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Preface

This volume contains the refereed proceedings of the Sixth International Confer-
ence on Sequences and Their Applications (SETA 2010), held in Paris, France,
September 13-17, 2010. The previous five conferences were held in Singapore
(Republic of Singapore), Bergen (Norway), Seoul (South Korea), Beijing (China)
and Lexington (USA). Topics of SETA include:

– Randomness of sequences
– Correlation (periodic and aperiodic types) and combinatorial aspects of se-

quences (difference sets)
– Sequences with applications in coding theory and cryptography
– Sequences over finite fields/rings/function fields
– Linear and nonlinear feedback shift register sequences
– Sequences for radar distance ranging, synchronization, identification, and

hardware testing
– Sequences for wireless communication
– Pseudorandom sequence generators
– Boolean and vectorial functions for sequences, coding and/or cryptography
– Multidimensional sequences and their correlation properties
– Linear and nonlinear complexity of sequences

The Technical Program Committee of SETA 2010 refereed 56 submitted pa-
pers. Each paper was reviewed by at least 2 referees (at least 3 when an author
was a TPC member) and the TPC selected 33 papers to be presented at the
conference. In addition, we had 4 invited papers, by Robert Calderbank (Prince-
ton University, USA), James Massey (retired from ETH Zurich, Switzerland),
Jong-Seon No (Seoul National University, South Korea) and Arne Winterhof
(Österreichische Akademie der Wissenschaften, Austria).

The Co-chairs of the TPC were Claude Carlet (Université Paris 8, France) and
Alexander Pott (Otto-von-Guericke-Universität, Magdeburg, Germany). They
wish to thank the other members of the Program Committee: Thierry P. Berger
(Université de Limoges, France); Serdar Boztas (Royal Melbourne Institute of
Technology, Australia); Lilya Budaghyan (University of Bergen, Norway); Pas-
cale Charpin (INRIA, France) ; Gérard Cohen (Télécom ParisTech, France);
Cunsheng Ding (Hong Kong University of Science and Technology, PR of China);
Pingzhi Fan (Southwest Jiaotong University Chengdu, PR of China); Philippe
Gaborit (Université de Limoges, France); Guang Gong (University of Waterloo,
Canada); Tor Helleseth (University of Bergen, Norway); Jonathan Jedwab (Si-
mon Fraser University, Canada); Thomas Johansson (Lund University, Sweden);
Andrew Klapper (University of Kentucky, USA); Gohar Kyureghyan (Otto-
von-Guericke-Universität, Germany); Gregor Leander (Technical University of
Denmark); Wilfried Meidl (Sabanci University, Turkey); Sihem Mesnager (Uni-
versité Paris 8, France); Gary McGuire (University College Dublin, Ireland);
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Udaya Parampalli (University of Melbourne, Australia); Matthew Parker (Uni-
versity of Bergen, Norway); Bernhard Schmidt (Nanyang Technological Univer-
sity, Singapore, Republic of Singapore); Kai-Uwe Schmidt (Simon Fraser Univer-
sity, Canada); Hong-Yeop Song (Yonsei University, Korea); Kyeongcheol Yang
(Pohang University of Science and Technology, Korea) and Nam Yul Yu (Lake-
head University, Canada).

The editors are also grateful to Nina Brandstätter, Yuqing Chen, Jin-Ho
Chung, Gary Greenfield, Yun Kyoung Han, Kathy Horadam, Honggang Hu, Ra-
makanth Kavuluru, Alexander Kholosha, Mels Kyuregyan, Petr Lisonek, Wai Ho
Mow, Asha Rao, Xiaohu Tang, Andrew Turpin, Huaxiong Wang, Ruizhong Wei,
Tony Wirth and Zhengchun Zhou for their help and assistance in the reviewing
of papers.

We thank Springer for financing the best paper award, given by the Journal
Cryptography and Communications - Discrete Structures, Boolean Functions and
Sequences (CCDS) and awarded to the paper “Appended m-Sequences with
Merit Factor Greater Than 3.34”, by Jonathan Jedwab and Kai-Uwe Schmidt.

We wish to thank Patrick Solé for his support as General Chair, Jean-Claude
Belfiore for handling the EasyChair system, the webmaster Stephane Boucart,
and Valérie Alidor, Nicolas Beaude (SEE), Danielle Childz, Zouina Sahnoune
and Bruno Thedrez (Télécom ParisTech) for their kind help. Finally we would
like to thank Télécom ParisTech for hosting the conference and Digiteo, CNRS
and LAGA for their financial support.

September 2010 Claude Carlet
Alexander Pott
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Dragana Bajić and Čedomir Stefanović
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Jérémy Parriaux, Philippe Guillot, and Gilles Millérioux

Nonbinary Sequences

Some Constructions of Almost-Perfect, Odd-Perfect and Perfect
Polyphase and Almost-Polyphase Sequences . . . . . . . . . . . . . . . . . . . . . . . . . 387

Evgeny I. Krengel

Almost p-Ary Perfect Sequences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 399
Yeow Meng Chee, Yin Tan, and Yue Zhou

Sequences, Bent Functions and Jacobsthal Sums . . . . . . . . . . . . . . . . . . . . . 416
Tor Helleseth and Alexander Kholosha

Infinite Sequences

Infinite Sequences with Finite Cross-Correlation . . . . . . . . . . . . . . . . . . . . . 430
Solomon W. Golomb

Invited Paper

Reed Muller Sensing Matrices and the LASSO . . . . . . . . . . . . . . . . . . . . . . . 442
Robert Calderbank and Sina Jafarpour

Author Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 465



Low Correlation Zone Sequences
(Invited Paper)

Jung-Soo Chung and Jong-Seon No

Department of Electrical Engineering and Computer Science,
Institute of New Media and Communications,

Seoul National University, Seoul 151-744, Korea
integer@ccl.snu.ac.kr, jsno@snu.ac.kr

Abstract. It is well known that low correlation zone sequences have
been adopted as spreading sequences in the quasi-synchronous code di-
vision multiple access (QS-CDMA) systems of wireless communication
systems, where time delay among different users is allowed to be within
a few chips. In this paper, numerical analysis shows that the QS-CDMA
systems using low correlation zone (LCZ) sequences outperform the con-
ventional code division multiple access (CDMA) systems. Also, several
LCZ sequences are revisited and a new extension method for the con-
struction of LCZ sequences is proposed.

Keywords: Autocorrelation, Code division multiple access (CDMA),
Cross-correlation, Low correlation zone (LCZ) sequence, Pseudo noise
(PN) sequence, Quasi-synchronous code division multiple access (QS-
CDMA) system, Spreading sequence.

1 Introduction

Spread spectrum communication systems such as direct sequence code division
multiple access (CDMA) communication systems require each signal to be easily
distinguished from a time shifted version of itself or from the other signals in the
signal set. In order to satisfy these requirements, pseudo noise (PN) sequences
with good correlation property have been used as spreading sequences in the
CDMA communication systems. In CDMA communication systems, many users
can share frequency spectrum and time using spreading sequences with good
correlation property such as the Gold sequences. The Gold sequence set are
optimal with respect to the Sidel’nikov bound in the sense that the maximum
magnitude of correlation values achieves theoretical lower bound for a given set
size and period [28]. This lower bound is approximately equal to the square
root of twice the period of sequences. Thus, even though the sequence set is
optimal, the autocorrelation and the cross-correlation values have relatively large
magnitude. Therefore, considerable amount of multiple access interference (MAI)
could be introduced even though the optimal sequence set is used in the CDMA
systems.

C. Carlet and A. Pott (Eds.): SETA 2010, LNCS 6338, pp. 1–29, 2010.
c© Springer-Verlag Berlin Heidelberg 2010



2 J.-S. Chung and J.-S. No

In the reverse link of CDMA systems in the cellular communication systems,
synchronization within a few chips can be maintained due to the relatively small
transmission delay, in which spreading sequences with good correlation property
around the origin are needed. Specially, in the microcellular, femtocell, or indoor
environments, where the cell size is very small, transmission delays are relatively
small and thus, it may be feasible to maintain synchronization within a chip
or a few chips in the reverse link. Gaudenzi, Elia, and Viola proposed quasi-
synchronous code division multiple access (QS-CDMA) systems [5]. In such sys-
tems, the time delay is allowed to be within a few chips among different users,
which gives more capacity and flexibility in designing wireless communication
systems.

In the design of sequence sets for QS-CDMA systems, what matters most is to
have a low correlation zone (LCZ) around the origin rather than to minimize the
overall maximum nontrivial correlation value [32]. Fig. 1 shows the correlation
functions of LCZ sequences. Long, Zhang, and Hu proposed sequence sets that
have low-correlation values around the origin, which can be used as spreading
sequences in the QS-CDMA systems [32]. A sequence set with this property is
called an LCZ sequence set. They also have shown that LCZ sequence sets have
better performance than other well-known sequence sets with optimal correlation
property in the wireless communication systems with a few chip delay among
different users [32]. For a prime p, Tang and Fan [42] proposed p-ary LCZ
sequence sets by extending the alphabet size of each sequence in Long’s work.
Kim, Jang, No, and Chung proposed a new construction method of quaternary
LCZ sequence sets by using a binary sequence of the same period with ideal
autocorrelation, and they also calculated the correlation distributions of their
sequence sets constructed from an m-sequence or a GMW sequence [20]. Their
quaternary LCZ sequence sets are optimal with respect to the bound by Tang,
Fan, and Matsufuji [43]. For zero correlation zone (ZCZ) sequence sets with
zero correlation values around the origin, Wang and Qi proposed the concept of
D-matrix. Using interleaved structure and D-matrix, they calculated the ZCZ
length of the interleaved ZCZ sequence sets [47]. Kim, Jang, No, and Chung
proposed several new construction methods of LCZ sequence sets [23]. In their
design scheme of the binary LCZ sequence sets, the LCZ length can be freely
selected and the resulting LCZ sequence sets have the set sizes that are almost
optimal with respect to Tang, Fan, and Matsufuji bound. Using interleaving
techniques, Hu and Gong presented a construction of sequence sets with zero
or low correlation zone using interleaving techniques and complex Hadamard
matrices [11]. Jang, No, Chung, and Tang constructed the optimal p-ary LCZ
sequence sets [18] and a construction method of pn×pn p-ary Hadamard matrices
from the optimal LCZ sequence sets is proposed. Jang, No, and Chung proposed
a new construction method for Butson Hadamard matrices from the optimal
balanced LCZ sequence set which has a correlation value of −1 within LCZ [17].
Jang, No, and Chung [16] also found a new construction method of the optimal
p2-ary LCZ sequence sets using unified sequences [34]. Yang, Jin, Song, No, and
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(a) Autocorrelation function

(b) Cross-correlation function

Fig. 1. Correlation functions of LCZ sequences

Shin proposed multicode multiple-input multiple-output (MIMO) systems with
quaternary LCZ and ZCZ sequences as spreading codes [49].

This paper is organized as follows. In Section 2, PN sequences are presented.
The CDMA and QS-CDMA systems are described in Section 3. Construction
and extension methods for LCZ sequence sets are proposed in Section 4. Finally,
the conclusion is given in Section 5.
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2 PN Sequences

PN sequences have been used in various wireless communication systems, in
which the individual sequences and sets of PN sequences with good correlation
property play an important role. In the CDMA communication systems such as
the second generation and the third generation wireless communication systems,
they are usually employed as signature sequences in order to distinguish each
user. The PN sequences with good correlation property can minimize other user
interference in the multiuser environments of CDMA communication systems.
PN sequences have been also used in the radar and sonar systems. In the area
of cryptography, the PN sequences have been adopted as a key stream in the
stream cipher, a session key generator, various functions in the block cipher,
a digital water mark, and a random number generator in the digital signature
standard.

Researches on the PN sequences can be categorized into two parts. One is
research on the sequences with good autocorrelation property, which can make
a sequence easily distinguishable from its shifted version. The other is research
on the sets of sequences with low autocorrelation and cross-correlation. It is
desirable for a set of sequences to have the properties of low cross-correlation
between sequences in a set as well as low out-of-phase autocorrelation.

There are many desirable properties for PN sequences such as low correlation,
large linear span, balance, and randomness. One of the most important properties
of the PN sequences in the application of CDMA communication systems is low
correlation. For a q-ary sequence su(t) of period N , the autocorrelation function
Ru(τ) is defined as

Ru(τ) =
N−1∑
t=0

ωsu(t+τ)−su(t)
q , 0 ≤ τ ≤ N − 1

where ωq = ej2π/q and j =
√
−1. For two q-ary sequences su(t) and sv(t) of

period N , the cross-correlation function Ru,v(τ) of su(t) and sv(t) is defined as

Ru,v(τ) =
N−1∑
t=0

ωsu(t+τ)−sv(t)
q . (1)

For a q-ary sequence set S, the maximum magnitude of correlation functions can
be defined as

Rmax = max{
∣∣Ru,v(τ)

∣∣|su(t), sv(t) ∈ S, 0 ≤ τ ≤ N−1, except u = v and τ = 0}.

Most of the researches on the PN sequences have been done on the binary case
(q = 2) because wireless communication systems have used binary signaling
systems as their modulation schemes. With the growing need for high-speed
data communications, which usually adopt q-ary modulation schemes, it becomes
more important to find q-ary sequences with good correlation property and q-ary
codes with good error correctability.
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There are lots of research results on the sequences with low autocorrelation
property. The m-sequences [10,39] and GMW sequences [1,7,40] are well-known
sequences with ideal autocorrelation property, which exist for binary and p-ary
cases. Some of the binary sequences with ideal autocorrelation property are con-
structed from power residues. For example, Legendre sequences and Hall’s sextic
residue sequences are constructed from quadratic and sextic residues of integer
ring [8], respectively.

The other research areas on the sequences are the construction of the sets
of sequences with low correlation. The low correlation property makes each se-
quence to be easily distinguished from the other sequences in the set. Low cross-
correlation of the sequence sets is the most important property of the CDMA
systems as well as the simultaneous ranging of several targets. There are sev-
eral bounds on the correlation values of the sets of sequences introduced by
Welch [48], Sidel’nikov [41], and Levenshtein [30].

In 1966, Kasami [24,25] proposed a set of binary sequences that is optimal with
respect to the Welch bound [48]. Although the maximum magnitude of cross-
correlation values of Kasami sequences is optimal, their set size is very small rela-
tive to their period. At the cost of the optimal correlation, the set size of Kasami
sequences can be extended to a large set of Kasami sequences. Liu and Komo [31]
introduced the p-ary Kasami sequences by generalizing their alphabet size.

In 1968, Gold [6] constructed a set of binary sequences of period 2n− 1. This
sequence set is optimal with respect to Sidel’nikov bound for an odd integer n
but has short linear complexity. In 1994, Boztas and Kumar [2] presented the
Gold-like sequence sets, which are identical to the Gold sequence sets in terms of
the set size, the maximum correlation value, and the range of symbol imbalance,
but have larger linear complexity. Later, Kim and No [21] constructed two sets
of binary sequences with low correlation by generalizing the set of Gold-like
sequences and the sequence set by Udaya [46].

In 1970, for an odd integer n and an odd prime p, Trachtenberg [45] con-
structed the set of p-ary sequences using the p-ary m-sequences and their deci-
mated sequences by d = p2k−pk+1 or d = (p2k+1)/2, which is relatively prime
to its period pn − 1. This set of p-ary sequences has the maximum magnitude√

pn+e of correlation values, where e = gcd(n, k).

Table 1. Parameters of some known sets of sequences

’

Set of sequences Alphabet Period N Set size Rmax

Kasami [24]–[31] p pn − 1
√

N + 1
√

N + 1 + 1
Gold (n odd) [6] 2 2n − 1 N + 2

√
2(N + 1) + 1

Gold (n even) [6] 2 2n − 1 N + 2 2
√

(N + 1) + 1
Trachtenberg [45] odd p pn − 1 N + 1

√
p(N + 1) + 1

Sidel’nikov [41] odd p pn − 1 N + 1
√

N + 1 + 1
A = S(0) [27] 4 2n − 1 N + 2

√
N + 1 + 1

S(1) [27] 4 2n − 1 ≥ N2 + 3N + 2 2
√

N + 1 + 1
S(2) [27] 4 2n − 1 ≥ N3 + 4N2 + 5N + 2 4

√
N + 1 + 1
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Fig. 2. Code division multiple access communication systems

For an alphabet size other than prime, Boztas, Hammons, and Kumar [3] pro-
posed quaternary sequence sets with near-optimum cross-correlationproperty. And
Kumar, Helleseth, Calderbank, and Hammons [27] constructed the large sets of
quaternary sequences with low cross-correlation. These sequences have relatively
large magnitude of out-of-phase autocorrelation values, but low cross-correlation
values. Table 1 summarizes some known sets of sequences with low correlation.

3 CDMA and QS-CDMA Systems

3.1 CDMA Systems

In the CDMA systems, many users can share the radio resources using PN
sequences with good correlation property such as the sets of Gold sequences and
Kasami sequences. Fig. 2 shows CDMA communication systems, where the data
is multiplied by spreading sequences and then transmitted through the channel.
We assume that the data of each user is asynchronously transmitted and that the
signal power is the same. Fig. 3 shows data spreaders for binary and quaternary
cases.

We consider a CDMA system with U users. Let mu(i) be a message data and
su(k) be a spreading sequence of period N . Then the spreaded signals for U
users are given as

x1(l = iN + k) = m1(i) · s1(k)
x2(l = iN + k) = m2(i) · s2(k)

...
xU (l = iN + k) = mU (i) · sU (k).
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s1

s2

2/je

(a) Data spreader using binary sequence.

s1

(b) Data spreader using quaternary se-
quence.

Fig. 3. Data spreader for CDMA systems

We assume the additive white Gaussian noise (AWGN) channel and quadrature
phase shift keying (QPSK) modulation. Then, the received signal in the receiver
1 is given as

y1(l = iN + k) = x1(l) +
U∑
u=2

θu · xu(l − φu) + n(l)

where θu denotes the channel constant of each channel, φu denotes the time shift
of each user, and n(l) denotes the AWGN.

The i-th despreaded data of the user 1 is given as

m̂1(i) =
1
N

iN+N−1∑
l=iN

y1(l)s1(l − iN)∗ + θ2

N−1∑
k=φ2

m2(i)s2(k)

+ θ2

φ2∑
k=0

m2(i − 1)s2(k) + · · ·

= m1(i) + I(i) + n′(i)

where s∗1(k) denotes the complex conjugate of s1(k), I(i) denotes the total in-
terference, and n′(i) denotes the despreaded noise.

No et al. compared the performance of CDMA communication systems us-
ing the sequence set A, Gold sequence set, and Kasami sequence set [37]. For
the performance comparison of CDMA systems with various PN sequences, we
assume:

– AWGN channel
– Asynchronous CDMA system
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Fig. 4. Performance comparison of CDMA systems with sequence set A and Gold
sequence set for 5 and 8 users with spreading factor 128 (No et al. [37])

– Packet size: 40 symbols
– Spreading sequences: sequence set A, Gold sequence set, Kasami sequence

set
– Last symbol: zero padding
– Spreading factor: 128, 64
– One spreading sequence allocated to each user.

From Figs. 4 and 5, the CDMA systems with sequence set A have almost the
same performance as those with Gold sequence set for spreading factor 128. Figs.
6 and 7 show that the CDMA systems with sequence set A also have almost the
same performance as those with Gold sequence set and Kasami sequence set for
spreading factor 64.

The Rmax of the sequence set A is
√

N + 1 + 1, but the Rmax of the Gold
sequence set is

√
2(N + 1) + 1 or 2

√
N + 1 + 1 in Table 1. In terms of Rmax,

the sequence set A is better than the Gold sequence set by
√

2. But there is no
significant performance difference between the CDMA systems with sequence set
A and those with the Gold sequence set even though the improvement of Rmax
by

√
2 is significant in the sequence design . Therefore, we should find something

more important than Rmax for the CDMA communication systems.

3.2 QS-CDMA Systems

If the cell size is very small and thus transmission delay is relatively small, it
is possible to maintain the time delay within a few chips in the asynchronous
CDMA systems such as the reverse link of CDMA cellular systems, microcellular,
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Fig. 5. Performance comparison of CDMA systems with sequence set A and Gold
sequence set for 10 , 12, and 14 users with spreading factor 128 (No et al. [37])
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 Sequence set A(User=4)

Fig. 6. Performance comparison of CDMA systems with sequence set A, Kasami se-
quence set, and Gold sequence set for 2 and 4 users with spreading factor 64 (No et al. [37])

femtocell, or indoor wireless communication systems. The QS-CDMA system can
be a good candidate for such multiuser CDMA communication systems with a
few chip delay among users. The QS-CDMA system was proposed by Gaudenzi,
Elia, and Viola [5], where the design of spreading sequences can have more
flexibility.
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Fig. 7. Performance comparison of CDMA systems with sequence set A and Gold
sequence set for 6 and 8 users with spreading factor 64 (No et al. [37])

Long, Zhang, and Hu proposed a system model of QS-CDMA using the se-
quence sets that have low-correlation values around the origin as spreading se-
quences, called LCZ sequences [32]. Let mu(t) and su(t) be a data and a spread-
ing sequence. Then, the received signal in the QS-CDMA systems with U users
can be written as

r(t) =
U∑
u=1

√
2Pmu(t − τu)su(t − τu)cos(ωct + φu) + n(t)

where P is the signal power, ωc is the carrier frequency, φu is the phase, τu is the
time delay, and n(t) is the white Gaussian noise with two-sided spectral density
N0/2. The spreading sequence su(t) is a sequence of rectangular pulses with unit
amplitude and chip period Tc and the data mu(t) is composed of the rectangular
pulses with unit amplitude and symbol period Tb. Then, the spreading sequence
su(t) has period N = Tb/Tc.

Let Eb = PTb be the energy per bit and mu,0 be the desired data of the user
u in the decision internal [0, Tb]. Then the output data of the u-th user in the
receiver can be written as

Zu =
√

P/2Tb

⎛⎝mu,0 +
U∑

i=1,i�=u
Ii,u + η

⎞⎠
where η denotes the zero mean Gaussian random variable with the variance
(2Eb/N0)−1 and

∑
i�=u Ii,u denotes the MAI from the other users’ interference.
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From Gaussian approximation by Long, Zhang, and Hu [32], the variance of
MAI depends on the cross-correlation functions of spreading sequences around
the origin and the distribution of the time delay among users in the QS-CDMA
system. They also showed that in the QS-CDMA systems, LCZ sequences as
spreading sequences have better performance than other well-known sequence
sets with optimal correlation property [32].

No and Jang also showed that the QS-CDMA systems using the LCZ se-
quences outperformed those using the conventional spreading sequences [35].
They assumed that the spreading factor is 256 and the time delay is maintained
within 16 chips. And the additional channel coding was not used. According to
the number of users, Figs. 8(a)–8(c) show BER performance of the QS-CDMA
systems with LCZ sequence set, Kasami sequence set, and the sequence set A.
They showed that the QS-CDMA systems with LCZ sequence set outperform
those with Kasami sequence set or sequence set A. Fig. 9 shows that the QS-
CDMA systems with LCZ sequences do not depend on MAI and that there is
almost no deterioration as the number of users increases.

Yang, Jin, Song, No, and Shin proposed the multicode multiple-input multiple-
output (MIMO) systems with quaternary LCZ and ZCZ sequences as spreading
sequences [49] shown in Fig. 10, where K = U , hij(t) denotes the channel gain,
dik denotes the data, and ck(t) denotes the spreading sequences. The MIMO
systems by Yang, Jin, Song, No, and Shin can be applied to the fourth genera-
tion wireless communication systems. Fig. 11 shows that the performance of the
multicode MIMO systems with quaternary LCZ sequence set is better than that
of the conventional multicode MIMO systems with quaternary spreading codes
constructed from pairs of binary Hadamard codes.

Therefore, in the design of the set of spreading sequences for the QS-CDMA
system, what matters most is to have a low correlation zone around the origin
rather than to minimize the overall maximum nontrivial correlation value [32]. In
fact, LCZ sequence sets with smaller correlation magnitude within the zone show
better performance than other well-known sequence sets with optimal correlation
property [32].

4 Construction of LCZ Sequences

Let S be a set of M sequences of period N . If the magnitude of correlation
function between any two sequences in S takes the values less than or equal to ε
within the range −L < τ < L of the offset τ , then S is called an (N, M, L, ε) LCZ
sequence set. Let S be the q-ary LCZ sequence set with parameters (N, M, L, ε)
given by

S = {fl(t) | 0 ≤ l ≤ M − 1, 0 ≤ t ≤ N − 1} (2)

where L is the maximum value such that |Ri,j(τ)| ≤ ε for all 0 ≤ i, j ≤ M − 1
and all |τ | < L except for the case of the inphase autocorrelation. When ε = 0,
S is called a q-ary ZCZ sequence set with parameters (N, M, L).

Tang, Fan, and Matsufuji derived a lower bound on LCZ sequence sets [43].
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Fig. 8. Performance comparison of the QS-CDMA systems (No and Jang [35])

Theorem 1 ([43]). Let S be an LCZ sequence set with parameters (N, M, L, ε).
Then, we have

ML − 1 ≤ N − 1
1 − ε2/N

. (3)
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Fig. 9. BER of QS-CDMA systems using LCZ sequence set (No and Jang [35])
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Fig. 10. Multicode MIMO system (Yang et al. [49])

For convenience, the construction of LCZ sequence sets can be classified into
direct methods and extension methods. There are several optimal or almost op-
timal LCZ sequence sets with respect to the bound by Tang, Fan, and Matsufuji
[43] constructed by the direct methods. The extension methods is composed of
two different methods: the set size is kept unchangeable or the LCZ length is
kept unchangeable or is slightly decreased.
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Fig. 11. 4 × 4 multicode MIMO systems with QPSK using LCZ sequence set with
various K and L = 3 (Yang et al. [49])

4.1 Direct Methods of LCZ Sequence Sets

In this subsection, we will overview our new construction methods of LCZ se-
quence sets.

Construction 1 [20]:
The constructions of the quaternary LCZ sequence sets using the binary se-
quences with ideal autocorrelation of the same length are described in this con-
struction.

In order to define m-sequences and GMW sequences, which have the ideal
autocorrelation property, we will review the trace function over the finite field.
Let Fpn and Fpm be the finite fields with pn and pm elements, respectively. The
trace function trnm(·) is the mapping from Fpn to Fpm and is defined by

trnm(x) =

n
m−1∑
i=0

xp
mi

where x ∈ Fpn and m|n. Then, the trace function satisfies the following
properties:

1. trnm(x + y) = trnm(x) + trnm(y), for all x, y ∈ Fpn ;
2. trnm(ax) = atrnm(x), for all a ∈ Fpm , x ∈ Fpn ;
3. trnm(x) = trnm(xp

mi

), for all i and all x ∈ Fpn ;
4. trn1 (x) = trm1 (trnm(x)), for all x ∈ Fpn .
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Then, two constructions of quaternary LCZ sequence sets are given as in the
following theorems:

Theorem 2 ([20]). Let m and n be positive integers such that m|n. Let β be
a primitive element in F2m and T = (2n − 1)/(2m − 1). Let

M = {si(x)| 0 ≤ i ≤ 2m − 2, x ∈ F ∗
2n}

be the set of quaternary sequences defined by the functions

s0(x) = 2trn1 (x)

si(x) = trn1 (x) � 2trn1 (βix), for 1 ≤ i ≤ 2m − 2

where � denotes the addition in the ring Z4 = {0, 1, 2, 3}. Then, the set M
is a (2n − 1, 2m − 1, T, 1) quaternary LCZ sequence set and has the following
correlation distribution:

Ri,k(δ) =
∑
x∈F∗

2n

ω
si(δx)−sk(x)
4

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

2n − 1, 2m − 1 times
−1 + j2n−1, (2m − 2)2 times for δ �∈ F2m\F2

−1 − j2n−1, (2m − 2)2 times for δ �∈ F2m\F2

−1 + 2n−1, 2(2m − 2)(2m − 3) times for δ �∈ F2m\F2

2n−1 − 1 + j2n−1, 2(2m − 2) times for δ �∈ F2m\F2

2n−1 − 1 − j2n−1, 2(2m − 2) times for δ �∈ F2m\F2

−1, otherwise

as δ varies over F ∗
2n and 0 ≤ i, k ≤ 2m − 2.

The set of quaternary LCZ sequences from GMW sequences can be also con-
structed by using the same method.

Theorem 3 ([20]). Let m and n be positive integers such that m|n and T =
(2n − 1)/(2m− 1). Let r be an integer such that gcd(r, 2m − 1) = 1 and 1 ≤ r ≤
2m − 2. Let g(x) be the GMW sequence defined by

g(x) = trm1 ([trnm(x)]r).

Let us define the set

G = {gi(x)| 0 ≤ i ≤ 2m − 2, x ∈ F ∗
2n}

of quaternary sequences defined by

g0(x) = 2trm1 ([trnm(x)]r)

gi(x) = trm1 ([trnm(x)]r) � 2trm1 ([βitrnm(x)]r), 1 ≤ i ≤ 2m − 2
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where β is a primitive element in F2m . Then, G has the same correlation dis-
tribution as that of M and is a (2n − 1, 2m − 1, T, 1) quaternary LCZ sequence
set.

These quaternary LCZ sequence sets are constructed by using a binary sequence
with ideal autocorrelation of the same period. These quaternary LCZ sequence
sets are optimal with respect to the bound by Tang, Fan, and Matsufuji [43].

Construction 2 [23]:
In this construction, the construction method of binary LCZ sequence sets with
flexible parameters is given.

Let N = 2n+1 − 2. Let ZN be the set of integers modulo N , i.e., ZN =
{0, 1, · · · , N − 1}. Let a(t) be a binary sequence of period 2n − 1 with ideal
autocorrelation. Let Du be the characteristic set of a(t − u), i.e.,

Du = {t | a(t − u) = 1, 0 ≤ t ≤ 2n − 2} = D0 + u

where u ∈ Z2n−1, D0 + u = {d + u | d ∈ D0}, and “+” means addition modulo
2n − 1. Let Du = Z2n−1\Du. From the balancedness of a(t), we have

|Du| = 2n−1

|Du| = 2n−1 − 1.

From the difference-balance property of a(t), for u �= v, we have

|Du ∩ Dv| = 2n−2

|Du ∩ Dv| = 2n−2

|Du ∩ Dv| = 2n−2 − 1.

By the Chinese remainder theorem, we have ZN ∼= Z2 ⊗ Z2n−1 under the iso-
morphism φ : w 	→ (w mod 2, w mod 2n − 1). In this construction, we use the
notations w ∈ ZN and (w mod 2, w mod 2n − 1), interchangeably.

For u ∈ Z2n−1, let Cu be the subset of ZN such that

Cu ∼= {0} ⊗ Au ∪ {1} ⊗ D1−u (4)

where Au can be either Du or Du. Then we have

|Cu| =
{
|Du| + |D1−u| = 2n, if Au = Du

|Du| + |D1−u| = 2n − 1, if Au = Du.
(5)

Let su(t) be the characteristic sequence of Cu. Note that just like Cu, which
can be one of two distinct subsets of ZN depending on Au, the sequence su(t)
can also take one of the following two distinct sequences: one with 2n 1’s and the
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other with 2n − 1 1’s. Let du,v(τ) = |Cu ∩ (Cv + τ)|, where τ ∈ ZN , Cv + τ =
{c + τ | c ∈ Cv}, and “+” means addition modulo N . Then we can easily check
the following lemma:

Lemma 1. The correlation function Ru,v(τ) can be expressed as

Ru,v(τ) = N − 2(|Cu| + |Cv| − 2du,v(τ)).

Now, let us define two sets of characteristic sequences of Cu in (4).

Definition 1. The set U1 is the collection of all the characteristic sequences
su(t), 1 ≤ u < 2n−1, of Cu with Au = Du. Similarly, the collection of all the
characteristic sequences su(t), 1 ≤ u < 2n−1, of Cu with Au = Du is called the
set U2.

The following theorem gives us the correlation values of the sequences in
Definition 1:

Theorem 4 ([23]). The correlation functions of two sequences su(t) and sv(t)
in U1 ∪ U2 are as follows:

Case 1) su(t), sv(t) ∈ U1;
i) u �= v;

Ru,v(τ) =
{

2n − 2, for τ = (0, u − v), (0, v − u), (1, u + v − 1), (1, 1 − u − v)
−2, otherwise.

ii) u = v;

Ru,u(τ) =

⎧⎨⎩ 2n+1 − 2, for τ = 0
2n − 2, for τ = (1, 2u − 1), (1, 1 − 2u)

−2, otherwise.

Case 2) su(t) ∈ U1 and sv(t) ∈ U2;
i) u �= v;

Ru,v(τ) =

⎧⎨⎩
−2n, for τ = (0, u − v), (1, 1 − u − v)

2n, for τ = (0, v − u), (1, u + v − 1)
0, otherwise.

ii) u = v;

Ru,u(τ) =

⎧⎨⎩−2n, for τ = (1, 1 − 2u)
2n, for τ = (1, 2u − 1)
0, otherwise.
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Case 3) su(t), sv(t) ∈ U2;
i) u �= v;

Ru,v(τ) =

⎧⎪⎪⎨⎪⎪⎩
2n − 2, for τ = (0, u − v), (0, v − u)

−2n + 2, for τ = (1, u + v − 1), (1, 1 − u − v)
−2, for τ = (0, τ2), τ2 �= ±(u − v)

2, for τ = (1, τ2), τ2 �= ±(u + v − 1).

ii) u = v;

Ru,u(τ) =

⎧⎪⎪⎨⎪⎪⎩
2n+1 − 2, for τ = 0

−2n + 2, for τ = (1, 2u − 1), (1, 1 − 2u)
−2, for τ = (0, τ2), τ2 �= 0

2, for τ = (1, τ2), τ2 �= ±(2u − 1).

Therefore, there exist various LCZs in the correlation functions between se-
quences in U1 ∪ U2.

We will explain two methods to select binary sequences in U1∪U2, so that the
sets consisting of the selected sequences form binary LCZ sequence sets which
are nearly optimal with respect to the following bound.

Since ε = 2 in this case, (3) becomes

ML ≤ N + 4 +
12

N − 4

and for n ≥ 4, we have

M ≤
⌊N + 4

L

⌋
(6)

where x� means the greatest integer less than or equal to x. When an (N, M, L, 2)
LCZ sequence set achieves the equality in (6), it is said to be optimal.

Recall that the locations of sidelobes are symmetric with respect to the origin.
Thus, in terms of the distances to the sidelobes from the origin, there are at most
two distinct distances. Let Lu,v denote the distance to the nearest sidelobes
from the origin in Ru,v(τ). Then, Lu,v can be determined as in the following
lemma.

Lemma 2. For su(t), sv(t) ∈ U1 ∪ U2, 1 ≤ v ≤ u < 2n−1, Lu,v is given as

Lu,v =

⎧⎨⎩
N
2 − u − v + 1, if u − v is odd
u − v, if u − v is even and u �= v
2u − 1, if u = v.

(7)

Lemma 2 tells us that the LCZ of a set of sequences su(t)’s chosen from U1 ∪U2
is solely dependent on the index values u’s regardless of whether the sequence
su(t) is from U1 or U2. Thus, what we are going to do now is to choose an index
set I ⊂ {1, 2, · · · , 2n−1 − 1} and construct the set of sequences as

WI = {su(t) ∈ U1 | u ∈ I} ∪ {su(t) ∈ U2 | u ∈ I}

so that WI becomes a good LCZ sequence set.
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Lemma 2 tells us that the LCZ of the set WI is the minimum of the following
three values: 2n − (u + v) for odd |u − v|, |u − v| for nonzero even |u − v|, and
2u− 1 for u = v as u and v run over I. At the same time, for a given L, we want
to make the size of I as large as possible.

From these constraints, we can formulate fairly complex optimal design prob-
lem. The solution for this problem seems somewhat complicated, but the afore-
mentioned constraints implicitly lead us to consider an index set I that forms
an arithmetic progression with an odd value of common difference.

Proposition 1. Pick an odd integer f and a nonnegative integer f0 < f . Then,
we make an index set I as

I =
{
f0 + mf

∣∣ m = 1, 2, · · · ,
⌊2n−1 − f0

f

⌋}
.

Then, it is not difficult to show that the set size M and LCZ L of WI in Propo-
sition 1 are given as in the following theorem:

Theorem 5. [23] Let q and r be the quotient and the remainder of 2n−1, re-
spectively, when divided by f , i.e., 2n−1 = qf + r. Then, WI from Proposition
1 becomes a binary LCZ sequence set with parameters (2n+1 − 2, M, L, 2), where
M and L are given as

M = 2q

and if f0 = 0,

L =
{

f + 2r, for f ≥ 2r + 1
2f − 1, for f < 2r + 1 (8)

and if f0 �= 0,

L =
{

f + 2r − 2f0, for f ≥ 2r − 2f0
2f, for f < 2r − 2f0.

(9)

Note that if f is even, then from Lemma 2, LCZ of the sequence set WI becomes

L = min
u,v∈I,u�=v

(u − v) = f.

But if f is odd, then from Theorem 5, LCZ is greater than f , which is the reason
why we make the common difference f odd.

Now, we can easily obtain the following corollary and proposition:

Corollary 1. The product of set size and LCZ in Proposition 1 is given as

ML =

⎧⎪⎪⎨⎪⎪⎩
N − M(f − 2r) − 4r + 2, for f ≥ 2r + 1 and f0 = 0
N − M − 4r + 2, for f < 2r + 1 and f0 = 0
N − M(f − 2r + 2f0) − 4r + 2, for f ≥ 2(r − f0) and f0 �= 0
N − 4r + 2, for f < 2(r − f0) and f0 �= 0.

(10)
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Proposition 2. The indices u of the selected sequences su(t) both in U1 and in
U2 are chosen to form a progression starting from f + 2 − f0 with differences f
and f + 2, alternately, i.e.,

I = {uj | j = 0, 1, 2, · · · , J, u0 = f + 2 − f0,

u2k+1 − u2k = f, u2k+2 − u2k+1 = f + 2}

where J is the largest integer such that uJ < 2n−1, f0 is 0 or 1, and f is some
odd integer.

The set size M and the LCZ L are given as in the following theorem:

Theorem 6. Let q and r be the quotient and the remainder of 2n−1 − 1, re-
spectively, when divided by 2(f + 1), i.e., 2n−1 − 1 = 2q(f + 1) + r. Then
WI from Proposition 2 becomes a binary LCZ sequence set with parameters
(2n+1 − 2, M, L, 2), where M and L are given as

M =
{

4q, for 0 ≤ r < f + 2 − f0
4q + 2, for f + 2 − f0 ≤ r < 2f + 2

and

L =⎧⎨⎩
2r + f + 2 + 2f0, for 0 ≤ r < f−3f0

2
2f + 2 − f0, for f−3f0

2 ≤ r < f + 2 − f0 and 3f+2−3f0
2 ≤ r < 2f + 2

2r − f + 2f0, for f + 2 − f0 ≤ r < 3f+2−3f0
2 .

(11)

In this construction method for binary LCZ sequence sets, the LCZ length can
be freely selected and the resulting LCZ sequence sets have sizes that are almost
optimal with respect to the Tang, Fan, and Matsufuji bound.

4.2 Extension Method of q-Ary LCZ Sequence Sets

In this subsection, the construction methods of the LCZ sequence sets by ex-
tending method are introduced. When we extend the period, the LCZ length is
kept unchangeable or is slightly decreased.

Construction 3 [18]:
When a q-ary LCZ sequence set with parameters (N, M, L, ε) is given, we can
construct a q-ary LCZ sequence set with parameters (2N, 2M, L, 2ε) or (2N, 2M, L−
1, 2ε).

Proposition 3. Let T1 be the set of q-ary sequences given as

T1 = {si(t) | 0 ≤ i ≤ 2M − 1, 0 ≤ t ≤ 2N − 1}
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where si(t) is defined as

si(2t) =

{
vi(t), for 0 ≤ i ≤ M − 1
vi−M (t) + q

2 , for M ≤ i ≤ 2M − 1

si(2t + 1) =

⎧⎪⎪⎨⎪⎪⎩
vi

(
t +
⌈
L
2

⌉)
, for 0 ≤ i ≤ M − 1

vi−M

(
t +
⌈
L
2

⌉)
, for M ≤ i ≤ 2M − 1

where �x� means the smallest integer greater than or equal to x.

Theorem 7. T1 in Proposition 3 is a q-ary LCZ sequence set with parameters
(2N, 2M, L, 2ε) if L is odd and with parameters (2N, 2M, L− 1, 2ε) if L is even.

The following construction is considered as a generalization of Construction 3.

Construction 4:
Using the q-ary LCZ sequence set with parameters (N, M, L, ε), a new extended
q-ary LCZ sequence set can be constructed as in the following theorem:

Theorem 8. Suppose that an r× r unitary matrix D = (di,j)r×r over Zq exists
for some positive integer r such that r|q. Let S be an LCZ sequence set defined
in (2). Let T be the q-ary sequence set given by

T = {su(t) | 0 ≤ u ≤ rM − 1, 0 ≤ t ≤ rN − 1}

su(t) = su(ri + j) = fu−kM

(
i + j

⌊
L + 1

r

⌋)
+ dk,j ,

for kM ≤ u ≤ (k + 1)M − 1

where 0 ≤ i ≤ N − 1, 0 ≤ j, k ≤ r− 1. Then T is a q-ary LCZ sequence set with
parameters (rN, rM, r

⌊
L+1
r

⌋
− 1, rε).

Proof. From the definition of the set T , it is not difficult to see that the period
of the sequences in T is rN and the size of T is rM . Thus, it is enough to show
that
∣∣Ru,v(τ)

∣∣ is less than or equal to rε for |τ | < r (L + 1)/r� − 1 except for
the in-phase autocorrelation.

Let L+1 = ra+ b, where a is a nonnegative integer and 0 ≤ b ≤ r−1, so that
we have

⌊
L+1
r

⌋
= a. In order to show that |Ru,v(τ)| ≤ rε for all |τ | < ar− 1, the

following two cases should be separately considered.

Case 1) τ ≡ 0 mod r;
The correlation function Ru,v(τ) in (1) between su(t) and sv(t) such that

k1M ≤ u ≤ (k1 + 1)M − 1 and k2M ≤ v ≤ (k2 + 1)M − 1 can be rewritten as

Ru,v(τ) =
r−1∑
j=0

N−1∑
i=0

ω
fu−k1M (i+aj)+dk1 ,j−fv−k2M (i+aj+ τ

r )−dk2,j
q

=
r−1∑
j=0

ω
(dk1,j−dk2,j)
q

N−1∑
i=0

ω
fu−k1M (i+aj)−fv−k2M (i+aj+ τ

r )
q (12)

where ωq = ej2π/q.
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Using the correlation property of LCZ sequence set S, it is easy to check that
the magnitude of the inner sum in (12) is less than or equal to ε for −rL < τ < rL
unless u − k1M = v − k2M and τ = 0. Thus, we have |Ru,v(τ)| ≤ rε for all
|τ | < ar − 1.

In the case when u − k1M = v − k2M and τ = 0, the inner sum in (12)
becomes N and thus (12) can be rewritten as

Ru,v(0) = N

r−1∑
j=0

ω
(dk1,j−dk2,j)
q . (13)

Note that in (13), we can assume that k1 �= k2. Otherwise, k1 = k2 implies that
u = v, which in turn implies that (13) is nothing but the in-phase autocorrela-
tion. Now, since D is unitary, (13) becomes zero.

Case 2) τ �≡ 0 mod r;
Set τ = rτ1 + τ2, 1 ≤ τ2 ≤ r − 1. Then, we have

Ru,v(τ)

=
r−1∑
j=0

N−1∑
i=0

ω
fu−k1M (i+aj)+dk1 ,j−fv−k2M (i+ j+τ2

r �+(j⊕τ2)a+τ1)−dk2,(j⊕τ2)
q

=
r−1∑
j=0

ω
dk1,j−dk2,(j⊕τ2)
q

N−1∑
i=0

ω
fu−k1M (i+aj)−fv−k2M (i+ j+τ2

r �+(j⊕τ2)a+τ1)
q (14)

where ⊕ denotes the addition modulo r.
Again from the definition of the set S, it is clear that the magnitude of inner

sum in (14) is less than or equal to ε if the difference between i + aj and i +⌊
j+τ2
r

⌋
+ (j ⊕ τ2)a + τ1 is less than L. Thus, we have to show that∣∣∣∣⌊ j + τ2

r

⌋
+ (j ⊕ τ2)a + τ1 − aj

∣∣∣∣ < L (15)

for |τ | < r (L + 1)/r� − 1 = ar − 1.
The following two subcases should be considered.
2-i) j + τ2 ≥ r;
The range of τ satisfying the inequality (15) can be rewritten as

− L < 1 − (r − τ2)a +
τ − τ2

r
< L

⇔ −Lr − r + (r − τ2)ar + τ2 < τ < Lr − r + (r − τ2)ar + τ2

⇔ −Lr + (r − τ2)(ar − 1) < τ < Lr + (r − τ2)(ar − 1).

In the above inequality, the upper bound is clearly greater than ar− 1 and from
the fact that L = ar+b−1, the lower bound can be rewritten as −br−(ar−1)τ2,
which is less than −(ar − 1). Thus, we prove it.
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2-ii) j + k′′ < r;
Equation (15) can be rewritten as

−L < τ2a +
τ − τ2

r
< L

⇔ −Lr − τ2(ar − 1) < τ < Lr − τ2(ar − 1) = (r − τ2)(ar − 1) + br.

Again, in the above inequality, the upper bound is greater than ar − 1 and the
lower bound is less than −(ar − 1). Thus, we prove it.

From the above two cases, we prove that T is an LCZ sequence set with
parameters (rN, rM, r

⌊
L+1
r

⌋
− 1, rε). �

When we apply the proposed r-extension method in Theorem 8, the period, the
size, and the maximum correlation magnitude inside the correlation zone of the
extended set are increased by the factor r, but the LCZ of the extended set
cannot exceed that of the original set. In fact, when the extension factor is r
and the LCZ of the original set is L, LCZ is slightly decreased by (L+1) mod r.
Thus, in the case of applying the extension method successively, the LCZ of the
finally obtained set can be dependent on the order of extension. Consider the
following example.

Let S be a q-ary LCZ sequence set with parameters (N, M, L, ε). Assume that
both p1×p1 unitary matrix Dp1 over Zq and p2×p2 unitary matrix Dp2 over Zq
exist. There are three different ways of applying our extension method to S to
obtain the set S′ extended by p1p2. We can obtain S′ in a single step using the
unitary matrix Dp1 ⊗ Dp2 . Here, Dp1 ⊗Dp2 represents the p1p2 × p1p2 unitary
matrix over Zq obtained from the Kronecker product of Dp1 and Dp2 . Then, the

LCZ size of S′ becomes p1p2

⌊
L+1
p1p2

⌋
− 1. When we apply our extension method

to S in the order of p1-extension first and p2-extension second, the final LCZ size
becomes p2

⌊
p1
p2

⌊
L+1
p1

⌋⌋
−1. But, if we change the order of extension, it becomes

p1

⌊
p2
p1

⌊
L+1
p2

⌋⌋
− 1. Thus, in order to make the LCZ size the largest, we should

be careful about the order of extension and it is summarized as in the following
theorem:

Theorem 9. Let S be a set of q-ary LCZ sequence set with parameters (N, M, L, ε).
Let pi, 1 ≤ i ≤ k, be positive integers such that pi×pi unitary matrices Dpi over
Zq exist. Define ha(x) = x mod a and ga(x) = x − ha(x + 1). Let r =

∏k
i=1 pi.

Assume that hp1(L + 1) ≤ hp2(L + 1) ≤ · · · ≤ hpk
(L + 1). If we extend S by

r by applying the pi-extension methods successively, the maximum LCZ size is
achieved when the pi-extension is done in the increasing order of i, i.e., the p1-
extension first and the p2-extension next and so on. Then, the maximum LCZ
size of the extended LCZ sequence set becomes

Lr = gpk
(L) = L − hpk

(L + 1). (16)
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Proof. It is not difficult to see that

ha(x − y) =
{

ha(x) − ha(y) if ha(y) ≤ ha(x)
ha(x) − ha(y) + a otherwise. (17)

Especially when 0 ≤ y ≤ ha(x), we have

ha(x − y) = ha(x) − y. (18)

In general, when we apply pi-extension first and then pj-extension to S, the LCZ
of the pipj-extended set is bounded as

gpj (gpi(L)) ≤ gpj (L) Δ= L − hpj (L + 1), (19)

because ga(x) is a non-increasing function of x for any positive integer a.
The equality in (19) is achieved if and only if hpi(L + 1) ≤ hpj (L + 1). This

is because

gpj (gpi(L)) = L − hpi(L + 1) − hpj (L + 1 − hpi(L + 1))
= L − hpi(L + 1) − hpj (L + 1) + hpi(L + 1)
= L − hpj (L + 1)
= gpj (L)

from (18). Therefore, if we apply the pi-extension successively in the increasing
order of i, then the LCZ of the r-extended set becomes gpk

(L) = L−hpk
(L+1).

From (17) and the fact that ga(·) is a non-increasing function, it is obvious
that this is the maximum achievable value. �
Note that if we construct an r-extended LCZ sequence set by a single-step exten-

sion using the r× r unitary matrix
k⊗
i=1

Dpi , its LCZ size becomes L−hr(L+1),

which is smaller than or equal to Lr in (16).
For r = pm1

1 pm2
2 · · · pmk

k and mi ≥ 1, the following corollary can be stated
without proof.

Corollary 2. Let S be a set of q-ary LCZ sequence set with parameters (N, M, L, ε).
Let pi, 1 ≤ i ≤ k, be positive integers such that there exist pi × pi unitary ma-
trices over Zq. Let r = pm1

1 pm2
2 · · · pmk

k , mi ≥ 1 and hpi(L + 1) = L + 1 mod pi.
The maximum LCZ size of the extended LCZ sequence sets by r is given as

Lr = L − max
1≤i≤k

hpi(L + 1).

Table 2 shows the LCZ lengths of extended LCZ sequence sets for the different
methods.

Now, we will show the conditions for which the extension of LCZ sequence
sets preserves the optimality of the LCZ sequence set in terms of the bound by
Tang, Fan, and Matsufuji [43]. Using the bound in Theorem 1, the optimality of
the extended LCZ sequence sets by Theorem 8 can be stated as in the following
theorem:
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Table 2. Comparison of the extended LCZ zones

p \ LCZ length 100 101 102 103 104 105 106 107 108 109
p1 = 3, p2 = 5 94 99 99 99 104 104 104 104 104 104
p1 = 5, p2 = 3 98 98 98 98 104 104 104 104 104 107

p1 = 15 89 89 89 89 104 104 104 104 104 104

Theorem 10. Let S be an optimal LCZ sequence set with parameters (N, M, L, ε)
with respect to the bound by Tang, Fan, and Matsufuji. Then, the extended LCZ
sequence set T with parameters (rN, rM, r

⌊
L+1
r

⌋
− 1, rε) in Theorem 8 is opti-

mal with respect to the bound by Tang, Fan, and Matsufuji if L ≡ r − 1 mod r

and
⌊

1
M

N2−ε2
N−ε2
⌋

=
⌊

1
M

N2−ε2
N−rε2

⌋
.

Proof. From (3), we have

L =
⌊

1
M

N2 − ε2

N − ε2

⌋
.

For an LCZ sequence set with parameters (rN, rM, L′, rε) to be optimal, L′

should satisfy

L′ =
⌊

1
M

N2 − ε2

N − rε2

⌋
.

Since
⌊

1
M

N2−ε2
N−ε2
⌋
≤
⌊

1
M

N2−ε2
N−rε2

⌋
, for the set T to preserve its optimality, it is

necessary that

L′ = r

⌊
L + 1

r

⌋
− 1 = L,

which implies that L ≡ r − 1 mod r and⌊
1
M

N2 − ε2

N − ε2

⌋
=
⌊

1
M

N2 − ε2

N − rε2

⌋
.

Let Δ = 1
M

N2−ε2
N−ε2 −

⌊
1
M

N2−ε2
N−ε2
⌋

so that 0 ≤ Δ < 1. Then, we have⌊
1
M

N2 − ε2

N − rε2

⌋
−
⌊

1
M

N2 − ε2

N − ε2

⌋
=
⌊
Δ +

1
M

N2 − ε2

N − ε2
(r − 1)ε2

N − rε2

⌋
. (20)

If 0 ≤ Δ + 1
M

N2−ε2
N−ε2

(r−1)ε2

N−rε2 < 1, then the extended LCZ sequence set pre-
serves the optimality. It is easy to check that for small values of N/M , ε, and
r, the optimality of LCZ sequence sets is often preserved through the extension
process. �
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It is possible to enlarge the symbol alphabet of the extended sequence set in
Theorem 8. Suppose that there exists an r×r unitary matrix over Zp for some p
divisible by q. We can convert the q-ary LCZ sequence set S into the p-ary LCZ
sequence set S′ by replacing the symbol k in Zq by the symbol kp/q in Zp. Then,
we can apply our r-extension method to S′ using the r× r unitary matrix Zp to
construct p-ary LCZ sequence set with parameters (rN, rM, r

⌊
L+1
r

⌋
− 1, rε).

The same extension method as Theorem 8 can be applied to construct ZCZ
sequence sets by setting ε = 0. From Theorem 9, the extended ZCZ sequence set
always preserves the optimality if L ≡ r − 1 mod r.

5 Conclusion

We reviewed our basic or general construction methods of LCZ sequence sets.
Finally, the extending method of q-ary LCZ sequence sets is proposed, which
can be considered as a generalization of the previous extension method. Us-
ing the proposed extending method, a q-ary LCZ sequence set with parame-
ters (N, M, L, ε) can be extended to a q-ary LCZ sequence set with parameters
(rN, rM, r

⌊
L+1
r

⌋
− 1, rε), where r is a positive integer such that r|q. And we

showed that the LCZ of the obtained set is dependent on the order of extension.
When L ≡ −1 mod r and

⌊
1
M

N2−ε2
N−ε2
⌋

=
⌊

1
M

N2−ε2
N−rε2

⌋
, a q-ary LCZ sequence set

with parameters (rN, rM, L, rε) constructed by the proposed extension method
preserves the optimality of the LCZ sequence set.
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Abstract. A compact expression for Zadoff-Chu sequences is introduced
and used to show that all sequences of a given odd prime length are
permutations of two seed sequences. In addition, it helps us derive a
decimation formula and demonstrate that when two pre-calculated seed
sequences and stored in the memory, any desired Zadoff-Chu sequence
of odd prime length can be generated, sample-by-sample, simply by in-
crementing the read index by a corresponding step value. In this manner
no calculation of sequence elements is required. That is, this algorithm
does not require any additions, multiplications, or trigonometric calcu-
lations to generate sequences in real-time. Furthermore, the proposed
table-lookup requires storing only a single sequence pair for each desired
Zadoff-Chu sequence family of odd prime length.

Keywords: Zadoff-Chu sequences, perfect poly-phase sequences, Long
Term Evolution (LTE).

1 Introduction

Zadoff-Chu sequences [1] belong to the class of perfect (sometimes called ideal)
poly-phase sequences. Other well-known perfect poly-phase sequences are Frank
sequences [2]and their generalization - theGCL sequences (GeneralizedChirp-Like
sequences) [3]. Perfect sequences have the property that their periodic autocorre-
lation function is perfect, that is, it is zero for all time lags except for the zero lag.
As a consequence, the Discrete Fourier Transform (DFT) of Zadoff-Chu sequences
has constant amplitude.

Historically, chirp signals (characterized by a linear frequency sweep) were first
used in radars [4] as the first pulse compression waveform. Later, with the emer-
gence of digital signal processing, phase modulated sequences (mostly Binary
Phase Modulated – BPSK) were largely used as opposed to the chirp signal which
is a frequency modulated signal. At the same time, with the introduction of the
spread spectrum in military applications, phase modulated sequences found an ad-
ditional role. Later, spread spectrum (via Direct Sequence – Code Division Multi-
ple Access - DS-CDMA) was also adopted in commercial applications as a standard
for mobile/cellular networks. In the era of digital signal processing, chirp wave-
forms were reinvented first in the form of Frank sequences [2], where the frequency
� Special thanks to Prof. Predrag Spasojevic from WINLAB, Rutgers University, for
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increases in discrete steps and later in the form of Zadoff-Chu sequences [1], where
the frequency gradually increases but is not limited to the Nyquist frequency. In
fact, for Zadoff-Chu sequences the frequency rise up to a value several times the
Nyquist frequency resulting in aliasing which is not an unwanted effect but is an
integralproperty of the sequence design.However, such a sequence havevery strong
mathematical properties such as the ideal periodic autocorrelation function and,
also, acceptable aperiodic autocorrelation properties [8].

In radar applications variations of those sequences called P1, P2, P3, and P4
sequences [4] were proposed as aperiodic waveforms. In 1992 Popovic [3] gave
a construction that generalizes both Frank sequences and Zadoff-Chu sequences
and called them GCL (Generalized Chirp-Like) sequences for historical reasons.
In 1996 Mow [5] gave a further generalization of perfect polyphase sequences
which includes, besides GCL sequences, 3 other families of sequences. Today the
prevailing terminology for perfect sequences is CAZAC (Constant Amplitude
Zero Autocorrelation Sequences).

Recently, Zadoff-Chu sequences have been used in several blocks of the new
3GPP Long Term Evolution (LTE) standard [6] for wireless communication
having several roles: the down-link primary synchronization signal, the rang-
ing (PRACH) preamble, and the up-link reference signal. New hand held mobile
devices have very high requirements on complexity, price and power consump-
tion. Thus it is of great importance to simplify any algorithm which would result
in higher value of the device.

The main contribution of this paper is achieved in three steps. First a new
expression for Zadoff-Chu sequences is given. Based on this new expression the
decimation formula is derived. This decimation formula allows us to relate the
Zadoff-Chu sequences to the quadratic residues theory from the number theory.
From this main result two consequences are derived. In the theoretical area it is
shown that all Zadoff-Chu sequences can be divided into two groups depending
on whether the root index is a quadratic residue or a quadratic non-residue
and that all sequences from one group are permutationally equivalent. In the
practical area it is shown that all Zadoff-Chu sequences of a given length can be
generated from two seed sequences by simple permutation of sequence elements
leading to an efficient generator.

Section 2 introduces the standard definition, proposes a new expression for
Zadoff-Chu sequences, and also, illustrates their differences through examples.
Section 3 derives the decimation formula that is the main theoretical result of this
paper. Section 4 describes the algorithm for efficient generation and contrasts
its implementation to a standard lookup-table implementation of the Zadoff-Chu
sequence generator.

2 Zadoff-Chu Sequence Modeling

2.1 Standard Notation

In this work we consider only Zadoff-Chu sequences of length P, where P is an
odd prime. Zadoff-Chu sequences are usually defined [1] for odd lengths as
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yU (n) = e−
2πi
P ·U·n(n+1)

2 , (1)

where U is the ”root index” that determines a specific sequence from the set of
length-P sequences, n is the time index and i =

√
−1. For prime values of P,

each U = 1 . . .P − 1 will generate a different Zadoff-Chu sequence. Hence, there
are P-1 different Zadoff-Chu sequences of length P. All cyclic time shifts (shift
of the time index n) and phase shifts (shift of the phase angle of the complex
exponential) of a sequence in (1) are considered equivalent and are not treated
as essentially different sequences.

We use the notation and the terminology introduced by Frank [2]. Hence, the
sequence phase is represented as a product of the basic angle φ0 = 2πi/P and
its multiplicative coefficient:

YU (n) = U · n(n + 1)
2

. (2)

Now, the complex Zadoff-Chu sequence elements are

yU (n) = e−iφ0·YU (n) = e−
2πi
P ·YU (n). (3)

Alternatively, Zadoff-Chu sequences are represented using sequences of roots of
unity. Let the primitive P -th root of unity be WP = e−iφ0 = e−2πi/P . In this
case, the sequence elements can be expressed using powers of WP , as follows

yU (n) = WYU (n)
P . (4)

In the rest of this paper we use small letters to denote the poly-phase (com-
plex) sequence itself and capital letters to denote the multiplicative coefficients
(which are integers). The multiplicative coefficients YU (n) will be used in most
expressions instead of the Zadoff-Chu sequence yU (n) itself, in order to simplify
notation. Keep in mind that the multiplicative coefficient YU (n) should always
be viewed modulo P (because the complex exponential function is periodic with
period 2π and, hence, WP

YU (n) is periodic in YU (n) with a period P). To stress
this fact we will use “≡” (equivalence modulo P) instead of “=” (equality) in
equations that are modulo P.

2.2 New Alternative Expression for Zadoff-Chu Sequences

The definition (1) is sometimes modified to include frequency shifted versions
of those sequences. Those frequency shifted versions of the original sequences
belong to the same equivalence class as the original sequences so they are not
considered as separate sequences.

The extended expression for the multiplicative coefficients that include the
frequency term k · n is1

1 We use XU (n) to denote Zadoff-Chu sequences with a frequency shift as opposed to
sequences without a frequency shift that we denote by YU (n).
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XU (n) ≡ U · n(n + 1)
2

+ k · n ≡ U · n(n + 1 + 2U−1 · k)
2

, (5)

where U−1 is the inverse of U modulo P. We can note that 1 + 2U−1 · k is an
odd integer and we will denote it by K.

So (5) becomes

XU (n) ≡ U · n(n + K)
2

. (6)

Since K must be an odd integer we see that this expression reduces to (1) for
K = 1.

Now we can introduce our new expression for Zadoff-Chu sequences which is
obtained from (6) if we choose K = P , which is possible as P is an odd prime.
So the new expression is

XU (n) ≡ U · n(n + P )
2

. (7)

The advantage of this new Zadoff-Chu expression, which will become clear in
subsequent sections, is that it reveals the connection between Zadoff-Chu se-
quences and the Quadratic Residues Theory [7]. In addition, it is easy to see
that the compact expression (7) is valid not only for odd length but also for
even length Zadoff-Chu sequences, which is not the case with the standard defi-
nition (where, a separate expression is needed for even length2) [1]. However, in
this paper we will not deal with even length sequences and we will only consider
odd prime lengths.

2.3 Relation between New and Standard Definition

In order to be able to use our new results in systems that are based on the stan-
dard definition of Zadoff-Chu sequences, we relate the new and the standard
expression in the following. We will denote the sequences generated by the stan-
dard definition by yU (n) and their multiplicative coefficients by YU (n). We start
the derivation form the cyclically time shifted version of the new Zadoff-Chu
sequence XU (n) expression (7) as follows

XU (n + m) ≡ U · (n + m)(n + m + P )
2

≡ U · (n + m) · (n + 1) + (P − 1 + m)
2

≡ U ·
(

n
(n + 1)

2
+ n

(P − 1 + m)
2

+ m
(n + 1)

2
+ m

(P − 1 + m)
2

)
≡ U ·

(
n

(n + 1)
2

+ n
(P − 1 + m)

2
+ m

n

2
+

m

2
+ m

(P − 1 + m)
2

)
≡ U ·

(
n

(n + 1)
2

+ n
(P − 1 + 2m)

2
+ m

(P + m)
2

)
. (8)

2 According to the standard definition, Zadoff-Chu sequences are defined for even
lengths by YU(n) = U · n2/2.
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If we choose m = P+1
2 the second term vanishes because it is a multiple of P

(which is equal to 0 mod P) and we obtain

XU

(
n +

P + 1
2

)
≡ YU (n) + U ·

P+1
2 (P + P+1

2 )
2

≡ YU (n) + XU

(
P + 1

2

)
. (9)

Hence, a sequence following the standard expression can be obtained from the
corresponding sequence following the new expression as follows

YU (n) ≡ XU

(
n + P+1

2

)
− XU

(
P+1

2

)
≡ XU

(
n + P+1

2

)
− U ·

P+1
2 ( P+1

2 +P )
2 .

(10)

We observe that the first term on the right hand side is a cyclically time shifted
version of a Zadoff-Chu sequence following the new definition. The shift is ap-
proximately equal to half the sequence length P+1

2 . The second term is an integer
constant phase shift depending only on P and U.

2.4 Examples

Table 1. gives an example of Zadoff-Chu sequences of length 7 calculated using
the standard expression (1) and Table 2. gives the same sequences calculated
using the new proposed definition (7).

Table 1. Multiplicative coefficients of Zadoff-Chu sequences of length 7 - standard
definition

n 0 1 2 3 4 5 6 Sequence Elements
Y1(n) 0 1 3 6 3 1 0 0, 1, 3, 6
Y2(n) 0 2 6 5 6 2 0 0, 2, 5, 6
Y3(n) 0 3 2 4 2 3 0 0, 2, 3, 4
Y4(n) 0 4 5 3 5 4 0 0, 3, 4, 5
Y5(n) 0 5 1 2 1 5 0 0, 1, 2, 5
Y6(n) 0 6 4 1 4 6 0 0, 1, 4, 6

The main difference that can be observed, from the above tables, is that the
standard expression generates sequences whose elements constitute sets which
are unique to each sequence. The new expression generates sequences having only
two different sets3 of elements {0, 1, 2, 4} and {0, 3, 5, 6}. So the sequences
can be divided into two groups depending on the set of elements they contain.
The first group of sequences {X1(n), X2(n), X4(n)} contains only elements {0,
1, 2, 4} and the second group of sequences {X3(n), X5(n), X6(n)} contains
only elements {0, 3, 5, 6}. Note that the only element common to both sets
is 0. The mathematical derivation of this property is given in the next section.
Also note that the same numbers {1, 2, 4} and {3, 5, 6} appear in the sets of
3 To make it more obvious one set is shown in bold and the other one in italic

characters.
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Table 2. Multiplicative coefficients of Zadoff-Chu sequences of length 7 - new defini-
tion (7)

n 0 1 2 3 4 5 6 Sequence elements
X1(n) 0 4 2 1 1 2 4 0, 1, 2, 4

X2(n) 0 1 4 2 2 4 1 0, 1, 2, 4

X3(n) 0 5 6 3 3 6 5 0, 3, 5, 6

X4(n) 0 2 1 4 4 1 2 0, 1, 2, 4

X5(n) 0 6 3 5 5 3 6 0, 3, 5, 6

X6(n) 0 3 5 6 6 5 3 0, 3, 5, 6

sequence elements and also as the sequences root indexes U. We can also note
that, mathematically, {1, 2, 4} are quadratic residues and that {3, 5, 6} are
quadratic non-residues, while 0 is neither a residue nor a non-residue [7].

A general comparison of the standard and the new expression is given in Table 3.

Table 3. Comparison of the sequences generated by the standard and the new
expression

Standard expression New expression

Symmetry YU(n − 1) = YU (P − n) XU (n) = XU (P − n)
Unique element YU((P − 1)/2) XU (0)
Elements with value 0 YU(0) and YU (P − 1) XU (0)
Sets of values All sets are different Only 2 different sets

Finally we note that according to (10), sequences of length 7 given by the
standard expression YU can be calculated from the sequences given by the new
expression XU by YU (n) ≡ XU (n + 4) − U which is easily verified by checking
Tables 1. and 2.

3 Decimation (Re-Sampling) of Zadoff-Chu Sequences

Here we show that a decimated (re-sampled) Zadoff-Chu sequence is also a
Zadoff-Chu sequence. The resulting sequence is just another Zadoff-Chu sequence
with a different root index U. The root index of the resulting sequence is equal
to the original root index multiplied by the squared decimation factor.

3.1 The Decimation Formula

For a decimation factor K, we can write

XU (K · n) ≡ U · K · n · K · n + P

2
≡ U · K · n · K · n + (K · P − K · P ) + P

2

≡ U · K · n · K · n + K · P
2

− U · K · n · K · P − P

2

≡ U · K2 · n(n + P )
2

− U · P · n · K(K − 1)
2

. (11)
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Since K(K−1)
2 is an integer, the second term is an integer multiple of P so it is

equal to zero modulo P. Thus finally we have

XU (K · n) ≡ U · K2 · n(n + P )
2

≡ XU·K2(n) (12)

and, hence, a decimated Zadoff-Chu sequence (with root index U ) is equal to an-
other Zadoff-Chu sequence with root index equal to: UK2 mod P . By exchanging
the left- and the right-hand side and replacing U by V we can write

XV ·K2(n) ≡ XV (K · n) (13)

Hence, a sequence with the root index U ≡ V K2 can be calculated by decimating
the sequence XV (n).

For V = 1 we obtain
XK2(n) ≡ X1(K · n), (14)

which is a very important special case. Finally, this means that any sequence
with root index

U ≡ K2 (15)

can be obtained by decimating the seed sequence whose root index is U = 1.
The importance of this result lies in the fact that decimation does not require

recalculation of sequence elements and that it is in fact just a reordering of
sequence elements (in mathematical language - a permutation).

We note that a number U that satisfies the equation U = K2 mod P is a
quadratic residue [7] and is studied in detail in modular arithmetic, which is a
branch of number theory. Here, we do not use the usual terminology from this
area of mathematics, but only note that many theoretical results from the theory
of quadratic residues can be applied to Zadoff-Chu sequences, which will be the
subject of future research.

Note that not all root indices can be expressed as K2 mod P . In fact as
K2 ≡ (P − K)2 we must restrict K to K = 1, 2, . . . (P − 1)/2 in order not
to generate duplicate values. This means that the expression K2 mod P can
produce only (P − 1)/2 different values and there are (P − 1)/2 values [7] that
cannot be produced by this expression. If one such value is V then all other such
values (called quadratic non-residues [7]) can be generated by

U = V · K2 mod P ; K = 1, 2, . . . (P − 1)/2. (16)

Now we can use (13) to generate the sequences when U is not a residue:

XV ·K2(n) ≡ XV (K · n) (17)

This means that we need another complex Zadoff-Chu sequence xV (n) in order
to generate all sequences with a root index which is a non-residue. In summary,
we need the x1(n) sequence to generate (P − 1)/2 sequences with a root index
which is a residue and a xV (n) sequence to generate (P − 1)/2 sequences with
a root index which is a non-residue. We have to note that the value of V is not
unique – we can choose any non-residue for V. Also it is not necessary to use
U = 1 as the first seed sequence. Any U which is a residue can be chosen.
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3.2 Decimation and the New Expression for Zadoff-Chu Sequences

Here we explain why we need the new expression for Zadoff-Chu sequences to
derive the decimation formula a why the decimation formula does not hold for
the standard definition.

The decimation formula states that the decimated sequences are rearranged
versions (permutations) of the original sequence. This means that all decimated
sequences have elements from the same set. We have seen that sequences follow-
ing the new definition have this property. We can see from expression (10) why
the decimation formula does not hold for the standard definition. According to
(10) YU sequences are obtained from XU by adding a term that depends on U,
which results in a different set of elements for each U.

4 Efficient Calculation of Zadoff-Chu Sequences

Based in previous formula, we give a formulation of the algorithm for efficient
generation of Zadoff-Chu sequences consisting of 4 off-line steps and the last step
implemented in real-time.

4.1 The Generation Algorithm

The algorithm for the efficient generation of Zadoff-Chu sequences can be for-
mulated in the following manner. Steps 1 - 4 are performed in design-time or
during device initialization. Step 5 is performed in real-time. We illustrate the
algorithm with sequences from the previous example for P=7

1. Choose V from the set of quadratic non-residues. (In our example we choose
V = 3 but values 5 or 6 could also be used.)

2. Generate and store the two seed complex Zadoff-Chu sequences4 x1(n) and
xV (n) according to (7).
(In our example let W = e−2πj/7 then x1 = [1, W4, W2, W1, W1, W2, W4]
and x3 = [1, W5, W6, W3, W3, W6, W5].)

3. Generate a table which determines which U (excluding 0) is a quadratic
residue ”R” and which is a non-residue ”N”. In practice ”R” and ”N” would
be represented by 0’s and 1’s. This table determines which seed sequence
will be used.
(For our example this table is [R, R, N, R, N, N] .)

4. Generate a table for the inverse mappings U → K1 (K1 = K1(U)) for the
mapping U ≡ K1

2 and U → K2 for the mapping U ≡ V K2
2 (K2 = K2(U))

for K1, K2 = 1 . . . (P − 1)/2. Since each U is either a residue or non-residue
these two mappings can be stored in a single combined table.
(Table 4. summarizes all the tables from steps 1 - 5. from our example)

4 Note here that because of the symmetry only half of the sequence needs to be
stored. That is, we can store only x1(0, . . . 3) = [1, W4, W2, W1] and x3(0, . . . 3) =
[1, W5, W6, W3].
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Table 4. Tables needed for efficient generation of Zadoff-Chu sequences of length 7

1 U 0 1 2 3 4 5 6

2 Residue/Non-residue R/N R R N R N N
3 K1 for residues 1 3 2

4 K2 for non-residues (V=3) 1 2 3

5 K combined table for K1 and K2 1 3 1 2 2 3

6 First seed sequence x1 W0 W4 W2 W1 W1 W2 W4

7 Second seed sequence x3 W0 W5 W6 W3 W3 W6 W5

5. In real-time, read one of the two stored seed sequences (in our example rows
6 or 7 from Table 4.) beginning with the first element and by incrementing
the index by K(U) (in our example row 5 of Table 4.) depending on whether
U is a residue or a non-residue (in our example row 2 of Table 4.).
(In our example the sequences that can be generated from the two seed
sequences x1(n) and x3(n) in this manner are:

x2(n) ≡ x1(3n); as 2 is a residue and K1(2) = 3;
x4(n) ≡ x1(2n); as 4 is a residue and K1(4) = 2;
x5(n) ≡ x3(2n); as 5 is non-residue and K2(5) = 2;
x6(n) ≡ x3(3n); as 6 is non-residue and K2(6) = 3.)

4.2 Hardware Implementation of the Proposed Algorithm

The hardware implementation requires address generating circuitry and memory
for storing the two seed sequences. The address generator has to calculate the
following address

XU (n) = n · K(U) mod P. (18)

This address can recursively be calculated as follows

XU (0) = 0; XU (n) = XU (n − 1) + K(U) mod P. (19)

We recognize this algorithm as a perfect integrator. So the address generator
consists of a register and an adder modulo P (adding K(U) to the previous value).
Here we note that XU (0) can be preset to a non-zero value, thus generating
different cyclic time shifts of the Zadoff-Chu sequence. For XU (0) = (P − 1)/2,
we generate sequences according to the standard definition (2) except for the
constant phase shift XU ((P + 1)/2) from (10). The entire sequences generator
is shown in Figure 1.

We end this discussion with a remark concerning the storage requirement.
Usually we need to store two Zadoff-Chu sequences of length P (one for residues
and the other for non-residues). But in some special cases we can use only one
sequence. We note the fact that XU (n) + XP−U (n) ≡ 0 or XU (n) ≡ −XP−U (n)
which is the consequence of the fact that U + (P − U) = P = 0. Then we use a
result from quadratic residue theory which states that P − 1 is a non-residue if
P = −1 mod 4 [7]. It follows that, for P prime such that P = 4n − 1, we can
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Fig. 1. Efficient generator

use XP−1(n) as our second seed sequence. The big advantage is that, because
XP−1(n) = −X1(n), we have xP−1(n) = x1(n) . Hence, the second seed sequence
is a complex conjugate of the first seed sequence x1(n) and it does not need to
be stored separately. By adding an inverter (multiplier by -1) to the imaginary
part of the first seed sequence, we obtain the second seed sequence.

Some examples of prime numbers of this form are: 3, 7, 11, 19, 23, 31, 43, . . ..
It is interesting to note that the sequence lengths that are chosen for the LTE
PRACH satisfy the above criterion: 139 (139 = 4 · 35 − 1) and 839 (839 =
4 · 210 − 1).

4.3 The Lookup Table Implementation

To see the advantage of this implementation we compare it to the standard
lookup table implementation (using the standard definition). The lookup table
implementation is based on the formula (1). We store in a memory (lookup
table) all roots of unity WP

k for k = 0, .. N − 1. Then we generate the complex
Zadoff-Chu sequence following the standard definition yU (n) from (1) by using
the multiplicative coefficients YU (n) as the address to the lookup table.

To implement the above approach we need to first generate the following
address

YU (n) = U
n(n + 1)

2
mod P. (20)

Generating this address directly needs hardware multiplication and modulo P
calculation of large numbers, which have large complexity. Fortunately, we can
obtain the same result recursively by using only addition and modulo P calcu-
lation of small numbers. To derive the recursive algorithm we first calculate the
difference

YU (n) − YU (n− 1) =
(

U
n(n + 1)

2
− U

(n − 1)n
2

)
mod P = U · n mod P (21)

so that YU (n) = (YU · (n − 1) + U · n) mod P . Once again we can recognize
this as a perfect integrator. The term U · n mod P can also be implemented
recursively as an integrator so that the entire circuitry can be implemented as
a double integrator. It goes without saying that each adder is modulo P. This
implementation is shown in Figure 2.
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Fig. 2. Standard lookup table implementation

5 Conclusion

Two theoretical results and an efficient algorithm for generating Zadoff-Chu
sequence are presented. The first result is an alternative expression for defin-
ing Zadoff-Chu sequences. This new expression reveals the internal structure of
Zadoff-Chu sequences and leads to a decimation formula, which is the second
contribution of this paper. Based on this new formula an efficient algorithm for
generating Zadoff-Chu sequences of a given prime length is derived. Based on two
pre-calculated seed sequences (stored in the memory), any desired Zadoff-Chu
sequence can be generated, sample-by-sample, simply by incrementing the read
index by a corresponding step value. In this manner no calculation of sequence
elements is required. That is, this algorithm does not require any additions,
multiplications, or trigonometric calculations to generate sequences in real-time.
Finally a hardware implementation is proposed and compared to the standard
lookup-table implementation to demonstrate its advantage.

We hope that this paper will influence future use of Zadoff-Chu sequences in
radar and communication systems and, in particular, future wireless standards.
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Abstract. The problem of efficient implementation of security mech-
anisms for advanced contactless technologies like RFID is gaining in-
creasing attention. Severe constraints on resources such as area, power
consumption, and production cost make the application of traditional
cryptographic techniques to these technologies a challenging task.
Non-Linear Feedback Shift Register (NLFSR)-based stream ciphers are
promising candidates for cryptographic primitives for RFIDs because
they have the smallest hardware footprint of all existing cryptographic
systems. This paper presents a heuristic algorithm for constructing a
fastest Galois NLFSR generating a given sequence. The algorithm takes
an NLFSR in the Fibonacci configuration and transforms it to an equiv-
alent Galois NLFSR which has the minimal delay. Our key idea is to
find a best position for a given feedback connection without changing
the positions of the other feedback connections. We use a technology de-
pendent cost function which approximates the delay of an NLFSR after
the technology mapping. The experimental results on 57 NLFSRs used
in existing stream ciphers show that, on average, the presented algorithm
allows us to decrease the delay by 25.5% as well as to reduce the area by
4.1%.

1 Introduction

Non-Linear Feedback Shift Registers (NLFSRs) are a generalization of Linear
Feedback Shift Registers (LFSRs) in which the current state is a non-linear
function of the previous state [10].

LFSRs are one of the most popular devices for generating pseudo-random
sequences [2]. They are also used to perform data/test decompression and test/
response compaction [19]. LFSRs are simple, fast, and easy to implement in soft-
ware and hardware. Applications of LFSRs include error-detection and correc-
tion, data transmission, data compression, data hiding, white noise generation,
Monte Carlo simulation, cryptography, and many others [8, 10,2, 19]. Therefore,
LFSR synthesis has drawn considerable attention through the years.

NLFSRs have received much less attention compared to LFSRs. Previous
works focused mostly on the problem of constructing an NLFSR with the max-
imum period (see [5] for an excellent overview), or on how to find an NLFSR
with the smallest number of bits which generates a given sequence [15].
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c© Springer-Verlag Berlin Heidelberg 2010
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The main application area of NLFSRs at present is cryptography [24]. Al-
though LFSRs can generate pseudo-random sequences with the same uniform
statistical distribution of 0’s and 1’s as in a sequence generated by a truly ran-
dom method [10], they are not cryptographically secure. The structure of an n-bit
LFSR can be easily deduced by observing 2n consecutive bit of its sequence [17].
On the contrary, an adversary might need O(2n) bits of a sequence to find
the n-bit NLFSR which generates it [4]. Pseudo-random sequences generated by
NLFSRs are normally hard to break with existing cryptanalytic methods [13,23].

A number of NLFSR-based stream ciphers for resource-constrained hardware
applications have been designed [6, 12, 1, 9, 7]. An NLFSR-based stream cipher
encrypts the information by combining plain text bits with a pseudo-random bit
sequence generated by the NLFSR [21]. The resulting encrypted information can
be transformed back into its original form only by an authorized user possessing
the secret cryptographic key.

At present, NLFSR-based stream ciphers are the most promising candidates
for cryptographic primitives for advanced contactless technologies like RFID be-
cause they have the smallest hardware footprint of all existing cryptographic
systems [22]. The lack of adequate security and data-protection mechanisms for
RFIDs blocks off a variety of potential applications of RFIDs in the pharmaceu-
tical, medical, transportation, consumer-payment, and retail industries [14]. This
motivates research on resource-efficient design and implementation of NLFSR-
based stream ciphers.

Similarly to LFSRs, an NLFSR can be implemented either in the Fibonacci or
in the Galois configuration (see Figures 1 and 2 ). In the former, the feedback is
applied to the input bit of the shift register only, while in the latter the feedback
can potentially be applied to every bit. The depth of the circuits implementing
the feedback functions of the Galois configuration is usually smaller than the
depth of the circuit implementing the feedback function of the Fibonacci con-
figuration [3]. This makes the Galois configuration attractive for stream ciphers
for which high throughput is very important. For example, by re-implementing
the NLFSR-based stream cipher Grain-80 [12] from its original Fibonacci con-
figuration to the Galois configuration, it is possible to double the throughput of
the 1 bit/cycle version of Grain-80 with no penalty in area or power [16].

In [3], sufficient conditions for equivalence of NLFSRs in the Fibonacci and
the Galois configurations have been formulated. This result laid a theoretical
foundation of the transformation between the two configurations. However, it
left open the problem of selecting a fastest Galois NLFSR generating a given
sequence. This problem is addressed in this paper. We present a heuristic al-
gorithm which takes an NLFSR in the Fibonacci configuration and transforms
it to an equivalent Galois NLFSR which has the minimal delay. The key idea
is to find a best position for a given feedback connection without changing the
positions of the other connections. The ”best” is defined as a position which
minimizes the cost function approximating the delay of the NLFSR after the
technology mapping. The experimental results on 57 NLFSRs used in existing
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stream ciphers show that the presented approach allows us to decrease the delay
of NLFSRs by 25% on average.

The paper is organized as follows. Section 2 gives an introduction to NLFSRs.
Section 3 describes the presented transformation algorithm. Section 4 shows the
experimental results. Section 5 concludes the paper and discusses open problems.

2 Background

In this section we describe basic definitions and notation used in the paper. Most
of our terminology is from [10].

2.1 Non-linear Feedback Shift Registers

A Non-Linear Feedback Shift Register (NLFSR) consists of n binary storage
elements, called bits. Each bit i ∈ {0, 1, . . . , n−1} has an associated state variable
xi which represents the current value of the bit i and a feedback function fi :
{0, 1}n → {0, 1} which determines how the value of i is updated. For any i ∈
{0, 1, . . . , n − 1}, fi depends on x(i+1)mod n and a subset of variables from the
set {x0, x1, . . . , xi}.

A state of an NLFSR is a vector of values of its state variables x = (x0, x1, . . . ,
xn−1). At every clock cycle, the next state of an NLFSR is determined from the
current state by simultaneously updating the value of each bit i to the value of fi.

Feedback functions of NLFSRs are usually represented in the Algebraic Nor-
mal Form (ANF) which is a polynomial in GF (2) of type

f(x) =
2n−1∑
i=0

ci · xi00 · xi11 · . . . · xin−1
n−1 ,

where ci ∈ {0, 1} and (i0i1 . . . in−1) is the binary expansion of i.
The dependence set of a Boolean function f(x) is defined as

dep(f) = {i | f |xi=0(x) �= f |xi=1(x)},
where f |xi=j(x) = f(x0, . . . , xi−1, j, xi+1, . . . , xn−1) for j ∈ {0, 1}.

Two NLFSRs are equivalent if their sets of output sequences are equal. The
conditions for equivalence of NLFSRs were presented in [3].

Similarly to LFSRs, an NLFSR can be implemented in two configurations
shown in Figures 1 and 2: Fibonacci (also called external feedback), or Galois1

(also called internal feedback).
In the Fibonacci configuration, the feedback can be applied from any bit to the

left-most bit. Since all feedback functions except fn−1 are of type fi = xi+1, fn−1
is often called the feedback function of a Fibonacci NLFSR. We use this name
throughout the paper when there is no ambiguity. In the Galois configuration,
the feedback can be applied from any bit i, i ∈ {0, 1, . . . , n − 1}, to any bit j
such that j ≥ i.
1 An LFSR in the Galois configuration implements the polynomial division in a Galois

field, hence the name. The NLFSR in Figure 2 does not match this classical definition,
therefore it is not entirely justified to call it ”Galois”.
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...

fn−1

0n−1 n−2

Fig. 1. The Fibonacci configuration of NLFSRs

...

......

f 0n−1 f n−2n−2n−1 0f

Fig. 2. The Galois configuration of NLFSRs

The operating speed of a Fibonacci NLFSR is limited by the depth of the
circuit implementing its feedback function. A transformation to an equivalent
Galois configuration can potentially reduce the depth of the circuits implement-
ing feedback functions of the individual bits, thus increasing the operating speed.
In the next section we describe a transformation introduced in [3] which we use
as a basis of our algorithm.

Apart from the Fibonacci and the Galois configurations, there are also some
other interesting types of NLFSRs which we do not consider in this paper, e.g. [18].

2.2 Transformation of NLFSRs

For LFSRs, the Fibonacci and the Galois configurations are unique. One con-
figuration can be easily transformed into another by reversing the order of the
feedback connections and adjusting the initial state [8].

For NLFSRs, however, the Galois configuration is not unique. Usually, there
are many n-bit Galois NLFSRs which are equivalent to a given n-bit Fibonacci
NLFSR. On the other hand, not every n-bit Galois NLFSR has an equivalent
n-bit Fibonacci NLFSR.

The latter is because, while an output sequence of every n-bit Fibonacci
NLFSR can be described by a non-linear recurrence of order n [20], for n-bit
Galois NLFSRs such a recurrence does not always exist.

It was shown in [3] that one class of NLFSRs for which a recurrence of order
n always exists is uniform NLFSRs, defined as follows.

Definition 1. An n-bit NLFSR is uniform if, for some
n < τ ≤ 0:

(a) fi(x) = xi+1 for 0 ≤ i < τ
(b) fi(x) = x(i+1)mod n ⊕ gi(x0, . . . , xτ ) for τ ≤ i < n

where dep(gi) = {0, 1, . . . , τ} − {(i + 1)mod n}.
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We can see that, in a uniform NLFSR, the feedback is taken only from bits in
positions not greater than τ and it is fed only to bits in positions not smaller
than τ . The bit τ is called the terminal bit.

A uniform Galois NLFSR can be constructed from a given Fibonacci NLFSR
by repeatedly applying the following simple operation.

Definition 2. Let fi and fj be feedback functions of the bits i and j of an n-
bit NLFSR, respectively, represented in ANF. The operation shifting, denoted by
fi

M→ fj, moves a set of monomials M from fi to fj. The index of each variable
xk of each monomial in M is changed to x(k−i+j)mod n.

As an example, consider a 4-bit NLFSR N1 with the following feedback functions:

f3 = x0 ⊕ x1
f2 = x3 ⊕ x1 ⊕ x0x1
f1 = x2
f0 = x1.

If we apply the shifting f2
{x1}−→ f1 to N1, we get an NLFSR N2 with the following

feedback functions:
f3 = x0 ⊕ x1
f2 = x3 ⊕ x0x1
f1 = x2 ⊕ x0
f0 = x1.

The next theorem describes a sufficient condition for equivalence of NLFSRs
before and after shifting.

Theorem 1. [3] Given a uniform NLFSR with the terminal bit τ , a shifting
fτ

M→ fτ ′, τ ′ < τ , results in an equivalent NLFSR if the transformed NLFSR is
uniform as well.

In the example above, the NLFSRs N1 is a uniform NLFSR with the terminal

bit 2. As we can see, the shifting f2
{x1}−→ f1 results in a uniform NLFSR N2 with

the terminal bit 1. Therefore, N1 and N2 are equivalent.
The work [3] laid a theoretical foundation of the transformation between the

Fibonacci and the Galois configurations of NLFSRs. However, it left open the
problem of selecting a ”best” NLFSR for a given optimization target. In the next
section, we present a heuristic algorithm for constructing Galois NLFSRs with
a minimal delay.

3 Transformation Algorithm

In order to construct a Galois NLFSR which has the minimum delay, we have to
search among different allocations of monomials to the feedback functions and
evaluate the cost of each allocation. The search space consists of all possible n-bit
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Algorithm 1. Estimation of the cost of a function f

1: M := {mj | mj is a monomial of the ANF of f}
2: for each mj ∈ M do
3: C(mj) := C(AND) · �log2(|mj |)�

/*|mj | is the number of variables in mj*/
4: end for
5: C := (C(m0), C(m1), . . . , C(m|M|−1))
6: while |C| > 1 do
7: Find the lowest and the second lowest elements of C
8: Delete the lowest element of C
9: Add C(XOR) to the second lowest element in C

10: end while
11: C(f) := the single element of C
12: Return C(f)

Galois NLFSRs which are equivalent to a given n-bit Fibonacci NLFSR. The size
of the search space is O(nk) where k is the number of monomials in the ANF of the
feedback function of the Fibonacci NLFSR. Although in the worst case k = O(2n),
in the NLFSRs used in existing stream ciphers k is usually smaller than 32 (for
hardware efficiency reasons). On the other hand, n can be as large as 128 (for
cryptographic security reasons). So, an exhaustive search is unfeasible.

We therefore designed a heuristic algorithm which explores only a part of the
search space. The key idea is to find a best position for a given monomial without
changing the positions of the other monomials. A ”best” is defined as a position
which minimizes the cost function approximating the delay of the NLFSR. We
start with a description of the cost function and then, in Subsection 3.2, we
present the strategy for allocating monomials.

3.1 Cost Function

Ideally, the cost function should return the maximum of all delays of the feed-
back functions of a given NLFSR, i.e. its critical path. However, the exact value
of the delay can only be estimated after technology mapping. Performing technol-
ogy mapping to evaluate each allocation of monomials is obviously too expensive.
Instead, we approximate the delay by assuming that it is equal to the delay of
a depth-optimal tree of 2-input AND and 2-input XOR gates implementing the
function. The pseudo-code of the algorithm for constructing such a tree is shown
in Algorithm 1.

For a given feedback function fi, the algorithm first computes the cost C(mj)
of each monomial mj from the set M of all monomials of the ANF of fi.
The monomials are assumed to be implemented using 2-input AND gates. Let
C(AND) denote the delay of a 2-input AND gate. Then, the cost of a monomial
mj is given by the depth of the optimal AND-tree that implements it:

C(mj) = C(AND) · �log2(|mj |)�

where |mj | is the number of variables in the monomial mj .
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Fig. 3. An example of cost function calculation

Let C = (C(m0), C(m1), . . . , C(m|M|−1)) be an ordered vector of costs of the
monomials of M . Next, the algorithm builds iteratively a depth-optimal XOR-
tree on the top of the obtained AND-trees. At each step, one 2-input XOR
gate fed by the sub-circuits corresponding to the two lowest-cost elements of
C is added to the XOR-tree. The lowest-cost element of C is then removed
from C and the delay of a 2-input XOR gate, C(XOR), is added to the cost
of the second lowest-cost element of C. The algorithm terminates when a single
element is left in C. This element is the cost C(fi) of the feedback function
fi.

The worst-case complexity of Algorithm 1 is O(|M | log |M |)).
The cost of an n-bit NLFSR is determined from the costs of its feedback

functions as follows:
C(NLFSR) = max

0≤i<n
(C(fi)). (1)

In our current implementation of Algorithm 1, the costs of the 2-input AND
and XOR gates are set to C(AND) = 1 and C(XOR) = 2 to match the cor-
responding normalized delays in the TSMC 90nm CMOS technology library.
By changing these parameters, the algorithm can be adjusted to other ASIC
standard-cell technology libraries.

Figure 3 shows an example of the execution of Algorithm 1. At each iteration,
two sub-circuits with the lowest cost are composed together using an XOR gate
and the cost of the resulting circuit is computed. The dashed arrow shows the
critical path determining the cost of the feedback function.



48 J.-M. Chabloz, S.S. Mansouri, and E. Dubrova

3.2 Allocation of Monomials

The pseudo-code of the algorithm for the allocation of monomials is summarized
in Algorithm 2.

Let f be the feedback function of a Fibonacci NLFSR. Let M be a set con-
taining all monomials of the ANF of f except x0. Note that the monomial x0 is
usually contained in the feedback function of a Fibonacci NLFSR to make the
NLFSR branchless [8].

The algorithm starts with an empty n-bit NLFSR in which all feedback func-
tions are of type fi = x(i+1)mod n. Initially, the cost of each feedback function is
0. At every step, one monomial from the set M is shifted to one of the feedback
functions until M is exhausted.

The shifting of monomials is performed in order of their priority. The priorities
are assigned according to the following criteria:

– Priority is given to the monomials that can be shifted to only a few positions.
– Priority is given to the monomials whose shifting is expected to have a

higher impact on the critical path of the NLFSR. Usually, these are larger
monomials.

The number of Allowed Positions to which a monomial mj can be shifted,
AP (mj), is determined by the following factors:

1. The minimum terminal bit of the Galois NLFSR. According to [3], to guar-
antee the equivalence of NLFSRs before and after the transformation, mono-
mials cannot be shifted to the positions lower that the minimum terminal
bit τmin which is given by:

τmin = max
0≤i<|M|

(max index(mi) − min index(mi)),

where min index(mi) (max index(mi)) denotes the minimum (maximum)
index of variables the monomial mi.

2. Uniformity of NLFSRs. In our algorithm, we impose a requirement that a
monomial mj can be shifted to the bit position n − 1 < k ≤ τmin only if
the NLFSR after shifting fn−1

mj→ fk is uniform. By Theorem 1, this implies
that the equivalence of NLFSRs is preserved after each shifting. Thus, the
NLFSR obtained by the presented algorithm is equivalent to the original
Fibonacci NLFSR by construction.

3. The desired degree of parallelization. It is common to increase the through-
put of a stream cipher by introducing parallelism in its architecture [12,1,9].
In a k-bit/cycle version of a cipher, at each clock cycle, blocks of k duplicated
feedback functions produce k output bits in parallel. It is easy to see that, to
ensure k-bit/cycle degree of parallelization of an n-bit Galois NLFSR with
the terminal bit τ , all bits except

n − i · k − 1, ∀i = {0, 1, . . . , (n − τ − 1)/k� − 1}

should have the feedback functions of type f = x(i+1)mod n.
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Algorithm 2. Transformation of an n-bit Fibonacci NLFSR to the Galois con-
figuration with a minimal delay

1: f := feedback function fn−1 of the Fibonacci NLFSR
2: M := {mj | mj is a monomials of the ANF of f} − {x0}
3: for each i ∈ {0, 1, . . . , n − 1} do
4: fi := x(i+1)mod n /*Initialization of the Galois NLFSR*/
5: C(fi) := 0
6: end for
7: while M �= ∅ do
8: for each mj ∈ M do
9: Calculate priority(mj) using equation (2)

10: end for
11: Select mi with the highest priority(mi)
12: Shift mi to fk with the minimum cost C(fk ⊕ mi)
13: M := M − {mi}
14: end while
15: Return f0, f1, . . . , fn−1

4. The NLFSR state bits used in combining functions. Some stream ciphers,
e.g. Grain [12] and Trivium [1], use not only the output bit of the NLFSR,
but also several other state bits to generate their pseudo-random sequences.
Two equivalent NLFSRs in the Fibonacci and the Galois configurations fol-
low different sequences of states. Therefore, in order to preserve the orig-
inal encryption algorithm, the terminal bit of the Galois NLFSR should
have a position not smaller than any bit position used in a combining
function.

The AverageExpected Cost of a monomial mj , AEC(mj), is computed by shifting
mj to each of the allowed feedback functions, fk, computing the new cost of the
feedback function, C(fk ⊕ mj), and taking the average over all new costs.

The priority of a monomial mj is computed from AP (mj) and AEC(mj) as
follows:

priority(mj) =
AEC(mj)

max
0≤i<|M|

(AEC(mi))
+

max
0≤i<|M|

(AP (mi))

AP (mj)
(2)

The monomial mi with highest priority(mi) is then shifted to the feedback
function fk which had the minimum cost C(fk ⊕mi) during the computation of
AEC(mj). Note that since shifting is always done from the feedback function
fn−1 of the Fibonacci NLFSR, by Definition 2, the index of each variable xj of
mi is reduced by n − k − 1. The algorithm terminates when all monomials are
allocated.

The worst-case complexity of Algorithm 2 is O(n|M |2 log |M |)). A limitation
of the presented algorithm is the requirement that an NLFSR should remain
uniform after each shifting of a monomial. In some rare cases, a set of monomials



50 J.-M. Chabloz, S.S. Mansouri, and E. Dubrova

rather than a single monomial has to be shifted to preserve uniformity. For
example, for the 4-bit Fibonacci NLFSR with the feedback function

f3 = x0 ⊕ x1x3 ⊕ x2x3 ⊕ x2

shifting of either x1x3, or x2x3, or x2 to any other feedback function gives us a
non-uniform NLFSR. However, it is possible to construct a uniform NLFSR by
shifting the set of monomials {x1x3, x2x3} to the feedback function f2:

f3 = x0 ⊕ x2
f2 = x3 ⊕ x0x2 ⊕ x1x2.

4 Experimental Results

In this section, we evaluate Algorithms 1 and 2 on random NLFSRs and well as
on NLFSRs of existing stream ciphers.

4.1 Results for Random NLFSRs

To evaluate the presented cost function, we generated 2000 128-bit Fibonacci
NLFSRs with random feedback functions. For each NLFSR, we compared the
cost of its feedback function computed by Algorithm 1 to the delay of the NLFSR
after technology mapping obtained by synthesizing the NLFSR with Cadence
RTL compiler using the TSMC 90nm CMOS library.

The results are shown in Figure 4. We can see a good correlation between
the cost function and the delay after the technology mapping. The dashed line
shows the linear interpolation.

Fig. 4. Results for 2000 randomly generated NLFSRs
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4.2 Results for Stream Ciphers

To further evaluate the presented approach, we applied Algorithm 2 to 57 Fi-
bonacci NLFSRs used in the following stream ciphers:

1. Grain-80/128 [12]: It consists of one 80/128-bit NLFSR and one 80/128-bit
LFSR connected in series, and two functions combining selected state bits
and outputs.

2. VEST stream cipher [9]: It consists of 32 NLFSR of sizes 10 and 11 bits
placed in parallel and several combining blocks.

Table 1. Results for NLFSRs used in existing stream ciphers (part 1)

Original Fibonacci NLFSR Re-synthesized Galois NLFSR d1−d2
d1

, % a1−a2
a1

, %
NLFSR n |M | delay d1, ps area a1, GE delay d2, ps area a2, GE

Grain-80 80 22 433 1352 268 1390 38.1 -2.8
Grain-128 128 12 361 1915 231 2006 36.0 -4.8
VEST 1 10 16 366 151 296 177 19.1 -16.7
VEST 2 10 17 411 185 316 194 23.1 -5.1
VEST 3 10 15 381 170 310 170 18.6 0.0
VEST 4 10 17 348 150 311 193 10.6 -28.4
VEST 5 10 17 356 161 305 166 14.3 -2.9
VEST 6 10 17 410 189 311 177 24.1 6.5
VEST 7 10 17 411 183 313 179 23.8 2.4
VEST 8 10 15 378 167 305 166 19.3 0.4
VEST 9 10 15 376 160 288 166 23.4 -3.5
VEST 10 10 17 396 169 323 194 18.4 -14.8
VEST 11 10 17 361 148 315 186 12.7 -25.7
VEST 12 10 16 369 181 302 203 18.2 -11.9
VEST 13 10 15 393 172 292 172 25.7 0.0
VEST 14 10 17 369 160 313 189 15.2 -18.2
VEST 15 10 17 403 185 322 185 20.1 0.0
VEST 16 10 17 365 181 320 205 12.3 -13.3
VEST 17 9 17 382 160 307 170 19.6 -6.0
VEST 18 9 15 372 147 318 160 14.5 -8.6
VEST 19 9 15 366 149 316 170 13.7 -14.6
VEST 20 9 17 413 192 338 196 18.2 -2.4
VEST 21 9 17 391 171 328 186 16.1 -8.4
VEST 22 9 17 406 174 344 173 15.3 0.4
VEST 23 9 17 412 196 349 194 15.3 1.0
VEST 24 9 17 403 153 335 180 16.9 -17.4
VEST 25 9 17 379 164 327 179 13.7 -9.4
VEST 26 9 17 355 134 320 146 9.9 -8.9
VEST 27 9 17 379 142 322 201 15.0 -41.3
VEST 28 9 15 390 154 313 162 19.7 -5.2
VEST 29 9 17 407 156 353 156 13.3 0.0
VEST 30 9 16 394 165 301 177 23.6 -7.3
VEST 31 9 16 367 148 326 164 11.2 -10.8
VEST 32 9 17 418 185 322 178 23.0 3.8
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3. Achterbahn-128/80 stream cipher [6]: It consists of 13 NLFSRs of sizes be-
tween 21 and 33 bits placed in parallel and several combining blocks.

4. Stream cipher from [7]: It consists of 10 NLFSRs of sizes 22-29, 31 and 32
bits placed in parallel and several combining blocks.

The list above contains all NLFSR-based stream ciphers which we know except
Trivium [1]. Trivium consists of 3 NLFSRs which are already in a Galois con-
figuration with the minimum delay. Their delay cannot be further reduced by
shifting.

Tables 1 and 2 summarize the results. In the first three columns, we show the
name of the NLFSR, the number of bits n, and the number of monomials |M | in
the ANF of the feedback function of the original Fibonacci NLFSR. In columns
4-7, we show the delay and the area of the original Fibonacci configuration and
of the Galois configuration computed using the presented algorithm. For each
NLFSR, the runtime to construct the Galois configuration was less than 0.0001
sec on a PC with Intel dual-core 1.8 GHz processor and 2 Gbytes of memory.
For both configurations, the delay and the area were obtained by synthesizing

Table 2. Results for NLFSRs used in existing stream ciphers (part 2). The average is
computed for all 57 NLFSR in Tables 1 and 2.

Original Fibonacci NLFSR Re-synthesized Galois NLFSR d1−d2
d1

, % a1−a2
a1

, %
NLFSR n |M | delay d1,ps area a1,GE delay d2,ps area a2, GE

Achterbahn 1 21 24 444 371 320 294 27.9 20.8
Achterbahn 2 22 20 396 299 307 268 22.5 10.4
Achterbahn 3 23 18 409 341 301 300 26.4 12.1
Achterbahn 4 24 32 459 438 359 344 21.8 21.6
Achterbahn 5 25 30 459 377 326 385 29.0 -2.1
Achterbahn 6 26 30 451 397 315 367 30.2 7.6
Achterbahn 7 27 18 389 323 256 307 34.2 5.0
Achterbahn 8 28 16 374 323 241 318 35.6 1.4
Achterbahn 9 29 24 430 432 256 373 40.5 13.7
Achterbahn 10 30 32 482 432 328 428 32.0 0.9
Achterbahn 11 31 30 462 458 291 420 37.0 8.4
Achterbahn 12 32 22 419 446 257 356 38.7 20.1
Achterbahn 13 33 30 468 465 307 439 34.4 5.6
Cipher [7] 1 21 16 358 275 180 83 49.7 69.9
Cipher [7] 2 22 18 379 301 242 250 36.1 17.1
Cipher [7] 3 23 10 340 244 194 139 42.9 43.2
Cipher [7] 4 24 20 398 310 266 276 33.2 10.9
Cipher [7] 5 25 14 350 288 193 125 44.9 56.5
Cipher [7] 6 26 14 345 289 199 171 42.3 40.8
Cipher [7] 7 27 18 399 318 244 267 38.8 16.1
Cipher [7] 8 28 14 342 331 195 182 43.0 44.9
Cipher [7] 9 30 20 392 435 244 331 37.8 24.0
Cipher [7] 10 31 12 337 328 201 141 40.4 57.0

Average 19.6 18.3 393.0 291 294.4 275 25.5 4.06
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NLFSRs with Cadence RTL compiler using the TSMC 90nm CMOS library.
The synthesis tool was run with timing optimization as a primary target. 1 GE
equals to the area of the smallest 2-input NAND gate in the TSMC 90nm CMOS
library.

As we can see from the last two columns, on average, the presented approach
decreases the delay of an NLFSR by 25.5% and improves its area by 4.1%. Shift
registers dominate the total area of a stream cipher, e.g. they take 66% for Grain-
80, and they determine its critical path. Therefore, an improvement in the delay
of an NLFSR is likely to bring a comparable improvement in the delay of the
overall system.

For LFSRs, the transformation from the Fibonacci to the Galois configuration
is often known to cause a considerable increase in area due to a large fanout from
the right-most bit of the Galois LFSR [19]. As we can see from Tables 1 and 2,
this problem seems to be of less concern for NLFSRs. This is probably because
in the Galois NLFSRs the feedback is taken not only from the right-most bit,
but also from other bits.

5 Conclusion

In this paper, we present a fast heuristic algorithm which minimizes the delay
of an NLFSR by transforming it from the Fibonacci to the Galois configuration.
The experimental results on 57 NLFSRs from the stream ciphers Grain-80/128,
VEST, Achterbahn, and [7] show that the presented approach decreases the
delay of NLFSRs by 25.5% and improves the area by 4.1% on average.

One concern with the Galois configuration of LFSRs is signal degradation
due to long feedback lines [11]. In our future work, we plan to investigate this
problem for NLFSRs by implementing the original and the Galois versions of
the above stream ciphers at the layout level.
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Abstract. In this paper we present a cross-bifix analysis of contiguous
and distributed marker sequences and apply it to the problem of acqui-
sition of frame synchronization. The analysis establishes the relationship
between the sequence period, structure, length, the amount of distortion
and expected worst-case acquisition time. The provided study is general
and can be applied to multilevel and unequally distributed data.
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1 Introduction

The design of marker sequences used for frame synchronization in a synchronous
transmission is a problem with a rich and long history. Various classes of mark-
ers, optimal according to various design criteria, have been proposed so far -
Barker [1], Turyn [2], Willard [3], Lindner [4], Legendre sequences [5], to name
a few. A nice overview on the most frequently used design criteria and corre-
sponding sequences is given in [6]. Besides standard, contiguous markers, a novel
approach to marker design was introduced in [7], proposing distributed mark-
ers that consist both of synchronization and random data symbols. Distributed
markers are an promising alternative to the contiguous ones, as for the same
amount of synchronization symbols they show improved frame synchronization
properties [7,8].

Design criteria of markers used for frame synchronization properties could be
generally classified into two groups. In the first group are criteria based only
on the properties of aperiodic autocorrelation of the marker and the goal is to
minimize autocorrelation sidelobes [9]. This effectively means that the focus of
marker design is just on the marker itself and the broader scope of the original
problem of frame synchronization is somewhat neglected, i.e., the impact of
the data symbols in the rest of the frame and possible transmission errors are
disregarded. In the second group are criteria that, besides the marker, take into
account data symbols in the overlap regions of the frame (Fig. 1). These criteria

C. Carlet and A. Pott (Eds.): SETA 2010, LNCS 6338, pp. 55–66, 2010.
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are based on the minimization of the probability of appearance of the same
pattern as marker sequence in the overlap region, which can occur when data
symbols in the overlap region combine with erroneously transmitted marker
symbols. We will refer to these accident appearances of the same pattern as
marker sequence as marker simulations, no matter whether they take place in
the overlap or data region of the frame (Fig. 1).

markerdata

frame

marker data

overlap region overlap region

position 0 position N-1 position F-1position F-N+1

data

data region

Fig. 1. Overlap and data regions of frame

The first attempt to design the marker by considering the whole frame and
not just the overlap regions was given in [10], where markers are designed such
that the probability of marker simulation in the frame is minimized and the
probability of correct marker detection is maximized. However, the approach
suggested in [10] does not provide any analytical results and optimum markers
are found by extensive computer simulations.

On the other hand, probabilities of marker simulation in the frame can be ana-
lytically derived, enabling the comprehensive approach for evaluation of marker
properties. The first step in this direction was taken in [11,12,13], where the
expected time between simulations of a predefined sequence (i.e., marker) in a
semi-infinite random symbol stream was derived. It was shown that mean time
between simulations depends on sequence length and structure, where the latter
is expressed through bifices. A bifix, as introduced in [11], is a subsequence that
is both prefix and suffix of the given sequence. For example, sequence ABCABC
has one bifix of length 3. The bifix analysis was extended further in [14] where
the probability of marker simulation at a given position in a semi-infinite ran-
dom symbol stream was derived. Finally, the probability of marker simulation
at a given position in the frame was derived in [15], enabling further insight into
marker design.

In this paper we exploit and extend bifix analysis of marker sequences in
order to find optimal relationship between marker structure and length, frame
length and sensitivity to marker distortions due to transmission errors. As an
optimization criterion we use frame-synchronization acquisition time, i.e., time
that receiver needs to lock on the correct frame starting position.

The organization of the rest of the paper is as follows. In the next section
we give brief overview of the bifix analysis. In the third section we introduce
the acquisition model and derive expected worst-case acquisition time. In the
fourth section we present results for various classes of marker sequences, both
contiguous and distributed. The final section concludes the paper.
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2 Preliminaries

2.1 Probability of Marker Simulation

We consider a synchronous transmission, where the data stream consists of equal-
length frames and every frame starts with a predefined marker; we denote frame
and marker lengths by F and N , respectively. We assume that the receiver has
already established symbol synchronization and is sliding through the received
stream, searching for the marker sequence in order to acquire frame synchro-
nization.

As depicted in Fig. 1, there are two regions in the frame regarding the search
process described above - overlap and data regions. In overlap regions, the con-
tent of the sliding window that receiver uses to locate the marker sequence
consists both of marker and data symbols. Only in the data region the content
of the sliding window is purely random and composed just of data symbols.

In case of erroneous transmission, allowing certain amount of distortion when
searching for the marker can speed-up the acquisition process [6]. If marker is
considered to be correctly received if up to E symbol errors are allowed, than
the search extends to all sequences that are up to Hamming distance E from the
marker sequence. In other words, the search is performed for all the sequences
in the closed ball of radius E with the center in marker sequence, totaling:

M =
E∑
e=0

(
N

e

)
(1)

sequences. We will denote this set of sequences as Sm(E) = {s1 = m, s2, ..., sM},
where m is the marker sequence. If marker is a distributed sequence consisting
of N − D synchronization symbols and D data symbols, the total number of
sequences in the set Sm(E) is:

M = 2D
E∑
e=0

(
N − D

e

)
. (2)

In order to probabilistically describe the search for set of sequences in frame,
we introduce several concepts. The similarities of the sequences that form the
set Sm(E) are expressed through cross bifices and cross-bifix indicators. Cross-
bifix of length n, 0 ≤ n ≤ N , is a subsequence of length n that is prefix of one
sequence and suffix of another sequence from the set. Its existence is denoted
by corresponding cross-bifix indicator h

(n)
ij , where subscripts i and j denote se-

quences si and sj whose respective suffix and prefix are observed. Default values
are h

(N)
ii = 1, h

(N)
ij = 0 and h

(0)
ij = 1; 1 ≤ i, j ≤ M . We also introduce the notion

of suffix probabilities r
(n)
i , 0 ≤ n ≤ N , where r

(n)
i is the product of the proba-

bilities of last n symbols of the sequence si. We assume r
(0)
i = 1, 1 ≤ i ≤ M , by

default.
The probability that any sequence from the set Sm(E) is simulated at position

k in the frame under the conditions that the search has started at position S
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and no sequence from the set has been simulated prior to k is derived in [15] (the
special case of equiprobable data is presented in [16]), and given by the following
expressions:

p(k/S) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
M∑
i=1

pi(k) 1 ≤ k ≤ F − N,

M∑
i=1

h
(N+S−F−1+k)
i1 pi(k)/r

(N+S−F−1+k)
i F − N < k ≤ F.

(3)

where probabilities pi(k), i ≤ M are, for 1 ≤ S < N :

pi(k) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
h

(N−k)
1i r

(k)
i

M∏
l=1

k−1∏
d=1

(
1 −
(
h

(N−d)
1l h

(N−k+d)
li

))
S ≤ k ≤ N,

M∑
j=1

min(k−S,N)∑
m+1

(
h

(N+1−m)
ji r

(m−1)
i − h

(N−m)
ji r

(m)
i

)
pj(k − m) N < k ≤ F

(4)

and, for N ≤ S < F :

pi(k) =

⎧⎪⎪⎨⎪⎪⎩
r
(N)
i k = S,

M∑
j=1

min(k−S,N)∑
m+1

(
h

(N+1−m)
ji r

(m−1)
i − h

(N−m)
ji r

(m)
i

)
pj(k − m) S < k ≤ F

(5)

2.2 Cross-Bifix Spectrum

As presented in the previous subsection, the probabilities of sequences simulation
depend on the set of cross-bifices that describe the sequences. In this section
we introduce additional parameters based on cross-bifices that can be used for
sequence comparisons; these are cross-bifix spectrum and cross-bifix weights.

We denote all cross bifices of the set Sm(E) using the corresponding matrices
of the cross-bifix indicators h(n) = [h(n)

ij ], 0 ≤ i, j ≤ M and 0 ≤ n ≤ N . Cross-
bifix spectrum of the set Sm(E) is given by set of weights w = [w(n)], 0 ≤ n ≤ N ,
where:

w(n) = 1Mh(n)1TM (6)

and 1M is an all-ones vector of length M . In other words, w(n) is the number
of non-zero elements in the matrix h(n). The default values are w(0) = M2 and
w(N) = M . If no transmission errors are allowed when detecting a marker (i.e.
E = 0, see Eqs. 1 and 2), contiguous and distributed markers used for practical
purposes by design have all other weights equal to zero (w(n) = 0, 0 < n < N)
and we say that they are (cross-)bifix free. However, if transmission errors are
allowed (E > 0), the set of sequences that originates from a marker is not a
cross-bifix free one. In order to prevent the simulations and hence speed-up the
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frame-synchronization acquisition, natural choice would be to design marker such
that the corresponding cross-bifix weights of the set Sm(E) are as low as possible;
i.e., w(n) = 0, 0 < n < N should be minimal. However, this design criteria is
complex, since changes in the marker affect the whole cross-bifix spectrum in a
hardly tractable manner, especially for longer markers (the number of sequences
in the set grows exponentially with marker length).

A simplified approach can be taken by observing that the marker is by far the
most probable sequence to appear in the correct position (i.e. beginning of the
frame). The appearance of any other sequence at the beginning of the frame is
due to the transmission errors and therefore less likely. Hence only the partial
cross-bifix spectrum with respect to the marker could be considered, consisting
of partial weights w1 = [w(n)

1 ], 0 ≤ n ≤ N , evaluated as:

w
(n)
1 =

M∑
i=1

(
h

(n)
1i + (1 − δi1)h

(n)
i1

)
(7)

where δij is the Kronecker delta. The usage of partial cross-bifix spectrum as a
mean for marker comparisons is demonstrated in Section 4.

Finally, to illustrate the above expressions, we provide a simple example. Let
us consider marker 100 and assume that one transmission error is allowed, i.e.,
E = 1. The search is then performed for the set {100, 000, 110, 101}, and cross-
bifix matrices of the set are:

h(0) =

⎡⎢⎢⎣
1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1

⎤⎥⎥⎦ h(1) =

⎡⎢⎢⎣
0 1 0 0
0 1 0 0
0 1 0 0
1 0 1 1

⎤⎥⎥⎦ h(2) =

⎡⎢⎢⎣
0 1 0 0
0 1 0 0
1 0 0 1
0 0 0 0

⎤⎥⎥⎦ h(3) =

⎡⎢⎢⎣
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎤⎥⎥⎦
Cross-bifix spectrum and partial cross-bifix spectrum with respect to sequence
100 are:

w = [16 6 4 4]
w1 = [7 2 2 1]

3 Acquisition Model

The frame-synchronization acquisition scenario we consider is the one described
in [17]. The search starts just one position next from the true marker position
(position 1 in Fig. 1), which corresponds to the worst-case situation. The search
progresses symbol-by-symbol, until any sequence from the set Sm(E) is encoun-
tered. When this happens, the receiver jumps to the same position in the next
frame (i.e., shifts for F symbols), verifying the detected sequence. This process
continues until the correct position is reached. In the best case, the correct po-
sition is reached in F shifts, when no simulations of the sequences from the set
Sm(E) occur in the frame. However, any simulation will prolong acquisition for
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another F symbols and we are interested to find the average (expected) acqui-
sition time.

The graph of the acquisition model is depicted in Fig. 2. States of the search
process are denoted by their selection probabilities πij , 1 ≤ i < j ≤ F , and
Xi, 1 ≤ i < F . States πij represent symbol by symbol shifts from position i
to position j in the frame with no marker simulations in between; i.e., arrival
to state πij means that the search has started at position i and no marker
simulation has occurred in up to position j. States Xi correspond to marker
simulations at position i, each time this happens a shift of F symbols to the
same position in the next frame is made and the search stays in the same state
Xi. Transitions denoted by dashed lines are introduced to describe the renewal
property of the process, when the search eventually restarts due to the loss of
frame synchronization. The initial state is π11.

Fig. 2. Acquisition model

Dwelling times of states πij , are equal to symbol duration τS . Dwelling times
of states Xi, incorporating repeated simulations in successive frames by their
expected number, are simply:

τi =
τF

1 − p(i/i)
=

F · τS
1 − p(i/i)

(8)

where probabilities p(i/i) are given by Eq. 3.
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The state selection probabilities can be evaluated as:

πii =
i−1∑
j=1

πjj · p(i/j), 1 ≤ i ≤ F (9)

Xi =
i∑

j=1

πjj · p(i/j), 1 ≤ i ≤ F (10)

πij = πii

(
1 −

j−1∑
k=1

p(k/i)
)
, 1 ≤ i < j ≤ F (11)

to the multiplicative constant π11 and where probabilities p(i/j) are given by
Eq. 3.

By using the above model, acquisition time is reduced the problem of the first
passage time necessary to exit the set of states in Fig. 2. The simplest solution
to it, as given in [18], is to compress the set of states to a single, equivalent state,
with the equivalent dwelling time τEQ and exit probability pEQ. The quantities
τEQ and pEQ are evaluated averaging state dwelling times and set of state exit
probabilities over all state selection probabilities [18]:

τEQ =

∑F−1
i=1

(
Xiτi +

∑F
j=i πijτS

)∑F−1
i=1

(
Xi +
∑F−1

i=1 πij
) (12)

pEQ =
XF−1 +

∑F−1
i=1 πiip(F/i)∑F−1

i=1

(
Xi +
∑F

j=i πij
) . (13)

The expected number of cycles spent in the equivalent state πEQ is E[nEQ] =
1

pEQ
, and the corresponding expected time spent in πEQ is τEQ · E[nEQ]. This

expected time is actually the expected acquisition time, i.e., time needed to reach
the correct marker position F :

TACQ = τEQE[nEQ] =
τEQ
pEQ

=
∑F−1

i=1 Xiτi +
∑F−1
i=1 πjiτS

XF−1 +
∑F−1

i=1 πiip(F/i)

=

∑F−1
i=1

(
XiF

1−p(i/i) + πii
(
F − 1 −

∑F−1
k=i (F − 1 − k)p(k/i)

))
XF−1 +

∑F−1
i=1 πiip(F/i)

. (14)

4 Results

Within this section we compare a set of sequences with 7 synchronization sym-
bols. Our focus is on binary sequences, as they are most studied in the literature.
The examined sequences are:

1. Barker sequence 1110010 [1],
2. Jones sequence 0001011 [10],
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3. CCITT sequence 0011011, used for frame-synchronization at the primary
level of the plesiochronous digital hierarchy [19],

4. all-zeroes sequence 0000000,
5. periodical sequence 1010101,
6. Barker-like distributed sequence of maximal length1 111xx0xxx0x10 [7],
7. all-zeroes distributed sequence 000xx0xxx0x00,
8. periodical distributed sequence 101xx0xxx0x01.

Sequences 1, 2 and 3 are bifix-free, sequence 6 is cross-bifix free. Other sequences
are examples of “bad” sequences, with plenty of (cross-)bifices.

Fig. 3. Acquisition times of example sequences, for varying frame lengths and for a)
E = 0, b) E = 1 and c) E = 2; d) Partial cross-bifix spectra of Jones, Barker and
CCITT sequences for E = 1 and E = 2

Fig.3a depicts acquisition times of the example sequences for varying frame
length when no distortions are allowed (E = 0). All bifix-free sequences show the
same performance, however they fail to achieve minimal acquisition time (which
is TminACQ = F ), even for very short frames. Distributed Barker-like sequence out-
performs all contiguous ones due to its larger length and therefore larger overlap
regions in the frame where marker simulations are suppressed. Sequences with
(cross-)bifices at first perform worse than the (cross-)bifix free ones, the perfor-
mance deteriorating as the number of (cross-)bifices grows. However, as the frame
1 “x” denotes arbitrary data symbol.
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length increases, their performance becomes better and the turning frame lengths
for the considered example are roughly at F = 300. If the frame length was in-
creased further, ultimately the all-zeros sequence (i.e., all-bifix sequence) will per-
form best. Although an interesting phenomenon, this reversal in performance has
no practical value, as for the given frame length F one usually seeks to minimize
acquisition time. This means that longer markers have to be employed and in that
case bifix-free markers again become preferable choice.

Figs. 3b and 3c give the acquisition performance when errors are allowed
(E > 0). Contiguous bifix-free sequences now show different behavior, due to
the differences in the partial cross-bifix spectra of the corresponding sets of
sequences that originates from each of them (as shown in Fig. 3d). By examining
Figs. 3b and 3c and Fig. 3d, several important observations can be made. For
shorter frame lengths, the more cross-bifices the worse the performance and
Jones sequence, as the sequence with the lowest cross-bifix weights, performs
best. When E = 1 (Fig. 3b), the number of cross-bifices in the partial spectrum
for Barker and CCITT sequences is the same, but the performance of CCITT
sequence is worse; this is obviously due to the influence of weights of larger cross-
bifix lengths on the probability of simulation. The similar conclusion can be made
for E = 2 (Fig. 3c), where the differences in the partial cross-bifix spectra and
related performances are clearly observed. Finally, as the frame length increases,
sequences with more cross-bifices become better choice and the turning frame
lengths decrease as E increases.2

Fig. 4. Acquisition times for varying sequence lengths and F = 500; a) Jones sequences
b) All-zeros distributed sequences and Barker-like distributed sequences of maximal
length

Fig. 3a gives acquisition times for several contiguous and distributed markers
with varying lengths and fixed frame length F = 500, in the case of error-
free and erroneous transmission - probability of bit error is set to Pe = 0 and
Pe = 0.05, respectively. As Fig. 4a shows, for Pe = 0 acquisition time of Jones
2 For E = 1 and E = 2 all-zero sequence 0000000 can not be used for frame synchro-

nization, since the receiver would certainly lock at the incorrect position. The same
holds for periodical sequence 1010101 and E = 2.
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Table 1. Turning lengths of Jones sequences and various frame lengths, Pe = 0.05

Frame length F Turning length N1 Turning length N2

30 9 11
40 9 12
50 10 14
60 10 15
70 11 15
80 11 16
90 11 16
100 12 16
200 12 17
300 13 18
400 13 18
500 14 19

(contiguous) markers converges to its minimal value with the increase of the
marker length, as expected. If the transmission is erroneous (Pe = 0.05), the
increase of marker length at first reduces the acquisition time by reducing the
probability of simulation. However, as the marker length further increases, the
acquisition time starts to increase again, due to the increase in probability of
skipping the correct position. The minimal acquisition times are encircled in
Fig. 4a.

Fig. 4b is devoted to distributed sequences, compared to contiguous ones
(dashed lines) for F = 500 and Pe = 0.05. It can be observed the distributed
Barker-like sequences of maximal length [7] perform slightly better then con-
tiguous sequences. If small amount of redundancy is reserved for marker and
distortions are allowed, the all-zeros distributed sequences are obviously the best
choice.

Fig. 5. Lengths of Jones sequences for which TACQ ≤ 1.1 · F
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Turning marker lengths are another distinctive feature. These are marker
lengths for which, for the given frame length and probability of transmission
error, some amount of distortion should be allowed to shorten the acquisition
time. As shown in Fig. 4a, for Jones sequences, F = 500 and Pe = 0.05, turning
lengths are N1 = 14, when TACQ(E = 0) becomes larger then TACQ(E = 1);
and N2 = 19 when TACQ(E = 1) becomes larger then TACQ(E = 2). Turning
lengths for Jones sequences, Pe = 0.05 and various frame lengths F are given in
Table 1.

Finally, Fig. 5 presents lengths of Jones sequences for which the acquisition
time is smaller than 1.1 frames, as a function of the frame length and for several
transmission-error probabilities. Results shown here can be taken as a guideline
for the choice of the marker length.

5 Concluding Remarks

The cross-bifix analysis, when applied to the marker study, yields interesting
results. The partial cross-bifix spectrum is tightly related with the acquisition
time, and sequences (considering allowed distortion) should be designed with the
least cross-bifices, preferably of the shortest possible lengths.

The amount of allowed marked distortion strongly depends upon the marker
and frame lengths, and exact bounds (turning lengths) can be evaluated for each
set of parameters, if the hard symbol detection is employed at receiver.

Distributed sequences deserve special attention as they generally outperform
the contiguous ones of same redundancy; this suggests that their actual usage for
the frame-syncronization purposes should be more frequent. Also, distributed se-
quences that have zeros at the positions of synchronization bits have interesting
properties of their own - they combine the good characteristics of distributed se-
quences in overlap regions and small simulation probability of all zero sequences
in data region. These features arise when marker is too short for the given frame
length.

Finally, we note that the given analysis is applicable to the examination of
multilevel sequences and their cross-bifix spectra.
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6. Scholtz, R.: Frame Synchronization Techniques. IEEE Trans. Comm. 28, 1204–1213
(1980)

7. de Lind van Wijngaarden, A.J., Willink, T.J.: Frame Synchronization Using Dis-
tributed Sequences. IEEE Trans. Comm. 48(12), 2127–2138 (2000)

8. Villanti, M., Iubatti, M., Vanelli-Coralli, A., Corazza, G.E.: Design of Distributed
Unique Words for Enhanced Frame Synchronization. IEEE Trans. Comm. 57(8),
2430–2440 (2009)
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Abstract. Average Hamming correlation is an important performance
indicator of frequency hopping sequences. Usually, the length of correla-
tion window is shorter than the period of the chosen frequency hopping
sequence, so the study of the partial Hamming correlations of frequency
hopping sequences is particularly important. In this paper, the aver-
age partial Hamming correlation lower bounds of frequency hopping se-
quences with low hit zone, with respect to the size of frequency slot set,
length of correlation window, family size, low hit zone, average partial
Hamming autocorrelation and average partial Hamming crosscorrelation
are established. It is shown that the new bounds include the Peng-Peng-
Tang-Niu bounds for the conventional frequency hopping sequences as
special cases.

Keywords: average partial Hamming correlation, correlation window,
low hit zone, frequency hopping sequences.

1 Introduction

Frequency hopping (FH) multiple-access (MA) spread-spectrum (SS) systems,
with their anti-jamming, secure, and MA properties, have found many applica-
tions in military radio communications, mobile communications, modern radar
and sonar echolocation systems [1]. In such systems, the FH-SS technique, to
spread the spectrum of a data-modulated carrier, is to switch the carrier fre-
quency from one to another periodically. Usually, each carrier frequency is se-
lected from a set of frequencies, which are spaced approximately the width of
the data modulation bandwidth apart. The frequencies used are chosen pseudo-
randomly by a code called FH sequence (FHS). As is often the case, in an MA
environment, mutual interference occurs when two or more transmitters trans-
mit in the same frequency at the same time. It is desirable to keep the mutual
interference between transmitters at a level as low as possible. The degree of the
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mutual interference is clearly related to the Hamming crosscorrelation properties
of FHSs [1,2].

FHS design normally involves the following parameters: the size of frequency
slot set, sequence length, family size, maximum (average) Hamming autocor-
relation sidelobe and maximum (average) Hamming crosscorrelation. Generally
speaking, these parameters are bounded by certain theoretical limits. In order
to evaluate the theoretical performance of FHSs, it is important to find the
theoretical limits which set bounded relations among these parameters.

As early as 1974, Lempel and Greenberger [2] established a bound on the
maximum periodic Hamming correlation (MPHC) of an FHS. In 2004, Peng
and Fan [3] obtained some bounds on MPHCs of an FHS set. In 2008, Peng et
al. [4] obtained a bound on the average periodic Hamming correlations (APHCs)
of an FHS set.

However, usually the length of correlation window is shorter than the period of
the chosen FHS due to the limited synchronization time or hardware complexity.
Moreover, the window length may vary from time to time depending on the
channel conditions. In that case, the partial Hamming correlation (PHC), rather
than the full period Hamming correlation, will play a major role in determining
the synchronization performance. In 2004, Eun et al. [5] obtained a bound on
the maximum PHC of an FHS.

Different from conventional FHS design, the FHS design with no hit zone
(NHZ) or low hit zone (LHZ) aims at making Hamming correlation values equal
to zero or a very low value within a correlation zone [6]. The significance of
NHZ/LHZ sequence set is that, even when there are relative delays between
the transmitted FHSs, there will be no hits or the number of hits will be kept
at a very low level between different sequences as long as the relative delay
does not exceed a certain limit (zone), thus reducing or eliminating the mutual
interference. In 2006, Peng et al. [7] derived some bounds on MPHCs of the FHS
set with LHZ. In 2009, Niu et al. [8] derived some bounds on the maximum
PHCs of the FHS set with LHZ.

In this paper, we will pay particular attention to the average PHC bounds of
the FHS set with LHZ. The rest of this paper is organized as follows: in Section
2, the related notations, definitions and bounds are introduced; in Section 3,
the lower bounds on the average partial Hamming autocorrelation and average
partial Hamming crosscorrelation of the FHS set with LHZ are derived; finally,
the correspondence concludes with some remarks.

2 Preliminaries

Let F={f1, f2,. . . ,fq} be a frequency slot set with size |F |=q, and S be a set of
M FHSs of length N . For any two frequency slots fi, fj ∈ F , let

h(fi, fj) =
{

1, if fi = fj
0, otherwise
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For any two FHSs, x=(x0, x1, . . . , xN−1), y=(y0, y1, . . . , yN−1) ∈ S, and any
integer τ , 0≤τ<N , the periodic Hamming correlation function Hxy(τ) of x and
y at time delay τ is defined as follows:

Hxy(τ) =
N−1∑
i=0

h(xi, yi+τ ), τ = 0, 1, . . . , N−1. (1)

where all operations among the position indices are performed modulo N .
For any given FHS set S, the maximum periodic Hamming autocorrelation

sidelobe Ha(S) and the maximum periodic Hamming crosscorrelation Hc(S) are
defined as follows, respectively:

Ha(S) = max{Hxx(τ)| 0<τ <N, ∀x ∈ S},
Hc(S) = max{Hxy(τ)| 0≤τ <N, ∀x, y ∈ S, x �=y}.

For simplicity, we will denote Ha=Ha(S), Hc=Hc(S).
Early in 1974, Lempel and Greenberger [2] established the following bound

on MPHC of an FHS (Lempel-Greenberger bound):

Ha ≥ (N− r)(N + r − q)
(N− 1)q

. (2)

where r is the least nonnegative residue of N modulo q.
Let S be a set of M FHSs of length N . Peng and Fan [3] obtained the following

bounds on MPHCs of S (Peng-Fan bounds):

q(N− 1)Ha + Nq(M− 1)Hc ≥ (NM− q)N. (3)

M(N − 1)Ha + NM(M − 1)Hc ≥ 2INM − (I + 1)Iq. (4)

where I denotes the integer part of NM/q.
The Peng-Fan bounds include the Lempel-Greenberger bound as a special

case. If the autocorrelation and crosscorrelation properties of an FHS set satisfy
the Peng-Fan bounds with equality, then it is said that the sequences set is an
optimal MPHC FHS set. There have been a number of optimal MPHC FHS sets
[9,10,11,12] which satisfy the Peng-Fan bounds.

Let S be a set of M FHSs of length N . The average periodic Hamming
autocorrelation Aa(S) and average periodic Hamming crosscorrelation Ac(S)
are defined as follows, respectively:

Aa(S) =
∑

x∈S
∑N−1

τ=1 Hxx(τ)
M(N − 1)

. (5)

Ac(S) =

∑
x,y∈S,x �=y

∑N−1
τ=0 Hxy(τ)

MN(M − 1)
. (6)

For simplicity, we will denote Aa=Aa(S), Ac=Ac(S).
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For any FHS set S, Peng et al. [4] obtained a bound on APHCs of S (Peng-
Peng-Tang-Niu bound):

q(N − 1)Aa + Nq(M − 1)Ac ≥ (NM − q)N. (7)

If the average Hamming correlation properties of an FHS set satisfy the Peng-
Peng-Tang-Niu bound with equality, then it is said that the FHS set is an optimal
APHC FHS set. There have been some optimal APHC FHS sets [4] which satisfy
Peng-Peng-Tang-Niu bound.

The PHC function between two sequences x, y ∈ S, for a period N and the
correlation window length L starting at j, is defined as follows:

Hxy(j|L; τ) =
j+L−1∑
i=j

h(xi, yi+τ ), (0≤τ <N, 0≤j<N, 0<L≤N). (8)

where all operations among the position indices are performed modulo N . More-
over, Hxy(j|L; τ) is called the partial Hamming autocorrelation function when
x=y and the partial Hamming crosscorrelation function when x�=y. If j=0 and
L=N , (8) represents the conventional periodic Hamming correlation function
Hxy(τ).

For any given FHS set S and a given correlation window length L(L≤N),
the maximum partial Hamming autocorrelation Pa(L) and maximum partial
Hamming crosscorrelation Pc(L) are defined as follows, respectively:

Pa(L) = max{Hxx(j|L; τ)| 0<τ <N, 0≤j<N, ∀x ∈ S},
Pc(L) = max{Hxy(j|L; τ)| 0≤τ <N, 0≤j<N, ∀x, y ∈ S, x �= y}.

For simplicity, we will denote Pa=Pa(L), Pc=Pc(L).
Eun et al. [5] obtained the following bound on the maximum PHC of an FHS

(Eun-Jin-Hong-Song bound):

Pa ≥ L

N

(N − r)(N + r − q)
(N − 1)q

. (9)

where r is the least nonnegative residue of N modulo q.
This bound includes the Lempel-Greenberger bound as a special case.
It is said that a sequence is strictly optimal if its maximum partial autocor-

relation satisfies the Eun-Jin-Hong-Song bound with equality for all length of
correlation window. It is demonstrated that there have been some sequences [5]
satisfy the Eun-Jin-Hong-Song bound.

For any FHS set S, let integers HLa≥0, HLc≥0, then the low hit zone LHZ ,
autocorrelation low hit zone LAHZ and crosscorrelation low hit zone LCHZ of S
with respect to MPHC are defined as follows, respectively:

LHZ=min{LAHZ, LCHZ},
LAHZ=max{T |Hxx(τ) ≤ HLa, 0<τ ≤T, ∀x ∈ S},
LCHZ=max{T |Hxy(τ) ≤ HLc, 0≤τ ≤T, ∀x, y ∈ S, x �=y}.
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When HLa=HLc= 0, the low hit zone LHZ of S is called the no hit zone NHZ

of S. An FHS set S with LHZ≥0 or NHZ≥0 is called an LHZ FHS set or a NHZ
FHS set.

For any positive integer Z, 0≤Z≤LHZ, Peng et al. [7] obtained the following
bounds on the LHZ FHS set (Peng-Fan-Lee bounds):

qZHLa + q(M− 1)(Z+ 1)HLc ≥ (Z+ 1)MN− Nq. (10)

MNZHLa+MN(M−1)(Z+1)HLc ≥ (Z+1)[(2I+1)MN−(I+1)Iq]−MN2. (11)

where I denotes the integer part of NM/q.
The Peng-Fan-Lee bounds include the Lempel-Greenberger bound and Peng-

Fan bounds for the conventional FHS set as special cases. There have been some
NHZ FHS sets [13,14] which satisfy the Peng-Fan-Lee bounds.

For any FHS set S of period N and a given correlation window length L(L≤N),
let integers PLa(L)≥0, PLc(L)≥0, then the low hit zone LPHZ , autocorrelation
low hit zone LPAHZ and crosscorrelation low hit zone LPCHZ of S with respect
to the maximum PHC are defined as follows, respectively:

LPHZ(L)=min{LPAHZ(L), LPCHZ(L)},
LPAHZ(L)=max{T |Hxx(j|L; τ) ≤ PLa(L), 0 <τ ≤T, 0≤j<N, ∀x ∈ S},
LPCHZ(L)=max{T |Hxy(j|L; τ) ≤ PLc(L), 0≤τ ≤T, 0≤j<N, ∀x, y ∈ S, x �=y}.

In particular, the low hit zone, autocorrelation low hit zone and crosscorrelation
low hit zone of S with respect to MPHC are only the special cases of the low hit
zone, autocorrelation low hit zone and crosscorrelation low hit zone of S with
respect to the maximum PHC respectively for j=0 and L=N .

For simplicity, we will denote LPHZ=LPHZ(L), PLa=PLa(L), PLc=PLc(L).
For any positive integer Z, 0≤Z≤LPHZ, Niu et al. [8] obtained the following

bounds on the maximum PHC of FHS set with LHZ (Niu-Peng-Liu bounds):

qZPLa+ q(M− 1)(Z+ 1)PLc ≥ (Z+ 1)LM−Lq. (12)

MNZPLa+MN(M−1)(Z+1)PLc ≥ (Z+1)L[(2I+1)M−(I+1)Iq/N ]−MNL. (13)

where I denotes the integer part of NM/q.
The Niu-Peng-Liu bounds include the Lempel-Greenberger bound, Peng-Fan

bounds, Eun-Jin-Hong-Song bound and Peng-Fan-Lee bounds as special cases.

3 Lower Bounds on the Average PHCs of FHS Set with
LHZ

As an important performance indicator of FHSs, the average PHCs of FHS set
with LHZ are defined as follows.
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Definition 1. Let S be a set of M FHSs of length N over a given frequency slot
set F with size q. For the given correlation window length L (L≤N) and any
positive integer Z, 0≤Z≤LPHZ, we call

Sa(L) =
∑
x∈S

Z∑
τ=1

N−1∑
j=0

Hxx(j|L; τ), (14)

Sc(L) =
1
2

∑
x,y∈S,x �=y

Z∑
τ=0

N−1∑
j=0

Hxy(j|L; τ). (15)

as the overall number of partial Hamming autocorrelation (auto-hits) and partial
Hamming crosscorrelation (cross-hits) of S with LHZ respectively, and call

P a(L) =
Sa(L)
MNZ

, (16)

P c(L) =
2Sc(L)

MN(M − 1)(Z + 1)
. (17)

as the average partial Hamming autocorrelation (average of auto-hits) and av-
erage partial Hamming crosscorrelation (average of cross-hits) of S with LHZ
respectively.

If j=0, L=N and Z=N−1, P a(L) and P c(L) represent the conventional av-
erage Hamming autocorrelation Aa and average Hamming crosscorrelation Ac,
respectively.

For simplicity, we will denote Sa=Sa(L), Sc=Sc(L), P a=Pa(L), P c=P c(L).
We now state the theorem on the lower bounds on the average partial Ham-

ming autocorrelation and average partial Hamming crosscorrelation of FHS set
with LHZ.

Theorem 1. Let S be a set of M FHSs of length N over a given frequency slot
set F with size q, LPHZ be the LHZ of S with respect to PLa and PLc. For any
PLa, PLc, 0 ≤PLa≤PLa, 0 ≤PLc≤PLc, the given correlation window length L
and any positive integer Z, 0≤Z≤LPHZ, we have

qZPLa+ q(M− 1)(Z+ 1)PLc ≥ (Z+ 1)LM− Lq. (18)

MNZPLa+(M−1)(Z+1)MNPLc ≥ (Z+1)L[(2I+1)M−(I+1)Iq/N ]−MNL. (19)

where I denotes the integer part of NM/q.
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Proof. For any positive integer Z, 0≤Z≤LPHZ, we first have

∑
x,y∈S

Z∑
τ=0

Hxy(τ) = MN +
∑
x∈S

Z∑
τ=1

Hxx(τ) +
∑

x,y∈S,x �=y

Z∑
τ=0

Hxy(τ)

= MN +
∑
x∈S

Z∑
τ=1

Hxx(0|N ; τ) +
∑

x,y∈S,x �=y

Z∑
τ=0

Hxy(0|N ; τ)

= MN +
1
L

∑
x∈S

Z∑
τ=1

N−1∑
j=0

Hxx(j|L; τ) +
1
L

∑
x,y∈S,x �=y

Z∑
τ=0

N−1∑
j=0

Hxy(j|L; τ)

= MN +
1
L

Sa +
2
L

Sc.

In [7], a lower bound on
∑

x,y∈S
∑Z
τ=0 Hxy(τ) was given. Therefore, it follows

that

MN +
1
L

Sa +
2
L

Sc ≥ (Z + 1)NM2/q,

MN +
1
L

Sa +
2
L

Sc ≥ (Z + 1)[(2I + 1)M − (I + 1)Iq/N ].

where I denotes the integer part of NM/q.
Then, based on the definition of the average PHCs of FHS set with LHZ in

(18) and (19), we have

1
Z(M − 1)(Z + 1)

+
PLa

L(M − 1)(Z + 1)
+

PLc

LZ
≥ M

qZ(M − 1)
,

1
Z(M − 1)(Z + 1)

+
PLa

L(M − 1)(Z + 1)
+

PLc

LZ
≥ (2I + 1)MN − (I + 1)Iq

MN2Z(M − 1)
.

This completes the proof.

�
Putting j=0 and L=N in Theorem 1, we obtain the bounds on APHCs of FHS
set with LHZ.

Corollary 1. Let S be a set of M FHSs of length N over a given frequency slot
set F with size q, LPHZ be the LHZ of S with respect to PLa and PLc. For any
PLa, PLc, 0 ≤PLa≤PLa, 0 ≤PLc≤PLc, and any positive integer Z, 0≤Z≤LPHZ,
we have

qZPLa + (M − 1)(Z + 1)qPLc ≥ (Z + 1)NM − Nq. (20)

MZPLa+(M−1)(Z+1)MPLc ≥ (Z+1)[(2I+1)M−(I+1)Iq/N ]−MN. (21)

where I denotes the integer part of NM/q.

It should be noted that the Peng-Peng-Tang-Niu bound in (7) on APHCs of
FHS set is only a special case of (20) of Corollary 1 for Z=N−1.
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4 Conclusions

In this paper, based on the concepts of LHZ for FHS design, the lower bounds on
the frequency slot set size, correlation window length, family size, LHZ, average
partial Hamming autocorrelation and average partial Hamming crosscorrelation
are derived. It has been shown that the new bounds are the generalization of the
previous bounds. It is expected that the new bounds will be useful in designing
and evaluating new FHS design.

In applications, it is generally desired that the FHS set S with LHZ has the
following properties:

1) The LHZ should be as large as possible;
2) The maximum partial Hamming autocorrelation PLa within LHZ should be

as small as possible;
3) The maximum partial Hamming crosscorrelation PLc within LHZ should be

as small as possible;
4) The average partial Hamming autocorrelation PLa within LHZ should be as

small as possible;
5) The average partial Hamming crosscorrelation PLc within LHZ should be as

small as possible;
6) The family size M for given PLa, PLc, PLa, PLc, q, L and N should be as

large as possible.

However, these parameters are not independent, and are bounded by the limit in
(18) or (19). If the parameters q, L, N , M , PLa and PLc of the FHS set S satisfy
inequality in (18) or (19) with equality, then it is said that the corresponding
FHS set S is called an optimal average PHC FHS set with LHZ. If the sequence
set S is an optimal average PHC FHS set with LHZ for all length of correlation
window, then it is said that S is a strictly optimal average PHC FHS set with
LHZ.

Example 1. Let q=7, N=7, M=6, L=7 and LPHZ=6. By Theorem 1

6PLa + 35PLc ≥ 35

Let F={0, 1, 2, 3, 4, 5, 6}. We construct the FHS set S={S1, S2, S3, S4, S5, S6},
where

S1 = 0116166, S2 = 0225255, S3 = 0334344,

S4 = 0443433, S5 = 0552522, S6 = 0661611.

and their PHCs are given by

HSi,Sj (0|7; τ) =

⎧⎨⎩
{7, 2, 2, 2, 2, 2, 2}, i = j,
{1, 3, 3, 3, 3, 3, 3}, (i, j) = (1, 6), (2, 5), (3, 4),
{1, 0, 0, 0, 0, 0, 0}, otherwise.

It can be checked that PLa=2, PLc=3, PLa=2 and PLc=23/35. By a simple
verification, S is an optimal average PHCs FHS set with LHZ for the correlation
window length L=7, but not an optimal maximum PHCs FHS set with LHZ for
the correlation window length L=7.
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Abstract. Let N = p1 · · · pk where pi, 1 ≤ i ≤ k, are odd primes such
that p1 < · · · < pk and pi = Mif + 1 for some positive integers Mi

and f . In this paper, we construct frequency-hopping sequence (FHS)
sets by using the properties of the k-fold cycltomy. We give FHS sets
with length 2N and frequency set size (N − 1)/f , which are optimal
with respect to the Peng-Fan bound if k = 1, and near-optimal if k ≥ 2.
We also present near-optimal FHS sets with length mN and frequency
set size (N − 1)/f + 1 for any integer m with 2 ≤ m ≤ M1. The FHS
sets constructed in this paper have new parameters not covered in the
literature.

Keywords: Cyclotomic numbers, frequency-hopping sequences,
generalized cyclotomy, Hamming correlation, interleaved sequences.

1 Introduction

Frequency-hopping multiple-access (FHMA) has been widely employed in mod-
ern communication systems such as Bluetooth [1], ultra-wideband (UWB), mil-
itary or radar applications, etc. For these systems, the receiver is confronted
with the interference caused by hits of frequencies when it attempts to demod-
ulate one of the signals sent from a number of transmitters. In order to reduce
the multiple-access interference, it is desirable to employ frequency-hopping se-
quences (FHSs) having low Hamming correlation [2,3]. Hence, it is an important
problem to construct FHS sets with large set size and low Hamming correlation.
Cyclotomy [4] is one of the most frequently used techniques in design of FHSs
[5]-[9].

The conventional cyclotomy is defined over a finite field. Let Fq be the finite
field of q elements and F∗

q = Fq \ {0}, where q is a prime power. Let α be a
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primitive element of Fq. For a nonzero element β of Fq, we have β = αl for an
integer 0 ≤ l ≤ q − 2, where the exponent is denoted by l = logα β. Let M and
f be positive integers such that q = Mf + 1. Then, F∗

q is decomposed into M
disjoint subsets

CM
r =
{
αMj+r | 0 ≤ j ≤ f − 1

}
, r = 0, 1, . . . , M − 1

which are called the cyclotomic classes of Fq of order M . For two integers r and
s in ZM , the ring of integers modulo M , the number defined by

(r, s)M := |(CM
r + 1) ∩ CM

s | (1)

is called a cyclotomic number of Fq of order M [10].
Several types of generalized cyclotomies have been reported in the literature.

Whiteman introduced a generalized cyclotomy in Zp1p2 for two distinct primes
p1 and p2 [11]. Ding and Helleseth gave another generalized cyclotomy in Zq1···qk

when q1, . . . , qk are powers of distinct primes [12]. Recently, Chung and Yang
presented a k-fold cyclotomy in Fq1× · · · × Fqk

, which include the conventional
cyclotomy as a special case [13]. Several optimal FHSs and FHS sets with new
parameters were derived from the k-fold cyclotomy.

Let N = p1 · · · pk where pi, 1 ≤ i ≤ k, are odd primes such that p1 < · · · < pk
and pi = Mif +1 for some positive integers Mi and f . In this paper, we construct
FHS sets by combining the interleaving techniques with the k-fold cycltomy. We
give FHS sets with length 2N and frequency set size (N−1)/f , which are optimal
with respect to the Peng-Fan bound [14] if k = 1, and near-optimal if k ≥ 2.
We also present near-optimal FHS sets with length mN and frequency set size
(N − 1)/f + 1 for any integer m with 2 ≤ m ≤ M1. In general, the existence of
optimal FHSs (FHSs sets) with respect to the Lempel-Greenbeger bound (the
Peng-Fan bound, respectively) is not guaranteed. Therefore, it is also important
to find near-optimal FHSs (FHS sets) for a given length and a given frequency
set size if there are no known optimal FHSs (FHS sets) with respect to the bound
in the case. The parameters of new FHS sets constructed in this paper are not
covered in the literature, and flexible in the sense that the frequency set size can
take various values according to the choice of f .

The outline of the paper is as follows. In Section 2, we introduce k-fold cy-
clotomic numbers and briefly review their properties. We present two new near-
optimal FHS sets of length mN with respect to the Peng-Fan bound in Section
3. Finally, some concluding remarks are given in Section 4.

2 k-Fold Cyclotomic Numbers

In [13], k-fold cyclotomic classes and numbers were introduced as a generalization
of the conventional cyclotomic classes and numbers. We will briefly review their
definitions and properties in this section.

Throughout the paper, we denote by x� the largest integer less than or equal
to x. Similarly, �x� denotes the smallest integer greater than or equal to x. We
also denote by 〈x〉y the least nonnegative residue of x modulo y for an integer x
and a positive integer y.
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2.1 Definition of k-Fold Cyclotomic Numbers

For an integer k ≥ 1 and an integer i with 1 ≤ i ≤ k, let qi = pei

i and αi a
primitive element of Fqi where pi’s are pairwise distinct odd primes and ei’s are
positive integers. Let f be a positive integer such that there is an integer Mi ≥ 1
satisfying qi = Mif + 1 for any 1 ≤ i ≤ k. For u = (u1, . . . , uk) ∈ Fq1× · · · × Fqk

and r = (r1, . . . , rk) ∈ ZM1× · · · ×ZMk
, we denote by u : r a concatenation of u

and r, that is, u : r = (u1, . . . , uk) : (r1, . . . , rk).

Definition 1. Let I be the set of all vectors u : r = (u1, . . . , uk) : (r1, . . . , rk)
such that ui ∈ {0, 1, αMi

i , . . . , α
Mi(f−1)
i } ⊂ Fqi and ri ∈ ZMi for 1 ≤ i ≤ k,

satisfying the following conditions:

(a) there exists an integer i with 1 ≤ i ≤ k such that ui �= 0;
(b) u1 ∈ {0, 1};
(c) ui = 1 if u1 = 0, . . . , ui−1 = 0, and ui �= 0; and
(d) if ui = 0, then ri = 0.

The size of I is given by |I| = (q1 · · · qk − 1)/f . We define a binary operation
between two elements in I ∪ {0 : 0} to present the k-fold cyclotomy, where
0 : 0 = (0, . . . , 0) : (0, . . . , 0).

Definition 2. Let u : r = (u1, . . . , uk) : (r1, . . . , rk) and u′ : r′ = (u′
1, . . . , u

′
k) :

(r′1, . . . , r
′
k) be two elements in I ∪ {0 : 0}. If uiu

′
i = 0 for all 1 ≤ i ≤ k, we

define ⊕ as u : r ⊕ u′ : r′ = 0 : 0. If uiu
′
i �= 0 for some i with 1 ≤ i ≤ k, let

βi =
⌊

ri + r′i
Mi

⌋
−
⌊

rk̂ + r′
k̂

Mk̂

⌋
− εk̂

where k̂ = min1≤i≤k{i |uiu′
i �= 0} and εk̂ = (logαk̂

uk̂ + logαk̂
u′
k̂
)/Mk̂ mod f .

The operation ⊕ between u : r and u′ : r′ in I is defined as

u : r ⊕ u′ : r′ = (u1u
′
1σ1, . . . , uku

′
kσk) : ((r1 + r′1)M1 , . . . , (rk + r′k)Mk

)

where σi = αMiβi

i , and

(ri + r′i)Mi =
{
〈ri + r′i〉Mi , if uiu

′
i �= 0

0, otherwise

for 1 ≤ i ≤ k.

It is easily checked that the set I ∪ {0 : 0} is closed, associative, and commu-
tative under the operation ⊕. Furthermore, 1 : 0 = (1, . . . , 1) : (0, . . . , 0) is the
identity with respect to ⊕, that is,

u : r ⊕ 1 : 0 = 1 : 0⊕ u : r = u : r

for any u : r ∈ I ∪ {0 : 0}. Let I∗ be the subset of I, given by

I∗ = {u : r ∈ I | ui �= 0 for all 1 ≤ i ≤ k}.
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Definition 3. For any u : r = (u1, . . . , uk) : (r1, . . . , rk) ∈ I∗, its inverse u : r
with respect to ⊕ is defined as u : r = (u1, . . . , uk) : (r1, . . . , rk), where

ui =

⎧⎨⎩
u−1
i α−Mi

i , if r1 = 0 and ri �= 0
u−1
i αMi

i , if r1 �= 0 and ri = 0
u−1
i , otherwise,

and ri = 〈Mi − ri〉Mi for 1 ≤ i ≤ k.

It is easily checked that u : r⊕ u : r = u : r⊕ u : r = 1 : 0 for any u : r ∈ I∗,
i.e., every element of I∗ has an inverse in I∗. Therefore, I∗ is a commutative
group under the operation ⊕.

For any a = (a1, . . . , ak) and b = (b1, . . . , bk) in Fq1× · · · × Fqk
, we define the

binary operation ◦ as
a ◦ b = (a1b1, . . . , akbk).

Given a nonempty subset S of Fq1× · · · × Fqk
, the operation ◦ is naturally ex-

tended to
a ◦ S = {a ◦ b |b ∈ S}.

From the definition of I, it is easily checked that any a ∈ Fq1× · · · × Fqk
\ {0}

can be uniquely represented as

a = (u1, . . . , uk) ◦
(
αM1j+r1

1 , . . . , αMkj+rk

k

)
for some u : r = (u1, . . . , uk) : (r1, . . . , rk) ∈ I and some 0 ≤ j ≤ f − 1. In other
words, there exists a unique pair of u : r and j for a ∈ Fq1× · · · × Fqk

\ {0}.

Definition 4. Let u : r = (u1, . . . , uk) : (r1, . . . , rk) ∈ I ∪ {0 : 0}. The subset
Cu:r of Fq1× · · · × Fqk

is defined as

Cu:r =
{

(u1, . . . , uk) ◦
(
αM1j+r1

1 , . . . , αMkj+rk

k

) ∣∣∣ 0 ≤ j ≤ f − 1
}

.

Clearly, |Cu:r| = f for any u : r ∈ I and |C0:0| = 1. Let M = |I|, where
|I| = (q1 · · · qk − 1)/f . For u : r ∈ I, the set Cu:r will be referred to as a k-fold
cyclotomic class of Fq1× · · · × Fqk

of order M . Accordingly, I will be called the
set of indices for the k-fold cyclotomic classes of Fq1× · · · × Fqk

of order M . It
is easily checked that ⋃

u:r∈I
Cu:r = Fq1× · · · × Fqk

\ {0}.

Furthermore, for any u : r and u′ : r′ in I,

Cu:r ∩ Cu′:r′ = φ iff u : r �= u′ : r′, (2)

and
a ◦ Cu:r = Cu:r⊕u′:r′ if a ∈ Cu′:r′ . (3)

Generalizing the cyclotomic number given in (1), it is possible to define a k-fold
cyclotomic number of Fq1× · · · × Fqk

of order M in the following.
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Definition 5. For any u : r,u′ : r′ ∈ I ∪ {0 : 0}, let

(u : r,u′ : r′)M := |(Cu:r + 1) ∩ Cu′:r′ | (4)

where 1 = (1, . . . , 1), and

Cu:r + 1 = {(a1 + 1, . . . , ak + 1) | a = (a1, . . . , ak) ∈ Cu:r} .

In particular, the number (u : r,u′ : r′)M is called a k-fold cyclotomic number
of Fq1× · · · × Fqk

of order M , when u : r ∈ I and u′ : r′ ∈ I.

2.2 Properties of k-Fold Cyclotomic Numbers

In [13], the following properties of k-fold cyclotomic numbers were derived, which
include the corresponding properties of the conventional cyclotomic numbers in
(1) as a special case.

Theorem 6 ([13]). Let (u : r,u′ : r′)M be the k-fold cyclotomic number de-
fined in (4) with u : r = (u1, . . . , uk) : (r1, . . . , rk) and u′ : r′ = (u′

1, . . . , u
′
k) :

(r′1, . . . , r
′
k) in I. Then the followings hold.

(a) For any u : r ∈ I∗ and any u′ : r′ ∈ I, we have

(u : r,u′ : r′)M = (u : r,u′ : r′ ⊕ u : r)M .

(b) For any u : r,u′ : r′ ∈ I, we have

(u : r,u′ : r′)M =
{

(u′ : r′,u : r)M , if 2 | f
(u′ : r′ ⊕ ΓM ,u : r ⊕ ΓM )M , if 2 � f

where ΓM = (1, . . . , 1) :
(
M1
2 , . . . , Mk

2

)
∈ I∗.

(c) For any u : r ∈ I, we have

∑
u′: r′∈I

(u : r,u′ : r′)M =

⎧⎨⎩
f − 1, if u : r = 1 : 0 and 2 | f
f − 1, if u : r = ΓM and 2 � f
f, otherwise.

(d) For any u′ : r′ ∈ I, we have∑
u: r∈I

(u : r,u′ : r′)M =
{

f − 1, if u′ : r′ = 1 : 0
f, otherwise.

(e) (k-fold diagonal sum) For any u′ : r′ ∈ I, we have∑
u: r∈I

(u : r,u : r ⊕ u′ : r′)M ≤ f.

Moreover, ∑
u: r∈I

(u : r,u : r)M = f − 1 (5)
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and ∑
u: r∈I

(u : r,u : r ⊕ u′ : r′)M = f (6)

if u′ : r′ ∈ I∗ and r′i �= 0 mod Mi for all 1 ≤ i ≤ k.

For a positive integer l with 1 ≤ l ≤ k, let S = {i1, . . . , il} be a subset of
{1, 2, . . . , k}, where 1 ≤ i1 < · · · < il ≤ k. Let d = (d1, . . . , dk) ∈ Fq1× · · · × Fqk

be the vector of length k, given by

di =
{

1, if i ∈ S
0, otherwise.

Then, it is natural to consider the number

|(Cu:r + d) ∩ Cu′:r′ |

for u : r,u′ : r′ ∈ I. When di = 1 for all 1 ≤ i ≤ k, it is equal to the k-fold cyclo-
tomic number defined in (4). In some cases, the sum of |(Cu:r + d) ∩ Cu:r⊕u′:r′ |
over I corresponding to (5) or (6) is given as follows.

Theorem 7 ([13]). Let u′ : r′ ∈ I∗ with r′i �= 0 mod Mi for all 1 ≤ i ≤ k.
Then we have ∑

u:r∈I
|(Cu:r + d) ∩ Cu:r⊕u′:r′ | = f

and ∑
u:r∈I

|(Cu:r + d) ∩ Cu:r| = f − 1.

In the next section, the properties in Theorems 6 and 7 will be used to calcu-
late the Hamming correlations of FHS sets derived from the k-fold cyclotomy.

3 Frequency-Hopping Sequence Sets of Length mN

3.1 Preliminaries to FHSs

For communication systems employing FHMA, it is an important problem to find
FHSs or FHS sets with good Hamming correlation properties for a given length
and a given frequency set size. For a survey of FHSs and their applications, we
refer to [2,3,15]. We will begin with a brief review of FHSs for our presentation.

Let F = {f0, f1, . . . , fM−1} be a set of available frequencies. A sequence
X = {X(t)}N−1

t=0 is called a frequency-hopping sequence of length N over F
if X(t) ∈ F for all 0 ≤ t ≤ N − 1. For two FHSs X and Y of length N over F ,
the periodic Hamming correlation between X and Y is defined as

HX,Y (τ) =
N−1∑
t=0

h[X(t), Y (〈t + τ〉N )], 0 ≤ τ ≤ N − 1
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where

h[x, y] =
{

1, if x = y
0, otherwise.

If X = Y , HX,Y (τ) is called the Hamming autocorrelation of X , denoted by
HX(τ). The maximum out-of-phase Hamming autocorrelation of X is defined as

H(X) = max
1≤τ≤N−1

{HX(τ)}.

Throughout the section, an FHS X of length N over F with |F| = M will be
referred to as an (N, M, λ) FHS if H(X) = λ. The following lemma is well-known
as the Lempel-Greenberger bound.

Lemma 8 ([16]). For any FHS X of length N over F with |F| = M ,

H(X) ≥
⌈

(N − b)(N + b − M)
M(N − 1)

⌉
(7)

where b = 〈N〉M .

Let S be the set of all FHSs of length N over F . For any two distinct FHSs
X and Y in S, let

H(X, Y ) = max
0≤τ≤N−1

{HX,Y (τ)}.

For a subset U of S, the maximum out-of-phase Hamming autocorrelation Ha(U)
and the maximum Hamming crosscorrelation Hc(U) of U are defined as

Ha(U) = max
X∈U

{H(X)},

Hc(U) = max
X,Y ∈U , X �=Y

{H(X, Y )},

respectively. The maximum Hamming correlation of U is also defined as

H(U) = max{Ha(U), Hc(U)}.
When Ha(U) = λa, Hc(U) = λc, |F| = M , and |U| = L, we call U an
(N, M, λa, λc; L) FHS set. Peng and Fan established some bounds on the maxi-
mum out-of-phase Hamming autocorrelation and crosscorrelation of an FHS set
in terms of frequency set size, length, and the number of FHSs [14]. The following
lemma is known as a simplified version of the Peng-Fan bound.

Lemma 9 ([14]). Let U be a set of L FHSs of length N over a frequency set
with size M , and I = NLM �. Then we have

H(U) ≥
⌈

(NL − M)N
(NL − 1)M

⌉
. (8)

Let λL (resp. λP ) be the right-hand side in (7) (resp. in (8)). From now on,
we use the following definitions in this paper.

(a) An FHS X is said to be optimal (resp. near-optimal) if H(X) = λL (resp.
H(X) = λL + 1).

(b) An FHS set U will be referred to as an optimal FHS set (resp. near-optimal
FHS set) if H(U) = λP (resp. H(U) = λP + 1).
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3.2 New Near-Optimal FHS Sets of Length mN

Interleaving techniques are employed to construct a sequence of length mN from
m sequences of length N , which are not necessarily distinct for some positive
integers m and N [17]. In [8], several new classes of optimal FHS sets constructed
by interleaving techniques were presented. In particular, (2p, M, 2f + 1, 2f +
1; M/2) optimal FHS sets were constructed for an odd prime p = Mf + 1
such that f is an odd integer, by combining an interleaving technique with the
conventional cyclotomy.

For odd primes p1 < · · · < pk, let f be a positive integer such that there exists
an integer Mi ≥ 1 satisfying pi = Mif + 1 for 1 ≤ i ≤ k. Let N = p1 · · · pk,
M = (N − 1)/f , and m a positive integer such that 2 ≤ m ≤ M1. Then any
integer t with 0 ≤ t ≤ mN − 1 can be uniquely represented as

t := (t0, t1, . . . , tk)

where t0 = 〈t〉m and ti = 〈t〉pi for 1 ≤ i ≤ k.
When m = 2, it is possible to construct (near-)optimal FHS sets of length 2N

and frequency set size M by employing the k-fold cyclotomy as follows.
Construction A: Let p1, . . . , pk be odd primes such that p1 < · · · < pk and
pi = Mif + 1 with an odd integer f and a positive integer Mi for 1 ≤ i ≤ k. Let
N = p1 · · · pk, M = (N − 1)/f , and π a one-to-one mapping from I to ZM . Let
Yh = {Yh(t)}2N−1

t=0 be the FHS of length 2N over ZM defined by

Yh(t) =

⎧⎪⎪⎨⎪⎪⎩
π(1 : 0), if t = 0
π(Λ1), if t = N
π(u : r ⊕ 1 : h), if t0 = 0 and (t1, . . . , tk) ∈ Cu:r,

or t0 = 1 and (t1, . . . , tk) ∈ Cu:r⊕ΓM

for 0 ≤ h ≤ M1
2 − 2, and

Y−1(t) =

⎧⎪⎪⎨⎪⎪⎩
π(Λ1), if t = 0
π(Λ2), if t = N
π(u : r ⊕ 1 : (−1, . . . ,−1)), if t0 = 0 and (t1, . . . , tk) ∈ Cu:r,

or t0 = 1 and (t1, . . . , tk) ∈ Cu:r⊕ΓM

where ΓM = 1 :
(
M1
2 , . . . , Mk

2

)
, Λ1 = 1 :

(
M1
2 − 1, 0, . . . , 0

)
∈ I and Λ2 = 1 :

(M1 − 2, 0, . . . , 0) ∈ I. The set Y1 is defined as

Y1 = {Yh | − 1 ≤ h ≤ M1/2 − 2}.

Theorem 10. When M ≥ 4, the set Y1 in Construction A is a (2N, M, 2f +
1, 2f + 1; M1/2) FHS set whose FHSs are near-optimal. The set Y1 is optimal if
k = 1 and near-optimal if k ≥ 2.

Proof. Let τ = (τ0, . . . , τk) where τ0 = 〈τ〉2 and τi = 〈τ〉pi for 1 ≤ i ≤ k. Denote
the Hamming correlation between Yh1 and Yh2 by Hh1,h2(τ). Consider the case
that 0 ≤ h1, h2 ≤ M1

2 − 2. We have
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Hh1,h2(τ)

=
1∑

t0=0

∑
〈t〉N∈ZN\{0,〈−τ〉N}

h [Yh1(t0, . . . , tk), Yh2(〈t0 + τ0〉2, . . . , 〈tk + τk〉pk
)]

+ Δ (9)

where

Δ = h[π(1 : 0), Yh2(τ)] + h[Yh1(−τ), π(1 : 0)]
+h[π(Λ1), Yh2(N + τ)] + h[Yh1(N − τ), π(Λ1)] (10)

We divide our computation of Hh1,h2(τ) in (9) into four subcases and show that
Hh1,h2(τ) ≤ 2f + 1 in each subcase.

Subcase i) 〈τ〉N = 0: It is easily checked that

Hh1,h2(0) =
{

2N, if h1 = h2
2, if h1 �= h2

and
Hh1,h2(N) = 0

for any 0 ≤ h1, h2 ≤ M1/2 − 2.

Subcase ii) τ0 = 0 and τi �= 0 for all 1 ≤ i ≤ k: Let (τ−1
1 , . . . , τ−1

k ) ∈ Cu′:r′ for
some u′ : r′ ∈ I∗. Then Hh1,h2(τ) in (9) can be represented as

Hh1,h2(τ) = 2
∑

u:r∈I
((u : r ⊕ 1 : h1) ⊕ u′ : r′, (u : r ⊕ 1 : h2) ⊕ u′ : r′) + Δ

= 2
∑

u:r∈I
(u : r,u : r ⊕ (1 : h2 ⊕ 1 : h1 )) + Δ.

By the k-fold diagonal sum in (e) of Theorem 6, we get

Hh1,h2(τ) =
{

2f − 2 + Δ, if h1 = h2
2f + Δ, if h1 �= h2.

Moreover, (10) can be rewritten as

Δ =
∣∣{(τ1, . . . , τk)} ∩ C1:h2

∣∣+ ∣∣{(−τ1, . . . ,−τk)} ∩ C1:h1

∣∣
+
∣∣∣{(τ1, . . . , τk)} ∩ C(Λ1⊕1:h2)⊕ΓM

∣∣∣+ ∣∣∣{(−τ1, . . . ,−τk)} ∩ C(Λ1⊕1:h1)⊕ΓM

∣∣∣
=
∣∣{(τ1, . . . , τk)} ∩ C1:h2

∣∣+ ∣∣{(τ1, . . . , τk)} ∩ C1:h1⊕ΓM

∣∣
+
∣∣∣{(τ1, . . . , τk)} ∩ C(Λ1⊕1:h2)⊕ΓM

∣∣∣+ ∣∣{(τ1, . . . , τk)} ∩ CΛ1⊕1:h1

∣∣
and so we have

Δ =
{

1, if (τ1, . . . , τk) ∈ C1:h2
, C1:h1⊕ΓM

, C(Λ1⊕1:h2)⊕ΓM
, or CΛ1⊕1:h1

0, otherwise.
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Subcase iii) τ0 = 1 and τi �= 0 for all 1 ≤ i ≤ k: In a similar way to Subcase
ii), it is possible to prove that

Hh1,h2(τ) ≤ 2f + 1

for any 0 ≤ h1, h2 ≤ M1/2 − 2.
Subcase iv) 〈τ〉N �= 0 and τi = 0 for some i with 1 ≤ i ≤ k: After reducing the

problem into the l-fold case for an integer l with 1 ≤ l < k, it may be similarly
proved that

Hh1,h2(τ) ≤
{

2f − 2, if h1 = h2 and τ0 = 0
2f, otherwise.

In the remaining case that h1 = −1 or h2 = −1, it may be similarly proved that

Hh1,h2(τ) ≤ 2f + 1

for 0 ≤ τ ≤ 2N − 1 when h1 �= h2, and for 0 < τ ≤ 2N − 1 when h1 = h2 = −1.
Summarizing the above results, we can conclude that Y1 is a (2N, M, 2f +1, 2f+
1; M1/2) FHS set. Plugging the parameters of Y1 into (7) and (8), we get⌈

(2N − 2)(2N + 2 − M)
M(2N − 1)

⌉
= 2f

and ⌈
(2NM1 − M)2N

(2NM1 − 1)M

⌉
=
{

2f + 1, if k = 1
2f, otherwise,

respectively. Therefore, the optimality of Y1 can be easily checked. ��

It is easily checked that Construction C1 in [8] corresponds to the k = 1 case
in Construction A.

Remark: In general, the existence of optimal FHSs (FHS sets) with respect
to the Lempel-Greenberger bound (the Peng-Fan bound, respectively) is not
guaranteed for any given length and any given frequency set size. For example,
one can easily check that no (6, 2, 3) optimal FHSs with respect to the Lempel-
Greenberger bound exist. For these reasons, some FHSs which are near-optimal
with respect to the Lempel-Greenberger bound are ‘actually’ optimal if there are
no optimal FHSs with the same length and frequency set size. Therefore, it is also
important to design near-optimal FHSs (FHS sets), when there are no known
optimal FHSs (FHS sets, respectively) with the same length and frequency set
size. Note that the parameters obtained by Construction A are not covered in
the literature.

If we add another symbol which is not an element of ZM , it is possible to
construct (near-)optimal FHS sets of length mN and frequency set size M + 1
for any integer m with 2 ≤ m ≤ M1 by employing the k-fold cyclotomy.

Construction B: Let p1, . . . , pk be odd primes such that p1 < · · · < pk and
pi = Mif + 1 with positive integers f and Mi for 1 ≤ i ≤ k. Let N = p1 · · · pk,
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M = (N − 1)/f , and π a one-to-one mapping from I to ZM . For an integer 2 ≤
m ≤ M1, let L =

⌊
M1
m

⌋
. For 0 ≤ h ≤ L − 1, define the FHS Yh = {Yh(t)}mN−1

t=0
of length mN over ZM ∪ {∞} as

Yh(t) =
{
∞, if 〈t〉N = 0
π(u : r ⊕ Λt0,h), if (t1, . . . , tk) ∈ Cu:r

where Λt0,h = 1 : (t0L + h, . . . , t0L + h) ∈ I. The set Y2 is defined as

Y2 = {Yh | 0 ≤ h ≤ L − 1}.

Theorem 11. The set Y2 in Construction B is an (mN, M + 1, mf, mf ; L)
FHS set. When f = 1, Y2 is an optimal FHS set, whose FHSs are also optimal.
When 2 ≤ f ≤ 2M

m + 1, Y2 is a near-optimal FHS set, whose FHSs are also
near-optimal.

Proof. Let τ = (τ0, . . . , τk) where τ0 = 〈τ〉m and τi = 〈τ〉pi for 1 ≤ i ≤ k. Denote
the Hamming correlation between Yh1 and Yh2 by Hh1,h2(τ).

Case i) 〈τ〉N = 0: It is easily checked that

Hh1,h2(τ) =
{

mN, if h1 = h2 and τ = 0
m, otherwise.

Case ii) 〈τ〉N �= 0 and τi �= 0 for all 1 ≤ i ≤ k: In a similar approach to the
Proof of Theorem 10, we have

Hh1,h2(τ) = m
∑

u:r∈I
(u : r,u : r⊕ 1 : h3)M

for some 1 : h3 ∈ I∗. Then, by the k-fold diagonal sum in (e) of Theorem 6,
we get

Hh1,h2(τ) =
{

mf − m, if h3 = (0, . . . , 0)
mf, otherwise.

Case iii) 〈τ〉N �= 0 and τi = 0 for some i with 1 ≤ i ≤ k: After reducing the
problem into the l-fold case for an integer l with 1 ≤ l < k, it may be similarly
proved that

Hh1,h2(τ) ≤ mf.

Summarizing the above results, we can conclude that Y2 is an (mN, M+1, mf,
mf ; L) FHS set. Its optimality can be easily checked by plugging the parameters
of Y2 into (7) and (8). ��

4 Conclusion

For odd primes p1, . . . , pk such that p1 < · · · < pk and there exists an integer
f with pi = Mif + 1, we presented new FHS sets of length mN by employing
the k-fold cyclotomy, where N = p1 · · · pk and 2 ≤ m ≤ M1. When m = 2, we
constructed (2N, M, 2f +1, 2f+1; M1/2) near-optimal FHS sets whose FHSs are
also near-optimal. For an integer m with 2 ≤ m ≤ M1, we also gave (mN, M +
1, mf, mf ; M1/m�) near-optimal FHS sets. The FHS sets constructed in this
paper have new parameters not covered in the literature.
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Abstract. Protocol sequences are binary and periodic sequences used
in multiple-access scheme for collision channel without feedback. Each
user reads out the bits from the assigned protocol sequence periodically,
and sends a packet whenever the bit is equal to one. It is assumed that
any two or more packets overlapping in time result in a collision, and
the collided packets are unrecoverable. Due to the lack of feedback and
cooperation, there are some relative delay offsets between protocol se-
quences. We consider protocol sequences with the property, called user-
irrepressibility, that each user is guaranteed to send at least one packet
in each sequence period without collision, no matter what the delay off-
sets are. The period length is hence a measure of delay; each user need
to wait no more than a period time before a successful transmission can
be made. Our objective is to construct user-irrepressible sequences with
sequence period as short as possible. In this paper, we present a new
construction for prime number of users. A lower bound on period which
is applicable in general for any number of users is also derived.

Keywords: Protocol sequences, conflict-avoiding codes, collision chan-
nel without feedback.

1 Introduction

We consider packetized multiple-access transmission system in which time is
divided into time slots, and assume slot synchronization. A user who wants to
transmit a packet must send the packet within a time slot. If exactly one user
transmits in a time slot, then the packet is received error-free. However, when
two or more users send simultaneously in a time slot, we have a collision and the
collided packets are assumed unrecoverable.

We assume that there is no communication among the transmitting nodes.
The transmission scheme is thus fully distributed. Also, as argued in [5], infor-
mation is transmitted via the content of the packets only, but not via the channel
access times of the users. The decision of whether transmitting a packet or not
in a time slot is independent of the data to be sent. Without loss of generality,
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the scheduling of packets is done by assigning each user a deterministic binary
sequence, call protocol sequence. Each user reads out the bits from the assigned
protocol sequence periodically, and sends a packet if and only if the value is
equal to one. The users may start their communication at different times. Since
we do not assume any feedback from the receiver and cooperation among the
users, this incurs relative delay offsets between protocol sequences. We assume
that the relative delay offsets of the protocol sequences are arbitrary but fixed
throughout the transmission session.

Our design objective, called user-irrepressibility [11], is to guarantee in the
worst case that each user is able to send at least one packet successfully to the
sink node in each period. In other words, no mater what the relative delay offsets
are, there is at least one successful packet for each user in each period. This can be
re-phrased in terms of the sequence matrix as follow. Given M binary sequences
of length L, we cyclically shift each of them and stack them together in an
M ×L matrix, one row for each sequence. The sequences are user-irrepressible if
no matter what the cyclic shifts are, the resulting M ×L matrix always contains
an M × M identity matrix as a submatrix. The common period of a set of
user-irrepressible sequences measures the maximum waiting time until a packet
can be sent successfully. This bounded-delay requirement finds application in
medical systems [7] and body sensor networks [13] for instance. Let Lmin(M)
be the smallest L such that a set of M user-irrepressible sequences of common
period L exists. Previous work in [2] shows that Lmin(M) is lower bounded by
1 + M(M + 1)/2.

The notion of user-irrepressibility is addressed in another context, under the
name of conflict-avoiding codes (CAC) (see e.g. [4,6] and the references therein)
with different perspective. In the study of CAC, there are T potential users, and
at most M of them are active at the same time. Given the sequence period L,
the objective in the construction of CAC is to maximize the number of potential
users T , with the guarantee of at least one packet received successfully from
each active user in a period time, provided that the number of active users is no
more than M . In this paper, we consider the case where all users are active, and
minimize the period for fixed number of users.

In this paper we assume slot synchronism. If frame synchronization, which is
stronger than slot synchronization, is allowed, the problem has a trivial time-
division multiple-access (TDMA) solution, namely, the sequence period is L = M
and the ith user sends a packet in the ith time slot. Collision can be totally
avoided in this case. However, with slot synchronization, the relative delay offsets
among sequences are nonzero and uncontrollable.

This paper is organized as follows. After setting up the notations in Sec-
tion 2, we review some existing constructions of user-irrepressible sequences in
Section 3. A new construction of user-irrepressible sequence is given in Section 4.
A method for computing a lower bound for Lmin(M) is presented in Section 5.
The current status of our knowledge on Lmin(M) is summarized at the end of
this paper.
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2 Notations and Preliminaries

We represent a periodic sequence with period L by a sequence of finite length L.
We will use “period” and “length” interchangeably. The Hamming weight of
a binary sequence a(t), denoted by wH(a), is the number of 1’s in a period.
The Hamming cross-correlation between two sequences a(t) and b(t), denoted
by Hab(τ), is defined as

Hab(τ) :=
L−1∑
t=0

a(t)b(t − τ).

Let ZL = {0, 1, 2, . . . , L − 1} denote the residues of integer modulo L. Given a
binary sequence s(t) of length L, we define the characteristic set of s(t) by

Is := {t ∈ ZL : s(t) = 1}.

A cyclic shift of a sequence s(t) by τ corresponds to a translation of Is by τ
in ZL. Given any subset A of ZL, we define the sum of A and an element x in
ZL by

A + x := {a + x ∈ ZL : a ∈ A}.

A cyclic shift of s(t) by τ is thus represented by Is + τ . The Hamming cross-
correlation between two binary sequence s1 and s2, with delay offset τ , is equal
to the cardinality of

Is1 ∩ (Is2 + τ).

Consider a collection of subsets S = {I0, I1, . . . , IM−1} of ZL. This specifies a
set of M binary sequences {s0(t), s1(t), . . . , sM−1(t)} by letting the ith subset Ii
in S be the characteristic set of si(t). We say that Ii is cyclically covered by the
other sets in S if we can find some integers τj , for j ∈ {1, 2, . . . , M − 1} \ {i},
such that

Ii ⊆
⋃
j �=i

(Ij + τj)

The sequence si(t) corresponding Ii is then said to be blocked by the other
sequences. If there is a set in S which is cyclically covered by the others, or
equivalently if there is a sequence which is blocked by the other sequences, we
say that S is user-repressible. Otherwise, S is said to be user-irrepressible (UI).
We use UIS(L, M) to denote a collection of M user-irrepressible subsets in ZL.
We will abuse notation and use UIS(L, M) for the corresponding set of binary
sequences as well.

UI sequences are related to another combinatorial structure called cover-free
family [3]. A collection of sets F is called r-cover-free if F0 �⊂ F1 ∪F2 ∪ . . .∪Fr
for all F0, F1, . . . ,Fr ∈ F (Fi �= Fj if i �= j). A collection of M binary sequences
is UI if for all possible choices of delay offsets τi, the translated characteristic
sets Ii + τi, for i = 0, 1, . . . , M − 1, form an (M − 1)-cover-free family.



User-Irrepressible Sequences 91

As a “non-example”, consider the following three sequences of length 7:

s1(t) : 1110000
s2(t) : 1010100
s3(t) : 1001001

The first sequence s1(t) can be blocked by s2(t) and s3(t), because I1 = {0, 1, 2}
is contained in

I2 ∪ (I3 + 1) = {0, 1, 2, 4}.
These three binary sequences are hence not UI.

A sequence set is said to be constant-weight if all sequences have the same
Hamming weight. A constant-weight UI sequence set with Hamming weight w
is denoted by UIS(L, M, w). Several existing constructions of constant-weight UI
sequences are reviewed in the next section. A new construction of non-constant-
weight UI sequences will be described in Section 4.

3 Known Constructions of UI Sequences

Shift-Invariant Sequences (SIS). Shift-invariant sequences are studied in [5] as
an essential ingredient for achieving the capacity of the collision channel without
feedback. This class of protocol sequences has the property that all Hamming
cross-correlation functions of order two or higher are constant. From the con-
struction of SIS, we obtain constant-weight UIS(2M , M, 2M−1) for M ≥ 2. For
example, the following are three constant-weight UI sequences which are shift-
invariant:

s0(t) : 1 0 1 0 1 0 1 0,

s1(t) : 1 1 0 0 1 1 0 0,

s2(t) : 1 1 1 1 0 0 0 0.

However, it is proved in [9] that the period of SIS increases exponentially as
a function of the number of users. Shift-invariant sequences are of practical
interests only when the small number of users is small.

Extended Prime Sequences (EPS). For prime p, a construction of constant-
weight UIS(p(2p−1), p, p) is given in [12]. Let [x mod p] denote the unique integer
between 0 and p − 1 such that

x = qp + [x mod p]

holds for some integer q. For g = 1, 2, . . . , p, the gth extended prime sequence is
defined by setting the characteristic set of the gth sequence to

Ig = {j(2p − 1) + [gj mod p] : j = 0, 1, . . . , p − 1}.

It can be shown that the Hamming cross-correlation between two distinct EPS
is at most one. As the Hamming weight of each sequence is p, this implies that
the extended prime sequences enjoy the UI property.
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CRT Sequences. Given a positive integer M , let p be the smallest prime number
which is larger than or equal to M . A constant-weight UIS(p(2M − 1), M, M)
can be constructed as follows. By Bertrand’s postulate [1, Chapter 2], p can be
chosen between M and 2M −2, and hence p and 2M−1 are relatively prime. We
apply Chinese remainder theorem (CRT) and identify Zp(2M−1) with the direct
sum Zp ⊕ Z2M−1; the bijection ϕ : Zp(2M−1) → Zp ⊕ Z2M−1 is given by

ϕ(x) := (x mod p, x mod 2M − 1).

For g = 1, 2, . . . , p, the gth sequence is defined by setting the corresponding
characteristic set to

Ig = {t ∈ ZL : ϕ(t) = (jg mod p, j), j = 0, 1, . . . , M − 1}.

It is shown in [10] that the Hamming cross-correlation between two distinct CRT
sequences is at most one. This guarantees that the constructed sequences are UI.

4 A New Construction Based on CRT for Prime Number
of Users

We present a variation of the CRT construction in this section. Even though the
two constructions look similar, the proof of user-irrepressibility is very different.
The new sequences are not constant-weight, and are shorter than the extended
prime sequences with the same number of users.

Let p be an odd prime. Since p and 2p−2 are relatively prime, by the Chinese
remainder theorem, there is an isomorphism θ from Zp(2p−2) to Zp⊕Z2p−2, given
by

θ(t) := (t mod p, t mod 2p− 2).

We will henceforth identify Zp(2p−2) with Zp ⊕ Z2p−2. The new class of UI se-
quences is specified by the corresponding characteristic sets in Zp ⊕ Z2p−2. For
g = 0, let

I0 = {(i, 0) : i = 0, 1, . . . , p − 1}, (1)

and for g = 1, . . . , p − 1, let

Ig = {(gj mod p, j) : j = 0, 1, 2, . . . , p}. (2)

This produces p sequences of length p(2p− 2). The first sequence is of weight p,
and the remaining sequences are of weight p+1. We call this construction CRTp,
and distinguish it from the previous CRT construction by subscript “p”.

A cyclic shift of a sequence by τ corresponds to adding θ(τ) to the corre-
sponding characteristic set. We will use the notation

Ig + (a, b) := {(x, y) + (a, b) : (x, y) ∈ Ig},

with the addition carried out in Zp⊕Z2p−2. We note that the sets in (1) and (2)
are arithmetic progressions in Zp ⊕ Z2p−2. For (x, y) ∈ Zp ⊕ Z2p−2 and integers
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k1 ≤ k2, we will use (x, y) · [k1, k2] to represent an arithmetic progression with
common difference (x, y),

{(k1x, k1y), ((k1 + 1)x, (k1 + 1)y), . . . , (k2x, k2y)}.

In this notation, the characteristic sets in (1) and (2) are (1, 0) · [0, p − 1] and
(g, 1) · [0, p].

Lemma 1. For each (a, b) ∈ Zp⊕Z2p−2 and h = 1, 2, . . . , p− 1, (1, 0) · [0, p− 1]
and (h, 1) · [0, p] + (a, b) contains at most one common element.

Proof. If (i, 0) = (hj + a, j + b), for some i = 0, 1, . . . , p − 1 and j = 0, 1, . . . , p,
then by equating the second components, the value of j is uniquely determined by
j = −b mod 2p−2. The value of i is then uniquely determined as well by equating
the first components. This shows that if (1, 0) · [0, p] and (h, 1) · [0, p− 1] + (a, b)
have nonempty intersection, the intersection contains exactly one element. ��

Lemma 2. For each (a, b) ∈ Zp⊕Z2p−2 and distinct g and h in {1, 2, . . . , p−1},
(g, 1) · [0, p] and (h, 1) · [0, p] + (a, b) contains at most two common elements.

Proof. Suppose that there are two or more common elements in (g, 1) · [0, p] and
(h, 1) · [0, p] + (a, b). Let A and B be two of them. We have

A = (gj1, j1) = (hj′1 + a, j′1 + b) (3)
B = (gj2, j2) = (hj′2 + a, j′2 + b) (4)

for some j1, j2, j
′
1, j

′
2 ∈ {0, 1, . . . , p}, j1 �= j2 and j′1 �= j′2.

Let δ := j2 − j1 and δ′ := j′2 − j′1. Both δ and δ′ assume value in the following
range

{−p,−(p− 1), . . . ,−2,−1} ∪ {1, 2, . . . , p − 1, p}. (5)

By interchanging the values of j1 and j2 if necessary, we consider only δ ∈
{1, 2, . . . , p} without loss of generality.

After subtracting (3) from (4) and equating the two components, we obtain
the following system of modular equations

gδ = hδ′ mod p, (6)
δ = δ′ mod 2p − 2. (7)

For δ = 1, 2, . . . , p− 3, (6) and (7) have no common solution. Indeed, the only δ′

in the range of (5) which equals δ mod 2p− 2 is δ′ = δ, and from (6), we obtain
(g − h)δ = 0 mod p, which contradicts the assumption that g �= h.

For δ = p − 2, (6) and (7) also have no common solution. In this case, δ′ is
equal to either p − 2 and −p by (7). The possibility of δ′ = p − 2 is forbidden
because otherwise we would obtain the contradiction g = h from (6). On the
other hand, if δ′ = −p, we get g(p − 2) = 0 mod p from (6), which implies that
g = 0 mod p. Again, we arrive at a contradiction.
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In the following, we consider the two remaining cases: δ = p and δ = p − 1.

(i) Suppose δ = p. The value of δ′ is equal to either p or −(p− 2) by (7). The
latter is not feasible, because after substituting δ = p and δ′ = −(p−2) into (6),
we obtain

0 = −h(p − 2) mod p,

which contradicts the assumption that h is nonzero. Hence, we must have δ′ =
δ = p. Since the range of j1, j2, j′1 and j′2 is {0, 1, . . . , p}, we obtain j1 = j′1 = 0,
and j2 = j′2 = p. By substituting j1 = j′1 = 0 into (3), we thus get a = b = 0.
This solution is tabulated in the first row of Table 1.

(ii) Suppose δ = p − 1. The values of δ′ which satisfy (7) are ±(p − 1). We
cannot have δ′ = p−1, because it implies g = h mod p by (6). The only choice of
δ′ is thus δ′ = −(p− 1). In this case, we have δ = −δ′ and g = −h mod p. Since
δ = p − 1, the corresponding pairs of j1 and j2 are (a) j1 = 0 and j2 = p − 1,
and (b) j1 = 1 and j − 2 = p. Likewise, since δ = −(p − 1), the corresponding
pairs of j′1 and j′2 are (a’) j′1 = p− 1 and j′2 = 0 and (b’) j′1 = p and j′2 = 1. The
four different combinations are summarized in the last four rows of Table 1.

As h is between 1 and p − 1, each pair of (a, b) in the last two columns of
Table 1 are distinct. For fixed values of a and b, if (gj, j) = (hj′ + a, j′ + b)
has two solutions (j1, j′1), (j2, j′2), they must be associated with one of the
rows in Table 1. Therefore, (g, 1) · [0, p] and (h, 1) · [0, p] + (a, b) contain ex-
actly two common elements for precisely five different combinations of a and b
listed in Table 1. This excludes the possibility of having three or more common
elements. ��

Table 1. Solutions to (3) and (4)

j1 j2 j′1 j′2 a mod p b mod 2p − 2
0 p 0 p 0 0
0 p − 1 p − 1 0 h p − 1
0 p − 1 p 1 0 p − 2
1 p p − 1 0 0 p
1 p p 1 −h p − 1

Lemmas 1 and 2 show that the Hamming cross-correlation of two sequences
from the CRTp is either 0, 1 or 2. In fact, if h = −g mod p, the number of
occurrences of 2 as a cross-correlation value is exactly five. For distinct h and
g in {1, 2, . . . , p − 1} such that h �= −g mod p, only the first row in Table 1 is
feasible, and the Hamming cross-correlation equals 2 when and only when the
relative delay offset is zero.

Theorem 1. For prime number p, the sequences from the CRTp construction
form a UIS(2p(p − 1), p).

Proof. Let Ii, i = 0, 1, . . . , p − 1, be the characteristic set from the CRTp con-
struction, and τi be the relative delay offsets.
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Consider the first sequence, which is represented by I0. By Lemma 1, I0 and
Ih + θ(τh) have at most one common elements, for h = 1, 2, . . . , p − 1. Since I0
contains p elements and there are only p− 1 other users, we can find an element
in I0 which is not contained in

⋃p−1
h=1(Ih + θ(τh)). Hence I0 cannot be cyclically

covered no matter how the delay offsets are chosen.
Next, we show that for each g ∈ {1, 2, . . . , p − 1}, Ig cannot be cyclically

covered by the others. Suppose without loss of generality that τg = 0. Let ḡ
denote −g mod p. We have seen in the proof of Lemma 2 that Iḡ is the only one
whose translates can overlap Ig with intersection other than (0, 0) and (0, p).

Let J denote Ig ∩ (Iḡ + (θ(τḡ))). We consider two cases. (i) |J | = 0, 1. Let

A := {h ∈ {0, 1, . . . , p − 1} \ {g} :
∣∣Ig ∩ (Ih + θ(τh))

∣∣ = 2},

and B be {0, 1, . . . , p− 1} \ ({g}∪A ). In other words, A (resp. B) corresponds
to the set of sequences whose Hamming cross-correlation with sg is equal to two
(resp. one). By assumption, we have ḡ ∈ B. For all h ∈ A , we have

Ig ∩ (Ih + θ(τh)) = {(0, 0), (0, p)}.

(the first row in Table 1). Then∣∣∣Ig ∩ ⋃
h �=g

(Ih + θ(τh))
∣∣∣ ≤ ∣∣∣ ⋃

h∈A

(Ig ∩ (Ih + θ(τh)))
∣∣∣+ ∣∣∣ ⋃

h∈B

(Ig ∩ (Ih + θ(τh)))
∣∣∣.

If A is empty, then the first term on the right hand side is zero, and the second
term is no more than p−1. If A is not empty, then the first term is equal to two,
and the second term is no more than p − 2. In any case, the sum on the right
hand side does not exceed p. Since |Ig| = p + 1, we see that Ig is not contained
in
⋃
h �=g(Ih + θ(τh)).

(ii) |J | = 2. In this case, J equals either {(0, 0), ((p−1)g, p−1)}, or {(g, 1), (0, p)}
(the last four rows in Table 1). For h �∈ {g, ḡ}, we claim that

|(Ig \ J ) ∩ (Ih + θ(τh))| ≤ 1. (8)

If |Ig ∩ (Ih + θ(τh))| = 1, then (8) follows immediately. Otherwise, if Ig and
Ih+ θ(τh) have two elements in common, then these two elements are (0, 0) and
(0, p) (the first row in Table 1). Either (0, 0) or (0, p) is in common with J . This
implies

|(Ig \ J ) ∩ (Ih + θ(τh))| = 1

and finishes the proof of the claim. Hence,∣∣∣Ig ∩ ⋃
h �=g

(Ih + θ(τh))
∣∣∣ ≤ |J | +

∣∣∣ ⋃
h �={g,ḡ}

(Ig \ J ) ∩ (Ih + θ(τh))
∣∣∣.

As the second term on the right hand side is no more than p − 2, we see that
the sum is less than or equal to p. Since |Ig| = p + 1, this completes the proof
that Ig cannot be cyclically covered. ��
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Example: Let p = 7. The CRTp construction produces a set of seven UI se-
quences of period 84. The characteristic sets are:

I0 = {0, 12, 24, 36, 48, 60, 72}, I1 = {0, 1, 2, 3, 4, 5, 6, 7},
I2 = {0, 7, 17, 27, 37, 54, 64, 74}, I3 = {0, 7, 18, 29, 40, 51, 62, 73},
I4 = {0, 7, 16, 25, 41, 50, 66, 75}, I5 = {0, 7, 15, 30, 38, 53, 61, 76},
I6 = {0, 7, 13, 26, 39, 52, 65, 78}.

The period of UI sequences obtained by construction CRTp is shorter than
the period from EPS. The shortest known periods of UI sequences, for M =
1, 2, . . . , 12, are shown in Table 2 in the next section.

Remark: We can generalize the construction in (2) by defining

Ig := {(gj mod p, fj mod q) : j = 0, 1, 2, . . . , p}

for some integer f which is relatively prime with q. It can be proved in a similar
way that the resulting sequences are UI. The original construction is a special
case with f = 1.

5 Lower Bound on Period

The property of user-irrepressibility can be interpreted as a two-person game.
Player 1 writes down a set of M binary sequences of length L. Then Player 2 tries
to adjust the delay offsets and block one of the sequences. If Player 2 succeeds
in doing so, the binary sequences are not UI, otherwise, the Player 1 wins and
the binary sequences are UI. In this section, we describe a greedy algorithm for
Player 2, called blocking algorithm, and derive a sufficient condition under which
Player 2 has a sure win, no matter what Player 1 writes down in the first place.
Under this condition, one of the protocol sequence is blocked by the others, and
hence the sequence set cannot be UI. This gives a lower bound on the period of
UI sequences.

Blocking algorithm
Inputs: A set of M binary sequences of length L, s0(t), s1(t), . . . , sM−1(t).
(1) Re-label the sequences so that the Hamming weight of s0(t) is smallest

among the M binary sequences. Set k = 1.
(2) Cyclically shift sk(t) so that the Hamming cross-correlation between s0(t)

and sk(t) is maximal.
(3) Set the 1’s in s0(t) which overlap with the shifted version of sk(t) to zero.
(4) If k < M − 1, increment k by one and go back to step (2).

If all of the 1’s in s0(t) is removed after the termination of the blocking algorithm,
then s0(t) is blocked and Player 2 wins.

Theorem 2. Let s0(t), s1(t), . . . , sM−1(t) be M binary sequences of length L.
Suppose s0 has the smallest Hamming weight, i.e., wH(s0) = w and wH(si) ≥ w
for i = 1, . . . , M − 1. Define an integer sequence (rk(w, L))∞k=0 recursively by
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r0(w, L) := w (9)

rk(w, L) := rk−1(w, L) −
⌈w

L
rk−1(w, L)

⌉
, for k ≥ 1. (10)

If rM−1(w, L) = 0, then s0(t) is blocked by s1(t), s2(t), . . . , sM−1(t).

Proof. We will use the following fact: For two binary sequences a(t) and b(t) of
period L and Hamming weight wH(a) and wH(b), we have

L−1∑
τ=0

Hab(τ) = wH(a)wH(b). (11)

The proof of this fact is straightforward, and can be found in [8].
Let x0(t) be the sequence s0(t). We will recursively define M − 1 sequences

x1(t), x2(t), . . . , xM−1(t), and prove by induction that wH(xk) = rk(w, L), for
k = 1, 2, . . . , M − 1. The sequence xk(t) corresponds to what we get after step
(3) in the blocking algorithm. Note that the Hamming weight of x0(t) is equal
to r0(w, L) = w. Because wH(x0) = w and wH(s1) ≥ w, from (11), we obtain

1
L

L−1∑
τ=0

Hx0s1(τ) =
wH(x0)wH(s1)

L
≥ w2

L
.

The mean Hamming cross-correlation, averaged over all τ , is no less than w2/L.
We pick a delay offset for s1(t), say τ1, so that Hx0s1(τ1) ≥ �w2/L�, and define a
binary sequence x1(t) by removing �w2/L� 1’s from x0(t) which overlap with the
1’s in the shifted version of s1(t). Here we slightly modify the blocking algorithm;
in order to make the analysis more tractable, the number of 1’s we take away
from x0(t) is exactly �w2/L�, instead of the maximal Hamming cross-correlation
between x0(t) and s1(t). After the first step, we have wH(x1) = w − �w2/L� =
r1(w, L).

Given xk−1(t), we recursively define xk(t) in a similar fashion. In the kth step,
we have

1
L

L−1∑
τ=0

Hxk−1sk
(τ) =

wH(xk−1)wH(sk)
L

≥ rk−1(w, L) · w
L

.

We can find a particular cyclic shift of sk(t) so that the Hamming cross-
correlation between xk−1 and sk is at least �wL rk−1(w, L)�. We remove exactly
�wL rk−1(w, L)� 1’s in xk−1 which overlap with the shifted version of sk(t), and
call the resulting sequence xk(t). Again, the total number of overlapping 1’s may
be more than �wL rk−1(w, L)� but we only remove �wL rk−1(w, L)� of them. After
the kth step, we have wH(xk) = rk(w, L).

If rM−1(w, L) is zero, then there is no more 1 in xM−1(t). In this case, s0(t)
is blocked by s1(t), s2(t), . . . , sM−1(t). ��
We apply Theorem 2 several times, once for each w ∈ {1, 2, . . . , L}. If rM−1(w, L)
is zero for all w = 1, 2, . . . , L, then for any M sequences of length L, the blocking
algorithm can always succeed in blocking one of the sequences. We thus have
the following necessary condition for the existence of UI sequences.
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Theorem 3. Let rk(w, L) be defined by (9) and (10). If rM−1(w, L) = 0 for
w = 1, 2, . . . , L, and L ≤ L0, then UIS(L0, M) does not exist, i.e., Lmin(M) is
strictly larger than L0.

As an example, we consider the case when M = 3. We tabulate r2(w, L) in the
following table.

L r2(1, L) r2(2, L) r2(3, L) r2(4, L) r2(5, L) r2(6, L) r2(7, L) r2(8, L)
1 0
2 0 0
3 0 0 0
...

...
...

...
7 0 0 0 0 0 0 0
8 0 0 0 1 0 0 0 0

The value of r2(w, L) is zero for all w when L is less than or equal to 7. The first
non-zero entry occurs when L = 8 and w = 4, and r2(4, 8) is equal to one. By
Theorem 3, we conclude that Lmin(3) ≥ 8. In fact, a set of three UI sequences
of length eight exists and is exhibited in Section 3. Therefore, Lmin(3) = 8.
Furthermore, since r2(w, 8) is positive only when w = 4, the smallest Hamming
weight in an UIS(8, 3) must be equal to four. The protocol sequences in the
example in Section 3 indeed have Hamming weight equal to four.

We investigate the integer sequence (rk(w, L))∞k=0 defined in (9) and (10) in
more details. We observe that for any fixed w and L, the value of rk(w, L)
is monotonically decreasing as k increases, and stabilizes at 0 eventually. For
instance, if w ≤

√
L, then �wrk(w, L)/L� = 1 for k = 0, 1, . . . , w−1. The integer

sequence (rk(w, L))∞k=0 in this case is

w, w − 1, w − 2, . . . , 3, 2, 1, 0, 0, . . . .

Suppose that w is in the range
√

L < w ≤
√

2L. The decrease of Hamming
weight after a step in the blocking algorithm is equal to two whenever

rk−1(w, L) − rk(w, L) =
⌈w

L
rk−1(w, L)

⌉
= 2.

This happens when 1 < (w/L) · rk−1(w, L) ≤ 2. The integer sequence (rk(w,
L))∞k=0 for

√
L < w ≤

√
2L is

w, w − 2, . . . , n1 + 2︸ ︷︷ ︸
n2

, n1, n1 − 1, . . . , 1︸ ︷︷ ︸
n1

, 0, . . . ,

where n1 and n2 denote the number of terms with a step size of −1 and −2
respectively. We note that n1 + 2n2 = w.

In general, we have the following

Theorem 4. Let w ≤ L be fixed integers, and α be �w2/L�. Then

rM−1(w, L) > 0 implies M ≤ w

α
+

L

w

α∑
i=2

1
i
.
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Proof. In this proof, we simplify notation and write rk instead of rk(w, L). For
i = 1, 2, . . . , α, let ni be number of integers rk in (rk)∞k=0 such that rk−rk+1 = i.
The integers n1, n2, . . . , nα satisfy the relation

n1 + 2n2 + 3n3 + . . . + αnα = w. (12)

Now, consider the terms rk in (rk)∞k=0 which satisfy rk − rk+1 = i, i.e.,

rk − rk+1 = �wrk/L� = i.

We obtain from the last equality that wrk/L > i − 1. Therefore, the rk’s which
satisfy rk − rk+1 = i must lie in the range

(i − 1)
L

w
< rk ≤ w −

α∑
j=i+1

jnj . (13)

Furthermore, if rki is the smallest rk in (rk)∞j=0 such that rki − rki+1 = i, then
rki−1 ≤ (i − 1)L/w < rki .

The range in (13) may be empty, in which case there is no rk which satisfies
rk − rk+1 = i and ni = 0. If it is not empty, then

ni ≥
1
i

((
w −

α∑
j=i+1

jnj
)
− (i − 1)

L

w

)
,

since the difference between two adjacent rk’s in this range is precisely i. We
simplify the above inequality to

(i − 1)
L

w
+

α∑
j=i

jnj ≥ w. (14)

Inequality (14) is valid for i = 1, 2, . . . , α, and reduces to (12) when i = 1.
For i = 2, 3, . . . , α, divide both sides of (14) by i(i− 1), and add the resulting

inequalities,
α∑
i=2

L

iw
+

α∑
i=2

α∑
j=i

jnj
i(i − 1)

≥
α∑
i=2

w

i(i − 1)
. (15)

After exchanging the order of the double summation, we can rewrite (15) as
α∑
i=2

L

iw
+

α∑
j=2

nj(j − 1) ≥ w
(
1 − 1

α

)
w −

α∑
j=2

nj(j − 1) ≤ w

α
+

L

w

α∑
i=2

1
i
.

We replace w on the left hand side by
∑α
j=1 jnj , and obtain

α∑
j=1

nj ≤
w

α
+

L

w

α∑
i=2

1
i
. (16)

The theorem follows by noting that M ≤
∑α

j=1 nj . ��
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For positive integer n, let the nth harmonic number be denoted by Hn :=∑n
i=1 1/i, and let F : R+ → R+ be a function defined as

F (x) :=
x

k
+

Hk − 1
x

for
√

k − 1 < x ≤
√

k, k = 1, 2, 3, . . . .

Although F (x) is defined in a piece-wise manner, it can be shown that F (x) is
a continuous function, i.e., it is continuous at x =

√
k for k = 1, 2, 3, . . .

In terms of F (x), Theorem 4 can be re-phrased as

rM−1(w, L) > 0 implies M ≤
√

LF (w/
√

L).

Indeed, as α − 1 < w2/L ≤ α, the right hand side of (16) can be written as

√
L
( w√

Lα
+

√
L

w

α∑
i=2

1
i

)
=

√
L
( w√

Lα
+

√
L

w
(Hα − 1)

)
=

√
L · F (w/

√
L).

One can show by calculus that the function F (x) attains global maximum at
x =

√
2, with maximal value F (

√
2) = 3/

√
8. If a UIS(L, M) exists, then from

Theorem 2 we know that rM−1(w, L) is positive for some w, and from Theorem 4,
we have M ≤

√
LF (w/

√
L) ≤

√
L(3/

√
8). We have thus proved the following

Theorem 5. Lmin(M) ≥ �8M2/9�.

Theorem 5 improves upon the previous lower bound 1 + M(M − 1)/2 from [10].
The calculations as described in Theorem 3 have been automated by a com-

puter program, and the resulting lower bounds on the period of UI sequences
for M = 2, 3, . . . , 13 are tabulated in the third column in Table 2. The value of
�8M2/9� is shown in the second column. We can observe that the lower bounds
obtained by Theorem 3 coincide with those by Theorem 5 very often. In fact,
one can show by a more detailed analysis that the two lower bounds yield the
same value when M is a multiple of 3. In the last column in Table 2, we list
the shortest known period of UI sequences. The known periods in the first five
entries come from the class of shift-invariant sequences. For seven or more users,
CRT and CRTp give the shortest known period.

Table 2. Lower bound on the minimum period of user-irrepressible sequences and peri-
ods of known user-irrepressible sequences. (It can be proved that there is no UIS(15, 4)
by a separate argument and thus Lmin(4) = 16).

M �8M2/9� Lmin(M) Known period
2 4 4 4 (SIS)
3 8 8 8 (SIS)
4 15 ≥ 15 16 (SIS)
5 23 ≥ 24 32 (SIS)
6 32 ≥ 32 64 (SIS)
7 44 ≥ 44 84 (CRTp)

M �8M2/9� Lmin(M) Known period
8 57 ≥ 60 165 (CRT)
9 72 ≥ 72 187 (CRT)
10 89 ≥ 90 209 (CRT)
11 108 ≥ 108 220 (CRTp)
12 128 ≥ 128 299 (CRT)
13 151 ≥ 152 312 (CRTp)
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6 Conclusion

A new construction of UI sequences when the number of users is a prime integer
is devised. The sequence length of the new construction increases asymptotically
like 2M2. Also, a lower bound of 8M2/9 is proved in this paper. Closing the gap
between the upper and lower bound for Lmin(M) is an interesting direction for
future work.
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Abstract. Let W, L, and Q denote the sets {w0, w1, . . . , wp}, {λ0
a,

λ1
a, . . . , λp

a} and {q0, q1, . . . , qp}, respectively. An (n, W, L, λc, Q) variable-
weight optical orthogonal code C, or (n, W, L, λc, Q)-OOC, is a collec-
tion of binary n-tuples such that for each 0 ≤ i ≤ p, there are exactly
qi|C| codewords of weight wi, L is related to periodic auto-correlation,
and λc is related to periodic cross-correlation. The notation (n, W, λ, Q)-
OOC is used to denote an (n, W, L, λc, Q)-OOC with the property that
λ0

a = λ1
a = . . . = λp

a = λc = λ. An (n, W,L, λc, Q)-OOCs was introduced
by Yang for multimedia optical CDMA systems with multiple quality
of service (QoS) requirements. A cyclic (v, K, 1) difference family (cyclic
(v, K, λ)-DF in short) is a family F = {B1, B2, . . . , Bt} of t subsets of Zv,
the residue ring of integers modulo v, K = {|Bi| : 1 ≤ i ≤ t}, such that
the differences in F , ΔF =

⋃
B∈F ΔB cover each nonzero element of Zv

exactly λ times, where for each B ∈ F , ΔB = {x − y : x, y ∈ B, x �= y},
and |dev Bi| = v, 1 ≤ i ≤ t, dev Bi = {Bi + g : g ∈ Zv}. A cyclic
(v, W, 1, Q)-DF is defined to be a cyclic (v, W, 1)-DF with the property
that the fraction of number of blocks of size wi is qi, 0 ≤ i ≤ p. In
this paper, constructions for cyclic (v, {4, 6, 7}, 1, {1/3, 1/3, 1/3})-DFs for
primes v ≡ 1 (mod 84), (v, {4, u}, 1, {1/2, 1/2})-DFs for primes v ≡ 1
(mod u(u− 1) + 12), u ≡ 0, 1 (mod 3) > 4 are presented. New optimal
(v, W, 1, Q)-OOCs for 2 ≤ |W | ≤ 4 are then obtained.

Keywords: cyclic difference family, difference family, optical orthogonal
code, variable-weight OOC.

1 Introduction

Optical orthogonal codes (OOCs) were introduced by Salehi, as signature se-
quences to facilitate multiple access in optical fibre networks [1,2]. OOCs have
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been found in a wide range of applications such as mobile radio, frequency-
hopping spread-spectrum communications, radar, sonar, collision channel with-
out feedback and neuromorphic network [3,7].

Most existing works on OOC’s have assumed that all codewords have the same
weight, see [8,23] for the examples. In general, the code size of OOCs depends
upon the weights of codewords. The variable-weight OOCs can generate larger
code size than that of constant-weight OOCs [24]. In 1996, Yang introduced
a multimedia optical CDMA communication system employing variable-weight
OOCs [25]. The multi-weight property of the OOCs enables the system to meet
multiple QoS (Quality of Services) requirements. Variable-weight OOCs have
attracted much attention recently [24,27].

Based on the notation of [25], throughout this paper, let W, L, and Q denote
the sets {w0, w1, . . . , wp}, {λ0

a, λ
1
a, . . . , λ

p
a} and {q0, q1, . . . , qp}, respectively as

defined below.
An (n, W, L, λc, Q) variable-weight optical orthogonal code C, or (n, W, L, λc,

Q)-OOC, is a collection of binary n-tuples such that the following three proper-
ties hold:

– Weight Distribution: Every n-tuple in C has a Hamming weight contained in
the set W ; furthermore, there are exactly qi|C| codewords of weight wi, i.e.,

qi indicates the fraction of codewords of weight wi. It is clear that
p∑
i=0

qi = 1.

– Periodic Auto-correlation: For any x = (x0, x1, . . . , xn−1) ∈ C with Ham-
ming weight wi ∈ W , and any integer τ, 0 < τ < n,

n−1∑
t=0

xtxt⊕τ ≤ λia,

where the summation is carried out by treating binary symbols as reals.
– Periodic Cross-correlation: Similarly, for x �= y, x = (x0, x1, . . . , xn−1) ∈ C,

y = (y0, y1, . . . , yn−1) ∈ C, and any integer τ ,

n−1∑
t=0

xtyt⊕τ ≤ λc.

In [27], the notation (n, W, λ, Q)- OOC is used to denote an (n, W, L, λc, Q)-OOC
with the property that λ0

a = λ1
a = . . . = λpa = λc = λ. The term variable-weight

optical orthogonal code, or variable-weight OOC, is also used if there is no need
to list the parameters.

For each qi ∈ Q, without loss of generality, write qi = bi/ai, where ai, bi are
integers and gcd(ai, bi) = 1, 0 ≤ i ≤ p. Let f(Q) be the least common multiple

of a0, a1, . . . , ap, fi(Q) = f(Q)qi, then qi = fi(Q)/f(Q), and
p∑
i=0

fi(Q) = f(Q).

It is clear that fi(Q), 0 ≤ i ≤ p, and w are integers. In the sequel, we use the

notation w =
p∑
i=0

fi(Q)wi(wi − 1). We will also use the notation ai, bi, fi(Q),

0 ≤ i ≤ p, and f(Q) as defined above.
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The work of Yang [25] contains lower and upper bounds on the size of variable-
weight OOCs to judge the goodness of the constructions. Here we provide only
an upper bound on the size of variable-weight OOCs given in [25].

Lemma 1. Let λia ≥ λ, 0 ≤ i ≤ p. Then

Φ(v, W, L, λ, Q) ≤

⎢⎢⎢⎣ (v−1)(v−2)···(v−λ)
p∑

i=0
qiwi(wi−1)(wi−2)···(wi−λ)/(λi

a)

⎥⎥⎥⎦ ,

where Φ(v, W, L, λ, Q)=max{|C| : C is a (v, W, L, λ, Q)-OOC}.

A (v, W, L, λ, Q)-OOC with cardinality Φ(v, W, L, λ, Q) is said to be optimal.
Let Φ(v, W, λ, Q)=max{|C| : C is a (v, W, λ, Q)-OOC}, the following result

is clear from Lemma 1.

Lemma 2. Φ(v, W, λ, Q) ≤

⎢⎢⎢⎣ λ(v−1)(v−2)···(v−λ)
p∑

i=0
qiwi(wi−1)(wi−2)···(wi−λ)

⎥⎥⎥⎦ .

Optimal optical orthogonal codes are closely related to some combinatorial con-
figurations. For example, Yin [23] showed that an optimal (v, k, 1)-OOC, i. e.
optical orthogonal codes with length v, and constant weight k for each code-
word, is equivalent to an optimal cyclic packing CP(k, 1; v). In this paper, we
will use cyclic difference families to construct optimal variable-weight OOCs.

A (v, K, λ) pairwise balanced design (PBD) is a pair (V,B), where V is a v-set
whose elements are called points and B is a family of subsets of V (blocks) with
sizes from K such that any 2-subset of V is contained in exactly λ blocks. A
(v, K, λ)-PBD where K = {k} is a singleton is a balanced block design and is
denoted by (v, k, λ)-BIBD.

Suppose that B = {b1, b2, . . . , bk} is a subset of Zv, the residue ring of integers
modulo v, define ΔB = {x−y : x, y ∈ B, x �= y}, dev B = {B+i : i ∈ Zv}, where
B + i = {b1+ i, b2 + i, . . . , bk+ i} ⊆ Zv. A cyclic (v, K, 1) difference family (cyclic
(v, K, λ)-DF in short) is a family F = {B1, B2, . . . , Bt} of t subsets (base blocks)
of Zv, K = {|Bi| : 1 ≤ i ≤ t}, such that the differences in F , ΔF =

⋃
B∈F ΔB

cover each nonzero element of Zv exactly λ times, and |dev Bi| = v, 1 ≤ i ≤ t.
If K = {k}, we will omit the braces. A cyclic (v, W, 1, Q)-DF is defined to be
a cyclic (v, W, 1)-DF with the property that the fraction of number of blocks of
size wi is qi, 0 ≤ i ≤ p.

A number of constant-weight OOCs had been constructed from (v, k, 1)-DFs.
There are some results on the existence of cyclic (v, K, 1)-DFs for K = {3, 4}
and {3, 6} (see [28,30]).

Given a cyclic (v, W, 1, Q)-DF, one can construct a (0, 1)-sequence of length
v, and weight wi from a base block of size wi whose nonzero bit positions are
exactly indexed by the base block. The following result was stated in [27].

Lemma 3. If there exists a cyclic (v, W, 1, Q)-DF, then there exists an optimal
(v, W, 1, Q)-OOC.
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For a cyclic (v, W, 1, Q)-DF, F , suppose that |F| = s, then the number of blocks
of size wi is sbi/ai. Since gcd(ai, bi) = 1, then ai|s, 0 ≤ i ≤ p, and hence f(Q)|s.

Lemma 4. A necessary condition for the existence of a cyclic (v, W, 1, Q)-DF

is v ≡ 1 (mod w), where w =
p∑
i=0

fi(Q)wi(wi − 1).

Proof. Suppose F is a cyclic (v, W, 1, Q)-DF, and |F| = s, then

v − 1 =
p∑
i=0

sf(Qi)
f(Q)

wi(wi − 1) = w
s

f(Q)
.

Since f(Q)|s, then the conclusion is true. ��

In [25], Yang gave an upper and lower bounds on the size of variable-weight
OOCs. Some constructions for variable-weight OOCs were presented, some of
them are optimal. In [24], Gu and Wu had constructed variable-weight OOCs by
using pairwise balanced designs (PBDs) and packing designs with a partition. In
[27], some optimal (v, W, 1, Q)-OOCs were obtained. To the authors knowledge,
little is known for the existences of optimal (v, W, 1, Q)-OOCs for W = {4, 6},
{4, 7}, {3, 4, 6}, {3, 4, 7} and {3, 4, 6, 7}.

In this paper, the following results are obtained.

Theorem 1. For each prime v = 42t + 1 ≤ 5000, and v > 43, there exists
a cyclic (v, {4, 6}, 1, {1/2, 1/2})-DF. There does not exist a cyclic (43, {4, 6}, 1,
{1/2, 1/2})-DF.

Theorem 2. For each prime v = 54t + 1 ≤ 5000, and v > 55, there exists a
cyclic (v, {4, 7}, 1, {1/2, 1/2})-DF.

Theorem 3. For each prime v = 84t + 1 ≤ 5000, and v > 85, there exists a
cyclic (v, {4, 6, 7}, 1, {1/3, 1/3, 1/3})-DF.

By using these cyclic difference families, new optimal (v, W, 1, Q)-OOCs for 2 ≤
|W | ≤ 4 are obtained in the last section.

The following are some notations that will be used in this paper. Fix a prime
q ≡ 1 (mod n) and a primitive element θ ∈ GF (q), Hn will denote the multi-
plicative subgroup {θin : 0 ≤ i ≤ q−1

n −1} of the nth powers modulo q, while Cn
j

denote the coset of Hn in GF(q)∗(= H1) represented by θj , i. e., Cn
j = θjCn

0 ,
0 ≤ j ≤ n−1. A set of distinct representatives of cosets of Cn

0 (= Hn) is denoted
by an SDRC.

For given sets A, B defined on GF(q), set A ◦ B = {ab|a ∈ A, b ∈ B}.

2 Cyclic (v, {4, u}, 1, {1/2, 1/2})-DFs for u ≡ 0 (mod 3)

Theorem 4. Let u = 3k ≥ 6 be a fixed positive integer, v = (u(u− 1)+12)t+1
a prime, e = k(3k−1)

2 + 2, θ a primitive element of GF(v), ξ a primitive 3rd root
of unity in GF(v). Let c0 = 1. If there exist elements ci, 1 ≤ i ≤ k, such that
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S = {ci(ξ − 1) : 0 ≤ i ≤ k}
⋃
{ch − cl, ch − clξ, ch − clξ

2 : 0 ≤ l < h ≤
k − 1}

⋃
{ck}

forms an SDRC of He, then there exists a cyclic (v, {4, u}, 1, {1/2, 1/2})-DF.

Proof. Let A1 = {1, ξ, ξ2, c1, c1ξ, c1ξ
2, . . . , ck−1, ck−1ξ, ck−1ξ

2},
A2 = {0, ck, ckξ, ckξ

2}.
Since ξ is a primitive 3rd root of unity in GF(v), then ξ2 − 1 = ξ2 − ξ3 =

−ξ2(ξ − 1). It is not difficult to see that ΔA1
⋃

ΔA2 = (S
⋃

(−S)) ◦ {1, ξ, ξ2}.
Let F = {Aiθ

ej : 1 ≤ j ≤ t, i = 1, 2}. If the conditions are satisfied, then
it is not difficult to check that ΔF = GF (v)∗, and hence F forms a cyclic
(v, {4, u}, 1, {1/2, 1/2})-DF. This completes the proof. ��

Remark 1. The similar method was used to construct (v, k, 1)-DFs for k ∈
{6, 7, 9}, and (v, 9, 2)-DFs (see [31]).
Applying Theorem 4 with k = 2, one can obtain the following result.

Corollary 1. Let v = 42t+1 be a prime, e = 7, θ a primitive element of GF(v),
ξ a primitive 3rd root of unity in GF(v). Let c0 = 1. If there exist elements ci,
1 ≤ i ≤ 2, such that

S = {ci(ξ − 1) : 0 ≤ i ≤ 2}
⋃
{c1 − 1, c1 − ξ, c1 − ξ2}

⋃
{c2}

forms an SDRC of H7, then there exists a cyclic (v, {4, 6}, 1, {1/2, 1/2})-DF.

Example 1. A cyclic (337, {4, 6}, 1, {1/2, 1/2})-DF. Let v = 337, θ = 10 a
primitive element of GF(337), then ξ = θ112 = 128, ξ2 = 208. Let c1 = 33, c2 =
15, then c1, c2 satisfying the condition in Corollary 1,

A1 = {1, 128, 208, c1, 128c1, 208c1} = {1, 128, 208, 33, 180, 124},
A2 = {0, c2, 128c2, 208c2} = {0, 15, 235, 87}

F337 = {θ7jAi : i = 1, 2, 1 ≤ j ≤ 8}
= {{199, 197, 278, 164, 98, 75}, {172, 111, 54, 284, 293, 97}, {0, 250, 322, 102}
{191, 184, 299, 237, 6, 94}, {265, 220, 189, 320, 183, 171}, {0, 301, 110, 163},
{163, 307, 204, 324, 21, 329}, {85, 96, 156, 109, 135, 93}, {0, 264, 92, 318},
{65, 232, 40, 123, 242, 309}, {129, 336, 209, 213, 304, 157}, {0, 289, 259, 126}
{0, 221, 317, 136}, {0, 169, 64, 104}, {0, 268, 267, 139}, {0, 86, 224, 27}}.

It is not difficult to check that F337 forms a cyclic (337, {4, 6}, 1, {1/2, 1/2})-DF.
Let R = {r : r ≡ 1 (mod 42) is a prime, 43 ≤ r ≤ 5000}, R1 = {43, 127, 211,

757, 883, 1597}. The following result is obtained.

Lemma 5. For each v ∈ R \ R1, there exists a cyclic (v, {4, 6}, 1, {1/2, 1/2})-
DF.

Proof. For each v ∈ R \ R1, with the aid of a computer, one can find elements
c1, c2 satisfying the conditions in Corollary 1. We list (v, θ, c1, c2) in Appendix
A. This completes the proof. ��

The following result was stated in [28].

Lemma 6. Let k1, k2, . . . , kr be positive integers such that λ(q−1) ≡ 0 mod m,

where m = (1/2λ)
r∑

h=1
kh(kh − 1) is also an integer. Let q ≡ 1 (mod m) be an
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odd prime power, θ a primitive element of GF(q) and Ah = {ah,1, ah,2, . . . , ah,kh
}

be a kh-subset of GF(q), h = 1, . . . , r. Let

F = (Ahθ
mi|1 ≤ h ≤ r, 0 ≤ i ≤ q − 1

2m
).

If the list L = (ah,j − ah,i|1 ≤ h ≤ r, 1 ≤ i < j ≤ kh) is evenly distributed over
Hm, then, F is a (q, K, λ, {1/r, 1/r, . . . , 1/r})-DF, where K = {k1, k2, . . . , kr}.

Applying Lemma 6 with q = v, h = 2, k1 = u, k2 = 4, m = u(u−1)
2 + 6, we have

λ = 1, the following result is obtained.

Lemma 7. Suppose v = (u(u−1)+12)t+1 is a prime, u ≡ 0, 1 (mod 3) ≥ 6
is an integer, m = u(u−1)

2 + 6, θ is a primitive element of GF(q). Let
A

(1)
v = {x1, x2, . . . , xu}, A

(2)
v = {y1, y2, y3, y4}.

If {xj − xi : 1 ≤ i < j ≤ u}
⋃
{yj − yi : 1 ≤ i < j ≤ 4} forms an SDRC of Hm,

then there exists a cyclic (v, {4, u}, 1, {1/2, 1/2})-DF.

Remark 2. To use Lemma 7 construct (v, {4, u}, 1, {1/2, 1/2})-DFs for u ≡ 0
(mod 3), one may assume x1 = 0, x2 = 1. In this case, one needs to find u + 2
elements, and compute d = u(u−1)

2 + 6 differences. However, when Theorem 4
is used, one needs only to find u/3 elements, and compute d/3 differences. The
case of u ≡ 1 (mod 3) is similar. This fact shows the powerful of Theorem 4.

Lemma 8. For each v ∈ R1\{43}, there exists a cyclic (v, {4, 6}, 1, {1/2, 1/2})-
DF.

Proof. For each v ∈ R1 \ {43}, with the aid of a computer, A
(i)
v , i = 1, 2 had

been found, we list A
(i)
v , θ, i = 1, 2 as follows. This completes the proof.

A
(1)
127 = {0, 1, 3, 8, 29, 45}, A

(2)
127 = {0, 4, 35, 58}, θ = 3,

A
(1)
211 = {0, 1, 4, 11, 35, 109}, A

(2)
211 = {0, 8, 30, 129}, θ = 2,

A
(1)
757 = {0, 1, 5, 11, 25, 125}, A

(2)
757 = {0, 16, 102, 221}, θ = 2,

A
(1)
883 = {0, 1, 3, 7, 18, 139}, A

(2)
883 = {0, 13, 101, 264}, θ = 2,

A
(1)
1597 = {0, 1, 5, 11, 24, 156}, A

(2)
1597 = {0, 14, 70, 748}, θ = 11. ��

We are now in a position to prove Theorem 1.

Proof of Theorem 1. For q �= 43, the result comes from Lemma 5 and Lemma
8. For q = 43, by exhausted computer searching, there does not exist a cyclic
(43, {4, 6}, 1, {1/2, 1/2})-DF. This completes the proof. ��

3 Cyclic (v, {4, u}, 1, {1/2, 1/2})-DFs for u ≡ 1 (mod 3)

Theorem 5. Let u = 3k+1 ≥ 7 be a fixed positive integer, v = (u(u−1)+12)t+1
a prime, e = k(3k+1)

2 + 2, θ a primitive element of GF(v), ξ a primitive 3rd root
of unity in GF(v). Let c0 = 1. If there exist elements ci, 1 ≤ i ≤ k, such that

S = {ci(ξ − 1) : 0 ≤ i ≤ k}
⋃
{ch − cl, ch − clξ, ch − clξ

2 : 0 ≤ l < h ≤
k − 1}

⋃
{ci : 0 ≤ i ≤ k}

forms an SDRC of He, then there exists a cyclic (v, {4, u}, 1, {1/2, 1/2})-DF.
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Proof. Let A1 = {0, 1, ξ, ξ2, c1, c1ξ, c1ξ
2, . . . , ck−1, ck−1ξ, ck−1ξ

2},
A2 = {0, ck, ckξ, ckξ

2}.
Since ξ is a primitive 3rd root of unity in GF(v), then ξ2 − 1 = ξ2 − ξ3 =

−ξ2(ξ − 1). It is not difficult to see that ΔA1
⋃

ΔA2 = (S
⋃

(−S)) ◦ {1, ξ, ξ2}.
Let F = {Aiθ

ej : 1 ≤ j ≤ t, i = 1, 2}. If the conditions are satisfied, then
it is not difficult to check that ΔF = GF (v)∗, and hence F forms a cyclic
(v, {4, u}, 1, {1/2, 1/2})-DF. This completes the proof. ��

Applying Theorem 5 with k = 2, one can obtain the following result.

Corollary 2. Let v = 54t+1 be a prime, e = 9, θ a primitive element of GF(v),
and ξ a primitive 3rd root of unity in GF(v). Let c0 = 1. If there exist elements
ci, 1 ≤ i ≤ 2, such that

S = {ci(ξ − 1) : 0 ≤ i ≤ 2}
⋃
{c1 − 1, c1 − ξ, c1 − ξ2}

⋃
{c0, c1, c2} forms an

SDRC of H9, then there exists a cyclic (v, {4, 7}, 1, {1/2, 1/2})-DF.

Example 2. A cyclic (163, {4, 7}, 1, {1/2, 1/2})-DF. Let v = 163, θ = 2 be a
primitive element of GF(163), then ξ = θ54 = 104, ξ2 = 58. Let c1 = 67, c2 = 3,
then c1, c2 satisfying the condition in Corollary 2,

A1 = {0, 1, 104, 58, c1, 104c1, 58c1} = {0, 1, 104, 58, 67, 122, 137},
A2 = {0, c2, 104c2, 58c2} = {0, 3, 149, 11},

F163 = {θ9jAi : i = 1, 2, 1 ≤ j ≤ 3}
= {{0, 23, 110, 30, 74, 35, 54}, {0, 40, 85, 38, 72, 153, 101}, {0, 69, 4, 90},

{0, 105, 162, 59, 26, 96, 41}, {0, 120, 92, 114}, {0, 152, 160, 14}}.
It is not difficult to check that F163 forms a cyclic (163, {4, 7}, 1, {1/2, 1/2})-DF.

Let T = {v : v ≡ 1 (mod 54) is a prime, 55 < v ≤ 5000}, T1 = {109, 271,
1621, 2269, 3079, 3187}. The following result is obtained.

Lemma 9. For each v ∈ T \T1, there exists a cyclic (v, {4, 7}, 1, {1/2, 1/2})-DF.

Proof. For each v ∈ T \ T1, with the aid of a computer, one can find elements
c1, c2 satisfying conditions in Corollary 2. We list (v, θ, c1, c2) in Appendix B.
This completes the proof. ��

Lemma 10. For each v ∈ T1, there exists a cyclic (v, {4, 7}, 1, {1/2, 1/2})-DF.

Proof. For each v ∈ T1, with the aid of a computer, A
(i)
v , i = 1, 2 in Lemma 7

had been found, we list A
(i)
v , θ, i = 1, 2 as follows. This completes the proof.

A
(1)
109 = {0, 1, 4, 9, 16, 36, 58}, A

(2)
109 = {0, 2, 26, 47}, θ = 6,

A
(1)
271 = {0, 1, 3, 7, 24, 50, 180}, A

(2)
271 = {0, 9, 76, 202}, θ = 6,

A
(1)
1621 = {0, 1, 3, 8, 21, 46, 984}, A

(2)
1621 = {0, 6, 221391}, θ = 2,

A
(1)
2269 = {0, 1, 5, 11, 25, 105, 552}, A

(2)
2269 = {0, 16, 145, 1844}, θ = 2,

A
(1)
3079 = {0, 1, 5, 19, 40, 69, 295}, A

(2)
3079 = {0, 8, 202, 707}, θ = 6,

A
(1)
3187 = {0, 1, 5, 11, 25, 64, 1140}, A

(2)
3187 = {0, 22, 288, 2302}, θ = 2. ��

We are now in a position to prove Theorems 2.

Proof of Theorem 2. The result comes from Lemmas 9-10. ��
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4 Cyclic (v, {4, 6, 7}, 1, {1/3, 1/3, 1/3})-DFs

Theorem 6. Let v = 84t+1 be a prime, e = 14, θ a primitive element of GF(v),
ξ a primitive 3rd root of unity in GF(v). Let c0 = 1. If there exist elements ci,
1 ≤ i ≤ 4, such that

S = {ci(ξ − 1) : 0 ≤ i ≤ 4}
⋃
{ch − cl, ch − clξ, ch − clξ

2 : 0 ≤ l < h ≤
3}
⋃
{c0, c1, c4}

forms an SDRC of He, then there exists a cyclic (v, {4, 6, 7}, 1, {1/3, 1/3, 1/3})-
DF.

Proof. Let A1 = {0, 1, ξ, ξ2, c1, c1ξ, c1ξ
2}, A2 = {c2, c2ξ, c2ξ

2, c3, c3ξ, c3ξ
2},

A3 = {0, c4, c4ξ, c4ξ
2}.

Since ξ is a primitive 3rd root of unity in GF(v), then ξ2 − 1 = ξ2 − ξ3 =

−ξ2(ξ − 1). It is not difficult to see that
3⋃
i=1

ΔAi = (S
⋃

(−S)) ◦ {1, ξ, ξ2}.

Let F = {Aiθ
ej : 1 ≤ j ≤ t, 1 ≤ i ≤ 3}. If the conditions are satisfied,

then it is not difficult to check that ΔF = GF (v)∗, and hence F forms a cyclic
(v, {4, 6, 7}, 1, {1/3, 1/3, 1/3})-DF. This completes the proof. ��

We are now in a position to prove Theorem 3.

Proof of Theorem 3. For each prime v ≡ 1 (mod 84) ≤ 5000 and v > 85,
with the aid of a computer, elements c1, . . . , c4 satisfying conditions in Theorem
6 had been found. We list (v, θ, c1, c2, c3, c4) in Appendix C. This completes the
proof. ��

5 New Optimal Variable OOCs

In [24], Gu and Wu had used Singer difference sets and PBDs to construct DFs.
Given a cyclic (v, K, 1)-DF, breaking up some of the base blocks of size k ∈ K
by a (k, H, 1)-PBD, one can obtain the following result, which is a generalization
of Gu and Wu in [24].

Lemma 11. Suppose there exists a cyclic (v, K, 1)-DF. For k ∈ K, if there
exists a (k, H, 1)-PBD, then there exists a cyclic (v, K

⋃
H, 1)-DF.

Remark 3. Breaking up all base blocks of size k ∈ K by a (k, H, 1)-PBD,
one can obtain a cyclic (v, (K \ {k})

⋃
H, 1)-DF. One can also breaking up base

blocks of distinct block sizes to obtain cyclic difference families.
Let G = Z7, B = {{0, 1, 3}, {1, 2, 4}, {2, 3, 5}, {3, 4, 6}, {4, 5, 0}, {5, 6, 1}, {6,

0, 2}}. It is well known that (G,B) is a (7, 3, 1)-BIBD.
For prime v = 54t + 1 ≤ 5000 and v > 55, the cyclic difference family in

Theorem 2 has t blocks of size 4 and 7 each. For 1 ≤ s ≤ t, breaking up s blocks
of size 7 by a (7, 3, 1)-BIBD, one can obtain the following result.

Lemma 12. For prime v = 54t + 1 ≤ 5000 and v > 55, there exists a cyclic
(v, {3, 4}, 1, {7/8, 1/8})-DF. For each 1 ≤ s < t, there exists a cyclic (v, {3, 4, 7},
1, { 7s

2t+6s ,
t

2t+6s ,
t−s

2t+6s})-DF.
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For prime v = 84t+1 ≤ 5000 and v > 85, the cyclic difference family in Theorem
6 has t blocks of size 4, 6 and 7 each. For 1 ≤ s ≤ t, breaking up s blocks of size
7 by a (7, 3, 1)-BIBD, one can obtain the following result.

Lemma 13. For prime v = 84t + 1 ≤ 5000 and v > 85, there exists a cyclic
(v, {3, 4, 6}, 1, {7/9, 1/9, 1/9})-DF. For each 1 ≤ s < t, there exists a cyclic
(v, {3, 4, 6, 7}, 1, { 7s

3t+6s ,
t

3t+6s ,
t

3t+6s ,
t−s

3t+6s})-DF.

From Theorems 1-3, Lemmas 12-13 and Lemma 3, the following results are
obtained.

Theorem 7. For each prime v = 42t + 1 ≤ 5000 and v > 43, there ex-
ists an optimal (v, {4, 6}, 1, {1/2, 1/2})-OOC. There does not exist an optimal
(43, {4, 6}, 1, {1/2, 1/2})-OOC.

Theorem 8. For each prime v = 54t + 1 ≤ 5000, v > 55, the following optimal
variable-weight OOC exists:

(1) a (v, {4, 7}, 1, {1/2, 1/2})-OOCs;
(2) a (v, {3, 4}, 1, {7/8, 1/8})-OOCs;
(3) (v, {3, 4, 7}, 1, { 7s

2t+6s ,
t

2t+6s ,
t−s

2t+6s})-OOCs for each 1 ≤ s < t.

Theorem 9. For each prime v = 84t + 1 ≤ 5000, v > 85, the following optimal
variable-weight OOCs exists:

(1) a (v, {4, 6, 7}, 1, {1/3, 1/3, 1/3})-OOCs;
(2) a (v, {3, 4, 6}, 1, {7/9, 1/9, 1/9})-OOCs;
(3) (v, {3, 4, 6, 7}, 1, { 7s

3t+6s ,
t

3t+6s ,
t

3t+6s ,
t−s

3t+6s})-OOCs for each 1 ≤ s < t.

Remark 4. One can use Corollary 1 and Corollary 2 to construct cyclic (v, {4,
u}, 1, {1/2, 1/2})-DFs for u = 6, 7 and primes v ≡ 1 (mod u(u−1)+12) > 5000.
One can also use Theorem 4 and Theorem 5 to construct cyclic (v, {4, u}, 1, {1/2,
1/2})-DFs for u ≡ 0, 1 (mod 3) > 7 and primes v ≡ 1 (mod u(u − 1) +
12), for example u ∈ {9, 10, 12, 13, 15}. By breaking up some of the blocks by
PBD, new cyclic difference families are obtained, and new optimal variable-
weight OOCs are constructed. Note that a (9, 3, 1)-BIBD, a (10, {3, 4}, 1)-PBD,
a (12, {3, 4}, 1)-PBD, a (13, 3, 1)-BIBD, a (13, {4, 7}, 1)-PBD, a (15, {3, 5}, 1)-
PBD, a (15, {3, 4}, 1)-PBD exist.
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(1303, 6, 20, 9), (1429, 6, 8, 4), (1471, 6, 30, 2), (1723, 3, 23, 3), (1933, 5, 11, 6), (2017, 5, 6, 2),
(2143, 3, 50, 5), (2269, 2, 30, 8), (2311, 3, 16, 2), (2437, 2, 32, 34), (2521, 17, 2, 12),
(2647, 3, 3, 8), (2689, 19, 33, 3),(2731, 3, 14, 9), (2857, 11, 31, 27), (3067, 2, 38, 2),
(3109, 6, 42, 3), (3319, 6, 11, 7), (3361, 22, 28, 3), (3529, 17, 19, 2), (3571, 2, 77, 31),
(3613, 2, 23, 2), (3697, 5, 9, 3), (3739, 7, 29, 3), (3823, 3, 11, 3), (3907, 2, 16, 4),
(4159, 3, 16, 2), (4201, 11, 19, 8), (4243, 2, 21, 10), (4327, 3, 8, 2), (4621, 2, 8, 4),
(4663, 3, 20, 3), (4789, 2, 39, 6), (4831, 3, 9, 4), (4957, 2, 24, 3), (4999, 3, 53, 3)}.
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(2377, 5, 98, 8), (2539, 2, 262, 6), (2593, 7, 50, 43), (2647, 3, 191, 15), (2917, 5, 102, 3),
(2971, 10, 179, 15), (3457, 7, 29, 9), (3511, 7, 44, 3), (3673, 5, 43, 2), (3727, 3, 8, 13),
(3889, 11, 224, 5), (3943, 3, 35, 43), (4051, 10, 35, 5), (4159, 3, 170, 3), (4483, 2, 45, 6),
(4591, 11, 25, 11), (4861, 11, 4, 2), (4969, 11, 82, 6)}.

Appendix C
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Abstract. This survey article collects recent results on recursive nonlin-
ear pseudorandom number generators and sketches some important proof
techniques. We mention upper bounds on additive character sums which
imply uniform distribution results. Moreover, we present lower bounds
on the linear complexity profile and closely related lattice tests and thus
results on the suitability in cryptography. Finally, we give bounds on
multiplicative character sums from which one can derive results on the
distribution of powers and primitive elements.

1 Introduction

Let p be a prime, r a positive integer, q = pr and denote by Fq the finite field
of q elements. Given a polynomial f(X) ∈ Fq[X ] of degree d ≥ 2, we define the
recursive nonlinear pseudorandom number generator (μn) of elements of Fq by
the recurrence relation

μn+1 = f(μn), n = 0, 1, . . . , (1)

with some initial value μ0 ∈ Fq. This sequence is eventually periodic with some
period T ≤ q. We assume that the sequence (μn) is purely periodic.

In this survey we mention recent results on different features of these sequences
in view of different applications. We study additive and multiplicative character
sums as well as linear complexity and lattice tests in view of possible applications
for quasi-Monte Carlo methods, cryptography or algorithmic number theory.

In [40,43,52,66], a method has been presented to study the additive character
sums

Sa,N(f) =
N−1∑
n=0

χ

⎛⎝s−1∑
j=0

αjμn+j

⎞⎠ , 1 ≤ N ≤ T,

and thus the distribution of such sequences for arbitrary polynomials f(X) where
χ is a nontrivial additive character of Fq and a = (α0, . . . , αs−1) ∈ Fsq \ 0, see
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also the recent surveys [37,44,47,63,66]. More precisely, under some necessary
restrictions, say gcd(d, p) = 1, we can prove:

Sa,N(f) � N

(
log

2q

N

)1/2

(log d)1/2/(log q)1/2, 1 ≤ N ≤ T, (2)

where A � B is equivalent to the assertion that the inequality |A| ≤ cB holds
for some constant c > 0 depending only on s. We present the proof of (2) in
Section 2. (Note that the general results of [40,52,66] deal only with the case
r = 1.)

Unfortunately, the general bound (2) is only nontrivial if d = qo(1). However, in
several special cases one can obtain much stronger bounds. We give an overview
of such known special cases in Section 3.

We derive from the sequence (μn) defined by (1) a nonlinear method for
pseudorandom number generation defined as follows. Let {β1, . . . , βr} be an
ordered basis of Fq over Fp and identify Fp with the set of integers {0, 1, . . . , p−1}.
If

μn = un,1β1 + . . . + un,rβr, with un,i ∈ Fp,

then we derive digital nonlinear pseudorandom numbers in the unit interval [0, 1)
by putting

yn =
r∑
j=1

un,jp
−j.

For positive integers N and s the discrepancy D
(s)
N of y0, . . . ,yN−1 ∈ [0, 1)s is

D
(s)
N (P ) = D

(s)
N (y0, . . . ,yN−1) = sup

J

∣∣∣∣AN (J)
N

− V (J)
∣∣∣∣ ,

where the supremum is taken over all sub-intervals J ⊆ [0, 1)s, AN (J) is the
number of points y0, . . . ,yN−1 in J and V (J) is the volume of J . The discrepancy
is a measure for the deviation from uniform distribution and thus suitability for
quasi-Monte Carlo methods. Suitable general discrepancy bounds reduce the
discrepancy of the points yn = (yn, yn+1, . . . , yn+s−1), n = 0, . . . , N − 1, of
consecutive digital nonlinear pseudorandom numbers to the additive character
sums mentioned above, see for example the bound of [36, Theorem 3.12]. For
r = 1 we mention the Erdős-Turán-Koksma inequality, see [11, Theorem 1.21]:

D
(s)
N (y0, . . . ,yN−1) �

1
H

+
1
N

∑
0<max0≤i<s αi≤H

1∏s−1
i=0 max{|αi|, 1}

|Sa,N(f)|

for any H ≥ 1, where the implied constant depends only on s.
For N ≥ 1 and a sequence (μn) over Fq, its N th linear complexity L(μn, N)

over Fq is the smallest integer L such that there exist α0, . . . , αL−1 ∈ Fq such
that

μn+L = αL−1μn+L−1 + . . . + α0μn for 0 ≤ n < N − L, (3)
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with the conventions that L(μn, N) = 0 if μ0 = · · · = μN−1 = 0 and L(μn, N) =
N if μ0 = · · · = μN−2 = 0 but μN−1 �= 0. Its linear complexity is L(μn) =
supN≥1 L(μn, N). Note that for a T -periodic sequence we have L(μn) ≤ T . The
linear complexity is a measure for the unpredictability and thus suitability in
cryptography. For recent surveys on linear complexity and related measures see
[38,68].

For the sequence (μn) defined in (1) we know the general lower bound

L(μn, N) ≥ min{log(N − log N/ log d), log T }
log d

, N ≥ 1, (4)

of [28, Theorem 4]. We give the short proof of (4) in Section 4. Specially tai-
lored results for some special cases have been proved and are also mentioned in
Section 4.

Whereas linear complexity comes from cryptography, a closely related concept
called lattice test has its origin in the area of quasi-Monte Carlo methods. We
mention recent results on this area in Section 6.

Besides studying additive character sums, bounds on multiplicative character
sums are of interest in view of results on the distribution of powers and primitive
elements in a finite field. We mention the recent results in this area in Section 5.

2 Proof of the General Additive Character Sum Bound

In this section, we prove the bound (2) using the method of bounding character
sums introduced in [40,43] and refined in [52,66].

Proof. We can assume N ≥ 2q1/2. We first prove that, for any integer r ≥ 1 and
0 �= a ∈ Fsq, we have

Sa,N � Nr1/2(q/N)1/(2r)(min{log q, rq1/(11r)})−1/2 (5)

for 2q1/2 ≤ N ≤ T . Since otherwise (5) is trivial, we may assume r < log q.
It is obvious that for any integer k ≥ 0 we have∣∣∣∣∣∣Sa,N(f) −

N−1∑
n=0

χ

⎛⎝s−1∑
j=0

αjμn+j+k

⎞⎠∣∣∣∣∣∣ ≤ 2k.

Therefore, for any integer K ≥ 1,

K|Sa,N(f)| ≤ W + K(K − 1), (6)

where

W =
N−1∑
n=0

∣∣∣∣∣∣
K−1∑
k=0

χ

⎛⎝s−1∑
j=0

αjμn+j+k

⎞⎠∣∣∣∣∣∣ .
We consider the sequence of polynomials fk(X) ∈ Fq[X ] defined by

f0(X) = X, fk(X) = f(fk−1(X)), k ≥ 1. (7)



116 A. Winterhof

By the Hölder inequality, using μn+k = fk(μn) and putting

Fk(X) =
s−1∑
j=0

αjfk+j(X),

we obtain

W 2r ≤ N2r−1
N−1∑
n=0

∣∣∣∣∣
K−1∑
k=0

χ(Fk(μn))

∣∣∣∣∣
2r

≤ N2r−1
∑
x∈Fq

∣∣∣∣∣
K−1∑
k=0

χ(Fk(x))

∣∣∣∣∣
2r

≤ N2r−1
K−1∑

k1,...,k2r=0

∣∣∣∣∣∣
∑
x∈Fq

χ(Fk1,...,k2r (x))

∣∣∣∣∣∣ ,
where Fk1,...,k2r (X) = Fk1(X) + . . . + Fkr (X) − Fkr+1(X) − . . . − Fk2r (X). If
{k1, . . . , kr} = {kr+1, . . . , k2r} as multisets, then Fk1,...,k2r (X) is constant and
the inner sum is trivially equal to q. There are at most r!Kr ≤ rrKr such
sums. Otherwise note that the degree of Fk1,...,k2r is not divisible by p since
gcd(d, p) = 1 and we can apply Weil’s bound (see e.g. [33, Chapter 5]) to the
inner sum using deg(Fk1,...,k2r ) ≤ dK+s−2, to get the upper bound dK+s−2q1/2

for at most K2r sums. Hence,

W 2r ≤ rrKrN2r−1q + dK+s−2K2rN2r−1q1/2. (8)

Choose

K = min
{⌈

0.4
log q

log d

⌉
,
⌊
rq1/(11r)

⌋}
Then it is easy to see that the first term on the right-hand side of (8) dominates
the second one in terms of the order of magnitude in q, and we get (5) from (6)
and (8) after simple calculations.

Finally, we choose
r = log(q/N)� + 1

and the theorem follows after simple calculations from (5). �

3 Improvements for Some Special Nonlinear Generators

In two special cases, nonlinear generators with small p-weight degree [30] and in-
versive generators [27,39,41,43] the method in the proof of (2) leads to stronger
bounds. For other special classes of polynomials, namely for monomials and
Dickson polynomials, an alternative approach, producing much stronger bounds
has been proposed in [2,18,19,21]. Related results for sequences produced by
Rédei functions are obtained in [29]. Moreover, we mention that certain mul-
tivariate polynomial systems with slow degree growth introduced in [57] admit
stronger additive character sum bounds than in the general case of higher order
nonlinear recurrences [25,26,56].
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For a nonnegative integer n, we define its p-weight (or p-adic digit sum) as
the sum of the coefficients in its p-adic expansion:

σp

(
l∑
i=0

nip
i

)
=

l∑
i=0

ni, if 0 ≤ ni < p.

Let 0 ≤ e1 < e2 < · · · < el be integers and f(X) =
∑l

i=1 γiX
ei ∈ Fq[X ] be a

nonzero polynomial over a finite field Fq, with γi �= 0, i = 1, . . . , l. We define its
p-weight degree as

wp(f) = max{σp (ei) | 1 ≤ i ≤ l}.
Therefore, wp(f) ≤ deg(f). The main result of [30] is the following complement
of (2) in the case that

f(X) = αXd + f̃(X) ∈ Fq[X ] with α �= 0, wp(f̃) < σp (d) , d ≥ 2, (9)

and

gcd
(

d,
q − 1
p − 1

)
≤ σp(d)r. (10)

If the sequence (μn) given by (1) with a polynomial f(X) ∈ Fq[X ] of the form
(9), and satisfying (10) is purely periodic with period T , then

Sa,N (f) � N

(
log

2q

N

)1/2

(log w)1/2/(log p)1/2, 1 ≤ N ≤ T, a �= 0,

where w = σp (d) > 1 is the p-weight degree of f(X) and the implied constant
depends only on s. This result is proved in [30] and improves (2) for polynomials
satisfying (9) and (10) if and only if wr < deg(f).

The inversive generator (yn) defined by

yn+1 = ayq−2
n + b =

{
ay−1
n + b if yn �= 0,
b otherwise, n ≥ 0, (11)

with a, b, y0 ∈ Fq, a �= 0, admits an additive character sum bound of order of
magnitude N1/2q1/4.

Now we give the definitions of three more nice nonlinear pseudorandom num-
ber generators but refer to the original literature mentioned above for the cor-
responding bounds on additive character sums.

The power generator (pn) is defined as

pn+1 = pen, n ≥ 0,

with some integer e ≥ 2 and initial value 0 �= p0 ∈ Fp. Additive character sums
of the power generator were obtained in [2,18,19].

The family of Dickson polynomials De(X, a) ∈ Fp[X ] is defined by the follow-
ing recurrence relation

De(X, a) = XDe−1(X, a) − aDe−2(X, a), e = 2, 3, . . . ,
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with initial values D0(X, a) = 2, D1(X, a) = X, where a ∈ Fp. It is easy to see
that De(X, 0) = Xe, e ≥ 2, which corresponds to the case of the power genera-
tor. Additive character sums of nonlinear generators with Dickson polynomials
De(X, 1) were investigated in [21].

Another class of nonlinear congruential pseudorandom number generators,
where f(X) is a Rédei function, was analyzed in [29]. Suppose that

r(X) = X2 − αX − β ∈ Fp[X ]

is an irreducible quadratic polynomial with the two different roots ξ and ζ =
ξp in Fp2 . We consider the polynomials ge(X) and he(X) ∈ Fp[X ], which are
uniquely defined by the equation

(X + ξ)e = ge(X) + he(X)ξ.

The Rédei function fe(X) of degree e is then given by

fe(X) =
ge(X)
he(X)

.

As any mapping over Fp, the Rédei permutation can be uniquely represented
by a polynomial of degree at most p − 1 and therefore generators with Rédei
functions belong to the class of nonlinear pseudorandom number generators (1).

We can regard sequences over Fpr as r-dimensional vector sequences over Fp
and define nonlinear vector sequences by un+1 = (F1(un), . . . , Fr(un)), n ≥ 0,
with multivariate polynomials F1, . . . , Fr over Fp and some initial vector u0.
In general, as in the case r = 1, we can expect only an exponential degree
growth of the iterations and thus bounds only as moderate as (2), see [56].
However, systems of multivariate polynomials with slow degree growth were
introduced in [57] and further analyzed in [54,55,57,58] and give much better
bounds on additive character sums. The multidimensional case brings in new
(and favorable) effects which are impossible in the univariate case. We recall the
construction of [57] of multivariate polynomial systems with slow degree growth.
Let Fi ∈ Fp[X1, . . . , Xr], i = 1, . . . , r, be defined in the following way:

F1(X1, . . . , Xr) = X1G1(X2, . . . , Xr) + H1(X2, . . . , Xr),
F2(X1, . . . , Xr) = X2G2(X3, . . . , Xr) + H2(X3, . . . , Xr),

. . .

Fr−1(X1, . . . , Xr) = Xr−1Gr−1(Xr) + Hr−1(Xr),
Fr(X1, . . . , Xr) = grXr + hr,

where gr, hr ∈ Fp, gr �= 0, Gi, Hi ∈ Fp[Xi+1, . . . , Xr], i = 0, . . . , r − 1. If either
the Gi are constant, see [55], or under certain restrictions on the relative degrees
of Gi and Hi, see [54,57,58], much better additive character sum bounds can be
obtained than in the general case.

Exponential sums of nonlinear generators over residue class rings have also
been studied. See [14,15,16,17] for general nonlinear generators, [42,48,51] for
inversive generators, and [12,13] for the power generator.
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Most of the results mentioned above are only nontrivial if the period T of
the nonlinear generator is sufficiently long. However, little is known about it
except for the inversive generator [5,6], the power generator [31], and Dickson
permutation polynomials [32].

Some bounds on the average over all initial values are given in [45,64].

4 Linear Complexity Bounds

In this section first we prove the bound (4).

Proof. If the first N sequences elements μ0, . . . , μN−1 satisfy a linear recurrence
(3) of length L we immediately see that the polynomial

F (X) = fL(X) − αL−1fL−1(X) − . . . − α0f0(X)

of degree dL has at least min{N − L, T } zeros and the result follows, where
f0(X), . . . , fL(X) are defined by (7). �

Specially tailored results have been proved for the inversive generator [28], power
generator [24,62], Dickson generator [1] and Rédei generator [35]. The linear
complexities of nonlinear pseudorandom number generators of higher order and
with multivariate polynomial systems have been analyzed in [65] and [59].

In [30] we proved the following improvement in a slightly more general form.
If the sequence (μn) given by (1) with a polynomial f(X) ∈ Fq[X ] of the form
(9) satisfying

gcd
(

d,
q − 1
p − 1

)
≤ σp(d)r/2,

with p-weight degree w = σp(d) > 1, is purely periodic with period T , then for
N ≥ 2pr−1 log p/ logw,

L(μn, N) ≥ log(min{N, T }/pr−1) − 1
log w

, N ≥ 2.

Note that this result is only an improvement of the result of [28] if wp(f) <
deg(f)1/r.

The inversive generator has linear complexity profile

L(yn, N) ≥ min
{

N − 1
3

,
T − 1

2

}
, N ≥ 2.

The power generator satisfies

L(pn, N) ≥ min
{

N2

4(p − 1)
,

T 2

p − 1

}
, N ≥ 2.

Similar bounds for generators with Dickson polynomials with a = 1 or with
Rédei functions were given in [1] and [35].

The linear complexity of vector sequences defined with the polynomial systems
of [57] was analyzed in [59].
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5 Multiplicative Character Sums and Distribution of
Powers and Primitive Elements

The methods for estimating additive character sums can very often be adapted
for estimating multiplicative character sums

Sχ(N) =
N−1∑
n=0

χ(μn), 1 ≤ N ≤ T,

as well. For arbitrary nonlinear generators see [50]. Improvements for inversive,
Dickson and Rédei generators were obtained in [46,22,23]. Multiplicative char-
acter sums of nonlinear generators defined with the polynomial systems of [57]
were estimated in [60]. Estimates on character sums with inversive and nonlinear
recurring sequences on average over all initial values were given in [3].

Nontrivial estimates on Sχ(N) imply asymptotic formulas for the number
of sth powers among μ0, μ1, . . . , μN−1 using standard arguments and primitive
elements using Vinogradov’s formula (see [33, Exercise 5.14]).

6 Lattice Tests

The following lattice test was introduced in [53]. Let (μn), n = 0, 1, . . ., be a
T -periodic sequence over Fq. For given integers s ≥ 1, 0 ≤ d0 < d1 < . . . <
ds−1 < T , and N ≥ 2, we say that (μn) passes the s-dimensional N -lattice test
with lags d0, . . . , ds−1 if the vectors {un − u0 : 0 ≤ n ≤ N − 1} span Fsq, where

un = (μn+d0 , μn+d1 , . . . , μn+ds−1), 0 ≤ n ≤ N − 1.

In the case di = i for 0 ≤ i < s, this test coincides essentially with the lattice test
introduced in [9] and further analyzed in [7,8,9,10,20,67]. The latter lattice test
is closely related to the concept of the linear complexity profile, see [9,10,49]. If
additionally N ≥ T , this special lattice test was proposed by Marsaglia [34].

The close relationship between the lattice test and linear recurrence relation
is illustrated in the sequel.

We assume that the sequence elements μ0, . . . , μN−1 do not pass the s-dimen-
sional N -lattice test for some lags 0 ≤ d0 < d1 < . . . < ds−1 < p2. Let V
be the subspace of Fsq spanned by all un − u0 for 0 ≤ n ≤ N − 1. Denote by
V ⊥ = {u ∈ Fsq : u · v = 0 for all v ∈ V } the orthogonal space of V , where ·
denotes the usual inner product. Then dim(V ) < s and dim(V ⊥) ≥ 1. Take
0 �= α ∈ V ⊥, then

α · (un − u0) = 0 for 0 ≤ n ≤ N − 1.

We denote δ = α · un = α · u0 for 0 ≤ n ≤ N − 1. If α = (α0, α1, . . . , αs−1),
then we get

s−1∑
i=0

αiμn+di ≡ δ (mod p) for 0 ≤ n ≤ N − 1,
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and we have derived an inhomogeneous linear recurrence. If ds−1 is small, the
same methods as for estimating the linear complexity profile apply. However,
for arbitrary lags little is known [53]. The only good bounds known are for a
modification of the inversive generator introduced in [39] and further analyzed
in [53]. However, for several explicit nonlinear pseudorandom number generators
good results on the lattice test with arbitrary lags are known [61,4].
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65. Topuzoğlu, A., Winterhof, A.: On the linear complexity profile of nonlinear con-
gruential pseudorandom number generators of higher orders. Appl. Algebra Engrg.
Comm. Comput. 16, 219–228 (2005)
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Abstract. We give a general approach to N-periodic sequences over a
finite field Fq constructed via a subgroup D of the group of invertible
elements modulo N . Well known examples are Legendre sequences or the
two-prime generator. For some generalizations of sequences considered in
the literature and for some new examples of sequence constructions we
determine the linear complexity.

1 Introduction

A sequence S = s0, s1, . . . with terms in a finite field Fd with d elements is said
to be N -periodic if si = si+N for all i ≥ 0. The linear complexity L(S) of an N -
periodic sequence S over Fd is the smallest nonnegative integer L for which there
exist coefficients c1, c2, . . . , cL in Fd such that S satisfies the linear recurrence
relation si + c1si−1 + · · · + cLsi−L = 0 for all i ≥ L. If d and N are relatively
prime and θ is a primitive Nth root of unity in some extension field of Fd, and
S(x) = s0 + s1x + · · · + sN−1x

N−1 then

L(S) = N − |{a : S(θa) = 0, 0 ≤ a ≤ N − 1}|. (1)

The linear complexity is considered as a primary quality measure for periodic se-
quences and plays an important role in applications of sequences in cryptography
and communication (see for instance [13] and the references therein).

In this paper we point to a general approach to N -periodic sequences over
a finite field Fd defined via a subgroup D of the group Z∗

N of the invertible
elements modulo N . Well-known basic examples are the Legendre sequences and
its generalizations and the two-prime generator. We describe a uniform approach
to obtain results on the linear complexity for such sequence constructions that
comprise also the known proofs [3,4,5,6,7] for the above mentioned examples. We
apply this approach to some further examples of sequences and determine their
linear complexity. The first example can be seen as a natural generalization of
earlier constructions, the further examples are different, some - otherwise than
the sequences mentioned above - are based on subgroups D of Z∗

N for which the
factor group Z∗

N/D is not cyclic.
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2 A General Construction of Sequences Based on Cosets

Let N be an odd integer, Δ be a divisor of ϕ(N), where ϕ denotes Euler’s totient
function, and let D = D0 be a subgroup of index Δ of Z∗

N , the group of invertible
elements modulo N . Denote the elements of the factor group G = Z∗

N/D0 by
{D0, D1, . . . , DΔ−1}. Naturally this defines a partition of Z∗

N , regarding to which
we will write n ∈ Dj if nD0 = Dj for an integer n ∈ Z∗

N . An N -periodic sequence
S = s0, s1, . . . over a finite field Fd satisfying

sn = ξj whenever n mod N ∈ Dj

is then called a coset sequence. We remark that the sequence terms sn for
gcd(n, N) �= 1 have to be defined separately.

In order to obtain (almost) balanced sequences over Fd one may prefer to
consider subgroups D0 of index d and to assign every field element ξj ∈ Fd to
precisely one coset Dj .

If the period N = p is prime and Δ is a divisor of p − 1, then the (only)
subgroup D0 of index Δ of Z∗

N is the set of Δth powers

D0 = {gΔs : s = 0, 1, . . . , (p − 1)/Δ − 1} (2)

for a primitive element g modulo p. The cosets Dj = gjD0, 0 ≤ j ≤ Δ − 1, are
then called the cyclotomic classes of order Δ. Trivially the factor group Z∗

N/D0
is then cyclic.

Some well-known examples of coset sequences are the following:

Legendre sequences and its generalizations: To describe this class of se-
quences in its most general form we have to fix an ordering of the elements of
the finite field Fd, d = rt for a prime r. Given a basis {β0, β1, . . . , βt−1} of Frt

over Fr we fix an ordering of the elements of Frt by

ξj = j0β0 + j1β1 + · · · + jt−1βt−1 (3)

if (j0, j1, . . . , jt−1)r is the r-ary representation of the integer j. If t = 1 this
reduces to the conventional ordering 0, 1, . . . , r − 1 of the prime field Fr (with
β0 = 1).

Let N = p be a prime, Δ = d = rt a prime power divisor of p − 1 and D0
be the group of the dth powers modulo p. The generalized Legendre sequence is
then the N -periodic sequence over Fd defined by

sn = ξj if n mod p ∈ Dj, and sn = 0 if n ≡ 0 mod p. (4)

For d = 2 the sequence (4) is known as the classical Legendre sequence, its
linear complexity is determined in [5]. In [6] and [4] the linear complexity of (4)
is presented for d prime and for d = rt, r prime and gcd(t, r) = 1.
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Hall’s sextic residue sequence: Let N = p be prime congruent 1 modulo 6,
D0, . . . , D5 be the cyclotomic classes of order 6 defined as in (2). The N periodic
binary coset sequence given by

sn =
{

1 : n mod N ∈ D0 ∪ D1 ∪ D3,
0 : otherwise

is called Hall’s sextic residue sequence (see [10] for its linear complexity).

Two-prime generator: For two odd primes p and q let D0 be the subgroup of
index 2 of Z∗

pq consisting of the elements which are either squares or nonsquares
modulo both primes p and q. Denoting the two elements of the corresponding
factor group by D0 and D1, the two-prime generator is the binary pq-periodic
sequence given by sn+pq = sn and for 0 ≤ n < pq

sn = j if n ∈ Dj , sn = 0 if n ∈ Q ∪ {0} and sn = 1 if n ∈ P,

where here and in the following P = pZ∗
q = {p, 2p, . . . , (q − 1)p} and Q = qZ∗

p =
{q, 2q, . . . , (p− 1)q}. The linear complexity of the two-prime generator has been
determined in [7] for gcd(p− 1, q − 1) = 2. In [9] the generalization to arbitrary
prime fields has been analysed.

In [1,15] the subgroup D of Z∗
pq which consists of all elements which are

a square modulo q has been used to define a pq-periodic binary sequence. As
pointed out in [12] where a generalization to arbitrary prime fields was consid-
ered, these sequences essentially are only concatenations of p Legendre sequences
of period q. Similar constructions leading to binary sequences of period qm and
2qm with much similarity to concatenated Legendre sequences of period q have
been considered recently in [14,16].

3 Basic Results

In what follows N will always be an odd integer, d a prime power divisor of
ϕ(N), D0 a subgroup of Z∗

N of index d, and D0, D1, . . . , Dd−1 denote the cosets
of D0. If Z∗

N/D0 is cyclic, which always applies when d is prime, then we can
suppose that DiDj = Di+j mod d.

Let S be a coset sequence of period N over Fd with sn = ξj if n ∈ Dj . (At
this position ξj does not necessarily refer to the ordering in (3).) The polynomial
S(x) corresponding to S can then be written as S(x) = U(x) + T (x) with

U(x) =
∑

n∈ZN\Z∗
N

snx
n and T (x) =

d−1∑
j=0

ξjfj(x) where fj(x) =
∑
i∈Dj

xi. (5)

We collect some simple basic properties which partly had been shown in the
literature for different concrete examples of coset sequences (see e.g. [4,5,6,7]).
In what follows we suppose that d = rt, r prime, gcd(N, r) = 1, and we let θ be
a primitive Nth root of unity over Fd.
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Lemma 1
(i) If a, ā ∈ Di for some 0 ≤ i ≤ d − 1 then T (θā) = T (θa).
(ii) For all 0 ≤ a ≤ N − 1 we have fj(θa) ∈ Frd , 0 ≤ j ≤ d − 1. If d ∈ D0 then
fj(θa) ∈ Fd, 0 ≤ j ≤ d−1, and T (θa) ∈ Fd for all 0 ≤ a ≤ N −1. If also r ∈ D0
then fj(θa) ∈ Fr, 0 ≤ j ≤ d − 1, for all 0 ≤ a ≤ N − 1.

(iii) If a ∈ Dk then T (θa) =
∑d−1

j=0 ξj�kfj(θ) where j � k = l if Dj = DkDl in
Z∗
N/D0.

(iv)
∑d−1

j=0 fj(θ) = μ(N), where μ denotes the Möbius function.

Proof. (i),(ii) are straightforward, we also may refer to [4].
(iii) T (θa) =

∑d−1
j=0 ξj

∑
i∈Dj

θai =
∑d−1
j=0 ξj

∑
i∈aDj

θi =
∑d−1

j=0 ξjfj⊕k(θ) =∑d−1
j=0 ξj�kfj(θ).

(iv) Observe that
∑d−1

j=0 fj(θ) =
∑

k∈Z∗
N

θk is the negative of the coefficient of
xϕ(N)−1 in the Nth cyclotomic polynomial QN . With QN =

∏
c|N (xN/c− 1)μ(c)

(see [11, Theorem 3.27]) we obtain

QN =
(xa1 − 1) · · · (xa1 − 1)
(xb1 − 1) · · · (xbs − 1)

= (xA−xA−a1 + · · ·± 1) : (xB −xB−b1 + · · ·± 1),

where ai, bj run through the divisors c of N for which N/c is squarefree, we
choose a1 and b1 to be the minimum of the ai and bj, respectively, and put
A = a1 + · · ·+ ar and B = b1 + · · ·+ bs. As obvious, A−B = ϕ(N). Performing
the division we then get

QN = xϕ(N) ± xϕ(N)−min(a1,b1) ± · · · + 1,

where the coefficient of xϕ(N)−min(a1,b1) is ”1” if a1 > b1 and ”−1” if a1 < b1. As
μ(N) = 0 implies min(a1, b1) > 1, the coefficient of xϕ(N)−1 in QN is zero in this
case. If μ(N) = 1 then min(a1, b1) = a1 = 1, if μ(N) = −1 then min(a1, b1) =
b1 = 1, which completes the proof. �
As generally known the possible values for the linear complexity of an N -periodic
sequence over Fd depend on the degrees of the polynomials in the canonical
factorization of xN − 1 over Fd. The following proposition indicates that for
many classes of coset sequences the order of the coset Dj which contains d in
the factor group Z∗

N/D0 decides on the possible values for the linear complexity.

Proposition 1. Let D0 be a subgroup of Z∗
N , G = Z∗

N/D0, d ∈ Dj and let
B = 〈Dj〉 be the subgroup of G generated by Dj. For a corresponding coset
sequence over Fd let T (x) be defined as in (5). If T (θa) = 0 for a ∈ Dk then
T (θb) = 0 for all b ∈ BDk.

Proof. Let s be the order of d modulo N , then the minimal polynomial of θa

over Fd is given by m(x) =
∏s−1
l=0 (x − θad

l

). Consequently if T (θa) = 0 then
T (θad

l

) = 0 for 0 ≤ l ≤ s − 1. Since B = 〈Dj〉 = {D0, dD0 = Dj , . . . , d
s−1D0}

(depending on the order of Dj in G elements in this set repeat), with Lemma
1(i) we have T (θb) = 0 for all b ∈ BDk. �
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Remark 1. If U(θa) = c ∈ Fd is constant for all a ∈ Z∗
N then Lemma 1(i) and

consequently Proposition 1 also holds for S(x).

If Z∗
N/D0 is cyclic (as in the sequence constructions in the literature , see

[1,4,5,6,7,12,15]) then we can naturally employ the ordering defined as in (3)
to define a coset sequence. Following the objective of the paper to give a general
approach to N -periodic sequences constructed via subgroups D0 of Z∗

N we con-
sider further classes of factor groups that are not cyclic. We concentrate hereby
on factor groups whose order is a prime power.

For an odd integer N and a prime r let D0 be a subgroup of Z∗
N such that

Z∗
N/D0 is isomorphic to Zrt1 ×Zrt2 × · · · ×Zrtw (with the componentwise addi-

tion) for some positive integers ti, 1 ≤ i ≤ w. The cardinality of Z∗
N/D0 is then

d = rt with t = t1 + t2 + . . . + tw, and we can easily define an N -periodic coset
sequence over Fd which is close to be balanced.

Example. Let N = pq for two odd primes p and q, let D
(p)
0 and D

(q)
0 denote the

set of squares modulo p and q, and consider

D0 = {j | 1 ≤ j ≤ pq − 1, j mod p ∈ D
(p)
0 , j mod q ∈ D

(q)
0 },

As obvious D0 is a subgroup of Z∗
pq with Z∗

pq/D0 isomorphic to Z2 × Z2.
For the definition of a sequence we again employ the ordering (3) of the elements
of Frt . In order to assign the elements of Frt to the rt cosets of D0 we also need an
ordering of the elements of Z∗

N/D0. We put ρ0 = 0, ρ1 = t1, ρ2 = t1+t2, . . . , ρw =∑w
i=1 ti = t, and let Ψ be the isomorphism from Z∗

N/D0 to Zrt1 ×Zrt2×· · ·×Zrtw .
For 0 ≤ j ≤ rt − 1 we then denote the coset D of D0 by Dj for which

Ψ(D) = (J1, J2, . . . , Jw) with J1 + J2r
ρ1 + J3r

ρ2 + · · · + Jwrρw−1 = j. (6)

Based on the orderings (3), (6), N -periodic coset sequences over Frt with

sn = ξj if n ∈ Dj

can be defined. We remark that DkDl = Dk⊕l when we define

k ⊕ l = h if k =
w∑
i=1

Kir
ρi , l =

w∑
i=1

Lir
ρi and h =

w∑
i=1

(Ki + Li mod rti)rρi , (7)

according to the operation in Zrt1 × Zrt2 × · · · × Zrtw .
The following Lemma generalizes [4, Lemma 10] shown for the generalized

Legendre sequence (4).

Lemma 2. Let N be squarefree, D0 a subgroup of Z∗
N , d = rt a prime power

with gcd(r, t) = 1, and let

1. Z∗
N/D0 be a cyclic group of order d, or

2. Z∗
N/D0 be isomorphic to Zrt1 × Zrt2 × · · · × Zrtw with t1 + · · · + tw = t.

Consider a coset sequence over Fd satisfying sn = ξj if n ∈ Dj, where ξj refers
to the ordering (3) of the elements of Fd, the cosets Dj are naturally ordered in
case 1 and ordered as in (6) in case 2. Then T (θa

′
) �= T (θa) if a′ �≡ a mod D0.
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Proof. For this proof we denote by k ⊕ l the addition modulo d in case 1 and
the addition (7) in case 2. Let a ∈ Dk and a′ ∈ Dk′ , let k � k′ = δ and suppose
that 0 ≤ v ≤ t−1 is the smallest index in the r-ary representation of the integer
δ =
∑t−1
i=0 δir

i of δ with δv �= 0. (We remark that in case 2 if k =
∑w
i=1 Kir

ρi ,
k′ =
∑w
i=1 K ′

ir
ρi and ρc−1 ≤ v < ρc, then K ′

i = Ki, 1 ≤ i < c, but K ′
c �= Kc.)

Let ξl =
∑t−1

i=0 liβi and ξl⊕δ =
∑t−1
i=0 l′iβi. Then using the ordering of the

elements of Frt and the property of v we get l + δ ≡ l ⊕ δ ≡
∑v

i=0 lir
i +

δvr
v mod rv+1, thus l′i = li for 0 ≤ i ≤ v − 1 and l′v ≡ lv + δv mod r.
For 0 ≤ j ≤ d − 1 we set ξj�k =

∑t−1
i=0 jiβi and ξj�k′ =

∑t−1
i=0 j′iβi. With

Lemma 1(iii) we then obtain

T (θa
′
) − T (θa) =

d−1∑
j=0

(ξj�k′ − ξj�k)fj(θ) =
d−1∑
j=0

(ξj�k⊕δ) − ξj�k)fj(θ)

=
d−1∑
j=0

(
δvβv +

t−1∑
i=v+1

(j′i − ji)βi

)
fj(θ)

= δvβv

d−1∑
j=0

fj(θ)+
d−1∑
j=0

t−1∑
i=v+1

(j′i−ji)βifj(θ) = μ(N)δvβv+
t−1∑
i=v+1

βi

d−1∑
j=0

(j′i−ji)fj(θ)

= μ(N)δvβv +
t−1∑
i=v+1

Λiβi. (8)

Since N is squarefree, (8) is a nontrivial linear combination of βi, 0 ≤ i ≤
t − 1, and by Lemma 1(ii) its coefficients are in Frd . As gcd(t, r) = 1 the basis
{β0, . . . , βt−1} of Frt over Fr is also a basis of Frtd over Frd , thus (8) is not 0. �
Corollary 1. Let D0 be a subgroup of prime power index d = rt of Z∗

N , let
Z∗
N/D0 be cyclic or isomorphic to Zrt1 × Zrt2 × · · · × Zrtw . Let S be a coset

sequence with sn = ξj if n ∈ Dj for the ordering (3) of the elements in Fd, the
obvious ordering of Z∗

N/D0 in the cyclic case, else for the ordering defined in
(6). If d ∈ D0 then T (θa) = 0 for ϕ(N)/d values of a ∈ Z∗

N . If d �∈ D0 then
T (θa) �= 0 for all a ∈ Z∗

N .

Proof. By Lemma 2, T (θa) �= T (θa
′
) if a �≡ a′ mod D0. If d ∈ D0 then by Lemma

1(ii), T (θa) ∈ Fd for all a ∈ Z∗
N , thus for exactly one integer j, 0 ≤ j ≤ d − 1,

we have T (θa) = 0 if a ∈ Dj . If d ∈ Dj �= D0 then the order of Dj in Z∗
N/D0

is greater than 1, and with Proposition 1, T (θa) = 0 for a ∈ Dk implies that
T (θb) = 0 for all b ∈ 〈Dj〉DK which contradicts Lemma 2. �
We remark that Corollary 1 also holds for S(x) if U(θa) = c ∈ Fd for all a ∈ Z∗

N .

4 Examples of Sequence Constructions

Let N = pq for two odd primes p and q. As easily seen aP = P if a ∈ Z∗
pq or

a ∈ P (where the calculation is performed modulo N), which will be used several
times in the following.
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On the basis of the previous section we firstly consider two constructions of
pq-periodic sequences over an arbitrary finite field Fd.

Construction 1: Let d = rt be a power of the prime r dividing gcd(p−1, q−1),
then we can consider the cyclotomic classes (2) of order d, D

(p)
j and D

(q)
j , 0 ≤

j ≤ d − 1, for both primes p, q, respectively. We define a subgroup D0 by

D0 = {n : n mod p ∈ D
(p)
k and n mod q ∈ D

(q)
l (9)

for some k, l with k + l ≡ 0 mod d}.

For simplicity we will write n ∈ D
(p)
k � D

(q)
l if n mod p ∈ D

(p)
k and n mod q ∈

D
(q)
l . As obvious, the factor group Z∗

N/D0 is cyclic, its elements Dj , 0 ≤ j ≤ d−1,
are given by

Dj =
⋃

k+l≡j mod d

(D(p)
k � D

(q)
l ). (10)

Note that DiDj = Di+j mod d.
For d = 2, this construction reduces to the classical two-prime generator, thus

we may call this construction the generalized two-prime generator. For d being
an odd prime the generalized two-prime generator was analysed in [9].

Construction 2: Let d = rt be a power of the prime r, let t1, t2 be integers
such that t1 + t2 = t, and let p and q be primes such that d1 = rt1 divides p− 1
and d2 = rt2 divides q−1. (To keep the contribution of p and q to the behaviour
of the sequence equal, one may prefer to choose d1, d2 close to each other, if
possible d1 = r�t/2�, d2 = r�t/2�.) We consider the cyclotomic classes of order d1
modulo p and order d2 modulo q, and choose D0 as

D0 = {n | 1 ≤ n ≤ pq − 1, n ∈ D
(p)
0 � D

(q)
0 }, (11)

which is a subgroup of Z∗
pq. The index of D0 is d = rt and Z∗

pq/D0 is isomorphic
to Zd1 × Zd2 . We then can employ the ordering (6) for the cosets of D0.

For both subgroups, (9) and (11), we can utilize the ordering (3) of the ele-
ments of Fd and define a pq-periodic sequence S = s0, s1, . . . over Fd by

sn =

⎧⎨⎩ ξj : n ∈ Dj ,
0 : n ∈ Q ∪ {0},
1 : n ∈ P.

(12)

4.1 The Case gcd(r, t) = 1

In the next theorem we determine the linear complexity of sequences obtained by
both, Construction 1 and Construction 2. In order to be able to apply Lemma 2
and the subsequent Corollary 1 we need the condition gcd(r, t) = 1.

Theorem 1. For two odd primes p and q, and a power d = rt of the prime r
with gcd(r, t) = 1 let
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1. d divide gcd(p − 1, q − 1), suppose d �= 2 and let D0 be the subgroup (9) of
Z∗
pq, or

2. d1 = rt1 divide p − 1, d2 = rt2 divide q − 1 for two positive integers t1, t2
with t = t1 + t2, suppose that r > 2 or ti ≥ 2, i = 1, 2, and let D0 be the
subgroup (11) of Z∗

pq.

Then the linear complexity L of the sequence (12) is given by

L =
{

pq − p − (p−1)(q−1)
d : d ∈ D0
pq − p : d �∈ D0.

Proof. Following (1) we have to determine the number of integers a, 0 ≤ a ≤ pq−1
for which S(θa) = U(θa) + T (θa) = 0 where U(x), T (x) are defined as in (5),
and θ is a primitive pqth root of unity in an extension field of Fd.

We first observe that with aP = P if a ∈ Z∗
pq , we obtain U(θa) =

∑
n∈P θan =∑

n∈P θn = U(θ) = −1. As a consequence, by Corollary 1 and the remark
thereafter we have S(θa) �= 0 for all a ∈ Z∗

pq if d �∈ D0, and if d ∈ D0 then
S(θa) = 0 for exactly (p − 1)(q − 1)/d values for a ∈ Z∗

pq. Hence it suffices to
evaluate S(θa) for a ∈ Zpq \ Z∗

pq .
First of all we see that

S(1) =
∑
n∈P

1 +
d−1∑
j=0

ξj
∑
i∈Dj

1 = (q − 1) +
(p − 1)(q − 1)

d

d−1∑
j=0

ξj = 0.

We finish the proof showing that S(θa) = −1 if a ∈ P and S(θa) = 0 if a ∈ Q.
With aP = P if a ∈ P we obtain U(θa) = −1 as above, and a ∈ Q implies
U(θa) =

∑
n∈P θan =

∑
n∈P 1 = q−1 = 0. Consequently it remains to be shown

that T (θa) =
∑d−1
j=0 ξjfj(θa) = 0 if a ∈ P ∪ Q, where we have to distinguish

between the two constructions.

Construction 1. Suppose that b ∈ Z∗
q is an element of D

(q)
l and let 0 ≤ k ≤ d− 1

be the unique integer with k + l ≡ j mod d. By the Chinese remainder theorem
for each of the (p − 1)/d elements ci of D

(p)
k there exists a unique integer n,

1 ≤ n ≤ pq − 1, with n ≡ ci mod p, n ≡ b mod q, and by definition n ∈ Dj .
Therefore if a ∈ P , then aDj (modulo pq) runs (p−1)/d times through P = pZ∗

q .
Consequently

fj(θa) =
∑
i∈Dj

θai =
p − 1

d

∑
n∈P

θn = −p− 1
d

,

hence a ∈ P implies

T (θa) =
d−1∑
j=0

ξjfj(θa) = −p − 1
d

d−1∑
j=0

ξj . (13)

For a ∈ Q we similarly obtain T (θa) = − q−1
d

∑d−1
j=0 ξj . With the assumption

d �= 2, the sum
∑d−1

j=0 ξj of the elements of Fd vanishes, thus T (θa) = 0 for
a ∈ P ∪ Q.
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Construction 2. Let j = rt1k+� with k = 0, 1, · · · , rt2−1 and � = 0, 1, · · · , rt1−1,
then

Dj = {n | 1 ≤ n ≤ pq − 1, n ∈ D
(p)
l � D

(q)
k }

by definition. Consequently if the set Dj is reduced modulo p every element of
D

(p)
l is taken on precisely (q−1)/rt2 times and vice versa in Dj reduced modulo

q every element of D
(q)
k appears (p − 1)/rt1 times. For a ∈ P we therefore get

fj(θa) =
∑
i∈Dj

θai =
p − 1
rt1

∑
i∈pD(q)

k

θi

and subsequently

T (θa) =
rt2−1∑
k=0

rt1−1∑
�=0

p − 1
rt1

∑
i∈pD(q)

k

θiξrt1k+� (14)

=
p − 1
rt1

rt2−1∑
k=0

∑
i∈pD(q)

k

θi
rt1−1∑
�=0

ξrt1k+�.

Since ξrt1k+� = ξrt1k + ξ� for all k ∈ {0, 1, · · · , rt2 − 1}, � ∈ {0, 1, · · · , rt1 − 1},
we can write

rt1−1∑
�=0

ξrt1k+� =
rt1−1∑
�=0

ξrt1k + ξ� =
rt1−1∑
�=0

ξ� = 0, (15)

where in the last step we used r �= 2 or r = 2 and t1 > 1. Hence T (θa) = 0 for
all a ∈ P.

For a ∈ Q we obtain T (θa) = 0 similarly if r �= 2 or r = 2 and t2 > 1. �

Remark 2. For d = 2 equation (13) yields T (θa) = (p − 1)/2 if a ∈ P and
similarly one then gets T (θa) = (q − 1)/2 if a ∈ Q. This leads to the formula
presented in [7] for the linear complexity of the binary two-prime generator.

We observe that for Construction 2, in Theorem 1 we had to suppose that
r > 2 or ti ≥ 2, i = 1, 2, which was used to show equation (15). However, to
obtain a sequence over F8 with Construction 2 we have to choose t1 = 1 (and
t2 = 2). Consequently sequences over F8 for Construction 2 are not covered
by Theorem 1, thus have to be dealt with separately. This is accomplished in
the next theorem. As basis of F8 over F2 we may choose the polynomial basis
{1, β, β2}, where β can be taken as a root of x3 + x + 1.

Theorem 2. The linear complexity of the sequence over F8 obtained by Con-
struction 2 with t1 = 1, t2 = 2 and the polynomial basis {1, β, β2} of F8 over F2
is given by

L(S) =

⎧⎪⎪⎨⎪⎪⎩
pq − p − (p−1)(q−1)

8 : p ≡ 1 mod 4, 2 ∈ D0,

pq − p − q + 1 − (p−1)(q−1)
8 : p ≡ 3 mod 4, 2 ∈ D0,

pq − p : p ≡ 1 mod 4, 2 /∈ D0,
pq − p − q + 1 : p ≡ 3 mod 4, 2 /∈ D0.
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Proof. Since r = 2 and t1 = 1 equation (15) now attains the value 1. Thus for
equation (14) we obtain

T (θa) =
p − 1

2

2t2−1∑
k=0

∑
i∈pD(q)

k

θi =
p − 1

2

∑
i∈P

θi =
p − 1

2
.

As we had U(θa) = −1 if a ∈ P we therefore get S(θa) = (p+1)/2 for all a ∈ P .
With the observation that 8 ∈ D0 if and only if 2 ∈ D0, we obtain the assertion
of the theorem. �
Remark 3. By definition of D0 we have 2 ∈ D0 if and only if 2 is a quadratic
residue modulo p and a quartic residue modulo q, or equivalently p ≡ ±1 mod 8
and q ≡ −1 mod 8 or q ≡ 1 mod 8 and q = x2 + 64y2 for some integers x, y.
Thus one may write the statement of Theorem 2 entirely in terms of p and q.

4.2 Quaternary Sequences

If gcd(r, t) �= 1 then Lemma 2 cannot be applied and the values of S(θa) for
a ∈ Z∗

pq have to be determined individually. We present the results for the linear
complexity of sequences defined via the subgroups (9) and (11) for the important
case d = 4. As we will see, for the subgroup (9) the linear complexity does not
rely on a predefined ordering of the elements of F4, whereas for the subgroup
(11) it does.

Theorem 3. Let η0, η1, η2, η3 be the elements of F4, let Dj be defined as in (10)
for two primes p ≡ q ≡ 1 mod 4 and d = 4, and let S be the pq-periodic sequence
over F4 defined by

sn =

⎧⎨⎩ηj : n ∈ Dj,
0 : n ∈ Q ∪ {0},
1 : n ∈ P.

The linear complexity L(S) of S is then

L(S) =

⎧⎪⎨⎪⎩
pq − p − (p−1)(q−1)

4 : p ≡ q ≡ 1 mod 8 or p ≡ q ≡ 5 mod 8,

pq − p : p ≡ 1 mod 8, q ≡ 5 mod 8 or
p ≡ 5 mod 8, q ≡ 1 mod 8.

Proof. With Lemma 1(i) and aP = P for a ∈ Z∗
pq we have S(θa) = S(θ) for all

a ∈ D0. Defining U(x), T (x) as in equation (5) we observe that again U(θa) =
U(θ) = 1 if a ∈ Z∗

pq ∪ P and U(θa) = 0 if a ∈ Q. We hence restrict ourselves to
the determination of T (θa). From Z∗

pq/D0 being cyclic we get for a ∈ D1

T (θa) =
3∑
j=0

ηjfj(θa) = η3f0(θ) + η0f1(θ) + η1f2(θ) + η2f3(θ)

= T (θ) + (η0 + η3)f0(θ)+(η0 + η1)f1(θ)+(η1 + η2)f2(θ) + (η2 + η3)f3(θ)
= T (θ) + (η0 + η3)(f0(θ) + f2(θ)) + (η0 + η1)(f1(θ) + f3(θ)),
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since
∑3

j=0 ηj = 0. With Lemma 1(iv) we then obtain

T (θa) = T (θ) + η0 + η1 + (η1 + η3)(f0(θ) + f2(θ)).

With similar arguments one gets T (θa) = T (θ)+ η0 + η2 if a ∈ D2, and T (θa) =
T (θ) + η0 + η3 + (η1 + η3)(f0(θ) + f2(θ)) if a ∈ D3.
T (θa) = 0 if a ∈ P ∪ Q, thus S(θa) = 1 if a ∈ P and S(θa) = 0 if a ∈ Q, follows
with the proof of Theorem 1 for the general case. We distinguish two cases.

First suppose that 2 ∈ D0∪D2, or equivalently p ≡ q mod 8, then 4 ∈ D0 and
thus S(θ) ∈ F4. Furthermore observe that 2 ∈ D0∪D2 also implies f0(θ)+f2(θ) ∈
F2. As easily seen we then have S(θa) �= S(θa

′
) if a �≡ a′ mod D0 and we obtain

the proclaimed value for the linear complexity with the usual conclusion.
Secondly suppose that 2 ∈ D1 ∪ D3, hence 4 ∈ D2. Then S(θ)4 = S(θ4) =

S(θ) + η0 + η2 �= S(θ), and consequently S(θ) �∈ F4. On the other hand again
4 ∈ D2 implies f0(θ) + f2(θ) ∈ F4 and thus S(θa) �∈ F4 for all a ∈ Z∗

pq, which
yields the proclaimed linear complexity. �
Theorem 4. Let η0, η1, η2, η3 be the elements of F4 and for two odd primes p, q

let D
(p)
0 and D

(p)
1 (D(q)

0 , D
(q)
1 ) be the set of squares and nonsquares modulo p

(modulo q), respectively. Let S be the pq-periodic sequence over F4 defined by

sn =

⎧⎨⎩ηl+2k : n ∈ D
(p)
l � D

(q)
k ,

0 : n ∈ Q ∪ {0},
1 : n ∈ P.

The linear complexity of S is then

L(S) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

pq − 1 − (p−1)(q−1)
4 : q ≡ 3 mod 4 and p ≡ 1 mod 4 or

p ≡ 3 mod 4, η2 �= η0 + 1,

pq − p − (p−1)(q−1)
4 : q ≡ 1 mod 4 and p ≡ 1 mod 4 or

p ≡ 3 mod 4, η2 �= η0 + 1,

pq − q − (p−1)(q−1)
4 : q ≡ 3 mod 4, p ≡ 3 mod 4, η2 = η0 + 1,

pq − p − q + 1 − (p−1)(q−1)
4 : q ≡ 1 mod 4, p ≡ 3 mod 4, η2 = η0 + 1.

Proof. With Lemma 1(i) and aP = P for a ∈ Z∗
pq we have S(θa) = S(θ) for all

a ∈ D0. From Z∗
pq/D0 � Z2 × Z2, for a ∈ D1 we obtain

S(θa) =
∑
n∈P

θn + η0f1(θ) + η1f0(θ)+η2f3(θ)+η3f2(θ)=S(θ)+η0(f0(θ)+f1(θ))

+η1(f0(θ) + f1(θ)) + η2(f2(θ) + f3(θ)) + η3(f2(θ) + f3(θ))
= S(θ) + (η0 + η1)(f0(θ) + f1(θ)) + (η2 + η3)(f2(θ) + f3(θ))

= S(θ) + (η0 + η1)
3∑
j=0

fj(θ) = S(θ) + η0 + η1.

Similarly we get S(θa) = S(θ) + η0 + η2 for a ∈ D2 and S(θa) = S(θ) + η0 + η3
for a ∈ D3. Hence S(θa) �= S(θa

′
) if a �≡ a′ mod D0. Since 4 ∈ D0 and U(x)
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is as in the proof of Theorem 3, with Lemma 1(ii) we have S(θa) ∈ F4 when
a ∈ Dj , j = 0, 1, 2, 3.

Employing that the sets D0 and D2 (D1 and D3) reduced modulo q are equal
for a ∈ P we get

S(θa) =
∑
n∈P

θn + (η0 + η2)
∑
n∈D0

θan + (η1 + η3)
∑
n∈D1

θan

= 1 + (η0 + η2)
∑

n∈D0∪D1

θan = 1 + (η0 + η2)
p − 1

2

∑
n∈P

θn

= 1 + (η0 + η2)
p − 1

2
.

In the penultimate step we used that the set D0∪D1 reduced modulo q contains
all elements of Z∗

q and each element is taken on (p − 1)/2 times.
In an analog way we obtain S(θa) = (η0 + η1) q−1

2 if a ∈ Q. The simple
observation that S(1) = 0 completes the proof. �
We complete this section pointing out that the generalized two-prime generator
(Construction 1) has favourable autocorrelation properties when d is prime (or
likewise if one defines the sequence as a d-ary sequence for an arbitrary module
d in an analog way, as autocorrelation is then also defined). For d = 2 this
was shown in [8], an alternative proof using characters was presented in [2].
The methods of [2] can be applied to the case of arbitrary modules d. As far
as we are aware, autocorrelation results for arbitrary modules d have not been
presented, thus we give the result but omit the proof. In the following we put
εd = e2π

√−1/d, and χ(p) (χ(q)) shall denote the multiplicative character of order
d of Fp (Fq) given by χ(p)(gk) = εkd if g is a primitive element of Fp (Fq).

Theorem 5. The autocorrelation of the generalized two-prime generator S with
prime d is given by

A(S, t) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
p − q + 1 : t ∈ qZ∗

p,

εd + εd + q − p − 1 : t ∈ pZ∗
q ,

1 + (1 − εχ(p)(−t)χ(q)(−t)) : t ∈ Z∗
pq.

+(1 − εχ(p)(t)χ(q)(t))

5 Final Remarks

We consider N -periodic sequences over finite fields that are constant on the
cosets of a subgroup of Z∗

N , which can be seen as a general approach to classes
of N -periodic sequences that contain well known constructions as the Legendre
sequences and the two-prime generator. With this general approach one may con-
struct and analyse various classes of sequences. We give examples of pq-periodic
sequences over arbitrary finite fields and determine their linear complexity. Sim-
ilar constructions can be considered and analysed (using tools from Section 2)
for other (squarefree) periods. One may use subgroups D of Z∗

N with index not
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a prime power as in the following example: For an odd prime p and a prime
q ≡ 1 mod 3 we consider the cyclotomic classes of order 2 and 3, respectively,
and the subgroup D0 = D

(q)
0 �D

(p)
0 of index 6. We define a corresponding ternary

sequence S by sn = l + 2k mod 3 if n ∈ D
(p)
l � D

(q)
k , sn = 0 if n ∈ Q ∪ {0} and

sn = 1 if n ∈ P . With the above used techniques and using Proposition 1 one
obtains that L(S) = pq− p− (p− 1)(q− 1)/3 if p ≡ ±1 mod 12 and q = 3a2 + b2

with 9|a or 9|(a± b), if q = 3a2 + b2 with 9 � |a and 9 � |(a± b) then L(S) = pq−p.
This pq-periodic ternary sequence is certainly different from the ternary version
of the two-prime generator and the ternary sequence constructed as in [12]. An
analysis of the autocorrelation of such coset sequences, which differently to the
sequences in [1,12,14,15,16] are not similar to a concatenation of Legendre se-
quences, may be worthwhile. There, an adaptation of the method in [8] with an
adequate generalization of cyclotomic numbers seems promising. In this connec-
tion it may also be of interest to use the above considered factor group of Z∗

pq

isomorphic to Z2 × Z2 to define quaternary sequences.
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Abstract. Cryptographically strong sequences should have long peri-
ods, large linear complexity, low correlation, and balance properties. In
this paper, we determine the autocorrelation of the q-ary prime n-square
sequences with length pn, where p is an odd prime, n is a positive integer
and q is a divisor of p − 1. When q is a prime, we also determine the
linear complexity of the prime n-square sequences over the prime field
Fq. It is shown that these sequences have good linear complexity and
balance properties, but don’t have desirable autocorrelation properties.

Keywords: Generalized cyclotomy, prime n-square sequence,
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1 Introduction

For cryptographic applications, pseudo-random sequences are required to have
the property of unpredictability. Balance and linear complexity are two main
components that indicate this feature. The linear complexity of a sequence is
defined as the length of the shortest linear feedback shift register (LFSR) that can
generate the sequence. By the Berlekamp-Massey algorithm [1], for a sequence
s∞ = (s(0), s(1), · · ·) with the least period N , if the linear complexity L(s∞)
of s∞ is larger than N/2, then s∞ is considered good with respect to its linear
complexity. It has been reported that certain cyclotomic sequences possess good
linear complexity [2,3,5,6,7,8,9,10,11].

A generalized cyclotomy with respect to pe11 pe22 · · · pet
t was introduced by Ding

and Helleseth [4] in 1998, where p1, p2, · · · , pt are distinct odd primes and
e1, e2, · · · , et are positive integers, which includes classical cyclotomy[13] as a
special case. Since the generalized cyclotomy in [4] is different from that defined
by Whiteman [14], we call it DH generalized cyclotomy in this paper. Some DH
generalized cyclotomic sequences have good linear complexity [7,8,9,10,11]. In
2007, Yan et al. [7] computed the linear complexity and autocorrelation of the
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binary DH generalized cyclotomic sequences of order 2 with respect to p2, where
p is an odd prime. Meanwhile, in 2007, Kim et al. [9] computed the linear com-
plexity and autocorrelation of the binary DH generalized cyclotomic sequences
of order 2 with respect to p3. Recently, Kim et al. [10] computed the linear com-
plexity of the binary DH generalized cyclotomic sequences of order 2 with respect
to pn for any positive integer n, which are called prime n-square sequences of
order 2.

In this paper, we determine the autocorrelation of the q-ary prime n-square
sequences of period pn, where q is a divisor of p − 1. When q is a prime, we
determine the linear complexity of the prime n-square sequences over the prime
field Fq. The results of this paper show that these sequences have good linear
complexity.

2 q-Ary Prime n-Square Sequences

For any positive integer N , Z∗
N denotes the set of all invertible elements of the

residue class ring ZN . Let H be a subset of ZN and let a be an element of ZN .
Define

H + a = {h + a : h ∈ H}, a · H = {a · h : h ∈ H}.
where “ + ” and “ · ” denote the integer addition modulo N and integer multi-
plication modulo N , respectively.

Let p be an odd prime and g be a primitive root of Z∗
p2 . Then it is known

that g is also a primitive root of Z∗
pn for n ≥ 1 [1]. Let q be a divisor of p − 1.

Define D
(q,pk)
0 = 〈gq〉(mod pk), the cyclic group generated by gq modulo pk and

D
(q,pk)
i = giD

(q,pk)
0 (mod pk) for 1 ≤ i ≤ q − 1. Obviously, Z∗

pn =
⋃q−1
i=0 D

(q,pn)
i .

Denote pZpk−1 = {0, p, · · · , p(pk−1 − 1)}, then Zpk = Z∗
pk ∪ pZpk−1 . It is easy to

verify that [4]

Zpn =
( n⋃
k=1

pn−kD(q,pk)
0

)⋃( n⋃
k=1

pn−kD(q,pk)
1

)⋃
· · ·
⋃( n⋃

k=1

pn−kD(q,pk)
q−1

)⋃
{0}.

Lemma 1. If a ∈ D
(q,pk)
i , then aD

(q,pk)
j = D

(q,pk)
i+j( mod q)(mod pk), where 0 ≤

i, j ≤ q − 1 and 1 ≤ k ≤ n.

Proof. The proof is obvious. ��

Lemma 2. Given an integer b, then D
(q,pk)
i + bp = D

(q,pk)
i (mod pk) for 0 ≤

i ≤ q − 1 and 1 ≤ k ≤ n.

Proof. Note that every element of D
(q,pk)
i + bp is not a multiple of p and is

relatively prime to pk for each i , i.e., D
(q,pk)
i + bp ∈ Z∗

pk .

Suppose that (D(q,pk)
i + bp) ∩ D

(q,pk)
j �= ∅ for 0 ≤ i �= j ≤ q − 1. Then, there

exist two integers s, t such that gqs+i + bp = gqt+j (mod pk), i.e.,

gqs+i ≡ gqt+j (mod p).
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This implies gq(s−t)+i−j ≡ 1(mod p), which contradicts the fact that the order
of g modulo p is p − 1 = qf , a multiple of q.

That is, D
(q,pk)
i + bp ∈ Z∗

pk \ {∪j �=iD(q,pk)
j } = D

(q,pk)
i . Hence, D

(q,pk)
i + bp =

D
(q,pk)
i immediately follows from |D(q,pk)

i + bp| = |D(q,pk)
i |. ��

Define

Ci =
( n⋃
k=1

pn−kD(q,pk)
i

)
for 0 ≤ i ≤ q − 2,

Cq−1 =
( n⋃
k=1

pn−kD(q,pk)
q−1

)⋃
{0}.

Obviously, Ci ∩ Cj = ∅ for i �= j and
⋃q−1
i=0 Ci = Zpn .

The q-ary prime n-square sequence s = {s(0), s(1), · · · , s(pn − 1)} of period
pn is defined as follows,

s(t) = i, if (t mod pn) ∈ Ci. (1)

Note that the sequence s has the least period N = pn, in which there are
(pn − 1)/q i’s for each 0 ≤ i ≤ q − 2 and (pn − 1)/q + 1 q − 1’s. Therefore, it is
balanced.

3 The Autocorrelation of the q-Ary Prime n-Square
Sequences

The periodic autocorrelation function Rs(τ) of a q-ary sequence s with period
N is defined by

Rs(τ) =
N−1∑
t=0

ws(t)−s(t+τ), (2)

where w is a complex primitive qth root of unity.
The following definition and lemmas are very useful to calculate the autocor-

relation of s.

Definition 1 ([12]). Let p = qf + 1 be an odd prime and g be a primitive root
modulo p. A sequence u = {u(0), u(1), · · · , u(p − 1)} of length p, defined by

u(t) =
{

0, if (t mod p) = 0
j, if (t mod p) ∈ C′

j ,
(3)

is called a q-ary power residue sequence, where C′
0 = 〈gq〉 (mod p), the cyclic

group generalized by gq modulo p, and C′
j = gjC′

0 for 0 ≤ j ≤ q − 1.

Lemma 3 ([12]). The autocorrelation of the q-ary power residue sequence u of
period p = qf + 1 is as follows,
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1). If f is even,

Ru(τ) =
{

p, if τ = 0
−1 + wk + w−k, if τ ∈ C′

k,
(4)

2). If f is odd,

Ru(τ) =
{

p, if τ = 0
−1 + w−k − wk, if τ ∈ C′

k.
(5)

Lemma 4. Let p = qf+1 be an odd prime. If f is even, −1( mod pk) ∈ D
(q,pk)
0 .

If f is odd, −1(mod pk) ∈ D
(q,pk)
q
2

for k = 1, 2, · · · , n.

Proof. It can be proved in the same way as [10]. ��

Theorem 1. Let p = qf + 1 be an odd prime. The autocorrelation of the q-ary
prime n-square sequence s defined in (1) of period pn is as follows,

1). If f is even,

Rs(τ) =

{
pn, if τ = 0

w−1−a + wa+1 + pn − pk − pk−1, if τ ∈ pn−kD(q,pk)
a ;

(6)

2). If f is odd,

Rs(τ) =

{
pn, if τ = 0

w−1−a − wa+1 +pn − pk − pk−1, if τ ∈ pn−kD(q,pk)
a ,

(7)

where 0 ≤ a ≤ q − 1 and 1 ≤ k ≤ n.

Proof. For the case τ ≡ 0(mod pn),

Rs(0) =
pn−1∑
t=0

w0 = pn.

When τ ∈ pn−kD(q,pk)
a for 0 ≤ a ≤ q − 1 and 1 ≤ k ≤ n, we have

Rs(τ)=
pn−1∑
t=0

ws(t)−s(t+τ)

=wq−1−a+
q−1∑
r=0

∑
t∈D(q,pn)

r

ws(t)−s(t+τ)+
q−1∑
r=0

∑
t∈pD(q,pn−1)

r

ws(t)−s(t+τ) +· · ·

+
q−1∑
r=0

∑
t∈pn−1D

(q,p)
r

ws(t)−s(t+τ),
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where we use s(0) = q − 1 and s(τ) = a. Let τ = pn−kb, where b ∈ D
(q,pk)
a .

Note that pn−jD(q,pj)
r + pn−kb = pn−j(D(q,pj)

r + pj−kb) for j = k + 1, k +
2, · · · , n. By Lemma 2, D

(q,pj)
r + pj−kb = D

(q,pj)
r (modpj). Thus, pn−jD(q,pj)

r +
τ = pn−jD(q,pj)

r for j = k + 1, k + 2, · · · , n. Therefore, we have

q−1∑
r=0

∑
t∈pn−jD

(q,pj )
r

ws(t)−s(t+τ) =
q−1∑
r=0

∑
t∈pn−jD

(q,pj )
r

w0 = pj−1(p − 1) (8)

for j = k + 1, k + 2, · · · , n, where we use the facts that |pn−jZ∗
pj | = pj−1(p − 1)

and
⋃q−1
r=0 pn−jD(q,pj)

r = pn−jZ∗
pj .

Similarly, pn−jD(q,pj)
r + τ = pn−k(pk−jD(q,pj)

r + b) ⊂ pn−kD(q,pk)
a for j =

1, 2, · · · , k − 1. Hence,

q−1∑
r=0

∑
t∈pn−jD

(q,pj )
r

ws(t)−s(t+τ) =
q−1∑
r=0

∑
t∈pn−jD

(q,pj )
r

ws(t)−a

= w−a pj−1(p − 1)
q

q−1∑
r=0

wr = 0 (9)

for j = 1, 2, · · · , k − 1.
By (8) and (9), we have

Rs(τ) = wq−1−a+pn−1(p−1) + · · · + pk(p−1)+
q−1∑
r=0

∑
t∈pn−kD

(q,pk)
r

ws(t)−s(t+τ)+0

= wq−1−a + pn − pk +
q−1∑
r=0

∑
t∈pn−kD

(q,pk)
r

ws(t)−s(t+τ). (10)

Let

A(τ) =
q−1∑
r=0

∑
t∈pn−kD

(q,pk)
r

ws(t)−s(t+τ).

Note that [4],

D(q,pk)
r (mod p) = {x, · · · , x︸ ︷︷ ︸

pk−1

: x ∈ D(q,p)
r }. (11)

From Lemma 1 and Lemma 4, −b (mod pk) ∈ D
(q,pk)
a if f is even and −b (mod

pk) ∈ D
(q,pk)
a+ q

2 ( mod q) if f is odd. By (11), there exist pk−1 c’s in D
(q,pk)
a+v such

that c ≡ −b(mod p) and 0 c’s in Z∗
pk \ D

(q,pk)
a+v such that c ≡ −b(mod p), where



144 F. Liu et al.

v = 0 if f is even, and v = q/2, otherwise. Let τ ′ = pn−1 · (b mod p) and

Δ = {pn−kc : c ∈ D
(q,pk)
a+v( mod q) and c ≡ −b(mod p)}, i.e., Δ is such a set that ∀

pn−kc ∈ Δ, pn−1 · (c mod p) = −τ ′. Then,

A(τ) = pk−1
( q−1∑
r=0

∑
t∈pn−1D(q,p)

r ,

t�=−τ′

ws(t)−s(t+τ
′)
)

+
∑
t∈Δ

ws(t)−s(t+τ), (12)

which is from the fact that s(t) = s(t′) when t = pn−jc ∈ pn−jD(q,pj)
r and

t′ = pn−1 · (c mod p) for j = 1, 2, · · · , n and r = 0, 1, · · · , q − 1.
Note that, ∀ pn−kc ∈ Δ, pn−kc + pn−kb ≡ 0(mod pn−k+1) from c + b ≡

0(mod p). Therefore, when t ∈ Δ, t + τ is a multiple of pn−k+1. Thus, when t
ranges over Δ, t+τ enumerates every element of pn−k+1Zpk−1 exactly once from
|Zpk−1 | = pk−1. Therefore, we have

A(τ) = pk−1
( q−1∑
r=0

∑
t∈pn−1D

(q,p)
r ,

t�=−τ′

ws(t)−s(t+τ
′) + w−s(τ ′) + ws(−τ

′)

−w−s(τ ′) − ws(−τ
′)
)

+ wa+v
∑

t∈pn−k+1Z
pk−1

w−s(t)

= pk−1Ru(δ) − pk−1(w−a + wa+v) + wa+v−(q−1), (13)

where the second equality is from Definition 1 and the balanced property of s,
δ ≡ b(mod p), and Ru(δ) denotes the autocorrelation of the q-ary power residue
sequence u of period p.

By (13), (10) can be simplified as follows,

Rs(τ)=wq−1−a+ pn− pk+ pk−1Ru(δ)− pk−1(w−a+ wa+v)+ wa+v−(q−1)

=w−1−a+ pn− pk+ pk−1Ru(δ)− pk−1(w−a+ wa+v)+ wa+v+1, (14)

where wq = 1.
Note that w

q
2 = −1. Thus, combining Lemma 3 and (14), the conclusion

follows. ��

4 The Linear Complexity of the Prime n-Square
Sequence over the Prime Field Fq

Let p = qf +1 with q a prime and Fqm be a finite field with qm elements. In this
section, we will determine the linear complexity of the prime n-square sequence
s over the prime field Fq.

Definition 2. If a sequence s = {s(0), s(1), · · · , s(N − 1)} over the finite field
Fq of length N has linear complexity L, then there exist constants c0 = 1, c1, · · · ,
cL ∈ Fq such that

s(t) = c1s(t − 1) + c2s(t − 2) + · · · + cLs(t − L), for L ≤ t ≤ N − 1.
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The polynomial c(x)=c0+c1x+· · ·+cLxL is called the minimal polynomial of s.

The characteristic polynomial of s is defined as

S(x) = s(0) + s(1)x + · · · + s(N − 1)xN−1. (15)

It is well known that [15]

1). The minimal polynomial of s is given by

c(x) = (xN − 1)/ gcd(xN − 1, S(x)); (16)

2). The linear complexity of s is given by

CN = N − deg(gcd(xN − 1, S(x))). (17)

Let m be the order of q modulo pn and θ be a primitive pnth root of unity in
Fqm . By (17), the linear complexity of s defined in (1) is

L(s) = pn − |{a : S(θa) = 0, 0 ≤ a ≤ pn − 1}|. (18)

From now on, all calculations are performed in Fqm . Note that, for k =
1, 2, · · · , n,

θp
n

− 1 = (θp
n−k

− 1)(1 + θp
n−k

+ θ2pn−k

+ · · · + θ(pk−1)pn−k

)

=
(
θp

n−k − 1
)(

1 +
k∑
j=1

∑
i∈pn−jZ∗

pj

θi
)

= 0.

Thus,

1 +
k∑
j=1

∑
i∈pn−jZ∗

pj

θi = 0. (19)

When k = 1, we have

1 +
∑

i∈pn−1Z∗
p

θi = 0. (20)

From (19) and (20), we can derive that∑
i∈pn−kZ∗

pk

θi = 0 (21)

for k = 2, 3, · · · , n.
Now we define the index of i ∈ Zpn \ {0} by

indg,q(i) = j if i ∈ Cj .
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From the definition of S(x) in (15), the characteristic polynomial of s is as
follows,

S(x)=q−1 +
∑
i∈Z∗

pn

indg,q(i)xi +
∑

i∈pZ∗
pn−1

indg,q(i)xi + · · · +
∑

i∈pn−1Z∗
p

indg,q(i)xi.

When q = 2, the sequence s defined in (1) coincides with that considered in
[10] and the linear complexity of the binary prime n-square sequence of order
2 has been determined by Kim et al. [10]. Therefore, we only consider the case
q > 2.

Definition 3. For k = 1, 2, · · · , n, let tk(θ) be defined as follows,

tk(θ)=
∑

i∈pn−kZ∗
pk

indg,q(i)θi+
∑

i∈pn−k+1Z∗
pk−1

indg,q(i)θi+· · ·+
∑

i∈pn−1Z∗
p

indg,q(i)θi. (22)

Lemma 5. tk(θ) ∈ Fq if and only if q ∈ D
(q,pn)
0 for k = 1, 2, · · · , n.

Proof. Note that

tk(θ)q = tk(θq) =
∑

i∈pn−kZ∗
pk

indg,q(i)θqi + · · · +
∑

i∈pn−1Z∗
p

indg,q(i)θqi.

For q∈Z∗
pn , there exists an inverse q−1∈Z∗

pn of q such that q−1q ≡ 1(mod pn).

Assume q ∈ D
(q,pn)
u , then q−1 ∈ D

(q,pn)
−u( mod q). Note that q−1D

(q,pj)
v (mod pj) =

D
(q,pj)
v−u( mod q)(mod pj) for j=1, 2, · · · , n. Then,

q−1pn−jD(q,pj)
v =pn−jD(q,pj)

v−u( mod q).

Hence, we have indg,q(q−1i)= indg,q(i) − indg,q(q). Thus,

tk(θ)q =
∑

i∈pn−kZ∗
pk

indg,q(q−1i)θi + · · · +
∑

i∈pn−1Z∗
p

indg,q(q−1i)θi

=
∑

i∈pn−kZ∗
pk

indg,q(i)θi + · · · +
∑

i∈pn−1Z∗
p

indg,q(i)θi

−indg,q(q)
( ∑
i∈pn−kZ∗

pk

θi + · · · +
∑

i∈pn−1Z∗
p

θi
)

=
∑

i∈pn−kZ∗
pk

indg,q(i)θi + · · · +
∑

i∈pn−1Z∗
p

indg,q(i)θi + indg,q(q),

where the third equality is from (20) and (21).
If q ∈ D

(q,pn)
0 , then tk(θ)q = tk(θ), i.e., tk(θ) ∈ Fq. We finish the proof. ��
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Lemma 6

S(θa) =

{
q − 1, if a = 0

tk(θ) + s + q − 1, if a ∈ pn−kD(q,pk)
s

for s = 0, 1, · · · , q − 1 and k = 1, 2, · · · , n.

Proof. Note that |Z∗
pj | = pj−1(p − 1), then

|pn−jD(q,pj)
i | =

pj−1(p − 1)
q

(23)

for j = 1, 2, · · · , n. Thus, when a = 0, we have

S(θa) = S(1)

= q − 1 +
∑
i∈Z∗

pn

indg,q(i) +
∑

i∈pZ∗
pn−1

indg,q(i) + · · · +
∑

i∈pn−1Z∗
p

indg,q(i)

= q − 1 +
q−1∑
r=0

r
∑

i∈D(q,pn)
r

1 +
q−1∑
r=0

r
∑

i∈pD(q,pn−1)
r

1 + · · · +
q−1∑
r=0

r
∑

i∈pn−1D
(q,p)
r

1

= q − 1 +
q−1∑
r=0

r

(
pn−1(p − 1)

q
+

pn−2(p − 1)
q

+ · · · + p − 1
q

)
=

(pn + 1)(q − 1)
2

.

When a ∈ pn−kZ∗
pk for k = 1, 2, · · · , n, let a = pn−kb, where b ∈ Z∗

pk . Then,

S(θa) = q − 1 +
∑
i∈Z∗

pn

indg,q(i)θp
n−kbi +

∑
i∈pZ∗

pn−1

indg,q(i)θp
n−kbi + · · ·

+
∑

i∈pn−1Z∗
p

indg,q(i)θp
n−kbi

= q − 1 +
q−1∑
r=0

r
∑

i∈D(q,pn)
r

θp
n−kbi +

q−1∑
r=0

r
∑

i∈pD(q,pn−1)
r

θp
n−kbi + · · ·

+
q−1∑
r=0

r
∑

i∈pn−1D
(q,p)
r

θp
n−kbi

= q − 1 +
q−1∑
r=0

r
∑

i∈pn−k·D(q,pn)
r

θbi +
q−1∑
r=0

r
∑

i∈pn−k·pD(q,pn−1)
r

θbi + · · ·

+
q−1∑
r=0

r
∑

i∈pn−k·pn−1D
(q,p)
r

θbi. (24)
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For any integer n1, it is obvious that

pn1 · pn−jD(q,pj)
i =

{
0 (mod pn), if n − j + n1 ≥ n

pn−j+n1D
(q,pj−n1 )
i (mod pn), if n − j + n1 < n.

(25)

By (23),

|D(q,pj)
i | =

pj−1(p − 1)
q

= pn1
pj−n1−1(p − 1)

q
= pn1 |D(q,pj−n1 )

i |. (26)

Thus, from (25) and (26), (24) can be rewritten as,

S(θa)=q − 1 + pn−k
( q−1∑
r=0

r
∑

i∈pn−kD
(q,pk)
r

θbi + · · · +
q−1∑
r=0

r
∑

i∈pn−1D
(q,p)
r

θbi

︸ ︷︷ ︸
k summations

)
+

· · · +
q−1∑
r=0

r
∑

i∈pkD
(q,pn−k)
r

θ0 + · · · +
q−1∑
r=0

r
∑

i∈pn−1D
(q,p)
r

θ0

︸ ︷︷ ︸
n−k summations

=pn−k
( q−1∑
r=0

r
∑

i∈pn−kD
(q,pk)
r

θbi+· · ·+
q−1∑
r=0

r
∑

i∈pn−1D
(q,p)
r

θbi
)

+
(pn−k+1)(q−1)

2
.

Suppose that b ∈ D
(q,pk)
s . Then, bD

(q,pj)
r = D

(q,pj)
r+s( mod q)(mod pj) for j =

1, 2, · · · , k. Hence, bpn−jD(q,pj)
r = pn−jD(q,pj)

r+s( mod q). Therefore, we have

S(θa) = pn−k
q−1∑
r=0

r
∑

i∈pn−kD
(q,pk)
r+s

θi + pn−k
q−1∑
r=0

r
∑

i∈pn−k+1D
(q,pk−1)
r+s

θi + · · ·

+pn−k
q−1∑
r=0

r
∑

i∈pn−1D
(q,p)
r+s

θi +
(pn−k + 1)(q − 1)

2

= pn−k
q−1∑
r=0

(r + s)
∑

i∈pn−kD
(q,pk)
r+s

θi + pn−k
q−1∑
r=0

(r + s)
∑

i∈pn−k+1D
(q,pk−1)
r+s

θi

+ · · · + pn−k
q−1∑
r=0

(r + s)
∑

i∈pn−1D
(q,p)
r+s

θi − pn−k
[
s

q−1∑
r=0

∑
i∈pn−kD

(q,pk)
r+s

θi

+s

q−1∑
r=0

∑
i∈pn−k+1D

(q,pk−1)
r+s

θi+· · ·+s

q−1∑
r=0

∑
i∈pn−1D

(q,p)
r+s

θi
]
+

(pn−k+1)(q−1)
2

,

where the addition r + s is calculated modulo q.
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Substituting r with r + s, we get

S(θa) = pn−k
q−1∑
r=0

r
∑

i∈pn−kD
(q,pk)
r

θi + pn−k
q−1∑
r=0

r
∑

i∈pn−k+1D
(q,pk−1)
r

θi + · · ·

+pn−k
q−1∑
r=0

r
∑

i∈pn−1D
(q,p)
r

θi − pn−ks
[ ∑
i∈pn−kZ∗

pk

θi + · · · +
∑

i∈pn−1Z∗
p

θi
]

+
(pn−k + 1)(q − 1)

2

= pn−k
( ∑
i∈pn−kZ∗

pk

indg,q(i)θi + · · · +
∑

i∈pn−1Z∗
p

indg,q(i)θi
)

+ pn−ks

+
(pn−k + 1)(q − 1)

2

= pn−ktk(θ) + pn−ks +
(pn−k + 1)(q − 1)

2
,

where the second equality follows from (20) and (21).
Note that p ≡ 1(mod q), thus pn−k ≡ 1(mod q), (pn+1)(q−1)

2 ≡ q − 1(mod q)

and (pn−k+1)(q−1)
2 ≡ q − 1(mod q) from 2|(q − 1). Thus, by reducing modulo q,

we have

S(θ0) = q − 1

and

S(θa) = tk(θ) + s + q − 1

for a ∈ pn−kD(q,pk)
s . This completes the proof. ��

Theorem 2. If q ∈ D
(q,pn)
0 , then L(s) = (q−1)pn+1

q . If q �∈ D
(q,pn)
0 , then L(s) =

pn.

Proof. By (18), it suffices to determine the number of a such that S(θa) = 0
when a ranges from 0 to pn − 1. When q ∈ D

(q,pn)
0 , from Lemma 5, tk(θ) ∈ Fq

for k = 1, 2 · · · , n. Given k with 1 ≤ k ≤ n, let tk(θ) = u where u ∈ Fq.

From Lemma 6, when a ∈ pn−kD(q,pk)
q−u+1( mod q), S(θa) = 0. Therefore, when

tk(θ) = u for some fixed k, there exist pk−1(p−1)
q a’s such that S(θa) = 0. When

k runs through 1, 2, · · · , n, there exist p−1
q + p(p−1)

q + · · · + pn−1(p−1)
q = pn−1

q

a’s with a ∈ Zpn such that S(θa) = 0. Therefore, the linear complexity of s is
L(s) = pn − pn−1

q = (q−1)pn+1
q .

When q �∈ D
(q,pn)
0 , tk(θ) �∈ Fq for k = 1, 2 · · · , n. Thus, for any a ∈ Zpn ,

S(θa) �= 0, which is from Lemma 6. Hence, L(s) = pn. We finish the proof. ��
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5 Conclusions

In this paper, we determine the autocorrelation of the q-ary prime n-square
sequences. When q is a prime, we calculate the linear complexity of the prime n-
square sequences over the prime field Fq. It is shown that the linear complexity
of these sequences takes on one of (q−1)pn+1

q and pn, depending on whether

q ∈ D
(q,pn)
0 or not, which is considered as quite good.
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Abstract. In our previous work we transformed the optimisation prob-
lem of finding the k-error linear complexity of a sequence into an optimi-
sation problem in the DFT (Discrete Fourier Transform) domain, using
Blahut’s theorem. We then gave an approximation algorithm of polyno-
mial complexity for the transformed problem by restricting the search
space to error sequences whose DFT have period up to k. However, when
applying the inverse transformation, the error vectors obtained are in
general in an extension of the original field.

In the present paper we develop our previous approximation algo-
rithm so that now it can be constrained to only obtain errors over
the original field. Essentially, we give a polynomial approximation al-
gorithm for the computation of the k-error linear complexity of a se-
quence. More precisely, the algorithm will find the optimum among a
restricted set of errors over the original field. While this restricted search
space is still exponential, the complexity of the algorithm is polynomial,
O(N2 log N log log N).

Keywords: periodic sequences, linear complexity, k-error linear com-
plexity, discrete Fourier transform.

1 Introduction

The linear complexity of a sequence of terms over a field is defined as the length
of the smallest linear recurrence relation which generates that sequence. The
k-error linear complexity of a periodic sequence is a natural generalisation of the
notion of linear complexity and it represents the length of the smallest linear
recurrence relation which generates a sequence which differs from the original in
at most k positions in each period.

Algorithms for computing in polynomial time the k-error linear complexity
only exists for periodic sequences of period N over a Galois field in the particular
cases when xN−1 has only one or two distinct irreducible factors over that Galois
field (see [9,7,6,10]).
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In our previous work [1] we transformed the optimisation problem of finding
the k-error linear complexity of a sequence s of period N over a field K into an
optimisation problem in the DFT (Discrete Fourier Transform) domain, using
Blahut’s theorem. Namely we aim to find a sequence E of linear complexity at
most k which minimises the Hamming weight of a period of DFT (s)+E. We do
not know of an efficient algorithm for this transformed problem, so we gave an
approximation algorithm for it by restricting the search space to error sequences
E of period up to k. However, when applying the inverse transformation, the
error sequence e = DFT−1(E) may not be in the original field but an extension
thereof. We therefore introduced a generalisation of the notion of k-error linear
complexity, which we called extension field k-error linear complexity defined as
the k-error linear complexity of s when working in the smallest extension field of
K which contains an N -th root of unity. Our approximation algorithm did there-
fore produce an approximation of the extension field k-error linear complexity
rather than of the classical k-error linear complexity.

In the present paper we develop our previous approximation algorithm so that
it can now be constrained to only obtain errors over the original field. This is
achieved by making sure the necessary conjugacy constraints are satisfied by E
in the DFT domain so that DFT−1(E) is in the original field. We also add a new
step of cyclically shifting the input sequence in order to cover a larger search
space in our approximation. The algorithm will find the optimum among the
restricted set of errors over the original field which have their up to k possible
non-zero entries evenly spaced at intervals of N

d positions for some d|N , d ≤ k.
While this search space is still exponential, the complexity of the algorithm is
polynomial, O(N2 log N log log N).

The algorithms were implemented in GAP and the results of running them
on a series of sequences are discussed in Section 5.

2 Background

We introduce some definitions and known results about linear complexity, k-error
linear complexity and the discrete Fourier transform.

Definition 1. Given an infinite sequence s = s0, s1, . . . with elements in a field
K, we say that s is a linear recurrent sequence if it satisfies a homogeneous linear
recurrence relation, i.e. a relation of the form

sj + cL−1sj−1 + . . . + c1sj−L+1 + c0sj−L = 0 (1)

for all j = L, L + 1, . . . where c0, c1, . . . , cL−1 ∈ K are constants. We associate
to it a characteristic polynomial C(X) = XL+ cL−1X

L−1 + . . .+ c1X + c0. If L
is minimal for the given sequence, we call L the linear complexity of s, denoted
L(s), and we call C(X) a minimal polynomial.

For infinite sequences the minimal polynomial is unique and any other charac-
teristic polynomial is a multiple of the minimal polynomial.
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A sequence s is called periodic if there is an N such that si+N = si for all
i ≥ 0. N is called a period of the sequence. Obviously XN − 1 is in this case
a characteristic polynomial of s, so its minimal polynomial must be a factor of
XN − 1 and the linear complexity is at most N .

For any finite sequence s we will denote by wH(s) the Hamming weight i.e.
the number of non-zero entries of s. When considering infinite sequences s of
period N we will identify the sequence s with the N -tuple (s0, s1, . . . , sN−1), so
for example wH(s) means wH((s0, s1, . . . , sN−1)).

The notion of linear complexity has been generalised to k-error linear com-
plexity, defined as the minimal linear complexity of a sequence in which at most
k positions are changed, (see Ding, Xiao, Shan [3], Stamp and Martin [9]).

Definition 2. Given an infinite sequence s of period N , with elements in a field
K and a fixed integer k, 0 ≤ k ≤ wH(s), the k-error linear complexity of the
sequence s is defined as

Lk,N (s) = min{L(s + e)|e ∈ KN , wH(e) ≤ k}.

In the set above, e is a sequence of period N and is called an error sequence.

We recall the definition of the discrete Fourier transform (DFT) and a number
of its well known properties (see for example [8]) which will be needed later.

Definition 3. Let F be a field containing a primitive N -th root of the unity
α and let s be a sequence of period N over F . The discrete Fourier transform
(DFT) of s is the sequence S = DFT (s) = (S0, S1, . . . , SN−1) defined by

Si =
N−1∑
j=0

sjα
ij , for all i = 0, 1, . . . , N − 1.

The inverse discrete Fourier transform relation s = DFT−1(S) is given by:

sj = N−1
N−1∑
i=0

Siα
−ij , for all j = 0, 1, . . . , N − 1.

Note that the assumption that F contains a primitive N -root of unity means N
should not be divisible by the characteristic of the field F . For sequences over a
field K which does not contain an N -th root of unity, provided N is not divisible
by the characteristic of K, we would first determine an extension field F of K
which does contain an N -th root of unity, and only then we are able to compute
the DFT.

It is well known that the discrete Fourier transform is linear:

Property 1. Let N be a positive integer and F be an arbitrary field which con-
tains a primitive N -th root of unity. The discrete Fourier transform and the
inverse discrete Fourier transform are linear operators on the vector space FN .
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Let s(h) denote the periodic infinite sequence over F obtained by cyclically shift-
ing all periods of s to the right by h positions, i.e. s

(h)
i+h = si, for all 0 ≤ i < N

where indices are taken modulo N . The Discrete Fourier Transform of the shifted
sequence is related to the one of the original sequence as follows:

Property 2. If S = DFT (s) and S′ = DFT (s(h)) then S′
i = αhiSi, for all 0 ≤

i < N.

In 1979, Blahut [2] used the link between the linear complexity of a periodic
sequence and its DFT:

Theorem 1 (Blahut theorem). The linear complexity of a periodic sequence
s = (s0, s1, . . . , sN−1) of period N , equals the Hamming weight of DFT (s). Re-
ciprocally, the linear complexity of the periodic sequence S = (S0, S1, . . . , SN−1)
equals the Hamming weight of DFT−1(S).

When the original sequence s is in a subfield K of F we will be interested in
distinguishing the sequences S in FN which were obtained as DFT of sequences
in KN rather than FN . We examine this issue in the case of finite fields, which
is particularly important for cryptographic applications.

We will denote by K = GF(pm) the Galois field of pm elements. When N is
not divisible by p, the smallest extension F of K which contains a (primitive)
N -the root of unity is F = GF(pr) where r is the smallest multiple of m with
the property N |pr − 1.

Recall that the cyclotomic coset of j modulo pr − 1 with respect to powers of
pm is the set Cj = {j, jpm, jp2m, . . . , jp( r

m−1)m} (with all integers modulo pr−1).
More generally for a factor d of pr − 1 the cyclotomic set of j modulo d with
respect to powers of pm is the set having the same elements as Cj above but with
all integers considered modulo d. We will denote this set Cj,d, so Cj is the same
as Cj,pr−1. We have Cj,d = {j, jpm, jp2m, . . . , jp(|Cj,d|−1)m} and j = jpm|Cj,d|.
The cardinalities of the cyclotomic cosets modulo different integers are related
as follows: if d|N |pr − 1 then |Cj,d| ≤ |Cj,N |, in fact |Cj,d| is a divisor of |Cj,N |.

Recall that the conjugates of an element a ∈ GF(pr) with respect to GF(pm)
are defined as a, ap

m

, ap
2m

, . . . ap
( r

m
−1)m

. If α is a primitive element of GF(pr),
then the conjugates of αj are {αi | i ∈ Cj}.

We can distinguish whether an element a ∈ GF(pr) is in GF(pm) or in GF(pr)\
GF(pm) by checking whether ap

m

= a or not. Writing this condition for each
element of s and taking into account that s = DFT−1(S), we obtain the following
known result:

Property 3. Let GF(pr) be the smallest extension field of GF(pm) which contains
a primitive N -th root of unity. Let s be a sequence over GF(pr) of period N and
S = DFT (s). Then s ∈ GF(pm)N iff Spmi = Sp

m

i for all i = 0, 1, . . . , N − 1,
(with indices taken modulo N). In particular, S0 ∈ GF(pm).

3 Problem Transformation

In this section we recall results from [1], to be further developed in the next
section.
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The k-error linear complexity problem can be viewed as an optimisation prob-
lem: given integers N and k with k ≤ N and a sequence s of period N over a field
K, find e, a sequence of period N over the extension field F such that wH(e) ≤ k
and L(s + e) is minimal (F is the extension field of K containing an N -th root
of unity). We can transform this problem into an optimisation problem in the
DFT domain. Using Blahut’s theorem and the linearity of DFT we see that we
can search for sequences E of linear complexity at most k and which minimize
the weight of DFT (s) + E. The resulting sequence E is then transformed back
obtaining an optimal error sequence as e = DFT−1(E). Note that this error
sequence can be in the extension field used for computing the DFT rather than
in the original field K over which s was defined. We defined therefore a notion of
extension field k-error linear complexity, which is the k-error linear complexity
of a sequence of period N when viewed as a sequence over the smallest extension
field that contains an N -th root of unity.

Theorem 2. [1] Let s be a sequence of period N over a field K such that N is
not divisible by the characteristic of K, and let k ≤ N . Let F be the smallest
extension field of K which contains an N -th root of unity and let S = DFT (s).
For all sequences e, E of period N over F with E = DFT (e) we have the equiv-
alence: (e is such that wH(e) ≤ k and L(s + e) is minimal) ⇔ (E is such that
L(E) ≤ k and wH(S + E) is minimal)

The generic algorithm kDFT based on Theorem 2 was proposed in [1].

Algorithm kDFT

Input: s a sequence of period N over a field K,
N not divisible by the characteristic of K, k ≤ N ,

Output: e, a sequence of period N over F with wH(e) ≤ k and L(s + e) minimal.
The second output is Lk,N (s)

STEP 1. Determine F, α such that F is the smallest extension of K which
contains a primitive N-th root of unity α.
STEP 2. Calculate S = DFT (s) of period N over F .
STEP 3. Find E a sequence over F of period N and linear complexity L(E) ≤ k
such that wH(S + E) is minimal.
STEP 4. return(DFT−1(E), wH(S + E)).

Algorithm kDFT is of theoretic interest, however we do not know of an algorithm
for STEP 3 other than exhaustive search (for finite fields). In [1] we proposed
therefore an approximation algorithm. Namely, given a sequence S ∈ FN we
aim to find a sequence E of linear complexity at most k such that wH(S +E) ≤
wH(S), but wH(S + E) is not necessarily minimal. To this end, we limit our
search to sequences E which have minimal period at most k besides having
period N . This minimal period d must therefore be a divisor of N . Obviously
any sequence of period at most k will also have linear complexity at most k. In
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order to decrease wH(S + E) as much as possible we choose the elements of E
so that they cancel out as many elements of S as possible.

Theorem 3. Let S be a sequence of period N over a field F . Suppose N is not
prime and d is a proper divisor of N . For each j = 0, 1, . . . , d − 1 denote by βj
(one of) the most frequent element among Sj , Sd+j, . . . , S( N

d −1)d+j. Let E be the
sequence of period d defined as E = (−β0,−β1, . . . ,−βd−1). Then E achieves
the minimal value of wH(S + E) (E is viewed as a sequence of period N for the
purpose of computing this weight) among all sequences E over F of period d.

By computing E as above and taking the best value over all d with d ≤ k and
d|N we obtained an approximation for STEP 3 of kDFT and we called the
resulting algorithm kDFT -Approximation.

4 Approximation Algorithm for the k-Error Linear
Complexity

In order to design an algorithm that only produces sequences E ∈ FN with
the property that DFT−1(E) ∈ KN , we examine closer the properties of such
sequences in relation to Theorem 3. From now on we only work in finite fields
with K = GF(pm) and F = GF(pr).

Lemma 1. Let s ∈ GF(pm)N and S = DFT (s). Let d be a proper divisor of N
and consider S arranged in an N

d × d matrix. The number of occurrences of an
element a ∈ GF (pr) in column j equals to the number of occurrences of ap

m

, in
column (jpm mod d).

Proof. Indexing the rows of the matrix from 0 to N
d − 1 and the columns from 0

to d − 1, the entry in row i column j will be Sid+j . Note that because d|N ,
we have (u mod N) mod d = u mod d for any integer u. From Property 3,
Sp

m

id+j = Spm(id+j) mod N = S((pmi+� pmj
d �) mod N

d )d+(pmj mod d), i.e. the power pm

of the entry in row i, column j appears in row ((pmi + p
mj
d �) mod N

d ), column
(pmj mod d). It can be easily verified that for a fixed j, ((pmi + p

mj
d �) mod N

d )
takes distinct values for distinct row indices i. Hence each entry in column
(pmj mod d) is the pm power of a distinct entry in column j.

Corollary 1. With the notations of Lemma 1, if GF(pum) is a subfield of GF(pr)
(i.e. 1 ≤ u ≤ r

m), and βj is the most frequent among those elements in column j

which are also in GF(pum), then βp
m

j is the most frequent among those elements
in column pmj mod d which are also in GF(pum).

Proof. We use Lemma 1 and the fact that for any element a ∈ GF(pr) we have
a ∈ GF(pum) iff all the conjugates of a with respect to GF(pm) are in GF(pum).

Theorem 4. Let E ∈ GF(pr)N be a sequence which also has a smaller period
d|N . The following statements are equivalent:
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i. DFT−1(E) ∈ GF(pm)N

ii. For all j = 0, 1, . . . , d − 1 we have Epm

j = Ejpm mod d
iii. Let 0, j1, j2, . . . , jv be coset representatives modulo d (with respect to pow-

ers of pm). For each j ∈ {0, j1, j2, . . . , jv} we have Ej ∈ GF(pm|Cj,d|) and
Ejpum mod d = Epum

j for all u = 1, 2, . . . , |Cj,d| − 1.

Proof. The equivalence of the first two assertions follows easily from Property 3
and the fact that E has period d.

The equivalence of the second and third assertion is immediate and we will
only add that applying repeatedly the equality Epm

j = Ejpm mod d from ii. yields

Ejp2m mod d = Epm

jpm mod d = (Epm

j )p
m

= Ep2m

j . More generally Ejpum mod d =

Epum

j for any positive integer u. In particular for u = |Cj,d| we obtain

E
jpm|Cj,d| mod d = Epm|Cj,d|

j . By the definition of Cj,d we have jpm|Cj,d| mod d =

j, and therefore Ej = Epm|Cj,d|

j , which occurs iff Ej ∈ GF(pm|Cj,d|).

The following theorem follows from Corollary 1 and Theorem 4. It generalises
Theorem 3 which becomes the particular case m = r:

Theorem 5. Let s be a sequence of period N over GF(pm) and S = DFT (s) ∈
GF(pr)N . Suppose N is not prime and d is a proper divisor of N . Let 0, j1, . . . , jv
be coset representatives modulo d (with respect to powers of pm). For each
j ∈ {0, j1, j2, . . . , jv} denote by βj (one of) the most frequent element among
those elements of the list Sj , Sd+j, . . . , S( N

d −1)d+j which are also in GF(pm|Cj,d|).

If none of these elements is in GF(pm|Cj,d|), set βj = 0. Set βjpum = βp
um

j ,
for u = 1, 2, . . . , |Cj,d| − 1. Let E be the sequence of period d defined as E =
(−β0,−β1, . . . ,−βd−1).

Then E (viewed as a sequence of period N) achieves the minimal value of
wH(S + E) among all sequences E over GF(pr) of period d which have the
additional property DFT−1(E) ∈ GF(pm)N .

Based on the above results we devise an algorithm GetErrorBaseF ield for find-
ing a candidate sequence E (corresponding to STEP 3 in kDFT Algorithm from
previous section). The cardinalities of the cyclotomic cosets Cj,d (as defined in
Section 2) do not depend on s or S so they can be precomputed in O(d) time as
each element of {0, 1, . . . , d − 1} only appears in one cyclotomic coset.

Example 1. The following sequence S of length 63 over the field GF(26), defined
by a primitive element α, is written row by row as a 9 × 7 matrix:

0 α9 α18 0 α36 0 0
0 α9 α36 0 α32 0 0
0 α α18 0 α9 0 0
0 α α16 0 α4 0 0
0 α α2 0 α36 0 0
0 α18 α16 0 α32 0 0
0 α8 α2 0 α32 0 0
0 α8 α16 0 α4 0 0
0 α8 α2 0 α4 0 0
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Algorithm GetErrorBaseF ield(S, N, d, pm)

Input: S, sequence of period N over GF(pr) with DFT−1(S) ∈ GF(pm)N , m|r.
d a proper divisor of N

Output: E, a sequence of period N over GF(pr) such that E achieves the
minimal value of wH(S + E) among all sequences of period d with
the property that DFT−1(E) ∈ GF(pm)N .

for j ← 0, 1, 2, . . . , d − 1 do
flag[j] ← 0 (keeps track of columns processed so far)

for j ← 0, 1, 2, . . . , d − 1 do
if flag[j] = 0 then

compute βj as (one of) the most frequent value among those values
in the list Sj , Sd+j , . . . S( N

d
−1)d+j which are also in GF(pm|Cj,d|);

if none of them is in GF(pm|Cj,d|) then set βj = 0
flag[j] ← 1; u ← j; v ← pmu mod d

while flag[v] = 0 do βv ← βpm

u ; flag[v] ← 1; u ← v; v ← pmv mod d;
endif

for j ← 0, 1, 2, . . . , d − 1 do
for i ← 0, 1, . . . , N

d
− 1 do

Edi+j = −βj

return(E)

It can be verified that this sequence is the DFT of a binary sequence as it
satisfies Property 3. Choosing (one of) the most frequent entry in each column, as
in Theorem 3, we can obtain for example E = (0, α, α16, 0, α4, 0, 0). E decreases
the weight of S by 9. Note that DFT−1(E) �∈ GF(2)63.

We have |C0,7| = 1 and |Cj,7| = 3 for all 1 ≤ j ≤ 6. So in Algorithm
GetErrorBaseF ield we have to choose E0 to be in GF(2) and all the other
entries of E to be in GF(23), i.e. powers of α9. E also has to satisfy the con-
jugacy constraints E2 = E2

1 , E4 = E2
2 , E6 = E2

3 and E5 = E2
6 . We obtain

E = (0, α9, α18, 0, α36, 0, 0), which decreases the weight of S only by 6, but has
the property that DFT−1(E) ∈ GF(2)63.

If a sequence of period N has also a smaller period d|N (like the sequence E
in the discussion above), it can be easily verified by direct computation that its
DFT and inverse DFT have a particular form, namely they have zero entries
on all positions except possibly the first one and then every N

d -th one (i.e. the
positions whose indices are multiples of N

d ):

Theorem 6. Let E be a sequence of period N over a field F and let d|N . Set
e = DFT−1(E), e′ = DFT (E). We have the equivalence:
E has period d ⇔ e and e′ are 0 on all positions with indices not divisible by N

d
If the conditions above are satisfied, then (e0, eN

d
, . . . , e(d−1) N

d
) = DFT−1(E0, E1,

. . . Ed−1) and (e′0, e
′
N
d

, . . . , e′(d−1) N
d

) = N
d DFT (E0, E1, . . .Ed−1), the DFT being

computed here for sequences of period d using α
N
d as primitive d-th root of unity.
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Based on the discussion above we propose the following approximation algo-
rithm, kDFT -Approximation-BaseF ield, for the k-error linear complexity.

Algorithm kDFT -Approximation-BaseF ield

Input: s a sequence of period N over a field K,
N not divisible by the characteristic of K, k ≤ N .

Output: e, a sequence of period N over K such that wH(e) ≤ k and L(s + e) is
minimal among all sequences e for which there is some d|N , d ≤ k
such that e has zeros on all positions with indices not divisible by N

d
;

The second output is L(s + e).
STEP 1. Determine F, α such that F is the smallest extension of K which
contains a primitive N-th root of unity α.
STEP 2. Calculate S = DFT (s) of period N over F .
Lbest ← wH(S); Ebest ← (0, 0, . . . , 0)
STEP 3.
for each proper divisor d of N do

E ← GetErrorBaseF ield(S,N, d)
if wH(S + E) < Lbest then Ebest ← E; Lbest ← wH(S + E)

endfor
STEP 4. return(DFT−1(Ebest), Lbest)

Note that the linear complexity and the k-error linear complexity of a periodic
sequence s are invariant to shifting s. Moreover e is an error sequence which
minimises the linear complexity of s + e iff e(h) is an error sequence which
minimises the linear complexity of s(h) + e(h) (recall that we denoted by s(h) the
sequence s shifted by h positions to the right).

For a givendandh, ifwe apply the algorithmkDFT -Approximation-BaseF ield
to the sequence s(h) and we shift the errorobtainedbackh positions to the left, then
we obtain the optimum error for s among all errors which have the non-zero entries
“spaced out” every N

d positions starting with position N − h. Obviously we would
only need to do that for h = 0, 1, . . . , Nd − 1 in order to obtain all optimal error
sequences that have the non-zero entries “spaced out” every N

d positions (with no
restrictions on where to start). For ease of reference we will call such errors “evenly
spaced”:

Definition 4. A periodic sequence e ∈ FN is called an evenly spaced k-error
sequence if there is d ≤ k, d a proper divisor of N and there is an i with 0 ≤
i < N

d such that all the non-zero entries of e are among ei, eN
d +i, . . . , eN

d (d−1)+i.
(Note such an error has weight at most d.)

The results above lead us to the following algorithm kDFT -Approximation-
BaseF ield-AllShifts. The function ShiftDFT (S) returns a sequence S′ com-
puted as S′

i = αiSi for i = 0, 1, . . . , N − 1. By Property 2, this means that if
S = DFT (s) then S′ = DFT (s(1)).
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Algorithm kDFT -Approximation-BaseF ield-AllShifts

Input: s a sequence of period N over a field K,
N not divisible by the characteristic of K, k ≤ N ,

Output: e, a sequence of period N over K such that L(s + e) is minimal among
all evenly spaced k-error sequences e
the second output is L(s + e).

STEP 1. Determine F, α such that F is the smallest extension of K which
contains a primitive N-th root of unity α.
STEP 2. Calculate S = DFT (s) of period N over F .
hbest ← 0; Lbest ← wH(S); Ebest ← (0, 0, . . . 0)
STEP 3.
for each proper divisor d of N do

E ← GetErrorBaseF ield(S,N, d); L ← wH(S + E)
if L < Lbest then Ebest ← E; Lbest ← L; hbest ← 0;
for h ← 1, . . . , N

d
− 1 do

S ← ShiftDFT (S); E ← GetErrorBaseF ield(S,N, d); L ← wH(S + E)
if L < Lbest then Ebest ← E; hbest ← h; Lbest ← L

endfor
endfor
STEP 4. Compute e, the sequence obtained from DFT−1(Ebest) by cyclically shifting
all terms of each period to the left by hbest positions
return(e, Lbest)

We examine now the complexity of the algorithms above:

Lemma 2. The function GetErrorBaseF ield(S, N, d) has a computational
complexity of O(N log N

d ).

Proof. The function GetErrorBaseF ield can be implemented by expressing all
non-zero elements as powers of α. In each column we select the entries which are
in the correct subfield, sort them in O(Nd log N

d ) according to the exponents and
then find in O(Nd ) time the most frequent in a column. So a total of O(N log N

d )
operations.

Theorem 7. The algorithm kDFT -Approximation-BaseF ield-AllShifts has
computational complexity O(N2 log N log log N).

Proof. By Lemma 2, GetErrorBaseF ield takes O(N log N
d ). For each divisor

d of N , this function is called N
d times, so a total of O(N

∑
d|N

N
d log N

d ) =
O(N
∑

d|N d log d). By Grönwall’s Theorem [5],
∑

d|N d can be estimated as
O(N log log N), so we can estimate

∑
d|N d log d as O(N log N log log N). We

obtain a total of O(N2 log N log log N) for STEP 3. The DFT computations in
STEP 2 and 4 are dominated by that.

We note that a more refined estimate of
∑

d|N d log d might give an even lower
O complexity for this algorithm.
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As our algorithm will obtain in polynomial time an optimum among all evenly
spaced k-error sequences, it will be interesting to determine whether this re-
stricted search space is still exponential like the total search space (there are∑k

i=0

(
N
i

)
(|K|−1)i errors of weight up to k) or it is polynomial in size, in which

case our algorithm would be less interesting. For a given d in Definition 4 there
are N

d |K|d error sequences. The sets of error sequences for different factors d
are disjoint only if the values d are coprime, so rather than go into a lengthy
inclusion-exclusion argument, let us note that a lower bound on the number of
evenly spaced k-error sequences will be N

d |K|d, with d the largest of the factors
of N with 1 < d ≤ k. Hence the search space is still exponential in k, so our
polynomial time algorithm is indeed efficient.

5 Experimental Results

We implemented the algorithms kDFT-Approximation-BaseField and kDFT-
Approximation-BaseField-AllShifts presented in Section 4 using GAP [4].

The results of several experiments are shown in Tables 1, 2 and 3. We tested
binary sequences of odd lengths N up to 255 excluding those that are prime and
those for which the extension field GF(pr) in which the primitive N -th root of
unity lies has r ≥ 20 (the latter restriction is only for efficiency reasons). We
also tested a few higher lengths of the form N = 2r−1, namely N = 1023, 2047.

Table 1. Experimental results

kDFT-Approx AllShifts kDFT-Approx-BF BF-AllShifts

Length Extension Divisor Success Av. decr. of Success Av. decr. of Success Av. decr. of Success Av. decr. of

N field d rate lin. compl. rate lin. compl. rate lin. compl. rate lin. compl.

15 GF (24) 3 92 24.91% 100 40.7% 88 23.2 % 99 38.52%

5 91 39.3% 97 48.9% 91 39.3% 97 48.9%

21 GF (26) 3 93 17.75% 100 32.03% 86 17.94% 98 30.90%

7 99 34.58% 99 42.34% 99 34.58% 99 42.34%

27 GF (218) 3 100 10.8% 100 15.11% 47 5.83% 74 9.94%

9 100 34.2% 100 37.93% 48 7.25% 74 10.66%

33 GF (210) 3 90 7.02% 93 10.73% 90 6.95% 92 9.34%

11 100 32.92% 100 35.63% 100 32.93% 100 35.63%

35 GF (212) 5 98 15.2% 99 19.71% 97 14.42% 99 19.52%

7 100 18.22% 100 23.56% 100 17.58% 100 21.31%

39 GF (212) 3 90 6.10% 94 9.45% 90 5.83% 90 7.33%

13 100 33.61% 100 35.35% 100 33.61% 100 35.35%
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Table 2. (Continued)

kDFT-Approx AllShifts kDFT-Approx-BF BF-AllShifts

Length Extension Divisor Success Av. decr. of Success Av. decr. of Success Av. decr. of Success Av. decr. of

N field d rate lin. compl. rate lin. compl. rate lin. compl. rate lin. compl.

45 GF (212) 3 99 9.76% 100 16.67% 52 8.13% 94 13.44%

5 94 13.48% 96 17.91% 94 13.24% 96 17.73%

9 100 21.5% 100 27.35% 100 20.49% 100 26.7%

15 100 35.56% 100 39.64% 94 13.72% 96 18.31%

51 GF (28) 3 92 6.36% 100 15.98% 89 5.06% 97 13.97%

17 100 33.52% 100 35.61% 100 33.52% 100 35.61%

57 GF (218) 3 90 3.99% 90 4.23% 90 3.99% 90 4.23%

19 100 33.38% 100 34.71% 100 33.38% 100 34.71%

63 GF (26) 3 93 8.9% 99 16.66% 58 7.05% 99 15.52%

7 98 14.78% 100 22.06% 98 13.71% 100 21.52%

9 98 17.72% 100 25.07% 97 17.16% 100 24.42%

21 100 33.94% 100 37.74% 100 30.82% 100 34.8%

65 GF (212) 5 94 7.09% 94 9.38% 94 6.96% 94 8.53%

13 99 19.93% 100 22.19% 99 19.73% 100 21.42%

85 GF (28) 5 99 8.41% 100 14.36% 99 7.16% 99 13.69%

17 100 20.33% 100 23.67% 100 20.18% 100 23.01%

91 GF (212) 7 99 6.84% 100 9.66% 99 6.44% 99 7.15%

13 100 14.91% 100 16.96% 100 14.55% 100 16.96%

93 GF (210) 3 95 4.57% 100 11.43% 90 3.52% 100 10.67%

31 100 33.63% 100 35.69% 100 33.63% 100 35.69%

105 GF (212) 3 93 4.24% 99 9.13% 89 3.81% 99 8.88%

5 93 5.55% 97 10.46% 92 5.24% 97 10.37%

7 98 7.33% 100 11.45% 98 6.7% 100 10.85%

15 100 14.11% 100 17.77% 100 13.67% 100 17.39%

21 100 19.70% 100 22.94% 100 19.48% 100 22.58%

35 100 33.54% 100 36.24% 100 33.54% 100 36.28%

117 GF (212) 3 100 2.96% 100 6.43% 57 1.92% 83 3.98%

9 100 7.38% 100 11.45% 100 7.32% 100 10.92%

13 100 11.43% 100 13.02% 100 11.36% 100 13.02%

39 100 33.74% 100 34.59% 100 32.12% 100 33.14%



Computing the k-Error Linear Complexity 163

Table 3. (Continued)

kDFT-Approx AllShifts kDFT-Approx-BF BF-AllShifts

Length Extension Divisor Success Av. decr. of Success Av. decr. of Success Av. decr. of Success Av. decr. of

N field d rate lin. compl. rate lin. compl. rate lin. compl. rate lin. compl.

133 GF (218) 7 100 4.5% 100 5.17% 100 4.5% 100 4.5%

19 100 14.63% 100 15.93% 100 14.40% 100 15.93%

171 GF (218) 3 97 1.71% 99 2.23% 50 1.13% 69 1.55%

9 99 4.52% 99 4.9% 99 4.48% 99 4.77%

19 100 11.08% 100 11.59% 100 11.07% 100 11.59%

57 100 33.5% 100 33.94% 100 32.42% 100 32.92%

255 GF (28) 3 99 2.91% 100 7.01% 95 1.83% 100 6.56%

5 99 4.11% 100 7.77% 97 3.77% 100 7.54%

15 100 8.23% 100 11.76% 100 7.31% 100 10.92%

17 100 9.38% 100 13.29% 100 9.19% 100 13.18%

51 100 20.92% 100 23.21% 100 20.77% 100 23.08%

85 100 34.03% 100 34.98% 100 34.03% 100 34.98%

1023 GF (210) 3 100 0.82% 100 2.44% 84 0.46% 100 2.34%

11 100 2.15% 100 3.55% 100 2.08% 100 3.53%

31 100 4.45% 100 5.92% 100 4.05% 100 5.58%

33 100 4.32% 100 6.21% 100 4.20% 100 6.11%

93 100 9.64% 100 11% 100 9.58% 100 10.93%

341 100 33.44% 100 33.73% 100 33.44% 100 33.73%

2047 GF (211) 23 100 2.06% 100 2.72% 100 2.05% 100 2.7%

89 100 4.77% 100 5.85% 100 4.77% 100 5.85%

For each length we generated a sample of 100 sequences using the standard
pseudorandom number generator (linear congruential generator). The Tables
show for each length N , the extension field for the primitive N -th root of unity,
and, for each of the proper divisors of N , the number of sequences (out of 100) for
which an error sequence which decreases the complexity was found (success rate)
and the average decrease of complexity which has been thus obtained (where the
decrease in complexity is computed as (L(s) − L(s + e))/L(s), where e is the
error sequence returned by the algorithm). Note that we include in the average
all sequences, even those for which no decrease is obtained. We display this
information for each of the algorithms: kDFT -Approximation presented in [1],
kDFT -Approximation-AllShifts (kDFT -Approximation with the added shifting
presented at the end of Section 4), as well as kDFT -Approximation-BaseField
and kDFT -Approximation-BaseField-AllShifts proposed in Section 4.
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For practical applications the cases of interest are those where k is some small
percentage (e.g. 5% or 10%) of the length N . In the tables these are the rows
where the ratio d/N is below such a percentage.

One can notice that the kDFT -Approximation-BaseField algorithms are very
successful in finding good error sequences for the majority of cases, the success
rate being close to 100% for most of the sequences and divisors. The base field al-
gorithms are giving only slightly lower average decrease in complexity compared
to the extension field case. The shifting technique gives significant improvements.
See for example the sequences of length 27, when a base field error sequence is
found only in 47% of the cases for divisor 3, however the shifting technique gives
significantly more successful approximation especially in the base field case.

A comparison with the optimal solution would be interesting, but exhaustive
search is infeasible except for very small lengths. We implemented this test for
all the 100 sequences of length 15 and k = d = 3. The average accuracy of the
approximation in this experiment was 2.58 for kDFT -Approximation-BaseField
and 2.03 for kDFT -Approximation-BaseField-AllShifts, where the accuracy is
the ratio between the approximate value of L3(s) returned by each of the al-
gorithms and the exact value calculated using an exhaustive technique. These
results are not very good, but that is to be expected as the restricted search
space is relatively small compared to the total space.

6 Concluding Remarks

In this paper, we present and evaluate a polynomial approximation algorithm
for the computation of the k-error linear complexity of a sequence, by develop-
ping our previous approximation algorithm for the extension field k-error linear
complexity, to only consider error sequences over the original field.

While the search space is still exponential, the complexity of the algorithm
is polynomial, O(N2 log N log log N). Our experiments show that the algorithm
is successful in finding good error sequences in the majority of the applicable
cases.
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Abstract. Using the natural action of GL2(F2) � S3 over F2[X], one
can define different classes of polynomials strongly analogous to self-
reciprocal irreducible polynomials. We give transformations to construct
polynomials of each kind of invariance and we deal with the question of
explicit infinite sequences of invariant irreducible polynomials in F2[X].
We generalize results obtained by Varshamov, Wiedemann, Meyn and
Cohen and we give sequences of invariant irreducible polynomials. More-
over we explain what happens when the given constructions fail. We also
give a result on the order of the polynomials of one of the classes: the
alternate irreducible polynomials.

Keywords: irreducible polynomials, finite fields, sequences of irreducible
invariant polynomials.

1 Introduction

In [6], we studied the natural action of the 6 elements group S3 � GL2(F2) �
PGL2(F2) on the set

I = {P ∈ F2[X ]| P irreducible} \ {X, X + 1}.

This action of S3 on I, is defined by the two operations

P+(X) = P (X + 1)

P ∗(X) = XdegPP (
1
X

).

The action of all other elements of S3 are obtained by compositions of these two
operations. We shall write for example P ∗+ for (P ∗)+.

Definition 1. The hexagon of P ∈ I is the orbit of P :

Hex(P ) = {P σ|σ ∈ S3}.

The degree of a hexagon is the degree of its polynomials. When Card(Hex(P )) <
6 we say that the hexagon is degenerate.
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Such an orbit has 1, 2, 3 or 6 elements according to the isotropy subgroup of P .
In S3, apart from the trivial subgroups, we have 3 subgroups of order 2, and one
of order 3. Each of them will give a family of invariant irreducible polynomials.
The case of 1 element hexagon is easy : I(2) = {X2+X+1} is the only 1 element
degenerate hexagon. This polynomial is the only fixed point of the action.

Let us define for any integer n > 1

I(n) = {P ∈ I| deg P = n},

then this grading of I is stable under the action (but this is not true for n = 1).

2 Self-Reciprocity and the 3 Elements Degenerate
Hexagons

Self-reciprocal polynomials are invariant under the action of one subgroup of
order 2 (generated by ∗ operation). In fact there is no reason to focus on one
subgroup because they are all conjugate.

2.1 The Invariant Polynomials

Definition 2. Let P be a polynomial, P is said to be self-reciprocal (resp.
periodic, median) if P ∗ = P (resp. P+ = P , P ∗+∗ = P+∗+ = P ). We easily
check that these polynomials are of even degree.

Definition 3. Let P and Q, P �= Q, be two polynomials of I, {P, Q} is said
to be a reciprocal pair (resp. periodic pair, median pair) if Q = P ∗ (resp.
Q = P+, Q = P ∗+∗). As the polynomials of a pair have the same degree, by
extension, it will also be the degree of the pair.

Definition 4. A 3 elements degenerate hexagon is made of a self-reciprocal
irreducible polynomial P , a median irreducible polynomial Q and a periodic ir-
reducible polynomial R such that:

P Q R��
+

�� ��
∗

��

∗

��

∗+∗

��

+

�� .

The next theorem extends Meyn’s one (see [4], Theorem 1) to the periodic and
median polynomials:

Theorem 1
i) Each self-reciprocal (resp. periodic, median) irreducible polynomial of de-

gree 2n (n ≥ 1) is a factor of the polynomial

Hr,n(X) = X2n+1 + 1

(resp. Hp,n(X) = X2n

+ X + 1, Hm,n(X) = X2n

+ X2n−1 + 1).

ii) Each irreducible factor of degree ≥ 2 of Hr,n (resp. Hp,n, Hm,n) is a self-
reciprocal (resp. periodic, median) polynomial of degree 2d, where d divides n
such that n/d is odd.
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Proof. In [4], Meyn proves the theorem for self-reciprocal polynomials. We triv-
ially extend it to the periodic (resp. median) polynomials noting that, on the one
hand, Hp,n = H+∗

r,n (resp. Hm,n = H+
r,n) and on the other hand, a periodic (resp.

median) irreducible polynomial is obtained from a self-reciprocal one, applying
the transformation +* (resp. +) on it. ��

2.2 The Quadratic Transformations

Definition 5. We define the maps φp, φm, φr: F2[X ] → F2[X ] by

φp(P ) = P (X2 + X)

φm(P ) = φp(P )∗ = X2n P (
X + 1
X2 )

φr(P ) = φp(P )∗+ = (X2 + 1)n P (
X

X2 + 1
).

The image by φp (resp. φm, φr) of a polynomial of I(n) is a periodic (resp.
median, self-reciprocal) polynomial of degree 2n but is not always irreducible.

Proposition 1. Let P ⊂ F2[X ] be the subset of periodic polynomials, then P is
a sub algebra of F2[X ] and φp : F2[X ] → P is an algebra isomorphism.

Proof. Only φp surjectivity deserves proof. Let Q be a periodic polynomial, its
degree is an even integer 2n. Then, Q + (X2 + X)n is a periodic polynomial of
degree < 2n. Iterating this process, we obtain a polynomial P of degree n such
that φp(P ) = Q. ��

We call trace of a polynomial P �= 0 of degree n, and write Tr(P ), the Xn−1

coefficient.
The following theorem and corollary can be seen as an extension of Meyn’s

Lemma (see [4], Lemma 4):

Theorem 2. Let P ∈ I(n). If Tr(P ) = 1, then φp(P ) is a periodic irreducible
polynomial of degree 2n, else, φp(P ) is the product of two irreducible polynomials
of degree n, which form a periodic pair.

Conversely, let Q be an irreducible periodic polynomial of degree 2n (resp. let
{R, R+} be a periodic pair of degree n), then, there exists a unique P ∈ I(n)
such that φp(P ) = Q (resp. φp(P ) = RR+).

Proof. Let P ∈ I(n) and let h be a root of φp(P ), then h2 + h is a root of P by
definition and generates the field F2n . This implies that F2[h] ⊃ F2[h2+h] = F2n .
In turn h cannot be a root of a polynomial whose degree is < n. We conclude that
the irreducible decomposition of φp(P ) contains only polynomials of degree ≥ n.
This leaves only two cases: φp(P ) is irreducible of degree 2n or is the product of
two irreducible polynomials A and B of degree n.

Suppose we are in the second case : AB being periodic, we have two possi-
bilities: B = A+ or A and B are themselves periodic. This last event cannot
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occur because if φp(P ) = AB with A and B periodic and irreducible, then by
Proposition 1, there exist U and V such that φp(U) = A and φp(V ) = B.
Then φp(P ) = φp(U)φp(V ) = φp(UV ) and P = UV . This would contradict the
irreducibility of P .

We now prove that the trace dispatches the two cases. Suppose φp(P ) = AB,
then we have h ∈ F2n . We call a = h2+h ∈ F2n , then Tr(a) = Tr(h2)+Tr(h) = 0
and Tr(P ) = 0 because a is a root of P . Conversely if Tr(P ) = 0 then Tr(a) = 0
for any root a of P . Then it is well known that the equation X2 + X = a has
roots in F2n (using the “half-trace”). This means that φp(P ) is reducible since
it has a root in F2n .

We prove now the “conversely” part of the theorem.
Let Q be an irreducible periodic polynomial of degree 2n and let h be a root of

Q, then, h+1 is also a root of Q and, from Theorem 1, we know that h+1 = h2n

.
Now, if

E = {h2i

|0 ≤ i < n},

Q =
∏
h∈E

(X + h)(X + h + 1) =
∏
h∈E

(X2 + X + h(h + 1)).

We take
P =
∏
h∈E

(X + h(h + 1)),

it is then clear that φp(P ) = Q. Let h(h+1) be a root of P , then any other root
can be written h2k

(h2k

+1) = [h(h+1)]2
k

for some integer k ≥ 1. In other terms,
the roots of P are conjugate by Frobenius. This implies that P ∈ F2[X ]. If P
is reducible, say P = ST then φp(P ) = φp(S)φp(T ) = Q. This decomposition
is trivial because Q is irreducible. This forces S or T to be trivial and P to be
irreducible. Now, if P is not unique, there exists another irreducible polynomial
S such that φp(S) = Q, then h(h + 1) is a root of S by definition, so S and P
have the same roots and consequently, S = P .

In the same manner, let {R, R+} be a periodic pair of degree n and F be the
set of the n roots of R then taking

P =
∏
a∈F

(X + a(a + 1)),

we obtain a P ∈ F2[X ] such that φp(P ) = RR+.
Suppose P = ST with two non constant polynomials in F2[X ], then φp(P ) =

φp(S)φp(T ) = RR+. Consequently, we can write φp(S) = R and this is a contra-
diction because φp(S) is periodic and R is not, so P is irreducible. The unicity
of P is proved like previously. ��

Corollary 1. Let P ∈ I(n), if Tr(P ) = 1, then, φr(P )(resp. φm(P )) is a self-
reciprocal (resp. median) irreducible polynomial of degree 2n, else, it is the prod-
uct of two irreducible polynomials of degree n, which form a reciprocal (resp.
median) pair.
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Conversely, let Q be an irreducible self-reciprocal (resp. median) polynomial of
degree 2n, then, there exists P ∈ I(n) such that φr(P ) = Q (resp. φm(P ) = Q).
In the same way, let {R, R∗} (resp. {R, R+∗+}) be a reciprocal (resp. median)
pair of degree n, then, there exists a unique P ∈ I(n) such that φr(P ) = RR∗

(resp. φm(P ) = RR+∗+).

Proof. We prove the corollary only for the self-reciprocal case, the median case
being similar.

If Tr(P ) = 1, from Theorem 2, we know that φp(P ) is periodic in I(2n). Using
Definitions 4 and 5, we see that φr(P ) is self-reciprocal in I(2n). If Tr(P ) = 0,
there exists a periodic pair {S, S+} of degree n such that φp(P ) = SS+. Now, as
the transformations * and + are distributive with regard to the multiplication in
F2[X ], φr(P ) = (SS+)∗+ = S∗+S+∗+ = S∗+(S∗+)∗, which is a reciprocal pair
of degree n.

Using Theorem 2, Definitions 4 and 5, the proof of the second part is
obvious. ��

We get a simple way to construct 3 and 6 elements hexagons: let P be an irre-
ducible polynomial of degree n such that Tr(P ) = 1, then {φr(P ), φm(P ), φp(P )}
is a 3 elements degenerate hexagon of degree 2n. This is illustrated by the left-
side diagram. If Tr(P ) = 0, we have the right-side diagram, where {Q1, Q2},
{Q3, Q4} and {Q5, Q6} are the pairs such that φr(P ) = Q1Q2, φm(P ) = Q3Q4
and φp(P ) = Q5Q6 respectively.

P

φr(P ) φm(P ) φp(P )

φr

��

φm

��

φp

��
��
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��
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Fig. 1. Construction of hexagons by φr, φm and φp from an irreducible polynomial P
such that Tr(P ) = 1 (left) and Tr(P ) = 0 (right).

2.3 Infinite Sequences of Self-reciprocal, Median and Periodic
Irreducible Polynomials

Let P ∈ I(n), we denote c1(P ) the coefficient of X in P .
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Sequences of invariant irreducible polynomials appear implicitely in Varshamov
[8] and more explicitely in Wiedemann [9], Meyn [4] and Cohen [1].
These sequences appear in papers devoted to a more general problem: the con-
struction of irreducible polynomials (see Kyuregyan [2] and [3] for recent
references).

Our approach shows that, actually, there are three strongly analogous families
of invariant irreducible polynomials corresponding to the three conjugated 2-
groups of S3. The following theorem is an easy extension of the construction of
sequences of self-reciprocal irreducible polynomials given by Meyn and Cohen
to the median and periodic cases.

Theorem 3. Let P ∈ I(n) be such that c1(P ) = Tr(P ) = 1. Starting from
φr(P ) (resp. φm(P ), φp(P )) and iterating the transformation P → φr(P ) (resp.
P → φm(P+), P → φp(P ∗+)) one generates an infinite sequence of self-reciprocal
(resp. median, periodic) irreducible polynomials of degree 2in, i > 0.

Proof. We know by Theorem 2 that φr(P ) is self-reciprocal and irreducible. By
explicit computation, we see that Tr(φr(P )) = 1 and because of self-reciprocity,
c1(φr(P )) = 1. So by recurrence, we get a sequence of self-reciprocal irreducible
polynomials. Then, using the Definitions 4 and 5, we obtain sequences of median
and periodic polynomials. ��

2.4 Equivalent Transformations

In Definition 5 we defined φm and φr from φp in a natural way. Other transfor-
mations can be used instead of φp. They are obtained by choosing one “right”
action by an element of the group S3 before applying φp.

We construct in this way new transformation φ′
p and consequently new φ′

m and
φ′
r. We recover in this way the transformation φ′

r quoted in Section 2.3 which
is more frequently used in the mathematical literature for constructing self-
reciprocal polynomial. The results of the preceding sections can be transposed
with small changes. The following table lists these transformations:

Table 1. Equivalent quadratic transformations

φ′

p φ′

m = ∗ ◦ φ′

p φ′

r = + ◦ ∗ ◦ φ′

p

P (X2 + X + 1) = φp(P+) X2nP (X2+X+1
X2 ) (X2 + 1)nP (X2+X+1

X2+1
)

(X2 + X + 1)nP ( 1
X2+X+1

) = φp(P ∗+) (X2 + X + 1)nP ( X2

X2+X+1
) (X2 + X + 1)nP ( X2+1

X2+X+1
)

(X2 + X + 1)nP ( X2+X

X2+X+1
) = φp(P+∗+) (X2 + X + 1)nP ( X+1

X2+X+1
) (X2 + X + 1)nP ( X

X2+X+1
)

(X2 + X)nP (X2+X+1
X2+X

) = φp(P+∗) (X + 1)nP (X2+X+1
X+1

) XnP (X2+X+1
X

)

(X2 + X)nP ( 1
X2+X

) = φp(P ∗) (X + 1)nP ( X2

X+1
) XnP (X2+1

X
)
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3 Alternate Polynomials and 2 Elements Degenerate
Hexagons

We introduced in [6] the class of alternate polynomials over F2 :

Definition 6

– A polynomial P is said to be alternate if P ∗+ = P+∗ = P .
– Let P ∈ I, if P is not alternate, then {P, P ∗+, P+∗} is said to be an alter-

nate triplet. P , P ∗+ and P+∗ are of the same degree, so by extension, the
degree of an alternate triplet is the degree of its polynomials.

– A 2 elements degenerate hexagon is made of two distinct alternate ir-
reducible polynomials P and Q such that:

P Q��
+/∗

�� .

We refer again to [6] for the details of the following:

Proposition 2. The irreducible alternate polynomials are exactly the irreducible
factors of the polynomials

Bk(X) = X2k+1 + X + 1,

for k ∈ N.

If P is alternate then deg P ≡ 0 mod 3 or P = X2 +X +1. If deg P = 3m then
either P divides Bm and B∗

2m, or P divides B∗
m and B2m. In the first case we

say that P has type 1, in the second P has type 2.

Corollary 2. The order of an alternate irreducible polynomial of degree 3n di-
vides 22n + 2n + 1.

Proof. Let P ∈ I(n) be alternate. We suppose P is of type 1. Let a be a root of P ,
then, from Proposition 2, a2n+1+a+1 = 0. We put this equation to the 2n, we get
a2n(2n+1)+a2n

+1 = 0. Now, multiplying by a, we have a2n(2n+1)+1+a2n+1+a =
0. Finally, we replace the term in the middle using the first equation, we obtain
a2n(2n+1)+1 + 1 = 0.

If P is of type 2, then P ∗ is of type 1 and as P and P ∗ have same order, this
concludes the proof. ��

3.1 The Cubic Transformation

Let P ∈ F2[X ] of degree n, we define the map ψ : F2[X ] → F2[X ] by

ψ(P )(X) = (X2 + X)n P (
X3 + X2 + 1

X2 + X
).

We verify that ψ(P ) is alternate.
Let ε and ε2 be the roots of X2 + X + 1. For any irreducible P �= X2 + X + 1

in F2[X ] we have P (ε) ∈ {1, ε, ε2}. The main result of this section is:
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Theorem 4

– Let P ∈ I(n), n > 2. If P (ε) �= 1 then ψ(P ) is an irreducible alternate
polynomial of degree 3n, else, ψ(P ) = RST , where {R, S, T } is an alternate
triplet of degree n.

– Conversely, let Q ∈ I(3n), n > 1 be an alternate polynomial (resp. let
{R, R+∗, R∗+} be an alternate triplet of degree n), then there exists a unique
P ∈ I(n) such that ψ(P ) = Q (resp. ψ(P ) = RR+∗R∗+).

To complete the theorem, we precise that the irreducible (alternate) polynomials
of degree 3 are obtained from X and X + 1:

ψ(X) = X3 + X2 + 1 and ψ(X + 1) = X3 + X + 1,

and for the particular case X2 + X + 1 (whose value in ε is 0), we have:

ψ(X2 + X + 1) = (X2 + X + 1)3.

Before going into the proof of Theorem 4, we need to establish some results.
Let us take P ∈ I(n) with n > 2, K = F2n the splitting field of P , and h a

root of ψ(P ), then h �= 0, 1 and

a =
h3 + h2 + 1

h2 + h
= h +

1
h

+
1

h + 1
(1)

is a root of P . This implies K ⊂ K(h).
As h �= 0, 1, h is a root of the polynomial

Ta(X) = X3 + (1 + a)X2 + aX + 1. (2)

3.2 Proof of the First Part of Theorem 4

Proposition 3. Let w be a cubic root of (ε + a)(ε + a2), then the roots of (2)
are

hi = 1 + a + εiw +
b

εiw
,

with i = 0, 1 or 2, and b = a2 + a + 1. Moreover, they verify the relations
h1 = 1/(h0 + 1) and h2 = 1 + 1/h0.

Proof. The formulas for the hi are obtained by the classical Cardan’s method:
The first step is to cancel the X2 coefficient in

X3 + (a + 1)X2 + aX + 1 = 0.

We take X ′ = X + 1 + a and b = 1 + a + a2:

X ′3 + bX ′ + b = 0.

The second step is to use two variables u, v and take X ′ = u + v:

u3 + v3 + (u + v)(uv + b) + b = 0.
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Choosing uv = b, if we can solve{
uv = b

u3 + v3 = b

in K, we will have the roots of (2), they would be the

1 + a + u + v.

We can write: {
u3v3 = b3

u3 + v3 = b,

which is equivalent to a second degree problem. If Y = u3 then:

Y 2 + bY + b3 = 0,

and dividing by b2 we get:
Y 2

b2 +
Y

b
+ b = 0.

We take Z = Y/b (because b �= 0):

Z2 + Z + b = 0

Z2 + Z + 1 + a + a2 = 0

(Z + a)2 + (Z + a) + 1 = 0.

So the solutions are Z = a + ε and Z = a + ε2. And we find:

u3 = (1 + a + a2)(a + ε2),

which can be written equivalently:

u3 = (a + ε)(a + ε2)(a + ε2)

= (a + ε)(a2 + ε).

So we can choose u as one of the three cubic roots of (a+ε)(a2+ε). The quantity
v = b/u is then determined uniquely. The roles of v and u can be exchanged.

We now establish the relations between the roots:

1 +
1
h0

= h2
0 + (1 + a)h0 + a + 1 (from (2))

= w2 +
b2

w2 + (1 + a)(w +
b

w
) + a + 1

=
w3

w
+

b2w

w3 + (1 + a)(w +
b

w
) + a + 1

= [
b2

w3 + 1 + a]w + [
w3

b
+ 1 + a]

b

w
+ a + 1.
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Then using b = (ε + a)(ε2 + a) and w3 = (ε + a)(ε + a2) we find:

1 +
1
h0

= ε2w +
b

ε2w
+ a + 1 = h2.

The first relation can be obtained by the same trick. ��

Lemma 1. If P (ε) = 1 and n is even (resp. odd), then (ε + a)(ε + a2) has cubic
roots in K = F2n (resp. K(ε)).

Proof. Case n even: If n = 2m

P (ε) = (ε + a)(ε + a2)(ε + a4)(ε + a8) . . . (ε + a22m−2
)(ε + a22m−1

)

= (ε + a)(ε + a2)((ε + a)(ε + a2))4 . . . ((ε + a)(ε + a2))2
2m−2

.

So P (ε) = [(ε + a)(ε + a2)]k with

k = 1 + 4 + · · · + 22(m−1) =
2n − 1

3
.

Let w be a cubic root of (ε+a)(ε+a2) in some extension of F2 (it always exists).
Then, from what we have just said:

w2n−1 = w3. 2
n−1
3 = P (ε) = 1,

so w ∈ K.
Case n odd: let n = 2m+1, we write P (ε) in two different ways, using Fermat’s

little theorem:

P (ε) = (ε + a)(ε + a2)(ε + a4)(ε + a8) . . . (ε + a22m−2
)(ε + a22m−1

)(ε + a22m

)

P (ε) = (ε + a22m+1
)(ε + a22m+2

)(ε + a22m+3
)(ε + a22m+4

) . . . (ε + a24m

)(ε + a24m+1
).

Multiplying these equalities, we get

P (ε)2 = [(ε + a)(ε + a2)][(ε + a)(ε + a2)]4 . . . [(ε + a)(ε + a2)]2
4m

= [(ε + a)(ε + a2)]k,

with

k = 1 + 4 + · · · + 24m =
42m+1 − 1

3
=

22n − 1
3

.

Then
w22n−1 = w3. 2

2n−1
3 = P (ε)2 = 1,

and w ∈ K(ε) because [K(ε) : F2] = 2n. ��

Proposition 4. Let P ∈ I(n) be such that P (ε) = 1, then, ψ(P ) is reducible.
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Proof. If n is even this is a direct consequence of the preceding Lemma and
Proposition 3.

If n is odd, w ∈ K(ε) by the preceding lemma, so by Proposition 3 we have
K(h) ⊂ K(ε). If ψ(P ) is irreducible then for any of its root h we have [K(h) :
F2] = 3n and [K(h) : K] = 3. This is a contradiction so ψ(P ) is reducible. ��

Proposition 5. Let P ∈ I(n), n > 2, the polynomial ψ(P ) has 3n distinct roots
and

ψ(P ) =
n−1∏
k=0

Ta2k (X),

where a ∈ K is any root of P .

Proof. If a is a root of P and if h is a root of Ta, then h is a root of ψ(P ). Let
a′ be another root of P , distinct from a, then, the set of roots of Ta is disjoint
from the set of roots of Ta′ because of (1). As P is irreducible, all the roots of
P are conjugate and distinct, which concludes the proof of the proposition. ��

Proposition 6. Let P ∈ I(n), n > 2, if ψ(P ) is reducible in F2[X ] then ψ(P ) =
RST , where {R, S, T } is an alternate triplet of degree n, moreover P (ε) = 1.

Proof. Let h be a root of ψ(P ), we have seen that K ⊂ K(h). Thus, the degree of
the minimal polynomial of h is divisible by n and is ≤ 3n. This implies that the
irreducible factors of ψ(P ) in F2[X ] are at least of degree n, < 3n and multiples
of n. Consequently, one of the irreducible factor of ψ(P ) is of degree n. Let R
be such a factor.

We consider R∗+ and R+∗. They are polynomials of F2[X ] of degree n and
their roots are roots of ψ(P ), thus, they divide ψ(P ). If R is not alternate, then
we obtain an alternate triplet {R, R∗+, R+∗} of degree n, as expected.

If R is alternate let h be a root of R and a such that

a =
h3 + h2 + 1

h2 + h
,

then, like previously, a is a root of P and Ta(X)|R because h, 1
h+1 and h+1

h are

distinct roots of R. As R ∈ F2[X ] is irreducible of degree n, its roots are the h2k

,
with 0 ≤ k ≤ n−1. So, as Frobenius commutes with our group transformations,
Ta2k |R for every k. The Ta2k are distinct because of the preceding proposition.
It follows that R has 3n distinct roots which is a contradiction, so R cannot be
alternate.

We can explicit the decomposition:

ψ(P ) = R(X)(X + 1)nR
( 1

X + 1

)
XnR
(X + 1

X

)
,

with R ∈ F2[X ] irreducible of degree n > 2, so ψ(P )(ε) = ε3nR(ε)3 = R(ε)3 = 1.
Then, taking X = ε in the definition of ψ, we get ψ(P )(ε) = P (ε2). Conse-

quently, P (ε2) = P (ε)2 = 1 and P (ε) = 1. ��

The Propositions 4 and 6 give a demonstration of the first part of Theorem 4.
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3.3 Proof of the Second Part of Theorem 4

Proposition 7. let Q ∈ I(3n), n > 1 be an alternate polynomial (resp. let
{R, R+∗, R∗+} be an alternate triplet of degree n), then, there exists a unique
P ∈ I(n) such that ψ(P ) = Q (resp. ψ(P ) = RR+∗R∗+).

Proof. Let a be a root of Q, suppose type(Q) = 1 (type 2 is similar), then,
1/(1+a) and 1+1/a are also roots of Q, moreover, from Proposition 2, we know
that 1 + 1/a = a2n

and that 1/(1 + a) = a22n

. Now, we take

E = {a2i

|0 ≤ i < n},

from what we have just seen, we can write

Q =
∏
a∈E

(X + a)(X + 1 +
1
a
)(X +

1
1 + a

)

= (X2 + X)n
∏
a∈E

(X3 + X2 + 1
X2 + X

+
a3 + a2 + 1

a2 + a

)
.

We take

P =
∏
a∈E

(
X +

a3 + a2 + 1
a2 + a

)
,

it is then clear that ψ(P ) = Q. Let a3+a2+1
a2+a be a root of P , then any other root

can be written a2k

(1 + 1/a2k

)(1/(1 + a2k

)) = [a(1 + 1/a)(1/(1 + a))]2
k

for some
integer k ≥ 1. In other terms, the roots of P are conjugate by Frobenius. This
implies that P ∈ F2[X ].

To show that P is irreducible, we suppose that P = ST , with two non constant
polynomials in F2[X ], then, as deg ST = degS + deg T :

ψ(P ) = ψ(S)ψ(T ) = Q,

and this decomposition is non trivial. This is impossible because Q is irreducible,
so P is irreducible.

And to show that P is unique, we suppose that there exists another irreducible
polynomial P1 such that ψ(P1) = Q, then, a

3+a2+1
a2+a is a root of P1 by definition,

so P and P1 have the same roots and P = P1.

In the same way, let {R, R+∗, R∗+} be an alternate triplet of degree n and F
the set of the n roots of R, then, taking

P =
∏
a∈F

(
X +

a3 + a2 + 1
a2 + a

)
,

we obtain a P such that ψ(P ) = RR+∗R∗+ and P ∈ F2[X ].
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If P is reducible, we can write P = ST , with two non constant polynomials
in F2[X ], then

ψ(P ) = ψ(S)ψ(T ) = RR+∗R∗+.

Consequently, we can write ψ(S) = R and this is a contradiction because ψ(S)
is alternate and R is not, so P is irreducible. Finally, we can show that P is
unique as we did in the first part. ��

This completes the proof of Theorem 4.
As we did in the previous section, we propose a simple way to construct 2

elements hexagons: let P ∈ I(n) be such that P (ε) �= 1, then, using the fact that
ψ ◦ + = + ◦ ψ (the demonstration is obvious), we deduce that {ψ(P ), ψ(P+)}
is a 2 elements degenerate hexagon of degree 3n. This is illustrated by the left-
side diagram. On the other hand, if P (ε) = 1, we have the right-side diagram,
where {Q1, Q3, Q5} and {Q2, Q4, Q6} are the alternate triplets such that ψ(P ) =
Q1Q3Q5 and ψ(P+) = Q2Q4Q6 respectively:

P P+

ψ(P ) ψ(P+)

ψ

��

ψ

��

��
+

��

��
+/∗

��

P P+

Q1

Q2

Q3

Q4

Q5

Q6

ψ

���������������

���������������

��

ψ

��

����
��

��
��

��
��

�

����
��

��
��

��
��

�

��
+

��

��
+ �� �� ∗

��
��

∗

��
��

+ �� �� ∗
��

��

+

��

Fig. 2. Construction of hexagons by ψ from an irreducible polynomial P such that
P (ε) �= 1 (left) and P (ε) = 1 (right)

3.4 Infinite Sequences of Irreducible Alternate Polynomials

Proposition 8. If P is an irreducible alternate polynomial of degree > 2, then
ψ(P ) is an irreducible alternate polynomial.

Proof. Let P be an irreducible alternate polynomial, by Theorem 4, P = ψ(Q)
for some irreducible Q, then P (ε) = ε or ε2. By the same theorem ψ(P ) is
irreducible and alternate. ��

Theorem 5. Let P ∈ I(n) be such that P (ε) = ε or ε2, then the iteration ψ on
P generates a sequence of alternate irreducible polynomials of degree 3in, i > 0.

Proof. Theorem 4 and Proposition 8 prove this theorem. ��
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3.5 Computation of the Type of the Alternate Irreducible
Polynomials

Another consequence of Theorem 4 is that it gives a simple way to compute the
type:

Theorem 6. Let Q be an alternate irreducible polynomial of degree > 2 then its
type is 1 (resp. 2) if and only if Q(ε) = ε (resp. Q(ε) = ε2).

Proof. If deg Q = 3, we verify the theorem by calculus. We now suppose that
deg Q = 3n, n > 1. We know from the preceding that Q = ψ(P ) ∈ I(3n) for
some irreducible polynomial P and Q(ε) = P (ε)2.

If n is even, let h0 be a root of Q, then with the notations used in Proposition 3
we have h0 = 1 + a + w + b

w . Consequently:

h2n

0 = 1 + a + w2n

+
b

w2n .

From the demonstration of Lemma 1 we have w2n

= P (ε)w, and

h2n

0 = 1 + a + P (ε)w +
b

P (ε)w
.

If Q(ε) = ε (resp. ε2), then P (ε) = ε2 (resp. ε) and using again Theorem 4:

h2n

0 = 1 +
1
h0

( resp. h2n

0 =
1

h0 + 1
).

This is equivalent to say that Q is of type 1 (resp. type 2).
If n is odd the demonstration follows the same line except that we must use

w22n

= P (ε)2w = Q(ε)w . We compute:

h22n

0 = 1 + a + Q(ε)w +
b

Q(ε)w
.

If Q(ε) = ε (resp. ε2), then P (ε) = ε2 (resp. ε). We obtain:

h22n

0 =
1

h0 + 1
( resp. h22n

0 = 1 +
1
h0

).

This implies (by iteration for example) that:

h2n

0 = 1 +
1
h0

( resp. h2n

0 =
1

h0 + 1
),

and Q has type 1 (resp. 2). ��

3.6 Equivalent Transformations

Other cubic transformations can be used instead of ψ. As previously, they are
obtained by a right action of the group elements on ψ.
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Table 2. Equivalent cubic transformations

ψ′

(X2 + X)nP (X3+X+1
X2+X

) = ψ(P+)

(X3 + X + 1)nP ( X2+X
X3+X+1

) = ψ(P ∗+)

(X3 + X + 1)nP (X3+X2+1
X3+X+1

) = ψ(P+∗+)

(X3 + X2 + 1)nP ( X3+X+1
X3+X2+1

) = ψ(P+∗)

(X3 + X2 + 1)nP ( X2+X
X3+X2+1

) = ψ(P ∗)

4 Conclusion

To conclude, in this paper, we defined the different classes of irreducible poly-
nomials obtained by the action of GL2(F2) on F2[X ]. We gave transformations
to get invariant polynomials of each class, ways to generate infinite sequences
of them and we showed the perfect analogy between self-reciprocal irreducible
polynomials and alternate ones.

Now, the perspectives would be to study the action of GL2(Fq) on Fq[X ]. For
that, the first step would be the action of GL2(F2n) on F2n [X ].

Acknowledgment. For our computations, we used the open source Mathemat-
ics software SAGE [7], so, we would like to thank the developers and contributors
of SAGE. We also thank the reviewers for helping us to clarify the paper.
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Abstract. In this note, we analyze power permutations having a three
valued spectrum. We give new results and new proofs of results previ-
ously obtained by coding theory. We apply them to prove that Hellesth’s
conjecture is true for dimension 32.

1 Introduction

Let m be a positive integer. Let L a finite field of order q = 2m. Let μ be the
canonical additive character of L, defined as μ(x) = (−1)Tr(x) where Tr(x) is the
absolute trace of x. Let f be a mapping from L into L. The Fourier coefficient
of f at a ∈ L is defined by

f̂(a) =
∑
x∈L

μ(f(x) + a.x).

In this paper, we analyze the situation where a power permutation f : x 	→ xd

(d coprime to q − 1) has a three valued spectrum :

spec f = {f̂(a) | a ∈ L} = {0, A, B}.

One can already remark that the spectrum corresponding to the exponent d is
exactly the same as the spectrum of the exponents 2id and 2id−1. We will say
that these exponents are equivalent and we denote by ∼ this relation.

From the numerical experiments done in the framework of sequences in the
seventies, i.e. crosscorrelation of maximal sequences and their decimations, one
of the main conjecture in this context is :

Conjecture 1. If the spectrum of a power permutation takes two distinct non
zero values A and B then A + B = 0.

A secondary conjecture, see [3], is :

Conjecture 2 (Helleseth). If m is a power of 2 the spectrum of a power permu-
tation takes at least four values except the trivial case d ∼ 1, in which it takes
only two values.

C. Carlet and A. Pott (Eds.): SETA 2010, LNCS 6338, pp. 181–187, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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It is known [2] that the first conjecture implies the second one. The goal of this
note is to prove Helleseth’s conjecture for dimension 32. Before to continue in
the direction of the above conjecture, it is interesting to see that some more
general claims on the spectra of power permutations are false [5].

Let min(d) be the minimal value of the absolute value of the non zero Fourier
coefficient of xd.

– It is wrong to claim that min(d) is always a power of two. There exist 3 (and
only 3, for m ≤ 25) counter examples, they are in dimension 24.

– It is wrong to claim that spec (d) contains the two values ±min(d). There
are 3 counter-examples in dimension 18, and 3 others in dimension 21.

If we denote by nbz (d) the number of Fourier coefficients of xd which are equal
to zero, the numerical experiments indicate that for all d, nbz (d) ≥ nbz (−1), a
very strange fact remarked by Leander, checked up to m = 25. One can risk to a
conjecture that has every appearance of difficulty. Indeed, on one hand, we know
(see [4]) that nbz (−1) is greater or equal to the class number of the imaginary
quadratic field Q(

√
1 − 4q), and on another hand another conjecture proposed

by Helleseth claiming nbz (d) > 1 is still open.

2 Basic Facts

For any integer n, val 2(n) will denote the dyadic valuation of n i.e. the greater
integer r such that 2r divides n. The valuation of a power permutation xd ,
denoted by val (d), is defined to be the minimal dyadic valuation of the Fourier
coefficients of xd.

Proposition 1. For all m, and all d

val (d) = min
1≤j<q−1

wt (dj) + wt (−j)

where wt (x) denotes the binary weight of the positive residue of x modulo q− 1.

The above proposition is often seen as a consequence of divisibility McEliece
Theorem in coding theory. It is also a straightforward consequence, see [6], of
Stickelberger’s congruences on Gauss sums.

In the rest of the paper we assume that m is even, we denote by K the subfield
of index 2 in L and we denote by μK the canonical additive character of K, for
all x ∈ L :

μ(x) = μK(TrL/K(x)), TrL/K(x) = x + x
√
q.

It is easy but important to see that TrL/K(x) = 0 iff x ∈ K. Let A, B be
the nonzero Fourier coefficients of a power permutation, f(x) = xd, with three
valued spectrum. We denote by xA, xB and xZ the number of times each Fourier
coefficient A, B and 0 appears, and by α and β the dyadic valuations of A and
B. We also assume that α ≤ β. From Parseval identity and Fourier inversion,
we have
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(
A B
A2 B2

)(
xA
xB

)
=
(

q
q2

)
solving this system, we get

xA =
q(q − B)
A(A − B)

, xB =
q(A − q)
B(A − B)

.
AB

q
xZ = q − (A + B) + AB.

We will see that the dyadic valuation of ABq plays an important role. This value,
which obviously depends on d, will be denoted by rd, and we will see later that
rd is a positive integer.

Lemma 1. Given a ∈ L×, we have the relation:

∑
c∈K

f̂(ac) =

{
q, a ∈ K;
0, otherwise.

Proof. Indeed,∑
c∈K

f̂(ac) =
∑
c∈K

∑
x∈L

μ(xd + acx) =
∑
x∈L

μ(xd)
∑
c∈K

μ(acx)

=
√

q
∑
ax∈K

μ(xd) =
√

q
∑
x∈K

μ(a−dxd)

=
√

q
∑
x∈K

μK
(
TrL/K(a−d)xd

)
= qδK(a). ��

Lemma 2. In the case of a three valued spectrum, the positive Fourier coefficient
is greater than

√
q.

Proof. Use Lemma 1 with a = 1. ��

Lemma 3. Let f(x) = xd be a power permutation having of a three valued
spectrum. If m is a power of 2 then the dyadic valuation of f̂(1) is greater than
val (d).

Proof. It is an application of Stickelberger’s congruences. Denoting by J the set
of residues modulo q − 1 such that

J = {1 ≤ j < q − 1 | wt (dj) + wt (−j) = val (d)}.

Since f is not linear, we have (see [6] for details),

f̂(1) ≡ 2val (d)|J | (mod 2val (d)+1).

Since m is a power of 2, the cardinality of a cyclotomic class of j �= 0 modulo
(q − 1) is even. The set J is a union of cyclotomic classes, its cardinality must
be even. ��
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3 Fourier Analysis

Let Nn(u, v) be the number of solutions of the system.
f(x1) + f(x2) + . . . + f(xn) = v

x1 + x2 + . . . + xn = u

Let Sn be the character sum∑
x1+x2+...+xn=0

μ(f(x1) + f(x2) + . . . + f(xn)).

Note that Sn = Sn−1 − qn−2 + qNn−1(1, 1). We are ready to present a result
obtained by Blokhuis and Calderbank [1] :

Proposition 2. In the case of three valued spectrum,

N2(1, 1) = A + B − AB

q
.

In particular, AB
q is a positive integer, and

α + β = m + rd, rd = val 2(N2(1, 1));

where N2(1, 1) is also the number of solutions of (x + 1)d + xd = 0 in L.

Proof. By Fourier analysis

1
q

∑
a

f̂(a)n = f [n]
μ (0)

=
∑

x1+x2+...+xn=0

μ(f(x1) + f(x2) + . . . + f(xn))

= Sn

= Sn−1 − qn−2 + qNn−1(1, 1).

The proposition corresponds to the case n = 3, since S2 = q :

xAA3 + xBB3 = A2 q2 − Bq

A − B
+ B2−q2 + Aq

A − B
= (A + B)q2 − ABq��

Lemma 4. The valuations α and β are greater than m
4 .

Proof. If the valuations are equal then the minimal valuation is greater than m
2 .

If they are different

m + β − 2α = val 2(xA) < m =⇒ 2α > β ≥ m

2
=⇒ α >

m

4
. ��

Following theirs ideas, we recover a nice result of Calderbank-McGuire-Poonen



Power Permutations in Dimension 32 185

Proposition 3. If m = 0 (mod 4), a power permutation with symmetric spec-
trum of valuation m+2

2 does not exist.

Proof. Note that symmetry implies that A and B are powers of two. Of course,
val (d) = m+2

2 and Proposition (2) implies N2(1, 1) = 4. Considering d mod 15
there are two cases. Recall that an exponent d is said to be equivalent to any
exponent of the form 2id or 2id−1. So up to equivalence, d ≡ 1 mod 15 or d ≡ 7
mod 15. In the first case, the number of solutions of (x+1)d+xd = 1 is greater or
equal to 24, contradicting N2(1, 1) = 4. In the second case, consider j = −2 2m−1

15
then

wt (dj) + wt (−j) = 2 × m

4
=

m

2

contradicting val (d) = m+2
2 . ��

The following restriction is due to Calderbank-Blokhuis:

Lemma 5. If m is a power of 2 and if an exponent has a three valued spectrum,
then up to equivalence :

d ≡ 1 mod 15 and rd ≥ 4.

Proof. We start from the relation :

f̂(a)4 − (A + B)f̂(a)3 + ABf̂(a)2 = 0 .

Remember that α ≥ 3. Summing over a, dividing by q :

S3 − q2 + qN3(1, 1) − (A + B)qN2(1, 1) + ABq = 0
S3 + qN3(1, 1) = 0 (mod 16q)

S2 − q + qN2(1, 1) + qN3(1, 1) = 0 (mod 16q)
N2(1, 1) + N3(1, 1) = 0 (mod 16).

For d �≡ 1 (mod 15), using a computer we find that

N2(1, 1, 256) + N3(1, 1, 256) = 8 (mod 16)

This congruence holds over the extension fields of GF(2, 8), indeed the solutions
of degree greater than 8 can be collected in disjoint subsets of cardinality 16. ��

For further works, It may be interesting to notice that for all c ∈ L×, the mapping
fc : x 	→ μ(cx) satisfy the integral relation :

fc ∗ fc(x) − (A + B)fc(x) + ABδ0(x) =
AB

q

∑
z∈Z

μ(zctx) (1)

where t denotes the inverse of d modulo q − 1.
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4 Checking Helleseth Conjecture in Dimension 32

Numerical experiments, computing Fourier spectra of all exponents, show that
Helleseth conjecture is true in dimension 4, 8 and 16, see [5]. In this section, we
describe the procedure that we used to verify its validity in the case where the
dimension m is equal to 32.

Using Lemma 5 the candidate exponents to contradict Helleseth’s conjecture
must be congruent to 1 modulo 15. Up to equivalence, there are 17586223 such
exponents. The computation of their Fourier spectra is still too expensive, we
have to reduce the number of candidates.

Let us denote by K of the field of order
√

q, and let G the subgroup of order√
q + 1 in L×. For u and v ∈ K, we introduce the character sums :

S(u, v) =
∑
x∈K×

μK(uxd + vx).

and also for c ∈ K×, the notation :

f̂K(c) =
∑
x∈K×

μK(xd + cx).

f̂(a) = 1 +
∑
y∈G

∑
x∈K×

μK(xdTrL/K(yd) + xTrL/K(ay))

= 1 +
∑
y∈G

S(TrL/K(yd), TrL/K(ay))

=
√

qδK(a) +
∑

1�=y∈G
f̂K(TrL/K(yd)−tTrL/K(ay))

(where t is the inverse of d modulo q − 1)

=
√

qδK(a) +
∑
b∈K

na(b)f̂K(b)

where
na(b) = �{1 �= y ∈ G | TrL/K(ya)TrL/K(yd)−t = b},

Lemma 6. One can compute the Fourier coefficients at 1 of all the power per-
mutations in O(q

√
q) steps.

Proof. Using the above formula, one can compute the Fourier coefficients at 1
by generating the exponents as d = dK + (

√
q − 1)dG where 1 ≤ dK <

√
q and

0 ≤ dG ≤ √
q. ��

We computed the Fourier coefficients at 1 for all d with wt (d mod 15) = 1 up
to equivalence. The CPU time of our program for this task was about 92520
seconds i.e. one day. The repartition of the valuations of these exponents are
summarized in Table (1). We see there are only 549501 candidate exponents to
contradict Helleseth’s conjecture.
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Table 1. The repartition of the valuation of 17586223 Fourier coefficients at one. In
each square the valuation at one, and the number of exponents corresponding to this
valuation : 127681 exponents have a Fourier coefficient equal to zero at one, 421821
have a Fourier coefficient at one of valuation greater or equal to 16. Only these 549702
exponent must be checked.

2 3 4 5 6 7 8
3184 49334 298984 228494 115057 60927 507643

9 10 11 12 13 14 15
428477 2591563 4808533 4221710 2127437 1064607 530771

16 17 18 19 20 32 ∞
266562 137976 17234 40 8 1 127681

After this sieving step, for all candidate power permutations f , we computed
the Fourier coefficients f̂(a) for a = 1, β, β2, . . . where β is an element of order√

q+1, stopping the loop when 2 distincts non-zero Fourier coefficients A and B
(with val 2(A) ≤ val 2(B)) not satisfying the following conditions are discovered :
AB < 0, m4 < val 2(A), m2 ≤ val 2(B),

√
q ≤ max{|A|, |B|}.

The running time of this task was about 2 hours. According to the output
of the program, a counter example to the Helleseth’conjecture does not exist in
dimension 32.
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Abstract. Nonlinear congruential pseudorandom number generators
can have unexpectedly short periods. Shamir and Tsaban introduced
the class of counter-dependent generators which admit much longer pe-
riods. In this paper we present a bound for multiplicative character sums
for nonlinear sequences generated by counter-dependent generators.

1 Introduction

Let q = pr, where p is a prime number. In this paper we study a multiplicative
character sum related with the distribution properties of the powers and primi-
tive elements of counter-dependent nonlinear congruential pseudorandom number
generators. This class of generators was introduced by [1] and it is defined by a
recurrence of the form

un+1 = f(un, n), un ∈ Fq, n = 0, 1, . . . , (1)

with some initial value u0, where f(X, Y ) ∈ Fq[X, Y ] is a polynomial over the
field Fq of q elements of local degree in X at least 2. It is well-known that
the problem of studying the distribution of primitive roots and powers can be
reduced to bound a multiplicative character sum, see, for example [2].

It is obvious that the sequence (1) eventually becomes periodic with some
period t ≤ qp. Throughout this paper we assume that this sequence is purely
periodic, that is, un = un+t beginning with n = 0, otherwise we consider a shift
of the original sequence.

The case f(X, Y ) = h(X) ∈ Fq[X ], which does not depend on the second
variable, is the well-studied nonlinear congruential pseudorandom number gen-
erators, see [3,4,5], the surveys [6,7] and references therein. A bound in the
corresponding multiplicative character sum was given in [8]. On the other hand,
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MTM 2004-07086. Also, I want to thank Arne Winterhof for his friendship and
patience.
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these generators have their own limits, for example the period t is at most q. So,
it is interesting to study more general pseudorandom number generators.

The counter-assisted nonlinear congruential pseudorandom number generators
were defined in [1]. They are defined by the following linear recurrence:

un+1 = h(un) + n mod p 0 ≤ un ≤ p − 1, n = 0, 1, . . . ,

where h(X) ∈ Fp[X ]. For this specific class, the linear complexity and exponen-
tial sums were studied in [9]. These generators are related to nonlinear congru-
ential pseudorandom number generators of order 2 defined by

un+2 = f(un+1, un) mod p, 0 ≤ un ≤ p − 1, n = 0, 1, . . .

Nonlinear congruential pseudorandom number generators of order m ≥ 2 have
been analyzed in [10,11] in particular cases and solve for the general case in [12].
The results in these papers treat the distribution of values, not distribution of
powers. The linear complexity was studied in [13], so this shows that the problem
is not trivial at all.

A general class of pseudorandom number generators of higher orders has been
studied in [14,15]. This class has attracted a lot of attention, however to get a
bound on the corresponding multiplicative character sum can only be done under
certain conditions, see [16].

2 Definitions and Auxiliary Results

All the needed results are adapted, but the general properties of resultants and
their proofs can be found in [17]. We use the classical abbreviation of degX to
refer to the degree of a polynomial in the variable X .

The resultant is a classical concept that arises from commutative algebra. We
suppose that we are working in IK[X, Y ], the ring of bivariate polynomials with
coefficients in a field IK. Given two polynomials f(X, Y ), g(X, Y ) ∈ IK[X, Y ],
where

f(X, Y ) =
d1∑
i=0

fi(Y )X i, g(X, Y ) =
d2∑
i=0

gi(Y )X i.

the Sylvester matrix respect the variable X is⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

f0(Y ) f1(Y ) . . . fd1(Y ) 0 . . . 0 0
0 f0(Y ) f1(Y ) . . . fd1(Y ) 0 . . . 0
. . . . . . . . . . . . . . . . . . . . . . . .
0 0 0 . . . f0(Y ) . . . fd1−1(Y ) fd1(Y )

g0(Y ) g1(Y ) . . . gd2(Y ) 0 . . . 0 0
0 g0(Y ) g1(Y ) . . . gd2(Y ) 0 . . . 0
. . . . . . . . . . . . . . . . . . . . . . . .
0 0 0 . . . g0(Y ) . . . gd2−1(Y ) gd2(Y )

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

This matrix is a (d1 + d2) × (d1 + d2) matrix, the first row is the coefficients of
f(X, Y ) depending on Y, adding zeros to fill the (d1 + d2) positions. Notice that
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the next d2 − 1 rows are shifts of the first row. The other rows are built using
the polynomial g(X, Y ).

The determinant of this matrix is known as the resultant of the polynomials
f and g respect of the variable X . We will denote it by ResX(f(X, Y ), g(X, Y )).
The following Lemma shows the relation between resultant and common factors.
It is a Corollary of [17, Proposition 1, Section 3.6].

Lemma 1. Given f(X, Y ), g(X, Y ) ∈ Fq[X, Y ] then

degX(gcd(f(X, Y ), g(X, Y ))) ≥ 1

if and only if
ResX(f(X, Y ), g(X, Y )) = 0.

In [18, Corollary 5.1], the author presented a relation between the composition
of polynomials and resultants. His result is very general, so here is an adapted
version for the proofs.

Lemma 2. Let f(X, Y ), g(X, Y ), h(X, Y ) ∈ IK[X, Y ] be polynomials such as
degX(f(X, Y )), degX(g(X, Y )), degX(h(X, Y )) ≥ 1 then,

ResX(f(h(X, Y ), Y ), g(h(X, Y ), Y )) = ResX(f(X, Y ), g(X, Y ))degX(h(X,Y ))
.

The next Lemma is a weaker version of the Bezout Theorem.

Lemma 3. Let f(X, Y ), g(X, Y ) ∈ IK[X, Y ], with gcd(f(X, Y ), g(X, Y )) = 1
then the number of common roots is at most the product of the degrees of the
polynomials.

For a polynomial f(X, Y ) ∈ Fq[X, Y ] of total degree d we define the sequence of
polynomials fk(X, Y ) ∈ Fq[X, Y ] by the recurrence relation

fk+1(X, Y ) = fk (f(X, Y ), Y + 1) , k = 0, 1, . . . , (2)

where f0(X, Y ) = X . It is clear that deg(fk(X, Y )) ≤ dk and for the sequence
define in (1) that

un+k = fk (un, n) . (3)

The following property will be necessary in the proof of the main theorem:

Lemma 4. Given the sequence fk(X, Y ) ∈ Fq[X, Y ] defined in (2) and if

degX(gcd(fk(X, Y ), fl(X, Y ))) ≥ 1

then
degX(gcd(fk−i(X, Y ), fl−i(X, Y ))) ≥ 1, ∀i ≤ min (k, l) .

Proof. Now, we regard the polynomials fk(X, Y ), fl(X, Y ) as polynomials in
the variable X whose coefficients are in the ring Fq[Y ] and let

H(Y ) = ResX(fk−1(X, Y ), fl−1(X, Y )).
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Using simple properties of the Sylvester Matrix, we have:

ResX(fk−1(X, Y + 1), fl−1(X, Y + 1)) = H(Y + 1)

and, using Lemma 2, we get that:

ResX(fk−1(f(X, Y ), Y + 1), fl−1(f(X, Y ), Y + 1) = H(Y + 1)degX (f(X,Y )).

Applying the Lemma 1,

H(Y + 1)degX (f(X,Y )) = ResX(fk(X, Y ), fl(X, Y )) = 0.

This clearly implies that H(Y ) = 0, therefore, again by Lemma 1 we get

gcd(fk−1(X, Y ), fl−1(X, Y )) = H1(X, Y ), degX(H1(X, Y )) ≥ 1.

Applying the same argument i times, we get the result. ��

Now, we are going to introduce some notation. Let χ be a nontrivial multiplica-
tive character of Fq, with the standard convention χ(0) = 0. We want to prove
an upper bound on this character sum

Sχ(N) =
N−1∑
n=0

χ(un).

Next, we recall the classical Weil bound on multiplicative character sums (see [19,
Chapter 5]) for univariate polynomials.

Lemma 5. Let χ be a character of Fq of order s and let F (X) ∈ Fq[X ] be a
polynomial of positive degree that is not, up to a multiplicative constant, an sth
power of a polynomial. Let d be a bound on the number of distinct roots in its
splitting field over Fq. Under these conditions, the following inequality∣∣∣∣∣∣

∑
x∈Fq

χ (F (x))

∣∣∣∣∣∣ ≤ dq1/2

holds.

With this Lemma we can prove another result that we will use through later.

Lemma 6. Let χ be a character of Fq of order s and let F (X, Y ) ∈ Fq[X, Y ] be a
polynomial of positive degree such that F (X, Y ) is not, up to a multiplicative con-
stant, an sth power of a polynomial. Let F (X, Y ) = F1(X, Y )d1 · · ·Fh(X, Y )dh

the decomposition of the polynomial in a product of irreducible polynomials. Let
D be a bound on the total degree of F1(X, Y ) · · ·Fh(X, Y ). Under these condi-
tions, the following inequality holds∣∣∣∣∣∣

∑
x,y∈Fq

χ (F (x, y))

∣∣∣∣∣∣ ≤ 2Dq3/2.
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Proof. This Lemma is trivial when 2D ≥ q1/2 so suppose that 2D ≤ q1/2.
Without loss of generality, d1 is not an integer multiple of s, because F (X, Y ) is
not an sth power of a polynomial up to a multiplicative constant. Next,∣∣∣∣∣∣
∑

x,y∈Fq

χ
(
F1(x, y)d1 . . .Fh(x, y)dh

)∣∣∣∣∣∣ ≤
∑
y∈Fq

∣∣∣∣∣∣
∑
x∈Fq

χ
(
F1(x, y)d1 . . . Fh(x, y)dh

)∣∣∣∣∣∣ .
Our aim is to apply Lemma 5 to each of the sums for y fixed. We have to count
how many times we can not apply Lemma 5. The special cases are:

– When the polynomial F (X, y) is a constant polynomial.
– When the polynomial F (X, y) is an sth power.

There are, at most, D different values y where the polynomial F (X, y) could be
a constant polynomial.
Now, we consider in which cases the polynomial F (X, y) is an sth power of a
polynomial and how these cases will be counted.

First of all, we remark that F (X, Y ) is not an sth power of a polynomial,
so if F (X, y) is an sth power of a polynomial then we have this two possible
nonexclusive situations:

– F1(X, y)d1 is an sth power, so because d1 is not an s multiple then we must
have that F1(X, b) has, at least, one multiple root. This is only possible
if F1(X, b) and the first derivative of the polynomial have a common root.
F1(X, Y ) is an irreducible polynomial, so Lemma 3 applies. We remark that
the first derivative is a nonzero polynomial. Otherwise F1(X, Y ) is a power of
a polynomial, thus reducible. This can only happen in degX(F1)(degX(F1)−
1) cases.

– F1(X, b) and Fs(X, b) have a common root and, by the same argument, there
are at most degX(F1)degX(Fs) possible values where it happens.

So, for each value of y ∈ Fq, we apply Lemma 6 if the two previous cases do not
occur. In the other cases, we apply the trivial bound,

∑
y∈Fq

∣∣∣∣∣∣
∑
x∈Fq

χ (F (x, y))

∣∣∣∣∣∣ ≤ Dq + q degX(F1)
h∑
i=1

degX(Fi) + Dq3/2

≤ (D2 + D)q + Dq3/2 ≤ 2Dq3/2.

The last inequality holds because 2 ≤ 2D ≤ q1/2 and this remark finishes the
proof. ��

We call the sequence (vn), given by (1) with v0 = 0. Note that under the assump-
tion that (un) is purely periodic, the sequence (vn) need not be purely periodic.
Let t0 be the least period of the sequence (vn) if it is purely periodic and put
t0 = ∞ otherwise. We are ready to prove the principal theorem:
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Theorem 7. Let the sequence (un), given by (1) with a polynomial f(X, Y ) with
coefficients in Fq[X, Y ] and total degree d ≥ 2 be purely periodic with period t and
t ≥ N ≥ 1. If fk(X, Y ), 1 ≤ k ≤ �0.4(log q)/ log d� is not, up to a multiplicative
constant, an sth power of a polynomial, then the bound

Sχ(N) = O

(
N1/2q

(
min
(

log q

log d
, t0

))−1/2
)

holds, where the implied constant is absolute.

Proof. We can suppose that q ≥ 3. For any integer k ≥ 0 we have∣∣∣∣∣Sχ(N) −
N−1∑
n=0

χ(un+k)

∣∣∣∣∣ ≤ 2k,

so for any K ≥ 1 and summing over k = 0, 1 . . . , K − 1, we get

K|Sχ(N)| ≤ W +

∣∣∣∣∣
K−1∑
k=0

(
Sχ(N) −

N−1∑
n=0

χ(un+k)

)∣∣∣∣∣ ≤ W + K2

where

W =
N−1∑
n=0

∣∣∣∣∣
K−1∑
k=0

χ(un+k)

∣∣∣∣∣ .
By the Cauchy-Schwarz inequality and (3) we obtain

W 2 ≤ N

N−1∑
n=0

∣∣∣∣∣
K−1∑
k=0

χ(un+k)

∣∣∣∣∣
2

= N

N−1∑
n=0

∣∣∣∣∣
K−1∑
k=0

χ(fk(un, n))

∣∣∣∣∣
2

≤ N
∑
x,y∈Fq

∣∣∣∣∣
K−1∑
k=0

χ(fk(un, n))

∣∣∣∣∣
2

≤ N

K−1∑
k,l=0

∣∣∣∣∣∣
∑
x,y∈Fq

χ(fk(x, y))χ(fl(x, y))

∣∣∣∣∣∣
where χ(fl(x, y)) denotes the conjugate of χ(fl(x, y)).

Because χ is a multiplicative character it is trivial to see that χ(aq−2) =
χ(a), ∀a ∈ Fq.

Substituting the conjugates, we get the following inequality:

W 2 ≤ N
K−1∑
k,l=0

∣∣∣∣∣∣
∑

x,y∈Fq

χ(fk(x, y)fl(x, y)q−2)

∣∣∣∣∣∣ .
Next we have to show that for 0 ≤ l ≤ k ≤ K − 1 the polynomial F (X, Y ) =
fk(X, Y )fl(X, Y )q−2, k ≥ l is, up to a multiplicative constant, an sth power of
a polynomial only if k = l mod t0, where k = l mod ∞ means k = l.

Suppose g(X, Y ) = gcd(fk(X, Y ), fl(X, Y )) has degree at least 1 in X . By
Lemma 4, gcd(f0(X, Y ) = X, fk−l(X, Y )) is a non constant polynomial in X .



194 D. Gomez

Because X is a prime polynomial, we have that the greatest common divisor
between f0(X, Y ) and fk−l(X, Y ) is X so vk−l = 0 and, consequently, k − l =
0 mod t0.

Now suppose k �= l mod t0 and thus g(X, Y ) = 1. Hence, if F (X, Y ) is (up
to a multiplicative constant) an sth power, then both fk(X, Y ) and fl(X, Y )
are (up to multiplicative constants) sth powers, which is a contradiction to our
assumption provided that K is small enough (this will be guaranteed by the
subsequent choice of K). Now the number of pairs (k, l) ∈ ZZ2 with 0 ≤ l < k ≤
K − 1 and k = l mod t0 is at most K2/(2t0). For these pairs (k, l) we estimate
the inner sum in the last bound on W 2 trivially by q. For all other pairs we can
use Lemma 6 and get

W 2 < KNq2 + K2N

(
q2

t0
+ 2dK−1q3/2

)
.

With

K :=
⌈
0.4

log q

log d

⌉
we get the result and this finishes the proof. ��
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Ternary Kloosterman Sums Modulo 18 Using
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Abstract. A result due to Helleseth and Zinoviev characterises binary
Kloosterman sums modulo 8. We give a similar result for ternary Kloost-
erman sums modulo 9. This leads to a complete characterisation of values
that ternary Kloosterman sums assume modulo 18. The proof uses Stick-
elberger’s theorem and Fourier analysis.

Keywords: Kloosterman sums, Stickelberger’s theorem.

1 Introduction

Let Kpn(a) denote the p-ary Kloosterman sum defined by

Kpn(a) :=
∑
x∈Fpn

ζTr(xpn−2+ax),

for any a ∈ Fpn , where ζ is a primitive p-th root of unity and the trace map
Tr : Fpn → Fp defined as usual as

Tr(c) := c + cp + cp
2

+ · · · + cp
n−1

,

for any c ∈ Fpn . Kloosterman sums have attracted attention thanks to their
various links to other related fields. For instance, a zero of a binary Kloosterman
sum on F2n leads to a bent function from F22n → F2 as proven by Dillon in [2].
Similarly, zeros of ternary Kloosterman sums give rise to ternary bent functions
[6]. However determining a zero of a Kloosterman sum is not easy. A recent result
in this direction is the following: a binary or ternary Kloosterman sum Kpn(a)
is not zero if a is in a proper subfield of Fpn except when p = 2, n = 4, a = 1,
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see [14]. Given the difficulty of the problem of finding zeros (or explicit values)
of Kloosterman sums, and that they sometimes do not exist, one is generally
satisfied with divisibility results.

It is easy to see that binary Kloosterman sums are divisible by 4. They also
satisfy (see [10])

−2n/2+1 ≤ K2n(a) ≤ 2n/2+1,

and take every value which is divisible by 4 in that range.
The ternary version of this result is due to Katz and Livné [8]. It is easy to see

that ternary Kloosterman sums are divisible by 3. Ternary Kloosterman sums
satisfy (see [8])

−2
√

3n < K3n(a) < 2
√

3n

and take every value which is divisible by 3 in that range.
Given the above results for binary Kloosterman sums modulo 4, and for

ternary Kloosterman sums modulo 3, one next considers binary sums modulo 8
and ternary sums modulo 9. The following is known in the binary case.

Theorem 1. [7] Let n > 2. For a ∈ F2n ,

K2n(a) ≡
{

0 (mod 8) if Tr(a) = 0,
4 (mod 8) if Tr(a) = 1.

The result in this paper is the following theorem, concerning ternary sums
modulo 9.

Theorem 2. Let n > 1. For a ∈ F3n ,

K3n(a) ≡

⎧⎨⎩
0 (mod 9) if Tr(a) = 0,
3 (mod 9) if Tr(a) = 1,
6 (mod 9) if Tr(a) = 2.

When p = 3, it is not hard to show that Kpn(a) is always an integer. This is
not (necessarily) the case for p > 3. Also note that Lisoněk previously proved
that 9|K3n(a) if and only if Tr(a) = 0 (see [13]), using curves and division
polynomials.

The following result on ternary Kloosterman sums modulo 2 was given in [14].
We will combine this result with our Theorem 2 to give the complete character-
isation of ternary Kloosterman sums modulo 18.

Theorem 3. [3] Let
√

a denote any b ∈ F3n such that b2 = a.

K3n(a) ≡
{

0 (mod 2) if a = 0 or a is a square and Tr(
√

a) �= 0,
1 (mod 2) otherwise.

A partial result modulo 4 was also given in [3]. This can be combined with our
result to give a partial result modulo 36.

The tools we use are Stickelberger’s theorem which we explain in the next
section, and some Fourier analysis which we explain in Section 3. In Section 4
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we give the proof of Theorem 2. Corollary 1 of Section 4 gives the characterisation
of ternary Kloosterman sums modulo 18 using the above mentioned results. Note
that for the binary case there are many results concerning Kloosterman sums
modulo 3, 8, 24 (see [4,1,15]).

Remarks Added For Revised Version. We thank the referees for helpful
comments. Since this paper was submitted we have extended the modulo 9 the-
orem in this article, Theorem 2, to a modulo 27 theorem. However, the techniques
are not a simple advance of the methods in this paper; we use the Gross-Koblitz
formula. Also, just before submitting this revised version to the proceedings we
found an article by van der Geer-van der Vlugt [17] which uses Stickelberger’s
theorem and contains some of the results of this article (but not the modulo 27
results).

2 Stickelberger’s Theorem

Let p be a prime (in Section 4 we set p = 3) and let q = pn. We consider
multiplicative characters taking their values in an algebraic extension of the p-
adic numbers Qp. Let ξ be a primitive (q−1)th root of unity in a fixed algebraic

closure of Qp. The group of multiplicative characters of Fq (denoted F̂×
q ) is

cyclic of order q − 1. The group F̂×
q is generated by the Teichmüller character

ω : F×
q → Qp(ξ), which, for a fixed generator t of F×

q , is defined by

ω(tj) = ξj .

We extend ω to Fq by setting ω(0) to be 0.
Let ζ be a primitive p-th root of unity in the fixed algebraic closure of Qp.

Let μ be the canonical additive character of Fq,

μ(x) = ζTr(x)

where Tr denotes the absolute trace map from Fq to Fp.

The Gauss sum (see [12,19]) of a character χ ∈ F̂×
q is defined as

τ(χ) = −
∑
x∈Fq

χ(x)μ(x) .

We define
g(j) := τ(ω−j) .

For any positive integer j, let wtp(j) denote the p-weight of j, i.e.,

wtp(j) =
∑
i

ji

where
∑

i jip
i is the p-ary expansion of j.
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Let π be the unique (p − 1)th root of −p in Qp(ξ, ζ) satisfying

π ≡ ζ − 1 (mod π2) .

Wan [18] noted that the following improved version of Stickelberger’s theorem
is a direct consequence of the Gross-Koblitz formula [5,16].

Theorem 4. [18] Let 1 ≤ j < q− 1 and let j = j0 + j1p+ · · ·+ jn−1p
n−1. Then

g(j) ≡ πwtp(j)

j0! · · · jn−1!
(mod πwtp(j)+p−1) .

Stickelberger’s theorem, as usually stated, is the same congruence modulo
πwtp(j)+1.

We have (see [5]) that (π) is the unique prime ideal of Qp(ζ, ξ) lying above
p. Since Qp(ζ, ξ) is an unramified extension of Qp(ζ), a totally ramified (degree
p − 1) extension of Qp, it follows that (π)p−1 = (p) and νp(π) = 1

p−1 . Here νp
denotes the p-adic valuation.

Therefore Theorem 4 implies that νπ(g(j)) = wtp(j), and because νp(g(j)) =
νπ(g(j)) · νp(π) we get

νp(g(j)) =
wtp(j)
p − 1

. (1)

In this paper we have p = 3. In that case, π = −2ζ−1 and equation (1) becomes

ν3(g(j)) =
wt3(j)

2
. (2)

3 Fourier Coefficients

The Fourier transform of a function f : Fq → C at a ∈ Fq is defined to be

f̂(a) =
∑
x∈Fq

f(x)μ(ax) .

The complex number f̂(a) is called the Fourier coefficient of f at a.
Consider monomial functions defined by f(x) = μ(xd). When d = −1 we have

f̂(a) = Kpn(a). By a similar Fourier analysis argument to that in Katz [9] or
Langevin-Leander [11], for any d we have

f̂(a) =
q

q − 1
+

1
q − 1

q−2∑
j=1

τ(ω̄j) τ(ωjd) ω̄jd(a)

and hence

f̂(a) ≡ −
q−2∑
j=1

τ(ω̄j) τ(ωjd) ω̄jd(a) (mod q) .
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We will use this to obtain congruence information about Kloosterman sums.
Putting d = −1 = pn − 2, the previous congruence becomes

K(a) ≡ −
q−2∑
j=1

(g(j))2 ωj(a) (mod q). (3)

In this paper, p = 3. Equation (2) gives the 3-adic valuation of the Gauss sums
g(j), and the 3-adic valuation of each term in equation (3) follows. Our proofs
will consider (3) at various levels, i.e., modulo 32 and 33.

4 Ternary Kloosterman Sums Modulo 9

In this section we will prove our result using Stickelberger’s theorem. First we
need a lemma which helps us in our proof.

Lemma 1. Let p be a prime, q = pn and r ∈ F×
p . If Tr denotes the set {a ∈

Fq | Tr(a) = r}, then ∑
t∈Tr

t−1 = r−1 .

Proof. Consider the polynomials

g(x) =
∏
t∈Tr

(x − t) ,

h(x) =
∏
t∈Tr

(x − t−1) .

Note that g(x) vanishes on the pn−1 elements of Tr. Thus

g(x) = xp
n−1

+ xp
n−2

+ · · · + x − r.

In particular, ∏
t∈Tr

(−t) = −r,

so ∏
t∈Tr

(−t−1) = −r−1.

The reciprocal polynomial of g is g∗(x) = xp
n−1

g(1/x).
We therefore get

h(x) = −r−1g∗(x)

= −r−1xp
n−1

g(1/x)

= xp
n−1 − r−1xp

n−1−1 − · · · − r−1xp
n−1−pn−2 − r−1 .

Thus ∑
t∈Tr

(−t−1) = −r−1 .

��
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From now on, we set p = 3, so that Kq(a) is an integer for a ∈ Fq. Since there
will not be any confusion with binary Kloosterman sums we will write K(a) for
Kq(a). We consider the function f(x) = μ(x−1) = μ(xq−2). Then f̂(a) is the
Kloosterman sum K(a). The following lemma will be needed.

Lemma 2. Let q = 3n, and T1 be as defined above. Then∑
z∈T1

ω̄(z) ≡ 1 (mod 3).

Proof. Follows directly from Lemma 1 and the definition of the Teichmüller
character. ��

We can now prove our main result.

Proof (of Theorem 2). By equation (3)

K(a) ≡ −
q−2∑
j=1

g(j)2 ωj(a) (mod q) . (4)

Let, for any 0 < t < q−1, the 3-adic expansion of t be t = t0+3t1+· · ·+3n−1tn−1
and let P be the prime of Q3(ξ, ζ) lying above 3. As we mentioned in Section 2,
Stickelberger’s theorem implies that

νP(g(t)) = wt3(t) = t0 + t1 + · · · + tn−1

ν3(g(t)) =
wt3(t)

2
,

and so ν3((g(t))2) = wt3(t). (5)

Now (5) implies that any term in the sum in (4) with wt3(j) > 1 will be 0
modulo 9, so (4) modulo 9 becomes a sum over terms of weight 1 only:

K(a) ≡ −
∑

0≤i<n
g(3i)2 ω3i

(a) (mod 9) .

By Lemma 6.5 of [19], g(3i) = g(1), so we obtain

K(a) ≡ −g(1)2
∑

0≤i<n
ω3i

(a) (mod 9) . (6)

By definition of ω, we have∑
0≤i<n

ω3i

(a) ≡ Tr(a) (mod 3) . (7)

Since ν3(g(1)2) = wt3(1) = 1, the proof of the theorem reduces to determining
g(1)2 mod 9. We calculate, using the notation of Lemma 1,
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g(1) = −
∑
x∈F

×
q

ω̄(x)ζTr(x)

= −
∑
x∈T0

ω̄(x) −
∑
x∈T1

ω̄(x)ζ −
∑
x∈T1

ω̄(−x)ζ2

= (ζ2 − ζ)
∑
x∈T1

ω̄(x)

because ω̄(−x) = −ω̄(x), T2 = −T1, and the sum over T0 is 0. This implies

g(1)2 = (ζ2 − ζ)2
(∑
x∈T1

ω̄(x)

)2

.

But we have (ζ2 − ζ)2 = −3. This, together with Lemma 2, implies

g(1)2 ≡ 6 (mod 9).

Combining this with (7), the congruence (6) becomes

K(a) ≡ 3 Tr(a) (mod 9)

as required. ��

Theorem 2 and Theorem 3 together give a full characterisation of ternary Kloost-
erman sums modulo 18, which we summarise in the following corollary.

Corollary 1. Let q = 3n. For a ∈ F×
q ,

Kq(a) ≡

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

0 (mod 18) if Tr(a) = 0 and a square with Tr(
√

a) �= 0,
3 (mod 18) if Tr(a) = 1 and a non-square or Tr(

√
a) = 0,

6 (mod 18) if Tr(a) = 2 and a square with Tr(
√

a) �= 0,
9 (mod 18) if Tr(a) = 0 and a non-square or Tr(

√
a) = 0,

12 (mod 18) if Tr(a) = 1 and a square with Tr(
√

a) �= 0,
15 (mod 18) if Tr(a) = 2 and a non-square or Tr(

√
a) = 0.
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Abstract. We consider the merit factor of binary sequences obtained
by appending an initial fraction of an m-sequence to itself. We show that,
for all sufficiently large n, there is some rotation of each m-sequence of
length n that has merit factor greater than 3.34 under suitable append-
ing. This is the first proof that the asymptotic merit factor of a binary
sequence family can be increased under appending. We also conjecture,
based on numerical evidence, that each rotation of an m-sequence has
asymptotic merit factor greater than 3.34 under suitable appending. Our
results indicate that the effect of appending on the merit factor is strik-
ingly similar for m-sequences as for rotated Legendre sequences.

1 Introduction

A binary sequence A of length n is an n-tuple (a0, a1, . . . , an−1), where each aj
takes the value −1 or 1. The aperiodic autocorrelation of the binary sequence A
at shift u is defined to be

CA(u) :=
n−u−1∑
j=0

ajaj+u for u = 0, 1, . . . , n− 1,

and, provided that n ≥ 2, its merit factor is

F (A) :=
n2

2
∑n−1
u=1 [CA(u)]2

.

The merit factor is important both practically and theoretically. For example,
the larger the merit factor of a binary sequence that is used to transmit infor-
mation by modulating a carrier signal, the more uniformly the signal energy is
distributed over the frequency range; this is particularly important in spread-
spectrum communication [1]. The merit factor of binary sequences is also studied
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in complex analysis, in statistical mechanics, and in theoretical physics and the-
oretical chemistry (see [6] for a survey of the merit factor problem, and [7] for
a survey of related problems). The general objective is to understand the be-
haviour, as n −→∞, of the optimal merit factor F (A) as A ranges over the set
of all 2n binary sequences of length n.

The only non-trivial infinite families of binary sequences for which the asymp-
totic merit factor is known are: Legendre sequences, m-sequences, Rudin-Shapiro
sequences, and some generalisations of these three families. The largest proven
asymptotic merit factor of a binary sequence family is 6, which is attained by
rotated Legendre sequences (see Theorem 13).

There is considerable numerical evidence that an asymptotic merit factor
greater than 6 can be achieved [9,10,2]. The idea of [2], based on earlier work [9],
is to start with a near-optimal rotation of a Legendre sequence (which has asymp-
totic merit factor close to 6) and append an initial fraction of the sequence to
itself. Based on partial explanations and extensive numerical computations, [2]
exhibits a binary sequence family that apparently has asymptotic merit factor
greater than 6.34, although a proof for this has not yet been found.

In this paper we apply the idea of sequence appending to m-sequences and
prove, for the first time, that the asymptotic merit factor of a binary sequence
family can be increased under appending. The asymptotic merit factor of all m-
sequences is known to equal 3 (see Theorem 3). We show that, for all sufficiently
large n, there is some rotation of an m-sequence of length n that has merit
factor greater than 3.34 under suitable appending. Our analysis makes critical
use of the “shift-and-add” property of m-sequences (see Lemma 1 (ii)). We also
conjecture, based on numerical evidence, that each rotation of an m-sequence
has asymptotic merit factor greater than 3.34 under suitable appending. Our
results reveal that the effect of appending is strikingly similar for m-sequences
as for rotated Legendre sequences; this is discussed in the final section of the
paper.

2 Notation

In this section we introduce further definitions and notation for the paper.
Given a binary sequence A = (a0, a1, . . . , an−1) of length n, we denote by [A]j

the sequence element aj . Let A = (a0, a1, . . . , an−1) and B = (b0, b1, . . . , bm−1)
be binary sequences of length n and m, respectively. The concatenation A; B of
A and B is the length n + m binary sequence given by

[A; B]j :=

{
aj for 0 ≤ j < n

bj−n for n ≤ j < n + m.

Let r and t be real numbers, where t ∈ [0, 1]. Following [2], the rotation Ar of A
by a fraction r of its length is the binary sequence of length n given by

[Ar]j := a(j+�rn�) mod n for 0 ≤ j < n,
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and the truncation At of A by a fraction t of its length is the binary sequence
of length �tn� given by

[At]j := aj for 0 ≤ j < �tn�.

We also use the standard definition of the periodic autocorrelation of the binary
sequence A = (a0, a1, . . . , an−1) at an integer shift u, namely

RA(u) :=
n−1∑
j=0

aja(j+u) mod n. (1)

3 Properties of m-Sequences

This section provides background and some required results on m-sequences.
Let GF(2m) be the finite field containing 2m elements, and let Tr : GF(2m)→

GF(2) be the absolute trace function on GF(2m) given by

Tr(z) :=
m−1∑
j=0

z2j

.

An m-sequence Y = (y0, y1, . . . , yn−1) of length n = 2m−1 (for m ≥ 2) is defined
by

yj := (−1)Tr(βαj) for 0 ≤ j < n (2)

for some primitive element α of GF(2m) and some nonzero element β of GF(2m).
By writing β as a power of α, it is seen that different choices for β correspond
to different rotations of the sequence defined by a particular β. This implies
that each rotation of an m-sequence is an m-sequence, as noted in Lemma 1 (i)
below. For each n = 2m− 1, there are exactly nφ(n)/m distinct m-sequences [4,
Cor. 4.7], where φ is Euler’s totient function (there are n choices for β, and
φ(n)/m choices for α that arise by taking one representative of each conjugacy
class of the φ(n) primitive elements of GF(2m)).

We shall require the following properties of m-sequences (see [4] for a detailed
modern treatment; these properties were originally derived using an alternative
definition of m-sequences involving a linear recurrence relation [3]).

Lemma 1. Let Y = (y0, y1, . . . , yn−1) be an m-sequence of length n = 2m − 1,
as in (2).

(i) The rotated sequence Yr is an m-sequence for every real r.

(ii) ([3, p. 44, Thm. 4.3]) There is a permutation σ of {1, 2, . . . , n− 1}, deter-
mined by the primitive element α in (2), for which

yjy(j+u) mod n = y(j+σ(u)) mod n for 1 ≤ u < n and 0 ≤ j < n. (3)
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(iii) ([3, p. 45]) The periodic autocorrelation of Y satisfies

RY (u) =

{
n for u ≡ 0 (mod n)
−1 otherwise.

Given an m-sequence Y of length n, Sarwate [12] computed Ek[1/F (Yk/n)]
(throughout this paper, Ek denotes expectation over k ∈ {0, 1, . . . , n−1}, where
all such k occur with equal probability).

Theorem 2 (Sarwate [12]). Let Y be an m-sequence of length n = 2m − 1.
Then

Ek

[
1

F (Yk/n)

]
=

(n− 1)(n + 4)
3n2 .

As a consequence, there is some rotation of an m-sequence Y of length n having
merit factor at least 3n2/((n − 1)(n + 4)), which asymptotically equals 3. This
suggests the possibility that a particular rotation of an m-sequence has asymp-
totic merit factor greater than 3, but Jensen and Høholdt [8] showed that this
is impossible.

Theorem 3 (Jensen and Høholdt [8]). Let Y be an m-sequence of length
n = 2m − 1. Then

lim
n−→∞F (Y ) = 3.

(The limit in Theorem 3 is taken over all n of the form n = 2m − 1 (for m ≥ 2)
and, for each such n, one of the nφ(n)/m different m-sequences is selected. The
theorem states that the limit of F (Y ) is always 3, regardless of which m-sequence
is chosen for a particular n.)

We shall need an upper bound on the aperiodic autocorrelation of truncated
m-sequences. Given an m-sequence Y of length n = 2m − 1, Sarwate [13] estab-
lished that

|CY (u)| ≤ 1 + 2
π

√
n + 1 log

( 4n
π

)
for 1 ≤ u < n. (4)

We will now show that Lemma 1 (ii) implies that the same bound also holds for
truncated m-sequences.

Lemma 4. Let Y be an m-sequence of length n = 2m−1, and let � be an integer
satisfying 2 ≤ � ≤ n. Then

|CY �/n(u)| ≤ 1 + 2
π

√
n + 1 log

( 4n
π

)
for 1 ≤ u < �.

Proof. Let α be the primitive element of GF(2m) appearing in the definition of
Y = (y0, y1, . . . , yn−1) given in (2), and let σ be the permutation determined by α
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satisfying (3). Now pick an integer u satisfying 1 ≤ u < �. Applying Lemma 1 (ii)
twice, we find that

CY �/n(u) =
�−u−1∑
j=0

yjyj+u

=
�−u−1∑
j=0

y(j+σ(u)) mod n

=
�−u−1∑
j=0

y(j+σ(u)−σ(n−�+u)) mod n y(j+σ(u)−σ(n−�+u)+n−�+u) mod n

= CYk/n
(n− � + u) for k = σ(u)− σ(n− � + u).

Since Yk/n is an m-sequence by Lemma 1 (i), the result follows from (4). ��

4 An Existence Result on the Merit Factor of Appended
m-Sequences

In this section we prove a generalisation of Theorem 2 for appended m-sequences.
We then conclude that, for all sufficiently large m, given a primitive element α
of GF(2m) there exists an m-sequence Y of length n = 2m − 1 of the form (2)
and a real number t such that F (Y ; Y t) > 3.34.

We begin by proving the following lemma on sums of elements of an m-
sequence. This generalises to all nonnegative integers δ a result previously given
by Lindholm [11, Eq. (6e)] for δ ≤ n.

Lemma 5. Let Y = (y0, y1, . . . , yn−1) be an m-sequence of length n = 2m − 1.
Given nonnegative integers k and δ, define

SY (k, δ) :=
δ−1∑
j=0

y(k+j) mod n. (5)

Then
n Ek[(SY (k, δ))2] = δ(n− δ + 1) + a(n + 1) (2δ − n(a + 1)) ,

where a = � δ−1
n �.

Proof. From the definition (5) of SY (k, δ) we have

n Ek[(SY (k, δ))2] =
n−1∑
k=0

δ−1∑
i=0

δ−1∑
j=0

y(k+i) mod n y(k+j) mod n

=
δ−1∑
i=0

δ−1∑
j=0

RY (i− j)
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by rearranging the summation and by the definition (1) of the periodic autocor-
relation. Further manipulations give

n Ek[(SY (k, δ))2] =
δ−1∑

v=−(δ−1)

(δ − |v|)RY (v)

= δ RY (0) + 2
δ−1∑
v=1

v RY (δ − v)

since for every binary sequence A we have RA(v) = RA(−v) for all v. Now from
Lemma 1 (iii) we find that

n Ek[(SY (k, δ))2] = δn− 2
δ−1∑
v=1

v + 2(n + 1)
δ−1∑
v=1

v≡δ (mod n)

v

= δn− δ(δ − 1) + 2(n + 1)
δ−1∑
v=1

v≡δ (mod n)

v. (6)

Writing a = � δ−1
n �, we have

δ−1∑
v=1

v≡δ (mod n)

v =
a∑
j=1

(δ − jn)

= aδ − 1
2na(a + 1),

which after combination with (6) proves the lemma. ��
We now apply the preceding lemma to prove the following result, in which the
sequence Yk/n; (Yk/n)�/n is obtained by rotating the m-sequence Y by k elements
and then appending the resulting first � elements.

Theorem 6. Let Y be an m-sequence of length n = 2m − 1, and let � be an
integer satisfying 0 ≤ � ≤ n. Then

Ek

[
1

F (Yk/n; (Yk/n)�/n)

]
=

(n + �)(n + �− 1)(n− 2� + 4) + 12(n + 1)�(�− 1)
3n(n + �)2

.

Proof. Let α be the primitive element of GF(2m) appearing in the definition of
Y = (y0, y1, . . . , yn−1) given in (2), and let σ be the permutation determined
by α satisfying (3). Then, by Lemma 1 (ii), for each u satisfying 1 ≤ u < n + �
and u = �, we have

CYk/n;(Yk/n)�/n(n + �− u) =
u−1∑
j=0

y(k+j) mod n y(k+j+n+�−u) mod n

=
u−1∑
j=0

y(τ(k)+j) mod n

= SY (τ(k), u), (7)
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where τ(k) := k + σ((n + � − u) mod n) and SY (k, δ) is defined in (5). We also
have

CYk/n;(Yk/n)�/n(n) = �, (8)

using the convention that CA(n) = 0 for all binary sequences A of length n.
Now, since k �→ τ(k) mod n is a permutation of {0, 1, . . . , n− 1} for each u, (8)
and application of Lemma 5 to (7) give

n Ek

[(
CYk/n;(Yk/n)�/n(n + �− u)

)2]
=

⎧⎪⎨⎪⎩
n�2 for u = �

u(n− u + 1) for 1 ≤ u ≤ n and u = �

u(n− u + 1) + 2(n + 1)(u− n) for n < u < n + �.

We therefore obtain

Ek

[
n(n + �)2

2F (Yk/n; (Yk/n)�/n)

]

=
n+�−1∑
u=1

n Ek

[(
CYk/n;(Yk/n)�/n(n + �− u)

)2]
=

n+�−1∑
u=1
u�=�

u(n− u + 1) + n�2 +
n+�−1∑
u=n+1

2(n + 1)(u− n)

= 1
6 (n + �)(n + �− 1)(n− 2� + 4) + 2(n + 1)�(�− 1),

proving the theorem. ��
Notice that Theorem 2 arises as the special case � = 0 of Theorem 6. It follows
from Theorem 6 that, for every m-sequence Y and integer � satisfying 0 ≤ � ≤ n,
there exists an integer k such that

F (Yk/n; (Yk/n)�/n) ≥ 3n(n + �)2

(n + �)(n + �− 1)(n− 2� + 4) + 12(n + 1)�(�− 1)
.

Writing t = �
n , taking the infimum limit as n −→ ∞, and using Lemma 1 (i),

we obtain the following asymptotic result.

Corollary 7. Let t ∈ [0, 1] be a real number. For each integer m and for each
primitive element α of GF(2m), there exists a nonzero β ∈ GF(2m) such that
the m-sequence Y of length n = 2m − 1 defined in (2) satisfies

lim inf
n−→∞ F (Y ; Y t) ≥ 3(1 + t)2

1 + 9t2 − 2t3
.

In particular,

lim inf
n−→∞ F (Y ; Y t) > 3.3420653 for t = 0.1157494.



Appended m-Sequences with Merit Factor Greater than 3.34 211

The second statement in the corollary implies that, for all sufficiently large m,
given a primitive element α of GF(2m), we can pick an m-sequence Y of length
n = 2m − 1 of the form (2) such that F (Y ; Y t) > 3.34 for t = 0.1157494.

5 A Conjecture on the Merit Factor of Appended
m-Sequences

The results of the previous section imply that, for each sufficiently large n =
2m − 1, we can choose an m-sequence Y of length n such that the maximum of
F (Y ; Y t) over t ∈ [0, 1] is greater than 3.34. In this section and in the follow-
ing section we shall present compelling evidence, and therefore conjecture, that

lim
n−→∞F (Y ; Y t) =

3(1 + t)2

1 + 9t2 − 2t3
for t ∈ [0, 1), (9)

regardless of the choice of the m-sequence Y for each particular n. Subject to
this conjecture, the asymptotic maximum of F (Y ; Y t) over t ∈ [0, 1) is approx-
imately 3.34, regardless of the choice of the m-sequence Y for each particu-
lar n.

We shall first prove the following theorem, which allows us to replace the con-
jecture (9) by a simpler one. A result similar to Theorem 8, namely [2, Thm. 6.4],
is known to hold for Legendre sequences.

Theorem 8. Let Y be an m-sequence of length n = 2m − 1, and let t ∈ (0, 1)
be a real number. Then, as n −→∞,

1
F (Y ; Y t)

∼ 2
(

t

1 + t

)2( 1
F (Y t)

+ 1
)

+
(

1− t

1 + t

)2 1
F ((Yt)1−t)

.

Proof. Write Y = (y0, y1, . . . , yn−1) and � := �tn�. By definition we have Y t =
(y0, y1, . . . , y�−1). Now define Y ′ = (y�, y�+1, . . . , yn−1), so that Y = Y t; Y ′. Then
by the definition (1) of the periodic autocorrelation we have

CY ;Y t(u) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

RY (u) + CY t(u) for 1 ≤ u < �

RY (�) for u = �

RY (u)− CY ′(n− u) for � < u < n

� for u = n

CY t(u − n) for n < u < n + �.

In what follows, we will assume that n is large enough such that 2 ≤ � ≤ n− 2,
in which case all of the above ranges for u are nonempty. Since by Lemma 1 (iii),
RY (u) = −1 for 1 ≤ u < n, we then obtain
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(n + �)2

2F (Y ; Y t)
=

n+�−1∑
u=1

[CY ;Y t(u)]2

=
�−1∑
u=1

[CY t(u)− 1]2 + 1 +
n−�−1∑
u=1

[CY ′(u) + 1]2 + �2 +
�−1∑
u=1

[CY t(u)]2

=
�2

F (Y t)
+

(n− �)2

2F (Y ′)
+ �2 + n− 1− 2

�−1∑
u=1

CY t(u) + 2
n−�−1∑
u=1

CY ′(u).

(10)

Now by comparing Y ′ with (Yt)1−t, we find that

Y ′ =

{
(Yt)1−t if tn is integer
(Yt)1−t; yn−1 otherwise.

This gives ∣∣CY ′(u)− C(Yt)1−t(u)
∣∣ ≤ 1 for 0 ≤ u < n− � (11)

with the convention that CA(s) = 0 for each length s binary sequence A. Thus,
since Yt is an m-sequence, we conclude from Lemma 4 that the last two sums
in (10) are O(n

3
2 log n) as n −→ ∞. Also from (11) and Lemma 4 we find that,

as n −→ ∞,
(n− �)2

2F (Y ′)
=

(�(1− t)n�)2
2F ((Yt)1−t)

+ O(n
3
2 log n).

Hence, since � ∼ tn, we obtain from (10) the asymptotic relationship

(1 + t)2n2

2F (Y ; Y t)
∼ t2n2

F (Y t)
+

(1 − t)2n2

2F ((Yt)1−t)
+ t2n2,

as required. ��

Theorem 8 and Lemma 1 (i) imply that, in order to find the asymptotic merit
factor of an appended m-sequence Y ; Y t for all t ∈ (0, 1), it is sufficient to know
the asymptotic value of t2/F (Zt) for all m-sequences Z and for all t ∈ (0, 1).
Numerical computations suggest that, for each long m-sequence Y , the curve
1/F (Y t) for t ∈ (0, 1] can be fitted very well by a linear function. This leads us
to the following conjecture.

Conjecture 9. Let Y be an m-sequence of length n = 2m − 1, and let t ∈ (0, 1]
be a real number. Then, limn→∞(t2/F (Y t)) is well-defined and

lim
n−→∞

t2

F (Y t)
= t2(1− 2

3 t).

We now use Theorem 8 to show that the conjectured asymptotic form (9) of the
merit factor of appended m-sequences is implied by Conjecture 9.
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Corollary 10. Let Y be an m-sequence of length 2m − 1, and let t ∈ [0, 1) be a
real number. Then, subject to Conjecture 9,

lim
n−→∞F (Y ; Y t) =

3(1 + t)2

1 + 9t2 − 2t3
.

Proof. The case t = 0 follows directly from Conjecture 9 (and is known to be
correct by Theorem 3). Subject to Conjecture 9 we conclude from Theorem 8
that, for t ∈ (0, 1),

lim
n−→∞F (Y ; Y t) =

(1 + t)2

2t2(1 − 2
3 t + 1) + (1 − t)2(1− 2

3 (1 − t))
,

which proves the corollary. ��

Under the assumption that Conjecture 9 is correct, elementary calculus gives
the maximum asymptotic merit factor achievable by appending to m-sequences.

Corollary 11. Let Y be an m-sequence of length n = 2m − 1, and assume
Conjecture 9 to be correct. Then the maximum of limn→∞ F (Y ; Y t) over t ∈
[0, 1) is given by

lim
n−→∞F (Y ; Y t̂) =

3(1 + t̂)2

1 + 9t̂2 − 2t̂3
,

where t̂ is the solution of

t3 + 3t2 − 9t + 1 = 0 for 0 < t < 1.

Approximately we have

lim
n−→∞F (Y ; Y t̂) � 3.3420653 and t̂ � 0.1157494.

6 Evidence in Favour of Conjecture 9

Conjecture 9 implies that, given an m-sequence Y of length n = 2m − 1,

Ek

[
t2

F ((Yk/n)t)

]
∼ t2(1− 2

3 t) for t ∈ (0, 1] as n −→ ∞. (12)

This asymptotic relation is implied by setting � = tn and letting n −→∞ in the
following result, which therefore provides evidence in favour of Conjecture 9.

Proposition 12. Let Y be an m-sequence of length n = 2m− 1, and let � be an
integer satisfying 2 ≤ � ≤ n. Then

Ek

[
1

F ((Yk/n)�/n)

]
=

(�− 1)(3n− 2� + 4)
3n�

.
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Proof. The proof is similar to that of Theorem 6. Let α be the primitive element
of GF(2m) appearing in the definition of Y given in (2), and let σ be the per-
mutation determined by α satisfying (3). By Lemma 1 (ii), for each u satisfying
1 ≤ u < �, we have

C(Yk/n)�/n(�− u) = SY (k + σ(�− u), u),

where SY (k, δ) is defined in (5). Then by Lemma 5

n Ek

[(
C(Yk/n)�/n(�− u)

)2] = u(n− u + 1) for 1 ≤ u < �,

so that

Ek

[
n�2

2F ((Yk/n)�/n)

]
=

�−1∑
u=1

n Ek

[(
C(Yk/n)�/n(�− u)

)2]
=

�−1∑
u=1

u(n− u + 1)

= 1
6�(�− 1)(3n− 2� + 4),

as required. ��

Notice that Theorem 2 arises as the special case � = n of Proposition 12. Propo-
sition 12 and its consequence (12) still leave the possibility that, given an m-
sequence Y of length n = 2m − 1 and a real t ∈ (0, 1], the asymptotic form of
t2/F ((Yr)t) varies as r ranges over [0, 1]. However, we now present numerical
data showing that this is apparently not the case, therefore providing further
evidence in favour of Conjecture 9.

Let α be a primitive element of GF(2m), and let Y = (y0, y1, . . . , yn−1) be
the m-sequence of length n = 2m − 1 given by (2), where β is chosen such that
y0 = y1 = · · · = ym−1 = 1 (which can be done uniquely by the run property of
m-sequences; see [3, p. 44, Thm. 4.2] for example). We inspect the discrepancy

d(r, t) :=
t2

F ((Yr)t)
− t2(1− 2

3 t)

for
(r, t) ∈ L := {0, 1/64, 2/64, . . . , 1} × {1/64, 2/64, . . . , 1}.

We obtain the following example data for the maximum discrepancy on L:

max
(r,t)∈L

|d(r, t)| =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
0.018453 for n = 211 − 1 using α11 = α2 + 1
0.006677 for n = 215 − 1 using α15 = α + 1
0.001363 for n = 219 − 1 using α19 = α5 + α2 + α + 1
0.000395 for n = 223 − 1 using α23 = α5 + 1.

The data show that the discrepancy apparently tends to zero with increasing
length n. We observed a similar behaviour for other choices for the primitive
element α.
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7 Comparison to Legendre Sequences

A Legendre sequence X = (x0, x1, . . . , xn−1) of prime length n is defined for
0 ≤ j < n by

xj :=

{
1 for j a square modulo n

−1 otherwise.

The asymptotic merit factor of a Legendre sequence was calculated for all peri-
odic rotations by Høholdt and Jensen [5].
Theorem 13 (Høholdt and Jensen [5]). Let X be a Legendre sequence of
prime length n > 2, and let r be a real number satisfying |r| ≤ 1

2 . Then

1
lim

n−→∞ F (Xr)
= 1

6 + 8
(
|r| − 1

4

)2
.

The maximum asymptotic merit factor of a rotated Legendre sequence Xr is 6,
which occurs for r = 1

4 and 3
4 and is the best proven asymptotic merit factor of

a binary sequence family. Borwein, Choi, and Jedwab [2] presented an analysis
of the effect of appending for rotated Legendre sequences, similar to the analysis
for m-sequences given in Section 5. Extensive numerical data for the behaviour
of 1/F ((Xr)t) were presented, leading to a conjecture on its asymptotic form.
Using a result similar to Theorem 8, the authors of [2] showed that, subject to
this conjecture, limn→∞ F (Xr; (Xr)t) exists for all r, t ∈ [0, 1] and

max
r∈[0,1]

lim
n−→∞F (Xr; (Xr)t) = G(t) for t ∈ [0, 1],

where

G(t) =

⎧⎪⎪⎨⎪⎪⎩
6(1 + t)2

1 + 18t2 − 8t3
for 0 ≤ t ≤ 1

2

6(1 + t)2

4− 12t + 30t2 − 8t3
for 1

2 ≤ t ≤ 1.

We now compare this function with

H(t) =
3(1 + t)2

1 + 9t2 − 2t3
for t ∈ [0, 1],

which, subject to Conjecture 9, equals limn→∞ F (Y ; Y t), where Y is an m-
sequence of length n = 2m − 1. The left plot of Figure 1 shows the graphs of
G(t) and H(t). The maximum of G(t) in the interval t ∈ [0, 1] is given by

G(t̂L) � 6.3420596 for t̂L � 0.0578279,

and, as in Corollary 11, the maximum of H(t) in the interval t ∈ [0, 1] is given by

H(t̂M ) � 3.3420653 for t̂M � 0.1157494.

Surprisingly (to us), we find G(t̂L)−6 � H(t̂M )−3 and 2t̂L � t̂M , but certainly
equality does not hold. Indeed, the right plot of Figure 1 shows that G(t) − 6
and H(2t) − 3 have very similar graphs in the range t ∈ [0, 1

8 ]. It is doubtful
these graphs could be distinguished for t � 0.058 purely from numerical data.
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H(t)− 3

G(t)− 6

�

�

�

�

�

� ��� ��� ��� ��� 	

t

G(t)− 6

H(2t)− 3

�

���

���

���

� ���� ���� ����

t

Fig. 1. Comparison of the graphs of G(t) and H(t)
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Abstract. We introduce an arithmetic Walsh transform. It is a with-
carry analog, based on modular arithmetic, of the usual Walsh trans-
form of Boolean functions. This is part of our continuing effort to define
and investigate with-carry analogs of discrete algebraic structures used
in various aspects of communications. We develop tools for analyzing
arithmetic Walsh transforms. We prove that the mapping from a Boolean
function to its arithmetic Walsh transform is injective. We compute the
average arithmetic Walsh transforms and the arithmetic Walsh trans-
forms of affine functions.

Keywords: Walsh transform, 2-adic numbers, Boolean functions.

1 Definitions

A Boolean function is a function f : Vn = Fn2 → F2 for some positive integer
n. Here F2 = {0, 1} is the field with 2 elements. We define addition on the set
of Boolean functions termwise, (f + g)(a) = f(a) + g(a). The imbalance of a
Boolean function is the real number Z(f) defined by

Z(f) =
∑
a∈Vn

(−1)f(a).

If a ∈ Vn, then the shift of f by a is the real valued function fa : Vn → R
defined by fa(b) = f(a + b). Let a · b denote the inner product of a and b. For
any a ∈ Vn, let Ta(b) = a · b ∈ F2, a, b ∈ Vn, so that Ta is a linear function. The
Walsh Transform of f is the real valued function f̂ : Vn → R defined by

f̂(a) = Z(f + Ta).
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The Walsh transform plays a central role in the study of the nonlinearity of
functions, a study which is central to understanding the cryptographic security
of block and stream cipher [1].

We define an arithmetic analog of the Walsh transform by replacing the
termwise sum (which is the same as the difference) of functions by the with-
carry difference. This takes some work since the carries naturally take us outside
the domain of the Boolean function. Let N = {0, 1, 2, · · · } denote the natu-
ral numbers. We extend the Boolean function f to f : Nn → F2 by setting
f(a1, · · · , an) = f(a1 (mod 2), · · · , an (mod 2)). The set Pn of such extensions
of Boolean functions is a subset of the set Rn of Boolean valued functions on
Nn. It is exactly the set of elements of Rn that are periodic with period 2 in all
directions. That is, for every a, b ∈ Rn we have f(a + 2b) = f(a).

In general in this paper we denote Boolean functions by lower case letters and
elements of Rn by boldface lowercase letters. The extension of a Boolean function
to Rn is denoted by the boldface version of the letter denoting the Boolean
function. Vectors in Nn are denoted by lowercase letters from the beginning of
the alphabet. We denote the inner product of two integer vectors a and b by a ·b.
We denote the reduction of an integer x modulo 2 by [x]2. Thus the F2-inner
product of two binary vectors a and b is [a · b]2

We now define an algebraic structure on the set Rn. To understand this def-
inition it is helpful to recall the definition of the 2-adic integers (in fact R1 is
exactly the 2-adic integers). A 2-adic integer is a formal expression

f =
∞∑
i=0

fi2i,

where fi ∈ F2. We can identify this 2-adic integer with the function on N that
maps i to fi. We denote the set of 2-adic integers by Z2. There is a well de-
fined algebraic structure on the set of 2-adic integers that makes it a ring. It
is based on doing addition and multiplication with carry. The algebra of 2-adic
integers has been studied for more than 100 years [2,5] and recently the authors
and others have used this algebra extensively in the study of fast generation of
pseudorandom sequences [3,4].

A function f ∈ R1 is identified with the 2-adic integer
∑

f(a)2a. To generalize
this notion to multiple dimensions, we want a multi-term analog of the 2-adic
integer in much the same way that we generalize power series in one variable to
power series in several variables. The new structure can be thought of as having
several “2s”. To distinguish them from the ordinary integer 2, we denote them
by t1, · · · , tn. Then a multi-2-adic integer is a formal expression∑

a=(a1,··· ,an)∈Nn

fat
a1
1 · · · tan

n ,

with fa ∈ F2. We can identify an element f ∈ Rn with a multi-2-adic integer
by simply setting fa = f(a). When we do arithmetic, we want a coefficient
equal to 2 to induce a carry to “the next place in each variable”. That is, to
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the monomial with the exponent of each ti increased by one. For convenience,
if a ∈ Nn, we let ta denote ta1

1 · · · tan
n . Also, let 1n = (1, 1, · · · , 1) ∈ Nn and

0n = (0, 0, · · · , 0) ∈ Nn.
We define an addition operation by saying that∑

a∈Nn

fat
a +
∑
a∈Nn

gat
a =
∑
a∈Nn

hat
a

if there exist integers {da : a ∈ Nn} so that da = 0 if any component of a is zero,
and for all a ∈ Nn, we have

fa + ga + da = ha + 2da+1n .

In other words, addition is just 2-adic addition along the diagonals Da = {a +
c(1, 1, · · · , 1) : c ∈ N}, where a ∈ N.

We define a multiplication operation by saying that∑
a∈Nn

fat
a ·
∑
a∈Nn

gat
a =
∑
a∈Nn

hat
a

if there exist integers {da : a ∈ Nn} so that da = 0 if any component of a is zero,
and for all a ∑

b+c=a

fbgc + da = ha + 2da+1n .

This is not simply multiplication along the diagonals.
In contrast, we let

Z[[t1, · · · , tn]] =

⎧⎪⎪⎨⎪⎪⎩
∑

a=(a1,··· ,an),
aj∈N

cat
a1
1 · · · tan

n : ca ∈ Z

⎫⎪⎪⎬⎪⎪⎭
be the power series ring in n variables over the integers. In his ring the ti are
treated as variables and are added and multiplied as for polynomials with no
carry. We can think of an element of Z[[t1, · · · , tn]] as a function from Nn to Z.

Theorem 1. The ring Rn is isomorphic to the quotient ring

Sn = Z[[t1, · · · , tn]]/(t1t2 · · · tn − 2)

The proof (which we omit) of Theorem 1 involves the fact that an element
f ∈ Rn can be represented either as a function f from Nn to {0, 1} (i.e., as
an element of Z[[t1, · · · , tn]] with coefficients in {0, 1}), or as a function f̄ from
{a = (a1, · · · , an) : a1, · · · , an ∈ N and at least one ai = 0} to Z2. We use
boldface symbols in the former case and overlined symbols in the latter. These
representations are connected by the formula

f̄(a) =
∞∑
i=0

f(a + i · 1n)2i. (1)
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We refer to f̄(a) as the restriction of f to the diagonal Da. The same notation
and terminology will be used even if a does not have a zero component.

Let Pn ⊂ Rn denote the set of functions f that have period 2 in all directions:
f(a+2b) = f(a) for all a, b ∈ Rn. If f ,g ∈ Pn then f +g may fail to be periodic,
but it will be eventually 2-periodic in the following sense.

Definition 2. The element f ∈ Rn is eventually p-periodic if there is an integer
k so that if a = (a1, · · · , an) ∈ Nn, and ai ≥ k for i = 1, · · · , n, then for every
b ∈ Nn, f(a + pb) = f(a). If a = (a1, · · · , an) ∈ Nn, and ai ≥ k for i = 1, · · · , n,
then the restriction of f to the set {a + b : b = (b1, · · · , bn), 0 ≤ bi < p, i =
1, · · · , n} is called a complete period of f .

We can be more precise. Let f =
∑∞
i=0 fi2i and g =

∑∞
i=0 gi2i be 2-adic integers

whose coefficient sequences have period 2. Then the coefficients of index ≥ 2 of
−f , f + g, and f − g are periodic.

If f : N → {0, 1} is strictly 2-periodic, then in the representation in equation
(1) we have

f̄(a) =
∞∑
i=0

f(a + i · 1n)2i

= f(a) + f(a + 1n)2 + f(a)22 + f(a + 1n)23 + · · ·

= −f(a) + 2f(a + 1n)
3

. (2)

2 Walsh Transforms

Now we can define the arithmetic Walsh transform. First we extend the notion
of imbalance to eventually p-periodic elements.

Definition 3. Let f ∈ Rn be eventually p-periodic. Then the imbalance of f is

Z(f) =
∑
a

(−1)f(a) ∈ Z,

where the sum is extended over one complete period of f .

Note that Z(f) is independent of the choice of complete period. This definition is
consistent with the definition of the imbalance of Boolean functions in the sense
that the imbalance of a Boolean function equals the imbalance of its periodic
extension to Nn.

Definition 4. The arithmetic Walsh transform of an eventually periodic f ∈ Rn

is the integer valued function f̃ : Vn → Z defined by f̃(a) = Z(f − Ta). If f is
a Boolean function on Vn, then the arithmetic Walsh Transform of f is the
arithmetic Walsh Transform of the extension f of f , f̃(a) = f̃(a).



A With-Carry Walsh Transform 221

Let Un = {a = (a1, · · · , an) : ai ∈ {0, 1} and a1 = 0}. The restriction of an
eventually periodic function f ∈ Rn to a diagonal Da with a ∈ Un is eventually
periodic. If we select one full period from each of these diagonals, altogether we
will have one complete period of f . It follows that the imbalance of f is the sum
of the imbalances of the restrictions of f to the diagonals. The imbalance of the
restriction of f to diagonal Da in turn is the imbalance of the 2-adic integer f̄(a)
(defined in equation (1)). This then is the imbalance of the 2-adic representation
of the rational number in equation (2). Thus

Z(f) =
∑
a∈Un

Z(f̄(a)). (3)

Theorem 5. Let f : Vn → F2 be a Boolean function. If b · 1n = 0, then

f̃(b) =
∑
a∈Un

2(1− f(a)− f(a + 1n) + 2f(a)f(a + 1n)[a · b]2)

= 2n − 2
∑
a∈Vn

f(a) + 4
∑
a∈Un

f(a)f(a + 1n)[a · b]2 (4)

= 2n − 2
∑
a∈Vn

f(a) + 2
∑
a∈Vn

f(a)f(a + 1n)[a · b]2 (5)

If b · 1n = 1, then

f̃(b) = 2
∑
a∈Un

(f(a + 1n)− f(a)f(a + 1n) + (f(a)− f(a + 1n))[a · b]2) (6)

=
∑
a∈Vn

(f(a + 1n)− f(a)f(a + 1n) + (f(a)− f(a + 1n))[a · b]2). (7)

Proof. If b ·1n = 1 (mod 2), then [(a+1n) · b]2 = [a · b]2 +1 (mod 2) = 1− [a · b]2.
It then follows from the discussion above that

f̃(b) =
∑
a∈Un

Z((f̄ − T̄b)(a))

=
∑
a∈Un

Z

(
−f(a) + 2f(a + 1n)− [a · b]2 − 2[(a + 1n) · b]2

3

)

=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
∑
a∈Un

Z

(
−f(a) + 2f(a + 1n)

3
+ [a · b]2

)
if b · 1n = 0

∑
a∈Un

Z

(
−f(a) + 2f(a + 1n) + [a · b]2 − 2

3

)
if b · 1n = 1.

The 2-adic expansion of u/3 is eventually periodic with period 2 and each period
equals 10 or 01 unless u is a multiple of 3. In these cases the imbalance is always
0. If u is a multiple of 3, then the eventual period is 1 and each period is either
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1 (if u is negative) or 0 (if u is nonnegative). The imbalance is thus −2 if u is
negative and is 2 if u is nonnegative. Let Za = Z((f̄ − T̄b)(a)).

Let b · 1n = 0. From a table of values of Za as a function of f(a), f(a + 1n)
and [a · b]2, using Lagrange interpolation we find that Za = 2(1− f(a)− f(a +
1n) + 2f(a)f(a + 1n)[a · b]2). Similarly, if b · 1n = 1 we find that Za = 2(f(a +
1n)−f(a)f(a+1n)+(f(a)−f(a+1n))[a ·b]2). This definition of Za makes sense
for a ∈ Un as well. It can be checked that Za = Za+1n . Thus the last equality
holds. This proves the theorem. ��

Corollary 6. If f is a Boolean function on Vn, and b ·1n = 0, then f̃(b) is even.

Let us consider for a moment the classical case of Boolean functions and Walsh
transforms. If f and g are Boolean functions, then the distance between f and
g is δ(f, g) = |{a ∈ Vn : f(a) = g(a)}|. This is a true distance measure. It is
well-known that Z(f − g) = 2n − δ(f, g). In particular, Z(f − g) = 2n if and
only if δ(f, g) = 0 if and only if f = g. Also, Z(f − g) = −2n if and only if f is
the complement of g. Thus f has a Walsh coefficient equal to 2n if and only if f
is linear, and has a Walsh coefficient equal to −2n if and only if f is affine and
nonlinear.

Now we return to the arithmetic case. Let f and g be Boolean functions and
let f and g be their extensions. Suppose that Z(f − g) = 2n. From equation (3)
it follows that for every a ∈ Un, Z(f̄(a)− ḡ(a)) = 2. That is,

Z

(
g(a)− f(a) + 2(g(a + 1n)− f(a + 1n))

3

)
= 2.

This holds if and only if either (1) f(a) = g(a) and f(a + 1n) = g(a + 1n) or
(2) g(a) = g(a + 1n) = 1 and f(a) = f(a + 1n) = 0. Thus g is obtained from f
by choosing some elements X ⊆ Un so that f is 0 on the diagonal determined
by each a ∈ X and changing the value on these diagonals to 1. Alternatively,
f is obtained from g by choosing some elements Y ⊆ Un so that g is 1 on the
diagonal determined by each a ∈ Y and changing the value on these diagonals
to 0.

Now suppose g is a linear function, say g(a) = [a ·b]2, b = 0n. The function g is
constant on some diagonal if and only if g(1n) = 0. In this case g is 1 on exactly
2n−2 diagonals, so there are 22n−2 − 1 nonlinear functions f so that f̃(b) = 2n.

3 Uniqueness of Arithmetic Walsh Transforms

In this section we show that a Boolean function is uniquely determined by its
arithmetic Walsh transform. We do not, however, know a simple expression for
the inverse arithmetic Walsh transform, or even an efficient way to compute it.

It follows from equation (4) that if b = 0n and wt(b) is even, then

∑
a∈Un

f(a)f(a + 1n)[a · b]2 =
f̃(b) + f̃(0n)

4
. (8)
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Let Mn be the (2n−1 − 1)× (2n−1 − 1) rational matrix indexed by Un −{0n}
and Wn = {b ∈ Vn : wt(b) even, b = 0n}, whose entry with index (a, b) is [a · b]2
treated as a rational number. Similarly, let Nn be the (2n−1 − 1) × (2n−1 − 1)
rational matrix indexed by Un−{0n} and Tn = {b ∈ Vn : wt(b) odd, b = 10n−1},
whose entry with index (a, b) is [a · b]2 treated as a rational number.

Let v be the vector indexed by Un−{0n} whose entry with index a is v(a) =
f(a)f(a + 1n). Let z be the vector indexed by Wn whose entry with index b is
z(b) = (f̃(b) + f̃(0n))/4. Then equation (8) implies that vMn = z. Thus if Mn

is invertible, then the v(a) with a = 0n or 1n can be determined uniquely from
the f̃(b).

Similarly, it follows from equation (6) that if b = 10n−1 and wt(b) is odd, then

∑
a∈Un

(f(a)− f(a + 1n))[a · b]2 =
f̃(b)− f̃(10n−1)

2
. (9)

Let u be the vector indexed by Un − {0n} whose entry with index a is u(a) =
f(a)− f(a+1n). Let w be the vector indexed by Tn whose entry with index b is
w(b) = (f̃(b) − f̃(10n−1))/2. Then equation (9) implies that uNn = w. Thus if
Nn is invertible, then the u(a) with a = 10n−1 can be determined uniquely from
the f̃(b).

Theorem 7. The matrices Mn and Nn have nonzero determinants.

Proof (Proof Sketch). We order the indices in both dimensions lexicographically,
with most significant position on the right. For both types of matrices, we think
of the rows (the as) as being divided into three segments:

1. The rows indexed by a = 0a′0 with a′ = 0n−2;
2. The row indexed by a = 0n−11; and
3. The rows indexed by a = 0a′1 with a′ = 0n−2.

For Mn, we think of the columns (the bs) as being divided into three segments:

1. The columns indexed by b = b′0 with wt(b′) even and b′ = 0n−1;
2. The column indexed by b = 10n−21; and
3. The columns indexed by b = b′1 with wt(b′) odd and b′ = 10n−2.

Let 〈1〉n denote the 2n × 2n matrix all of whose entries are 1. Following these
decompositions of the indices, we can decompose Mn into blocks as follows.

1. If a = 0a′0 with a′ = 0n−2 and b = b′0 with b′ = 0n−1 and wt(b′) even, then
[0a′ · b′]2 = [a · b]2. Thus the upper left hand block of Mn equals Mn−1.

2. If a = 0a′1 with a′ = 0n−2 and b = b′0 with b′ = 0n−1 and wt(b) even, then
[0a′ · b′]2 = [a · b]2. Thus the lower left hand block of Mn equals Mn−1.

3. If a = 0a′0 with a′ = 0n−2 and b = b′1 with b′ = 10n−2 and wt(b′) odd, then
[0a′ · b′]2 = [a · b]2. Thus the upper right hand block of Mn equals Nn−1.

4. If a = 0a′1 with a′ = 0n−2 and b = b′1 with b′ = 10n−2 and wt(b′) odd,
then [0a′ · b′]2 = 1 − [a · b]2. Thus the lower right hand block of Mn equals
〈1〉n−1 −Nn−1.
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5. If a = 0n−11, then the row indexed by a is 02n−1−112n−1
.

6. If b = 10n−21, then the column indexed by b is 02n−1−112n−1
.

We can summarize this by saying

Mn =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0

Mn−1
... Nn−1
0

0 · · · 0 1 1 · · · 1
1

Mn−1
... 〈1〉n−1 −Nn−1
1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
By subtracting the first block of rows from the last block of rows, then subtract-
ing the row indexed by a = 0n−11 from each of the last block of rows, we have

det(Mn) = det

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0

Mn−1
... Nn−1
0

0 · · · 0 1 1 · · · 1
0

0
... −2Nn−1
0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
= 22n−1−1 det(Mn−1)det(Nn−1).

(10)
A similar argument shows that

det(Nn) = 22n−1−1 det(Mn−1)det(Nn−1). (11)

Finally, we see that M2 and N2 are 1 × 1 matrices whose single entries are 1,
hence whose determinants are 1. It follows that the determinant of Mn and Nn

are nonzero as claimed. ��
Corollary 8. The values of u(a) and v(a) for a ∈ Un − {0n} are uniquely
determined by the f̃(b). This in turn uniquely determines the values of the f(a)
for a = 0n, 1n.

Proof. The first statement follows from Theorem 7. Since f(a), f(a+1n) ∈ {0, 1},
from a table of possible values of f(a), f(a+1n), u(a), and v(a) we see that f(a)
and f(a + 1n) are uniquely determined by any valid value of u(a) and v(a). ��
Having determined the f(a) with a = 0n, 1n, we are left with two equations
in the unknowns f(0n) and f(1n). From equation (5) with b = 0n we have
f(0n) + f(1n) = x for some x ∈ Q, and from equation (7) with b = 10n−1 we
have f(1n) − f(0n)f(1n) = y for some y ∈ Q. The values x and y are uniquely
determined by the f̃(b).

Again, from a table of possible values of f(0n), f(1n), x, and y it follows that
f(0n) and f(1n) are uniquely determined by any valid value of x and y. We have
proved the following theorem.
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Theorem 9. Every Boolean function on Vn is uniquely determined by its arith-
metic Walsh transform.

Embedded in this proof is a method of computing the function f from its arith-
metic Walsh transform. It is, however, more complicated than the situation for
classical Walsh transforms where one simply computes essentially the Walsh
transform of the Walsh transform. We do not know of such an idempotency law
for the arithmetic Walsh transform.

4 Expected Arithmetic Walsh Transform

Recall that for a Boolean function f , the expectation of the classical Walsh
coefficients of f is (−1)f(0) and the second moment is 2n (independent of f).
The picture is quite different in the arithmetic case.

Let
H(f) =

∑
a∈Vn

f(a),

the Hamming weight of f , and let

Q(f) =
∑
a∈Un

f(a)f(a + 1n) =
1
2

∑
a∈Vn

f(a)f(a + 1n),

the number of diagonals on which f is a constant 1.

Lemma 10. If f is a Boolean function on n variables, then∑
a∈Vn

f(a)f(a + 1n)
∑

b·1n=0

[a · b]2 = 2n−1Q(f)− 2n−1f(0n)f(1n),

∑
a∈Vn

(f(a)− f(a + 1n)))
∑

b·1n=1

[a · b]2 = 2n−1(f(1n)− f(0n)),

Proof. For any a ∈ Vn, let

Sa =
∑

b·1n=0

[a · b]2 and Ta =
∑

b·1n=1

[a · b]2.

If a = 0n or a = 1n, then Sa = 0. Otherwise 1n and a are linearly independent
modulo 2. Thus

∑
b·1n=0[a · b]2 = 2n−2, so∑

a∈Vn

f(a)f(a + 1n)
∑

b·1n=0

[a · b]2 = 2n−1Q(f)− 2n−1f(0n)f(1n).

Similarly, if a = 0n, then Ta = 0. If a = 1n, then Ta = 2n−1. Otherwise Ta =
2n−2. Since

∑
a∈Vn

(f(a)− f(a + 1n))) = 0, we have∑
a∈Vn

(f(a)− f(a + 1n))
∑

b·1n=0

[a · b]2 = 2n−1(f(1n)− f(0n)).

��
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Theorem 11. Let f be a Boolean function on n variables. The expected arith-
metic Walsh transform of f is

E[f̃ ] = 2n−1 − H(f) + f(0n)− f(1n)
2

− f(0n)f(1n).

Proof. We have

E[f̃ ] =
1
2n
∑
b∈Vn

f̃(b) =
1
2n

( ∑
b·1n=0

f̃(b) +
∑
b·1n=1

f̃(b)

)
.

We use equations (5) and (7) and Lemma 10 to compute these two sums sepa-
rately. For the first sum we have

∑
b·1n=0

f̃(b) =
∑

b·1n=0

(
2n − 2

∑
a∈Vn

f(a) + 2
∑
a∈Vn

f(a)f(a + 1n)[a · b]2

)
= 22n−1 − 2nH(f) + 2nQ(f)− 2nf(0n)f(1n)

by Lemma 10.
Similarly, for the second sum we have∑

b·1n=1

f̃(b) = 2n−1H(f)− 2nQ(f) + 2n−1(f(1n)− f(0n)),

again by Lemma 10. It follows that

E[f̃ ] = 2n−1 − H(f) + f(0n)− f(1n)
2

− f(0n)f(1n),

as claimed. ��

5 Arithmetic Walsh Transforms of Linear Functions

In this section we make use of the analysis in Sect. 2 to completely describe
the arithmetic correlations of linear functions. That is, of Boolean functions
f(a) = Tc(a) = [a · c]2, a, c ∈ Vn.

If c = 0n, then f is identically zero. By Theorem 5,

T̃0n(b) =
{

2n if b · 1n = 0
0 if b · 1n = 1.

For the remainder of the section we assume that c = 0n. By equation (5), if
b · 1n = 0, then

T̃c(b) = 2n − 2
∑
a∈Vn

[a · c]2 + 2
∑
a∈Vn

[a · c]2[(a + 1n) · c]2[a · b]2

= 2
∑
a∈Vn

[a · c]2[(a + 1n) · c]2[a · b]2. (12)



A With-Carry Walsh Transform 227

By equation (7), if b · 1n = 1, then

T̃c(b) =
∑
a∈Vn

[(a + 1n) · c]2(1− [a · c]2) + ([a · c]2 − [(a + 1n) · c]2)[a · b]2). (13)

We treat these equations separately. First suppose that b · 1n = 0. If b = 0n,
then T̃c(b) = 0. If b = 0n and c · 1n = 0, then

T̃c(b) = 2
∑
a∈Vn

[a · c]2[a · c]2[a · b]2 = 2
∑
a∈Vn

[a · c]2[a · b]2

=

⎧⎨⎩2
∑
a∈Vn

[a · c]2 = 2n if b = c

2 · 2n−2 = 2n−1 if b = c.

(The last line holds because [a·c]2[a·b]2 = 1 on the intersection of two hyperplanes
and is 0 everywhere else.) The last case occurs for 2n−1 − 2 values of b for each
such c. If c · 1n = 1, then

T̃c(b) = 2
∑
a∈Vn

[a · c]2(1− [a · c]2)[a · b]2 = 0,

since if x ∈ {0, 1}, then x(1 − x) = 0. This occurs for 2n−1 values of b for each
such c.

Now suppose that b · 1n = 1. If c · 1n = 0, then

T̃c(b) =
∑
a∈Vn

[a · c]2(1− [a · c]2) + ([a · c]2 − [a · c]2)[a · b]2) = 0.

This occurs for 2n−1 values of b for each such c. If c · 1n = 1, then

T̃c(b) =
∑
a∈Vn

(1 − [a · c]2)2 + (2[a · c]2 − 1)[a · b]2)

=

⎧⎪⎪⎨⎪⎪⎩
2n−1 +

∑
a∈Vn

2[a · c]22 − [a · c]2 = 2n if b = c

2n−1 +
∑
a∈Vn

2[a · c]2[a · b]2 − [a · b]2 = 2n−1 if b = c.

The second case occurs for 2n−1 − 1 values of b for each such c. Now we fix c
and describe the distribution of values of T̃c(b).

Theorem 12. Let c ∈ Vn. If c = 0n, then the arithmetic Walsh transform of
Tc has values 0, which occurs 2n−1 times, and 2n, which occurs 2n−1 times. If
c · 1n = 0 and c = 0n, then the arithmetic Walsh transform of Tc has values 0,
which occurs 2n−1 + 1 times, 2n−1, which occurs 2n−1 − 2 times, and 2n, which
occurs once. If c · 1n = 1, then the arithmetic Walsh transform of Tc has values
0, which occurs 2n−1 times, 2n−1, which occurs 2n−1 − 1 times, and 2n, which
occurs once.
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Similarly, for affine functions we have the following theorem.

Theorem 13. Let c ∈ Vn. If c = 0n, then the arithmetic Walsh transform
of 1 − Sc has values 0, which occurs 2n−1 times, and −2n, which occurs 2n−1

times. If c ·1n = 0 and c = 0n, then the arithmetic Walsh transform of 1−Sc has
values 0, which occurs 2n−1 + 2 times and 2n−1, which occurs 2n−1 − 2 times.
If c · 1n = 1, then the arithmetic Walsh transform of 1− Sc has values 0, which
occurs 2n−1 + 1 times and 2n−1, which occurs 2n−1 − 1 times.

6 Conclusions

We have defined a new arithmetic (or with-carry) version of the Walsh transform
of a Boolean function, and we have explored some of its basic properties: invert-
ibility of the transform, its average behavior, and its value on linear functions.

Many questions remain. In the case of classical Walsh transforms, the second
moment plays a critical role through Parseval’s identity, and gives rise to the
notion of bent functions. In the arithmetic case we can show that the second
moment is much more complicated. This leaves open the problem of defining
arithmetically bent functions. We also mention that the methods used here can
be used to define arithmetic versions of the cross-correlation of Boolean func-
tions. We shall explore these and other issues in future work.

In the classical case the Walsh transform can be interpreted as telling us how
close a given function is to a linear function, and this gives the Walsh transform
significance in cryptography. In the arithmetic case it remains to be seen whether
there is cryptographic significance. We can try to relate it to some notion of
with-carry distance to linear functions, but this leads to messier definitions. For
example, in one sense there are nonlinear functions whose with-carry distance to
linear functions is zero. We leave this issue and the broader issue of applications
of the arithmetic Walsh transform as open questions.
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Abstract. In this paper, we investigate the stop-and-go clock-controlled
generator based on FCSR. The output sequence is proven to have large
linear complexity. Further, the experimental results show that most of
the output sequences also have almost optimal 2-adic complexity.
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1 Introduction

Linear feedback shift registers (LFSR) have been widely used in keystream gen-
erators as basic building blocks because of their good statistical properties and
the easy implementation. But LFSR cannot be used directly due to the well-
known Berlekamp-Massey algorithm [11], which can easily recovers an LFSR if
it has low linear complexity.

One general technique for destroying the low linear complexity inherent in
LFSR is by combining the output of several LFSR in nonlinear ways, such as non-
linear combination generators, nonlinear filter generators and clock-controlled
generators [12,13]. In the first two generators, all the component LFSR are
clocked regularly. Whereas in the clock-controlled generator, the outputs of some
LFSR control the clocking of other LFSR, which can resist the attacks based
on the regular motion of LFSR [5]. The stop-and-go generator is the simplest
clock-controlled generator with many good properties, such as easy hardware
implementation and large linear complexity etc.

In 1994, Klapper and Goresky proposed a new type of feedback register called
Feedback with Carry Shift Register (FCSR) [8]. An FCSR is a feedback shift
register together with a small amount of auxiliary memory. It turns out that
sequences generated by an FCSR share many of the important properties enjoyed
by LFSR sequences. In general, FCSR sequences have larger linear complexity.
But they are vulnerable to another kind of measure: the 2-adic complexity [4].
Hence, FCSR cannot be used directly in keystream generators as well.

� This work was supported by the Foundation for the Author of National Excellent
Doctoral Dissertation of PR China (FANEDD) under Grants 200341.

C. Carlet and A. Pott (Eds.): SETA 2010, LNCS 6338, pp. 229–239, 2010.
c© Springer-Verlag Berlin Heidelberg 2010



230 Z. Pan, W. Su, and X. Tang

In 2005, Arnault et al. firstly proposed a linear filter generator based on
FCSR with Galois representation [1]. As a result, a hardware implementation
called F-FCSR-Hv2 passed all the evaluations and then was chosen as one of
the four candidates in the final phase of eSTREAM [2]. But unfortunately, it
was broken in 2008 [7]. Very recently, they presented a new generator using ring
representation FCSR (i.e., F-FCSR-Hv3) which totally resist previous attacks [3].
To explore more possibilities of the application FSCR in keystream generators,
the objective of this paper is to introduce the stop-and-go generator based on
FCSR for generating sequences with large linear complexity, and breaking the 2-
adic structure of FCSR. The output sequence is proven to have (1) large period;
(2) half period complementary property; (3) and large linear complexity. In
addition, it was shown to possess high 2-adic complexity by experimental results.

The remainder of this paper is organized as follows. Section 2 gives some def-
initions and results of FCSR sequence with half period complementary property
and large linear complexity. Section 3 introduces the basic arrangement of the
stop-and-go generator. Section 4 determines the period of the output sequences
of the stop-and-go generator based on FCSR. Its linear complexity and 2-adic
complexity are considered as well. Section 5 concludes the paper.

2 FCSR Sequence with Half Period Complementary
Property and Its Linear Complexity

Let a = (a0, a1, a2, · · · ) be a binary sequence. If there exist two integers N > 0
and j ≥ 0 satisfy

ai = ai+N , for i ≥ j, (1)

a is said to be eventually periodic with period N , and periodic if j = 0. The
minimum N satisfying (1) is called the least period. Straightforwardly, if T is a
period of the sequence a then N |T .

2.1 Linear Complexity

It is well-known that any periodic sequence can be generated by an LFSR. Let
a = (a0, a1, a2, · · · ) be a periodic binary sequence. Then, there must be a linear
recursive relation such that

an+k =
n−1⊕
i=0

ciak+i, k = 0, 1, · · · , (2)

where ci ∈ F2 and ⊕ denotes the addition modulo 2. The polynomial f(x) =
xn + cn−1x

n−1 + · · ·+ c0 is called the characteristic polynomial of a.
Among all the characteristic polynomials of a, the monic polynomial of the

lowest degree is said to be the minimal polynomial of a. If f(x) is a characteristic
polynomial of periodic sequence a, then the minimal polynomial of a, say g(x),
divides f(x).
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Definition 1. The linear complexity of an infinite periodic binary sequence a,
denoted as L(a), is defined by the degree of its minimal polynomial.

In the following, we discuss the minimal polynomials and the periods of sequences
in terms of the polynomial ring F2[x].

Definition 2 ([10]). Let f ∈ F2[x] be a nonzero polynomial. If f(0) = 0, then
the least positive integer e for which f(x) divides xe − 1 is called the order of
f and denoted by ord(f) = ord(f(x)). If f(0) = 0, then f(x) = xhg(x), where
h ∈ N and g ∈ F2[x] with g(0) = 0 are uniquely determined; ord(f) is then
defined to be ord(g).

The order of the polynomial f is sometimes also called the period of f because
of the following lemma.

Lemma 1 ([10]). Let f(x) ∈ F2[x] be the minimal polynomial of periodic se-
quence s and N is the least period of sequence s, then N = ord(f(x)).

The order of a polynomial f can be characterized in the following lemmas de-
pending on whether it is irreducible or not.

Lemma 2 ([10]). Let f(x) ∈ F2[x] be an irreducible polynomial of degree m
and with f(0) = 0. Then ord(f) is equal to the order of any root of f in the
multiplicative group F∗

2m .

Lemma 3 ([10]). Let f ∈ F2[x] be a polynomial of positive degree and with
f(0) = 0. Let f = f b11 · · · f bk

k , where b1, · · · , bk ∈ N, and f1, · · · , fk are distinct
irreducible polynomials in F2[x], be the canonical factorization of f in F2[x].
Then ord(f) = 2te, where t is the smallest integer with 2t ≥ max{b1, · · · , bk}
and e is the least common multiple of ord(f1), · · · , ord(fk).

Finally, we conclude this section by directly stating the relation between the
decomposition of a sequence c and the decomposition of its characteristic poly-
nomial without proof for saving space.

Lemma 4. Let f(x) be a characteristic polynomial of sequence c = (c0, c1, c2, · · · ).
If f(x) = f1(x)·f2(x) · · · fk(x) where f1(x), f2(x), · · · , fk(x) are pairwise relatively
prime, then there exist sequences a1, a2, · · · , ak, such that c = a1 ⊕ a2 ⊕ · · · ⊕ ak
and fi(x) is a characteristic polynomial of sequence ai, 1 ≤ i ≤ k.

2.2 FCSR Sequence with Half Period Complementary Property

It was showed in [9] that every eventually periodic sequence is an FCSR sequence,
and vise versa. An FCSR is a feedback shift register together with a small amount
of auxiliary memory [6,8,9]. The structure of an r-stage FCSR is depicted in
Figure 1, where mn−1 ∈ Z, ai, qj ∈ {0, 1}, n−r ≤ i ≤ n−1, and 1 ≤ j ≤ r. If the
contents of the register at any given time n−1 are (an−1, an−2, · · · , an−r+1, an−r)
and the memory is mn−1. Then the operation of the shift register at the n-th
clock time is defined as follows:
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1. Take an integer sum δn =
∑r

k=1 qkan−k + mn−1;
2. Shift the contents one step to the right, while outputting the rightmost bit

an−r;
3. Put an = δn(mod 2) into the leftmost cell of the shift register;
4. Replace the memory integer mn with mn = (δn − an)/2.

Fig. 1. Feedback with Carry Shift Register

The r taps q1, q2, · · · , qr on the cells of an r-stage FCSR define connection
integer

q = qr2r + qr−12r−1 + · · ·+ q12− 1.

If a periodic sequence a = (a0, a1, a2, · · · ) is generated by an FCSR with
connection integer q. Then, there exists A ∈ Zq such that for all i = 0, 1, 2, · · · ,
ai = (A · γi (mod q))(mod 2) where γ = 2−1 ∈ Zq. Obviously, a can achieve its
maximum possible least period N = q− 1 if and only if the connection integer q
is a prime and 2 is a primitive root modulo q. Such sequence a is called l-sequence
[9], and its connection integer q is said to be a 2-prime.

For simplicity, in this paper the connection integer q of FCSR is always as-
sumed to be 2-prime. Thus, the FCSR sequence is an l-sequence with the least
period N = q − 1.

Similarly to the run property of m-sequence, l-sequence also has good partial
period distribution.

Lemma 5 ([9]). Let a = (a0, a1, a2, · · · ) be an l-sequence generated by an FCSR
with connection integer q. If 2n < q ≤ 2n+1 is 2-prime, then every subsequence
with length less than or equal to n can be found in a.

In addition, l-sequence has an interesting property called half period
complementarity.

Definition 3. Let a = (a0, a1, a2, · · · ) be a periodic sequence with period N
where N is an even integer. Then a is said to be half period complementary if

ai = ai+N/2 ⊕ 1, i ≥ 0. (3)
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Lemma 6 ([9]). Let a = (a0, a1, a2, · · · ) be an l-sequence. Then a is half period
complementary.

If sequence a has half period complementary property, we have the following
result concerning its characteristic polynomial.

Lemma 7 ([14]). Let binary sequence a of period N = 2r have half period
complementary property, then

f(x) = 1 + x + xr + xr+1 = (1 + x)(1 + xr)

is a characteristic polynomial of sequence a.

2.3 Cyclotomic Polynomial

As shown in Lemma 7, we are able to determine the lower bound of minimal
polynomial’s degree of sequence a if we can factorize the polynomial 1 + xr . To
do so, we need to introduce the cyclotomic polynomial.

Definition 4 ([10]). Let m be a positive odd integer and ζ a primitive m-th
root of unity over F2. Then the polynomial

Qm(x) =
m∏

s=1,gcd(s,m)=1
(x− ζs) (4)

is called the m-th cyclotomic polynomial over F2.

According to the theory of cyclotomic polynomial [10],

1 + xr =
∏
m|r

Qm(x). (5)

Then, the characteristic polynomial f(x) of sequence a can be rewritten as

f(x) = (1 + x)2
∏

m|r,m �=1
Qm(x).

Before further factorizing f(x), we define the order of 2 modulo m.

Definition 5 ([10]). If an integer d is the least positive integer such that 2d ≡ 1
(mod m), then d is called the order of 2 modulo m, denoted as d = ordm(2).

Lemma 8 ([10]). If m is a positive odd integer, then the m-th cyclotomic poly-
nomial over F2 can be factorized as

Qm(x) =
φ(m)/d∏
i=1

ri(x)

where ri(x) is a monic irreducible polynomial of the same degree d = ordm(2).

Obviously, Qm(x) is irreducible in F2 if and only if 2 is a primitive root modulo
m, i.e. ordm(2) = φ(m). Applying Lemmas 2 and 3 to (4), we always have the
following corollary.

Corollary 1. The order of the m-th cyclotomic polynomial Qm(x) is m, i.e.,
ord(Qm(x)) = m.
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3 The Basic Arrangement of Stop-and-Go Generator

A stop-and-go generator consists of a controlling register CR and a generating
register GR, see Figure 2. Let a = (a0, a1, a2, · · · ) and b = (b0, b1, b2, · · · ) be
the CR sequence and GR sequence respectively. Let u = (u0, u1, u2, · · · ) be the
output sequence of the stop-and-go generator.

Fig. 2. Stop-and-Go Generator

The stop-and-go generator works as follows. After the output ut−1 has been
taken from GR in the clock-controlled arrangement, the control register generates
a binary member at, and then GR is stepped by at steps before producing the
next output ut. Finally, CR is stepped in regularly to produce the next value
at+1. Mathematically,

ut = b∑ t
k=0 ak

, for t ≥ 0. (6)

Considering that the least period of the sequence a is N1, we rewrite (6) as

ui+jN1 = bjS+σ(i), 0 ≤ i < N1, j ≥ 0, (7)

where

σ(t) =
t∑

k=0
ak, (8)

and

S =
N1−1∑
k=0

ak. (9)

The following lemmas describe some properties of the sequence u.

Lemma 9 ([5]). For the stop-and-go generator, the least period of the CR se-
quence a is N1, and the least period of the GR sequence b is N2. If S is relatively
prime to N2, where S is defined by (9), then the least period of clock-controlled
sequence u is N1N2.

Lemma 10. Let sequences a and b respectively be sequences of the least period
N1 = 2p1 and N2 = 2p2 with half period complementary property. If p1 is rela-
tively prime to 2p2, then the least period of sequence u is N1N2 and u also has
half period complementary property.
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Proof. Since a is a sequence of the least period N1 = 2p1 with half period
complementary property, one immediately has S = p1. It follows from Lemma 9
that the least period of sequence u is N1N2 = 4p1p2.

Given an integer t = i + jN1 ≥ 0, 0 ≤ i < N1 and j ≥ 0. According to (7),

ut = ui+jN1 = bjp1+σ(i),

ut+2p1p2 = ui+jN1+p2N1 = bjp1+p2p1+σ(i).

Since the least period of b is N2 = 2p2 and gcd(p1, 2p2) = 1, one has

bjp1+p2p1+σ(i) = bjp1+σ(i)+p2

whereas, bjp1+σ(i)+p2 = bjp1+σ(i)⊕1 by the half period complementary property
of b, which indicates that u has half period complementary property. ��

4 Stop-and-Go Generator Based on FCSR

The stop-and-go generator based on FCSR is depicted in Figure 3. Let the
connection integers of FCSR1 and FCSR2 are q1 = 2p1 + 1 and q2 = 2p2 + 1,
respectively. Throughout this section, q1 and q2 are always assumed to be strong
2-prime with q1 = q2.

Fig. 3. Stop-and-Go Generator Based on FCSR

Definition 6 ([14]). If q(= 2p + 1) is a 2-prime and p is also 2-prime, then q
is called strong 2-prime.

Let a and b be the CR sequence and GR sequence, which are generated by
FCSR1 and FCSR2, respectively. Let u be the output sequence of the stop-and-
go generator. Since q1 = 2p1 + 1 and q2 = 2p2 + 1 are both strong 2-primes, a
and b are l-sequences with least periods 2p1 and 2p2, respectively.

4.1 Period

Theorem 1. Let u be the stop-and-go clock-controlled sequence generated by
Figure 3, then u is a half period complementary sequence with the least period
4p1p2.

Proof. By Lemma 6, the two l-sequences a and b have half period complementary
property. Then, the conclusions immediately follow from Lemmas 9 and 10. ��
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4.2 Linear Complexity

Theorem 2. Let u be the stop-and-go clock-controlled sequence generated by
Figure 3, then

L(u) ≥ lcm(p1 − 1, p2 − 1) + 3.

Proof. According to Lemma 7 and (5), u can be generated by the following
polynomial

f(x) = (1 + x)(1 + xp1p2)2 = (1 + x)(
∏
d|p1p2 Qd(x))2

= (1 + x)3Q2
p1(x)Q2

p2 (x)Q2
p1p2(x),

where Qp1p2(x) =
∏φ(p1p2)/m
i=1 ri(x) with ri(x)s are monic irreducible polynomials

of degree m = ordp1p2(2) by Lemma 8. Since p1 and p2 are 2-primes with p1 = p2,
one has m = lcm(p1 − 1, p2 − 1) from the Chinese Remainder Theorem.

Let g(x) be the minimal polynomial of sequence u, then g(x)|f(x). In the
sequel, we will prove that g(x) is divisible by (1 + x)3ri(x) for some i in two
steps.

(I) (1 + x)3|g(x).
If (1 + x)3 is not a divisor of g(x), then ord(g) ≤ 2p1p2 by Lemma 3 and

Corollary 1. Applying Lemma 1, one has the period of u is equal to ord(g) ≤
2p1p2, a contradiction.

(II) ri(x)|g(x) for some i.
If ri(x) is not a divisor of g(x), for any 1 ≤ i ≤ φ(p1p2)/m, then g(x) is of the

form

g(x) = (1 + x)3 ·Qi
p1(x) ·Qj

p2(x), 1 ≤ i, j ≤ 2, (10)

in which i = 0 and j = 0. Otherwise, one has ord(g) ≤ 4p2 (resp. ord(g) ≤ 4p1)
from Lemma 3.

By Lemma 4, the sequence u can be decomposed as

u = α⊕ β ⊕ γ, (11)

where α is generated by Qi
p1(x) with period ip1, β is generated by Qj

p2(x) with
period jp2, and γ is generated by (1+x)3 with period 4 and satisfies the following
rules

– γt+3 = γt⊕γt+1⊕γt+2, for all t ≥ 0, since (1+x)3 is the minimal polynomial
of γ;

– γt+2 = γt ⊕ 1, for all t ≥ 0, since u has half period complementary property
and

ut ⊕ ut+2p1p2 = αt ⊕ βt ⊕ γt ⊕ αt+2p1p2 ⊕ βt+2p1p2 ⊕ γt+2p1p2
= αt ⊕ βt ⊕ γt ⊕ αt ⊕ βt ⊕ γt+2
= γt ⊕ γt+2.
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Since q1 is a strong 2-prime, one has q1 ≥ 7. According to Lemma 5, sequence
a must contain the subsequence “00”, i.e. there exists an integer k ≥ 0 such that
ak+1 = ak+2 = 0. Subsisting them into (8), we have σ(k) = σ(k + 1) = σ(k + 2).
It then follows from (7) that ut·2p1+k = ut·2p1+k+1 = ut·2p1+k+2, for all t ≥ 0.

By means of (11), ut·2p1+k and ut·2p1+k+1 can be expressed as

ut·2p1+k = αt·2p1+k ⊕ βt·2p1+k ⊕ γt·2p1+k

= αk ⊕ βt·2p1+k ⊕ γt·2p1+k,
ut·2p1+k+1 = αt·2p1+k+1 ⊕ βt·2p1+k+1 ⊕ γt·2p1+k+1

= αk+1 ⊕ βt·2p1+k+1 ⊕ γt·2p1+k+1.

Then, we can get

βt·2p1+k ⊕ βt·2p1+k+1 = αk ⊕ αk+1 ⊕ γt·2p1+k ⊕ γt·2p1+k+1.

Further from the property of γ derived above, we have

γ(t+1)·2p1+k ⊕ γ(t+1)·2p1+k+1 = γt·2p1+k+2 ⊕ γt·2p1+k+3 = γt·2p1+k ⊕ γt·2p1+k+1,

Hence,

β(t+1)·2p1+k ⊕ β(t+1)·2p1+k+1 = βt·2p1+k ⊕ βt·2p1+k+1. (12)

By the same argument on ut·2p1+k+1 = ut·2p1+k+2, we have

β(t+1)·2p1+k+1 ⊕ β(t+1)·2p1+k+2 = βt·2p1+k+1 ⊕ βt·2p1+k+2. (13)

Since gcd(p2, p1) = 1, {t · 2p1} and {t · 2p1 + 1} enumerate all the even values
and all odd values from 0 to 2p2 − 1 respectively by mode 2p2 when t ranges
from 0 to p2 − 1. Then, (12) and (13) give that for all 0 ≤ t < p2,

β2t+k ⊕ β2t+k+1 = β2t+k+2 ⊕ β2t+k+3,

β2t+k+1 ⊕ β2t+k+2 = β2t+k+3 ⊕ β2t+k+4,

which result in β2t+k = β2t+k+4 and β2t+k+1 = β2t+k+5 for all 0 ≤ t < p2. That
is, the period of β is 4, which contradicts the assumption.

Combining (I) and (II), we conclude that g(x) is divisible by (1+x)3ri(x) for
some 1 ≤ i ≤ φ(p1p2)/m. Then,

L(u) = deg(g(x)) ≥ m + 3 = lcm(p1 − 1, p2 − 1) + 3. ��

When we choose gcd(p1− 1, p2− 2) = 2, the lower bound of linear complexity is
(p1− 1)(p2− 1)/2 + 3. The ratio of the lower bound to the length of sequence is
approximately equal to 1/8. While in the stop-and-go generator based on LFSR,
the ratio is n/(2n − 1) where n is the stage of the component LFSR [5]. So in
terms of this ratio, clocked-control generator based on FCSR is much better than
that based on LFSR.
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4.3 2-Adic Complexity

Definition 7 ([9]). Let a be binary periodic sequence, and q is the least con-
nection integer of a, then, the 2-adic complexity of a is defined as log2(q).

Theorem 3. Let a be binary periodic sequence with half period complementary
property, 2n be the period of a, q be the least connection integer of a. Then, we
have q ≤ (2n + 1).

Proof. The conclusion is obvious since the sequence a can be generated by an
FCSR with the connection integer q = 2n + 1 and initial states (at, at+1, · · · ,
at+n−1). ��

To test the 2-adic complexity of our clock-controlled FCSR sequences, firstly we
generated l-sequence with prime connection integer 10 < q < 1200. Secondly
choosing two of them, we generated all the stop-and-go sequences with length
less than 12000, and calculate their 2-adic complexities. The ratios of 2-adic
complexity to the period of the sequence are shown in Figure 4. By Theorem 3,
the ration should be not more than log2(2n+1)

2n ≈ 0.5. So, we see that most of the
sequences achieve almost the optimal 2-adic complexity, i.e., q ≈ 2n + 1.

Based on the experimental results, we expect that clock-controlled FSCR
sequence can resist 2-adic analysis because clock-controlled structure destroys
the algebra structure over the 2-adic numbers.

Fig. 4. Ratio of 2-adic Complexity to Period

5 Conclusions

In this paper, we introduce the stop-and-go generator based on FCSR. For the
FCSR with connection integer being strong 2-prime, we determine the period of
the ouput sequence. The linear complexity and the 2-adic complexity are also
considered. The experimental results show that most of the output sequences
also have almost the optimal 2-adic complexity. Thus we believe that the clock-
controlled FSCR sequences can resist 2-adic analysis.
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Abstract. In this paper, we investigate the structure of FCSR made
by Goresky and Klapper. Using a vectorial construction of the objects
and of the register, we extend the analysis of FCSRs. We call these reg-
isters vectorial FCSRs or VFCSRs. We obtain similar results to those of
analysis of FCSRs and of d-FCSRs generating binary sequences or p-ary
sequences. In fact, the AFSRs built over finite fields Fpn with n ≥ 2 suffer
from an very difficult and formal analysis. But if you analyze these regis-
ters with a vectorial structure, you can decompose the output sequence
into a vector of binary sequences or p-ary sequences. This method allows
us to obtain very easily the period, the behavior of memory with interval
optimized , the maximal period, the existence of l-sequences and the cal-
culations become explicit and easily implementable. At the end of this
paper, we implement the quadratic case (F22 case) and present the con-
clusions about pseudorandom properties of quadratic l-sequences which
are tested by NIST STS package. In conclusion, VFCSRs are easy to
implement in software and hardware and have excellent pseudorandomn
property.

1 Introduction

In 1993, Goresky and Klapper ([1] and [2]) have introduced a new sequences gen-
erator named FCSR. They have developped many results about FCSR sequences
over F2. With the correspondence between rational numbers and eventually pe-
riodic binary sequences, they prove that the output sequence (ai)i is periodic
and its 2-adic development

∑i=+∞
i=0 ai2i corresponds to a rational number p

q ∈ Q

where q =
∑i=r

i=1 qi2i − 1 is an odd positive integer called the connection integer
and qi are connection coefficients (see Fig. 2). Suppose that p

q is irreducible, then
the period of the sequence is ordq(2). The output sequence has an exponential
representation, ai = (A2−i) (mod q) (mod 2) for all i. The period is maximal
if q is prime which 2 is a primitive root modulo q. A sequence of such period
is called an l-sequence. These sequences verify distributional properties very
good like the balance property. Furthermore, they give a rational approxima-
tion algorithm similar to Berlekamp-Massey algorithm. Finally, the arithmetic
cross correlation between two first decimations of an l-sequence is either zero
or equal to the period. In 1994, Klapper [3] has extended these FCSRs to any
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c© Springer-Verlag Berlin Heidelberg 2010
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finite field. In order to construct FCSR over a finite field, he takes a principal
domain R with valuation such that the ideal of the valuation πR generated by
π is maximal and R/πR is a finite field. He corresponds the output sequence
(ai)i with its π-adic development

∑i=+∞
i=0 aiπ

i in the completion Rπ of R at
the valuation. For example, to obtain F2n , he takes R = Z[β] and π = 2 where
2R is a prime ideal and the reduction of β modulo 2 is a root of a primitive
polynomial of degree n over F2(note that in this general case R is not neces-
sarily a principal domain but just an order of a Dedekind domain). Then we
have Z[β]/(2) = F2n . Klapper analyzes these FCSRs and shows that the 2-adic
development is equal to p

q which is a rational in Q(β) the fraction field of Z[β].
q is always the connection integer. In this general setting the analyzis of these
registers is more difficult. To conclude his work, Klapper give an algorithm to
answer the inverse question which is how to construct the initial loading of an
FCSR over F2n whose output sequence coincides with the 2-adic expansion of pq ?
Finally in [3] Klapper generalizes the 2-adic rational approximation algorithm
with very restrictive conditions. In the same year, Goresky and Klapper [4] have
introduced a new design of FCSR called d-FCSR based on totally ramified ex-
tensions of Z2 of degree d. To construct d-FCSR, they take R = Z[ d

√
2] an order

of a Dedekind domain and π = d
√

2. The output sequence corresponds to the
π-adic expansion of p

q ∈ Q( d
√

2) where q =
∑i=r

i=1 qiπ
i − 1 ∈ Z[ d

√
2]. Further-

more they give the exponential representation of d-FCSR which is ai = A d
√

2
−i

(mod q) (mod d
√

2). So the maximal period is T = |R/(q)−0| and they define l-
sequences for d-FCSRs. In 2002 [5], they present many results about periodicity
and correlation of d-FCSR. We consider mainly that they use the norm of q and
obtain p

q ∈
1

N(q)Z[ d
√

2]. This fact is very important because N(q) is in Q and thus
simplifies the analysis. The maximal period becomes N(q) − 1. We emphasize
that it’s very important because using the norm, we can analyze these registers
over integer and not over elements in Z[π]. We use this norm in this paper in
order to reduce computations on abstract algebraic structures to computations
on vectorial structures over Z. In 1999, Klapper and Xu [6] have presented a
generalization of FCSR and LFSR called AFSR. Algebraic FSR are constructed
over an integral and commutative ring R and they consider an element π ∈ R.
We assume that R/πR is a finite field. The construction is the same as that of
FCSR. Also, if we take R = F2n [x] and π = x where x is an indeterminate,
we obtain an LFSR. As far as, if we take R = Z and π = p with p prime, you
have simple FCSR. If we take R = Z[ d

√
2] and π = d

√
2, we have the case of

d-FCSR. This construction generalizes all FSR over an algebraic structure. Any
such π defines a topology on R. For analysis, they consider the completion of
R for the π-adic topology. If R is noetherian, this completion is simply the set
of power series

∑i=+∞
i=0 aiπ

i. For analysis, we have a correspondance between
this set of power series and the set of sequences over R/πR. Furthermore, the
most important results are that the output sequence is the π-adic expansion of pq
which is in the fraction field of R and q =

∑i=r
i=1 qiπ

i−1 is the connection integer.
Under special conditions, the output sequence has an exponential representation
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modulo q modulo π. Moreover, in this case, the period is the order of π modulo q.
Finally, they give a rational approximation algorithm for AFSR using the norm
of q and an interleaving of several sequences over subrings. Goresky, Klapper
and Xu use only these concepts for d-FCSR and for rational approximation al-
gorithm to AFSR. All these results about algebraic FSR and their properties are
described in an excellent book [7]. However in this paper, we repeat and develop
this analysis of FCSR over finite fields F2n with n ≥ 2 but through a vectorial
contruction that produces results much more significant as the determination of
the period, the behavior of memory, the existence of l-sequences, the implemen-
tation, the properties of distribution etc. . . Furthermore we consider the output
sequences as vectors of binary sequences or p-ary sequences, and thus we obtain
results as strong as those Goresky and Klapper get to the FCSR and d-FCSR
since generally AFSRs have an underlying algebraic structure difficult to ana-
lyze. So we present a new design called vectorial FCSR. We develop especially
the quadratic case.

2 Definitions and Analysis

2.1 Formalism

We keep the scheme of the FCSR built by Goresky and Klapper. However, we
must redefine the space in which we calculate. The field F2n can be seen as a
vector space over F2 of dimension n. Indeed, we can take an irreducible poly-
nomial P over F2 and we construct F2n = F2[X ]/(P ). First, we must choose
an arbitrary irreducible polynomial. This polynomial defines the operations of
the register. Secondly, to describe our calculations in a vectorial way to imple-
ment them, you have to put an arbitrary basis. We choose the canonical basis
B =
{
1, X̄, . . . , X̄n−1

}
where X is the class of X in F2[X ]/(P ). Then we take

a lift of P in Z[X ], in this case P itself because it is irreducible in Z[X ], and
we obtain the ring Z[X ]/(P ) which is a free Z-module of rank n. With these
notations, we define the vectorial FCSR.

Definition 1. A vectorial feedback with carry shift register over (F2, P,B) of
length r with coefficient q1, . . . , qr ∈ F2[X ]/(P ) is an automaton or sequence gen-
erator whose state is an element s = (a0, . . . , ar−1, mr−1) where ai ∈ F2[X ]/(P )
and mr−1 ∈ Z[X ]/(P ). We take the canonical lift of the collection of ai and qi

in Z[X ]/(P ) and compute the element σr =
i=r∑
i=1

qiar−i + mr−1 and ar = σr

(mod 2) where (mod 2) applies coordinates by coordinates following the ba-
sis B. Take the canonical lift of ar in Z[X ]/(P ) and compute mr = σr−ar

2 .
The feedback function is f(s) = (a1, . . . , ar−1, ar, mr) and the output func-
tion is g(x0, x1, . . . , xr−1, z) = x0. The FCSR generates an infinite output se-
quence a = (g(s), g(f(s)), g(f2(s)), . . .) = (a0, a1, a2, . . .). s is called initial state,
q1, . . . , qr are called the coefficients of the recurrence and the infinite sequence
(mr−1, mr, . . .) is called memory values.
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2.2 Calculus over (F2, P, B)

We write all elements in the basis B.

i ∈ N, ai =
j=n−1∑
j=0

aijX̄
j ; aij ∈ F2, 1 ≤ i ≤ r, qi =

j=n−1∑
j=0

qijX̄
j ; qij ∈ F2,

i ≥ r − 1, mi =
j=n−1∑
j=0

mi
jX̄

j ; mi
j ∈ Z and i ≥ r, σi =

j=n−1∑
j=0

σijX̄
j ; σij ∈ Z.

(1)
In calculating σ, we find a polynomial expression in X̄ of degree 2n− 2 thus we
must eliminate the degree greater than n− 1 to obtain the coordinates for σ in
the basis B. For this, we must express the power of X̄ in terms of B with the
polynomial P . So we set

j ≥ n, X̄j =
t=n−1∑
t=0

bjtX̄
t ; bjt ∈ F2.

We get the coordinates of σ and of the output sequence in the basis B, z ≥ r,

σz =
t=n−1∑
t=0

[ k=t∑
k=0

i=r∑
i=1

(qika
z−i
t−k) +

j=2n−2∑
j=n

(bjt
k=n−1∑
k=j−n+1

i=r∑
i=1

(qika
z−i
j−k)) + mz−1

t

]
X̄t

azt =
[ k=t∑
k=0

i=r∑
i=1

(qika
z−i
t−k)+

j=2n−2∑
j=n

(bjt
k=n−1∑
k=j−n+1

i=r∑
i=1

(qika
z−i
j−k))+mz−1

t

]
(mod 2) (2)

2.3 Analysis of VFCSRs over (F2, P, B)

The output sequence corresponds to n binary sequences.

a = (ai)i∈N =
j=n−1∑
j=0

(aij)i∈NX̄j =
j=n−1∑
j=0

ajX̄
j (3)

Following Goresky and Klapper’s correspondance, to each aj , we associate its
2-adic development and we obtain a 2-adic vector β = (βt)t=n−1

t=0 associated to a

F2
N → Z2

n

a �→
( ∑
z∈N

azt 2
z
)t=n−1

t=0
. (4)

Definition 2. We set q̃i =
j=r∑
j=1

qji 2
j for all 0 ≤ i ≤ n−1 and we call (q̃i)0≤i≤n−1

the connection vector for the VFCSR over (F2, P,B).
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Using 2, we obtain a linear system with integer coefficients⎧⎨⎩βt −
j=2n−2∑
j=n

0≤k,l≤n−1∑
k+l=j

(bjt q̃kβl)−
∑
k+l=t

q̃kβl = p̃t

⎫⎬⎭
t=n−1

t=0

where we leave to the readers to determine the expression of p̃t. This system can
be written in matrix form with a matrix whose diagonal is odd and the other
entries are even. So this matrix denoted M and called the connection matrix
of the VFCSR over (F2, P,B) is invertible, its determinant is odd and we have
(Comat is the comatrice)

β =
1

| det(M)|sgn(det M)Comat(M)(p̃t)0≤t≤n−1 (5)

Theorem 1. Consider a VFCSR over (F2, P,B) of length r with connection
vector (q̃0, . . . , q̃n−1) and connection matrix M . For all sequences a generated
by this VFCSR, the associated 2-adic vector β is in 1

| detM|Z
nand | detM | is

positive and odd.

Notice that to generate a sequence with VFCSR returns to generate n binary
sequences with the same FCSR over F2 whose connection integer is | detM | and
therefore a size much larger than the VFCSR (see Table 4).

2.4 Norm and Analysis with Respect to an Another Basis

The norm N(x) of an element x in Q[X ]/(P ) is the determinant of the linear
transformation defined as the multiplication by x. We have a special element
q =
∑i=r
i=1 qi2i − 1 ∈ Z[X ]/(P ) and N(q) ∈ Z.

Proposition 1. The connection matrix M is the matrix in the canonical basis B
of the linear transformation defined as the multiplication by −q. The determinant
of M is the norm of −q.

Whatever the basis chosen for Q[X ]/(P ), the norm does not change, because we
replace M by an equivalent matrix. If we construct and analyze the VFCSR over
an another basis B′

, we obtain the same results with respect to B′
: all sequences

generated by this VFCSR on (F2, P,B′
) are associated to a 2-adic vector in

1
N(q)Z. So we can define FCSR over finite fields on the pair (F2, P ) and we call q

the connection integer of the FCSR and we have q = (q̃0, . . . , q̃n−1)− (1, 0, ..., 0)
in the basis B.

2.5 Periodicity and l-Sequences

In this section, B is not necessarily the canonical basis. Also we consider the
equations 1, 2, 3, 4 and 5 with respect to B.
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Proposition 2. The sequence a is periodic if and only if aj is periodic for all
0 ≤ j ≤ n−1. The period of a is the lcm of the periods of aj where 0 ≤ j ≤ n−1.

According to the theory of 2-adic number, a is periodic if and only if β ∈ Qn.
Hence the following corollary:

Corollary 1. All sequences generated by vectorial FCSR over (F2, P,B) are
eventually periodic. The output sequence is periodic if and only if −1 ≤ βt ≤ 0
for all 0 ≤ t ≤ n− 1.

Proposition 3. Let β = ( r̃t

q̃ )t=n−1
t=0 be the vector associated to the output se-

quence a of the VFCSR. If exists t such that r̃t /∈ q̃Z, then

per(a) = lcm0≤t≤n−1

{
ord q̃

gcd(q̃,r̃t)
(2); r̃t /∈ q̃Z

}
otherwise per(a) = 1.

Here q̃ = | det(M)| = |N(q)|. The period is always less than q̃ − 1. This upper
limit is reached if q̃ is a prime number whose 2 is a primitive root modulo q̃ and
if there exists a numerator that is not a multiple of q̃. q̃ being plus or minus
the determinant of the connection matrix, so it is an integer represented by an
n-form. So we must look for such numbers, if they exist then we can extend the
notion of l-sequences to VFCSR.

Definition 3. Let a VFCSR with connection matrix M . Suppose that q̃ = | detM |
is prime and 2 is a primitive root modulo q̃. A nontrivial output sequence (ie not with
period 1) is called vectorial l-sequence if the period is q̃ − 1.

We note that the maximal period of VFCSR sequences is |N(q)| − 1. So we can
define l-sequence in another way: let an FCSR over a finite fields on (F2, P ).
Suppose that q is the connection integer and |N(q)| is prime with 2 a prim-
itive root modulo |N(q)|. A nontrivial output sequence (ie not with period 1)
is called l-sequence over (F2, P ) if the period is |N(q)| − 1. We note that each
nontrivial binary sequence aj of a vectorial l-sequence can be viewed as a binary
l-sequence. So they check all the results of Goresky and Klapper on l-sequences
such as distributional properties (balanced property, complementarity of the half
periods. . . ).

2.6 Vectorial Exponential Representation

In this section, B is not necessarily the canonical basis. We can reformulate the
following theorem in a more intrinsic way by replacing det(M) by N(q).

Theorem 2. Let a be a sequence generated by a VFCSR over (F2, P,B) of con-
nection matrix M . Then there are integers (st)t=n−1

t=0 such that

∀i ∈ N, ai =
(
2−i

t=n−1∑
t=0

(stX̄t)
)

(mod | detM |) (mod 2)
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2.7 Vectorial Memory Requirements

We place ourselves in the canonical basis B, and we define wi =
∑j=r
j=1 qji for all

0 ≤ i ≤ n− 1. Using 2, it also defines special constants

Kt =
k=t∑
k=0

wk +
j=2n−2∑
j=n

bjt

0≤k,l≤n−1∑
k+l=j

wk.

Proposition 4. For 0 ≤ i ≤ n− 1, if mr−1
i ∈ [0, Ki[, then the next memory re-

main in [0, Ki[. If mr−1
i = Ki, then the next memory monotonically decreases to

[0, Ki[ after at most r steps. If mr−1
i > Ki, then the next memory monotonically

decreases to [0, Ki[ after at most [log2(m
r−1
i −Ki)]+r steps. If mr−1

i < 0, then the
next memory monotonically increases to [0, Ki[ after at most [log2 |mr−1

i |]+r+1
steps.

For example, for VFCSR over (F2, X
2 − X − 1,B), we find K0 = w0 + w1

and K1 = w0 + 2w1. For VFCSR over (F2, X
3 − X − 1,B), we have K0 =

w0 +w1 +w2, K1 = w0 +2w1 +2w2 and K2 = w0 +w1 +2w2. If we replace B by
B′

= {μ0, . . . , μn−1}, there is a general method to determine the constants K
′
i

on this basis: we compute the vectorial coordinates of
∑i=r

i=1 qi(μ0 + . . . + μn−1)
on B′

.
i=r∑
i=1

qi(μ0 + . . . + μn−1) = K
′
0μ0 + . . . + K

′
n−1μn−1

2.8 Initial Loading

In this section, we answer the reverse question: Let β = ( r̃0s̃0 , . . . , r̃n−1
s̃n−1

) a rational
vector whose denominators are all odd, how do we determine a VFCSR and
initial loading whose output sequence coincides with the 2-adic expansion vector
of β. If a VFCSR generates β, it must be constructed over (F2, P,B) with P
an irreducible polynomial of degree n and B the canonical basis. Let start with
an irreductible polynomial P of degree n. In other words, we seek an VFCSR
over (F2, P,B) size r with connection vector (q̃0, . . . , q̃n−1) and an initial state
(a0, . . . , ar−1, mr−1). All these unknowns satisfy an equation of the form 5. In
order to solve this equation, use the following procedure:

1. Compute q̃ = lcm{s̃0, . . . , s̃n−1} and now we have β = ( r̃0q̃ , . . . , s̃n−1
q̃ ).

2. (F2, P,B) determines the form of the connection matrix M and so we have
a n-form detM noted f(q̃0 − 1, q̃1, . . . , q̃n−1). We must solve the equation
f(q̃0 − 1, q̃1, . . . , q̃n−1) = q̃ where connection vector (definition 2) is the
unknown.

3. Compute r = max {[log2(q̃i)]; 0 ≤ i ≤ n− 1}. Now we have the size of the
VFCSR.

4. Write the 2-adic expansion vector of connection vector like definition 2 and
we deduce connection coefficient q1, . . . , qr.
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5. Compute a0
i + a1

i 2 + . . . + qr−1
i 2r−1 the first r bits in the 2-adic expansion

for r̃i

q̃ (for all 0 ≤ i ≤ n− 1).
6. With all its data inputs into the equation 5, it remains to determine the

memory. The memory mr−1
t appears in 5 only in the expression of p̃t for all

0 ≤ t ≤ n− 1. It is an integral linear system n× n with n indeterminates.

2.9 First Cases

In this part we will present the first cases, n = 1, 2, 3. Firstly, if n = 1, it is an
binary FCSR. The case n = 2 is special because to build our vectorial FCSR,
there is a single irreducible polynomial of degree 2 on F2: X2 −X − 1 modulo
2. For n = 3, we have two polynomials X3 −X − 1 and X3 −X2 − 1 modulo 2.
VFCSRs models for quadratic and cubic cases are given in Table 1.

Table 1. Theoritical models for FCSRs and VFCSRs

Quadratic Case Cubic Case
VFCSR (F2, X

2 − X − 1,B) (F2, X
3 − X − 1,B)

Connection integer u = q̃0 − 1 and v = q̃1 u = q̃0 − 1, v = q̃1 and w = q̃2

Connection Matrix M =
(

u v
−v −u − v

) ⎛⎝ −u −w −v
−v −v − w −v − w
−w −v −u − w

⎞⎠
Form f u2 + uv − v2 −u3 − v3 − w3 + 3uvw

determinant +uv2 − uw2 − 2u2w + vw2

l-Sequences q̃ = f(u, v) odd prime q̃ = f(u, v) odd prime
2 primitive root modulo q̃ 2 primitive root modulo q̃

q̃ = 11 (u, v) = (3, 2) (u, v, w) = (−1, 2, 0)
59 (7, 2) (−1, 2, 4)
101 (9, 4) (5, 4, 2)
701 (27, 28) (9, 2, 0)

3 Investigation of VFCSRs

3.1 Quadratic Case

We analyse the quadratic case of VFCSRs (see Table1). From Equations 2 and
3, operations are defined as follows:

1. Form integers σz1 and σz0 , as follows

σz1 =
i=r∑
i=1

(
qi1a

z−i
1 + qi1a

z−i
0 + qi0a

z−i
1

)
+ mz−1

1 , ∀z ≥ r (6)

σz0 =
i=r∑
i=1

(
qi1a

z−i
1 + qi0a

z−i
0

)
+ mz−1

0
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Fig. 1. VFCSR representation for a triplet (q, u, v)

2. Shift the content of the first element register and the second element register
on step to the right, while outputing the rightmost bits az−i1 and az−i1 as
shown in Fig. 1.

3. Put az−i1 = σz1 (mod 2) and az−i0 = σz0 (mod 2), ∀z ≥ r.
4. Replace memorys integer as below: mz

1 = σz
1−az

1
2 and mz

0 = σz
0−az

0
2 .

3.2 Parameters Research

Research parameters for VFCSR is a fundamental task, due to the fact that in
this case which is different from FCSRs; parameter connection is not only a prime
number but a triplet system of parameters (q̃, u, v) as defined by the following
equation where, q̃ is an odd prime number and 2 is primitive root modulo q̃, u
is an odd number and v even number.

q̃ = u2 + u.v − v2 (7)

In Table 4, the results from simulation allow us to conclude on the behavior of
VFCSRs based on triple (q̃, u, v):

– For a fixed u in a triplet (q̃, u, v) we see that the periode (q̃−1) with u > v
is higher than that where u < v.

– For certain integer connection q̃, there is more than a couple (u, v) which
satisfies the equation 7.

– The number of cells (2lmax) used to represent VFCSRs when u > v is less
than or equal to the number of cells representing FCSRs.

– The number of cells (2lmax) used to represent VFCSRs when u < v is greater
than or equal to the number of cells representing FCSRs.

– Number of cells representing VFSCR is 2 × l(u,v), where l(u,v) =
max length(u, v).

We give an example of vectorial l-sequence. We take an VFCSR over (F2, X
2 −

X − 1,B) size r = 2 with connection coefficient q1 = 1 and q2 = X̄ . We load
initial state (a0, a1, m1) = (1, X̄ + 1, 3 − 4X̄). The length of the pre-period is
6 and the period is 10. The connection vector is (q̃0, q̃1) = (4, 2). q̃ is equal to
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(a)

(b)

Fig. 2. (a) FCSR representation for connexion integer 349, (b) VFCSR representation
for triplet (349,17,12)

(4− 1)2 + (4− 1).2 + 22 = 11. We verify the proposition 4. Finally, we have five
0’s and five 1’s in one period. The halves of a period are complementary. The
output sequence and memory is in vectorial representation:

ai0 1 1 1 1 1 0 1 1 0 1 0 0 0 1 0 1 1 1 0 1
ai1 0 1 0 1 0 1 0 1 1 1 0 1 0 0 0 1 0 1 1 1

mi+1
0 3 2 1 1 1 1 0 1 1 1 1 1 0 0 0 0 0 1 1 1

mi+1
1 −4 −1 0 1 1 1 1 1 1 2 1 1 1 1 0 1 1 1 1 2

where Fig. 2 shows representation for the two conceptions of FCSRs and VFC-
SRs. For this example, connection integer for FCSR is q = 349, where for the
VFCSR is as defined above by 7; (q̃, u, v) = (349, 17, 12).

3.3 Testing on Pseudorandom Property of VFCSR Sequences

In order to test pseudorandom property of sequences generated by VFCSR, in
the quadratic case, with different stage and compare the testing results with
those for FCSR in [8], we have taken several triplets (q̃, u, v) with differents
magnitudes (see Table 4) with the case where u > v and u < v. All tests have
been investigated by package NIST (National Institute of Standardization and
Technology) STS [9], which is a special package designed to test the sequences
generated by sequences generators. These tests are useful in detecting deviations
of a binary sequence from randomness [10]. This package consists of 15 differ-
ents statistical tests, which allow accepting (or rejecting) the hypothesis about
randomness of the testing sequence. Nist framework, like many tests, is based
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Table 2. Results statistical tests 1-4 on some triplets (q̃, u, v)

q̃ Seq Test 1 Test 2 Test 3 Test 4
(u,v) P-value Task P-value Task P-value Task P-value Task
829 a0 0.972294 Succ 0.972260 Succ 0.498961 Succ 0.874766 Succ

(35,34) a1 0.972294 Succ 0.972260 Succ 0.498961 Succ 0.654567 Succ
1259 a0 0.977516 Succ 0.932602 Succ 0.498961 Succ 0.317535 Succ

(35,44) a1 0.977516 Succ 0.932602 Succ 0.498961 Succ 0.472308 Succ
2389 a0 0.983677 Succ 0.983670 Succ 0.498961 Succ 0.353726 Succ

(85,28) a1 0.983677 Succ 0.983670 Succ 0.498961 Succ 0.571931 Succ
3581 a0 0.986667 Succ 0.986664 Succ 0.527464 Succ 0.856311 Succ

(85,124) a1 0.986667 Succ 0.986664 Succ 0.527464 Succ 0.949487 Succ
7621 a0 0.990860 Succ 0.990859 Succ 0.498961 Succ 0.653463 Succ

(89,86) a1 0.990860 Succ 0.990859 Succ 0.512361 Succ 0.580758 Succ
8179 a0 0.991178 Succ 0.973536 Succ 0.511447 Succ 0.891599 Succ

(98,124) a1 0.991178 Succ 0.973536 Succ 0.498961 Succ 0.865508 Succ
8821 a0 0.991505 Succ 0.991504 Succ 0.498961 Succ 0.806508 Succ

(95,84) a1 0.991505 Succ 0.991504 Succ 0.498961 Succ 0.806508 Succ
9949 a0 0.992001 Succ 0.992000 Succ 0.478444 Succ 0.521477 Succ

(95,108) a1 0.992001 Succ 0.992000 Succ 0.468205 Succ 0.917313 Succ

Table 3. Statistical Tests

Statistical Tests Deffect detected Length

1-Frequency Larger than expected deviation from the theoretical ≥ 100
distribution of zeroes and ones, too many ones or zeroes

2-Serial Non-uniform distribution of m-length words. ≥ 100
3-Cumulative Sums Too many zeroes or ones at the bigining of the sequence ≥ 100
4-Run Large (small) test statistic indicates that the oscillation ≥ 100

in the bitstream is too fast (too slow).
5-Matrix Rank Deviation of the rank distribution from a corresponding ≥ 38912

random sequence, due to periodicity
6-DFT Periodic featurs ≥ 1000
7-Maurer Compressibility (regularity) ≥ 387840

on hypothesis testing. Testing result is P − value ∈ [0, 1]. If P − value ≥ 0.01
The tested sequence is considered to be random (accepted) and the bigger the
P − value is, the better pseudorandom property the tested sequence has.

Table.2 show results testing on sequences a0 and a1 for some triplets listed in
Table 4. Tests selected for this group are those that require at least a subsequence
of size 100 bits; test 1 to 4 as listed in Table 3. It is observed that the two
sequences generated by the VFCSR have passed the four tests since all P −
value > 0.01. That mean that the two sequences have perfect balance and good
uniform distribution.
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Table 4. Some triplets and their length.

Some results
lq̃ q̃ l(u,v) u v lq̃ q̃ l(u,v) u v lq̃ q̃ l(u,v) u v

4 11 2 3 2 16 101419 8 331 354 18 411491 9 639 634
4 11 5 31 50 16 109891 8 331 330 18 424451 9 651 650
10 1259 5 35 34 16 115259 8 339 338 18 428339 9 657 662
9 829 5 35 44 16 103451 8 339 370 18 443771 9 657 638
13 8821 6 85 28 16 112181 8 351 380 18 467171 9 683 682
11 2389 6 85 124 16 121421 8 351 332 18 481619 9 675 634
12 8179 6 89 86 17 132499 8 373 390 18 502499 9 689 646
11 3581 6 89 124 17 157141 8 373 316 20 1164589 9 1001 204
13 9949 6 95 84 18 389219 9 637 662 20 3932741 10 2001 2036
12 7621 6 95 108 18 395429 9 651 692

As shown inFig.3-a, the two sequences for connection integer from q̃ = 101419 to
q̃ = 157141as defined in table 4, have passed the Matrix Rank. In Fig.3-b where the
MaurerTest is performed for connection integer q̃ = 389219 to q̃ = 502499, in order
to mesure the compressibility of sequences, it’s appears that test was passed and
the sequence shouldbe consideredas random.While in Fig.3-c, for DFT Test appli-
cated on VFCSR with integer connection triplet (q̃, u, v) = (1164589, 1001, 204),
it is observed that as the size of subsequence increases (by step of 20000 bits) the
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Fig. 3. Testing results of: (a) Matrix Rank Test, (b) Universal Maurer Test, (c) DFT
Test and (d) all NIST Tests
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test results decreases to 0 when their length exceeds one ninth of the period. The
reason for the decrease of P − value is that l-sequence generated by VFCSR begin
to show repetition when the subsequence becomes long.

Fig.3-d represent results for all statistical Tests in the Nist suite applicated on
a VFCSR whith integer connection triplet (3932741, 2001, 2036), on the curve,
tests are presented from 1 to 15 as deffined in [10]-p.201. All tests are passed
successfuly wich conclude on the good randomness propertys of VFCSR on F22 .

4 Conclusion and Open Problems

The construction of VFCSR depends on the choice of the prime fields Fp, the
polynomial P and the basis B but the main results of analysis don’t depend to
the basis. Most of the fundamental results of this paper are true for p odd prime.
We have a limited choice of irreducible polynomials of degree n in Fp. There is
therefore a finite number of ways to build a VFCSR for p and n fixed. The form of
P affects the difficulty of calculations from the register. We must therefore look
for simple forms of P as trinomial. For example, for every p prime, Xp −X − 1
is irreducible in Fp. Illustrated numerical experiments conducted utilizing NIST
Statistical Tests Suite, confirm the good propertys of the VFCSRs.

References

1. Goresky, M., Klapper, A.: Feedback shift registers, combiners with memory, and
2-adic span. Journal of Cryptology 10, 111–147 (1997)

2. Goresky, M., Klapper, A.: 2-adic shift registers. In: Anderson, R. (ed.) FSE 1993.
LNCS, vol. 809, pp. 174–178. Springer, Heidelberg (1994)

3. Klapper, A.: Feedback with Carry Shift Registers over Finite Fields (extended
abstract). In: FSE 1994, pp. 170–178 (1994)

4. Goresky, M., Klapper, A.: Feedback Registers Based on Ramified Extensions of
the 2-Adic Numbers (Extended Abstract). In: De Santis, A. (ed.) EUROCRYPT
1994. LNCS, vol. 950, pp. 215–222. Springer, Heidelberg (1995)

5. Goresky, M., Klapper, A.: Periodicity and Correlation Properties of d-FCSR Se-
quences. Des. Codes Cryptography 33(2), 123–148 (2004)

6. Klapper, A., Xu, J.: Algebraic Feedback Shift Registers. Theor. Comput. Sci. 226(1-
2), 61–92 (1999)

7. Goresky, M., Klapper, A.: Algebraic Shift Register Sequences (2009),
http://www.cs.uky.edu/~klapper/algebraic.html

8. Zheng, Y., Tang, X., He, D., Xu, L.: Investigation on pseudorandom properties
of FCSR sequence. In: Proc. IEEE International Conference on Communications,
Circuits and Systems, vol. I, pp. 66–70 (2005)

9. http://csrc.nist.gov/groups/ST/toolkit/rng/documents/sts-2.0.zip
10. http://csrc.nist.gov/publications/nistpubs/800-22-rev1/SP800-22rev1.pdf
11. Arnault, F., Berger, T.P.: Design and Properties of a New Pseudorandom Genera-

tor Based on a Filtered FCSR Automaton. IEEE Transaction on Computers 54(11),
1374–1383 (2005)

12. Berger, T., Arnault, F., Lauradoux, C.: Description of F-FCSR-8 and F-FCSR-H
stream ciphers. In: SKEW - Symmetric Key Encryption Workshop, An ECRYPT
STVL event, Aarhus, Danemark (May 2005)

http://www.cs.uky.edu/~klapper/algebraic.html
http://csrc.nist.gov/groups/ST/toolkit/rng/documents/sts-2.0.zip
http://csrc.nist.gov/publications/nistpubs/800-22-rev1/SP800-22rev1.pdf


Fourier Duals of Björck Sequences

Branislav M. Popović
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Abstract. Closed-form expressions for the Fourier duals of Björck se-
quences are derived. Based on these expressions, the definition of Björck
sequences of prime lengths N ≡ 3 (mod 4) is extended to include ad-
ditional, previously unknown Constant Amplitude Zero Autocorrelation
(CAZAC) sequences.
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1 Introduction

The Constant Amplitude Zero (periodic) Autocorrelation (CAZAC) polyphase
sequences have been extensively used in communications [1,2] and radars [3].
A lesser known family of CAZAC sequences is the family of Björck sequences
[3,4]. The potential applications of these sequences in frequency domain raise
the interest in the properties of their Fourier duals.

In Section 2 the basic mathematical definitions are stated. In Section 3 the
Fourier duals ofBjörck sequences are derived. The Section 4 summarizes the paper.

2 Definitions

The periodic cross-correlation Rxy(p) of two sequences {x(k)} and {y(k)}, k =
0, 1, . . . , N − 1, is defined as

Rxy(p) =
N−1∑
k=0

x∗(k)y(k + p) (1)

where p = 0, 1, . . . , N − 1 is the cyclic delay and ‘*’ denotes complex conjugate.
The periodic autocorrelation Rxx(p) of sequence {x(k)} is defined by (1) when
{y(k)}={x(k)} . The Rxx(p) is ideal when Rxx(p) = 0 for any p ≡ 0 (mod N).
If the sequence with ideal periodic autocorrelation has constant amplitude, it is
called a CAZAC sequence.

The Discrete Fourier Transform (DFT) {X(n)}, n = 0, 1, . . . , N − 1, of a
sequence {x(k)}, k = 0, 1, . . . , N − 1, is defined as

X(n) =
N−1∑
k=0

x(k)Wnk
N (2)

WN = e−j2π/N , j =
√
−1 , N is any positive integer .

C. Carlet and A. Pott (Eds.): SETA 2010, LNCS 6338, pp. 253–258, 2010.
c© Springer-Verlag Berlin Heidelberg 2010



254 B.M. Popović

The Fourier dual of a sequence {x(k)} is its DFT sequence {X(n)} normalized
by
√

N .
Vector of DFT coefficients of any sequence of symbols of constant amplitude

has the ideal period autocorrelation, but only a CAZAC sequence has its DFT
coefficients of constant amplitude. It can be shown that the necessary and suf-
ficient condition for a sequence to be the CAZAC sequence is that its DFT
coefficients have constant amplitude. Thus, if a CAZAC sequence of length N
has the symbols of unit amplitude, according to Parseval’s theorem the corre-
sponding DFT coefficients have the amplitudes equal to

√
N . Hence the Fourier

dual of a unit amplitude CAZAC sequence is also a unit amplitude CAZAC
sequence.

A Björck sequence {x(k)} can be defined only for prime lengths N > 2. For
prime lengths N ≡ 1 (mod 4), the Björck sequences are defined as

x(k) = ejθ(
k
N ), k = 0, 1, . . . , N − 1 (3)

θ = cos−1
(

1
1 +
√

N

)
where

(
k
N

)
is the Legendre symbol, defined for any integer k and any odd prime

N , as

(
k

N

)
=

⎧⎪⎨⎪⎩
0, if k ≡ 0 (mod N)

+1, if k ≡ 0 (mod N) is a square (mod N)
−1, if k ≡ 0 (mod N) is not a square (mod N)

(4)

For prime lengths N ≡ 3 (mod 4), the Björck sequences are defined as

x(k) =

{
ejφ, if

(
k
N

)
= −1, k = 0, 1, . . . , N − 1

1, otherwise
(5)

φ = cos−1
(

1−N

1 + N

)
.

The binary-to-biphase (BTB) alphabet transform similar to (5), given by

x(k) = BTB [b(k)] = ejφ, if b(k) = −1

has been defined in [5], to produce a biphase CAZAC sequence from a binary
pseudo-noise sequence {b(k)}, whose alphabet is {+1, −1} and periodic auto-
correlation Rbb(p) = −1 for any p ≡ 0 (mod N), N ≡ 3 (mod 4). The same
transform has been used in [6] to obtain a CAZAC sequence from a binary
Hadamard cyclic difference set sequence.

In Section 3 we derive an extended definition of Björck sequences for prime
N ≡ 3 (mod 4) by including the Fourier dual of (5). This extended definition is
given by
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z(k) =

{
1 or ejφ, k = 0

ej
φ
2 [1−( k

N )], k = 1, 2, . . . , N − 1
(6)

φ = cos−1
(

1−N

1 + N

)
, N ≡ 3 (mod 4) .

An equivalent extended definition of Björck sequences can be obtained if the
BTB transform is applied on the pair of binary pseudo-noise Legendre sequences
of the same length. Such a pair of binary sequences is defined through a bipolar
ternary Legendre sequence of a prime length N ≡ 3 (mod 4), whose Legendre
symbol

( 0
N

)
is replaced either by +1 or −1 [7].

3 Fourier Duals

For a Björck sequence of prime length N ≡ 1 (mod 4), the DFT {X(n)}, n > 0,
can be obtained from (2) and (3) as

X(n) = 1 +
N−1∑
k=1

[
cos θ + j

(
k

N

)
sin θ

]
e−j

2π
N nk

= 1− cos θ + j
( n

N

)
sin θ

N−1∑
k=1

(
nk

N

)
e−j

2π
N nk

=
√

N cos θ + G∗(1, N)j
( n

N

)
sin θ (7)

where G∗(u, N) is the complex-conjugate of the Gauss sum [8]

G(u, N) =
N−1∑
l=0

(
l

N

)
W−ul
N =

{(
u
N

)√
N, if N ≡ 1 (mod 4)(

u
N

)
j
√

N, if N ≡ 3 (mod 4)
(8)

where u is a positive integer such that (u, N) = 1.
From (7) and (8) we obtain

X(n) =
√

Nejθ(
n
N )

=
√

Nx(n), n > 0 . (9)

For n = 0 we have

X(0) = 1 + (N − 1) cos θ + j sin θ

N−1∑
k=1

(
k

N

)
= 1 + (N − 1)

1
1 +
√

N

=
√

N

=
√

Nx(0) . (10)
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By (9) and (10) we have shown that the Fourier dual of a Björck sequence of
prime length N ≡ 1 (mod 4) is equal to the sequence itself.

To calculate the DFT of Björck sequences of prime lengths N ≡ 3 (mod 4),
we shall re-formulate the original definition (5) as

x(k) =

{
1, k = 0

ej
φ
2 [1−( k

N )], k = 1, 2, . . . , N − 1 .
(11)

From (2) and (11) it follows that {X(n)}, n > 0, is given by

X(n) = 1 + ej
φ
2

N−1∑
k=1

[
cos

φ

2
− j

(
k

N

)
sin

φ

2

]
e−j

2π
N nk

= 1− ej
φ
2

[
cos

φ

2
+ j
( n

N

)
sin

φ

2
G∗(1, N)

]
= ej

φ
2

[
−j sin

φ

2
−
√

N
( n

N

)
sin

φ

2

]
. (12)

From the definition of φ it follows that

sin
φ

2
= ±
√

1− cosφ

2
= ±

√
N√

1 + N
=
√

N cos
φ

2
(13)

so from (12) and (13) we obtain

X(n) =
√

N(−j)ej
φ
2

[
cos

φ

2
− j
( n

N

)
sin

φ

2

]
=
√

N(−j)x(n), n > 0 . (14)

For n = 0 we have

X(0) = 1 + ej
φ
2

[
(N − 1) cos

φ

2
− j sin

φ

2

N−1∑
k=1

(
k

N

)]

= 1 + (N − 1)
(

cos2
φ

2
+ j sin

φ

2
cos

φ

2

)
=

2N

1 + N
− j
√

N
1−N

1 + N

=
√

N (sin φ− j cosφ)

=
√

N(−j)ejφ . (15)
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By (14) and (15) we have shown that the Fourier dual of a Björck sequence of
prime length N ≡ 3 (mod 4) is equal to a scaled version of another CAZAC
sequence {y(k)}, where {y(k)} is obtained by replacing the first element of the
original sequence {x(k)} with the symbol ejφ, i.e.

y(k) =

{
ejφ, k = 0

ej
φ
2 [1−( k

N )], k = 1, 2, . . . , N − 1 .
(16)

The sequence {y(k)} is included in the extended definition of the Björck se-
quences (6) as it cannot be obtained from the sequence {x(k)} through any
combination of the transforms which preserve the ideal periodic autocorrelation
function. For example, the complex conjugation, the inversion, or the multipli-
cation with linear complex exponential function, applied to the the sequence
{x(k)}, would produce a new sequence alphabet which is different from the one
common to the sequences {x(k)} and {y(k)}. Similarly, as the number of rep-
etitions of any of the two symbols from the common alphabet is not the same
in {x(k)} and {y(k)}, the sequence {y(k)} obviously cannot be obtained neither
by reversion nor by a cyclic shift of the sequence {x(k)}.

The Fourier dual of the sequence {y(k)} can be obtained in a similar manner
as for the sequence {x(k)}. Thus we have

Y (n) = ejφ − ej
φ
2

[
cos

φ

2
+ j
( n

N

)
sin

φ

2
G∗(1, N)

]
= ej

φ
2

[
j sin

φ

2
−
√

N
( n

N

)
sin

φ

2

]
=
√

N j ej
φ
2 [1+( n

N )]

=
√

N j ejφ y∗(n), n > 0 . (17)

Y (0) = ejφ + (N − 1)
(

cos2
φ

2
+ j sin

φ

2
cos

φ

2

)
=
√

N j

=
√

N j ejφ y∗(0) . (18)

By (17) and (18) we have shown that the Fourier dual of the modified Björck
sequence {y(k)} of prime length N ≡ 3 (mod 4) is equal to a scaled complex
conjugated version of the sequence itself.

4 Conclusions

The recent extensive frequency domain applications of the Constant Amplitude
Zero (periodic) Autocorrelation (CAZAC) sequences, particularly on the uplink
of LTE cellular communication system, raise the interest in the Fourier duals
of CAZAC sequences. The Fourier duals of a lesser known family of CAZAC
sequences, called Björck sequences, are derived in this paper.
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It has been shown that the Björck sequences of prime lengths N ≡ 1 (mod 4)
are self-dual, while those of the prime lengths N ≡ 3 (mod 4) are not. Based on
these results, the definition of Björck sequences of prime lengths N ≡ 3 (mod 4)
is extended to include the corresponding Fourier duals.
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Abstract. A Hadamard matrix is said to be completely non-cyclic (CNC)
if there are no two rows (or two columns) that are shift equivalent in its
reduced form. In this paper, we present three new constructions of CNC
Hadamard matrices. We give a primary construction using a flipping
operation on the submatrices of the reduced form of a Hadamard ma-
trix. We show that, up to some restrictions, the Kronecker product pre-
serves the CNC property of Hadamard matrices and use this fact to give
two secondary constructions of Hadamard matrices. The applications to
construct low correlation zone sequences are provided.

Keywords: Hadamard matrices, completely non-cyclic type, low cor-
relation zone sequences, shift-distinctness.

1 Introduction and the Basic Definitions

Low correlation zone sequences (LCZ) signal sets have important applications in
quasi-synchronous code division multiple access (CDMA) applications, proposed
in 1992 [3]. There has been considerable work towards constructions of these se-
quences. The first construction of LCZ set, given in [11] in 1998, produces a LCZ
signal set whose size is not maximized. Following this approach, many different
constructions have been proposed, including approaches in [12,9,13,8,10,16,1].
In 2007, Gong, Golomb, and Song [5] describe a general approach to the con-
struction of LCZ sequences using sequences with subfield decompositions. Con-
structions of this type of LCZ signal sets with maximum size are in one-to-one
correspondence with constructions of completely non-cyclic Hadamard matrices.

In this paper, we will show three new constructions of such Hadamard matri-
ces. The first and third new constructions generalize two known constructions in
[8] and with improved results. The second construction is the Kronecker prod-
uct of matrices, which we show to preserve the completely non-cyclic property,
under some conditions.

We now introduce basic concepts and definitions which will be used through-
out the paper.
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A. Basic Concepts about Sequences. Let p be a prime number, Fp denote
a finite field with p elements, and a = {ai} be a sequence over Fp, of period N .
The shift operator is defined by L(a) := (a1, a2, · · · ). So, Lr(a) = (ar, ar+1, · · · ).
For two sequences, a and b, if b = Lr(a), then a and b are called shift equiv-
alent, denoted a ∼ b. Otherwise, we say that a and b are shift distinct and
write a � b. If the elements of a satisfies the linear recursive relation: ar+k =∑r−1

i=0 ciai+k, k ∈ Z, where ci ∈ Fp and t(x) = xr −
∑r−1

i=0 cix
i is the polynomial

with the smallest degree which recursively generates a, then the degree of t(x)
is called the linear span of a, denoted l(a).

When N | pn − 1, we can associate the sequence a with a function f(x) from
Fpn to Fp such that ai = f(αi), i ∈ Z, where α is an element in Fpn with
order N . Then a is called an evaluation of f(x). In this paper, we assume that
f(0) = 0. We say that a is balanced if |Na − Nb| ≤ 1 for any a, b ∈ Fp where
Nx = |{ai = x | 0 ≤ i < N}|. Let ω = e2πi/p be a primitive pth root of unity. The
periodic crosscorrelation of a and b is defined by Ca,b(τ) =

∑N−1
i=0 ωbi+τ−ai , 0 ≤

τ ≤ N − 1 where the indices are computed modulo N − 1. If b = a, we write
Ca,b(τ) as Ca(τ) and call it the autocorrelation of a. If a is balanced and Ca(τ) ={

N, τ ≡ 0 (modN)
−1, τ ≡ 0 (modN), then we say that a has an (ideal) 2-level autocorrelation

function.

B. Hadamard Matrices and CNC Hadamard Matrices. A Hadamard
matrix of order n is a n×n matrix H with entries in {1,−1}, such that HHT =
HTH = nIn, where In is the n by n identity matrix. By applying elementary
“Hadamard-preserving” operations, the matrix H can always be transformed
into a special form in which all entries in the first row and the first column are
equal to 1, see [2,4]. Without loss of generality, all the Hadamard matrices in this
paper will be assumed to be in this form. The reduced form of H , denoted H−

is the matrix obtained from H by deleting the first row and the first column. A
Hadamard matrix is said to be completely non-cyclic (CNC) with respect to row
(or column) shifts if any two rows (respectively columns) in the reduced form of
H are shift distinct.

One can see that, up to cyclic shifts, there is a unique sequence of length 3
consisting of two −1’s and one 1. This implies that there is no CNC Hadamard
matrix of order 4. By a similar enumeration, there are five shift-distinct sequences
of length 7 consisting of four −1’s and three 1’s, which implies that there is no
CNC Hadamard matrix of order 8. The smallest value of q for which there exists
a CNC Hadamard matrix of order 2q is 4.

A generalized Hadamard matrix is a matrix H = (hij)v×v where hij =
ωsij , sij ∈ Fp of order v such that HH∗ = vIv, where H∗ is the conjugate
transpose of H and ω is a primitive pth root of unity. Reduced form and the
CNC property are analogously defined for generalized Hadamard matrices.

C. Equivalent Problem. A low correlation zone signal set with parameters
(N, r, δ, d) is a set K consisting of r shift-distinct sequences over Fp with period
N which satisfies that |Ca,b(τ)| ≤ δ for all τ such that |τ | < d, when a,b ∈ K,
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and τ = 0, when a = b. It has been shown in the literature [13,8,5], that a
construction of an LCZ signal set with the parameters (qm − 1, q − 1,−1, d)
where d = (qm−1)/(q−1) (q = pn) is equivalent to a construction of a family of
functions from Fpn to Fp, denoted as S, satisfying the following three conditions:

(a) Each function in S is balanced,
(b) The sum of any two functions in S is also balanced, and
(c) Any two sequences obtained from the functions in S by evaluation are shift

distinct.

The number of functions in S, denoted |S|, cannot exceed q − 1. Gong, Golomb
and Song [5] point out that a construction of S with maximal size is equivalent
to a construction of a CNC Hadamard matrix of order q. In the literature, there
are only three known constructions for the CNC Hadamard matrices of order q,
of which the first two appear in [8] and one of them also appears in [13] as a
somehow equivalent case, and the third in [5].

See [4] for further background on the theory of sequences and known con-
structions of 2-level autocorrelation sequences (see Chapters 8-9).

The rest of the paper is organized as follows. In Section 2, we present a new
primary construction for CNC Hadamard matrices of order q = pn based on
2-level autocrrelation sequences over Fp and the flipping operator. In Section 3,
we assert, under some restrictions, that Kronecker products of CNC Hadamard
matrices are again CNC Hadamard matrices. In Section 4, we give a construc-
tion using the Kronecker product and 2-level autocorrelation sequences. Section
5 provides the related functions and LCZ signal sets, and Section 6 includes
concluding remarks. [6] is a full version of this paper.

2 A Primary Construction of CNC Hadamard Matrices
Using Flipping Operator

In this section, we present a new primary construction for CNC generalized
Hadamard matrices of order q = pn, where p is a prime. We assume that N =
pn− 1. For a given 2-level autocorrelation sequence a = (a0, · · · , aN−1) over Fp,
we may construct a circular matrix C(a) = (aij) where aij = ai+j . Let bi = ωai ,
where ω is a primitive pth root of unity. Then we have the circular matrix C(b),

also written symbolically as C(b) = ωC(a). Let H(a) =
(

1 1
1T ωC(a)

)
. Then H(a)

is a Hadamard matrix if p = 2 and a generalized Hadamard matrix otherwise.
We will give a construction of CNC Hadamard matrices by applying the flipping
operation on the submatrices of C(a).

Let x = (x0, x1, · · · , xk−1) and Rk be the back diagonal identity matrix of
order k, i.e., the entries of the back diagonal is equal to 1, and the other entries
are zeros. Then xRk = (xk−1, · · · , x1, x0), Rk is referred to as a flipping operator.
Note that the flipping operation does not change the Hadamard property.

Construction 1. Let e = (e0, e1, · · · , e2h−1) be a positive integer sequence
satisfying that

∑2h−1
i=0 ei = N, ei > 0. We denote the first e0 columns in C(a) as
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an N × e0 submatrix A0, the second e1 columns in C(a) as an N × e1 submatrix
A1, and so on. Then C(a) = (A0, A1, · · · , A2h−1). Let

E(a) =
(
A0, A1Re1 , A2, A3Re3 , · · · , A2h−2, A2h−1Re2h−1

)
.

Note that E(a) is resulted from C(a) by flipping h blocks of the columns. Let
H− = ωE(a). Then

H =
(

1 1
1T ωE(a)

)
(1)

is again a Hadamard matrix.

Theorem 1. Assume that l(a) < N
2(4h) where h is a positive integer and l(a) <

ei < N − l(a). Then any two row vectors in ωE(a) (equivalently in E(a)) are
shift distinct. Thus H, defined in (1), is a CNC Hadamard matrix.

In order to prove Theorem 1, we need some basic properties of the linear spans of
sequences and their corresponding reciprocal sequences, which are summarized
below.

Property 1. Assume that a = {ai} is a sequence over Fp with period N . Let
b = {bi} be the reciprocal sequence of a, i.e., b0 = a0 and bi = aN−i, 0 < i < N .

(a) l(a) = l(b).
(b) l(x + Lτ (x)) ≤ l(x) where x ∈ {a,b}.
(c) l(a + Lτ (b)) ≤ l(a) + l(b) ≤ 2 max{l(a), l(b)}.
(d) Maximum length of the runs of zeros in a is upper bounded by l(a)− 1, i.e.,

there are at most l(a)− 1 consecutive zeros in a.
(e) b = LN−1(aRN ). Thus l(aRN ) = l(a).

Proof of Theorem 1. We only need to prove the row distinctness of H− = ωE(a),
which is equivalent to the row shift-distinctness of E(a). If there are two row
vectors in E(a), say u,v which are shift equivalent, i.e., there is r ≥ 0 such that
u = Lrv, then u−Lrv = 0. According to the construction, we can consider their
respective index sets of u and v, each having 2h separating lines (including the
last end point) at

∑i
j=0 ej , i = 0, · · · , 2h−1 and at

∑i
j=0(ej+r), i = 0, · · · , 2h−1

(recall that the index is reduced by modulo N). Note that the multi-set Q =
{ei, ei+r | 0 ≤ i < 2h} has at most 4h different elements. Therefore, u−Lrv can
be divided into at most 4h blocks, each of which consists of consecutive elements
of one of the three types of the sequences in Table 1 where R = RN , the flipping
operator defined at the beginning of this section. Their respective linear spans
are determined by Property 1 where we exclude the cases that the sequences are
zero sequences in the first two cases in Table 1. Therefore, according to Property
1, the sequences of Types 1 and 2 have at most l(a) − 1 consecutive zeros and
the sequences of Type 3 have at most 2l(a)− 1 consecutive zeros.

Case 1: |Q| = 4h and each block has the equal length, which is equal to N
4h .

This is possible only when N
4h is an integer. In this case, a block in u − Lrv



CNC Hadamard Matrices 263

Table 1. Types of the full sequences containing the segments of u − Lrv

Type Linear Span
a ± Li(a) 0 ≤ i < N 1 l(a)

aR ± Lj(aR) 0 ≤ j < N 2 l(a)
a ± Lk(aR) 0 ≤ k < N 3 ≤ 2l(a)

gives N
4h consecutive zeros. Since l(a) < N

8h , we have 2l(a)− 1 < N
4h , which is a

contradiction.

Case 2: Each block does not have the equal length. According to the pigeon hole
principle, there is at least one block with length > N

4h . Hence, this block gives
more than N

4h consecutive zeros, which is a contradiction, since there are at most
2l(a)− 1 consecutive zeros where 2l(a)− 1 < N

4h . �
If h = 1, then we can have a more refined result shown below by carefully
examining patterns appeared in u− Lrv in the proof of Theorem 1.

Theorem 2. With the same notation as in Theorem 1, we assume that l(a) <
N
4 , h = 1, e = (e0, e1), and 3l(a) < e0 < N−3l(a). Then H is a CNC Hadamard
matrix.

Proof. We proceed as in the proof of Theorem 1 until we divide into the two
cases.

We now write e0 = k, so that e1 = N − k. Without loss of generality, we can
assume that u is the sequence from the first row of E(a), and v is the tth row
of E(a). Since the case k < N/2 or N − k < N/2 can be processed similarly, we
may assume that t < k < N/2.

Configuration 1: r = k. There are three sections which are overlapped with
lengths k, (N−k)−k, and k added up to N . Since k > 3l(a), then the block with
length k has k consecutive zeros in u− Lr(v). On the other hand, any block in
u−Lr(v) is a block in a sequence with the linear span at most 2l(a). Thus, it has
at most 2l(a) consecutive zeros, which is a contradiction, since 2l(a) < 3l(a) < k.

Configuration 2: 0 < r < k or k < r < N − 1. The proof of the latter case can
be proceeded in the same way as the former case, so we omit it. For 0 < r < k, we
also could have r < N−k or r ≥ N−k. We will only show the case r < N−k and
the proof for r ≥ N − k is similar. Then we have four blocks with the following
lengths configuration:

k N − k

k − r N − k r

In details, we have the following pattern.

u = a0 · · · ak−1−r ak−r · · · ak−1 aN−1 · · · ak+r ak+r−1 · · · ak
Lr(v) = at+r · · · at+k−1 at−1 · · · at−r at−1−r · · · at+k at · · · at+r−1



264 K. Guo and G. Gong

Thus the four blocks of u − Lr(v) has the following length patterns according
to Table 1 in the proof of Theorem 1.

Segment Type Length
1 1 k − r
3 2 N − k − r

2, 4 3 r

(Note. For a different range of r, the only difference is that those blocks corre-
spond to their respective types of sequences in a different order.)

The average length is N/4. The case that N−k−r = r = k = N/4 is possible
only when N

4 is an integer. In this case, the first block gives N/4 consecutive
zeros of Type 1 sequences with linear span l(a). According to Property 1-(d), it
has at most l(a) − 1 consecutive zeros. From the assumption that l(a) < N/4,
we have l(a)−1 < N/4, which is a contradiction. Thus, we only need to consider
the case that not all the blocks have the same length. According to Property 2
below we have u � v.

Thus H is a CNC Hadamard matrix. ��

Property 2. With the same notation in the proof of Theorem 2, let that u be
the sequence from the first row of E(a), and v, the tth row of E(a), k < N/2.
If the lengths of the corresponding blocks in u = Lr(v) are k − r, r, N − k − r,
and r respectively, which are not equal, then u � v.

The proof of Property 2 is omitted here due to the lack of space. The reader is
referring to the full version of this work [6].

Remark 1. The construction given in [8] (Theorem 17) can be considered as a
special case of Theorem 1 when h = 1. However, the result given by Theorem 2
is an improvement of that result; Theorem 17 of [8] requires that l(a) < N/6
and, here, Theorem 2 only needs that l(a) < N/4. This bound also answered the
question, addressed in [8] (Theorem 17), about whether there exists a general
class when l(a) ≥ N/6.

3 CNC Property of Kronecker Products

In this section, we discuss the Kronecker product of two CNC Hadamard ma-
trices. We then provide a construction using the Kronecker product and 2-level
autocorrelation sequences in the next section. For these two sections, we will
proceed the binary case for simplicity. For general p, the results are similar to
the binary case, so we omit here.

For matrices A = (aij) and B, the Kronecker product of A and B, denoted
A⊗B, is:

A⊗B =

⎛⎜⎜⎜⎝
a00B a01B · · · a0,n−1B
a10B a11B · · · a1,n−1B

...
...

. . .
...

an−1,0B an−1,1B · · · an−1,n−1B

⎞⎟⎟⎟⎠ .



CNC Hadamard Matrices 265

In this section, we denote by j̃n the row vector of n alternating ±1s; that is

j̃n :=
(
1 −1 1 · · · (−1)n−1

)
.

We may omit the subscript when the dimension of the vector is implicit. Note
that a CNC Hadamard matrix does not guarantee that any two rows of the
matrix are shift distinct.

Theorem 3. (Construction 2) If A and B are Hadamard matrices such that
the following are true:

i) for any two rows of A, a = (1, a−) and a′ = (1, a′−), a � ±a′ and a− �
±a′−,

ii) for any two rows of B, b = (1,b−) and b′ = (1,b′−), b � ±b′ and b− �
±b′−,

iii) the orders of A and B are both greater than 3, and
iv) j̃ is not a row in the reduced form of A or B,

then A⊗B is CNC Hadamard matrix and its rows are also shift distinct.

From the conditions i)-ii), we know that both A and B are CNC. Theorem 3
can be seen as a direct consequence of the following lemma. Since this lemma is
technical and straightforward, we will omit the proof here. The proof of Theorem
3 is given in the full version of this work [6].

For a vector
x =
(
x0, x1, · · · , xd−1

)
of order d, let x− denote x with the first entry removed;

x− =
(
x1, x2, · · · , xd−1

)
.

Lemma 1. If a,a′,b and b′ be row vectors such that the following are true:

i) a � ±a′ and a− � ±a′−, and
ii) either b � ±b′ and b− � ±b′−, or b = b′.

Then a⊗ b � a′ ⊗ b′ and (a⊗ b)− � (a′ ⊗ b′)−

4 A Secondary Construction from the Kronecker Product
and 2-Level Autocorrelation Sequences

In this section, we show a construction for CNC Hadamard matrices using the
Kronecker product and 2-level autocorrelation sequences.

Let u and v be two 2-level autocorrelation sequences over F2 of period N =
2n − 1 (they may be equal). Recall that RN the back diagonal identity matrix
of order N . Thus vRN = (vN−1, · · · , v1, v0) is also a 2-level autocorrelation
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sequence, which is a shift of the reciprocal of v (see Property 1). For p = 2,
recall the following notation

H(x) =
(

1 1
1T (−1)C(x)

)
where C(x) is the circular matrix defined in Section 2.
Construction 3. Let Ik be the identity matrix of order k. Let

B =
(

H(a) H(bP )
H(a) −H(bP )

)
where

{
P = RN for a ∼ b
P ∈ {IN , RN} for a � b.

Let A be a ±1 matrix of order m. We define

H = A⊗B.

Thus, B can be considered as the case that A = (1) for m = 1.

Theorem 4. Assume that either both a and b are shift-distinct quadratic se-
quences with P = IN or at least one of them is not a quadratic sequence with
l(a) + l(b) < 2n−1 − 1. Then B is a CNC Hadamard matrices with order 2n+1,
and for two rows b and b′ in B, b � ±b′ and b− � ±b′−.

In order to prove Theorem 4, we need some properties of the quadratic residue
sequences summarized in the following property.

Property 3. (a) If a is a binary 2-level autocorrelation sequence, then l(a) ≤
2n−1 − 1. The upper bound is achieved by a quadratic residue sequence.

(b) There are only two shift-distinct quadratic residue sequences with period
N = 2n − 1 where N is a prime and N ≡ 3 (modN), say a and b. Note
that a and b are reciprocal. Thus, b can obtained from a by two methods,
i.e., b0 = a0 = 1, and bi = ai + 1 or bi = aN−i, i = 1, · · · , N − 1. The
crosscorrelation of a and b is bounded by 3. Thus a + Lk(b) has maximum
2n−1 − 3 zeros in one period.

Proof of Theorem 4. We first need to prove the CNC property of B. However,
a proof can be given in a similar way as the proof for Theorems 1- 2 where the
length of zero runs in the investigated sequences are bounded by Property 3,
we omit it here (the reader can find the proof in the full version of this work).
Thus, B is a CNC Hadamard matrix and for any two rows b− and b′− in B−,
b− � ±b′−. Note that if there are two rows in B which are shift equivalent, then
the overlapping patterns in those two rows have the length patterns by adding
1 or subtracting 1 in the case of the reduced form of B for which the zeros and
their corresponding elements are excluded. Thus, a similar argument to prove
the CNC property of B can be applied to this case. Thus, for two rows b and b′

in B, b � −± b′. �

Remark 2. In [8], it is proved that B is a CNC Hadamard by using bRN where
a and b could be the same, and the bound for the linear span is shown to be
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l(a) + l(b) + max{l(a), l(b)} ≤ N =⇒ l(a) ≤ N/3 when l(a) = l(b). The result
obtained in Theorem 4 is an improvement, since if a � b, we could use both b and
bRN , and the bound on the linear span is larger, i.e., l(a) ≤ N/2 when l(a) =
l(b). Theorem 4 also shows that if both a and b are shift-distinct quadratic
residue sequences with P = IN , then the result is true without imposing any
conditions on the linear span of the sequences.

Theorem 5. With the notation in Construction 3, let A be a CNC Hadamard
matrix of order m > 1 such that u � ±v where u and v are any two rows from
A. Then H = A ⊗ B, as constructed in Construction 3, is a CNC Hadamard
matrix with order m2n+1.

Proof. Let e and d be two different rows in B. From Theorem 4, e � ±d. From
the construction of B in Construction 3, j̃ is not a row in B. Thus for m > 3 both
A and B satisfy the conditions in Theorem 3. Therefore, H is a CNC Hadamard
matrix. Note that if m = 3, there are no Hadamard matrices [2].

For m = 2, we have A =
(

1 1
1 −1

)
. In this case, H = A ⊗B =

(
B B
B −B

)
. For

any two rows from H−, if they are taken from the upper half of H−, then they
are shift distinct, since any two rows in B are shift distinct (similar arguments
as that in the proof of Theorem 3). If one row from the upper half of H and the
other from the lower half or both from then lower half then the argument can
be proceeded similarly as the proofs Theorems 1-2, we omit it here due to the
lack of space.

Thus H is a CNC Hadamard matrix. ��

5 Related Functions and LCZ Signal Sets

Let q = pn and H = (ωaij ) be a CNC Hadamard matrix of order q constructed
using one of the constructions in Sections 2 and 3, where ω is a pth primitive root
of unity α. Let α be a primitive element in Fq. We construct a family of functions
from Fq to Fp as follows. For each i = 0, · · · , q − 1, let fi(αj) = aij , 0 ≤ j < q
and fi(0) = 0 (recall H is in the normal form). Then S = {fi(x) | 1 ≤ i < q}
is a set consisting of q − 1 functions which satisfy the three conditions listed in
Section 1-C. In addition, S has maximum size.

Let d = (qm − 1)/(q − 1). According to the work in [5], we can construct
LCZ signal sets with parameters (qm − 1, q − 1, 1, d) with maximum size as
follows. A function h(x), from Fqm to Fq, is said to be difference balanced if
for any 0 = λ ∈ Fqm and a ∈ Fq, h(x) − h(λx) = a has qm−1 solutions in
Fqm . We say that h(x) is Fq-linear if h(ax) = ah(x). Let β a primitive element
in Fqm , and h(x) be a function from Fqm to Fq with the difference balance
property and Fq-linear property. Let gi(x) = fi(x) ◦ h(x), for 1 ≤ i < q and
where ◦ is the composition operator. Then the evaluation of gi(x) at β, denoted
as ai, is a 2-level autocorrelation sequence over Fp with period qm − 1. The
construction for 2-level autocorrelation sequences is referred to as a subfield
decomposition construction in [4]. Hence K = {ai | 1 ≤ i < q} is an LCZ set
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with parameters (qm − 1, q− 1, 1, d). (Note. Here we replace the 2-tuple balance
property for h(x) in [5] by the difference balance and Fq-linear.) All LCZ signal
sets corresponding to CNC Hadamard matrices constructed from Construction
1 for h > 1, Construction 2, Construction 3 for m > 1 and the case employing
quadratic sequences for m = 1, are new. In the cases from Construction 1 for
h = 1 and Construction 3 for m = 1 give LCZ signal sets with the improved
results.

6 Concluding Remarks

In this work, we present three new constructions for CNC Hadamard matri-
ces. The first construction is obtained by alternating the column blocks and the
flipped column blocks in the circular matrix generated by a 2-level autocorre-
lation sequence over Fp. Then we have showed that the Kronecker product of
two CNC Hadamard matrices A and B is still a CNC Hadamard matrix pro-
vided that the row shift-distinctness also holds in those two CNC Hadamard
matrices and the alternating vector is not a row vector of either A or B. The
third construction is given by a combination of the Kronecker product and the
circular matrices generated by 2-level autocorrelation sequences. The first and
third construction contain two known constructions in [8] as special cases, but
with improved bounds for the restrictions on the linear spans of 2-level autocor-
relation sequences and new cases. Note that the third known construction for
CNC Hadamard matrices in the literature is presented in [5], which is not any
special case of the three constructions obtained in this work.

It is worth to point out that for the binary case, there are other constructions
for Hadamard matrices which also give CNC Hadamard matrices. For exam-
ple, the Hadamard matrices from the Turyn construction [14,15,7] are CNC
Hadamard matrices. This can be easily seen from the construction from many
examples, but work is needed to write out the proof. We currently work on that.
In general, the orders of those Hadamard matrices are not powers of 2. Note
that the motivation for the investigation of the CNC property is for the con-
structions of a set consisting of 2n functions from F2n to F2 which satisfies that
each function in the set is balanced, the sum of any two function is balanced,
and any two functions, considered as sequences with period 2n− 1, are shift dis-
tinct. If the order of a CNC Hadamard matrix is not 2n, then its corresponding
function from F2n to F2 is not balanced. Thus, those types of CNC Hadamard
matrices cannot be used in the construction of low correlation zone sequences
with parameters (qm − 1, q − 1, 1, q

m−1
q−1 ) where q = 2n. However, the problem

itself is interesting theoretically.
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Abstract. New results on quaternary (Z4 = {0, 1, 2, 3}-valued) crypto-
graphic functions are presented. We define and characterize completely
the Z4-balancedness and the Z4-nonlinearity according the Hamming
metric and the Lee metric. In the particular case of quaternary Bent
functions we show that the maximal nonlinearity of these functions is
bounded for the Hamming metric and we give the exact value of the
maximal nonlinearity of these functions for the Lee metric. A general
construction, based on Galois ring is detailed and applied to obtain a
class of balanced and high nonlinearity quaternary cryptographic func-
tions. We use Gray map to derive these constructed quaternary functions
to obtain balanced boolean functions having high nonlinearity.

Keywords: quaternary functions, boolean functions, cryptographic
functions, nonlinearity, balancedness, quaternary algebra, Gray map,
Galois ring.

1 Introduction

Boolean ({0, 1}-valued) functions of length n used in pseudo-random generators
of stream and blocks ciphers play an important role in their security ([7,1]).
These functions are usually studied over the finite field of two elements F2.
Finding boolean functions with optimal cryptographic properties as balanced-
ness and high nonlinearity is still an open problem. The purpose of this paper
is to present new results on quaternary ({0, 1, 2, 3}-valued) cryptographic func-
tions. This work is motivated by the interest of studying quaternary objects and
structures (see [8,12]). The usual metric used in Z4 is the Lee metric which allows
to have an isometry from (Zm4 , Lee distance) to (F2m

2 , Hamming distance) with
the Gray map. We begin by defining and characterizing exactly quaternary cryp-
tographic functions of length m. Then, we formally describe balancedness and
nonlinearity over Z4 according the Hamming metric and the Lee metric. Qua-
ternary Bent functions [19] (or more generaly q-ary Bent functions [3,9,10,11])
are defined by Walsh transform. For m-variables quaternary Bent functions we
prove that the maximal nonlinearity is bounded between 3 · 4m−1 − 2m−1 and
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3 · 4m−1 − 2m−2 under the Hamming metric and we give conditions to reach
the upper bound. We show the the exact value of the maximal nonlinearity of
these functions under the Lee metric is 4m−1− 2m+1. A general construction of
quaternary cryptographic functions is detailed, using cyclotomic classes of the
multiplicative group of a Galois ring R. We point out the fact that the balanced-
ness and the nonlinearity of the obtained functions depend on the b polynomial
used to construct R and on the distribution of theses classes over R. We natu-
rally apply this construction to a particular configuration in order to obtain a
class of m-variables quaternary cryptographic functions which are balanced and
have nonlinearity bounded between 3 · 4m−1 − 2m and 3 · 4m−1 − 2m−1 for the
Hamming metric and bounded between 4m − 2m+1 and 4m − 2m for the Lee
metric. Using the Gray map with these obtained quaternary functions we present
2m−variables balanced boolean functions with high nonlinearity. To avoid any
confusion, a n-variables boolean function is denoted by f while a m-variables
quaternary function is denoted by F .

2 Boolean Functions Basics

Let n be a natural integer and Fn2 the set of all n-tuples of elements in the
finite field F2 = {0, 1} with its sum denoted by ⊕. A n-variables boolean func-
tion f is a function from Fn2 to F2 which can be identified by its truth ta-
ble [f(0, · · · , 0), · · · , f(1, · · · , 1)] of length 2n. The support of f is defined by
supp(f) = {u ∈ Fn2 | f(u) = 0} and the Hamming weight wH(f) of f by the
size of its support. The Hamming distance between two n-variables boolean
functions f and g is dH(f, g) = wH(f ⊕ g) where ⊕ denotes the addition
on F2. The Walsh transform of a n-variables boolean function f is the com-
plex mapping from Fn2 to C defined by Wf (u) =

∑
v∈Fn

2
(−1)u·v+f(v) where

u · v denotes the usual inner product in Fn2 . A n-variables boolean function
f is balanced if its truth table contains a equal number of 1’s and 0’s which
means that wH(f) = 2n−1 or in spectral term Wf (0) = 0. The nonlinear-
ity of a n-variables boolean function f is the minimum distance to all affine
functions nl2(f) = min

g affine
dH(f, g). Using the Walsh transform, the nonlin-

earity of f can be expressed by nl2(f) = 2n−1 − 1
2 max
a∈Fn

2

|Wf (a)|. Readers can

refer to [5,6,16] for more detailed explanations of boolean functions crypto-
graphic criteria. For every n-variables boolean function f , we have nl2(f) ≤
2n−1−2

n
2 −1. This bound is reached for Bent functions [17,14] which are charac-

terised by ∀u ∈ Fn2 , |Wf (u)| = 2
n
2 for n even. A Bent function could not be bal-

anced. Finding maximal nonlinearity boolean functions (see [13,15,18]) is an open
problem.

3 Quaternary Cryptographic Functions

3.1 Quaternary Tools

Throughout this section i will denote the complex number such that i2 =
−1. Let Z4 = Z/4Z = {0, 1, 2, 3} be the ring of integers modulo 4 which is
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group-isomorphic to U4 = {±1,±i} the group of 4th root of unity in C under
the standard isomorphism x → ix. Zm4 will represents the set of all m−tuples
of elements in Z4 where m is a natural integer. The addition on Z4 ( addition
(mod 4)) will denoted by +. The Lee weights wL of 0, 1, 2, 3 in Z4 are 0, 1, 2, 1
respectively and the Lee weight wL(u) of an element u of Zm4 is the rationnal
sum of the Lee weight of its components. The Lee distance dL(u, v) between
two elements u and v in Zm4 is wL(u + v).

Definition 1. A m-variables quaternary function F is a function from Zm4 to Z4
which can be identified by its truth table [F (0, · · · , 0), · · · , F (3, · · · , 3)] of length
4m. Let us define F(Zm4 , Z4) as the set of all m-variables quaternary functions.

The support of F is defined by supp(F ) = {u ∈ Zm4 | F (u) = 0}. We de-
fine the relative support of F by suppj(F ) = {u ∈ Zm4 | F (u) = j} for all
j in Z4 and ηj(F ) its size. The Hamming weight wH(F ) of F is the size of
its support and the Hamming distance between two m-variables quaternary
functions F and G is dH(F, G) = wH(F − G). The Lee weight wL(F ) of
F is η1(F ) + η3(F ) + 2η2(F ) and the Lee distance between two m-variables
quaternary functions F and G is dL(F, G) = wL(F − G). The Walsh trans-
form of a m-variables quaternary function F is the complex mapping from
Zm4 to C defined by WF (u) =

∑
v∈Zm

4
iu·v+F (v) where u · v denotes the usual

inner product in Zm4 (mod 4) . We define W2
F (u) =

∑
v∈Zm

4
(−1)u·v+F (v) and

W3
F (u) =

∑
v∈Zm

4
(−i)u·v+F (v)

3.2 Quaternary Balancedness and Nonlinearity

Definition 2 (Balancedness). Let F ∈ F(Zm4 , Z4).

F is balanced ⇐⇒ ∀j ∈ Z4, ηj(F ) = 4m−1.

Let us give a balancedness characterisation of quaternary function.

Proposition 1. Let F ∈ F(Zm4 , Z4).

F is balanced ⇐⇒ WF (0) = W2
F (0) = 0.

Proof. By definition we have WF (0) =
∑
v∈Zm

4

iF (v) and W2
F (0) =

∑
v∈Zm

4

(−1)F (v),

then WF (0) = η0(F )− η2(F ) + i(η1(F )− η3(f)) and W2
F (0) = η0(F )− η1(F ) +

η2(F ) − η3(F ). These Two equalities give us 3 equations on ηj (0 ≤ j ≤ 3) by
extracting real and imaginary parts. Since

∑
j∈Z4

ηj(F ) = 4m we then obtain a

system of 4 simultaneous equations in 4 unknowns that we solve. This finishes
the proof. ��

Similary to binary case, we define the nonlinearity of quaternary function.

Definition 3 (Nonlinearity). Let F ∈ F(Zm4 , Z4). The nonlinearity of F is
defined by the minimum distance to all affine functions with
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nlH4 (F ) = min
G affine

dH(F, G) under the Hamming metric and with nlL4 (F ) =

min
G affine

dL(F, G) under the Lee metric.

Go on with a nonlinearity characterisation of quaternary function.

Proposition 2. Let F ∈ F(Zm4 , Z4). The nonlinearity of F under the Ham-
ming metric is completely characterised by

nlH4 (F ) = 3 · 4m−1 − 1
4

max
a∈Zm

4 ,b∈Z4

{
2Re(ibWF (a)) + (−1)bW2

F (2a)
}

= 3 · 4m−1 −

−1
4

max
a∈Zm

4

{
2 | Re(WF (a)) | +W2

F (2a), 2 | Im(WF (a)) | −W2
F (2a)
}

where Re(z) and Im(z) denote respectively the real and imaginary part of the
complex z.

Proof. By Definition 3, we have

nlL4 (F ) = min
G affine

dH(F, G) = min
G affine

wH(F −G)

Let S be the function in F(Zm4 , Z4) such that S(u) = F (u) + a · u + b with a in
Zm4 and b in Z4.

nlH4 (F ) = min
a∈Zm

4 ,b∈Z4
{η1(S) + η2(S) + η3(S)}

= 4m − max
a∈Zm

4 ,b∈Z4
η0(S).

Using the decomposition of WS(0), W2
S(0), W3

S(0) and the fact that η0(S) +
η1(S) + η2(S) + η3(S) = 4m we obtain

η0(S) =
1
4
[
4m + WS(0) + W2

S(0) + W3
S(0)
]

=
1
4

⎡⎣4m +
∑
u∈Zm

4

(
iF (u)+a·u+b + (−1)F (u)+a·u+b + (−i)F (u)+a·u+b

)⎤⎦
=

1
4

[
4m + ibWF (a) + (−1)bW2

F (2a) + ibWF (a)
]

=
1
4
[
4m + 2Re(ibWF (a)) + (−1)bW2

F (2a)
]
.

The proof is completed, the second expression of nlH4 (F ) is obvious using prop-
erties of complex numbers. ��
Proposition 3. Let F ∈ F(Zm4 , Z4). The nonlinearity of F under the Lee met-
ric is completely characterised by

nlL4 (F ) = 4m − max
a∈Z

m
4 ,b∈Z4

{
Re(ibWF (a))

}
= 4m − max

a∈Zm
4

{| Re(WF (a)) |, | Im(WF (a)) |} .
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Proof. By Definition 3, we have

nlL4 (F ) = min
G affine

dL(F, G) = min
G affine

wL(F −G).

Let S be the function in F(Zm4 , Z4) such that S(u) = F (u) + a · u + b with a in
Zm4 and b in Z4.

nlL4 (F ) = min
a∈Zm

4 ,b∈Z4
{η1(S) + 2η2(S) + η3(S)} .

Using the decomposition of WS(0) and W3
S(0) we have

WS(0) + W3
S(0) = 2(η0(S)− η2(S)).

Moreover
WS(0) + W3

S(0) = 2Re(ibWF (a)).

As
∑
j∈Z4

ηj(S) = 4m, we obtain

η1(S) + 2η2(S) + η3(S) = 4m + η2(S)− η0(S).

That is

nlL4 (F ) = min
a∈Zm

4 ,b∈Z4
{4m + η2(S)− η0(S)}

= 4m − max
a∈Zm

4 ,b∈Z4

{
Re(ibWF (a))

}
which ends the proof of the first expression. The second expression of nlL4 (F ) is
obvious by properties of complex numbers. ��

3.3 Quaternary Bent Functions Properties

Definition 4 (Quaternary Bent functions). Let F be a m-variables quater-
nary function. F is Bent if and only if |WF (a)| = 2m, for any a ∈ Zm4 .

Remark 1. A classical result gives WF (a) = ±2m or WF (a) = ±i2m.

Let us now focus on the maximal nonlinearity of a m-variables quaternary Bent
function F according to the Hamming metric and the Lee metric respectively
as shown in Fig.1.

Theorem 1. Let F be a m-variables Bent function.

(1) 3 · 4m−1 − 2m−1 ≤ nlH4 (F ) ≤ 3 · 4m−1 − 2m−2.
(2) nlH4 (F ) = 3 · 4m−1 − 2m−2 if and only if W2

F (2a) = ±2m.
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3 · 4m−1 − 2m−1 3 · 4m−1 − 2m−24m − 2m

nlH4 nlL4

Fig. 1. Nonlinearity of Quaternary Bent function

Proof

(1): Proposition 2 gives

nlH4 (F ) = 3 · 4m−1 −

−1
4

sup
a∈Zm

4

{
2 | Re(WF (a)) |+W2

F (2a), 2 | Im(WF (a)) |−W2
F (2a)
}

.

Let us write nlH4 (F ) = 3 · 4m−1 − 1
4y

where y = sup
a∈Zm

4

{
2 | Re(WF (a)) | +W2

F (2a), 2 | Im(WF (a)) | −W2
F (2a)
}

and x = W2
F (2a) =

∑
u∈Zm

4

(−1)a.u(−1)F (u).

As F is bent, we use Remark 1 to distinguish two main cases in order to
evaluate y (let c=2m+1):
• WF (a) = ±2m : y = Max {c + x,−x}
• WF (a) = ±i2m : y = Max {x, c− x}
The geometric representation of y in terms of x (Fig. 2) shows that y ranges
between 2m and 2m+1 which achieves the proof.

(2): Let nlH4 (F ) = 3 · 4m−1 − 2m−2. If WF (a) is real then
2m = sup

a∈Zm
4

{
2m+1 + W2

F (2a),−W2
F (2a)
}
. In this case W2

F (2a) < 0 and

W2
F (2a) is equal to −2m or 2m+1 + W2

F (2a) = 2m that is W2
F (2a) = 2m −

2m+1 = −2m. The case WF (a) is imaginary is similar. ��

Theorem 2. Let F be a m-variables Bent function.

nlL4 (F ) = 4m − 2m.

Proof. Proposition 3 gives nlL4 (F ) = 4m − max
a∈Zm

4 ,b∈Z4

{
Re(ibWF (a))

}
.

Using remark 1 we have Re(ibWF (a)) = ±2m which finishes the proof. ��

4 Galois Rings and Cyclotomic Classes

In this section we give definitions and properties of the Galois ring GR(4, m)
without proofs. We refer the reader to [20] and [8] for further informations about
Galois rings.
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x

y

−2m+1 −2m 2m 2m+1

2m

2m+1

y = −x y = c − x y = xy = −c + x

Fig. 2. y in terms of x

4.1 Galois Rings

As usual, Z4 = Z/4Z = {0, 1, 2, 3} is the ring of integers modulo 4 and F2
the finite field with two elements. Let μ : Z4 → F2 be the mod-2 reduction
map. We extend μ to Z4[x] → F2[x] in the natural way. A monic polynomial
h(x) in Z4[x] of degree m is said to be basic irreducible if h2(x) = μ(h(x)) is
a monic irreducible primitive divisor of x2m−1 − 1 in F2[x] (Hensel lift). The
Galois ring R = GR(4, m) of 4m elements is a Galois extension of order m of
Z4 and is isomorphic to the factor ring Z4[x]/(h(x)) where h(x) is a monic basic
irreducible polynomial of degree m (b-polynomial). Let β be a root of h(x) of
order 2m − 1 (β2m−1 − 1 = 0). Then R is the polynomial ring Z4[β] where
{1, β, · · · , βm−1} is a basis of R over Z4. The Galois ring R is a local ring having
a unique maximal ideal D = 2R made up of the 2m zero divisors. The residue
class field K = R/D is isomorphic to the finite field F2m under the canonical
map z �→ z̄ from R to K. The Teichmüller system T = {0, 1, β, · · · , β2m−2} is
the set of roots of x2m−x in R and can be view as the set of representatives of K
as D = 2R = 2T . Let θ = β̄ be a primitive root of h2(x) in F2[x], we can identify
K with F2m = T = {0, 1, θ, · · · , θ2m−2}. The multiplicative group R� = R\D of
R is a group of order (2m − 1)2m which is the direct product H×U where H is
the cyclic group of order (2m − 1) generated by β and U is the abelian group of
principal units of R of order 2m that is elements of the form 1+2z0 with z0 in T .
There are two canonical ways to represent the 4m elements of R, a multiplicative
one and a additive one. In the multiplicative representation, every element z of
R has a unique expansion z = z1 + 2z2 with z1 and z2 in T .

4.2 Cyclotomic Classes

Let R = GR(4, m) be the Galois ring of 4m elements, D = {0, 2, 2β, · · · , 2β2m−2}
the set of zero divisors with | D |= 2m and R� = {z1(1 + 2z0), z0 ∈ T , z1 ∈
T \ {0}} the multiplicative group of R with | R� |= 2m(2m − 1).
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Definition 5. Let m be a natural integer and R = GR(4, m) be the Galois ring
of 4m elements and R� its multiplicative group. The 2m cyclotomic classes of
order 2m − 1 of R� are:

Ck = {βj + 2βk, 0 ≤ j ≤ 2m − 2} for any k such that 0 ≤ k ≤ 2m − 2 and
C2m−1 = {βj , 0 ≤ j ≤ 2m − 2}.

5 Construction

Let R = GR(4, m) be the Galois ring of 4m elements and D the set of zero
divisors of R. Let us consider the 2m cyclotomic classes Ck of order 2m − 1 of
R� (see Proposition 5).

We construct the quaternary function F such that the function F takes the
same value for each element of Ck.

We now compute formally the expressions of WF and W2
F for this constructed

function F . We have⎧⎨⎩Ck = {βj + 2βk, 0 ≤ j ≤ 2m − 2}, 0 ≤ k ≤ 2m − 2

C2m−1 = {βj, 0 ≤ j ≤ 2m − 2}
with | Ck, 0≤k≤2m−1 |= 2m − 1 and D = {0} ∪ {2βj, 0 ≤ j ≤ 2m − 2}

Let a in Zm4 .

WF (a) =
∑
v∈D

ia·v+F (v)

︸ ︷︷ ︸
SD(a)

+
∑

0≤k≤2m−2

(∑
v∈Ck

ia·v+F (v)

)
︸ ︷︷ ︸

SCk
(a)

+
∑

v∈C2m−1

ia·v+F (v)

︸ ︷︷ ︸
SC2m−1(a)

WF (a) = SD(a) +
∑

0≤k≤2m−2

SCk
(a) + SC2m−1(a) (1)

As D = {0, 2, 2β, · · · , 2β2m−2} we have

SD(a) = iF (0) +
∑

0≤k≤2m−2

(−1)a·β
k

iF (2βk) (2)

If v ∈ Ck for 0 ≤ k ≤ 2m − 2 then v = βj + 2βk with 0 ≤ j ≤ 2m − 2 and

SCk
(a) = (−1)a·β

k ∑
0≤j≤2m−2

ia·β
j

iF (βj+2βk) (3)

If v ∈ C2m−1 then v = βj for 0 ≤ j ≤ 2m − 2 and

SC2m−1(a) =
∑

0≤j≤2m−2

ia·β
j

iF (βj) (4)

In equations (2),(3) and (4), terms of the form (−1)a·β
k

and ia·β
j

show that
WF (a) depends on the b polynomial used to construct the Galois ring and terms



278 Z. Jadda and P. Parraud

of the form iF (2βk), iF (βj+2βk) and iF (βj) show that WF (a) depends on the way
that F takes value on the different cosets Ck, 0≤k≤2m−1 and D.

As the construction states that for a given class Ck, the function F takes the
same value, if v = βj + 2βk ∈ Ck then let us define Fk = F (v) = F (βj + 2βk)
which does not depend on j.

WF (a) = SD(a)+
∑

0≤k≤2m−2

(
(−1)a·β

k

iFk

∑
0≤j≤2m−2

ia·β
j)

+iF2m−1
∑

0≤j≤2m−2

ia·β
j

= SD(a) +
( ∑

0≤j≤2m−2

ia·β
j)( ∑

0≤k≤2m−2

(−1)a·β
k

iFk + iF2m−1
)

We have now to distinguish the case a ∈ D from the case a ∈ D.
a ∈ D
Let a = 2βl with 0 ≤ l ≤ 2m − 2 or a = 0.

WF (0) =
∑
v∈D

iF (v) + (2m − 1)
∑

0≤k≤2m−1

iFk (5)

WF (a) =
∑
v∈D

iF (v) +

⎛⎝ ∑
0≤j≤2m−2

(−1)β
l·βj

⎞⎠⎛⎝ ∑
0≤k≤2m−1

iFk

⎞⎠ (6)

a ∈ D

Let a = βs + 2βl in Cl for 0 ≤ l ≤ 2m − 2 and for l = 2m − 1 we have a = βs

with 0 ≤ s ≤ 2m − 2.

Furthermore : (−1)a·β
k

= (−1)β
s·βk

and ia·β
j

=

{
iβ

s·βj

(−1)β
l·βj

iβ
s·βj

That is

WF (a) = SD(s) + A(s, l)
(
B(s) + iF2m−1

)
(7)

where

SD(s) = iF (0) +
∑

0≤k≤2m−2

(−1)β
s·βk

iF (2βk) (8)

A(s, l) =
∑

0≤j≤2m−2

(−1)β
l·βj

iβ
s·βj

(9)

B(s) =
∑

0≤k≤2m−2

(−1)β
s·βk

iFk (10)

A(s,∞) =
∑

0≤j≤2m−2

iβ
s·βj

(11)

We have that SD(s) and B(s) do not depend on the class of a but only on values
of F and A(s, l) depends only on a but not on values of F . Moreover, we have

W2
F (2a) =

∑
v∈Zm

4

(−1)a.v(−1)F (v) =
∑
v∈D

(−1)F (v)+
∑

0≤k≤2m−1

(∑
v∈Ck

(−1)a·v+F (v)

)
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As for the calculation of WF (a), we find that

W2
F (2a) =

∑
v∈D

(−1)F (v) +
∑

0≤k≤2m−1

(−1)Fk

∑
0≤j≤2m−2

(−1)a.β
j

(12)

Equations (6) and (7) give the exact value of WF (a) and (12) the exact value
of W2

F (2a) according to the detailed calculation done by equations (1)-(5) and
(8)-(11).

Proposition 4 (Balancedness of F ). The balancedness of F depends on the
way that F takes value on the different cosets Ck and D.

Proof. WF (0) =
∑
v∈Zm

4

iF (v) and W2
F (0) =

∑
v∈Zm

4

(−1)F (v). ��

Proposition 5 (Nonlinearity of F ). The nonlinearity of F under the Ham-
ming and Lee metric depends on the choice of the b polynomial and the way
that F takes value according to u belongs to Ck or D.

Proof. Using Proposition 2 and Proposition 3 and the above formal expressions
of WF and W2

F , the result holds. ��

We have seen that the nonlinearity of our quaternary function F depends on
the chosen b polynomial the distribution of F over the cyclotomic classes and
Ck and D.

We now apply these results to a particular configuration in order to obtain a
balanced quaternary function with high nonlinearity under the Hamming metric
and Lee metric as shown in Fig. 3 and Fig. 4 respectively.

3 · 4m−1 − 2m 3 · 4m−1 − 2m−1 3 · 4m−1 − 2m−2

Constructed functions Bent functions

nlH4

Fig. 3. Constructed Quaternary function nonlinearity nlH4

4m − 2m+1 4m − 2m

Constructed functions Bent functions

nlL4

Fig. 4. Constructed Quaternary function nonlinearity nlL4

Proposition 6. For k, 0 ≤ k ≤ 2m−2 and for γ ∈ {0, 1, 2, 3}, we define δk = γ
if k ≡ γ (mod 4). With a suitable b polynomial, we construct a m-variables
quaternary function F as follows: F (βj+2βk) = F (2βk) = δk and F (0) = 3, for
j, 0 ≤ j ≤ 2m−2. This quaternary function is balanced and its nonlinearity under
the Hamming metric satisfies 3 · 4m−1 − 2m ≤ nlH4 (F ) ≤ 3 · 4m−1 − 2m−1 and
its nonlinearity under the Lee metric satisfies 4m− 2m+1 ≤ nlL4 (F ) ≤ 4m− 2m.
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Proof. As we have 2m classes of order 2m−1 and | D |= 2m then by construction
η0(F ) = η2(F ) = η1(F ) = η3(F ) = 22m−2 which proves that F is balanced.

By Proposition 2 the nonlinearity under the Hamming metric of a m-variables
quaternary function F is

nlH4 (F ) = 3 · 4m−1 − 1
4 sup
a∈Zm

4 ,b∈Z4

{
2Re(ibWF (a)) + (−1)bW2

F (2a)
}
.

As F is balanced we have W2
F (2a) = 0 by Equation (12) and then

nlH4 (F ) = 3 · 4m−1 − 1
4 max
a∈Zm

4 ,b∈Z4

{
2Re(ibWF (a))

}
.

But max
a∈Zm

4 ,b∈Z4

{
2Re(ibWF (a))

}
= max

a∈Zm
4

{2 | Re(WF (a)) |, 2 | Im(WF (a)) |}.

Reasoning similarly to the proof of Theorem 1 with x = WF (a), the result holds.
By Proposition 3 the nonlinearity under the Lee metric of a m-variables

quaternary function F is

nlL4 (F ) = 4m − max
a∈Zm

4 ,b∈Z4

{
Re(ibWF (a))

}
But max

a∈Zm
4 ,b∈Z4

{
Re(ibWF (a))

}
= max

a∈Zm
4

{| Re(WF (a)) |, | Im(WF (a)) |}

Similarly as above the result holds. ��
Numerical Results (Prop. 6)
Nonlinearity under the Hamming metric nlH4 (F ) and the Lee metric nlL4 (F ) of
constructed balanced quaternary m-variables functions F with Nbp the number
of possible b polynomials, Nbs the number of suitable b polynomials and BH

1 =
3 · 4m−1 − 2m, BH

2 = 3 · 4m−1 − 2m−1, BL
1 = 4m − 2m+1 and BL

2 = 4m − 2m.

m Nbp Nbs suitable b polynomial BH
1 nlH4 (F) BH

2 BL
1 nlL4 (F) BL

2
3 2 2 x3 + 2x2 + x + 3 40 44 44 48 56 56
4 2 2 x4 + 2x2 + 3x + 1 176 180 184 224 232 240
5 6 6 x5 + 3x2 + 2x + 3 736 744 752 960 976 992
6 6 2 x6 + x5 + x4 + 2x2 + 3x + 1 3008 3032 3040 3968 4016 4032
7 18 14 x7 + 2x4 + x + 3 12160 12208 12224 16128 16224 16256
8 16 2 x8 + 3x5 + x3 + 2x2 + 3x+ 1 48896 49008 49024 65024 65248 65280
9 48 10 x9 + 2x6 + 2x5 + 3x4 + x3 + 3 196096 196288 196352 261120 261504 261632

6 Derived Boolean Functions

Let R = GR(4, m) be the Galois ring of 4m elements and D the set of zero
divisors of R. Let us consider the m-variables quaternary function F obtained
with the construction which uses the 2m cyclotomic classes of order 2m − 1 of
R�. By taking the binary images of F under the Gray map, we obtain n = 2m-
variables boolean functions which are balanced and having high nonlinearity.

Definition 6. The Gray map φ is defined from Z4 to F2 × F2 with
φ(2q + r) = (q, q ⊕ r). We also define Q from Z4 to F2 with
Q(2q + r) = q.
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The Gray map is clearly a bijection from Z4 to F2
2 and its inverse is defined by

φ−1(q, s) = 2q + (q ⊕ s). Identifying Fm2 × Fm2 to F2m
2 , we extend naturally φ to

Zm4 componentwise by φm(2q0 + r0, · · · , 2qm−1 + rm−1) = (q0, · · · , qn−1, q0 ⊕
r0, · · · , qm−1 ⊕ rm−1) and φ−1

m to F2m
2 by φ−1

m (q0, · · · , qn−1, s0, · · · , sm−1) =
(2q0 + q0 ⊕ s0, · · · , 2qm−1 + qm−1 ⊕ sm−1).

Definition 7. The 2m-variables boolean function f derived by the Gray map is

f : F2m
2 → F2

y �→ Q(F (φ−1
m (y)))

Numerical Results
Nonlinearity nl2(f) of obtained balanced n-variables boolean functions f with
n = 2m derived from the previous constructed balanced quaternary m-variables
functions F compared with known values.

n bnl1 bnl2 nl1 nl2 nl2(f)
6 12 10 22 24 24
8 58 70 94 112 112
10 260 366 390 478 464
12 1124 1700 1600 1952
14 4760 7382 6524 8000

bnl1 Lobanov’s lower bound
bnl2 Carlet - Feng’s ([4]) lower bound

nl1 Best balanced exact Nonlinearity before
nl2 Carlet-Feng’s ([4]) exact Nonlinearity

with optimal algebraic immunity

7 Numerical Example for m = 3 and n = 6

Let consider the Galois ring R = GR(4, 3) of 64 elements built with the b-
polynomial h(x) = x3 + 2x2 + x + 3 (Sub Section 4.1).

The 8 cyclotomic classes of order 7 of R� (Def.5) are :

C0 : {3, β + 2, β2 + 2, β3 + 2, β4 + 2, β5 + 2, β6 + 2}
C1 : {1 + 2β, 3β, β2 + 2β, β3 + 2β, β4 + 2β, β5 + 2β, β6 + 2β}
C2 : {1 + 2β2, β + 2β2, β2 + 2β2, β3 + 2β2, β4 + 2β2, β5 + 2β2, β6 + 2β2}
C3 : {1 + 2β3, β + 2β3, β2 + 2β3, β3 + 2β3, β4 + 2β3, β5 + 2β3, β6 + 2β3}
C4 : {1 + 2β4, β + 2β4, β2 + 2β4, β3 + 2β4, β4 + 2β4, β5 + 2β4, β6 + 2β4}
C5 : {1 + 2β5, β + 2β5, β2 + 2β5, β3 + 2β5, β4 + 2β5, β5 + 2β5, β6 + 2β5}
C6 : {1 + 2β6, β + 2β6, β2 + 2β6, β3 + 2β6, β4 + 2β6, β5 + 2β6, β6 + 2β6}
C7 : {1, β, β2, β3, β4, β5, β6}

The obtained partitions applying the construction are (Prop.6) :

Let Ej = {u ∈ Z3
4, F (u) = j}, j = 0, 1, 2, 3.

E0 = C0 ∪ C4 ∪ {2, 2β4}
E1 = C1 ∪ C5 ∪ {2β, 2β5}
E2 = C2 ∪ C6 ∪ 2{β2, 2β6}
E3 = C3 ∪ C7 ∪ {2β3, 0}

.

The balanced constructed 3-variables quaternary function F is :

F = 3322312311001200312003111302203200220021331132130321113030122302
with nlH4 (F ) = 44 and nlL4 (F ) = 56.
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The balanced derived 6-variables boolean function f is :

f = 1111101100000100101001000101101100110010110011010110001010011101
with nl2(f) = 24.

8 Conclusion

This paper presents new results on quaternary cryptographic functions, bringing
out a new approach of functions used in the security of pseudo-random generators
of stream and blocks ciphers. The main goal of this work, similarly motivated
by the Z4 linearity paper [8], is to present an alternative to the open problem
of finding optimal boolean functions. After defining quaternary functions and
describing their Z4 balancedness and nonlinearity, under the Hamming metric
and the Lee metric, we give results on the maximal nonlinearity of quaternary
Bent functions. Using the algebraic structure of a Galois ring, we present a gen-
eral construction of quaternary functions, pointing out necessary trade offs in
order to obtain optimal cryptographic properties. In a natural way, we apply
this construction with a particular configuration to get balanced and high non-
linearity quaternary functions. Faithful to our main objective, we take the image
of our quaternary constructed functions under the Gray map to obtain balanced
and high nonlinearity boolean functions. Other quaternary cryptographic prop-
erties, as correlation immunity, resiliency and algebraic immunity and the study
of the relationship between binary and quaternary nonlinearity are actually in
progress. Z4 codes, Galois Rings and Difference Sets over Z4 seems to offer great
investments opportunities and reinforce our motivation to go on with this new
kind of approach.
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2 Université du Sud Toulon-Var, IMATH, France

veron@univ-tln.fr

Abstract. Addition chains are classical tools used to speed up expo-
nentiation in cryptographic algorithms. In this paper we proposed to use
a subset of addition chains, the Euclidean addition chains, in order to
define a new public key cryptosystem.

1 Introduction

The problem of minimizing the number of operations to compute xn has a long
history which involves al-Kashi and started at least in India, where the binary
representation of n was already considered 200 B.C .

It appeared that this problem is deeply connected to this of finding short
addition chains leading to n as explained in [6]. The name addition chain seems
to come from Sholz paper [11].

Definition 1. An addition chain of length s computing an integer k is a se-
quence u0, u1, . . . , us of positive integers such that :

1. u0 = 1 and us = k,
2. ∀i ∈ [1, s], ui = uj + ut with 0 � j, t < i.

Example : (1, 2, 3, 6, 12, 15, 24, 39) is an addition chain of length 8 computing
the integer 39, since 2 = 1 + 1, 3 = 2 + 1, 6 = 3 + 3, 12 = 6 + 6, 15 = 12 + 3,
24 = 12 + 12, 39 = 24 + 15.

The problem of computing l(n), the shortest length s of such a sequence
computing n, is of importance and has given raise to numerous papers in the
last century. For example, one can quote the papers of Brauer [2] , Yao [13], and
the survey of Subbarao [12]. Two problems seem to have played the role of a red
thread. The first one is to give sharp upper bounds for l(n). As for example, it
is well known that

log n + log v(n)− 2.13 � l(n) � �log n�+ v(n)− 1

where v(n) is the Hamming weight of n. The Sholz conjecture, namely ∀n ∈
N∗, l(2n − 1) � n − 1 + l(n), also played an important role in the development
of the theory of addition chains.
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The second problem is to find efficient algorithms to compute short chains for
a given integer n. Both problems are still considered difficult. For recent results,
one can see [1].

There is one special class of addition chains which have been well studied :
the Brauer chains or star chains. This class is introduced in [2].

Definition 2. A star addition chain or Brauer chain is a particular addition
chain where ∀i ∈ [1, s], ui = ui−1 + uj with 0 � j < i.

Example : (1, 2, 3, 5, 8, 13, 26, 39) is a star addition chain of length 8 computing
the integer 39.

These chains are well fitted for computations. Indeed at each step, to compute
ui, the last term ui−1 (already in the accumulator) is used. Recently, Meloni [8]
studied a subclass of star chains : the so called Euclidean addition chains.

Definition 3. An Euclidean addition chain (EAC) computing an integer k is
an addition chain which satisfies u1 = 1, u2 = 2, u3 = u2 + u1 and ∀ 3 ≤ i ≤ s−
1, if ui = ui−1+uj for some j < i−1, then ui+1 = ui+ui−1 (case 1) or ui+1 =
ui + uj (case 2).

As an EAC is a strictly increasing sequence, case 1 will be called big step (we
add the biggest of the two possible numbers to ui) and case 2 small step (we
add the smallest one).

Example : (1, 2, 3, 4, 7, 11, 18, 25, 32, 39) is an Euclidean addition chain of length
10 computing the integer 39.

In [8], Meloni showed how to use such a chain (with a specific point addition
algorithm) to compute nP where P is a point on an elliptic curve. Euclidean
addition chains are also used in [5].

Computing an EAC for an integer n is easy : choose an integer g < n such that
(g, n) = 1 and apply Euclidean algorithm to n and g (see §2). In this way, one
can find the ϕ(n) EAC computing n (where ϕ is the Euler’s totient function), but
very few is known about the length of the chains obtained. A general asymptotic
result due to Yao and Knuth [14] states that the average length of such a chain is

6π−2(ln n)2 +O(log n(log log n)2).

To find short EAC, Meloni suggests in [7] to choose g close to n
φ (where φ is the

golden ratio) adapting this way a heuristic proposed by Montgomery [9] in the
context of Lucas chains.

Nowadays, there are no known methods to find a chain of fixed length comput-
ing a prescribed integer n. The exhaustive method of listing the integers coprime
with n and applying Euclidean algorithm will be clearly inefficient for large n as
ϕ(n) will be large too.

We will introduce in this paper a subset M0
� of EAC of length 2� such that

two distinct elements of M0
� will compute two different integers. Moreover, if

c ∈ M0
� computes an integer n, we will describe a simple and efficient method

to determine c from the knowledge of n.
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These remarks are our point of departure to propose a public key cryptosystem
based upon EAC. Using chains of the setM0

� induces a trapdoor in the problem
of finding a chain of fixed length computing a prescribed integer.

This paper is organized as follows. Section 2 deals with links between Eu-
clidean addition chains and the Euclidean algorithm. In section 3 we define the
set M0

� and give some of its properties. In section 4 we describe our cryptosys-
tem. Section 5 deals with its security. We detail the scrambling actions of the
cryptosystem, and show why they are important. We make links between dif-
ficult problems and the problem an intruder will have to solve to break the
cryptosystem. We also discuss the parameters of the cryptosystem. In section 6
we discuss the performances of the cryptosystem. Section 7 gives a useful toy
example which can help to better understand the cryptosystem. We conclude in
section 8.

2 Euclidean Algorithm and Euclidean Addition Chains

For the sequel of the paper, we will use an equivalent definition for EAC. This
way EAC can be in practice interpreted as binary sequences.

Definition 4. An Euclidean addition chain (EAC) of length s is a sequence
(ci)i=1...s with ci ∈ {0, 1}. The integer k computed from this sequence is obtained
from the sequence (vi, ui)i=0..s such that v0 = 1, u0 = 2 and ∀i � 1, (vi, ui) =
(vi−1, vi−1+ui−1) if ci = 1 (small step), or (vi, ui) = (ui−1, vi−1+ui−1) if ci = 0
(big step). The integer k associated to the sequence (ci)i=1...s is vs + us.

Example : From the EAC (1000111) one can compute the integer 39 as follows :
(1, 2) 1→ (1, 3) 0→ (3, 4) 0→ (4, 7) 0→ (7, 11) 1→ (7, 18) 1→ (7, 25) 1→ (7, 32), which
corresponds to the EAC 1, 2, 3, 4, 7, 11, 18, 25, 32, 39.

From now on, we will define the length of an EAC as the length of the corre-
sponding binary sequence (ci)i=1...s.

Let us observe the progress of the substractive Euclidean algorithm when ap-
plied to coprime integers (see algorithm 1) in order to stress the link with EAC.
The assertion {(v, u) = 1, v < u, u � 2, v � 1} is an invariant of Algorithm 1.
Moreover the variable u strictly decreases for each turn of the while loop. Hence
the algorithm ends with u = 2 and v = 1.

Algorithm 1. Substractive Euclidean algorithm applied to coprime integers
Require: (v, u) with (v, u) = 1, v < u and v � 1.
1: while u > 2 do
2: if u � 2v then
3: (v, u) ← (v, u − v)
4: else
5: (v, u) ← (u − v, v)
6: end if
7: end while
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Example : Starting from (5, 17) the algorithm successively computes (5, 12),
(5,7), (2, 5), (2,3) and (1, 2) where bold couples mean that u < 2v. Now, if we
read the sequence of the couples from the last one to the first one, notice that
at each step the couple (v, u) is replaced by (u, u + v) or by (v, u + v). That is
to say that reading the couples computing by Algorithm 1 from the last one to
the first one we obtain an addition chain (as defined in definition 4) which can
compute the initial input u.

Example : Starting from the previous example, we get (1, 2) 0→ (2,3) 1→ (2, 5)
0→ (5,7) 1→ (5, 12), we obtain this way the EAC 0101 which computes the integer
17.

Taking into account this remark, we can easily define an algorithm computing
an EAC for an integer k :

Algorithm 2. ComputeEACfor(k)
Require: k � 4.
1: Randomly computes an integer g, such that g > k/2 and (g, k) = 1.
2: (v, u) ← (k − g, g)
3: while u > 2 do
4: if u � 2v then
5: (v, u) ← (v, u − v)
6: Output 1
7: else
8: (v, u) ← (u − v, v)
9: Output 0

10: end if
11: end while

Remark 1. Notice that in Algorithm 2, we choose g > k/2. Indeed suppose that
g � k/2 , then the first step of Algorithm 1 will compute the couple (g, k − g)
from (g, k). Now using the same algorithm with input (g′, k) where g′ = k − g,
we will obtain after the first step the couple (k − g′, g′) = (g, k − g) because
k − g � k/2. Hence algorithm 2 applied to (g, k) or (g′, k) will lead to the same
EAC.

Notice also that, since g > k/2, the initialization (v, u) ← (k − g, g) corre-
sponds to the first execution of the While loop of Algorithm 1.

Remark 2. This algorithm outputs the mirror image of the EAC computing k
when starting from an integer g (i.e. the sequence read from right to left). We
will see in next section, that an EAC and its mirror image computes the same
integer k.

3 Notations and Properties

We give in this section some notations and important results for the sequel of
this paper.
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Definition 5. Let n > 0, we define :

. M as the set of EAC,

. Mn as the set of EAC of length n > 0,

. χ the map fromM to N, such that for m ∈M, χ(m) be the integer computed
from the EAC m,

. ψ the map from M to N × N, such that for m ∈ M, ψ(m) = (vs, us) if
m ∈Ms,

. S0 the matrix
(

0 1
1 1

)
corresponding to a big step iteration,

. S1 the matrix
(

1 1
0 1

)
corresponding to a small step iteration.

With these notations, for m = (m1, . . . , ms) ∈ Ms, we have :

ψ(m) = (1, 2)
s∏
i=1

Smi and χ(m) = 〈(1, 2)
s∏
i=1

Smi ,(1, 1)〉.

Let r and s be two integers, we will denote by mm′ the element ofMr+s obtained
from the concatenation of m ∈ Mr and m′ ∈ Ms. This way, for n > 0, mn is a
word ofMnr if m ∈ Mr.

Proposition 1. Let n > 0, Fi be the ith Fibonacci number (defined by F0 = 0,
F1 = 1 and Fn+1 = Fn + Fn−1) :

. ψ(0n) = (Fn+2, Fn+3), ψ(1n) = (1, n + 2), χ(0n) = Fn+4, χ(1n) = n + 3,

. ∀m ∈Mn, χ(1n) � χ(m) � χ(0n),

. Sn0 =
(

Fn−1 Fn

Fn Fn+1

)
, Sn1 =

(
1 n
0 1

)
.

Proof. All these properties can easily be proved by induction.

Proposition 2. Let n > 0 and m = (m1, . . . , mn) ∈Mn, then :

. χ(m1, . . . , mn) = χ(mn, . . . , m1),

. the map ψ is injective.

Proof. We refer to [6] for standard link between EAC, Euclidean algorithm and
continued fractions, which explains the first point. It is also explained that if
ψ(m) = (v, u) then (u, v) = 1 and the only chain which leads to (v, u) is obtained
using the substractive version of Euclidean algorithm. ��

From proposition 2 the restriction of χ to Mn is not injective because of the
mirror symmetry property.

Proposition 3. Let M0
n be the subset of M2n whose elements are EAC begin-

ning with n zeros. The restriction of χ to M0
n is injective.
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Proof. Let x and y be two words of M0
n such that χ(x) = χ(y), and m0n,

m′0n, be the words obtained when reading x and y from right to left. Using
the symmetry property, we have χ(m0n) = χ(m′0n). Let (v, u) = ψ(m) and
(v′, u′) = ψ(m′), then

χ(m0n) = χ(m′0n)
⇔ Fnu + Fn−1v + Fn+1u + Fnv = Fnu

′ + Fn−1v
′ + Fn+1u

′ + Fnv′

⇔ Fn+2(u − u′) = Fn+1(v′ − v) .

Since (Fn+1, Fn+2) = 1, then Fn+2 divides v′− v. Now from proposition 1, since
v and v′ are less or equal than Fn+2 and nonzero, then |v′−v| < Fn+2. It implies
that v = v′ and so u = u′. Hence ψ(m) = ψ(m′), so m = m′.

Proposition 4. Let cg,k be the EAC computing the integer k from the integer
g using Algorithm 2 then, cg,k ends with n zeros if and only if the nth couple
computed by Algorithm 2 is equal to (kFn+1 − gFn+2, gFn+1 − kFn) if n is even
or (gFn+2 − kFn+1, kFn − gFn+1) if n is odd.

Proof. Let us suppose that cg,k ends with n zeros. It means that the nth couple
computed by Algorithm 2 is equal to (k − g, g)S−n

0 . Now since Fn−1Fn+1 −

F 2
n = (−1)n (Cassini’s identity), then S−n

0 = (−1)n
(

Fn+1 −Fn

−Fn Fn−1

)
. Hence (k −

g, g)S−n
0 = ((−1)n(kFn+1 − gFn+2), (−1)n(gFn+1 − kFn)).

The converse can be easily proved by induction. ��

Corollary 1. Let cg,k be the EAC computing the integer k from the integer g
using Algorithm 2. The chain cg,k ends with n zeros if and only if :

– k Fn+2
Fn+3

< g < k Fn+1
Fn+2

, if n is even.

– k Fn+1
Fn+2

< g < k Fn+2
Fn+3

, if n is odd.

Proof. Let us suppose that cg,k ends with n zeros. From the preceding propo-
sition, the nth couple computed by Algorithm 2 is ((−1)n(kFn+1 − gFn+2),
(−1)n(gFn+1−kFn)) and satisfies (−1)n(kFn+1−gFn+2) < (−1)n(gFn+1−kFn).
Thus (−1)nk Fn+2

Fn+3
< (−1)ng. Now taking into account only the n− 1 first steps,

we also must have (−1)n−1k Fn+1
Fn+2

< (−1)n−1g.
An easy induction proves the converse. ��

The previous result means that to find an EAC (ending with n zeros) which
computes an integer k, algorithm 2 has to be run with an integer g lying in
a specific interval I. Let k ∈ χ(Mn

0 ) and ck be the element of Mn
0 such that

χ(ck) = k. Let c̃k be the mirror of ck, then c̃k ends with n zeros. The size S of
the interval I is |k Fn+1

Fn+2
− k Fn+2

Fn+3
| which is equal to k

Fn+2Fn+3
. If k < Fn+2Fn+3

then S < 1, hence at most one integer lies in I. Now since k has been computed
from a chain beginning with n zeros, then there is exactly one element g in I
which can compute c̃k from k using algorithm 3.
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Algorithm 3. InverseChi(k, n) for k ∈ χ(Mn
0 )

1: if n is even then
2: g ← �k Fn+1

Fn+2
�

3: else
4: g ← �k Fn+2

Fn+3
�

5: end if
6: (v, u) ← (k − g, g)
7: while u > 2 do
8: if u � 2v then
9: (v, u) ← (v, u − v)

10: Output 1
11: else
12: (v, u) ← (u − v, v)
13: Output 0
14: end if
15: end while

Remark 3. Since c̃k ends with n zeros, we can begin the preceding algorithm
with :

0: Output n zeros

and (using proposition 4) modify the line 6 as follows :

6: (v, u)← ((−1)n(kFn+1 − gFn+2), (−1)n(gFn+1 − kFn)).

Remark 4. Let 0ny be a chain computing the integer k. The algorithm was
designed to compute the chain ỹ0n where ỹ is the mirror of y. But because of
the progress of the algorithm the chain is sent back from the left to the right.
Hence the last n bits returned are exactly the word y.

4 The Cryptosystem

The cryptosystem is composed of three algorithms :

– Genparam which takes as input two integers n and t (n > t) and returns the
public key pk and the secret key sk of the system,

– Encrypt which takes as input a binary sequence of size n− t, the public key
pk and returns the cryptogram c,

– Decrypt which takes as input the cryptogram c, the secret key sk and return
the plaintext m.

Let us give some details on the decryption procedure. To this end, we will denote
by χα,β(m) the integer computed from the EAC m when starting from the couple
(α, β) instead of (1, 2).

Let M be the matrix equal to
∏n−t
i=1 Smi so that χα,β(m) = α(M11 + M12) +

β(M21 + M22). First notice that if d is the gcd of (α, β) then χα/d,β/d(m) =
χα,β(m)/d, hence we will only consider the case where gcd(α, β)=1.
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Algorithm 4. Genparam(n, t)
1: Randomly computes a prime p > F2n+4

2: Randomly choose λ ∈ [1, p − 1]
3: Randomly choose x ∈ {0, 1}t

4: (δ1, δ2) ← ψ(0nx) = ψ(Fn+2,Fn+3)(x)
5: (a, b) ← (λδ1 mod p, λδ2 mod p)
6: d ← gcd(a, b)
7: pk ← (a/d, b/d)
8: sk ← (d, p, λ−1 mod p, x)
9: return (pk, sk)

Algorithm 5. Encrypt(pk, m : binary seq. of length n− t)
1: c ← χpk(m)
2: return c

Algorithm 6. Decrypt(sk, c)
1: y ← λ−1dc mod p
2: cy ← InverseChi(y, n)
3: m ← last n − t bits of cy (see Remark 4.).
4: return m

Let us notice in the same way ψα,β(m) the last couple obtained from the EAC
m when starting from (α, β). Let m1 and m2 be any two EAC, then

– ψα,β(m1m2) = ψψα,β(m1)(m2),
– χα,β(m1m2) = χψα,β(m1)(m2).

Taking into account these results, we have the following equalities for the cryp-
tosystem :

χ(0nxm) = χ1,2(0nxm) = χFn+2,Fn+3(xm) = χδ1,δ2(m).

Now, since c = χa/d,b/d(m) = χa,b(m)/d = a(M11+M12)+b(M21+M22)
d , then

λ−1cd ≡ δ1(M11 + M12) + δ2(M21 + M22) mod p .

But,
δ1(M11 + M12) + δ2(M21 + M22) = χδ1,δ2(m)

= χFn+2,Fn+3(xm)

and since χFn+2,Fn+3(xm) � χFn+2,Fn+3(0n) = F2n+4 (from property 2), then

λ−1cd mod p = χFn+2,Fn+3(xm) = χ(0nxm) ,

because p > F2n+4. Using Algorithm 3, we can find back the sequence xm and
deduce the plaintext m. Indeed, from a practical point of view, for the values n
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suggested in section 6, χ(0nxm) < Fn+2Fn+3 as soon as the Hamming weight
of x is greater or equal than 4. Another way to guarantee this last property is
to consider only plaintext of length n − 1. With such a condition, χ(0nxm) �
F2n+3 < Fn+2Fn+3 for n > 0 and the map χ still remains injective. See section
7 for a toy example.

5 Security

First let us explain the meaning of the integer λ and the vector x. The integer
λ is used in order to scramble the value of the couple (δ1, δ2). Indeed, if the
cryptogram were computed as χδ1,δ2(m), then since χδ1,δ2(m) = χ(0nxm), any
intruder could use Algorithm 3 to find back the cleartext m.

Remember that using x such that its Hamming weight be greater or equal than
4 guarantees that the value of χ(0nxm) for any plaintext m is always strictly
less than Fn+2Fn+3 (for the practical parameters given in section 6), which is an
essential condition for the decryption process. Let us suppose however that we
don’t use the vector x, here is a possible attack to find back the secret parameters
λ and p. Without x, (δ1, δ2) would be equal to (Fn+2, Fn+3). Now, if a and b are
coprime, then pk will be equal to (a, b) in Algorithm 4. Hence, we will have

a = λFn+2 mod p
b = λFn+3 mod p

i.e, there exist two integers ja, jb such that a = λFn+2−jap and b = λFn+3−jbp.
Now, let ε0 = b, ε1 = a and consider the sequence εi = εi−2 − εi−1, a simple
induction shows that εi = λFn+3−i + (−1)i(jaFi − jbFi−1)p, for i � 2. Hence
εn+3 = (−1)n+3(jaFn+3 − jbFn+2)p is a multiple of p. Since Fk | F�k we can
obtain a set of integers which are all multiples of p. As an example since F4 = 3F2
and F10 = 11F5, then εn−1 − 3εn+1 ≡ 0 mod p and εn−2 − 11εn−7 ≡ 0 mod p.
Computing the gcd of these integers will give us the value of p. Now, since
εn+1 ≡ λ mod p and λ < p, the value of εn+1 modulo p gives us λ.

Using a vector x discards the possibility to easily obtain a set of multiples of
p from the public key (a, b).

A way to find back the cleartext is to try to solve the following computational
problem, which we will denote by GEAC for Generalized Euclidean Addition
Chain Problem :

Name : GEAC
Input : Four integers a, b, α and � such that (a, b) = 1 and α = χa,b(c)
Question : Compute c ∈ {0, 1}�.
Suppose that an efficient algorithm could be designed to solve GEAC. If it is
fast enough , it could then be used to compute minimal length EAC. As a con-
sequence, using the method described in [8], this will lead to an efficient point
multiplication algorithm for elliptic curves resistant to side channel attacks. From
all the works done over addition chains, we did not find any references about
the GEAC problem. Most of the papers on this topic deal with classical addition



An EAC Based PKC 293

chains starting with (1,2). It is thus of importance to classify this problem. We
can associate a decision problem to GEAC :

Name : D-GEAC
Input : Four integers a, b, α and � such that (a, b) = 1.
Question : Does there exist an euclidean addition chain c of length � such

that α = χa,b(c) ?
We cannot state if this problem is NP-complete (it is clearly in NP). However,
we would like to point out a related problem which is NP-complete, as we will
prove it.

Name : G-AS
Input : A sequence n1, . . . , nr, a, b of positive integers such that gcd(a, b) = 1,

a positive integer L.
Question : Does there exist an addition chain of length � L starting with (a, b)

which contains all the n′
is ?

This problem is a generalization of the following one :

Name : AS
Input : A sequence n1, . . . , nr of positive integers and a positive integer L.
Question : Does there exist an addition chain of length � L which contains all

the n′
is ?

From [4] this problem is NP-complete.

Proposition 5. G-AS is NP-complete

Proof. The proof given in [4] shows how to reduce AS to the well known problem
of Vertex Cover in a graph G. To this end, the author constructs the sequence
ΔG = {1, 2, 22, . . . , 2σn} ∪ {1 + 2σu + 2σv} where n is the number of vertices of
G and (u, v) describes the set of edges. He shows then how to build a vertex
cover of size at most K from an addition chain of size at most σn+1+#E +K
which contains the sequence ΔG. Now, let us consider the sequence ΔGa,b =
{b, 2b, 22b, . . . , 2σnb} ∪ {a + b2σu + b2σv} rather than ΔG. Then we can read
exactly the same proof to establish that G-AS is NP-complete. ��

For a first approach of the security of the scheme, we must define parameters n
and t in order to avoid classical attacks. The parameter t must be chosen so that
an intruder cannot retrieve the chain x using an exhaustive search. We suggest
to choose t = 80.

Since the size of the cleartext is n−t, we have to choose n such that n−t > 80,
which leads to take n > 160.

The prime p must be chosen so that p > F2n+4. We suggest to randomly select
p in the range ]F2n+4, F2n+5]. For n > 160, there are at least 2215 such primes.

Notice that since the cryptogram has been computed using the algorithm of
definition 4 starting from v0 = a and u0 = b with (a, b) = 1 then all the couples
(v, u) generated satisfy (v, u) = 1. Hence one could try to choose an integer g < c
coprime with c and apply algorithm 2 until the current couple (v, u) be equal to
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(a, b). Now, there are about ϕ(c)/2 candidates and ϕ(c) > c/ ln c. Since c is of
the order of p, selecting randomly g without any strategy will fail.

This cryptosystem is deterministic, and hence is not semantically secure, thus
we do not resist to any of the IND-xxx attack. For this first approach of a cryp-
tosystem based upon EAC, we do not investigate the formal model of provable
security.

6 Performances

Let us first consider the transmission rate of this system. The size of the cleartext
m is n− t. The cryptogram is obtained by the computation of

〈(a, b)
n−t∏
i=1

Smi ,(1, 1)〉 .

If we consider the mi’s as n− t independent Bernoulli random variables, it can
be proved that the mean value of a cryptogram is (3/2)n−t(a + b). Since a and
b are of the order of p, and since p is of the order of F2n+4, this mean value is
about 2(3/2)n−tF2n+4. Taking into account that log2 Fk is about 0.694k, then
the average size of the cryptogram is 1.97n−0.58t+3.7. Hence the transmission
rate of the cryptosystem is on average

n− t

1.97n− 0.58t + 3.7
.

Since we fixed t = 80, and n > 160 , this is an increasing sequence which tends
to 1/1.96 � 0.5. Notice that the worst transmission rate is obtained when the
cryptogram is computed from the cleartext 0n−t. In this case the cryptogram is
equal to aFn−t+1 + bFn−t+2 whose size is about 2.08n− 0.69t + 4.16.

The public and the private datas (except for x) are all of the order of p,
which is close to F2n+4. Using this estimation, table 1 sums up for t = 80
the characteristics of the system and give some numerical results for n = 592,
n = 1104, n = 2128 and n = 336 (this last one is only given for illustrative
purpose). The value I denotes the ratio between the size of the cleartext and
the size of the cryptogram.The value IW denotes the worst transmission rate.

Table 1. Characteristics of the scheme

n size of cleartext (bits) size of pk (bits) size of sk (bits) I IW

n − 80 2.8n + 5.6 4.2n + 88.4 n−80
1.97n−42.83

n−80
2.08n−51.36

336 256 947 1500 0.41 0.39
592 512 1664 2575 0.45 0.43
1104 1024 3097 4726 0.48 0.46
2128 2048 5965 9026 0.49 0.47
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The encryption process only involves n− t additions over integers. The size of
these integers grows from 1.4n (the size of a and b) to 2.08n in the worst case.
We can speed up this process by using the following remark :

χpk(m) = (a, b)
n−t∏
i=1

Smi(1, 1)t = (1, 1)
1∏

i=n−t
Stmi

(a, b)t .

Hence to cipher a cleartext m, the user can first compute n−t additions between
integers whose size grows from 1 to 0.69(n− t + 2) in the worst case (the size of
Fn−t+2). Then, he has to compute the products between integers of size about
1.4n and 0.7n (au and bv) and the sum au + bv.

The decryption process involves :

– step 1 of algorithm 6 : a modular multiplication between integers whose size
is about 1.4n , if we suppose that λ−1d has already been computed,

– step 2 or 4 of algorithm 3 : a multiplication between integers of size 1.4n and
0.694n,

– step 2 or 4 of algorithm 3 : a division between an integer of size 2.1n and an
integer of size 0.694n,

– last steps of algorithm 3 : n − t subtractions between integers whose size
decreases from 1.4n to 1.

From an asymptotic point of view, both processes are in O(n2) while the same
procedures for the classical RSA cryptosystem are in O(n3) if n is the size of
the modulus. Table 2 gives some numerical results obtained when ciphering and
deciphering 20000 cleartext with our cryptosystem and the classical RSA cryp-
tosystem. Since in RSA the ciphering and deciphering procedure are identical we
only mention in table 2 the time of ciphering procedure for a random exponent
e. The column EAC∗ corresponds to the optimization of the encryption process
above mentioned. Tests have been carried out on a Quadcore 2.33Ghz processor
using GnuMP library.

Table 2. Ciphering and deciphering rate in kilobytes per second

size of the cleartext (bits) EAC-cipher EAC∗-cipher EAC decipher RSA
1024 1106 kb/sec 2551 kb/sec 1208 kb/sec 103 kb/sec
2048 693 kb/sec 2024 kb/sec 963 kb/sec 28.46 kb/sec

The transmission rate of our system is a drawback of our system as compared
to RSA. But since the design of this latter, very few new asymmetric cryp-
tosystems have been proposed. For example, one could compare our parameters
with those of another cryptosystem which didn’t use an RSA-like mechanism :
the Naccache-Stern knapsack cryptosystem [10] presented at Eurocrypt’97. We
choose this cryptosystem since its parameters have been recently improved in
2008 [3]. Moreover, while the system lacks provable security, it still has not been
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broken to this date. Since the encryption process involves modular multiplica-
tions and the decryption process is equivalent to an RSA signature, we will only
discuss the transmission rate and the size of the public-key. In NS cryptosys-
tem, there is a trade-off to establish between these two parameters. A good one
corresponds to a transmission rate of 0.38 for a 512 kilobytes public key. If one
wants to improve the transmission rate to 0.5, public key will grow up to 14564
kilobytes. On the other hand, for the smallest possible size of the public key
(59 kilobytes), the transmission rate drops to 0.11. With our cryptosystem, for
a transmission rate between 0.4 and 0.5, the public key is less than 1 kilobyte.
Notice also that the proposed cryptosystem has a natural integrity property,
since the cleartext computed from the cryptogram must be well formatted : the
first n + t bits should be equal to 0nx.

7 A Toy Example

We illustrate the mechanism for n = 6 and t = 2.

• Key generation
p = 991 > F16, λ = 230, x = (10)
(δ1, δ2) = (55, 76) = ψ(00000010) ((1, 2) 0→ (2, 3) 0→ (3, 5) 0→ (5, 8) 0→ (8, 13) 0→
(13, 21) 0→ (21, 34) 1→ (21, 55) 0→ (55, 76))
(a, b) = (758, 633), d =gcd(a, b) = 1
pk = (758, 633), sk = (1, 991, 642, (10)) (642 = 230−1 mod 991).

• Encryption
Let m = (1101) the message to encrypt, the following steps lead us to the com-
putation of χpk(m) :
(758, 633) 1→ (758, 1391) 1→ (758, 2149) 0→ (2149, 2907) 1→ (2149, 5056)
The cryptogram is 7205.

• Decryption
y = λ−1c mod p = 7205× 642 mod 991 = 613 < F8F9 = 714
g = �613F7

F8
� = 379

Using the trick for the line 6 of algorithm 3, we initialize the couple (v, u) to
(613F7 − 379F8, 379F7 − 613F6) = (10, 23). Then the algorithm computes the
following couples :
(10, 13) 1→ (3, 10) 0→ (3, 7) 1→ (3, 4) 1→ (1, 3) 0→ (1, 2) 1→ end of algorithm. Last
four bits are the cleartext m.

8 Conclusion

In this note we proposed to use Euclidean addition chains to define a public key
cryptosystem. To this end, we used properties of a subset of Euclidean addition
chains. It enabled us to design a polynomial time algorithm for the problem of
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finding an EAC of fixed length computing a prescribed integer (GEAC). Even
if we described difficult problems linked to GEAC, we do not know its level of
difficulty. However, as we obtained good performances and as it is of interest to
propose new public keys mechanisms, we think it is worth presenting this one.
As it is usual in cryptography, we welcome readers for attacks and suggestions
on this system. Although there exists a lot of efficient point multiplication algo-
rithms for elliptic curves, few of them have been designed to intrisically resist to
side channel attacks. Looking for an efficient cryptanalysis of GEAC may bring
out new ideas in the theory of Euclidean addition chains. These ideas may have
nice applications in the field of point multiplication algorithms resistant to side
channel attacks.
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1 Introduction

One of the main problems in the communication field is the integrity of the
messages. In the public communication channel, there exist the opponents except
for the sender and the receiver. The opponents may have the ability to intercept
the messages, modify the existing messages or/and insert a new message to the
public communication channel. Thus, authentication codes are being developed
to provide a solution to this scenario [16].

Authentication code is a four-tuple (S, T ,K, E), where S is the source state
space associated with a probability distribution, T is the tag space, K is the key
space associated with a probability distribution, and E is a set consisting of all
encoding rules Ek : S → T , k ∈ K. In this paper, we assume that all source
states and all keys are used equally likely.

For the authentication code, the secret key k shared by both the sender and
receiver can be used for both encryption and authentication purpose. Accord-
ingly, authentication codes come with two flavors, with or without secrecy. In
an authentication code with secrecy, a source state s is sent to the receiver in an
encrypted form. In an authentication code without secrecy, a source state s is
sent to the receiver in a plaintext. The connections between coding theory and
authentication codes without secrecy are well known [10,11]. Several approaches
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are presented to construct authentication codes without secrecy using error cor-
recting codes: the q-twist construction [11], the construction using rank distance
code [18], and Gauss sum construction [1,9], cartesian authentication code [4,6],
the constructions by using perfect nonlinear (PN) functions and almost perfect
nonlinear (APN) functions [2,3,5].

Difference balanced function is a class of function with perfect difference prop-
erty [7], which has been used to construct sequences with low correlations [8,12].
Our concern in this paper is to explore its application in authentication codes.
As a result, we establish a generic connection between optimal authentication
codes without secrecy and difference balanced functions, which give two con-
structions of optimal authentication codes without secrecy. The first one is as
good as that constructed from PN functions, while the second one has more
flexible parameters.

Finally, we conclude this section by introducing the following notations which
will be used throughout this paper.
– q: a power of a prime p;
– n, m, l: three positive integers with m|n and l ≤ m;
– GF (qn), GF (qm): two finite fields with qn and qm elements;
– Trqn/qm(x) =

∑n/m−1
i=0 xq

mi

, x ∈ GF (qn): the trace function from GF (qn)
to GF (qm).

2 Authentication Codes

In [16], Simmons established a generic authentication model. He distinguished
two different types spoofing attack, i.e., impersonation attack and substitution
attack.

In the impersonation attack, the opponent wants to generate a message (s, t)
so that the probability Pr(t = Ek(s)) is maximal, where s ∈ S and t ∈ T . The
maximum probability of success of the impersonation attack is

PI = max
s∈S,t∈T

|{k ∈ K : t = Ek(s)}|
|K| (1)

where |A| denotes the cardinality of the set A. In the substitution attack, the
opponent observes a message (s, t) and replaces it with another message (s′, t′)
so that the probability Pr(t′ = Ek(s′)|t = Ek(s)) is maximal, where s = s′. The
maximum probability of success of the substitution attack is

PS = max
s∈S,t∈T

max
s′ ∈ S, s �= s′

t′ ∈ T

|{k ∈ K : t = Ek(s), t′ = Ek(s′)}|
|{k ∈ K : t = Ek(s)}|

. (2)

By choosing certain messages, the opponent can successful cheat. So the two
maximum probabilities of authentication codes must be as small as possible.
However, there exist the following lower bounds on PI and PS [15]:

PI ≥
1
|T | , and PS ≥

1
|T | . (3)

The authentication code is called optimal if the equalities in (3) hold.
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3 Authentication Codes from Functions with Difference
Balanced Property

In this section, we will construct authentication codes from functions with dif-
ference balanced property.

3.1 A Generic Construction of Optimal Authentication Codes from
Difference Balanced Functions

Definition 1. A function f(x) from GF (qn) to GF (qm) is said to be balanced
if any element of GF (qm) appears qn−m times with x ranging over GF (qn).

Definition 2. A function f(x) from GF (qn) to GF (qm) is said to be difference
balanced, if for any δ ∈ GF (qn) \ {0, 1}, the difference f(δx)− f(x) is balanced.

So far, there are three types of difference balanced functions [8,17]:

(1) f(x) is a single trace form taken from binary and nonbinary m-sequences,
i.e.,

f(x) = Trqn/q(xd) (4)

where n and d are positive integers such that gcd(d, qn − 1) = 1.
(2) h(x) is the Helleseth-Gong (HG) function extracted from nonbinary HG

sequence defined in [8] by

h(x) = Trqn/qm(
t∑
i=0

uix
(q2mi+1)/2) (5)

where n = (2t+1)m, 1 ≤ s ≤ 2t+1 is an integer such that gcd(s, 2t+1) = 1,
b0 = 1, bis = (−1)i and bi = b2t+1−i for i = 1, 2, · · · , t, u0 = b0/2 = (p+1)/2,
and ui = b2i for i = 1, 2, · · · , t.

(3) Composite difference balanced functions: This class accounts for all the dif-
ference balanced functions that are composite function of the two classes of
difference balanced functions f(x) and h(x) above, for example

g1(x) = trqn1/q[trqn2·n1/qn1 (xd2)]d1 ,

g2(x) = trqn1/q

[
trqn2·n1/qn1 (

m∑
i=0

uix
(q2n1ki+1)/2)

]d1
,

in which n1, n2 = (2m + 1)k, d1, and d2 are positive integers, gcd(d1, q
n1 −

1) = 1, and gcd(d2, q
n1·n2 − 1) = 1.

It should be noted that all the difference balanced functions above are d-form
functions [13].

Definition 3. Let d be an integer with gcd(d, qm−1) = 1. A function h(x) from
GF (qn) onto GF (qm) is a d-form function if

h(yx) = ydh(x) (6)

for any y ∈ GF (qm) and x ∈ GF (qn).
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It is easy to see that f(x) in (4) is d-form, h(x) in (5) is 1-form, g1(x) is (d1 ·d2)-
form, and g2(x) is d1-form.

The following relationship of d-from function between balanced property and
difference balanced property is well-known [14].

Lemma 1. If a d-form function f(x) from GF (qn) to GF (qm) is difference
balanced, then f(x) is balanced.

By Lemma 1, we have

Lemma 2. Let f(x) be a d-form function from GF (qn) to GF (qm) with differ-
ence balanced property. For any s, s′ ∈ GF (qn) with s = s′, f(sx) − f(s′x) is
balanced.

Proof. If s = 0, then s′ = 0 and f(sx)− f(s′x) = −f(s′x) is a balanced function
by Lemma 1. Similarly, f(sx)− f(s′x) = f(sx) is balanced if s′ = 0.

If s = 0 and s′ = 0, then s(s′)−1 = 0, 1. Let y = s′x, then f(sx) − f(s′x) =
f(s(s′)−1y)− f(y) is balanced due to the difference balanced property of f(y).

��

Based on the functions with difference balanced property, we can easily construct
optimal authentication codes.

Theorem 1. Let f(x) be a d-form function with difference balanced property
from GF (qn) to GF (q). Define an authentication code as follows:

(S, T ,K, E) = (GF (qn), GF (q), GF (qn)×GF (q), {Ek : k ∈ K})

where for any k = (k0, k1) ∈ GF (qn)×GF (q) and s ∈ S,

Ek(s) = f(sk0) + k1.

Then such code has parameters S = qn, |T | = q and |K| = qn+1,

PI = PS =
1
q
.

and is optimal.

Proof. For any fixed s ∈ GF (qn) and t ∈ GF (q), k1 = t − f(sk0) is uniquely
determined by given k0 ∈ GF (qn). Thus we have |{(k0, k1) ∈ K : f(sk0) + k1 =
t}| = qn, and then

PI =
qn

qn+1 =
1
q
.

Let s, s′ ∈ S, s = s′ and t, t′ ∈ T . Then we have

|{(k0, k1) ∈ K : f(sk0) + k1 = t, f(s′k0) + k1 = t′}|
= |{(k0, k1) ∈ K : f(sk0)− f(s′k0) = t− t′, f(s′k0) + k1 = t′}|
= |{k0 ∈ GF (qn) : f(sk0)− f(s′k0) = t− t′}|
= qn−1
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where k1 is cancel in the right hand side of the second equation since it is
uniquely determined by k0 and the last equality is due to the balanced property
of f(sx)− f(s′x) given by Lemma 2. Thus the maximum probability of success
of the substitution attack is

PS =
qn−1

qn
=

1
q
. ��

3.2 The Second Class of Optimal Authentication Codes with
Flexible Parameters

Before presenting the second construction, we need the following lemma.

Lemma 3. Let a1, a2, · · · , al ∈ GF (qm) be l elements linearly independent over
GF (q). Then the following system of equations⎧⎪⎪⎪⎨⎪⎪⎪⎩

Trqm/q(a1y) = b1
Trqm/q(a2y) = b2

...
Trqm/q(aly) = bl

has qm−l solutions for any given bi ∈ GF (q), i = 1, 2, · · · , l.

Proof. The system of equations in l variables y, yq, · · · , yql−1
has a coefficient

matrix as follows:

A =

⎛⎜⎜⎜⎜⎝
a1 aq1 · · · a

ql−1

1

a2 aq2 · · · a
ql−1

2
...

...
. . .

...
al aql · · · a

ql−1

l

⎞⎟⎟⎟⎟⎠ .

Since a1, a2, · · · , al ∈ GF (qm) are linearly independent over GF (q), the rank of
A is equal to l. This finishes the proof. ��

Now we introduce the construction of authentication codes.

Theorem 2. Let a1, a2, · · · , al ∈ GF (qm) be l elements linearly independent
over GF (q). Let f(x) be a function from GF (qn) to GF (qm) with difference
balanced property. Define a code as follows:

(S, T ,K, E) = (GF (qn), GF (q)l, GF (qn)×GF (q)l, {Ek : k ∈ K})

where for any s ∈ S, k = (k0, k1, · · · , kl) ∈ GF (qn)×GF (q)× · · · ×GF (q),

Ek(s) = (Trqm/q(a1f(sk0)) + k1, · · · , T rqm/q(alf(sk0)) + kl).

Then the code has parameters |S| = qn, |T | = ql, |K| = qn+l,

PI = PS =
1
ql

and meets the bounds of (3).
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Proof. For any given s, k0 ∈ GF (qn) and (t1, t2, · · · , tl) ∈ GF (q)l, there exists a
unique ki such that ki = ti − Trqm/q(aif(sk0)), i.e.,

|{k ∈ K : Trqm/q(aif(sk0)) + ki = ti, i = 1, 2, · · · , l}| = qn.

Thus we have
PI =

qn

qn+l =
1
ql

.

For any s, s′ ∈ GF (qn), s = s′ and t = (t1, t2, · · · , tl), t′ = (t′1, t
′
2, · · · , t′l) ∈

GF (q)l, consider the number of solutions to the system of equations{
Trqm/q(aif(sk0)) + ki = ti, i = 1, 2, · · · , l
T rqm/q(aif(s′k0)) + ki = t′i, i = 1, 2, · · · , l (7)

Again by the fact that ki is uniquely determined by k0, the system of equations
in (7) can then be reduced as

Trqm/q(ai(f(sk0)− f(s′k0))) = ti − t′i, i = 1, 2, · · · , l. (8)

By Lemma 2, for any given y ∈ GF (qm), the equation y = f(sk0)− f(s′k0) has
qn−m solutions k0 ∈ GF (qn). Hence, by Lemma 3, (8) and (7) have qn−m ·qm−l =
qn−l solutions in GF (qn)×GF (q)l. We have

PS =
qn−l

qn
=

1
ql

. ��

3.3 Comparison between Our Codes and Codes from Perfect
Nonlinear Functions in [3]

Theorem 16 of [3], the authors construct authentication codes in with parameters

|S| = qn, |T | = q, |K| = qn+1, PI = PS = 1
q

using perfect nonlinear functions. Obviously, our codes in Theorem 1 are as good
as those codes in [3].

Now we compare those codes with our codes in Theorem 2 of this paper. If l
is a factor of n, then the parameters of our codes are the same as those of the
codes in Theorem 16 of [3]; Otherwise, the parameters of our codes can not be
obtained by those of the codes in Theorem 16 of [3]. So the parameters of our
codes in Theorem 2 are more flexible than those of the codes in [3].

4 Conclusion

In this paper, we first present a generic construction of authentication codes from
difference balanced functions and an extensive class of authentication codes. It
is shown that the newly proposed codes are: (1) either as good as the optimal
codes from PN functions given in [3]; (2) or more flexible than the latter with
respect to the parameters.

Note that difference balanced functions which are mainly used in the literature
to construct sequences can also be applied to authentication codes and they lead
to results with flexible parameters. It is surprising that this potential of difference
balanced functions was not realized earlier.
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Abstract. This paper gives a sampling of the results on Welch-Bound-
Equality sequence sets that were presented in the keynote lecture on
which this paper is based. Emphasis is placed on identities that lend
themselves to use in the design and analysis of good sequence sets.

Keywords: Welch’s bound, correlation functions, WBE sequence sets.

1 Preliminaries

Let x(1), x(2), . . . ,x(M) be vectors in CL where C is the complex field. These
vectors form a set of sequences of length L, or a multiset of sequences of length
L, depending on whether the M vectors are all distinct or include duplicates.
When a statement applies equally well to a sequence set or to a sequence multiset,
we will write “(multi)set”. We write 〈x(i),x(j)〉 to denote the usual inner product
between x(i) and x(j) in CL.

Welch [1] has derived a very useful bound on the correlation of a sequence
set in which all sequences have the same “energy” (which can and will be taken
as L with no loss of essential generality), i.e., 〈x(i),x(i)〉 = L. This bound is
usually stated in terms of the maximum correlation between sequences in the
(multi)set, but in our opinion it is more fundamentally stated as a bound on the
total squared correlation between pairs of signals as we do now.

Bound 1. Welch’s Bound: Let x(1), x(2), . . . ,x(M) be a multiset of equal-energy
complex sequences of length L and energy L. Then

M∑
i=1

M∑
j=1

‖〈x(i),x(j)〉‖2 ≥M2L (1)

Equality holds in (1) if and only if the M×L array having x(1), x(2), . . . ,x(M) as
rows has equal-energy and pairwise-orthogonal columns. Moreover, when equality
holds, the sequences are uniformly good in the sense that
� This work was supported in part by the European Space Agency under Contract

No.22369/09/NL/JK performed under subcontract with Thales Alenia Space Italia.
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M∑
j=1

‖〈x(i),x(j)〉‖2 = ML (2)

for 1 ≤ i ≤M .

The condition for equality in (1) was first derived in [2]; the “uniformly good”
property (2) was first shown in [3].

Sequence (multi)sets that achieve equality in (1) were called Welch-Bound-
Equality (WBE) sequence (multi)sets in [3] where the close connection between
these WBE sequence sets and cyclic codes was pointed out and where many
constructions of WBE sequence sets were given.

2 Correlation Functions

The periodic crosscorrelation function (or even crosscorrelation function) be-
tween the sequences x(i) and x(j) in CL is the function

Rx(i)x(j)(k) = 〈x(i), T kx(j)〉 for 0 ≤ k < L, (3)

where T is the left cyclic shift operator on sequences of length L. When i = j,
Rx(i)x(j)(.) is called the periodic autocorrelation function (or even autocorrelation
function) and denoted simply as Rx(i)(.).

Gold [4] proved the following result for even correlation functions.

Identity 1. Gold’s identity:

L−1∑
k=0

Rx(i)(k)Rx(j)(k) =
L−1∑
k=0

(Rx(i)x(j)(k))2. (4)

The odd crosscorrelation function between the sequences x(i) and x(j) in CL is
the sequence

Ox(i)x(j)(k) = 〈x(i), Nkx(j)〉 for 0 ≤ k < L, (5)

where N is the left compacyclic shift operator on sequences of length L intro-
duced by Seguin [5], i.e., the operator that shifts each component one position
leftwards, except for the first component which is changed in sign and moved to
the rightmost position. When i = j, Ox(i)x(j)(.) is called the odd autocorrelation
function and denoted as Ox(i)(.).

Pursley and Sarwate [6] proved the following interesting result for odd corre-
lation functions.

Identity 2. Pursley-Sarwate identity:

L−1∑
k=0

Ox(i)(k)Ox(j)(k) =
L−1∑
k=0

(Ox(i)x(j)(k))2. (6)
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3 Extensions

We first note that if x(1), x(2), . . . ,x(M) is a WBE (multi)set of equal-energy
complex sequences of length L and energy L, then so is the cyclically shifted
(multi)set T kx(1), T kx(2), . . . , T kx(M). This follows from Bound 1 and the fact
that pairwise orthogonality of the columns of the matrix with x(1), x(2), . . . , x(M)

as rows implies the pairwise orthogonality of the columns of the matrix with
T kx(1), T kx(2), . . . , T kx(M) as rows. Moreover, the union of these two (multi)sets
is also a WBE (multi)set. Now making use of the uniformly good property (2) of
WBE sequence multisets and invoking the definition (3), we obtain after a little
algebra the following identity, which appears to be new.

Identity 3. If x(1), x(2), . . . , x(M) is a WBE (multi)set of equal-energy complex
sequences of length L and energy L, then

M∑
j=1

(Rx(i)x(j)(k))2 = ML for 0 ≤ k < L. (7)

We next note that if x(1), x(2), . . . ,x(M) is a WBE (multi)set of equal-energy
complex sequences of length L and energy L, then so is the compacyclically
shifted (multi)set Nkx(1), Nkx(2), . . . , Nkx(M). This follows again from the
Bound 1 and the fact that pairwise orthogonality of the columns of the ma-
trix with x(1), x(2), . . . , x(M) as rows implies the pairwise orthogonality of the
columns of the matrix with Nkx(1), Nkx(2), . . . , Nkx(M) as rows. Moreover,
the union of these two (multi)sets is also a WBE (multi)set. Now making use of
the uniformly good property (2) of WBE sequence multisets and invoking the
definition (5), we obtain after some algebra the following identity, which again
appears to be new.

Identity 4. If x(1), x(2), . . . , x(M) is a WBE (multi)set of equal-energy complex
sequences of length L and energy L, then

M∑
j=1

(Ox(i)x(j)(k))2 = ML for 0 ≤ k < L. (8)

Identities 3 and 4 suggest that WBE sequence (multi)sets can be expected to
have odd correlation properties that are just as good as the usual periodic (or
“even”) correlation properties usually considered in the analysis of sequence
(multi)sets.
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Abstract. Randomness testing of cryptographic algorithms are of cru-
cial importance to both designer and the attacker. When block ciphers
and hash functions are considered, the sequences subject to random-
ness testing are of at most 512-bit length, “short sequences”. As it is
widely known, NIST has a statistical test suite to analyze the random-
ness properties of sequences and generators. However, some tests in this
suite can not be applied to short sequences and most of the remaining
ones do not produce reliable test values for the sequences in question.
Consequently, the analysis method which is proposed in this suite is not
suitable for evaluation of generators which produce relatively short se-
quences. In this work, we propose an alternative approach to analyze
short sequences without tweaking the tests.

1 Introduction

Random sequences are used in a large variety of areas, such as quantum me-
chanics, game theory, statistics, cryptography, and so on. These sequences can
be generated either by physical sources or deterministic algorithms. In cryptog-
raphy, some applications require transmitting large random sequences, which is
inefficient, or regenerating random sequences, which is not possible for physical
sources. Therefore, randomness in cryptography is achieved through determin-
istic algorithms, which are called pseudo random number generators (PRNGs).
Analysis of PRNGs is performed by taking a sample sequence from them, and
evaluating this sequence by statistical randomness tests. These statistical tests
are designed to examine the randomness of a sequence through comparing cer-
tain characteristics of the sequence with the expected ones of a random sequence
and producing a p-value as an output of this examination process.

Statistical testing of block cipher and hash function algorithms is essential,
because the outputs of such algorithms should be random looking. As approxima-
tions and asymptotic approaches used in the distribution functions of statistical
randomness tests force the user to use long sequences, a common approach to
overcome this problem is to concatenate the outputs of block ciphers or hash
functions to form long sequences. Using this approach, a method is proposed
for statistical testing of block ciphers by Soto [1]. In this method, outputs of
several different input data sets are tested with NIST test suite [2], by forming
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sequences of length approximately 220 bits through concatenation. However, the
nature of block cipher and hash function algorithms necessitates devising tests
and test parameters focused particularly on “short sequences”, which are formed
directly by the outputs of these algorithms.

Our aim is to test a generator which produces short sequences of length be-
tween 128 and 256 bits. To attain this, we improve the evaluation method given
in [2] for the test results obtained from short sequences.

2 Evaluation of the Test Results

In this section, we first overview the method described in the NIST test suite
for evaluation of the test results and point out why this method is not reliable
for short sequences. Then, we propose an alternative approach to evaluate test
results of short sequences.

2.1 The Method Proposed by NIST

NIST suggests two approaches to evaluate test results: examination of the pro-
portion of sequences with a p-value greater than a certain bound; and the distri-
bution of p-values. The latter one assumes that the p-values are uniformly dis-
tributed over the interval [0, 1]. A goodness of fit distribution test is performed
to measure whether the p-values are uniform or not by dividing the interval [0, 1]
into 10 equal subintervals. Let m be the number of sequences tested, and Fi be
the number of p-values in subinterval i for i = 1, 2, . . . , 10. Then the χ2 value
and the corresponding p-value are calculated as

χ2 =
10∑
i=1

(Fi − m
10 )2

m
10

and p-value = igamc
(

9
2
,
χ2

2

)
where igamc is the incomplete gamma function. If p-value≥0.0001, the test re-
sults are considered to be uniformly distributed [2].

However, when short sequences are in question, two main problems arise.
First problem is noted in [2], “the asymptotic reference distributions would be
inappropriate and would need to be replaced by exact distributions that would
commonly be difficult to compute”. The second problem is that, for short se-
quences, the probability of a p-value being in a subinterval is not the same for
all subintervals. This problem arises from the fact that the test parameters are
discrete values, that is integer valued, where the asymptotic reference distribu-
tion assumes real valued inputs. To overcome these problems, we propose an
alternative method to evaluate the test results of the short sequences.

2.2 The Alternative Approach

In this approach, we use the distribution functions as they are originally used in
the NIST test suite, instead of replacing them with exact distributions. Then for
each test, we compute the probability of a p-value being in a given subinterval.
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NIST assumes that this probability is 1
10 for 10 subintervals but this is not the

case for short sequences. Hence, we compute the subinterval probabilities for
each test. The bit lengths for the computations are chosen as; 128, 160 and 256
for evaluating the algorithms given in Section 3.

The distributions of p-values are computed by making a table consisting of
the probabilities of all possible test variables, and the corresponding p-values.
Thus, for each i = 0, 1, . . . , 9, we need to compute

Pr

(
i

10
≤ p-value ≤ i + 1

10

)
.

Using these probabilities for subintervals we propose an improved method for
evaluation of the test results. Let pi be the probability of a p-value being in
subinterval i, then

χ2 =
10∑
i=1

(Fi −m · pi)2
m · pi

and p-value = igamc
(

9
2
,
χ2

2

)
.

Similar to the approach proposed by NIST, when p-value≥0.0001, the test results
are considered to be distributed properly. For specific sequence lengths, the case
m · pi < 5 may occur for some i. In that case, degree of freedom should be
modified accordingly.

Considering the length of sequences in question, suitable tests in the NIST
test suite are Frequency Test, Frequency Test within a Block, Runs Test, Test
for the Longest Run of Ones in a Block, Serial Test, Approximate Entropy Test
and Cumulative Sums Tests. In the remaining part of this section, we explain
how the pi’s are computed for each of these tests. Also the distribution tables
are given in Appendix B.

Frequency Test. Frequency Test compares the weight W (that is, the number
of ones) of an n-bit sequence with the expected weight of a random sequence.
The p-value of the sequence depends only on the weight W of the sequence as
a variable. As for a given weight w, there are

(
n
w

)
many n-bit sequences, the

probability Pr(W = w) is

Pr(W = w) =

(
n
w

)
2n

.

We form a table which contains all possible weights with the corresponding p-
values. For example, Table 1 shows p-values for Frequency Test according to the
weights w for n = 256.

As it can be seen in Table 1, the p-value of a sequence is in the interval [0.8, 0.9]
if and only if the weight of the sequence is 126 or 130. In that case

Pr(0.8 < p-value < 0.9) =

(256
126

)
+
(256
130

)
2256 ≈ 0.0966 .
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Table 1. Weights and the corresponding p-values

w |w − n
2
| p-value

125 3 0.707660
126 2 0.802587
127 1 0.900523
128 0 1.000000
129 1 0.900523
130 2 0.802587
131 3 0.707660

Frequency Test within a Block. This test separates the sequence into m-bit
blocks and compares the proportion of ones in each block with the expected
values for a random sequence. The variables used for computing p-values are the
weights Wi of each block. Then, the probability for each p-value is calculated as,

Pr(Wi = wi) =

� n
m�∏
i=1

(
m

wi

)
2n

.

We choose m = 32 and calculate the corresponding subinterval probabilities.

Runs Test. A run is an uninterrupted maximal sequence of identical bits. In
the Runs Test, the number of runs in the sequence is compared with the expected
number of runs in a random sequence. The p-value is determined by the variables
W and V , which denote the weight of the sequence and the number of runs in
the sequence respectively. Now we need to compute Pr(W = w1, V = v1) for a
given sequence of length n, and calculate the probabilities of subintervals. We
consider the question in two cases:

i) v1 = 2a: Since there is an even number of runs, the number of runs of zeroes
and ones are equal to each other. First we write ones and zeroes consecutively
to define 2a runs. Now, we find the distribution of (w1 − a) many ones and
(n−w1− a) many zeroes so that the number of runs remains the same. The
number of such distributions is equal to the number of non-negative integer
solutions of the system

x1 + x2 + · · ·+ xa = w1 − a

y1 + y2 + · · ·+ ya = n− w1 − a .

The first bit can be zero or one, then the probability is computed as:

Pr(W = w1, V = 2a) =
2
(
w1−1
a−1

)(
n−w1−1
a−1

)
2n

.

ii) v1 = 2a+1: If v1 = 1, the only possibilities are all one and all zero sequences.
Hence the probability for this case is Pr(W = w1, V = 1) = 2

2n . Now, assume
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that a > 0. Then, considering the first bit, the problem can be handled in
two parts using the previous method. If the first bit is one, there are (a + 1)
runs of ones and a runs of zeroes; if the first bit is zero, there are a runs of
ones and (a + 1) runs of zeroes. The number of such distributions is equal
to the number of non-negative integer solutions of the systems

x1 + x2 + · · ·+ xa+1 = w1 − a− 1
y1 + y2 + · · ·+ ya = n− w1 − a

(1)

x1 + x2 + · · ·+ xa = w1 − a
y1 + y2 + · · ·+ ya+1 = n− w1 − a− 1 .

(2)

Therefore, the probability is computed as:

Pr(W = w1, V = 2a + 1) =

{
(w1−1

a )(n−w1−1
a−1 )+(w1−1

a−1 )(n−w1−1
a )

2n if a = 0
2
2n if a = 0 .

As stated in NIST test suite, if
∣∣W
n −

1
2

∣∣ ≥ 2√
n
, the p-value is set to 0. Hence,

the subinterval probabilities are calculated regarding this.

Test for the Longest Run of Ones in a Block. This test separates the
sequence into m bit blocks, and compares whether the length of the longest
run of ones of the blocks are consistent with the expected number of those for
a random sequence. We choose m = 8 and use the same categories, as NIST
suggested [2]. Therefore, denoting the length of the longest run of ones within
a block as V , we get q0 = Pr(V ≤ 1) = 55/256, q1 = Pr(V = 2) = 94/256,
q2 = Pr(V = 3) = 59/256 and q3 = Pr(V ≥ 4) = 48/256. Here, the only
variables for the calculation of p-values are the frequencies of the longest runs
of ones in each category (Vi). In that case, d = �n/8� implies that, for each
i = 0, . . . , 3 we have

Pr(Vi = xi) =

(
d
x0

)(
d−x0
x1

)(
d−x0−x1

x2

)(
d−x0−x1−x2

x3

)
q0
x0q1

x1q2
x2q3

x3

2n
.

Approximate Entropy Test and Serial Test. Approximate Entropy Test
compares the frequencies of overlapping m and (m + 1)-bit blocks of a sequence
with the expected frequencies of those in a random sequence. Similarly, Serial
Test focuses on the frequencies of overlapping m and (m − 1)-bit blocks of a
sequence. We take m = 1 for Approximate Entropy Test, and m = 2 for Serial
Test. In both cases, the p-values are determined by the frequencies of 1-bit and
2-bit blocks.

Let X denote the number of zeroes, and Y denote the number of ones in an
n-bit sequence. For 2-bit blocks, the first bit of the sequence is appended to the
end of the sequence. Now, let A, B, C and D denote the number of 00, 01, 10
and 11 overlapping blocks respectively.

The p-values of both tests are computed depending on variables X , Y , A, B,
C and D.
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We first note some immediate facts:

Fact 1. For any sequence the number of 01 blocks is equal to the number of 10
blocks (that is, B = C).

Each run in the sequence defines either a 01 or a 10 block, if the sequence
contains more than one runs. Also, in two consecutive runs, there will be a 01
and a 10 block. Considering the overlapping blocks, the number of runs will be
even, which implies B = C.

Fact 2. X=A+B.

Any 00 or 10 block is defined by a 0 bit. Therefore, the total number of 00 and
10 blocks sum up to the number of zeroes.

Since A + B + C + D = n, if n, X, and B are known, the values of the other
parameters can easily be computed using the facts above. Our aim is to compute
the probability Pr(B = b, X = x). Now, if b = 0, the sequence is either an all
one or an all zero sequence. Thus the probability Pr(B = 0, X = x) = 2

2n . If
b > 0, the probability Pr(B = b, X = x) is computed in three steps assuming
the bits are arranged on a circle to visualize the overlapping characteristic of
the test. First, locate b many 01 blocks on the circle. Then place (x − b) many
zeroes between 01 blocks. The number of different arrangements is equal to the
number of non-negative integer solutions of the equation x1+x2+· · ·+xb = x−b
which is

(
x−1
b−1

)
. Afterwards, locate the remaining (n− x − b) many ones. These

bits can not be placed between zeroes, otherwise the number of 01 blocks would
increase. Therefore, these ones should be placed adjacent to other ones on the
circle. The number of such arrangements is equal to the number of non-negative
integer solutions of the equation x1 + x2 + · · ·+ xb = n− x− b which is equal to(
n−x−1
b−1

)
.

Here, each arrangement on the circle gives n sequences. However, since there
are b many 01 blocks, b of these sequences are identical. Therefore, the probability
Pr(B = b, X = x) is equal to the number of different arrangements divided by
all possible n bit sequences which gives,

Pr(B = b, X = x) =

{
(x−1

b−1)(n−x−1
b−1 )n

b

2n if s > 0
2
2n otherwise .

Cumulative Sums Test. Cumulative Sums Test evaluates the sequence as a
random walk and compares the maximum distance of the random walk from
the x-axis to the expected value for a random sequence. The only variable for
computing the p-value is the variable z, which is the maximum distance of ran-
dom walk from the x-axis. Note that the test produces two p-values; one from
producing the random walk from left to right, and one from right to left. Hence,
we need to calculate Pr(z = r) for a given sequence of length n. Assume that
we know the weight W of a sequence. Then,

Pr(z < r|W = w) =

{
(n

w)−∑∞
i=1([( n

w−ir)+( n
n−w−ir)](−1)i+1)

2n if r > |n− 2w|
0 otherwise
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as in [3]. Considering all possible weights of an n-bit sequence, we get

Pr(z < r) =
n∑

w=0

Pr(z < r|W = w) .

Therefore, we get Pr(z = r) = Pr(z < r + 1)− Pr(z < r).

3 Application to Block Ciphers and Hash Functions

Prior to testing cryptographic algorithms, the theoretical results mentioned in
the previous section are applied to random data in order to check the reliability
of these results. We test 106 pseudo-random sequences of lengths 128, 160 and
256 (taken from [4] and [5]) for randomness, using the alternative approach
proposed in Section 2.2. The results match the expected p-value distributions
calculated in the previous section, as the p-values obtained from these sources
are all greater than 0.0001. These results can be seen in Table 2 and Table 3.
In contrast to our results, same data are considered to be non-random as the
p-values of the tests are smaller than 0.0001, when evaluated with the method
proposed by NIST (see Table 4). Therefore, the approach of NIST is not suitable
for testing short sequences.

Afterwards, we have applied our approach to test some block cipher and hash
function algorithms for randomness. First, we test the finalists of AES selection
process: MARS, RC6, Rijndael, Serpent and Twofish. In order to test these
algorithms, integers from 0 to (106 − 1) are encrypted using all zero key and
then the ciphertext is XORed with the plaintext. This process is similar to the
plaintext-ciphertext correlation in [1] except the plaintext is not random. Testing
results of the 128-bit outputs, prepared in this way, are in Table 5. If all the p-
values are greater than 0.0001 for a certain number of rounds, the algorithm is
considered to behave random with at least that many rounds. Therefore, Mars

Table 2. Our test results for the random data from [4]

Random-DIEHARD
Length Freq. B.Freq. Run L.Run Ap.En. C.Sum1 C.Sum2 Serial

128 0.1249 0.4492 0.1390 0.6260 0.5581 0.4803 0.6440 0.3745
160 0.3266 0.6176 0.6775 0.0193 0.4575 0.5604 0.1485 0.6893
256 0.5803 0.9776 0.1091 0.1284 0.2609 0.2189 0.3347 0.2776

Table 3. Our test results for the random data from [5]

Random-Atmospheric Noise
Length Freq. B.Freq. Run L.Run Ap.En. C.Sum1 C.Sum2 Serial

128 0.9735 0.3525 0.0917 0.9502 0.3330 0.0125 0.4482 0.4824
160 0.9818 0.7928 0.5998 0.6720 0.7104 0.7838 0.9379 0.5580
256 0.5339 0.2856 0.4172 0.2722 0.9930 0.3656 0.2117 0.9161
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Table 4. NIST test results for the random data from [4]

Random-DIEHARD
Length Freq B.Freq Run L. Run Ap. En. C.Sum1 C.Sum2 Serial

128 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
160 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
256 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

achieves randomness in the first round, RC6 in the fourth round, Rijndael in
the third round, Serpent and Twofish in the second round. These results are
consistent with the results in [1] except for Serpent.

Hash algorithms are also tested in the same manner. The outputs are gener-
ated as in the block cipher case with initialization vectors set to zero, then 106

outputs of lengths 128, 160, and 256 are tested for MD4, SHA-1 and SHA-256
respectively. We consider the step functions of MD4 algorithm as three sepa-
rate generators and produce outputs for each of them. As it can be seen in
Table 6, MD4-IF achieves randomness in the sixth round, MD4-XOR and MD4-
MAJORITY in the fourth round. Also, SHA-1 and SHA-256 achieve randomness
in the eleventh and fifth round respectively.

4 Conclusion and Future Work

In this work, we calculated the probabilities of subintervals for each test, and
proposed an alternative approach to evaluate test results for short sequences.
Then, we applied our approach to test the randomness of some block cipher and
hash function algorithms. As a future work, this study can be extended to other
test suites or individual statistical tests. Moreover, this approach can be applied
to evaluate the randomness of SHA-3 candidate algorithms.
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A Results for Some Block Ciphers and Hash Functions

Table 5. Block Cipher Results

MARS
Rnds Freq. B.Freq. Run L.Run Ap.En. C.Sum1 C.Sum2 Serial

1 0.8698 0.3289 0.5914 0.8848 0.1702 0.3659 0.2129 0.5484
2 0.4330 0.3106 0.4138 0.4819 0.3953 0.3474 0.0906 0.3304
3 0.3328 0.9079 0.5933 0.3932 0.1405 0.2391 0.2145 0.1942

RC6
Rnds Freq. B.Freq. Run L.Run Ap.En. C.Sum1 C.Sum2 Serial

3 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
4 0.2504 0.2245 0.0371 0.1145 0.1413 0.0755 0.9803 0.1453
5 0.6958 0.7972 0.9787 0.1823 0.6092 0.9830 0.5004 0.3810

Rijndael
Rnds Freq. B.Freq. Run L.Run Ap.En. C.Sum1 C.Sum2 Serial

2 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
3 0.7717 0.4658 0.4507 0.3248 0.7001 0.1536 0.6747 0.8385
4 0.2878 0.5585 0.2322 0.3352 0.3156 0.8272 0.3832 0.6447

Serpent
Rnds Freq. B.Freq. Run L.Run Ap.En. C.Sum1 C.Sum2 Serial

1 0.0063 0.0000 0.1820 0.5037 0.5924 0.0000 0.0000 0.3469
2 0.3487 0.8226 0.0463 0.0599 0.5569 0.5131 0.6117 0.4858
3 0.3421 0.4239 0.5364 0.6143 0.4860 0.5027 0.4299 0.2736

Twofish
Rnds Freq. B.Freq. Run L.Run Ap.En. C.Sum1 C.Sum2 Serial

1 0.1557 0.4578 0.0000 0.0157 0.0000 0.0575 0.0009 0.0000
2 0.4383 0.7038 0.9565 0.7466 0.7321 0.4159 0.9779 0.6924
3 0.3933 0.0131 0.8354 0.8263 0.3163 0.0109 0.6482 0.2544
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Table 6. Hash Function Results

MD4-IF
Rnds Freq. B.Freq. Run L.Run Ap.En. C.Sum1 C.Sum2 Serial

4 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
5 0.5274 0.0429 0.0069 0.1030 0.7345 0.0000 0.1613 0.6395
6 0.7797 0.6023 0.8079 0.1829 0.6171 0.4825 0.8867 0.5444

MD4-MAJORITY
Rnds Freq. B.Freq. Run L.Run Ap.En. C.Sum1 C.Sum2 Serial

3 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
4 0.0099 0.0725 0.0108 0.4089 0.8129 0.0025 0.0027 0.9536
5 0.3413 0.1881 0.0374 0.3737 0.0899 0.0479 0.7843 0.0391

MD4-XOR
Rnds Freq. B.Freq. Run L.Run Ap.En. C.Sum1 C.Sum2 Serial

3 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
4 0.4752 0.7832 0.9424 0.5294 0.3286 0.9390 0.8295 0.1527
5 0.5445 0.0367 0.1649 0.4447 0.9201 0.4628 0.8138 0.6849

SHA-1
Rnds Freq. B.Freq. Run L.Run Ap.En. C.Sum1 C.Sum2 Serial
10 0.6457 0.0000 0.0000 0.0186 0.0046 0.0118 0.0187 0.0029
11 0.3676 0.0611 0.0096 0.2313 0.0440 0.0659 0.8919 0.0149
12 0.4358 0.6513 0.8530 0.7604 0.6916 0.9537 0.0746 0.6042

SHA-256
Rnds Freq. B.Freq. Run L.Run Ap.En. C.Sum1 C.Sum2 Serial

4 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
5 0.8400 0.5539 0.3852 0.5205 0.8497 0.8933 0.9329 0.7359
6 0.4722 0.9613 0.3563 0.3588 0.9210 0.9630 0.9242 0.6938
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B Probabilities of Subintervals

Table 7. Theoretical distributions of test results for individual sequence lengths

Frequency Block Frequency

128 160 256 128 160 256

1 0.092690 0.096569 0.091312 0.096702 0.101330 0.099498
2 0.091993 0.082208 0.097936 0.103781 0.096417 0.097137
3 0.146253 0.125283 0.098741 0.090851 0.103623 0.100424
4 0.095504 0.080507 0.128568 0.116406 0.099707 0.109070
5 0.109829 0.092315 0.075286 0.103756 0.107205 0.101255
6 0.122433 0.103247 0.082019 0.073678 0.095472 0.095544
7 0.000000 0.112633 0.087971 0.131696 0.105087 0.097023
8 0.132306 0.119853 0.092898 0.084071 0.101300 0.106247
9 0.138606 0.124405 0.096584 0.109276 0.098890 0.100846
10 0.070386 0.062980 0.148685 0.089780 0.090969 0.092955

Runs Longest Run

128 160 256 128 160 256

1 0.100679 0.101767 0.099315 0.095011 0.094127 0.094347
2 0.101395 0.098738 0.099622 0.104278 0.101135 0.104510
3 0.113361 0.106146 0.100594 0.101632 0.107367 0.105749
4 0.102226 0.094736 0.110248 0.106461 0.100669 0.101619
5 0.095862 0.094915 0.089509 0.102993 0.102986 0.090870
6 0.104063 0.101219 0.096585 0.120047 0.116485 0.112755
7 0.071873 0.103284 0.095026 0.077501 0.086725 0.096412
8 0.110294 0.105341 0.106260 0.109233 0.091818 0.097298
9 0.114290 0.110820 0.102243 0.089208 0.110189 0.098344
10 0.085956 0.083033 0.100598 0.093636 0.088499 0.098095

Aproximate Entropy Cumulative Sums

128 160 256 128 160 256

1 0.105734 0.102096 0.099245 0.083277 0.095534 0.091424
2 0.095735 0.099609 0.097256 0.102103 0.097604 0.091200
3 0.092841 0.103599 0.102839 0.079860 0.072497 0.085796
4 0.110089 0.089717 0.103637 0.104008 0.091824 0.109924
5 0.091082 0.113919 0.098356 0.130600 0.113019 0.090897
6 0.119882 0.079515 0.098838 0.078669 0.067413 0.103963
7 0.077519 0.111236 0.096122 0.076607 0.141934 0.114207
8 0.119499 0.095412 0.103614 0.086252 0.071586 0.060357
9 0.084588 0.092816 0.101217 0.153731 0.138093 0.111896
10 0.103031 0.112081 0.098876 0.104892 0.110497 0.140337

Serial-1

128 160 256

1 0.101931 0.100969 0.097450
2 0.095514 0.093451 0.098970
3 0.101915 0.125194 0.099146
4 0.112556 0.061970 0.091051
5 0.082076 0.110750 0.114303
6 0.108904 0.095763 0.093207
7 0.089985 0.122586 0.094892
8 0.119499 0.084420 0.118739
9 0.084588 0.092816 0.093366
10 0.103031 0.112081 0.098876
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Abstract. In this paper we analyze the search for a set of predefined
sequences in random and framed data and derive a number of correspond-
ing statistical parameters. Most importantly, we derive probability mass
function of the search process from which all moments can obtained. The
presented solution is based on sequences’ descriptors called cross-bifices,
which express similarities among sequences in the set. The derived re-
sults can be used to evaluate the properties of frame-synchronization
sequences.

Keywords: synchronization sequences, frame synchronization.

1 Introduction

The pioneering analysis of the search for a predefined sequence in random data
stream was given in [1], where the term bifix was introduced to describe the
sequence structure. A bifix is a subsequence that is both a prefix and a suffix of
a longer sequence; its existence is denoted by corresponding bifix-indicator. Set of
bifix-indicators can be defined for every sequence, describing its self-overlapping
properties - matching between its prefices and suffices of equal length. The initial
employment of the bifix indicators yielded the formula for the expected duration
of a search for the first occurrence of a sequence in an infinite stream of random
equiprobable data [1].

A possibility that the bifix analysis, as introduced in [1], could be applied
to acquisition of frame synchronization was noticed in [2,3,4,5,6,7,8,9]. However,
although frequently quoted, the results given in [1], were never extended to fully
match frame synchronization issues; the only reference was the notion that frame
synchronization sequences of practical interest should be bifix-free, i.e., without
bifices.

The aim of this paper is to derive a comprehensive analytical description for
the extended problem of search for the set of predefined sequences in random
data stream and to apply it to the problem of the search in frame, both in
error-free and erroneous conditions. The given analysis corresponds to practical
low-complexity frame-synchronization algorithms that perform serial search with
hard correlation, where a predefined threshold is used as the sequence detection
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criteria. Another example that falls within similar scenario is the search for
distributed sequences [7,10].

The organization of the rest of the paper is as follows. In the next section we
analyze the search for a set of sequences in a infinite stream of random data,
introduce all the necessary prerequisites and derive the probability mass function
(pmf) of the search process, its first and second moments. In the third section we
extend the analysis to the practical case of framed data and investigate properties
of synchronization sequences using developed tools. The final section gives the
concluding remarks and outlines the topics for further research.

Some of the less important derivations presenting straightforward but exten-
sive mathematical exercises are omitted due to their length; they are accessible
at [11]. Preliminary versions of these results were presented in [12,13].

2 Search in Infinite Random Data Stream

We consider an infinite stream of random and independent data symbols x from
an alphabet of size L, x ∈ {A1, A2, ..., AL}, and assume that symbol values are
not equiprobable, Pr{x = Al} = pl, 1 ≤ j ≤ L and

∑L
l=1 pl = 1. Our aim is

to derive the probability of the first occurrence of a sequence belonging to the
predefined set S, at a given position in the stream of random data; we will refer
to this as a search for a set of sequences in random data stream. We assume
that there are M sequences in the set S, S = {s1, s2, ..., sM}, and that each
sequence from the set is N symbols long, si = [si1, si2, ..., siN ], where sin is the
n-th symbol of the i-th sequence.

The search starts at a random position, denoted as position 1 (Fig. 1). The
search process is modeled using sliding window of length N . Starting from the
position 1, the window slides symbol by symbol through the stream and stops at
the first occurrence of some sequence from the set S. Number of tests performed
prior to the end of search is a random variable (its expected value and pmf for a
simple case of equiprobable data and just one sequence were derived in [1] and
[14], respectively).

In order to derive the pmf of the search process, we introduce the concepts
of cross-bifices and suffix probability. Cross-bifix is a subsequence of length n,
0 ≤ n ≤ N , that is both a suffix of some sequence from the set and a prefix of
another one. The indicator related to the existence of cross-bifix of length n is

. . .. . . . . .x1 x2 . . . xk xk+1 xk+N

sliding window

position 1 position k

Fig. 1. Search in infinite random data stream
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h
(n)
ji , where subscripts j and i denote respectively sequences sj and sj , whose

suffix and prefix are observed. The default values are:

h
(n)
ji =
{

1 n = 0, 1 ≤ i, j ≤M or n = N, j = i,
0 n = N, j = i.

(1)

Cross-bifix indicators for the given set S of M sequences can be written in
matrices h(n):

h(n) =

⎡⎢⎢⎣
h

(n)
11 · · · h

(n)
1M

...
. . .

...
h

(n)
M1 · · · h

(n)
MM

⎤⎥⎥⎦ , 0 ≤ n ≤ N. (2)

Set S is cross-bifix free (analogous to the bifix-free sequences from [1]) if all its
cross-bifix indicators are zero, except the default ones (Eq. 1).

Example 1 clarifies the above stated, where S = {s1, s2} , s1 = [0 0 0] and
s2 = [1 0 0]:

h(0) =
[

1 1
1 1

]
, h(1) =

[
1 0
1 0

]
, h(2) =

[
1 0
1 0

]
, h(3) =

[
1 0
0 1

]
. (3)

Additional parameter needed for the derivation of the pmf is suffix probability
r
(n)
i , where subscript i denotes the sequence si and superscript n denotes the

suffix length. Suffix probability r
(n)
i is a product of probabilities of last n symbol

values of the sequence si. By default we assume r
(0)
i = 1. All suffix probabilities

for a given set of sequences can be written in a matrix:

r =

⎡⎢⎢⎣
r
(0)
1 · · · r

(N)
1

...
. . .

...
r
(0)
M · · · r

(N)
M

⎤⎥⎥⎦ . (4)

For Example 1, if we assume Pr = {x = 0} = q and Pr{x = 1} = p, the suffix
probability matrix is:

r =
[
1 q q2 q3

1 q q2 pq2

]
. (5)

In case of search for a single sequence (M = 1) the cross-bifix matrices are
reduced to scalars (bifix indicators) and the suffix probability matrix is reduced
to a vector.

We describe the search process with probabilities pi(k), 1 ≤ i ≤M and 1 ≤ k,
where pi(k) is probability that, starting from the position 1, the sequence si has
occurred at the position k for the first time and no sequence from the set S
has been found at positions prior to k. The central result of the paper is the
following theorem:

Theorem 1. The probability pi(k) is given by the following recursive expression:

pi(k) =

⎧⎪⎪⎨⎪⎪⎩
r
(N)
i k = 1

M∑
j=1

min(N,k−1)∑
n=1

(
h

(N−n+1)
ji r

(n−1)
i − h

(N−n)
ji r

(n)
i

)
pj(k − n) k > 1

(6)
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The probability that some sequence from the set S is found after exactly k tests
is given by:

p(k) =
M∑
i=1

pi(k) (7)

as the simulation of different sequences at the position k are mutually exclusive
independent events. We give the proof of Eqs. 6 and 7 for k > N , since for
1 ≤ k ≤ N , the extension is straightforward.

Proof. Suppose that a sequence si has occurred at the position k for the first
time, including all sequences of the set S. The probability of this event, pi(k), is
a probability of occurrence of a data stream of length k + N − 1 that ends with
the sequence si, with no sequence from the set S contained at positions prior to
position k. We call such data stream as k-constrained si-stream and denote the
set consisting of all k-constrained si-stream by Ci(k). All other streams of length
k+N −1 that also end with sequence si, but do not satisfy the above constraint
are called k-unconstrained si-streams and we denote the corresponding set by
Ui(k). Since sets Ci(k) and Ui(k) are disjoint and the first k − 1 symbols of
both sets form a complete set of data streams that are k − 1 symbols long, the
following holds:

Pr{Ci(k) ∪ Ui(k)} = Pr{Ci(k)} + Pr{Ui(k)} = pi(k) + Pr{Ui(k)} = r
(N)
i , (8)

pi(k) = r
(N)
i − Pr{Ui(k)}. (9)

Set Ui(k) can be further decomposed into subsets Uij(k, f), where each subset
consists of the streams that contain a sequence si at the position k and a sequence
sj , 1 ≤ j ≤ M , at the position f , with the constraint that the occurrence of
the sequence sj is the first occurrence of any sequence from the set S in the
unconstrained stream Uij(k, f). The symbols between the sequence sj at the
position f and the sequence si at the position k are arbitrary. Number of these
subsets is M(k − 1) and since they are disjoint, it follows:

Ui(k) =
k−1⋃
f=1

M⋃
j=1

Uij(k, f), (10)

Pr{Ui(k)} =
k−1∑
f=1

M∑
j=1

Pr{Uij(k, f)}. (11)

The decomposition of the unconstrained stream U1(k) for the Example 1 is shown
in Fig. 2.

For f ≤ k−N , each stream from a subset Uij(k, f) consists of an f -constrained
sj-stream, arbitrary stream of length k − f − N and sequence si. Hence, the
probability of the subset Uij(k, f) is:

Pr{Uij(k, f)} = Pr{Cj(f)} · r(N)
i = pj(f) · r(N)

i . (12)
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Fig. 2. Decomposition of set U1(k) into subsets U1i(k, f) for Example 1, s1 = [0 0 0]
and s2 = [1 0 0], c - constrained data, x - arbitrary data

For f > k−N , sequences si and sj overlap and Eq. 12 does not hold. The subset
Uij(k, f) exists only if the overlapping symbols enable it, i.e. if a cross-bifix of
length N − (k− f) exists (Fig. 3). In this case, a N − (k− f) symbols long suffix
of sequence sj (the same as a prefix of si) is followed by k−f symbols long suffix
of sequence si, thus forming sequence si at the end of the stream. Consequently,
the probability of the subset Pr{Uij(k, f)} is:

Pr{Uij(k, f)} = h
(N−(k−f))
ji · pj(f) · r(k−f)

i . (13)

Summation of Eqs. 12 and 13 according to Eq. 11, with substitution n = k − f ,
yields:

Pr{Ui(k)} =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

k−1∑
n=1

M∑
j=1

h
(N−n)
ji r

(n)
i pj(k − n) k ≤ N + 1

N−1∑
n=1

M∑
j=1

h
(N−n)
ji r

(n)
i pj(k − n) +

k−1∑
n=N

M∑
j=1

pj(k − n) k > N + 1

(14)
Eq. 8 holds for any k, so it holds for k − 1 as well:

r
(N)
i = pi(k − 1) + Pr{Ui(k − 1)}. (15)
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Fig. 3. Illustration of Uij(k, f) when f > k − N , c - constrained data

Inserting Eq. 15 into Eq. 9 and substituting Pr{Ui(k − 1)} and Pr{Ui(k)} with
Eq. 14 gives:

pi(k) =
N−1∑
n=1

M∑
j=1

(
h

(N−n+1)
ji r

(n−1)
i − h

(N−n)
ji r

(n)
i

)
pj(k − n) (16)

This concludes the proof. ��

The evaluation of the first moment (expected duration of the search, denoted by
T ) and the second moment yields:

μ1 = T =
∞∑
k=1

k · p(k) = 1−N +

M∑
i=1

M∑
j=1

PiRij

M∑
i=1

r
(N)
i

, (17)

μ2 =
∞∑
k=1

k2 · p(k) = (N − 1)2 +

M∑
i=1

M∑
j=1

(
2TiRij + Pi(Wij − 2NRij)

)
M∑
i=1

r
(N)
i

, (18)

where:

Pi =
∞∑
k=1

pi(k), Rij =
N∑
n=1

r
(n−1)
j h

(N−n+1)
ij , (19)

Ti =
∞∑
k=1

k · pi(k), Wij =
N∑
n=1

(2n− 1)r(n−1)
j h

(N−n+1)
ij . (20)
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Vectors P = [P1 P2 · · ·PM ] and T = [T1 T2 · · ·TM ] can be evaluated as solutions
of the following set of linear equations:

A ·PT = 0,
M∑
i=1

Pi = 1, (21)

A ·TT = B,

M∑
i=1

Ti = T . (22)

where A = [Aij ]MxM , B = [B1 B2 · · ·BM ] and:

Aij =
Rji

r
(N)
i

− Rj,i+1

r
(N)
i+1

, (23)

Bi =
1
2

M∑
j=1

(
Wj,i+1

r
(N)
i+1

− Wji

r
(N)
i

)
Pj . (24)

If data values are equiprobable, Pr{x = Ai} = L−1, 1 ≤ j ≤ L, and if the set of
sequences is cross-bifix free, then Eqs. 17-24 are simplified to:

Rij = Wij = δij , A =

⎡⎢⎢⎢⎢⎢⎣
1 −1 0 · · · 0 0
1 0 −1 · · · 0 0
...

...
... · · ·

...
...

1 0 0 · · · 0 −1
1 1 1 · · · 1 1

⎤⎥⎥⎥⎥⎥⎦ , B = [0 0 · · · 0 T ] (25)

where δij is the Kronecker delta. From Eq. 25 it follows: Pi = M−1, Ti = T ·M−1,
1 ≤ i ≤M , and

μ1 = T = 1−N + LNM−1, (26)
μ2 = T (2T − 1)−N(N − 1). (27)

This is of particular importance for distributed sequences [7,10] that are by
construction cross-bifix free.

For equiprobable data and just a single sequence (M = 1), the pmf, first and
second moments of the search are reduced to the expressions given in [1,15]:

p(k) =

⎧⎪⎨⎪⎩
L−N k = 1

min(N,k−1)∑
n=1

(
L1−nh(N−n+1) − L−nh(N−n)

)
p(k −N) k > 1

, (28)

T = 1−N +
N∑
n=1

h(n)Ln, (29)

μ2 = T (2T − 1)−N(N − 1)− 2
N∑
n=1

nh(N−n)LN−n. (30)
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Finally, for bifix-free sequence Eqs. 28-29 reduce to:

p(k) =
{

L−N 1 ≤ k ≤ N
p(k − 1)− p(k −N) k > N

, (31)

T = 1−N + LN , (32)

μ2 = T (2T − 1)−N(N + 1). (33)

In the next section we apply the derived results to the practical problem of
the search in framed data, which is an integral part of any algorithm for the
acquisition of frame synchronization in a synchronous transmission.

3 Search in Frame

In case of synchronous transmission, data is usually transmitted in equal-length
frames where every frame starts with a predefined frame-synchronization se-
quence. We assume that the frame and synchronization sequence length are F
and N symbols, respectively; we denote the synchronization sequence with s1
and its position in the frame as position 0. After establishing carrier and symbol
synchronization, receiver has to acquire frame synchronization in order to cor-
rectly receive incoming data. In order to do so, receiver searches for s1, sliding
through the incoming stream; we assume that the search starts at some random
offset position O with respect to the start of frame (Fig. 4). Furthermore, we
consider the general case when up to E errors are allowed when detecting a
synchronization sequence, hence the search is performed for all sequences that
are up to Hamming distance E from the sequence s1. In other words, there are
M =
∑E

e=0

(
N
e

)
sequences in the set S.

In case of search in framed data stream there are three distinct search regions
(Fig. 4): the first and the second overlap regions, where the sliding window par-
tially overlaps received synchronization sequence; and data region, where data
within the window is purely random. The results from Section 2 are readily

Fig. 4. Search in frame
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applicable only to the search in the data region, while the search in the over-
lap regions is impacted by the presence of synchronization symbols in the slid-
ing window. The following lemma describes the search within the first overlap
region.

Lemma 1. The sequence si, 1 ≤ i ≤M , will occur for the first time within the
first overlap region at position k, 1 ≤ k ≤ N − O + 1, starting from position
O, 1 ≤ O < N , and no sequence from S will occur prior to position k, if the
following three conditions are satisfied:

1. h
(N−O−k+1)
1i = 1,

2. The first O + k − 1 data symbols immediately following synchronization se-
quence in frame are equal to the suffix of the sequence si; probability of this
event is r

(O+k−1)
i ,

3. h
(N−O−d+1)
1z h

(N−k+d)
zi = 1, for 1 ≤ z ≤M and 1 ≤ d < k,

where k is given with respect to O.

Proof. The first two conditions are straightforward - at the position k the last
N − O − k + 1 symbols (suffix) of the sequence s1 are compared to the prefix
of the sequence si; sequence si can not occur unless h

(N−O−k+1)
1i = 1 and unless

the following O+k−1 data symbols are equal to the suffix of si. However, these
two conditions are not sufficient, as there may exist a sequence sz from the set
S with the following properties:

a) its prefix of length N − O − d + 1, 1 ≤ d < k, is equal to the suffix of the
sequence s1 (i.e., h

(N−O−d+1)
1z = 1),

b) its suffix of length N − k + d is equal to the prefix of sequence si (i.e.,
h

(N−k+d)
zi = 1).

The property b) implies that suffix symbols of sz that overlap data are equal
to these data symbols (striped symbols in Fig. 5), since they are equal to that
part of sequence si that also overlaps the same data symbols and by the second
condition of Lemma 1 are equal to them. Moreover, both properties imply that
the sequence sz has already occurred at the position d. From this it follows
that the occurrence of sequence si could not happen, since the data symbols
immediately following the synchronization sequence had been already exhausted
for simulation of the sequence sz and the search has stopped before reaching the
position k. Finally, from this it follows that the sequence si can appear only if
no sequence from S with properties a) and b) can occur at any position d prior
the position k, which is summarized in the third condition of Lemma 1. This
condition could be rewritten as:

M∏
z=1

k−1∏
d=1

(
1− h

(N−O−d+1)
1z h

(N−k+d)
zi

)
= 0 (34)

for 1 ≤ O < N and 1 ≤ k ≤ N −O + 1. ��
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s11 . . . s1,O+d . . . s1,O+k s1N. . . x x x

si1 si,N-O-k+1 . . .. . .

sz1 sz,k-d+1 . . . sz,N-O-d+1. . .

position O position d position k

s1

si

sz

siN

x x

. . . si,N-k+d

. . . szN

. . .

h1i

( N-O-k+1)
=1

hzi

( N-k+d )
=1

h1z

(N-O-d+1)
=1

frame:

Fig. 5. Search in the first overlap region

Example 2 in Fig. 6 clarifies the above condition; the synchronization sequence
is s1 = [1 1 0 1 0] and E = 1 symbol errors are accepted when detecting a
synchronization sequence. In total, six sequences are considered as correct at
the receiver (Fig 6a). We assume that search has started at position O = 2. If
data bits are x1 = 1 and x2 = 0, the sequence s2 is found at position k = 1, as
its prefix of length N − O − k + 1 = 3 is equal to the suffix of the sequence s1

(h(3)
12 = 1, Fig. 6b); if data bits are x1 = 0, x2 = 1 and x3 = 0, the sequence s3

is simulated at k = 2, as its prefix of length N − O − k + 1 = 2 is equal to the
suffix of the s1 (h(2)

13 = 1, Fig. 6c). In both cases, other sequences that satisfy
first two conditions, but not the third condition of Lemma 1 can not be found,
since the search has stopped prior to their potential occurrence.

a)

s1

s2

s3

s4

s5

s6

b)

c)

s2

frame:

s2

s2

s3

k = 4k = 2

k = 3k = 1

h12

(3) .h22

(3)
=1

h12

(3) .h23

(2)
=1

h13

(2) .h32

(3)
=1

1 1 0 1 0 x1 x xx2 x3

0 1 0 1 0

1 0 0 1 0

0 1 0 1 0

1 1 0 1 0

0 1 0 1 0

1 0 0 1 0

1 1 1 1 0

1 1 0 1 1

1 1 0 0 0

O = 2

h12

(3)
=10 1 0 1 0

s3 h13

(2)
=11 0 0 1 0

Fig. 6. a) Sequences from the set S for Example 2 b) x1 = 1 and x2 = 0, s2 found at
position 1, preventing occurrence of s2 at position 3 and s3 at position 4, c) x1 = 0,
x2 = 1 and x3 = 0, s3 found at position 2, preventing occurrence of s2 at position 3
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Combining the conditions of Lemma 1, Eqs. 34 and 6, a conditional pmf
that sequence si is found at position k, if the search has started from the offset
position O, for 1 ≤ O < N is equal to:

pi(k/O) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

h
(N−O−k+1)
1i r

(O+k−1)
i

M∏
z=1

k−1∏
d=1

(
1− h

(N−O−d+1)
1z h

(N−k+d)
zi

)
for 1 ≤ k ≤ N −O + 1

M∑
j=1

min(N,k−1)∑
n=1

(
h

(N−n+1)
ji r

(n−1)
i − h

(N−n)
ji r

(n)
i

)
pj(k − n/O)

for N −O + 2 ≤ k ≤ F −O + 1

(35)

and for N ≤ O ≤ F , is equal to:

pi(k/O) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
r
(N)
i for k = 1

M∑
j=1

min(N,k−1)∑
n=1

(
h

(N−n+1)
ji r

(n−1)
i − h

(N−n)
ji r

(n)
i

)
pj(k − n/O)

for 1 < k ≤ F −O + 1

(36)

Within the second overlap region, suffix of window contents overlaps with syn-
chronization sequence and hence cross-bifix indicator should substitute suffix
probability. Finally, the conditional probability p(k/O) that some sequence from
the set S will be found is equal to:

p(k/O) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
M∑

i=1

pi(k/O) 1 ≤ k ≤ F − N − O + 1

M∑
i=1

h
(N+O−F−1+k)
i1

pi(k/O)

r
(N+O−F−1+k)
i

F − N − O + 1 < k ≤ F − O + 1

(37)
To illustrate the derived formulas, we calculate the probability that the search
would ”survive”, i.e., the probability that no sequence from the set S would be
found prior the correct position F :

PSV (O) = p(F −O + 1/O). (38)

The worst case occurs if the search starts immediately after the correct position,
i.e. O = 1 and PSV (1) = p(F/1). Table 1 gives PSV (1) for several binary se-
quences with 7 bits, when a single error is allowed (E = 1) and frame length is
F = 50 bits. As shown in table, sequences 0000000 and 0000001 can not survive
the search. This is due to the allowed error when detecting a sequence, implying
that sequences from corresponding sets S certainly occur during search. Barker,
Jones and PDH sequences are all bifix-free, however, when E = 1, corresponding
sets S have different cross-bifix matrices, causing different survival probabilities.
Distributed Barker-like sequence, which is a cros-bifix free sequence, performs
better than contiguous bifix-free ones, due to its larger length and hence larger
overlap regions. Finally, periodical sequence 0101010, although having plenty of
bifices, induces less cross-bifices in the corresponding set S when E = 1 and has
the greatest survival probability for the given frame length.
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Table 1. Survival probabilities PSV (1) of binary sequences with 7 synchronization bits
when one bit error is allowed, for equiprobable data and frame length of 50 bits

Sequence PSV (1)
Barker sequence 0001101 0.026844
Jones sequence 0001011 [5] 0.036263
PDH sequence 0010011 [16] 0.036156
0000000 0
0000001 0
0101010 0.051202
Distributed Barker-like sequence 000xx1xxx1x01 [7] 0.032508

4 Conclusion

In this paper we presented a statistical description of the search for set of se-
quences, both in the case of random and framed data. The obtained results can
be applied to analysis and evaluation of the properties of frame-synchronization
sequences, and establish the optimal sequence structure and length with respect
to the frame length. The straightforward application of the derived formulas
would be an exact expression of frame-synchronization acquisition time that
would incorporate framing algorithm, errors and sequence structure. This ac-
quisition time could serve as a guideline for joint optimization of frame and
sequence length and structures, and amount of allowed sequence distortion. Fi-
nally, another interesting application of the given analysis could be in the field
of biological sequences in terms of frame synchronization of gene expressions, as
proposed in [17,18].
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Abstract. In this paper, we derive a lower bound to the nonlinearity of
the discrete logarithm function in F2n extended to a bijection in Fn

2 . This
function is closely related to a family of S-boxes from Fn

2 to Fm
2 proposed

recently by Feng, Liao, and Yang, for which a lower bound on the nonlin-
earity was given by Carlet and Feng. This bound decreases exponentially
with m and is therefore meaningful and proves good nonlinearity only
for S-boxes with output dimension m logarithmic to n. By extending
the methods of Brandstätter, Lange, and Winterhof we derive a bound
that is of the same magnitude. We computed the true nonlinearities
of the discrete logarithm function up to dimension n = 11 to see that,
in reality, the reduction seems to be essentially smaller. We suggest that
the closing of this gap is an important problem and discuss prospects for
its solution.

Keywords: Symmetric cryptography, Boolean functions, S-boxes, non-
linearity, discrete logarithm.

1 Introduction

The discrete logarithm function has a long history in public key cryptography.
It has previously been investigated also from the point of view of symmetric key
cryptography. For example, a bound for the linear complexity of sequences gener-
ated by the discrete logarithm function was determined in [6] and the differential
uniformity was shown to be good in [8]. Recently Brandstätter, Lange, and Win-
terhof showed that the least significant bit of the discrete logarithm function in
F2n is highly nonlinear [1]. Later Carlet and Feng [2] considered a closely related
function and proved a lower bound to its nonlinearity, which is about the same
as the one obtained in [1]. They also showed that this function has very good
algebraic immunity. The Boolean function of Carlet and Feng is a special case
of the class of vectorial Boolean functions, that is, S-boxes constructed by Feng,
Liao, and Yang [5]. Carlet and Feng [3] derived a lower bound to the nonlinear-
ity of such S-boxes. This lower bound is meaningful only for S-boxes with small
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output dimension in this class. Very little is known about the nonlinearity of
S-boxes in this class with about equal input and output dimensions, which is
most commonly the case in practical symmetric key cryptography.

The definition of S-boxes within the infinite class of vectorial Boolean func-
tions given in [5] can also be given in terms of the discrete logarithm function.
Actually, as will be shown in this paper, these functions are equivalent to trun-
cations of the discrete logarithm function up to a linear transform of the input
space and change of values at two points. The goal of this paper is to investi-
gate the problem of nonlinearity of the discrete logarithm function. We extend
the tools of [1] to handle integer valued discrete logarithm and develop a char-
acterization of a linear approximation of the discrete logarithm. We use this
characterization to derive an upper bound to the Walsh transform of the linear
combinations of the coordinates of the discrete logarithm. For fixed dimension,
this upper bound depends only on the length of the masking vector determining
the linear combination. While the derived bounds are not essentially better than
those given in [3] the method gives some new insight to this problem. Supported
by the nonlinearity values we computed for small dimensions we conjecture that
the absolute values of the Walsh transform for the discrete logarithm in dimen-
sion n are bounded from above by c(n)2n/2, where c(n) is a polynomial of low
degree.

The outline of the paper is as follows: In Section 2, we give some basic defini-
tions that are used throughout the paper. In Section 3, we describe the discrete
logarithm function and some of its basic properties. In Section 4, we discuss the
S-box of Feng, Liao, and Yang, and compare it to the discrete logarithm. We
derive our lower bound for the nonlinearity of discrete logarithm in Section 5.
In Section 6, we estimate the accuracy of our bound and discuss how it could be
improved. We conclude the paper in Section 7.

2 Preliminaries

Let n be a positive integer and denote by Fq the finite field of order q = 2n.
We associate every element of Fq to a unique vector of Fn2 using a fixed basis of
Fq over F2. We also identify the vectors in Fn2 and the elements in Zq using the
natural correspondence (un−1, . . . , u1, u0) ∈ Fn2 ↔ un−12n−1+· · ·+u121+u020 ∈
Zq. Given two vectors u = (un−1, . . . , u1, u0) ∈ Fn2 and v = (vn−1, . . . , v1, v0) ∈
Fn2 we denote u ·v = un−1vn−1 + · · ·+u1v1 +u0v0 ∈ F2. The Hamming weight of
a vector v ∈ Fn2 is denoted by wH(v). A mapping f : Fn2 → F2 is called a Boolean
function. An n × m S-box is a vector-valued Boolean function f : Fn2 → Fm2 .
Given an S-box f : Fn2 → Fm2 , we use f0, f1, . . . , fm−1 to denote its coordinate
functions such that f = (fm−1, . . . , f1, f0).

Let f : Fn2 → F2 be a Boolean function. The Walsh transform of f at u ∈ Fn2
is defined as

f̂(u) =
∑
x∈Fn

2

(−1)f(x)+u·x.
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The nonlinearity of a Boolean function f is defined as

N (f) = 2n−1 − 1
2

max
u∈Fn

2

|f̂(u)|. (1)

The nonlinearity of an S-box f : Fn2 → Fm2 is then defined as

N (f) = min
v∈F

m
2

v �=0

N (v · f) = 2n−1 − 1
2

max
v∈F

m
2

v �=0

max
u∈Fn

2

|v̂ · f(u)|,

where v ·f denotes the Boolean function x �→ v ·f(x). In this context, the vector
v is called the linear mask of f .

A character χ of an Abelian group H (written multiplicatively) is a homo-
morphism from H into the multiplicative group of complex numbers of absolute
value 1. A trivial character χ0 is defined as χ0(h) = 1 for all h ∈ H . For every
character χ of H , there is a conjugate character χ defined by χ(h) = χ(h) for all
h ∈ H , where the bar denotes complex conjugation. It is not hard to show that
χ(h) = χ−1(h) = χ(h−1) for all h ∈ H . Characters of the additive group of Fq
are called additive characters of Fq. Similarly, characters of the multiplicative
group F∗

q are called multiplicative characters of Fq. For an overview of characters
and related results, we refer to [7].

3 The Discrete Logarithm Function

Let α be a primitive element of Fq. The discrete logarithm logα x of x ∈ F∗
q to

the base α is the integer l such that 0 ≤ l ≤ q − 2 and x = αl. In this paper, we
study properties of the function f : Fq → Zq defined as

f(x) =

{
logα x for x = 0,

q − 1 for x = 0.
(2)

Let φi : Fq → Fq denote the ith iterate of Frobenius automorphism defined by
φi(x) = x2i

. It is not hard to see that φa ◦ φb = φa+b, where a + b is taken
modulo n.

Theorem 1. The coordinate functions f0, . . . , fn−1 of f are given by

fi(x) = f0(φ−i(x))

for all 0 ≤ i ≤ n− 1.

Proof. For all 0 ≤ i ≤ n− 1, we have

fi(x) =

{
lsb(2−i logα(x) mod (q − 1)) = lsb(logα φ−i(x)) for x = 0,
1 for x = 0,

where lsb denotes the least significant bit of an integer. Since both cases are
equal to f0(φ−i(x)), the result follows. ��
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Theorem 2. Let v ∈ Fn2 be a vector and denote by v ≪ a the cyclic shift of v
to left by a coordinates. We have

N (v · f) = N ((v ≪ a) · f)

for all a ∈ Z.

Proof. It follows from Theorem 1 that

(v ≪ a) · f(x) = v · f(φ−a(x))

for all a ∈ Z. The mapping x �→ φ−a(x) is a linear bijection for all a ∈ Z. Apply-
ing a linear bijection to the input of a function does not change its nonlinearity,
so the result follows. ��

4 The Feng–Liao–Yang S-Boxes

Recently Feng, Liao, and Yang [5] presented a family of balanced S-boxes with
optimal algebraic immunity. Carlet and Feng [3] showed that these functions have
optimal algebraic degree and determined a lower bound for their nonlinearity. We
give the definition of their family here for completeness. Let n be the dimension
of the input and m, m ≤ n, be the dimension of the output. Given a primitive
element α ∈ F2n and an integer s, 0 ≤ s ≤ 2n − 2, they divide the input space
F2n into a union of 2m disjoint subsets as follows

Sb =

{
{αl | s ≤ l ≤ s + 2n−m − 2} ∪ {0} for b = 0,
{αl | s + 2n−mb− 1 ≤ l ≤ s + 2n−m(b + 1)− 2} for 1 ≤ b ≤ 2m − 1.

We use g to denote the n×m S-boxes of Feng, Liao, and Yang defined by g(x) = b
for all x ∈ Sb.

It is straightforward to verify that, for s = 1 and for 1 ≤ m ≤ n, the following
holds

g(x) =

⎧⎪⎨⎪⎩
�logα(x)/2n−m� for x = 0, 1,
0 for x = 0,
2m − 1 for x = 1.

In other words, the n×m S-boxes of Feng, Liao, and Yang are identical to the
discrete logarithm to the base α truncated to the most significant m bits for all
inputs in F2n \ {0, 1}. In particular, the Boolean function introduced in [2] can
be obtained from the previously known highly nonlinear function given in [1]
using the Frobenius automorphism φ and multiplication by α on the input space
and interchanging the values at 0 and 1.

The lower bound for the nonlinearity of the Feng–Liao–Yang S-box derived
in [3] decreases rapidly as the output dimension m increases and is negative for
m ≥ n/2. According to our computations shown in Table 1 this should not be
the case as there seems to be only a slight decrease in the nonlinearity of the
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discrete logarithm function compared to the nonlinearity of one of its output
coordinate functions. Therefore the nonlinearity of practical S-boxes with about
equal input and output size remains an open problem.

The purpose of this paper is to investigate the nonlinearity of the discrete log-
arithm function. Using the methods from [1] and generalizing them we determine
a lower bound to the nonlinearity of any linear combination of the coordinate
functions of the discrete logarithm function. While the obtained lower bound of
nonlinearity is not essentially better than the one derived by Carlet and Feng
in [3] we try to identify steps in the estimation chain that could potentially be
improved.

5 Lower Bound for the Nonlinearity

To find a lower bound for the nonlinearity of function f , we examine the quantity
maxu∈Fn

2
|v̂ · f(u)| using character sums. We formulate (−1)v·f(x) for each v ∈

Fn2 as a character sum such that v̂ · f(u) can be written as a sum of additive
and multiplicative characters. Using known bounds on the absolute values of
these sums, we obtain an upper bound for maxu∈Fn

2
|v̂ · f(u)| and thus a lower

bound for the nonlinearity. Our bound heavily relies on the absolute value of a
certain incomplete character sum, which seems to be quite hard to estimate. In
the course of our analysis we develop a decomposition of this sum and derive
estimates for it.

Let χ be a nontrivial multiplicative character of Fq and denote η = χ(α).
Given a vector v ∈ Fn2 , let

W = W (v) = {w ∈ Zq−1 | v · w = 0, w ∈ IFn2}. (3)

Hence, the cardinality #W of W is q/2 if wH(v) is odd and q/2 − 1 if wH(v)
is even. Next we generalize the formula for (−1)lsb(logα x) given in the proof of
Lemma 1 in [1] for an arbitrary linear combination of the coordinate functions
of the discrete logarithm.

Lemma 1. For every x ∈ F∗
q, we have

(−1)v·logα x =
2

q − 1

(
q−2∑
j=1

∑
w∈W

ηjwχj(x)− (−1)wH(v)

2

)
.

Proof. It is well-known (see e.g. [7]) that

1
q − 1

q−2∑
j=0

χj(x) =

{
1 if x = 1,
0 otherwise,

for all x ∈ F∗
q . Substituting x by xα−a implies

1
q − 1

q−2∑
j=0

χj(xα−a) =
1

q − 1

q−2∑
j=0

ηjaχj(x) =

{
1 if logα x = a,
0 otherwise,
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for all 0 ≤ a ≤ q − 2. Given a set A ⊆ {0, 1, . . . , q − 2}, it follows that

∑
a∈A

1
q − 1

q−2∑
j=0

ηjaχj(x) =

{
1 if logα x ∈ A,
0 otherwise.

Since v · logα x = 0 if and only if logα x ∈ W , we get

(−1)v·logα x = 2
∑
w∈W

1
q − 1

q−2∑
j=0

ηjwχj(x)− 1

=
2

q − 1

(
q−2∑
j=1

∑
w∈W

ηjwχj(x) + #W

)
− 1,

=
2

q − 1

(
q−2∑
j=1

∑
w∈W

ηjwχj(x) − (−1)wH(v)

2

)

for all x ∈ F∗
q . ��

The goal is to extend the approach of [1] to an arbitrary linear mask v. To this
end we need to find a good upper bound to the sum

R(v, q) =
q−2∑
j=1

∣∣∣∣∣ ∑
w∈W

ηjw

∣∣∣∣∣.
To our knowledge, no results exist that could be applied directly. In Lemma 3,
we present a result by Cochrane [4] that was used in [1] to derive a good upper
bound to such a sum, where the inner sum is taken over the set of even integers,
that is, the set W = W (v) for v = (0, . . . , 0, 1). This result is given below as
Corollary 2, where we denote Cochrane’s upper bound by C(q).

To examine the inner sum in R(v, q) for an arbitrary linear mask v we will use
the following strategy. First, we will extend the sum by adding one term to it,
which will be done only in case wH(v) is even, and develop a decomposition of the
extended sum. The result will be given in Theorem 3. Using this decomposition
we will then establish an upper bound to R(v, q) in terms of C(q) in Theorem 4.
Given a vector v ∈ Fn2 , we denote

W = W (v) =

{
W (v) if wH(v) is odd,
W (v) ∪ {q − 1} if wH(v) is even.

Definition 1. Let v = (vn−1, . . . , v1, v0) ∈ Fn2 and suppose that W = W (v) is
defined as above. We call the polynomial

G(v)(x) =
∑
w∈W

xw ∈ Z[x]/〈xq−1 − 1〉

the mask polynomial for v.
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We use Gk(v)(x) to denote the mask polynomial G((0, . . . , 0, vk−1, . . . , v0))(x)
for 1 ≤ k ≤ n. We explicitly define G0(v)(x) = 1. Then G1(v)(x) = G0(v)(x)
if v0 = 0. Also it is known from [1] that G1(v)(x) = x0 + x2 + · · · + xq−2 if
v0 = 1. The following lemma gives a recursive representation for Gk+1(v)(x),
where k ≥ 0, which will be used in Theorem 3 to obtain the formulation for
Gk+1(v)(x).

Lemma 2. For all 0 ≤ k < n,

Gk+1(v)(x) = vk
x2k

1 + x2k +
1 + (−1)vkx2k

1 + x2k Gk(v)(x).

Proof. For any k ≥ 0, let

Ak = {w ∈W | v · w = 0, w = (0, . . . , 0, wk−1, . . . , w0) ∈ Fn2}
and denote Bk = {0, 1, . . . , 2k− 1} \Ak. Let Pk(x) and Qk(x) be polynomials in
Z[x]/〈xq−1 − 1〉 defined by

Pk(x) =
∑
a∈Ak

xa and Qk(x) =
∑
b∈Bk

xb.

Then,

Pk(x) + Qk(x) =
2k−1∑
i=0

xi =
1− x2k

1− x
. (4)

Since the n−k most significant bits of v are zeroes, then for any w ∈ Ak it holds
that w + i2k ∈W for i = 0, 1, . . . , 2n−k − 1. Hence we obtain

Gk(v)(x) = Pk(x)
2n−k−1∑
i=0

xi2
k

= Pk(x)
1− x

1 − x2k . (5)

From (4) and (5), we get

Qk(x) =
x2k − 1
x− 1

−Gk(v)(x)
x2k − 1
x− 1

= (1−Gk(v)(x))
1 − x2k

1− x
. (6)

Next we formulate Gk+1(v)(x) using Gk(v)(x). There are two cases to consider:
If vk = 0, the polynomial Gk+1(v)(x) is the same as Gk(v)(x). If vk = 1, we have
Ak+1 = Ak ∪ {2k + b | b ∈ Bk}, so Pk+1(x) = Pk(x) + x2k

Qk(x). Using (5) and
(6) we then deduce that

Gk+1(v)(x) = (Pk(x) + x2k

Qk(x))
1− x

1 − x2k+1

=

[
Gk(v)(x)

1 − x2k

1− x
+ (1−Gk(v)(x))

x2k

(1 − x2k

)
1− x

]
1− x

1− x2k+1

= (Gk(v)(x) + x2k

−Gk(v)(x)x2k

)
1

1 + x2k

=
x2k

1 + x2k +
1− x2k

1 + x2k Gk(v)(x).
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Combining both cases vk = 0, 1 into a single equation we get the desired repre-
sentation for Gk+1(v)(x). ��
Theorem 3. For all 0 ≤ k < n,

Gk+1(v)(x) = vk
x2k

1 + x2k +
1− x

1− x2k+1

k∏
i=0

(1 + (−1)vix2i

)

+
k−1∑
s=0

vs
x2s

(1− x2s

)
1− x2k+1

k∏
i=s+1

(1 + (−1)vix2i

),

(7)

where the sum is zero if k = 0.

Proof. For k = 0 and v0 = 1, the formula gives

G1(v)(x) =
x

1 + x
+

1− x

1 + x
=

1
1 + x

= x0 + x2 + · · ·+ xq−2,

which holds true as noted above. If v0 = 0, the formula gives G1(v)(x) =
G0(v)(x) = 1, which is also true. Assume now that the statement holds for
k = l − 1 ≥ 0. We prove it for k = l. By Lemma 2 we get

Gl+1(v)(x) = vl
x2l

1 + x2l +
1 + (−1)vlx2l

1 + x2l

[
1− x

1− x2l

l−1∏
i=0

(1 + (−1)vix2i

)

+
l−2∑
s=0

vs
x2s

(1 − x2s

)
1− x2l

l−1∏
i=s+1

(1 + (−1)vix2i

) + vl−1
x2l−1

1 + x2l−1

]

= vl
x2l

1 + x2l +
(1− x)(1 + (−1)vlx2l

)
(1 + x2l)(1− x2l)

l−1∏
i=0

(1 + (−1)vix2i

)

+
l−2∑
s=0

vs
x2s

(1 − x2s

)(1 + (−1)vlx2l

)
(1 + x2l)(1 − x2l)

l−1∏
i=s+1

(1 + (−1)vix2i

)

+ vl−1
x2l−1

(1− x2l−1
)(1 + (−1)vlx2l

)
(1 + x2l)(1 + x2l−1)(1− x2l−1)

= vl
x2l

1 + x2l +
1− x

1− x2l+1

l∏
i=0

(1 + (−1)vix2i

)

+
l−1∑
s=0

vs
x2s

(1 − x2s

)
1− x2l+1

l∏
i=s+1

(1 + (−1)vix2i

).

The result follows by induction. ��
Lemma 3 (Cochrane [4]). For any positive integers b, c with b > 1 we have

T (b, c) =
b−1∑
a=1

∣∣∣∣ sin(πac/b)
sin(πa/b)

∣∣∣∣ < 4
π2 b ln b + 0.38b + 0.608 + 0.116

d2

b
,

where d = gcd(b, c). The constant 4/π2 in the main term is the best possible.
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We will use

C(q) =
4
π2 (q − 1) ln(q − 1) + 0.38(q − 1) + 0.608 + 0.116

1
q − 1

as the upper bound for T (q − 1, c), where gcd(q − 1, c) = 1.

Theorem 4. Let k ≥ 2 be an integer and v = (0, . . . , 0, 1, vk−2, . . . , v1, 1) ∈ Fn2
be a vector. Suppose that W = W (v) is defined as above. Let η be a (q − 1)th
root of unity. Then,

R(v, q) =
q−2∑
j=1

∣∣∣∣∣ ∑
w∈W

ηjw

∣∣∣∣∣ < (2k+1 + 1)C(q) + q − 2.

Proof. By Definition 1 we know that∑
w∈W

ηjw = G(v)(ηj) = Gk(v)(ηj) (8)

for all 1 ≤ j ≤ q − 2. By (7) and (8) we obtain

q−2∑
j=1

∣∣∣∣∣ ∑
w∈W

ηjw

∣∣∣∣∣ ≤
q−2∑
j=1

∣∣∣∣∣ ηj2
k−1

1 + ηj2k−1

∣∣∣∣∣+
q−2∑
j=1

∣∣∣∣∣ 1− ηj

1− ηj2k

∣∣∣∣∣
∣∣∣∣∣
k−1∏
i=0

(1 + (−1)viηj2
i

)

∣∣∣∣∣
+
∑
s:vs=1

q−2∑
j=1

∣∣∣∣∣ηj2
s

(1− ηj2
s

)
1− ηj2k

∣∣∣∣∣
∣∣∣∣∣
k−1∏
i=s+1

(1 + (−1)viηj2
i

)

∣∣∣∣∣ (9)

<

q−2∑
j=1

∣∣∣∣∣1− ηj2
k−1

1− ηj2k

∣∣∣∣∣+ 2k
q−2∑
j=1

∣∣∣∣∣ 1− ηj

1− ηj2k

∣∣∣∣∣
+
∑
s:vs=1

2k−s−1
q−2∑
j=1

∣∣∣∣∣1− ηj2
s

1− ηj2k

∣∣∣∣∣. (10)

Substituting η by η2n−k

on the right-hand side we obtain

q−2∑
j=1

∣∣∣∣∣ ∑
w∈W

ηjw

∣∣∣∣∣ <
q−2∑
j=1

∣∣∣∣∣1− ηj2
n−1

1− ηj

∣∣∣∣∣+ 2k
q−2∑
j=1

∣∣∣∣∣1− ηj2
n−k

1− ηj

∣∣∣∣∣
+
∑
s:vs=1

2k−s−1
q−2∑
j=1

∣∣∣∣∣1− ηj2
n−k+s

1− ηj

∣∣∣∣∣.
Let l be a nonnegative integer. By Lemma 3 we have

q−2∑
j=1

∣∣∣∣∣1− ηj2
l

1− ηj

∣∣∣∣∣ =
q−2∑
j=1

∣∣∣∣sin(2lπj/(q − 1))
sin(πj/(q − 1))

∣∣∣∣ = T (q − 1, 2l) < C(q),
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where C(q) is defined as above. Thus,

q−2∑
j=1

∣∣∣∣∣ ∑
w∈W

ηjw

∣∣∣∣∣ < C(q) + 2kC(q) + 2k−1C(q)
∑
s:vs=1

2−s

≤ C(q) + 2kC(q) + 2kC(q),

and
q−2∑
j=1

∣∣∣∣∣ ∑
w∈W

ηjw

∣∣∣∣∣ ≤
q−2∑
j=1

∣∣∣∣∣ ∑
w∈W

ηjw

∣∣∣∣∣+ q − 2 < (2k+1 + 1)C(q) + q − 2.

��
Theorem 5. Let k ≥ 2 be an integer and v = (0, . . . , 0, 1, vk−2, . . . , v1, 1) ∈ Fn2
be a vector. For q ≥ 4, we have

max
u∈Fn

2

|v̂ · f(u)| < 8
π2 (2k+1 + 1)(ln(q − 1) + 2)q1/2.

Proof. Function f is balanced, so v̂ · f(u) = 0 if u = 0. Suppose that u = 0 and
W = W (v) is defined as above. Let ψu : Fq → {−1, 1} be the mapping defined
by x �→ (−1)u·x. By the definition of function f we have f(0) = q − 1. Hence,
v · f(0) = wH(v) mod 2. By Lemma 1 we obtain

|v̂ · f(u)| =
∣∣∣∣∣ ∑
x∈Fq

(−1)v·f(x)+u·x
∣∣∣∣∣

=

∣∣∣∣∣ ∑
x∈F∗

q

(−1)v·logα x+u·x + (−1)wH(v)

∣∣∣∣∣
=

∣∣∣∣∣ ∑
x∈F∗

q

2
q − 1

(
q−2∑
j=1

∑
w∈W

ηjwχj(x)− (−1)wH(v)

2

)
ψu(x) + (−1)wH(v)

∣∣∣∣∣
≤ 2

q − 1

q−2∑
j=1

∣∣∣∣∣ ∑
w∈W

ηjw

∣∣∣∣∣
∣∣∣∣∣ ∑
x∈F∗

q

χj(x)ψu(x)

∣∣∣∣∣+ 1
q − 1

∣∣∣∣∣ ∑
x∈F∗

q

ψu(x)

∣∣∣∣∣+ 1.

Since ψu is an additive character of Fq, we have (see e.g. [7])

∑
x∈F∗

q

ψu(x) = −1 and

∣∣∣∣∣ ∑
x∈F∗

q

χj(x)ψu(x)

∣∣∣∣∣ = q1/2

for u = 0. Thus,

|v̂ · f(u)| ≤ 2
q − 1

q−2∑
j=1

∣∣∣∣∣ ∑
w∈W

ηjw

∣∣∣∣∣q1/2 +
q

q − 1
. (11)

The result follows by Theorem 4. ��



On the Nonlinearity of Discrete Logarithm in F2n 343

Corollary 1. Let k ≥ 2 be an integer and v = (0, . . . , 0, 1, vk−2, . . . , v1, 1) ∈ Fn2
be a vector. For q ≥ 4, we have

N (v · f) > 2n−1 − 4
π2 (2k+1 + 1)(ln(2n − 1) + 2)2n/2. (12)

Proof. The result follows directly from the definition of nonlinearity and
Theorem 5. ��

Corollary 2. For q ≥ 4 and for all fi, 0 ≤ i ≤ n− 1, we have

N (fi) > 2n−1 − 4
π2 (ln(2n − 1) + 2)2n/2. (13)

Proof. Let v = (0, . . . , 0, 1) ∈ Fn2 , in which case v · f = f0, and suppose that
W = W (v) is defined as above. By Lemma 3 we have

q−2∑
j=1

∣∣∣∣∣ ∑
w∈W

ηjw

∣∣∣∣∣ =
q−2∑
j=1

∣∣∣∣∣ 1− ηj

1− η2j

∣∣∣∣∣ =
q−2∑
j=1

∣∣∣∣ sin(2n−1πj/(q − 1))
sin(πj/(q − 1))

∣∣∣∣ < C(q).

We can obtain an upper bound for maxu∈Fn
2
|v̂ · f(u)| as in the proof of Theo-

rem 5, but using the above bound in (11). The result follows from the definition
of nonlinearity and Theorem 2. ��

6 Discussion

We present several values related to the nonlinearity of f in Table 1. For n =
2, . . . , 11, we give the true nonlinearities for f and its coordinate functions fi.
On the rightmost column, we give one of the masks v ∈ Fn2 for which v · f has
the lowest nonlinearity. Each mask is presented as a binary number vn−1 . . . v1v0
unless the nonlinearity of v · f is the same for all v ∈ Fn2 . In addition, we present
the values given by the lower bound for the nonlinearity of each coordinate
function fi of f . These values, denoted by B(fi), are slightly better than the
ones given by (13), since we have not used the estimates that were used to
simplify the appearance of the bound. We also give the values of

D(q) = max
v∈F

n
2

v �=0

R(v, q) = max
v∈F

n
2

v �=0

q−2∑
j=1

∣∣∣∣∣ ∑
w∈W

ηjw

∣∣∣∣∣
and C(q), which is the basis for the upper bound given by Theorem 4. All values
are rounded to the nearest (nonnegative) integer.

Table 1 shows that the nonlinearity of f seems to grow about at the same
rate as the nonlinearity of the coordinate functions of f . However, our lower
bound (12) for the nonlinearity of f gets exponentially worse as the length k of
the linear mask v increases. The main reason for this seems to be the non-strict
upper bound for D(q) given by Theorem 4. Table 1 shows that the real maximum
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Table 1. Nonlinearity of f and related values

n N (fi) N (f) B(fi) D(q) C(q) v

2 0 0 0 2 3 -
3 2 0 0 8 9 111
4 4 4 1 24 23 -
5 10 10 5 68 56 -
6 24 20 15 179 132 001001
7 54 44 37 471 301 1111111
8 112 100 85 1236 675 00110011
9 232 198 190 3253 1479 111111111
10 484 420 409 8520 3283 0101010101
11 980 934 866 22542 7145 00010110111

values D(q) for R(v, q) over all nonzero v ∈ Fn2 are significantly smaller than the
values given by the bound. In the proof of Theorem 4, we use coarse estimates
to arrive at (10). To obtain a better bound, one should estimate the sums in
(9) more accurately. These sums can be rewritten as trigonometric sums that
resemble the sum in Lemma 3, but are more complicated. For n = 2, . . . , 11,
we can use the real maximum values D(q) for R(v, q) in (11) to determine how
accurate a bound could be obtained with our approach if we had a good estimate
for D(q). The bound obtained this way is not as tight as the bound for each
coordinate function of f . However, it seems to grow at the same rate as the true
nonlinearity. Note that the bound for each coordinate function is actually better
than the one given by Carlet and Feng [2], who did not use the bound given by
Lemma 3.

7 Conclusion

We investigated nonlinearity of the discrete logarithm in F2n . By extending
the methods of Brandstätter et al., who studied the least significant bit of dis-
crete logarithm, we were able to derive a lower bound for the nonlinearity of
an arbitrary linear combination of the discrete logarithm function extended to a
bijection in Fn2 . According to our experiments, the length of the linear combina-
tion, which corresponds to the output dimension of the Feng–Liao–Yang S-boxes,
should not affect the nonlinearity to the same extent as it affects the bound. For
this reason, we investigated experimentally steps in our estimation chain that
could potentially be improved. Determining a more accurate lower bound and
proving that S-boxes based on discrete logarithm, such as the Feng–Liao–Yang
S-boxes, are highly nonlinear remains an interesting open problem.
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Abstract. It is a difficult challenge to find Boolean functions used in
stream ciphers achieving all of the necessary criteria and the research
of such functions has taken a significant delay with respect to crypt-
analyses. Very recently, an infinite class of Boolean functions has been
proposed by Tu and Deng having many good cryptographic properties
under the assumption that the following combinatorial conjecture about
binary strings is true:

Conjecture 0.1. Let St,k be the following set:

St,k =
{

(a, b) ∈
(

Z/(2k − 1)Z
)2

|a + b = t and w(a) + w(b) < k

}
.

Then:
|St,k| ≤ 2k−1 .

The main contribution of the present paper is the reformulation of the
problem in terms of carries which gives more insight on it than simple
counting arguments. Successful applications of our tools include explicit
formulas of |St,k| for numbers whose binary expansion is made of one
block, a proof that the conjecture is asymptotically true and a proof
that a family of numbers (whose binary expansion has a high number
of 1s and isolated 0s) reaches the bound of the conjecture. We also con-
jecture that the numbers in that family are the only ones reaching the
bound.

1 Introduction

Symmetric cryptosystems are commonly used for encrypting and decrypting ow-
ing to their efficiency. A classical model of symmetric cryptosystem are stream
ciphers. They are composed of one or several Linear Feedback Shift Register
(LFSR) combined or filtered by a Boolean function. These cryptosystems have
been the objects of a lot of cryptanalyses and several design criteria have been
proposed concerning the filtering or combining functions, mainly: balancedeness,

C. Carlet and A. Pott (Eds.): SETA 2010, LNCS 6338, pp. 346–358, 2010.
c© Springer-Verlag Berlin Heidelberg 2010



On a Conjecture about Binary Strings Distribution 347

a high algebraic degree, a high nonlinearity. Moreover, because of the recent alge-
braic attacks of Courtois and Meier [1], which have received a lot of attention in
cryptographic literature, the notion of algebraic immunity has been introduced.
A high algebraic immunity is now an absolutely necessary (but not sufficient
for resisting the Fast Algebraic Attacks introduced by Courtois [2]) property for
Boolean functions used in stream ciphers. Several constructions of Boolean func-
tions with high algebraic immunity have been provided but very few of them are
of optimal algebraic immunity. More importantly, those having other good cryp-
tographic properties, as bentness, balancedness or high nonlinearity for instance,
are even rarer.

In 2008, Carlet and Feng [3] proposed for the first time an infinite class of
functions which seems able to satisfy all of the main criteria for being used as a
filtering function in a stream cipher. Their functions are balanced with optimal
algebraic degree, optimal algebraic immunity, good immunity to Fast Algebraic
Attacks and good nonlinearity. Very recently, it has been revealed by Tu and
Deng in [4] that there may be Boolean functions of optimal algebraic immunity
in a classical class of Partial Spread functions due to Dillon [5] provided that
Conjecture 0.1 is correct.

The authors of [4] assume the validity of the conjecture and checked it for
k ≤ 29. They also proved that, if the conjecture is true, then one can get in even
dimension balanced Boolean functions of optimal algebraic immunity and of high
nonlinearity (better than that of the function proposed in [3]). The approach of
the authors was to identify annihilators of the Boolean functions in n variables
that they consider with codewords of BCH codes. The role of the conjecture is
then to deduce from the BCH bound that those codewords are equal to zero
if the algebraic degree of the corresponding annihilator is less than !n2 ". Very
recently, Carlet [6] has observed that the function introduced by Tu and Deng
is weak against Fast Algebraic Attacks and tried to repair its weakness. Any
possibility of a real repair of this weakness (or an alternative function sharing
all the properties of the Tu-Deng function but not having this weakness) should
give an infinite class of balanced functions having a good behavior against Fast
Algebraic Attacks, optimal algebraic immunity, optimal algebraic degree and
good nonlinearity; that is, the best construction of an infinite class of Boolean
functions proposed in the literature.

In the present paper we attack this conjecture. It is organized as follows. In
Sect. 2, we prove several simple properties and reformulate the problem in terms
of carries. In Sect. 3 we apply our new formulation in different situations. In par-
ticular we compute in Sect. 3.3 exact formulas of |St,k|for numbers made of only
one block. We then introduce a constraint in Sect. 3.4 which greatly simplifies
calculations. It leads us to a proof that the conjecture is asymptotically true in
Subsection 3.5 and to a proof that a family of numbers reaches the bound (we be-
lieve they are the only ones to do so) in Sect. 3.7. The most important notations
are given in Definitions 3.1 and 3.3. An extended version of this paper, including
proofs and additional results, is available on http://eprint.iacr.org/ [7].

http://eprint.iacr.org/
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2 Reformulation and First Results

2.1 Notations

Unless stated otherwise, we use the following notations:

– k ∈ N the number of bits (or length of binary strings) we are currently
working on.

– t ∈ Z/(2k − 1)Z a fixed modular integer.

We denote the binary (or Hamming) weight of t by w(t) (or simply w).
The sets we are interested in are:

– Ct,k,i =
{
(a, b) ∈

(
Z/(2k − 1)Z

)2 |a + b = t, w(a) + w(b) = k + i
}
, the mod-

ular integers whose sum is t and whose sum of weights is k + i for i ∈ Z.
– Ct,k =

⊔
i∈Z

Ct,k,i, St,k =
⊔
i<0 Ct,k,i, Tt,k =

⊔
i>0 Ct,k,i.

2.2 Negation

For a = 0 ∈ Z/(2k − 1)Z, we define a as the modular integer whose binary
expansion is the binary not on k bits of the binary expansion of a. It is easy to see
that a+a =

∑k−1
i=0 2i = 2k−1 = 0 so that −a = a and w(−a) = w(a) = k−w(a).

We are now able to deal with the pathological case t = 0:

Proposition 2.1
S0,k = {(0, 0)} and |S0,k| = 1 .

Proof. Indeed (a, b) ∈ S0,k iff b = −a and w(a) + w(−a) = k iff a = 0 (and if
a = 0 = −a, then w(a) + w(a) = 0) so that S0,k = {(0, 0)}. ��

From now on we suppose t = 0.

2.3 Rotation

Another simple transformation is multiplication by 2. Indeed, working modulo
2k − 1, it is just rotating the binary expansion one bit to the left, so that for all
i ∈ Z and a ∈ Z/(2k − 1)Z, we have w(2ia) = w(a) and we get the following
proposition:

Proposition 2.2. For t ∈ Z/(2k − 1)Z and i ∈ Z:

S2it,k = 2iSt,k =
{
(2ia, 2ib)|(a, b) ∈ St,k

}
and |St,k| =

∣∣S2it,k

∣∣ .

We say that for any i ∈ Z, 2it and t are equivalent and we write t � 2it.

Proof. Indeed for (a, b) ∈ St,k, 2ia + 2ib = 2it and w(2ia) + w(2ib) = w(a) +
w(b) < k. ��
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2.4 Carries

We now define the main tool used in this paper:

Definition 2.3. For a ∈ Z/(2k − 1)Z, a = 0, we set:

r(a, t) = w(a) + w(t) − w(a + t) ,

i.e. r(a, t) is the number of carries occurring while performing the addition. By
convention we set:

r(0, t) = k ,

i.e. 0 behaves like the 1...1︸ ︷︷ ︸
k

binary string. We also remark that r(−t, t) = k.

The following proposition is fundamental. It brings to light the importance of
the number of carries occuring during the addition.

Proposition 2.4

Ct,k,i = {(a, t− a)|r(−a, t) = w(t) − i} and |St,k| = |{a|r(a, t) > w(t)}| .

Proof. For (a, b) ∈ Ct,k,i we have a + b = t so b = t − a If a = 0, our condition
for Ct,k,i becomes:

w(a) + w(t− a) = k + i⇔ w(−(−a)) + w(−a + t) = k + i

⇔ k − w(−a) + w(−a + t) = k + i

⇔ r(−a, t) = w(t)− i .

We also have r(0, t) = k = w(t)− (w(t) − k) and (0, t) ∈ Ct,k,w(t)−k. ��

The following lemma allows us to prove some relations between St,k, Tt,k and
S−t,k.

Lemma 2.5. If a = 0,−t, then r(a, t) = k − r(−a,−t).
If a = 0,−t, then r(a, t) = r(−a,−t) = k.

Proof. If a = 0,−t, going back to the definition of r(a, t), we have:

r(a, t) = w(a) + w(t) − w(a + t)
= k − w(−a) + k − w(−t)− k + w(−a− t)
= k − r(−a,−t) . ��

Definition 2.6. We define:

S∗
t,k = St,k\ {(0, t), (t, 0)} .

Proposition 2.7
Tt,k = −S∗

−t,k .
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Proof. Indeed if (a, t − a) ∈ Tt,k, then a = 0, t and r(−a, t) < w(t), so that
r(a,−t) > w(−t) and (−a,−t + a) ∈ S∗

−t,k.
Conversely if (a,−t− a) ∈ S∗

−t,k, then (−a, t + a) ∈ Tt,k. ��

Corollary 2.8
|St,k|+ |S−t,k| ≤ 2k .

Proof. We already know that St,k � Tt,k ⊂ Ct,k so that |St,k|+ |S−t,k| ≤ 2k + 1.
But in fact w(t + t) = w(2t) = w(t) so that (2t,−t) is in Ct,k,0, i.e. neither in
St,k nor in Tt,k and:

|St,k|+ |S−t,k| ≤ 2k .

��

Corollary 2.8 and Proposition 2.2 together prove the conjecture in the specific
case where t � −t:

Theorem 2.9. If t � −t, then |St,k| ≤ 2k−1.

3 A Block Splitting Pattern

3.1 General Situation

In this section, we often compute Pt,k = 2−k |St,k| rather than |St,k|. There-
fore we use the words proportion or probability in place of cardinality. Moreover
we often compute cardinalities considering all the binary strings on k bits, i.e.
including 1...1 and 0...0. The modular integer 0 is considered to act as the
binary string 1...1 , but the binary string 0...0 should be discarded when
doing final computation of Pt,k. However it ensures that variables are truly in-
dependent.

We split t(= 0) (once correctly rotated, i.e. we multiply it by a correct power
of 2 so that its binary expansion on k bits begins with a 1 and ends with a 0)
in blocks of the form [1∗0∗] (i.e. as many 1s as possible followed by as many 0s
as possible).

Definition 3.1. We denote the number of blocks by d and the numbers of 1s
and 0s of the ith block ti by αi and βi.

We define corresponding variables for a (a number to be added to t): γi the
number of 0s in front of the end of the 1s subblock of ti, δi the number of 1s in
front of the end of the 0s subblock of ti.

Those definitions are depicted below:

t =

α1 {

1---1

β1 {

0---0...

αi {

1---1

βi {

0---0...

αd {

1---1

βd {

0---0 ,

a = ?10-0{

γ1

?01-1{

δ1

...?10-0{

γi

?01-1{

δi

...?10-0{

γd

?01-1{

δd

,

One should be aware that γis and δis depend on a and are considered as variables.
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We first “approximate” r(a, t) by
∑d

i=0 αi − γi + δi ignoring the two following
facts:

– if a carry goes out of the i−1st block (we say that it overflows) and δi = βi,
the 1s subblock produces αi carries, whatever value γi takes,

– and if no carry goes out of the i− 1st block (we say that it is inert), the 0s
subblock produces no carries, whatever value βi takes.

When computing that “approximation” of the number of carries produced by the
ith block, we do as if a carry always goes out of the i− 1st block and no carry
goes out of the 0s subblock.

Then r(a, t) > w(t) becomes “approximately”
∑d

i=1 γi <
∑d

i=1 δi and we have
the following distributions for γi and δi:

ci = 0 1 . . . ci . . . αi − 1 αi αi + 1 . . .
P (γi = ci) 1/2 1/4 . . . 1/2ci+1 . . . 1/2αi 1/2αi 0 . . .

di = 0 1 . . . di . . . βi − 1 βi βi + 1 . . .
P (δi = di) 1/2 1/4 . . . 1/2di+1 . . . 1/2βi 1/2βi 0 . . .

For 0 ≤ ci < αi:
P (γi = ci) = 2−ci−1 ,

because we have to set ci bits to 0 and one bit in front of them to 1 leaving the
other bits free, and:

P (γi = αi) = 2−αi

and not 2−αi−1 because the subblock is already full of 0s and there si no 1 in
front of them.

The computations are similar for P (δi = di) with 0 ≤ di ≤ βi. Moreover all
the γis and δis are independent, i.e. P (γ1 = c1, . . . , γd = cn, δ1 = d1, . . . , δd =
dd) =

∏d
i=1 P (γi = ci)P (δi = di).

We modify γi and δi to take the first fact into account and only do as as if a
carry always goes out of the i− 1st block:

– if δi = βi, we define δ′i = δi and γ′
i = γi as before,

– if δi = βi, we define δ′i = δi = βi and γ′
i = 0 (i.e. the carry coming from

the previous block goes through the 0s subblock so the 1s subblock always
produces αi carries).

Then
∑d

i=0 αi − γ′
i + δ′i should be a better “approximation” of r(a, t), but the

γ′
is and δ′is are no longer pairwise independent. Indeed within the same block,

γ′
i and δ′i are correlated. However each block remains independent of the other

ones and the distributions are as follows:

ci = 0 1 . . . ci . . . αi − 1 αi αi + 1 . . .

P (γ′
i = ci)

1+1/2βi

2
1−1/2βi

4 . . . 1−1/2βi

2ci+1 . . . 1−1/2βi

2αi

1−1/2βi

2αi
0 . . .

di = 0 1 . . . di . . . βi − 1 βi βi + 1 . . .
P (δ′i = di) 1/2 1/4 . . . 1/2di+1 . . . 1/2βi 1/2βi 0 . . .
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Taking the second fact into account is more difficult, and we do it in an iterative
way.

We first take care of the a’s such that r(a, t) = k, that is exactly those with
only 1s in front of the 0s of t:

– if ∀i, δi = βi, then δ′′i = δi and γ′′
i = γ′

i = 0.

We now suppose that there exists i0 such that δi0 = βi0 . We first define γ′′
i0 , then

δ′′i0+1, γ′′
i0+1, . . . and finally δ′′i0 :

– set γ′′
i0

= γi0 , i = i0 + 1,
– do:
• δ′′i = δi if γi−1 = αi−1, 0 otherwise,
• γ′′

i = γi if δ′′i = βi, 0 otherwise,
• i = i + 1

while i = i0 + 1

The γ′′
i s and δ′′i s are no longer pairwise independent, even between different

blocks, but r(a, t) =
∑
d αi − γ′′

i + δ′′i and the following proposition is verified:

Proposition 3.2. a ∈ St,k iff
∑
d γ′′

i <
∑

d δ′′i .

Remember that t is considered to be fixed so that the αis and the βis are
considered to be constants, whereas the other quantities defined in this section
depend on a which ranges over all binary strings on k bits and will be considered
as variables, whence the vocabulary we use.

3.2 Combining Variables

In the previous subsection we defined two variables for each block. However we
are only really interested in the number of carries, so one should suffice.

Definition 3.3. We define εi = γi+βi−δi and E =
∑d
i=1 εi, as depicted below:

t =

α1 {

1---1

β1 {

0---0...

αi {

1---1

βi {

0---0...

αd {

1---1

βd {

0---0 ,

a = ?10-0?0{

ε1

1-1...?10-0?0{

εi

1-1...?10-0?0{

εd

1-1 ,

Then εi is “approximately” the number of carries that do not occur in the ith
block. As in the previous subsection, we define ε′i = γ′

i + βi − δ′i and ε′′i =
γ′′
i + βi − δ′′i and Proposition 3.2 becomes:

Proposition 3.4. a ∈ St,k iff
∑
d ε′′i <

∑
d βi = k − w(t).

3.3 One Block: d = 1

If t is made of only one block, we compute closed forms for |Ct,k,i| = 2kP (ε′′ =
k − i) for all i.
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Such a t (or an equivalent one) is written t = 2k−2k−α (i.e. t = 1...1︸ ︷︷ ︸
α

0...0︸ ︷︷ ︸
β=k−α

)

and its weight is w(t) = α with α ≥ 1.
In the following proposition, the computations are made without including the

binary string 0...0 in contrast with what was done in the previous subsections
because it does not complicate them.

Proposition 3.5. The distribution of ε′′ is as follows:

P (ε = 0) = 2−β ;

for 0 < e < α + β:

P (ε′′ = e) = 2−|e−β| 1− 4M−m

3
,

with:
m = min(e, α) and M = max(0, e− β) ;

and
P (ε′′ = α + β) = 2−α − 2−α−β .

Proof. If δ = β, then γ′′ = 0 and we lose no carries whatever value γ takes.
Moreover those numbers are the only ones such that we lose no carries and the
block overflows, therefore:

P (ε′′ = 0) = P (δ = β) = 2−β .

One must be aware that we included the binary string 1...1 but it accounts for
the modular integer 0.

When δ = β and γ = α, we lose all the carries whatever value δ takes, and
that is the only possibility to do so Then:

P (ε′′ = α + β) = P (γ = α, δ = β)− 2−α−β = 2−α − 2−α−β .

We substract 2−α−β because we do not want to count the binary string 0...0.
Finally, when δ = β and γ = α, the situation is described below:

t =←
α {

1---1

β {

0---0←,
a = ?10-0?0{

ε

1-1 .

A carry comes out of the block and goes back into itself. Then we lose exactly
e = ε′′ = γ + β − δ = ε carries and 0 < e < α + β − 1. We have the following
constraints:

0 ≤ γ ≤ α− 1 and 0 ≤ δ ≤ β − 1 ,

but δ = β + γ − e so γ must be bounded as follows:

M = max(0, e− β) ≤ γ ≤ m− 1 = min(e, α)− 1 .



354 J.-P. Flori et al.

And P (ε′′ = e) for 0 < e < α + β is computed below:

P (ε′′ = e) =
m−1∑
γ=M

2−γ−δ−2 =
m−1∑
γ=M

2e−β−2γ−2

= 2e−β−2M−2
m−M−1∑
γ=0

2−2γ = 2−|e−β|−2 1− (1/4)m−M

3/4

= 2−|e−β| 1− 4M−m

3
. ��

Summing up the above formulas, we get the following theorem:

Theorem 3.6

Pt,k =

{
2−α−β 1−2−2α

3 if 1 ≤ α ≤ k−1
2

1+2−2β+1

3 if k−1
2 ≤ α ≤ k − 1

.

For α = 1, it reads S1,k = 2k−2 + 1 and for α = k − 1, it reads S−1,k = 2k−1.
The probabilities that we computed above will be useful in the next section.

Definition 3.7. For 0 ≤ e < α + β, we define:

P (e) =
{

2−β if e = 0
2−|e−β| 1−4M−m

3 if e = 0
,

with:
m = min(e, α) and M = max(0, e− β) ;

the values of α and β will be clear from the context.

3.4 A Helpful Constraint: mini(αi) ≥ k − w(t) − 1

Until the end of this section we add the following constraint on t:

min
i

(αi) ≥
d∑
i=1

βi − 1 = k − w(t)− 1 .

That condition tells us that, if a is in St,k, a carry has to go through each subblock
of 1s, i.e. γ′′

i = αi. Indeed, if γ′′
i = αi, then δ′′i < βi and ε′′i = γ′′

i + βi − δ′′i ≥
αi + 1 ≥ k − w(t), so that a ∈ St,k. So if a ∈ St,k, each block overflows and we
are in a situation where they are kind of independent.

In fact, if ∀i, γ′′
i = αi, then γ′′

i = γ′
i and δ′′i = δ′i.

If ∀i, δ′′i = βi, then γ′′
i = γ′

i = 0 and δ′′i = δ′i = βi.
If there are a δ′′i = βi and a γ′′

i = αi, then
∑d

i=1 γ′′
i ≥ k − w(t) >

∑d
i=1 δ′′i .

Moreover
∑d
i=1 γ′

i ≥
∑d

i=1 γ′′
i and k−w(t) >

∑d
i=1 δ′i, so that

∑d
i=1 γ′

i ≥
∑d

i=1 δ′i.
Finally, we have an equivalence between r(a, t) > w(t) and

∑d
i=1 γ′

i <
∑d

i=1 δ′i:
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Proposition 3.8

Pt,k = P

[∑
d

γ′
i <
∑
d

δ′i

]
.

It also means that a ∈ St,k is equivalent to
∑

d ε′i < k − w(t). Moreover that
inequality implies that each block behaves like in the previous subsection and
overflows into the next one, so that the computations we did are still valid (only
to compute |Ct,k,i| with i < 0, but not with i ≥ 0) and we get the following
proposition:

Proposition 3.9

Pt,k =
k−w(t)−1∑
E=0

∑
∑

d ei=E
0≤ei

∏
d

P (ei) .

In P (ei), we obviously replace α by αi and β by βi.

3.5 Asymptotic Behavior: βi → ∞
As the βis go to infinity, the laws of the γ′

is and the δ′is converge towards laws
of independent geometrically distributed variables with parameter 1/2, so that
Pt,k = P [

∑
d γ′

i <
∑

d δ′i] converges towards:

P [
∑
d Geo(1/2) <

∑
d Geo(1/2)] = 1

2 (1− P [
∑
d Geo(1/2) =

∑
dGeo(1/2)])

which is strictly lower than 1/2 for any d > 0.
We have proved the following theorem:

Theorem 3.10. Let d be a strictly positive integer. There exists a constant Kd

such that if t verifies the two following constraints:

∀i, βi ≥ Kd and min
i

αi ≥ k − w(t) − 1 ,

then |St,k| < 2k−1.

When the number of blocks, d, goes as well to infinity, we remark that Pt,k
converges toward 1/2.

3.6 Analytic Study: d = 2

It is possible to compute the exact value of |St,k| for a given d and a corresponding
set of βis. It is worth noting that the order of the βis does not matter because
each subblock behaves the same when a is in St,k, i.e. it overflows. We did the
computation for d = 2 where the symmetry of the problem leads to only one
situation and gives a quite general result.

Definition 3.11

f(x, y) =
11
27

+ 4−x
(

2
9
x− 2

27

)
+ 4−y

(
2
9
y − 2

27

)
+ 4−x−y

(
20
27
− 2

9
(x + y)

)
.
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Proposition 3.12
Pt,k = f(β1, β2) ≤ 1/2 .

Proof. An easy but quite lengthy and error-prone calculation, which can be
checked with a symbolic calculus software, leads to the desired expression. The
graph of f , computed with MapleTM [8], is given in Fig. 1. ��
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Fig. 1. f(x, y)

We have proved:
Theorem 3.13. If t verifies the following constraints:

d = 2 and α1, α2 ≥ k − w(t) − 1 ,

then |St,k| ≤ 2k−1.

3.7 Extremal Value: βi = 1

We add another constraint: ∀i, βi = 1. The previous one becomes: mini(αi) ≥
k − w(t) − 1 = d− 1.
Theorem 3.14. Let t verify the two following constraints:

∀i, βi = 1 and min
i

(αi) ≥ k − w(t) − 1 = d− 1 ,

then |St,k| = 2k−1.

Proof. Using Proposition 3.9, Pt,k becomes:

Pt,k =
d−1∑
E=0

2−E−d ∑∑
d ei=E
0≤ei

1 = 2−d
d−1∑
E=0

2−E
(

E + d− 1
d− 1

)

= 2−d.2d−1 = 1/2 .��
In that case we can also see ε′i = γ′

i + (1 − δ′i) = γi(1 − δi) as the number of 0s
at the end of each block:

t = 1--10...1--10...1--10 ,

a = ?10-0{

ε′1

...?10-0{

ε′i

...?10-0{

ε′d

,

and directly compute P (ε′i = ei) = 2−ei−1. ��
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Using Corollary 2.8, we prove the conjecture in the following case:

Corollary 3.15. Let t verify the two following constraints:

∀i, αi = 1 and min
i

(βi) ≥ w(t)− 1 = d− 1 ,

then |St,k| ≤ 2k−1.

We conjecture that the converse of Theorem 3.14 is also true, i.e. those numbers
are the only ones reaching the bound of the original conjecture.

Conjecture 3.16. St,k = 2k−1 iff t verifies the two following constraints:

∀i, βi = 1 and min
i

(αi) ≥ k − w(t) − 1 = d− 1 .

4 Toward a Complete Proof

The numbers for which Pt,k is the nearest to the bound of the conjecture seem
to be the ones which verify the constraint min(αi) ≥ k−w(t)−1, and especially
the ones which also verify ∀i, βi = 1. Moreover puncturing a 1 of a binary string
seems to make Pt,k smaller most of the time.

We consequently hope to be able to completely solve the conjecture using one
of the following strategies:

– Show that any number gives a smaller set than an extremal one by induction
(i.e. by puncturing 1s, even so that different blocks merge) and by comparing
different expressions of Pt,k.

– Show that the conjecture is true for every number which verifies the con-
straint min(αi) ≥ k − w(t) − 1 and then that the numbers which do not,
give smaller sets by induction (i.e. by puncturing 1s, but without merging
different blocks) and by comparing different expressions of Pt,k.
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Abstract. In this paper we start developing a detailed theory of nega–
Hadamard transforms. Consequently, we derive several results on ne-
gabentness of concatenations, and partially-symmetric functions. We also
obtain a characterization of bent–negabent functions in a subclass of
Maiorana–McFarland set. As a by-product of our results we obtain sim-
ple proofs of several existing facts.

Keywords: Boolean functions, nega–Hadamard transforms, bent and
negabent functions.

1 Introduction

Let F2 be the prime field of characteristic 2 and let Fn2 is the n-dimensional
vector space over F2. A function from Fn2 to F2 is called a Boolean function on
n variables. The reader is referred to Section 1.1 for all the basic notations and
definitions related to Boolean functions.

Boolean functions received a lot of attention in the field of coding theory, se-
quences and cryptology. The most important method of analyzing the Boolean
functions is by exploiting a certain kind of discrete Fourier transform, which is
known, in Boolean function literature, as Walsh, Hadamard, or Walsh–Hadamard
transform [4]. The maximum nonlinearity of a Boolean function is achieved when
the maximum absolute value in the Walsh spectrum is minimized. For even n,
such functions are well known as bent functions and the magnitudes of all the
values in Walsh spectrum are the same. From the perspective of coding theory,
these functions attain the covering radius of first order Reed–Muller code. To-
wards a nega–periodic analogue of the bent criteria, one can use nega–Hadamard
transform and investigate Boolean functions with nega flat spectrum. This mo-
tivated several works in the area of Boolean functions [11,13,14,19] in the last
few years.
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In this paper we concentrate on the nega–Hadamard transform in more details.
In particular, we have the following broad contributions.

– We present a detailed study of some of the properties of nega–Hadamard
transform in Section 2. We obtain several results analogous to Hadamard
transformation.

– Based on the previous analysis, we obtain several results with respect to the
decomposition of negabent functions in Section 3.

– In Section 4, we study negabent functions that are symmetric with respect
to two variables. Our study results simple proof of the main result in the
paper [17] that all the symmetric negabent functions must be affine.

– A characterization of some bent–negabent functions in Maiorana–McFarland
class is obtained in Section 5, thus complementing some results of [19].

1.1 Definitions and Notations

The set of all Boolean functions on n variables is denoted by Bn. Any element
x ∈ Fn2 can be written as an n-tuple (x1, . . . , xn), where xi ∈ F2 for all i =
1, . . . , n. The set of integers, real numbers and complex numbers are denoted
by Z, R and C respectively. The addition over Z, R and C is denoted by ‘+’.
The addition over Fn2 for all n ≥ 1, is denoted by ⊕. If x = (x1, . . . , xn) and
y = (y1, . . . , yn) are two elements of Fn2 , we define the scalar (or inner) product,
respectively, the intersection by

x · y = x1y1 ⊕ x2y2 ⊕ · · · ⊕ xnyn,x ∗ y = (x1y1, x2y2, . . . , xnyn).

The cardinality of the set S is denoted by |S|. If z = a + b ı ∈ C, then |z| =√
a2 + b2 denotes the absolute value of z, and z = a − b ı denotes the complex

conjugate of z, where ı2 = −1, and a, b ∈ R. Any f ∈ Bn can be expressed in
algebraic normal form (ANF) as

f(x1, x2, . . . , xn) =
⊕

a=(a1,...,an)∈Fn
2

μa

(
n∏
i=1

xai

i

)
, μa ∈ F2.

The (Hamming) weight of x ∈ Fn2 is wt(x) :=
∑n
i=1 xi. The algebraic degree

of f , deg(f) := maxa∈Fn
2
{wt(a) : μa = 0}. Boolean functions having algebraic

degree at most 1 are said to be affine functions. For any two functions f, g ∈ Bn,
we define the (Hamming) distance d(f, g) = |{x : f(x) = g(x),x ∈ F2n}|.

The Walsh–Hadamard transform of f ∈ Bn at any point u ∈ Fn2 is defined by

Hf (u) = 2−
n
2

∑
x∈Fn

2

(−1)f(x)⊕u·x.

A function f ∈ Bn is a bent function if |Hf (u)| = 1 for all λ ∈ Fn2 . Bent
functions (defined by Rothaus [15] more than thirty years ago) hold an interest
among researchers in this area since they have maximum Hamming distance



Nega–Hadamard Transform, Bent and Negabent Functions 361

from the set of all affine Boolean functions. Several classes of bent functions were
constructed by Rothaus [15], Dillon [6], Dobbertin [7], and later by Carlet [1].

The sum Cf,g(z) =
∑

x∈Fn
2
(−1)f(x)⊕g(x⊕z) is the crosscorrelation of f and g

at z. The autocorrelation of f ∈ Bn at u ∈ Fn2 is Cf,f (u) above, which we denote
by Cf (u). It is known [4] that a function f ∈ Bn is bent if and only if Cf (u) = 0
for all u = 0.

For a detailed study of Boolean functions we refer to Carlet [2,3], and Cusick
and Stănică [4].

The nega–Hadamard transform of f ∈ Fn2 at any vector u ∈ Fn2 is the complex
valued function:

Nf (u) = 2−
n
2

∑
x∈Fn

2

(−1)f(x)⊕u·x ıwt(x).

A function is said to be negabent if the nega–Hadamard transform is flat in
absolute value, namely |Nf (u)| = 1 for all u ∈ Fn2 . The sum

Cf,g(z) =
∑
x∈Fn

2

(−1)f(x)⊕g(x⊕z)(−1)x·z

is the nega–crosscorrelation of f and g at z. We define the nega–autocorrelation
of f at u ∈ Fn2 by

Cf (u) =
∑
x∈Fn

2

(−1)f(x)⊕f(x⊕u)(−1)x·u.

The negaperiodic autocorrelation defined by Parker and Pott [11,12] is as follows

nf (u) =
∑
x∈Fn

2

(−1)f(x)⊕f(x⊕u)(−1)wt(u)(−1)x·u.

It is to be noted that the difference between the above two definitions is not
critical and both the defintions can be used.

As we will be referring later, we also present the definition of a symmetric
Boolean function. A Boolean function is said to be symmetric if inputs of the
same weight produce the same output, that is, f(x) = f(σ(x)), for any permu-
tation σ.

2 Properties of Nega–Hadamard transform

It is a well known fact that if f ∈ Bn, then the Walsh–Hadamard transform
Hf (λ) is invertible, and so,

(−1)f(x) = 2−
n
2

∑
u∈Fn

2

Hf (u)(−1)x·u, (1)

for all x ∈ Fn2 . The nega–Hadamard transform is also a unitary transformation.
An immediate consequence of the definition of nega–Hadamard transformation
of a function f ∈ Bn in [11,14] is the following:
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Lemma 1. Suppose f ∈ Bn. Then

(−1)f(y) = 2−
n
2 ı−wt(y)

∑
u∈Fn

2

Nf (u)(−1)y·u, (2)

for all y ∈ Fn2 .

Next, we prove a theorem that gives the nega–Hadamard transform of various
combinations of Boolean functions. We shall use throughout the well-known
identity (see [10])

wt(x ⊕ y) = wt(x) + wt(y) − 2wt(x ∗ y). (3)

Theorem 1. Let f, g, h be in Bn. The following statements are true:

(a) N0(u) = −N1(u) = ωn ı−wt(u), and Nh⊕1(u) = −Nh(u), u ∈ Fn2 , where 0,1
are the constant 0, respectively, 1 functions; and, ω is an 8-th primitive root
of 1, namely ω = (1 + ı)/

√
2. In general, for any affine function �a,c(x) =

a · x⊕ c, we have N�a,c(u) = (−1)c ωn ı−wt(a⊕u).
(b) If h(x) = f(x)⊕ g(x) on Fn2 , then for u ∈ Fn2 ,

Nh(u) = 2−n/2
∑
v∈Fn

2

Nf (v)Hg(u⊕ v) = 2−n/2
∑
v∈Fn

2

Hf (v)Ng(u⊕ v).

(c) If �a,c(x) = a · x⊕ c is affine, then Nf⊕�a,c(u) = (−1)cNf (a⊕ u).
(d) If h(x) = f(Ax ⊕ a), then Nh(u) = (−1)a·(Au) ıwt(a)Nf (Au ⊕ a), where A

is an n× n orthogonal matrix over F2 (and so, ATA = In).
(e) If h(x,y) = f(x)⊕ g(y),x,y ∈ Fn2 , then Nf⊕g(u,v) = Nf (u)Ng(v).
(f) If f ∈ Bn, g ∈ Bk, and h(x,y) = f(x)g(y), then

2k/2Nh(u,v) = Nf (u)Ag1(v) + ωn ı−wt(u)Ag0(v),

Ag1(v) + Ag0(v) = 2k/2ωkı−wt(v),

where Ag0(v) =
∑

y,g(y)=0(−1)y·v ıwt(y), Ag1(v) =
∑

y,g(y)=1(−1)y·v ıwt(y).
Moreover, if k = 1,

21/2Nyf(x)(u, v) = (−1)v ıNf (u) + ωn ı−wt(u)

21/2N(y⊕1)f(x)(u, v) = Nf (u) + ωn(−1)v ı−wt(u)+1.

Proof. Claim (a) follows from Lemma 1 of [19], since N0(u) = −N1(u) =
2−n/2

∑
y(−1)u·y ıwt(y) = ωn ı−wt(u). We now show the first identity of (b) (the

second is absolutely similar). Since

Nf (v) = 2−n/2
∑
y∈Fn

2

(−1)f(y)⊕y·v ıwt(y)

Hg(u⊕ v) = 2−n/2
∑
z∈Fn

2

(−1)g(z)⊕z·(u⊕v)
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and (see [4, p. 8]) ∑
x

(−1)v·x =

{
2n if v = 0
0 if v = 0,

we obtain (all sums are over Fn2 )∑
v∈Fn

2

Nf (v)Hg(u⊕ v) = 2−n
∑
v,y,z

(−1)f(y)⊕g(z)+v·(y⊕z)⊕u·z ıwt(y)

= 2−n
∑
y,z

(−1)f(y)⊕g(z)⊕u·z ıwt(y)
∑
v

(−1)v·(y⊕z)

=
∑
y

(−1)f(y)⊕g(y)⊕u·y ıwt(y) = 2n/2Nf⊕g(u).

Further, (c) follows from (b), since

H�a,c(w) = 2−n/2
∑
y

(−1)a·y⊕w·y⊕c

= 2−n/2(−1)c
∑
y

(−1)(a⊕w)·y

=

{
(−1)c2n/2 if a = w
0 if a = w.

The property (d) can be derived from [11, Lemma 2] and [19, Theorem 2]. It is
to be noted that [19, Theorem 2] further proves that the action of orthogonal
group preserves bent–negabentness property of a Boolean function. Item (e) is
straightforward. To show item (f), we write

2(n+k)/2Nh(u,v) =
∑

(x,y)∈F
n+k
2

(−1)f(x)g(y)⊕x·u⊕y·v ıwt(x)+wt(y)

=
∑

y,g(y)=1

(−1)y·v ıwt(y)
∑
x

(−1)f(x)⊕x·u ıwt(x)

+
∑

y,g(y)=0

(−1)y·v ıwt(y)
∑
x

(−1)x·u ıwt(x)

= 2n/2Nf (u)
∑

y,g(y)=1

(−1)y·v ıwt(y)

+2n/2ωn ı−wt(u)
∑

y,g(y)=0

(−1)y·v ıwt(y),

from which we obtain the desired identity. Moreover, if k = 1, and g(y) = y, then
Ag0(v) = 1, Ag1(v) = (−1)v ı, and if g(y) = y ⊕ 1, then Ag1(v) = 1, Ag0(v) =
(−1)v ı, and so

21/2Nyf(x)(u, v) = (−1)v ıNf(u) + ωn ı−wt(u)

21/2N(y⊕1)f(x)(u, v) = Nf (u) + ωn(−1)v ı−wt(u)+1.

The proof of the theorem is done. ��
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The next result is analogous to the result on the crosscorrelation of two Boolean
functions [16]. In the nega–Hadamard transform context, the basic idea of this
result is explained in [5] and equation (15) of [13]. In Lemma 2 we are able
to use Hadamard transform because unlike the definition in [5,13] our nega–
crosscorrelation does not include the factor (−1)wt(u).

Lemma 2. If f, g ∈ Bn, then the nega–crosscorrelation

Cf,g(z) =
∑
x∈Fn

2

(−1)f(x)⊕g(x⊕z)(−1)x·z = ıwt(z)
∑
u∈Fn

2

Nf (u)Ng(u)(−1)u·z.

Proof. The sum

ıwt(z)
∑
u∈Fn

2

Nf (u)Ng(u)(−1)u·z = 2−n
∑
x∈Fn

2

∑
y∈Fn

2

(−1)f(x)⊕g(y) ıwt(x)−wt(y)+wt(z)

×
∑
u∈Fn

2

(−1)u·(x⊕y⊕z)

=
∑
x∈Fn

2

(−1)f(x)⊕g(x⊕z)(−1)x·z.

��
If we consider the case f = g in the previous lemma, then we obtain∑

x∈Fn
2

(−1)f(x)⊕f(x⊕z)(−1)x·z = ıwt(z)
∑
u∈Fn

2

Nf (u)Nf (u)(−1)u·z

= ıwt(z)
∑
u∈Fn

2

|Nf (u)|2(−1)u·z.
(4)

This is an analogue of autocorrelation of Boolean functions. It is to be noted
that since both Hadamard and nega–Hadamard transforms are unitary they are
energy preserving and hence, Parseval’s theorem holds for both the transforma-
tions. The classical Parseval’s identity takes the form∑

u∈Fn
2

(Hf (u))2 = 2n

for Walsh–Hadamard transform. Substituting z = 0 in the equation (4), we
obtain a proof of this fact for the particular case of nega–Hadamard transforms.

Corollary 1 (nega–Parseval’s identity). We have∑
u∈Fn

2

|Nf (u)|2 = 2n. (5)

Lemma 3. A Boolean function f ∈ Bn is negabent if and only if, Cf (z) = 0 for
all z ∈ Fn2 \ {0}.
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Proof. If f is a negabent function then |Nf (u)| = 1 for all u ∈ Fn2 . For all
z = 0, then by (4) we obtain Cf (z) = 0. The converse also follows from the
equation (4). ��

An equivalent result is proved after equation (15) in [13], and in [11, Theorem
2] for the negaperiodic autocorrelation.

Remark 1. Lemma 3 provides an alternative characterization of negabent
functions.

If f is an affine function, then for all z ∈ Fn2 \ {0} the nega–autocorrelation
Cf (z) = 0. This implies that any affine function is negabent. For alternative
proofs we refer to [19, Lemma 1] and [11, Proposition 1].

3 Decomposition of Negabent Functions with Respect to
Co-dimension One Subspaces

Suppose 1 ≤ r ≤ n. Then any function f ∈ Bn can be thought of as a function
from Fr2 ×Fn−r2 into F2. For any fixed v ∈ Fr2, the function fv ∈ Bn−r is defined
as fv(x) = f(v,x) for all x ∈ Fn−r2 .

Theorem 2. Let f ∈ Bn expressed as f : Fr2 × Fn−r2 → F2. Then

Cf (u,w) =
∑
v∈Fr

2

Cfv,fv⊕u(w)(−1)v·u.

Proof. By definition

Cf (u,w) =
∑
v∈Fr

2

∑
z∈F

n−r
2

(−1)f(v,z)⊕f(v⊕u,z⊕w)(−1)v·u⊕z·w

=
∑
v∈Fr

2

(−1)v·u
∑

z∈F
n−r
2

(−1)fv(z)⊕fv⊕u(z⊕w)(−1)z·w

=
∑
v∈Fr

2

Cfv,fv⊕u(w)(−1)v·u.

(6)

��

Corollary 2. Suppose f ∈ Bn is expressed as

f(x, y) = f0(x)(1 ⊕ y)⊕ f1(x)y, for all (x, y) ∈ Fn−1
2 × F2,

where f0, f1 ∈ Bn−1. Then

Cf (w, 0) = Cf0(w) + Cf1(w)

Cf (w, 1) = Cf0,f1(w)− (−1)wt(w)Cf0,f1(w).

The functions f and g are said to have complementary nega–autocorrelation if
for all nonzero u ∈ Fn2

Cf (u) + Cg(u) = 0.

The following lemma establishes a connection between the nega–autocorrelations
of f , g and their nega–Hadamard transformations.
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Lemma 4. Two functions f, g ∈ Bn have complementary nega–autocorrelations
if and only if

|Nf (u)|2 + |Ng(u)|2 = 2 for all u ∈ Fn2 .

Proof. Let f, g be two functions with complementary nega–autocorrelations.
Then

|Nf (u)|2 + |Ng(u)|2 = 2−n
∑
z∈Fn

2

ı−wt(z)(Cf (z) + Cg(z))(−1)z·u

= 2−n2n+1 = 2.

Conversely, suppose |Nf (u)|2 + |Ng(u)|2 = 2 for all u ∈ Fn2 . Then

Cf (z) + Cg(z) = ıwt(z)
∑
u∈Fn

2

(|Nf (u)|2 + |Ng(u)|2)(−1)u·z

= 2ıwt(z)
∑
u∈Fn

2

(−1)u·z

= 2n+1ıwt(z)δ0(z),

where

δ0(z) =

{
0 if z = 0;
1 if z = 0.

(7)

Thus the functions f and g have complementary nega–autocorrelations. ��

Theorem 3. Suppose h ∈ Bn+1 is expressed as

h(x, y) = f(x)(1 ⊕ y)⊕ g(x)y, for all (x, y) ∈ Fn2 × F2,

where f, g ∈ Bn. Then the following statements are equivalent:

(1) h is negabent.
(2) f and g have complementary nega–autocorrelations and Cf0,f1(u) = 0 for all

u ∈ Fn2 with wt(u) ≡ 1 (mod 2).
(3) |Nf (u)|2 + |Ng(u)|2 = 2 for all u ∈ Fn2 and Nf (u)

Ng(u) is a real number whenever
|Nf (u)||Ng(u)| = 0.

Proof. We show first (1) ⇐⇒ (2). Suppose h is a negabent function. Then
Ch(u, a) = 0 for all nonzero (u, a) ∈ Fn2 × F2. From Corollary 2 we obtain

Ch(u, 0) = Cf (u) + Cg(u) = 0,

for all u ∈ Fn2 \ {0} and

Ch(u, 1) = Cf,g(u)(1 − (−1)wt(u)) = 0,

which implies Cf,g(u) = 0 for all u ∈ Fn2 with wt(u) ≡ 1 (mod 2).
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Conversely, let us assume that the functions f and g have complementary
nega–autocorrelations and Cf,g(u) = 0 for all u ∈ Fn2 with wt(u) ≡ 1 (mod 2).
Then by Corollary 2, Ch(u, a) = 0 for all nonzero (u, a) ∈ Fn2 × F2. This implies
that h is a negabent function.

We now show (1) ⇐⇒ (3). The nega–Hadamard transform of h at (u, a) ∈
Fn2 × F2 is

Nh(u, a) = 2−
n+1

2

∑
(x,y)∈Fn

2×F2

(−1)h(x,y)⊕u·x⊕ay ıwt(x,y)

= 2−
n+1

2

∑
x∈Fn

2

(−1)f(x)⊕u·x ıwt(x) + 2−
n+1

2

∑
x∈Fn

2

(−1)g(x)⊕u·x⊕a ıwt(x)+1

=
1√
2
Nf (u) + ı (−1)a

1√
2
Ng(u).

Thus,

Nh(u, a) =

{
1√
2
Nf (u) + ı√

2
Ng(u) if a = 0;

1√
2
Nf (u)− ı√

2
Ng(u) if a = 1.

(8)

Since h is negabent |Nh(u, a)| = 1 for all (u, a) ∈ Fn2 × F2 we obtain∣∣∣∣ 1√
2
Nf (u) +

ı√
2
Ng(u)

∣∣∣∣ = 1,∣∣∣∣ 1√
2
Nf (u)− ı√

2
Ng(u)

∣∣∣∣ = 1.

(9)

If h is negabent, then by Lemma 4 and the equivalence of the first two statements
proved above we obtain:

|Nf (u)|2 + |Ng(u)|2 = 2 for all u ∈ Fn2 .

Suppose for u ∈ Fn2 , |Nf (u)||Ng(u)| = 0. Let z1 = 1√
2
Nf (u) and z2 = ı√

2
Ng(u).

Then by equation (9) we obtain

|z1 + z2|2 = |z1 − z2|2, that is
z1z2 = −z2z1

Therefore we have Nf (u)Ng(u) = Ng(u)Nf (u), i.e., Nf (u)
Ng(u) = Nf (u)

Ng(u)
=
(Nf (u)

Ng(u)

)
.

This proves that Nf (u)
Ng(u) is a real number.

Conversely, suppose |Nf (u)|2 + |Ng(u)|2 = 2 for all u ∈ Fn2 and Nf (u)
Ng(u) is a

real number whenever |Nf (u)||Ng(u)| = 0.
Without loss of generality, we may first assume Nf (u) = 0, for some u ∈ Fn2 .

Then by the above condition |Ng(u)| =
√

2. By equation (8), |Nh(u, a)| = 1 for
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all a ∈ F2. Next we consider the case when |Nf (u)||Ng(u)| = 0. Let φ(u) =
Ng(u)
Nf (u) . Then

|Nh(u, a)|2 = | 1√
2
Nf (u) + ı(−1)a

1√
2
φ(u)Nf (u)|2

=
1
2
|Nf (u)|2|1 + ı(−1)aφ(u)|2

=
1
2
|Nf (u)|2(1 + |φ(u)|2)

=
1
2
|Nf (u)|2

(
1 +
|Ng(u)|2
|Nf (u)|2

)
=

1
2
(|Nf (u)|2 + |Ng(u)|2) = 1.

(10)

Thus h is negabent. ��

4 Negabent Functions Symmetric about Two Variables

Suppose h ∈ Bn is a Boolean function which is symmetric with respect to two
variables, y and z say. Then there exist functions f, g, s ∈ Bn−2 such that

h(x, y, z) = f(x)⊕ (f(x)⊕ g(x))(y ⊕ z)⊕ s(x)yz (11)

for all (x, y, z) ∈ Fn−2
2 × F2 × F2. The Boolean function h is bent if and only if,

f and g are bent and s(x) = 1 for all x ∈ Fn−2
2 (see [2,3,4,20]). For negabent

functions we prove the following similar result.

Theorem 4. Suppose h ∈ Bn is expressed as h(x, y, z) = f(x) ⊕ (f(x) ⊕
g(x))(y ⊕ z) ⊕ s(x)yz for all (x, y, z) ∈ Fn−2

2 × F2 × F2. The Boolean func-
tion h is negabent if and only if f and g are negabent and s(x) = 0 for all
x ∈ Fn2 .

Proof. The nega–autocorrelation of h at (0, 1, 1) is

Ch(0, 1, 1) =
∑

x∈F
n−2
2

∑
y∈F2

∑
z∈F2

(−1)s(x)(1⊕y⊕z)(−1)y⊕z

=
∑

x∈F
n−2
2

(−1)s(x)
∑
y∈F2

(−1)s(x)y⊕y∑
z∈F2

(−1)s(x)z⊕z

=
∑

x∈F
n−2
2

(−1)s(x)
∑
y∈F2

(−1)s(x)y⊕y(1 + (−1)s(x)⊕1)

= 2
∑

x∈F
n−2
2 ,s(x)=1

(−1)
∑
y∈F2

(−1)2y = 4
∑

x∈F
n−2
2 ,s(x)=1

(−1)

= −4|{x ∈ Fn−2
2 : s(x) = 1}|.
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If h is a negabent function then Ch(0, 1, 1) = 0. Therefore |{x ∈ Fn−2
2 : s(x) =

1}| = 0, which implies that s(x) = 0 for all x ∈ Fn−2
2 . Thus, if h is a negabent

function and symmetric with respect to the variables y and z, then it can be
expressed as

h(x, y, z) = f(x)⊕ (f(x)⊕ g(x))(y⊕ z), for all (x, y, z) ∈ Fn−2
2 ×F2×F2. The

nega–Hadamard transform Nh(u, a, b) of h at (u, a, b) ∈ Fn−2
2 × F2 × F2 is

2−
n
2

∑
x∈F

n−2
2

∑
y∈F2

∑
z∈F2

(−1)f(x)⊕(f(x)⊕g(x))(y⊕z)+u·x⊕ay⊕bz ıwt(x,y,z).

Expanding the above sum by substituting all possible values of (y, z) ∈ F2 × F2
we obtain

Nh(u, a, b) = 1−(−1)a⊕b

2 Nf (u) + ı (−1)a+(−1)b

2 Ng(u). (12)

Therefore Nh(u, a, b) ∈ {Nf(u),±ıNg(u)} for all (u, a, b) ∈ Fn−2
2 × F2 × F2.

This proves that both f and g are negabent. On the other hand if f and g are
negabent functions then h is also negabent. This shows the converse. ��

Corollary 3. A symmetric negabent function is affine.

Proof. Let h ∈ Bn be a symmetric negabent function. Let us suppose that h has
algebraic degree greater than or equal to 2. Since h is symmetric, it is symmetric
with respect to any two variables. Therefore, it is possible to express h, for at
least one pair y, z of variables, as follows

h(x, y, z) = f(x)⊕ (f(x)⊕ g(x))(y ⊕ z)⊕ s(x)yz,

where s(x) = 0 for at least one x ∈ Fn−2
2 . But this contradicts the fact that h is

negabent. Hence all symmetric negabent functions are affine. ��

The result of Corollary 3 gives an alternate proof of the fact proved in [17].
In fact, the case for even n can be immediately obtained following the result
of Parker and Pott [11], which gives a connection between bent and negabent
functions.

Theorem 5 ([11, Thm. 12]). A function f : F2m
2 → F2 is negabent if and

only if f ⊕ s2 is bent, where s2(x1, x2, . . . , x2m) =
∑

i<j xixj is the elementary
symmetric function of degree 2.

We note that s2 is actually a homogeneous (that is, all terms of its ANF are of
the same degree), symmetric and quadratic bent function.

Let s1(x1, x2, . . . , x2m) =
∑

i xi, the (only) symmetric linear function involv-
ing all the variables. In [18] it is shown that the only symmetric bent functions
are s2, s2 ⊕ s1, 1⊕ s2, 1⊕ s2 ⊕ s1.

In [17], it is proved (by a long argument) that all the symmetric negabent
functions are affine. Following [18,11], the result of [17] can be achieved in a few
lines for even n.
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Theorem 6. Let n be even. A symmetric function f ∈ Bn is negabent if and
only if it is affine.

Proof. Suppose f ∈ Bn is a symmetric negabent function. Then f ⊕ s2 is a bent
function. Since the direct sum of two symmetric functions is symmetric, then
f ⊕ s2 is a symmetric bent function. The only symmetric bent functions are s2,
s2 ⊕ s1, 1 ⊕ s2, 1 ⊕ s2 ⊕ s1 (see [18]). Therefore f can be 0, 1, s1, 1 ⊕ s1 and
nothing else. This proves that if f is a symmetric negabent function on even
number of variables then it is affine.

Conversely, it is known that all affine functions are negabent [19]. Therefore,
symmetric functions on even number of variables, if affine, are negabent. ��

Bent functions do not exist for odd number of input variables. Thus there is
no equivalent characterization of Theorem 5 for odd dimension, and the result
of [17] cannot be proved trivially as before. However, the odd (as well as the
even) case has already been taken care of by Corollary 3.

5 Bent–Negabent Functions in Maiorana–McFarland
Class

In this section we shall investigate bent functions which are also negabent in the
Maiorana-McFarland (MM) class of bent functions, namely

f(x,y) = π(x) · y ⊕ g(x), x,y ∈ Fn2 (13)

where π is a permutation satisfying wt(x ⊕ y) = wt(π(x) ⊕ π(y)) (we call π a
weight-sum invariant permutation), for all x,y, and g is an arbitrary Boolean
function, both on Fn2 . We remark that if π is orthogonal, that is, π(x) = A · x
with A orthogonal (ATA = In), then it satisfies the imposed condition (since
wt(π(x)⊕π(y)) = wt(A(x⊕y)), it suffices to show that wt(Az) = wt(z); for that,
consider wt(Az) = (Az)T · (Az) = zT (ATA)z = wt(z)). It could be interesting
to see if there are such weight-sum invariant permutations outside of the linear
orthogonal group generated ones.

Theorem 7. A function as in (13) on F2n
2 is bent–negabent if and only if g is

bent.

Proof. We evaluate

Nf (u,v) = 2−n
∑

(x,y)∈F2n
2

(−1)π(x)·y⊕g(x)⊕x·u⊕y·v ıwt(x)+wt(y)

= 2−n
∑
x∈Fn

2

(−1)g(x)⊕x·u ıwt(x)
∑
y∈Fn

2

(−1)π(x)·y⊕y·v ıwt(y)

= 2−n
∑
x∈Fn

2

(−1)g(x)⊕x·u ıwt(x)2n/2ωn ı−wt(π(x)⊕v)

= 2−n/2ωn
∑
x∈Fn

2

(−1)g(x)⊕x·u ıwt(x)−wt(π(x)⊕v).
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Now, using the fact that π is a weight-sum invariant permutation, and by (3),
we obtain

wt(π(x) ⊕ v) = wt(x ⊕ π−1(v)),
wt(x) − wt(π(x) ⊕ v) = −wt(π−1(v)) + 2wt(x ∗ π−1(v)), and

ı2wt(x∗π
−1(v)) = (−1)x·π

−1(v),

which implies that

Nf (u,v) = 2−n/2ωn ı−wt(π
−1(v))

∑
x∈Fn

2

(−1)g(x)⊕x·(u⊕π−1(v))

= ωn ı−wt(π
−1(v))Hg(u⊕ π−1(v)).

Consequently,
|Nf (u,v)| = |Hg(u⊕ π−1(v))|,

which implies our claim. ��

The following corollary follows easily from our theorem, since bent functions exist
for any degree up to half of the (even) dimension. We remark that Theorem 10
of [11] gives an upper bound of n−1 on the degree of a bent–negabent function,
but not an existence result.

Corollary 4. If f as in (13) is bent–negabent with π weight-sum invariant, then
the degree of f is bounded by n/2. Moreover, there exist bent–negabent functions
in the MM class of any degree between 2 and n/2.
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Abstract. In this paper a spectral characterization of the synchroniza-
tion property of Boolean dynamical systems is provided. Conditions on
the spectrum of the next-state function are derived for two systems cou-
pled in a unidirectional way - also called master-slave configuration -
to guarantee self-synchronization. Two kinds of self-synchronization are
discussed: the statistical one and the finite one. Next, some conditions
are stated for a specific input sequence to allow the system to be self-
synchronizing. Some of the results are based on the notion of influence of
variables, a notion that is extended to vectorial Boolean functions for the
purpose of the paper. A potential application to cryptography is finally
given.

1 Introduction

Dynamical systems are commonly used to model natural or engineering based
processes. We can distinguish two kinds of systems. The continuous ones, �
valued and discrete ones, finite-set valued. The latter can be either an approx-
imation of a continuous system or can be intrinsically discrete. Let us stress
that the terminology continuous or discrete refers to the state variables of the
system regardless the time which can be continuous or discrete. Among a wide
variety of discrete dynamical systems, the class of Boolean Dynamical Systems
(BDS for short) is of special interest. In this paper, we focus on non-autonomous
BDS, that is with input. The specificity of BDS lies in that the internal state,
the input and the output are Boolean variables and therefore the transition and
output functions are Boolean functions.

In this paper we deal with the issue of synchronization of BDS which is the
process through which two systems are brought to the same state. Although
several structural conditions to guarantee synchronization have been provided
in the open literature, few works deal with BDS. Moreover, these studies address
the synchronization issue in the time. In this paper we propose a spectral point
of view. The interest of the spectral approach lies in that the composition of

C. Carlet and A. Pott (Eds.): SETA 2010, LNCS 6338, pp. 373–386, 2010.
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functions can be expressed in terms of product of matrices well suited for design
purpose. Spectral characterization is also well appropriate in the perspective of
ensuring special cryptographic properties when the dynamical systems under
consideration are involved in a ciphering setup.

More precisely we investigate the problem of self-synchronization. By self-
synchronization, it is intended a dynamical behavior which do no longer depend
on the initial condition after a transient time. Besides the spectral characteri-
zation, the novelty of the study lies in that the problem is viewed through the
notion of influence of variables. Roughly speaking, influence describes the ability
of a subset of the input variables of a function to change its output. Here the
set of variables under consideration is the initial condition of the dynamical sys-
tem. For the purpose of the paper we also had to extend this notion to vectorial
Boolean functions.

The layout is the following. In Section 2, we recall some background on
Boolean functions and tools of spectral analysis in particular Walsh transform.
Section 3 is devoted to the problem statement, namely the issue of self-synchro-
nization between two dynamical systems coupled in a unidirectional way. Distinc-
tion between statistical and finite time self-synchronization is made. Section 4
deals with the Walsh transform of the iterated function of a dynamical system
as a prerequisite for deriving the main result. In Section 5, the notion of self-
synchronizing sequence is developed. The main result of the paper is stated in
Section 6 wherein, based on the notion of influence, we derive conditions on the
spectrum of the next-state function for a BDS to be self-synchronizing. Finally
Section 7 is devoted to illustrative examples. An example potentially interesting
for cryptographic applications involving the so called Self-Synchronizing Stream
Ciphers (SSSC for short) is provided.

2 Preliminaries and Definitions

In this section, we recall the basics about spectral analysis of Boolean functions
which is the main tool used in this paper. Let �2 denotes the two elements field.
For any positive integer n, the n–dimensional vector space over �2 is denoted
�
n
2 . A Boolean function f is a mapping �n2 −→ �2. If f is a Boolean function, we

denote by f̂ its Fourier transform, which is by definition the real valued mapping
�
n
2 −→ � defined, for any n–dimensional binary vector u, by

f̂(u) =
∑
x∈�n

2

f(x)(−1)x·u, (1)

where x · u = x1u1 + · · ·+ xnun. This transform is invertible and the inverse is
given by: ̂̂

f = 2nf (2)



Synchronization of Boolean Dynamical Systems 375

Let us recall the Parseval’s theorem (see [1]):

Theorem 1 (Parseval’s theorem). For any Boolean function f : �n2 −→ �2,
and any vector u ∈ �n2 , the following relation holds:∑

u∈�n
2

f̂2(u) = 2n
∑
x∈�n

2

f2(x). (3)

When dealing with Boolean functions, we rather resort to the Walsh transform
which gets nicer properties in most cases. The Walsh transform of a Boolean
function f is simply the Fourier transform of its sign function fχ where fχ =
(−1)f(x) = 1− 2f(x) that is,

f̂χ(u) =
∑
x∈�n

2

(−1)f(x)+x·u (4)

As shown in [1], the correspondence between the Fourier and the Walsh trans-
forms is given by

∀u ∈ �n2 , f̂χ(u) = 2nδ0(u)− 2f̂(u), (5)

where δ0(u) is the Kronecker symbol, equals 1 if u is the n–dimensional zero
vector, and equals 0 elsewhere.

An (n, m) vectorial Boolean function, or simply an (n, m)–function, is a
function over the vector space �n2 to �m2 . Any of the output components de-
fines a Boolean function. Therefore, an (n, m)–function f is nothing but a m–
dimensional vector where each component is a n–variable Boolean function. The
jth coordinate is denoted by fj. The Walsh matrix of any (n, m)–function is the
2m × 2n dimensional matrix Wf =

(
wfu,v
)

so that (see [2]):

∀u ∈ �m2 , ∀v ∈ �n2 , wfu,v =
∑
x∈�n

2

(−1)u·f(x)+v·x (6)

In other words, the rows indexed by u ∈ �
m
2 of this matrix are the Walsh

transforms of the linear combination of the functions fi defined by x �−→ u ·f(x).
The coefficients of the Walsh matrix of a function is called the spectrum of the
function.

N.B. Matrices indexes may be without ambiguity either an integer or a binary
vector representing the same integer in natural binary coding. Thus, if u and v
are vectors of same dimension, we may write u < v. It means that the number
represented by u is smaller than the one represented by v.

An interesting property relates the Walsh matrices of composed functions.

Proposition 1 (see [2]). If f is an (n, m)–function and g is an (p, n)–function
then

Wf◦g =
1
2n

Wf ×Wg. (7)
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3 Problem Statement

Let us consider a compound system involving two BDS coupled in a unidi-
rectional way, a setup called master-slave configuration. The system obeys the
following equations{

xk+1 = F (xk, uk)
yk = G(xk, uk)

(Master equation) (8)

{
x̂k+1 = f(x̂k, yk)
ûk = g(x̂k, yk)

(Slave equation) (9)

where xk and x̂k are n dimensional vectors. The subscript k stands for the dis-
crete time. The (n+1, n)–functions F and f are called the next-state functions.
The (n+1, 1)–functions G and g are called the output functions. The input and
output of (8) (respectively (9)) are uk and yk (respectively yk and ûk). The sit-
uation is depicted in Figure 1. We are interested in self-synchronization. Before
proceeding further, let us introduce some formal definitions.

F

xk

G

uk

yk

Master

f

x̂k

g
ẑk

Slave

Fig. 1. Overall system

Definition 1 (Synchronizing sequence). A sequence (u) is synchronizing
for (8)–(9) if there exists an integer ku so that for all initial states x0 and x̂0:

∀k ≥ ku, xk = x̂k (10)

Remark 1. This definition can be generalized by adding a constant delay r so
that (10) turns into ∀k ≥ ku, xk = x̂k+r .

Definition 2 (Finite time synchronization). The overall system (8)–(9) is
finite time synchronizing if the minimum value ku is upper bounded when u
stands in the set of all input sequences. The upper bound is called the synchro-
nization delay.

Remark 2. If (u) is a random sequence then, (u) turns into (U) and ku turns
into KU which is a random variable.
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Definition 3 (Statistical synchronization). A system is statistically syn-
chronizing if lim

k→+∞
Prob(KU ≤ k) = 1.

In the sequel, we will focus on the slave system. The synchronizing properties
of this subsystem are entirely defined by those of the (n + 1, n)–function f .
Therefore, the previous definitions may be transposed as follow:

Definition 4 (Self-Synchronizing sequence). A sequence (y) is self-synchro-
nizing for f if there exists an integer ky so that for all initial state x0 and x̂0

∀k ≥ ky, xk = x̂k (11)

Definition 5 (Finite time self-synchronization). The function f is finite
time self-synchronizing if the minimum value ky is upper bounded when y stands
in the set of all input sequences. The upper bound is called the self-synchronization
delay of f .

Definition 6 (Statistical self-synchronization). A function f is statisti-
cally self-synchronizing if lim

k→+∞
Prob(KY ≤ k) = 1, where KY is the random

synchronization delay for the random sequence (Y ).

For our purpose, we must define, for any positive integer i, the iterated function
φi that expresses the internal state after i + 1 iterations by means of the initial
internal state and the input sequence. More precisely, for the sequence (y) =
(y0, . . . , yi) ∈ �i+1

2 and x ∈ �n2 , the value φi(y, x) is:

φi(y, x) = f(yi, f(yi−1, f(. . . , f(y0, x) · · · ))) (12)

This function plays a central role in the sequel.

4 Walsh Transform of the Iterated Function

In this section, the Walsh spectrum of the iterated function φi is expressed
by means of the spectrum of the next-state function f . We then observe the
consequences on the synchronization properties of f .

Let us denote by f0 (respectively f1) the (n, n)–function which is the restric-
tion of f to the input bit y = 0 (respectively to y = 1). For a given fixed input
sequence y = (y0, . . . , yi), we denote by φyi the (n, n)–function that expresses the
internal state after i+1 iterations: φyi : x �−→ φi(y, x). We express the spectrum
of the function φyi .

Proposition 2. The Walsh matrix of φyi is

Wφy
i

=
1

2n+iWfyi Wfyi−1 × · · · ×Wfy0 . (13)

Proof. The proof is a direct consequence of Proposition 1. ��
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For two vectors u = (u0, . . . , ui) and v = (v0, . . . , vn−1), their concatenation,
denoted u|v is by definition the (n + i + 1)–dimensional vector

u|v = (u0, . . . , ui, v0, . . . , vn−1).

Proposition 3. Let v, t ∈ �n2 , u ∈ �u+1
2 , z = u|v and

(
w
φy

i
t,v

)
= Wφy

i
. The

entries of the Walsh matrix of the iterated function φi are defined by

wφi

t,z = wφi

t,u|v =
∑

y∈�i+1
2

(−1)u·ywφ
y
i
t,v (14)

Proof. By definition of the Walsh coefficients,

wφi

t,z = wφi

t,u|v =
∑

x∈�n
2 ,y∈�i+1

2
(−1)t·φi(y,x)+(u|v)·(y|x)

=
∑

y∈�i+1
2

∑
x∈�n

2
(−1)t·φi(y,x)+u·y+v·x =

∑
y∈�i+1

2
(−1)u·ywφ

y
i
t,v

��

According to (13), the Walsh matrix of φi can be expressed as sums and differ-
ences of the Walsh matrices Wφy

i
obtained for all the possible sequences (y) of

length i+1. Therefore, we get the expression of the spectrum of φi as a function
of the spectrum of f .

5 Self-synchronizing Sequences

In this section we are interested in characterizing the sequences (y) that self-
synchronize the function based on the spectrum of the function φyi .

Proposition 4. The Walsh matrix of the iterated function is

Wφy
i

=

⎛⎜⎜⎜⎝
2n 0 · · · 0
±2n 0 · · · 0

...
...

...
±2n 0 · · · 0

⎞⎟⎟⎟⎠ (15)

if and only if (y) is a self-synchronizing sequence for this function.

Proof. By definition, if (y) is a self-synchronizing sequence φyi (x) does not de-
pend on x thus, φyi is a constant function. The converse can be derived by
applying (2) to the rows of the above matrix (which are the Walsh transforms
of the linear combinations of the component functions fj. ��

The matrix Wφy
i

can easily be worked out with (13).

Remark 3. If (y) is a self-synchronizing sequence for the function f then, any
other sequence that contains (y) as a subsequence is also self-synchronizing for f .
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Proposition 5. If f has at least one self-synchronizing sequence then f is sta-
tistically self-synchronizing.

Proof. A self-synchronizing sequence has a finite length, therefore, its probability
of occurrence is one in a sequence whose length tends to infinity. ��

These results can be used to check in the spectral domain whether a given
sequence is self-synchronizing or not. But more importantly it gives some con-
ditions on the Walsh spectrum of the function that can be used to build self-
synchronizing systems that have the form (9).

6 Influence of Variables

Roughly speaking, influence reveals the ability of a variable to change the output
of a function. Let us stress that the notion of variable influence has been used
in several papers (e.g. [3], [4], [5] to mention a few). For reasons explained later
on, we must revisit the existing formal definitions of such a notion because they
are not suited for our purpose.

6.1 Influence of a Single Variable

Let f be a boolean function of the variable x. The influence of one variable xi
over a Boolean function f is defined as the probability that the value of f(x)
changes if the value of the component xi is changed, the other components being
set randomly. This definition may be expressed in an equivalent way.

Definition 7. Let f : �n2 −→ �2 be a Boolean function and i ∈ {1, . . . , n} a set
of integers. Let ei be the n–dimensional vector whose components are zero except
the ith one which equals 1. The influence of xi on f is:

If (i) =
1
2n
∑
x∈�n

2

[
f(x) + f(x + ei)

]
Remark 4. This is related to the so called auto-correlation function of f which

is rf (u) =
∑
x∈�n

2
(−1)f(x)+f(x+u) that is, If (i) = 2n−1 +

1
2
rf (ei).

6.2 Influence of a Set of Variables

There exists several ways to extend Definition 7. None is more natural than the
others. The choice of the right definition depends on what need to be studied. The
influence of a subset1 S of components of x can be defined as the probability that
the value of f(x) changes if one of the variables in S changes too. It does not take
into account the number of possibilities of choosing the values of the variables
that change the output of the function. A more suitable definition for our purpose
1 Note that a variable may be identified to its index. Thus for short S may be also

considered as a set of indexes in {1, . . . , n}.
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should involve the balancedness of the restricted function obtained by fixing the
variables not in the set S. Next, the expression of the influence of a set containing
more than one element is a complex function of its spectral representation and is
therefore not suitable for the proposed approach. We therefore rather introduce a
new definition of the influence that takes these points into account. The support
of a vector u is by definition: supp(u) =

{
i ∈ {1, . . . , n} | ui = 0

}
.

Definition 8. Let f(x) be a Boolean function of n variables, S be a set of k
components of x. The influence If (S) is:

If (S) =
1

2n(2k − 1)

∑
x∈�n

2

∑
u∈�n

2 |u�=0, supp(u)⊂S
[f(x) + f(x + u)] (16)

In other words, the influence of a set of variables is the mean of the probabil-
ities that f(x) changes when x is uniformly randomly chosen, the mean being
computed for all possible changes of the value of the variables in S.

Remark 5. When the set S contains one element, then Definitions 7 and 8 are
equivalent.

6.3 Spectral Expression of the Influence

The influence of a set of variables over a Boolean function f can simply be
expressed by means of its spectral representation.

Proposition 6. Let f(x) be a Boolean function of n variables, S be a set of k
components of x. The influence If (S) is:

If (S) =
2k−1

22n(2k − 1)

∑
v∈�n

2 | supp(v)∩S �=∅
f̂χ

2
(v) (17)

Proof. For any vector u, let fu : x �−→ f(x) − f(x + u). It is easy to see that
fu(x) = 0 if f(x) = f(x + u) and fu(x) = ±1 if f(x) = f(x + u). This implies
that [fu(x)]2 = f(x) + f(x + u). Therefore, by using (3),

If (S) =
1

22n(2k − 1)

∑
v∈�n

2

∑
u∈�n

2 |u�=0, supp(u)⊂S

[
f̂u(v)
]2

. (18)

By expressing f̂u(v) by means of f̂(v), we get

f̂u(v) =
∑
x∈�n

2

f(x)(−1)v·x(1− (−1)v·u) = (1− (−1)v·u)f̂(v),

By using this expression of f̂u(v) in (18), we get

If (S) =
1

22n(2k − 1)

∑
v∈�n

2

f̂2(v)
∑

u∈�n
2 |u�=0, supp(u)⊂S

[1− (−1)v·u]2 ,
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and thus:
If (S) =

1
22n−2(2k − 1)

∑
v/ supp(v)∩S �=∅

f̂2(v),

and finally using (5) the desired result stands. ��

Remark 6. This definition of the influence of variables is very close, up to a
factor that depends on the cardinality of S, to the definition of the so called
variable variation given in [4].

Proposition 7. Let f be a Boolean function.

1. f is bent if and only if for all non-empty subset S of variable indexes, one

has If (S) =
1
2
,

2. f does not depend on the variables in the subset S if and only if If (S) = 0.

Proof. 1. If f is bent, then ∀u ∈ �
n
2 , f̂χ(u) = ±2n/2. Then replacing this

expression in (17), we get

If (S) =
2k−1 × 2n

22n(2k − 1)

∑
v/ supp(v)∩S �=∅

1 =
2k−1 × 2n

22n(2k − 1)
(2n − 2n−k) =

1
2

Conversely, if for all non-empty subset of variable indexes S of k elements,
one has If (S) = 1/2, then, by replacing in relation (17), one gets

2k−1

22n(2k − 1)

∑
v| supp(v)∩S �=∅

f̂χ
2
(v) =

1
2
.

By Parseval’s Theorem, and as supp(v) ∩ S = ∅ ⇐⇒ supp(v) ⊂ S, where S
denotes the complementary set of S,

22n −
∑

v| supp(v)⊂S
f̂χ

2
(v) = 22n−k(2k − 1),

Thus: ∑
v| supp(v)⊂S

f̂χ
2
(v) = 22n − 22n−k(2k − 1) = 22n−k (19)

When applying this relation with S = {1, . . . , n}, the sum (19) has only
one term which is f̂χ(0)2 = 22n−n = 2n. The other values are obtained by
induction on the weight of vector u. Let v be a non-zero vector. Let us choose
S such that S = supp(u). One can split the sum of relation (19) into the

term f̂χ
2
(v) and the 2n−k−1 others terms which all equal 2n by the induction

hypothesis as they all have weight strictly lower than the weight of v. Thus,
f̂χ

2
(u) + (2n−k − 1) · 2n = 22n−k and the result holds.

2. If f is constant with respect to the variables in S, ∀x, ∀v ∈ supp(S), f(x) +
f(x + v) = 0 thus, If (S) = 0. Conversely, If (S) = 0 implies that for all v
the terms f(x)+f(x+v) equal 0 since If (S) is a sum of positive terms. ��
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6.4 Extension of the Influence to Vectorial Boolean Functions

In this section, we extend the definition of the influence to vectorial Boolean
functions in order to characterize the self-synchronization property of f .

Definition 9. The influence of a set of variables S over a vectorial Boolean
function f is the mean of the influence of S over each coordinate function fj.

If (S) =
1
q

q∑
j=1

Ifj (S) (20)

Proposition 8. If f does not depend on the variables in S then, the influence
is If (S) = 0.

Proof. This is a simple consequence of Proposition 7. ��

6.5 Self-synchronization vs. Influence

We aim at relating the self-synchronization property of the function f stated
in Definition 5 and 6 to the influence of the initial state on the corresponding
iterated function φi. Let Sx denote the subset of variables that corresponds to
the initial state x.

Proposition 9. The function f is finite time self-synchronizing if and only if,
there exists an integer i large enough so that for any finite sequence (y) of length
i + 1, the iterated function φi(y, x) does not depend on the internal state compo-
nent x. In other words, the variable x of φi(y, x) has no longer influence after a
transient time that is, Iφi(Sx) = 0

Proposition 10. The function f is statistically self-synchronizing if and only
if, there exists an integer i large enough so that for at least one sequence (y) of
length i + 1, the iterated function φi(y, x) does not depend on the internal state
component x. In other words, there is at least one input sequence (y) so that the
variable x of φyi (x) has no influence over φyi thus, Iφy

i
(Sx) = 0.

It can be inferred from (14) that this implies for Wφi to be sparse. The only
possible non-zero coefficients are located on the column v so that supp(v)∩S = ∅.

7 Examples

7.1 Academic Example

We now show how to use the previous results to build a (n + 1, n)–function f
that is statistically self-synchronizing. Let f : �2 × �n2 −→ �

n
2 , and f0 (respec-

tively f1) the restriction of f to y = 0 (respectively y = 1). A statistically self-
synchronizing function f can be obtained by selecting the appropriate functions
f0 and f1 so that there exists an admissible way to multiply the corresponding
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Walsh matrices Wf0 and Wf1 (or their powers) yielding (15). From this per-
spective, we can consider a lower triangular matrix with zeros on the diagonal
except the entry located at row 0 and column 0. Such a matrix has the inter-
esting property that the successive right multiplications with any other matrix
tends to produce a matrix of form (15). Therefore we can select f0 such that its
Walsh matrix has the aforementioned structure, f1 being any vectorial Boolean
function. Note that this choice is arbitrary and the role of f0 and f1 can be
reversed.

Let us provide a constructive approach to find out a suitable (n, n)–function
f0. First, let us recall that the uth row of Wf0 is the Walsh transform of the
Boolean function defined by x �−→ u · f0(x). That is, the uth row is the Walsh
transform of the linear combination of the coordinate functions f0

j such that the
components uj equal 1. Let ej be the canonical vector whose components are 0
except the jth one which equals 1. Considering the rows u = ej for j ∈ {1, . . . , n}
is equivalent to select each coordinate function f0

j . Thus, the other rows can be
obtained by calculating the Walsh transform of the linear combinations of the
functions f0

j . Interestingly, the functions that depend only on the first k variables
have zeros after the first 2k coefficients.

Proposition 11. Let f be a n–variable Boolean function. The function f de-
pends only on the first jth variables (j ≤ n) if and only if

∀u, supp(u) /∈ {1, . . . , j}, f̂χ(u) = 0

Proof. Let us express the Walsh transform of a n–variable function f that indeed
depends only on the first jth variables. It can be expressed, for u ∈ �

j
2 and

v ∈ �n−j2 , as
f̂χ(u|v) =

∑
y∈�n−j

2

(−1)v·y
∑
x∈�j

2

(−1)f(x|0)+u·x.

This implies that f̂χ(u|v) = 0 if v = 0, which proves that Conversely, for x ∈ �j2
and y ∈ �

n−j
2 , one has fχ(x|y) = 1

2n

̂̂
fχ(x|y) = 1

2n

∑
u,v f̂χ(u|v)(−1)x·u+v·y.

As it is assumed that, for v = 0, one has f̂χ(u|v) = 0, we deduce f(x|y) =
1
2n

∑
u f̂χ(u|0)(−1)u·x. It is clear that this expression does not depend on y and

the result holds. ��
This proposition implies that if the coordinate functions f0

j are chosen so that
it depends only on the first j − 1 variables then, Wf0 is of the form (15). This
is true since the rows u < ej are Walsh transforms of linear combinations of
functions that depend on the first j − 1 variables. Note that the function f0

0 has
to be constant, its value is therefore either 0 or 1.

We propose to construct a (3, 3)–function f0 so that its Walsh matrix has the
desire structure of an upper triangular matrix. According to the aforementioned
considerations, a function f0 which fulfills the required constraints can be

f0 =

⎧⎨⎩f0
0 = 0

f0
1 = x0

f0
2 = x1 + x0x1

(21)
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Its Walsh transform is

Wf0 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

8 0 0 0 0 0 0 0
8 0 0 0 0 0 0 0
0 8 0 0 0 0 0 0
0 8 0 0 0 0 0 0
4 −4 4 4 0 0 0 0
4 −4 4 4 0 0 0 0
−4 4 4 4 0 0 0 0
−4 4 4 4 0 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(22)

As pointed out before, there are no particular restriction on the function f1. The
sole lower triangular structure of Wf0 suffices to guarantee that any sequence
that contains three 0s self-synchronizes the system.

This is one approach to build self-synchronizing functions. But as it can be
seen the lower triangular structure of Wf0 implies a very specific structure to
f0. It would now be interesting to find out other constructions that release the
constraint on f0.

7.2 Application to Self-synchronizing Stream Ciphers

In this section, we are interested in the self-synchronizing property for crypto-
graphic purposes and more exactly for the design of a so called Self-Synchronizing
Stream Cipher (SSSC for short). The reader may refer to [6], [7] for examples
of SSSC proposed through the eSTREAM European project devoted to stream
ciphers. At the transmitter side, the canonical equations governing an SSSC read⎧⎨⎩xk = ϕ�(yk, . . . , yk−�)

zk = h(xk, yk)
yk = zk + uk

(23)

and at the receiver side, the equations read⎧⎨⎩ x̂k = ϕ�(yk, . . . , yk−�)
ẑk = g(x̂k, yk)
ûk = ẑk + yk

(24)

The sequences (z) and (ẑ) are the respective key-streams, xk and x̂k are the
respective internal states. The ciphering is performed by the exclusive-OR be-
tween the key-stream and the plain-text while the deciphering is performed
by the exclusive-OR between the key-stream and the cipher-text. Let us note
that (23) and (8) can not directly be identified. It is clear that proper decryp-
tion is achieved whenever ẑk = zk. Actually, since ϕ� depends at both ends on
the same arguments, such a condition is always fulfilled. It is nothing but a
synchronization condition.

We propose to resort to the dynamical system (9) for delivering the key-stream
instead of a static function like ϕ�. The objective of resorting to a recursive
approach is to get a more complex ciphering function with a same computational
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cost. However not all dynamical systems are admissible. Indeed, in (9), f must
have the self-synchronization property. Assuming that (9) is finite time self-
synchronizing, the state vector x̂k must have to be precisely expressed as a
function ϕ� that does not depend on x̂k−�. It must read{

x̂k = φ�(yk, . . . , yk−�, x̂k−�) = ϕ�(yk, . . . , yk−�)
ẑk = g(x̂k, yk)

, (25)

where φ� is the iterated function. It has been stressed in [8] and [9] that this is
related to the flatness property borrowed from control theory.

If f has the statistical self-synchronization property, it means that � is not
bounded and this may increase the complexity of the next-state function f caus-
ing the diffusion/confusion properties of the cipher to increase. Besides, if � is
not bounded, the canonical representation cannot be obtained in an explicit way.
That prevents from any practical implementation. We illustrate the statistical
self-synchronizing property. Let us turn back to the example of Section 7.1. It
has been pointed out that f1 can be arbitrary. We define for example f1 as

f1 =

⎧⎨⎩f1
0 = x0x1 + x1x2 + x0x1x2

f1
1 = x0x1 + x2

f1
2 = x1x2 + x0

(26)

Consequently, the function f is defined as

f(y, x) = (y + 1)f0(x) + yf1(x) (27)

Below is given the third iterated function φ2.

φ2 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(φ2)0 = x0x2yk−2yk−1yk + x0x1x2yk−2yk−1yk
(φ2)1 = x0x1yk−2yk−1 + x0x2yk−2yk−1 + x1x2yk−2yk−1

+x0x1x2yk−2yk−1 + x0yk + x0yk−2yk + x2yk−2yk
+x1x2yk−2yk + x0yk−1yk + x0yk−2yk−1yk + x0x1yk−2yk−1yk
+x2yk−2yk−1yk + x0x2yk−2yk−1yk

(φ2)2 = x0x1yk−2 + x1x2yk−2 + x0x1x2yk−2 + x1yk−1 + x0x1yk−1
+x0yk−2yk−1 + x1yk−2yk−1 + x0x1yk−2yk−1 + x0x2yk−2yk−1
+x1x2yk−2yk−1 + x0x1yk−2yk + x1x2yk−2yk + x0x1x2yk−2yk
+x1yk−1yk + x0x1yk−1yk + x0yk−2yk−1yk + x1yk−2yk−1yk
+x0x2yk−2yk−1yk

(28)
Such a simple example illustrates the relevance of resorting to a recursive ap-
proach. Indeed we can easily imagine the complexity of implementing the canon-
ical form instead of the recursive equations when � is large. Besides, as stressed
above, when � is not bounded, an explicit expression cannot be obtained.

8 Conclusion

In this paper a spectral characterization of the synchronization property of
Boolean dynamical systems has been provided. Conditions on the spectrum of
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the next-state function have been derived for two systems coupled in a unidirec-
tional way to guarantee self-synchronization. Two kinds of self-synchronization
have been considered: the statistical one and the finite one. Next some condi-
tions have been stated for a specific input sequence to allow the system to be
self-synchronizing. Some of the results have been based on the notion of influence
of variables, a notion that have been extended to vectorial Boolean functions for
the purpose of the paper. A potential application to cryptography has finally
been given as an illustrative example. To obtain a complete cryptosystem setup,
further work will investigate relevant classes of boolean functions as well as
cryptanalysis aspect.
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Abstract. In the paper, some new almost-perfect (AP), odd-perfect
(OP) and perfect polyphase and almost-polyphase sequences derived
from the Frank and Milewski sequences are presented. The considered
almost-polyphase sequences are polyphase sequences with some zero ele-
ments. In particular, we constructed AP 2t+1- and 2t+2-phase sequences
of length 2 · 4t and 4t+1, OP 2t+1- and 2t+2-phase sequences of length
4t and 2 · 4t, OP 2t+1- and 2t+2 - phase sequences of length 4t(pm + 1),
(pm − 1) ≡ 0 (mod 2 · 4t) with 4t zeroes and length 2 · 4t(pm + 1),
(pm − 1) ≡ 0 (mod 4t+1) with 2 · 4t zeroes, and perfect 2t+1- and
2t+2 - phase sequences of length 4t+1(pm + 1) with 4t+1 zeroes and
2 · 4t+1(pm + 1) with 2 · 4t+1 zeroes. It is shown that the phase alpha-
bet size of the obtained OP and perfect almost-polyphase sequences is
much smaller in comparison with the known OP and perfect polyphase
sequences of the same length and the alphabet size of some new OP
polyphase sequences is minimum.

1 Introduction

Polyphase and almost-polyphase sequences with good periodical autocorrelation
properties and small phase alphabet size are widely used in digital communica-
tion and radar engineering [1-4]. In many applications it is important to have
sequences with perfect, almost-perfect or odd-perfect autocorrelation functions.
A polyphase sequence x = {xi} with a phase alphabet size Q is a sequence whose
element xi ∈ exp(2πik/Q), 0 ≤ k < Q. Accordingly a sequence is called a per-
fect if all its out-of-phase autocorrelation coefficients are zero, an almost-perfect
(AP) if all its out-of-phase autocorrelation coefficients except one are 0 and an
odd-perfect (OP) if all its out-of-phase odd-periodic autocorrelation coefficients
are 0 [1,4].

Perfect polyphase sequences include Q-phase Frank sequences of length Q2

[5], 2N -phase (N even) or N -phase (N odd) Zadoff-Chu sequences of length N
[3,6], Qu+1-phase Milewski sequences of length Q2u+1 [7], and their various mod-
ifications and combinations [3]. Unfortunately, the perfect polyphase sequences
with small alphabet sizes can be built only for a few lengths. This drawback
can be overcome by adding zeroes in sequences. In the result perfect polyphase
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sequences with one or some zeroes whose phase alphabet size doesn’t depend
on their length have been constructed. In [4] such perfect sequences are called
the perfect almost-polyphase sequences. Following [4], we say that a polyphase
sequence with zeroes is an almost-polyphase sequence if its number of zeroes is
much smaller than the sequence length. Note that in this case the sequence has
peak-factor close to 1 [2].

Among perfect almost-polyphase sequences are ternary Ipatov and Hoholdt-
Justesen sequences [2,8] of length (pmk − 1)/(pm − 1),p odd prime, k odd and
(2pmk − 1)/(2m− 1), k odd accordingly, quadriphase Lee sequences [9] with one
zero element and length (pm+1) ≡ 2 (mod 4), 8-phase Lüke sequences [10] with
one zero element and length (pm + 1) ≡ 4 (mod 8), 8-phase sequences with two
zeroes and length 2(pm + 1) ≡ 4 (mod 8) [11], etc. [12,13,14].

AP and OP polyphase and almost-polyphase sequence sets are also well
known. In particular, there are AP binary sequence set of length 2(pm+1), p odd
prime discovered by Wolfmann [15], Langevin [16], Pott and Bradley [17] and AP
ternary (APT) sequences of length 2(qk − 1)/(q− 1) proposed by Langevin [18].
In 2001 Lüke built a new class of AP quadriphase sequences of length pj +1 ≡ 2
(mod 4) , p odd prime [19]. Later, APT sequences of length 4(pkm−1)/(pm−1),
(pm−1) ≡ 0 (mod 4) and in particular, APT sequences of length 4(pm+1) with
four zeroes were found [20]. According to [20,21], the above APT sequences of
length N generate OP ternary (OPT) sequences of length N/2. In particular,
the APT sequences of length 2(pm+1) and 4(pm+1), (pm−1) ≡ 0 (mod 4) with
two and four zeroes generate the OPT sequences of length pm+1 and 2(pm+1)
with one and two zeroes.

In 2006 Zeng, Hu and Liu presented a novel method for constructing AP
polyphase sequences based on shift sequences of m-sequences [22]. In particular,
several new families of AP quadriphase sequences of lengths J(pm+1), (pm−1) ≡
0 (mod J) where J = 4, 8 were obtained.

There is another method for constructing perfect and OP polyphase sequences.
It is even-odd transformation (EOT) translating every perfect polyphase se-
quence to an odd-perfect sequence of the same length and vice versa [23].

In the paper, on the basis of the Frank and Milewski sequences we present the
following new AP, OP and perfect polyphase and almost-polyphase sequences:

- AP and OP Q-phase sequences of length Q2/2 and Q2/4. Here and further
Q is even.
- AP and OP Q2/2-phase sequences of length Q3/2 and Q3/4 when Q/2
odd and Qu+1-phase sequences of length Q2u+1/2 and Q2u+1/4 when Q/2 even
or u > 1.
- AP Q-phase sequences of length Q2(pm + 1)/2, (pm− 1) ≡ 0 (mod Q2/2).
- AP Q2/2-phase sequences of length Q3(pm+1)/2, (pm−1) ≡ 0 (mod Q3/2)
when Q/2 odd and Qu+1-phase sequences of length Q2u+1(pm+1)/2, (pm−1) ≡ 0
(mod Q2u+1/2) when Q/2 even or u > 1.
- OP Q-phase sequences of length Q2(pm + 1)/4, (pm− 1) ≡ 0 (mod Q2/2)
with Q2/4 zeroes.
- OP Q2/2-phase sequences of length Q3(pm+1)/4, (pm−1) ≡ 0 (mod Q3/2)
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with Q3/4 zeroes when Q/2 odd and Qu+1-phase sequences of length Q2u+1(pm+
1)/4, (pm−1) ≡ 0 (mod Q2u+1/2) with Q2u+1/4 zeroes when Q/2 even or u > 1.
- Perfect 2t+1- and 2t+2 - phase sequences of length 4t+1(pm + 1) with 4t+1

zeroes, (pm − 1) ≡ 0 (mod 2 · 4t) and length 2 · 4t+1(pm + 1) with 2 · 4t+1

zeroes, (pm − 1) ≡ 0 (mod 4t+1). In particular, perfect 4-phase sequences of
length 16(pm + 1), (pm − 1) ≡ 0 (mod 8) with 16 zeroes and also 8-phase se-
quences of length 32(pm + 1), (pm − 1) ≡ 0 (mod 16) with 32 zeroes and length
of 64(pm + 1), (pm − 1) ≡ 0 (mod 32) with 64 zeroes.

The remainder of the paper is organized as follows. Section 2 contains some
notations and definitions necessary for sequence constructions. In Section 3 we
construct AP and OP polyphase sequences of length Q2/2, Q2u+1/2 and Q2/4,
Q2u+1/4 accordingly. Section 4 describes constructions of AP polyphase and
almost-polyphase sequences of length Q2(pm + 1)/2, (pm − 1) ≡ 0 (mod Q2/2)
and Q2u+1(pm+1)/2,(pm−1) ≡ 0 (mod Q2u+1/2) and also OP almost-polyphase
sequences of length Q2(pm+1)/4 and Q2u+1(pm+1)/4. In Section 5 we construct
perfect 2t+1- and 2t+2 - phase sequences of length 4t+1(pm + 1),(pm − 1) ≡
0 (mod 2 · 4t) and 2 · 4t+1(pm + 1),(pm − 1) ≡ 0 (mod 4t+1) with 4t+1 and
2 · 4t+1 zeroes accordingly. Section 6 includes some examples of the sequence
constructions. Section 7 concludes the paper.

2 Preliminaries

Notations:

- Trnm(α) =
n/m−1∑
i=0

αp
im

, the trace function of an element α ∈GFpn) to GF (pm);

- indβz, the index (logarithm) function z to base β ;

- θx(l) =
N−1∑
i=0

xix
∗
i+l, the periodic (even) autocorrelation function (ACF) of a

sequence x = {xi} with length N . Here x∗
i denotes the complex conjugate of xi;

- θ̂x(l) =
N−l−1∑
i=0

xix
∗
i+l +

N−1∑
i=N−l

xix̄
∗
i+l−N , the odd-periodic ACF of a sequence

x = {xi};

- θxy(l) =
N−1∑
i=0

xiy
∗
i+l, the periodic (even) cross-correlation function (CCF) of

sequences x = {xi} and y = {yi} with length N .

The even-odd transformation (EOT) with an integer parameter t of any sequence
s = {sj} of length N is given by [23]

sj〈t〉 = sj exp(iπj(2t + 1)/N) , j = 0, 1, 2 . . . , N − 1, i =
√
−1. (1)

Let θrs(τ) and θ̂rs(τ) be the even and odd-periodic CCF of sequences r and s
of length N . Let θr〈t〉s〈t〉(τ) and θ̂r〈t〉s〈t〉(τ) be the even and odd-periodic CCF
of sequences r〈t〉 and s〈t〉 of length N . Then according to [23],

|θr〈t〉s〈t〉(τ)| = |θ̂rs(τ)| (2)
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and
|θ̂r〈t〉s〈t〉(τ)| = |θrs(τ)|. (3)

Note that in the case r = s the EOT coincides with the binary to P -phase (BTP)
transform introduced by Lüke in [10].

A Frank sequence fr = {f rn} is a perfect Q-phase sequence of length N = Q2

with elements [5,3]

f rn = exp(2πirjk/Q) = αrjk, 0 ≤ j, k < Q, (4)

where 0 ≤ n = jQ + k ≤ Q2 − 1, (r, Q) = 1, α = exp(2πi/Q), Q - an integer.
A Zadoff-Chu sequence cr = {crj} is a perfect polyphase sequence of length

N with elements [6,3]

crj =

{
exp(iπr(j + 1)j/N), N odd
exp(iπrj2/N), N even

0 ≤ j < N, (r, N) = 1. (5)

A Milewski sequence ṁr = {ṁr
n} is a perfect Qu+1-phase sequence of length

N = Q2u+1 with elements [7]

ṁr
n = ṁr

jQu+k = dr
j(modQ)

βrjk, β = e2πi/Qu+1
, (6)

where dr = {drs}, 0 ≤ s < Q is a Zadoff-Chu sequence of length Q, j = 0, 1, . . .,
Qu+1 − 1, k = 0, 1, . . . , Qu − 1, (r, Q) = 1.
A modulatable Frank sequence f̆r = {f̆ rn} is a perfect polyphase sequence of
length N = Q2 with elements [3]

f̆ rn = b̆kf
r
jQ+k,

where b̆k, 0 ≤ k < Q, are arbitrary complex numbers with absolute values of 1.
Correspondingly, a modulatable Milewski sequence m̆r = {m̆r

n} is a perfect
polyphase sequence of length Q2u+1 with elements [3]

m̆r
n = b̂kṁ

r
jQu+k,

where b̂k, k = 0, 1, . . . , Qu − 1, are arbitrary complex numbers with absolute
values of 1.

Let N = sm2 and s be square free. Then according to Mow’s conjecture
and its extension [4], the minimum alphabet size for perfect and odd-perfect
polyphase sequences of length N is

Pmin =

{
2sm, for even s and old m

sm, else
(7)

and

Pmin,odd =

{
sm, for even s and old m

2sm, else
. (8)
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3 AP and OP Polyphase Sequences Derived from the
Frank and Milewski Sequences

Let x be a perfect polyphase sequence of length N = 2gl, l odd and the phase
alphabet size P . According to (1), the EOT with parameter 2t + 1 = l of the
sequence x is an OP sequence y of length N with the phase alphabet size
LCM(P, 2g+1). Then using the OP sequence y we can build an AP sequence
w = y · ȳ of length 2N , where ȳj = −yj. Now let us apply the EOT to the Frank
and Milewski perfect polyphase sequences. Note that Frank sequences possess
the minimum phase alphabet size for any Q whereas the Milewski sequences
have the minimum alphabet size only when Q is a product of different primes.

Obviously, the phase alphabet sizes of the OP and AP sequences derived from
the Frank and Milewski sequences of odd length are 2Q and 2Qu+1 accordingly.
For even length the situation is more complicated. Suppose Q = 2ds, s odd. The
alphabet sizes of the OP(AP) sequences derived from the Frank and Milewski se-
quences by the EOT are LCM(Q, 22d+1) = Q2d+1 and LCM(Qu+1, 2(2u+1)d+1) =
Q2du+1 accordingly. Then for Q = 2d we get the OP(AP) 22d+1-phase and
2d(2u+1)+1-phase sequences. At the same time according to (8), Pmin,odd for OP
polyphase sequences of length 22d and 2d(2u+1) is 2d+1 and 2du+d/2+1 if d even
or 2du+(d+3)/2 otherwise. It follows that the alphabet size of these OP(AP) se-
quences is much greater than Pmin,odd.

However there are two other methods for constructing AP and OP polyphase
sequences with much smaller alphabet size. The first method consists of finding
such modulatable Frank and Milewski sequences whose EOT have the minimum
alphabet size. It is possible for all Frank sequences and for those Milewski se-
quences that have the minimum alphabet size. The second method is based on a
decomposition of the Frank and Milewski sequences of even length. In the paper
we consider the second method since it does not need the EOT.

Theorem 1. Let fr = {f rn}, 0 ≤ n < N be a Q-phase Frank sequence of length
N = Q2, Q ≥ 4 even. Let δr = {δrn}, 0 ≤ n < N/2 be a sequence of length Q2/2
with elements δrn = f r2n+1 . Let ηr = {ηrn} and ϕr = {ϕrn} , 0 ≤ n < N/4 be
sequences of length Q2/4 with elements ηrn = f r2n and ϕrn = f r2n+N/2 accordingly.
Then

1. ηr = ϕr;
2. δr is an AP Q-phase sequence of length Q2/2;
3. ηr and ϕr are Q/2-phase Frank sequences of length Q2/4.

Proof. Suppose Q = 2t. From (4) it follows that ηr = ϕr. For the sequence ηr we
have 2n = Qj1+k, k = 2k1, 0 ≤ j1, k1 < Q/2. Then ηrn = f r2n = exp(2πirk1j1/t).
Since n = tj1 + k1, 0 ≤ n < t2, 0 ≤ k1, j1 < t, the sequence ηr(ϕr) is a Q/2-
phase Frank sequence of length Q2/4. Now, since fr is the perfect sequence with
θ(0) = N and ηr(ϕr) is the perfect sequence with θ(0) = N/4, we conclude that
δr is an AP Q-phase sequence of length Q2/2. ��
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From δrn = −δrn+N/4, 0 ≤ n < N/4 we get that a sequence {f r2n+1}, 0 ≤ n <

N/4 is an OP Q-phase sequence of length Q2/4. Besides, according to (8), the
obtained OP sequences have the minimum phase alphabet size. In particular,
the 4- and 8-phase Frank sequences of length 16 and 64 generate the AP (OP)
4- and 8-phase sequences of length 8(4) and 32(16) accordingly. Note that the
AP 4-phase sequence of length 8 was found early in the result of an exhaustive
computer search [22].

Theorem 2. Let ṁr = {ṁr
n}, 0 ≤ n < N be a Qu+1-phase Milewski sequence of

length N = Q2u+1, Q even. Let εr = {εrn}, 0 ≤ n < N/2 be a sequence of length
Q2u+1/2 with elements εrn = ṁr

2n+1. Let μr = {μrn}, ωr = {ωrn}, 0 ≤ n < N/4
be sequences of length Q2u+1/4 with elements μrn = ṁr

2n and ωrn = ṁr
2n+N/2

accordingly. Then

1. μr = ωr ;
2. if Q/2 odd and u = 1, then εr is an AP Q2/2-phase sequence of length Q3/2
and μr (ωr) is a perfect Q2-phase sequence of length Q3/4 ;
3. if Q/2 even or u > 1, then εr is an AP Qu+1-phase sequence of length Q2u+1/2
and μr (ωr) is a perfect Qu+1/2-phase sequence of length Q2u+1/4.

Proof. The proof is similar to the one given in [7]. From (6) we easily find
that μr = ωr. Consider an array M̂r = (m̂r

jk), where m̂r
jk = dj(modQ)β

rjk,

j = 0, 1, . . . , Qu+1 − 1, k = 0, 1, . . . , Qu − 1. Obviously, M̂r being unfolded
row by row is associated with the sequence ṁr. According to [7], the columns of
the array M̂r are pairwise orthogonal. Then an array (m̃r

jk),where m̃r
jk = m̂r

j,2k,

j = 0, 1, . . . , Qu+1/2 − 1, k = 0, 1, . . . , Qu/2 − 1 can be associated with the
sequence μr. Clearly, its columns are pairwise orthogonal too. Let D = Qu+1/2
and F = Qu/2. It follows that θμ(l) = 0, l = 0 (mod F ). If l = cF, c = 0
(mod D) then

θμ(l) =
D−1∑
j=0

F−1∑
k=0

m̂r
j,2km̂

r∗
j+c,2k =

D−1∑
j=0

F−1∑
k=0

drjβ
rj2kdr∗j+cβ

−r(j+c)2k

= (
D−1∑
j=0

drjd
r∗
j+c)(

F−1∑
k=0

β−2rck). (9)

There are two cases: when c = 0 (mod Q) and when c ≡ 0 (mod Q).
Case c = 0 (mod Q). Then the first factor in the right part of the expression

(9) is zero because drn is the perfect sequence.
Case c ≡ 0 (mod Q). Then β−2rc is an F th root of unity. On the other hand,

β−2rc = 1 since c = 0 (mod D). Therefore, the second factor of the right part
(9) is also zero. It follows that μrn is a perfect sequence. Then by the above, εr

is an AP sequence of length Q2u+1/2. From (5) and (6) it follows that if Q/2
odd and u = 1 then the sequences εr and μr are Q2/2- and Q2-phase sequences.
Otherwise, the sequences εr and μr are Qu+1- and Qu+1/2-phase sequences. ��
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From εrn = −εrn+N/2, 0 ≤ n < N/4 it follows that a sequence {εrn}, 0 ≤ n < N/4
is an OP sequence of length Q2u+1/4. There are two cases: when Q = 2 and
when Q = 2.

The case Q = 2. It can be shown that when Q/2 = p1p2...pn is a product of
different odd primes the obtained perfect and OP polyphase sequences of length
Q2u+1/4 have the minimum phase alphabet size (7,8). In the converse case the
alphabet size of these sequences is an integer multiple of Pmin and Pmin,odd.
Our analysis shows that these perfect sequences are the products either of two
modulatable Milewski sequences or a modulatable Milewski sequence and the
Zadoff-Chu sequence 1 i.

The case Q = 2. When u = 1 the sequence μrn is the 4-phase Zadoff-Chu
sequence 1, i of length 2 and the sequence εr is 1,-1,-1,1. On the contrary, when
u > 1, by construction it follows that μrn is the 2u-phase Milewski sequence of
length 22u−1 while εr is AP 2u+1-phase sequence of length 22u. The obtained
AP and OP 2u+1-phase sequences are new and possess the minimum alphabet
size. For example, the 8-phase Milewski sequence of length 32 generates the 4-
phase Milewski sequence of length 8 and the AP (OP) 8-phase sequence of length
16 (8). Note also that the same OP 2u+1-phase sequences can be obtained by
applying the EOT to some modulatable Milewski sequences of length 22u−1.

Thus by Theorem 1 and Theorem 2, we can construct the new AP (OP) 2t+1-
and 2t+2-phase sequences of length 2·4t and 4t+1 (4t and 2·4t) with the minimum
phase alphabet size. Besides, these AP sequences are balanced.

4 Some AP and OP Polyphase and Almost-Polyphase
Sequences Derived from Shift Sequences

Let p > 2 be a prime, α be a primitive element of GF (pn), and β be a primitive
element of GF (pm), where n = mk, m ≥ 1,k > 1. Let b be an m-sequence over
GF(p) of length pn − 1 with elements bi = Trn1 (αi), 0≤ i < pn-1. Fold b into a
decomposition array B by columns [24] with T = (pn − 1)/(pm − 1) rows and
pm-1 columns. Its rows are either null rows or cyclic shifts of an m-sequence of
length pm-1 over GF(p). A shift sequence is defined by

e = {ei} =

{
∞, if Trnm(ai) = 0
indβ(Trnm(ai)), if Trnm(ai) = 0

, (10)

where 0≤ i < pn -1. The first T of its elements give all these cyclic shifts relatively
to the m-sequence of length pm − 1 and ∞ point to a null rows.

In [22] a method for constructing the AP polyphase sequences by using shift
sequences of m-sequences was proposed. Shortly, the method can be described
as follows. Let e be the shift sequence of the m-sequence b with n = 2m, m ≥
1. Let z = {zi} be an AP polyphase sequence of length h, h|(pm − 1) with
θ(0) = −θ(h/2) = h and the phase alphabet size γ. Let v = {vi} be a perfect
polyphase sequence of length h/2 with θ(0) = h/2 and the phase alphabet size
ν. Let v1 = v · v be twice repeated sequence v. Form an T × h array W whose
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i-th row is a cyclic shift of the sequence z by ei (mod h) when ei = ∞ or the
sequence v1 in the converse case. Let w be a sequence associated with the array
W. Then according to [22], the sequence w of length hT is an AP polyphase
sequence with the alphabet size LCM(γ, ν).

Let z and v be the AP and perfect sequences produced by Theorem 1 or 2.
As a result, we get some new AP Q-phase sequences of lengths Q2(pm + 1)/2,
(pm−1) ≡ 0 (mod Q2/2) and AP Q2/2-phase sequences of length Q3(pm+1)/2,
(pm − 1) ≡ 0 (mod Q3/2) if Q/2 odd and u = 1 and Qu+1-phase sequences of
length Q2u+1(pm + 1)/2,(pm − 1) ≡ 0 (mod Q2u+1/2) otherwise.

Note that the similar method for constructing APT sequences of length Th
was proposed in [20]. The generalization of this method for a case of AP almost-
polyphase sequences is given by the following theorem.

Theorem 3. Let p > 2 be a prime, n = mk, m ≥ 1, k > 1, and b be an
m-sequence over GF(p) of length pn − 1 with the shift sequence e = {ei} of
length T = (pn − 1)/(pm − 1). Let z = {zi} be an AP polyphase or almost-
polyphase sequence of length h, h|(pm − 1) with autocorrelation peak R and let
zi = −zi+h/2, 0 ≤ i < h/2. Let W be an T × h array whose i-th row is a
cyclic shift of the sequence z by ei (mod h) if ei = ∞ or the null sequence in
the converse case. Then a sequence w associated with the array W is an AP
almost-polyphase sequence of length N = Th with autocorrelation peak Rpn−m

and (pn(h−R) + Rpn−m − h)/(pm − 1) zeroes.

By Theorem 3, wi = wi+N/2. It follows that a sequence {wi}, 0 ≤ i < N/2 is an
OP almost-polyphase sequence of length N/2.

Consider the case when n = 2m. By Theorem 1 and 3, we get the AP Q-phase
sequences of length Q2(pm + 1)/2 with Q2/2 zeroes. Accordingly, by Theorem 2
and 3, we have the AP Q2/2-phase sequences of length Q3(pm+1)/2 with Q3/2
zeroes if Q/2 odd and u = 1 and Qu+1-phase sequences of length Q2u+1(pm+1)/2
with Q2u+1/2 zeroes otherwise. Note that length of the associated OP sequences
is twice less.

Thus, when Q is a power of two and u > 1, we get the new AP 2t+1- and 2t+2-
phase sequences of length 2 · 4t(pm + 1), (pm − 1) ≡ 0 (mod 2 · 4t) and length
4t+1(pm+1), (pm−1) ≡ 0 (mod 4t+1) with 2·4t and 4t+1 zeroes accordingly and
OP 2t+1- and 2t+2- phase sequences of length 4t(pm+1) and length 2 ·4t(pm+1)
with 4t and 2 · 4t zeroes accordingly.

5 Perfect Sequences Derived from Multiple Mix

Recently, a method for constructing perfect sequences of length 4N based on
mixing of perfect and OP sequences with length N and the same autocorrelation
peak R has been presented [14]. Shortly, the method for constructing perfect
sequences is the following. Let sequences a = {aj} and b = {bj}, 0 ≤ j < N
be accordingly arbitrary perfect and OP sequences of length N with the same
autocorrelation peak R. By concatenation, form two sequences á = a · a and
b́ = b · b̄ of length 2N where b̄ = {b̄j}, b̄j = −bj. Then a sequence f = {fn}, 0 ≤
n < 4N given by the following rule
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fn =

{
áj , n = 2j

b́j , n = 2j + 1
, 0 ≤ j < 2N (11)

is a perfect sequence of length 4N . In most cases to compose pairs of the se-
quences a and b the EOT (BTP) transform is used. The relevant sequences can
be connected by the EOT directly or indirectly through their decimations or
cyclic shifts. But there might be cases when the pairs are not connected by any
transform. In the paper we are interested in just such cases.

Let n = 2m. It is easy to show that then 8|(pm−1). Since 4|(pm−1), by [9,21]
we can form pairs of the perfect almost-quadriphase Lee sequences of length
pm + 1 and the OPT sequences of length pm + 1 with one zero. After the first
mixing we have the perfect almost-quadriphase sequences of length 4(pm + 1)
with 4 zeroes [13]. Further, since 8|(pm − 1), we can compose relevant pairs of
the obtained above perfect almost-quadriphase sequences of length 4(pm + 1)
and the OP almost-quadriphase sequences of the same length with 4 zeroes. In
the result of next mixing we get new perfect almost-quadriphase sequences of
length 16(pm + 1) with 16 zeroes.

Consider the case when 16|(pm − 1). As in the previous case, we can also
get the new perfect almost-quadriphase sequences of length 16(pm + 1) with
16 zeroes. Further, since 4|(pm − 1), let us form relevant pairs of the perfect
8-phase sequences of length 2(pm + 1) with two zeroes [11] and OPT sequences
of length 2(pm + 1) with two zeroes [20]. Mixing them, we get perfect 8-phase
sequences of length 8(pm + 1) with 8 zeroes. Since 16|(pm − 1), on the basis of
these perfect sequences and the above OP 8-phase sequences of length 8(pm+1)
we can construct new perfect 8-phase sequences of length 32(pm + 1) with 32
zeroes.

Now let 32|(pm − 1). Obviously, this case includes two previous cases. Also,
we can form pairs of the above obtained perfect almost-quadriphase sequences
of length 16(pm + 1) with 16 zeroes and the OP 8-phase sequences of length
16(pm + 1) with 16 zeroes obtained in Section 4. Applying to them the mix
method we get new perfect 8-phase sequences of length 64(pm + 1) with 64
zeroes. In this case the total number of the mixes is three.

Further, in the case 64|(pm− 1) we can form pairs of the new perfect 8-phase
sequences of length 32(pm + 1) and the above obtained OP 16-phase sequences
of length 32(pm + 1) with 32 zeroes. After mixing we have new perfect 16-phase
sequences of length 128(pm + 1) with 128 zeroes. In general, when (pm − 1) ≡ 0
(mod 2 · 4t) we get new perfect 2t+1 - phase sequences of length 4t+1(pm + 1)
with 4t+1 zeroes and when (pm−1) ≡ 0 (mod 4t+1) we get 2t+2-phase sequences
of length 2 · 4t+1(pm + 1) with 2 · 4t+1 zeroes.

Let m = 2k. Then it can easily be checked that (pm − 1) ≡ 0 (mod 2k+2).
This means that we can build perfect 4-phase sequences of length 16(p2s + 1)
and also perfect 8-phase sequences of length 32(p4s + 1) and 64(p8s + 1), s =
1, 2, 3, . . ..



396 E.I. Krengel

6 Examples

Example 1. Let n = 4, m = 2, p = 3, and x4 +x+2 be a primitive polynomial of
degree 4 over GP(3). In this case pm−1 = 8 and pm+1 = 10. According to [21],
calculate the OPT sequence 1, 1, 1, 1,−1, 0, 1, 1,−1, 1 of length 10. The perfect
almost-quadriphase Lee sequence of length 10 is 1, i,−1,−i,−1, 0,−1,−i,−1, i
[4,9]. After the first mixing we obtain the perfect almost-quadriphase sequence
1,1,i,1,-1,1, -i, 1, -1,-1, 0,0, -1, 1, -i, 1, -1, -1, i, 1, 1, -1, i, -1, -1, -1, -i, -1, -1, 1,
0, 0, -1, -1,-i, -1, -1, 1, i, -1 of length 40 with 4 zeroes.

Now on the basis of the AP almost-quadriphase sequence 1, 1, i, -i, -1,-1,
-i, i of length 8 and Theorem 3, we construct the OP almost-quadriphase se-
quence 1, i, i, -i, 1, 0, -i, -1, 1, i, 1, -i, -i, i, i, 0, i, -1, i, -i, i, -1, -1, 1, -i, 0, 1,
-i, -i, -1, -i, -1, -1, 1, -1, 0, 1, i, -1, -1 of length 40. After the next mixing we
get the perfect almost-quadriphase sequence 1,1,1,i,i,i,1,-i,-1,1,1,0,-i,-i,1,-1,-1,1,-
1,i,0,1,0,-i,-1,-i,1,i,-i,i,1,0,-1,i,-1,-1,i,i,1,-i,1,i,-1,-1,i,-1,-1,1,-1,-i,-1,0,-i, 1,-1,-i,-1,-
i,1,-1,0,-i,0,-1,-1,-1,-1,1,-i,-1,-1,0,-1,1,1,i,i,-1,-1,-1,1,-1,1,-i,i,-i,1,i,-1,-1,1,0, -i, i, 1,
1,-1,-1,-1,-i,0,-1,0,i,-1,i,1,-i, -i,-i,1,0,-1,-i,-1,1,i,-i,1,i,1,-i,-1,1,i,1,-1,-1,-1,i,-1,0,-i, -
1,-1, i,-1,i,1,1,0,i,0,1,-1,1,-1,-1,-i,1,-1,0,-1,-1,1,-i,i,1,-1,1 of length 160 with 16 ze-
roes. Note that according to (7,8), the minimum alphabet size for the perfect
and OP polyphase sequences of length 160 and 40 is 40. The combined perfect
polyphase sequences of length 160 produced by the multiplication of 8-phase
Milewski sequences of length 32 and 5-phase Zadoff-Chu sequences of length 5
have just such alphabet size. Also there is 320-phase Zadoff-Chu sequences of
length 160.

Example 2. Let n = 8, m = 4, and p = 3. In this case pm− 1 = 80 and pm+ 1 =
82. Since 16|80 , perfect almost-quadriphase sequences of length 16 ∗ 82 = 1312
with 16 zeroes and perfect almost 8-phase sequences of length 2624 with 32 zeroes
accordingly can be constructed. There exist perfect polyphase sequences with
the same lengths. Namely, there are combined perfect 328-phase sequences of
length 1312, 2624-phase Zadoff-Chu sequences of length 1312, combined perfect
328-phase sequences of length 2624 and the 5248-phase Zadoff-Chu sequence of
length 2624. Note that the minimum alphabet size for the perfect polyphase
sequences with length 1312 and 2624 is 328.

Example 3. Let p = 193 and m = 1. Then p−1 = 192, p+1 = 194 and 64|192. Us-
ing Theorem 1, we can construct perfect almost-quadriphase sequences of length
3104 with 16 zeroes and perfect almost 8-phase sequences of length 12416 with
64 zeroes. Further, using Theorem 2, we can construct perfect almost 8-phase
sequences of length 6208 with 32 zeroes and perfect almost 16-phase sequences of
length 24832 with 128 zeroes. There are also perfect polyphase sequences with
the same lengths like perfect combined 776-phase sequences and 6208 -phase
Zadoff-Chu sequences of length 3104, perfect combined 776-phase sequences and
12416-phase Zadoff-Chu sequences of length 6208, perfect combined 1552-phase
sequences and 24832-phase Zadoff-Chu sequences of length 12416, and perfect
combined 1552-phase sequences and 49664-phase Zadoff-Chu sequences of length
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24832. Note that the minimum alphabet sizes for the perfect polyphase sequences
of length 3104, 6208, 12416, and 24832 are 776,776, 1552, and 1552 accordingly.

7 Conclusions

The constructions described in this paper allow to get some new AP, OP and
perfect polyphase and almost-polyphase sequence sets of different nature and
structure. None the less all these sequences are connected with each other as
they are based on the Frank, Zadoff-Chu, and Milewski perfect sequences [3].

The phase alphabet size of the constructed perfect and OP almost-polyphase
sequences is much smaller in comparison with the known perfect and OP
polyphase sequences with the same length. Moreover, some of the new OP
polyphase sequences possess the minimum alphabet size.

The presented results allow to conjecture that the perfect polyphase sequences
generate the OP polyphase sequences with the minimum alphabet size if and only
if their alphabet size is minimum.

Due to their good autocorrelation, the considered sequences can be used in
communication systems for synchronization and channel estimation as well as in
radar and sonar systems for ranging.
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Abstract. A sequence a = (a0, a1, a2, · · · , an) is said to be an almost
p-ary sequence of period n + 1 if a0 = 0 and ai = ζbi

p for 1 ≤ i ≤ n,
where ζp is a primitive p-th root of unity and bi ∈ {0, 1, · · · , p − 1}.
Such a sequence a is called perfect if all its out-of-phase autocorrelation
coefficients are zero; and is called nearly perfect if its out-of-phase auto-
correlation coefficients are all 1, or are all −1. In this paper, on the one
hand, we construct almost p-ary perfect and nearly perfect sequences; on
the other hand, we present results to show they do not exist with certain
periods. It is shown that almost p-ary perfect sequences correspond to
certain relative difference sets, and almost p-ary nearly perfect sequences
correspond to certain direct product difference sets. Finally, two tables
of the existence status of such sequences with period less than 100 are
given.

Keywords: almost p-ary sequences, almost p-ary perfect sequences, al-
most p-ary nearly perfect sequences, relative difference set, direct product
difference set.

1 Introduction

Let a = (a0, a1, a2, · · · , an) be a complex sequence of period n + 1. We call a
an m-ary sequence if ai = ζbi

m , where ζm is a primitive m-th root of unity and
bi ∈ {0, 1, · · · , m − 1} for 0 ≤ i ≤ n. In particular, the sequence a is called an
almost m-ary sequence if a0 = 0. For an (almost) m-ary sequence a with period
n + 1, the autocorrelation coefficients of a are the elements in the set

{Ct(a) =
n∑
i=0

aiai+t : 0 ≤ t ≤ n},
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where · is the complex conjugate and all subscripts are computed modulo n + 1.
For all t ≡ 0 mod (n + 1), the Ct(a)′s are called out-of-phase autocorrelation
coefficients, and in-phase autocorrelation coefficients otherwise.

Motivated by applications in engineering, sequences with small out-of-phase
coefficients are of particular interests. Usually, the complex sequence a is ex-
pected to have a two-level autocorrelation function, i.e. all out-of-phase autocor-
relation coefficients are a constant γ. For an almost m-ary sequence a, we call a
perfect if it has a two-level autocorrelation function and γ = 0. Moreover, we call
a nearly perfect if out-of-phase autocorrelation coefficients γ all satisfy γ = 1,
or all they satisfy γ = −1. We refer to [7] for a well-rounded survey on perfect
binary sequences, to [9] for results of perfect and nearly perfect p-ary sequence,
where p is an odd prime. In the following we briefly introduce the relationship
between (almost) binary (with entries ±1) perfect sequences and (Conference)
Hadamard matrices.

A matrix H with entries ±1 and order v is called a Hadamard matrix if
HHT = vI; and a matrix C with entries 0,±1 and order v is called a Conference
matrix if CCT = (v − 1)I, where I is the identity matrix. It is well known
that perfect binary (with entries ±1) sequences of period v are equivalent to
cyclic difference sets (see [7, Section 2]). In particular, when v ≡ 0 mod 4,
the perfect binary sequences are equivalent to circulant Hadamard matrices, or
cyclic Hadamard difference sets (see [12, Section 1.1]). More precisely, let a =
(a0, a1, . . . , av−1) be a binary perfect sequence of period v. Let H = (hi,j)v−1

i,j=0
be a circulant matrix (H is called circulant if hi+1,j+1 = hi,j for all i, j) defined
by h0,j = aj for j ∈ Zv, then H is a circulant Hadamard matrix of order
v. Similarly, let a = (a0, a1, . . . , av−1) be an almost binary perfect sequence,
i.e. a0 = 0 and ai = ±1 for 1 ≤ i ≤ v − 1. Then the circulant matrix C =
(hi,j)v−1

i,j=0 defined by h0,j = aj for j ∈ Zv is a circulant Conference matrix.
The famous circulant Hadamard matrices conjecture is that there do not exist
circulant Hadamard matrices if v > 4. In contrast to this still open problem,
an elegant and elementary proof in [13] shows that there do not exist circulant
Conference matrices: It seems that the mathematical behavior of binary perfect
sequences and almost binary perfect sequences are quite different, which is one
motivation of our paper. In this paper, we study the properties of general almost
p-ary perfect sequences, where p is a prime. It turns out that almost p-ary perfect
sequences of period n+1 are equivalent to (n+1, p, n, (n−1)/p) relative difference
sets in Zn+1 × Zp relative to Zp (Theorem 1).

The lack of examples of almost p-ary perfect sequences motivates our research
in almost p-ary nearly perfect sequences. It is shown that periodic almost p-ary
nearly perfect sequences correspond to certain direct product difference sets
(Theorem 6).

This paper is organized as follows. In Section 2, we give necessary defini-
tions and results. The discussions about almost p-ary perfect and nearly perfect
sequences are given in Section 3 and 4 respectively. In Appendix, we give two ta-
bles of the existence status of almost p-ary perfect and nearly perfect sequences
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with period less than 100. Our results generalize those about perfect and nearly
perfect p-ary sequences which have been done by Ma and Ng in [9].

2 Preliminaries

In this section, we give necessary definitions and results used in this paper.

2.1 Relative Difference Sets, Characters and Group Rings

To facilitate the study of difference sets by using group rings and character
theory, we use the multiplicatively written group G = 〈g|gn = 1〉 instead of
the additively written group Zn. We refer to [10] for the basic facts of group
rings and [8] for character theory on finite fields. In the following, we identify
a subset A of G with a group ring element

∑
a∈A a of C[G] and we still denote

it by A. For any integer t, we define A(t) =
∑
a∈A at. For a group ring element

A =
∑
g∈G agg ∈ C[G], we define |A| =

∑
g∈G ag.

Let G be an abelian group of order mn and let N be a subgroup of order n.
A k-subset R of G is said to be an (m, n, k, λ) relative difference set (RDS) in
G relative to N if all elements not in N can be represented exactly λ times as
the form

r1r
−1
2 , r1, r2 ∈ R and r1 = r2,

and no element in N can be represented as this form. In the language of group
rings, R is an (m, n, k, λ) relative difference set in G relative to N if and only if

RR(−1) = k + λ(G−N).

A k-subset D of a group G is said to be a (v, k, λ) difference set (DS) if all
non-identity elements of G can be represented exactly λ times as the form

d1d
−1
2 , d1, d2 ∈ D, d1 = d2.

We refer to [2] for details on difference sets. Relative difference sets can be
regarded as the “lifting” of difference sets.

Result 1. [11, Lemma 1.1.12] Let R be an abelian (m, n, k, λ)-RDS in G relative
to N , where N is a subgroup of G of order n. Let L be a subgroup of N of order l
and let ρ : G→ G/L be the natural epimorphism. Then ρ(R) is an (m, nl , k, lλ)-
RDS in G/L relative to N/L. Moreover, if L = N , then ρ(R) is an (m, k, nλ)
difference set in G/L.

The following result provides a useful method to prove a k-subset R of G to be
an (m, n, k, λ)-RDS.

Result 2. Let G be an abelian group of order mn and let N be a subgroup of G
of order n. A k-subset R is an (m, n, k, λ)-RDS in G relative to N if and only if

χ(R)χ(R) =

⎧⎨⎩
n if χ is not principal on N,
k − nλ if χ is principal on N but nonprincipal on G,
k2 if χ is principal on G,

(1)

where χ is a character of G.
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A prime p is said to be self-conjugate modulo w if pj ≡ −1 mod (w′) for some
j, where w′ is the maximal p-free part of w, i.e. the maximal factor of w which
is relative prime to p. A composite integer m is said to be self-conjugate modulo
w if every prime divisor of m is self-conjugate modulo w. The self-conjugate
condition is quite useful in determining the existence of RDSs. The following
two results are used later; see [11].

Result 3. Let p be a prime and ζw be a primitive w-th root of unity in C.

1. If w = pe, then the decomposition of the ideal (p) into prime ideals is (p) =
(1− ζw)φ(w).

2. If (w, p) = 1, then the prime ideal decomposition of the ideal (p) is (p) =
π1 · · ·πg, where π′

is are distinct prime ideals. Furthermore, g = φ(w)/f where
f is the order of p modulo w. The field automorphism ζw → ζpw fixes the ideals
πi.

3. If w = pew′ with (w′, p) = 1, then the prime ideal (p) decomposes as (p) =
(π1 · · ·πg)φ(pe), where π′

is are distinct prime ideals and g = φ(w′)/f . If t is
an integer not divisible by p and t ≡ ps mod (w′) for a suitable integer s,
then the field automorphism ζw → ζtw fixes the ideals πi.

2.2 Two Important Lemmas

The following two lemmas are crucial to the proof of our results in Section 3 and
4. They deal with the cases whether the self-conjugate condition is satisfied or
not. We record them here for the convenience of the reader.

Lemma 1. [9] Let q be a prime and α be a positive integer. Let K be an abelian
group such that either q does not divide |K| or the Sylow q-subgroup of K is
cyclic. Let L be any subgroup of K and Y ∈ Z[K] where the coefficients of Y lie
between a and b where a < b. Suppose

1. q is self-conjugate modulo exp(K);
2. qr|χ(Y )χ(Y ) for all χ ∈ L⊥ and qr+1 � χ(Y )χ(Y ) for some χ ∈ L⊥;
3. χ(Y ) = 0 for some χ ∈ L⊥∪Q⊥ where Q = K if q � |K| and Q is the subgroup

of K of order q otherwise. Here L⊥ denotes the subset of the character group
which is non-principal on L.

Then

1. if q � |K|, r is even and q
r
2 ≤ b − a; and

2. if Sylow q-subgroup of K is cyclic, q�
r
2 � ≤ 2(b − a) when L is a proper

subgroup of |K| and q�
r
2 � ≤ b− a when L = K.

Lemma 2. [1] Let G = 〈α〉 × H be an abelian group of exponent v = uw,
where ord(α) = u, exp(H) = w and (u, w) = 1. Suppose y ∈ Z[G] and σ ∈
Gal(Q(ζv)/Q) such that

1. χ(y)χ(y) = n for all characters χ of G such that χ(α) = ζu, where n is an
integer relative prime to w; and

2. σ fixes every prime ideal divisor of nZ[ζv].
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If σ(ζv) = ζtv, then

y(t) = ±βy +
r∑
i=1

〈αu/pi 〉xi,

where β ∈ G, x1, · · · , xr ∈ Z[G] and p1, · · · , pr are all prime divisors of u.
Furthermore, if u is even, then the sign ± can be chosen arbitrarily by choosing

appropriate β.

2.3 Direct Product Difference Sets

We conclude this section by introducing the direct product difference sets. They
were first defined in [4], but studied only the case λ1 = 0, λ2 = 0. The general
definition of direct product difference sets is given in [9].

Let G = H ×N , where the order of H and N are m and n respectively. A k-
subset R is said to be an (m, n, k, λ1, λ2, μ) direct product difference set (DPDS)
in G relative to H and N if

r1r
−1
2 , r1, r2 ∈ R, r1 = r2

represent

1. all non-identity elements in H exactly λ1 times;
2. all non-identity elements in N exactly λ2 times;
3. all non-identity elements in G\H ∪N exactly μ times.

In the group ring language, R is an (m, n, k, λ1, λ2, μ)-DPDS in G relative to H
and N if and only if

RR(−1) = (k − λ1 − λ2 + μ) + (λ1 − μ)H + (λ2 − μ)N + μG. (2)

3 Almost p-Ary Perfect Sequences

In this section we construct almost p-ary perfect sequences, and prove that they
do not exist with certain periods. First we fix some notations which will be
frequently used. Let p be a prime and let G = H × P , where H = 〈h〉, P =
〈g〉, ord(h) = n + 1 and ord(g) = p. Let ζp be a primitive p-th root of unity and
a = {0, a1, · · · , an} be an almost p-ary sequence of period n + 1, where ai = ζbi

p

with bi ∈ {0, 1, · · · , p− 1}. For the convenience of expression, we define a0 = 0.
Now we consider the following n-subset R of G

R = {gbihi|i = 1, 2, · · · , n}. (3)

Obviously,

RR(−1) = n +
n∑
t=1

n∑
j=1

j �≡−t mod (n+1)

gbj+t−bj ht. (4)
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Lemma 3. Let χ be a character of P and extend χ : Z[G] −→ Q(ζp)[H ] to be a
ring epimorphism such that χ(x) = x for all x ∈ H. Then

χ(R)χ(R(−1)) =
{∑n

t=0 Ct(a)σht if χ is nonprincipal on P,
1 + (n− 1)H if χ is principal on P,

(5)

where σ ∈ Gal(Q(ζp)/Q) and σ(ζp) = χ(g).

Proof. If χ is principal on P , then χ(R)χ(R(−1)) = (H − 1)2 = 1 + (n − 1)H .
Otherwise, suppose χ(g) = σ(ζp) for some σ ∈ Gal(Q(ζp)/Q), the results follow
from (4). ��

We remind the reader that a is an almost p-ary PS of period n + 1 if its out-of-
phase autocorrelation coefficients are all zero and C0(a) = n.

Theorem 1. Let a be an almost p-ary sequence of period n + 1, then a is an
almost p-ary perfect sequence if and only if R is an (n + 1, p, n, (n− 1)/p)-RDS
in G relative to P , i.e.

RR(−1) = n +
n− 1

p
(G− P ), (6)

where R is defined in (3).

Proof. By Lemma 3, for all characters χ of P ,

χ(RR(−1)) =
{

n if χ is nonprincipal on P,
1 + (n− 1)H if χ is principal on P.

Now the result is followed by Result 2. ��

By Theorem 1, we get a necessary condition for the existence of almost p-ary
PSs with period n + 1.

Corollary 1. If there exists an almost p-ary perfect sequence of period n + 1,
then p | n− 1.

In the following we give an example of almost p-ary PSs from the classical affine
difference sets.

Example 1. Let F := Fq be the field of order q and q = wf be a prime power.
Let α be a primitive element of the field K = Fq2 and let G be the multiplicative
group of K. Clearly G ∼= Zq2−1. It is well known that the subset

D = {αi|TrK

F
(αi) = 1}

of K is a cyclic (q + 1, q − 1, q, 1)-RDS in G relative to N , where N � G and
N ∼= Zq−1 (see [11, Theorem 2.2.12]). Let p be a prime divisor of q − 1 with
gcd(p, q + 1) = 1 and let M � N, M ∼= Z q−1

p
. Let ρ : G −→ G/M be the

natural epimorphism, then ρ(R) is a (q + 1, p, q, q−1
p )-RDS in G/M relative to

N/M . It is clear that G/M ∼= Zq+1 × Zp and N/M ∼= Zp. By Theorem 1, there
exists an almost p-ary PS of period q + 1 whenever q is a prime power and
p|q − 1, gcd(p, q + 1) = 1.
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Next we give several nonexistence results to show that almost p-ary PSs do not
exist with certain periods.

Result 4. [5] Abelian splitting (n + 1, 2, n, (n− 1)/2)-relative difference sets do
not exist.

By Theorem 1, we have the following result.

Theorem 2. There do not exist almost binary perfect sequences of period n + 1
for any n.

Result 5. [6] Let R be an abelian (n + 1, n− 1, n, 1)-RDS in G relative to N ,
then n should be a prime power for n ≤ 10, 000.

Using the technique in [9], we have the following result. Note that gcd(p, q) = 1,
where p is a prime divisor of n and q is a prime divisor of n + 1. We use the
notation pr ‖ n to denote pr strictly divide n, namely pr | n but pr+1 � n.

Theorem 3. Let R be an (n + 1, p, n, n−1
p )-RDS in G relative to P . Assume

that there exists a prime divisor q = p of n and q is self-conjugate modulo p · u,
where u | n + 1. Let qr ‖ n, then r is even and q

r
2 ≤ n+1

u .

Proof. Let ρ : G→ K := G/〈hu〉 be the natural epimorphism. By (6),

ρ(R)ρ(R(−1)) = n +
n− 1

p
(
n + 1

u
K − ρ(P )).

It is clear that the coefficients of ρ(R) lie between 0 and n+1
u . Let χ be a non-

principal character of K, we have

χ(ρ(R))χ(ρ(R)) =
{

n if χ is nonprincipal on ρ(P ),
1 if χ is principal on ρ(P ).

Now set L = ρ(P ) and Y = ρ(R), where L and Y are defined in Lemma 1. It is
routine to verify that the conditions in Lemma 1 are satisfied for L and Y here.
Therefore we complete the proof. ��

The following two results can be easily followed from Theorem 3.

Corollary 2. Assume that there exists a prime divisor q = p of n such that q is
self-conjugate modulo p(n+1), then there do not exist (n+1, p, n, n−1

p )-RDSs in
G relative to P . In other words, there do not exist almost p-ary perfect sequences
of period n + 1.

Corollary 3. Assume that there exists a prime divisor q = p of n such that q is
self-conjugate modulo p. If q2s+1 ‖ n, then there do not exist (n + 1, p, n, n−1

p )-
RDSs in G relative to P . In other words, there do not exist almost p-ary perfect
sequences of period n + 1.
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The above results depend on the self-conjugate condition. Usually it is difficult
to determine the existence status of almost p-ary PSs if this condition is not
satisfied. However, in some cases we can determine whether the almost p-ary
PSs exist or not when n is small. We briefly introduce the main idea of this
method here. An (m, n, k, λ)-RDS is called regular if k2 = λmn. Let D be a
RDS in G and let t be an integer with gcd(t, |G|) = 1. We call t a multiplier of
D if D(t) = Dg for some g ∈ G. It is well known that Rg is also a RDS for any
g ∈ G. The following result tells us that we may assume R satisfying R(t) = R
if R is regular.

Result 6. [11] Let R be a regular (m, n, k, λ)-RDS and let t be a multiplier of
D. Then there exists at least one translate Rg such that (Rg)(t) = Rg.

Let Ω be the set of orbits of G under the group automorphism x �→ xt. Since
R(t) = R, we see that R is the union of elements in Ω, namely

R =
⋃
ω∈Φ

ω,

where Φ ⊆ Ω. A natural way to construct R is to combine the elements in Ω. On
the one hand, if there do not exist a subset Φ of Ω such that |

⋃
ω∈Φ ω| = |R|,

then clearly R do not exist. On the other hand, to construct R, we may find
suitable Φ with |

⋃
ω∈Φ ω| = |R| and verify whether

⋃
ω∈Φ ω is a RDS. Next result

gives a way to find multipliers of RDSs.

Theorem 4. Let R be an (n + 1, p, n, n−1
p )-RDS in G = H × P = 〈h〉 × 〈g〉 ∼=

Zn+1 × Zp relative to P , where p is an odd prime. Let n = pr11 pr22 · · · prl

l be
the prime decomposition of n. For 1 ≤ i ≤ l, let σi ∈ Gal(Q(ζ)/Q) defined
by σi(ζ) = ζpi , where ζ is a primitive (n + 1)p-th root of unity. Assume that⋂l
i=1〈σi〉 = {1} and let ϕ ∈

⋂l
i=1〈σi〉. If ϕ(ζ) = ζα, then α is a multiplier of R.

Proof. By (6), we have RR(−1) = n+ n−1
p (G−P ). Let χ be a character of G such

that χ(g) = ζp, then χ(R)χ(R) = n. By Result 3, the prime ideal factorization
of (n) in Z[ζ(n+1)p] is

(n) = (pr11 pr22 · · · prl

l ) =
l∏
i=1

(P1,i · · ·Psi,i)
ri ,

where si = φ((n+1)p)/fi and fi = ord(n+1)p(pi). By Result 3 (ii) and gcd(n, (n+
1)p) = 1, we know that σi fixes the prime ideals Pj,i for 1 ≤ j ≤ si. Therefore,
ϕ fixes all prime ideals Pj,i for 1 ≤ j ≤ si and 1 ≤ i ≤ l. By Lemma 2,

R(α) = ±βR + Px,

where β ∈ G and x ∈ Z[G]. Let χ0 be the principal character of G, then

n = χ0(R(α)) = χ0(±βR + Px) = ±n + p|x|.
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It follows that |x| = 0 as gcd(p, n) = 1. Next we show that x must be 0. Note
that |R| = |G/P | − 1 and we can assume that

R =
n∑
i=1

gbihi,

where 0 ≤ bi ≤ p− 1. Therefore we have RP = G− P . Now

R(α)R(−α) = (βR + Px)(βR + Px)(−1)

= RR(−1) + βx(−1)RP (−1) + β−1xR(−1)P + p xx(−1)P

= n + (n−1
p

+ βx(−1) + β−1x)G − (n−1
p

+ βx(−1) − pxx(−1) + xβ−1)P .

On the other hand, note that gcd(α, |G|) = 1, we have

R(α)R(−α) = (RR(−1))(α) = (n +
n− 1

p
(G− P ))(α) = n +

n− 1
p

(G− P ).

Therefore, {
βx(−1) + β−1x = 0,
βx(−1) − pxx(−1) + xβ−1 = 0.

From above we have xx(−1) = 0, which implies that x = 0. It follows that
R(α) = β · R for some β ∈ G. The proof is completed. ��

Next we give an example to disprove the existence of an almost p-ary PS by
applying Theorem 4.

Example 2. There do not exist almost 7-ary PS with period 23.

Proof. First it can be verified that almost 7-ary PSs with period 23 do not satisfy
the conditions of Theorem 3. By Theorem 1, it is equivalent to prove that there
do not exist (23, 7, 22, 3)-RDS, say R, in G = Z23 × Z7 relative to Z7. It can be
checked that 2 is a multiplier of R by Theorem 4. Using MAGMA[3], we compute
the orbits of G under the group automorphism x �→ x2. The results are in the
following table.

We checked that the only possible combination of orbits such that the cardi-
nality is 22 and find it is not a RDS. Then we finish the proof. ��

Using similar argument, we get the following result.

Table 1. Orbits of G under x 
→ x2

Length of orbit number
1 1
3 2
11 2
33 4
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Theorem 5. There do not exist almost p-ary PSs of period n+1, where p|n−1
and n ∈ {22, 28, 45, 52}.
Remark 1. The method in Example 2 cannot determine the existence of RDSs
if the number of orbits gets larger. Indeed, in this case usually there exist many
combinations of the orbits such that the size of the sum of these orbits equal to
the cardinality of the RDS, and therefore it is impossible to verify all of them
whether is an RDS one by one. For example, when n = 77 and p = 19 in Theorem
4, it can be verified that 49 is a multiplier of the corresponding (78, 19, 77, 19)-
RDS. The orbits of G = Z78 × Z19 under the group automorphism x �→ x49

is 163366228, where ij implies that there are j orbits with length i. It can be
computed that the number of the combinations of the orbits such that the size
of the sum of them equal to |R| = 77 is

12∑
i=0

(
228

12− i

)((
36

1 + i

)(
6
2

)
+
(

36
i

)(
6
5

))
≈ 275.

In Table 2, we have the following open cases to be determined. They cannot be
excluded by using the above method.

Question 1. Whether almost p-ary PSs exist for n = 50, 76, 77, 94, 99, 100, where
odd prime p | n− 1.

Table 2 in Appendix lists the existence status of p-ary PSs of period n + 1 for
3 ≤ n ≤ 100 and p is a prime divisor of n − 1. The question mark ”?” in the
table is used to denote an undecided case.

4 Almost p-Ary Nearly Perfect Sequences

Let G, H, P,a be the same as those in the last section. The sequence a is called
an almost p-ary nearly perfect sequence (NPS) of type I (II) if the out-of-phase
autocorrelation coefficients are all −1(1). Similar to Theorem 1, we have the
following result.

Theorem 6. Let a = (0, a1, a2, · · · , an) be an almost p-ary sequence of period

n + 1, where ai = ζbi
p and 0 ≤ bi ≤ p− 1 for 1 ≤ i ≤ n. Let R =

n∑
i=1

gbihi. Then

1. a is an almost p-ary NPS of type I if and only if R is an (n+1, p, n, np−1, 0, np )
direct product difference set in G relative to H and P .

2. a is an almost p-ary NPS type II if and only if R is an (n + 1, p, n, n−2
p +

1, 0, n−2
p ) direct product difference set in G relative to H and P .

From Theorem 6 we have the following necessary condition for the existence of
almost p-ary NPSs.

Corollary 4. (1) If there exists an almost p-ary NPS of period n + 1 of type I,
then p | n. (2) If there exists an almost p-ary NPS of period n + 1 of type II,
then p | n− 2.

Next we construct a family of almost p-ary NPSs of type I.
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Example 3. Let q be a prime and let p be a prime divisor of q− 1. Let H be the
additive group of the finite field Fq and let N be the multiplicative group of Fq.
Let G = H ×N ∼= Zq × Zq−1. Define

R = {(x, x)|x = 0, 1, · · · , q − 2}.

Clearly R is a (q, q − 1, q − 1, 0, 0, 1) direct product difference set in G relative
to H and N (see [11, Example 5.3.2]). By (2),

RR(−1) = q + (G−H −N). (7)

Let ρ : G → G/M be the natural epimorphism, where M � N and M ∼= Z q−1
p

.

Then by (7), we have ρ(R)ρ(R(−1)) = q − N/M + q−1
p (G/M − N/M), which

follows that ρ(R) is a (q, p, q − 1, q−1
p − 1, 0, q−1

p )-DPDS in G/M ∼= Zq × Zp
relative to H/M ∼= Zq and N/M ∼= Zp. By Theorem 6 (1), there exists an
almost p-ary NPS of type I with period q.

In the following we present results to show almost p-ary NPSs of type I do not
exist with certain periods.

Lemma 4. Let n be an odd integer and bi ∈ {0, 1, · · · , n − 1} for 1 ≤ i ≤ n.
Assume that bi = bj when i = j, then |{bi+1 − bi|i = 1, 2, · · · , n − 1}| < n − 1
(bi − bj is computed modulo n).

Proof. Let S = {bi+1− bi|i = 1, 2, · · · , n− 1} . Clearly |S| ≤ n− 1. Now assume
that |S| = n − 1, then S = {1, . . . , n − 1} as bi = bj for i = j. Therefore,∑n−1

i=1 (bi+1 − bi) =
∑n−1

i=1 i ≡ n(n−1)
2 ≡ 0 mod n as n is odd. On the other

hand,
∑n−1

i=1 (bi+1−bi) = bn−b1. The contradiction arises as bi ≡ bj mod n. ��
Theorem 7. Let G = H × P = 〈h〉 × 〈g〉 = Zn+1 × Zn and let R be an (n +
1, n, n, 0, 0, 1)-DPDS in G relative to H and P . Then R does not exist if n is
an odd integer. Therefore, for any odd prime p, there do not exist almost p-ary
NPSs of type I with period p + 1.

Proof. Since |R| = |G/P | − 1 and no elements in P can be represented as the
differences of elements in R, we can assume that R =

∑n
i=1 gbihi and bi ∈

{0, 1, . . . , n−1}. Similarly, as there are also no elements in H can be represented
as the differences of elements in R and |P | = |R| = n, we have {bi|i = 1, . . . , n} =
{0, 1, . . . , n− 1}. Now

n + 1 + (G−H − P ) = RR(−1) = n +
n∑
t=1

n∑
i=1

i�≡−t mod (n+1)

gbi+t−biht.

It follows that for each t = 0,

{bi+t − bi : 1 ≤ i ≤ n|i ≡ −t mod (n + 1)} = {1, . . . , n− 1}.

However, by letting t = 1 and we see the above equation cannot hold by Lemma
4. We finish the proof. ��
By Lemma 1, we have the following nonexistence result.
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Theorem 8. Let q be a prime divisor of n+1 such that qr‖n+1, q = p. Assume
that q is self-conjugate modulo p · u for a divisor u of n + 1. Let G = H × P =
〈h〉 × 〈g〉 ∼= Zn+1 ×Zp and let K = G/〈hu〉 ∼= Zu ×Zp. If there exists an almost
p-ary NPS of type I with period n + 1, then

1. If q � |K|, r is even and q
r
2 ≤ n+1

u ; and
2. If q | |K|, q�

r
2 � ≤ 2n+1

u .

Proof. By Theorem 6, we can assume that there is an (n + 1, p, n, np − 1, 0, np )-
DPDS R in G relative to H and P . Then RR(−1) = (n+1)−H + n

p (G−P ). Let
ρ : G→ K be the natural epimorphism. Clearly the coefficients of ρ(R) ∈ Z[K]
lie between 0 and n+1

u . Since q is self-conjugate modulo exp(K) = p · u and for
any nonprincipal character χ of K,

χ(ρ(R))χ(ρ(R)) =

⎧⎨⎩n + 1 if χ is nonprincipal on both ρ(P ) and ρ(H),
1 if χ is nonprincipal on ρ(H),
0 if χ is nonprincipal on ρ(P ).

Take L = ρ(P ) and K = ρ(R) in Lemma 1, then obviously qr|χ(ρ(R))(χ(ρ(R)))
for χ ∈ ρ(P )⊥ and qr+1 � χ(ρ(R))(χ(ρ(R))) for χ ∈ ρ(H)⊥ ∪ ρ(P )⊥. If q | |K|,
it is also easy to see χ(ρ(R)) = 0 because χ(ρ(R))χ(ρ(R)) = n + 1 for χ ∈
ρ(Q)⊥ ∪ρ(P )⊥, where Q is the subgroup of K of order q. Now the result follows
from Lemma 1. ��

Corollary 5. If there exists a prime divisor q of n + 1 with q2s+1 ‖ n + 1 and
q is self-conjugate modulo p, then there do not exist almost p-ary NPSs of type
I with period n + 1.

Proof. Take u = 1 in Theorem 8 and note that |K| = p. By Theorem 8, the
result follows as q � p for every prime divisor q of n + 1. ��

Corollary 6. Let q be a prime divisor of n + 1 with q is self-conjugate modulo
(n + 1)p. Assume that qr | n + 1 for r ≥ 4 if q = 2. Then there do not exist
almost p-ary NPSs of type I with period n + 1.

For almost p-ary NPSs of type II with period n + 1, we only find the example
with p = 2 and n = 2, namely a = {0, 1, 1}. We have done a computer search for
p = 3 and n ∈ {2, 5, 8, 11, 14, 17}, and however, no example is found. We leave
it as the following open question.

Question 2. Do almost p-ary NPSs of type II with period n + 1 exist?

In Appendix, Table 3 lists the existence status of the almost p-ary NPSs of type
I with period n+1 for 2 ≤ n ≤ 100, where p is a prime divisor of n. The question
mark ”?” in the table is used to denote an undecided case.
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Appendix

Table 2. Existence Status of Perfect Sequences

n p Existence Status n p Existence Status
3 2 not exist by Theorem 2 4 3 exist by Example 1
5 2 not exist by Theorem 2 6 5 not exist by Corollary 3 with q=2
7 2 not exist by Theorem 2 7 3 exist by Example 1
8 7 exist by Example 1 2 9 2 not exist by Theorem 2
10 3 not exist by Corollary 3 with q=2 11 2 not exist by Theorem 2
11 5 exist by Example 1 12 11 not exist by Result 5
13 2 not exist by Theorem 2 13 3 exist by Example 1
14 13 not exist by Corollary 3 with q=2 15 2 not exist by Theorem 2
15 7 not exist by Corollary 3 with q=3 16 3 exist by Example 1
16 5 exist by Example 1 17 2 not exist by Theorem 2
18 17 not exist by Corollary 3 with q=2 19 2 not exist by Theorem 2
19 3 exist by Example 1 20 19 not exist by Result 5
21 2 not exist by Theorem 2 21 5 not exist by Corollary 3 with q=3
22 3 not exist by Corollary 3 with q=2 22 7 not exist by Theorem 5
23 2 not exist by Theorem 2 23 11 exist by Example 1
24 23 not exist by Result 5 25 2 not exist by Theorem 2
25 3 exist by Example 1 26 5 not exist by Corollary 3 with q=2
27 2 not exist by Theorem 2 27 13 exist by Example 1
28 3 not exist by Theorem 5 29 2 not exist by Theorem 2
29 7 exist by Example 1 30 29 not exist by Corollary 3 with q=2
31 2 not exist by Theorem 2 31 3 exist by Example 1
31 5 exist by Example 1 32 31 exist by Example 1
33 2 not exist by Theorem 2 34 3 not exist by Corollary 3 with q=2
34 11 not exist by Corollary 3 with q=2 35 2 not exist by Theorem 2
35 17 not exist by Corollary 3 with q=5 36 5 not exist by Corollary 2 with q=2
36 7 not exist by Corollary 2 with q=3 37 2 not exist by Theorem 2
37 3 exist by Example 1 38 37 not exist by Corollary 3 with q=2
39 2 not exist by Theorem 2 39 19 not exist by Corollary 3 with q=3
40 3 not exist by Corollary 3 with q=2 40 13 not exist by Corollary 3 with q=2
41 2 not exist by Theorem 2 41 5 exist by Example 1
42 41 not exist by Corollary 3 with q=2 43 2 not exist by Theorem 2
43 3 exist by Example 1 43 7 exist by Example 1
44 43 not exist by Result 5 45 2 not exist by Theorem 2
45 11 not exist by Theorem 5 46 3 not exist by Corollary 3 with q=2
46 5 not exist by Corollary 3 with q=2 47 2 not exist by Theorem 2
47 23 exist by Example 1
48 47 not exist by Result 5 49 2 not exist by Theorem 2
49 3 exist by Example 1 50 7 ?
51 2 not exist by Theorem 2 51 5 not exist by Corollary 3 with q=3
52 3 not exist by Theorem 5 52 17 not exist by Corollary 3 with q=13
53 2 not exist by Theorem 2 53 13 exist by Example 1



Almost p-Ary Perfect Sequences 413

Table 2. (continued)

54 53 not exist by Corollary 3 with q=2 55 2 not exist by Theorem 2
55 3 not exist by Corollary 3 with q=5 56 5 not exist by Corollary 3 with q=2
56 11 not exist by Corollary 3 with q=2 57 2 not exist by Theorem 2
57 7 not exist by Corollary 3 with q=3 58 3 not exist by Corollary 3 with q=2
58 19 not exist by Corollary 3 with q=2 59 2 not exist by Theorem 2
59 29 exist by Example 1 60 59 not exist by Result 5
61 2 not exist by Theorem 2 61 3 exist by Example 1
61 5 exist by Example 1 62 61 not exist by Corollary 3 with q=2
63 2 not exist by Theorem 2 63 31 not exist by Corollary 3 with q=3
64 3 exist by Example 1 64 7 exist by Example 1
65 2 not exist by Theorem 2 66 5 not exist by Corollary 3 with q=2
66 13 not exist by Corollary 3 with q=2 67 2 not exist by Theorem 2
67 3 exist by Example 1 67 11 exist by Example 1
68 67 not exist by Result 5 69 2 not exist by Theorem 2
69 17 not exist by Corollary 3 with q=3 70 3 not exist by Corollary 3 with q=2
70 23 not exist by Corollary 3 with q=5 71 2 not exist by Theorem 2
71 5 exist by Example 1 71 7 exist by Example 1
72 71 not exist by Result 5 73 2 not exist by Theorem 2
73 3 exist by Example 1 74 73 not exist by Result 5
75 2 not exist by Theorem 2 75 37 not exist by Corollary 3 with q=3
76 3 ? 77 2 not exist by Theorem 2
77 19 ? 78 7 not exist by Corollary 3 with q=3
78 11 not exist by Corollary 3 with q=2 79 2 not exist by Theorem 2
79 39 exist by Example 1 80 79 not exist by Result 5
81 2 not exist by Theorem 2 81 5 exist by Example 1
82 3 not exist by Corollary 3 with q=2 83 2 not exist by Theorem 2
83 41 exist by Example 1 84 83 not exist by Result 5
85 2 not exist by Theorem 2 85 3 not exist by Corollary 3 with q=5
85 7 not exist by Corollary 3 with q=5 86 5 not exist by Corollary 3 with q=2
85 17 not exist by Corollary 3 with q=2 87 2 not exist by Theorem 2
87 43 not exist by Corollary 3 with q=3 88 3 not exist by Corollary 3 with q=2
88 29 not exist by Corollary 3 with q=2 89 2 not exist by Theorem 2
89 11 exist by Example 1 90 89 not exist by Corollary 3 with q=3
91 2 not exist by Theorem 2 91 3 exist by Example 1
91 5 exist by Example 1 92 91 not exist by Result 5
93 2 not exist by Theorem 2 93 23 not exist by Corollary 3 with q=7
94 3 not exist by Corollary 3 with q=2 94 31 ?
95 2 not exist by Theorem 2 95 47 not exist by Corollary 3 with q=5
96 5 not exist by Corollary 3 with q=2 96 19 not exist by Corollary 3 with q=2
97 2 not exist by Theorem 2 97 3 exist by Example 1
98 97 not exist by Corollary 3 with q=2 99 2 not exist by Theorem 2
99 7 ? 100 3 ?
100 11 ?
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Table 3. Existence Status of Nearly Perfect Sequences

n p Existence Status n p Existence Status
2 2 exist by example 3 3 3 not exist by Theorem 7 with q=3
4 2 exist by example 3 5 5 not exist by Corollary 5 with q=2
6 2 exist by example 3 6 3 exist by example 3
7 7 not exist by Theorem 7 with q=7 8 2 not exist by Corollary 6 with q=3
9 3 not exist by Corollary 5 with q=2 10 2 exist by example 3
10 5 exist by example 3 11 11 not exist by Theorem 7 with q=11
12 2 exist by example 3 12 3 exist by example 3
13 13 not exist by Corollary 5 with q=2 14 2 not exist by Corollary 5 with q=3
14 7 not exist by Corollary 5 with q=3 15 3 not exist by Corollary 6 with q=2
15 5 not exist by Corollary 6 with q=2 16 2 exist by example 3
17 17 not exist by Corollary 5 with q=2 18 2 exist by example 3
18 3 exist by example 3 19 19 not exist by Theorem 7 with q=19
20 2 not exist by Corollary 5 with q=3 20 5 not exist by Corollary 5 with q=3
21 3 not exist by Corollary 5 with q=2 21 7 ?
22 2 exist by example 3 22 11 exist by example 3
23 23 not exist by Theorem 7 with q=23 24 2 not exist by Corollary 6 with q=5
24 3 not exist by Corollary 6 with q=5 25 5 not exist by Corollary 5 with q=2
26 2 not exist by Corollary 5 with q=3 26 13 ?
27 3 ? 28 2 exist by example 3
28 7 exist by example 3 29 29 not exist by Corollary 5 with q=2
30 2 exist by example 3 30 3 exist by example 3
30 5 exist by example 3 31 31 not exist by Theorem 7 with q=31
32 2 not exist by Corollary 5 with q=3 33 3 not exist by Corollary 5 with q=2
33 11 not exist by Corollary 5 with q=2 34 2 not exist by Corollary 5 with q=5

17 not exist by Corollary 5 with q=5 35 5 ?
35 7 not exist by Corollary 6 with q=3 36 2 exist by example 3
36 3 exist by example 3 37 37 not exist by Theorem 7 with q=37
38 2 not exist by Corollary 5 with q=3 38 19 not exist by Corollary 5 with q=3
39 3 not exist by Corollary 5 with q=2 39 13 not exist by Corollary 5 with q=2
40 2 exist by example 3 40 5 exist by example 3
41 41 not exist by Corollary 5 with q=2 42 2 exist by example 3
42 3 exist by example 3 42 7 exist by example 3
43 43 not exist by Theorem 7 with q=43 44 2 not exist by Corollary 5 with q=5
44 11 ? 45 3 not exist by Corollary 5 with q=2
45 5 not exist by Corollary 5 with q=2 46 2 exist by example 3
46 23 exist by example 3 47 47 not exist by Theorem 7 with q=47
48 2 not exist by Corollary 6 with q=7 48 3 not exist by Corollary 6 with q=7
49 7 not exist by Corollary 6 with q=5 50 2 not exist by Corollary 5 with q=3
50 5 not exist by Corollary 5 with q=3 51 3 ?
51 17 not exist by Corollary 5 with q=13 52 2 exist by example 3
52 13 exist by example 3 53 53 not exist by Corollary 5 with q=2
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Table 3. (continued)

54 2 not exist by Corollary 5 with q=5 54 3 not exist by Corollary 5 with q=5
55 5 not exist by Corollary 5 with q=2 55 11 not exist by Corollary 5 with q=2
56 2 not exist by Corollary 5 with q=3 56 7 not exist by Corollary 5 with q=3
57 3 not exist by Corollary 5 with q=2 57 19 not exist by Corollary 5 with q=2
58 2 exist by example 3 58 29 exist by example 3
59 59 not exist by Theorem 7 with q=59 60 2 exist by example 3
60 3 exist by example 3 60 5 exist by example 3
61 61 not exist by Corollary 5 with q=2 62 2 not exist by Corollary 5 with q=7
62 31 not exist by Corollary 6 with q=3 63 3 not exist by Corollary 6 with q=2
63 7 ? 64 2 not exist by Corollary 5 with q=5
65 5 not exist by Corollary 5 with q=2 65 13 not exist by Corollary 5 with q=2
66 2 exist by example 3 66 2 exist by example 3
66 11 exist by example 3 67 67 not exist by Theorem 7 with q=67
68 2 not exist by Corollary 5 with q=3 68 17 not exist by Corollary 5 with q=3
69 3 not exist by Corollary 5 with q=2 69 23 not exist by Corollary 5 with q=5
70 2 exist by example 3 70 5 exist by example 3
70 7 exist by example 3 71 71 not exist by Theorem 7 with q=71
72 2 exist by example 3 72 3 exist by example 3
73 73 not exist by Theorem 7 with q=73 74 2 not exist by Corollary 5 with q=3
74 37 not exist by Corollary 5 with q=3 75 3 ?
75 5 not exist by Corollary 5 with q=15 76 2 not exist by Corollary 5 with q=7
76 19 ? 77 7 ?
77 11 not exist by Corollary 5 with q=2 78 2 exist by example 3
78 39 exist by example 3 79 79 not exist by Theorem 7 with q=79
80 2 not exist by Corollary 6 with q=3 80 5 not exist by Corollary 6 with q=3
81 3 not exist by Corollary 6 with q=2 82 2 exist by example 3
82 41 exist by example 3 83 83 not exist by Theorem 7 with q=83
84 2 not exist by Corollary 5 with q=5 84 3 not exist by Corollary 5 with q=5
84 7 not exist by Corollary 5 with q=5 85 5 not exist by Corollary 5 with q=2
85 17 not exist by Corollary 5 with q=2 86 2 not exist by Corollary 5 with q=3
86 43 not exist by Corollary 5 with q=3 87 3 not exist by Corollary 5 with q=11
87 29 not exist by Corollary 5 with q=11 88 2 exist by example 3
88 11 exist by example 3 89 89 not exist by Corollary 5 with q=5
90 2 exist by example 3 90 3 exist by example 3
90 5 exist by example 3 91 91 not exist by Theorem 7 with q=91
92 2 not exist by Corollary 5 with q=3 92 23 ?
93 3 not exist by Corollary 5 with q=2 93 31 ?
94 2 not exist by Corollary 5 with q=5 94 47 not exist by Corollary 5 with q=5
95 5 not exist by Corollary 5 with q=2 95 19 not exist by Corollary 5 with q=2
96 2 exist by example 3 96 3 exist by example 3
97 97 not exist by Corollary 5 with q=2 98 2 not exist by Corollary 5 with q=11
98 7 ? 99 3 not exist by Corollary 6 with q=5
99 11 ? 100 2 exist by example 3
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Abstract. The p-ary function f(x) mapping GF(p4k) to GF(p) and
given by f(x) = Tr4k

(
axd + bx2

)
with a, b ∈ GF(p4k) and d = p3k +

p2k − pk + 1 is studied with the respect to its exponential sum. In the
case when either apk(pk+1) �= bpk+1 or a2 = bd with b �= 0, this sum is
shown to be three-valued and the values are determined. For the remain-
ing cases, the value of the exponential sum is expressed using Jacobsthal
sums of order pk + 1. Finding the values and the distribution of those
sums is a long-lasting open problem.

Keywords: Cyclotomic number, Jacobsthal sum, p-ary bent function,
polynomial over finite field, Walsh transform.

1 Introduction

Niho in [1, Theorem 3-7] and Helleseth in [2] studied the cross correlation be-
tween two binary m-sequences that differ by the decimation 23k − 22k + 2k + 1.
They proved that the cross-correlation function is four-valued and found the
distribution. In [3], Helleseth and Kholosha constructed a p-ary weakly regular
binomial bent function that has an exponent of this type in its first term (the
second term is a square). This gave the infinite class of nonquadratic generalized
bent functions built over the fields of an arbitrary odd characteristic. In this
paper, we take n = 4k, an odd prime p and examine p-ary functions having the
form f(x) = Trn

(
axd + bx2

)
with a, b, x ∈ GF(pn) and d = p3k + p2k − pk + 1.

Functions of this type with a and b being nonzero belong to the class of binomi-
als. Note that d is cyclotomic equivalent to the Niho exponent (with 2 changed
to p) and that gcd(d, pn − 1) = 2 since d = (p2k − 1)(pk + 1) + 2.

Given a function f(x) mapping GF(pn) to GF(p), the direct and inverse Walsh
transform operations on f are defined at a point by the following respective
identities:

Sf (y) =
∑

x∈GF(pn)

ωf(x)−Trn(yx) and ωf(x) =
1
pn

∑
y∈GF(pn)

Sf (y)ωTrn(yx)

* This work was supported by the Norwegian Research Council and partially by the
grant NIL-I-004 from Iceland, Liechtenstein and Norway through the EEA and Nor-
wegian Financial Mechanisms.

C. Carlet and A. Pott (Eds.): SETA 2010, LNCS 6338, pp. 416–429, 2010.
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where Trn() : GF(pn)→ GF(p) denotes the absolute trace function, ω = e
2πi

p is
the complex primitive pth root of unity and elements of GF(p) are considered as
integers modulo p.

According to [4], f(x) is called a p-ary bent function (or generalized bent
function) if all its Walsh coefficients satisfy |Sf (y)|2 = pn. A bent function f(x)
is called regular (see [4, Definition 3] and [5, p. 576]) if for every y ∈ GF(pn) the
normalized Walsh coefficient p−n/2Sf (y) is equal to a complex pth root of unity,
i.e., p−n/2Sf (y) = ωf

∗(y) for some function f∗ mapping GF(pn) into GF(p). A
bent function f(x) is called weakly regular if there exists a complex u having
unit magnitude such that up−n/2Sf (y) = ωf

∗(y) for all y ∈ GF(pn). Recently,
weakly regular bent functions were shown to be useful for constructing certain
combinatorial objects such as partial difference sets, strongly regular graphs and
association schemes (see [6,7]). This justifies why the classes of (weakly) regular
bent functions are of independent interest. For a comprehensive reference on
monomial and quadratic p-ary bent functions we refer reader to [8].

Taking a = b = 1, results in a weakly regular bent function and the exact
value of its Walsh transform coefficients (and value distribution) can be found.

Theorem 1 ([3]). Let n = 4k. Then p-ary function f(x) mapping GF(pn) to
GF(p) and given by

f(x) = Trn
(
xp

3k+p2k−pk+1 + x2
)

is a weakly regular bent function. Moreover, for y ∈ GF(pn) the corresponding
Walsh transform coefficient of f(x) is equal to

Sf (y) = −p2kωTrk(x0)/4 ,

where x0 is a unique root in GF(pk) of the polynomial

yp
2k+1 + (y2 + X)(p

2k+1)/2 + yp
k(p2k+1) + (y2 + X)p

k(p2k+1)/2 .

In particular, if y2 ∈ GF(p2k) then x0 = −Tr2kk
(
y2
)
. Also, every value −p2kωi

with i = {1, . . . , p − 1} occurs p2k−1(p2k + 1) times in the Walsh spectrum of
f(x) and −p2k occurs (p2k−1 − 1)(p2k + 1) + 1 times.

The general case when a, b ∈ GF(pn) is much more complicated. It seems to
be hard to find the Walsh transform coefficients of f(x) at an arbitrary point,
so here we calculate the exponential sum of f(x), i.e., Sf (0). This is equal to
the cross-correlation function between two sequences of length (pn − 1)/2 ob-
tained by the decimation of an m-sequence by d and 2 or can be seen as a
codeword weight in the corresponding p-ary linear code. We relate this value to
the number of zeros, a particular polynomial has in a cyclic subgroup of order
p2k + 1 of the multiplicative group of GF(pn). Moreover, we show that if either
ap

k(pk+1) = bp
k+1 or a2 = bd with b = 0 then the exponential sum of f(x)

is three-valued. Some steps towards finding the distribution of these values are
made but the exact distribution remains an open problem. For the remaining
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options for choosing (a, b), we show that Sf (0) can be expressed using the Ja-
cobsthal sum of order pk + 1 which has the number of possible values growing
with k. In Sections 2 and 3, we calculate the cyclotomic numbers of order pk +1
in GF(p2k)∗ and prove the estimate of Artin-Hasse type for the Jacobsthal sums
of order pk + 1. These are used to find few important properties of Sf (0).

2 Cyclotomic Numbers of Order pk + 1

Let ν be a primitive element of GF(p2k) and let Ct (t = 0, . . . , pk) denote the
cyclotomic classes of order pk + 1 in GF(p2k)∗, i.e., Ct = {ν(pk+1)i+t | i =
0, . . . , pk − 2}. The number of elements x ∈ Ci such that x + 1 ∈ Cj is called
the cyclotomic number and denoted (i, j). Since −1 ∈ C0 in our case, we can
also take x− 1 in the definition of the cyclotomic numbers. Note that since the
cyclotomic numbers of order pk + 1 are uniform (see [9]), their values can easily
be determined. Nevertheless, in the following lemma, we give a straightforward
proof using the technique suggested for the binary case in [10, Sec. 5].

Lemma 1. For any i, j = 0, . . . , pk, the cyclotomic numbers of order pk + 1 in
GF(p2k) are

(i, j) =

⎧⎨⎩1, if i = j and ij = 0
pk − 2, if i = j = 0
0, otherwise .

Proof. Note that GF(p2k)∗ =
⋃pk

t=0 Ct and −1 = ν(p2k−1)/2 ∈ C0.

p2k(i, j) =
∑

z∈GF(p2k)

∑
x∈Ci

∑
y∈Cj

ωTr2k(z(x−y−1))

= (pk − 1)2 +
pk∑
t=0

∑
z∈Ct

ω−Tr2k(z)
∑
x∈Ci

ωTr2k(zx)
∑
y∈Cj

ω−Tr2k(zy)

= (pk − 1)2 +
pk∑
t=0

PtPt+iPt+j ,

where indices of Pt are calculated modulo pk + 1 and

Pt =
∑
x∈Ct

ωTr2k(x) =
1

pk + 1

∑
z∈GF(p2k)∗

ωTr2k

(
zpk+1νt

)
(∗)
=
{

pk − 1, if t = (pk + 1)/2
−1, otherwise

for t = 0, . . . , pk and (∗) follows from [8, Lemma 2 (iii)]. Therefore, if i = j and
ij = 0 then

(i, j) = p−2k ((pk − 1)2 + 3(pk − 1)− (pk − 2)
)

= 1 .

Similarly, it is easy to see that (0, 0) = pk − 2 and in the rest of the cases,
(i, j) = 0. ��
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3 Estimate of the Jacobsthal Sums of Order pk + 1

Following [11, Definition 5.49], for any a ∈ GF(q)∗, define a Jacobsthal sum of
order n as

Hn(a) =
∑

x∈GF(q)

η(xn+1 + ax) ,

where η(·) is the quadratic character of GF(q) extended by setting η(0) = 0.
Define also a companion sum

In(a) =
∑

x∈GF(q)∗
η(xn + a) .

It is well known (see, e.g., [11, Theorem 5.50]) that I2n(a) = In(a) + Hn(a).
In our case, q = p2k and we consider n = pk + 1. If a ∈ GF(pk) then,

obviously, Ipk+1(a) = I2(pk+1)(a) = p2k − 1 and Hpk+1(a) = 0. Now take any
a ∈ GF(p2k) \ GF(pk) and assume a−1 ∈ Ci. Then i = 0 since C0 = GF(pk)∗,
and we can compute

Ipk+1(a) = η(a)
∑

x∈GF(p2k)∗
η
(
xp

k+1/a + 1
)

= (−1)i(pk + 1)

⎛⎝(pk−1)/2∑
j=0

(i, 2j)−
(pk−1)/2∑
j=0

(i, 2j + 1)

⎞⎠
(∗)
= (pk + 1)

{
pk+1

2 − 2− pk+1
2 = −2, if i is even

− p
k+1
2 + 1 + pk+1

2 − 1 = 0, if i is odd

= −(pk + 1)(η(a) + 1) , (1)

where (∗) follows from Lemma 1. Note that η(a) = (−1)p
k+1−i = (−1)i since

a ∈ Cpk+1−i. Calculating Hpk+1(a) (that is equivalent to calculating I2(pk+1)(a))
is not that easy. In the following theorem, we provide an estimate. Note that
this estimate is much better than the one in [11, p. 233] which becomes trivial if
n = pk+1. Computations show that the bound found in Theorem 2 is achievable.

Theorem 2. For any a ∈ GF(p2k) \GF(pk),

|Hpk+1(a)| ≤ 2pk/2(pk + 1) .

Proof. Since I2(pk+1)(a) = Ipk+1(a) + Hpk+1(a) and the exact value of Ipk+1(a)
was found in (1), we need to estimate I2(pk+1)(a). Raising elements of GF(p2k)∗

to the power of pk + 1 defines a (pk + 1)-to-1 mapping onto GF(pk)∗. Thus,
denoting y = xp

k+1, we obtain from the definition

I2(pk+1)(a)
pk + 1

+ η(a) =
∑

y∈GF(pk)

η(y2 + a) = N(a)− pk ,



420 T. Helleseth and A. Kholosha

where N(a) is the number of pairs (y, t) ∈ GF(pk) × GF(p2k)∗ that satisfy
y2 + a = t2.

If μ is a primitive element of GF(pk) then μ1/2 ∈ GF(p2k) \GF(pk) and any
element x ∈ GF(p2k) has a unique representation as x = x0 + 2μ1/2x1 with
x0, x1 ∈ GF(pk). This way, assume a = a0 + 2μ1/2a1 and t = t0 + 2μ1/2t1. Thus,
y2 +a = t2 is equivalent to y2 +a0 = t20 +4μt21 with a1 = 2t0t1. Note that t1 = 0
since in the opposite case, t ∈ GF(pk) that leads to a ∈ GF(pk). Combining the
latter equations we obtain y2t20 + a0t

2
0 = t40 + μa2

1. Therefore, N(a) is equal to
the number of pairs (y, z) ∈ GF(pk)×GF(pk)∗ that satisfy

y2z2 + Az2 = z4 + C ,

where C = μa2
1 = 0 and A = a0, both in GF(pk).

Now we can calculate

2pk
(
N(a)− pk + 1

)
= 2

∑
y,z,l∈GF(pk); zl �=0

ωTrk

(
l(z4−Az2+C)−ly2z2

)
=
∑
zl �=0

ωTrk

(
l2(z4−Az2+C)

)∑
y

ω−Trk

(
l2z2y2
)

+
∑
zl �=0

ωTrk

(
μl2(z4−Az2+C)

)∑
y

ω−Trk

(
μl2z2y2

)

=
∑
y

ω−Trk

(
y2
) ⎛⎝∑

z �=0, l

ωTrk

(
l2(z4−Az2+C)

)
−
∑
z �=0, l

ωTrk

(
μl2(z4−Az2+C)

)⎞⎠
= 2
∑
y

ω−Trk

(
y2
) ∑
z5−Az3+Cz �=0, l

ωTrk

(
l2(z4−Az2+C)

)
= 2pksζ(−1)

∑
z �=0

ζ(z4 −Az2 + C)

= 2pk
∑
z �=0

(1 + ζ(z))ζ(z2 −Az + C)

= 2pk
∑
z

ζ(z2 −Az + C)− ζ(C) +
∑
z

ζ(z3 −Az2 + Cz)

(∗)
= 2pk

∑
z

ζ(z3 −Az2 + Cz) ,

where ζ(·) is the quadratic character of GF(pk) extended by setting ζ(0) = 0;
s = (−1)k if p ≡ 3 (mod 4) and s = 1 otherwise; and (∗) follows from [11,
Theorem 5.48] since z2−Az + C can not have both roots in GF(pk) equal (C is
a nonsquare in GF(pk)). Also note that sζ(−1) ≡ 1. Thus,

I2(pk+1)(a)
pk + 1

=
∑

z∈GF(pk)

ζ(z3 − a0z
2 + μa2

1z)− η(a)− 1 = N − pk − η(a)− 1

Hpk+1(a)
pk + 1

= N − pk ,
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where N denotes the number of points on the elliptic curve f2 = z3−Az2 + Cz
over GF(pk) excluding the point at infinity. It remains to use Hasse theorem
[12, p. 138] giving |N − pk| ≤ 2pk/2 to obtain the claimed result (also, [11,
Theorem 5.41] can be used). ��

4 Calculating the Exponential Sum of f(x)

In this section, we consider the function f(x) with arbitrary coefficients a, b ∈
GF(pn). If n is even, let U denote a cyclic subgroup of order pn/2 + 1 of the
multiplicative group of GF(pn) (generated by ξp

n/2−1, where ξ is a primitive
element of GF(pn)).

Theorem 3. Let n = 4k. For any a, b ∈ GF(pn), define the following p-ary
function mapping GF(pn) to GF(p)

f(x) = Trn
(
axp

3k+p2k−pk+1 + bx2
)

.

Then the Walsh transform coefficient of f(x) evaluated at point zero is equal to

Sf (0) = p2k(2N(a, b)− 1) ,

where 2N(a, b) is the number of zeros in U of the polynomial

L(X) = bp
2k

X + aXpk

+ bXp2k

+ ap
2k

Xp3k

. (2)

Proof. Let ξ be a primitive element of GF(pn) and also denote d = p3k + p2k −
pk + 1. If we let x = ξjyp

2k+1 for j = 0, . . . , p2k and y running through GF(pn)∗

then x will run through GF(pn)∗ in total p2k + 1 times. Also note that d− 2 =
(p2k − 1)(pk +1) and thus, d(p2k +1) ≡ 2(p2k +1) (mod pn− 1). Therefore, the
Walsh transform coefficient of f(x) evaluated at point zero is equal to

Sf (0)− 1 =
∑

x∈GF(pn)∗
ωTrn

(
axp3k+p2k−pk+1+bx2

)

=
1

p2k + 1

p2k∑
j=0

∑
y∈GF(pn)∗

ωTrn

(
aξdjy2(p2k+1)+bξ2jy2(p2k+1)

)

=
p2k∑
j=0

∑
z∈GF(p2k)∗

ωTrn

(
(aξdj+bξ2j)z2

)

=
p2k∑
j=0

∑
z∈GF(p2k)∗

ωTr2k

(
ξ(p

2k+1)jL(ξ(p
2k−1)j)z2

)
(∗)
=

p2k∑
j=0

I
(
L
(
ξ(p2k−1)j) = 0

)(
−spkη

(
ξ(p2k+1)jL

(
ξ(p2k−1)j))− 1

)
+ 2N(a, b)(p2k − 1) ,
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where z = yp
2k+1 ∈ GF(p2k)∗ is a (p2k + 1)-to-1 mapping of GF(pn)∗, (∗) is

obtained by [8, Corollary 3], s = (−1)k if p ≡ 3 (mod 4) and s = 1 otherwise,
I(·) is the indicator function, η(·) is the quadratic character of GF(p2k) and since

Trn2k
(
aξdj + bξ2j) = aξdj + bξ2j + ap

2k

ξdjp
2k

+ bp
2k

ξ2jp2k

= ξ(p2k+1)j
(
aξp

k(p2k−1)j + bξ−(p2k−1)j + ap
2k

ξ−p
k(p2k−1)j + bp

2k

ξ(p2k−1)j
)

= ξ(p2k+1)jL
(
ξ(p2k−1)j).

also noting that ξ−(p2k−1)j = ξp
2k(p2k−1)j.

Further, note that for any j = 0, . . . , p
2k−1
2 with L

(
ξ(p2k−1)j

)
= 0 we have

η
(
ξ(p2k+1)(j+(p2k+1)/2)L

(
ξ(p2k−1)(j+(p2k+1)/2))) = −η

(
ξ(p2k+1)jL

(
ξ(p2k−1)j))

since L(−x) = −L(x) for any x ∈ GF(pn) and η(−1) = η
((

ξp
2k+1
)(p2k−1)/2

)
=

1. Therefore,

Sf (0) = −(p2k + 1− 2N(a, b)) + 2N(a, b)(p2k − 1) + 1 = p2k(2N(a, b)− 1) .

Obviously, the number of zeros in U of L(X) is even since −U = U and L(−x) =
−L(x) for any x ∈ GF(pn). ��

In the following corollary, we prove that it is sufficient to consider just two
inequivalent cases, when b is a square and nonsquare in GF(pn)∗, for instance,
taking b = 1 and b = ξ, where ξ is a primitive element of GF(pn).

Corollary 1. Under the conditions and using the notations of Theorem 1, for
any h ∈ GF(pn)∗,

N(a, b) = N(ahd, bh2) .

Proof. Recalling definition (2), 2N(ahd, bh2) is equal to the number of zeros in
U of the polynomial

(bh2)p
2k

X + ahdXpk

+ bh2Xp2k

+ (ahd)p
2k

Xp3k

= hp
2k+1
(
bp

2k

hp
2k−1X + ahp

k(p2k−1)Xpk

+ bh−(p2k−1)Xp2k

+ ap
2k

h−pk(p2k−1)Xp3k
)

= hp
2k+1
(
bp

2k

Y + aY pk

+ bY p2k

+ ap
2k

Y p3k
)

,

where Y = hp
2k−1X and since hp

2k−1 ∈ U . By definition, the latter polynomial
has 2N(a, b) zeros in U . ��

In what follows, we consider separately the cases when either ap
k(pk+1) = bp

k+1

or a2 = bd with b = 0; and when ap
k(pk+1) = bp

k+1 with a2 = bd, where
d = p3k+p2k−pk+1. This covers all the value space for the pairs (a, b) = (0, 0).
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4.1 Case apk(pk+1) �= bpk+1

In this subsection, we show that the exponential sum of f(x) takes on just three
values −p2k, p2k and 3p2k when either ap

k(pk+1) = bp
k+1 or a2 = bd with b = 0.

Proposition 1. Let n = 4k and take any a, b ∈ GF(pn) such that either a2 = bd

with b = 0 or ap
k(pk+1) = bp

k+1. Then polynomial L(X) defined in (2) has none,
two or four zeros in U , i.e., N(a, b) ∈ {0, 1, 2}. Moreover, if ap

k(pk+1) = bp
k+1

then zeros of L(X) in GF(pn) are the same as of

F (X) =
(
ap

k(pk+1)−bp
k+1)Xp2k

+
(
ap

2k

bp
3k−abp

k)
Xpk

+
(
ap

k(pk+1)−bp
k+1)pk

X .

Proof. First, assume a2 = bd = 0 with ap
k(pk+1) = bp

k+1. Then

ap
k(pk+1) = bdp

k(pk+1)/2 = bp
k(pn−1+2(p3k+1))/2 = b(pn−1)/2bp

k+1 = bp
k+1 (3)

if and only if b is a square in GF(pn)∗. By Corollary 1, taking h = b−1/2 we obtain
that N(a, b) = N(ab−d/2, 1) = N(±1, 1). By definition, 2N(±1, 1) is equal to the
number of zeros in U of x± xp

k

+ x−1 ± x−pk

. For any v ∈ U we obtain

v ± vp
k

+ v−1 ± v−p
k

= v−(pk+1)(vpk+1 ± 1
)(

v ± vp
k)

= 0

only if v2(pk+1) = 1 or v2(pk−1) = 1 which leads to v2 = 1 since gcd(2(pk +
1), p2k+1) = gcd(2(pk−1), p2k+1) = 2. Thus, v = ±1 that gives no zeros when
a = bd/2 and two when a = −bd/2.

From now on assume ap
k(pk+1) = bp

k+1. Note that zeros of

ap
2k

L(X)p
k − bp

k

L(X) = F (X)

are exactly the union of solution sets for L(X) = 0 and ap
2k

L(X)p
k−1 = bp

k

.
Since L(x) ∈ GF(p2k) for any x ∈ GF(pn) and assuming L(x) = 0, the latter
equation can have solution only if ap

2k(pk+1) = bp
k(pk+1) that is equivalent to

ap
k(pk+1) = bp

k+1. Thus, L(X) and F (X) have the same zeros. Also note that
F (x) degenerates if and only if ap

k(pk+1) = bp
k+1 since in this case,

ap
2k

bp
3k

− abp
k

= a−pk
(
ap

k(pk+1)bp
3k

− (ap
k(pk+1))p

3k

bp
k
)

= a−pk
(
bp

3k+pk+1 − bp
3k+pk+1

)
= 0 , (4)

i.e., abp
k ∈ GF(p2k).

Raising the elements of U to the power of pk − 1 defines a 2-to-1 mapping
onto U+ the set of squares of U since gcd(pk − 1, p2k + 1) = 2. Thus, making
a substitution Y = Xpk−1 and denoting A = ap

k(pk+1) − bp
k+1 we obtain the

polynomial
P (Y ) = AY pk+1 +

(
ap

2k

bp
3k − abp

k)
Y + Apk
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that has N(a, b) zeros in U+. Further, assuming Y p2k

= Y −1, we obtain

AY 2P (Y )p
k −
(
ap

3k

b− ap
k

bp
2k)

Y P (Y )−Apk

P (Y )

= Apk
(
Ap3k

Y 2 −
(
ap

2k

bp
3k

− abp
k

+ ap
3k

b− ap
k

bp
2k)

Y −Apk
)

.

Since A = 0, the latter polynomial is non-degenerate and has at most two zeros
in GF(pn) which also means that N(a, b) ≤ 2. ��

4.2 Case apk(pk+1) = bpk+1 and Jacobsthal Sums

In this subsection, we consider the case when ap
k(pk+1) = bp

k+1 with a2 = bd

and express the exponential sum of f(x) using Jacobsthal sums of order pk +1.

Proposition 2. Let n = 4k and take any a, b ∈ GF(pn) such that ap
k(pk+1) =

bp
k+1 and a2 = bd. If 2N(a, b) is the number of zeros in U of the polynomial

L(x) defined in (2) then

N(a, b) = #
{
c ∈ GF(pk) | (cg)2 − bp

2k+1 is a nonsquare in GF(p2k)
}

, (5)

where g is any element in GF(p2k)∗ with gp
k−1 = −bp

3k

/a.

Proof. Note that in our case, a, b = 0 and g ∈ GF(p2k)∗ since
(
bp

3k

/a
)pk+1 = 1.

Take any u ∈ U with L(u) = 0. Multiplying both sides of L(u) = 0 by bp
3k

and
using (4), we obtain

a
(
bp

2k

u + bu−1
)pk

+ bp
3k
(
bp

2k

u + bu−1
)

= 0 . (6)

Denote bp
2k

u + bu−1 = g ∈ GF(p2k). Find solutions in U of the quadratic
equation bp

2k

x + bx−1 = g which discriminant is equal to D = g2 − 4bp
2k+1 ∈

GF(p2k).
First, assume D is a square in GF(p2k). Then u = (g±

√
D)/2bp

2k

and bp
2k

u ∈
GF(p2k)∗ resulting in g = 2bp

2k

u = 0 and D = 0. In this case, (6) is reduced to
aup

k−1 = −bp
2k

. We also obtain that(
bp

2k

u
)p2k+1

= bp
2k+1 =

(
bp

2k

u
)2

that is equivalent to b = u2bp
2k

Then u = ±b−(p2k−1)/2 and

aup
k−1b−p

2k

= ab−d/2 = −1

that leads to a = −bd/2. Thus, no solutions in U exist if a2 = bd.
If D is a nonsquare in GF(p2k) then there exists some d ∈ GF(pn) \GF(p2k)

such that g2 − 4bp
2k+1 = d2. Raising both sides of the latter identity to the

power of p2k, we obtain g2 − 4bp
2k+1 = d2p2k

= d2 that leads to dp
2k

= −d since
d /∈ GF(p2k). Solutions of bp

2k

x + bx−1 = g are x1,2 = (g ± d)/2bp
2k

and

xp
2k+1

1,2 =
gp

2k+1 ± gp
2k

d± gdp
2k

+ dp
2k+1

4bp2k+1
=

g2 ± gd∓ gd− d2

4bp2k+1
= 1 .

Thus, x1,2 ∈ U .
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Summarizing the arguments presented above, we conclude that if ap
k(pk+1) =

bp
k+1 and a2 = bd then for any g ∈ GF(p2k), the equation bp

2k

x + bx−1 = g has
no solutions in U if g2− 4bp

2k+1 is a square in GF(p2k) and has two solutions in
U otherwise.

If bp
2k

u + bu−1 = 0 then (6) can be written as

(
bp

2k

u + bu−1
)pk−1

= −bp
3k

a
.

Raising elements of GF(p2k)∗ to the power of pk − 1 defines a (pk − 1)-to-1
mapping onto the cyclic subgroup of GF(p2k)∗ of order pk + 1 and all elements
in the set {2cg | c ∈ GF(pk)∗} with gp

k−1 = −bp
3k

/a map to the same element
−bp

3k

/a. Include c = 0 to take care of the case when bp
2k

u + bu−1 = 0. The
discriminant of the quadratic equation bp

2k

x + bx−1 = 2cg, equal to (2cg)2 −
4bp

2k+1, is a square if and only if D = (cg)2 − bp
2k+1 is a square. Only those

c ∈ GF(pk) with D being a nonsquare contribute two solutions to 2N(a, b). ��

Like in Proposition 2, assume a, b ∈ GF(pn)∗ with a2 = bd and g ∈ GF(p2k)∗

with gp
k−1 = −bp

3k

/a. In this case, bp
2k+1/g2 /∈ GF(pk) since(

bp
2k+1

g2

)pk−1

=
a2b(p2k+1)(pk−1)

b2p3k =
a2

bd
= 1 (7)

which also means that (cg)2 − bp
2k+1 = 0 for any c ∈ GF(pk). Therefore, by

Proposition 2,

pk − 2N(a, b) =
∑

c∈GF(pk)

η
(
(cg)2 − bp

2k+1)
= η
(
− bp

2k+1)+ 1
pk + 1

∑
x∈GF(p2k)∗

η
(
x2(pk+1) − bp

2k+1/g2)
= η
(
− bp

2k+1/g2)+ I2(pk+1)
(
− bp

2k+1/g2
)

pk + 1

(1)
=

Hpk+1
(
− bp

2k+1/g2
)

pk + 1
− 1 .

We conclude that

2N(a, b) = pk −
Hpk+1

(
− bp

2k+1/g2
)

pk + 1
+ 1 (8)

and, by Theorem 3,

Sf (0) = p2k

(
pk −

Hpk+1
(
− bp

2k+1/g2
)

pk + 1

)
.
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Thus, finding the value distribution of Sf (0) when ap
k(pk+1) = bp

k+1 with a2 =
bd, is related to finding the values of the Jacobsthal sum of order pk + 1. In the
following corollary, we list some basic properties of N(a, b).

Corollary 2. Under the conditions of Proposition 2,

(i) N(a, b) =
{

N(a−1, b−1), if b(pn−1)/2 = 1
pk + 1−N(a−1, b−1), otherwise ;

(ii) N(a, b) + N(−a, b) = N(a, b) + N(a,−b) = pk + 1;

(iii) N(−a, b) =
{

pk + 1−N(a−1, b−1), if b(pn−1)/2 = 1
N(a−1, b−1), otherwise ;

(iv) if b(pn−1)/2 = 1 (resp. b(pn−1)/2 = −1) then N(a, b) is an even (resp. odd)
number;

(v)
∣∣N(a, b)− pk+1

2

∣∣ ≤ pk/2, in particular, N(a, b) is positive and, if k > 2 then
N(a, b) > 8;

(vi) if p ≡ −1 (mod 4), k is odd and b(pn−1)/2 = 1 then N(a, b) = N(−a, b) =
(pk+1)/2 for a = ν(p2k−1)/4bd/2, where ν is a primitive element of GF(p2k);

(vii) for any b ∈ GF(pn)∗,∑
a∈GF(pn): apk(pk+1)=bpk+1, a2 �=bd

N(a, b) = (pk + 1)
(
pk − b(pn−1)/2)/2 . (9)

Proof. First, note that bp
2k+1 is a square in GF(p2k) if and only if b(pn−1)/2 = 1,

i.e., b is a square in GF(pn). Assume c = 0 in (5). Then if b is a square (resp.
nonsquare) in GF(pn) then (cg)2 − bp

2k+1 is a nonsquare in GF(p2k) if and only
if (cg)−2 − b−(p2k+1) is a nonsquare (resp. square), since −1 =

(
ν(p2k−1)/4

)2. If
b is a square in GF(pn) then, by (5),

N(a, b) = #
{
c ∈ GF(pk)∗ | (cg)2 − bp

2k+1 is a nonsquare in GF(p2k)
}

= #
{
c ∈ GF(pk)∗ | (cg−1)2 − b−(p2k+1) is a nonsquare in GF(p2k)

}
= N(a−1, b−1)

since g−(pk−1) = −a/bp
3k

if gp
k−1 = −bp

3k

/a. Similarly, If b is a nonsquare in
GF(pn) then

N(a, b) = 1 + #
{

c ∈ GF(pk)∗ | (cg)2 − bp
2k+1 is a nonsquare in GF(p2k)

}
= 1 + #

{
c ∈ GF(pk)∗ | (cg−1)2 − b−(p2k+1) is a square in GF(p2k)

}
= 1 + pk − 1−

(
N(a−1, b−1)− 1

)
.

This proves (i).
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For a pair (a, b), the corresponding g ∈ GF(p2k)∗ satisfies gp
k−1 = −bp

3k

/a.

Then
(
ν(pk+1)/2g

)pk−1 = bp
3k

/a which means that ν(pk+1)/2g corresponds both
to (−a, b) and (a,−b). Also,

(
cν(pk+1)/2g

)2 = νp
k+1c2g2 and νp

k+1 is a generator
of GF(pk)∗. If bp

2k+1 is a square in GF(p2k) then for any c ∈ GF(pk)∗, we have
cg2/bp

2k+1 ∈ C2i with i = 0 that follows from (7). In this case, by (5),

N(a, b) + N(−a, b) = N(a, b) + N(a,−b)

= 2#
{
c ∈ GF(pk)∗ | cg2 − bp

2k+1 is a nonsq. in GF(p2k)
}

= 2#{x ∈ C2i | x− 1 is a nonsquare in GF(p2k)}

= 2
(pk−1)/2∑
j=0

(2i, 2j + 1)
(∗)
= pk + 1

since the set of nonsquares in GF(p2k) is equal to
⋃(pk−1)/2
j=0 C2j+1 and where (∗)

is obtained using Lemma 1. Similarly, if bp
2k+1 is a nonsquare in GF(p2k) then

for any c ∈ GF(pk)∗, we have cg2/bp
2k+1 ∈ C2i+1 and

N(a, b) + N(±a,∓b) = 2 + 2#{x ∈ C2i+1 | x− 1 is a square in GF(p2k)}

= 2 + 2
(pk−1)/2∑
j=0

(2i + 1, 2j) = pk + 1

since the set of squares in GF(p2k) is equal to
⋃(pk−1)/2
j=0 C2j . The additive term

2 comes from c = 0. This proves (ii), and (iii) follows directly by combining (i)
and (ii).

If bp
2k+1 is a square in GF(p2k) then c = 0 and N(a, b) is even since c2 is

2-to-1 on GF(pk)∗. If bp
2k+1 is a nonsquare then c = 0 contributes 1 to N(a, b)

and makes it odd.
Combining (8) with Theorem 2 we immediately obtain the estimate in (v).

Also note that (pk + 1)/2 − pk/2 grows both with p and k. The lowest value is
achieved when p = 3 and k = 1 giving 2 − 31/2 > 0 (thus, N(a, b) > 0) and if
k > 2 then N(a, b) ≥ 14− 271/2 > 8.

If b is square in GF(pn)∗ then, by Corollary 1,

N(±ν(p2k−1)/4bd/2, b) = N(±ν(p2k−1)/4, 1) .

Then (vi) follows from (ii) and (iii) since a−1 = −a if and only if a2 = −1 =
ν(p2k−1)/2 (we also have to remember the requirement ap

k(pk+1) = bp
k+1 and

a2 = bd that in our case becomes ap
k+1 = 1 and a = ±1).

Take any b ∈ GF(pn)∗ and fix (conditions of Proposition 2 provide that b = 0).
Note that xp

k(pk+1) = bp
k+1 has pk + 1 solutions in GF(pn). If b is a square in

GF(pn) then both a = ±bd/2 satisfy ap
k(pk+1) = bp

k+1 (see (3)). Thus, summa-
tion conditions in (9) are satisfied by pk − 1 values of a ∈ GF(pn). On the other
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hand, if b is a nonsquare in GF(pn) then a2 = bd/2 whenever ap
k(pk+1) = bp

k+1.
Therefore, (9) immediately follows from (ii). ��

Take any b ∈ GF(pn)∗ and fix. Having in mind Theorem 3 and Proposition 1,
suppose Sf (0) takes on the values −p2k, p2k and 3p2k respectively r, s and t

times when a ∈ GF(pn) and either ap
k(pk+1) = bp

k+1 or a2 = bd. Actually, by
Corollary 2 (v), for all the remaining values of a we have that Sf (0) = −p2k

and, if k > 2, then Sf (0) > 15p2k.
First, assume b is a square in GF(pn)∗. Then r + s + t = pn − pk + 1 (see the

proof of Corollary 2 (vii)). Further, by Theorem 3,∑
a∈GF(pn)

Sf (0) = −rp2k + sp2k + 3tp2k + p2k
∑

apk(pk+1)=bpk+1, a2 �=bd

(2N(a, b)− 1)

(9)
= p2k(−r + s + 3t) + p2k(p2k − 1− pk + 1)
= p2k(−r + s + 3t− pk) + pn .

Similarly, if b is a nonsquare in GF(pn)∗ then r + s + t = pn − pk − 1 and∑
a∈GF(pn)

Sf (0)
(9)
= p2k(−r + s + 3t) + p2k((pk + 1)2 − pk − 1)

= p2k(−r + s + 3t + pk) + pn .

On the other hand, for any b ∈ GF(pn),∑
a∈GF(pn)

Sf (0) =
∑

a∈GF(pn)

∑
x∈GF(pn)

ωTrn

(
axp3k+p2k−pk+1+bx2

)
=
∑

x∈GF(pn)

ωTrn

(
bx2
) ∑
a∈GF(pn)

ωTrn

(
axp3k+p2k−pk+1

)
= pn .

Thus, if b = 0 then r + s+ t = pn− pk+ b(pn−1)/2 and −r + s+3t = b(pn−1)/2pk.
Note that finding the sum of squares of Sf (0) is easy in our case. Therefore,

knowing the values and the distribution of the Jacobsthal sum of order pk + 1
would give us the third equation allowing to find r, s and t. However, in this
way we are facing some long-lasting open problems. On the other hand, it may
be possible to extract some extra relations for the unknowns, thus, bypassing
the problem of finding the value distribution of Jacobsthal sums. This is the
first direct connection between sequences and Jacobsthal sums we are aware
of. We find it interesting and believe that this gives an important link between
sequences/codes and classical character sums.
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Infinite Sequences with Finite Cross-Correlation
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Abstract. Let A = {ak}∞k=1 be an infinite increasing sequence of pos-
itive integers. We define the infinite binary sequence A = {αj}∞j=1 to
have αj = 1 if j ∈ A, αj = 0 if j /∈ A (including when j ≤ 0). If
B = {bk}∞k=1 is also an infinite increasing sequence of positive integers
with B = {βj}∞j=1, by the “cross-correlation of A and B” we will mean
the un-normalized, infinite-domain cross-correlation of A and B, i.e.

CAB(τ ) =
∞∑

i=1

αiβi+τ

for all τ ∈ Z. Our interest will be in identifying pairs of sequences A
and B for which CAB(τ ) is finite for all τ ∈ Z, and especially when
CAB(τ ) < K for some uniform bound K, for all τ ∈ Z. We will exhibit
pairs of sequences A and B where CAB(τ ) ≤ 1 for all τ ∈ Z. If B = P =
{p1, p2, p3, . . .} = {2, 3, 5, 7, . . .} is the sequence of the prime numbers,
we will exhibit sequences A such that CAP (τ ) is finite for all τ ∈ Z, and
question whether a sequence A exists such that CAP (τ ) < K for some
uniform bound K and all τ ∈ Z.

1 Introduction

It is well-known that the set S of infinite sequences {a1 < a2 < a3 . . .} of positive
integers is uncountably infinite. (Thus, Neil J.A. Sloane’s “Online Encyclopedia
of Integer Sequences” will never be complete.) In this paper, we explore ways in
which two or more such sequences can have few elements, or patterns of elements,
in common.

First, we show that the set S can have an uncountably infinite subset T such
that, for any two sequences T1 and T2 in T , their intersection T1 ∩ T2 contains
only finitely many integers. Specifically, for each real number x ∈ [12 , 1), take
the binary expansion of x as x = 0.1c2c3c4c5 . . ., where each ci is either 0 or
1. Then, associate with x the sequence 1, 1c2, 1c2c3, 1c2c3c4, . . . , where the nth
term is an n-bit binary number. (For example, with x = 3

4 = 0.110000 . . . , we
would associate the sequence of binary numbers {1, 11, 110, 1100, 11000,. . . }
which in decimal notation becomes {1, 3, 6, 12, 24, 48,. . . }.) For x ∈ [12 , 1) and
y ∈ [12 , 1) with x = y, where the binary expansion of y is y = 0.1d2d3d4d5 . . . ,
and where the sequence of integers associated with y, in binary notation, is
{1, 1d2, 1d2d3, 1d2d3d4, . . .}, consider the smallest i such that ci = di. Then the
sequences for x and y will differ in their ith terms, and in all terms thereafter,

C. Carlet and A. Pott (Eds.): SETA 2010, LNCS 6338, pp. 430–441, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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thus agreeing in only their first i − 1 terms, a finite number of agreements. It
is of course well-known that there are uncountably many real numbers in the
interval [12 , 1). (The countable set of rational numbers with terminating binary
expansions, such as 3

4 = 0.110000 . . . = 0.1011111 . . . , actually contribute two
distinct sequences in T .) Thus T contains an uncountably large subset of S such
that any two sequences in T can have only finitely many integers in common.

2 Cross-Correlation of Sequences

To each infinite integer sequence A = {a1, a2, a3, . . .} with a1 < a2 < a3 <
. . . , we associate a companion infinite binary sequence A = {α1α2α3α4 . . .},
where α1 = 1 if i ∈ A, αi = 0 if i /∈ A. (For example, if A = {2, 4, 6, 8, . . .}
is the sequence of positive even integers, then A = {01010101 . . .}.) With a
second infinite sequence B = {b1, b2, b3, . . .} with b1 < b2 < b3 < . . ., and
B = {β1β2β3β4, . . .}, we define the (infinite, unnormalized) cross-correlation of
A and B to be

CAB(τ) =
∞∑
j=1

αjβj+τ ,

for all τ ∈ Z (i.e. all integers τ,−∞ < τ < +∞). We are particularly interested
in sequence pairs with the following three levels of restrictions.
R-1. CAB(τ) ≤ 1 for all τ ∈ Z. (This is the most restrictive condition that can
be imposed, since A and B each contain infinitely many 1’s, and as the two
sequences slide past one another, each 1 in A will collide with a 1 in B infinitely
many times.)
R-2. CAB(τ) < K for all τ ∈ Z, where K is a finite (though perhaps very large)
bound, independent of τ .
R-3. CAB(τ) <∞ for all τ ∈ Z. (This is the weakest condition we shall consider.)

3 Sequences That Collide Minimally

Theorem 1. The condition CAB(τ) < 1 for all τ ∈ Z (restriction R-1) is equiv-
alent to the following condition: The “difference sets” ΔA and ΔB are disjoint.
(With A = {a1, a2, a3, . . .} where a1 < a2 < a3 < . . . , and B = {b1, b2, b3, . . .}
where b1 < b2 < b3 < . . ., we define ΔA = {all aj − ai with 0 < i < j} and ΔB
= {all bj − bi with 0 < i < j.)

Proof. If and only if there are positive integers i, j, k, l with i < j and k < l
such that aj − ai = bl − bk, there is τ ∈ Z with bl − aj = bk − ai = τ . Then
CAB(τ) ≥ 2, since shifting A relative to B by τ produces at least these two hits.
Conversely, if there is any τ ∈ Z with CAB(τ) ≥ 2, there must be terms ai < aj
in A and bk < bl in B with aj−ai = bl−bk, from which bl−aj = bk−ai = τ . ��

Example 1. Define the Fibonacci sequence {fn}∞n=1 by f1 = f2 = 1, fn+1 =
fn + fn−1 for all n > 1. Let A = {f2n−1}∞n=1 = {1, 2, 5, 13, 34, 89, 233, . . .} and
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B = {f2n}∞n=1 = {1, 3, 8, 21, 55, 144, 377, . . .}. Then ΔA = {1, 3, 4, 8, 11, 12, 21,
29, 32, 33, 55, 76, 84, 87, 88, 144, . . . } and ΔB = {2, 5, 7, 13, 18, 20, 34, 47, 52,
54, 89, 123, 136, . . . }. For this choice of sequences A and B, since (ΔA) ∩ (ΔB)
= ∅, we have CAB(τ) ≤ 1 for all τ ∈ Z.

Remark 1

1. In this example, A and B are among the first differences of each other.
2. By the Fibonacci property, these two sequences A and B have the same asymp-

totic growth rate, (3 +
√

5)/2 = 2.618 . . . , and are accordingly “equi-dense.”
3. In general, in order for (ΔA) ∩ (ΔB) = ∅, we would expect that as one

sequence becomes more dense, the other must become less dense.
4. It is possible to find “equi-dense” sequences A and B, each more dense than
{f2n−1} and {f2n}, but still with (ΔA) ∩ (ΔB) = ∅. This is discussed in
Sections 7 and 8.

4 Repeated Difference Patterns

Just as the existence of an integer δ > 0 such that ai + δ = aj , bk + δ = bl leads
to a value of τ (namely, τ = bk − ai) for which CAB(τ) ≥ 2, a pattern in which
ai + δ1 = aj , ai + δ2 = ak, 0 < δ1 < δ2, mirrored by bl + δ1 = bm, bl + δ2 = bn,
leads to a value of τ (namely, τ = bl − ai) for which C(τ) ≥ 3. More generally,

Theorem 2. CAB(τ) ≥ k if and only if there is a “k-tuple pattern” with 0 <
δ1 < δ2 < . . . < δk−1 such that there is ai ∈ A and bj ∈ B such that all k of
ai, ai+δ1, ai+δ2, . . . , ai+δk−1 are in A, and all k of bj, bj+δ1, bj+δ2, . . . , bj+δk−1
are in B.

Proof. If and only if this common “k-tuples pattern” can be found in both se-
quence A and sequence B, there will be a set of k 1’s somewhere in A and a set
of k 1’s somewhere in B having the same spacing, corresponding to the distances
δ1, δ2, . . . , δk−1, beyond the first 1 in the pattern, and there will be a shift by
some τ that brings these two 1’s-patterns into coincidence; so for this value of
τ, C(τ) ≥ k. (Note that the binary digits that occur in A and in B between the
1’s of the corresponding k-tuples have no impact on the proof just given.) ��

We will explore the relevance of this theorem to the validity of the “prime k-
tuples conjecture” in the next sections.

5 Cross-Correlations with the Sequence of the Prime
Numbers

Let P = {2, 3, 5, 7, 11, 13, 17, . . .} be the infinite increasing sequence of the prime
numbers, with P = {011010100010100010 . . .}. In [1], I posed a two-part prob-
lem. In Part a., I asked for an infinite increasing sequence A = {a1, a2, a3, . . .}
of positive integers for which CAP (τ) < ∞ for all τ ∈ Z. An example will be
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described below. In Part b., I asked if there is such a sequence A for which
CAP (τ) < K for a fixed bound K for all τ ∈ Z. Whether such a sequence exists
is not known, and its existence would contradict a widely believed conjecture
about the prime numbers.

Theorem 3. The sequence A = {an}∞n=1 where an = ((2n)! )3 has finite cross-
correlation, CAP (τ) < ∞ for all τ ∈ Z, with the sequence P of the prime
numbers.

Proof. We will show that CAP (τ) ≤ |τ | for all τ ∈ Z.

i) CAP (0) = 0, since ((2n)! )3 is composite for all n ≥ 1.
ii) Since x3 + 1 = (x+ 1)(x2− x+ 1) and x3− 1 = (x− 1)(x2 + x+ 1), an+ 1 =

((2n)! )3 +1 is composite for all n ≥ 1, and an−1 = ((2n)! )3−1 is composite
except at n = 1, where (2! )3 − 1 = 7. Thus CAP (±1) ≤ 1.

iii) Since ((2n)! )3 + τ is divisible by |τ | for all n ≥ |τ |, we see that an ± τ can
be prime only for (some) values of n < |τ |. Hence, for all |τ | > 1, CAP (τ)
≤ |τ |. ��

The prime k-tuples conjecture is the assertion that there are infinitely many
integer values of x such that all k of the numbers {x, x+a1, x+a2, . . . , x+ak−1}
are prime, provided only that the k numbers {0, a1, a2, . . . , ak−1} do not fill a
complete residue system modulo any prime p. (That is, the least non-negative
remainders, upon division by p, of the numbers 0, a1, a2, . . . , ak−1 do not include
all the values 0, 1, 2, . . . , p− 1.) The simplest special case occurs with k = 2 and
a1 = 2, the “twin prime conjecture” that for infinitely many integer values of
x, both x and x + 2 are prime. No one seriously doubts that this special case is
true.

From our perspective, the prime k-tuples conjecture is the assertion that every
“permissible” pattern of 1’s occurs infinitely often in the binary sequence P .

In L.E. Dickson’s three-volume History of the Theory of Numbers, the first
published reference he found to the “twin prime conjecture” was the more general
conjecture, from the nineteenth century, of de Polignac: “Every even number is
a difference of two primes, and in fact, in infinitely many ways.” This is precisely
the case k = 2 of the prime k-tuples conjecture.

If the de Polignac conjecture is true (and there seems to be little reason to
doubt it), then

Theorem 4. No matter what infinite increasing positive integer sequence A is
chosen, CAB(τ) ≤ 1 for all τ ∈ Z will not be possible, if de Polignac’s Conjecture
is true.

Proof. Suppose there were such a sequence A. Let B be the subsequence of A
containing all terms of A which are even numbers, and let C be the subsequence
of A containing all the terms of A which are odd numbers (Thus B ∪ C = A,
and B ∩ C = ∅. Because A is an infinite sequence, at least one of B and C
must be an infinite sequence of integers. Both ΔB and ΔC consist entirely of
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even integers, and at least one of these two sets is infinite. Hence ΔA contains
infinitely many even integers. (Here ΔA, ΔB, and ΔC are defined as in Section
3. above.) If de Polignac’s Conjecture is true, ΔP contains every even integer (in
fact, infinitely often), so that (ΔA) ∩ (ΔP) contains infinitely many integers,
whence CAP (τ) > 1 for infinitely many values of τ ∈ Z. ��

6 “Golomb’s Conjecture”

The existence of an infinite sequence A of positive integers such that CAP (τ) < K
for all τ ∈ Z, where K is a finite (though possibly very large) bound independent
of τ , is referred to in [3] as “Golomb’s Conjecture.” This conjecture is inconsistent
with the “prime k-tuples conjectures.” A proof of this inconsistency is also given
in [3] (where a conjecture of Hardy-Littlewood is also shown to be inconsistent
with the prime k-tuples conjecture).

The cross-correlation viewpoint presented in this paper facilitates visualizing
the inconsistency of these two conjectures (“Golomb’s” and “prime k-tuples”).
Whatever sequence A is considered, the corresponding binary sequence A has
infinitely many (though possibly sparsely situated) 1’s, and when this pattern
is translated across the fairly dense pattern of 1’s in P , the “prime k-tuples
conjecture” implies that the number of 1-on-1 “hits” will exceed any pre-assigned
bound K, for some shift τ .

The plausibility of Golomb’s Conjecture arises from considering a sequence
A = {an}, all n ≥ 1, with an extraordinarily fast growth rate. For example, if

an =
((

10101010
10n )

!
)3

, so that CAP (τ) is finite for all τ ∈ Z as in Theorem

3, the expected number of primes in A, namely
∞∑
n=1

1
ln an

, is a tiny positive real

number, and this will be true for each translate sequence Aτ = {an + τ}, for all

τ ∈ Z. If we then take a huge value of K, e.g. K0 = 10101010
100

, for Golomb’s
Conjecture to be false there must be infinitely many values of τ with CAP (τ) >
K0. (If there were only finitely many such values, since CAP (τ) is always finite,
there would be a largest value CAP (τ)MAX = L, and taking any K > L, for this
K we would have CAP (τ) < K for all τ ∈ Z.)

Since far faster growth rates than the A = {an} suggested here, and far larger
values than the K0 suggested here, can be chosen, it takes considerable faith to
remain convinced of the truth of the prime k-tuples conjecture.

7 Infinite Spanning Birulers

A spanning ruler with n marks has been defined [2] as an increasing set of n
non-negative integers {d1, d2, . . . , dn}, di < di+1,, such that the (n2 ) differences
dj−di, with i < j, are all distinct. (We depart from the original convention, where
d1 = 0, to take d1 = 1 to conform to our current context. Clearly, adding any
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constant c to all the marks on a ruler has no effect on the “measured distances”,
i.e. the set of all differences between pairs of marks.)

The shortest spanning ruler with n marks has the smallest measured length,
L(n) = dn − d1, subject to the “all differences distinct” requirement, and is
referred to in the literature as the Golomb ruler with n marks. (Some authors
use the term Golomb ruler to refer to any spanning ruler, which muddles a
useful distinction.) There has been a decades-long search for Golomb rulers with
n marks, and their lengths, L(n). At this writing, L(n) is known precisely for
n ≤ 27, and conjectured values of L(n) extend beyond n = 200. It is also
conjectured that L(n) ∼ cn2 as n → ∞ for some positive constant c. Trivially
L(n) ≥ (n2 ) for all n ≥ 2, since this is the number of measured distances between
n marks, which must all be distinct positive integers.

In [2] we also considered sets of k spanning rulers with the property that all the
measured distances of all k rulers combined are distinct. For present purposes,
we consider the case k = 2: sets of only two rulers with the property that all
measured distances of the two rulers combined are distinct, and such pairs of
rulers will be called spanning birulers.

The two Fibonacci subsequences {f2n−1} and {f2n} (for all n ≥ 1) considered
in Section 3 supra are an example of infinite spanning birulers, where each of
the two sequences has exponential growth.

We will now construct a pair of sequences A = {a1, a2, a3, . . .} and B =
{b1, b2, b3, . . .}, with a1 = b1 = 1, as an infinite spanning biruler, using the
“greedy algorithm” to adjoin terms alternately to sequence A and to sequence
B. The two sequences constructed in this manner begin as follows:

A = {1, 2, 5, 11, 22, 41, 65, 83, 121, 152, . . .}
B = {1, 3, 8, 16, 30, 53, 78, 104, 137, 190, . . .}

The non-overlapping and repeat-free difference triangles for these two sequences
are:

A: 1, 2, 5, 11, 22, 41, 65, 83, 121, 152, ...
1 3 6 11 19 24 18 38 31

4 9 17 30 43 42 56 69
10 20 36 54 61 80 87

21 39 60 72 99 111
40 63 78 110 130

64 81 116 141
82 119 147

120 150
151

Thus, ΔA = {1, 3, 4, 6, 9, 10, 11, 17, 18, 19, 20, 21, 24, 31, 36, 38, 39, 40, 42,
43, 54, 56, 60, 61, 63, 64, 66, 69, 72, 78, 80, 81, 82, 87, 99, 110, 111, 116, 119,
120, 130, 141, 147, 150, 151, . . .
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B: 1, 3, 8, 16, 30, 53, 78, 104, 137, 190, ...
2 5 8 14 23 25 26 33 53

7 13 22 37 48 51 59 86
15 27 45 62 74 84 112

29 50 70 88 107 137
52 75 96 121 160

77 101 129 174
103 134 182

136 187
189

Thus, ΔB = {2, 5, 7, 8, 13, 14, 15, 22, 23, 25, 26, 27, 29, 33, 37, 45, 48, 50, 51,
52, 53, 59, 62, 70, 74, 75, 77, 84, 86, 88, 96, 101, 103, 107, 112, 121, 129, 134,
136, 137, 160, 174, 182, 187, 189, . . .}

The numbers not yet used as differences in either ΔA or ΔB, thus far, are:
12, 16, 28, 30, 32, 34, 35, 41, 44, 46, 47, 49, 55, 57, 58, 65, 67, 68, 71, 73, 76, 79,
83, 85, 89, 90, 91, 92, 93, 94, 95, 97, 98, 100, 102, 104, 105, 106, 108, 109, 113,
114, 117, 118, 122, 123, 124, 125, 126, 127, 128, 131, 132, 133, 135, 138, 139,
140, 142, 143, 144, 145, 146, 148, 149, and all numbers from 152 onward except
160, 174, 182, 187, and 189. Many of these as yet unused differences will occur
later on in either ΔA or ΔB as the sequences A and B are extended further.
For example, when the next eligible term, 210, is adjoined to sequence A, the
new differences generated in ΔA are 58, 89, 127, 145, 169, 188, 199, 205, 208, and
209, thereby removing these numbers from the above list of “not yet-used
differences”.

Theorem 5. If two sequences A = {ai} and B = {bi}, all i ≥ 1, are con-
structed taking ai = bi = 1, and then adjoining new terms alternately to A and
B (i.e. in the sequence a2, b2, a3, b3, a4, b4, . . .) with the constraint that all differ-
ences ΔA = {aj − ai} from A, and ΔB = {bj − bi} from B, be disjoint (i.e.
(ΔA) ∩ (ΔB) = ∅), with or without additional restrictions on whether or not
terms within ΔA, and/or within ΔB, be distinct, the construction process may
be continued indefinitely.

Proof. At any finite stage in the construction, a largest integer t will have been
adjoined to either A or B. Then any integer u ≥ 2t can be adjoined next, since all
numbers u− ai and u− bi will be bigger than anything already in (ΔA)∪ (ΔB).
(Note that u will be adjoined to either A or B, but not to both, so it will not
put u− 1 in both ΔA and ΔB.) ��

Remark 2

1. If we simply take u = 2t every time, we get A = {1, 2, 8, 32, 128, . . .} with
an = 2 · 4n−2 for all n > 1, and B = {1, 4, 16, 64, 256, . . .} with bn = 4n−1

for all n ≥ 1. Here, (ΔA) ∪ (ΔB) consists entirely of distinct integers, and
both A and B grow like powers of 4.
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2. The Fibonacci example in Section 3 already provided a pair of sequences
with a smaller exponential growth rate, the powers of (3+

√
5)

2 = 2.618 . . . .
Slower growth rates seem possible, especially if we do not require that only
distinct values occur within ΔA and within ΔB.

3. It seems reasonable to conjecture that the sequences A and B as constructed
above by the greedy algorithm have polynomial growth rate. However, we
can show that at least quadratic growth rate must occur for at least one of
any pair of sequences that form an infinite spanning biruler, as follows.

Theorem 6. The lengths LA(n) and LB(n) of any pair of spanning birulers,
A = {a1, a2, . . . , an} and B = {b1, b2, . . . , bn} must satisfy max (LA(n), LB(n)) ≥
n(n− 1).

Proof. A ruler with n marks has (n2 ) = n(n−1)
2 measured distances, so two such

rulers have n(n − 1) measured distances. If all of these measured distances are
distinct, at least one of the rulers must measure a length L ≥ n(n− 1). ��
Stronger lower bounds can be obtained using the techniques employed to obtain
lower bounds on the lengths of Golomb rulers.

8 Sequences with Repeated Differences

For two infinite integer sequences A and B to have CAB(τ) ≤ 1 for all τ ∈
(−∞,∞), it is sufficient but not necessary that A and B constitute a pair of
infinite spanning birulers. The necessary and sufficient condition, namely (ΔA)∩
(ΔB) = ∅, requires only that none of the differences of terms in sequence A
coincide with any of the differences of terms in sequence B. This allows repeated
differences separately within ΔA and within ΔB.

Using the greedy algorithm again, but with this weaker constraint, we get
new sequences A and B that do not grow quite as fast as those in the previous
section. Here,

A = {1, 2, 5, 11, 20, 35, 46, 68, 86, 92, . . .}
B = {1, 3, 8, 15, 28, 40, 57, 77, 104, 116, . . .}

The difference triangles for these sequences are:

A: 1, 2, 5, 11, 20, 35, 46, 68, 86, 92, ...
1 3 6 9 15 11 22 18 6
4 9 15 24 26 33 40 24

10 18 30 35 48 51 46
19 33 41 57 66 57

34 44 63 75 72
45 66 81 81

67 84 87
85 90

91
with ΔA = { 1, 3, 4, 6, 9, 10, 11, 15, 18, 19, 22, 24, 26, 30, 33, 34, 40, 41, 44,
45, 46, 48, 57, 63, 66, 67, 72, 75, 81, 84, 85, 87, 90, 91, . . .}
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and

B: 1, 3, 8, 15, 28, 40, 57, 77, 104, 116, ...
2 5 7 13 12 17 20 27 12

7 12 20 25 29 37 47 39
14 25 32 42 49 64 59

27 37 49 62 76 76
39 54 69 89 88

56 74 96 101
76 101 108

103 113
115

with ΔB = { 2, 5, 7, 12, 13, 14, 17, 20, 25, 27, 29, 32, 37, 39, 42, 47, 49, 54, 56,
59, 62, 64, 69, 74, 76, 88, 89, 96, 101, 103, 108, 113, 115, . . .}.

Note that although A and B are each necessarily increasing sequences, and
were constructed by alternately adjoining new terms to A and B by the greedy
algorithm (i.e. taking the smallest next term consistent with (ΔA)∩ (ΔB) = ∅),
the tenth term of sequence A (namely a10 = 92) is smaller than the ninth term
of sequence B (namely b9 = 104).

As another example, we will form sequences C = {ci} and D = {di} with
(ΔC) ∩ (ΔD) = ∅, where we take C = { 1, 8, 27, 64, 125, 216, 343, 512, 729,
1000, 1331, 1728, . . .} to be the sequence of perfect cubes, and we form D by
the greedy algorithm.

The difference triangle for C is:

C: 1, 8, 27, 64, 125, 216, 343, 512, 729, 1000, 1331, 1728, 2197, ...
7 19 37 61 91 127 169 217 271 331 397 469

26 56 98 152 218 296 386 488 602 728 866
63 117 189 279 387 513 657 819 999 1197
124 208 316 448 604 784 988 1216 1468

215 335 485 665 875 1115 1385 1685
342 504 702 936 1206 1512 1854

511 721 973 1267 1603 1981
728 992 1304 1664 2072

999 1323 1701 2133
1330 1720 2170

1727 2189
2196

There are 110 distinct members of ΔC below 2500. (The above table does not
contain them all.) These are: ΔC = {7, 19, 26, 37, 56, 61, 63, 91, 98, 117, 124,
127, 152, 169, 189, 208, 215, 217, 218, 271, 279, 296, 316, 331, 335, 342, 386,
387, 397, 448, 469, 485, 488, 504, 511, 513, 547, 602, 604, 631, 657, 665, 702,
721, 728, 784, 817, 819, 866, 875, 919, 936, 973, 988, 992, 999, 1016, 1027, 1115,
1141, 1178, 1197, 1206, 1216, 1261, 1267, 1304, 1323, 1330, 1352, 1385, 1387,
1413, 1468, 1512, 1519, 1538, 1603, 1647, 1657, 1664, 1685, 1701, 1720, 1727,
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1736, 1744, 1801, 1854, 1899, 1946, 1951, 1981, 2015, 2044, 2072, 2107, 2168,
2169, 2170, 2189, 2196, 2232, 2269, 2368, 2375, 2401, 2402, 2437, 2457}.

Note that as a multiset, ΔC contains infinitely many duplicates. Three of these
occur below 2500: 721 = 163 − 153 = 93 − 23, 728 = 123 − 103 = 93 − 13, 999 =
103−13 = 123−93. (Remember Ramanujan’s famous observation to Hardy that
1729 = 123 + 13 = 103 + 93, which accounts for two of the three examples just
given.) Up to 2500, ΔC has several pairs of consecutive integers, and one triple:
(2168, 2169, 2170).

Note that ΔC can contain no cubes (by Fermat’s Last Theorem, for the
exponent 3). We use the greedy algorithm to construct the infinite sequence
D = {d1, d2, d3, . . .} of positive integers such that (ΔC) ∩ (ΔD) = ∅.

D = { 1, 2, 3, 4, 5, 6, 7, 15, 16, 17, 18, 19, 46, 47, 48, 49, 50, 51, 89, 90, 91,
160, 161, 162, . . .}

Here is the difference triangle to generate ΔD.

D: 1, 2, 3, 4, 5, 6, 7, 15, 16, 17, 18, 19, 46, 47, 48, 49, 50, 51, 89, 90, 91, 160, 161, 162, ...
1 1 1 1 1 1 8 1 1 1 1 27 1 1 1 1 1 38 1 1 69 1 1

2 2 2 2 2 9 9 2 2 2 28 28 2 2 2 2 39 39 2 70 70 2
3 3 3 3 10 10 10 3 3 29 29 29 3 3 3 40 40 40 71 71 71

4 4 4 11 11 11 11 4 30 30 30 30 4 4 41 41 41 109 72 72
5 5 12 12 12 12 12 31 31 31 31 31 5 42 42 42 110 110 73

6 13 13 13 13 13 39 32 32 32 32 32 43 43 43 111 111 111
14 14 14 14 14 40 40 33 33 33 33 76 44 44 112 112 112
15 15 15 15 41 41 41 34 34 34 71 71 45 113 113 113

16 16 16 42 42 42 42 35 35 72 72 72 114 114 114
17 17 43 43 43 43 43 36 73 73 73 141 115 115

18 44 44 44 44 44 44 74 74 74 142 142 116
45 45 45 45 45 45 82 75 75 143 143 143

46 46 46 46 46 83 83 76 144 144 144
47 47 47 47 84 84 84 145 145 145

48 48 48 85 85 85 153 146 146
49 49 86 86 86 154 154 147

50 87 87 87 155 155 155
88 88 88 156 156 156

89 89 157 157 157
90 158 158 158

159 159 159
160 160

161

Thus far, below 162, ΔD omits only {7, 19−26, 37, 51−68, 77−82, 91−108, 117−
140, 148− 152}, thus avoiding {7, 19, 26, 37, 56, 61, 63, 91, 98, 117, 124, 127,
152} which are the numbers in ΔC below 162.

Since the sequence C contains arbitarily large terms, the proof given earlier,
in Theorem 5, that the greedy algorithm does not terminate when adjoining
new terms to two sequences by alternating between them, does not apply to the
construction here of the sequence D. It seems likely that D will be an infinite
sequence, and of greater density than the sequence C, but no proof is currently
available.

It would be a research goal to find an explicit sequence D′, with polynomial
growth (preferable no faster than cubic growth) with (ΔC)∩(ΔD′) = ∅. A failed
attempt would be to try D′ = {n3 + n}, but this ΔD′ does have a very sparse
intersection with ΔC. (E.g., 604 = (113 + 11)− (93 + 9) = 93 − 53.)

If A = {(n2 )} for all n ≥ 2, ΔA contains every positive integer greater than 1,
so there can be no infinite sequence B of positive integers with (ΔA)∩(ΔB) = ∅.
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If A = {n2} for all n ≥ 1, the only positive integers not found in ΔA are
1, 4, and 4k + 2 for all k ≥ 0. The set B = {2, 4, 6, 8}, with only four elements,
is the largest set of positive integers with (ΔA) ∩ (ΔB) = ∅ for this choice of
sequence A.

It is an open question whether two sequences A and B, each with quadratic rates
of growth, can be shown to exist, or proved not to exist, with (ΔA) ∩ (ΔB) = ∅.

9 Conclusions

With every infinite sequence A = {an}∞n=1 of positive integers, we associate an
infinite binary sequence A = {αk}∞k=1 where αk = 1 if k = an for any n, αk = 0
otherwise. If B = {bn}∞n=1 is a second infinite sequence of positive integers, and
B = {βk}∞k=1 where βk = 1 if k = bn for any n, βk = 0 otherwise, then we

define the (unnormalized, infinite) crosscorrelation CAB(τ) =
∞∑
k=1

αkβk+τ for all

τ,−∞ < τ < +∞. We are interested in pairs of sequences, A and B, where
CAB(τ) is finite for all integers τ .

Two infinite sequences A and B of positive integers cannot have CAB(τ) = 0
for all τ . In fact, there must be infinitely many values of τ for which CAB(τ) ≥ 1.

The most restrictive case we considered was where CAB(τ) ≤ 1 for all τ ∈ Z.
Example of such pairs of sequences were given. With P ={2, 3, 5, 7, 11, 13, 17, . . .},
the sequence of the primes, we exhibited a sequence A such that CAP (τ) ≤ |τ |
for all τ ∈ Z. We showed that de Polignac’s Conjecture (the case k = 2 of the
“prime k-tuples conjecture”) implies CAP (τ) > 1 for infinitely many integers τ .
We also observed that “Golomb’s Conjecture”, the existence of a sequence A for
which CAP (τ) < K for all τ ∈ Z, where K is a finite bound independent of τ , is
inconsistent with the “prime k-tuples conjecture.”

Numerous examples where (ΔA) ∩ (ΔB) = ∅ are possible, giving CAB(τ) ≤ 1
for all τ ∈ Z. One situation takes A and B to be a pair of spanning birulers, where
all differences are distinct within ΔA and ΔB, and non-overlapping between
ΔA and ΔB. A weaker restriction allows repeated differences within ΔA and
ΔB separately, but still requires ΔA and ΔB to be non-overlapping. Various
examples can be constructed using the greedy algorithm.
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Abstract. We construct two families of deterministic sensing matrices
where the columns are obtained by exponentiating codewords in the qua-
ternary Delsarte-Goethals code DG(m, r). This method of construction
results in sensing matrices with low coherence and spectral norm. The
first family, which we call Delsarte-Goethals frames, are 2m - dimensional
tight frames with redundancy 2rm. The second family, which we call
Delsarte-Goethals sieves, are obtained by subsampling the column vec-
tors in a Delsarte-Goethals frame. Different rows of a Delsarte-Goethals
sieve may not be orthogonal, and we present an effective algorithm for
identifying all pairs of non-orthogonal rows. The pairs turn out to be
duplicate measurements and eliminating them leads to a tight frame.
Experimental results suggest that all DG(m, r) sieves with m ≤ 15 and
r ≥ 2 are tight-frames; there are no duplicate rows. For both families of
sensing matrices, we measure accuracy of reconstruction (statistical 0−1
loss) and complexity (average reconstruction time) as a function of the
sparsity level k. Our results show that DG frames and sieves outperform
random Gaussian matrices in terms of noiseless and noisy signal recovery
using the LASSO.

Keywords: Compressed Sensing, Reed-Muller Codes, Delsarte-
Goethals Set, Random Sub-dictionary, LASSO.

1 Introduction

The central goal of compressed sensing is to capture attributes of a signal using
very few measurements. In most work to date, this broader objective is exem-
plified by the important special case in which the measurement data constitute
a vector f = Φα + e, where Φ is an N ×C matrix called the sensing matrix, α is
a signal in CC , that is well-approximated by a k-sparse vector (a signal with at
most k non-zero entries), and e is additive measurement noise.

The role of random measurement in compressive sensing (see [1] and [2]) can
be viewed as analogous to the role of random coding in Shannon theory. Both
provide worst-case performance guarantees in the context of an adversarial sig-
nal/error model. In the standard paradigm, the measurement matrix is required
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to act as a near isometry on all k-sparse signals (this is the Restricted Isom-
etry Property or RIP introduced in [3]). It has been shown that if a sensing
matrix satisfies the RIP property then Basis pursuit [1,4] programs can be used
to estimate the best k-term approximation of any signal in CC , measured in the
presence of any �2 norm bounded measurement noise [5].

It is known that certain probabilistic processes generate sensing matrices that
for k = O(N) satisfy k-RIP with high probability (see [6]). This is significantly
different from the best known results for deterministic sensing matrices [7] where
k-RIP is known only for k = O(

√
N). We normalize the columns of a sensing

matrix to have unit �2 - norm and define the worst case coherence μ to be the
maximum absolute value of an inner product of distinct columns. It follows from
the Welch bound [8] that μ ≥ O

(
1√
N

)
. When μ = O

(
1√
N

)
it then follows from

the Gerschgorin Circle Theorem [9] that the sensing matrix satisfies k-RIP with
k = O

(
μ−1
)
. In general however no polynomial-time algorithm is known for

verifying that a sensing matrix with the worst-case coherence μ satisfies k-RIP
with k = Ω

(
μ−1
)
.

The RIP property is not an end in itself. It provides guarantees for a particular
method of signal reconstruction, but there is significant interest in structured
sensing matrices and alternative reconstruction algorithms. One example is the
adjacency matrices of expander graphs [10,11] where it is known to be impossible
to satisfy RIP with respect to the �2 norm [12]. Sparse signal recovery is still
possible with Basis Pursuit since the adjacency matrix acts like a near isometry
on k-sparse signals with respect to the �1 norm. However error estimates are
looser than corresponding estimates for random sensing matrices and resilience
to measurement noise is limited to sparse noise vectors.

The coherence between rows of a sensing matrix is a measure of the new
information provided by an additional measurement. The coherence between
columns of a sensing matrix is fundamental to deriving performance guarantees
for reconstruction algorithms such as Basis Pursuit. There are two fundamental
measures of coherence: The worst-case coherence μ which measures the maximal
coherence between the columns of the sensing matrix, and the spectral norm
‖Φ‖2 which measures the maximal coherence between the rows of the frame.
The ideal case is when worst case coherence between columns matches the Welch
bound

(
μ = O

(
1√
N

))
and different measurements are orthogonal. Then, with

high probability a k-sparse vector has a unique sparse representation [13], and
this representation can be efficiently recovered using a LASSO program [14].
Section §2 introduces notation and reviews prior work on the geometry of sensing
matrices and the performance of the LASSO reconstruction algorithm.

In this paper we consider sensing matrices based on the Z4-linear represen-
tation of Delsarte Goethals codes. The columns are obtained by exponentiating
codewords in the quaternary Delsarte-Goethals code; they are uniformly and
very precisely distributed over the surface of an N -dimensional sphere. Coher-
ence between columns reduces to properties of these algebraic codes. Section §2
reviews the construction of Delsarte-Goethals (DG) sets of Z4-linear quadratic
forms which is the starting point for the construction of the corresponding codes;
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each quadratic form determines a codeword where the entries are the values
taken by quadratic form. Section §3 introduces Delsarte-Goethals frames and
Delsarte-Goethals sieves; the columns of these sensing matrices are obtained by
exponentiating DG codewords. We then determine the worst case coherence and
spectral norm for these sensing matrices.

Candès and Plan [14] specified coherence conditions under which a LASSO
program will successfully recover a k-sparse signal when the k non-zero entries
are above the noise variance. We use these results to provide an average case
error analysis for stochastic noise in both the data and measurement domains.
The Delsarte Goethals (DG) sensing matrices are essentially tight frames so that
white noise in the data domain maps to white noise in the measurement domain.

Section §4 presents the results of numerical experiments that compare DG
frames and sieves with random Gaussian matrices of the same size. The SpaRSA
package [15] is used to implement the LASSO recovery algorithm in all cases.
DG frames and sieves outperform random matrices in terms of probability of
successful sparse recovery but reconstruction time for the DG sieve is greater
than that for the other sensing matrices. We remark that there are alternative
fast reconstruction algorithms that exploit the structure of DG sensing matri-
ces. The witnessing algorithm proposed in [16] requires less storage, provides
support-localized detection, and does not require independence among the sup-
port entries. On the other hand, LASSO reconstruction tends to be more robust
to noise in the data domain.

2 Background and Notation

This Section introduces notation and reviews the theory of sparse reconstruction.

2.1 Notation

Given a vector v = (v1, · · · , vn) in Rn, ‖v‖2 denotes the Euclidean norm of v,
and ‖v‖1 denotes the �1 norm of v defined as ‖v‖1 .=

∑n
i=1 |vi|. We further

define ‖v‖∞ .= max {|v1|, · · · , |vn|}, and ‖v‖min
.= min {|v1|, · · · , |vn|}. Also the

Hamming weight of v is defined as ‖v‖0 .= {i : vi = 0}. Whenever clear from the
context, we drop the subscript from the �2 norm. Also vi→j denotes the vector
v restricted to entries i, i + 1, · · · , j, that is vi→j

.= (vi, vi+1, · · · , vj).
The transpose of a matrix A is denoted by A�. If A is a matrix with complex

entries, then we denote the conjugate transpose of A by A†. Given a complex
valued matrix A with rank r, let σ = [σ1, · · · , σr] denote the vector of the
singular values of A. The spectral norm ‖A‖ of a matrix A is the largest singular
value of A: that is ‖A‖ .= ‖σ‖∞. The condition number of A is the ratio between
its largest and its smaller singular values: ς(A) .= ‖σ‖∞

‖σ‖min
. Finally the nuclear

norm of A, denoted as ‖A‖1 is the �1 norm of the singular value vector σ.
Throughout this paper we shall use the notation ϕj for the jth column of

the sensing matrix Φ; its entries will be denoted by ϕj(x), with the row label x
varying from 0 to N − 1. In other words, ϕj(x) is the entry of Φ in row x and
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column j. We denote the set {1, · · · .C} by [C]. Let S be a subset of [C]. ΦS is
obtained by restricting Φ to those columns that are listed in S.

A vector α ∈ RC is k-sparse if it has at most k non-zero entries. The support of
the k-sparse vector α, denoted by Supp(α), contains the indices of the non-zero
entries of α. Let π = {π1, · · · , πC} be a uniformly random permutation of [C].
In this paper, our focus is on the average case analysis, and we always assume
that α is a k-sparse signal with Supp(α) = {π1, · · · , πk}. We further assume that
conditioned on the support, the values of the k non-zero entries of α are sampled
from a distribution which is absolutely continuous with respect to the Lebesgue
measure on Rk.

2.2 Incoherent Tight Frames

An N ×C matrix Φ with normalized columns is called a dictionary. A dictionary
is a tight-frame with redundancy C

N if for every vector v ∈ RC , ‖Φv‖2 = C
N ‖v‖2.

If ΦΦ† = C
N IN×N , then Φ is a tight-frame with redundancy C

N (see [17]).

Proposition 1. Let Φ be an N × C dictionary. Then ‖Φ‖2 ≥ C
N , and equality

holds if and only if Φ is a tight frame with redundancy C
N .

Proof. Let σ be the singular value vector of Φ. We have

‖Φ‖2 = ‖σ‖2∞ ≥
1
N

N∑
i=1

σ2
i =

1
N

Tr
(
ΦΦ†) =

C
N

. (1)

The inequality in Equation (1) changes to equality if and only if all the eigenval-
ues of ΦΦ† are equal to C

N . This is equivalent to the requirement ΦΦ† = C
N IN×N .

The mutual coherence between the columns of an N × C sensing matrix is
defined as

μ
.= max

i�=j

∣∣∣ϕ†
iϕj

∣∣∣ . (2)

Strohmer and Heath [8] showed that the mutual coherence of any N × C dic-
tionary is at least 1√

N
. Designing dictionaries with small spectral norms (tight

frames in the ideal case), and with small coherence (μ = O
(

1√
N

)
in the ideal

case) is useful in compressed sensing for the following reasons.

Uniqueness of Sparse Representation (�0 minimization). The following
results are due to Tropp [13] and show that with overwhelming probability the
�0 minimization program successfully recovers the original k-sparse signal.

Theorem 1. Assume the dictionary Φ satisfies μ ≤ c
log C , where c is an absolute

constant. Further assume k ≤ c C
‖Φ‖2 log C . Let S be a random subset of [C] of size

k, and let ΦS be the corresponding N×k submatrix. Then there exists an absolute
constant c0

Pr

[∥∥∥Φ†
SΦS − I

∥∥∥ ≥ c0

(
μ log C + 2

√
‖Φ‖2 k

C

)]
≤ 2 C−1.
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Theorem 2. Assume the dictionary Φ satisfies μ ≤ c
log C , where c is an absolute

constant. Further assume k ≤ c C
‖Φ‖2 log C . Let α be a k-sparse vector, such that the

support of the k nonzero coefficients of α is selected uniformly at random. Then
with probability 1 − O

(
C−1
)

α is the unique k-sparse vector mapped to u = Φα
by the measurement matrix Φ.

Sparse Recovery via LASSO (�1 minimization). Uniqueness of sparse rep-
resentation is of limited utility given that �0 minimization is computationally
intractable. However, given modest restrictions on the class of sparse signals,
Candès and Plan [14] have shown that with overwhelming probability the so-
lution to the �0 minimization problem coincides with the solution to a convex
lasso program.

Theorem 3. Assume the dictionary Φ satisfies μ ≤ c
log C , where c is an absolute

constant. Further assume k ≤ c1 C
‖Φ‖2 log C , where c1 is a constant. Let α be a k-

sparse vector, such that

1. The support of the k nonzero coefficients of α is selected uniformly at ran-
dom.

2. Conditional on the support, the signs of the nonzero entries of α are inde-
pendent and equally likely to be −1 or 1.

Let u = Φα + e, where e contains N iid N (0, σ2) Gaussian elements. Then if
‖α‖min ≥ 8σ

√
2 log C, with probability 1− O(C−1) the lasso estimate

α∗ .= arg min
α+∈RC

1
2
‖u− Φα+‖2 + 2

√
2 log C σ2 ‖α+‖1

has the same support and sign as α, and ‖Φα − Φα∗‖2 ≤ c2 k σ2, where c2 is a
constant independent of α.

Stochastic noise in the data domain. The tight-frame property of the sensing
matrix makes it possible to map iid Gaussian noise in the data domain to iid
Gaussian noise in the measurement domain:

Lemma 1. Let ε be a vector with C iid N (0, σ2
d) entries and e be a vector with

N iid N (0, σ2
m) entries. Let � = Φε and ν = � + e. Then ν contains N entries,

sampled iid from N
(
0, σ2
)
, where σ2 = C

N σ2
d + σ2

m.

Proof. The tight frame property implies

E
[
��†] = E[Φεε†Φ†] = σ2

dΦΦ† =
C
N

σ2
d I.

Therefore, ν = � + e contains iid Gaussian elements with zero mean and vari-
ance σ2.

Next we construct two families of low-coherence tight frames from Delsarte-
Goethals codes.
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2.3 Delsarte-Goethals Sets of Binary Symmetric Matrices

The finite field F2m is obtained from the binary field F2 by adjoining a root ξ
of a primitive irreducible polynomial g of degree m. The elements of F2m are
polynomials in ξ of degree at most m − 1 with coefficients in F2, and we will
identify the polynomial x0 + x1ξ + · · · + xm−1ξ

m−1 with the binary m-tuple
(x0, · · · , xm−1) . The Frobenius map f : F2m → F2m is defined by f(x) = x2 and
the Trace map Tr : F2m → F2 is defined by

Tr(x) .= x + x2 + · · ·+ x2m−1
.

The identity (x + y)2 = x2 + y2 implies that Tr(x + y) = Tr(x) + Tr(y); the
trace is a linear map over the binary field F2. The trace inner product given by
(v, w) = Tr(vw) is non-degenerate; if Tr(vz) = 0 for all z in Fm2 then v = 0.
Every element a in F2m determines a symmetric bilinear form Tr[xya] to which
is associated a binary symmetric matrix P 0(a).

Tr[xya] .= (x0 · · ·xm−1)P 0(a)(yo · · · ym−1)�.

The Kerdock set Km is the m-dimensional binary vector space formed by
the matrices P 0(a). For example, let m = 3, and assume the finite field F8 is
generated by adjoining a root ξ of the polynomial g(x) = x3 + x + 1. Then K3
is spanned by

P 0(100) =

⎛⎝1 0 0
0 0 1
0 1 0

⎞⎠ , P 0(010) =

⎛⎝0 0 1
0 1 0
1 0 1

⎞⎠ , and P 0(001) =

⎛⎝0 1 0
1 0 1
0 1 1

⎞⎠
Theorem 4. Every nonzero matrix in Km is nonsingular.

Proof. If xP 0(a) = 0 then Tr[xya] = 0 for all y ∈ F2m . Now the non-degeneracy
of the trace implies a = 0.

Next we define higher order bilinear forms, each associated with a binary sym-
metric matrix. Given a positive integer t where 0 < t ≤ m−1

2 and given a field
element a

Tr
[(

xy2t

+ x2t

y
)

a
]

defines a symmetric bilinear form that is represented by a binary symmetric
matrix P t(a) as above:

Tr
[(

xy2t

+ x2t

y
)

a
]

.= (x0 · · ·xm−1)P t(a)(yo · · · ym−1)� (3)

The Delsarte-Goethals set DG(m, r) is then defined as

DG(m, r) .=

{
r∑
t=0

P t(at) | at ∈ F2m , t = 0, 1, · · · , r
}

.
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The Delsarte-Goethals sets are nested

Km = DG(m, 0) ⊂ DG(m, 1) ⊂ · · · ⊂ DG

(
m,

m− 1
2

)
,

and every bilinear form is associated with some matrix in DG
(
m, m−1

2

)
.

For example, let m = 3 and g(x) = x3 + x + 1, the set DG(3, 1) is spanned
by K3, and

P 1(100) =

⎛⎝0 0 0
0 0 1
0 1 0

⎞⎠ , P 1(010) =

⎛⎝0 1 0
1 0 0
0 0 0

⎞⎠ , and P 1(001) =

⎛⎝0 1 1
1 0 0
1 0 0

⎞⎠ .

Theorem 5. Every nonzero matrix in DG(m, r) has rank at least m− 2r.

Proof. If x is in the null space of
∑r
t=0 P t(at), then for all y ∈ F2m

Tr

[
xya0 +

r∑
t=1

(
xy2t

+ x2t

y
)

at

]
= 0.

Since Tr(x) = Tr(x2) = · · · = Tr
(
x

1
2

)
we have

Tr

[(
(xa0)

2r

+
r∑
t=1

(xat)
2t−r

+ a2r

t x2t+r

)
y2r

]
= 0.

Non-degeneracy of the trace now implies

(xa0)
2r

+
r∑
t=1

(xat)
2t−r

+ a2r

t x2t+r

= 0.

The LHS is a polynomial of degree at most 22r so there are at most 22r solutions.
Hence the rank of the binary symmetric matrix

∑r
t=0 P t(at) is at least m− 2r.

3 Delsarte-Goethals Sensing

3.1 Delsarte-Goethals Frames

We start by picking an odd number m. The 2m rows of the sensing matrix Φ
are indexed by the binary m-tuples x, and the 2(r+2)m columns are indexed by
the pairs P, b, where P is an m ×m binary symmetric matrix in the Delsarte-
Goethals set DG(m, r), and b is a binary m-tuple. The entry ϕP,b(x) is given by

ϕP,b(x) =
1√
N

ıxPx

+2bx


(4)

Note that all arithmetic in the expressions xPx� + 2bx� takes place in the
ring of integers modulo 4. Given P, b the vector xPx� + 2bx� is a codeword in
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the Delsarte-Goethals code (defined over the ring of integers modulo 4). This
representation of Kerdock and Delsarte-Goethals codes is a simplification of the
representation given by Hammons et al [18] in that it avoids calculation in Galois
rings. An alternative method of constructing the matrices P is to lift bilinear
forms defined on F2

m to the Teichmuller set of a Galois ring. We refer the
reader to [19] and [20] for further details. For a fixed matrix P , the 2m columns
ϕP,b , b ∈ Fm2 form an orthonormal basis. The name Delsarte-Goethals frame
(DG frame) reflects the fact that Φ is a union of orthonormal bases. Hence, it is a
tight-frame with redundancy C

N . Delsarte-Goethals frames are highly incoherent
(see [17]):

Proposition 2. Let m and r be non-negative integers where m is odd and r ≤
m−1

2 . Then the worst case coherence μ of the sensing matrix derived from the
DG(m, r) set satisfies μ ≤ 1

N
1
2− r

m
.

Sensing matrices derived from Delsarte-Goethals sets are incoherent tight frames
so the results of Section §2 can be brought to bear. The N ×N2 sensing matrix
derived from the Kerdock set is the union of N mutually unbiased bases and the
worst case coherence matches the lower bound derived by Levenshtein [21] (see
also Strohmer and Heath [8]).

3.2 Delsarte-Goethals Sieves

Chirp Detection [17] and Witness Averaging [22] are fast reconstruction algo-
rithms that exploit the structure of Delsarte-Goethals frames. By sieving the
testimony of witnesses [22] it is possible to detect the presence or absence of a
signal at any given position in the data domain without explicitly reconstructing
the entire signal.

There is however an aliasing problem with DG frames. When two signals
modulate columns in the same orthonormal basis, spurious tones are generated
by both the chirp detection and witness interrogation algorithms. This can be
resolved by decimating the DG frame so that no two columns share the same
binary symmetric matrix P . The simplest way to do this is to retain columns

ϕP (x) =
1√
N

ıxPx


. (5)

for which b = 0. The subsampled matrix has N = 2m rows and C = 2(r+1)m

columns. We call these subsampled matrices Delsarte-Goethals sieves (DG(m, r)
sieves) since it is still possible to sieve the testimony of witnesses. Note that each
column of a DG sieve, is a column of the corresponding DG sieve, and the worst
case coherence bound follows from Proposition 2. Figure 1 shows the distribution
of the absolute value of pairwise inner products between columns of the DG(5, 1)
sieve. All entries on the main diagonal are equal to 1, and around the the diagonal
there are squares corresponding to translates of the Kerdock set Km.

Table 1 shows that subsampling may increase the spectral norm. This will
make it more difficult to reconstruct the signal either by chirp detection or by
sieving the testimony of witnesses. We need to understand this increase in order
to be able to apply the results of Section §2.



450 R. Calderbank and S. Jafarpour

(a) Inner product between the first 512
columns of the DG(5, 1) matrix

(b) Inner product between the first 256
columns of the DG(5, 1) matrix

Fig. 1. The inner product between the columns of a DG(5, 1) matrix. The point at
position (i, j) shows the inner product between the columns ϕi and ϕj . Lighter color
shows higher inner product value.
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Table 1. Spectral norms of DG(m, 1) frames and DG(m, 1) sieves as a function of m

DG(m, 1) m = 3 m = 5 m = 7 m = 9

Frame 2.8284 5.6569 11.3137 22.6274

Sieve 5.6568 11.1295 25.0386 55.0338

3.3 Spectral Norm of DG Matrices

Given a sensing matrix, the results presented in Section §2 show that if the the
worst case coherence and spectral norm are sufficiently small then �0 minimiza-
tion has a unique solution which coincides with the solution of a convex LASSO
program. The worst case coherence μ of the initial DG(m, r) frame satisfies
μ ≤ N

r
m− 1

2 . To make sure that every row sum vanishes, we further exclude the
m + 1 rows, indexed by powers of 2, from the DG sieve. This exclusion changes
the worst case coherence by at most m+1

N

(
Now μ ≤ N

r
m− 1

2 + m+1
N

)
. The ex-

perimental results presented below suggest that the number of pairs of rows in
a DG sieve that fail to be orthogonal is very small. Removing these rows results
in an equiangular tight frame that is not a union of orthonormal bases.

Table 1 lists the spectral norm of DG(m, r) frames and DG(m, r) sieves for
m = 3, 5, 7 and 9. The spectral norm of a sieve is almost twice that of the corre-
sponding frame and we shall see that the reason is a small number of duplicate
rows. Removing these rows results in an equiangular tight frame. We now de-
scribe how to find these duplicate rows. Let x, y be two distinct elements of the
finite field F2

m, and let ϕ(x), ϕ(y) denote the two rows in a Delsarte-Goethals
sieve Φ indexed by x and y. Setting y = x + e we obtain

ϕ(x)† ϕ(y) =
1
N

∑
P∈DG(m,r)

ı(x+e)P (x+e)
−xPx

=

1
N

∑
P∈DG(m,r)

ı2ePx

+ePe
(6)

=
1
N

r∏
t=0

⎛⎝∑
a∈Fm

2

ı2eP
t(a)x
+eP t(a)e


⎞⎠ .

If rows ϕ(x) and ϕ(y) are not orthogonal then each term in the product is nonzero.
When t > 0 we now show that the tth term in the product is a sum of linear
characters. Since the index of summation ranges over the group, the sum is either
zero or the linear character is trivial (each term in the sum is equal to 1).

Lemma 2. Let t ≥ 1 and let x and x + e be two distinct elements of Fm2 . Then
either

∑
a∈Fm

2
ıe P

t(a)(2x+e)
 is zero, or for every field element a: (x+e)P t(a)(x+
e)� − xP t(a)x� = 0 (mod 4).

Proof. When t > 0 every matrix P t(a) has zero diagonal and the map a →
(e + 2x)P t(a)e� is a linear map from the additive group Fm2 to 2 Z4. If this map
is not identically zero then the character sum vanishes. ��
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The next proposition follows from non-degeneracy of the trace.

Proposition 3. If t > 0 then for every field element f

f P t(a)f� = 2Tr
(
f2t+1 a

)
+ 2zaf

� ( mod 4 ), (7)

where za =
[
Tr
(
ξj(2

t+1) a
)

j = 0, · · · , m− 1
]

is a vector of length m.

Proof. The Z4-linear quadratic form xP t(a)x� determines the bilinear form
2xP t(a)y� and the Z4-linear quadratic form 2Tr

(
ax(2t+1)

)
determines the bi-

linear form 2Tr
((

xy2t + yx2t
)
a
)
. It follows from (3) that these two bilinear

forms are the same.
Since the Z4-linear quadratic forms fP t(a)f� and 2Tr

(
af2t+1

)
determine

the same bilinear form they differ by a linear function 2za f�. Since the quadratic
form fP t(a)f� vanishes at all standard coordinate vectors we are able to deter-
mine the entries of the vector 2za that describes the linear function. ��

Next we use non-degeneracy of the trace to find duplicate rows ϕ(x) and ϕ(x+e).

Lemma 3. The existence of field elements x, e such that

(x + e)P t(a)(x + e)� − xP t(a)x� = 0 (mod 4) for all a in Fm2 , (8)

is equivalent to the existence of a solution x
e to the equation

1 +
x

e
+
(x

e

)2t

+
m−1∑
j=0

ej

(
ξj

e

)2t+1

= 0. (9)

Proof. Since the trace is a linear map we may replace (8) by the condition that
for all a in Fm2

Tr

⎡⎣a
⎛⎝(x + e)2

t+1 + x2t+1 +
m−1∑
j=0

ejξ
j(2t+1)

⎞⎠⎤⎦ = 0.

Now the non-degeneracy of the trace implies that

(x + e)2
t+1 + x2t+1 +

m−1∑
j=0

ejξ
j(2t+1) = 0.

Expanding (x + e)2
t+1, we obtain

e2t+1 + x e2t

+ x2t

e +
m−1∑
j=0

ejξ
j(2t+1) = 0.

Since e is non-zero, dividing the equation by e2t+1 completes the proof. ��
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The solutions to the equation z + z2t

= 0 form a subfield of Fm2 and the number
of solutions is gcd (2t − 1, 2m − 1) which is just 2gcd(t,m)− 1. Note that when m
is odd and t = 1 or t = 2, there are exactly two solutions (z = 0 and z = 1). We
now list the conditions satisfied by x and e if the row ϕ(x) is not orthogonal to
the row ϕ(x + e).

Theorem 6. Let x and x + e be two distinct elements of the finite field Fm2 .
Then ϕ(x)†ϕ(x + e) = 0 if and only if the following conditions simultaneously
hold:

– (C1) For every t ≥ 1: x
e +
(
x
e

)2t

= 1 +
∑m−1
j=0 ej

(
ξj

e

)2t+1
.

– (C2)
∑

a∈Fm
2

ıe P
0(a)(2x+e)
 = 0.

Theorem 6 provides an efficient way for identifying the non-orthogonal rows of
the sieve matrices without requiring to calculate the gram matrices Φ†Φ ex-
plicitly. For every element e, we first find the solution for the case t = 1. If
such a solution exists then we just need to check that condition (C1) is valid
for other values of t. If all conditions passed then we just verify condition (C2).
This method significantly reduces the computational cost of eliminating the non-
orthogonal rows.

The next formula is for t = 1

x

e
+
(x

e

)2
= λ where λ = 1 +

∑m−1
j=0 ejξ

3j

e3 .

This is a quadratic equation with roots x
e and x

e + 1 where x
e

.=
∑

�: odd
1≤�≤m−2

λ2�

.

On the other hand

λ + λ2 =
x

e
+
(x

e

)4
= α where α = 1 +

∑m−1
j=0 ejξ

5j

e5 .

Thus we can also retrieve the explicit solution λ =
∑

�: odd
1≤�≤m−2

α2�

. In other

words, the following equivalence between the two field elements (which are both
functions of e) must be satisfied:

∑
�: odd

1≤�≤m−2

(
1 +

∑m−1
j=0 ejξ

5j

e5

)2�

= 1 +

∑m−1
j=0 ejξ

3j

e3 . (10)

Remark 1. Solutions to condition (C1) correspond to codewords of weight 2 in
the binary code that is dual to the code determined by matrices in DG(m, r) with
zero diagonal. The number of solutions can be calculated using the MacWilliams
Identities and we provide details in Appendix §A. The difficulty in proving the
result for arbitrary m is that the number of codewords of weight 2m−1 is not
determined and so the number of codewords of weight 2 in the dual code cannot
be calculated by simply applying the MacWilliams identities. If we try to finesse
this by choosing columns with a particular weight then we lose linearity and lose
control of the distance distribution.
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Table 2 records the number of duplicate measurements that need to be deleted
in order to transform a DG(m, 1) sieve into a tight frame. We calculated the
number of duplicate rows for DG(m, 2), where m ≤ 15, and found that there
were no solutions to (C1) that also satisfied (C2); that is all DG(m, 2) sieves
with m ≤ 15 are tight frames. Hence

Conjecture: Every DG(m, r) sieve with r ≥ 2 is a tight-frame.

Figure 2 displays for m = 7 and 9 the average condition number of a random N×
k submatrix of the DG(m, 1) sieve and the DG(m, 0) frame. The spectral norm
of the hollow gram matrix ‖Φ†Φ− IN‖2 was calculated for 2000 randomly chosen
submatrices Φk and the average was recorded. The comparison with Gaussian
sensing matrices was made by drawing 10 iid Gaussian matrices, calculating for
each matrix the average spectral norm over randomly chosen submatrices, and
then recording the median value.

Table 2. Number of row deletions required to transform a DG(m, 1) sieve into a tight
frame

DG(m, 1) m = 5 m = 7 m = 9 m = 11 m = 13 m = 15

# of non-orthogonal rows 11 25 45 83 203 381

% of non-orthogonal rows 0.3438 0.1953 0.0879 0.0405 0.0248 0.0116

Remark 2. Here we compare the empirical results of Figure 2 with the theoret-
ical results of Theorem 2. First we considered the DG(7, 0) frame, with C = 214

and N = 27. The worst case coherence of Φ is μ = 2−
7
2 , and the square of

the spectral norm of Φ is 27. So the constant c in Theorem 3 needs to be at
least μ log C = 14 log 2

8
√

2
≈ 0.85. Hence, as long as k is at most 0.85×128

14 log 2 ≈ 11,
Theorem 2 predicts probability of non-uniqueness on the order of 2−14. Experi-
mental results presented in Figure 2a are more positive; all 2000 trials resulted
in sub-dictionaries with full rank, even for k as large as 20.

Next we considered the DG(7, 1) sieve with C = 214 and N = 1031. The
worst case coherence of Φ is μ ≈ 2−

5
2 , and the square of the spectral norm of

Φ is ‖Φ‖2 ≈ 16384
103 = 159.6. As a result, the constant c needs to be at least

14 log 2
4
√

2
≈ 1.70. Therefore, as long as k is less than 1.70×103

14 log 2 ≈ 10 Theorem 2
predicts probability of non-uniqueness on the order of 2−14. Again, we see that
the theoretical bound is not tight, and for k as large as 20 all trials provide
uniqueness of sparse representation.

Remark 3. The bounds of Proposition 1 only apply to the condition number
of random submatrices and do not provide additional information about the
distribution of eigenvalues. However Gurevich and Hadani [23] have analyzed

1 The 25 duplicate rows were removed from the matrix.
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Fig. 2. Average spectral norm of Φ†
kΦk − Ik×k, where Φk is a random sub dictionary

of Φ. Here the comparison is between Gaussian, DG(m, 1) sieve, and DG(m, 0) base
matrices. Each experiment is repeated 2000 times.

the spectrum of certain incoherent dictionaries that are unions of disjoint or-
thonormal bases. They have shown that the eigenvalues of the Gram matrix of a
random subdictionary are asymptotically distributed around 1 according to the
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of random sub-dictionaries of of DG(7, 1)

and Gaussian matrices of the same size as a function of the sparsity level k

Wigner semicircle law. Our experimental results suggest that this property is
shared by DG sieves which are not unions of orthonormal bases. Figure 3 shows
that the distribution of the singular values of a random submatrix of a DG sieve
is symmetric around 1, and very similar to the distribution for a Gaussian matrix
of the same size.

4 Numerical Experiments

In this Section we present numerical experiments to evaluate the performance of
the DG frames and sieves. The performance of DG frames and sieves is compared
with that of random Gaussian sensing matrices of the same size. The SpaRSA
algorithm [15] with �1 regularization parameter λ = 10−9 is used for signal
reconstruction in the noiseless case, and the parameter is adjusted according to
Theorem 3 in the noisy case. The reason for using SpaRSA is that is designed
to solve complex valued LASSO programs.

Remark 4. Given a random sensing matrix satisfying RIP, it is known that Basis
Pursuit leads to more accurate reconstruction than the LASSO [1]. It is for this
reason that we also compare results for LASSO applied to DG matrices with
results for Basis Pursuit applied to Gaussian matrices. The �1-magic package[24]
is used to solve the Basis Pursuit optimization program. The results for Gaussian
matrices shown in Figure 4 are consistent with the observation made in [25] that
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(b) Average reconstruction time in the noiseless regime for dif-
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Fig. 4. Comparison between DG(7, 0) frame, DG(7, 1) sieve, and Gaussian matrices of
the same size in the noiseless regime. The regularization parameter for LASSO is set
to 10−9.
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(a) The impact of the noise in the measurement domain on the
accuracy of the sparse approximation for different sensing ma-
trices.
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(b) The impact of the noise in the data domain on the accuracy
of the sparse approximation for different sensing matrices.

Fig. 5. Average fraction of the support that is reconstructed successfully as a function
of the noise level in the measurement domain (left), and in the data domain (right).
Here the sparsity level is 14. The regularization parameter for LASSO is determined
as a function of the noise variance according to Theorem 3.
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when the signal is not very sparse, interior point methods (�1 - magic) are less
sensitive than gradient descent methods (SpaRSA)

For Gaussian matrices, we sampled 10 iid random matrices independently to
eliminate the exponentially small chance of getting a sample Φ with μ = ω (N)
or ‖Φ‖2 = ω

( C
N

)
, and the median of the results among all 10 random matrices is

reported. The use of 10 random trials to eliminate pathological sensing matrices
is standard practice (see [11] for example).

The experiments relate accuracy of sparse recovery to the sparsity level and
the Signal to Noise Ratio (SNR). Accuracy is measured in terms of the statistical
0−1 loss metric which captures the fraction of signal support that is successfully
recovered. The reconstruction algorithm outputs a k-sparse approximation α̂ to
the k-sparse signal α, and the statistical 0− 1 loss is the fraction of the support
of α that is not recovered in α̂. Each experiment was repeated 2000 times and
Figure 4 records the average loss.

Figure 4 plots statistical 0 − 1 loss and complexity (average reconstruction
time) as a function of the sparsity level k. We select k-sparse signals with uni-
formly random support, with random signs, and with the amplitude of non-zero
entries set equal to 1. Three different sensing matrices are compared; a Gaussian
matrix, a DG(7, 0) frame and a DG(7, 1) sieve. After compressive sampling the
signal support is recovered using the SpaRSA algorithm with λ = 10−9. For
random matrices the signal support is also recovered by �1-minimization.

Figure 5a plots statistical 0−1 loss as a function of noise in the measurement
domain and Figure 5b does the same for noise in the data domain. In the mea-
surement noise study, a N (0, σ2) iid measurement noise vector is added to the
sensed vector to obtain the N dimensional vector f . The original k-sparse signal
α is then approximated by solving the LASSO program with λ = 2

√
2 log Cσ2,

and basis pursuit with ε = 2Nσ2. Following Lemma 1, we use a similar method
to study noise in the data domain. Figure 5 shows that DG frames and sieves
outperform random Gaussian matrices in terms of noisy signal recovery using
the LASSO.

5 Conclusion

We have constructed two families of deterministic sensing matrices, DG(m, r)
frames and DG(m, r) sieves, by exponentiating codewords from Z4 - linear
Delsarte-Goethals codes. We have verified that the worst-case coherence and
the spectral norm of these sensing matrices satisfy the conditions necessary
for uniqueness of sparse representation and fidelity of �1 reconstruction via the
LASSO algorithm. We have presented numerical results that confirm perfor-
mance predicted by the theory. These results show that DG frames and sieves
outperform random Gaussian matrices in terms of noiseless and noisy signal re-
covery using the LASSO. Our focus here is on �1 reconstruction using the LASSO
algorithm but we note that the particular structure of the DG matrices leads to
faster algorithms and to additional features such as local decoding and stronger
guarantees on resilience to noise in the data domain.
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A The Number of Solutions of Condition (C1)

Let DG0(m, r) denote the set of all zero-diagonal matrices in DG(m, r):

DG0(m, r) =

{
r∑
t=1

P t(at) |at ∈ Fm2 t = 1, · · · , r
}

.

For every matrix P in DG0(m, r), the vector xPx� is a codeword of the linear
binary code DG0(m, r) which is a sub-code of the Delsarte-Goethals code. Note
that DG0(m, r) has 2rm codewords of length 2m. The following lemma shows
how the number of solutions to (C1) is related to the properties of this binary
code.

Lemma 4. Let {W0, · · · , WN} denote the weight distribution of DG0(m, r).
Then the number of pairs (x, x + e) satisfying (C1) is equal to

1
2rm

N∑
i=0

WiK2(i), (11)

http://www.acm.caltech.edu/l1magic
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where K�(z) is the �th Krawtchouk polynomial, defined as

K�(z) =
�∑

r=0

(
z

r

)(
N − z

�− r

)
(−1)r. (12)

Proof. Lemma 3 implies that the number pairs (x, x + e) satisfying Condi-
tion (C1) is equal to the number of duplicate rows in DG0(m, r). The condition
that the rows x and x + e are identical is equivalent to the condition that the
vector with entry 1 in positions x and x + e, and zero elsewhere belongs to the
dual code. The lemma now follows from the MacWilliams Identities [26] that
relate relate the number of codewords of weight 2 in the dual of DG0(m, r) to
the weight distribution of DG0(m, r).

Next we show that for the case r = 1, the number of solutions to (C1) only
depends on the number of codewords with weight 2m−1 in DG0(m, 1):

Theorem 7. Let m be an odd number and let r equal 1. Then the number of
solutions to (C1) is 2m − 1 − s where s is the number of codewords with weight
2m−1 in DG0(m, 1).

Proof. We start by calculating the rank of matrices in DG0(m, 1): Let a be a
fixed element of Fm2 . A field element x is in the null space of Pa if and only if
for every field element y, xPay

� = 0. Using Equation 3, this condition can be
translated to the condition

Tr
(
(xy2 + x2y)a

)
= 0 for all y.

Since Tr(x) = Tr(x2) the condition further reduces to

Tr
(
(xa + x4a2)y2) = 0 for all y.

Non-degeneracy of the trace implies that x4 + x
a = 0, which, since m is odd, has

the unique solution x3 = 1
a .

Now let S =
∑

x∈Fm
2

ıxPax


. Since xPax

� is a binary codeword, we have

S2 = (N − 2wa)
2, where wa is the weight of the codeword determined by Pa.

It has been proved in [17] that S2 = 2m
∑
e:ePa=0 ıePae



. We provide the proof

here for completeness:
We have

S2 =
∑
x,y

ixPax

+yPay



=
∑
x,y

i(x+y)Pa(x+y)
+2xPay



Changing variables to z = x⊕ y and y gives

S2 =
∑
z

izPaz

∑

y

(−1)zPay



= 2m
∑

z:zPa=0

ızPaz


.

The null space of Pa has only two elements 0 and a− 1
3 . As a result

S2 = 2m
(

1 + ıa
− 1

3 Paa
1
3


)
.
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There are two cases; S2 is either 0 or 2m+1.

Case 1: S is zero. This case provides one possible weight value: wa = 2m−1.

Case 2: |S|2 = 2m+1. Therefore 2m − 2wa = ±2
m+1

2 . This case provides two
distinct weight values: wa = 2m−1 ± 2

m−1
2 . Hence DG0(m, 1) has exactly four

distinct weights 〈0, 2m−1− 2
m−1

2 , 2m−1, 2m−1 + 2
m−1

2 〉. Let 〈1, t, s, t′〉 denote the
corresponding weight distribution. We can use the MacWilliams identities to find
the values of t and t′ as a function of s. First, note that the dual code has exactly
one codeword of weight 0. Using MacWilliams identities with Krawtchouk poly-
nomial K0(z) = 1, gives the equation 1+ t+s+ t′ = C. Second, since all matrices
in DG0(m, r) are zero-diagonal, for every field element a and for every index j in
{0, · · · , m}, ξjPaξ

j� = 0, the dual code has exactly m + 1 codewords of weight
1. Again, MacWilliams identities, with Krawtchouk polynomial K1(z) = N − 2z
gives the equation (m+1)N = N +

√
2N(t′− t). This equation can be simplified

to t− t′ = m 2
m−1

2 . Solving t and t′ with respect to s gives t = 2m−1−s+m2
m−1

2

2

and t′ = 2m−1−s−m2
m−1

2

2 . The theorem then follows from substituting the values
t, s, t′ into Equation (12), and simplifying the expression using the Krawtchouk
polynomial K2(z) = (N−2z)2−N

2 .
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Fan, Pingzhi 102
Flori, Jean-Pierre 346

Gangopadhyay, Aditi Kar 359
Gangopadhyay, Sugata 359
Golomb, Solomon W. 430
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