevance score is
rather unreliable and the resulting confidence interval is large. Case (a) gives an
exploitative choice, while case (b) improves the estimates and thus is explorative.
It has been shown that upper confidence bounds are a versatile tool to balance
exploration and exploitation in online selection problems [1,4,3]. In [3] rigorous
bounds on the performance of LinRel are proven.

In each iteration t the regularised LinRel algorithm for n = 1 [5], calculates

aI = xI · (X�
t Xt + μI)−1X�

t (1)

for each image I and selects for presentation the image It which maximises

It = arg max
I

{
aI · yt +

c

2
||aI ||

}
(2)

for some specified constant c > 0.

3.1 Kernelization and Selection of Image Collages

Kernel learning [21] can be integrated into the LinRel algorithm. A kernel
learning algorithm learns a suitable metric between images in respect to a user
query, by finding a good kernel function. Since only in each iteration the kernel-
ized LinRel algorithm relies on a fixed kernel function, the integration of kernel
learning into LinRel is very simple: LinRel calls the kernel learning algorithm
at the beginning of each iteration and then uses the kernel matrix returned by
the kernel learning algorithm. To kernelize LinRel [5],

aI =
(
κ(I, I1) · · · κ(I, It−1)

)
· (Kt + μI)−1,

where I1, . . . , It−1 are the images selected in iterations i = 1, . . . , t − 1 and Kt

is the Gram matrix
Kt = (k(Ii, Ij))1≤i,j≤t−1.

Thus aI can be calculated by using only the kernel function κ(·, ·). Since the
selection rule (2) remains unchanged, this gives the kernelized version of LinRel.

Furthermore, three methods for the selection of image collages are used and
evaluated in this paper:

1. Select the images It,1, . . . , It,n with maximal upper confidence bounds aI ·
yt + c

2 ||aI ||, where aI = xI · (X�
t Xt + μI)−1X�

t with Xt and yt,
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2. Select image It,1 with the maximal upper confidence bound aI ·yt + c
2 ||aI ||.

Select the images It,2, . . . , It,n with maximal estimated relevance score aI ·yt,
3. For k = 1, . . . , n select image It,k which maximises aI · yt,k + c

2 ||aI ||, where
aI = xI · (X�

t,kXt,k + μI)−1X�
t,k,3

where the matrix Xt,k augments Xt by the feature vectors of the already selected
images It,1, . . . , It,k−1,

Xt =

⎛⎜⎝ φ(xI1,1 )
...

φ(xIt−1,n )

⎞⎟⎠ , Xt,k =

⎛⎜⎜⎜⎝
Xt

φ(xIt,1 )
...

φ(xIt,k−1 )

⎞⎟⎟⎟⎠ .

The vector yt,k augments the vector of previous outcomes yt by the expected
outcomes for the already selected images,

yt =

⎛⎜⎝ y1
...

yt−1

⎞⎟⎠ , yt,k =

⎛⎜⎜⎜⎝
yt

ŷt,1
...

ŷt,k−1

⎞⎟⎟⎟⎠ ,

with ŷt,j = ŷIt,j .
The first method presents those n images with the highest upper confidence

bounds. However, a drawback of relying only on the upper confidence values is
that the similarities of the selected images are not considered. A simple method
to avoid this problem is to use just one image for exploration (the second method)
— by selecting the image with the maximum upper confidence bound ŷI + cσ̂I

— and selecting the remaining n− 1 images exploitatively just according to the
maximum estimated relevance scores ŷI . Thus this second method does as little
exploration as possible, while the first method does the maximal possible explo-
ration. The third method we consider covers the middle ground between these
two extreme methods. It selects the images I1, . . . , In for presentation sequen-
tially, still relying on the upper confidence bounds, but when selecting image Ik
it takes into account the exploration already done for images I1, . . . , Ik−1.

4 Multiple Kernel Learning to Update the Feature Space

In multiple kernel learning (MKL) [15,7,2] we would like to solve a classification4

problem using a combination of kernels to find (a) the weights of each kernel,
and (b) the optimal dual weight vector of the combined kernel. The standard
MKL framework has been proposed using the SVM and so we will also adopt
this algorithm in our system. Given a set of kernels, the main goal of MKL is to
3 Combining this third method with kernel learning is a bit more involved, since for

each selection It,k, k = 1, . . . , n, the kernel learning algorithm needs to be called.
4 Regression problems can also be solved, but we restrict ourselves to classification.
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find a non-uniform weighting of these kernels to help improve the classification
task, over and above what could be achieved using a single kernel from the set.

More formally, assume we have a set of kernel functions K = {κ1, . . . , κK}.
Given a vector η = (η1, . . . , ηK) of coefficients and kernel functions κi(·, ·) for
i = 1, . . . ,K, we can define the following linear combination of kernel functions:

κη(·, ·) =
K∑

i=1

ηiκi(·, ·).

In our case the kernels correspond to the K = 11 feature extraction methods
from Table 1 and each component of η is the weighting of each of these features.
From the previous section we know that the kernelized LinRel requires a kernel
function between images. Therefore, after the user is presented with a set of
images and classifies them as relevant or not, we will have access to these viewed
images and their classifications ∈ {0, 1}. Using this information we can have the
LinRelMKL algorithm:

aI(η) =
(
κη(I, I1) · · · κη(I, It−1)

)
· (Kη

t + μI)−1,

where I1, . . . , It−1 are the images selected in iterations i = 1, . . . , t− 1 and Kη
t

is the Gram matrix
Kη

t = (κη(Ii, Ij))1≤i,j≤t−1.

Thus aI(η) can be calculated by using the MKL derived kernel function κη(·, ·).
It should be noted that the LinRelMKL algorithm can only learn after feedback
has been given. In the CBIR protocol we follow, learning occurs after every page
of images has been presented.

We follow an MKL approach recently proposed [13] that looks for a 1-norm
2-norm regularisation of the primal weight vectors in each feature space. The
idea is to constrain the 2-norm of each weight vector wk ∈ Rm (note wk is the
weight vector in the kth feature space):

min
wk,ξ

λ

(
K∑

k=1

‖wk‖2

)2

︸ ︷︷ ︸
1−norm

+ (1− λ)
K∑

k=1

‖wk‖22︸ ︷︷ ︸
2−norm

+ C‖ξ‖1,

where λ ∈ [0, 1] is a parameter, which gives us the standard 1-norm MKL reg-
ularisation when λ = 1 and the 2-norm when λ = 0, C is the SVM penalty
parameter and ξ denotes the slack variables. Any values of λ between 1 and 0
will solve the MKL problem with a regularisation between a 1-norm and 2-norm.
The justification of this form of regularisation is that in our CBIR system we
expect that early on in the search, all features will need to be active, but as the
search continues and more feedback is given we should be able to concentrate
on a smaller number of relevant feature spaces (as λ→ 1).

We should point out that computing the kernels at each stage of a search page
may become cumbersome for a large number of search pages. However, typically
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a CBIR search may only last 20 search pages, which, in our setting of presenting
15 images per search page (see Section 7) would correspond to kernel matrices
of size 300× 300. Therefore, the use of MKL together with LinRel in a CBIR
system can be practical for the very reason that CBIR searches will never exceed
a large number of search pages.

We have now described all of the principle components needed for our CBIR
system when it has access to several different feature extraction methods. In the
next section we discuss the integration of eye movement features.

5 Tensor Learning for Eye Movements as New Features

In this section we outline the approach taken when eye movement features are
also available. We assume that the CBIR system has access to an eye tracking
device, which tracks the eye movements of users whilst they view images. We
follow the approach outlined in [11]. The idea is to create a tensor kernel between
the image and eye movement features, and then to solve a tensor kernel SVM, in
order to enrich our image feature space with eye movements. Note that we do not
use eye movement features for relevance feedback but as an extra set of features.
Our goal is to incorporate the information gained from the eye movements, into
a new set of features and combine them with the content-based image features
described in Table 1, using the MKL approach of the previous section.

The underlying idea for using tensors is for the creation of rich semantic
representation that captures all possible relationships between features of two or
more views (sources). This tensor representation creates an implicit correlation
space in which we solve our learning problem – of course we must have an existing
belief that there is some relationship between the different representations –
which in our case is a valid assumption as we extract image and eye movement
features of the same images.

An explicit mapping of the feature spaces and the tensor computation become
computationally infeasible. However, recent papers have shown that the mapping
can be made implicitly using the kernel trick [22,17] – by simply taking the dot
product between each individual kernel. For instance, let φ(xI ) be the vector
xI mapped using feature mapping φ (i.e., image features), and let ψ(xI) be
the vector xI mapped using feature mapping ψ (i.e., eye movement features).
Therefore we have:

〈φ(xIi ) ◦ ψ(xIi), φ(xIj ) ◦ ψ(xIj )〉 = 〈φ(xIi ), φ(xIj )〉〈ψ(xIi ), ψ(xIj )〉
= κφ(Ii, Ij)κψ(Ii, Ij),

where ◦ denotes the tensor product. Hence, the Gram matrix Kφ and Kψ of
each view is multiplied together using a component-wise product:

Kφ◦ψ = Kφ ·Kψ,

where · denotes the component-wise product. Further to this the kernel matrix
Kφ◦ψ is used to train a tensor kernel SVM [12] to generate a weight matrix W
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(see below). However, this weight matrix is composed of both views, and needs
to be decomposed into one weight vector per view (i.e., one for φ and one for ψ).
This has been resolved by [12] who propose a novel singular value decomposition
(SVD) like approach for decomposing the resulting tensor weight matrix into its
two component parts, without needing to directly access the feature space. They
demonstrate that the weight matrix can be decomposed into a sum of tensor
products of corresponding weight components. Hence

W ≈W (D) =
D∑

d=1

wd
φw

d
ψ

�
,

where D is similar to the number of components in SVD and where each wd
φ,w

d
ψ

is a projection vector (like an eigenvector computed in PCA) in the dimension
d. Furthermore, from the Representer theorem we know that each wd

φ,w
d
ψ can

be rewritten as a weighted combination of observed examples, such that:

wd
φ =

m∑
i=1

βd
i φ(xIi ),

wd
ψ =

m∑
i=1

γd
i ψ(xIi ),

where βd,γd are dual variables (see [12] for decomposition details).
In our CBIR system we do not have the eye movement features for images

not yet displayed to the user. Despite this restriction we are still interested in
improving the semantic space by using both eye movements and image features
during the phase when users have access to them, but then switching to using
image features when deciding on which images to present next. Recall that we
have access to K feature extraction methods (see Table 1) corresponding to
feature maps φ1, . . . , φK , and we construct a kernel κη using a convex combina-
tion of the K feature spaces (see section 4). Following [11] we use the proposed
decomposition and create a new feature representation for image features

φ̂(xIj ) =

[
m∑

i=1

κη(Ii, Ij)βd
i

]D

d=1

,

where we now have a kernel κ̂η(I, I) = 〈φ̂(xI), φ̂(xI)〉 constructed from these
new image features φ̂(x). Hence, the LinRelMKLTensor algorithm is:

âI(η) =
(
κ̂η(I, I1) · · · κ̂η(I, It−1)

)
· (K̂η

t + μI)−1,

where I1, . . . , It−1 are the images selected in iterations i = 1, . . . , t− 1 and K̂η
t

is the Gram matrix
K̂η

t = (κ̂η(Ii, Ij))1≤i,j≤t−1.
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6 The Final CBIR System

Figure 3 describes pictorially the components of our proposed CBIR system.
We have the “DATABASE” which contains all images we have access to. The
LinRel algorithm has direct access to the images from the database. Further-
more, after presenting some images to the “USER”, the system receives feedback
on the images that are relevant/non relevant by the user. This feedback is then
passed to “MKL” and “Tensor” (when eye movements are available) in order
to learn an enriched feature space utilising image and eye movement features
as outlined in Sections 4 and 5 (i.e., LinRelMKL and LinRelMKLTensor).
This protocol is repeated until the user is satisfied with the search, and retrieved
the image(s) they were looking for. In general, any number of images may be
presented to the user but in our experiments we will present 15 images per
search page.

Fig. 3. Our CBIR system: the LinRelMKL algorithm and LinRelMKLTensor when
eye movements are available. The red lines indicate features (inputs) and the green lines
indicate relevance-feedback given by the user.

When “MKL” is not utilised, but eye movements are available for “Tensor”
then we will assume that LinRel receives a sum of uniform weighted kernels
i.e., η = (1/K, . . . , 1/K). We call this algorithm LinRelTensor.

7 Experiments

The database used for images was the PASCAL VOC 2007 challenge database [10]
which contains over 9000 images, each of which contains at least 1 object from
a possible list of 20 objects such as cars, trains, cows, people, etc.,. There
were T = 23 users in the experiments, and participants were asked to view
twenty pages, each of which contained fifteen images. Their eye movements were
recorded by a Tobii X120 eye tracker [23] connected to a PC using a 19-inch
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Fig. 4. An example page shown to a participant. Eye movements of the participant
are shown in red. The red circles mark fixations and small red dots correspond to raw
measurements that belong to those fixations. The black dots mark raw measurements
that were not included in any of the fixations.

monitor (resolution of 1280x1024). The eye tracker has approximately 0.5 de-
grees of accuracy with a sample rate of 120 Hz and used infrared lens to detect
pupil centres and corneal reflection. Figure 4 shows an example image presented
to a user along with the eye movements (in red).

Each participant was asked to carry out one search task among a possible of
three, which included looking for a Bicycle (8 users), a Horse (7 users) or some
form of Transport (8 users). Any images within a search page that a user thought
contained images from there search, they marked as relevant using mouse clicks.

The eye movement features extracted from the Tobii eye tracker can be found
in Table 1 of [16] and was collected by [20]. Most of these are motivated by
features considered in the literature for text retrieval studies – however, in ad-
dition, they also consider more image-based eye movement features. These are
computed for each full image and based on the eye trajectory and locations of
the images in the page. They cover the three main types of information typically
considered in reading studies: fixations, regressions, and re-fixations. The num-
ber of features extracted were 33, computed from: (i) raw measurements from
the eye tracker; (ii) fixations estimated from the raw measurements using the
standard ClearView fixation filter provided with the Tobii eye tracking software,
with settings of: “radius 50 pixels, minimum duration 100 ms”.

For each subjects feedback and eye movement data, we train our system to
find the most relevant images for the given search task (i.e., Train, Horse or
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Table 2. Average Precision results for 23 subjects (users) searching for Bicycle (user
1-8), Horse (user 9-15) and Transport (16-23)

Subject LinRel LinRelMKL LinRelTensor LinRelMKLTensor

1 0.320045 0.335052 0.498231 0.505099
2 0.377128 0.379353 0.519415 0.516407
3 0.240924 0.248338 0.409046 0.415642
4 0.358075 0.368579 0.501031 0.498201
5 0.375263 0.388169 0.521616 0.515576
6 0.368568 0.374660 0.523426 0.507518
7 0.373300 0.369395 0.514916 0.498389
8 0.358244 0.375362 0.514891 0.512478
9 0.369601 0.365979 0.614555 0.624961
10 0.322203 0.322497 0.522267 0.510010
11 0.349775 0.343399 0.567960 0.566198
12 0.345682 0.344114 0.557776 0.555769
13 0.348333 0.357742 0.585215 0.574832
14 0.326431 0.319506 0.497876 0.481860
15 0.327132 0.334904 0.525686 0.530794
16 0.393561 0.389895 0.616144 0.624988
17 0.330865 0.333592 0.578743 0.592307
18 0.424255 0.429772 0.649531 0.658993
19 0.372035 0.372421 0.602936 0.621422
20 0.307158 0.309784 0.560447 0.580845
21 0.383495 0.385278 0.611653 0.627579
22 0.321837 0.329154 0.531695 0.563895
23 0.313631 0.309275 0.568597 0.577140

Average 0.348154 0.351575 0.547550 0.550474

Transport). We randomly permute the images and choose 15 images initially to
present to our CBIR system. Our system then trains the MKL (if used) and
tensor kernel SVM (if used) to pass a new kernel to LinRel, which then chooses
the next set of 15 images to be presented. This is repeated until all images are
presented. We measure our success using Average Precision – in other words, by
looking at the number of retrieved images with respect to their rank. For our
results we used several random seeds to initialise the first set of images presented
to the CBIR system, and averaged over them.

For our experiments we use linear kernels5 constructed using the features
presented in Table 1 and the eye movement features described above. Table 2
presents the Average Precision results, where we used a leave-one-subject-out
strategy to optimise the parameters for the LinRel algorithm, for various val-
ues6 of c and μ. Furthermore, we selected method 2 from Subsection 3.1 which
seemed to generate the best performance out of the three methods outlined there.

5 Nonlinear kernels can also be used, but we chose linear kernels for their simplicity
and for proof of concept.

6 μ = (10−3, 10−2, 10−1, 100, 101, 102, 103), c = (10−3, 10−2, 10−1, 100, 101, 102, 103).
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Parameters for all other algorithms were kept fixed. The LinRel column is the
kernelized LinRel algorithm using a sum of uniform weighted linear kernels.
The LinRelMKL column corresponds to a kernel being learnt for LinRel us-
ing MKL.7 The LinRelTensor column corresponds to no MKL being learnt
(hence, a default uniform weighting of kernels) but tensor kernel SVM8 being
trained to find a new feature space. Finally, the LinRelMKLTensor column
corresponds to both the MKL and tensor kernel SVM being used to find an
appropriate kernel for LinRel.

We can see by comparing the LinRel and LinRelMKL methods that ap-
plying MKL can improve the Average Precision. However, when eye movements
are available then LinRelTensor and LinRelMKLTensor are clearly su-
perior and help improve the search results, with LinRelMKLTensor being
better than LinRelMKL with a statistical significance (Wilcoxon signed test)
of p = 0.05.

8 Conclusions

We described a novel content-based image retrieval system (CBIR) using
relevance-feedback, which views the problem as an exploration-exploitation prob-
lem – by using a kernelized version of the LinRel algorithm together with
multiple kernel learning (when several different feature extraction methods are
available) we demonstrated that we can combine these two algorithms together
to learn different feature weightings (LinRelMKL). We also proposed a novel
technique of combining the kernel constructed using MKL (on image features)
and the kernel constructed using eye movements. This kernel was then trained us-
ing the tensor kernel SVM to yield a new feature space combining eye movement
and image feature spaces. We called this algorithm LinRelMKLTensor and
observed that the search results improved over all other methods (on average).
Hence, when eye movement features are available then they should be used in
order to improve CBIR systems.

In the current work we only used linear kernels constructed from the image
and eye movement features. In future work we plan to use a parameterised
family of kernels such as Gaussian kernels. Initial results on Gaussian kernels
for the kernelized LinRel algorithm have reported good results. Furthermore,
by constructing several different Gaussian kernels per feature extraction method
our model would find a weighted combination of important kernels using the
MKL component of the system. This would also give us a much larger set of
kernels – shown to be effective at improving MKL [6].

Also, we used the discrete values of the feedback received from users to train
the MKL and tensor kernel SVM. However, we could of course apply a regression
version of MKL and a tensor kernel support vector regression (for instance), by
using the real valued relevance estimates provided by users. This would also more
7 MKL used fixed parameter λ = 0.5 throughout the experiments, and a penalty

parameter C = 1.
8 Penalty parameter C = 1.
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closely resemble the optimisation problem solved by LinRel, which is itself a
linear regression algorithm.

Another line of further research is to use the eye movements for (implicit)
relevance feedback. The system we have outlined in this paper only uses explicit
feedback from mouse clicks to determine the relevance of images. However, by
utilising the eye movements we could predict the relevance of images based on
what users look at. This would make the CBIR system much more automated
and require less explicit interaction by the user. We have carried out preliminary
work using our system with such a mechanism in place, and the results are
encouraging. We plan to discuss these results in future studies.
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Abstract. A heterogeneous information network is a network composed
of multiple types of objects and links. Recently, it has been recognized
that strongly-typed heterogeneous information networks are prevalent in
the real world. Sometimes, label information is available for some objects.
Learning from such labeled and unlabeled data via transductive classi-
fication can lead to good knowledge extraction of the hidden network
structure. However, although classification on homogeneous networks
has been studied for decades, classification on heterogeneous networks
has not been explored until recently.

In this paper, we consider the transductive classification problem on
heterogeneous networked data which share a common topic. Only some
objects in the given network are labeled, and we aim to predict labels for
all types of the remaining objects. A novel graph-based regularization
framework, GNetMine, is proposed to model the link structure in infor-
mation networks with arbitrary network schema and arbitrary number of
object/link types. Specifically, we explicitly respect the type differences
by preserving consistency over each relation graph corresponding to each
type of links separately. Efficient computational schemes are then intro-
duced to solve the corresponding optimization problem. Experiments on
the DBLP data set show that our algorithm significantly improves the
classification accuracy over existing state-of-the-art methods.

1 Introduction

Information networks, composed of large numbers of data objects linking to each
other, are ubiquitous in real life. Examples include co-author networks and paper
citation networks extracted from bibliographic data, and webpage networks in-
terconnected by hyperlinks in the World Wide Web. Extracting knowledge from
such gigantic sets of networked data has recently attracted substantial interest
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[11] [15] [16] [19]. Sometimes, label information is available for some data ob-
jects. Learning from labeled and unlabeled data is often called semi-supervised
learning [22] [21] [3], which aims to classify the unlabeled data based on known
information. Classification can help discover the hidden structure of the infor-
mation network, and give deep insight into understanding different roles played
by each object. In fact, applications like research community discovery, fraud
detection and product recommendation can all be cast as a classification prob-
lem [11] [15]. Generally, classification can be categorized into two groups: (1)
transductive classification [10] [11] [22] [21] [19]: to predict labels for the given
unlabeled data; and (2) inductive classification [9] [15] [12] [17] [3]: to construct a
decision function in the whole data space. In this paper, we focus on transductive
classification, which is a common scenario in networked data.

Current studies about transductive classification on networked data [9] [10]
[11] [15] mainly focus on homogeneous information networks, i.e., networks com-
posed of a single type of objects, as mentioned above. But in real life, there could
be multiple types of objects which form heterogeneous information networks.
Beyond co-author networks and citation networks, bibliographic data naturally
forms a network among papers, authors, conferences, terms, etc. It has been
recognized that heterogeneous information networks, where interconnected links
can occur between any two types of objects, are prevalent.

Example 1. Bibliographic Information Network. A bibliographic infor-
mation network generally contains four types of data objects: papers, authors,
venues (conferences and journals) and terms. Papers and authors are linked by
the relation of “written by” and “write”. Papers and venues are linked by the
relation of “published in” and “publish”. Papers and terms are linked by the
relation of “contain” and “contained in”. �
As a natural generalization of classification on homogeneous networked data, we
consider the problem of classifying heterogeneous networked data into classes,
each of which is composed of multi-typed data sharing a common topic. For
instance, a research community in a bibliographic information network contains
not only authors, but also papers, venues and terms all belonging to the same
research area. Other examples include movie networks in which movies, directors,
actors and keywords relate to the same genre, and E-commerce networks where
sellers, customers, items and tags belong to the same shopping category.

The general problem of classification has been well studied in the litera-
ture. Transductive classification on strongly-typed heterogeneous information
networks, however, is much more challenging due to the following characteristics
of data:

1. Complexity of the network structure. When dealing with the multi-typed
network structure in a heterogeneous information network, one common so-
lution is to transform it into a homogenous network and apply traditional
classification methods [11] [15]. However, this simple transformation has sev-
eral drawbacks. For instance, suppose we want to classify papers into differ-
ent research areas. Existing methods would most likely extract a citation
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network from the whole bibliographic network. Then some valuable discrim-
inative information is likely to be lost (e.g., authors of the paper, and the
venue the paper is published in.) Another solution to make use of the whole
network is to ignore the type differences between objects and links. Never-
theless, different types of objects naturally have different data distributions,
and different types of links have different semantic meanings, therefore treat-
ing them equally is likely to be suboptimal. It has been recognized [8] [16]
that while mining heterogeneous information networks, the type differences
among links and objects should be respected in order to generate more mean-
ingful results.

2. Lack of features. Traditional classification methods usually learn from lo-
cal features or attributes of the data. However, there is no natural feature
representation for all types of networked data. If we transform the link infor-
mation into features, we will likely generate very high dimensional and sparse
data as the number of objects increases. Moreover, even if we have feature
representation for some objects in a heterogeneous information network, the
features of different types of objects are in different spaces and are hardly
comparable. This is another reason why traditional feature-based methods
including Support Vector Machines, Näıve Bayes and logistic regression are
difficult to apply in heterogeneous information networks.

3. Lack of labels. Many classification approaches need a reasonable amount of
training examples. However, labels are expensive in many real applications.
In a heterogeneous information network, we may even not be able to have
a fully labeled subset of all types of objects for training. Label information
for some types of objects are easy to obtain while labels for some other
types are not. Therefore, a flexible transductive classifier should allow label
propagation among different types of objects.

In this paper, we propose a novel graph-based regularization framework to ad-
dress all three challenges, which simultaneously classifies all of the non-attributed,
network-only data with an arbitrary network topology and number of object/link
types, just based on the label information of any type(s) of objects and the link
structure. By preserving consistency over each relation graph corresponding to
each type of links separately, we explicitly respect the type differences in links
and objects, thus encoding the typed information in a more organized way than
traditional graph-based transductive classification on homogeneous networks.

The rest of the paper is structured as follows. In Section 2, we briefly review
the existing work about classification on networked data and graph-based learn-
ing. In Section 3, we formally define the problem of transductive classification
on heterogeneous information networks. Our graph-based regularization frame-
work (denoted by GNetMine) is introduced in Section 4. Section 5 provides the
experimental results. Finally, we conclude this work in Section 6.

2 Related Work

We summarize various transductive classification methods in Table 1, where
one dimension represents whether the data has features/attributes or not, and
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Table 1. Summary of related work about transductive classification

Non-networked
data

Homogenous
networked data

Heterogeneous
networked data

Attributed
data

SVM, Logistic
Regression, etc.

Statistical Relational Learning
(Relational Dependency Networks, etc.)

Non-attributed
data /

Network-only Link-based classifier,
Relational Neighbor, etc. GNetMine

the other dimension represents different kinds of network structure: from non-
networked data to heterogeneous networked data. Our proposed method works
on heterogeneous, non-attributed network-only data, which is the most general
case requiring the least amount of information.

Classifying networked data has received substantial attention in recent years.
The central idea is to infer the class label from the network structure together
with local attributes, if there are any. When classifying webpages or documents,
local text features and link information can be combined by using Näıve Bayes
[4], logistic regression [9], graph regularization [20], etc. All of these methods
assume that the network is homogeneous. Relational dependency networks [12]
respect the type differences among relational data when learning the dependency
structure by building a conditional model for each variable of interest, but still
rely on local features just like other relational learning methods do. Moreover,
statistical relational learning usually requires a fully labeled data set for training,
which might be difficult to obtain in real applications.

Macskassy et al. [10] propose a relational neighbor classifier on network-only
data. Through iteratively classifying an object by the majority class of its neigh-
bors, this method performs very well compared to more complex models includ-
ing Probabilistic Relational Models [6] [18], Relational Probability Trees [13] and
Relational Bayesian Classifiers [14]. Macskassy et al. [11] further emphasize that
homogeneousness is very important for their methods to perform within-network
classification well.

Recently, there has been a surge of interest in mining heterogeneous infor-
mation networks [7] [2] [8] [1] . NetClus [16] uses a ranking-clustering mutual
enhancement method to generate clusters composed of multi-typed objects. How-
ever, clustering does not effectively make use of prior knowledge when it is avail-
able. Yin et al. [19] explore social tagging graphs for heterogeneous web object
classification. They construct a bipartite graph between tags and web objects to
boost classification performance. Nevertheless, they fail to distinguish between
different types of links. And their method is confined to the specific network
schema between tags and web data, thus cannot be applied to an arbitrary link
structure.

Meanwhile, graph-based learning has enjoyed long-lasting popularity in trans-
ductive classification. Most of the methods construct an affinity graph over both
labeled and unlabeled examples based on local features to encode the similarity
between instances. They then design a learner which preserves the smoothness
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and consistency over the geometrical structure of the data. Zhu et al. [22] formu-
late the problem using a Gaussian random field model defined with respect to
the graph. Zhou et al. [21] propose to let each point iteratively spread its label
information to neighbors so as to ensure both local and global consistency. When
local features are not available in information networks, graph-based methods
can sometimes use the inherent network structure to play the role of the affinity
graph. However, traditional graph-based learning mainly works on homogeneous
graphs covering all the examples as a whole, and thus cannot distinguish the dif-
ferent semantic meaning of multi-typed links and objects very well. In this paper,
we extend the graph-based learning framework to fit the special characteristics
of heterogeneous networked data.

3 Problem Definition

In this section, we introduce several related concepts and notations, and then
formally define the problem.

Definition 1. Heterogeneous information network. Given m types of data
objects, denoted by X1 = {x11, . . . , x1n1}, . . . ,Xm = {xm1, . . . , xmnm}, a graph
G = 〈V,E,W 〉 is called a heterogeneous information network if V =

⋃m
i=1 Xi

and m ≥ 2, E is the set of links between any two data objects of V , and W is
the set of weight values on the links. When m = 1, G reduces to a homogeneous
information network.

Definition 2. Class. Given a heterogeneous information networkG= 〈V,E,W 〉,
V =

⋃m
i=1 Xi, a class is defined as G′ = 〈V ′, E′,W ′〉, where V ′ ⊆ V , E′ ⊆ E.

∀e = 〈xip, xjq〉 ∈ E′, W ′
xipxjq

= Wxipxjq . Note here, V ′ also consists of multiple
types of objects from X1 to Xm.

Definition 2 follows [16]. Notice that a class in a heterogeneous information
network is actually a sub-network containing multi-typed objects that are closely
related to each other. Now our problem can be formalized as follows.

Definition 3. Transductive classification on heterogeneous information
networks. Given a heterogeneous information network G = 〈V,E,W 〉, a subset
of data objects V ′ ⊆ V =

⋃m
i=1 Xi, which are labeled with values Y denoting

which class each object belongs to, predict the class labels for all the unlabeled
objects V − V ′.

We design a set of one-versus-all soft classifiers in the multi-class classification
task. Suppose the number of classes is K. For any object type Xi, i ∈ {1, . . . ,m},
we try to compute a class indicator matrix Fi = [f (1)

i , . . . , f
(K)
i ] ∈ Rni×K , where

each f
(k)
i = [f(k)

i1 , . . . , f
(k)
ini

]T measures the confidence that each object xip ∈ Xi

belongs to class k. Then we can assign the p-th object in type Xi to class cip by
finding the maximum value in the p-th row of Fi: cip = argmax1≤k≤K f(k)

ip .
In a heterogeneous information network, a relation graph Gij can be built

corresponding to each type of link relationships between two types of data objects
Xi and Xj , i, j ∈ {1, . . . ,m}. Note that it is possible for i = j. Let Rij be an
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Author A1Author A1 Term T1

Conference C2
Conference C1

Paper P1 Paper P2

Paper P3

Class:
Data Mining

Class:
Database

Author A2 Author A3
Author A4Author A4

Term T2

Term T3

Fig. 1. Knowledge propagation in a bibliographic information network

ni × nj relation matrix corresponding to graph Gij . The element at the p-th
row and q-th column of Rij is denoted as Rij,pq , representing the weight on link
〈xip, xjq〉. There are many ways to define the weights on the links, which can
also incorporate domain knowledge. A simple definition is as follows:

Rij,pq =
{

1 if data objects xip and xjq are linked together
0 otherwise.

Here we consider undirected graphs such that Rij = RT
ji.

In order to encode label information, we basically set a vector y(k)
i = [y(k)

i1 , . . . ,

y
(k)
ini

]T ∈ Rni for each data object type Xi such that:

y
(k)
ip =

{
1 if xip is labeled to the k-th class
0 otherwise.

Then for each class k ∈ {1, . . . ,K}, our goal is to infer a set of f
(k)
i from Rij

and y(k)
i , i, j ∈ {1, . . . ,m}.

4 Graph-Based Regularization Framework

In this section, we begin by describing the intuition of our method. Then we
formulate the problem using a graph-based regularization framework. Finally,
efficient computational schemes are proposed to solve the optimization problem.

4.1 Intuition

Consider a simple bibliographic information network in Figure 1. Four types
of objects (paper, author, conference and term) are interconnected by multi-
typed links (denoted by solid black lines) as described in Example 1. Suppose
we want to classify them into research communities. Labeled objects are shaded,
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whereas the labels of unshaded objects are unknown. Given prior knowledge
that author A1, paper P1 and conference C1 belong to the area of data mining,
it is easy to infer that author A2 who wrote paper P1, and term T1 which is
contained in P1, are both highly related to data mining. Similarly, author A3,
conference C2, and terms T2 and T3 are likely to belong to the database area,
since they link directly to a database paper P3. For paper P2, things become
more complicated because it is linked with both labeled and unlabeled objects.
The confidence of belonging to a certain class may be transferred not only from
labeled objects (conference C1 and author A4), but also from unlabeled ones
(authors A2 and A3, terms T1, T2 and T3). The classification process can be
intuitively viewed as a process of knowledge propagation throughout the network
as shown in Figure 1, where the thick shaded arrows indicate possible knowledge
flow. The more links between an object x and other objects of class k, the higher
the confidence that x belongs to class k. Accordingly, labeled objects serve as
the source of prior knowledge. Although this intuition is essentially consistency
preserving over the network, which is similar to [10] and [21], the interconnected
relationships in heterogeneous information networks are more complex due to
the typed information. Knowledge propagation through different types of links
contains different semantic meaning, and thus should be considered separately.

In this way, our framework is based on the consistency assumption that the
class assignments of two linked objects are likely to be similar. And the class
prediction on labeled objects should be similar to their pre-assigned labels. In
order to respect the type differences between links and objects, we ensure that
such consistency is preserved over each relation graph corresponding to each
type of links separately. We formulate our intuition as follows:

1. The estimated confidence measure of two objects xip and xjq belonging to
class k, f(k)

ip and f(k)
jq , should be similar if xip and xjq are linked together, i.e.,

the weight value Rij,pq > 0.
2. The confidence estimation f

(k)
i should be similar to the ground truth, y(k)

i .

4.2 The Algorithm

For each relation matrix Rij , we define a diagonal matrix Dij of size ni×ni. The
(p, p)-th element of Dij is the sum of the p-th row of Rij . Following the above
discussion, f(k)

i should be as consistent as possible with the link information and
prior knowledge within each relation graph, so we try to minimize the following
objective function:

J(f (k)
1 , . . . , f (k)

m ) =
m∑

i,j=1

λij

ni∑
p=1

nj∑
q=1

Rij,pq

( 1√
Dij,pp

f(k)
ip −

1√
Dji,qq

f(k)
jq

)2

+
m∑

i=1

αi(f
(k)
i − y(k)

i )T (f (k)
i − y(k)

i ). (1)

where Dij,pp is the (p, p)-th element of Dij , and Dji,qq is the (q, q)-th element of
Dji. The first term in the objective function (1) is the smoothness constraints
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formulating the first intuition. This term is normalized by
√
Dij,pp and

√
Dji,qq

in order to reduce the impact of popularity of nodes. In other words, we can,
to some extent, suppress popular nodes from dominating the confidence estima-
tions. The normalization technique is adopted in traditional graph-based learning
and its effectiveness is well proved [21]. The second term minimizes the difference
between the prediction results and the labels, reflecting the second intuition.

The trade-off among different terms is controlled by regularization parameters
λij and αi, where 0 ≤ λij < 1, 0 < αi < 1. For ∀i, j ∈ {1, . . . ,m}, λij > 0
indicates that object types Xi and Xj are linked together and this relationship
is taken into consideration. The larger λij , the more value is placed on the
relationship between object types Xi and Xj . For example, in a bibliographic
information network, if a user believes that the links between authors and papers
are more trustworthy and influential than the links between conferences and
papers, then the λij corresponding to the author-paper relationship should be
set larger than that of conference-paper, and the classification results will rely
more on the author-paper relationship. Similarly, the value of αi, to some extent,
measures how much the user trusts the labels of object type Xi. Similar strategy
has been adopted in [8] to control the weights between different types of relations
and objects. However, we will show in Section 5 that the parameter setting will
not influence the performance of our algorithm dramatically.

To facilitate algorithm derivation, we define the normalized form of Rij :

Sij = D(−1/2)
ij RijD

(−1/2)
ji , i, j ∈ {1, . . . ,m} (2)

With simple algebraic formulations, the first term of (1) can be rewritten as:

m∑
i,j=1

λij

ni∑
p=1

nj∑
q=1

Rij,pq

( 1√
Dij,pp

f(k)
ip −

1√
Dji,qq

f(k)
jq

)2

=
m∑

i,j=1

λij

ni∑
p=1

nj∑
q=1

Rij,pq

((f(k)
ip )2

Dij,pp
− 2

f(k)
ip f(k)

jq√
Dij,ppDji,qq

+
(f(k)

jq )2

Dji,qq

)

=
m∑

i,j=1

λij

( ni∑
p=1

(f(k)
ip )2 +

nj∑
q=1

(f(k)
jq )2 − 2

ni∑
p=1

nj∑
q=1

(f(k)
ip Sij,pqf

(k)
jq )
)

=
m∑

i,j=1

λij

(
(f (k)

i )T f
(k)
i + (f (k)

j )T f
(k)
j − 2(f (k)

i )T Sijf
(k)
j

)
(3)

Then we can rewrite (1) in the following form:

J(f (k)
1 , . . . , f (k)

m ) =
m∑

i,j=1

λij

(
(f (k)

i )T f
(k)
i + (f (k)

j )T f
(k)
j − 2(f (k)

i )TSijf
(k)
j

)
+

m∑
i=1

αi(f
(k)
i − y(k)

i )T (f (k)
i − y(k)

i ) (4)



578 M. Ji et al.

Connection to homogeneous graph-based learning. Here we first show
that the homogenous version of our algorithm is equivalent to the graph-based
learning method [21]. Then we show the connection and difference between our
algorithm and [21] on heterogeneous information networks.

We first define Lii = Ii − Sii , where Ii is the identity matrix of size ni × ni.
Note that Lii is the normalized graph Laplacian [5] of the homogeneous sub-
network on object type Xi.

Lemma 1. In homogeneous information networks, the objective function (4)
reduces to:

J(f (k)
1 ) = 2λ11(f

(k)
1 )TL11f

(k)
1 + α1(f

(k)
1 − y(k)

1 )T (f (k)
1 − y(k)

1 ) �

The proof can be done by simply setting m = 1 in function (4). It is easy to
see that the homogeneous version of our algorithm is equivalent to the objective
function of [21].

When the information network is heterogeneous, we can consider all types of
objects as a whole set. We define:

f (k) = [(f (k)
1 )T , . . . , (f (k)

m )T ]T ; y(k) = [(y(k)
1 )T , . . . , (y(k)

m )T ]T

αααi = αi1ni , i = 1, . . . ,m ; ααα = diag{[αααT
1 , . . . ,ααα

T
m]}

where 1ni is an ni-dimensional column vector of all ones. We further construct
a matrix corresponding to each type of relationship between two different object
types Xi and Xj as follows:

Lij =
[

Ii −Sij

−Sji Ij

]
, where i �= j

Suppose
∑m

i=1 ni = n, let Hij be the n × n symmetric matrix where each
row/column corresponds to an object, with the order the same as that in f(k).
The elements of Hij at rows and columns corresponding to object types Xi and
Xj are equal to Lij , and all the other elements are 0. This also holds for i = j.

Lemma 2. On heterogeneous information networks, the objective function (4)
is equivalent to the following:

J(f (k)
1 , . . . , f (k)

m ) = (f (k))THf (k) +
(
f (k) − y(k))Tααα(f (k) − y(k)) (5)

where H =
∑

i�=j λijHij + 2
∑m

i=1 λiiHii. �
The proof can be done by considering each term in the objective function (4)
separately for i �= j and i = j, respectively, and then summing them up. Lemma
2 shows that our proposed GNetMine algorithm has a consistent form with the
graph-based learning framework on homogeneous data [21], in which H is re-
placed by the normalized graph Laplacian L [5]. Moreover, we respect the differ-
ent semantic meanings of the multi-typed links by applying graph regularization
on each relation graph corresponding to each type of links separately rather than
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on the whole network. Different regularization parameters λij also provide more
flexibility in incorporating user preference on how much the relationship between
object types Xi and Xj is valued among all types of relationships. However, even
if all the λij are set the same, we can see that H is different from the normalized
graph Laplacian L [5] on the whole network as long as there is at least one type
of objects linking to other objects via multiple types of relationships.1

Closed form solution. It is easy to check that Lii is positive semi-definite,
and so is Hii. We now show that Lij is also positive semi-definite.

Proof. Recall that Dij,pp =
∑nj

q=1 Rij,pq and Rij = RT
ji, we define:

L̂ij =
[

Dij −Rij

−Rji Dji

]
=
[
Dij 0
0 Dji

]
−
[

0 Rij

Rji 0

]
= D̂− Ŵ

It can be observed that L̂ij has the same form as the graph Laplacian [5], where
D̂ is a diagonal matrix whose entries are column (or row, since Ŵ is symmetric)
sums of Ŵ. So L̂ij is positive semi-definite. Hence

Lij =
[
Dij 0
0 Dji

]−1/2

L̂ij

[
Dij 0
0 Dji

]−1/2

is positive semi-definite.

In this way, Hij is positive semi-definite. We further check the Hessian matrix
of the objective function (4), which is easy to derive from equation (5):

H
(
J(f (k)

1 , . . . , f (k)
m )
)

= 2H + 2ααα

H is the weighted summation of Hii and Hij , which is also positive semi-
definite. Since αi > 0 for all i, we conclude that H

(
J(f (k)

1 , . . . , f (k)
m )
)

is positive
definite. Therefore, the objective function (4) is strictly convex. The unique
global minimum is obtained by differentiating (4) with respect to each (f (k)

i )T :

∂J

∂(f (k)
i )T

=
m∑

j=1,j �=i

λij(2f
(k)
i − 2Sijf

(k)
j ) + 4λiiLiif

(k)
i + 2αi(f

(k)
i − y(k)

i ) (6)

and letting ∂J

∂(f (k)
i )T

= 0 for all i.

Finally, we give the closed form solution by solving the following linear equa-
tion system:

f
(k)
i =

(
(

m∑
j=1,j �=i

λij + αi)Ii + 2λiiLii

)−1(
αiy

(k)
i +

m∑
j=1,j �=i

λijSijf
(k)
j

)
, i ∈ {1, . . . , m}

It can be proven that
(
(
∑m

j=1,j �=i λij + αi)Ii + 2λiiLii

)
is positive definite and

invertible.
1 If a network has only two types of objects X1 and X2, and only one type of relation-

ship R12, then H reduces to λ12L.
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Iterative solution. Though the closed form solution is obtained, sometimes
the iterative solution is preferable. Based on equation (6), we derive the iterative
form of our algorithm as follows:

– Step 0: For ∀k ∈ {1, . . . ,K}, ∀i ∈ {1, . . . ,m}, initialize confidence estimates
f

(k)
i (0) = y(k)

i and t = 0.
– Step 1: Based on the current f

(k)
i (t), compute:

f
(k)
i (t+ 1) =

∑m
j=1,j �=i λijSijf

(k)
j (t) + 2λiiSiif

(k)
i (t) + αiy

(k)
i∑m

j=1,j �=i λij + 2λii + αi

for ∀k ∈ {1, . . . ,K}, ∀i ∈ {1, . . . ,m}.
– Step 2: Repeat step 1 with t = t + 1 until convergence, i.e., until f

(k)∗
i =

f
(k)
i (t) do not change much for all i.

– Step 3: For each i ∈ {1, . . . ,m}, assign the class label to the p-th object of
type Xi as cip = argmax1≤k≤K f(k)∗

ip , where f
(k)∗
i = [f(k)∗

i1 , . . . , f(k)∗
ini

]T .

Following an analysis similar to [21], the iterative algorithm can be proven to
converge to the closed form solution. The iterative solution can be viewed as a
natural extension of [21], where each object iteratively spreads label information
to its neighbors until a global stable state is achieved. At the same time, we
explicitly distinguish the semantic differences between the multi-typed links and
objects by employing different normalized relation graphs corresponding to each
type of links separately rather than a single graph covering all the instances.

4.3 Time Complexity Analysis

We analyze the computational complexity of the iterative solution here. Step 0
takes O(K|V |) time for initialization, where K is the number of classes and |V |
the total number of objects. At each iteration of step 1, we need to process each
link twice, once for the object at each end of the link. And we need O(K|V |)
time to incorporate label information in αiy

(k)
i . So the time for each iteration

is O(K(|E| + |V |)), where |E| is the total number of links in the information
network. Finally, it takes O(K|V |) time to compute the class prediction result in
step 3. Hence the total time complexity of the iterative algorithm is O

(
NK(|E|+

|V |)
)
, where N is the number of iterations.

The time complexity of the closed form solution is dependent on the particular
network structure. We omit the analysis due to space limitation. In general, the
iterative solution is more computationally efficient because it bypasses the matrix
inversion operation.

After all, the classification task is done offline, where all the objects can be
classified once and the results stored for future querying.

5 Experimental Results

In this section, we present an empirical study of the effectiveness of our graph-
based regularization framework for transductive classification (denoted by
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GNetMine) on the real heterogeneous information network of DBLP2. As dis-
cussed before, we try to classify the bibliographic data into research communities,
each of which contains multi-typed objects all closely related to the same area.

5.1 Data Set

We extract a sub-network of the DBLP data set on four areas: database, data
mining, information retrieval and artificial intelligence, which naturally form
four classes. By selecting five representative conferences in each area, papers
published in these conferences, the authors of these papers and the terms that
appeared in the titles of these papers, we obtain a heterogeneous information
network that consists of four types of objects: paper, conference, author and
term. Within that heterogeneous information network, we have three types of
link relationships: paper-conference, paper-author, and paper-term. The data set
we used contains 14376 papers, 20 conferences, 14475 authors and 8920 terms,
with a total number of 170794 links3. By using our GNetMine algorithm, we
can simultaneously classify all types of objects regardless of how many types of
objects we labeled.

For accuracy evaluation, we use a labeled data set of 4057 authors, 100 papers
and all 20 conferences. For more details about the labeled data set, please refer
to [7] [16]. In the following sections, we randomly choose a subset of labeled
objects and use their label information as prior knowledge. The classification
accuracy is evaluated by comparing with manually labeled results on the rest of
the labeled objects. Since terms are difficult to label even manually, i.e., many
terms are closely related to multiple areas, we did not evaluate the accuracy on
terms here.

5.2 Algorithms for Comparison

We compare GNetMine with the following state-of-the-art algorithms:

– Learning with Local and Global Consistency (LLGC) [21]
– Weighted-vote Relational Neighbor classifier (wvRN) [10] [11]
– Network-only Link-based classification (nLB) [9] [11]

LLGC is a graph-based transductive classification algorithm, which is also the
homogenous reduction of GNetMine if we use the intrinsic network structure to
play the role of the affinity graph. Weighted-vote relational neighbor classifier
and link-based classification are two popular classification algorithms on net-
worked data. Since local attributes/features are not available in our problem, we
use the network-only derivative of the link-based classifier (nLB). Following [11],
nLB creates a feature vector for each node based on neighboring information.

2 http://www.informatik.uni-trier.de/∼ley/db/
3 The data set is available at www.cs.illinois.edu/homes/mingji1/DBLP four area.zip

for sharing and experiment repeatability.
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Note that none of the algorithms above can be directly applied to heteroge-
neous information networks. In order to make all the algorithms comparable,
we can transform a heterogenous information network into a homogeneous one
in two ways: (1) disregard the type differences between objects and treat all of
them as the same type; or (2) extract a homogeneous sub-network on one single
type of objects, if that object type is partially labeled. We try both approaches
in the accuracy study. The open-source implementation of NetKit-SRL4 [11] is
employed in our experiments.

5.3 Accuracy Study

In this experiment, we choose labels on both authors and papers to test the clas-
sification accuracy. In order to address the label scarcity problem, we randomly
choose (a%, p%) = [(0.1%, 0.1%), (0.2%, 0.2%), . . . , (0.5%, 0.5%)] of authors and
papers, and use their label information for transductive classification. For each
given (a%, p%), we average the results over 10 random selections. Note that the
very small percentage of labeled objects here are likely to be disconnected, so we
may not even be able to extract a fully labeled sub-network for training, making
many state-of-the-art algorithms inapplicable.

Since the homogeneous LLGC algorithm just has one α and one λ, only the
ratio α

λ matters in the model selection. The α
λ is set by searching the grid

{0.01, 0.05, 0.1, 0.5, 1, 5, 10}, where the best results are obtained by α
λ = 0.5.

For GNetMine, we do not treat any object/link type as particularly important
here and use the same set of parameters as LLGC, i.e., αi = 0.1, λij = 0.2,
∀i, j ∈ {1, . . . ,m}. This may not be the best choice, but it is good enough to
show the effectiveness of GNetMine. As label information is given on authors
and papers, the results on conferences of wvRN, nLB and LLGC can only be
obtained by disregarding the type differences between objects and links, denoted
by (A-C-P-T). While classifying authors and papers, we also tried constructing
homogeneous author-author (A-A) and paper-paper (P-P) sub-networks in differ-
ent ways, where the best results presented for authors are given by the co-author
network, and the best results for papers are generated by linking two papers if
they are published in the same conference. We show the classification accuracy
on authors, papers and conferences in Tables 2, 3 and 4, respectively.

When classifying authors and papers, it is interesting to notice that the perfor-
mances of wvRN and nLB on the author-author and paper-paper sub-networks
are better than working on the whole heterogeneous information network, veri-
fying the importance of working with homogeneous data for such homogeneous
relational classifiers. However, the transformation from the original heteroge-
neous network to the homogeneous sub-network causes some information loss,
as discussed before. And only one type of label information can be used in the
homogeneous sub-network, even if the prior knowledge of another type of objects
is available.

When the entire heterogeneous information network (A-C-P-T) is taken into
consideration, the task actually becomes more challenging, since the total
4 http://www.research.rutgers.edu/∼sofmac/NetKit.html
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Table 2. Comparison of classification accuracy on authors (%)

(a%, p%) of authors
and papers labeled

nLB
(A-A)

nLB
(A-C-P-T)

wvRN
(A-A)

wvRN
(A-C-P-T)

LLGC
(A-A)

LLGC
(A-C-P-T)

GNetMine
(A-C-P-T)

(0.1%, 0.1%) 25.4 26.0 40.8 34.1 41.4 61.3 82.9
(0.2%, 0.2%) 28.3 26.0 46.0 41.2 44.7 62.2 83.4
(0.3%, 0.3%) 28.4 27.4 48.6 42.5 48.8 65.7 86.7
(0.4%, 0.4%) 30.7 26.7 46.3 45.6 48.7 66.0 87.2
(0.5%, 0.5%) 29.8 27.3 49.0 51.4 50.6 68.9 87.5

Table 3. Comparison of classification accuracy on papers (%)

(a%, p%) of authors
and papers labeled

nLB
(P-P)

nLB
(A-C-P-T)

wvRN
(P-P)

wvRN
(A-C-P-T)

LLGC
(P-P)

LLGC
(A-C-P-T)

GNetMine
(A-C-P-T)

(0.1%, 0.1%) 49.8 31.5 62.0 42.0 67.2 62.7 79.2
(0.2%, 0.2%) 73.1 40.3 71.7 49.7 72.8 65.5 83.5
(0.3%, 0.3%) 77.9 35.4 77.9 54.3 76.8 66.6 83.2
(0.4%, 0.4%) 79.1 38.6 78.1 54.4 77.9 70.5 83.7
(0.5%, 0.5%) 80.7 39.3 77.9 53.5 79.0 73.5 84.1

Table 4. Comparison of classification accuracy on conferences (%)

(a%, p%) of authors
and papers labeled

nLB
(A-C-P-T)

wvRN
(A-C-P-T)

LLGC
(A-C-P-T)

GNetMine
(A-C-P-T)

(0.1%, 0.1%) 25.5 43.5 79.0 81.0
(0.2%, 0.2%) 22.5 56.0 83.5 85.0
(0.3%, 0.3%) 25.0 59.0 87.0 87.0
(0.4%, 0.4%) 25.0 57.0 86.5 89.5
(0.5%, 0.5%) 25.0 68.0 90.0 94.0

number of objects rises to 14376 (papers)+20 (conferences)+14475 (authors)+
8920 (terms) = 37791, out of which at most (14376 (papers)+14475 (authors))×
0.5%/37791 = 0.4% objects are labeled. Similar results have been reported [11]
that when the percentage of labeled objects is less than 20%, the classification
accuracy can drop below random guess (here 25%). Therefore, wvRN and nLB
perform less well due to the lack of labels. And increasing the label ratio from
0.1% to 0.5% does not make a big difference in improving the accuracy of nLB.

Overall, GNetMine performs the best on all types of objects via learning from
labeled authors and papers. Even though the parameters for all types of objects
and links are set to the same values, GNetMine still outperforms its homogeneous
reduction, LLGC, by preserving consistency on each subgraph corresponding to
each type of links separately and minimizing the aggregated error, thus modeling
the heterogenous network structure in a more organized way.
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5.4 Model Selection

The αi’s and λij ’s are essential parameters in GNetMine which control the rela-
tive importance of different terms. We empirically set all the αi’s as 0.1, and all
the λij ’s as 0.2 in the previous experiment. In this subsection, we try to study
the impact of parameters on the performance of GNetMine. Since labels are
given on authors and papers, the αi associated with authors (denoted by αa)
and papers (denoted by αp), as well as the λij associated with the author-paper
relationship (denoted by λpa) are empirically more important than other param-
eters. So we fix all the other parameters and let αa, αp and λpa vary. We also
change α and λ in LLGC accordingly. Figure 2 shows the average classification
accuracy on three types of objects (author, paper, conference) as a function of
the parameters, with (a%, p%) = (0.5%, 0.5%) authors and papers labeled.
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Fig. 2. Model Selection when (0.5%, 0.5%) of authors and papers are labeled

It can be observed that over a large range of parameters, GNetMine achieves
significantly better performance than all the other algorithms, including its ho-
mogeneous reduction, LLGC, with the parameters varying the same way. It is
interesting to note that the accuracy curve of αa is different from that of αp,
indicating that authors and papers do play different roles in the classification
process. Generally, the performance of GNetMine with varying αp is more stable
than that with varying αa. From the accuracy curve of λpa, it can be seen that
setting λpa larger than all other λij ’s (which are set to 0.2) improves the accu-
racy. This is because that increasing λpa enhances the knowledge propagation
between the two types of labeled data, which is beneficial.

Overall, the parameter selection will not critically affect the performance of
GNetMine. And if the user has some knowledge about the importance of certain
types of links, the parameters can be adjusted accordingly to model the special
characteristics of the network.

6 Conclusions

In this paper, we develop a novel graph-based regularization framework to ad-
dress the transductive classification problem on heterogeneous information
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networks. We propose that different types of objects and links should be treated
separately due to different semantic meanings, which is then proved by both the-
ory and practice. By applying graph regularization to preserve consistency over
each relation graph corresponding to each type of links separately and minimiz-
ing the aggregated error, we make full use of the multi-typed link information
to predict the class label for each object. In this way, our framework can be gen-
erally applied to heterogeneous information networks with an arbitrary schema
consisting of a number of object/link types. Experiments on the real DBLP data
set illustrate the superiority of our method over existing algorithms.

The presented framework classifies the unlabeled data by labeling some ran-
domly selected objects. However, the quality of labels can significantly influence
the classification results, as observed in many past studies. In the future, we plan
to automatically detect the most informative objects, which can lead to better
classification quality if they are labeled. Objects that will potentially have high
ranks or lie in the centrality of sub-networks might be good candidates.
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Abstract. Typical structured learning models consist of a regression
component of the explanatory variables (observations) and another
regression component that accounts for the neighboring states. Such
models, including Conditional Random Fields (CRFs) and Maximum
Margin Markov Network (M3N), are essentially Markov random fields
with the pairwise spatial dependence. They are effective tools for model-
ing spatial correlated responses; however, ignoring the temporal correla-
tion often limits their performance to model the more complex scenarios.
In this paper, we introduce a novel Temporal Maximum Margin Markov
Network (TM3N) model to learn the spatial-temporal correlated hidden
states, simultaneously. For learning, we estimate the model’s parameters
by leveraging on loopy belief propagation (LBP); for predicting, we fore-
cast hidden states use linear integer programming (LIP); for evaluation,
we apply TM3N to the simulated datasets and the real world challenge
for occupancy estimation. The results are compared with other state-of-
the-art models and demonstrate superior performance.

1 Introduction

Traditional Markov random field models concentrate on either the spatial de-
pendence or the temporal correlation. Lafferty et al. [6] developed a statistical
framework, Conditional Random Fields (CRFs), which accounts for spatial de-
pendence, in addition to the explanatory variables (observations). Later, Taskar
[14] extended the Support Vector Machine (SVM) to the Maximum Margin
Markov Network (M3N), which has the same modeling capacity of the CRFs
but can be computed more efficiently. Similar models considering spatial de-
pendence include, the Structured SVM [15] and the Maximum Margin Training
[12]. All of these models aim to combine spatial dependence and the information
from observations for a single end task, multivariate classification. They have
been successfully applied to problems like optical character recognition [10], ob-
ject detection [1] and scene understanding [4]. However, these models overlook
the state correlations over time, hence, are insufficient to handle data with strong
temporal pattern.

On the other hand, temporal correlated models has been developed over the
decades, models including Kalman filter [5], HMM [17] have been carefully stud-
ied by the optimization and control community. Successful applications includ-
ing time series forecasting [3], speech recognition [11] and behavior classification

J.L. Balcázar et al. (Eds.): ECML PKDD 2010, Part I, LNAI 6321, pp. 587–600, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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Fig. 1. Graphical model of CRFs and M3N. Xi and Yi correspond to the local ob-
servations and their labels. Two dashed ovals encompass [X5, Y5] and [Y1,Y2], which
correspond to a unary feature and a pairwise Markovian spatial feature, respectively.

[16]. These models are well known for their capability of capturing hidden tem-
poral correlations; modeling the unknown state process from observations made
in noisy environments. However, they ignore the structural correlations in the
environment, which oftentimes hurt their performance.

Clearly, both temporal correlated models and spatial dependent models have
limitations. [9] thus advocated a variational inference method for switching Lin-
ear Dynamical system (SLDS) that learns different dynamical processes at vari-
ous time ticks; [7] extended this work to combine HMM and LDS with tractable
computation. However, these methods treat temporal and spatial (structural)
information once at a time; they fail to provide a comprehensive interface to
model the temporal and spatial correlated real-world scenarios.

To close the gap, we propose a novel model that considers spatial correlations
aggregated over time for tractable inference. The proposed model has advan-
tages over models concentrating on either aspect, as the temporal and struc-
tural information are oftentimes complementary. We intend to provide a princi-
pled approach which accounts for spatial dependence and temporal correlations,
simultaneously.

The remaining of the paper is organized as follows. In Section 2, we review the
spatial-dependent structured learning framework. In Section 3, we suggest the
spatial-temporal correlated framework extending the existing works. In Section
4, we instantiate the framework to propose a novel model: Temporal Maximum
Margin Markov Network (TM3N). In Section 5, we introduce algorithms for
estimating model parameters, leveraging on loopy belief propagation. In Section
6, we propose a linear integer programming interface for predicting hidden states.
In Section 7, the TM3N model is applied to both the simulated datasets and a
real world building occupancy estimation challenge. We compare the results with
other state of the arts methods. Finally, in Section 8, we conclude the paper.

2 Overview
2.1 Notation

We summarize the basic notation of this paper in the following table.
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Table 1. Summary of the notation

2.2 Backgrounds

We first summarize the framework that encompasses spatial dependent models
on a regular or irregular lattice [6, 13]. Define s1, . . . , sn to be the sites on a spatial
lattice. For notational convenience, let j ∼ i denote j ∈ Ni, where Ni={j: sj

is a neighbor of si} defines the neighbors of the site si. Let Y1, . . . , Yn denote
hidden states on the lattice, where Yi = Y (si) ∈ (1, . . . , C), and C is the number
of classes. The joint distribution of Y = (Y1, . . . , Yn)′ can be formulated as:

pθ(X,Y) ∝ exp

⎧⎨⎩
n∑

i=1

p∑
k=1

θkϕ(Xk,i, Yi) +
∑
j∼i

θijϕ(Yi, Yj)

⎫⎬⎭ , (1)

pθ(Y|X) =
1

Zθ(X)
exp

⎧⎨⎩
n∑

i=1

p∑
k=1

θkϕ(Xk,i, Yi) +
∑
j∼i

θijϕ(Yi, Yj)

⎫⎬⎭ , (2)

where

Zθ(X) =
∑
Y

exp{
n∑

i=1

p∑
k=1

θkϕ(Xk,i, Yi) +
∑
j∼i

θijϕ(Yi, Yj)} (3)

is called the partition function; Xk,i = Xk(si) denotes the k-th explanatory
variable at site si; θk denotes the k-th regression coefficients correspond to the
feature function ϕ(Xk,i, Yi), with k = 1, . . . , p; θij denotes the spatial-dependent
regression coefficients for the i-th and j-th sites so that θij = θji and θij ≥ 0 if
j ∼ i.

Such model relates a discrete valued response variable to a hidden state by two
regression components; and it is capable of estimating the probability of hidden
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states at a given site; and predicting a certain outcome at an unsampled site.
However, this formulation ignores the fact that observations are oftentimes made
repeatedly over time and past states on the same spatial lattice may contribute
to the states in a future time tick. That is, for a given location si at a given
time tick t, the state is Y (si, t) = Yi,t⊥ (Yi,t−1 ∪ {Yj,t}j∼Ni), where i = 1, . . . , n
and t = 1, 2, . . . . To close the gap, we will extend the model to include temporal
correlations.

3 Spatial-Temporal Structured Model

We generalize the previous framework to include an additional temporal com-
ponent. With the additional regression term, the new framework is capable of
modeling: information carried by observations, spatial dependence at fixed time
tick, and temporal correlations of the hidden states.

Consider a discrete valued spatial-temporal process {Yi,t : i = 1, . . . , n, t =
1, 2, . . .}, where Yi,t = Y (si, t) ∈ (1, . . . , C) corresponds to the i-th site si at
the time tick t; i = 1, . . . , n and t = 1, 2, . . . . For a given time tick t, let Yt =
(Y1,t, . . . , Yn,t)′ denote the discrete valued hidden states on a graph structure
{(si), (si × sj)} |ni,j=1. We model {Yt : t = 1, 2, . . .} by a n-dimensional Markov
chain with the following transition probability:

pθ(Yt|Yt−1) = q(Yt|Yt−1)/GX. (4)

Here GX is a normalization constant and,

q(Yt|Yt−1) = exp

⎧⎨⎩
n∑

i=1

p∑
k=1

θ1kϕ
1(Xk,i,t, Yi,t) +

∑
j∼i

θ2ij,tϕ
2(Yi,t, Yj,t)

+
n∑

i=1

θ3it,t−1ϕ
3(Yi,t, Yi,t−1)

}
, (5)

where Xk,i,t = Xk(si, t) denotes the k-th explanatory variable at the site si

and the time tick t; θk is the linear regression coefficients corresponding to
explanatory feature ϕ1(Xk,i,t, Yi,t), k = 1, . . . , p; θ2ij,t represent the spatial re-
gression coefficients. The difference between the Equation 5 and the Equation
2 is the additional parameters θ3it,t−1 that represent the temporal coefficients.
When θit,t−1 = 0, there is no correlation over time and the Markov network of
{Yt} reduces to a sequence of independent random vectors, each represents a
set of spatially dependent observations at a given time tick. Clearly, the new
framework incorporates the previous one described in Section 2 as pθ(Yt|Yt−1)
reduces to pθ(Yt).

On the other hand, when θit,t−1 �= 0, the framework considers state correla-
tions over time; the magnitude of θit,t−1 is related to the mean difference between
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two consecutive time ticks of the same site. To simplify the representations,
we abbreviate the model parameters by θ =

(
{θ1}, {θ2}, {θ3}

)′
; model features

by ψ(Xt,Yt,Yt−1) =
(
{ϕ1(Xk,i,t, Yi,t)}, {ϕ2(Yi,t, Yj,t)}, {ϕ3(Yi,t, Yi,t−1)}

)′
; and

observations from T time points by Y1, . . . ,YT , where Yt = (Y1,t, . . . , Yn,t)
′
,

t = 1, . . . , T .

(a) Structural Model (b) Temporal Model

(c) Temporal-Structural Model

Fig. 2. (a) Typical spatial dependent model - first order Markov network: φi(Yi) =
exp

{∑n
i=1

∑p
k=1 θkϕ(Xk,i, Yi)

}
correspond to node potentials, φi,i+1(Yi, Yi+1) =

exp
{∑

j∼i θijϕ(Yi, Yj)
}

correspond to spatial edge potentials. (b) Typical temporal

correlated model - first order Markov chain: φi(Yi) = exp
{∑n

i=1

∑p
k=1 θkϕ(Xk,i, Yi)

}
correspond to node potentials, φt−1,t(Yi) = exp

{∑n
i=1 θ3

it,t−1ϕ
3(Yi,t, Yi,t−1)

}
corre-

spond to temporal edge potentials. (c) We propose a new framework that generalizes
both spatial dependent models and temporal correlated models. For illustration pur-
pose, we only show correlated states of two consequent time ticks but the framework
indeed depicts a gigantic network over time. Thus, traditional approaches such as CRFs
and M3N fail to solve it with tractable computation.

The equation 5 represents a general framework considering spatial-temporal
correlations, which generalizes both temporal correlated models and spatial de-
pendent models, as indicated by Figure 2. However, there are more states to be
considered together in the new framework due to the spatial and temporal cou-
pling. Thus, traditional solutions such as constructing a gigantic CRFs network
would be computationally intractable.
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4 Temporal Maximum Margin Markov Network

There are two typical tasks in a machine learning problem like Equation 5:
learning and predicting. For learning, we want to estimate parameters θ so that

hθ(Xt) = argmaxYθ
′ψ(Xt,Y, Ŷt−1) ≈ Ŷt, ∀t, (6)

where Ŷt is the ground-truth states. For predicting, we would like to infer the
most likely states

Y∗
t+1 = argmaxYθ

′ψ(Xt+1,Y, Ŷt), (7)

given the parameter θ and the novel observation Xt+1 and past states Ŷt. We will
now describe a convex instantiation of the spatial-temporal correlated framework
to handle both tasks.

First, we need to measure the error of the approximation h(·) using a loss
function �. Here we use a Hamming distance error measurement �t(Yt) to in-
dicate the number of variables predicted incorrectlys, which essentially measure
the loss on the label sequences,

�t(Yt) =
∑

i

Δ(Yi,t, Ŷi,t) and Δ(Yi,t, Ŷi,t) =

{
1 Yi,t �= Ŷi,t

0 Yi,t = Ŷi,t

.

We adapt the hinge upper bound �̄(hθ(Xt)) on the loss function for structured
classification inspired by max-margin criterion:

�̄t(hθ(Xt)) = max
Yt

[
θ′ψ(Xt,Yt, Ŷt−1)) + �t(Yt)

]
− θ′ψ(Xt, Ŷt, Ŷt−1)) (8)

≥ �t(hθ(Xt)), (9)

where �̄t(hθ(Xt)) = �̄(hθ(Xt), Ŷt) and �t(hθ(Xt)) = �(hθ(Xt), Ŷt). With this
upper bound, the min-max formulation for structured classification problem is
analogous to SVM,

min
θ,Yt

λ

2
||θ||2 +

1
T

T∑
t=1

ξt (10)

s.t.
〈
θ, Φ(Xt,Yt, Ŷt−1, Ŷt)

〉
≥ �̄(Yt, Ŷt)− ξt, ∀t, ∀Yt, (11)

where Φ(Xt,Yt, Ŷt−1, Ŷt) = ψ(Xt, Ŷt, Ŷt−1)− ψ(Xt,Yt, Ŷt−1). This formula-
tion incorporates the “maximum margin” criteria. We can interpret

M =
1
||θ||

〈
θ, Φ(Xt,Yt, Ŷt−1, Ŷt)

〉
(12)

as the margin of the state configuration Ŷt over another state configuration Yt.
Assuming ξi are all zeros (because λ is very small), the constraints enforce,

θ′
(
ψ(Xt, Ŷt, Ŷt−1)− ψ(Xt,Yt, Ŷt−1)

)
≥ �̄(Yt, Ŷt), (13)
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so minimizing ||θ||2 essentially maximizes the smallest of such margins, scaled by
the loss �i(Yt, Ŷt). The above formulation is a standard QP and can be solved
use optimization packages, but it is exponential in the size and computation
is generally prohibitive. Another way to express this problem is the following
representation,

min
θ,Yt

λ

2
||θ||2 +

1
T

T∑
t=1

ξt (14)

s.t.θ′ψ(Xt, Ŷt, Ŷt−1) + ξt ≥ max
Yt

[
θ′ψ(Xt,Yt, Ŷt−1)) + �t(Yt)

]
, ∀t, (15)

which is a convex quadratic program in θ, since

max
Yt

[
θ′ψ(Xt,Yt, Ŷt−1)) + �t(Yt)

]
, (16)

is convex in θ. It might be easier to interpret Equation 14 in its alternative
representation Equation 17 by eliminating the constraints,

min
θ,Yt

λ

2
||θ||2 +

1
T

T∑
i=1

{
max
Yt

[
θ′ψ(Xt,Yt, Ŷt−1)) + �t(Yt)

]
− θ′ψ(Xt, Ŷt, Ŷt−1)

}
,

(17)
careful readers might notice that θ′ψ(Xt, Ŷt, Ŷt−1) is invariant to Yt and
we can run the algorithm in two separate steps: first, fix θ and optimize
maxYt

[
θ′ψ(Xt,Yt, Ŷt−1)) + �t(Yt)

]
; second, fix Yt obtained in the first step

to calculate θ that minimize Equation 17. The procedure is similar to the
Expectation-Maximization algorithm and we are guaranteed not to increase the
objective function at each step.

5 Learning

Recall the objective in Equation 17 is a convex function, an intuitive way to
estimate its parameters θ is to use a gradient descent approach. In this case, the
gradients only depends on the most violated state configuration,

Y∗
t = argmaxYt

(
θ′ψ(Xt,Yt, Ŷt−1)) + �t(Yt)

)
, (18)

which can be computed as:

g(θ) = λθ +
1
T

T∑
i=1

(
ψ(Xt,Y∗

t , Ŷt−1)− ψ(Xt, Ŷt, Ŷt−1)
)
, (19)

the following algorithm thus summarizes the procedure of gradient optimization,
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Algorithm 1. Subgraident Optimization
Input: training data D = {(Xt,Yt)}|Tt=1, regularization parameter λ, step size σ,
tolerance ε, number of iterations T
Output: parameter vector θ

1: Initialize θ ← 0, t ← 1
2: repeat
3: for t = 1 to T do
4: Set violation function

H(Yt) = θ′ψ(Xt,Yt, Ŷt−1)) + �t(Yt) − θ′ψ(Xt, Ŷt, Ŷt−1)
5: Find most violated label for (Xt,Yt) : Y∗

t = arg maxYt
H(Yt)

6: end for
7: Compute g(θ), update θ(t) ← θ(t−1) − σg(θ).
8: Update t ← t + 1
9: until t ≥ T or MSE(||θ(t)|| − ||θ(t−1)||) ≤ ε

A critical part of Algorithm 1 is to compute the most violated constraint at
each time step efficiently. The exact inference of this step is usually intractable
as irregular lattices often involve loops that cannot be handled by deterministic
algorithms in polynomial time.To this end, we leverage on a well established
approximation algorithm, loopy belief propagation (LBP) [8] to solve this. To
use LBP, we define the following potentials:

– Unary potentials represent the impact of local observation in Xt to the
states Yt, this potential function at each site si takes the form,

exp

(
p∑

k=1

θ1kϕ
1(Xk,i,t, Yi,t) + �t(Yi,t)

)
, ∀i, (20)

– Environmental potentials represent the influence between states and over
time, these potential functions take the form,

exp
(
θ2ij,tϕ

2(Yi,t, Yj,t)
)
,∀i, j ∼ i, Structural Potential, (21)

exp
(
θ3it,t−1ϕ

3(Yi,t, Yi,t−1)
)
,∀i, TemporalPotential. (22)

6 Predicting

Now we will introduce our linear integer programming interface for predicting.
The goal is to predict a hidden state as the most likely configuration:

Y∗
T+1 = argmaxYT

(
θ′ψ(XT+1,YT , ŶT )

)
. (23)

Denote Zt = ({zt
i}|ni=1, {zt

ij}|
n,j∼i
i=1 , {zt,t−1

i }|ni=1) as indicator variables at time
t so that: zi(m) = 1 indicates i-th site takes state m, zij(m,n) indicates i and
j-th sites take states m and n, and zt,t−1

i (m,n) = 1 indicates i-th site take
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states m and n at time t and t− 1, respectively. If we factorize Equation 23, the
following linear integer programming interface defines an exact mapping,

max
Zt

∑
i,m

zt
i(m)

[
θ1(·)ϕ

1(X(·),i,t,m)
]

+ (24)

∑
i,j,m,n

zt
ij(m,n)

[
θ2ij,tϕ

2(m,n)
]
+
∑

i

[
θ3it,t−1ϕ

3(m, Ŷi,t−1)
]
,

s.t. zt
i(m) ∈ {0, 1}, zt

ij(m,n) ∈ {0, 1}, (25)∑
m

zt
i(m) = 1, (26)∑

n

zt
ij(m,n) = zt

i(m), (27)∑
m

zt
ij(m,n) = zt

j(n). (28)

The constraint Equation 26 enforces only one state is allocated for each site
si; the constraint equation 27 enforces the structural consistency. Note we assign
zt,t−1

i (m, Ŷi,t−1) = 1, ∀i so that Yi,t is influenced by its previous state Ŷi,t−1of
the same site si. The above linear integer programming is an intractable com-
binatorial problem but we can obtain an approximated solution by relaxing the
binary constraint in Equation 25 to be zt

i(m) ≥ 0, zt
ij(m,n) ≥ 0. A threshold

χ, usually equals to 0.5, is used to discretize the final outputs Zt for predicting
the states.

7 Experiments

7.1 Simulation Results

We use the following temporal-spatial correlated Linear Dynamic System (LDS)
to generate the simulation. This system specifies the hidden state Y i

t , which
depends temporally on the previous state Y i

t−1 and correlates spatially with the
states of the neighboring sites Y j

t , j ∈ N−i.

Y i
t = αY i

t−1 + (1− α)
∑

j∈N−i

βjY j
t + e1, , e1 ∼ N(0, σ2

e1
), (29)

X i
t = AY i

t + e2, , e2 ∼ N(0, σ2
e2

), (30)

where N−i corresponds to the neighboring sites of i; A is a projection vector that
maps hidden states to the observations; X i

t corresponds to the observations at
site i, time tick t; e1 and e2 are the environmental Gaussian noises;α represents
the temporal/spatial trade-off parameter. If α is set to be zero, the simulation
considers no time dependence. Otherwise, if α is set to be one, the simulation
ignores spatial correlations.
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Fig. 3. Model comparison on simulated temporal-spatial correlated data. The X axis
corresponds to the Alpha (temporal/spatial trade-off parameter) value and Y axis
represents the accuracy in percentage. HMM’s performance increases as the tempo-
ral influence becomes larger while CRFs/M3N’s accuracy decreases at the meantime.
TM3N outperforms all these three models and demonstrates its efficacy.

We initialize Y i
t ∼ Uniform(0, 1), βj ∼ Uniform(0, 1) ; set total sites number

N equals to four; specify the error term e1 ∼ N(0, 0.05) and el ∼ N(0, 1); and
let the projection matrix A = [10; 20]. To simulate the hidden states, we use an
approach similar to Gibbs sampling that iteratively samples Y i

t until the system
converges. These simulated states are rounded to be real valued states and the
simulated observations are calculated use Equation 30.

In the experiment, we vary the temporal/spatial trade-off parameter α from
0.1 to 0.8 at an interval of 0.1 to evaluate the performances of four different
models: HMM, M3N, CRF and TM3N. For every α value, we run the simulation
for 50 times and calculate the averaged accuracy. The results are demonstrated
in Figure 3, where the blue curve corresponds to the accuracy of TM3N model
at various α values. Obviously, TM3N shows superior performance comparing
to HMM, CRF and M3N.

7.2 Real World Applications

Recently, buildings began to have sensor networks installed for energy and com-
fort management. The control strategy for lighting, heating ventilation and
air-conditioning (HVAC) can be updated adaptively as needed [2]. For the cost-
efficient operation, understanding occupancy behavior in buildings is becoming
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Fig. 4. Geometric flat view of the office area testbed

crucial problems to success. One specific question is to estimate office occupant
number over the time, which naturally fits our proposed model.

7.2.1 Data Collection
The sensor network is setup in an open plan office space with six rooms and
one kitchen/printer room. It provides offices for two faculty members and ten
Ph.D. students. Since it is an open plan office, the faculties and students have
discussions frequently. The entire indoor environment can be considered very
dynamic. Occupants have different activities such as reading, talking on the
phone, drop-by and discussion.An occupant may leave his own area and go to
other areas, such as printer room, kitchen, and restroom. The physical sensor
network includes a wired CO2 network and a data server. One CO2 sensor is
installed in the center of each office at the nose level (1.1m) above the ground.
To establish ground truth about occupancy information, we use a network of
commercial cameras. Figure 4 shows the geometric view of the test-bed. Note the
CO2 sensors are preferred over the vision sensors because of the privacy reasons,
e.g., we cannot easily distinguish the occupants by the CO2 measurements.

Data collection for this paper was for one continuous period, with a sampling
rate of every one minutes, capturing CO2 measurements and the number of
occupants in four offices. The time period is three weeks from March 17th, 2008 to
April 4th, 2008 excluding weekends. Occupancy data was recorded from 8:00am
to 8:00pm from the four offices (2, 3, 4 and 5). Office 2 and 5 have four Ph.D.
students; office 4 has two graduate students ; and office office 3 have 1 faculty.
We synchronize the measurements from all sensors; and aggregate measurements
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Table 2. Comparison results of the average accuracy in the building occupancy esti-
mation task

for every 10 minutes to predict the averaged occupant numbers in a ten minute
window.

7.2.1 Results and Discussions
We split the data into training and testing: the first week from 3/17 to 3/21
is used as training data; the second and third week from 3/24 to 4/4 are used
as testing. Along with our proposed model, we implement and test CRFs, M3N
and HMM models.

Table 2 summarizes the comparison results of the four different methods.
If we consider only temporal correlations and assume structural independence,
HMM model gives an average accuracy of 36.5% for four offices. Clearly, first
order Markov model is not suffice to capture the dynamics in the environment.
On the other hand, structural models such as CRFs and M3N shows similar
results, although slightly better than HMM, are still unsatisfactory. A significant
improvement in average accuracy is observed when we combine both temporal
and structural influence into a unified model, TM3N. This improvement owns
a big part of its success to the joint modeling of both temporal and structural
information, which oftentimes complement to each other.

To make the figures uncluttered, we only show the prediction results of pro-
posed TM3N model on 3/25/2008. Figure 5 illustrates the results in four offices
from 8am to 8pm. The solid blue curve corresponds to the prediction results of
TM3N approach and the dashed magenta curve corresponds to the ground-truth
value. The X axis show the time tick for every 50 minutes from 8am to 8pm.
The Y axis shows the number of occupants. The estimation accuracies are 0.76,
0.86, 0.74 and 0.67 for office 2, 3, 4 and 5, respectively. As indicated by these
figures, the TM3N occupant estimation results are close to ground-truth, which
shows our method captures the occupancy dynamics quickly.

For the faculty office 3, the occupancy number is usually between zero and one
during the day. For student’s offices, there are much faster changes of occupant
numbers, for example, the occupant number in office 2 and office 5 changes
hourly. These changes are due to the "drop-by" activities of visitors.

In some of those cases, the estimation does not capture it well as the length of
our estimation window is ten minutes while the visitors stay for a few minutes.
However, such abrupt changes usually will not affect the operation of building en-
ergy management systems because these systems such as HVAC cannot response
in high frequencies. Hence, in the practical application, this abrupt change will
be ignored.
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Fig. 5. Occupancy Estimation of 4 offices on March 25. The dashed magenta curve
corresponds to the ground-truth; the solid blue curve corresponds to the estimation
results of TM3N. The states are discrete valued variables, e.g. 0, 1, 2, 3 and 4. We
connect these discrete states for visualization purpose; thus, a sharp jump mismatch
does not mean a large deviation from the ground-truth.

8 Conclusion

This paper presents a maximum margin structured learning model, TM3N to
model temporal-spatial correlated environments. The main goal of this work
is to synthesize information from different perspectives to model real world sys-
tems more faithfully. We demonstrate how the proposed framework incorporates,
generalizes, and extends existing approaches presented in the literature. The ex-
periments show superior performance of proposed model against other state of
the arts approaches in the building occupancy estimation task.
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Abstract. We present an implementation of model-based online rein-
forcement learning (RL) for continuous domains with deterministic tran-
sitions that is specifically designed to achieve low sample complexity. To
achieve low sample complexity, since the environment is unknown, an
agent must intelligently balance exploration and exploitation, and must
be able to rapidly generalize from observations. While in the past a num-
ber of related sample efficient RL algorithms have been proposed, to al-
low theoretical analysis, mainly model-learners with weak generalization
capabilities were considered. Here, we separate function approximation
in the model learner (which does require samples) from the interpolation
in the planner (which does not require samples). For model-learning we
apply Gaussian processes regression (GP) which is able to automatically
adjust itself to the complexity of the problem (via Bayesian hyperpa-
rameter selection) and, in practice, often able to learn a highly accu-
rate model from very little data. In addition, a GP provides a natural
way to determine the uncertainty of its predictions, which allows us to
implement the “optimism in the face of uncertainty” principle used to
efficiently control exploration. Our method is evaluated on four common
benchmark domains.

1 Introduction

In reinforcement learning (RL), an agent interacts with an environment and
attempts to choose its actions such that an externally defined performance mea-
sure, the accumulated per-step reward, is maximized over time. One defining
characteristic of RL is that the environment is unknown and that the agent has
to learn how to act directly from experience. In practical applications, e.g., in
robotics, obtaining this experience means having a physical system interact with
the physical environment in real time. Therefore, RL methods that are able to
learn quickly and minimize the amount of time the robot needs to interact with
the environment until good or optimal behavior is learned, are highly desirable.

In this paper we are interested in online RL for tasks with continuous state
spaces and smooth transition dynamics that are typical for robotic control do-
mains. Our primary goal is to have an algorithm which keeps sample complexity
as low as possible.
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1.1 Overview of the Contribution

To maximize sample efficiency, we consider online RL that is model-based in the
spirit of RMAX [3], but extended to continuous state spaces similar to [1,10,5].
As in RMAX and related methods, our algorithm, GP-RMAX, consists of two
parts: a model-learner and a planner. The model-learner estimates the dynam-
ics of the environment from the sample transitions the agent experiences while
interacting with the environment. The planner is used to find the best possible
action, given the current model. As the predictions of the model-learner become
increasingly more accurate, the actions derived become increasingly closer to
optimal. To control the amount of exploration, the “optimism in the face of un-
certainty” principle is employed which makes the agent visit unexplored states
first. In our algorithm, the model-learner is implemented by Gaussian process
(GP) regression; being non-parametric, GPs give us enhanced modeling flexibil-
ity. GPs allow Bayesian model selection and automatic relevance determination.
In addition, GPs provide a natural way to determine the uncertainty of predic-
tions, which allows us to implement the “optimism in the face of uncertainty”
exploration of RMAX in a principled way. The planner uses the estimated tran-
sition function (as estimated by the model) to solve the Bellman equation via
value iteration on a uniform grid.1

The key point of our algorithm is that we separate the steps estimating a
function from samples in the model-learner from solving the Bellman equation
in the planner. The rationale behind this is that, if the transition function is
relatively simple, it can be estimated accurately from only few sample transi-
tions. On the other hand, the optimal value function, due to the inclusion of
the max operator, often is a complex function with sharp discontinuities. Solv-
ing the Bellman equation, however, does not require actual “samples”; instead,
we must only be able to evaluate the Bellman operator in arbitrary points of
the state space. This way, when the transition function can be learned from
only a few samples, large gains in sample efficiency are possible. Competing
model-free methods, such as fitted Q-iteration [18,8,15] or policy iteration based
LSPI/LSTD/LSPE [12,4,13,11], do not have this advantage, as they need the
actual sample transitions to estimate and represent the value function.

Conceptually, our approach is closely related to Fitted R-MAX, which was
proposed in [10] and uses an instance-based approach in the model-learner, and
related work in [5,1], which uses grid-based interpolation in the model-learner.
The primary contribution of this paper is to use GPs instead. Doings this means
we are willing to trade off theoretical analysis with practical performance. For
example, unlike the recent ARL [1], for which PAC-style performance bounds
could be derived (because of its grid-based implementation of model-learning),
a GP is much better able to handle generalization and as a consequence can
achieve much lower sample complexity.

1 While certainly more advanced methods exist, e.g., [9,14], for our purpose here, a
uniform grid is sufficient as proof of concept.
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1.2 Assumptions and Limitations

Our approach makes the following assumptions (most of which are also made in
related work, even if it is not always explicitly stated):

– Low dimensionality of the state space. With a uniform grid, the number
of grid points for solving the Bellman equation scales exponentially with
the dimensionality. While more advanced methods, such as sparse grids or
adaptive grids, may allow us to somewhat reduce this exponential increase, at
the end they do not break the curse of dimensionality. Alternatively, one can
use nonlinear function approximation; however, despite some encouraging
results, it is unclear as to whether this approach would really do any better
in general applications. Today, breaking the curse of dimensionality is still
an open research problem.

– Discrete actions. While continuous actions may be discretized, in practice,
for higher dimensional action spaces this becomes infeasible.

– Smooth transition function. Performing an action from states that are “close”
must lead to successor states that are “close”. (Otherwise both the gener-
alization in the model learner and the interpolation in the value function
approximation would not work).

– Deterministic transitions. This is not a fundamental requirement of our ap-
proach, since GPs can also learn noisy functions (either due to observation
noise or random disturbances with small magnitude), and the Bellman op-
erator can be evaluated in the resulting predictive distribution. Rather it is
one taken for convenience.

– Known reward function. Assuming that the reward function is known and
only the transition function needs to be learned is what is different from most
comparable work. While it is not a fundamental requirement of our approach
(since we could learn the reward function as well), it is an assumption that
we think is well justified: for one, reward is the performance criterion and
specifies the goal. For the type of control problems we consider here, reward
is always externally defined and never something that is “generated” from
within the environment. Two, reward sometimes is a discontinuous function,
e.g., +1 at the goal state and 0 elsewhere. Which makes it not very amenable
for function approximation.

2 Background: Planning When the Model Is Exact

Consider the reinforcement learning problem for MDPs with continuous state
space, finite action space, discounted reward criterion and deterministic dynam-
ics [19]. In this section we assume that dynamics and rewards are available to the
learning agent. Let state space X be a hyperrectangle in �d (this assumption is
justified if, for example, the system is a motor control task), A be the finite ac-
tion space (assuming continuous controls are discretized), xt+1 = f(xt, at) be the
transition function (assuming that continuous time problems are discretized in
time), and r(x, a) be the reward function. For the following theoretical argument
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Fig. 1. Bilinear interpolation to determine Q(f(ξi, a), a′) in �2

we require that both transition and reward function are Lipschitz continuous in
the actions; i.e., there exist constants Lf , Lr such that ‖f(x, a)− f(x′, a)‖ ≤
Lf ‖x− x′‖, and |r(x, a) − r(x′, a)| ≤ Lr ‖x− x′‖, ∀x, x′ ∈ X , a ∈ A. In addi-
tion, we assume that the reward is bounded, |r(x, a)| ≤ RMAX, ∀x, a. Note that
in practice, while the first condition, continuity in the transition function, is usu-
ally fulfilled for domains derived from physical systems, the second condition,
continuity in the rewards, is often violated (e.g. in the mountain car domain,
reward is 0 in the goal and −1 everywhere else). Despite that we find that in
many of these cases the outlined procedure may still work well enough.

For any state x, we are interested in determining a sequence of actions a0, a1,
a2, . . . such that the accumulated reward is maximized,

V ∗(x) := max
a0,a1,...

{ ∞∑
t=0

γtr(xt, at) | x0 = x, xt+1 = f(xt, at)
}
,

where 0 < γ < 1. Using the Q-notation, whereQ∗(x, a) := r(x, a)+γV ∗(f(x, a)),
the optimal decision policy π∗ is found by first solving the Bellman equation in
the unknown function Q,

Q(x, a) = r(x, a) + γmax
a′

Q(f(x, a), a′) ∀x ∈ X , a ∈ A (1)

to yield Q∗, and then choosing the action with the highest Q-value,

π∗(x) = argmax
a′

Q∗(x, a′).

The Bellman operator T related to (1) is defined by(
TQ
)
(x, a) := r(x, a) + γmax

a′
Q(f(x, a), a′). (2)

It is well known that T is a contraction and Q∗ the unique bounded solution to
the fixed point problem Q(x, a) =

(
TQ
)
(x, a), ∀x, a.
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In order to solve the infinite dimensional problem in (1) numerically, we have
to reduce it to a finite dimensional problem. This is done by introducing a
discretization Γ of X into a finite number of elements, applying the Bellman
operator to only the nodes and interpolating in between.

In the following we will consider a uniform grid Γh with N vertices ξi and
d-dimensional tensor B-spline interpolation of order 1. The solution of (1) is
then obtained in the space of piecewise affine functions.

For a fixed action a′, the value QΓh(z, a′) of any state z with respect to grid
Γh can be written as a convex combination of the vertices ξj of the grid cell
enclosing z with coefficients wij (see Figure 1a). For example, consider the 2-
dimensional case (bilinear interpolation) in Figure 1b. Let z = (x, y) ∈ �2.
To determine QΓh(z, a′), we find the four vertices ξ00, ξ01, ξ10, ξ11 ∈ �2 of the
enclosing cell with known function values qa′

00 := QΓh(ξ00, a′), . . . etc. We then
perform two linear interpolations along the x-coordinate (order invariant) in the
auxilary points x0, x1 to obtain

QΓh(x0, a
′) = (1− λ0)qa′

00 + λ0q
a′
01

QΓh(x1, a
′) = (1− λ0)qa′

10 + λ0q
a′
11

where λ0 := dx/hx (see Figure 1b for a definition of dx, hx, x0, x1). We then
perform another linear interpolation in x0, x1 along the y-coordinate to obtain

QΓh(z, a′) = (1− λ1)(1− λ0)qa′
00 + (1− λ1)λ0q

a′
01 + λ1(1− λ0)qa′

10 + λ1λ0q
a′
11 (3)

where λ1 := dy/hy. Weights wij now correspond to the coefficients in (3). An
analogous procedure applies to higher dimensions.

Let Qa′
be the N×1 vector with entries [Qa′

]i = QΓh(ξi, a′). Let za
1 , . . . , z

a
N ∈

Rd denote the successor state we obtain when we apply the transition function
f to vertices ξi using action a, i.e., za

i := f(ξi, a). Let [wa
i ]j = wa

ij denote the
1×N vector of coefficients for za

i from (3). The Q-value of za
i for any action a′

with respect to grid Γh can thus be written as QΓh(za
i , a

′) =
∑N

j=1[w
a
i ]j [Qa′

]j .
Let W a with rows [wa

i ] be the N ×N matrix of all coefficients. (Note that this
matrix is sparse: each row contains only 2d nonzero entries).

Let Ra be the N × 1 vector of associated rewards, [Ra]i := r(ξi, a). Now we
can use (2) to obtain a fixed point equation in the vertices of the grid Γh,

QΓh(ξi, a) =
(
T ΓhQΓh

)
(ξi, a) i = 1, . . . , N, a = 1, . . . , |A|, (4)

where (
T ΓhQΓh

)
(ξi, a) := r(ξi, a) + γmax

a′
QΓh(f(ξi, a), a′).

Slightly abusing the notation, we can write this more compactly in terms of
matrices and vectors,

T ΓhQΓh := Ra + γmax
a′

{
W aQa′} ∀a. (5)

The Q-function is now represented by |A| N -dimensional vectors Qa′
, each con-

taining the values for the vertices ξi. The discretized Bellman operator T Γh is
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Fig. 2. High-level overview of the GP-RMAX framework

a contraction in �d × A and therefore has a unique fixed point Q∗ ∈ �d × A.
Let function Q∗,Γh : (�d × A) → � be the Q-function obtained by linear in-
terpolation of vector Q∗ along states. The function Q∗,Γh can now be used to
determine (approximately) optimal control actions: for any state x ∈ X , we
simply determine

π∗,Γh(x) = argmax
a′

Q∗,Γh(x, a′).

In order to estimate how well function Q∗,Γh approximates the true Q∗, a poste-
riori estimates can be defined that are based on local errors, i.e. the maximum
of residual in each grid cell. The local error in a grid cell in turn depends on the
granularity of the grid, h, and the modulus of continuity Lf , Lg (e.g., see [9,14]
for details).

3 Our Algorithm: GP-RMAX

In the last section we have seen how, for a continuous state space, optimal
behavior of an agent can be obtained in a numerically robust way, given that
the transition function xt+1 = f(xt, at) is known.2

For model-based RL we are now interested in solving the same problem for the
case that the transition function is not known. Instead, the agent has to interact
with the environment, and only use the samples it observes to compute optimal
behavior. Our goal in this paper is to develop a learning framework where this

2 Remember our working assumption: reward as a performance criterion is externally
given and does not need to be estimated by the agent. Also note that discretization
(even with more advanced methods like adaptive or sparse grids) is likely to be
feasible only in state spaces with low to medium dimensionality. Breaking the curse
of dimensionality is an open research problem.
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number is kept as small as possible. This will be done by using the samples to
learn an estimate f̃(x, a) of f(x, a) and then use this estimate f̃ in place of f in
the numerical procedure outlined in the previous section.

3.1 Overview

A sketch of our architecture is shown in Figure 2. GP-RMAX consists of the
two parts model learning and planning which are interwoven for online learning.
The model-learner estimates the dynamics of the environment from the sample
transitions the agent experiences while interacting with the environment. The
planner is used to find the best possible action, given the current model. As the
predictions of the model-learner become increasingly more accurate, the actions
derived from the planner become increasingly closer to optimal. Below is a high-
level overview of the algorithm:

– Input:
• Reward function r(x, a)
• Discount factor γ
• Performance parameters:

∗ planning and model-update frequency K
∗ model accuracy δM

1 , δM
2 (stopping criterion for model-learning)

∗ discretization of planner N
– Initialize:

• Model M1, Q-function Q1, observed transitions D1

– Loop: t = 1, 2, . . .
• Interact with system:

∗ observe current state xt

∗ choose action at greedy with respect to Qt

at = argmax
a′

Qt(xt, a
′)

∗ execute action at, observe next state xt+1, store transition Dt+1 =
Dt ∪ {xt, at, xt+1}

• Model learning: (see Section 3.2)
∗ only every K steps, and only if Mt is not sufficiently exact (as de-

termined by evaluating the stopping criterion)
· Mt+1 = update model (Mt,Dt+1)
· evaluate stopping criterion (Mt+1,Mt, δ

M
1 , δM

2 )
∗ else

· Mt+1 =Mt

• Planning with model: (see Section 3.3)
∗ only every K steps, and only if Mt is not sufficiently exact (as de-

termined by evaluating the stopping criterion)
· Qt+1 = augmented value iteration (Q�,Mt+1,@r(x, u), γ,N)

∗ else
· Qt+1 = Qt

Next, we will explain in more detail how each of the two functional modules
“model-learner” and “planner” is implemented.
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3.2 Model Learning with GPs

In essence, estimating f̃ from samples is a regression problem. While in the-
ory any nonlinear regression algorithm could serve this purpose, we believe that
GPs are particularly well-suited: (1) being non-parametric means great model-
ing flexibility; (2) setting the hyperparameters can be done automatically (and
in a principled way) via optimization of the marginal likelihood and allows au-
tomatic determination of relevant inputs; and (3) GPs provide a natural way to
determine the uncertainty of its predictions which will be used to guide explo-
ration. Furthermore, uncertainty in GPs is supervised in that it depends on the
target function that is estimated (because of (2)); other methods only consider
the density of the data (unsupervised) and will tend to overexplore if the target
function is simple.

Assume we have observed a number of transitions, given as triplets of state,
performed action, and resulting successor state, e.g., D = {xt, at, xt+1}t=1,2,...

where xt+1 = f(xt, at). Note that f is a d-dimensional function, f(xt, at) =[
f1(xt, at), . . . , fd(xt, at)

]T . Instead of trying to estimate f directly (which cor-
responds to absolute transitions), we try to estimate the relative change xt+1−xt

as in [10]. The effect of each action on each state variable will be treated indepen-
dently: we train multiple univariate GPs and combine the individual predictions
afterwards. Each individual GP ij is trained in the respective subset of data in
D, e.g., GP ij is trained on all xt as input, and x

(i)
t+1 − x

(i)
t as output, where

at = j. Each individual GP ij has its own set of hyperparameters obtained from
optimizing the marginal likelihood.

The details of working3 with GPs can be found in [17]; using GPs to learn
a model for RL was previously also studied in [6] (for offline RL and without
uncertainty-guided exploration). One characteristic of GPs is that their func-
tional form is given in terms of a parameterized covariance function. Here we
use the squared exponential,

k(x, x′; v0, b,θ) = v0 exp
{
−0.5(x− x′)TΩ(x− x′)

}
+ b,

where matrix Ω is either one of the following: (1) Ω = θI (uniform), (2)
Ω = diag(θ1, . . . , θd) (axis aligned ARD), (3) Ω = MkM

T
k (factor analysis).

Scalars v0, b and the (Ω-dependent number of) entries of θ constitute the hy-
perparameters of the GP and are adapted from the training data (likelihood
optimization). Note that variant (2) and (3) implement automatic relevance de-
termination: relevant inputs or linear projections of inputs are automatically
identified, whereby model complexity is reduced and generalization sped up.
3 There is also the problem of implementing GPs efficiently when dealing with a pos-

sible large number of data points. For the lack of space we can only sketch our
particular implementation, see [16] for more detailed information. Our GP imple-
mentation is based on the subset of regressors approximation. The elements of the
subset are chosen by a stepwise greedy procedure aimed at minimizing the error in-
curred from using a low rank approximation (incomplete Cholesky decomposition).
Optimization of the likelihood is done on random subsets of the data of fixed size. To
avoid a degenerate predictive variance, the projected process approximation was used.
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Once trained, for any testpoint x, GP ij provides a distribution over target
values, N (μij(x), σ2

ij(x)), with mean μij(x) and variance σ2
ij(x) (exact formulas

for μ and σ can be found in [17]). Each individual mean μij predicts the change
in the i-th coordinate of the state under the j-th action. Each individual variance
σ2

ij can be interpreted as the associated uncertainty; it will be close to 0 if GP ij

is certain, and close to k(x, x) if it is uncertain (the value of k(x, x) depends on
the hyperparameters of GP ij). Stacking the individual predictions together, our
model-learner produces in summary

f̃(x, a) :=

⎡⎢⎣x
(1)

...
x(d)

⎤⎥⎦+

⎡⎢⎣μ1a(x)
...

μda(x)

⎤⎥⎦ , c(x, a) := max
i=1,...,d

(
normalizeia(σ2

ia)
)
, (6)

where f̃(x, a) is the predicted successor state and c(x, a) the associated un-
certainty (taken as maximum over the normalized per-coordinate uncertainties,
where normalization ensures that the values lie between 0 and 1).

3.3 Planning with a Model

At any time t, the planner receives as input model Mt. For any state x and
action a, model Mt can be evaluated to “produce” the transition f̃(x, a) along
with normalized scalar uncertainty c(x, a) ∈ [0, 1], where 0 means maximally
certain and 1 maximally uncertain (see Section 3.2)

Let Γh be the discretization of the state space X with nodes ξi, i = 1, . . . , N .
We now solve the planning stage by plugging f̃ into the procedure described in
Section 2. First, we compute z̃a

i = f̃(ξi, a), c(ξi, a) from (6) and the associated
interpolation coefficients wa

ij from (3) for each node ξi and action a.
Let Ca denote the N × 1 vector corresponding to the uncertainties, [Ca]i =

c(ξi, a); andRa be theN×1 vector corresponding to the rewards, [Ra]i = r(ξi, a).
To solve the discretized Bellman equation in Eq. (4), we perform basic Jacobi
iteration:

– Initialize [Qa
0 ]i, i = 1, . . . , N , a = 1, . . . , |A|

– Repeat for k = 0, 1, 2, . . .

[Qa
k+1]i = [Ra]i + γmax

a′

⎧⎨⎩
N∑

j=1

wa
ij [Q

a′
k ]j

⎫⎬⎭ ∀i, a (7)

until |Qa
k+1−Qa

k|∞ < tol, ∀a, or a maximum number of iterations is reached.

To reduce the number of iterations necessary, we adapt Grüne’s increasing
coordinate algorithm [9] to the case of Q-functions: instead of Eq. (7), we perform
updates of the form

[Qa
k+1]i = [1− γwa

ii]
−1

⎛⎝[Ra]i + γmax
a′

⎧⎨⎩
N∑

j=1,j �=i

wa
ij [Q

a′
k ]j

⎫⎬⎭
⎞⎠ . (7’)
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In [9] it was proved that Eq. (7’) converges to the same fixed point as Eq. (7), and
it was empirically demonstrated that convergence can occur in significantly fewer
iterations. The exact reduction is problem-dependent, savings will be greater for
small γ and large cells where self-transitions occur (i.e., ξi is among the vertices
of the cell enclosing z̃a

i ).
To implement the “optimism in the face of uncertainty” principle, that is, to

make the agent explore regions of the state space where the model predictions
are uncertain, we employ the heuristic modification of the Bellman operator
which was suggested in [15] and shown to perform well. Instead of Eq. (7’), the
update rule becomes

[Qa
k+1]i = (1− [Ca]i)[1 − γwa

ii]
−1

⎛⎝[Ra]i + γmax
a′

⎧⎨⎩
N∑

j=1,j �=i

wa
ij [Q

a′
k ]j

⎫⎬⎭
⎞⎠+

+ [Ca]iVMAX (7”)

where VMAX := RMAX/(1 − γ). Eq. (7”) can be seen as a generalization of
the binary uncertainty in the original RMAX paper to continuous uncertainty;
whereas in RMAX a state was either “known” (sufficiently explored), in which
case the unmodified update was used, or “unknown” (not sufficiently explored),
in which case the value VMAX was assigned, here the shift from exploration to
exploitation is more gradual.

Finally we can take advantage of the fact that the planning function will be
called many times during the process of learning. Since the discretization Γh is
kept fixed, we can reuse the final Q-values obtained in one call to plan as initial
values for the next call to plan. Since updates to the model often affect only
states in some local neighborhood (in particular in later stages), the number of
necessary iterations in each call to planning will be further reduced.

A summary of our model-based planning function is shown below.

– Input:
• Model Mt, initial [Qa

0 ]i, i = 1, . . . , N , a = 1, . . . , |A|
– Static inputs:

• Grid Γh with nodes ξ1, . . . , ξN , discount factor γ, reward function r(x, a)
evaluated in nodes giving [Ra]i

– Initialize:
• Compute z̃a

i = f̃(ξi, a) and [Ca]i from Mt (see Eq. (6))
• Compute weights wa

ij for each z̃a
i (see Eq. (3))

– Loop:
• Repeat update Eq. (7”) until |Qa

k+1 −Qa
k|∞ < tol, ∀a, or the maximum

number of iterations is reached.

4 Experiments

We now examine the online learning performance of GP-RMAX in various well-
known RL benchmark domains.
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4.1 Description of Domains

In particular, we choose the following domains (where a large number of com-
parative results is available in the literature):

Mountain car: In mountain car, the goal is to drive an underpowered car from
the bottom of a valley to the top of one hill. The car is not powerful enough to
climb the hill directly, instead it has to build up the necessary momentum by
reversing throttle and going up the hill on the opposite side first. The problem
is 2-dimensional, state variable x1 ∈ [−1.2, 0.5] describes the position of the car,
x2 ∈ [−0.07, 0.07] its velocity. Possible actions are a ∈ {−1, 0,+1}. Learning is
episodic: every step gives a reward of −1 until the top of the hill at x1 ≥ 0.5
is reached. Our experimental setup (dynamics and domain specific constants) is
the same as in [19], with the following exceptions: maximal episode length is 500
steps, discount factor γ = 0.99 and every episode starts with the agent being at
the bottom of the valley with zero velocity, xstart = (−π/6, 0).

Inverted pendulum: The next task is to swing up and stabilize a single-link
inverted pendulum. As in mountain car, the motor does not provide enough
torque to push the pendulum up in a single rotation. Instead, the pendulum
needs to be swung back and forth to gather energy, before being pushed up and
balanced. This creates a more difficult, nonlinear control problem. The state
space is 2-dimensional, θ ∈ [−π, π] being the angle, θ̇ ∈ [−10, 10] the angular
velocity. Control force is discretized to a ∈ {−5,−2.5, 0,+2.5,+5} and held
constant for 0.2sec. Reward is defined as r(x, a) := −0.1x2

1 − 0.01x2
2 − 0.01a2.

The remaining experimental setup (equations of motion and domain specific
constants) is the same as in [6]. The task is made episodic by resetting the system
every 500 steps to the initial state xstart = (0, 0). Discount factor γ = 0.99.

Bicycle: Next we consider the problem of balancing a bicycle that rides at a
constant speed [8],[12]. The problem is 4-dimensional: state variables are the
roll angle ω ∈ [−12π/180, 12π/180], roll rate ω̇ ∈ [−2π, 2π], angle of the handle
bar α ∈ [−80π/180, 80π/180], and the angular velocity α̇ ∈ [−2π, 2π]. The ac-
tion space is inherently 2-dimensional (displacement of rider from the vertical
and turning the handlebar); in RL it is usually discretized into 5 actions. Our
experimental setup so far is similar to [8]. To allow a more conclusive compar-
ison of performance, instead of just being able to keep the bicycle from falling,
we define a more discriminating reward r(x, a) = −x2

1, and r(x, a) = −10 for
|x1| < 12π/180 (bicycle has fallen). Learning is episodic: every episode starts in
one of two (symmetric) states close to the boundary from where recovery is im-
possible: xstart = (10π/180, 0, 0, 0) or xstart = (−10π/180, 0, 0, 0), and proceeds
for 500 steps or until the bicycle has fallen. Discount factor γ = 0.98.

Acrobot: Our final problem is the acrobot swing-up task [19]. The goal is to
swing up the tip of the lower link of an underactuated two-link robot over a
given height (length of first link). Since only the lower link is actuated, this is a
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rather challenging problem. The state space is 4-dimensional: θ1 ∈ [−π, π], θ̇1 ∈
[−4π, 4π], θ2 ∈ [−π, π], θ̇2 ∈ [−9π, 9π]. Possible actions are a ∈ {−1,+1}. Our
experimental setup and implementation of state transition dynamics is similar
to [19]. The objective of learning is to reach a goal state as quickly as possible,
thus r(x, a) = −1 for every step. The initial state for every episode is xstart =
(0, 0, 0, 0). An episode ends if either a goal state is reached or 500 steps have
passed. The discount factor was set to γ = 1, as in [19].

4.2 Results

We now apply our algorithm GP-RMAX to each of the four problems. The
granularity of the discretization Γh in the planner is chosen such that for the 2-
dimensional problems, the loss in performance due to discretization is negligible.
For the 4-dimensional problems, we ran offline trials with the true transition
function to find the best compromise of granularity and computational efficiency.
As result, we use a 100 × 100 grid for mountain car and inverted pendulum, a
20 × 20 × 20 × 20 grid for the bicycle balancing task, and a 25 × 25 × 25 × 25
grid for the acrobot. The maximum number of value iterations was set to 500,
tolerance was < 10−2. In practice, running the full planning step took between
0.1-10 seconds for the small problems, and less than 5 min for the large problems
(where often more than 50% of the CPU time was spent on computing the GP
predictions in all the nodes of the grid). Using the planning module offline with
the true transition function, we computed the best possible performance for each
domain in advance. We obtained: mountain car (103 steps), inverted pendulum
(-18.41 total cost), bicycle balancing (-3.49 total cost), and acrobot (64 steps).4

For the GP-based model-learner, we set the maximum size of the subset to
1000, and ICD tolerance to 10−2. The hyperparameters of the covariance were
not manually tuned, but found from the data by likelihood optimiziation.

Since it would be computationally too expensive to update the model and
perform the full planning step after every single observation, we set the plan-
ning frequency K to 50 steps. To gauge if optimal behavior is reached and
further learning becomes unnessecary, we monitor the change in the model pre-
dictions and uncertainties between successive updates and stop if both fall below
a threshold (test points in a fixed coarse grid).

We consider the following variations of the base algorithm: (1)GP-RMAXexp,
which actively explores by adjusting the Bellman updates in Eq. (7”) according
to the uncertainties produced by the GP prediction; (2) GP-RMAXgrid, which
does the same but uses binary uncertainty by overlaying a uniform grid on top
of the state-action space and keeping track which cells are visited; and (3) GP-

RMAXnoexp, which does not actively explore (see Eq. (7’)). For comparison,
we repeat the experiments using the standard online model-free RL algorithm
Sarsa(λ) with tile coding [19], where we consider two different setup of the tilings
(one finer and one coarser).

4 Note that 64 steps is not the optimal solution, [2] demonstrated swing-up with 61
steps.
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Fig. 3. Learning curves of our algorithm GP-RMAX (left column) and the standard
method Sarsa(λ) with tile coding (right column) in the four benchmark domains. Each
curve shows the online learning performance and plots the total reward as a function of
the episode (and thus sample complexity). The black horizontal line denotes the best
possible performance computed offline. Note the different scale of the x-axis between
GP-RMAX and Sarsa.
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Fig. 4. Model-learning and propagation of “knownness” of state-action pairs with GPs.
The top row shows the value function that results from applying value iteration with the
update modified for uncertainty, see Eq. (7”). The bottom row shows the actual samples
(red circles) and the induced uncertainty of all states: black is perfectly “known”, white
is perfectly “unknown”. Panels (a) and (b) show that with GPs certainty of model
predictions is rapidly propagated through the whole state space, leading to strong
generalization and targeted exploration. This in turn allows the optimal value function
to be learned from very few sample transitions: panel (b) shows that after only 120
transitions (still in the middle of the very first episode) the approximated value function
already resembles the true one [19]. Panel (c) shows the same for a counter-based binary
uncertainty; most of the grid cells are unvisited and the thus the approximate value
function is zero in most parts of the state space.

Figure 3 shows the result of online learning with GP-RMAX and Sarsa. In
short, the graphs show us two things in particular: (1) GP-RMAX learns very
quickly; and (2) GP-RMAX learns a behavior that is very close to optimal. In
comparison, Sarsa(λ) has a much higher sample complexity and does not always
learn the optimal behavior (exception is the acrobot). While direct compari-
son with other high performance RL algorithms, such as fitted value iteration
[18,8,15], policy iteration based LSPI/LSTD/LSPE [12,4,13,11], or other kernel-
based methods [7,6] is difficult, because they are either batch methods or han-
dle exploration in a more ad-hoc way, from the respective results given in the
literature it is clear that for the domains we examined GP-RMAX performs
relatively well.

Examining the plots in more detail, we find that, while GP-RMAXgrid

is somewhat less sample efficient (explores more), GP-RMAXexp and GP-

RMAXnoexp perform nearly the same. Initially, this appears to be in contrast
with the whole point of RMAX, which is efficient exploration guided by the
uncertainty of the predictions. Here, we believe that this behavior can be ex-
plained by the good generalization capabilities of GPs. Figure 4 illustrates model
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learning and certainty propagation with GPs in the mountain car domain (pre-
dicting acceleration as function of state). The state of the model-learner is shown
for two snapshots: after 40 transitions and after 120 transitions. The top row
shows the value function that results from applying value iteration with the up-
date modified for uncertainty, see Eq. (7”). The bottom row shows the observed
samples and the associated certainty of the predictions. As expected, certainty
is high in regions where data was observed. However, due to the generalization
of GPs and data-dependent hyperparameter selection, certainty is also high in
unexplored regions; and in particular it is constant along the y-coordinate. To
understand this, we have to look at the state transition function of the moun-
tain car: acceleration of the car indeed only depends on the position, but not on
velocity. This shows that certainty estimates of GPs are supervised and take the
properties of the target function into account, whereas prior RMAX treatments
of uncertainty are unsupervised and only consider the density of samples to de-
cide if a state is “known”. For comparison, we also show what GP-RMAX with
grid-based uncertainty would produce in the same situation.

5 Summary

We presented an implementation of model-based online reinforcement learning
similar to RMAX for continuous domains by combining GP-based model learn-
ing and value iteration on a grid. Doing so, our algorithm separates the problem
function approximation in the model-learner from the problem function approx-
imation/interpolation in the planner. If the transition function is easier to learn,
i.e., requires only few samples relative to the representation of the optimal value
function, then large savings in sample-complexity can be gained. Related model-
free methods, such as fitted Q-iteration, can not take advantage of this situation.
The fundamental limitation of our approach is that it relies on solving the Bell-
man equation globally over the state space. Even with more advanced discretiza-
tion methods, such as adaptive grids, or sparse grids, the curse of dimensionality
limits the applicability to problems with low or moderate dimensionality. Other,
more minor limitations, concern the simplifying assumptions we made: deter-
ministic state transitions and known reward function. However, these are not
conceptual limitations but rather simplifying assumptions made for the present
paper; they could be easily addressed in future work.
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Gopalkrishnan, Vivekanand I-24
Graepel, Thore II-1
Gretton, Arthur I-264
Grobelnik, Marko III-579
Gunopulos, Dimitrios II-195
Guns, Tias II-467

Hachiya, Hirotaka I-474
Han, Jiawei I-2, I-570, II-35, II-337
Hanczar, Blaise I-490
Hannen, Matthias III-607
Hardoon, David Roi I-328, I-554
Haun, Stefan III-587
Hauskrecht, Milos I-87
Helleputte, Thibault I-522
Helma, Christoph II-353
Herbrich, Ralf II-1
Hernández-Lobato, Daniel I-522
Hernández-Lobato, José Miguel I-506,
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Subašić, Ilija III-619
Sugiyama, Masashi I-474
Sun, Yizhou I-570
Suvitaival, Tommi I-538
Suzuki, Einoshin III-306
Sweeney, Latanya I-587

Tadavani, Pooyan Khajehpour II-19
Tadepalli, Prasad I-344, II-434, III-467
Taghipour, Nima II-369
Teytaud, Olivier III-293
Theodoridis, Yannis III-17
Thiel, Kilian III-587
Thuraisingham, Bhavani II-337
Ting, Kai Ming II-274
Tong, Bin III-306
Tong, Hanghang III-99
Torquati, Massimo I-7
Toussaint, Marc II-178
Toussaint, Yannick III-386
Trasarti, R. III-624
Tsamardinos, Ioannis III-322
Tsang, Ivor W. I-231
Tsatsaronis, George III-611
Turgeon-Boutin, Francis II-162
Tuyls, Karl II-82

Ukkonen, Antti III-338
Uusitalo, Mikko A. III-1

Valler, Nicholas III-99
van Ahee, Gerrit Jan II-82
van der Goot, Erik III-591
Van Gael, Jurgen II-1
van Someren, Maarten I-296
Vaz de Melo, Pedro O.S. III-354
Vazirgiannis, Michalis III-603
Veloso, Adriano II-402
Vembu, Shankar II-243
Verri, Alessandro I-56, II-418
Verscheure, Olivier III-483, III-547
Vert, Jean-Philippe III-515
Viinikanoja, Jaakko III-370
Villa, Silvia II-418
Villerd, Jean III-386
Vovk, Vladimir III-531
Vreeken, Jilles II-321

Wackersreuther, Bianca I-151
Wackersreuther, Peter I-151
Waegeman, Willem I-280, II-499
Wahabzada, Mirwaes III-402
Wang, Hao I-393
Wang, Hua III-451
Wang, Li-Lun II-243
Wang, Pu III-435
Wang, Yuyang III-418
Weninger, Tim II-35
Weston, Jason II-128
Wieczorkowska, Alicja II-97
Wilson, Aaron III-467
Wohlmayr, Michael III-50

Xie, Sihong III-483
Xu, Congfu I-361
Xu, Zhao III-402, III-499

Yang, Qiang III-547
Yang, Qinli III-245
Yao, Limin III-148
Yu, Jun I-344

Zaslavskiy, Mikhail III-515
Zhang, Zhihua I-361
Zhdanov, Fedor III-531
Zhong, Erheng III-547
Zhou, Zhi-Hua II-274
Zighed, Djamel A. III-67
Zimmermann, Albrecht III-563
Ziviani, Nivio II-402


	Title
	Preface
	Organization
	Table of Contents – Part I
	Invited Talks (Abstracts)
	Mining Billion-Node Graphs:Patterns, Generators and Tools
	Structure Is Informative:On Mining Structured Information Networks
	Intelligent Interaction with the Real World
	Mining Experimental Data for Dynamical Invariants - From Cognitive Robotics to Computational Biology
	Hierarchical Learning Machines and Neuroscience of Visual Cortex
	Formal Theory of Fun and Creativity

	Regular Papers
	Porting Decision Tree Algorithms to Multicore Using FastFlow
	Introduction
	The FastFlow Parallel Programming Environment
	Decision Trees: From C4.5 to YaDT
	The C4.5 Tree-Induction Algorithm
	From C4.5 to YaDT

	Parallelising YaDT
	Performance Evaluation
	Related Work
	Conclusions
	References

	On Classifying Drifting Concepts in P2P Networks
	Introduction
	Background and Related Work
	Background
	Related Work

	RePCoDE Framework
	Overview
	Training Phase
	Prediction Phase
	Complexity Analysis
	Communication Cost

	Experimental Results
	Experimental Setup
	Comparison
	Parameter Sensitivity

	Conclusion
	References

	A Unified Approach to Active Dual Supervision for Labeling Features and Examples
	Introduction
	Dual Supervision
	Pooling Multinomials
	Experimental Setup
	Learning from Example vs. Feature Labels

	Acquiring Feature Labels
	Feature Uncertainty vs. Certainty
	Expected Feature Utility
	Active Learning with Feature Labels

	Active Dual Supervision
	Choice of Utility Measure
	Related Work
	Conclusions and Future Work
	References

	Vector Field Learning via Spectral Filtering
	Introduction
	Previous Work

	Basic Concepts
	Learning Vector Fields with Spectral Filtering
	Tikhonov Regularization
	Regularization via Spectral Filtering
	Examples of Spectral Regularization Algorithms

	Matrix Valued Kernels
	Design of Decomposable Kernels.

	Computational and Sample Complexity
	Faster Implementation for Decomposable Kernels
	Regularization Path and Computational Complexity
	Sample Complexity

	Empirical Analysis
	Conclusions
	References

	Weighted Symbols-Based Edit Distance for String-Structured Image Classification
	Introduction
	Weighted Edit Distance
	Image Representation as a String of Weighted Symbols
	The Proposed Representation
	A Practical Implementation

	Experiments
	Experimental Protocol
	Weighted Edit Distance versus Standard Edit Distance
	Weighted Edit Distance versus Vector Space Metrics
	Plugging Learned Edit Costs in the WED

	Conclusion
	References

	A Concise Representation of Association Rules Using Minimal Predictive Rules
	Introduction
	Methodology
	Definitions
	Example
	Minimal Predictive Rules (MPR)
	Spurious Patterns and Redundant Rules
	The Algorithm

	Experiments
	Experiments on Synthetic Data
	Experiments on UCI Datasets

	Related Research
	Conclusion
	References

	Euclidean Distances, Soft and Spectral Clustering on Weighted Graphs
	Introduction
	Preliminaries and Notations
	Eigenstructure
	Hard and Soft Partitioning
	Spectral versus Soft Membership Relaxation

	Euclidean Distances on Weighted Graphs
	Squared Euclidean Distances
	Thermodynamic Clustering
	Three Nested Classes of Squared Euclidean Distances
	Examples of Distances on Weighted Graphs

	Numerical Experiments
	Inter-cantonal Migration Data
	Commuters Data

	Conclusion
	References

	Adaptive Parallel/Serial Sampling Mechanisms for Particle Filtering in Dynamic Bayesian Networks
	Introduction
	Particle Filter Fundamentals
	Definitions and Notation
	Importance Sampling (IS) and Weighted Resampling (WR)

	General PFs for DBN
	Standard PF (KLPF)
	Serial PF (SPF)
	Parallel PFs (PPF)

	Adaptive Sampling Mechanisms for DBN
	Adaptive Proposals
	Adaptive Control Mechanism
	The Complete Adaptive Particle Filters

	Related Work
	Experimental Results
	Simulated Experiments
	Real Data

	Conclusions
	References

	Leveraging Bagging for Evolving Data Streams
	Introduction
	Related Work
	Leveraging Bagging
	Comparative Experimental Evaluation
	Datasets for Concept Drift
	Real-World Data
	Results

	Conclusions
	References

	ITCH: Information-Theoretic Cluster Hierarchies
	Introduction
	Related Work
	Information-Theoretic Hierarchical Clustering
	Hierarchical Cluster Structure
	Generalization of the MDL Principle
	Obtaining and Optimizing the HCS

	Experimental Evaluation
	Synthetic Data
	Real World Data
	Stability of ITCH

	Conclusions
	References

	Coniunge et Impera:Multiple-Graph Mining for Query-Log Analysis
	Introduction
	Related Work
	Preliminaries
	Query Graphs

	A Software Framework for Query-Log Graphs
	Operations
	Graph Extraction and Representation

	Classifying Query Transitions
	Unsupervised Approach to Query Transition Classification
	Evaluation

	A Heuristic for Detecting Spam Queries
	Experimental Evaluation
	Conclusions

	References

	Process Mining Meets Abstract Interpretation
	Introduction
	An Introductory Example
	Related Work

	Preliminaries
	Logs and Petri Nets
	Convex Polyhedra

	From Logs to Petri Nets via Extraction of Invariants
	Derivation of Invariants from Logs
	From Invariants to Petri Nets
	Derivation of Unbounded Places

	Process Mining of Large Logs
	Identification of Groups of Tightly Coupled Events
	Intra-group Causality Constraints
	Inter-group Causality Constraints

	Sampling
	Experiments
	Conclusions and Future Work
	References

	Smarter Sampling in Model-Based Bayesian Reinforcement Learning
	Introduction
	Background
	Bounding the Value Function
	Algorithms for Smart Sampling
	Experimental Results
	Discussion and Future Work
	References

	Predicting Partial Orders:Ranking with Abstention
	Introduction
	Ranking Problems
	Label Ranking
	Instance Ranking
	Object Ranking

	Ranking with Partial Abstention
	Partial Orders in Learning to Rank
	Prediction of a Binary Preference Relation
	Prediction of a Strict Partial Order Relation
	Determination of an Optimal Threshold
	Illustrating Example

	Evaluation Measures
	Correctness
	Completeness

	Experimental Results
	Instance Ranking
	Label Ranking

	Conclusions and Future Work
	References

	Predictive Distribution Matching SVM for Multi-domain Learning
	Introduction
	Related Works 
	Predictive Distribution Matching SVM
	Preliminaries and Problem Statements
	An Illustrating Example
	Predictive Distribution Matching across Multiple Domains
	Proposed Formulation 
	Progressive Transduction on DU 
	Demonstration of PDM-SVM on a Synthetic Dataset

	Experiments
	Experimental Setup
	Datasets
	Results and Discussions

	Conclusion
	References

	Kantorovich Distances between Rankings with Applications to Rank Aggregation
	Introduction
	Preliminary Background
	First Definitions and Notation
	A Simple Example
	Convexification/Randomization

	Kantorovich Distances
	Definitions and Properties
	Examples

	From Medians in Kn to Median Rankings
	The Mallows Model
	Variants of the Luce Model

	Computational Aspects
	Computing Kantorovich Distances in Kn
	Computing Median Matrices

	Applications to Rank Aggregation
	Datasets
	Implementation Details
	Results

	Conclusion
	Appendix - Technical Proofs
	References

	Characteristic Kernels on Structured Domains Excel in Robotics and Human Action Recognition
	Introduction
	Kernel-Based Learning Methods
	A Non-parametric Statistical Test
	Non-parametric Regression Methods for Model Learning
	Classification: Support Vector Machines

	Characteristic Kernels on Structured Domains
	Shift Invariant Characteristic Kernels on LCA Groups
	Characteristic Kernels on Compact Groups
	Characteristic Kernels on Abelian Semigroups

	Experiments and Evaluations
	MMD for Two-Sample Testing
	Applications of Regression
	Rotation Matrices in Forward Kinematics
	Abelian Semigroups: Classification of Human Actions

	Conclusion
	References

	Regret Analysis for Performance Metrics in Multi-Label Classification: The Case of Hamming and Subset Zero-One Loss
	Introduction
	Multi-Label Classification
	Problem Statement
	Label Dependence
	Loss Functions

	Analysis of Hamming and Subset 0/1 Loss
	Risk Minimization
	Bound Analysis
	Regret Analysis
	Summary and Implications of Theoretical Results

	Experimental Studies
	Binary Relevance and Label Power-Set Classifier
	Artificial Data
	Benchmark Data

	Conclusions
	References

	Clustering Vessel Trajectories with Alignment Kernels under Trajectory Compression
	Introduction
	Related Work
	Trajectory Alignment Kernels
	Trajectories
	Alignments
	Alignment Kernels
	Kernel K-Means
	Trajectory Compression

	Evaluation
	Dataset
	Experimental Setup
	Results
	Performance on the Full Dataset

	Conclusions and Future Work
	References

	Adaptive Bases for Reinforcement Learning
	Introduction
	Preliminaries
	The Framework
	Actor-Critic Algorithms
	Multiple Time Scales Stochastic Approximation

	Main Results
	Adaptive Bases
	Minimum Mean Square Error and TD
	Minimum Square Bellman Error
	Minimum Square Projected Bellman Error

	Analysis
	Convergence of ABTD
	Convergence of Adaptive Basis for Bellman Error

	Simulations
	Garnet problems
	The Mountain Car
	The Performance of Multiple Time Scales vs. Single Time Scale

	Discussion
	References

	Constructing Nonlinear Discriminants from Multiple Data Views
	Introduction
	Preliminaries
	Convex Multiview Fisher Discriminant Analysis
	Probabilistic Interpretation
	Implicit Weighting
	Regularisation and Loss Functions
	Incorporating Private Directions
	Generalisation Error Bound for MFDA
	Experiments: Toy Data

	Experiments
	VOC 2007 DATASET
	Neuroimaging Dataset

	Conclusions
	References

	Learning Algorithms for Link Prediction Based on Chance Constraints
	Introduction
	Cost-Sensitive Learning for Link Prediction
	Clustering-Based Cost-Sensitive Formulation
	Conversion of Chance-Constraint to Second-Order Cone Constraint
	Separable Case
	Non-separable Case
	Unbalanced Data
	Advantages of CCP for Link Prediction

	Experimental Results and Discussion
	Datasets
	Feature Description
	Evaluation
	Results and Discussion

	Conclusions and Future Work
	References

	Sparse Unsupervised Dimensionality Reduction Algorithms
	Introduction
	Sparse PCA
	Optimal Scoring for PCA
	Sparse PCA via Optimal Scoring

	Sparse PCO 
	Related Work
	Experiments
	Evaluations on the Pitprops Dataset
	Evaluations on Two Synthetic Datasets
	Evaluations on Classification
	Application in Gene Microarray

	Conclusion
	References
	The Proof of Theorem 2

	Asking Generalized Queries to Ambiguous Oracle
	Introduction
	Related Work
	Algorithm
	Objective Function
	Constructing Generalized Queries
	Updating Learning Model

	Empirical Study
	Experimental Configurations
	Experimental Results

	Conclusions
	References

	Analysis of Large Multi-modal Social Networks:Patterns and a Generator
	Introduction
	Related Work
	Network Patterns
	Graph Generators

	Tools and Observations
	Data Description
	EigenNetwork Analysis
	CoParticipation-Friendship Correlation

	xSocial Model
	Model Description
	Model Analysis
	Model Validation

	Conclusion
	References

	A Cluster-Level Semi-supervision Model for Interactive Clustering
	Introduction
	Cluster-Level Supervision: An Example
	Related Work
	Problem Formulation
	Interactive Clustering Algorithm
	A Supervisor Model
	Experiments
	Conclusions
	References

	Software-Defect Localisation by Mining Dataflow-Enabled Call Graphs
	Introduction
	Fundamentals of Call-Graph-Based Defect Localisation
	Dataflow-Enabled Call Graphs (DEC Graphs)
	Localising Dataflow-Affecting Bugs
	Frequent Subgraph Mining
	Entropy-Based Defect Localisation
	Follow-Up-Infection Detection
	Improvements for Structure-Affecting Bugs

	Experimental Evaluation
	Related Work
	Conclusions and Future Work
	References

	Induction of Concepts in Web Ontologies through Terminological Decision Trees
	Introduction
	Description Logics: Syntax and Semantics
	Learning Problems in Description Logics
	Terminological Decision Trees and Their Induction
	Classification
	From Terminological Decision Trees to Concept Descriptions
	Induction of TDTs

	Experimental Evaluation
	Experimental Setting
	Outcomes
	Qualitative Evaluation

	Conclusions and Outlook
	References

	Classification with Sums of Separable Functions
	Introduction
	Definition of the Problem
	Loss Function
	Basis in One Dimension
	Avoiding Over-Fitting
	Sums of Separable Functions in the Learning Theory Context

	Minimisation Procedures
	Alternating Minimisation Procedure
	Global Minimisation Procedure

	Numerical Results
	Alternating and Global Minimisation
	Results on Benchmark Data

	Outlook
	References

	Feature Selection for Reinforcement Learning:Evaluating Implicit State-Reward Dependency via Conditional Mutual Information
	Introduction
	Formulation of RL
	Markov Decision Process
	Optimal Policy
	Data Samples

	Feature Selection via Conditional Mutual Information
	Conditional Mutual Information
	Estimation of Conditional Mutual Information
	Feature Selection Algorithm

	Numerical Experiments
	Setup
	Results

	Conclusions
	Appendix: Proof of Lemma
	References

	Bagging for Biclustering: Application to Microarray Data
	Introduction
	State of the Art
	Bagged Biclustering
	Bicluster Collection Generation
	Metacluster Identification
	Bicluster Computation

	Experiments on Artificial Data
	Generation of Artificial Datasets
	Study Design
	Results on Artificial Data

	Experiments on Real Data
	Conclusion
	References

	Hub Gene Selection Methods for the Reconstruction of Transcription Networks
	Introduction
	A Linear Model of Transcription Control
	Hub Gene Selection Methods
	Automatic Relevance Determination
	Group Lasso
	Maximum Relevance Minimum Redundancy

	Evaluation of the Hub Gene Selection Methods
	Combining ARACNE with the Output of a Hub Gene Selection Method
	Modification of the Original ARACNE Method

	Evaluation of the New ARACNE Method
	Experiments with Real Microarray Data
	Conclusions
	References

	Expectation Propagation for Bayesian Multi-task Feature Selection
	Introduction
	Bayesian Multi-task Feature Selection 
	Expectation Propagation 
	The Posterior Approximation 
	Efficient EP Update Scheme
	Predictive Distribution and Feature Selection

	Experiments 
	Arabic Digits
	Microarray Data

	Conclusion
	References

	Graphical Multi-way Models
	Introduction
	Model
	Multi-way Learning with Standard Covariates
	Multi-view Learning with Paired Samples
	Time with Unknown Alignment
	Multi-view Learning without Paired Samples 

	Results
	Multi-view Learning with Paired Samples
	Time with Unknown Alignment
	Multi-view Learning without Paired Samples

	Conclusions
	References

	Exploration-Exploitation of Eye Movement Enriched Multiple Feature Spaces for Content-Based Image Retrieval
	Introduction
	Problem Definition
	The User Model for the Filtering Task
	Modelling the Relevance Scores
	Features Extracted from Images

	The LinRel Algorithm and Its ``Kernelized'' Counterpart
	Kernelization and Selection of Image Collages

	Multiple Kernel Learning to Update the Feature Space
	Tensor Learning for Eye Movements as New Features
	The Final CBIR System
	Experiments
	Conclusions
	References

	Graph Regularized Transductive Classification on Heterogeneous Information Networks
	Introduction
	Related Work
	Problem Definition
	Graph-Based Regularization Framework
	Intuition
	The Algorithm
	Time Complexity Analysis

	Experimental Results
	Data Set
	Algorithms for Comparison
	Accuracy Study
	Model Selection

	Conclusions
	References

	Temporal Maximum Margin Markov Network
	Introduction 
	Overview
	Notation
	Backgrounds

	Spatial-Temporal Structured Model
	Temporal Maximum Margin Markov Network
	Learning 
	Predicting
	Experiments
	Simulation Results 
	Real World Applications

	Conclusion
	References

	Gaussian Processes for Sample Efficient Reinforcement Learning with RMAX-Like Exploration
	Introduction
	Overview of the Contribution
	Assumptions and Limitations

	Background: Planning When the Model Is Exact
	Our Algorithm: GP-RMAX
	Overview
	Model Learning with GPs
	Planning with a Model

	Experiments
	Description of Domains
	Results

	Summary
	References


	Author Index


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 149
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 149
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 599
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<

    /BGR <>
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /CZE <>
    /DAN <>
    /ESP <>
    /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
    /FRA <>
    /GRE <>

    /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke.  Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
    /HUN <>
    /ITA <>
    /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /LTH <>
    /LVI <>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /POL <>
    /PTB <>
    /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
    /RUS <>
    /SKY <>
    /SLV <>
    /SUO <>
    /SVE <>
    /TUR <>
    /UKR <>
    /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
    /DEU <>
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToCMYK
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.276 841.890]
>> setpagedevice




