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Preface

We are very pleased to present to you this LNCS volume, the proceedings of
the 11th International Conference on Parallel Problem Solving from Nature
(PPSN 2010). PPSN is one of the most respected and highly regarded con-
ference series in evolutionary computation, and indeed in natural computation
as well. This biennial event was first held in Dortmund in 1990, and then in Brus-
sels (1992), Jerusalem (1994), Berlin (1996), Amsterdam (1998), Paris (2000),
Granada (2002), Birmingham (2004), Reykjavik (2006) and again in Dortmund
in 2008.

PPSN 2010 received 232 submissions. After an extensive peer review pro-
cess involving more than 180 reviewers, the program committee chairs went
through all the review reports and ranked the papers according to the review-
ers’ comments. Each paper was evaluated by at least three reviewers. Additional
reviewers from the appropriate branches of science were invoked to review into
disciplinary papers. The top 128 papers were finally selected for inclusion in the
proceedings and presentation at the conference. This represents an acceptance
rate of 55%, which guarantees that PPSN will continue to be one of the con-
ferences of choice for bio-inspired computing and metaheuristics researchers all
over the world who value the quality over the size of a conference.

The papers included in the proceedings volumes cover a wide range of topics,
from evolutionary computation to swarm intelligence, from bio-inspired comput-
ing to real-world applications. Machine learning and mathematical games sup-
ported by evolutionary algorithms as well as memetic, agent-oriented systems are
also represented. They all are the latest and best in natural computation. The
proceedings are composed of two volumes divided into nine thematic sections.

In accordance with the PPSN tradition, all papers at PPSN 2010 were pre-
sented as posters. There were nine sessions of posters. Each session consisted
of around 15 papers. For each session, we covered as wide a range of topics as
possible so that participants with different interests could find some relevant
papers at every session.

PPSN 2010 featured three distinguished keynote speakers: John Garibaldi,
Zbigniew Michalewicz and Darrell Whitley who delivered lectures entitled: En-
semble Fuzzy Reasoning, Some Thoughts on Wine Production, and Elementary
Landscapes Made Easy, respectively.

PPSN 2010 also included eight interesting tutorials. These covered the wide
area of natural computing science. The first of them “A Rigorous Theoretical
Framework for Measuring Generalization of Co-evolutionary Learning” (X. Yao)
was devoted to the genetic algorithm theory while the following two “Founda-
tions of Evolutionary Multi-objective Optimization” (F. Neumann, T. Friedrich)
and “Hybrid Optimization Approaches” (G. Raidl) introduced important groups
of algorithms inspired by nature. The next tutorials, “Natural Computing and
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Finance” (T. Brabazon, M. O’Neill), “Heuristic and Meta-heuristic Approaches
for Scheduling in Large Scale Distributed Computing Environments” (F. Xhafa)
and “Artificial Immune Systems in Optimization and Classification Problems
with Engineering and Biomedical Applications” (T. Burczyński, M. Bereta,
W. Kuś), focused on important engineering, business and medical applications.
Finally, “Learning to Play Games” (S. M. Lucas) and “The Complexity of
Elections: New Domain for Heuristic Computations” (P. Faliszewski) concerned
games and social problems.

PPSN 2010 also included four workshops. They made an excellent start to the
five-day event. The workshops offered an ideal opportunity for participants to
explore specific topics in natural computation in an informal setting. They sowed
the seeds for the future growth of natural computation. The first of them “Self-
tuning, Self-configuring and Self-generating Search Heuristics (Self* 2010)” (G.
Ochoa, M. Schoenauer, D. Whitley) focused on developing automated systems to
replace the role of a human expert in the design, tuning and generation of search
heuristics. The next pair of workshops “Understanding Heuristics: How Do We
Get the Best of Both Theory and Empirical Methods?” (E. Ozcan, A. Parkes, J.
Rowe) and “Experimental Methods for the Assessment of Computational Sys-
tems (WEMACS)” (T. Bartz-Beielstein, M. Chiarandini, L. Paquete, M. Preuss)
concerned two complementary theoretical and experimental approaches to the
analysis of heuristic and meta-heuristic algorithms. The last one “Workshop on
Parallel and Cooperative Search Methods” (D. Ouelhadj, E. Ozcan, M. Toulouse)
dealt with cooperative parallel searches improving performance, especially when
dealing with large scale combinatorial optimization problems.

The success of any conference depends on its authors, reviewers and orga-
nizers. PPSN 2010 was no exception. We are grateful to all the authors who
submitted their papers and to all the reviewers for their outstanding work in
refereeing the papers on a very tight schedule. We relied heavily on a team of
volunteers, especially those in Kraków, to keep the PPSN 2010 wheel turning.

PPSN XI would not have been possible without the support of Microsoft
Poland, Intel and HP.

September 2010 Robert Schaefer
Carlos Cotta

Joanna Ko�lodziej
Günter Rudolph
Juan J. Merelo

Hans-Paul Schwefel
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Financial Manager Leszek Siwik (AGH Kraków, Poland)
Local Organization Jacek Dajda (AGH Kraków, Poland)

Ewa Olejarz (AGH, Kraków, Poland)
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Design and Comparison of Two Evolutionary Approaches for Solving
the Rubik’s Cube . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 442

Nail El-Sourani and Markus Borschbach



Table of Contents – Part II XV

Statistical Analysis of Parameter Setting in Real-Coded Evolutionary
Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 452
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Antonio M. Mora Garćıa, Juan J. Merelo Guervós,
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Süntje Böttcher, Benjamin Doerr, and Frank Neumann

Mirrored Sampling and Sequential Selection for Evolution Strategies . . . . 11
Dimo Brockhoff, Anne Auger, Nikolaus Hansen,
Dirk V. Arnold, and Tim Hohm

Optimisation and Generalisation: Footprints in Instance Space . . . . . . . . . 22
David W. Corne and Alan P. Reynolds

Adaptive Drift Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
Benjamin Doerr and Leslie Ann Goldberg

Optimizing Monotone Functions Can Be Difficult . . . . . . . . . . . . . . . . . . . . 42
Benjamin Doerr, Thomas Jansen, Dirk Sudholt,
Carola Winzen, and Christine Zarges

Log-Linear Convergence of the Scale-Invariant (μ/μw, λ)-ES and
Optimal μ for Intermediate Recombination for Large Population
Sizes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

Mohamed Jebalia and Anne Auger

Exploiting Overlap When Searching for Robust Optima . . . . . . . . . . . . . . . 63
Johannes Kruisselbrink, Michael Emmerich, André Deutz, and
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Jörg Lässig and Dirk Sudholt



Table of Contents – Part I XIX

Negative Drift in Populations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 244
Per Kristian Lehre

Log(λ) Modifications for Optimal Parallelism . . . . . . . . . . . . . . . . . . . . . . . 254
Fabien Teytaud and Olivier Teytaud

The Linkage Tree Genetic Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 264
Dirk Thierens

An Analysis of the XOR Dynamic Problem Generator Based on the
Dynamical System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 274

Renato Tinós and Shengxiang Yang

The Role of Degenerate Robustness in the Evolvability of Multi-agent
Systems in Dynamic Environments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 284

James M. Whitacre, Philipp Rohlfshagen, Axel Bender, and Xin Yao

Machine Learning, Classifier Systems, Image
Processing

Evolutionary Learning of Technical Trading Rules without Data-Mining
Bias . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 294

Alexandros Agapitos, Michael O’Neill, and Anthony Brabazon

Using Computational Intelligence to Identify Performance Bottlenecks
in a Computer System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 304

Faraz Ahmed, Farrukh Shahzad, and Muddassar Farooq

Selecting Small Audio Feature Sets in Music Classification by Means of
Asymmetric Mutation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 314

Bernd Bischl, Igor Vatolkin, and Mike Preuss

Globally Induced Model Trees: An Evolutionary Approach . . . . . . . . . . . . 324
Marcin Czajkowski and Marek Krȩtowski
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Abstract. A novel Smart Multi-Objective Particle Swarm Optimisa-

tion method - SDMOPSO - is presented in the paper. The method uses

the decomposition approach proposed in MOEA/D, whereby a multi-

objective problem (MOP) is represented as several scalar aggregation

problems. The scalar aggregation problems are viewed as particles in

a swarm; each particle assigns weights to every optimisation objective.

The problem is solved then as a Multi-Objective Particle Swarm Op-

timisation (MOPSO), in which every particle uses information from a

set of defined neighbours. The paper also introduces a novel smart ap-

proach for sharing information between particles, whereby each particle

calculates a new position in advance using its neighbourhood information

and shares this new information with the swarm. The results of apply-

ing SDMOPSO on five standard MOPs show that SDMOPSO is highly

competitive comparing with two state-of-the-art algorithms.

1 Introduction

Real-life optimisation problems usually have several conflicting objectives. This
leads to an irregular multi-objective space where the optimisation method must
be able to find solutions that represent trade-offs between these objectives.

In [1] [2], MOEA/D introduces a new approach to discover Pareto optimal
solutions. This is done by decomposing the original MOP into a number of
scalar aggregation problems. These scalar problems are then solved using Genetic
Algorithms (GA). The advantages of this approach in terms of mathematical
soundness, algorithmic structure and computational cost are explained in [2].
MOEA/D has been applied successfully on several real-life MOPs [3].

Particle Swarm Optimisation (PSO) has proved to be very efficient and ca-
pable of providing competitive solutions in many application domains [4], [5],
[6]. MOPSO methods have also been developed and demonstrated their ability
to provide viable solutions [7], [8]. In [6] and [9], authors have observed that al-
though PSO and GA on average yield the same effectiveness (solution quality),
PSO is more computationally efficient and uses fewer evaluations than GA - the
claim was supported by two statistical tests, which confirmed similar effective-
ness of the methods but superior efficiency of PSO over GA. Also, because PSO

R. Schaefer et al. (Eds.): PPSN XI, Part II, LNCS 6239, pp. 1–10, 2010.
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requires less subjective tuning in contrast to GA, the former algorithm proved
to be much easier to implement [9].

MOPSO/D [10] is a multi-objective optimization method that uses the
MOEA/D framework to solve continuous MOPs. MOPSO/D substitutes the
genetic algorithm used to implement MOEA/D with PSO. In our opinion, this
method does not fully exploit the salient properties of PSO neighborhood rela-
tions and uses a genetic operator for avoiding local optima, which confounds the
application of the PSO algorithm.

In this paper, we propose a novel MOPSO method using decomposition (SD-
MOPSO). This approach takes the advantage of PSO as a simple, fast, efficient
and easy to implement method and defines a smart approach for updating the
particles whilst using decomposition to enhance the diversity of the solutions.

The paper is organized as follows. Section 2 introduces the methodology of
handling multi-objective optimisation using PSO. Section 3 explains the novelty
of our approach to PSO implementation. In Section 4 we explain the experimen-
tal setup and present the results. Finally, Section 5 summarises the conclusions
we have drawn from the presented research work and discusses its implication.

2 Multi-Objective Particle Swarm Optimisation

The difficulty of multi-objective optimisation is that an improvement in one
objective often happens at the expense of deteriorating the performance with
respect to other objectives. The optimisation challenge therefore is to find the
entire set of trade-off solutions that satisfy the conflicting objectives. The ob-
jective of optimisation can be represented as a vector F operating on a solution
space Ω ⊂ Rn.

F (X) = {f1(X), f2(X), . . . , fm(X)} (1)
where X ∈ Ω, and m is the number of objectives.

The result of the multi-objective optimisation process is a set of trade-off
solutions. When minimizing F (X), a domination relationship is defined between
these solutions as follows: let X,Y ∈ Ω, X � Y if and only if fi(X) ≤ fi(Y ) for
all i = {1, 2, .....,m}, and there is at least one j for which fj(X) < fj(Y ). X is
a Pareto optimal solution if there is no other solution Y ∈ Ω such that Y � X .

Pareto optimality of a solution guarantees that any enhancement of one ob-
jective would results in worsening of at least one other objective. The image of
the Pareto optimal set in the objective space - F (X∗) - is called the Pareto Front
(PF)[11].

PSO can be used to find the Pareto optimal solutions or to approximate the
PF. Each particle in the swarm represents a potential solution and exchanges
positional information with the global leader(s) or best local neighbour(s), as
well as consults its own personal memory; then, this information is used to move
the particle around the search space [12]. Every particle is characterised by its
position and velocity. The position is the point in the solution space, whereas
the velocity is a vector representing the positional change. Each particle uses the
position of the selected leader and its personal movement trajectory to update
the velocity and position values.
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3 The SDMOPSO Approach

Similar to MOEA/D [2], SDMOPSO decomposes the MOP into scalar aggrega-
tion problems. Decomposition transforms the MOP into a set of distinct scalar
aggregation problems. Every particle solves the corresponding problem by apply-
ing priorities to each objective according to its weighting vector (λ). This assists
the optimisation process to find potential solutions that are evenly distributed
along the PF and to mitigate against premature convergence. By associating ev-
ery particle with a distinct scalar aggregation problem, the exploration activity
of each particle will be focused on a specific region in the objective space and
aimed at reducing the distance to the reference point.

SDMOPSO introduces a new approach for exchanging information between
neighbouring particles without a need for extra evaluations. The motivation be-
hind this is that the same solution in the objective space can have different
aggregated values depending on its λ vector; thus, a solution (i.e. a position in
the decision space) is assigned to the particle that uses it to give the best aggrega-
tion value. If the new calculated position does not enhance the aggregated fitness
of one particle, then the particle shares the new position with its neighbours as
this could enhance their aggregated fitness. In other words, useless information
for one particle can be effectively utilised by other particles, depending on their
λ vector. This can lead to performing fewer objective function evaluations and
results in wider dissemination of the discovered information, facilitating thereby
simultaneous optimisation of the scalar problems. Taking into account the topo-
logical structure of the PSO population, sharing the information with neighbours
will help relaying the discoveries of one particle to the entire swarm.

Many scalar approaches have been proposed to aggregate the objectives of a
MOP. Among these, the weighted Tchebycheff method is widely used [2], which
is based on a non-linear metric measuring the distance to a reference point in
the objective space [13]:

minimize g(x|λ, z∗) = max1≤i≤m{λi|fi(x)− z∗i |} (2)

where x ∈ Rn is a decision vector, z∗ = (z∗1 , . . . , z
∗
m)T such that z∗i = min{fi(x)}

for each i = 1, . . . ,m.
The reference point z∗ is determined by SDMOPSO as the vector of best

values for each objective found so far by the optimisation process. Each particle
then will be evaluated according to Eq. 2 using λ associated with it.

SDMOPSO uses the weighted Tchebycheff approach to decompose the opti-
misation objective defined by Eq. 1 into N scalar optimisation problems, where
N is the swarm’s size. By changing the weights and using the reference point
defined above, any Pareto optimal solution can be generated.

In addition, SDMOPSO uses the concept of a crowding archive to store the
set of swarm leaders. The size of the crowding archive is fixed using ε-dominance
[14]. At the end of each iteration the crowding archive is updated with the
new non-dominated particles in the current population, and the corresponding
crowding values are adjusted in accordance with the number of new updates.
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This approach limits the size of the crowding archive and determines which
particles to be deleted when the maximum size is exceeded. This is done in such
a way that the diversity of Pareto optimal solutions is maintained [14].

Algorithm 1. SDMOPSO
1: Initialize the swarm with N particles and N λ vectors

2: for i = 1 to N do
3: assign the particle i to its closest λ vector

4: initialize pbesti

5: end for
6: Initialize velocities V = {v1, . . . , vN}, archive, neighbourhood and z∗

7: Crowding(archive)

8: for i = 1 to MaxIteration do
9: for j = 1 to N do

10: define particle j future Velocity, vj(t + 1)

11: define particle j future Position, xj(t + 1)

12: calculate scalar aggregate function for j
13: update the current population with the new particle j
14: update pbestj, archive, and z∗

15: end for
16: end for
17: Return the final result in the crowding archive

SDMOPSO’s first phase starts by initializing the population and initializing N
vectors: λ = {λ1, λ2, . . . , λm}, where m is the number of objectives and N is the
swarm size. λ vectors are uniformly distributed in [0, 1]m subject to

∑m
i=1 λi = 1.

Every particle is assigned a unique λ vector. This λ vector is selected so that it
gives the best aggregated fitness value for the initialized particle. For example,
in the case of minimization problems the particle will be assigned to the λ vector
that minimizes the aggregated fitness, taking into account that each λ is unique
and will be assigned to only one particle of the swarm. The particles’ memories
pbest are then initialized, and the initial velocity of each particle is set to zero.
The crowding archive is set to a fixed size, which equals to the swarm size, and
then is initialized using the non-dominated particles in the swarm. The reference
point z∗ is the vector in the objective space with the best objective values found
so far. The neighbourhood will be initialized by defining the neighbourhood size
N . The neighbourhood of a particle is defined by the N particles that have
associated λ vectors with the closest Euclidean distance to its own λ vector.

The second phase of the optimisation process is repeated for a pre-defined
number of iterations. During every iteration each particle defines a local view in
the objective space. The particle determines the next move by finding the new
velocity and new position using Eq. 3 and Eq. 4. The new velocity is calculated
using the pbest values of a randomly selected neighbour particle and that of
the current particle. The particle will then offer this local information (i.e. the
decision vector and the corresponding objective vector) to its neighbours (in-
cluding itself) so that every particle of the neighbourhood uses the new position
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and the evaluated objectives to calculate a new aggregated fitness value. If the
new position enhances the particle’s scaled fitness value, then it is adopted as
the new position of the particle. Only up to two particles are allowed to update
(as suggested in [2]) their information and take advantages of this local infor-
mation in order to avoid duplication of particles in the swarm. Evaluating the
new information using different λ will not involve additional objective function
evaluations as it only reads the stored values.

Vi(t) = w ∗ Vi(t− 1) + C1 ∗ r1 ∗ (xpbesti − xi(t)) + C2 ∗ r2 ∗ (xnbesti − xi(t)) (3)

xi(t) = xi(t− 1) + Vi(t) (4)

where pbesti is the personal best performance of particlei, nbesti is a random
neighbouring particle from the set of N neighbours of particlei, r1, r2 ∈ [0.1, 1]
are random values, w ∈ [0.1, 0.5] is the inertia weight, and C1,C2 ∈ [1.2, 2.0]
are the learning factors that take uniformly distributed random values in their
defined ranges.

After the particle updates its position and velocity, it has to update its pbest
as well. The pbest value will be replaced with the new position only if the new
position dominates pbest, or if both are mutually non-dominating. The crowding
archive is then updated with new non-dominated particles, if found, subject to
the crowding restriction. Finally, the reference point will be updated if needed.
The final result of the optimisation will be the content of the crowding archive
when the run of SDMOPSO is complete. The pseudo-code of the SDMOPSO
Algorithm is listed in Algorithm 1.

SDMOPSO introduces the following improvements to the basic MOPSO:

– SDMOPSO enhances the approximation of the PF for a MOP by decom-
posing the original MOP into scalar aggregation problems and facilitating
simultaneous optimisation of these scalar problems.

– SDMOPSO associates every particle with a λ vector according to the best
scalar aggregated fitness value. This will enhance the initial population and,
together with the way the information is exchanged between the particles in
the swarm, can eventually lead to saving processing time.

– SDMOPSO uses the crowding archive to retain the diversity of the swarm
leaders, and hence the distribution of the final solutions. This is done by
using crowding-based selection method to choose the solutions to be deleted
or replaced when the archive is full.

– SDMOPSO takes advantage of MOPSO’s simplicity, but improves the orig-
inal MOPSO by a better use of particles’ local information. Each particle
always pre-processes its moves and exchanges the discovered information
with the entire swarm in order to facilitate simultaneous optimisation of all
scalar problems. This could also help mitigating premature convergence to
local optima.
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4 Experiments and Results

The SDMOPSO method is tested on several standard problems defined in the
test suite [15] - for space limit only 9 problems were chosen (Schaffer, Fonseca,
Kursawe, Viennet2, Viennet3, ZDT1-4, and ZDT6 . They cover diverse MOPs
with convex, concave, connected and disconnected PFs. The method is then
compared to MOEA/D [2] and OMOPSO[14].

In the present work, jMetal Framework [16] is used to implement MOEA/D
and OMOPSO because it is a general framework that implements the state-of-art
multi-objective algorithms. Each algorithm is run 30 times for each test problem.
For the bi-objective problems each algorithm uses 300 iteration per run, and 150
individuals per generation. For the three-objective problems the corresponding
values of 600 iterations and 300 individuals were used. All compared algorithms
adopt real encoding and perform the same number of objective evaluations. For
the sake of a fair comparison, the number of the non-dominated solutions found
by each algorithm is limited to a fixed threshold (100 for bi-objective problems
and 1000 for the three-objective problems). MOEA/D uses differential evolu-
tion crossover (DE) with (probability = 1.0) and (differential weight = 0.5),
polynomial mutation with (probability = 1/number of decision variables), the
mutation distribution index is equal to 20, and the neighbourhood size is set to
30. OMOPSO uses turbulence probability of 0.5. C1, C2 were set to a random
value in the range [1.5, 2.0]. r1, r2 are set to a random value in [0, 1], and w - to a
random value in [0.1, 0.5]. SDMOPSO uses the parameters explained in the pre-
vious section and neighbourhood size N =30. Both OMOPSO and SDMOPSO
use ε=0.0075, the crowding archive of size 150 for bi-objective problems and 300
for three-objective problems. The PF produced by each algorithm is the union
of PFs after 30 runs (PFapproximated).

To validate our approach, two indicators are used for estimating the conver-
gence and diversity of the solutions. The first performance indicator is a genera-
tional distance (GD) [17], [18]. GD calculates the average Euclidean distance in
the objective space between PFapproximated produced by each algorithm and the
actual PF (PFtrue). The distance is calculated for each point of PFtrue and the
nearest point of PFapproximated. To apply this measure, all the objective values
are scaled to be in the range [0,1].

IGD(A,R) =
(
∑

u∈A(minv∈R ‖ F (u)− F (v) ‖2))1/2

|R| (5)

The second indicator is the R-metrics [17], [18]. R-metrics is a hybrid indica-
tor that simultaneously measures the convergence and diversity of the found
solutions. R-metrics uses a set of utility functions u, which can be any scalar
functions. In this paper, we use a weighted Tchebycheff function with a suffi-
ciently large number of evenly distributed normalized weighting vectors λ. R-
metrics compare two reference sets in our experiments: A is PFtrue related to
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(a) Schaffer PF (b) SDMOPSO (c) MOEA/D (d) OMOPSO

(e) Fonseca PF (f) SDMOPSO (g) MOEA/D (h) OMOPSO

(i) Kursawe PF (j) SDMOPSO (k) MOEA/D (l) OMOPSO

Fig. 1. (a, e, i) are the PFtrue and the rest are the approximated ones

(a) Viennet2 PF (b) SDMOPSO (c) OMOPSO

(d) Viennet3 PF (e) SDMOPSO (f) OMOPSO

Fig. 2. (a, d) are PFtrue and the rest are the approximated ones
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the problem under test, and B is PFapproximated. Then the indicator is defined
as follows:

IR2 (A,B) =
∑

λ∈Λ u∗(λ,A)− u∗(λ,B)
|Λ| (6)

where Λ = {λ1, . . . , λm}, λi ∈ [0, 1] and
∑m

i=1 λi = 1.
These two indicators are used to compare PFapproximated with PFtrue; their

values are used in the paper to quantitatively evaluate the performance of SD-
MOPSO in comparison with that of MOEA/D and OMOPSO.

Table 1. Indicators values for the three methods applied on nine test problems: the

values are presented as [GD,R-metrics]

Problem SDMOPSO MOEA/D OMOPSO

Schaffer [0.0165,0.00212] [0.0242,0.0002] [0.0164,0.0029]

Fonseca [0.0038,2.94E-04] [0.004,3.00E-05] [0.0037,5.48E-04]

Kursawe [0.0335,1.22E-03] [0.0343,8.91E-04] [0.0323,9.43E-04]

Viennet2 [0.0067,2.31E-10] [0.049,3.38E-07] [0.0062,7.06E-10]

Viennet3 [0.0096,8.65E-07] [3.3616,5.76E-03] [0.0107,5.51E-07]

ZDT1 [0.0044,0.004] [0.0055,0.0044] [0.0037,2.29E-03]

ZDT2 [0.0051,0.003] [0.0044,0.0017] [0.0038,0.0012]

ZDT3 [0.0043,0.003] [0.014,0.0067] [0.0043,0.0041]

ZDT4 [1.4319,0.3068] [0.7714,0.2338] [1.4329,0.3744]

ZDT6 [0.003,0.0013] [0.0029,0.0012] [0.0031,0.0011]

Average [0.1519,0.0322] [0.4271,0.0255] [0.1517,0.0387]

Std [0.4498,0.0965] [1.0581,0.0732] [0.4503,0.1179]

p-value [-,-] [0.1602,0.6953] [0.4453,1]

Table 1 shows the results obtained after applying GD and R-metrics measures,
the last row presents the p-value resulted of applying Wilcoxon sign rank statis-
tical test between the SDMOPSO and the other two methods. This test was se-
lected as recommended in [19] . Fig.1 and Fig.2 depict PFtrue and PFapproximated

for the three algorithms under investigation.

5 Discussion and Conclusions

In this paper, a novel smart multi-objective particle swarm optimisation method
using decomposition(SDMOPSO) is presented. The method works by dividing
the MOP into scalar aggregation problems which are solved simultaneously us-
ing PSO. The information exchange method proposed herein helps avoiding local
optima without a need for applying any genetic operator and utilises the local in-
formation more effectively by facilitating simultaneous optimisation of all scalar
problems. In order to maintain the diversity of the final solutions, SDMOPSO
uses a crowding archive.
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The previous use of PSO within the MOEA/D framework presented in [10]
has several limitations. Every particle updates its position using its personal
best and global best information without considering the neighborhood best,
which can be an important asset for maintaining the diversity of the solutions
and avoiding local optima. MOPSO/D uses a mutation operator, which can con-
tribute to the complexity of the method and thus reduce the advantage of PSO
over GA. MOPSO/D does not incorporate the non-dominance concept within
the optimization process, which could potentially lead to premature convergence.

The results presented in this paper show that OMOPSO, MOEA/D and SD-
MOPSO perform similarly on problems with two objectives (Schaffer, Fonseca,
Kursawe, ZDT1-4 and ZDT6). When looking at three-objective problems, both
SDMOPSOandOMOPSOoutperformMOEA/D.However the statistical testover
alldatasets shows insignificantdifference in the indicatorvaluesamongall themeth-
ods. The advantageof the MOPSO-basedmethods in 3D MOPs could be explained
by that EA-based techniques offer advantages in problems where some structure
exist in the decision space - the reproduction The advantage of the MOPSO-based
methods in 3D MOPs could be explained by that EA-based techniques offer ad-
vantages in problems where some structure exist in the decision space - the repro-
duction operators can exploit this structure very effectively. When, however, such
a structure does not exist or is confounded by the interplay of several competing
objectives, MOP heuristics aimed at uniform exploration of the solution space can
perform better [20]. The results of our experiments support this hypothesis.

For Viennet3, SDMOPSO seems to have better diversity than OMOPSO as
OMOPSO does not cover the PF fully (Fig.2e and Fig.2f). For other test prob-
lems, SDMOPSO and OMOPSO perform similarly. The major algorithmic dif-
ference between SDMOPSO and OMOPSO is that OMOPSO uses mutation[14],
whereas SDMOPSO does not apply any genetic operator. Mutation is usually
regarded as turbulence that is beyond a particle’s own control [7]. The usage of
mutation operator by PSO is generally justified because of a very high conver-
gence speed of this method. Such convergence speed could be a disadvantage in
solving MOPs, because it may lead to a false PF [21] due to falling into local
optima. SDMOPSO, on the other hand, handles this issue by making every par-
ticle in the swarm to pre-process its moves and to share this information with its
neighbours. This results in a better exploitation of the local information, which
alleviates the effect of premature convergence to local optima.
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Abstract. This work proposes a hybrid strategy in a two-stage search

process for many-objective optimization. The first stage of the search is

directed by a scalarization function and the second one by Pareto se-

lection enhanced with Adaptive ε-Ranking. The scalarization strategy

drives the population towards central regions of objective space, aiming

to find solutions with good convergence properties to seed the second

stage of the search. Adaptive ε-Ranking balances the search effort to-

wards the different regions of objective space to find solutions with good

convergence, spread, and distribution properties. We test the proposed

hybrid strategy on MNK-Landscapes showing that performance can im-

prove significantly on problems with more than 6 objectives.

1 Introduction

Recently, there is a growing interest on applying multi-objective evolutionary
algorithms (MOEAs) to solve many-objective optimization problems with four or
more objective functions. In general, conventional MOEAs scale up poorly with
the number of objectives and new evolutionary algorithms are being proposed
[1]. Research has focused mainly on the effectiveness of selection, dimensionality
reduction, incorporation of user preferences, and space partitioning.

This work focuses on the effectiveness of selection on many-objective opti-
mization. Some methods have been proposed to improve Pareto selection for
many-objective optimization by incorporating indicator functions or extensions
of Pareto dominance [2,3,4]. Most of these methods induce a different ranking
based on information of how close solutions are to dominate other non-dominated
solutions and have been proved effective to improve convergence at the expense
of spread or vice-versa. To rank solutions, these methods compare each solu-
tion with all other solutions, bringing the computational order to O(M |P |2),
where M is the number of objectives and |P | the population size. Other meth-
ods are based on scalarization functions that map the multi-objective problem
to a single-objective one [5]. Since a scalarization function defines a search di-
rection around a single point in objective space, to try to uniformly search the
objective space and find good approximations of the Pareto front, very many
scalarization functions must be specified. The computational order of ranking

R. Schaefer et al. (Eds.): PPSN XI, Part II, LNCS 6239, pp. 11–20, 2010.
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with one scalarization functions is O(M |P |). However, usually the number of
scalarization functions for many-objective optimization is of the same order of
the population size making the overall computational order similar to O(M |P |2).

In this work, we propose a hybrid strategy in a two-stage search process. The
first stage of the search is directed by a scalarization function and the second
one by Pareto selection enhanced with Adaptive ε-Ranking [6]. The scalarization
function provides a computationally fast unifying search direction to drive the
population towards central regions of objective space, aiming to find a subset
of solutions with good convergence properties. On the other hand, Adaptive ε-
Ranking uses the local information of the distribution of solutions to balance
the search effort towards the different regions of objective space, increasing the
discriminatory power of Pareto selection while introducing simultaneously a den-
sity estimator that scales-up well on high dimensional spaces, to find solutions
with good convergence, spread, and distribution properties.

We study the effects of the scalarization and Adaptive ε-Ranking applied in-
dependently. Then, we study the effects of the proposed hybrid strategy, show-
ing that it can significantly outperform its individual components, especially
on problems with more than 6 objectives. Also, since the hybrid strategy uses
just one scalarization function during the first stage, it becomes considerably
faster, which is an important issue for scalability on high-dimensional spaces. As
benchmark instances we use MNK-Landscapes [7] with 4 ≤ M ≤ 10 objectives,
N = 100 bits, and 0 ≤ K ≤ 50 epistatic interactions per bit.

2 Proposed Hybrid Strategy

2.1 Concept

Multi-objective optimizers seek to find trade-off solutions with good properties of
convergence to the Pareto front, well spread and uniformly distributed along the
front. These three properties are especially difficult to achieve in many-objective
problems and most searching strategies compromise one in favor of the other.
In addition, larger population sizes are likely to be required in order to create
an appropriate approximation of the Pareto front in high dimensional spaces.
Both, larger populations and high dimensionality, impose a serious challenge to
the computational scalability of current algorithms.

Seeking to find approximations of the Pareto front fulfilling the three proper-
ties of convergence, spread, and distribution, rather than expecting a sole strat-
egy to work efficiently for all tasks, it seems reasonable to distribute the search
into different strategies that complement each other. The proposed hybrid strat-
egy follows this approach, using one strategy from the domain of scalarization
that focus on convergence-only and the other one from the domain of Pareto
dominance and its extensions (Adaptive ε-Ranking) that in addition to conver-
gence also pays attention to diversity. The strategies are deployed following a
two-stage scenario, assigning one strategy to each stage, where the first strategy
works to seed the second one, as illustrated in Fig. 1. The expectation for the
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f1

f2

Scalarization

Adaptive ε-Ranking

Fig. 1. Hybrid Strategy

hybrid strategy is that better results could be achieved by diversifying the pop-
ulation after some degree of convergence has been achieved than by emphasizing
convergence and diversity since the beginning of the search, where the popula-
tion is random. Also, by simplifying the scalarization strategy to one scalarizing
function, it is expected that the hybrid method could speed up the search.

2.2 Scalarization Strategy

The role of the scalarization strategy is to provide a computationally-fast unify-
ing search direction to drive the population towards central regions of objective
space, so that solutions with good convergence could be found to seed the second
stage of the search. In this work we use g = 1

M

∑M
i=1 fi as scalarizing function,

where fi denotes the i-th objective value and M the number of objectives.

2.3 Adaptive ε-Ranking Strategy AεRE

Pareto ranking classifies the entire population in one or more sets of equally
ranked solutions Fi (i = 1, · · · ,NF ), each set associated to rank i. On many-
objective problems the number of Pareto non-dominated solutions increase sub-
stantially with the dimensionality of the objective space and |F1| usually becomes
larger than the size of the parent population |P | from early generations [7].
ε-Ranking re-classifies the setsFi (i = 1, · · · ,NF ) into setsF ε

j (j = 1, · · · ,N ε
F ),

N ε
F ≥ NF , using a randomized sampling procedure that favors a good distribu-

tion of solutions based on dominance regions wider than conventional Pareto
dominance (ε-dominance). The sampling heuristic favors an effective search us-
ing the following criteria. (i) Extreme solutions are always part of the sample.
(ii) Each (not extreme) sampled solution is the sole sampled representative of
its area of influence, which is determined by ε-dominance. (iii) Sampling of (not
extreme) solutions follows a random schedule. These criteria aim to balance the
search effort towards the different regions of objective space, increasing the dis-
criminatory power of Pareto selection while simultaneously introducing a density
estimator that scales-up well on high dimensional spaces, to find solutions with
good convergence and diversity (spread and distribution) properties.

The number of rank-1 solutions |Fε
1 | after reclassification depends on the value

set to ε (≥ 0). Larger values of ε imply that sampled solutions ε-dominate larger
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areas, increasing the likelihood of having more ε-dominated solutions excluded
from the sample that form F ε

1. Adaptive ε-Ranking adapts ε at each generation
so that |Fε

1 | is close to the size of the parent population |P|. The adaptation rule
takes advantage of the correlation between ε and the number of ε-nondominated
solutions in the sample. Basically, if |Fε

1 | > |P| it increases the step of adaptation
Δ ← min (Δ× 2,Δmax) and ε ← ε + Δ. Otherwise, if |Fε

1 | < |P| it decreases
Δ ← max (Δ× 0.5,Δmin) and ε ← max (ε−Δ, 0.0). The appropriate value of
ε that approaches |Fε

1 | to |P| is expected to change as the evolution process
proceeds, it is problem dependent, and affected by the stochastic nature of the
search that alters the instantaneous distributions of solutions in objective space.
Adaptation of ε and its step of adaptation Δ is important to properly follow the
dynamics of the evolutionary process on a given problem.

3 Multiobjective MNK-Landscapes

A multiobjective MNK-Landscape [7] is defined as a vector function mapping
binary strings into real numbers f(·) = (f1(·), f2(·), · · · , fM (·)) : BN → �M ,
where M is the number of objectives, fi(·) is the i-th objective function, B =
{0, 1}, and N is the bit string length. K = {K1, · · · , KM} is a set of integers
where Ki (i = 1, 2, · · · ,M) is the number of bits in the string that epistatically
interact with each bit in the i-th landscape. Each fi(·) can be expressed as an
average of N functions as follows

fi(x) =
1
N

N∑
j=1

fi,j(xj , z
(i,j)
1 , z

(i,j)
2 , · · · , z(i,j)

Ki
) (1)

where fi,j : BKi+1 → � gives the fitness contribution of bit xj to fi(·), and
z
(i,j)
1 , z

(i,j)
2 , · · · , z(i,j)

Ki
are the Ki bits interacting with bit xj in the string x. The

fitness contribution fi,j of bit xj is a number between [0.0, 1.0] drawn from a
uniform distribution. Thus, each fi(·) is a non-linear function of x expressed by
a Kauffman’s NK-Landscape model of epistatic interactions. In addition, it is
also possible to arrange the epistatic pattern between bit xj and the Ki other
interacting bits. That is, the distribution Di = {random,nearest neighbor} of
Ki bits among N . Thus, M , N , K = {K1,K2, · · · ,KM}, and D = {D1,D2, · · · ,
DM}, completely specify a multiobjective MNK-Landscape.

4 Method of Analysis

In this work, we use the hypervolume H and the set coverage C [8] to evaluate
the performance of the algorithms, complementing our analysis with the maxi-
mum max(fi) and minimum min(fi) fitness values found in each objective. The
measure C provides information on convergence. C(A,B) gives the fraction of
solutions in set B that are dominated at least by one solution in set A.
H is a measure of convergence and diversity, calculated as the volume of the

M -dimensional region in objective space enclosed by the set of non-dominated
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solutions and a dominated reference point. If the reference point is very close
to the Pareto front, non-dominated solutions around the center region of the
Pareto front are relatively emphasized in the hypervolume calculation. On the
other hand, if the reference point is far from the Pareto front, non-dominated
solutions along the extreme regions of the Pareto front are emphasized in the
hypervolume calculation. The hypervolume has become widely used to analyze
the performance of multi-objective optimizers. However, results on the hypervol-
ume are usually reported using a single reference point, which provides only a
partial vision of the results obtained. In many-objective problems, particularly,
it is difficult to grasp the convergence and diversity properties of the solutions
obtained and reporting results using one reference point could often lead to
overstated and sometimes erroneous conclusions about the overall performance
of the algorithms. Analysis of hypervolume varying the reference point provides
more insights on the distribution of the obtained solutions and helps clarify the
relative contribution to the hypervolume of solutions that converge to the central
regions of the space and those that contribute to diversity (spread). To enrich
our analysis, we compute the hypervolume using different reference points. The
reference point rdR = (r1, r2, · · · , rM ) is calculated by

ri = (1.0− dR)×min (fi), i = 1, 2, · · · ,M, (2)

where min (fi) is the minimum value of the i-th objective function observed in the
joined sets of Pareto optimal solutions found by the algorithms we compare, and
dR is a parameter that determines the distance of the reference point to the mini-
mum values found for each objective function (min (f1),min (f2), · · · ,min (fM )).
In this work, we use dR = {0.01, 0.1, 0.3, 0.5, 0.7, 1.0} to set the reference point
rdR = (r1, r2, · · · , rM ). Note that we maximize all objective functions and the
allowed range for all fi is [0.0, 1.0]. Hence, dR = 0.01 means that the reference
point is rdR = 0.99 × (min (f1),min (f2), · · · ,min (fM )) and thus very close to
the Pareto front, whereas dR = 1.0 means that rdR = (0.0, 0.0, · · · , 0.0) and far
from the Pareto front. To calculate H, we use Fonseca et al. [9] algorithm.

5 Experimental Results and Discussion

5.1 Preparation

The performance of the algorithms is verified on MNK-Landscapes with 4 ≤
M ≤ 10 objectives, N = 100 bits, number of epistatic interactions K = {0, 1, 3, 5,
7, 10, 15, 25, 35, 50} (K1, · · · ,KM = K), and random epistatic patterns among
bits in all objectives (D1, · · · ,DM= random). Results presented below show
the average performance of the algorithms on 50 different problems randomly
generated for each combination of M , N and K. In the plots, error bars show
95% confidence intervals on the mean.

In this work, we implement the proposed hybrid strategy using NSGA-II [10] as
a host algorithm, modifying it accordingly to include the scalarization and AεRE

strategies. During the first stage, selection is based solely on the scalarization func-
tion, whereas in the second stage AεRE is applied after Pareto dominance. All al-
gorithms used in our study are set with parent and offspring populations of size



16 H. Aguirre and K. Tanaka

AεR
E

 M 4

 M 6

 M 8

 M 10

H

dR

 NSGA-II

K=7

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.8

1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

3

3.2

3.4

3.6

3.8

C(N, AE)  C(AE, N)
     

AE:  AεRE

N:  NSGA-II

C

M

K = 7

4 6 8 10

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(a) Normalized H (b) Set coverage C

Fig. 2. Adaptive ε-Ranking, K = 7, 4 ≤ M ≤ 10
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Fig. 4. Scalarization strategy, K = 7 and 4 ≤ M ≤ 10

|P| = |Q| = 100, two point crossover for recombination with rate pc = 0.6, and
bit flipping mutation with rate pm = 1/N per bit. The number of evaluations is
set to 3× 105 (T = 3000 generations). In AεRE, initially ε = 0.0, the initial value
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of the step of adaptation is Δ0 = 0.005 (0.5%) and its maximum and minimum
values are set to Δmax = 0.05 (5%) and Δmin = 0.0001 (0.01%).

5.2 Effects of Individual Components

Adaptive ε-Ranking Strategy. In this section we discuss the performance of
Adaptive ε-Ranking Strategy (AεRE) using NSGA-II as a reference for compari-
son. Fig. 2(a) shows the normalized hypervolumeH between AεRE and NSGA-II
varying the reference point for K = 7 and M = {4, 6, 8, 10} landscapes. From
this figure it can be seen that AεRE attains better H for all values of M regard-
less of the reference point. Also, note the increasing slopes of the H curves as
the reference point gets closer to the Pareto front, i.e. varying dR from 1.0 to
0.01. These results suggest that solutions by AεRE are better than solutions by
NSGA-II particularly in the central regions of the objective space. Notice that
the slope of the H curve becomes steeper by increasing the number of objectives
from M = 4 to M = 6, but it gradually recedes for M = 8 and M = 10 com-
pared to M = 6. This is an indication that the convergence abilities of AεRE

reduce for M > 6, especially to the central regions of objective space.
Fig. 2(b) shows results using the C coverage measure. Note that C(AE ,N), the

fraction of NSGA-II’s solutions dominated by AεRE ’s solutions, is almost 0.9 for
M = 4 and reduces progressively with M until it approaches 0.2 for M = 10. On
the contrary, C(N,AE) is zero for all M , which means that no solution by AεRE

is dominated by NSGA-II’s solutions. These results confirm the superiority of
AεRE over NSGA-II and corroborate the decreasing convergence power of AεRE

for large values of M .
Fig. 3(a) shows the maximum and minimum fitness, max (fm) and min (fm),

of solutions in the Pareto front found by NSGA-II and AεRE for K = 7 and
M = 8 landscapes. From this figure, it can be seen that NSGA-II and AεRE

achieve similar max (fm). However, min (fm) is lower by NSGA-II. Similar values
of max (fm) suggest that spread by the algorithms is comparable, but the lower
values of min (fm) suggest that solutions by NSGA-II seem to be trapped in
lower local optima. Another interesting property of AεRE is that solutions in the
Pareto front are ε-nondominated, which gives a good distribution of solutions.

Scalarization Strategy. In this section we analyze the scalarization strategy
(μF ). Fig. 4(a) shows the normalized H between μF and NSGA-II varying the
reference point on K = 7 and M = {4, 6, 8, 10} landscapes. Comparing H by
looking at Fig. 4(a) and Fig. 2(a), it can be seen that on M = {4, 6} landscapes
μF is significantly worse than AεRE for any value of dR. On M = 8 landscapes,
μF is still worse than AεRE for dR ≥ 0.1, but similar to AεRE for dR = 0.01.
However, on M = 10 landscapes, μF is better than AεRE for dR < 0.5. These
results suggest that μF gets better compared to AεRE in terms of convergence
to central regions when the number of objectives is above eight.

Fig. 4(b) shows C between μF and NSGA-II. Note that for any number
of objectives, the values of C(μF,N) are similar and above 0.5, meaning that
more than half of the solutions by NSGA-II are dominated by solutions of μF .
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Fig. 5. Proposed Hybrid Strategy, K = 7 and 4 ≤ M ≤ 10

Comparing with Fig. 2(b), note that C(μ,N) < C(AεRE ,N) for M ≤ 7, but
C(μ,N) > C(AεRE,N) for M ≥ 8. These results are in accordance with the
observations made for H, and confirm the better convergence properties of μF
on landscapes with more than eight objectives. However, note that μF converges
to a narrow area, as shown in Fig. 3(b) that plots the max(fm) and min(fm) of
the non-dominated set found by μF .

Overall, these results shows that the scalarization strategy μF converges well,
albeit to a narrow region. The similar values of C(μF ,N) for all M is an inter-
esting property of μF . It shows that this strategy in terms of convergence can
scale up to a large number of objectives, suggesting that it could be useful as
part of the hybrid strategy.

5.3 Effects of the Hybrid Strategy

In this section we analyze the hybrid strategy that combines in a two-stage
process scalarization and Adaptive ε-Ranking (μFAεRE). μFAεRE first starts
with μF and then at generation tS it switches to AεRE . Fig. 5 (a)-(c) show H by
μFAεRE on M = {6, 8, 10} landscapes, respectively, varying tS = {1000, 1500,
2000, 2500} and keeping the total number of the generations fixed to T = 3000.
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Fig. 6. Adaptive ε-Ranking AεRE and Proposed Hybrid Strategy μFAεRE, 0 ≤ K ≤
50 and 4 ≤ M ≤ 10

The same figures also include results by μF and AεRE for comparison. Note
that on M = 6 the inclusion of μF does not improve H (actually, on M = 4 for
which results are not shown, H reduces by including μF , with larger reductions
observed for late switching times tS). However, switching from μF to AεRE

during the run can improve H substantially (dR = 0.01) on M = 8 and M = 10,
with a late switching time (tS = 2500) working better than an early one.

Fig. 5 (d) shows C values between μFAεRE and NSGA-II for tS = {1000,
2500}. We also include results by μF and AεRE for comparison. Results on C
confirm our observations onH and give a clearer picture of the effects of including
μF . Note that μFAεRE shows relatively better convergence than AεRE for
M ≥ 7 and the importance of late switching times tS for M ≥ 8. Also, it can be
seen that convergence is better than μF for M ≤ 9 if tS = 2500. For M = 10
similar convergence to μF is observed. However, μFAεRE tS = 2500 shows
significantly better H than μF on M = 10 as shown in Fig. 5 (c).

Fig. 6 show results by AεRE and μFAεRE (tS = 2500), varying K from
0 to 50 to observe the scalability of the algorithms on problems of increased
epistasis. From these figures, note that similar to K = 7, on M = 4 performance
deteriorates slightly by including μF , especially in terms of convergence, whereas
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on M = 6 H and C are similar by both algorithms. On the other hand, on
M = 8 and M = 10 the inclusion of μF leads to better H and C on a broad
range of K (K ≥ 1). Since μF is just one scalarazing function, its computation is
faster than Pareto ranking based approaches. Thus, the hybrid strategy μFAεRE

(tS = 2500) is also substantially faster than AεRE , which becomes relevant for
scalability on high dimensional spaces.

6 Conclusions

We have shown that a two-stage hybrid strategy that uses scalarization and
Pareto dominance enhanced with Adaptive ε-Ranking can significantly improve
performance on many-objective MNK-Landscapes, especially for a large number
of objectives. Also, we show that it is feasible to simplify the scalarization strat-
egy, which could reduce overall computational cost. In the future, we would like
to explore adaptive strategies to switch between stages and try other scenarios
to deploy the individual strategies.
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Abstract. This paper introduces a novel Parallel Multi-Objective Evo-

lutionary Algorithm (pMOEA) which is based on the island model. The

serial algorithm on which this approach is based uses the differential

evolution operators as its search engine, and includes two mechanisms

for improving its convergence properties (through local dominance and

environmental selection based on scalar functions). Two different para-

llel approaches are presented. The first aims at improving effectiveness

(i.e., for better approximating the Pareto front) while the second aims to

provide a better efficiency (i.e., by reducing the execution time through

the use of small population sizes in each sub-population). To assess the

performance of the proposed algorithms, we adopt a set of standard test

functions and performance measures taken from the specialized litera-

ture. Results are compared with respect to its serial counterpart and

with respect to three algorithms representative of the state-of-the-art in

the area: NSGA-II, MOEA/D and MOEA/D-DE.

1 Introduction

Multi-objective evolutionary algorithms (MOEAs) have been found to be very
suitable for solving a wide variety of engineering optimization problems, because
of their generality, their ease of use and their relatively low susceptibility to the
specific features of the search space of the problem to be solved [1]. Nonetheless,
they are normally computationally expensive due to several reasons: (1) real-
world optimization problems typically involve high-dimensional search spaces
and/or a large number of objective functions, (2) they require finding a set of
solutions instead of only one, often requiring, in consequence, large population
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sizes, and (3) frequently, the task of evaluating the objective functions demands
high computational costs (e.g., complex computer simulations are required). All
these factors decrease the utility of serial MOEAs for its use in real-world engi-
neering Multi-objective Optimization Problems (MOPs). In order to reduce the
execution time required to solve these problems two main types of approaches
have been normally adopted1: (1) Enhance the MOEA’s design, namely improv-
ing its convergence properties, so that the number of objective function evalua-
tions can be reduced, and, (2) Use of parallel programming techniques, i.e., to
adopt a parallel or distributed MOEA.

Based on the above, the major aim of the present work is to develop two dif-
ferent schemes for improving the performance of a pMOEA. The first is designed
for improving effectiveness (i.e., for better approximating the Pareto front), while
the second is designed for improving efficiency (i.e., for reducing the execution
time by using small population sizes in each sub-population). Either approach (or
both) can be of interest in solving real-world enginering MOPs. The two proposed
schemes are based on the island paradigm, and use the multi-objective differen-
tial evolution algorithm MODE-LD+SS [2] as its search engine. The proposed
schemes are evaluated using standard test functions and performance measures
taken from the specialized literature. The results obtained by the two proposed
pMOEAs are compared with respect to their serial counterpart and with respect
to the NSGA-II [3], MOEA/D [4], and MOEA/D-DE [5].

The remainder of the paper is organized as follows. In Section 2, the most
relevant previous related work on island-based pMOEAs is presented. Section 3
is devoted to describe the proposed approach. Then, the experimental setup
is presented in Section 4. In Section 5 the obtained results are presented and
discussed. Finally, in Section 6 our conclusions and the corresponding future
work is highlighted.

2 Previous Related Work

A pMOEA can be useful to solve problems faster, but also for generating novel
and more efficient search schemes, i.e., a pMOEA can be more effective than
its sequential counterpart, even when executed in a single processor [6]. From
the specialized literature, four major pMOEA paradigms are commonly used
[7]: (i) “Master-Slave,” (ii) “Island,” (iii) “Diffusion,” and (iv) “hierarchical” or
“hybrid”. A comprehensive review of these paradigms can be found in [1,7]. This
paper focuses on the Island Model, which is based on the phenomenon of natural
populations evolving independently. In each island, a serial MOEA is executed
for a predefined number of generations called epoch. At the end of an epoch,
communication between neighboring islands is allowed. In this communication,
individuals (or copies of them in the case of pollination) can migrate from its

1 Our discussion here is focused exclusively on MOEAs that use exact objective func-

tion values, since fitness approximation schemes and surrogate models can also be

used to deal with expensive MOPs.
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actual island to a different one according to a predefined migration topology
which determines the migration path along which individuals can move.

Kamiura et al. [8] presented a pMOEA called MOGADES (Multi-Objective
Genetic Algorithm with Distributed Environment Scheme). In this pMOEA, the
population is divided into M islands, and in each of them the MOP is converted
into a scalar one, i.e., a different weight vector is assigned to each island. The aim
of this algorithm is that each island can capture a different region of the Pareto
front. One important aspect in this approach is that when migration occurs,
the weights for each island are varied. A major drawback for this approach is
that a good distribution of solutions cannot be guaranteed as it depends on the
dynamics of the evolutionary system, i.e., of the weight vector variation.

Streichert et al. [9] proposed a pMOEA, which combines an island model with
the “divide and conquer” principle. This approach partitions the population
using a clustering algorithm (k-means), with the aim of assigning to each island,
the search task of a particular Pareto front region. In this approach, at each
epoch, the sub-populations are gathered by a master process for performing the
clustering/distributing process. The individuals in each island are kept within
their assigned Pareto front region using zone constraints. The main drawback of
this approach is that a priori knowledge of the Pareto front shape is needed to
define the zone constraints.

Zahaire and Petcu [10] developed the multi-population APDE (APDE stands
for Adaptive Pareto Differential Evolution). This approach consists of dividing
the main population into sub-populations (islands), each of equal size. In each
island, a serial version of the APDE is executed with its own set of randomly
initialized adaptive parameters, and is evolved for an epoch. Afterwards, a migra-
tion process is started. This process is based on a random connection topology,
i.e., each individual from each sub-population can be swapped (with a given mi-
gration probability) with a randomly selected individual from another randomly
selected island.

3 Our Proposed Approach

The first mechanism is as follows. In our proposed parallel algorithm, each is-
land runs an approach called MODE-LD+SS [2], which adopts operators from
differential evolution using the DE/RAND/1/bin scheme. Algorithm 1 shows the
basic (serial version) pseudo-code of our proposed MODE-LD+SS approach. In
Algorithm 1, the solution vectors u1,u2,u3 are selected from the current pop-
ulation, only if they are locally nondominated in their neighborhood ℵ. Local
dominance is defined as follows:

Definition 1. Pareto Local Dominance: Let x be a feasible solution, ℵ(x)
be a neighborhood structure for x in the decision space, and f (x) a vector of
objective functions.

- We say that a solution x is locally nondominated with respect to ℵ(x) if and
only if there is no x

′
in the neighborhood of x such that f(x

′
) ≺ f(x)
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The neighborhood structure is defined as the NB closest individuals to a par-
ticular solution. Closeness is measured using the Euclidean distance between so-
lutions. The major aim of using the local dominance concept, as defined above,
is to exploit good individuals’ genetic information in creating DE trial vectors,
and the associated offspring, which might help to improve the MOEA conver-
gence rate toward the Pareto front. From Algorithm 1, it can be noted that
this mechanism has a stronger effect during the earlier generations, where the
portion of nondominated individuals is low in the global population, and pro-
gressively weakens, as the number of nondominated individuals grows during
the evolutionary process. This mechanism is automatically switched off, once all
the individuals in the population become nondominated, and has the possibil-
ity to be switched on, as some individuals become dominated. Aditionally, the
diversity of the created offspring can be controled by the local dominance neigh-
borhood size NB. Low values of NB will increase the diversity of the offspring,
and viceversa.

The second mechanism that is introduced in MODE-LD+SS is called envi-
romental selection based on a scalar function, and is based on the Tchebycheff
scalarization function given by [4]:

g(x|λj , z∗) = max
1≤i≤m

{λj
i |fi(x) − z∗i |} (1)

In the above equation, λj , j = 1, . . . ,N represents the weight vectors used to
distribute the solutions along the whole Pareto front (see Figure 1(a)). z∗ cor-
responds to a reference point, defined in objective function space and deter-
mined with the minimum objective values of the population. This reference
point is updated at each generation, as the evolution progresses. The proce-
dure MinimumTchebycheff(Q, λj , z∗) finds, from the set Q (the combined pop-
ulation consisting on the actual parents and the created offspring), the solution
vector that minimizes equation (1) for each weight vector λj and the reference
point z∗.

Based on the serial MOEA previously described, we present here two par-
allelization schemes. The first is designed for improving effectiveness and is
called pMODE-LD+SS(A). The second is designed for improving efficiency, and
is called pMODE-LD+SS(B). Both of them share the following characteristics:

– Use of a “random pair-islands”bidirectional migration scheme. In this scheme,
at each epoch, pairs of islands are randomly selected. Then, the communi-
cation is performed between each pair of islands. Migrants from one island
are considered as immigrants in the receptor island, and viceversa.

– Use of a pollination scheme, i.e., copies of selected migrants are sent, while
the original individuals are retained in their own population.

– The migration policy is based on randomly selected individuals.
– The replacement policy is based on the environmental selection mechanism

adopted in the serial version running in each island. In this case, immigrants
are added to the receptor island’s population, and the environmental selec-
tion process is applied to this extended population.
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Algorithm 1. MODE-LD+SS
1: INPUT:

N = Population Size
F = Scaling factor
CR = Crossover Rate
λ[1, . . . , N ] = Weight vectors
NB = Neighborhood Size
GMAX = Maximum number of generations

2: OUTPUT:
PF = Pareto front approximation

3: Begin
4: g ← 0
5: Randomly create P g

i , i = 1, . . . , N

6: Evaluate P g
i , i = 1, . . . , N

7: while g < GMAX do
8: {LND} = {�}
9: for i = 1 to N do

10: DetermineLocalDominance(P g
i ,NB)

11: if P g
i is locally nondominated then

12: {LND} ← {LND} ∪ P g
i

13: end if
14: end for
15: for i = 1 to N do
16: Randomly select u1, u2, and u3 from {LND}
17: v ← CreateMutantVector(u1, u2, u3)

18: P g+1
i ← Crossover(P g

i , v)

19: Evaluate P g+1
i

20: end for
21: Q ← P g ∪ P g+1

22: Determine z∗ for Q
23: for i = 1 to N do
24: P g+1

i ← MinimumTchebycheff(Q,λi, z∗)
25: Q ← Q\P g+1

i

26: end for
27: PF ← Q
28: end while
29: ReturnPF

30: End

(a) pMODE-LD+SS(A) (b) pMODE-LD+SS(B)

Fig. 1. Weight vectors distribution
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The main difference between the two proposed approaches is on the weight
vectors distribution used. The pMODE-LD+SS(A) approach can be seen as the
serial version of MODE-LD+SS running in p processors and exchanging infor-
mation among them. For this approach, the same weight vector distribution (see
Figure 1(a)) is used in each island. For maintaining diversity of the global popu-
lation and to evolve each island in an independent manner, different seed values
are used in the islands’ random numbers generators. In the second case, for the
pMODE-LD+SS(B) approach, each island is also instructed to search for the
whole Pareto front, but in this case, using a reduced population and different
weight vectors sets. It is important to note that all islands contain weight vec-
tors for searching the extreme Pareto solutions. The main idea for the second
parallel approach is that the combination of all islands’ weight vectors covers
the whole Pareto front region. Figure 1(b) illustrates this situation for the case
of a bi-objective MOP with two islands participating in the pMOEA.

4 Experimental Setup

In order to validate the two proposed parallel approaches, their results are
compared with respect to those generated by their serial counterpart (MODE-
LD+SS), and to NSGA-II [3], MOEA/D [4], and MOEA/D-DE [5] which are
MOEAs representative of the state-of-the-art in multiobjective evolutionary op-
timization. Our approaches were validated using nine test problems: five from the
ZDT (Zitzler-Deb-Thiele) set with 2 objectives (ZDT1, ZDT2, ZDT3, ZDT4, and
ZDT62), and four more from the DTLZ (Deb-Thiele-Laumanns-Zitzler) set with
3 objectives (DTLZ1, DTLZ2, DTLZ3, and DTLZ4). The selected test functions
comprise different difficulties such as convex, concave, and disconnected Pareto
fronts, as well as problems with multiple fronts. Two performance measures were
adopted in order to assess our results: Hypervolume (Hv) and Two Set Cover-
age (C-Metric). A description of these performance measures are omitted here
but can be found elsewhere [1]. The Hv measure uses a reference point in the
objective space which was set to (1.05,1.05) for all the 2-objective MOPs, and
to (5.0,5.0,5.0) in all the 3-objective MOPs. In the case of the C-Metric, the
A reference set is considered as the true Pareto front which is known for all
the MOPs used in the experiments. Thus, the C-Metric can be considered as a
measure for the ability of the algorithm to find solutions that are nondominated
with respect to the Pareto optimal set (i.e., solutions that also belong to the
Pareto optimal set).

5 Results and Discussion

In this section we present the results obtained by the proposed parallel ap-
proaches. As a first step, the serial version of MODE-LD+SS is compared with
2 ZDT5 is a binary problem and was not included because we adopted real-numbers

encoding in our experiments.
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respect to NSGA-II, MOEA/D and MOEA/D-DE. Then, the number of islands,
epoch and migration rate adopted in the parallel approaches are tuned by means
of an empirical study, using ZDT1. Finally, the results obtained with the two
parallel approaches are presented and compared to those of the serial version of
MODE-LD+SS, and those obtained by NSGA-II, MOEA/D and MOEA/D-DE.
These comparisons are based on the average results from 32 independent runs
executed by each algorithm and for each MOP.

Comparison of serial versions
Table 1 presents the results of the serial versions for NSGA-II, MOEA/D, MOEA/
D-DE and MODE-LD+SS. The population size in all the algorithms was set to
N=50 for all the 2-objective MOPs, and 153 for all the 3-objective MOPs the
maximum number of generations was set to GMAX = 150 for all problems,
except for ZDT4 and DTLZ3, where we used GMAX = 300. The common pa-
rameters for NSGA-II, MOEA/D and MOEA/D-DE were: crossover probability
pc = 1.0; mutation probability pm = 1/NVARS (NVARS correspond to the
number of decision variables for each MOP); distribution index for crossover
ηc = 15; and distribution index for mutation ηm = 20. As for the MOEA/D
and MOEA/D-DE the replacing neighborhood size was set as indicated in [4]
and [5], respectively. For the MODE-LD+SS algorithm, we used: F = 0.5 for
all MOPs; CR = 0.5 for all MOPs except for ZDT4, where CR = 0.3 was used;
Neighborhood size NB = 5 for all MOPs except for ZDT4, where we used NB =
1. From the results presented in Table 1, it can be observed that MODE-LD+SS
obtains the best results in 6 of 9 MOPs for the Hv measure. It also obtains
the best results in 8 of 9 MOPs regarding the C-Metric, which indicates that it
converged closer to the true Pareto front.

Parameters for the pMOEA approaches
For any pMOEA approach based on the island model, additional to the param-
eters required by its serial counterpart, we have to define the number of islands,
migration rate, and epoch period. The choice of these parameters has a great
influence in the performance of the pMOEA and is problem dependent. For se-
lecting a set of parameters to be used in the present work, ZDT1 was selected
to conduct an experimental study for assessing how the parameters affected per-
formance with respect to the serial version. For this study, the following set of
parameters was used: epochs = 10, 20, and 50 generations; migration rate MR
= 0.1, 0.2, 0.3 and 0.5; and number of islands NI = 4, 6, and 8. All the combi-
nations were tested. The parameters for population size, maximum number of
generations, F, CR, and NB were set the same for all the islands, as in the serial
version previously described. From the results of this study, and regarding the
C-Metric, it was observed that high migration rates with shorter epoch periods
produce the best improvements with respect to the serial version. However, this
can lead to higher communication costs. From the study, the final set of pa-
rameters selected correspond to the following: Number of Islands = 6; epoch =
10 generations, and migration rate = 0.4. This will be used in assessing the two
parallel approaches proposed here. Table 2 shows the results of the two proposed
parallel approaches.
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Table 1. Comparison of Hv and C-Metric measures for the serial versions

Hypervolume measure

Function
NSGA-II MOEA-D MOEA-D-DE MODE-LD+SS

Mean σ Mean σ Mean σ Mean σ
ZDT1 0.740382 0.003323 0.716729 0.024506 0.583847 0.076507 0.757395 0.000397
ZDT2 0.377348 0.070194 0.176615 0.079320 0.082341 0.115367 0.424895 0.000331
ZDT3 0.604214 0.003199 0.585094 0.023488 0.277813 0.111381 0.613846 0.000307
ZDT4 0.073098 0.122631 0.730980 0.016966 0.450990 0.215977 0.349325 0.285549
ZDT6 0.292164 0.020894 0.375312 0.007755 0.239793 0.084688 0.407638 0.000009

DTLZ1 124.139600 1.113898 124.969600 0.000768 119.402900 7.771898 124.967700 0.000383
DTLZ2 123.972600 0.124088 124.397400 0.001778 124.353700 0.027743 124.397600 0.003356
DTLZ3 80.131930 39.091680 124.338100 0.250190 85.976200 54.287600 124.396900 0.003004
DTLZ4 123.934300 0.125475 124.400100 0.002818 124.387900 0.003452 124.393900 0.002684

C-Metric measure

Function
NSGA-II MOEA-D MOEA-D-DE MODE-LD+SS

Mean σ Mean σ Mean σ Mean σ
ZDT1 0.994591 0.008785 0.997234 0.007463 1.000000 0.000000 0.748125 0.153569
ZDT2 1.000000 0.000000 0.208557 0.140626 1.000000 0.000000 0.586492 0.100261
ZDT3 0.931490 0.047844 0.813861 0.121330 1.000000 0.000000 0.384729 0.092223
ZDT4 1.000000 0.000000 0.975157 0.088624 1.000000 0.000000 0.845625 0.364496
ZDT6 0.975723 0.008476 0.978242 0.001639 0.989831 0.016529 0.000625 0.003536

DTLZ1 0.535550 0.134412 0.340389 0.234715 0.807088 0.113710 0.021434 0.014189
DTLZ2 0.447368 0.035370 0.211798 0.040208 0.678562 0.053395 0.171215 0.009018
DTLZ3 1.000000 0.000000 0.725727 0.179974 0.972366 0.063160 0.160711 0.007169
DTLZ4 0.453536 0.058747 0.205555 0.036333 0.554462 0.051949 0.156578 0.008628

pMOEA for effectiveness improvement
From Table 2, it can be observed that the approach designed for effectiveness im-
provement produced better Hv values in 4 of the 9 MOPs (ZDT1, ZDT3, ZDT4,
and ZDT6), while improving the C-Metric in 7 of the 9 MOPs (ZDT1, ZDT4,
ZDT6, DTLZ1, DTLZ2, DTLZ3, DTLZ4), with respect to the serial version of
MODE-LD+SS. One important result to remark from this parallel approach,
is its ability to reach the true Pareto front of ZDT4 and ZDT6 in the 32 runs
performed, as indicated by the mean and standard deviations for the C-Metric
for these two MOPs.

pMOEA for efficiency improvement
For this approach, each island uses a reduced population size of N = 10 for the
2-objective MOPs and of N = 28 for the 3-objective MOPs. Since we used 6 is-
lands, the global population consists of 60 individuals for the 2-objective MOPs,
and of 168 individuals for the 3-objective MOPs. Considering that the global
population size grows, the maximum number of generations used in pMODE-
LD+SS(B) were reduced accordingly to obtain an equivalent number of objec-
tive function evaluations as in the serial version. However, once the islands’
populations are gathered and a global environmental selection is performed, the
maximum population size reported for this approach is of 50 solutions for the
2-objecive MOPs, and 153 for the 3-objective MOPs. This latter condition is due
to the fact that each island searches for the Pareto extreme solutions (there are
redundant solutions which are filtered out). The parameters for F, and CR were
set the same as in the serial version for all islands. However, due to the reduction
in island population size, the parameter NB was set to 1 in all MOPs. In Table 2,



pMODE-LD+SS: A Parallel Multi-Objective DE-Based Algorithm 29

Table 2. Results for MODE-LD+SS(A) and pMODE-LD+SS(B)

Function
pMODE-LD+SS(A) pMODE-LD+SS(B)

Hv C-Metric Hv C-Metric
Mean σ Mean σ Mean σ Mean σ Speed-up

ZDT1 0.757675 0.000115 0.623750 0.105517 0.750276 0.002323 0.983219 0.043928 2.9977
ZDT2 0.424363 0.000310 0.766844 0.105424 0.421071 0.001954 0.815243 0.099875 2.6918
ZDT3 0.614156 0.000201 0.385278 0.078578 0.608588 0.001898 0.741921 0.122588 2.5434
ZDT4 0.758770 0.000006 0.000000 0.000000 0.034668 0.119046 1.000000 0.000000 2.3341
ZDT6 0.407650 0.000001 0.000000 0.000000 0.406966 0.000241 0.002552 0.006860 2.5110

DTLZ1 124.967400 0.000238 0.011863 0.004840 124.970200 0.000681 0.022575 0.009888 4.9934
DTLZ2 124.391900 0.002976 0.162893 0.008310 124.404200 0.001968 0.175189 0.008008 4.7269
DTLZ3 124.389000 0.003113 0.155273 0.005601 124.015800 1.228651 0.242665 0.247538 4.8357
DTLZ4 124.389500 0.002848 0.154082 0.008518 124.402700 0.002529 0.149008 0.008031 4.8949

the estimated average parallel Speed-Up measure is reported for all MOPs used.
Also from this table, it can be seen that the approach designed for efficiency
improvement produced better Hv values in 3 of the MOPs adopted (DTLZ1,
DTLZ2, and DTLZ4). By taking a closer look to the results for the Hv metric
for ZDT1, ZDT2, ZDT3 and ZDT6, it can be seen that pMODE-LD+SS(B)
obtained values very close to those of the serial version (MODE-LD+SS), even
when each island was using a small population size.

6 Conclusions and Future Work

We have introduced a new pMOEA, called pMODE-LD+SS. For it, two differ-
ent parallel schemes were proposed, aiming at improving: (a) effectiveness and
(b) efficiency, with respect to its serial version, called MODE-LD+SS. From the
results presented in the previous section, the first goal was achieved in 4 and 7
of 9 test problems adopted, when considering the Hv and C-Metric performance
measures, respectively. It is worth noting that, in some cases the improvement
achieved has been quite significant. Regarding the second goal, and even when
each island is using a reduced population size, the second approach is able to
obtain better results for the Hv measure in 3 of the 9 test problems adopted.
Additionally, in 3 other problems, the values attained are very similar to those
obtained by the serial version. From the above, we can conclude that the pro-
posed algorithm has good properties both in terms of effectiveness and efficiency.
In the present work, the proposed algorithm was run with parameters derived
from empirical tests. However, a thorough statistical analysis is required in order
to identify the most appropriate parameters to be adopted, and to relate more
closely such parameter values to specific types of test problems. These tasks
will be part of our future work. Given the good convergence properties of the
proposed algorithm and its ability to improve both effectiveness and efficiency
in the test problems adopted, it is also desirable to test them in real-world op-
timization problems, and that is actually part of our ongoing research. Finally,
we also plan to compare our proposed pMOEA with respect to other pMOEAs
currently available in the specialized literature.
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Abstract. There is a variety of methods for ranking objectives in multi-

objective optimization and some are difficult to define because they re-

quire information a priori (e.g. establishing weights in a weighted

approach or setting the ordering in a lexicographic approach). In many-

objective optimization problems, those methods may exhibit poor di-

versification and intensification performance. We propose the Dynamic

Lexicographic Approach (DLA). In this ranking method, the priorities

are not fixed, but they change throughout the search process. As a re-

sult, the search process is less liable to get stuck in local optima and

therefore, DLA offers a wider exploration in the objective space. In this

work, DLA is compared to Pareto dominance and lexicographic order-

ing as ranking methods within a Discrete Particle Swarm Optimization

algorithm tackling the Vehicle Routing Problem with Time Windows.

Keywords: Multi-objective Optimization, Swarm Optimization, Com-

binatorial Optimization, Vehicle Routing Problem.

1 Introduction and Motivation

Multi-objective Optimization (MOO) problems have a number of objectives that
are usually in conflict, so improving one objective leads to worsen another. In par-
ticular, many-objective optimization problems involve the optimization of four or
more objectives, presenting a considerable challenge for some solutions methods.

Solution methods for multi-objective optimization differ mainly on the way
they rank solutions. Many successful approaches exist to address this issue
in problems with few objectives (i.e. less than four). However, these ranking
schemes have not exhibited the same performance in many-objective optimiza-
tion problems. Some classical ranking methods like Pareto dominance, use a
strict ranking scheme that sometimes fails to discriminate between solutions, as
it only accepts improvements in all objectives at the same time. On the other
hand, methods like the lexicographic approach impose a more static behavior,
as objectives are ranked according to a fixed relative importance.

In previous work [2] we introduced the Dynamic Lexicographic Approach
(DLA). This is an alternative dynamic multi-objective ranking approach for
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many-objective optimization. DLA offers an intuitive approach to establish a
dynamic ranking among objectives. Rather than establishing a fixed priority
among the objectives, the decision-maker establishes a preference. This prefer-
ence is then used with a probability mass function (pmf ) to generate a vector of
priorities that changes dynamically throughout the search process.

We used DLA in [2] as a an additional mechanism to rank the quality of
multi-objective solutions in a Particle Swarm Optimization approach applied
to tackle the Solomon’s instances of the Vehicle Routing Problem with Time
Windows (VRPTW) treated as a MOO problem. We use the DLA to select the
best leader in the neighborhood of each particle, while still using the traditional
Pareto dominance to decide whether to update solutions. This combined ap-
proach (Pareto + DLA) was compared against the alternative of using Pareto
dominance for both tasks (Pareto + Pareto): selection of the leader and update
of solutions. Results indicated that (Pareto + DLA) was better than (Pareto +
Pareto) in clustered problems (cxxx). But the (Pareto + DLA) approach showed
poor performance on random (rxxx) and random-clustered (rcxxx) instances.

This work investigates the role of the probability mass function (pmf ) and
the use of DLA to both select the leader and choose the solution to update. We
propose two versions of DLA, one using a greedier function to assign probabilities
to each preference and the other using two phases involving two probability
functions. For k iterations, one probability mass function is used to encourage
intensification. For the remaining iterations, another probability mass function
is used to encourage diversification. The two DLA versions are compared to
Lexicographic ordering and Pareto dominance on well-known instances of the
VRPTW using the hypervolume as performance metric. Our results indicate
that the DLA is a valuable ranking alternative method for MOO.

This paper is organized as follows. The basics of multi-objective optimization
are given in Section 2. The algorithm for the Dynamic Lexicographic Approach
is detailed and exemplified in Section 3 while Section 4 describes the Particle
Swarm Optimization method focusing on those elements important to our re-
search. A brief description of the Vehicle Routing Problem with Time Window
is given in Section 5. We describe our experiments in Section 6 and discuss re-
sults in Section 7. Finally, our contribution and proposed further research are
summarized in Section 8.

2 Multi-Objective Optimization (MOO)

In MOO, we aim to solve a problem of the type: minimize f(x) = f1(x),
f2(x),...,fk(x), subject to: gi(x) ≤ 0, i = 1, 2, ...,m and hi(x) = 0, i = 1, 2, ..., p.
Where the decision variable vector is x = [x1,x2, ...,xn]T , each objective func-
tion fi is defined in �n → �, i = 1, 2, ..., k and the constraint functions are gi

and hi, i = 1, 2, ...,m, j = 1, 2, ..., p which are defined in the same domain as fi.
Pareto Dominance is based on the concept of dominance. Without loss of

generality, we consider a minimization problem. A vector u is said to dominate
v (denoted by u ≺ v), iif ∀i ∈ (1, ..., k) : ui ≤ vi ∧ ∃i ∈ (1, ..., k) : ui < vi.
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Moreover, we say that a vector in the feasible region (u ∈ F) is Pareto Optimal,
if there is not any other vector in that region (u′ ∈ F), such that u′ dominates
u (u′ ≺ u). We define the Pareto Front as the set of vectors in �n, such that
all elements in the set are Pareto Optimal.

Using Pareto dominance in many-objective optimization has an implicit pitfall
derived from its manner to discriminate solutions. This method accepts solutions
in a linear fashion that inhibits the worsening of objectives, which sometimes
provokes the search to get stuck. Recent approaches have extended this ranking
method using the concept of relaxed dominance or α-dominance. This type of
dominance, proposed by Kokolo et al. [9], tries to overcome the weakness above
explained by allowing the worsening in some objective if there are improvements
in others. However, it might be difficult to set the appropriate bounds to get a
desirable performance.

Lexicographic ordering is another widely used ranking method in which the
decision-maker establishes fixed preferences among objectives. Given a priority
order (a, b), the objective whose priority is a is compared in first place and
the one with b in second. This way, we can formally describe the lexicographic
comparison as: (a, b) ≤ (a′, b′) iif a < a′ or (a = a′ and b ≤ b′). The same
procedure can be easily extended to k priorities. This technique works well when
the number of objectives is small. When dealing with a large number of priorities,
objectives with low priority will not be likely to be compared and therefore,
could be ignored in practice. Moreover, the fixed order, in which the method
discriminates vectors, makes the search liable for premature convergence [3].

In addition to Pareto dominance and lexicographic ordering, there exist many
other ranking methods to discriminate solutions in multi-objective scenarios. A
review on these methods can be found in the work of Ehrgott and Gandibleux [7].

3 Dynamic Lexicographic Approach

The Dynamic Lexicographic Approach (DLA) offers an intuitive approach to
establish a dynamic ranking among objectives. The decision-maker establishes
preferences among objectives and a function to associate a probability to each
preference. These probabilities are used to create different vectors defining a
standard lexicographic ordering each time. This approach overcomes the limita-
tion in the number of objectives because DLA does not rule out any preference.
Even preferences with a low probability have a chance to appear in the first po-
sition of the vector of priorities. Additionally, the continuous change of priorities
makes it possible to avoid premature convergence as the exploration is broader.

To clarify how DLA works, we provide an example for N = 4 objectives. Lets
assume that objective i is assigned preference i, that is, pref(oi) = i for i =
0, . . . ,N − 1, where N is the number of objectives. Suppose the decision-maker
provides the function p(i) = 0.8exp(−0.4i). Firstly, we evaluate this function for
i = 0, . . . ,N−1. Since N = 4, we calculate the probabilities as p(0) = 0.8, p(1) =
0.54, p(2) = 0.36 and p(3) = 0.24. Secondly, these probabilities are normalized
as p′(i) = p(i)/

∑N−1
k=0 p(k), obtaining the values 0.41, 0.28, 0.19, 0.12. In a third
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step, we split the segment [0, 1] into sub-segments according to the accumulate
probability. Therefore, we obtain [0, 0.41, 0.69, 0.88, 1], such that each preference
has a sub-interval assigned. The first preference has interval [0, 0.41), the second
[0.41, 0.69), the third [0.68, 0.88) and the fourth [0.88, 1]. The algorithm goes
through the above steps only once. Regarding the generation of priority vectors,
roulette-wheel selection is applied using this segment. First, a random number
r is generated with uniform distribution in [0, 1]. Lets suppose that r = 0.70. As
r falls in the sub-interval [0.68, 0.88), the third objective will be pushed back in
the vector of priority v ← 3. After this operation, we remove the selected sub-
interval and the segment is re-scaled, and another random number is generated.
After N − 1 times repeating this process, we get a priority vector that can be
used in a lexicographic approach to discriminate solutions.

The probability mass function (pmf ) plays a key role in the performance of the
DLA. Depending on the shape of this function, different probability values are
assigned to each objective producing different lexicographic orderings. Therefore,
assuming that the decision-maker establishes decreasing preferences (as in the
example above), there are three main types of functions: linear, quadratic and
exponential. Linear functions assign probabilities with a constant step among
them. Quadratic functions assign a similar probability to those objectives with
the highest preferences and zero to those with the lowest. Finally, an exponential
function assigns high and distinct probabilities to objectives with high preference
and assigns low but non-zero probability to those with low preference.

4 Particle Swarm Optimization (PSO)

PSO is a swarm-based stochastic algorithm proposed by Kennedy and Eberhart
[8]. A swarm is formed by a group of particles that moves on the search space.
Each particle knows its current position xi, its best position bi achieved so far
and the best position reached by the swarm so far g. Moreover, each particle
i shares its current position with its neighbors ni. Each particle possesses an
independent velocity which is updated taking into account the position of the
particle, that of its neighbors and that of the best positioned particles.

The PSO algorithm was originally proposed to tackle continuous optimization
problems. For discrete optimization, a number of alternatives have been proposed
re-interpreting how particles move. Here, we have adopted the approach proposed
by Consoli et al. [4]. This algorithm lacks the use of velocity conceiving the move
of particles by using the equation: xi,j ← xi ∨ gj ∗ xi ∨ bi,j ∗ xi ∨ xj ∗ gi,j . In
this proposal, each particle can accomplish four types of moves. Three involve
the action of another particle (cognitive) and in the other only the particle is
self-involved (inertial). Each particle randomly performs just one of these four
moves by evolution. This discrete PSO interprets cognitives moves as crossover
operations involving the solution of the moving particle and another solution
that acts as an attractor. On the other hand, the inertial move is translated into
a mutation operation that randomly changes components of the solution. More
information and other proposals for PSO can be found in [1].
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5 Vehicle Routing Problem with Time Windows

In the Vehicle Routing Problem (VRP) [5], the goal is to determine a least
cost route-plan using a fleet of vehicles to serve certain demand from a set of
costumers. The VRP can be formally described as follows. Let G(V,A) be a
graph where V and A are set of vertices and arcs respectively. The first vertex
v0 is the depot. A fleet of vehicles of identical capacity Q serve certain demand qi

from a number of costumers V −{1}. Each arc has a cost associated cij ≥ 0, such
that i �= j. Moreover, a number of constraints are imposed: 1) each costumer
vi, i > 0 can be visited only once, 2) all routes must start and end at the depot
and 3) the sum of demands in each route cannot exceed the maximum capacity
of each delivery vehicle Q.

In the Vehicle Routing Problem with Time Window (VRPTW), both the de-
pot and the costumers have a time window (denoted as [ai, bi]) in which the de-
livery must occur. While a late arrival is not usually permitted (hard constraint),
arriving before the lower time window limit ai is allowed. It this case, the de-
livery incurs in a waiting time until the customer can be served. The VRPTW
also takes into account the actual delivery time. This time is called service time
and is usually denoted as si. A survey with formulations and solution methods
for VRP and VRPTW can be found in [10].

6 Experiments

In this section, we describe the settings used in our experiments. In our pre-
vious work [2], DLA was compared against Pareto and Lexicographic ranking
for selecting the leading particle in the neighborhood of each moving particle.
However, this time DLA is presented in two versions for selecting the leaders and
also updating the best personal position bi and the best position achieved by the
swarm so far g. The first version of DLA uses a greedier approach to establish
the probability for each preference using the pmf p(x) = 0.9 ∗ exp(−x) + 0.05.
The first coefficient (0.9) increases its curvature and the second moves it up by
0.05. We set these coefficients according to some preliminary tests. The second
version of the DLA (DLA2) splits the ranking process into two phases. If the
current number of iterations is less or equal than a given k, a probability mass
function is used to encourage intensification. Otherwise, a different probability
mass function is employed to encourage diversification. To this aim, the first
phase only takes into account the first two highest preferences using this pmf
p(x) = 0.6 ∗ cos(0.7x + 0.1) + 0.3 with x = {0, 1}. For values between x = 0 and
x = 1, this function (equivalent to a quadratic expression in the given range)
assigns high and similar probabilities to the two objectives with the highest
preference. The coefficients were set, as in the previous pmf, using preliminary
computational experiments. This intensification phase lasts k iterations. In our
experiments k is set to 500 which corresponds to 25% of the total number of iter-
ations that the algorithm runs. The diversification phase runs for the remaining
iterations using the function mentioned above p(x) = 0.9∗exp(−x)+0.05, work-
ing with the whole set of preferences.



36 J. Castro-Gutierrez, D. Landa-Silva, and J.M. Pérez

Our efforts focus on comparing different ranking approaches. For this pur-
pose, we implemented a canonical PSO inspired in the Discrete-PSO (DPSO)
proposed by Consoli et al. [4]. This approach, as explained in Section 4, allows
particles to move in four possible directions depending on which attractor each
particle follows. The probability of all attractors were set to 0.25. In our simu-
lations, the swarm was formed by 50 particles evolving for 2000 generations. We
used the 100 costumers Solomon’s [6] instances of the VRPTW. These instances
are divided in three classes: c1xx - costumers positioned in clusters, r1xx - cos-
tumers randomly spread and rc1xx - some costumers forming clusters and others
randomly positioned. Regarding the DPSO implementation, two operators were
used. The crossover operator copies a random route from an attractor to the
moving particle. The mutation operator exchanges costumers from one route to
another within the route-plan in the solution of the moving particle.

In order to assess the performance of each ranking approach, a number of
objectives were considered: Travel Time (Ztt) or elapsed time of the route-plan,
Waiting Time (Zwt) or time the drivers need to wait in case of an early ar-
rival, Travel Distance (Ztd) or length of the whole route-plan, Time Window
Violation (Ztwv) or sum of lateness of all arrivals, Number of Time Window
Violations (Zntwv) or number of customers not served within the appropriate
time, Capacity Violation (Zcv) or amount of exceeding capacity on vehicles and
Number of Capacity Violations (Zncv) or number of vehicles whose capacity is
being exceeded. Reducing violations are considered as objectives in this study.
In this way, we entitle the decision-maker to decide on the convenience of serving
costumers out of their time windows or exceeding the capacity of some vehicles.

In a preliminary study, we tested a number of different combinations of objec-
tives using Pareto dominance. These experiments showed that the best setting for
Pareto dominance is to discriminate solutions using (Ztd,Ztwv). For the Lexico-
graphic approach, a similar study was carried out finding that the best sequence
is (Zntwv,Ztd,Zwt,Ztt,Ztwv,Zcv,Zncv). Both studies were based on the results
of the best extreme values achieved by each combination. To this aim, we took
those combinations that made the search process converge faster to feasible re-
gions, analyzing Ztwv and Zcv. With respect to the DLA and DLA2, they both
used the same sequence for preferences as the lexicographic for priorities. But,
for DLA2 this sequence was used after 500 generations as explained above.

7 Results

In order to analyse the performance of the proposed DLA variants, we present
the results in two modes. Firstly, we depict the approximated non-dominated
sets obtained by each strategy using two objectives. Secondly, we show a table
containing the normalized average S-metric [11] values for each instance family
and technique. Three pairs of plots are shown in Figure 1. Each pair shows
the approximated non-dominated sets obtained when using Pareto dominance,
Lexicographic ordering, DLA and DLA2 on instances c101, r101 and rc101 using
two pairs of objectives. Due to space limitations, for both the plot and the S-
metric, we only show the most meaningful combinations of pairs of objectives.
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That is, Time Window Violations (Ztwv) vs Travel Distance (Ztd) and Travel
Time (Ztt) vs Travel Distance (Ztd).

Respect to the Ztwv vs Ztd comparison, DLA2 is clearly superior in both
intensification and diversification. The approximation sets obtained by DLA2

on c101, r101 and rc101 have solutions with closer values to the origin, revealing
better intensification behavior. Additionally, these solutions, compared to those
of other ranking methods, seem to be more spread along both axis, showing
better diversification. Moreover, DLA2 seems to get better results as the difficulty
of the instances increases. Analyzing the properties of the Solomon’s instances,
it is observed that the time windows are much more restrictive on instance sets
r1xx and rc1xx. Moreover, the geographical location of costumers in these two
sets of instances make the problem grow in complexity. This complexity is due
to the fact that optimizing the distance does not guarantee to obtain a good
set of solutions. This improvement can be seen on the results for instances r101
and rc101 where the difference in performance between DLA2 and the other
ranking methods is much more noticeable. For this comparison, DLA gets a
slightly better performance than the Lexicographic approach. This is because
DLA uses a greedy function to assign probabilities to each preference. Therefore,
the priority vectors were generated within a short distance with the one used for
the Lexicographic ordering. Pareto shows a reasonable performance in instances
r101 and rc101, but it performs poorly on instance c101.

In the comparison of Ztt vs Ztd, we do not appreciate a good diversification
performance in any technique. This is because the Solomon’s instances were not
created to be used as a multi-objective test case. These instances have symmet-
rical and identical matrices for distances and times. The variability when com-
paring these two objectives arises mainly from the waiting and service times.
However, this comparison shows the intensification achieved by each ranking
technique. DLA2 is again the best technique obtaining much better results than
the others in these three instances. DLA produced approximation sets with more
intensification than Lexicographic in these plots as well. Pareto presented a sim-
ilar behavior to the one exposed for the other objectives comparison, providing
in general a poor performance.

Table 1 shows the performance of each ranking approach on each instance
set, calculated with the S-metric [11] or hyper-volume. This metric computes

Table 1. Performance of different ranking approaches on Solomon’s instances accord-

ing to the S-metric quality measure calculated over two comparisons: Time Window
Violations (Ztwv) vs Travel Distance (Ztd) - on the left, and Travel Time (Ztt) vs Travel
Distance (Ztd) on the right. Average values and their respective standard deviations

are shown for each family of Solomon’s instances (c1xx, r1xx and rc1xx).

Ztwv vs Ztd Ztt vs Ztd

Pareto Lex DLA DLA2 Pareto Lex DLA DLA2

c1xx .20(.17) .69(.08) .53(.18) 1(.0) .50(.14) .89(.06) .74(.21) 1(.0)

r1xx .21(.08) .28(.12) .27(.10) 1(.0) .72(.13) .72(.09) .71(.09) 1(.0)

rc1xx .11(.04) .25(.10) .2(.14) 1(.0) .57(.07) .65(.88) .67(.10) 1(.0)
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the hyper-volume of the space limited by the solutions in an approximation
set and a reference point. The larger the value of the S-metric, the higher the
quality of the approximation set. We calculated the S-metric using the same
pairs of comparisons used for the previous graphs. So, these results extend the
information conveyed by the plots. All the values were normalized to a value
between 0 and 1 according to the highest hyper-volume value obtained in each
case. Table 1 is divided in three columns. The first one identifies the instances
used. The second and third columns show the S-metric value comparing Ztwv

against Ztd and Ztt against Ztd respectively.
For the first comparison, Time Window Violations (Ztwv) vs Travel Distance

(Ztd), DLA2 gets the best S-metric value for all instances. On average, it obtains
an improvement of 60% over Lexicographic ordering which is the second best
ranking method almost in a tie with the DLA. Pareto dominance gives the
worst performance with an average of 0.18 across all instances. In the second
comparison, Travel Time (Ztt) vs Travel Distance (Ztd), DLA2 is not the best
in only one instance: c108. However, it is very close to that value with a distance
of only 0.5%. In general, DLA2 presents an improvement of about 25% over
the Lexicographic ordering, which is again the second best ranking technique.
Very close to the Lexicographic approach, the DLA gets better results in some
instances and worse in others, but on average the former outperforms the later
on about 5%. Pareto dominance comes last with an overall performance of 0.60.

The Frieman test was used to analyse the global differences in the S-metric
values obtained for each method in both comparisons. There are significant dif-
ferences at 0.01 significance level. In order to find out where these differences
are, we carried out a number of pair-wise comparisons using the four ranking
approaches with the Wilcoxon test. According to this test, there is a significant
difference between DLA2 and Lexicographic ordering at 0.01 significance level.
The normalized values for the statistic were 4.70 and 4.68, respectively. So, we
can safely say that DLA2 is superior to Lexicographic ordering in this scenario.
Similarly, we compared DLA and Lexicographic ordering obtaining the two-way
p-values 0.1236 and 0.1285, respectively. This reveals that there is not significant
difference between these two ranking approaches at 0.10 significance level. Fi-
nally, DLA and Pareto dominance were compared obtaining the two way p-values
0.0007 and 0.0434, respectively. Thus, their results are significantly different at
0.05 significance level.

8 Conclusions

We presented an extended study of a novel approach to rank solutions in multi-
objective optimization problems. Our simulations show that Dynamic Lexi-
cographic Approach (DLA) is a valuable technique to discriminate solutions.
Specially the variant with double pmf (DLA2) in which the combination of in-
tensification and diversification exhibits much better performance than the other
ranking approaches such as Lexicographic ordering and Pareto dominance.

The success of the Dynamic Lexicographic Approach here indicates that it
is important to question standard ranking approaches and their suitability for
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certain problems. This is specially important in those problems where we deal
with a large number of objectives. DLA is an alternative easy to implement and
intuitive for the decision-maker.

In future research, we will extend these experiments to other MOO problems
such as the multi-objective TSP. We are also developing a set of truly multi-
objective VRPTW instances based on real-world problems in which the time and
distance matrices are not symmetrical nor identical. Moreover, time windows for
costumers will be more relaxed than in many other instances in the literature.
Another issue that is worth of an in-depth study is the adaptability of the DLA
respect to the probability mass function (pmf ), including setting the parameter
k to switch between intensification and diversification.
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Abstract. Existing privacy-preserving evolutionary algorithms are lim-
ited to specific problems securing only cost function evaluation. This lack
of functionality and security prevents their use for many security sensi-
tive business optimization problems, such as our use case in collaborative
supply chain management. We present a technique to construct privacy-
preserving algorithms that address multi-objective problems and secure
the entire algorithm including survivor selection. We improve perfor-
mance over Yao’s protocol for privacy-preserving algorithms and achieve
solution quality only slightly inferior to the multi-objective evolutionary
algorithm NSGA-II.

1 Introduction

Evolutionary algorithms (EAs) have proven to efficiently find effective solutions
for many real-world optimization problems and are therefore widely employed
in business practice. Nevertheless in many real-world business problems, such
as our use case from collaborative production planning, the data is distributed
across a number of parties. A natural objective for each of these parties is to
protect their data, in particular if it is sensitive for their well-being, e.g. business
secrets such as production costs or capacities.

Privacy-preserving evolutionary algorithms (PPEAs) [1,2] combine the pri-
vacy of input data with the effectiveness and efficiency of EA by using ideas
from secure computation (SC) [3]. SC is a cryptographic technique that allows
a number of parties to jointly compute a function y = f(x) on their combined
input x, such that each party only learns the result y, but nothing else about
the input x.

The proposals for PPEA in the literature [1,2] suffer from several short-
comings in generality and security. When SC is only applied to cost function
evaluation, the selection of individuals from the population reveals significant
information about the cost function despite the use of provably secure proto-
cols. Imagine the following situation: Given two individuals differing only in one
characteristic, assume one survives and one dies. From this observation one can
immediately conclude (even if the cost function was computed privately) that the
survivor’s characteristic was superior. Due to the many individuals and rounds
in EAs this information quickly accumulates.

R. Schaefer et al. (Eds.): PPSN XI, Part II, LNCS 6239, pp. 41–50, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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We improve over this by also securing the generation and selection of individ-
uals in the population. Our protocols are provably secure not only for the cost
function evaluation, but for the entire EA. We nevertheless stress that our pro-
posal is not a straight-forward application of the construction by Yao [3]. This
would be impractical for complex real-world use case due to communication
effort and memory consumption. Instead we use a combination of several tech-
niques which might also be of interest for other complex applications than EA.
In order to underpin the practicality of our approach we report the evaluation
results of our prototypical implementation.

This paper’s contribution is a privacy-preserving multi-objective evolutionary
algorithm (PPMOEA) that is more secure than previous proposals for PPEA
[1,2], that is more efficient than general SC [3] and that is almost as effective
as NSGA-II [4], one of the best known multi-objective evolutionary algorithms
(MOEAs) [5].

2 Use Case

Our use case is a finite horizon two-echelon collaborative production planning
problem [6], i.e. companies along a two-level supply chain that wish to jointly
optimize their production planning for a bounded time period. We limit the two
echelons of the supply chain to comprise one party each. On the upstream eche-
lon, a supplier S provides raw materials to a manufacturer P on the downstream
echelon. Both abide an exclusive relationship, i.e. P only procures materials from
S and is furthermore S‘s single source of revenue. Moreover, we assume period-
ical shipping with neglected transportation times [6].

A comprehensive description of the use case can be found in the full technical
report [7], but due to space constraints we can only highlight some aspects.
The use case is characterized by opposing opportunity costs ocp and capacity
consumptions cp for the supplier‘s and producer‘s commodities. This opposition
causes tension in the parties’ planning objectives, since each party is inclined to
act rationally, minimizing only its own cost.

The supplier and producer pursue different objectives – minimizing their own
cost – which are opposing due to the differing opportunity costs and capacity
consumptions. We thus compose the objective function F (A) as a vector of the
supplier’s objective function fS(A) and the producer’s one fP(A).

The producer’s fitness function is a sum of the costs for warehousing (excess
production), opportunity costs (shortness of production) and penalty costs for
exceeding capacity and material supply. The supplier is not constrained by a
further upstream party and therefore no costs for excessive material consumption
arise and its fitness function is a sum of only three costs. We can show by example
that in this scenario local decision making may not lead to the optimum, i.e. if
the producer starts with a local production plan then sends the order to the
supplier they are likely to waste money. Only a collaborative decision making
process as facilitated by our PPMOEA enables finding the global optimum. For
details we refer the reader to the technical report [7].
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Algorithm 1. Privacy-Preserving MOEA
1: A ← {∀i ≤ μ : Ai ← randomT×P

}
2: for ∀j ≤ η do

3: O ←
{
∀i ≤ λ : Oi ← mutate

(
A� i

� λ
μ

� �

)}

4: F ← {∀O ∈ O : f i ← F (O)}
5: A ←

{
select (O, F) if non-elitist
select (O ∪ A, F) if elitist

6: end for
7: return A

Table 1. Communication complexity (O(·))
Yao PPMOEA

random TPmμ 0
mutate TPmλ 0
F T 2Pm2λ TPm2λ
select TPmλ log2 λ λ log2 λ(m + λ) + μ(TPm + λ)
Total
per generation T 2Pm2λ + TPmλ log2 λ TPm2λ + λ2 log2 λ + mλ log2 λ

3 Cryptographic Tools

SC was introduced by Yao [3]. The problem is as follows: Two players, Alice and
Bob, both know a joint function y = f(a, b) on their combined input a (Alice)
and b (Bob). They are both interested in the result y, but neither is willing to
reveal its input. Note that a party may infer information about the other party’s
input based on y and their own input. This has to be accepted and is excluded
from the security definition. Yao [3] constructed a protocol that achieves this for
any function f which can be represented as Boolean circuit. Yao’s protocol has
been implemented [8] using a high-level programming language, but its general
construction is too inefficient for complex problems as our PPMOEA. Instead
we construct the necessary (optimized) circuits manually and apply further op-
timizations based on secret sharing and homomorphic encryption [9].

Let s be a secret known to neither Alice nor Bob. Both, Alice and Bob, hold
a value (called share) s(A) and s(B), respectively, such that s = f(s(A), s(B)) for
some reconstruction function f , e.g. s = s(A) + s(B) mod n [10]. A secret sharing
is perfect if any share s(A) or s(B) does not reveal additional information about
the secret s: Pr(s) = Pr(s|s(A)) = Pr(s|s(B)).

4 The Privacy-Preserving MOEA

4.1 Algorithm Overview

We follow the conventional structure of an EA as outlined in Algorithm 1. The
initial population consists of μ random individuals (operation random). Every
individual produces �μ

λ � offspring (operation mutate), perturbing each individ-
ual with a small probability pm by a Gaussian distributed value. We solely use
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mutation in our use case, but believe that other reproduction schemes including
recombination are securely realizable with little additional effort. We then com-
pute the offspring’s fitness (operation F ) and finally select μ survivors (operation
select) using a Pareto-optimal selection algorithm suitable for a multi-objective
problem. The evolution iterates for a fixed number η of generations.

Our PPMOEA realizes each operation privacy-preservingly and not only cost
function evaluation as previous PPEA. Furthermore all privacy-preserving op-
erations are tied together, such that not even the result of any single operation
will be known to any party, but only the result of the entire algorithm, i.e. the
optimal production plan, will be revealed to both parties. We emphasize that
the parties gain no sensitive information from this production plan, since they
need this information to schedule orders and shipments.

In the remainder of the paper we describe the privacy-preserving implemen-
tation of the operations, but we start by explaining how we tie the individual
operations in Section 4.2, such that no intermediate results are revealed.

4.2 Construction of Secure Protocol

Each operation of the MOEA can be abstractly written as a function

y = f(x)

e.g. A = select (O,F). Using Yao’s algorithm we could construct a privacy-
preserving protocol between Alice (Supplier) and Bob (Producer) for any op-
eration, but the results would be revealed and reused as inputs in the next
operation. Instead we use secret sharing as follows in order to conceal the
results.

We maintain the following invariant as pre- and post-condition of each step:
Each variable x or y, i.e. input and output, are distributed as secret shares across
Alice and Bob. For our basic data type of integer Alice has x(A) and Bob has
x(B), such that x = x(A) + x(B) (we omit the modulus for clarity) [10]. We can
now write

y(A) + y(B) = f
(
x(A) + x(B)

)
We intend to realize the function f using Yao’s protocol which can only imple-
ment deterministic functions. However, in order for the security of the secret
sharing to hold, the shares need to be chosen randomly. We therefore transform
above equation to

y(B) = f
(
x(A) + x(B)

)
− y(A)

and define this as a new function f ′

y(B) = f ′
(
x(A), y(A),x(B)

)
We now implement this function f ′ using Yao’s protocol, such that only Bob
will learn the result. In order to obtain the final result Alice and Bob simply
exchange shares.
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Our secret sharing scheme is linear, and linear operations, such as additions
or multiplications with constants, can be performed locally on the shares. There-
fore this decomposition into smaller protocols may reduce the communication
complexity if used cleverly. Table 1 gives details of the reduced communication
complexity in our PPMOEA by application of the decomposition technique. We
refer the reader to the full technical report for the security proof [7].

4.3 Operations

Individuals are maintained as secret shares throughout the entire algorithm and
each party only possesses a share of every individual, denoted by A(A) and A(B).
Supplier and producer independently generate the initial population, i.e. μ local
production plans. They use these values to initialize their shares for these parts
of the individual and simply initialize the shares for the other party’s plan with
0. No communication is required for this step and it results in a perfect secret
sharing of the random, initial population.

We use mutation for reproduction, due to the high probability that in our use
case the combination of two individuals results in prohibitively high penalty costs
for excessive material consumption. In our PPMOEA, each individual produces
�λ

μ� offspring resulting in an ancestor population of λ individuals. We apply
Gaussian perturbation to every production quantity with probability pm. We can
use the linearity of the secret sharing scheme in order to realize this operation
(almost) without any communication. For each production quantity a party is
chosen that applies the perturbation to its share only. The other party does not
modify its share. In order to prevent certain active attacks, such as enforcing its
locally optimal production plan, we randomly choose the party to perform the
perturbation using a pseudo-random function based on a jointly chosen seed.

As noted in the other proposals for PPEA fitness computation is the most
sensitive operation. Since it is a simple arithmetic computation, we can imple-
ment it straightforwardly using Yao’s protocol. Nevertheless in order to speed
up the protocol, we employ a number of optimizations over simply implementing
F (A) as a circuit.

First note that F (A) can be easily decomposed into λ computations of the
fitness F (A) of each individual. The same circuit can be used for each invocation
of F (A) and, since all invocations are using independent inputs and outputs, we
can run them in parallel. Parallel execution allows computation and communica-
tion of different invocations to overlap, maximizing the CPU utilization of each
party. Furthermore we use the linearity of the secret sharing in order to reduce
the size of the circuit that has to be computed using Yao’s protocol. The size of
the circuit dominates the communication cost. We use precomputation of sums
exploiting the linearity of the secret sharing scheme and term rewriting in order
to reduce the size of the circuit for fitness evaluation. In precomputation two
secret shares can be added locally resulting in a secret share of the sum without
any communication between the parties. If the innermost term of a formula is a
sum, it can be precomputed before executing Yao’s protocol. Let m denote the
bit size of one production quantity. The circuit consists of 12m2+64m−10 gates.
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For m = 32 bits this amounts to 14 326 gates. By term rewriting we reduced the
number of expensive (O(m2)) multiplications from 4 to 2.

The precomputation of the sums does not apply to the capacity penalty cost,
since its innermost term is a product of two sensitive values that should be kept
private. The resulting circuit’s size grows with the number of products P and has
6Pm2 +7Pm−5P +12m2 +32m+6 gates. For m = 32 bits and P = 6 products
the circuit has 51 496 gates. We show the impact of the lack of precomputation
in our evaluation.

For the fitness computation of the entire population O(λT ) parallel invo-
cations of Yao’s protocol with circuits containing O(Pm2) gates and O(λTP )
parallel invocations with O(m2) gates are required with a total communication
complexity of O(λTPm2). Due to space limitations we have to refer the reader
to the full technical report for details again [7].

Survivor Selection. The privacy-preserving selection of the μ “best” individuals
from the population is the final step for every generation. The selected individuals
serve as parent population for the subsequent generation. Multi-objective opti-
mization problems (MOPs) require a more complex notion of “better” than single
objective ones. Classical methods scalarize the MOP by some (weighted) objec-
tive combination scheme, thus requiring knowledge about the relative magnitudes
of the parties’ fitness functions [11]. This is not desirable in a privacy-preserving
setting, since it leaks information, and we therefore embrace Pareto’s notion of
“better” [12, p.10 et. seq.].

Pareto-sorting is a rather complex task that can even dominate the cost with-
out protection of privacy. The most efficient, non-privacy-preserving algorithms
known are O(λ2) [4]. We therefore choose to implement a traditional sorting al-
gorithm for strictly ordered sets that is only likely to produce a Pareto-sorting.
Subsequent to the sorting the non-dominated individuals are then likely occu-
pying the first θ ranks. The first μ individuals are selected for survival; if θ > μ
optimal individuals will be lost, if θ < μ non-optimal ones will survive in order
to keep a steady-state population.

Sorting. For a privacy-preserving realization we require a sorting algorithm that
is oblivious to the outcome of the performed comparisons, i.e. the operations
performed after comparing xi to xj are exactly the same for the case xi < xj and
xi > xj . Sorting networks are an ideal candidate with this property. A sorting
network is a sequence of compare-and-exchange (CX) operations to sort any
given input x1 . . . xλ. A sorting network is characterized by two properties: size
refers to the total number of CX operations; depth denotes the maximum number
of comparators a xi has to pass through. The most efficient practical sorting
networks follow the odd-even merger construction of Batcher [13], resulting in
networks of size O(λ log2 λ) and depth O(log2 λ) [13].

A CX operation compares two fitness values x and y (using the Pareto crite-
rion) and if necessary exchanges their position, such that the non-dominated one
occupies the lower rank. We decompose the sorting network by secret sharing
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and implement each CX operation as an invocation of Yao’s protocol using the
same circuit.

The purpose of privately implementing sorting is to privately implement selec-
tion, i.e. the parties should not learn which individuals survive, since this reveals
significant information about the private cost functions. Consequently not only
the fitness values need to be sorted privately, but also the corresponding indi-
viduals. Unfortunately the size (number of bits) of an individual is quite large
(TPm � λ), significantly increasing the communication complexity of a CX op-
eration. We therefore realize another optimization by a level of indirection using
index variables. An index variable i is a λ-bit string with only one bit i[κ] set.
At the start of the sorting this bit κ is the index of individual x in the original,
unsorted population, hence index variable. After the sorting the lower ranked
index variables contain the indices of the “better” individuals.

The index variables are secret shares and we only sort and exchange those
shares. This reduces the communication complexity for sorting from O(TPm) to
O(λ), but adds another subsequent selection operation using the index variables
and individuals which we describe next. Each CX circuit then has only 66m +
10λ+ 10 gates.

The total communication complexity of the sorting network following Batcher’s
construction is O(λ log2(λ)(m + λ)).

Selection. Subsequent to the execution of the sorting network, the indices of
the μ best individuals are likely to reside in ranks 1 . . .μ. A separate protocol
is required for using an index variable to select the corresponding individual.
Implementing this straightforwardly as a circuit in Yao’s protocol completely
annihilates the advantage from using index variables in the first place. We have
developed a novel protocol based on homomorphic encryption with a significantly
improved communication complexity. The total communication complexity for
this selection is O(μ(λ + TPm)). Due to paper length constraints we have to
refer the reader to the full technical report [7].

5 Evaluation

We experimentally evaluated the solution quality and performance of our
PPMOEA in comparison to NSGA-II [4].

Solution quality. For evaluation of solution quality we follow the proposals from
literature and adopt four of the metrics proposed by Zitzler et al. [5]. Let F

denote the set of the final population‘s fitness vectors. The average distance of
each individual in F to the true Pareto front of the problem is measured by metric
M∗

1(F). Metric M∗
3(F) is an indicator for the spread of the identified Pareto-

optimal set by computing the maximal distance between any two solutions in
F. Another metric for the spread of a population and its distribution along the
identified Pareto-front is S(F). To compare the relative quality of two fitness
vector sets F′ and F′′, Zitzler et al. [5] propose metric C(F′,F′′) as the number
of individuals in F

′′ which are dominated by or equal to an individual in F
′.



48 D. Funke and F. Kerschbaum

(a) η = 100,
static factors

(b) η = 500,
static factors

(c) η = 500,
adaptive factors

(d) η = 1000,
static factors

(e) C(F′, F′′)

Fig. 1. Solution quality comparison of NSGA-II and PPMOEA. Figures (a) through
(d) show metrics M∗

1(F), M∗
3(F) and S(F) for the respective test cases. Figure (e) shows

the metric C(F′, F′′) for all four test cases. In all depicted test cases (μ, λ) = (5; 35).

Table 2. Algorithm runtime broken down into preparation, computation, communica-
tion and synchronization

Prep Comp Comm Sync Other Total

Initialization - 0.02 - 0.02 15.01 15.08 0.49%

Mutation - 0.03 - - 0.01 0.04 0.00%

Fitness 0.08 308.94 166.72 1 468.84 809.93 2 754.51 89.74%

Sorting 0.01 100.26 59.48 0.91 98.46 259.11 8.44%

Selection - 16.42 18.14 - 6.05 40.61 1.32%

Total 0.09 425.67 244.34 1 469.76 929.47 3 069.35

0.00% 13.87% 7.96% 47.89% 30.28% values in [s]

In our experiments we varied population sizes (μ and λ) and number of gen-
erations (η). Furthermore we ran different variants of the algorithm by using
elitist (μ+λ) and non-elitist (μ, λ) selection schemes as well as static and adap-
tive mutation step sizes and penalty factors (σ2, cp, up). All reported results are
the average of 10 runs of each algorithm.1

From the entire parameter space we selected four configurations that broadly
cover the range of solution quality of our PPMOEA. For details we have to
refer the reader to the full technical report [7]. In these four configurations we
compared our PPMOEA to NSGA-II, refer to Figure 1. In all four test cases
our PPMOEA has better convergence but poorer spread and distribution than
NSGA-II. In metric M∗

1(F) our PPMOEA outperforms NSGA-II by a factor of
3.75, whereas NSGA-II outperforms PPMOEA by a factor of 124.87 and 421.83
in metrics M∗

3(F) and S(F). NSGA-II considers the density of the population
surrounding an individual in its selection algorithm [4].

Runtime. Our runtime measurements are based on one specific test case and are
performed on two servers connected by Gigabit Ethernet, each equipped with
four dual-core 2.6GHz CPUs and 16GB of main memory.

Table 2 summarizes the runtime of PPMOEA for one generation with pop-
ulation size (μ;λ) = (5; 35). It requires ≈ 52 minutes. In comparison NSGA-II
computes all 500 generations in 10.62s; a factor of ≈ 150 000 faster. As antici-
pated privacy protection incurs a very high performance penalty which justifies
our optimizations even if they may sacrifice solution quality.

Our decomposition technique enables simple parallelization of several protocol
invocations. This is indispensable, since the aggregated CPU time used is ≈ 220
minutes (compared to ≈ 52 minutes runtime).

1 NSGA-II always uses elitist selection.
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Recall that we precompute sums for the partial cost function ψt,p(A) while
not for Ct(A). On average the ψ-circuit requires 2.38s for computation and 1.97s
for communication. The Ct-circuit requires 4.48s and 3.74s, respectively. The two
circuits differ (almost) only by the P additions in Ct(A) with the ψ-circuit being
even slightly larger. Precomputation reduces both measures by ≈ 47%.

Almost 90% of the runtime (≈ 45 minutes) is spent on fitness computation
which has already been secured in the other proposals for PPEA. Our novel
privacy-preserving complementary operations of an EA, particularly secure sur-
vivor selection, only contribute the remaining 10%.

6 Related Work

The first PPEAs have been proposed in [2,1]. The former presents a PPEA for
combinatorial problems such as traveling salesman problem (TSP). The latter
proposes a PPEA for rule discovery in distributed datasets.

Both proposals reveal the result of the cost function (Han and Ng [1] reveal the
absolute value while Sakuma and Kobayashi [2] reveal their relative ordering).
This allows espionage by inferences from local input and output. Our PPMOEA
only reveals the final result.

MOEAs have been studied extensively [12]. State of the art algorithms include
NSGA-II [4], SPEA2 [14] and PAES [15]. All use a Pareto-dominance based se-
lection scheme (similar to our PPMOEA), enhanced by some diversity operation
(lacking in PPMOEA).

Several implementations of SC exist. Malkhi et al. [8] where the first with a
compiler for Yao’s protocol. The operations of PPMOEA have been designed
based on results from literature [16,17,18].

7 Conclusions

This paper presents a privacy-preserving multi-objective evolutionary algorithm
capable of solving distributed multi-objective optimization problems between
two parties. We elaborate on a real-world use case from collaborative supply
chain management which involves sensitive information, such as mission-critical
business secrets.

Our PPMOEA reveals only the optimal solution after the evolution, thus pre-
venting inferences from intermediate results. We introduce several optimizations,
including a general decomposition technique for Yao’s garbled circuits. As a re-
sult the communication complexity is significantly reduced and computation can
be parallelized.

Our experimental results show that performance remains the critical param-
eter. Since cost function evaluation accounts for the majority of the runtime,
less complex fitness functions that lead to similar solution quality should be
evaluated in future work.
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Abstract. The Vehicle Routing Problem with Time Windows involves

finding the lowest-cost set of routes to deliver goods to customers, which

have service time windows, using a homogeneous fleet of vehicles with

limited capacity. In this paper, we propose and analyze the performance

of an improved multi-objective evolutionary algorithm, that simultane-

ously minimizes the number of routes, the total travel distance, and the

delivery time. Empirical results indicate that the simultaneous minimiza-

tion of all three objectives leads the algorithm to find similar or better

results than any combination of only two objectives. These results, al-

though not the best in all respects, are better in some aspects than all

previously published approaches, and fully multi-objective comparisons

show clear improvement over the popular NSGA-II algorithm.

1 Introduction

The Vehicle Routing Problem (VRP) is one of the most important and widely
studied combinatorial optimization problems, with many real-world applications
in distribution and transportation logistics. It has several variants that take
into account different constraints. The variant with Time Windows (VRPTW)
is particularly relevant to practical applications, and considers vehicles with
limited capacity and specific delivery time windows. Its objective is to obtain
the lowest-cost set of routes to deliver demand to customers. Since the problem
was originally formulated as a generalization of the Traveling Salesman Problem,
cost has primarily been associated with the number of routes and travel distance,
but there are several other types of cost [1].

In particular, companies offering transportation services are often more in-
terested in reducing the overall delivery time (or driver salary cost), than the
overall distance traveled (or fuel cost), and there are likely to be trade-offs be-
tween them. For the standard VRP, if one assumes a constant vehicle velocity,
then counting distances and times are equivalent, but that is not true for the
VRPTW because of the time wasted due to arriving before delivery windows.
The optimization process needs to produce a set of non-dominated solutions that
represent the trade-offs between the objectives, rather than a single solution.

Exact methods can be used to find optimal solutions for small instances of the
VRPTW, but the computation time required increases considerably for larger
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instances [2]. We are therefore interested in using heuristics to solve this problem,
in particular, an Evolutionary Algorithm (EA) that automatically generates a
whole population of solutions that cover the full range of trade-offs.

There are many past studies that have solved the VRPTW as a single-
objective problem using heuristics. Bräysy and Gendreau [3,4] provide an ex-
cellent survey of them, and Bräysy et al. [5] focus on evolutionary approaches.

Other studies have considered the bi-objective optimization of the VRPTW,
using an EA to minimize the number of vehicles and the travel distance. Tan
et al. [7] used the dominance rank scheme to assign fitness to individuals, and
designed a problem-specific crossover operator and multi-mode mutation oper-
ator. They also considered three local search heuristics. Ombuki et al. [8] used
a Pareto ranking method to assign fitness and proposed further crossover and
mutation operators. Finally, our own earlier study [9] incorporated a similarity
measure in a Bi-objective Evolutionary Algorithm (BiEA) to select parents for
the recombination process in a way that preserved a higher population diversity
[10], and that enabled a better set of solutions to be obtained.

The work presented here is an improvement of the BiEA proposed in the last-
mentioned study, minimizing not only the number of routes and travel distance,
but also the delivery time. We analyze the results and compare them with those
from previous algorithms, and introduce improved comparisons with the popular
NSGA-II algorithm [6] using fully multi-objective performance metrics.

The remainder of this paper is organized as follows: The next section de-
scribes formally the VRPTW, and Section 3 reviews the two multi-objective
performance metrics that are used to compare algorithms. Our proposed EA
for solving the VRPTW as a multi-objective problem is described in Section 4.
Then Section 5 presents the results from our algorithm, as well as comparisons
with others already published. Finally, we give our conclusions in Section 6.

2 The VRP with Time Windows

Formally, the VRPTW is defined as a set V = {0, . . . ,N} of vertices. Vertices in
subset V∗ = V \ {0} = {1, . . . ,N} are called customers. Each customer i ∈ V∗ is
geographically located at coordinates (xi, yi), has a demand of goods gi > 0, a
time window [bi, ei] during which it has to be supplied, and a service time si is
required to unload its goods. The special vertex 0, called the depot, is positioned
at (x0, y0), has time window [0, e0 > max {ei : i ∈ V∗}], and demand g0 = 0.
It is from the depot that the customers are serviced by a homogeneous fleet
of vehicles with capacity Q ≥ max {gi : i ∈ V∗}. The problem is to design a
lowest-cost set of K routes R = {r1, . . . , rK}, such that each route begins and
ends at the depot, and each customer is serviced by exactly one vehicle.

The travel between vertices i and j has various associated costs, such as the
distance dij and travel time tij . For the standard benchmark problems to be
considered later, one assumes unit velocity and direct travel, so the times and
distances are both simply taken to be the Euclidean distances. For real-world
problems, however, the distances dij are unlikely to be Euclidean and the travel
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times tij are unlikely to be simply related to the distances. The following will
take care to accommodate those possibilities.

Suppose rk = 〈u(1, k), . . . ,u(Nk, k)〉 specifies the sequence of Nk customers
supplied in the k-th route, where u(i, k) is the i-th customer to be visited in route
k, and u(0, k) = u(Nk +1, k) = 0 is the depot. Then V∗

k = {u(1, k), . . . ,u(Nk, k)}
is the set of customers in route k, and the total travel distance for that route is

Dk =
∑Nk

i = 0 du(i,k)u(i+1,k) . (1)

In addition to the distances, the times are also needed. Let vehicle k leave the
depot at time 0, a(u(i, k)) denote its arrival time at the i-th customer, and
l(u(i, k)) be the time it leaves. The arrival time at the i-th customer is then

a(u(i, k)) = l(u(i− 1, k)) + tu(i−1,k)u(i,k) . (2)

Arriving after the end of the customer’s time window is simply not allowed. If
the vehicle arrives early at the i-th customer’s location, it has to wait until the
beginning of the customer’s time window before it can start unloading, so the
departure time l(u(i, k)) will be the maximum of the arrival time a(u(i, k)) and
window opening time bu(i,k), plus the unloading time su(i,k). Consequently, the
waiting time w(u(i, k)) involved in serving the i-th customer will be

w(u(i, k)) = max
(
0, bu(i,k) − a(u(i, k))

)
. (3)

Thus the departure time from the i-th customer in route k can be written as

l(u(i, k)) = a(u(i, k)) + w(u(i, k)) + su(i,k) , (4)

and the total time required to complete route rk is the arrival time at the depot

Tk =
∑Nk

i = 0

(
tu(i,k)u(i+1,k) + w(u(i + 1, k)) + su(i+1,k)

)
. (5)

There are three VRPTW objective functions fi that we shall concentrate on
minimizing in this paper, namely the number of routes or vehicles (f1), the total
travel distance (f2), and the total delivery time (f3), computed as follows:

f1(R) = |R| = K , f2(R) =
∑K

k=1 Dk , f3(R) =
∑K

k=1 Tk , (6)

subject to the demands in each route rk not exceeding the vehicle capacity, i.e.

Gk =
∑

i ∈ V∗
k

gi ≤ Q , (7)

and no arrival times after the customer’s window ends, i.e.

a(u(i, k)) ≤ eu(i,k) ∀ i = 1, . . . ,Nk , ∀ k = 1, . . . ,K . (8)

The simultaneous minimization of all three objectives is not usually possible, so a
set of non-dominated solutions needs to be obtained, each better than the others
on at least one objective. In contrast to single-objective problems, where one can
simply compare the best solutions from the various approaches studied, multi-
objective problems have to compare whole sets of solutions. For this reason, the
definition and use of multi-objective performance metrics is crucial.
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Fig. 1. Representation of MC and MD Fig. 2. Reallocation mutation operator

3 Multi-Objective Performance Metrics

Two existing metrics are particularly applicable to the problem at hand.
The coverage metric MC [11] compares the number of solutions in set B that

are covered by (i.e. dominated by or equal to) solutions in setA to the cardinality
of B. Thus, MC(A,B) maps the ordered pair (A,B) to the interval [0,1], as the
fraction of solutions in set B that are covered by solutions in set A:

MC(A,B) = 1
|B| |{b ∈ B : ∃ a ∈ A,a � b}| , (9)

where the relation a � b means that a is at least as good as b for all the
objectives, and a is strictly better than b for at least one objective.

The convergence metric MD [12] measures the distance between the approx-
imation set A and a reference set R. The convergence MD(A,R) is defined as

MD(A,R) = 1
|A|
∑

i∈A di , (10)

using the smallest normalized Euclidean distance from each point i ∈ A to R

di = min
j ∈ R

√√√√ F∑
k=1

(
fk(i)− fk(j)
fmax

k − fmin
k

)2

, (11)

where fmax
k and fmin

k are the maximum and minimum function values of the
k-th objective function in R.

The idea is that the algorithm with the best performance is the one which
provides solutions with the largest coverage of the other non-dominated sets and
the minimum distance to the reference set. Figure 1 presents a simple example
with MC(A,B) = 3/5 better than MC(B,A) = 2/6, and the average distance
from points in set A to the reference set smaller than that for the points in B.
So, the algorithm producing A is deemed better than that producing B.

4 Multi-Objective EA for VRPTW

Our proposed Multi-Objective EA (MOEA) involves selection, cross-over and
mutation as in most EAs, and uses a simple list-based encoding. The main
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Fig. 3. Exchange mutation operator Fig. 4. Reposition mutation operator

novel characteristic is the implementation of a similarity measure to preserve
population diversity. This is based on the Jaccard’s similarity coefficient, which
measures how similar two sets are as the ratio between the number of com-
mon elements and the total number of elements. We adapted this metric to the
VRPTW for our earlier BiEA [9] by treating each solution as a set of arcs, and
used it to calculate the average similarity between each solution in the popu-
lation and every other solution. The MOEA here differs from the BiEA in its
improved mutation stage, and in dealing with more than two objectives.

A dominance depth criteria [6] is used to assign fitness to solutions, by which
individuals are grouped into non-dominated fronts and the relative depth of
the front defines the fitness. Then in the recombination stage, a tournament
selection is used to choose the first parent according to fitness as usual, but the
second parent is selected on the basis of lowest similarity measure. Afterwards,
the recombination process is designed to preserve routes from both parents.

The mutation involves the use of three basic functions: (i) selectRoute()
stochastically selects a route according to the largest ratio between the travel
distance and the number of customers, (ii) selectCustomer() stochastically
selects one customer from a specific route according to the longest average length
of its inbound and outbound arcs, and (iii) insertCustomers() tries to insert
a set of customers, where the lowest travel distance is obtained, into any specific
route, or all existing routes. The last two functions are used by the operators:

• Reallocation - Takes a random sequence of customers from a given route and
reallocates them to other existing routes, as illustrated in Figure 2.

• Exchange - Swaps a sequence of customers between two routes if that is pos-
sible, as illustrated in Figure 3.

• Reposition - Selects one customer from a specific route and reinserts it into
the same route, as illustrated in Figure 4.

Two routes are first chosen using selectRoute(). If they are the same, the
Reallocation operation is performed, otherwise the Exchange operator is. Then
selectRoute() selects another route and the Reposition operator is carried out.
Finally, the parent and offspring populations are combined and fitness levels
assigned, and the individuals with highest fitness form the next generation.
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5 Experimental Study

Our study has three purposes: First to determine whether the minimization of
delivery time has any effect on the performance of the algorithm on minimizing
the number of routes and travel distance. Second, to test how well our improved
MOEA performance compares with previous approaches. Finally, to perform a
direct fully multi-objective comparison of MOEA with NSGA-II [6].

To carry out controlled experiments, we used the standard benchmark set of
Solomon [13] that includes 56 instances of size N = 100 categorized as clustered
(C1, C2), random (R1, R2), and mixed (RC1, RC2). Tan et al. [7] found that
categories C1 and C2 have positively correlating objectives, but the majority of
the instances in categories R1, R2, RC1 and RC2 have conflicting objectives.

We ran our algorithm and NSGA-II 30 times for each problem instance. The
parameters of our algorithm were set to values that have proved to work well
in preliminary testing: population size = 100, number of generations = 500,
tournament size = 2, crossover rate = 1.0, and mutation rate = 0.1.

5.1 Minimization of the Delivery Time

The first aim was to analyze the performance of our MOEA with different ob-
jective settings, to test the effect of the additional delivery time objective. The
number of routes (R), travel distance (D) and delivery time (T) were first set
to be minimized in pairs, giving three objective settings (RD, RT and DT), and
then all three of them were minimized together (RDT).

To use the coverage metric, for each setting and instance, the outcome set of
non-dominated solutions after each of the 30 repetitions was recorded. Then, for
each given instance and ordered pair of settings X and Y, MC(Xi,Yj), ∀ i, j =
1, . . . , 30 were computed for the three-objective space, that is 900 MC values. The
average of these MC values over the instances in each category are presented in
Table 1, and in brackets are the numbers of instances for which the result is sig-
nificantly better than the reverse case (determined by a t-test at 0.05 significance
level). For categories C1 and C2, despite all four settings having a high coverage
of each other, DT and RDT have a higher coverage of RD and RT. Otherwise,
the coverage of RT, DT and RDT by RD is low (≤ 14%), and the coverage of
RD, DT and RDT by RT is nearly zero. The most interesting cases are settings
DT and RDT, as their coverage of RD and RT is much higher. Between them,
the coverage of DT by RDT is significantly larger than the inverse case in more
instances than the inverse case, despite similar average coverages.

To apply the convergence metric, for each instance and objective setting,
the overall non-dominated solutions were extracted from the 30 non-dominated
sets, and composite non-dominated reference sets R in the three-objective space
were generated. Then, for each setting X, MD(Xi,R) was computed for all i =
1, . . . , 30. The averages of these MD values over the instances in each category
are presented in Figure 5. It can be seen that, in general, solutions from settings
RD and RT are the farthest from the reference set, while those from DT and
RDT are the nearest.
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Table 1. Coverage metric values, averaged over instance categories, for solutions ob-

tained with MOEA settings RD, RT, DT and RDT. In brackets are the numbers of

instances for which the result is significantly better than the reverse case.

Obj. Covers C1 C2 R1 R2 RC1 RC2

RD

RT 0.87 (6) 0.64 (3) 0.04 (6) 0.01 (1) 0.05 (4) 0.02 (2)

DT 0.82 (1) 0.72 (0) 0.08 (1) 0.11 (4) 0.14 (0) 0.08 (0)

RDT 0.82 (1) 0.72 (1) 0.08 (1) 0.11 (3) 0.13 (0) 0.08 (1)

RT

RD 0.68 (0) 0.55 (1) 0.01 (2) 0.00 (0) 0.01 (2) 0.01 (0)

DT 0.68 (0) 0.63 (0) 0.03 (0) 0.04 (0) 0.06 (0) 0.02 (0)

RDT 0.68 (0) 0.62 (0) 0.04 (0) 0.03 (0) 0.07 (0) 0.03 (0)

DT

RD 0.91 (2) 0.90 (3) 0.31 (11) 0.14 (5) 0.36 (8) 0.21 (6)

RT 0.97 (5) 0.92 (4) 0.49 (12) 0.42 (11) 0.46 (8) 0.48 (8)

RDT 0.91 (2) 0.88 (2) 0.43 (4) 0.40 (4) 0.42 (2) 0.42 (3)

RDT

RD 0.89 (3) 0.91 (3) 0.32 (11) 0.16 (6) 0.38 (8) 0.23 (7)

RT 0.97 (6) 0.93 (3) 0.52 (12) 0.44 (11) 0.49 (8) 0.44 (8)

DT 0.89 (2) 0.89 (1) 0.44 (5) 0.43 (5) 0.46 (6) 0.41 (3)

C1 C2 R1 R2 RC1 RC2
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Fig. 5. Convergence metric values, averaged over instance categories, for solutions ob-

tained with MOEA settings RD, RT, DT and RDT

Even though DT and RDT produce similar results for the convergence metric,
we can conclude that, considering both metrics, setting the MOEA to minimize
all three objectives does lead to better non-dominated solutions. Consequently,
the solutions from the RDT case will be used for all the following analyses.

5.2 Comparison with Previous Studies

Although previous studies have considered the VRPTW as a multi-objective
problem, they have not presented their results in a multi-objective manner, and
have only shown averages of their best results. So the averages of our best re-
sults are now compared with those previous studies, before performing proper
multi-objective comparisons with NSGA-II. Table 2 presents the average num-
ber of routes and travel distances from MOEA, and those from three previous
multi-objective studies. For each instance, all the solutions in the resulting non-
dominated set are taken from all repetitions, and the average for each objective
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Table 2. Numbers of routes (upper figures) and travel distances (lower figures), aver-

aged over categories, for the best solutions found in past studies and by our MOEA

Algorithm C1 C2 R1 R2 RC1 RC2 Accum.

Tan et al. [7] 10.00 3.00 12.92 3.55 12.38 4.25 441.00

828.91 590.81 1187.35 951.74 1355.37 1068.26 56293.06

Ombuki et al. [8] 10.00 3.00 13.17 4.55 13.00 5.63 471.00

828.48 590.60 1204.48 893.03 1384.95 1025.31 55740.33

BiEA [9] 10.00 3.00 12.50 3.18 12.38 4.00 430.00

830.64 589.86 1191.22 926.97 1349.81 1080.11 56125.35

MOEA 10.00 3.00 12.83 3.82 12.63 4.38 446.00

828.38 589.86 1191.30 916.32 1349.24 1060.80 55829.68

% diff. R 0.00 0.00 2.67 20.00 2.02 9.38 3.72

% diff. D 0.00 0.00 0.33 2.61 0.00 3.46 0.16

is computed. Then, these are averaged over each category. For each algorithm
and category is shown the average number of routes (upper figure) and the aver-
age travel distance (lower figure). The last column (Accum.) presents the total
average number of routes and travel distance for all 56 instances. The last two
rows show the percentage difference between the results from MOEA and those
from the method that obtained the lowest value for each objective.

For categories C1 and C2, that do not have conflicting objectives, our MOEA
achieved similar results to the previously published studies. The lowest number
of routes for the other categories, as well as the accumulated, was obtained by our
BiEA [9], but MOEA found solutions with lower travel distances for categories
R2, RC1 and RC2, and accumulated. Solutions from Tan et al. [7] have the
lowest travel distance for category R1, where results from MOEA are 0.33%
higher, and Ombuki et al. [8] obtained the shortest distances for categories R2
and RC2, and accumulated, where results from MOEA are 2.61%, 3.46%, and
0.16% higher, but have smaller numbers of routes. Finally, travel distances from
MOEA for category RC1 are the shortest. These results show that, overall,
MOEA’s performance is comparable to the previously published algorithms.

5.3 Comparison with NSGA-II

Simple averages as in Table 2 are often misleading, so our results are now an-
alyzed using the multi-objective coverage and convergence performance metrics
to compare the non-dominated solutions from MOEA with those from NSGA-II
[6]. For a fair comparison, the NSGA-II implementation used the same solution
representation, with the same crossover and mutation operators, as MOEA. The
difference lies in the fact that MOEA makes use of solution similarity, while
NSGA-II utilizes the crowding distance which does not involve any routing infor-
mation at all. The coverages MC(MOEAi,NSGA-IIj) and MC(NSGA-IIj ,MOEAi)
were determined as described above, and then the convergences MD(MOEAi,R)
and MD(NSGA-IIi,R) were computed using a combined reference set R of so-
lutions obtained from both algorithms. Table 3 shows the average MC (upper
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Table 3. Coverage (upper figure) and convergence (lower figure), averaged over in-

stance categories, for solutions obtained with NSGA-II and MOEA. In brackets are

the numbers of instances which are significantly better than the other approach.

Algorithm C1 C2 R1 R2 RC1 RC2

NSGA-II
0.81 (0) 0.87 (2) 0.14 (0) 0.37 (4) 0.13 (0) 0.35 (0)

25.06 (0) 4.88 (0) 51.56 (0) 49.81 (0) 72.21 (0) 67.17 (0)

MOEA
0.93 (4) 0.88 (2) 0.78 (12) 0.41 (5) 0.80 (8) 0.45 (7)

12.20 (3) 5.07 (0) 27.89 (12) 50.67 (0) 33.91 (8) 65.86 (1)

figure) and MD (lower figure) over the instances in each category, and the num-
ber of instances significantly better than the other algorithm (in brackets).

Both algorithms show similar coverage for categories C1 and C2, but MOEA
has significantly higher coverage of NSGA-II in more instances. For C1, solutions
from MOEA are closer to R on average, and for three instances are significantly
better than NSGA-II. For C2, solutions from NSGA-II are are closer to R on
average, but no instances have significant differences. For all instances in cate-
gories R1 and RC1, solutions in the non-dominated sets found by MOEA have a
significantly higher coverage of those obtained by NSGA-II, and are also signifi-
cantly nearer to R. For category R2, MOEA has a significantly higher coverage
in five instances, and NSGA-II is significantly higher in four, while both show
similar distances to R. Finally, for category RC2, MOEA has a significantly
higher coverage in seven instances, despite both algorithms having similar aver-
age distance to R. Overall then, it can be concluded that our new MOEA, with
its similarity-based second parent selection, performs significantly better than
NSGA-II, and this is particularly clear for categories R1 and RC1.

6 Conclusions

We have proposed and analyzed the performance of our new Multi-Objective
EA (MOEA) for solving the multi-objective VRPTW, which is an improvement
of our earlier Bi-objective EA (BiEA) [9] that introduced similarity-based selec-
tion to enhance solution diversity. This involved improved mutation operators,
improved analysis using fully multi-objective performance metrics, and perfor-
mance testing for a third objective, namely the delivery time (T), in addition to
the previously studied number of routes (R) and travel distance (D).

We tested four different objective settings: first minimizing pairs of objectives
(RD, RT and DT), and then all three at once (RDT). The coverage and conver-
gence performance metrics were used to evaluate the algorithm, showing that
settings DT and RDT have a higher coverage of RD and RT, and their solutions
are closer to a composite reference set, indicating that the minimization of the
delivery time improves the algorithm’s performance. Moreover, RDT covers DT
in more instances, which implies that even better results can be obtained by
considering the minimization of all three objectives at the same time.
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Averages of the non-dominated sets found by our MOEA with setting RDT
were compared with previous studies, and, although not better in all respects,
MOEA is better in some, and competitive on average. Significantly, using fully
multi-objective coverage and convergence metrics to compare the MOEA against
the well-known evolutionary multi-objective optimizer NSGA-II showed that the
solutions found by MOEA are better for almost all instance categories.

Given the promising performance of our algorithm, we are now looking at the
possibility of optimizing even more objectives (such as route balance [1]), and
pursuing the comparison of our results with other multi-criterion optimization
methods and further multi-objective performance metrics.
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Speculative Evaluation in Particle
Swarm Optimization

Matthew Gardner, Andrew McNabb, and Kevin Seppi
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Abstract. Particle swarm optimization (PSO) has previously been par-

allelized only by adding more particles to the swarm or by parallelizing

the evaluation of the objective function. However, some functions are

more efficiently optimized with more iterations and fewer particles. Ac-

cordingly, we take inspiration from speculative execution performed in

modern processors and propose speculative evaluation in PSO (SEPSO).

Future positions of the particles are speculated and evaluated in parallel

with current positions, performing two iterations of PSO at once.

We also propose another way of making use of these speculative par-

ticles, keeping the best position found instead of the position that PSO

actually would have taken. We show that for a number of functions, spec-

ulative evaluation gives dramatic improvements over adding additional

particles to the swarm.

1 Introduction

Particle swarm optimization (PSO) has been found to be a highly robust and
effective algorithm for solving many types of optimization problems. For much of
the algorithm’s history, PSO was run serially on a single machine. However, the
world’s computing power is increasingly coming from large clusters of proces-
sors. In order to efficiently utilize these resources for computationally intensive
problems, PSO needs to run in parallel.

Within the last few years, researchers have begun to recognize the need to
develop parallel implementations of PSO, publishing many papers on the subject.
The methods they have used include various synchronous algorithms [1, 2] and
asynchronous algorithms [3, 4, 5]. Parallelizing the evaluation of the objective
function can also be done in some cases, though that is not an adaption of the
PSO algorithm itself and thus is not the focus of this paper.

These previous parallel techniques distribute the computation needed by the
particles in the swarm over the available processors. If more processors are avail-
able, these techniques increase the number of particles in the swarm. The number
of iterations of PSO that the algorithms can perform is thus inherently limited
by the time it takes to evaluate the objective function—additional processors
add more particles, but do not make the iterations go any faster.

For many functions there comes a point of diminishing returns with respect
to adding particles. Very small swarms do not produce enough exploration to
consistently find good values, while large swarms result in more exploration

R. Schaefer et al. (Eds.): PPSN XI, Part II, LNCS 6239, pp. 61–70, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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than is necessary and waste computation. For this reason, previous work has
recommended the use of a swarm size of 50 for PSO [6]. Thus, in at least some
cases, adding particles indefinitely will not yield an efficient implementation.

In this paper we consider PSO parallelization strategies for clusters of hun-
dreds of processors and functions for which a single evaluation will take at least
several seconds. Our purpose is to explore the question of what to do with hun-
dreds of processors when 50 or 100 particles is the ideal swarm size, and simply
adding particles yields diminishing returns.

To solve this problem, we propose a method for performing two iterations
of PSO at the same time in parallel that we call speculative evaluation. The
name comes from an analogy to speculative execution (also known as branch
prediction), a technique commonly used in processors. Modern processors, when
faced with a branch on which they must wait (e.g., a memory cache miss), guess
which way the branch will go and start executing, ensuring that any changes
can be undone. If the processor guesses right, execution is much farther ahead
than if it had idly waited on the memory reference. If it guesses wrong, execution
restarts where it would have been anyway.

We show that the results of standard PSO can be reproduced exactly, two it-
erations at a time, using a speculative approach similar to speculative execution.
We prove that the standard PSO equations can be factored such that a set of
speculative positions can be found which will always include the position com-
puted in the next iteration. By computing the value of the objective function for
each of the speculative positions at the same time the algorithm evaluates the
objective function for the current position, it is possible to know the objective
function values for both the current and the next iteration at the same time.
The resulting implementation runs efficiently on large clusters where the number
of processors is much larger than a typical or reasonable number of particles,
producing better results in less “wall-clock” time.

The balance of this paper is organized as follows. Section 2 describes the parti-
cle swarm optimization algorithm. Section 3 describes how speculative evaluation
can be done in parallel PSO to perform two iterations at once. In Section 4 and
Section 5 we present our results and conclude.

2 Particle Swarm Optimization

Particle swarm optimization was proposed in 1995 by James Kennedy and Rus-
sell Eberhart [7]. This social algorithm, inspired by the flocking behavior of birds,
is used to quickly and consistently find the global optimum of a given objective
function in a multi-dimensional space.

The motion of particles through the search space has three components: an
inertial component that gives particles momentum as they move, a cognitive
component where particles remember the best solution they have found and are
attracted back to that place, and a social component by which particles are
attracted to the best solution that any of their neighbors have found.



Speculative Evaluation in Particle Swarm Optimization 63

At each iteration of the algorithm, the position xt and velocity vt of each
particle are updated as follows:

vt+1 = χ
[
vt + φP UP

t ⊗ (xP
t − xt) + φNUN

t ⊗ (xN
t − xt)

]
(1)

xt+1 = xt + vt+1 (2)

where UP
t and UN

t are vectors of independent random numbers drawn from a
standard uniform distribution, the ⊗ operator is an element-wise vector multi-
plication, xP (called personal best) is the best position the current particle has
seen, and xN (called neighborhood best) is the best position the neighbors of the
current particle have seen. The parameters φN , φP , and χ are given prescribed
values required to ensure convergence (2.05, 2.05, and .73, respectively) [8].

Changing the way neighbors are defined, usually called the “topology,” has a
significant effect on the performance of the algorithm. In the Ring topology, each
particle has one neighbor to either side of it; in the Complete topology, every
particle is a neighbor to every other particle [6]. In all topologies a particle is
also a neighbor to itself in that its own position and value are considered when
updating the particle’s neighborhood best, xN . Thus with p particles, using the
Ring topology each particle with index i has three neighbors: i − 1, i (itself),
and i + 1. With the Complete topology, each particle has p neighbors.

In this paper we use these topologies as well as a parallel adaptation of the
Complete topology, called Random, that has been shown to approximate the
behavior of Complete with far less communication [9]. In the Random topology,
each particle randomly picks two other particles to share information with at each
iteration, along with itself. Thus in both the Ring and the Random topologies,
all particles have three neighbors.

3 Speculative Evaluation in PSO

The PSO algorithm can be trivially parallelized by distributing the computa-
tion needed for each particle across processors. But for some functions adding
particles yields diminishing returns. That is, adding processors does not help
reach any given level of fitness appreciably faster. Instead of adding particles,
speculative evaluation performs iterations two at a time.

Speculative evaluation is made possible by refactoring PSO such that evalu-
ating the objective function is separate from the rest of the computation. For
simplicity, this discussion will describe the case where PSO is performing func-
tion minimization using the Ring topology. In this example, each particle has
two neighbors, the “right neighbor” and “left neighbor,” whose positions are
represented as xR and xL respectively. Though we will only describe the case of
the Ring topology, this method is easily extended to arbitrary topologies.

The refactoring hinges on the idea that once the random coefficients UP
t and

UP
t are determined, there are only a few possible updates to xN and xP . For the

Ring topology there are 7 possible update cases, identified in Table 1. We label
each case with an identifier referring to the source of the update: a minus sign
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(−) represents no update, L represents an update to xN coming from the left
neighbor, R represents an update to xN coming from the right neighbor, and S
represents an update to either xP or xN coming from the particle itself. As an
example, (S,−) refers to the case that the particle finds a new personal best,
but neither it nor its neighbors found a position that updated its neighborhood
best. In the equations that follow, we refer to an unspecified update case as c,
and to the set of cases collectively as C.

Table 1. All possible updates for a particle with two neighbors

Identifier Source of xP update Source of xN update

(−,−) No update No update

(−, L) No update Left Neighbor

(−,R) No update Right Neighbor

(S,−) Self No update

(S, L) Self Left Neighbor

(S, R) Self Right Neighbor

(S, S) Self Self

In order to incorporate the determination of which case occurs into the posi-
tion and velocity update equations, we introduce an indicator function Ic

t+1 for
each case c ∈ C. When c corresponds to the case taken by PSO, Ic

t+1 evaluates
to 1; otherwise it evaluates to 0. We can then sum over all of the cases, and the
indicator function will make all of the terms drop to zero except for the case that
actually occurs. For example, the indicator function for the specific case (S,−)
can be written as follows:

I
(S,−)
t+1

(
f(xt) , f

(
xL

t

)
, f
(
xR

t

)
, f
(
xP

t−1

)
, f
(
xN

t−1

))
=

{
1 if f(xt) < f

(
xP

t−1

)
and f

(
xN

t−1

)
< min

(
f(xt) , f

(
xL

t

)
, f
(
xR

t

))
0 otherwise

(3)

For each case c ∈ C, there is also a corresponding velocity update function V c
t+1.

When the case is known, the specific values of xP
t and xN

t may be substituted
directly into (1). For example, in case (S,−), xP

t = xt, as xP was updated by the
particle’s current position, and xN

t = xN
t−1, as xN was not updated at iteration

t:

V
(S,−)
t+1

(
vt,xt,x

L
t ,x

R
t ,x

P
t−1,x

N
t−1,U

P
t ,U

N
t

)
= χ

[
vt + φP UP

t ⊗(xt − xt) + φNUN
t ⊗(xN

t−1 − xt

)]
(4)

In the same way we can create notation for the position update function by
substituting into (2):

Xc
t+1

(
xt,vt,x

L
t ,x

R
t ,x

P
t−1,x

N
t−1,U

P
t ,U

N
t

)
= xt + V c

t+1

(
vt,xt,x

L
t ,x

R
t ,x

P
t−1,x

N
t−1,U

P
t ,U

N
t

)
(5)
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With this notation we can re-write the original PSO velocity equation (1), in-
troducing our sum over cases with the indicator functions. The velocity (1) and
position (2) equations become:

vt+1 =
∑
c∈C

[
Ic
t+1

(
f(xt) , f

(
xL

t

)
, f
(
xR

t

)
, f
(
xP

t−1

)
, f
(
xN

t−1

))
V c

t+1

(
xt,vt,x

L
t ,x

R
t ,x

P
t−1,x

N
t−1,U

P
t ,U

N
t

)]
(6)

xt+1 =
∑
c∈C

[
Ic
t+1

(
f(xt) , f

(
xL

t

)
, f
(
xR

t

)
, f
(
xP

t−1

)
, f
(
xN

t−1

))
Xc

t+1

(
xt,vt,x

L
t ,x

R
t ,x

P
t−1,x

N
t−1,U

P
t ,U

N
t

)]
(7)

In this form the important point to notice is that there are only 7 values (for
this Ring topology) in the set {Xc

t+1 : c ∈ C} and that none of them depend
upon f(xt) or any other objective function evaluation at iteration t. Note also
that while there are random numbers in the equation, they are assumed fixed
once drawn for any particular particle at a specific iteration. Thus PSO has been
refactored such that the algorithm can begin computing all 7 of the objective
function evaluations potentially needed in iteration t + 1 before f(xt) is com-
puted. Once the evaluation of f(xt) is completed for all particles only one of the
indicator functions Ic

t+1 will be set to 1; hence only one of the positions Xc
t+1

will be kept.
Although this speculative approach computes f(Xc

t+1) for all c ∈ C, even
those for which Ic

t+1 = 0, these extra computations will be ignored, and might
just as well never have been computed. We call the set {f(Xc

t+1) : c ∈ C}
“speculative children” because only one of them will be needed.

To see the value of this refactoring, suppose that 800 processors are available,
and that the evaluation of the objective function takes one hour. If we only want
a swarm of 100 particles, 700 of the processors would be sitting idle for an hour
at every iteration, and it would take two hours to run two iterations. If instead
we perform speculative evaluation, sending each of the f(Xc

t+1) to be computed
at the same time as f(xt), we could create a swarm of size 100, each particle with
7 speculative evaluations (700 processors dedicated to speculative evaluation),
thus using all 800 processors and performing two iterations in one hour.

In order to do two iterations at once, we use 8 times as many processors
as there are particles in the swarm. If these processors were not performing
speculative evaluation, they might instead be used for function evaluation needed
to support a large swarm. This raises the question of whether a swarm of 100
particles doing twice as many iterations outperforms a swarm of 800 particles. We
show in the rest of this paper that in many instances a smaller swarm performing
more iterations does in fact outperform a larger swarm. We acknowledge that
both intuition and prior research [9] indicate that the optimization of deceptive
functions benefits greatly from large and even very large swarm sizes. Thus this
work will focus on less deceptive functions.
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3.1 Implementation

The number of speculative evaluations needed per particle depends on the num-
ber of neighbors each particle has. In a swarm with p particles and n neighbors
per particle, (2n + 1)p speculative evaluations are necessary (each additional
neighbor adds two rows to Table 1). This dependence on the number of neigh-
bors necessitates a wise choice of topology. The use of the Complete topology,
where every particle is a neighbor to every other particle, would require O(p2)
speculative evaluations per iteration. It is much more desirable to have a sparse
topology, where O(np) is much smaller than O(p2). However, some functions are
better optimized with the Complete topology and the quick spread of informa-
tion it entails than with sparse topologies. In such cases, we use the Random
topology described in Section 2.

To aid in describing our implementation, we introduce a few terms. We use
pt to denote a particle at iteration t and st+1 to denote one of pt’s speculative
children, corresponding to one of the rows in Table 1. nt is a neighbor of particle
pt. Sets of particles are given by p, s, or n, whereas single particles are simply
p, s, or n.

A particle at iteration t− 1 that has been moved to iteration t using (1) and
(2), but whose position has not yet been evaluated, is denoted as p−e

t . Once
its position has been evaluated, but it has still not yet received information
from its neighbors, it is denoted as p−n

t . Only when the particle has updated
its neighborhood best is it a complete particle at iteration t. It is then simply
denoted as pt.

The outline of the speculative evaluation in PSO (SEPSO) algorithm is given
in Algorithm 1.

Algorithm 1. Speculative Evaluation PSO (SEPSO)
1: Move all pt−1 to p−e

t using (1) and (2)

2: For each p−e
t , get its neighbors n−e

t and generate s−e
t+1 according to (5).

3: Evaluate all p−e
t and s−e

t+1 in parallel

4: Update personal best for each p−e
t and s−e

t+1, creating p−n
t and s−n

t+1

5: Update neighborhood best for each p−n
t , creating pt

6: for each pt do
7: Pick s−n

t+1 from s−n
t+1 that matches the branch taken by pt according to (7).

8: Pass along personal and neighborhood best values obtained by pt, making p−n
t+1

9: end for
10: Update neighborhood best for each p−n

t+1, creating pt+1

11: Repeat from Step 1 until finished

3.2 Using All Speculative Evaluations

In performing speculative evaluation as we have described it, 2n + 1 specula-
tive evaluations are done per particle, while all but one of them are completely
ignored. It seems reasonable to try to make use of the information obtained
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through those evaluations instead of ignoring it. Making use of this informa-
tion changes the behavior of PSO, instead of reproducing it exactly as the above
method explains, but the change turns out to be an improvement in our context.

To make better use of the speculative evaluations, instead of choosing the
speculative child that matches that branch that the original PSO would have
taken, we take the child that has the best value. The methodology is exactly
the same as above except for the process of choosing which speculative child to
accept. The only change needed in Algorithm 1 is in step 7, where the s−e

t+1 with
the best value is chosen from s−e

t+1 instead of with the matching branch. We call
this variant “Pick Best”.

4 Results

In our experiments we compared our speculative PSO algorithm to the stan-
dard PSO algorithm. At each iteration of the algorithms, we use one processor
to perform one function evaluation for one particle, be it speculative or non-
speculative. The speculative algorithm actually performs two iterations of PSO
at each “iteration,” so we instead call each “iteration” a “round of evaluations.”
For benchmark functions with very fast evaluations this may not be the best
use of parallelism in PSO. But for many real-world applications, the objective
function takes on the order of at least seconds (or more) to evaluate; in such
cases our framework is reasonable.

In each set of experiments we keep the number of processors for each algo-
rithm constant. In all of our experiments SEPSO uses topologies in which each
particle has two neighbors in addition to itself. As shown in Table 1, this results
in 7 speculative evaluations per particle. With one evaluation needed for the
original, non-speculative particle, we have a total of 8p evaluations for every two
iterations, where p is the number of particles in the speculative swarm. In order
to use the same resources for each algorithm, we compare swarms of size p in
the speculative algorithms with swarms of size 8p in standard PSO.

As discussed in Section 3.1, where the Complete topology would normally be
used, we use a Random topology in our speculative algorithm, as Complete leads
to an explosion of speculative evaluations. For the standard PSO baseline we have
included experiments with the Ring and the Random topologies, both with two
neighbors, as well as for the Complete topology. It is important to note however,
that in many cases the Complete topology is not a practical alternative in the
context of large swarms on large clusters where where the messaging complexity
is O(p2) and can overwhelm the system.

We follow the experimental setup used in [6]. All functions have 20 dimensions,
and all results shown are averages over 20 runs. For ease of labeling, we call our
speculative algorithm SEPSO, the variant SEPSO Pick Best, and standard PSO
just PSO and identify the topology in a suffix, “PSO Ring” for example.

The benchmark function Sphere (f(x) =
∑D

i=1 x2
i ) has no local optima and

is most efficiently optimized using a small swarm but many iterations. In our
experiments with Sphere, we use 240 processors; thus 30 particles for SEPSO
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and 240 for PSO. In Figure 1, we can see that SEPSO clearly beats PSO with
a Random topology or a Ring topology. SEPSO approaches the performance of
PSO with the Complete topology, even though PSO with the Complete topology
requires O(p2) communication. SEPSO Pick Best handily outperforms all other
algorithms in this problem.
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Fig. 1. Function Sphere with a swarm that uses 240 processors per round of evaluations.

We show 10th and 90th percentiles every 100 iterations. Note that PSO Complete

requires O(p2) messaging and may not be practical in many cases.

The benchmark function Griewank is defined by the equation f(x) = 1
4000∑D

i=1 x2
i −ΠD

i=1 cos
(

xi√
i

)
+ 1. It is best solved in PSO using the Ring topology,

as Complete is prone to premature convergence on local optima. Griewank has a
global optimum with a value of 0, and sometimes the swarm finds the optimum
and sometimes it does not. Instead of showing average function value at each
iteration, a more enlightening plot for Griewank shows the percent of runs that
have found the global optimum by each iteration.

PSO and SEPSO get caught in local minima with small swarm sizes so we
show results in Figure 2 for swarms of size 100 (SEPSO) and 800 (standard)
using the Ring topology. Figure 2 shows that SEPSO quickly finds the global
optimum, between two and three times faster than running standard PSO.

In Figure 2 we also show results for the Bohachevsky function, defined as
f(x) =

∑D
i=1(x

2
i + 2x2

i+1 − .3 cos(3πxi) − .4 cos(4πxi+1) + .7). Bohachevsky is
a unimodal function best optimized with a Complete swarm. It is similar to
Griewank in that there is a global optimum with a value of 0, and swarms ei-
ther find the optimum or get stuck. Both SEPSO algorithms find the optimum
much faster than PSO Random, though only SEPSO Pick Best beats PSO Com-
plete. Also, while the smaller swarm size of SEPSO gets stuck 75% of the time,
when using SEPSO Pick Best with the same swarm size, the algorithm finds the
optimum every time.

Previous work has shown that the optimization of highly deceptive functions
like Rastrigin (f(x) =

∑D
i=1

(
x2

i − 10 cos (2πxi) + 10
)
) benefit greatly from the

addition of particles. Smaller swarms get caught in local optima, up to swarms of
at least 4000 particles [9]. Because our speculative algorithms have a significantly
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Fig. 2. Function Griewank with a swarm that uses 800 processors per round of evalu-

ations, and function Bohachevsky with a swarm that uses 480 processors per round of

evaluations

smaller swarm size, they get stuck at higher values while the larger swarms per-
forming regular PSO continue to improve the best value found. Our experiments
with SEPSO on Rastrigin were predicably lack luster, yielding an average value
of 31 after 1000 evaluations, as compared to 10 for standard PSO.

5 Conclusions

We have described how parallel implementations of particle swarm optimiza-
tion can be modified to allow additional processors to increase the number of
iterations of the algorithm performed, instead of merely adding more particles
to the swarm. Using our modifications, the original PSO algorithm is exactly
reproduced two iterations at a time. This technique requires more function eval-
uations per iteration than regular PSO, but for some functions still performs
better when run in a parallel environment. We have also described a method
for making use of extra speculative evaluations that performs very well on some
functions.

There are some functions for which very little exploration needs to be done;
Sphere is an example of such a function. For such functions the best use of
processors is to have a small swarm performing speculative evaluation with our
Pick Best method, where all speculative evaluations are used.

There are other functions for which it seems there is never enough exploration,
such as the Rastrigin function. It has been shown that up to 4000 particles there
is no point at which “enough” exploration has been done [9]. With such functions,
the smaller swarm size required by speculative evaluation is not able to produce
enough exploration to perform better than standard PSO.

Griewank and Bohachevsky are functions between Sphere and Rastrigin. They
are deceptive and prone to premature convergence, but by adding particles to
the swarm a point is reached where “enough” exploration is done, and the al-
gorithm finds the optimum essentially all of the time. For such functions, the
best approach seems to be to increase the swarm size until “enough” exploration
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is reached, then use extra processors to perform speculative evaluation and in-
crease the number of iterations performed. Sphere and Rastrigin can be thought
of as special cases fo these types of functions; Sphere simply needs a very small
swarm size to produce “enough” exploration, and Rastrigin requires a very large
swarm. We expect that for all functions there is a swarm size for which additional
particles are less useful than additional iterations.

Large parallel clusters are often required to successfully optimize practical
modern problems. To properly use PSO with such clusters, a balance needs to
be made between using processors to increase the swarm size and using them to
increase the speed of the algorithm. This work is a first step in that direction.
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Abstract. In the conceptional phases of design optimization tasks it is

required to find new innovative solutions to a given problem. Although

evolutionary algorithms are suitable methods to this problem, the search

of a wide range of the solution space in order to identify novel concepts

is mainly driven by random processes and is therefore a demanding task,

especially for high dimensional problems. To improve the exploration of

the design space additional criteria are proposed in the presented work

which do not evaluate solely the quality of a solution but give an estima-

tion of the probability to find alternative optima. To realize these crite-

ria, concepts of novelty and interestingness are employed. Experiments

on test functions show that these novelty guided evolution strategies

identify multiple optima and demonstrate a switching between states of

exploration and exploitation. With this we are able to provide first steps

towards an alternative search algorithm for multi-modal functions and

the search during conceptual design phases.

Keywords: Evolutionary algorithm, open-endedness, interestingness,

multi-objective optimization, novelty detection, prediction error, niching.

1 Introduction

Evolutionary algorithms have various properties which make them suited to
solve complex real world problems. One of these properties is the ability to
identify multiple solutions in multi-modal quality functions. The importance of
this property lies in the fact that very often conceptually different solutions can
be found in real world applications which offer alternative realizations for the
design of a system. The selection of the best suited solution can only be done by
experts in the related field due to the complexity of the overall problem or due
to the non-technical nature of the criteria, for example aesthetic arguments or
the necessary distinctiveness to other available solutions used in other products.

In order to enhance this behavior various improvements of the algorithms are
described in the literature. A common way is to strengthen the ’exploratory’ be-
havior by increasing the mutation rate. Although this requires a low dimensional
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search space in order to find solutions within an acceptable number of gener-
ations, successful examples of this approach can be found in the field termed
creative evolutionary search [1] and in the early phases of design optimisation in
which new concepts for a solution have to be identified on simplified models.

Another strategy is followed by Niching Algorithms which identify multiple op-
timal solutions by maintaining diversity within a population [2,3,4]. The simplest
niching approach is fitness sharing where the fitness of individuals is reduced if
they are located close together within a niching radius. Various improvements
of these ideas are available like the dynamic niche sharing which uses a dynamic
peak identification (DPI) algorithm to recognize the forming of niches and the
fitness is shared among individuals within one niche. The dynamic niching al-
gorithm [2] introduces mating restrictions instead of changing the fitness. While
these methods require an a-priori estimation of the size of the niches, the de-
randomized CMA-ES implements an adaptive niche radius [4]. Although, niching
algorithms provides the potential for identifying several distinct optimal solu-
tions, the possible number of optima which can be discovered has to be specified
in advance and remains limited by the population size.

An alternative way to guide the search towards new and innovative solutions
is the integration of human creativity into the process [5,6] in which a human
user is involved in the generation of variations or alternatively in the selection
process. Although this process turned out to be very powerful it is limited to
problems for which a solution can be found within a small number of evaluations,
in which a human operator is able to judge the solutions by their intuition or
knowledge of the process.

In this work we outline an alternative method for the determination of optima
in a multi-modal fitness landscape which is fundamentally different to existing
methods. We propose to guide the search by an additional criterion which di-
rectly relates to new and unexplored areas of the search space. This criterion is
based on novelty or interestingness measures. Although the concept of novelty
exists in the subjective perceptions of individuals and is generally difficult to
describe, various attempts to define the concept can be found in different fields
of science like psychology, active learning or evolutionary robotics which allow
to formulate measures suitable for a numerical calculation.

Silberschatz and Tuzhilin’s [7] for example state that interestingness depends
on the user who is examining a pattern. They point out that something that is
interesting for one user might not be interesting for another one. Schmidhuber [8]
argues that if something is too unexpected it appears random and is no longer in-
teresting. Along this line, Saunders [9] refers to the Wundt curve and writes: “...
the most interesting experiences are those that are similar-yet-different to those
that have been experienced previously”. Based on these works it becomes already
obvious that novelty as well as interestingness can only be evaluated based past
experience. In the field of active learning, Risi et all. [10] evaluates novelty sim-
ply by measuring the similarity to existing solutions stored in an archive. Similar
to the work of Risi, Lehman at all. [11] defined novelty through sparseness that is
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evaluated based on already generated solutions. In the domain of developmental
robotics, motivated by the concept of intrinsic motivation, Oudeyer and Kaplan
[12] provide a comprehensive summary on alternative techniques for quantifying
interestingness and novelty. Most of the different attempts share the idea that
a model that builds up a compact representation of the search space is used to
produce an indicator for novelty or interestingness and allow the identification
of parameter regimes which should be sampled. In this work a mechanism for
the detection of novelty or interestingness is utilized to actively guide the search
to alternative optima in a multi-modal search problem using evolutionary algo-
rithms. The novelty measure provides an additional criteria besides the original
quality function. The target is to guide the search by the newly added crite-
ria towards currently unexplored regions of the search space and additionally
to start new exploration phases after temporary convergence of the population.
It is demonstrated on simple test functions that a combination of both criteria
allows the algorithm to guide the population towards alternative local optima
after the localization and convergence of the population to a formerly identified
optimum. In the next section we describe the novelty metrics used here and their
integration into the algorithm in more detail. In section 3 first experimental re-
sults are presented where the proposed algorithm is compared to the niching and
standard evolutionary algorithm. The paper concludes with a discussion on the
results and an outline for future work in section 4.

2 Novelty Guided Evolution Strategy

2.1 Overall Framework

The schematic view of the proposed algorithm is depicted in Fig. 1. After the
reproduction, recombination and mutation of the parent population, the fitness
is assigned to each individual of the produced offspring population. A second
criteria is introduced evaluating the individual’s novelty based on a model of the
quality function which is adapted by newly evaluated individuals. The selection
incorporates at least two criteria, the novelty and the quality function.

2.2 Novelty Evaluation and World Model Adaptation

An individual is said to be novel if it does not meet the expectations derived from
the accumulated knowledge about the search space. Therefore, the implemented
novelty metric is defined as follows. If the expected quality value, estimated
by the world model, differs from the calculated one, a high novelty value is
assigned to the individual. As depicted in Fig. 2 the implemented novelty metric
is calculated as,

ε(xt
i) = |f(xt

i)− f̂(xt
i)|, i ∈ [1 . . .λ] (1)

where λ defines the size of the offspring population, t the current generation, xt
i

is the design vector and f(xt
i), f̂(xt

i) defines the calculated and the predicted
quality function value respectively. ε(xt

i) reflects the prediction error of the world
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Fig. 1. Flowchart of the novelty guided optimization framework

model and is used for the quantification of the novelty. This formulation of the
novelty metric equals the Predictive novelty motivation concept described by
Oudeyer and Kaplan [12]. Solutions with a high prediction error assign a high
novelty value to the individual.

The world model is adopted to predict the quality function value by means of
estimating f̂(xt

i). Since multilayer feed-forward neural networks have successfully
been employed as universal function approximators they are implemented for the
world model. As already shown by Bishop [13], the neural network model is well
suited to estimate the novelty of a solution. Given a pre-defined model structure,
the network is updated in each generation t− 1 using RProp [14], a variation of
the back-propagation algorithm, together with cross-validation to prevent over-
fitting. Data from generation t − γ to generation t − 1 that is added to the
knowledge base during evolution is used for training. The parameter γ controls
whether more global or localized model of the search space is generated.

Fig. 2. Estimation of the prediction error which defines the novelty of a solution. The

world model builds a compact representation of the search space and is adopted to

predict the target function value.
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2.3 Selection Strategy

During the fitness evaluation a fitness vector is assigned to each offspring,

f (xt
i) = [f(xt

i), ε(xt
i)]

T , (2)

containing the actual quality value and the prediction error estimating the nov-
elty. It has to be noted that the additional criteria is dynamic in the sense
that each time the world model is updated the estimated novelty value changes
for one and the same solution. The multi objective optimisation problem can be
transformed into a single objective optimisation by a linear weighted aggregation.
This method leaves us with the problem of choosing an adequate weight. A high
weight on the novelty objective would result in an extensive explorative behavior
while a high weight on the actual quality function would result in an intensive
exploitation of a single optimal solution. The desired behavior of the evolution
strategy is a process that identifies successively several optima in regions with
high fitness values but which does not exploit only one optimal solution. Aside
the linear weighted aggregation, we employ a Pareto optimal selection criterion.
The implemented strategy is derived from the crowded tournament selection
suggested in the NSGA-II algorithm [15].

3 Experimental Results

The following experiments target the study of the basic characteristic of the
novelty guided ES. The proposed evolution strategy is compared to three existing
strategies, namely standard ES, dynamic niche sharing and open-ended ES.

3.1 Characteristics of the Novelty Guided Evolution Strategy

In the first experiments, the behavior of the introduced novelty guided ES is
studied on a two dimensional multi-modal test function in which the design
vector covers two variables, xt

i = [xt
1i, xt

2i]
T or in short x = [x1, x2]T . The test

function is constructed by a superposition of NG = 6 2D Gauss functions and is
mathematically defined as follows:

f(x) = −
NG∑
j=1

e−
1
2 (x−μj)Σ

−1·(x−μj)+1, (3)

where μj is the center and Σ−1 the covariance matrix of the Gauss kernel. Each
center μj of the different Gauss functions defines approximately the location of
one local optima. The Gauss kernels are inverted, simply to transfer the task
from a maximization into a minimization task. The resulting quality function
is depicted in Fig. 3 a). All runs were calculated for N = 500 generations with
a parent population size of μ = 20 and an offspring population size of λ =
100. The standard evolution strategy is a (μ, λ) strategy with global step size
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a) b)

c) d)

e) f)

Fig. 3. a) The test function with 6 optima, b) results of the standard ES, c) niching

with optimal niching radius, d) niching with an improper niching radius, e) open-ended

evolution, targeting the generation of novel designs only and f) the results of the novelty

guided ES

control. Recombination as well as mutation are applied to produce the offspring
population. For the niching algorithm a niching radius ρ is defined according to
Shir [3]. It has to be noted that the calculation of an adequate niching radius
requires knowledge about the number of optima, which is usually not available.
The world model that is needed for the calculation of the novelty metric is
realized using a multi-layer network with 10 hidden neurons and with sigmoidal
activation function. The data of the offspring population from 5 generations
is used for the training of the network weights. The dominance based ranking
with crowding distance is used as selection operator in the novelty guided ES.
The results of the different experiments are summarized in Fig. 3. For each
experiment, the contour plot of the fitness landscape together with the generated
solutions is shown. The fill color of the dots indicate the generation number
at which the solution has been produced. Dark indicates early and bright late
generations. Fig 3 b) shows the result of a standard ES. The algorithm converges
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Fig. 4. Progress of quality and novelty in novelty guided ES. The selection of solutions

with high degree of novelty allows to escape from optimal solutions.

directly (within about 20 generations) into the next local optimum. After that
the algorithm is converged. Fig. 3 c) and d) present the result of the dynamic
niching algorithm. While in c) an optimal niching radius has been used, in d) the
niching radius is over-estimated (twice the optimal radius) what easily happens
if no knowledge about the number of optima is given. In the case of a correct
estimation of the niching radius the individuals distribute well between all the
optima. If the niching radius is wrong or the population size too small, the niching
algorithm might get stuck in a limited number of optimal solutions. In Fig. 3 e)
results of a novelty driven evolutionary search are shown in which the search is
only based on the novelty criterion neglecting information given by the quality
function (open ended evolution). The algorithm does not exploit one of the six
optima and diverges towards the boundaries of the search space as expected.
Thus, a pure novelty driven optimization is quite inefficient and should be used
for the exploration of the search space only. As can be seen from Fig. 3 f) the
proposed novelty guided ES is able to locate all optimal solutions. Compared
to the niching algorithm the optima are not exploited in parallel but rather
sequentially. This sequential exploitation of the optima comes from the interplay
between the two objectives, the quality function and the novelty metric. Fig. 4
shows the development of the quality and novelty value of the best offspring in
the first 50 generations. In early generations the algorithm starts to exploit a
nearby optimal solution exactly as it is done in the standard ES. After about 10
generations the influence of the novelty measure on the selection increases. Novel
but worse solutions are selected. This allows the optimizer to escape from one
optimum and exploit another one. This interplay between quality and novelty
repeats until the algorithm is stopped. Since, a local model is used here, the
algorithm visits optima multiple times due to a limited memory of the model.

3.2 Comparative Study on a High Dimensional Test Function

To carry out experiments on higher dimensional quality functions the multivari-
ate Gauss kernel is used for the construction of an n dimensional multi-modal
test function. Instead of the superposition of the Gauss kernels the max opera-
tor is applied to prevent the shift of the optima from the Gauss center. The n
dimensional test function is defined as follows:
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a) b)

Fig. 5. Illustration of the minimal distance of the produced individuals to each of the

20 optimal solutions (x-axis). Only the closest solutions are shown. a) shows the results

on the 5 dimensional and b) on the 10 dimensional fitness landscape.

f(x) = − max
j∈[1...NG]

{e− 1
2 (x−μj)Σ

−1·(x−μj)+1}. (4)

An n = 5 and an n = 10 dimensional variant of f(x) have been constructed. The
number of Gauss kernels and thus the number of optima is set to NG = 20. The
Gauss centers are distributed randomly in the search space but remain the same
for the different strategies. The minimal distance of all generated individuals
to each optima is used to evaluate the strategies. If the distance runs below
a threshold of τ = 1.0, an optima is classified as being identified. The novelty
guided ES has been compared to niching and standard ES. Since, the open-ended
ES does not tend to exploit any of the optimal solutions it is skipped from
the comparison in these experiments. Related to the preceding experimental
setup, the number of hidden neurons of the world model has been increased
to 25. For the niching algorithm, the correct number of optima has been used
to estimate the radius ρ. Each optimization has been performed 5 times with
different random seeds in order to retrieve a first idea on the reliability of the
different strategies.

The results of the experiments are summarized in Fig. 5 and Tab. 1. Fig. 5
visualizes the evaluation of a typical run a) on the 5 and b) on the 10 dimen-
sional quality function. The index of the optima is mapped onto the x-axis while
the y-axis shows the distance of the closest solution to each optima. The dotted
line indicates the threshold applied for counting the number of approached local
optimal solutions. In Tab. 1 the mean g and the variance σ2 of the number of ap-
proached optimal solutions over 5 runs is summarized. Again, it can be observed
that the standard ES exploits one single optimal solution only independent of

Table 1. Summary of the results on the a) 5 and b) 10 dimensional multi-modal Gauss

function. g, σ2 are mean and variance of the number of approached optimal solutions.

a)

ES g σ2

Standard ES 1.4 0.3

Niching 2.2 0.7

Novelty Guided ES 5.6 1.3

b)

ES g σ2

Standard ES 1.0 0.0

Niching 1.0 0.0

Novelty Guided ES 1.2 0.2
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the search space dimension. The distance to the remaining 19 optima remains
large. Concerning the number of approached optima, the novelty guided ES out-
performes niching on the 5 dimensional test function. The proposed strategy
approaches from minimal 4 to about 7 out of 20 optima, while niching reaches
only about 3 optima at maximum. As can be seen from Tab. 1 b), none of the
strategies is performing well on the 10 dimensional test function. However, the
novelty guided ES is at least able to approach 2 optima in one out of the five
optimization runs.

4 Discussion

The experiments on the test functions show the general feasibility of the pro-
posed method. Evolutionary Strategies allow, combined with the concept of nov-
elty measures, the determination of multiple optima on a multi-modal quality
function. In contrast to other algorithms, novelty guided evolution strategies al-
low a sequential process of alternating phases of exploration and exploitation
on multi-modal quality functions in which the exploration is guided by novelty
or interestingness measures instead of randomly sampling the search space. In
the presented initial experiments the additional criteria, which is introduced to
guide the search to alternative solutions, is based on a novelty measure, purely
relying on the prediction error of a model. The generation of purely novel solu-
tions is usually a simple task solved easily by e.g. generating sufficiently large
mutations in a unconstrained search space. Preferably, the new direction should
be an estimation of the most likely area for new optima or at least an area from
which to sample in order to increase the chance to determine a new optima. In
this sense the utilization of a novelty measure cannot be the final answer which
was already stated in [12]. In order to determine useful search directions, mea-
sures of interestingness are required which guide the search towards areas which
are interesting in the sense that knowledge about the design space is generated
in order to finally determine areas with high probability of high fitness values.
Therefore the evaluation of measures based on the learning rate of a model
will be the next step to tackle more realistic problems for example in the field
of aerodynamic design in which areas of high noise or even chaotic parameter
regimes are expected. In general, models of the quality functions are necessary to
determine the novelty or the interestingness of design areas. Assuming that ap-
proximation models are generally more simple than the original quality function
all approximation models can only realize local models, valid in a limited area
of the design space. Therefore a second step in our future efforts in the develop-
ment of the algorithm is the integration and the adaptation of model ensembles
in which each single model represent a different area of the global search space.
Utilizing model ensembles also avoids the oscillation of the optimization process
between to optima which can be observed in the presented results. The reason
is that the sampling of one optimum results in an adaptation of the model in
a way that old information in the model is removed. Keeping an ensemble of
models allows us to avoid the overwriting of former acquired information of the
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global search space. In this sense the presented work has to be seen as a starting
point for the research of novelty guided evolution strategies.
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Abstract. Consultant-Guided Search (CGS) is a recent metaheuristic

for combinatorial optimization problems, which has been successfully ap-

plied to the Traveling Salesman Problem (TSP). In experiments without

local search, it has been able to outperform some of the best Ant Colony

Optimization (ACO) algorithms. However, local search is an important

part of any ACO algorithm and a comparison without local search can

be misleading. In this paper, we investigate if CGS is still able to com-

pete with ACO when all algorithms are combined with local search. In

addition, we propose a new variant of CGS for the TSP, which introduces

the concept of confidence in relation to the recommendations made by

consultants. Our experimental results show that the solution quality ob-

tained by this new CGS algorithm is comparable with or better than

that obtained by Ant Colony System and MAX-MIN Ant System with

3-opt local search.

Keywords: Metaheuristics, combinatorial optimization, swarm intelli-

gence, traveling salesman problem.

1 Introduction

Consultant-Guided Search (CGS) [5] is a swarm intelligence technique based on
the direct exchange of information between individuals in a population. It takes
inspiration from the way real people make decisions based on advice received
from consultants. CGS can be used to solve hard combinatorial optimization
problems and it has been first applied to the Traveling Salesman Problem (TSP).
Experimental results have shown that the CGS-TSP algorithm introduced in [5]
can outperform some of the best Ant Colony Optimization (ACO) [3] algorithms.
However, these results may be misleading, because the experiments have been
performed without local search and, in practice, ACO algorithms for the TSP are
always combined with local search. While most metaheuristics work better when
combined with local search, the performance improvement can vary significantly
from one algorithm to another. Therefore, the main goal of this paper is to
investigate whether CGS is still able to compete with ACO when the algorithms
are combined with local search.

Moreover, we propose a variant of the CGS-TSP algorithm, where consultants
also indicate the confidence in the recommendations they make. In experiments

R. Schaefer et al. (Eds.): PPSN XI, Part II, LNCS 6239, pp. 81–90, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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with 3-opt local search, we compare the performance of this new algorithm to
that of the standard CGS-TSP algorithm, as well as to that of Ant Colony
System (ACS) [2] and MAX-MIN Ant System (MMAS) [7].

This paper is organized as follows: to make the paper self-contained, we de-
scribe in Section 2 the CGS metaheuristic and the standard CGS-TSP algorithm;
in Section 3, we combine CGS with local search, we introduce the new CGS-TSP
variant that attaches confidence levels to recommendations and we report our
experimental results; in Section 4 we conclude the paper and present future
research directions.

2 The CGS Metaheuristic and Its Application to the TSP

In this section, we briefly describe the CGS metaheuristic and the CGS-TSP
algorithm. We refer the reader to [5] for a more detailed presentation.

2.1 The Metaheuristic

CGS is a population-based method. An individual of the CGS population is a
virtual person, which can simultaneously act both as a client and as a consul-
tant. As a client, a virtual person constructs at each iteration a solution to the
problem. As a consultant, a virtual person provides advice to clients, in accor-
dance with its strategy . Usually, at each step of the solution construction, there
are several variants a client can choose from. The variant recommended by the
consultant has a higher probability to be chosen, but the client may opt for one
of the other variants, which will be selected based on some heuristic.

At the beginning of each iteration, a client chooses a consultant based on its
personal preference and on the consultant’s reputation . The reputation of
a consultant increases with the number of successes achieved by its clients. A
client achieves a success, if it constructs a solution better than all solutions
found until that point by any client guided by the same consultant. Each time
a client achieves a success, the consultant adjusts its strategy in order to reflect
the sequence of decisions taken by the client. Because the reputation fades over
time, a consultant needs that its clients constantly achieve successes, in order
to keep its reputation. If the consultant’s reputation sinks below a minimum
value, it will take a sabbatical leave, during which it will stop offering advice
to clients and it will instead start searching for a new strategy to use in the
future.

The pseudocode that formalizes the CGS metaheuristic is shown in Fig. 1.
During the initialization phase (lines 2-5), virtual people are created and placed
in sabbatical mode. Based on its mode, a virtual person constructs at each
iteration either a solution to the problem (line 13) or a consultant strategy
(line 9). A local optimization procedure (line 17) may be applied to improve this
solution or consultant strategy.

After the construction phase, a virtual person in sabbatical mode checks if
it has found a new best-so-far strategy (lines 20-22), while a virtual person in
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1. procedure CGSMetaheuristic()

2. create the set P of virtual persons
3. foreach p ∈ P do
4. setSabbaticalMode(p)

5. end foreach
6. while(termination condition not met) do
7. foreach p ∈ P do
8. if actionMode[p]=sabbatical then
9. currStrategy[p] ← constructStrategy(p)

10. else
11. currCons[p] ← chooseConsultant(p)

12. if currCons[p] �= null then
13. currSol[p] ← constructSolution(p, currCons[p])

14. end if
15. end if
16. end foreach
17. applyLocalOptimization() // optional

18. foreach p ∈ P do
19. if actionMode[p]=sabbatical then
20. if currStrategy[p] better than bestStrategy[p] then
21. bestStrategy[p] ← currStrategy[p]

22. end if
23. else
24. c ← currCons[p]

25. if c �= null and currSol[p] is better than all solutions
26. found by a client of c since last sabbatical then
27. successCount[c] ← successCount[c]+1

28. strategy[c] ← adjustStrategy(c, currSol[p])

29. end if
30. end if
31. end foreach
32. updateReputations()
33. updateActionModes()
34. end while
35. end procedure

Fig. 1. The CGS Metaheuristic

normal mode checks if it has achieved a success and, if this is the case, it adjusts
its strategy accordingly (lines 24-29).

Reputations are updated based on the results obtained by clients (line 32):
the reputation of a consultant is incremented each time one of its clients achieves
a success and it receives an additional bonus when a client obtains a best-so-
far result. Each consultant is ranked based on the best result obtained by any
client working under its guidance. For a number of top-ranked consultants, CGS
prevents their reputations from sinking below a predefined level.

Finally, the action mode of each virtual person is updated (line 33): con-
sultants whose reputations have sunk below the minimum level are placed in
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sabbatical mode, while consultants whose sabbatical leave has finished are placed
in normal mode.

2.2 The CGS-TSP Algorithm

The CGS-TSP algorithm introduced in [5] is an application of the CGS meta-
heuristic to the TSP. In this algorithm, the strategy of a consultant is repre-
sented by a tour, which it advertises to its clients. The heuristic used to build
new strategies during the sabbatical leave is based on a pseudorandom pro-
portional rule that strongly favors the nearest city. A virtual person k located
at city i moves to a city j according to the following rule:

j =

{
argminl∈Nk

i
{dil} if a ≤ a0,

J otherwise.
(1)

where: N k
i is the feasible neighborhood of person k when being at city i; dil is

the distance between cities i and l; a is a random variable uniformly distributed
in [0, 1] and a0 ∈ [0, 1] is a parameter; J is a random variable selected according
to the probability distribution given by formula (2), where β is a parameter.

pk
ij =

(1/dij)β∑
l∈Nk

i
(1/dil)β

(2)

Based on the tour advertised by the consultant, a client receives at each step of
the solution construction a recommendation regarding the next city to be visited.
The client does not always follow the consultant’s recommendation. Again, a
pseudorandom proportional rule is used to decide which city to visit at the next
step:

j =

⎧⎪⎨
⎪⎩

v if v �= null ∧ q ≤ q0,

argminl∈Nk
i
{dil} if (v = null ∨ q > q0) ∧ b ≤ b0,

J otherwise.
(3)

where: v is the city recommended by the consultant for the next step; q is
a random variable uniformly distributed in [0, 1] and q0 (0 ≤ q0 ≤ 1) is a
parameter; N k

i is the feasible neighborhood of person k when being at city
i; dil is the distance between cities i and l; b is a random variable uniformly
distributed in [0, 1] and b0 is a parameter (0 ≤ b0 ≤ 1); J is a random variable
selected according to the probability distribution given by formula (2).

In CGS-TSP, the personal preference is given by the inverse of the adver-
tised tour length. It is used by clients in conjunction with the reputation , in
order to compute the probability to choose a given consultant k:

pk =
reputationα

k preferenceγ
k∑

c∈C(reputationα
c preferenceγ

c )
(4)

where C is the set of all available consultants and α and γ are parameters that
determine the influence of reputation and personal preference.



Consultant-Guided Search Algorithms with Local Search for the TSP 85

At each iteration, the consultant’s k reputation fades at rate r:

reputationk ← reputationk(1− r) (5)

CGS-TSP adjusts its reputation fading rate according to the total number sw

of successes achieved during the last w iterations by the best fadingRanks
consultants, where w and fadingRanks are parameters:

r = r0

⎛
⎜⎜⎝1 +

sw√
1 +
(

sw

f

)2

⎞
⎟⎟⎠ (6)

The parameter r0 gives the reputation fading rate for the case where no successes
were achieved by the best fadingRanks consultants during the last w iterations.
The value of f is computed from the value of another parameter, kw, which
indicates how much greater is the decrease in reputation for a very high number
of successes than the decrease in the case when no successes were achieved:

f =
(

1
r0
− 1
)(

1− 1
w
√

kw

)
(7)

3 CGS with Local Search for the TSP

In this section, we present the details of combining CGS-TSP with local search
and we propose a new variant of this algorithm, which introduces the concept of
confidence in relation to the recommendations made by consultants. Then, we
describe the experimental setting and we compare the results obtained by the
competing algorithms considered.

3.1 Applying Local Search to CGS-TSP

Since the CGS metaheuristic provides an optional local optimization step, com-
bining CGS-TSP with local search is a straightforward process. Local search
improves the results, but it is a time-consuming procedure. Therefore, signifi-
cantly fewer iterations can be performed in the same amount of time when the
algorithm is combined with local search. For this reason, different parameter
settings are appropriate in this case. The standard CGS-TSP algorithm fixes
the value of the parameter w to 1000 and the sabbaticalDuration to 100 iter-
ations. In our experiments with local search we fix the value of w to 100 and
the sabbaticalDuration to 500/m iterations, where m is the number of virtual
persons. For the other parameters with fixed values in the standard CGS-TSP,
we preserve the original values when combining the algorithm with local search:
a0 = 0.9 and minReputation = 1.
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3.2 CGS-TSP with Confidence

In addition to the algorithm described in the previous subsection, we propose a
variant of the CGS-TSP algorithm, which we refer to as CGS-TSP-C, where each
arc in the tour advertised by a consultant has an associated strength . Strengths
are updated each time the consultant adjusts its strategy. If an arc in the new
advertised tour was also present in the old advertised tour, its strength will be
incremented; otherwise, its strength is set to 0. The strength of an arc could be
interpreted as the consultant’s confidence in recommending this arc to a client.
A client is more likely to accept recommendations made with greater confidence.
This idea is expressed in CGS-TSP-C by allowing the value of the parameter q0

to vary in a given range, at each construction step:

q0 =

{
qmin + s · qmax−qmin

smax
if s < smax,

qmax otherwise.
(8)

where s is the strength of the recommended arc and qmin, qmax and smax are
parameters.

3.3 Experimental Setup

To allow a meaningful comparison between heuristics, we have created a soft-
ware package containing Java implementations of the algorithms considered in
our experiments. The software package is available as an open source project
at http://swarmtsp.sourceforge.net/. At this address, we also provide all
configuration files, problem instances and results files for the parameter tuning
and for the experiments described in this paper, as well as the outcome of other
experiments briefly mentioned in this paper, but not further detailed due to
space limitations.

We run a series of experiments in order to compare the performance of
CGS-TSP and CGS-TSP-C with that of Ant Colony System (ACS) [2] and
MAX-MIN Ant System (MMAS) [7]. We combine all algorithms used in our
experiments with 3-opt local search and we use candidate lists of length 20 for
all algorithms. Each run is terminated after n/50 seconds CPU time, where n is
the problem size.

We have tuned the parameters of all algorithms through the ParamILS [4] and
F-Race [1] procedures. As training set, we have used 600 generated Euclidean
TSP instances, with the number of cities uniformly distributed in the interval
[1000, 2000]. For CGS-TSP and CGS-TSP-C, the parameter settings are given
in Table 1.

The best configuration found for ACS is: m = 12, ρ = 0.6, ξ = 0.4, q0 = 0.98,
β = 2. For MMAS, the best configuration found is: m = max(10, 44− 0.175 ·n),
ρ = 0.15, α = 2, β = 2. Some of these values differ significantly from the standard
values given in [3, p.96], which are: m = 10, ρ = 0.1, ξ = 0.1, q0 = 0.98, β = 2
for ACS and: m = 25, ρ = 0.2, α = 1, β = 2 for MMAS. For this reason, for
ACS and MMAS, we have performed our experiments using both the tuned and

http://swarmtsp.sourceforge.net/
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Table 1. Parameter settings for CGS-TSP and CGS-TSP-C

Parameter CGS-TSP CGS-TSP-C Description

m max(3, 21 − n/125) max(3, 16 − n/250) number of virtual persons

b0 0.98 0.95 see formula (3)

q0 0.98

⎧⎪⎨
⎪⎩

qmin = 0.8

qmax = 0.99

smax = 3

see formulas (3), (8)

α 7 7 reputation’s relative influence

β 12 12 heuristic’s relative influence

γ 7 8 result’s relative influence

maxReputation 40 50 maximum reputation value

initialReputation 6 3 reputation after sabbatical

bonus 8 6 best-so-far reputation bonus

protectedRanks 0.7 · m 0.6 · m protected top consultants

r0 3 · 10−7 3 · 10−6 basic reputation fading rate

fadingRanks 2 10 top consultants for fading rate

kw 3 30 reputation decrease factor

the standard values. As shown in the next subsection, the results obtained using
the tuned parameters outperform those obtained with the standard settings.

3.4 Experimental Results

We have applied the algorithms to 27 symmetric instances from the TSPLIB
benchmark library, with the number of cities between 654 and 3038. Table 2
reports for each algorithm and TSP instance the best and mean percentage
deviations from the optimal solutions over 25 trials. The best mean results for
each problem are in boldface. We also report for each problem the p-values of the
one-sided Wilcoxon rank sum tests for the null hypothesis (H0) that there is no
difference between the solution quality of CGS-TSP-C and that of the compet-
ing ACO algorithm, and for the alternative hypothesis (H1) that CGS-TSP-C
outperforms the considered algorithm. Applying the Bonferroni correction for
multiple comparisons, we obtain the adjusted α-level: 0.05/27 = 0.00185. The
p-values in boldface indicate the cases where the null hypothesis is rejected at
this significance level.

For a few pairs of algorithms, we use the one-sided Wilcoxon signed rank test
to compute the p-values for the null hypothesis (H0) that there is no difference
between the means of the first and the means of the second algorithm considered,
and the alternative hypothesis (H1) that the means of the first algorithm are
smaller than the means of the second algorithm considered. The p-values are
given in Table 3.

The null hypothesis can be rejected at a high significance level when CGS-
TSP-C is compared with the two ACO algorithms, which means that for runs
terminated after n/50 seconds CPU time, CGS-TSP-C clearly outperforms both
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Table 2. Performance over 25 trials. Runs are terminated after n/50 CPU seconds.

Problem ACS MMAS CGS-TSP CGS-TSP-C
Best Mean Best Mean Best Mean Best Mean p-value p-valueinstance
(%) (%) (%) (%) (%) (%) (%) (%) (ACS) (MMAS)

p654 0.000 0.023 0.000 0.062 0.000 0.009 0.000 0.009 0.0004 0.0000
d657 0.002 0.167 0.031 0.133 0.002 0.129 0.002 0.097 0.0029 0.0326
gr666 0.056 0.159 0.000 0.066 0.040 0.069 0.000 0.109 0.0142 0.8059
u724 0.026 0.102 0.045 0.151 0.005 0.128 0.005 0.101 0.5932 0.0070
rat783 0.000 0.252 0.023 0.185 0.000 0.215 0.000 0.147 0.0157 0.1564
dsj1000 0.038 0.403 0.133 0.316 0.030 0.296 0.000 0.224 0.0042 0.1315
pr1002 0.000 0.273 0.034 0.201 0.000 0.189 0.000 0.162 0.0203 0.0863
si1032 0.000 0.023 0.000 0.035 0.000 0.029 0.000 0.024 0.6031 0.1758
u1060 0.116 0.331 0.104 0.359 0.026 0.117 0.026 0.119 0.0000 0.0000
vm1084 0.000 0.064 0.001 0.120 0.000 0.066 0.000 0.071 0.5096 0.0012
pcb1173 0.002 0.325 0.021 0.219 0.185 0.449 0.002 0.297 0.2456 0.9376
d1291 0.000 0.111 0.000 0.105 0.000 0.108 0.000 0.186 0.3690 0.4518
rl1304 0.000 0.196 0.000 0.229 0.000 0.200 0.000 0.189 0.5291 0.0243
rl1323 0.077 0.243 0.041 0.245 0.000 0.131 0.010 0.152 0.0005 0.0000
nrw1379 0.088 0.256 0.305 0.486 0.083 0.286 0.152 0.264 0.5668 0.0000
fl1400 0.020 0.247 0.298 0.668 0.000 0.190 0.000 0.177 0.0046 0.0000
u1432 0.218 0.389 0.250 0.601 0.292 0.481 0.153 0.426 0.8654 0.0000
fl1577 0.031 0.293 0.220 0.597 0.004 0.060 0.004 0.172 0.0001 0.0000
d1655 0.006 0.435 0.019 0.325 0.064 0.332 0.000 0.322 0.0754 0.4446
vm1748 0.113 0.272 0.154 0.471 0.061 0.191 0.004 0.159 0.0000 0.0000
u1817 0.192 0.480 0.080 0.295 0.156 0.386 0.107 0.347 0.0043 0.9048
rl1889 0.345 0.719 0.270 0.545 0.004 0.237 0.000 0.217 0.0000 0.0000
d2103 0.017 0.332 0.040 0.127 0.000 0.345 0.000 0.047 0.0000 0.0000
u2152 0.112 0.426 0.254 0.488 0.115 0.356 0.131 0.352 0.0472 0.0015
u2319 0.287 0.372 0.427 0.599 0.707 0.863 0.742 1.052 1.0000 1.0000
pr2392 0.235 0.507 0.214 0.542 0.019 0.441 0.051 0.340 0.0001 0.0012
pcb3038 0.243 0.499 0.671 0.940 0.704 1.056 0.428 0.810 1.0000 0.0003

ACS and MMAS. In addition, CGS TSP C outperforms CGS-TSP, which means
that the use of confidence in relation to the recommendations made by consul-
tants can lead to better results.

As shown in [5], CGS-TSP clearly outperforms ACS and MMAS in experi-
ments without local search. Combined with 3-opt local search, CGS-TSP still
outperforms ACS and MMAS, but only at a moderate significance level. This
means that ACS and MMAS benefit more than CGS-TSP from the hybridiza-
tion with local search. One explanation for this discrepancy could be that the
solution construction mechanism of CGS-TSP already bears some resemblance
to a local search procedure: a client builds a solution in the neighborhood of the
solution promoted by a consultant, while the consultant updates its promoted
solution each time one of its clients finds a better one.
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Table 3. Performance comparison using the one-sided Wilcoxon signed rank test

First algorithm Second algorithm p-value

CGS-TSP-C ACS 0.00472
CGS-TSP-C MMAS 0.00148
CGS-TSP-C CGS-TSP 0.02004
CGS-TSP (without local search) ACS (without local search) * 0.00003
CGS-TSP ACS 0.05020
CGS-TSP (without local search) MMAS (without local search) * 0.00269
CGS-TSP MMAS 0.03051
ACS ACS (standard settings) 0.00256
MMAS MMAS (standard settings) < 0.00001

* p-values taken from [5].

As mentioned in the previous subsection, some of the parameter values found
during the tuning phase for ACS and MMAS differ significantly from the val-
ues recommended in [3, p.96]. The last two lines of Tab. 3 compare the per-
formance obtained using the tuned parameters and the standard settings. The
tuned algorithms clearly outperform the algorithms that use standard settings,
thus confirming the effectiveness of the tuning procedures.

Figure 2 shows the development of the mean percentage deviations from the
optimum over 25 trials as a function of the CPU time, over 10000 seconds. We
consider u1060, for which the CGS algorithms have obtained good results in the
previous experiments, and u2319, for which poor results have been obtained.
For u1060, the CGS algorithms outperform the ACO algorithms during the
entire interval. Although CGS-TSP-C performs best in the initial phases, it is
outperformed by CGS-TSP in the long run. In the case of u2319, the CGS
algorithms are not able to reach the performance of ACO.

Fig. 2. The development of the mean percentage deviations over 25 trials
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4 Conclusions and Future Work

Experimental results indicate that CGS is still able to compete with ACO when
the algorithms are combined with local search, although the performance im-
provement in the case of CGS is not as significant as in the case of ACO. The
CGS-TSP-C algorithm proposed in this paper shows that correlating the rec-
ommendations with a level of confidence may improve the results. Still, more
research is needed in order to determine in which cases CGS-TSP-C should be
preferred to CGS-TSP.

Although for our experimental setup the CGS algorithms generally outper-
form the ACO algorithms, there are a few cases where the performance of CGS
is relatively poor. The most striking example in our experiments is the TSP
instance u2319. It is therefore worthwhile to investigate which characteristics of
the TSP instances influence the performance of the CGS algorithms and how
these characteristics relate to the values of the different parameters used by these
algorithms. In the case of ACO, it has been shown [6] that an increase in the
standard deviation of the cost matrix of TSP instances leads to a decrease in the
performance of the algorithm. Like in ACO, the decisions taken in the solution
construction phase of CGS algorithms depend on the relative lengths of edges
in the TSP. Therefore, we expect that the standard deviation of the cost matrix
also affects the performance of these algorithms.

A drawback of CGS algorithms is the large number of parameters to be tuned.
We plan to devise a variant of CGS-TSP with only a small number of parameters.
One way to achieve this is to identify parameters whose optimal value is not
problem specific and to remove these parameters by hard-coding their values in
the algorithm.
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Abstract. Many-objective optimization is a hot issue in the EMO (evolutionary 
multiobjective optimization) community. Since almost all solutions in the cur-
rent population are non-dominated with each other in many-objective EMO al-
gorithms, we may need a different fitness evaluation scheme from the case of 
two and three objectives. One difficulty in the design of many-objective EMO 
algorithms is that we cannot visually observe the behavior of multiobjective 
evolution in the objective space with four or more objectives. In this paper, we 
propose the use of many-objective test problems in a two- or three-dimensional 
decision space to visually examine the behavior of multiobjective evolution. 
Such a visual examination helps us to understand the characteristic features of 
EMO algorithms for many-objective optimization. Good understanding of exist-
ing EMO algorithms may facilitates their modification and the development of 
new EMO algorithms for many-objective optimization. 

Keywords: Evolutionary multiobjective optimization (EMO), many-objective 
optimization, multiobjective optimization problems, test problems. 

1   Introduction 

Evolutionary multiobjective optimization (EMO) has been a very active research area 
in the field of evolutionary computations [3], [5], [26]. A number of EMO algorithms 
have been proposed and successfully applied to various application tasks [1], [17], 
[18], [20]. Whereas well-known and frequently-used Pareto dominance-based EMO 
algorithms such as NSGA-II [6] and SPEA2 [30] work well on two-objective prob-
lems, their search ability is often severely degraded by the increase in the number of 
objectives as pointed out in the literature [4], [9]-[12], [19], [21], [23]-[25], [27], [32]. 

In the case of many-objective optimization, it is not easy to understand the behavior 
of multiobjective evolution by EMO algorithms. This is because we cannot visually 
monitor how a population of solutions is evolved in a high-dimensional objective 
space. This contrasts to the case of two objectives where we can visually show all 
solutions at each generation in a two-dimensional objective space in order to examine 
the move of a population from the initial generation to the final one. Such a visual 
examination helps us to understand the characteristic features of EMO algorithms such 
as the convergence-diversity balance and the uniformity of solutions along the Pareto 
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front. Better understanding of existing EMO algorithms may facilitates their modifica-
tion and the development of new algorithms for many-objective optimization.  

In this paper, we propose the use of many-objective test problems in a two- or 
three-dimensional decision space to visually examine the behavior of multiobjective 
evolution. A class of our test problems can be written in the following generic form: 

Minimize ))(...,),(),(()( 21 xxxxf kfff= , (1)

where x is a two- or three-dimensional decision vector (i.e., a point on a two- or three-
dimensional decision space) and fi(x) is defined by the minimum distance from x to m 
points ai1, ai2, ..., aim in the decision space: 

)},(dis...,),,(dis),,(dismin{)( 21 imiiif axaxaxx = , i = 1, 2, ..., k. (2)

In this formulation, dis(x, a) is a distance between the two points x and a. We assume 
the use of the Euclidean distance throughout this paper.  

Since m points (ai1, ai2, ..., aim) are used to define each objective fi(x), we need km 
points to define a k-objective test problem. As shown in this paper, we can generate 
various types of test problems in a two- or three-dimensional decision space using 
different combinations of those km points. For example, some test problems have 
small Pareto optimal regions while others have large ones. Some test problems have 
multiple equivalent Pareto optimal regions while others have disconnected ones. Two 
examples of our test problems are shown in Fig. 1. Fig. 1 (a) is a four-objective prob-
lem with a single rectangular Pareto optimal region (shaded area) while Fig. 1 (b) is a 
four-objective problem with four equivalent square Pareto optimal regions.  

In this paper, first we briefly review related studies on many-objective test prob-
lems in Section 2. Next we show some interesting experimental results on our test 
problems with m = 1 (i.e., with a single Pareto optimal region) in Section 3. Then we 
discuss our test problems with m > 1 (i.e., with multiple Pareto optimal regions) and 
explain their usefulness in Section 4. Finally we conclude this paper in Section 5. 
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(a) Four-objective problem (m = 1 and k = 4).      (b) Four-objective problem (m = 4 and k = 4). 

Fig. 1. Two examples of our test problems in Eq. (1) and Eq. (2) 
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2   Related Studies on Many-Objective Test Problems 

One of the most frequently-used test problems in the EMO community is ZDT [29]. 
This is a set of six two-objective problems (ZDT1 to ZDT6). For many-objective 
optimization, seven test problems were proposed by Deb et al. [7], which are called 
DTLZ (DTLZ1 to DTLZ7). The main feature of the DTLZ problems is its scalability: 
The number of objectives can be arbitrarily specified. Two problems were added by 
Deb et al. [8]. Nine DTLZ problems have been frequently used in the literature [16]. 

Multiobjective 0/1 knapsack problems have also been used in many studies since 
Zitzler & Thiele [31]. They used nine problems with 250, 500 and 750 items and two, 
three and four objectives. In some studies [15], [16], [23], knapsack problems with 
more than four objectives have been generated to examine the performance of EMO 
algorithms for many-objective optimization. Other combinatorial optimization prob-
lems with many objectives (e.g., TSP [4], nurse scheduling [25], and job-shop sched-
uling [4]) have been also used as test problems in the literature [16]. 

The use of many-objective test problems in a two-dimensional decision space was 
proposed by Köppen & Yoshida [21]. They used a single regular polygon for problem 
definition. Thus their test problems can be viewed as a special case of our formulation 
with m = 1 (i.e., with a single Pareto optimal region). Singh et al. [24] used the same 
test problems as [21] to examine the performance of many-objective EMO algo-
rithms. Some of our experiments in this paper have been motivated by [21] and [24]. 

On the other hand, Rudolph et al. [22] used two-objective test problems with mul-
tiple equivalent Pareto optimal subsets in a two-dimensional decision space. Each 
Pareto optimal subset was defined by two points as a line (or a curve) in the decision 
space. Thus their problems can be viewed as a special case of our formulation with 
k = 2 (i.e., our formulation is a general form of their test problems). 

3   Results on Test Problems with a Single Pareto Region (m = 1)  

As in Köppen & Yoshida [21], our test problems with a single Pareto optimal region 
(i.e., our test problems with m = 1) can be used to examine the distribution of solu-
tions in a decision space for many-objective optimization. In our computational ex-
periments, we used the following four EMO algorithms: NSGA-II [6], SPEA2 [30], 
MOEA/D [28] with the Tchebycheff (Chebyshev) function, and SMS-EMOA [27]. 
The first two are well-known and frequently-used Pareto dominance-based EMO 
algorithms. The other are recently-developed high-performance EMO algorithms with 
different fitness evaluation schemes: Scalarizing functions are used in MOEA/D for 
fitness evaluation while the hypervolume measure is used in SMS-EMOA. 

First we applied these EMO algorithms to a five-objective problem with five points 
at the vertices of a regular pentagon using the following setting:  

Population size: 200 (NSGA-II, SPEA2) and 210 (MOEA/D),  
Total number of examined solutions (Termination conditions): 100,000, 
Crossover probability: 1.0 (SBX with ηc = 15),  
Mutation probability: 0.5 (Polynomial mutation with ηm = 20),  
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Reference point: Minimum value of each objective (MOEA/D)  
      Maximum value of each objective × 1.1 (SMS-EMOA). 

In MOEA/D, the population size is the same as the number of weight vectors. Due to 
the combinatorial nature of uniformly distributed weight vectors, the population size 
cannot be arbitrarily specified (for details, see [28]). We used the closest integer to 
200 among the possible values as the population size. The neighborhood size in 
MOEA/D was specified as 10% of the population size. The same termination condi-
tion (i.e., the examination of 100,000 solutions) was used for all algorithms whereas 
the computation time of SMS-EMOA was much longer than the other algorithms. 

In Fig. 2, we show the final population in a single run of each algorithm. All points 
in the regular pentagon are Pareto optimal solutions. We can observe different charac-
teristic features of each EMO algorithm in Fig. 2.  

We can also generate test problems for examining both the convergence and  
the distribution of solutions. We show an example of such a test problem in Fig. 3 
where a four-objective test problem was defined by four vertices of a long and thin 
rectangle.  
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     (c) MOEA/D.        (d) SMS-EMOA. 

Fig. 2. The final population of a single run of each algorithm on the five-objective problem 

In the same manner as in Fig. 2, we applied the EMO algorithms to the four-
objective test problem in Fig. 3. Each plot of Fig. 3 shows the final population in a 
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single run of each algorithm. The Pareto optimal region is the inside of the slender 
rectangle. It looks difficult for NSGA-II and SPEA2 to converge all solutions into the 
Pareto optimal region (i.e., inside the slender rectangle including the boundary). On 
the other hand, good distributions of solutions were not obtained by MOEA/D. 
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      (c) MOEA/D.         (d) SMS-EMOA. 

Fig. 3. The final population of a single run of each algorithm on the four-objective problem 

Our test problems can be also used to examine the effect of the location of a refer-
ence point on the hypervolume calculation. This effect has already been pointed out in 
some studies [2], [13], [14]. Explanations on this effect were, however, usually based 
on illustrations for two-objective problems such as Fig. 4. As shown in Fig. 4, the 
hypervolume contribution of the two extreme non-dominated solutions (i.e., non-
dominated solutions with the best value for either objective: Points A and B in Fig. 4) 
strongly depends on the location of the reference point. The two plots in Fig. 4 show 
the same non-dominated solution set with different reference points. When the refer-
ence point is far from the Pareto front as in Fig. 4 (b), the two extreme solutions A 
and B have large hypervolume contributions as indicated by the two large shaded 
rectangles. On the other hand, if the reference point is close to the Pareto front as  
in Fig. 4 (a), the two extreme solutions A and B have small hypervolume contribu-
tions as indicated by the two small shaded rectangles. It should be noted that the  
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hypervolume contribution of each of the other solutions is independent of the location 
of a reference point. Since the two extreme non-dominated solutions of a two-
objective problem usually have the highest fitness values in most EMO algorithms, 
the location of a reference point has not a large effect on hypervolume-based EMO 
algorithms. 
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    (a) Reference point close to the Pareto front.     (b) Reference point far from the Pareto front. 

Fig. 4. Illustration of the hypervolume contribution of each non-dominated solution 

On the contrarily, in the case of multiobjective problems with more than two objec-
tives, the location of a reference point has a dominant effect as shown in our experi-
mental results on a four-objective problem in Fig. 5 using the hypervolume-based 
EMO algorithm: SMS-EMOA [27]. In our computational experiments, we specified 
the reference point using the maximum value of each objective over all solutions in 
the current population as follows: “The i-th element of the reference point = The max-
imum value of the i-th objective ×  α ” where α is a pre-specified positive constant. 

We performed computational experiments using various specifications of the value 
of α in order to examine the effect of the location of the reference point on the behav-
ior of SMS-EMOA. In Fig. 5, we show the final population of a single run of SMS-
EMOA using each of the following specifications of α : 

(a) The maximum value of each objective × 1.1 (i.e., α = 1.1), 
(b) The maximum value of each objective × 1.0 (i.e., α = 1.0), 
(c) The maximum value of each objective × 10 (i.e., α = 10), 
(d) f1(x) and f2(x): The maximum value of each objective × 1.1 (i.e., α = 1.1), 
      f3(x) and f4(x): The maximum value of each objective × 10 (i.e., α = 10).  

When a reference point is too close to the Pareto front, good solution sets were not 
obtained as shown in Fig. 5 (b). Good result was obtained in Fig. 5 (a) with α = 1.1. 
By increasing the value of α (i.e., by increasing the distance of a reference point to the 
Pareto front), solutions moved to the lines between two points as shown in Fig. 5 (c). 
In Fig. 5 (d), f3(x) and f4(x) are distances from a solution x to the right and bottom 
points, respectively (while f1(x) and f2(x) are distances from a solution x to the left and 
top points, respectively). Many solutions are along the line between the left and top 
points (i.e., a11 and a21) for which the smaller value of α was used in our computa-
tional experiment in Fig 5 (d). 
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          (a) Maximum value × 1.1.  (b) Maximum value × 1.0. 
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Fig. 5. Experimental results of SMS-EMOA with different specifications of a reference point 

4   Results on Test Problems with Multiple Pareto Regions (m > 1) 

Using multiple polygons with the same shape, we can generate multiobjective prob-
lems with multiple equivalent Pareto optimal regions as shown in Fig. 1 (b) in Section 
1. In Fig. 6, we show experimental results of a single run of NSGA-II on the four-
objective problem in Fig. 1 (b). Fig. 6 shows a randomly generated initial population 
(a) and two intermediate populations (b) and (c). From the three plots in Fig. 6, we 
can see that every solution quickly moved to one of the four squares within the first 
10 generations. Then they continued to move in the four squares. We performed com-
putational experiments many times. In some runs, solutions converged to one or two 
squares. In other runs, all the four squares had at least one solution even after 500 
generations. That is, final results were totally different in each run. 

We can also generate test problems with disconnected Pareto regions by using mul-
tiple polygons with different shapes. In Fig. 7, we show experimental results on such 
a test problem. Each plot of Fig. 7 is the final population in a single run of each algo-
rithm on the four-objective test problem with two rectangles. Since the two rectangles 
in Fig. 7 are not equivalent, solutions did not converge into one rectangle. 
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         (a) Initial population.                  (b) 10th generation.                      (c) 20th generation. 

Fig. 6. Experimental results of a single run of NSGA-II on the four-objective problem 
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     (a) NSGA-II.              (b) SPEA2. 
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    (c) MOEA/D.        (d) SMS-EMOA. 

Fig. 7. Results of a single run on a four-objective problem with disconnected Pareto regions 

Since the distribution in the decision space has not been taken into account in the 
design of almost all EMO algorithms, our intention is not to say which EMO algo-
rithm is the best using our test problems but to visually examine the behavior of each 
EMO algorithm for many-objective optimization problems. However, performance 
measures for solution sets in the decision space may be an interesting research issue. 
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5   Conclusions 

We proposed the use of many-objective test problems in a two- or three-dimensional 
decision space in order to visually examine multiobjective evolution for many-
objective problems. Our test problems can be viewed as a generalized version of sin-
gle polygon problems of Köppen & Yoshida [21] and multi-line (or multi-curve) 
problems of Rudolph et al. [22]. It is the main advantage of our test problems (and 
test problems in [21], [22]) that we can visually examine multiobjective evolution in 
the decision space. Whereas we generated test problems in a two-dimensional deci-
sion space for visual examination, it is also easy to generate test problems in a high-
dimensional space by specifying multiple points with the required dimensionality. 
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Abstract. The integration of experts’ preferences is an important as-

pect in multi-objective optimization. Usually, one out of a set of Pareto

optimal solutions has to be chosen based on expert knowledge. A com-

bination of multi-objective particle swarm optimization (MOPSO) with

the desirability concept is introduced to efficiently focus on desired and

relevant regions of the true Pareto front of the optimization problem

which facilitates the solution selection process. Desirability functions of

the objectives are optimized, and the desirability index is used for se-

lecting the global best particle in each iteration. The resulting MOPSO

variant DF-MOPSO in most cases exclusively generates solutions in the

desired area of the Pareto front. Approximations of the whole Pareto

front result in cases of misspecified desired regions.

Keywords: Particle swarm optimization, MOPSO, desirability func-

tion, desirability index, preferences.

1 Introduction

Multi-objective particle swarm optimization (MOPSO) methods are designed
to approximate the Pareto-front by a set of diverse solutions [5,18,19,10,20].
Incorporating the user preferences in the algorithm to find such a set in a desired
area is of high practical usage.

In this paper, we investigate the influence of desirability function (DF) trans-
formations of the objectives in combination with MOPSO. Less desirable solu-
tions are mapped to lower DF values than highly desired ones where a desired
area has to be specified by two points only. The application of DFs allows to
avoid using penalty functions for restricting the objective space, and therefore
the complete set of individuals contributes to the search process. This is of par-
ticular interest as boundary handling methods in MOPSO have a great impact
on the solutions. We first employ a typical MOPSO to find a rough approxima-
tion of the Pareto-front. After obtaining some solution(s) close to a predefined
desired area, the so-called DF-MOPSO approach transforms the objective func-
tions to DFs. In this way, the definitions of personal and global best particles
and the domination criterion change. In DF-MOPSO, there is only one global

R. Schaefer et al. (Eds.): PPSN XI, Part II, LNCS 6239, pp. 101–110, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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best particle which guides the population. This is determined as the particle
with the highest desirability index (DI) among the particles in the population.
DF-MOPSO is tested on several test problems where the desired area is selected
in different parts of the objective space.

The state of the art of the methodology is given in Section 1.1. In Section 2,
we describe MOPSO and explain DFs and DIs as well as our new approach
called DF-MOPSO. The results of the conducted experiments are explained in
Section 3 while conclusions are drawn in Section 4.

1.1 State Of The Art

In [3] and [17] overviews of existing approaches are given for evolutionary multi-
objective optimization algorithms (EMOA). Jaszkiewicz and Branke [11] es-
pecially focus on interactive approaches. Recently, a categorization of existing
approaches with respect to the kind of preference specification required by the
user has been given in [2]. The usage of DFs for focusing on relevant regions of
the Pareto front has already successfully been introduced in combination with
NSGA-II [4,21], both for deterministic as well as noisy environments. Objective
transformations for preference articulation have been discussed by [13] and [23]
in the context of Physical Programming as well, which is a very general but very
complex concept for constructing desired ranges of objective functions.

In MOPSO, using an appropriate guidance scheme is essential for focusing on
relevant regions. A vast majority of methods investigates this aspect by selecting
”global best” or ”personal best” particles for guiding the population towards a
desired area, e.g. [5,18,19,10,20,1]. Interactive MOPSO manipulate global and
personal best particles by replacing or influencing them with selected desired
solutions by the user in each iteration. The first guiding MOPSO is studied by
Mostaghim and Teich in [16] where they give a predefined set of non-dominated
solutions as an input set of global best particles which lead the population to a
desired area. Hettenhausen et al. [8] have investigated a tool for visually guiding
a MOPSO towards a set of selected solutions. In each generation the user is
being asked to select one or more solutions from the current population or the
archive of non-dominated solutions. Only the selected solutions are considered as
the global best solutions and thereby guide the population of the next iteration
towards the desired area. Recently, Wickramasinghe and Li [24] study a MOPSO
in which the user defines one or more preferred solution(s) in the objective space
without worrying about the feasibilities. The solutions closest to the reference
points are selected as the global best solutions in two MOPSO variants.

2 Methodology

2.1 MOPSO

A typical MOPSO contains a population of individuals (usually known as parti-
cles) which update their positions in the search space by moving with a certain
velocity. The velocity of each particle is influenced by a social impact coming
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from the population and the individual experience of the particle. We denote
a set of npop particles as a population Pt in the generation t. Each particle
i has a position defined by xi = {xi

1,x
i
2, · · · ,xi

n} and a velocity defined by
vi = {vi

1, v
i
2, · · · , vi

n} in the search space S. In generation t + 1, the new velocity
and position for each particle i is computed by:

vi
j,t+1 = wvi

j,t + c1R1(PBi
j,t − xi

j,t) + c2R2(GBi
j,t − xi

j,t)

xi
j,t+1 = xi

j,t + vi
j,t+1 (1)

where j = (1, · · · ,n), w is called the inertia weight, c1 and c2 are two positive
constants, and R1 and R2 are random values in the range [0, 1]. In Equation (1)
PBi

t is the best position that particle i could find so far (personal best particle).
It is like a memory for the particle i which gets updated in each generation. One
good strategy for selecting PBi

t is called the newest method [1]. This method
compares the new position of the particle with PBi

t. If PBi
t is dominated by the

new position or if they are indifferent to each other, P Bi
t is replaced by the new

position. In Equation (1), GBi
t is the position of the global best particle selected

for particle i. The global best particle is selected from the set of non-dominated
solutions. In most of the MOPSO methods [18], the non-dominated solutions
are stored in an archive and each particle selects its own global best from the
archive. There are several strategies to find the global best (SMOPSO [5], Epsilon
dominance [19,14], Pareto-dominance Concept [10], Sigma method [15]) which
have a high impact on the diversity and convergence of the solutions. However,
a random selection of the global best from the archive can be used as a simple
strategy for getting close to the optimal front. In addition, diversity preserving
methods are applied to MOPSO in order to avoid particles to converge to lo-
cal optima [25,12]. The well-known turbulence factor [15] randomly reinitializes
some solutions in each generation with a predefined probability.

2.2 Desirability Functions and Indices

The desirability concept was designed by Harrington for industrial multiobjec-
tive quality optimization [7]. Desirability functions (DF) range in [0, 1] and are
based on expert knowledge and preference specification with respect to exem-
plary objective values. The quality of an individual solution in the corresponding
objective increases simultaneously with increasing DF value, which ideally equals
one [21,22]. Thus, a mapping to a unitless scale is performed removing depen-
dencies on scaling issues in optimization. Two types of DFs were introduced,
one suited for minimization or maximization purposes of an objective (one-sided
case), and one for target value optimization (two-sided case). We will concentrate
on the former as a monotonic transformation of the objectives is desired which
does not change the dominance relation. Harrington’s one-sided DF (Figure 1)
for an objective Y is defined as follows:

d(Y ) = exp(− exp(−(b0 + b1Y ))) (2)
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Fig. 1. Two realizations of Harrington’s one-sided DF based on the specified 2-tuples

depicted as black dots

where two 2-tuples of an objective value and a corresponding desirability are
required, denoted by (Y (1), d(1)) and (Y (2), d(2)) (see black dots in Fig. 1) for
the computation of the parameters b0 and b1. Usually, one nearly optimal and
one marginally infeasible objective value are specified reflected by the choices of
d(1) ≈ 0.99 and d(2) ≈ 0.01. The shape of the function is thus determined by the
solutions

b0=− log(− log(d(1)))− b1Y
(1) (3)

b1=(− log(− log(d(2))) + log(− log(d(1))))/(Y (2) − Y (1)) to eqns. (4)
d(i) = exp(− exp(−(b0 + b1Y

(i)))), i = 1, 2 (5)

based on the 2-tuples (Y (1), d(1)) and (Y (2), d(2)) described above. The Desir-
ability Index (DI) reduces the multi-objective optimization problem to a single-
objective optimization problem by a scalarizing function D: [0, 1]k → [0, 1].
Higher DI values correspond to a higher overall quality with respect to the
compromise between the preferences encoded in the DFs. The most common

used DI is the geometric mean of the DFs DGM :=
(∏k

j=1 dj(Yj)
)1/k

.

2.3 DF-MOPSO

An important property of MOPSO is that the selection of the global and personal
best solutions has a great impact on the search mechanism. Suppose that we
select one global best for all the population members. After only one iteration,
the particles move around that selected solution. In DF-MOPSO, we use this
property and find the particle with the highest desirability index value among
the population members. Such a particle is the closest to the preferred area so
far and therefore is a good candidate for being the only global best GBt for the
population Pt.

Like a typical MPOPSO [18], DF-MOPSO is designed as an iterative method
containing an archive At for keeping non-dominated solutions (Algorithm 1).
Starting from a random population Pt (t = 1) and personal best particles the
same as the current positions of the particles PBt, the DF-MOPSO is run for
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Algorithm 1. Desirability MOPSO

P1 := randomPopulation(npop);
PB0 := P1 ;
dominationCriterion := dominationByObjectives;
for t = 1 to ngen do

Evaluate Pi;
At := nonDominatedSolutions(At ∪ Pt, dominationCriterion);
At := filterArchive(At, dominationCriterion);
Calculate desirability function values of solutions in Pt;
Dt := desirabilityIndex(Pt) ;
if max(Dt) > tD then

GBt := Pt[arg maxk=1:npop Dt[k]];
dominationCriterion := dominationByDesirability;

end
else

GBt := RandomIndividual(At);
dominationCriterion := dominationByObjectives;

end
for j = 1 to npop do

PBt[j] := betterIndividual(Pt[j], PBt−1[j], dominationCriterion);
end
Pt+1 := updatePopulation(Pt, GBt, PBt);

end

Algorithm 2. filterArchive

Data: Archive A
Result: Reduced Archive A′′

begin
if dominationCriterion == dominationByDesirability then

A′ := {};
for a ∈ A do

d := desirabilityValues(a);
if max(d) < tdmax or min(d) > tdmin then

A′ := A′ ∪ a;
end

end

end
else

A′ := A ;
end

A′′ := reduceByClustering(A’, namax);
end

ngen generations. After evaluations, the non-dominated solutions from the pop-
ulation are inserted into the archive and hereby update the archive. If the size of
the archive exceeds a certain maximum value (namax), the archive is filtered and
its size is reduced by a clustering method. At this stage the DFs are computed for
all the objectives and the DI values (DGM ) are calculated. Since it usually takes
a few generations for a typical MOPSO to get close to a predefined desired area,
we let the DF-MOPSO algorithm run as a classical MOPSO for several gener-
ations. Since we only need to get close to the optimal front, it is preferable to
select the global best particles randomly from the archive. This typical MOPSO
contains epsilon-domination from [14]. As soon as the maximum DI value in the
population is larger than a certain threshold tD we switch to DF-MOPSO.

We transform the objective functions to the Harrington’s one sided DF func-
tions (2). Hence, from this point the DF-MOPSO algorithm optimizes the
converted functions meaning (1) the definition of domination changes to the
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transformed functions, (2) the selection of personal best solutions is based on
the transformed objective values and (3) the solution with the largest DI value
is selected as the only global best for the population. Algorithm 1 describes DF-
MOPSO in detail. Algorithm 2 is meant to filter the archive. In case of using the
normal domination criterion (classical MOPSO), this algorithm only reduces the
size of the archive to the maximum size nmax. In case we perform DF-MOPSO,
only solutions with DF values between tdmin and tdmax are inserted into the
archive.

3 Experiments

We analyze MOPSO and DF-MOPSO on the test functions FF [6], shifted ZDT1
(S-ZDT1) and S-ZDT2 [9] which are known to have higher complexity than the
classical ZDT functions. The following parameter settings were determined to be
reasonable based on preliminary runs: inertia weight w = 0.4, turbulence factor
tf = 0.1, DI threshold tD = 0.2, population size 100 and maximum archive size
100.

The user preferences are defined as areas specified by two points for each
objective function separately. These are assigned the DF values of 0.01 and
0.99. In the experiments, we first suppose that we know the Pareto front and
three preferred areas are defined as left, middle and right parts of the front.
With these experiments, we analyze the convergence and the diversity of the
solution sets found. Since in reality the Pareto front is usually unknown to the
user, we additionally test the DF-MOPSO by specifying (a) an area dominated
by the front and (b) an infeasible area dominating the Pareto-front denoted.
The (a) and (b) variations are denoted as upper and lower in the results. Ten
runs of MOPSO and DF-MOPSO with 5000 function evaluations (FE) each are
conducted for each combination of test function and desired area.

3.1 Results

Figure 2 shows histograms of the nondominated solutions in the final front of all
runs for each pair of test function and focused part of the front. The boundaries
of the desired areas of the objective functions Y1 and Y2, i.e. objectives with DF
values in [0.01, 0.99], are visualized by red lines. It becomes obvious that the
DF-MOPSO is able to efficiently focus on the desired part of the front. Only a
very small proportion of solutions falls outside the specified boundaries.

In case the desired regions are located outside the front, the histograms are re-
placed by a visualization of the objective space where the desired region, the true
Pareto front and the generated nondominated solutions of all runs are plotted.
This is a more adequate means to analyse the performance of the DF-MOPSO
in these cases as the solutions cannot (lower) or should not (upper) concentrate
in the desired regions for both objectives simultaneously. For S-ZDT1 and S-
ZDT2 lower and upper regions do not prevent the DF-MOPSO from finding
the true Pareto front nevertheless. Thus, the algorithm does not get stuck in
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Fig. 2. Results of DF-MOPSO for the selected test functions and focused regions
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Fig. 3. Boxplots of HV of the final populations in percentage of HV of true front

presented by the horizontal line. Median numbers of solutions in the desired region are

given at the bottom.

suboptimal solutions or concentrate on inadequate regions of the front which
are not intended to be focused. The behaviour of DF-MOPSO for the FF func-
tion is slightly different as in this case no solutions at the ”edges” of the front
are generated, both for the upper and the lower case. This, however, is due to
the disability of the classical MOPSO to find solutions in these regions. The
Pareto front approximation of the classical MOPSO for the FF function looks
very similar to the generated solutions in the lower case.

Boxplots of the dominated hypervolumes (HV) of the final fronts – in percent-
age of the HV of the true Pareto front – reflect the quality of the solutions in the
desired area and the performance of DF-MOPSO (Figure 3). The reference point
ref for the HV computation is chosen as the boundary values of the desired re-
gion in each dimension, i.e. ref = (Y (2)

1 ,Y
(2)
2 ) with respect to (3). Therefore, the

analysis is only meaningful for the right, left and middle case, and only solutions
in the desired area are taken into account. This way the quality of the focus on
the region as well as the proximity to the true front becomes visible. Results
of 10 runs of a classical MOPSO are shown as well. The DF-MOPSO always
generates an extremely higher number of solutions in the desired area than the
classical MOPSO as no resources are wasted. We can see the disability of the
classical MOPSO to focus on the edges of the front of the FF function as e.g.
in the left region no solutions are generated. Furthermore, DF-MOPSO clearly
outperforms the classical MOPSO with respect to the HV of the final fronts in
all cases but the middle setting of FF.
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4 Conclusions and Outlook

The MOPSO variant DF-MOPSO based on the integration of desirability con-
cepts is designed to generate nondominated solutions in relevant regions of the
true Pareto front which extremely facilitates the solution selection process after
optimization. Solutions are much denser in this region than in classical MOPSO
as no resources are wasted in regions of the objective space which are unim-
portant to the expert. Experimental results on standard test functions show the
ability of DF-MOPSO to efficiently focus on the desired region of the front. Even
in case the true front and the desired region do not overlap due to incomplete
or insufficient knowledge of the underlying optimization problem the algorithm
does not get stuck in suboptimal regions but generates a complete approximation
of the true Pareto front.

In future work we will investigate how the results generalize to higher dimen-
sional optimization problems and how a covering of the whole Pareto front can
be realized by a parallelization of MOPSO and dynamically setting the focus to
different areas of the front by using desirability functions.
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Abstract. In this paper, a GPGPU (general purpose graphics process-

ing unit) compatible Archived based Stochastic Ranking Evolutionary

Algorithm (G-ASREA) is proposed, that ranks the population with re-

spect to an archive of non-dominated solutions. It reduces the complexity

of the deterministic ranking operator from O(mn2) to O(man)� and fur-

ther speeds up ranking on GPU.

Experiments compare G-ASREA with a CPU version of ASREA and

NSGA-II on ZDT test functions for a wide range of population sizes.

The results confirm the gain in ranking complexity by showing that on

10K individuals, G-ASREA ranking is ≈ ×5000 faster than NSGA-II

and ≈ ×15 faster than ASREA.

1 Introduction

In the last two decades, the field of multi-objective optimization (MOO) has
attracted researchers and practitioners to solve real world optimization prob-
lems that involve multiple objectives with a set of solutions known as Pareto-
optimal solutions. Many optimization algorithms exist in the literature for MOO
problems, but the heuristic population based algorithms (also known as multi-
objective evolutionary algorithms (MOEAs)) are most suitable to evolve trade-
off solutions in one run [1,2].

Though many MOEAs have been developed, there are only a few dominance-
ranking based algorithms that are really effective to solve MOO problems. Mostly,
these MOEAs differ in their ranking methods which helps to select and propa-
gate good individuals to the next iteration. According to [2], dominance ranking
methods can be categorized by dominance rank, dominance count and dominance
depth. MOGA [3] and NPGA [4] use a dominance rank method by checking the
number of solutions that dominate an individual. NSGA-II [5] sorts individuals
according to dominance depth, using the concept of non-dominated sorting [6].
SPEA2 [7] assigns rank, based on dominance depth and dominance count, where
the count of dominated individuals by an individual is used. PESA-II [8] is based
� Where, m = nb. of objectives, n = population size and a = archive size.

R. Schaefer et al. (Eds.): PPSN XI, Part II, LNCS 6239, pp. 111–120, 2010.
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on dominance count, and uses an archive of non-dominated solutions. All these
dominance-based methods evaluate rank serially in a deterministic way (except
NPGA), with a quadratic ranking complexity on the population size (O(mn2)
for NSGA-II, where m is the number of objectives and n the population size).

For solving many objective problems [1,2] or Genetic Programming with more
than one objective (error minimization and parcimony [9]), a very large popu-
lation is often required which takes time to both rank and evaluate. However,
the advent of General Purpose Graphic Processing Units (GPGPUs) allow to
evaluate very large populations in parallel [10]. In [11], the dominance sorting
of NSGA-II has been implemented on GPU, but the sorting of individuals in
different fronts is still done on CPU. Although this is the first appreciable effort
of parallelizing MOEA on GPUs, this paper does attempt to reduce NSGA-II’s
O(mn2) ranking complexity.

In [12], we have developed a MOEA called ASREA (Archive based Stochastic
Ranking Evolutionary Algorithm) with an O(man) ranking complexity (where
a is the size of an archive, that depends on the number of objectives m) which
breaks the O(mn2) complexity, while yielding improved results over NSGA-II.

The present paper shows how ASREA can be fully parallelized, by performing
ranking and function evaluation on the GPU. The details of G-ASREA (GPU-
based ASREA) are discussed in section 2 followed by experimental results in
section 3, in which ranking time and function evaluation of G-ASREA are com-
pared with serial versions of ASREA and NSGA-II. The paper is concluded in
section 4.

2 GPGPU Compatible ASREA (G-ASREA)

In [12], the Archive-based Stochastic Ranking Evolutionary Algorithm (ASREA)
was shown to converge to the Pareto-optimal front at least as well as NSGA-
II and SPEA2, while reaching the front much faster on two-objectives ZDT
functions and three-objectives DTLZ functions.

However, the archive updating rule during stochastic ranking is based on
CPU serial operations, making the ranking operator difficult to parallelize. This
paper shows how it is possible to address this problem, and make ASREA fully
GPU-compatible.

2.1 GPGPU

A GPGPU is a General Purpose Graphics Processing Unit, which is a high-
performance multithread many-core processor. GPUs have originally been de-
veloped for computer graphics, but today’s GPUs are capable of performing
parallel data computing with support for accessible programming interfaces and
industry-standard languages such as C [13]. nVidia GPUs can be programmed
using CUDA, which is a general purpose parallel computing architecture, that
allows to use the many cores in NVIDIA GPUs to run other algorithms than
graphic rendering algorithms. Interested readers may refer to the CUDA pro-
gramming guide [14].
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2.2 Description of the Algorithm

ASREA is an archive-based MOEA that starts with evaluating a random initial
population (ini pop). The distinct non-dominated individuals of ini pop are
copied to the archive according to an archive updating algorithm 1 described
later in this section. As seen in fig. 1, ini pop is copied to parent pop and a
rather standard EA loop starts, by checking if a termination criterion is met.

If it is not, a child pop is created by repeatedly selecting randomly two par-
ents from the parent−pop, and creating children through a crossover, followed
by a mutation (in this paper, a standard SBX crossover is used, followed by a
polynomial mutation [15]), after which the child pop is evaluated.

Function evaluation on the GPU: Function evaluation (FE) is one of the
most time consuming parts of MOEAs and can be easily parallelized on GPUs.
In order to perform FE, a single float array X of size vm is allocated in the global
memory of the GPU, where v is the number of variables and m is the number of
objectives. The variable set of child pop is then copied to X as shown in fig.
2. At the same time, a single float array OBJ of size mn (where n is the child
population size) is also allocated in the global memory of the GPU, in order to
store the objective function values of child pop, that are computed in parallel
by the single instruction multiple data (SIMD) GPU function evaluation kernel.

child_pop

parent_pop

child_pop

criterion met?
Is the stopping

solutions
non−dominated
Choose the 

Terminate

Archive
updating

rules

Archive (arch_pop)

mixed_pop = child_pop +
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Selection strategy

mixed_pop = child_pop +
arch_popupdated

Yes
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Random Initial population

Stochastic ranking of
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Fig. 1. ASREA flowchart
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Now, comes the time to rank child pop. ASREA’s ranking operator [12]
reduces the typical ranking complexity of deterministic algorithms such as NSGA-
II from O(mn2) to O(man) (where m is the number of objective, n is the pop-
ulation size and a is the archive size) by comparing individuals of child pop
with the members of the archive. The rank of individual (A) of child pop is
calculated on the following dominance rank criterion:

rank(A) = 1 + number of arch pop members that dominate A (1)

Note that in ASREA, the lower rank is better, with best rank = 1. The rank-
ing procedure discussed above makes the difference in the working principle of
ASREA from other MOEAs, and specially the archived-based ones, in which
the archive/parent and current offspring populations are mixed, after which the
rank is assigned deterministically [5,7] or every individual of child population
is checked for non-domination to become a member of archive [8]. However in
ASREA, the archive is used to assign the rank to child pop.

In this paper, the serial portion of ASREA’s ranking operator is modified to
make it compatible with parallel execution on a GPGPU.

Parallel SIMD ranking on GPU: At this point, CR, another integer array
of size n (allocated in the global GPU memory at the same time as the OBJ
array) is used for storing the rank of child pop. Suppose the thread processor
idx computes the rank of a child pop individual using equation 1, then it stores
the calculated rank at position idx of CR.

During the ranking on GPU, each thread processor also keeps track of the
domination count of arch pop, independently. For this, another single integer
array AR of size a× n is allocated in the global GPU memory before execution.
Note that the array is initialized to value 1 because all members of arch pop are
rank 1 solutions. When an individual of thread processor idx dominates the kth

member of arch pop, then the thread processor increments AR[(a × idx) + k]
by 1. This dominance check information is used later, to update ranks in the
archive.

After parallel stochastic ranking is finished on the GPU, objective function
values and ranks of the child pop are updated by copying OBJ and CR back to
the CPU. The rank of the archive is also modified using array AR in the following
manner: suppose that the modified rank of the kth member of the archive is
evaluated. Then, for i = 0 to n − 1, the integer value of every AR[(i × a) + k]
is added and finally subtracted by n. If the kth member is still non-dominated,
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if Number of non-dominated solutions ≤ archive size then
Copy distinct non-dominated solutions to archive;

else
Copy the extreme solutions of non-dominated front to archive and evaluate

crowding distance (CD [5]) of rest of the non-dominated solutions. Fill the

remaining archive with the sorted CD-wise individuals in descending order;

end

Algorithm 1. Archive updating rules

Copy the extreme solutions of updated arch pop to the parent population.

Fill 20% of parent pop from the updated arch pop in the following way:

while (20% of parent pop is not filled) do
Pick randomly two individuals of updated arch pop;

if Crowding distances are different then
Copy the individual with larger crowding distance into parent pop;

else
Copy any individual randomly;

end

end
Fill rest of parent pop from child pop in the following way:

while (rest of parent pop is not filled) do
Pick two individuals randomly from child pop without replacing them;

if Ranks are different then
Copy the individual with smaller rank into parent pop;

else
Copy the individual with larger crowding distance into parent pop;

end

end

Algorithm 2. Selection strategy to fill the parent pop

then its modified rank is 1. Otherwise, the rank of the kth member depends on
the number of child pop individuals who dominated it.

Replacement Strategy. The next step of ASREA is then to update the
archive and propagate good individuals to the next generation. First, the ranked
child pop and arch pop with modified ranks are mixed together to form
mixed pop. Now, the archive is updated from the set of non-dominated so-
lutions (rank = 1) of mixed pop as given in algorithm 1.

The next generation (new parent population) is also selected from mixed pop
according to the strategy discussed in algorithm 2. Here, 20% of the new parent
population is filled from the updated archive with randomly picked members.
The rest of parent pop is filled from child pop individuals using tourna-
ment selection. The EA loop is then completed and can start again, by checking
whether a termination criterion is met (e.g. number of generations) as in fig. 1.
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2.3 Salient Features of G-ASREA

The first important feature of G-ASREA comes from its reduced ranking com-
putational complexity O(man) and its implementation on GPGPU for assigning
rank to the population by dominance check.

A second important feature of G-ASREA is its inherent ability to preserve
diversity in the population. This comes when the not-so-good individuals of
child pop may nevertheless obtain a good rank (including rank = 1) because
they are only compared with the archive of limited size. Had the ranking method
been deterministic, then these not-so-good individuals would not have made
it into the next generation and it may have been necessary to implement a
diversity preserving scheme in order to avoid premature convergence. This is
why ASREA’s ranking procedure is stochastic.

Another feature of G-ASREA is the drastic but subtle selection strategy that
is used to propagate good individuals to the next iteration. Finally, G-ASREA
also uses the GPU for function evaluation.

3 Experimental Results

In this paper, five Zitzler-Deb-Thiele functions [16] (summarized in appendix A)
are chosen to effectively compare G-ASREA over CPU versions of ASREA and
NSGA-II on different population sizes. Every MOEA is run for 25 times using
different seeds and average computation time of ranking and function evaluations
are shown. Note that G-ASREA’s computation time includes copy of data from
CPU to GPU, computation on GPU and copy back the data from GPU to CPU.
All ZDT functions are executed with identical parameters of MOEAs (cf. table
1) on Intel(R) Core(TM)2 Quad CPU Q8200 @ 2.33GHz computer with one of
the 2 GPUs of a GTX295 card.

Algorithms ranking complexity (such as O(mn2) or O(man)) correspond to
the worst case, which may not appear in a real life. Beyond their theoretical com-
plexity, it is therefore important to assess the complexity of algorithms on real
world problems, or at least benchmarks that are supposed to exhibit behaviors
encountered in real world problems.

Table. 2 shows the average number of ranking comparisons with NSGA-II, AS-
REA and G-ASREA for ZDT functions over different population sizes (100 to
100,000). Depending on the problems and their Pareto fronts, different compari-
son counts are observed for a same algorithm (354.106 comparisons for NSGA-II
with 10,000 individuals on ZDT1, compared to 3, 808.106 comparisons for the
same algorithm and same population size on ZDT2).

Table 1. Common parameters for all tested algorithms

No. of generations 100
Individual Xover prob 0.9
Individual Mut prob 1.0
Distrib crossover index 15

Variable Xover prob 0.5
Variable Mut prob 1/(no. of var)
Distrib mutation index 20
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Table 2. Real number of ranking comparisons for different population sizes

Problems ZDT1 ZDT2
Pop↓ MOEAs→ NSGA-II ASREA G-ASREA NSGA-II ASREA G-ASREA

100 1.17 E6 198,463 198,260 968,464 189,059 189,970
1,000 77.8 E6 2.17 E6 2.17 E6 65.2 E6 2.08 E6 2.07 E6
10,000 354 E6 26.2 E6 26.2 E6 3,808 E6 23.9 E6 23.8 E6
100,000 - 413 E6 413 E6 - 346 E6 342 E6

ZDT3 ZDT4 ZDT6
NSGA-II ASREA G-ASREA NSGA-II ASREA G-ASREA NSGA-II ASREA G-ASREA
1.19 E6 198,073 197,940 729,419 181,269 179,710 753,581 191,993 189,120
79.8 E6 2.15 E6 2.15 E6 43.8 E6 1.98 E6 1.98 E6 45.3 E6 2.06 E6 2.05 E6
522 E6 25.5 E6 25.5 E6 2382 E6 22.9 E6 22.9 E6 2395 E6 23.5 E6 23.1 E6

- 392 E6 391 E6 - 330 E6 330 E6 - 372 E6 337 E6

Table 3. Ranking comparison time (in sec.) and speed-up ratio of MOEAs over wide

range of population

Problem ZDT1 Speedup ratio
Pop↓ MOEAs→ NSGA-II (N) ASREA (A) G-ASREA (G) N/A ratio N/G ratio A/G ratio

100 0.000573 0.000101 0.000119 5.6732 4.8151 0.8487
1000 0.037833 0.000999 0.000162 37.8708 233.5370 6.1666
10000 4.304927 0.009971 0.000817 431.7447 5269.1884 12.2044
100000 - 0.098142 0.007011 - - 13.9983

1000000 - 0.974255 0.065586 - - 14.8546

Problem ZDT2 Speedup ratio
Pop↓ MOEAs→ NSGA-II (N) ASREA (A) G-ASREA (G) N/A ratio N/G ratio A/G ratio

100 0.000481 0.000097 0.000116 4.9587 4.1466 0.8362
1000 0.031627 0.000998 0.000160 31.6903 197.6688 6.2375
10000 3.105234 0.009884 0.000813 314.1677 3819.4760 12.1575
100000 - 0.097470 0.006991 - - 13.9422

1000000 - 0.972147 0.065659 - - 14.8059

Problem ZDT3 Speedup ratio
Pop↓ MOEAs→ NSGA-II (N) ASREA (A) G-ASREA (G) N/A ratio N/G ratio A/G ratio

100 0.000574 0.000103 0.000121 5.5728 4.7438 0.8512
1000 0.038939 0.001014 0.000162 38.4013 240.3641 6.2592
10000 4.538463 0.009968 0.000834 455.3032 5441.8021 11.9520
100000 - 0.098616 0.007113 - - 13.8641

1000000 - 0.992453 0.067140 - - 14.7818

Problem ZDT4 Speedup ratio
Pop↓ MOEAs→ NSGA-II (N) ASREA (A) G-ASREA (G) N/A ratio N/G ratio A/G ratio

100 0.000374 0.000094 0.000115 3.9787 3.2521 0.8173
1000 0.020379 0.000952 0.000160 21.4065 127.3687 5.9500
10000 1.159553 0.009277 0.000866 124.9922 1338.9757 10.7124
100000 - 0.092044 0.006947 - - 13.2492

1000000 - 0.920826 0.066112 - - 13.9283

Problem ZDT6 Speedup ratio
Pop↓ MOEAs→ NSGA-II (N) ASREA (A) G-ASREA (G) N/A ratio N/G ratio A/G ratio

100 0.000372 0.000105 0.000120 3.5428 3.1000 0.8750
1000 0.021340 0.001071 0.000161 19.9253 132.5465 6.6521
10000 1.161053 0.009821 0.000829 118.2214 1400.5464 11.8468
100000 - 0.095291 0.006969 - - 13.6735

1000000 - 0.947676 0.066241 - - 14.3064

Significant differences can be seen with ASREA and G-ASREA over NSGA-
II, which increase drastically with larger populations, confirming the difference
shown by their respective O(man) and O(mn2) complexities (small differences
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are observed between ASREA and G-ASREA because the algorithms were run
with different seeds).

ASREA and G-ASREA are further tested for 100, 000 individuals (Genetic
Programming typical population sizes) where they show a comparable number
of ranking comparisons than NSGA-II for 10, 000. NSGA-II was not tested for
100, 000 individuals over 25 different runs because it took 19.2 hours for just one
single run on a ZDT1 function.

ASREA algorithms are not only frugal on comparisons, but G-ASREA can
parallelize the ranking (and evaluation) over the GPU processors, allowing for
the speedups shown in Table 3, in which the average time of ranking comparison
per generation of NSGA-II, ASREA and G-ASREA are given. The N/A and
N/G ratios represent speedup of ASREA and G-ASREA over NSGA-II. N/A
speedup ranges from 3.54 to 455.3, whereas N/G speedup ranges between 3.1 to
5, 441 for 10,000 individuals.

For 10, 000 to 1 million1 population, G-ASREA shows the speedup between
10 to 15 over CPU-ASREA (cf. table 3). The study [11] also showed the same
range of speedup in ranking comparison for dominance check on ZDT functions.
However, the speedup is limited to this range for two-objective problems because
the dominance check of G-ASREA concerns only parallelization of ranking com-
parisons on the GPU. Nevertheless, if the number of comparisons increases for
many objective optimization, then the speedup for dominance check can further
increase.

G-ASREA’s ranking operator offers a twofold advantage: first, the speedup
comes from the smaller ranking complexity over NSGA-II. Then, another ad-
vantage comes by being able to perform ranking comparisons on GPU.

Table 4. Function evaluation time (in seconds) of serial and GPU ASREA

Problems ZDT6 Speedup
Pop↓ MOEAs→ ASREA G-ASREA ratio

100 0.00053 0.000119 0.4453
1000 0.00521 0.000161 3.2360
10000 0.004798 0.000816 5.8821
100000 0.04728 0.006921 6.8319
1000000 0.4785 0.06526 7.3322

Function evaluation time can also benefit from being run on the GPU. How-
ever, this aspect is already studied in several papers [17,11], so only the compu-
tation time for ZDT6 is shown in table 3. The speedup is not impressive because
the ZDT6 function is not computationally intensive (speedups of up to ×250
have been obtained on GP function evaluations in [10]).

This paper is not so much concerned with solving the ZDT benchmarks (this
can be done with hundreds of individuals only [12]) than to study and minimize
the bottleneck induced by the ranking operator that may limit the usage of very
large populations in multi-objective optimization problems.
1 Note that only one run is performed for 1 million individuals on each ZDT function.
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4 Conclusions and Future Work

The advent of massively parallel GPGPU cards allows to parallelize the evalua-
tion of very large populations in order to solve complex optimization problems.
In MOEAs, the bottleneck then becomes the multi-objective ranking stage. In
this paper, a GPGPU compatible stochastic ranking operator is proposed that
not only requires fewer comparisons for dominance check, but that can paral-
lelize on the GPU card to assign the rank of population. G-ASREA’s benefit
in ranking complexity is verified as speedups of ≈ ×5000 are observed over
dominance sorting of NSGA-II on CPU on a population of 10,000 individuals.
However, the speedup was limited to ≈ ×15 over ASREA for a large population
on two-objective problems because the dominance check of G-ASREA concerns
only parallelization of ranking comparisons on the GPU.

A future research work will address G-ASREA’s clustering method, in order to
make it GPGPU compatible so as to obtain further speedups over ASREA and
also, to solve many objective problems for which the current crowding distance
clustering operator is not very effective. Further investigation is required on the
size of archive for many objective problems.
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A Test Functions

Problem definition [16]: Minimize Γ (x) = (f1(x1), f2(x)); subjected to: f2(x)
= g(x2, ....,xm)h(f1(x1), g(x2, ....,xm)), where x = (x1, ...,xm)

Functions Properties
ZDT1: f1(x1) = x1, g(x2, ...., xm) = 1 + 9.

∑m
i=2 xi/(m − 1),

h(f1, g) = 1 −√f1/g, where m = 30, and xi ∈ [0, 1]

Convex Pareto-Optimal (P-O)
front

ZDT2: f1(x1) = x1, g(x2, ...., xm) = 1 + 9.
∑m

i=2 xi/(m − 1),

h(f1, g) = 1 − (f1/g)2, where m = 30, and xi ∈ [0, 1]

Non-convex P-O front

ZDT3: f1(x1) = x1, g(x2, ...., xm) = 1 + 9.
∑m

i=2 xi/(m − 1),

h(f1, g) = 1 −√f1/g − (f1/g) sin(10πf1), where m = 30, and xi

∈ [0, 1]

Discontinuous convex P-O front

ZDT4: f1(x1) = x1, g(x2, ...., xm) = 1 + 10(m−1)+
∑m

i=2(x
2
i −

10 cos(4πxi)), h(f1, g) = 1 −√f1/g, where m = 10, x1 ∈ [0, 1],
and x2, ..., xm ∈ [−5, 5]

219 local optimal P-O fronts
(Multi-modal)

ZDT6: f1(x1) = 1 − exp(−4x1) sin6(6πx1), g(x2, ...., xm) = 1 +
9.(
∑m

i=2 xi/(m − 1))0.25, h(f1, g) = 1 − (f1/g)2, where m = 10,
and xi ∈ [0, 1]

1. Non-uniform distribution of P-
O solutions; 2. Lowest density
near the front and highest away
from the front

http://gpgpu.org/
http://developer.nvidia.com/object/cuda.html
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Abstract. This paper proposes the hybrid Indicator-based Directional-

biased Evolutionary Algorithm (hIDEA) and verifies its effectiveness

through the simulations of the multi-objective 0/1 knapsack problem.

Although the conventional Multi-objective Optimization Evolutionary

Algorithms (MOEAs) regard the weights of all objective functions as

equally, hIDEA biases the weights of the objective functions in order to

search not only the center of true Pareto optimal solutions but also near

the edges of them. Intensive simulations have revealed that hIDEA is able

to search the Pareto optimal solutions widely and accurately including

the edge of true ones in comparison with the conventional methods.

Keywords: Multi-objective optimization, evolutionary algorithm,

indicator, multi-objective knapsack problem.

1 Introduction

Recently, the several methods of the Multi-objective Optimization Evolutionary
Algorithm (MOEA) are proposed, and have been much paid attention on as the
methods to solve the multi-objective optimization problem effectively. However,
it is easy for the conventional MOEAs (e.g., Elitist Non-Dominated Sorting Ge-
netic Algorithm (NSGA-II)[5]) to find the center of solutions, while it is hard
for them to find the edge of the Pareto optimal solutions. This problem on the
search causes by considering the objective functions equally when exploring the
solutions, and this characteristic becomes serious problem when the whole of the
true Pareto optimal solutions should be found as much as possible.

To overcome this problem, this paper proposes the hybrid Indicator-based
Directional-biased Evolutionary Algorithm (hIDEA), which is extended from
Indicator-Based Evolutionary Algorithm (IBEA)[3] that explores the solutions
by employing Indicator which evaluates the dominant-subordinate relationship
between two individuals to determine the fitness. In detail, hIDEA optimizes
the solutions from the viewpoint of one objective function as the single-objective
optimization in the beginning of the search, and gradually shifts to the multi-
objective optimization. Concretely, hIDEA changes the weight parameter which

R. Schaefer et al. (Eds.): PPSN XI, Part II, LNCS 6239, pp. 121–130, 2010.
c© Springer-Verlag Berlin Heidelberg 2010



122 T. Shimada et al.

is required to calculate Indicator i.e., the weight of the focused objective function
comparing with others. This mechanism contributes to find the Pareto optimal
solutions in a certain objective function, which becomes the trigger to find the
other Pareto optimal solutions. This approach is the completely different from
the conventional methods that explores the Pareto optimal solutions by consid-
ering all objective functions equally. In particular, hIDEA has the great poten-
tial of finding one of the Pareto optimal solutions by focusing on one objective
function, while the conventional methods cannot guarantee it. To investigate
the effectiveness of hIDEA, this paper compares hIDEA with the conventional
methods through the multi-objective 0/1 knapsack problem.

This paper is organized as follows. Section 2 explains the introduction of the
multi-objective optimization, and the details of hIDEA are described in Sec-
tion 3. hIDEA is compared with the conventional methods through the multi-
objective 0/1 knapsack problem in Section 4, and Section 5 discusses the results.
Finally, our conclusion is given in Section 6.

2 Multi-Objective Optimization

The multi-objective optimization[4] searches the solutions in the trade-off rela-
tionship among a number of the objective functions (e.g., if an objective function
value is good, the others become bad value). It is formulated as Eq. (1).{

max(min) fi(x1,x2, · · · ,xn) (i = 1, · · · , k)
subject to gj(x1,x2, · · · ,xn) ≤ 0 (j = 1, · · · ,m) (1)

In Eq. (1), the solutions are optimized from the viewpoint of k objective functions
under m conditions using n decision variables. The basic algorithm of MOEA
repeats evaluation, selection, crossover and mutation as the evolution of the
population (i.e., solutions). In this cycle, MOEA keeps the good solutions in one
generation as the archived solutions.

Typical methods of MOEA include NSGA-II (Elitist Non-Dominated Sorting
Genetic Algorithm)[5] and IBEA(Indicator-Based Evolutionary Algorithm)[3].
NSGA-II is based on the ranking from the Pareto front by the non-dominated
sort and the tournament selection with the crowding distance which selects the
solutions with less crowding than others to search widespread solution space.
IBEA, on the other hand, evaluates each solution using the fitness calculated
by Indicator which treats the solutions in the same Pareto front differently by
biasing them in objective function.

3 Hybrid Indicator-Based Directional-Biased
Evolutionary Algorithm

3.1 Overview

As the basic mechanism, the hybrid Indicator-based Directional-biased Evolu-
tionary Algorithm (hIDEA) is based on the directional-biased search by changing
the weight of objective functions.
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3.2 Directional-Biased Search

In the beginning of the search, hIDEA optimizes the solutions from the viewpoint
of one objective function as the single-objective optimization and gradually shifts
to the multi-objective optimization by changing the weight parameter α required
to calculate Indicator which shows dominant-subordinate relationship between
two solutions, and which is used for calculating the fitness. This mechanism
enables hIDEA to find the optimal solution by biasing one objective function
as shown in Fig.1, which shows the example of the optimization between two
objective functions with the directional-biased search. In this figure, the objective
function 1 is represented by f1, while the objective function 2 is represented
by f2. Concretely, (1) hIDEA optimizes the edge of the solution area as the
single objective optimization in the beginning of the search, and then (2) hIDEA
gradually explores the solutions toward the other functions.

3.3 Indicator Calculation

Indicator function used in IBEAε+[3] is calculated by Eq.(2).

I(A,B) = minε {fi(A) + ε ≥ fi(B)} (∀i ∈ {1, · · · ,m}) (2)

Indicator I(A,B) is defined as the shortest distance ε, i.e., the length required for
the individual A to dominate the individual B. Here, smaller I(A,B) is better
for individual A. To calculate Indicator biased on one objective function, we
improve this equation as shown in Eq.(3).

I(A,B) = min
ε

{
αfi(A) + ε ≥ αfi(B) (∀i ∈ {1, · · · ,m|i �= j})
fj(A) + ε ≥ fj(B) (3)

This equation means that hIDEA changes the bias of evaluation for the solu-
tions by changing the weight parameter α. In detail, hIDEA considers only one
function fj (i.e., it does not consider the other objective functions) by setting
α to nearly 0 (α ≈ 0) in the beginning of the search, which executes the sin-
gle objective optimization for one objective function. For example, Indicator is
calculated when α ≈ 0 as shown in Fig.2. Concretely, in the case of the non-
dominant relationship where some objective function values of one individual are

Fig. 1. Overview of directional-biased search
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better than the others, Indicator is calculated by only f2 value as Fig.2(a). In
the case of the dominant relationship where all objective function values of one
individual are better than the others, on the other hand, Indicator is also calcu-
lated by only f2 as Fig.2(b). Indicator which evaluates how much x is stronger
than y is I(x,y), while Indicator which evaluates how much y is stronger than
x is I(y,x). In Fig.2(a), the Indicator of IBEA is calculated by considering re-
lationship between x and y, however, the Indicator of hIDEA is calculated by
considering relationship between x′ and y′ since f1 is not considered (because
of α ≈ 0). Consequently, when the original Indicator is calculated as I(x,y) = l
and I(y,x) = m, the Indicator of hIDEA is calculated as the shortest distance
between x′ and y′, which are I(x′,y′) = −m′ and I(y′,x′) = m′, meaning that
x is better than y. This indicates that hIDEA calculates Indicator of each so-
lution by only f2 in the beginning of the search (α ≈ 0). Fitness is calculated
by following equation used in [3] with weighted Indicator value (i.e., Indicator
calculated by using α).

F (x) =
∑

y∈P\{x}
−e−I(x,y)/κ (4)

In this equation, P , κ, x, and y indicate the population, the fitness scaling
factor which avoids Indicator value from being divergence, the individual x, and
individual y, respectively.

(a) Non-dominant relationship (b) Dominant relationship

Fig. 2. Indicator calculation

3.4 Hybrid Indicator-Based Directional-Biased Search

Directional-biased Search: Although the algorithm of hIDEA is almost the
same as IBEA, the different mechanisms are summarized as follows: (1) to update
α and (2) to execute the directional-biased search in parallel with the separated
populations. The details of the algorithm of the directional-biased search for each
objective function is described as follows. Note that the input parameter s, N ,
and κ indicate the population size, the maximum number of generation, and the
fitness scaling factor, respectively, while the output parameter A indicates Pareto
optimal solutions. Other parameters t, Q, and R indicate the generation counter,
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the population after operated crossover and mutation operations, population
which merges P with Q, respectively.

Step1. Initialization
Generate an initial population P (size s)Cand set the generation counter t to
0.

Step2. Fitness assignment

1. Determine upper bound bi and lower bound bi for each objective function
fi D

bi = max
x∈P

fi(x)

bi = min
x∈P

fi(x)
(5)

2. Scale each objective function to the interval [0, 1]D

f ′
i(x) = (fi(x)− bi)/(bi − bi) (6)

3. Calculate Indicator using f ′(x) from Eq.(6) instead of f(x).

I(x,y) = min
ε

{
αf ′

1(x) + ε ≥ αf ′
1(y)

f ′
2(x) + ε ≥ f ′

2(y) (7)

4. Determine the maximum absolute indicator value cD

c = max
x,y∈P

|I(x,y)| (8)

5. Calculate fitness for all individualD

F (x) =
∑

y∈P\{x}
−e−I(x,y)/(c·κ) (9)

Step3. Save archive
Copy initialized population to empty population QtDPt keeps previous solu-
tionsD

Step4. Selection
Select parents from QtD

Step5. Crossover and mutation
Crossover the parents from Qt to create their children and mutate the chil-
dren.

Step6. Fitness assignment
Merge Pt with Qt to create Rt which size is 2s. Assign fitness to Rt as the
same as Step2.

step7. Environmental selction
Until the size of Rt become s, continue the following steps.
1. Select the individual x∗ having the least fitness F .
2. Delete x∗ from Rt.
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3. For all individuals x in Rt, renew the fitness F using the following equa-
tion. “c” is as same as calculated in Step 2.

F (x) = F (x) + e−I(x∗,x)/(c·κ) (10)

Step8. Save archive
Add 1 to the generation counter t and copy Rt to Pt+1. If t > N , stop and
output Pareto optimal solutions A, which is Pt+1 as the final Pareto set. If
t < N , on the other hand, copy Pt+1 to empty population Qt+1.

Step9. Update α
Update α by increasing it and back to Step4.

Algorithm of hIDEA: The whole algorithm of hIDEA that employs the
directional-biased search is explained. hIDEA executes the directional-biased
search in parallel for each objective function. The algorithm of hIDEA is de-
scribed as follows. First, the population is separated as the sub-population
equally and executes the directional-biased search for the sub-separated popu-
lations in parallel. However, this approach is not enough to achieve the effective
search since the searched areas become to be overlapped each other by optimiz-
ing from the opposite directions independently as shown in Fig.3 where the red
and blue solutions indicate the sub separated populations. In this case, the over-
lapped areas should be reduced to achieve the effective search. To overcome this
problem, each sub separated populations are integrated as one population when
the overlapped areas are found in both the sub separated populations. For this
purpose, hIDEA changes to execute IBEA when the sub-separated populations
are overlapped each other. The algorithm of hIDEA is summarized as follows:
As shown in Fig.3, (a)hIDEA executes the directional-biased search for the sub
separated populations in each objective function in parallel; (b)when the search
areas are overlapped each other, (c)they are integrated as one population and
executes IBEA. In all steps from (a) to (c), to keep the diversity of solutions
in the population, hIDEA introduces the mechanism to dismiss the duplicate
solutions which are have same objective function values for all objectives in the
population. The mechanism dismisses the duplicate solutions in the selection
process. Only in the case of the number of the duplicate solutions is less than
population size, the duplicate solutions are selected as parent solutions in fitness
order.

Fig. 3. The image of searching of hIDEA
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4 Experiment

4.1 Experiment Design

In order to verify the effectiveness of hIDEA, we compare hIDEA with the con-
ventional methods (i.e. NSGA-II and IBEA in this experiment) through multi-
objective 0/1 knapsack problem[2] as representative benchmark problem of the
multi-objective combinatorial optimization problem. Concretely, we employ the
two objective 0/1 knapsack problem (KP500-2) and three objective one (KP100-
3). Since hIDEA needs to design the update equation of the parameter α, the
following update equations are considered.

(a) Proportional update : α =
Generation

Max generation
(b) Exponential update : α = 2

Generation
Max generation − 1

(c) Power update : α =
(

Generation
Max generation

)2
(11)

In the above equations, Generation and Max generation indicate the current
generation and the maximum number of generation, respectively. These equa-
tions work to start α ≈ 0 in the beginning of the search and gradually move
α = 1 according to progress of the search. Since we consider the three equations
of updating α, we employ the term hIDEAP which is hIDEA with Eq.(11)(a) as
the proportional update, hIDEAexp which is hIDEA with Eq.(11)(b) as the ex-
ponential update, and hIDEApow which is hIDEA with Eq.(11)(c) as the power
update. The experiment parameters are summarized as shown in Table 1. The
population sizes are set 250 (KP500-2) and 1000 (KP100-3) since the evaluation
criteria (i.e., GD and IGD described later) require enough solutions to evaluate
accurately.

Table 1. Experiment Parameters

NSGA-II IBEA IDEA

Max generation 10000

Crossover rate 1.0

Crossover type Two points crossover

Mutation rate 0.01

Selection type Tournament with crowding distance Tournament (size 2)

κ - 0.05

4.2 Evaluation Criteria

As evaluation criteria, we employ the following criteria: (1) IGD (Inverse Gen-
eral Distance)[6] and (2) GD (General Distance)[1] to evaluate how accurately
the found Pareto optimal solutions are approximated to true ones. In detail, GD
indicates the averaged distance from the found Pareto optimal solutions (Q) to
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Fig. 4. GD (KP500-2) Fig. 5. IGD of whole area (KP500-2)

the true Pareto optimal solutions (T ), while IGD indicates the averaged distance
from the true Pareto optimal solutions (T ) to the nearest found Pareto optimal
solutions (Q). GD evaluates how much the result of Pareto optimal solutions are
close to true ones, while IGD evaluates both of how much the found Pareto opti-
mal solutions are close to true ones and how much the found ones are widespread
area. In both GD and IGD, the less value shows the better performance. The
reason why we employ GD and IGD is that the true Pareto optimal solutions
is known in KP500-2 and KP100-3 published in [7]. Concretely, GD and IGD
calculated by Eqs. (12) and (13).

GD =
∑|Q|

i=1 δi

|Q| , δi =
|T |
min
k=1

√√√√ m∑
j=1

(fj(x
(T )
k )− fj(x

(Q)
i ))2 (12)

IGD =
∑|T |

i=1 δi

|T | , δi =
|Q|
min
k=1

√√√√ m∑
j=1

(fj(x
(T )
i )− fj(x

(Q)
k ))2 (13)

In each method, we calculate both GD and IGD from every 10 trials.

4.3 Experimental Result

Figs.4 and 5 show the result of KP500-2. From these results, the solutions
of hIDEA is more widespread than the conventional methods because IGD
of hIDEAs are lower than that of the conventional methods. The difference of
IGD of hIDEA (i.e., hIDEAP, hIDEAexp, hIDEApow) is few among the different
update equations. From the GD viewpoint, hIDEA, NSGA-II and IBEA do not
show the clear difference. In KP100-3, on the other hand, both value GD and
IGD of hIDEA is the best from Figs.6 and 7. Among three update equations,
hIDEAexp which increases α exponentially is the best in GD and IGD. These
results suggest that hIDEA has an ability of (1) finding more widespread area
than NSGA-II and (2) finding the solutions more close to the true Pareto optimal
solutions than IBEA.
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Fig. 6. GD (KP100-3) Fig. 7. IGD (KP100-3)

Fig. 8. IGD of four separated area in f1

(KP500-2)
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Fig. 9. Plot of hIDEA at 1000 generation

(KP100-3)

5 Discussion

In KP500-2, Fig.5 shows that IGD of hIDEA is best. This can be also found in
Fig.8, which shows the IGD of the four separated area in f1 from the minimum
true Pareto optimal solution (15780) to maximum one (20094)[7]. For example,
the area[0, 1/4] means the value from 15780 to 16858. This result suggests that
hIDEA has the strong ability of search more than the conventional methods in
the area of [0, 1/4] and [3/4, 4/4]. This is caused by that hIDEA executes the sin-
gle objective optimization in the beginning of the search for each sub-population
towards the corresponded objective function.

In KP100-3, on the other hand, hIDEA is better than both GD and IGD,
because hIDEA can find the solutions which are widely spread and are close
to true Pareto front. As the large search space in KP100-3 which area is larger
than KP500-2, the effectiveness of hIDEA in KP100-3 clearly appear in GD
and IGD. Fig. 9 shows the progress of the search at the 1000 generations. This
suggests that the populations in the early stage of search are clearly separated
into the sub-populations optimized awing to each directional-biased search. The
difference of IGD among three update equation is not clear, however, the best
equation is Eq. (11)(b) which increases α exponentially because of the low GD
in Figs.4 and 6.
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From these results, it is concluded that hIDEA can derive the better per-
formance than the conventional methods in the multi-objective optimization
problem.

6 Conclusion

This paper proposed the hybrid Indicator-based Directional-biased Evolution-
ary Algorithm (hIDEA), which explores the solutions by the hybrid directional-
biased search in parallel, and verify its effectiveness through multi-objective the
0/1 knapsack problem (i.e. KP500-2 and KP100-3). hIDEA optimizes the so-
lutions from the viewpoint of one objective function as single objective opti-
mization in the beginning of search and gradually shifts to the multi-objective
optimization. The intensive simulations have revealed the following implications:
(1) hIDEA can find more wide objective space than the conventional methods
such as NSGA-II and IBEA; and (2) hIDEA can also find the solutions more
close to true Pareto front than the conventional methods.

The following issues should be tackled in the near future: (1) an investigation
of the better update equation for the weight parameter α; and (2) on analysis of
the case of other test problems and increasing the number of objective functions.
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Abstract. Since their inception, multi-objective evolutionary algorithms

have been adequately applied in finding a diverse approximation of effi-

cient fronts of multi-objective optimization problems. In contrast, if we

look at the rich history of classical multi-objective algorithms, we find that

incorporation of user preferences has always been a major thrust of re-

search. In this paper, we provide a general structure for incorporating pref-

erence information using multi-objective evolutionary algorithms. This is

done in an NSGA-II scheme and by considering trade-off based preferences

that come from so called proper Pareto-optimal solutions. We argue that

finding proper Pareto-optimal solutions requires a set to compare with and

hence, population based approaches should be a natural choice. Moreover,

we suggest some practical modifications to the classical notion of proper

Pareto-optimality. Computational studies on a number of test problems

of varying complexity demonstrate the efficiency of multi-objective evo-

lutionary algorithms in finding the complete preferred region for a large

class of complex problems. We also discuss a theoretical justification for

our NSGA-II based framework.

1 Introduction

Since the early nineties, multi-objective evolutionary algorithms have been used
for finding a well-diverse approximation of the efficient front of a multi-objective
optimization problem. Such a knowledge could then be used by the designer/
decision maker (DM) to choose a preferred solution or concentrate on a region
of preferred solutions. Although such an approach has its advantages [1], this
burdens the DM and is not suitable if the number of objectives is large. In
contrast to evolutionary algorithms, if we look at the rich history of classical
multi-objective algorithms since the late sixties, we find that incorporation of
user preferences has always been a major thrust of research [2].

Working on the strengths of both classical and evolutionary approaches, in
this paper, we provide a general structure for incorporating preference informa-
tion using multi-objective evolutionary algorithms. This is done in an NSGA-
II framework and by considering trade-off based preferences that come from
proper Pareto-optimal solutions [3]. Although proper Pareto-optimal solutions

R. Schaefer et al. (Eds.): PPSN XI, Part II, LNCS 6239, pp. 131–140, 2010.
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have been extensively studied in the classical domain, there is a dearth of studies
in the evolutionary domain. In fact, we found just one paper investigating this [4].
This only work dealt with finding a kind of proper Pareto-optimal solutions us-
ing a constrained approach, and we found that it fails for multi-modal problems.
We argue that finding proper Pareto-optimal solutions requires a set to compare
with and hence, population based approaches like multi-objective evolutionary
algorithms should be an ideal choice. Moreover, we suggest some practical mod-
ifications to the notion of proper Pareto-optimality. We think that none of the
classical point-by-point techniques could handle such practical modifications.
However, computational studies on a number of test problems of varying com-
plexity demonstrate the efficiency of multi-objective evolutionary algorithms in
finding the complete preferred region for a large class of complex problems. In
addition, we discuss a theoretical justification for our NSGA-II based frame-
work. Although we only consider preferences coming from the notion of proper
Pareto-optimality, the framework that we present is able to handle any kind of
preference structure. This paper adequately demonstrates the niche of popula-
tion based algorithms in finding the preferred region.

The paper is structured as follows. The next section presents various notions of
proper Pareto-optimality and some theoretical results that form the background
of our algorithm described in Section 3. The fourth section presents extensive
simulation results. Conclusions as well as extensions which emanated from this
study are presented at the end of this contribution.

2 Theoretical Results

Let f1, . . . , fm : Rn → R and X ⊆ Rn be given. Consider the following multi-
objective optimization problem (MOP ):

min f(x) := (f1(x), f2(x), . . . , fm(x)) s.t. x ∈ X.

A central optimality notion for the above problem is that of Pareto-optimality.

Definition 1 (Pareto-optimality). A point x∗ ∈ X is called Pareto-optimal
if no x ∈ X exists so that fi(x) ≤ fi(x∗) for all i = 1, . . . ,m with strict inequality
for at least one index i.

Let Xp denote the set of Pareto-optimal points. A criticism of Pareto-optimality
is that it allows unbounded trade-offs. To avoid this, starting with the classical
work of Geoffrion [3], various stronger optimality notions have been defined.

Definition 2 (Geoffrion proper Pareto-optimality [3]). A point x∗ ∈ X is
Geoffrion proper Pareto-optimal if x∗ ∈ Xp and if there exists a number M > 0
such that for all i and x ∈ X satisfying fi(x) < fi(x∗), there exists an index j
such that fj(x∗) < fj(x) and moreover (fi(x∗)− fi(x))/(fj(x)− fj(x∗)) ≤ M.

Definition 3 (M-proper Pareto-optimality [4]). Let M > 0 be given. Then,
a point x∗ ∈ X is M -proper Pareto-optimal if x∗ ∈ Xp and if for all i and x ∈ X
satisfying fi(x) < fi(x∗), there exists an index j such that fj(x∗) < fj(x) and
moreover (fi(x∗)− fi(x))/(fj(x)− fj(x∗)) ≤ M.
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Note that Definitions 2 and 3 are not the same as using a trade-off on fixed
objectives (like in [5]). We see that trade-offs are inherent in the above definitions
of proper Pareto-optimality. However, the DM could require that the constant
M in the above two definitions be some (preferred) function of x. With such a
preference structure, we present a generalized notion as follows.

Definition 4 (M-proper Pareto-optimality). Let a function M : Rn →
(0,∞) be given. Then, a point x∗ ∈ X is called M-proper Pareto-optimal if
x∗ ∈ Xp and if for all i and x ∈ X satisfying fi(x) < fi(x∗), there exists an
index j such that fj(x∗) < fj(x) and moreover (fi(x∗)−fi(x))/(fj(x)−fj(x∗)) ≤
M(x∗).

Depending on the choice of the function M we can obtain other proper Pareto-
optimality notions. We obtain the notions in Definitions 2 and 3 by

M(x∗) := sup
x∈X

fi(x)<fi(x∗)
fj(x∗)<fj(x)

(fi(x∗)− fi(x))/(fj(x)− fj(x∗))

and M(x∗) := M , respectively. Throughout the rest of this paper, we assume
that M is given. Let us denote the set of all M-proper Pareto-optimal solutions
as XM.

Lemma 1. For a given x∗ ∈ X and a given index i let Si denote the system:

−fi(x∗) + fi(x) < 0, x ∈ X,

−fi(x∗) + fi(x) < M(x∗)(fj(x∗)− fj(x)) ∀j �= i.

Then, x∗ ∈ XM if and only if Si is inconsistent for every index i.

Proof: If x∗ ∈ XM then it is clear that Si is inconsistent for every index i.
Now, suppose Si is inconsistent for every index i. We claim that x∗ ∈ Xp.
If x∗ /∈ Xp, then x ∈ X and an index l exist so that fl(x) < fl(x∗) and
fk(x) ≤ fk(x∗) for all k �= l. Moreover, note that by definition M(x∗) > 0. Thus
we see that system Sl has a solution, a contradiction.

If x∗ /∈ XM, then there is an index i and an x ∈ X satisfying −fi(x∗) +
fi(x) < 0 and −fi(x∗) + fi(x) < M(x∗)(fj(x∗) − fj(x)) for every j such that
−fj(x∗)+ fj(x) > 0 (such a j exists since x∗ ∈ Xp). For other j’s, i.e., for every
j such that −fj(x∗) + fj(x) ≤ 0, −fi(x∗) + fi(x) < M(x∗)(fj(x∗) − fj(x)) is
trivially true. Thus, Si is consistent and we arrive at a contradiction. ��
Note that in Definition 4, x ∈ X . However, as shown in the next lemma, when
Y := f(X) is Rm

+ compact, i.e., the section (y − Rm
+ ) ∩ Y is compact for every

y ∈ Y, then x ∈ X can be replaced by x ∈ Xp.

Lemma 2. Suppose that Y is Rm
+ compact. Then, x∗ ∈ XM if x∗ ∈ Xp and if

for all i and x ∈ Xp satisfying fi(x) < fi(x∗), there exists an index j such that
fj(x∗) < fj(x) and moreover (fi(x∗)− fi(x))/(fj(x)− fj(x∗)) ≤M(x∗).
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Proof: Suppose that x∗ satisfies the conditions of the lemma. Then following
the proof of Lemma 1, we easily obtain that for all indices i, and for all x̂ ∈ Xp,
the system

−fi(x∗) + fi(x̂) < 0
−fi(x∗) + fi(x̂) < M(x∗)(fj(x∗)− fj(x̂)) ∀j �= i,

which we denote as S̃i, is inconsistent.
Take any x ∈ X \Xp. Since Y is Rm

+ compact, there exists a x̂ ∈ Xp so that
fi(x̂)− fi(x) ≤ 0 for all i = 1, 2, . . . ,m and fk(x̂)− fk(x) < 0 for some k. Since
S̃i is inconsistent for all i, we see that the system

−fi(x∗) + fi(x̂) < fi(x̂)− fi(x)
−fi(x∗) + fi(x̂) < M(x∗)(fj(x∗)− fj(x̂)) +M(x∗)(fj(x̂)− fj(x))

+fi(x̂)− fi(x) ∀j �= i

is inconsistent. This implies that the following system is also inconsistent:

−fi(x∗) + fi(x) < 0
−fi(x∗) + fi(x) < M(x∗)(fj(x∗)− fj(x)) ∀j �= i.

Thus, we see that S̃i is inconsistent for all i and for any x ∈ X . Employing
Lemma 1, we obtain that x ∈ XM. ��
Remark 1. It is important to highlight the importance of Lemma 2. This result
shows that in order to check if a point is proper Pareto-optimal, it is sufficient
to check the boundedness of the trade-offs with the Pareto-optimal points only.
For any algorithm, this would drastically reduce the computational effort.

3 A NSGA-II Framework for Incorporating Trade-Offs

If we look at the definition of proper Pareto-optimality, we see the difficulties of
applying any point-by-point method. The trade-off information requires working
with two points from the set Xp. It is here that a population based algorithm,
like an MOEA, could be helpful. Since population based algorithms work with a
population, trade-off information is inherently there. It is just a matter of using
this trade-off information in a way so as to obtain desired proper Pareto-optimal
points. Moreover, MOEAs can be tailored for finding the complete set of proper
Pareto-optimal points, an issue that has never been examined till now.

Taking a clue from Lemma 2, we could choose a population based MOEA
which uses/ computes the non-dominated front. This is because we need at least
the non-dominated front (or an approximation) to check for the appropriate
trade-offs. We take the NSGA-II algorithm [6] for this purpose. Using Lemma 2,
we tailor NSGA-II for finding any kind of proper Pareto-optimal points.

Let us assume that the decision maker’s (DM’s) preferences can be put to-
gether in an appropriate M function. From Lemma 2, we know that for checking
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Fig. 1. Schematic showing behavior of

pNSGA-II in earlier generations. F0 is

shown in black.
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Fig. 2. Schematic showing behavior of

pNSGA-II in intermediate generations.

F0 is shown in black.

Non-dominated
sorting

Crowding distance
sorting

Rejected

Fig. 3. Schematic showing behavior of pNSGA-II in final generations. F0 is shown in

black. In this case, the size of F0 exceeds the population size.

the appropriate trade-offs, we need information about the Xp only. This can
be introduced in the NSGA-II algorithm, which we call as pNSGA-II, in the
non-dominated front at every generation. In the standard NSGA-II, the parent
population Pt and the offspring population Qt are combined and non-dominated
fronts F1, . . . ,Fr of this combined population are found. We do the same in
pNSGA-II, however from F1 (best non-dominated set), we additionally find a
set F0 which satisfies the trade-offs in Definition 4, considering the entire popu-
lation. So we have one additional (preferred) front. Members of F0 are assigned
a rank of 0 (better than 1, the rank of F1, as we consider minimization in tour-
nament selection). This extra front changes the search mechanism of NSGA-II:

1. In earlier generations, when there are many fronts, this does not change the
new parent population Pt+1 from NSGA-II. However, due to their better
rank, members of F0 win more tournaments and in this way search is steered
towards them. Figure 1 shows the schematic for this situation.
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2. In intermediate generations, when the size of F1 (denoted as |F1|) exceeds
the population size and |F0| is less than population size, complete F0 enters
the new parent population Pt+1. This situation is illustrated in Figure 2.

3. Towards the end, when |F0| exceeds the population size, crowding distance
sorting determines which members of F0 remain in the new population. Fig-
ure 3 shows the schematic for this situation.
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pNSGA-II on SZDT1

4 Simulation Results

We test our pNSGA-II on a number of test problems of varying complexity,
including two problems from the CEC-2007 competition (SZDT1, SZDT2) [7],
four from the ZDT suite (ZDT3, ZDT4, ZDT5, ZDT6) [6], one from the DTLZ
family (DTLZ4-3D) [8], and four from the WFG suite (WFG1, WFG2, with both
2 and 3 objectives) [9]. We note that this paper is among the few studies that
consider ZDT5, a difficult discrete problem. This additionally shows that the
approach is not limited to continuous problems. For all problems solved, we use
a population of size 100 and set the maximum number of function evaluations as
20,000 (200 generations). We use a standard real-parameter SBX and polynomial
mutation operator with ηc = 15 and ηm = 20, respectively [6].

In this paper, we useM(x∗) := M with M = 1.5, 5.0 and 10.0. Note that these
M values restrict the efficient front. This is the preferred efficient front that needs
to be found. For all problems we compute a well-distributed approximation of
the preferred front (reference set) as follows. Corresponding to the problem, first
we generate 10,000 well-diverse points on the efficient front. Then, we calculate
the preferred points, i.e., the points that satisfy the M -proper Pareto-optimality
criteria (from Lemma 2, we only need to consider Xp). In order to evaluate the
results, we use the Inverted generational distance (IGD) and Generational dis-
tance (GD) metrics (wrt. the obtained reference set). For statistical evaluation
we use the attainment surface based statistical metric [10]. We run each algo-
rithm for 101 times and the median (50%) attainment surface (51st) is plotted.
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of pNSGA-II on SZDT2
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of pNSGA-II on ZDT3

The source code of pNSGA-II is made available1. The data files for all the 101
runs of all the problems are available on request.

Table 1 shows the performance of pNSGA-II on all the eleven test problems
after 20, 000 function evaluations. From the table we see that pNSGA-II is able
to obtain good approximation sets which are close to the preferred efficient front
(in terms of GD metric) and perform well wrt. the IGD metric. As the GD metric
evaluates convergence and IGD evaluates both convergence and diversity, it is
expected that the IGD be higher. We see this from most of the values in the
table. However, alone the use of IGD metric is not sufficient. For example, we see
that for the SZDT2 problem, IGD<GD (considering M = 5.0). This happens
as the preferred front is now disconnected. The point (1, 2) (minimizer of f1)
is in the preferred part and if there are more population members near this one
point, the GD value increases.

1 http://www.aifb.kit.edu/web/pNSGA-II/en

http://www.aifb.kit.edu/web/pNSGA-II/en
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Table 1. Generational distance (GD) and Inverted generational distance (IGD) metric

values for the test problems, corresponding to different values of M

M=10.0
GD SZDT1 SZDT2 ZDT3 ZDT4 ZDT5 ZDT6

best 0.001172 0.001683 0.007186 0.000578 0.227636 0.000861
worst 0.002032 0.040376 0.008701 0.014642 0.380797 0.001454

average 0.001541 0.004856 0.007982 0.001230 0.301269 0.001150
std. dev. 0.000184 0.008832 0.000284 0.001409 0.033598 0.000122

GD WFG1 2D WFG2 2D WFG1 3D WFG2 3D DTLZ4 3D
best 0.082525 0.005400 0.130897 0.017942 0.000002
worst 0.164055 0.018947 0.143182 0.125658 0.012459

average 0.098838 0.011619 0.137448 0.066561 0.008756
std. dev. 0.015025 0.002992 0.002387 0.022980 0.003519

IGD SZDT1 SZDT2 ZDT3 ZDT4 ZDT5 ZDT6

best 0.000424 0.000636 0.000271 0.000166 0.499391 0.000625
worst 0.000746 0.020782 0.008399 0.008463 0.623377 0.000791

average 0.000574 0.004272 0.000794 0.001020 0.530842 0.000693
std. dev. 0.000070 0.006320 0.001896 0.001584 0.032058 0.000038

IGD WFG1 2D WFG2 2D WFG1 3D WFG2 3D DTLZ4 3D
best 0.046000 0.040072 0.103648 0.009658 0.006618
worst 0.078225 0.044193 0.114329 0.071738 0.105976

average 0.067428 0.040862 0.108758 0.040323 0.036495
std. dev. 0.004947 0.000688 0.002145 0.028895 0.035966

M=5.0
GD SZDT1 SZDT2 ZDT3 ZDT4 ZDT5 ZDT6

best 0.000775 0.001031 0.000095 0.000103 0.114687 0.000806
worst 0.001420 0.192955 0.000179 0.014979 0.190868 0.001361

average 0.001058 0.013165 0.000116 0.001127 0.149261 0.001051
std. dev. 0.000150 0.040144 0.000013 0.002360 0.018870 0.000103

GD WFG1 2D WFG2 2D WFG1 3D WFG2 3D DTLZ4 3D
best 0.083118 0.000653 0.111507 0.004358 0.000001
worst 0.192537 0.014764 0.154367 0.018912 0.007230

average 0.113607 0.004541 0.121821 0.012385 0.004863
std. dev. 0.021339 0.002860 0.004459 0.005895 0.002087

IGD SZDT1 SZDT2 ZDT3 ZDT4 ZDT5 ZDT6

best 0.000395 0.000571 0.000112 0.000162 0.499391 0.000611
worst 0.000681 0.027332 0.008395 0.005952 0.623377 0.000760

average 0.000519 0.006448 0.000789 0.001154 0.535262 0.000665
std. dev. 0.000061 0.008956 0.002239 0.001551 0.033893 0.000029

IGD WFG1 2D WFG2 2D WFG1 3D WFG2 3D DTLZ4 3D
best 0.057712 0.040111 0.093623 0.068945 0.011257
worst 0.076654 0.124117 0.104347 0.072751 0.105976

average 0.069586 0.041821 0.100340 0.070703 0.037346
std. dev. 0.003761 0.008314 0.001857 0.001091 0.031579

M=1.5
GD SZDT1 SZDT2 ZDT3 ZDT4 ZDT5 ZDT6

best 0.000495 0.004923 0.000329 0.000055 0.102656 0.001467
worst 0.002592 0.019355 0.003407 0.003387 0.179188 0.003497

average 0.000919 0.011413 0.000928 0.000559 0.147026 0.002140
std. dev. 0.000256 0.003148 0.000367 0.000515 0.019000 0.000370

GD WFG1 2D WFG2 2D WFG1 3D WFG2 3D DTLZ4 3D
best 0.243957 0.002322 0.307302 0.001694 0.000002
worst 0.901878 0.055353 0.801592 0.046378 0.074721

average 0.357252 0.015852 0.483613 0.015292 0.056703
std. dev. 0.089888 0.009038 0.113862 0.008868 0.021578

IGD SZDT1 SZDT2 ZDT3 ZDT4 ZDT5 ZDT6

best 0.006775 0.011828 0.101584 0.005430 0.922765 0.004852
worst 0.011382 0.041212 0.132935 0.009409 1.149415 0.005170

average 0.009299 0.025300 0.131246 0.006695 0.991575 0.005004
std. dev. 0.000879 0.007789 0.006787 0.000564 0.098511 0.000055

IGD WFG1 2D WFG2 2D WFG1 3D WFG2 3D DTLZ4 3D
best 0.066580 0.210325 0.112330 0.086209 0.058421
worst 0.107757 0.243042 0.123535 0.097982 0.105977

average 0.074930 0.213457 0.116712 0.092701 0.069885
std. dev. 0.010473 0.003167 0.002157 0.002050 0.015424
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Fig. 10. Preferred front and sample

run of pNSGA-II on WFG2 3D
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plot of pNSGA-II on WFG2 3D
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plot of pNSGA-II on DTLZ4 3D

Figures 4 and 5 show the performance of the pNSGA-II algorithm on the
convex problem SZDT1. It can be seen that pNSGA-II is able to find a well-
diverse set of preferred solutions. From Figure 5 we also see how the preferred
efficient front is reduced as the value of M decreases. Figures 6 and 7 show
the performance of the pNSGA-II algorithm on the non-convex problem SZDT2
and the discrete problem ZDT5. It can be seen that pNSGA-II is able to find
a well-diverse set of preferred solutions for the SZDT2 problem. This is not the
case in 20,000 function evaluations for ZDT5. However, we see that the obtained
sample run approached the preferred region in a way so as not to explore the
unnecessary regions of the efficient front. This is a nice feature of pNSGA-II
emerging due to the use of front F0 information in all the generations.

Figures 8 and 9 show the performance of the pNSGA-II algorithm on the
disconnected problem ZDT3. We see how here all the knees are now part of the
preferred front and they are all found by pNGSA-II. This example shows that
pNSGA-II could also be used to find the knees by using a low M value. Fig-
ures 10, 11, 12 and 13 show the performance of pNSGA-II on three dimensional
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problems. The M values give rise to disconnected preferred fronts. In general,
this happens even if the problem has a connected front (like DTLZ4 3D). How-
ever, the algorithm is able to find all these regions.

5 Conclusions

This study brings into light how trade-off information inherent in various proper
Pareto-optimality notions can be combined in a state-of-the-art evolutionary al-
gorithm. We presented some theoretical results for this and suggested an NSGA-
II based algorithm, pNSGA-II, for this task. The test problems have adequately
demonstrated that pNSGA-II performs very well even when the problem size
and search space complexity is large. As this is the first study towards find-
ing a well-diverse representation of various proper Pareto-optimal solutions, we
hope that the study sheds adequate light in this area and motivates others.
Proper Pareto-optimal solutions have been around in the classical literature
since the last 40 years, and the area is active even now, with various new proper
Pareto-optimality notions defined and older ones studied (search for example
on www.ams.org/mathscinet). We have shown that NSGA-II can be modified
for the task of finding these solutions. It would be interesting to see how other
algorithms, like SPEA-2, could be adapted for this.
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Abstract. Wireless Sensor Networks (WSN) have been studied inten-

sively for various applications such as monitoring and surveillance. Sen-

sor deployment is an essential part of WSN, because it affects both the

cost and capability of the sensor network. However, most deployment

schemes proposed so far have been based on over-simplified assump-

tions, where results may be far from optimal in practice. Our proposal

aims at automating and optimizing sensor deployment based on realis-

tic topographic information, and is thus different from previous work in

two ways: 1) it takes into account the 3D nature of the environment ;

2) it allows the use of anisotropic sensors. Based on the Covariance Ma-

trix Adaptation Evolution Strategy (CMA-ES), the proposed approach

shows good potential for tackling diverse problems in the WSN domain.

Preliminary results are given for a mountainous area of North Carolina

where coverage is maximized.

1 Introduction

In recent years, Wireless Sensor Networks (WSN) have been studied intensively
for various applications such as environmental monitoring and surveillance. A
WSN usually consists of numerous wireless devices deployed in a region of inter-
est, each able to collect and process environmental information and communicate
with neighbour devices [2, 9, 19].

Sensor deployment is an essential issue in WSN, as it affects how well a region
is monitored by sensors. Considering a region monitored by sensors, one of the
most critical issues is the region coverage [9,11,12,13,19,20]. One goal of a WSN
is that each location in a region should be within the sensing range of at least
one sensor. An alternative approach is to have a region covered simultaneously
by at least K sensors [19, 20].

Many deterministic methods have been explored to address the problem of
coverage. It has been shown that covering an area with disks of equal radius
can be done in an optimal manner [2, 9, 11]. Similar results have been reported
when multiple coverage of the target area is required [2, 12, 19, 20]. Besides, the
majority of optimization methods proposed are deterministic, and are generally
functions of omnidirectional sensor with a fixed sensing range.
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However, most suggested methods are based on over-simplified assumptions
[12,14,15,19,20], and the theoretical perfect coverage shown in these determin-
istic methods may not hold true in practice for a number of reasons. First, most
sensor deployment optimization methods assume that sensors are placed on a 2D
plane, without taking terrain into account [2, 9, 11]. Second, most deterministic
methods suppose that sensors have omnidirectional sensing capabilities, which
is generally not accurate [10]. For instance, antennas have different 3D reception
area, depending on factors like orientation, distance, and other environmental
factors [10].

The disadvantages of deterministic deployment optimization methods are thus
evident, and the 100% coverage that they claim is often over-estimated. This is-
sue is critical because it further complicates the problem of sensor deployment:
while WSN seems to satisfy the requirements to achieve full coverage on a tar-
get area using a deterministic method, the deployers have no means to ensure
that this coverage is truly effective in the real environment. This uncertainty of
coverage thus presents a challenge in sensor deployment.

Facing this challenge, we follow a more flexible non-deterministic avenue. Our
aim is to achieve automated sensor deployment optimization based on realistic
topographic terrain information, and realistic sensor modelling. It differs from
traditional deterministic methods in that: 1) deterministic schemes only consider
2D environments and ignore the effects of elevation, whereas our method takes
into account the 3D terrain information; 2) deterministic schemes usually assume
omnidirectional sensors, whereas our method allows for constraints to be applied
on sensors, such as limited sensing angles.

In an effort to tackle this more realistic problem, we opt for an evolutionary
algorithm approach. Some prior work has been conducted with such paradigms
[3, 16], but using more or less the same over-simplifying assumptions as the
deterministic approaches. Among available evolutionary algorithms, we chose
the Covariance Matrix Adaptation Evolution Strategy (CMA-ES) [8] for its good
performance and stability [6, 7]. The position and orientation of the sensors
are encoded inside an individual, and a population of individuals is evolved
through generations. At the end of the evolution, the individual with the best
coverage is chosen as the final solution. This CMA-ES optimization is linked to a
Geographical Information System (GIS) to provide essential environmental data
such as elevation of region of interest and obstacles in the area, to compute the
fitness of individuals.

The remainder of the paper is organized as follows. The problem statement is
presented in the next section (Sec. 2), followed by a presentation of the proposed
method (Sec. 3). The experimental protocol and results are then summarized
(Sec. 4), concluding the paper with discussions and perspectives (Sec. 5).

2 Problem Statement

The main objective of this proposal is to build a realistic model of the environ-
ment and sensor network, and to optimize the sensor deployment accordingly.
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The sensing model depends on distance, orientation, and visibility. We first as-
sume that all sensors are positioned at a certain constant height τ above the
ground level. The sensor position is thus described by a 3D point p = (x, y, z),
where (x, y) are free parameters, and z = g(x, y) is constrained by the ter-
rain elevation at position (x, y), as defined by a GIS. We further assume that
the anisotropic properties of sensors are fully defined by a pan angle θ around
the vertical axis (tilt angle is currently assumed null). Given the GIS, a sen-
sor network N = {s1, s2, . . . , sn} of n sensors is thus fully specified by 3n free
parameters si = (pi, θi), i = 1, 2, . . . ,n, with pi = (xi, yi).

Now the coverage C(si,q) of sensor si at point q in the environment can be
defined as a function of distance d(si,q) = ||pi − q||, angle of view a(si,q) =
θi − ∠(q− pi), and visibility v(si,q) from the sensor:

C(si,q) = f [μd(||pi − q||), μa(θi − ∠(q− pi)), v(s,q)], (1)

where ∠(q−pi) is the pan angle of point q relative to pi. For q to be covered by
sensor si, it needs to be within its sensing range AND its field of view AND must
be visible, that is not blocked by any terrain obstacle such as hills. Let μd, μa ∈
[0, 1] represent the fuzzy membership functions of the first two conditions, then
Eq. 1 can be rewritten as:

C(si,q) = min

⎧⎨
⎩

μd(||pi − q||)
μa(θi − ∠(q− pi))

v(si,q)

⎫⎬
⎭ . (2)

Function v(si,q) is usually binary. If the line of sight between si and q is ob-
scured, then we assume that the coverage cannot be met (v = 0), otherwise
the visibility condition is fully respected (v = 1). Fig. 1 illustrates different
scenarios that assume rotational topographic symmetry. For real environments,
the visibility induces coverage which can produce many more complex shapes.
For instance, Fig. 2 gives a concrete example of an environment and how the
visibility condition can affect sensor coverage in this environment.

At each position q ∈ Ξ of environment Ξ, the coverage for a single sensor
is thus the minimum of the three above conditions. Value C = 1 means full
coverage, and C = 0 indicates no coverage. If more than one sensor covers q,
then we can compute the local network coverage Cl using:

Cl(N,q) = max
i=1,...,n

C(si,q), (3)

and the global coverage Cg using:

Cg(N,Ξ) =
1
|Ξ|

∑
q∈Ξ

Cl(N,q). (4)

Given an environment Ξ, the problem statement is thus to determine the sensor
network deployment N that maximizes Cg(N,Ξ).
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A. Eroded Coverage B. Donut−like Coverage C. Noncontinuous Coverage

Fig. 1. Examples of visibility induced coverage. The upper row shows different terrain

elevations as curves. The small rectangle boxes are sensors. The lower rank shows the

true coverage of sensors with those terrain elevations and sensor positions (assuming

rotational symmetry).

(a) (b)

Fig. 2. Impact on coverage of visibility conditions for a given topographical map: (a)

elevation is depicted by colour (the subsections of the environment surrounded inside

the rectangles will be used in the result section to evaluate the performance of the

algorithm); (b) assuming that the sensor is placed in the medium map, the small black

square depicts the sensor location, the grey area exposes the induced visibility mask,

while the black circle represents the maximum sensing range (assuming an omnidirec-

tional sensor)

3 Methodology

The previous problem statement suggests a straight forward evolutionary al-
gorithm solution. We choose the Evolution Strategy (ES) paradigm and, in
particular, the Covariance Matrix Adaptation Evolution Strategy (CMA-ES)
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algorithm [8]. In our simulations, we attempt to gain insights into these three
scenarios:

a) Deterministic deployment with 360◦ sensors;
b) CMA-ES deployment with 360◦ sensors;
c) CMA-ES deployment with 90◦ sensors.

For each of the three scenarios, sensors are positioned at τ = 1 meter above the
ground, and coverage is computed using Eq. 4. The fuzzy sets used, μd and μa,
are crisp sets:

μd(δ) =
{

1 if 0 ≤ δ ≤ rs

0 otherwise
and either:

μa(θ) =
{

1 if − 180 ≤ θ ≤ 180
0 otherwise

for 360◦ sensors, or:

μa(θ) =
{

1 if − 45 ≤ θ ≤ 45
0 otherwise

for 90◦ sensors.
The deterministic method has been shown to achieve full coverage on the

Cartesian plane [2, 9]. Fig. 3 illustrates this deployment pattern, where sensors
are organized in layers of horizontal strips. Assuming sensors with sensing range
rs, they are simply distributed

√
3 rs apart on every strip, and the strips are

themselves separated from one another by 3
2rs. Furthermore, the strips are in-

terleaved to form a triangular lattice pattern.
To conduct our experiments, we selected a mountainous area in North Car-

olina. The data come from a raster layer map in the “OSGeo Edu” dataset [18],
that stores geo-spatial information about parts of North Carolina State, USA.
More specifically, we focus on a portion of the map that covers a small watershed
in a rural area near NC capital city, Raleigh. The coordinate system of the map
is the NC State Plane (Lambert Conformal Conic projection), metric units and
NAD83 geodetic datum. We used three portions of the map for our experiments
(See Fig. 4, 5, and 6).

The full GIS data can be read using an open-source GIS software called Geo-
graphic Resources Analysis Support System (GRASS) [17], and these data pro-
vide crucial information on the terrain information of the target region (See
Fig. 2). With the environmental data provided by GRASS, CMA-ES can carry
out the optimization task by modifying positions and orientations of deployed
sensors. CMA-ES is implemented using Evolutionary Algorithms in Python
(EAP) [5], an open source software developed at the Computer Vision and Sys-
tems Laboratory of Université Laval.

4 Results

The algorithm’s parameters include the number of variables, the population size
(μ), the number of offspring (λ), the mutation factor (σ), and the number of
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d

d

b

a

Fig. 3. Pattern of the deterministic method [2, 9] implemented in the paper, where

da =
√

3rs, db = 3
2
rs, and rs is the sensing range for a sensor. Circles are sensor

sensing ranges, and dots are sensor positions.

Table 1. Parameters used for the CMA-ES runs

Parameter Small map 360◦ Med. map 360◦ Large map 360◦ Small map 90◦

Dimensionality 24 32 48 144

μ 6 7 7 9

λ 13 14 15 18

σ 0.167 0.167 0.167 0.167
Generations 350 350 350 450

(a) (b) (c)

Fig. 4. Placement results on the small map: (a) two dimensional view of the environ-

ment, (b) area covered with 12 omnidirectional sensors using deterministic optimiza-

tion, and (c) area covered with 12 omnidirectional sensors using CMA-ES optimization.

Dark spots are sensor positions, grey areas are covered by sensors, while blank areas

are uncovered. Coordinates of the environment are N: 220750, S:220615, E: 638480, W:

638300, leading to a map of 135 rows and 180 columns, for the total of 24300 cells. The

data (elevation of terrain) range from 123.9 m to 131.5 m.

generations through which the algorithm runs. Tab. 1 summarizes these values.
As for the sensors, we assumed that these are Passive Infrared (PIR) sensors
with a sensing range of 30 meters.

We have tested the system on three different portions of the environment.
While the deterministic method is supposed to achieve full coverage in each
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(a) (b) (c)

Fig. 5. Placement results on the medium map: (a) two dimensional view of the environ-

ment, (b) area covered with 16 omnidirectional sensors using deterministic optimiza-

tion, and (c) area covered with 16 omnidirectional sensors using CMA-ES optimization.

Dark spots are sensor positions, grey areas are covered by sensors, while blank areas

are uncovered. Coordinates of the environment are N: 220250, S:220070, E: 638786, W:

638606, leading to a map of 180 rows and 180 columns, for a total of 32400 cells. The

data (elevation of terrain) range from 109.7 m to 120.3 m.

(a) (b) (c)

Fig. 6. Placement results on the large map: (a) two dimensional view of the environ-

ment, (b) area covered with 24 omnidirectional sensors using deterministic optimiza-

tion, and (c) area covered with 24 omnidirectional sensors using CMA-ES optimization.

Dark spots are sensor positions, grey areas are covered by sensors, while blank areas

are uncovered. Coordinates of the environment are N: 220490, S:220220, E: 639000, W:

638820, leading to a map of 270 rows and 180 columns, for a total of 32400 cells. The

data (elevation of terrain) range from 111.5 m to 123.8 m.
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Fig. 7. Area covered by 48 sensors having a limited 90◦ sensing range, using CMA-ES

optimization. The terrain is the small map presented in Fig. 4. Dark spots are sensor

positions, grey areas are covered by sensors, while blank areas are the uncovered area.

Table 2. Coverage percentage on the target areas with various numbers of sensors

and approaches. The p-value shows the probability of the CMA-ES performance being

statistically similar to the deterministic one.

Method Small map 360◦ Med. map 360◦ Large map 360◦ Small map 90◦

Deterministic 85.9% 74.3% 86.1% –

CMA-ES run 1 98.1% 95.8% 94.5% 96.7%
CMA-ES run 2 98.9% 94.1% 98.0% 94.3%
CMA-ES run 3 95.9% 88.1% 97.1% 94.3%
CMA-ES run 4 95.7% 94.6% 97.5% 95.9%
CMA-ES run 5 98.0% 92.8% 95.2% 94.3%
CMA-ES run 6 97.8% 91.0% 97.3% 93.7%
CMA-ES run 7 95.3% 94.7% 97.9% 96.8%
CMA-ES run 8 97.6% 91.8% 97.2% 96.4%
CMA-ES run 9 97.2% 92.2% 95.6% 90.8%
CMA-ES run 10 97.4% 93.2% 96.2% 95.8%

Average 97.2% 92.8% 96.7% 94.9%
Std. dev. 1.2% 2.2% 1.2% 1.8%
p-value p < 0.0001 p < 0.0001 p < 0.0001 –

environment, the actual coverage is not even close to that figure, with less than
90% coverage in all cases. By contrast, with the same number of sensors as in
the deterministic method, CMA-ES can adapt to different local elevations and
thus achieve significantly better coverage (see Tab. 2).

If we add the constraint of sensing angle, the problem is even more challenging.
No deterministic method has ever been proposed to solve this type of problem.
However, one possible deterministic approach is to deploy four sensors instead
of one sensor at the optimal positions, and each sensor will be deployed in a
way that four sensors together can have an omnidirectional sensing angle. A
clear drawback of this deterministic approach is that we need four times as
many sensors to cover the region of interest. What is worse, the coverage is not
optimal, as demonstrated before. However, an evolutionary based method such
as CMA-ES again has proven its ability to deal with these problem. Using 48
sensors with 90◦ of sensing angle, CMA-ES demonstrates its capability to adapt
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to the environment and fine-tune the orientation of each sensor deployed (See
Fig. 7).

CMA-ES does not only optimize sensor positions, but also sensor orienta-
tions. This capability is critical because a large proportion of existing sensors
are not omnidirectional, such as vision sensors, and the need to deploy them in
an efficient and optimal manner is thus of great importance.

5 Conclusion

Experimental results on topography-aware sensor deployment with CMA-ES
suggest that the proposed method is fully feasible and shows good promise in
optimizing sensor deployment. This project is the very first scheme to construct
a realistic model for sensor deployment. To our knowledge, no similar initiatives
have ever been reported in the literature.

This serves as a starting point to further investigate the use of evolutionary
algorithms in sensor deployment optimization. One of our future works is to
implement a probabilistic or fuzzy sensing range models rather than traditional
disk-like-models [2,11]. Although some probabilistic sensing range models [1,2,9,
11, 21] and sensing models with irregular sensing range [4] have been proposed,
without any exception they all work on a 2D flat space with omnidirectional
sensors. The combinational effects of terrain variations, of constraint sensing
angle or irregular sensing range, and probabilistic sensing property of sensors
have never been studied. Moreover, another potential future project will be the
multi-objective optimizations for sensor deployment, given the multiple concerns
such as number of sensors used, energy saving, multiple coverage, and robustness
of the network to sensor failures.
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Abstract. Motivated by an experimental problem involving the iden-

tification of effective drug combinations drawn from a non-static drug

library, this paper examines evolutionary algorithm strategies for deal-

ing with changes of variables. We consider four standard techniques from

dynamic optimization, and propose one new technique. The results show

that only little additional diversity needs to be introduced into the pop-

ulation when changing a small number of variables, while changing many

variables or optimizing a rugged landscape requires often a restart of the

optimization process.

1 Introduction and Motivation

The purpose of this paper is to analyze the performance of evolutionary algo-
rithms (EAs), such as genetic algorithms and evolution strategies, on problems
that are subject to changes of variables. Such problems belong to the class of dy-
namic optimization problems and they are relevant, amongst other applications,
to optimization problems in the experimental sciences (see e.g. [1,2,3]).

Our motivation for considering this problem type is an ongoing experimental
study concerned with the identification of effective drug combinations using EAs.
In this study, a human experimentalist needs to arrange a library of promising
or relevant drugs to be considered by an optimizer. In our case, each drug cor-
responds to a single binary variable indicating whether the drug is included into
a drug mixture or not; the drug mixture itself represents an entire solution. In
real-world applications of this type, the experimental equipment often allows it
to do many experiments (which are here the mixing of drugs) in parallel. In
our scenario, a robot is taking care of the mixing of drugs, and this robot is
able to mix up to 50 combinations in parallel. During the running experimental
optimization, which may take several months, the human experimentalist may
decide to replace drugs from the library with new ones because, for instance, the
old drugs have a too dominant undesired effect on the efficiency of a drug cock-
tail or are simply not of interest anymore1. Hence, whenever a change of drugs
takes place, the corresponding variables are changed as well. Note, a change of
drugs does not change the effectivity of cocktails that did not use any of the
1 The situation where drugs are only added to or removed from an existing library is

realistic too but will not be considered in this work.

R. Schaefer et al. (Eds.): PPSN XI, Part II, LNCS 6239, pp. 151–160, 2010.
c© Springer-Verlag Berlin Heidelberg 2010



152 R. Allmendinger and J. Knowles

replaced drugs; i.e. solutions with no 1-bit at any of the replaced variables retain
their fitness. Obvious ways of dealing with this are to carry on regardless, or to
restart optimization entirely. We wish to see if other strategies fare any better.

Optimizing problems that are subject to changes of variables is similar to other
dynamic optimization problems considered for example in [4] as both problem
types feature a changing fitness function and thus a changing fitness landscape.
An example of a conceptually similar dynamic optimization problem is the dy-
namic traveling salesman (DTSP) or vehicle routing problem [5], where cities
may be replaced with new ones during the optimization. The two main differ-
ences between our dynamic combinatorial problem and these existing dynamic
problems are that: (i) we do not need to detect changes in the landscape because
it is always known when variables are changed (sometimes the exact generation
of a change can even be controlled), and (ii) the fitness value remains unchanged
for a known subset of solutions (see above). The fact that in our case solutions
are evaluated by performing physical experiments, whose number is often lim-
ited by resource restrictions, can be considered as another distinction to previous
analyses of dynamic problems. The presence of resource limitations requires a
quick tracking of new optima. Fortunately, thanks to (i) and (ii), fulfilling this
task is usually easier in our scenario than, say, in DTSP.

Work carried out on modifications of EAs enabling them to track optima
has looked at three main approaches: diversity control [6], memory-based [7]
and multi-population approaches [4]. For example, in [6], the authors study a
triggered hypermutation operator and a random immigrants method. While the
former method increases the mutation rate drastically whenever the performance
degrades, the latter aims at maintaining population diversity throughout the op-
timization by seeding a part of the population with randomly generated individ-
uals. In [7], the authors suggest the use of diploid representation and dominance
in order to memorize and retrieve successful alleles, but this may only be useful
when part of the environment/problem can return to a formerly visited state.
For a comprehensive review of further modifications please refer to [4].

The remainder of this paper is organized as follows. The next section proposes
a modification to EAs specifically designed for problems subject to changes of
variables. The test problems we use to compare this approach against four stan-
dard strategies from dynamic optimization are described Section 3. An experi-
mental study follows in Section 4, and Section 5 concludes the paper.

2 Strategy to Account for Changes of Variables

The strategy described in this section can be assigned to the class of diversity-
control approaches (such as the triggered hypermutation and random immi-
grants [6]) to account for dynamic environments. Unlike for the majority of
strategies belonging to this class, we do not need to answer the question of how
to detect environmental changes. Instead, the question is rather how to exploit
best the (often expensively obtained and partially intact) information contained
in the current population in the generation of a new population after changing
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variables. The strategy proposed here introduces diversity into the population
only in the initial generations upon an environmental change. This is done by
using effectively the information stored in the current population and by making
use of the fact only bits with value 1 have potentially an effect. The strategy,
which we are calling fair mutation, is explained in detail in the following.

2.1 Fair Mutation

The idea of this strategy is to allow an optimizer both to continue optimization
as normal and at the same time to rapidly explore the space of solutions that
use any of the new variables. The latter aspect is facilitated by two mechanisms:
(i) allowing an optimizer to test each new variable (i.e. its bit being set to 1)
within the same number of offspring solutions and (ii) enabling an optimizer to
explore solutions with a 1-bit at any of the new variables by applying a raised
mutation rate pr for Δh generations; pr and Δh are user-defined parameters.
Algorithm 1 describes the method generateOffspringPopulation(Pop , λ,V,Δt),
which we are calling to generate the offspring population at each generation.
The parameters required by this method are the current population Pop, the
number of required offspring solutions λ, the set of changed variables V , and the
number of generations Δt passed after the last environmental change.

From Lines 8-9 in Algorithm 1, one can see that in the first Δh generations
after changing variables we apply a raised mutation rate (from which 1-bits
among the new variables are protected) if an offspring has one or more 1-bits
among any of the new variables. Although this step allows an optimizer to per-
form exploration among solutions that use one or more of the new variables,
it also runs the risk that an offspring may be perturbed so much that it turns
into a poor one. However, when we embed this strategy within a plus (elitist)
population update scheme (see Section 4) it achieves both the continued normal
optimization of strings that do not contain any of the new variables, and the fair
and rapid exploration of each of the subspaces (schemata) that contain a new
variable.

3 Testing Environment

We use a main-and-joint effects (MJ) problem, which models the real drug mix-
ture problem we are interested in. We present the MJ model for the first time
in 3.1. We also consider variable changes on NK landscapes as a comparison.

3.1 MJ Model

The experience of the human experimentalist and a previously performed pilot
study suggested that only some drugs (bits) of the library have a positive effect
while others have a negative side effect or no effect at all. Moreover, it is believed
that interactions among the considered drugs can be described by main and joint
effects only while higher order interaction effects are negligible.
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Algorithm 1. Fair mutation
Require: pr (raised mutation rate), Δh (number of generations for which pr is used)

1: generateOffspringPopulation(Pop , λ, V, Δt){
2: if Δt = 0 then
3: for each variable k ∈ V do
4: for 1 ≤ i ≤ 
λ/card(V )� do
5: generate an offspring xoff as normal; mutate xoff using a rate of pr; set

variable k of xoff to 1 and add xoff to offPop; i.e. offPop = offPop ∪ xoff

6: // if card(offPop) < λ, then fill offPop in the same way as above but instead of

setting variable k to 1, set to 1 a variable selected from V at random without

replacement

7: else
8: if 0 < Δt ≤ Δh then
9: Generate offspring population as normal but for any offspring containing a

1-bit at any of the variables in V , mutate the other bits using pr

10: else
11: Generate offspring population as normal

12: return offPop}

Let M denote the number of randomly selected bits xh(k), k = 1, . . . ,M ≤ N
(N is the total number of bits) which are assigned a main effect; h(k) is the
variable’s index of the kth main effect. And let J ·M denote the number of
randomly selected distinctive bit pairs (xi(l),xj(l)), l = 1, . . . , J ·M, i(l) �= j(l),
which are assigned a joint effect; i(l) and j(l) are the indexes of the two variables
that have the lth joint effect. In our case, the strengths of all main effects fh(k)

and joint effects gi(l),j(l) are drawn uniformly from the interval [−3, 1]; i.e. on
average, a quarter of all main and joint effects will be positive. Of course, the
strength of a main effect fh(k) or joint effect gi(l),j(l) is only considered if the
variable xh(k), respectively, both variables xi(l) and xj(l) are 1-bits. To evaluate
a candidate solution, we look up all the main and joint effects which are on
and take the average of the sum of all these values. In other words, the fitness
function f to be maximized is defined as

f(x1, ...,xN ) =
1
N

(
M∑

k=1

fh(k) · xh(k) +
J·M∑
l=1

gi(l),j(l) · xi(l) · xj(l)

)
. (1)

3.2 NK Landscapes

The two parameters of NK landscapes [8] are the total number of bits N , and
the number of bits that interact epistatically at each of the N loci, K. Compared
to an MJ model, an NK landscape assigns a positive effect (drawn usually from
[0, 1]) to each of the possible 2K+1 bit-wise neighborhood configurations; i.e. 0
and 1-bits are treated equally. For fair mutation this means that (i) offspring
solutions devoted to a new variable need to be set to 1 and to 0 in equal number
and (ii) new variables are always protected from mutation.
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3.3 Performing a Change of Variables

On a NK landscape, a change of a variable involves to reselect its K neighbors
and to reinitialize the corresponding 2K+1 effects. Similarly, on a MJ model,
if the replaced variables had a main and/or joint effect, then these effects are
reinitialized and the joint bit reselected. Remember to ensure that the result-
ing set of J ·M bit pairs includes only non-identical bit pairs. In this study, a
change of variables is performed every Δg generations whereby always #v ran-
domly selected variables are changed. That is, while Δg controls the frequency
of environmental changes, #v controls the severity of a change.

4 Experimental Study

We compare the performance of fair mutation on dynamic NK landscapes and
MJ models against four strategies from dynamic optimization: triggered hyper-
mutation, restart of the optimization, reevaluating the current population after
changing variables and then carrying on as normal, and a niching algorithm.

Parameter settings: For triggered hypermutation, we use a base mutation rate
of pm = 0.001 and a hypermutation rate of r = 500. Hypermutation is triggered
when there is a decrease in the moving average of the best-of-generation fitness
over five generations. These are standard parameter setting combinations for this
strategy. The niching algorithm is a deterministic crowding EA as described in [9,
p. 140]. At the generation of an environmental change, all strategies reevaluate
the current population before they generate the offspring population.

The algorithm on which we test all strategies (except the niching algorithm)
is a genetic algorithm (GA) with a (μ+λ)ES reproduction scheme; this choice is
guided by simplicity but accounts for our belief that elitism is generally useful in
this domain. The algorithm also uses binary tournament (with replacement) for
parental selection, uniform crossover (crossover probability of 0.7) and bit flip
mutation (per-bit mutation rate of pm = 1/N , although triggered hypermutation
uses its own mutation rates). We fix the population size of the GA to λ = 50
and also set μ = 50. Note, initially, triggered hypermutation was implemented
in a standard GA. We integrate it into an elitist GA because the performance
obtained with that GA proved to be better.

For both test problem models we consider different settings of #v and Δg.
The total number of variables remains thereby fixed at N = 30, which is also
the size of the drug library in our real-world scenario. The considered NK and
MJ models have the parameters N = 30 and K = 2, respectively, M = 30 and
J = 1; i.e. all bits have a main effect and 30 bit pairs have a joint effect.

We are mainly interested in the dynamics resulting from changing a small
number of variables frequently. On this class of problems, the parameter set-
ting for which fair mutation performed best is Δh = 0 and pr = 1/N , which
will also be used here. The interpretation of this parameter setting is that new
variables are protected from mutation only at the generation at which an envi-
ronmental change occurs, and that the raised mutation rate is the same as the
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standard mutation rate. Higher values of Δh and pr are required for more severe
environmental changes and different interval ranges of main and joint effects.

Any results shown are average results across 100 independent algorithm runs.

Performance measurement: To measure the performance of the investigated
strategies we use three measurements: accuracy, adaptability, and average best-
of-generation fitness. Accuracy and adaptability have been proposed in [10] and
rate an algorithm’s overall performance with a single number. The accuracy
value represents the difference between the value of the best solution in the
population at the generation just before a change and the optimal value for
that variable set, averaged over the entire run. The adaptability value represents
the difference between the value of the current best solution of each generation
and the optimal value (for the current variables), averaged over the entire run.
In both cases the optimal solution is approximated by using the best solution
found from running an elitist generational GA for 100 generations, 100 times
independently. Obviously, an algorithm is better the smaller its accuracy and
adaptability measurements are.

The average best-of-generation fitness is a more standard per-generation mea-
sure, suitable for plotting.

4.1 Results

Figure 1-3 show the best-of-generation fitness of all five strategies on NK and MJ
models for three different settings of #v and Δg: #v = 2 and Δg = 10 (Figure 1),
#v = 8 and Δg = 25 (Figure 2), and #v = 15 and Δg = 40 (Figure 3).
The accuracy and adaptability measurements of all strategies on these problem
instances are shown in Table 1. For comparison reasons, the table includes also
the results obtained by random immigrants, using a replacement rate of 30%, and
triggered hypermutation using a base mutation rate of pm = 1/N and r = 15.

For each problem instance it is apparent that all strategies perform better on
the MJ model than on the NK landscape, which is due to the higher degree of
variable interactions featured by the NK landscape. Figure 1 investigates the
situation where the environment changes only little but frequently. This is the
most realistic and for us most interesting case. Here, we observe that:

– Using a restart policy or triggered hypermutation results in a poor perfor-
mance. In the case of the restart strategy, the reason are the low frequency
and severity of environmental changes. The low base mutation rate combined
with the high frequency of changes causes the poor performance of triggered
hypermutation, particularly on the NK landscape.

– The other three strategies yield similar performances though a slight advan-
tage is apparent for fair mutation, which is closely followed by the reevalu-
ation strategy; this is also confirmed by the accuracy and adaptability mea-
surements. Fair mutation tends to recover significantly faster than the other
strategies when there is a severe change in the landscape; see generation 90
on the NK landscape and generation 100 on the MJ model.
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Fig. 1. Shown is the average best-of-generation fitness obtained by various dynamic

optimization strategies on a NK (top) and MJ model (bottom) with #v = 2, Δg =

10. The plots on the left hand side zoom into the area indicated by the box in the

corresponding left plot. The step-shaped line indicates the (estimated) optimal fitness.

– The niching algorithm maintains a relative high population diversity through-
out the search as it searches within several promising niches simultaneously.
This slows down the convergence, as can be seen at the beginning of the opti-
mization, but it also increases the probability of finding new optima quicker
after undergoing an environmental change; this is for example the case on
the MJ model at generation 80, or the NK landscape at generation 50.

From Figure 2, where more variables are changed less frequently we observe that:

– The restart policy can sometimes outperform the other strategies on the
NK landscape. This is, for example, the case at generation 50 where the
landscape seems to undergo a quite severe change.

– Fair mutation outperforms the other strategies again slightly. The fact that
only a small number of offspring solutions can be devoted to each new vari-
able prevents a better performance.

– The deficit in the convergence speed of the niching algorithm is now more
apparent. This is because a more severe landscape change reduces the prob-
ability that any of the currently occupied niches is close to the new optimal
search region; i.e. the population needs to shift its search focus more severely
and this takes time when trying to maintain several niches simultaneously.
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Fig. 2. Shown is the average best-of-generation fitness obtained by various dynamic

optimization strategies on a NK (top) and MJ model (bottom) with #v = 8, Δg =

25. The plots on the left hand side zoom into the area indicated by the box in the

corresponding left plot. The step-shaped line indicates the (estimated) optimal fitness.

Figure 3 considers the case where half of all solution variables are replaced
with new ones every 40 generation. This setting may simulate the case where
a human experimentalist wants to test many different drugs without being able
(e.g. due to storage or budget limitations) or wanting to change the drug li-
brary size. From the figure and the accuracy and adaptability measurements
it is apparent that a restart policy significantly outperforms the other strate-
gies on the NK landscape. On the MJ model, a restart policy yields best re-
sults in terms of the accuracy with fair mutation being best in terms of the
adaptability. The very small number of offspring solutions devoted to each new
variables reduces the local search abilities of fair mutation considerably. The
niching algorithm performs worst on the NK landscape. The reason is again its
deficit in the convergence speed combined with the severity of the environmen-
tal changes. On the NK landscape, triggered hypermutation performs sometimes
quite well loosing often only to the restart policy (see e.g. generation 200, 250,
and 440).
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Fig. 3. Shown is the average best-of-generation fitness obtained by various dynamic

optimization strategies on a NK (top) and MJ model (bottom) with #v = 15, Δg =

40. The plots on the left hand side zoom into the area indicated by the box in the

corresponding left plot. The step-shaped line indicates the (estimated) optimal fitness.

Table 1. Accuracy (Ac.) and adaptability (Ad.) results for various dynamic optimiza-

tion strategies on different problem instances of dynamic NK and MJ landscapes. For

each problem instance and metric, we highlighted all strategies in bold face that are

not significantly worse than any other strategy. The statistical test applied here is the

non-parametric Kruskal-Wallis test with a significance level of 5% (2-sided).

#v = 2, Δg = 10 #v = 8, Δg = 25 #v = 15, Δg = 40

NK MJ NK MJ NK MJ

Fair mutation
Ac. 0.0163 0.0155 0.0150 0.0002 0.0193 0.0011

Ad. 0.0242 0.0344 0.0298 0.0210 0.0480 0.0279

Restart
Ac. 0.0520 0.0815 0.0151 0.0022 0.0076 0.0003
Ad. 0.0942 0.2133 0.0552 0.1232 0.0395 0.0609

Reevaluation
Ac. 0.0170 0.0163 0.0202 0.0003 0.0202 0.0012

Ad. 0.0252 0.0350 0.0302 0.0220 0.0516 0.0282

Niching
Ac. 0.0242 0.0290 0.0188 0.0032 0.0264 0.0012

Ad. 0.0321 0.0471 0.0314 0.0271 0.0560 0.0296

Tr. hyp. pm = 0.001
Ac. 0.0387 0.0313 0.0376 0.0334 0.0241 0.0290

Ad. 0.0492 0.0554 0.0586 0.0778 0.0552 0.0833

Tr. hyp. pm = 1/N
Ac. 0.0194 0.0195 0.0163 0.0004 0.0146 0.0015

Ad. 0.0299 0.0442 0.0360 0.0354 0.0487 0.0444

Random imm.
Ac. 0.0214 0.0228 0.0209 0.0011 0.0231 0.0019

Ad. 0.0297 0.0434 0.0357 0.0266 0.0537 0.0337
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5 Conclusion and Future Work

This paper has compared different strategies for enabling a generational evo-
lutionary algorithm (EA) to deal with problems that are subject to changes of
variables, motivated by a real problem in drug discovery. We proposed a strategy,
called fair mutation, specifically designed for dealing with such problem types,
and compared it against four standard strategies applied in dynamic optimiza-
tion. The results have shown that only little additional diversity if at all needs
to be introduced into the population when changing a few variables frequently
or optimizing a landscape with a low degree of variable interactions. Here, very
good results were also obtained using a niching algorithm or a standard elitist EA
that simply reevaluates the population after a variable change and then carries
on as normal. When changing many variables (around 10 or more), particularly
on a quite epistatic fitness landscape, restarting the optimization from scratch
has shown to be often the best choice.

In real-world applications like our scenario, variables might not only be asso-
ciated with resources (e.g. drugs) but their use may also be subject to resource-
constraints: e.g. the use of drugs might be associated with costs, or drugs might
have to be bought in batches. Here, a good strategy for dealing with changing
variables has to account for both fitness gradients and variable experimental
costs. For instance, while a restart policy is likely to be quite expensive under
these circumstances, a strategy that aims at wasting very little resources might
take too long to find fit solutions. Hence, future research into the development
of strategies that perform well in the presence of resource-constraints is needed.
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Abstract. We consider an optimization scenario in which resources are

required in order to realize or evaluate candidate solutions. The partic-

ular resources required are a function of the solution vectors, and more-

over, resources are costly, can be stored only in limited supply, and have

a shelf life. Since it is not convenient or realistic to arrange for all re-

sources to be available at all times, resources must be purchased on-line

in conjunction with the working of the optimizer, here an evolutionary

algorithm (EA). We devise three resource-purchasing strategies (for use

in an elitist generational EA), and deploy and test them over a number of

resource-constraint settings. We find that a just-in-time method is gen-

erally effective, but a sliding-window approach is better in the presence

of a small budget and little storage space.

1 Introduction

We are currently interested in using evolutionary algorithms (EAs) to optimize
a number of things that require us to physically realize and experimentally test
candidate solutions in order to evaluate them (similarly to [1,2]), including: com-
binatory drugs, nucleic acids, food and energy crops, and complex instrumenta-
tion equipment. In these contexts, the allele of a particular solution may repre-
sent (or require) a resource that is needed in order for the solution to be realized
and/or tested. It is not always convenient to ensure that all resources are avail-
able at all times (because they may be expensive, or need storage facilities, or
require people who have other commitments, etc.). So, even though the optimiza-
tion problem itself may be unconstrained and essentially static, the fitness of a
solution xt may be undefined (or null) at time step t during the optimization.
We model the temporary unavailability of resources using what we are calling
ephemeral resource constraints (ERCs).

In a recent paper [3], we introduced a number of different sub-classes of ERCs,
studied how to simulate them and investigated how standard EAs were affected
by the key parameters describing the ERCs. An essential finding of the paper was
that ERCs can increase drift effects in EAs, or even cause stagnation, due to the
fact that the sampling of the search space is limited by the resource availability
in addition to the ‘normal’ drift coming from sampling errors. The reader is also
referred to the paper (ibid.) for all material relating the general ERC problem

R. Schaefer et al. (Eds.): PPSN XI, Part II, LNCS 6239, pp. 161–170, 2010.
c© Springer-Verlag Berlin Heidelberg 2010



162 R. Allmendinger and J. Knowles

to some other problem types [4,5,6] and for applications in the literature [7,8,9],
which we cannot cover here.

In this paper, we consider a particular ERC, which we call a commitment
composite ERC. Essentially, with this type of ERC, some part of the solution
vector defines a complex sub-part (or composite) which must be purchased in
advance. Once the composite arrives (after some lag) it can be stored only for
a certain length of time, and/or re-used in different experiments only a certain
number of times. Thus ordering it represents a sort of commitment to using it a
number of times (or else it will be wasted).

Here we consider some purchasing strategies to be used in conjunction with
an elitist generational EA in order to optimize a problem subject to this sort of
ERC, assuming some budget limiting the usage of composites, and/or limiting
time. The next section describes the commitment composite ERC in more detail.
The three strategies we consider are then given in Section 3, and an experimental
study follows (Section 4). Section 5 concludes the paper.

2 Commitment Composite ERCs

A commitment composite ERC occurs when some variables of a candidate solu-
tion define a composite that requires resources to be locally available (e.g. in a
cache) in order for the solution as a whole to be realized and/or evaluated. We
can conveniently use the notion of schemata to describe the resource-requiring
composite part of a solution. For example, assuming a binary representation of
solutions, we would use H# = {∗ ∗ ### ∗ ∗ ∗ ∗ ∗ ##} to state that bit posi-
tions 3, 4, 5, 11 and 12 define a composite; we refer to the bit positions denoted
by # as the composite-defining bits, and the order o(H#) to be the number of
composite-defining bits in the schema (we refer to H# as the high-level con-
strained schema). In the problems tackled here the composite-defining bits are
static, and form a part of the ERC problem definition.

When a solution is to be evaluated, we must look at the composite-defining
bits in the solution and compare them to a local cache of resources. Each resource
in the local cache is indexed by a bit-string of the same length as the order of
the schema described above. If there is a match, the solution can be evaluated;
if not, the solution may not be evaluated at the current time step.

We define the cache to be made up of a number of storage cells, #SC. Typi-
cally, the number of storage cells is smaller than the space of possible resources,
which is 2o(H#) in a binary search space. A resource available in a storage cell
may be used in the evaluation of more than one solution: each resource may be
used up to RN (reuse number) times and has a shelf life of SL time steps, and
we assume SL ≥ RN . Finally, the resources available in the cache at time t are
a function of previous purchase orders made, and a fixed time lag TL between
a purchase being made and it arriving. When resources arrive at a particular
time, they are immediately put in a storage cell (and any existing resource in
that cell is discarded); which storage cell is selected is defined either at the time
of purchase or at the time of arrival (this detail will become clear below).
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The corresponding ERC function can be defined by

h : if

[
#SC∧
i=1

xt /∈ Hi(t)

]
⇒ xt /∈ Et, (1)

where, Et represents the evaluable search region at optimization time step t,
and Hi(t), i=1, ...,#SC , the constraint schema that corresponds at time step t
to the composite that is stored in storage cell i. In future, we will denote such a
commitment composite ERC by commCompERC (H#,#SC ,TL,RN , SL).

In this paper we consider the case where time steps refer to function evalua-
tions of single solutions x, so does the reuse number RN . Furthermore, to make
the constraint more realistic we associate costs of corder and ctime step units with
each submitted composite order and time step, respectively. The available bud-
get, which cannot be exceeded, is denoted by C. To simulate the constraint we
use the function wrapper, whose functionality is described below. In [3], this
wrapper is referred to as the communication channel and calling it is identical
to calling an objective function f in a standard optimization problem. If the
optimizer wants to increment only the time counter without evaluating a solu-
tion, it submits what we are calling a null solution; note the difference between
a null solution and a solution with a fitness value of null, which is is submitted
with the purpose of being evaluated but then is not evaluated due to a lack of
resources. The variables representing the time counter t, cost counter c, stor-
age cell information SC (i.e. contents, remaining shelf lives and remaining reuse
number), and the queue Q of submitted but not arrived composites, are global
state variables and visible to the optimizer. For tasks like ordering a composite
or repairing a solution the optimizer needs to implement a method, which is
then called by the channel. Here, repairing means to modify a solution such that
it falls into the constrained schema of a composite that is currently in storage.

Once the optimizer submits a solution x, the channel works as follows: First,
composite orders are collected (given the budget allows it) and added in the order
of submission to Q. The storage cell information SC is then updated (i.e. arriving
composites are put in the assigned storage cells and expired ones are removed),
and the submitted solution checked for evaluability. While an evaluable solution
is then evaluated using some objective function f , for a non-evaluable one, an
optimizer’s repairing method is called. If the optimizer repairs the solution (i.e.
the repairing method returns a different solution), then it is evaluated, otherwise
it is assigned an objective value of null. After an evaluation we update SC (i.e.
decrement the reuse number of the corresponding composite), and increment the
time and cost counter. This process is repeated until a budget of C is used up.

3 Online Purchasing Strategies

This section proposes three strategies for dealing with commitment compos-
ite ERCs: a just-in-time strategy, a just-in-time strategy with repairing, and
a sliding window strategy. In advance, all strategies are designed such that an
optimizer has never to deal with solutions that have a null fitness value.
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In general, a strategy designed to deal with commitment composite ERCs
is composed of three mechanisms, which are concerned with: (i) selecting the
composite that is ordered and the point of time at which it is ordered; (ii)
selecting the storage cell into which an arrived composite is put, which may mean
selecting an existing composite that is to be replaced by a new one; (iii) selecting
an available composite to repair a non-evaluable solution (given it is repaired).
Each of these mechanisms is described for our strategies in the following.

3.1 Just-in-Time Strategy

Without repairing and any composites in storage, the minimum number of time
steps for evaluating all solutions of a population is Popsize + TL (TL time steps
are needed for the first composite to arrive; this period is bridged by submit-
ting TL null solutions). This is achieved if orders are processed in contiguous
groups organized by the composites they require, e.g. ccbbbadd..., where a, b, c,
and d shall represent different composites required by solutions. Thus, the first
main mechanism of the just-in-time (JIT) strategy is to arrange solutions of a
population Pop into these contiguous groups, and then to make purchase orders
so that composites arrive just in time for the scheduled experiment time. This
mechanism, which is performed by the method alignOrdersAndSolutions(Pop)
(see below), prolongs the availability of resources.

When composites are already in storage (we call them old composites) savings
in purchase orders may be made if those composites are used first. For example,
suppose the optimizer requires the composites ccdadcac, and composite a is
available in one of the storage cells and has 3 uses and 5 time steps of its shelf
life remaining. Then, by placing a first, the permutation aaccccdd will save us
a purchase order since only two a composites are needed. Thus, the second
main mechanism of the JIT strategy is to efficiently schedule the evaluation of
solutions in a population Pop using old composites. This is performed by the
method useUpOldComposites(Pop) (see below). Notice that, at any given time,
JIT (and JIT with repairing) maintain non-identical composites in storage.

During the optimization, the JIT strategy checks at each generation whether
old composites can be used in the evaluation of solutions of the current popula-
tion. If so, the method useUpOldComposites(Pop) is applied first and then the
method alignOrdersAndSolutions(Pop), otherwise we proceed directly with the
method alignOrdersAndSolutions(Pop).

alignOrdersAndSolutions(Pop): Recalling that solutions are grouped by the
composite they require, this method must just choose the order in which these
groups of solutions are to be submitted for evaluation. To obtain a permutation
of groups we select groups one by one using roulette wheel selection (without
replacement) based on the number of solutions in Pop associated with them,
and then reverse the order so obtained. This strategy increases the chances that
left-over composites at the end of the generation will be useful next generation
(because the solutions associated with them are over-represented in the pop-
ulation). Regarding the storage location of arriving composites, the default is
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to place them in an empty storage cell. If no cell is empty, then the compos-
ite replaces the composite that can be used in the fewest evaluations within the
subsequent generation; ties between composites are broken by replacing the com-
posite that has the shortest shelf life remaining; further ties are broken randomly.

useUpOldComposites(Pop): Our aim when using up old composites is to
save as many composite orders as possible. To achieve this when there are sev-
eral storage cells to consider, we solve the lexicographical optimization prob-
lem lexmaxi∈π(Z)(F1,F2) over the permutation set of Z = {ζ|ζ ∈ S ∩ C, 1 ≤
θζmodRN ≤ min(ψζ , ρζ)}, where S is a set of old composites and C the set
of composites required by the optimizer to evaluate Pop. Associated with each
s ∈ S there is a remaining shelf life ψs and a remaining number of reuses ρs, and
associated with each c ∈ C there is a required number θc. The objective functions
to be optimized are F1 =

∑
j∈1,...,|Z| f1(πij(Z)) and F2 =

∑
j∈1,...,|Z| f2(πij(Z)),

where πij is the jth element of permutation i,

f1(πij(Z)) =

{
1 if ψπij −

∑j−1
k=1 δπik

≥ θπij modRN
0 otherwise

, f2(πij(Z)) = δπij

and δπik
=

{
θπik

modRN if k = 1
max

[
0,min

(
ψπik

− δπik−1 , θπik
modRN

)]
if k > 1.

While F1 determines the permutations of Z that save the most purchase orders,
F2 breaks ties among these permutations by selecting the permutation(s) that
evaluate the most solutions; further ties are broken randomly. Required compos-
ites left in storage after evaluating the last solution of the selected permutation,
i.e. after max(F2) time steps, are used up further in a random fashion; i.e. we
first select a composite at random and then select a random (unscheduled) so-
lution from Pop that requires this composite, and we repeat this until no future
evaluations can be scheduled. Having devised a schedule, we can specify at which
time step the first new composite order needs to be submitted (to evaluate the
remaining solutions in Pop) in order to reduce our waiting time for it to arrive.
Subsequently, we know when and how many null solutions need to be submitted.

3.2 Just-in-Time Strategy with Repairing

Although the JIT strategy avoids repairing of solutions and thus allows an op-
timizer to perform an unconstrained optimization, this may be associated with
a waste of up to Popsize × (RN − 1) composites per generation (if each com-
posite is used exactly once). To reduce wastage, the JIT with repairing (JITR)
strategy extends the basic JIT strategy with a repairing procedure. The method
performRepairing(Pop) (see Algorithm 1) performs the repairing and this method
is always called before calling the method alignOrdersAndSolutions(Pop). The
idea of the repairing strategy is to repair solutions such that they use a compos-
ite that is nearly the one required. Solutions to be repaired are identified by first
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Algorithm 1. Just-in-time strategy with repairing
Require: w (weighting factor), #mIter (number of shifting rounds)

1: performRepairing(Pop){
2: filter out solutions from Pop that use up composites entirely

3: for
⌈ |Pop|

RN

⌉ ≤ k ≤ #CompsInPop do
4: cluster solution in Pop using k-medoids

5: if required, shift solutions between clusters (perform mIter rounds of shifting);

retain configuration with the smallest Hamming distance loss and record HDLk

6: normalize the values HDLk and k of all configurations, and calculate the scores

HDLN k · (1 − w) + kN · w, where HDLN k =
HDLk−mink(HDLk)

maxk(HDLk)−mink(HDLk)
and k is

normalized in the same fashion

7: repair solutions in Pop according to the configuration with the smallest score; add

the filtered-out solutions back to Pop.}

clustering their composites, and then trying to find an assignment of solutions
to clusters that minimizes the total Hamming distance of all repairs.

performRepairing(Pop): The first step of this method is to filter out all so-
lutions that use up a composite entirely (without being repaired). If there are
more than RN solutions requiring the same composite type, then we filter out
a subset of RN solutions among them at random. The remaining solutions take
part in the clustering process and are subject to being repaired. The number
of clusters k into which we can partition these solutions, or, more appropriate,
their required composites, varies between

⌈ |Pop|
RN

⌉ ≤ k ≤ #CompsInPop, where
#CompsInPop is the number of non-identical composites in Pop. Let us first
describe how we perform the clustering for a given k, and then how we select a
particular cluster configuration according to which we repair.

To obtain a partition with k clusters we apply k-medoids on the different com-
posites. The distance between two composites is the Hamming distance between
their constraint schemata. The medoid composite of a cluster is the composite
that would be used to repair all solutions in that cluster that require a different
composite. For diversity reasons, we want to avoid to order a medoid composite
more than once, or, in other words, we want to keep the number of solutions
within a cluster smaller than the reuse number RN . A simple way to ensure this
aspect is to randomly shift solutions from too large clusters to clusters that can
accommodate further solutions. We perform mIter shifting rounds in total and
select the configuration with the smallest total Hamming distance of all repairs
HDLk to be the best configuration obtained with k clusters.

The cluster configuration according to which we repair is the one with the
smallest score HDLN k ·(1−w)+kN ·w, where w ∈ [0, 1] a predetermined weight-
ing factor representing the degree of repairing. Roughly speaking, the larger the
value w the more solutions are repaired; note a value of w = 0 corresponds to
the configuration one would select in the basic JIT strategy. We can now add
the solutions that were filtered out again to Pop and process that population
further as usual using the method alignOrdersAndSolutions(Pop).
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3.3 Sliding Window Strategy

While the JIT and JITR operate in a sequential mode in that they devise a
schedule of solution evaluations and purchase orders upon receiving a population
from the EA first, the sliding window (SW) strategy deals with the working of the
algorithm and the purchasing of orders in parallel. More precisely, the strategy
submits solutions in the order they are generated, non-evaluable solutions are
always repaired, and it aims for the ‘most useful’ composites to be kept in storage
by (i) replenishing composites so that there can never be an empty storage cell
and (ii) maintaining composites that were recently requested by the optimizer.

The first aspect, avoiding empty storage cells, is achieved by making purchase
orders to fill all storage cells every min(SL,RN ) time steps. The second aspect,
maintaining recently requested composites, is achieved by ordering composites
from the sliding window, which we define here as a set κ(t) containing the most
recently requested but unavailable composites; κ(t) is limited in size such that
card(κ(t)) ≤ WS , where WS is the window size. Here, a requested composite
means one that was part of a solution that the EA submitted to the function
wrapper for evaluation. In this paper, we simply order the #SC composites
from κ(t) that have been added to this set most recently. That is, if we set
WS = #SC , then we order always all composites in κ(t); note, this means that
all existing composites are replaced by new ones. If we cannot order a composite
for each storage cell because |κ(t)| < #SC , then we order random composites
for the remaining storage cells; this is, for example, the case at t = 0.

To repair a non-evaluable solution, we use the composite from the storage
cell that has the smallest Hamming distance to the actually required composite;
ties between equally distant composites are broken randomly. Note, different to
JITR, this repairing step is performed within an optimizer’s repairing strategy
that is called by the communication channel.

4 Experimental Study

Experimental setup: Our strategies are tested on a genetic algorithm with a
(μ+λ)ES reproduction scheme; this choice is guided by simplicity but accounts
for our beliefs that elitism is generally useful in this domain. The algorithm
also uses binary tournament selection (with replacement) for parental selection,
uniform crossover (crossover probability of 0.7), and bit flip mutation (per-bit
mutation rate of 1/l). We fix the population size to λ = 50 and also set μ = 50.
As the objective function f we consider a MAX-SAT instance, which is a well-
known and generally challenging problem. The instance is a uniform random
3-SAT problem instance with l = 50 variables and 218 clauses1, and it is satisfi-
able. We treat this 3-SAT instance as a MAX-SAT optimization problem, with
fitness calculated as the proportion of satisfied clauses. Any results shown are av-
erage results across 100 independent algorithm runs on this instance. For SW, we
1 The instance can be downloaded online at http://people.cs.ubc.ca/~hoos/

SATLIB/benchm.html; the name of the instance is ”uf50-218/uf50-01.cnf”.
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Fig. 1. Shown is the probability of SW (left) and JIT (right) of achieving the pop-

ulation average fitness of our base algorithm obtained in an ERC-free environment

after 1500 time steps. For SW this probability is shown as a function of #SC and

RN for the ERC commCompERC (o(H#) = 30, #SC , TL =10,RN , SL = RN ), and for

JIT it is shown as a function of TL and RN for the ERC commCompERC (o(H#) =

10, #SC =10, TL,RN ,SL = RN ); cost were set to corder = 0, ctime step = 1, C = 1500.

found that ordering a composite that first undergoes mutation yields better re-
sults. Preliminary experiments revealed a per-bit mutation rate of 5%, which will
also be used here, to be promising. For JITR, we set mIter = 500 and cool down
the weighting factor w stepwise as a function of c as w = 0.1×max(0, 4−"c/250#).

Experimental results: Figure 1 shows the probability of SW and JIT of
achieving the population average fitness of our base algorithm obtained in an
ERC-free environment. For SW (left plot), we observe that the performance
improves the more storage cells are available and the lower the reuse number
is. The reason therefore is that for these settings we order a larger number of
potentially different composites more frequently. This in turn reduces the prob-
ability of needing to repair and if in case it needs to be repaired it increases the
diversity of the repaired solutions among the composite-defining bits. For JIT
(right plot), we can see that the performance improves as the time lag decreases
and the reuse number increases. As this strategy does not repair and composites
are gratis in this experiment, any positive effect on the performance comes from
a shorter waiting period between transitions of population generations. While
a shorter time lag has a direct positive effect on the waiting period, a greater
reuse number allows us to evaluate more solutions from a new population using
old composites and thus to compensate a slightly larger time lag.

The performance of JITR obtained at large budgets is not significantly differ-
ent from the performance of JIT, which is due to the rather conservative cooling
scheme of w. However, when looking at the performance during the optimization
(see Figure 2 right plot) it is apparent that JITR is able to locate fit solutions at a
lower budget than required by JIT (see region 0 < c ≤ 600, 0 ≤ ctime step ≤ 0.5).
The weakness of JIT of being too expensive or wasteful in the early stages of
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Fig. 2. Shown is the ratio P(f (x) > fJIT)/P(f (x) > fSW) (left) and

P(f (x) > fJITR)/P(f (x) > fJIT) (right) as a function of c and ctime step for the

ERC commCompERC (o(H#) = 10, #SC = 5, TL = 5, RN = 30, SL = 30), corder = 1;

here, x is a random variable that represents solutions drawn uniformly at random

from the search space and f∗ the population average fitness obtained with strategy ∗

the optimization is also apparent when comparing it with SW (see Figure 2 left
plot). A comparison between JITR and SW is not shown here, but it is easy to
see that repairing improves the performance of JIT in early optimization stages.

A comparison between JIT and SW with respect to o(H#), and #SC for a
budget of C = 1500 and C = 3000 is shown in the left and right plot of Figure 3,
respectively; JITR achieved a similar performance to JIT. One can see that, for
the lower budget, SW achieves a higher population average fitness than JIT in
the range 8 < o(H#) < 40, #SC < 15. Compared to JIT, SW is too expensive
in the presence of more storage cells. As the budget increases, JIT is able to
match the performance of SW and eventually to overtake it, particularly if the
order is high and many storage cells are available.
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Fig. 3. Shown is the ratio P(f (x) > fJIT)/P(f (x) > fSW) for a budget of C = 1500

(left) and C = 3000 (right) as a function of the number of #SC and o(H#) for the

ERC commCompERC (o(H#), #SC ,TL =25, RN =25, SL =25), corder =ctime step = 1
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5 Conclusion

In this paper we have considered an optimization scenario in which costly re-
sources (composites) are required in the evaluation of solutions, and these com-
posites had to be ordered in advance, kept in capacity-limited storage, and used
within a certain time frame. Three resource-purchasing strategies have been pro-
posed and analyzed over a number of resource-constraint settings. A simple just-
in-time (JIT) strategy, which can be seen as the minimal strategy, has shown to
be generally effective but too expensive at early optimization stages. This draw-
back has been eliminated by intelligently repairing solutions during these stages
(JITR). Besides these two reactive strategies we also considered a sliding window
(SW) strategy, which applied some from of anticipation. This (simple) strategy
performs better than JITR and JIT for some constraint settings, although it is
costly in the presence of much storage space.

Our current research is looking at other types of resource constraints in evo-
lutionary search, and what strategies can be used to handle them effectively.
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Abstract. The paper deals with the application of the Artificial Im-

mune System to the optimization and identification of composites. To

reduce the computational time parallel computations are performed.

Composite structures in form of multilayered laminates are taken into

account. Simple and hybrid (with laminas made of different materials)

laminates are examined. Different optimization criteria connected with

stiffness and modal properties of laminate structures are considered. Con-

tinuous and discrete variants of design variables are regarded. The aim

of the identification is to find laminate elastic constants on the basis of

measurements of state variable values. The Finite Element Method is

employed to solve the boundary-value problem for laminates. Numerical

examples presenting effectiveness of proposed method are attached.

Keywords: Artificial Immune System, optimization, identification, par-

allel computing, composite, laminate.

1 Introduction

Optimization and identification tasks are often met in engineering practice. Iden-
tification tasks can be typically treated as a kind of optimization. Gradient-based
optimization methods are fast and precise, but their application meets many ob-
stacles. In many real problems the calculation of the objective function gradient
is not easy or impossible. If the objective function is multimodal, the application
of gradient methods can lead to local optima. To avoid the mentioned problems
the global optimization methods, like Evolutionary Algorithms or Artificial Im-
mune Systems can be employed. The only information such algorithms require
is the objective function value. An application of the Evolutionary Algorithm
for optimization and identification of laminates has been presented e.g. in [4]
and [2]. In the present paper an Artificial Immune System [13] is used to solve
optimization and identification tasks. As the calculation of the objective func-
tion is usually the most time-consuming part of engineering computations, the
parallel version of Artificial Immune System is introduced. The algorithm has
been applied for different composites’ optimization and identification problems.
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Composites are materials playing an increasing role in modern industry. The
main reasons of their popularity are: low specific weight, high specific strength
and stiffness properties as well as tailorable characteristics compared to metals.
Composite structures can be designed to meet the structural specifications. The
most widely used group of composites state layered laminates. They consist of
many layers composed of matrix and long fibres, typically placed unidirectionally
in each ply. The component materials, stacking sequence, layer thicknesses are
generally taken as design variables in laminates optimization. Laminates can
be typically treated as thin two-dimensional structures with four independent
elastic constants: axial Young modulus E1, transverse Young modulus E2, axial-
transverse shear modulus G12 and axial-transverse Poisson ratio ν12.

There are two goals of the present paper: i) to obtain the optimal properties
of the material for different optimization criteria connected with the stiffness
and the dynamic behavior of the structure ii) to identify material constants of
the laminates on the basis of the measurements.

The laminate stacking sequence optimization is usually a discrete optimization
problem due to the manufacturing limitations. Even for a continuous optimiza-
tion problem and also for an identification problem the objective function is typ-
ically multimodal. A commercial FEM software package MSC.Patran/Nastran
has been used to solve the direct boundary-value problem for composite
structures.

2 Parallel Artificial Immune System

Artificial Immune Systems (AISs) belong to biologically-inspired algorithms. To
some extent similar to Evolutionary Algorithms [15], AIS are inspired by a mam-
mal immune system [16]. A natural immune system (NIS) is one of the most
complex systems in a human body. It is decentralized and contains distributed
groups of dedicated organs, tissues and cells. The NIS is a distributed system
capable of learning and adapting to a varying environment. The main role of
the NIS is to protect organism against intruders – pathogens. The NIS works on
four immune layers: i) skin layer, ii) physiological layer (e.g. temperature, pH),
iii) non-specific (innate) immunity and iv) specific immunity [18].

The main elements of the NIS are lymphocytes, mainly B-cells and T-cells.
T-cells are formed in the thymus where they are trained to differentiate self
cells from non-self cells. Only properly trained T-cells (ignoring self antigen
molecules) are released to the blood and lymphatic systems. B-cells, which are
produced in the bone marrow, contain antibodies. Antibodies can recognize and
neutralize pathogens. Some B-cells become memory cells increasing detection
speed of known intruders. To obtain high diversity of antibodies, B-cells undergo
a hypermutation process.

The AISs simulate some elements of the specific immunity layer of NIS, like
B-cells and T-cells, proliferation, hypermutation and clonal selection. The opti-
mization is treated as a searching for a B-cell containing an antigen best-fitted
to a pathogen which represents a global optimum of an objective function [8]. In
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many engineering optimization problems the calculation of the objective func-
tion is the most time-consuming part of the algorithm. It is typically necessary
to perform hundreds or even thousands computations of the boundary-value
problem. The overall optimization time can be reduced by introducing a parallel
approach. In the present paper an in-house parallel AIS (PAIS) is proposed as
the global optimization method.

Fig. 1. Parallel Artificial Immune System

The block diagram of PAIS is presented in Fig. 1 ([13],[14]). The PAIS is
implemented using Windows system threads. The number of threads during
computations is constant. It can be smaller or equal to the number of B-cells.
The PAIS is implemented as main (master) thread supported by other threads
(workers) for the evaluation of B-cells objective function. The B-cells objective
function values are computed by threads by using of round robin method. The
number of parallel evaluated B-cells is constrained due to the number of available
cores but the memory and disk usage necessary for the objective function solvers
have to be taken into account.

The algorithm starts with the random generation of memory cells. The mem-
ory cells proliferate – the number of clones depends on the objective function
value of the memory cells. The clones undergo gaussian hypermutation and cre-
ate B-cells. The objective function is calculated for each new B-cell with appli-
cation of MSC.Nastran Finite Element Method solver. The objective function
values may be calculated on more than one processing unit. In the next step
the selection procedure takes into account the distance between each memory
cell and B-cells and replaces a few memory cells by better B-cells. Similar mem-
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ory cells are removed by means of the crowding mechanism. The procedure is
repeated until the terminal condition is satisfied.

To solve the objective function, the program interface between PAIS and
MSC.Nastran had to be developed. On the basis of the design vector values
generated by PAIS the input MSC.Nastran file (.bdf) is generated. The result
file (.f06) generated by MSC.Nastran is used to calculate the objective function
value.

The speed-up of the parallel computations is described as:

S =
T1

Tn
(1)

where: T1 – computing time using one processing unit, Tn – computing time
using n processing unit.

The efficiency E of parallel program can be calculated as the inverse of the
speed-up (E = S/n).

3 Formulation of the Problem

The optimization and identification of composites have been performed for dif-
ferent composite structures. Composite structures have a form of multi-layered
laminates. Typically, all layers in laminates are composed of the same material,
however, in some applications it is positive to combine more than one material,
e.g. to find the balance between the cost and other properties of the structure.
Such attitude can lead to multiobjective optimization tasks. Multiobjective evo-
lutionary optimization of laminates has been presented in [3]. Laminates with
laminas (plies) made of different materials are called hybrid ones [1]. The in-
terply hybrid laminates with internal layers built of a weaker/cheaper material
and external layers made of a high-stiffness and more expensive material are
considered. It is assumed that all considered structures are made of symmetrical
laminates – as a result, there is no coupling between shield and bending states
in laminate [11].

3.1 Optimization of Composites

Seeking for the optimal properties of composite structures is an important engi-
neering task. An optimal stacking sequence describing fibre angles in particular
plies of the composite is looked for. The optimization means a searching for a
vector x which maximizes (or minimizes) the objective function J(x).

In aircraft industry a box-beam sections are popular and used e.g. for heli-
copter rotor blade structures. Box-beam composite sections resist torsion and
bending load efficiently [12]. The analytical solution for box-beam with fixed
cross-section is presented in [10]. The presented theory allows predicting the
coupling effects (bending-torsion, extending-torsion) in box-beam structures un-
der following assumptions: i) the box-beam is thin-walled; ii) cross-section is
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fixed and closed; iii) each wall has a plane of symmetry; iv) the loads are: nor-
mal longitudinal load, torsion moment about the longitudinal axis and bending
moments along two other axis of the box-beam.

The analysis of more complex composite structures is possible due to the
development of numerical methods, especially Finite Element Method (FEM).
In the present paper an optimization of the box-beam of varying cross-section is
considered. The structure has 4 walls composed of an interply hybrid laminate.
The aim of an optimization is to find the optimal properties of the composite
structures for given criteria. Dynamic and static criteria are taken into account:

1. The maximization of the fundamental eigenfrequency ω1 of the structure:

arg max{ω1(x);x ∈ D} (2)

2. The maximization of the distance between external excitation frequency
ωex and the closest eigenfrequency ωcl:

arg max {|ωex(x)− ωcl(x)| ;x ∈ D} (3)

3. The maximization of the total stiffness of the structure. The mean stiffness
of the structure can be represented by its total potential energy Πu [6]:

arg max{−Πσ(x);x ∈ D}; Πσ =
∫
Ω

W (σ)dΩ−
∫
Γ1

pu0dΓ1 (4)

where: Πσ – total complementary energy of the structure; W (σ) – stress potential
referred to the unit volume; Ω – a domain occupied by the body; Γ1 – a part of
the boundary on which the function pu0 is defined; p – tractions on the Γ1; u0

– displacements on the Γ1.

3.2 Identification of Composites

In many engineering problems some unknown parameters, like material parame-
ters, shape parameters or boundary conditions must be identified. Identification
problems belong to the inverse problems, which are ill-possed ones [5]. To solve
such problems it is necessary to collect measurements in form of state fields’
values from the considered structure. Then, they are compared with the values
of the state fields calculated from the numerical model of the structure.

Composite structures are usually produced in short series or individually. Due
to the technological reasons different imperfections resulting non-precise output
parameters can occur in composites. As a result, non-destructive methods of
composite elastic constants identification should be employed.

The identification can be treated as a the minimization of the functional J(x)
with respect to a design variables vector x. In the present paper the following
functional is minimized:

min :

[
J(x) =

1
N

N∑
i=1

(vi − v̂i)
2

]
(5)
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where: x – the vector of the design variables, v̂i – measured values of the state
fields, vi – the same state fields values calculated from a numerical model of the
laminate plate, N – the number of measurements.

The design variables vector for a simple laminates can be written as:

x = {E1,E2,G12, ν12} (6)

The design variables vector for a hybrid laminates consisting of two different
materials has a form:

x = {E1
1 ,E

1
2 ,G

1
12, ν

1
12, ρ

1,E2
1 ,E

2
2 ,G

2
12, ν

2
12, ρ

2} (7)

where: ρ – material density, superscripts denote the number of material.
The identification procedure can be performed for the data obtained from

the structure response to the static load, e.g displacements, which may require
many sensors. To reduce the number of sensor points modal analysis methods are
employed [17] and the eigenfrequencies values or frequency response data can be
treated as a measurements. It is also possible to combine different measurement
data which can lead to less ambiguous identification results [7].

4 Numerical Examples

4.1 Numerical Examples: Optimization

A box-beam with varying cross-section is considered (Fig. 2). The wider end
of the structure is fixed. Each of 4 walls of the structure is made of the same
hybrid, symmetric laminate having identical stacking sequence. The thickness of
each ply is hi=0.2e-3m. External laminas are made of graphite-epoxy material
Me while internal layers are built of glass-epoxy material Mi. The parameters
of materials are:

Me: E1=141.5GPa, E2=9.80GPa, G12=5.90GPa, ν12=0.42, ρ=1445.5kg/m3;
Mi: E1=38.6GPa, E2=8.27GPa, G12=4.14GPa, ν12=0.26, ρ=1800.0kg/m3.

The aim of the optimization is to find an optimal stacking sequence to maxi-
mize the fundamental eigenfrequency ω1 of the structure. It is assumed that the
number of plies on each side of the symmetry plane is equal to 7 but external
plies angle is fixed and equal to 0, so the number of design variables reduces to
6. The stacking sequence for each wall can be presented as:

(0e/θe
1/θ

i
2/θ

i
3/θ

i
4/θ

i
5/θ

i
6)s (8)

where subscripts denote a design variable number while superscripts refer to
the materials: e – external material (Me), i – internal material (Mi). Different
optimization variants are considered: i) ply angles can vary in a continuous way
from the range −90◦ ÷ 90◦; ii) ply angles can vary in a discrete way (every 5◦,
15◦ or 55◦) from the same range.

The parameters of the PAIS are: the number of memory cells nmc=5; the
number of clones ncl =20; the number of design variables nm=6; the minimum
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Fig. 2. The box-beam – dimensions and bearing

crowding distance cdist=0.2; the mutation range mr=0.5; the maximum number
of iterations ni=30. The parameters of PAIS were chosen after some preliminary
tests.

The calculations were repeated 30 times for each ply angles variant. The
results of the optimization with statistical data in form of the best, the worst
and average values of the objective function as well as the standard deviation
are collected in Table 1. The best optimization results were obtained for variants
with wide search space. The repetitiveness of the algorithm described by the
standard deviation is much higher for continuous and 5◦ variants.

Table 1. The box-beam – optimization results

Variant ω1 [Hz] Stacking sequence

the best the worst average std. dev. for the best solution

cont. 900.125 893.649 898.790 1.444 (0/89.9/90/89.5/69.7/-44.4/38.5)s

5◦ 899.973 896.879 898.663 0.902 (0/90/90/85/-70/45/40)s

15◦ 898.764 867.803 893.512 10.600 (0/90/90/75/75/-45/45)s

45◦ 894.589 656.044 855.674 91.896 (0/90/90/90/45/-45/-45)s

The speed-up and efficiency tests of PAIS have been performed. The number
of B-cells for each memory cell ncl was reduced to 10. The total number of objec-
tive function evaluations in one iteration of PAIS equals 50. The tests have been
performed on a dual-processor Intel Xeon E5345 (4 cores each) server station.
The PAIS has been implemented by using windows threads. The total number of
degrees of freedom (DOFs) in analyzed problem was above 100 000. The eigen-
value problem has been solved during the boundary-value problem computing
with the matrix size corresponding to number of DOFs. The computations wall
time has been measured for 10 iterations. The computation wall time for itera-
tion on one core was approximately equal to 1 hour. The average wall time from
10 tests has been used for speedup and efficiency evaluation. The results are
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shown in Table 2. The most likely reason of decreasing efficiency is a concurrent
access of the solvers based on MSC.Nastran to shared hard disk.

Table 2. Parallel computing – results

No of cores Speedup S Efficiency E[%]

1 1.00 100

2 1.74 87

3 2.18 73

4 2.39 60

4.2 Numerical Examples: Identification

A rectangular symmetrical laminate plate 0.3x0.2m is considered (Fig. 3a). The
number of layers, stacking sequence and material density (ρ=1600 kg/m3) are
assumed to be known. The plate consists of 18 plies of the thickness hi = 0.5e-
3m each. Each ply of simple laminate is made of carbon-epoxy material. The
stacking sequence of the plate is (0/15/-15/45/-45/90/30/-30/0)s.

Fig. 3. The laminate plate: a) bearing and loading; b) dimensions and sensors location

The aim is to identify the values of four independent elastic constants: E1,
E2, G12 and ν12. Two measurement data are taken into account: displacements
and eigenfrequencies. In the first case, the plate is loaded by 3 concentrated
forces F1=500N, F2=-1500N and F3=500N, as presented in Fig. 3a). Displace-
ments are measured in 11 sensor points (Fig. 3b). In the second case first 10
eigenfrequencies of the structure are considered.

The measurements are simulated numerically in both variants. It is assumed
that measurements are ideal or measurements are disturbed by a random noise
with normal distribution: the expected value E(x) is equal to the non-disturbed
value and noise does not exceed 10% [9]. To solve the boundary-value problem
the plate is divided into 120 4-node plane finite elements (QUAD4).

The parameters of the PAIS are: the number of memory cells nmc=5; the
number of clones ncl=10; the number of design variables nm=4; the minimum
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crowding distance cdist=0.2; the mutation range mr=0.5; the maximum number
of iterations ni=25.

The variable ranges, actual values and identification results for ideal (no noise)
and disturbed (with 10% noise) measurements of displacements and eigenfre-
quencies are collected in Table 3.

Table 3. The laminate plate – identification results

Displacements case

Constant Actual Range No noise Noise 10%

value Found value Error [%] Found value Error [%]

E1 [MPa] 1.81e05 1.30e05÷2.20e05 1.811e05 0.02 1.811e05 0.02

E2 [MPa] 1.03e04 0.80e04÷1.30e04 1.032e04 0.17 9.885e04 4.03

G12 [MPa] 7.17e03 5.00e3÷9.00e03 7.155e03 0.21 6.605e03 7.88

ν12 0.28 0.22÷0.32 0.276 1.47 0.287 2.33

Eigenfrequencies case

Constant Actual Range No noise Noise 10%

value Found value Error [%] Found value Error [%]

E1 [MPa] 1.81e05 1.30e05÷2.20e05 1.828e05 0.99 1.804e05 0.35

E2 [MPa] 1.03e04 0.80e04÷1.30e04 1.053e04 2.28 1.102e04 6.95

G12 [MPa] 7.17e03 5.00e3÷9.00e03 7.126e03 0.61 7.105e03 0.91

ν12 0.28 0.22÷0.32 0.261 6.77 0.248 11.6

Positive identification results have been obtained for both types of measure-
ments. Slightly better identification results were obtained for displacements as
the measurement data. Noisy data reduce the precision of identification pro-
cedure, especially for quantities, which does not influence the measurements
significantly, like Poisson ratio.

5 Final Conclusions

The application of the Parallel Artificial Immune System for optimization and
identification of composite structures has been presented. The aim of the opti-
mization was to find the optimum stacking sequence of laminate structures for
static and dynamic optimization criteria. Discrete and continuous variants of
the design variables have been considered. The identification with use of PAIS
allowed to find composites’ elastic constants on the basis of static and dynamic
measurement data. The parallelization of calculations allowed significantly re-
duce computational time. The Finite Element Method commercial software has
been used to solve the boundary-value problem for composites. The numerical
examples presenting efficiency of the proposed attitude have been enclosed.
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14. Kuś, W., Burczyński, T.: Parallel Bioinspired Algorithms in Optimization of Struc-

tures. In: Wyrzykowski, R., Dongarra, J., Karczewski, K., Wasniewski, J. (eds.)

PPAM 2007. LNCS, vol. 4967, pp. 1285–1292. Springer, Heidelberg (2008)

15. Michalewicz, Z.: Genetic Algorithms + Data Structures = Evolution Programs.

Springer, New York (1992)

16. Ptak, M., Ptak, W.: Basics of Immunology (in Polish). Jagiellonian University

Press, Cracow (2000)

17. Uhl, T.: Computer-aided identification of constructional models (in Polish). WNT,

Warsaw (1997)
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Abstract. Genetic programming is applied to the problem of bioreactor

control. This highly nonlinear problem has previously been suggested as

one of the challenging benchmarks to explore new ideas for building au-

tomatic controllers. It is shown that the derived control law is successful

in a number of test cases.
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1 Introduction

The limitations of classical control theory has led to the usage of computational
intelligence techniques (neural networks, evolutionary algorithms, fuzzy logic)
over the past two decades. Such techniques are also referred to as “intelligent
control”. Research in intelligent control aims in the derivation of control laws
for which no control regimes are known, and the plant operation over large
ranges of uncertainty [6]. Uncertainty can be attributed to noise and variations
in parameters values, the environment and the inputs.

Traditional adaptive control, also aims in the controller’s operation under
uncertainty. However, intelligent controllers must be able to operate well, even
when the level of uncertainty is substantially greater than that which can be
tolerated by traditional adaptive controllers [2,4].

Genetic programming (GP) offers an ideal candidate for the derivation of
controllers, since its individuals in a population can be directly mapped to control
laws. However, GP has only been applied so far to a small number of challenging
control problems.

Bioreactor control has been included in the set of challenging control problems
which researchers have to address, in order to explore new ideas for building
automatic controllers [1].

This paper describes the application of genetic programming to the control of
a bioreactor. The paper is organised as follows. Section 2 provides background
information on the bioreactor problem, and details the dynamic system model
used for the simulations. Section 3 describes the genetic programming approach
for bioreactor control. Finally, Section 4 presents the conclusions for this work,
and outlines current work in progress and future research.
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2 The Bioreactor Control Problem

Chemical process control offers a set of challenging testbeds for the development
of new control algorithms. The problem of bioreactor control was proposed in
[5] as such a difficult control benchmark.

In the simplest form, a bioreactor consists of a continuous flow stirred tank
reactor (CFSTR) with water containing cells (e.g. yeast or bacteria) which con-
sume nutrients (“substrate”), and produce desired and undesired products and
more cells. The cell growth depends only on the nutrient fed to the system.

The objective of the bioreactor control problem is to control the cell mass yield
at a prespecified target value. Such a bioreactor is described by the following
system of differential equations:

dC1

dt
= − C1w + C1(1 − C2)eC2/γ (1)

dC2

dt
= − C2w + C1(1 − C2)eC2/γ 1 + β

1 + β + C2
(2)

where C1,C2 are, respectively, the cell mass and the substrate conversion.
The control parameter (output of the controller) is w, the flow rate through

the reactor. The constants β and γ are temperature dependent parameters de-
termining the cell growth and nutrient consumption. In all the simulations de-
scribed in this paper the values of β and γ were kept constant to 0.02 and 0.48
respectively.

Equation (1) describes that the rate of change in the cell mass depends on
the amount of cell leaving the tank (−C1w) and the amount of new cells created
C1(1 − C2)eC2/γ . Similarly, equation (2) describes the change of nutrient based
on the rate it is coming out of the reactor, and the rate at which it is metabolised
by the cells.

The dynamic system described by equations (1), (2) is very difficult to control
for a number of different reasons (despite the fact that it involves only a few
variables), and has proved challenging for conventional controllers [5]:

– The equations are highly nonlinear and exhibit limit cycles.
– Optimal behaviour occurs in or near an unstable region.
– The problem exhibits multiplicity: two different values of the control action

w can lead to the same desired target value of the cell mass yield.
– Significant delays exist between changes in flow rate and the response in cell

concentration.

Based on the values of β and γ aforementioned and used for the experiments
described in the paper, a Hopf bifurcation occurs for the system at w = 0.829.

3 The GP Approach

A plain GP was applied for the bioreactor problem, based on equations (1),
(2). A simulator was built by numerically integrating the equations using the
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fourth order Runge-Kutta method. The goal was to derive a control law which
maintains a desired cell amount in the reactor throughout some period of time
T , independent of the initial conditions C1[0],C2[0].

Thus, the objective is to minimise the cumulative measure:∑
t=0,50,100,...,T

(C1[t] − C∗
1 [t])2 (3)

where C∗
1 [t] is the desired cell amount. The summation in equation (3) is across

times t which differ by 50 units in value. This is done according to the description
of the benchmark in [5]: the sampling interval in simulations is 0.01s and the
control interval is 0.5s (50 times as long as the sampling interval). The above
implies that a new control action w is calculated by the controller every 0.5s and
the rest of the times the previous control action is applied to the plant:

w[t] =
{

controller output, t = 0, 50, 100, . . .
w[t] = w[t − 1], all other times t

(4)

The controller for which GP searches for, requires three inputs: the current cell
mass C1, the current nutrient amount C2 and the desired cell amount C∗

1 . The
single output is the flow rate w. Such a controller is shown in Figure 1.

w
����������

	�
�������

C1

C2

C∗
1

Fig. 1. The controller structure for the bioreactor problem

The fitness function used by the GP runs was:

F =
T∑

t=0,50,100,...

1

e
√

|C1−C∗
1 |

(5)

The above fitness function has to be summed across all fitness cases (different
target values of the cell mass C∗

1 ) used in simulations.
The following terminal and function set were used:

Terminal set: T = (C∗
1 ,C1,C2,w,R)

Function set: F = (+,−, ∗, /, ln, IGT-ELSE, exp)



184 D.C. Dracopoulos and R. Piccoli

where R is the random number generator. / and ln are the protected division
and protective natural logarithm respectively as defined by [3], and exp is the
exponential function. IGT-ELSE is the if-greater-than-then-else operator which
tests whether the first argument is greater than the second, and if true it returns
the third argument, otherwise it returns its fourth argument.

The GP parameters used, are shown in Table 1.

Table 1. GP Parameters for the Bioreactor control problem

population size 250

crossover probability 0.80

reproduction probability 0.10

mutation probability 0.10

P of function crossover 0.90

maximum initial depth 6

maximum allowed depth 18

generative method ramped half-and-half

selection method fitness proportionate

In [5] the benchmark was defined by three test cases, and the results shown
here include all of them. The first test case involves starting the bioreactor in
a region of the state space from which a stable state is easily achieved. The
desired state (C∗

1 ,C
∗
2 ) = (0.1207, 0.8801) is stable for w∗ = 0.75 (actually the

requirements of the benchmark state that only C1 is to be controlled and this
what all the experiments of this work have as a goal).

For the second test case, the desired state (C∗
1 ,C

∗
2 ) = (0.2107, 0.7226) is un-

stable for w∗ = 1.25. In the third problem, the desired state is first set to stable
value (C∗

1 ,C
∗
2 ) = (0.1237, 0.8760) with w∗ = 1

1.3 . Then, after 100 control inter-
vals (50 seconds), 0.05 is added to C∗

1 , resulting in C∗
1 = 0.1737. This change

shifts the problem from one of controlling about a stable desired state to one
involving an unstable desired state.

The initial conditions for all the experiments require that C1[0],C2[0],w[0],
are within 10% of the target values [5].

A number of different simulation runs were made, which used both the above
test cases (stable and unstable states) and ten other random states as fitness
cases (the results presented use one initial condition for each state in training
mode) for the individuals control laws evolved. The best individual found in
generation 31 (maximum number of generations was 50) in one of the runs is
shown (without editing) in Appendix A. This individual consists of 212 nodes
and has a depth of 18.

The behaviour of the best individual for the stable state (C∗
1 ,C

∗
2 ) = (0.1207,

0.8801) can be seen in Figure 2. Note that the data in the figure use a different
initial condition for the stable state, than the initial condition used in training.
Figure 3 illustrates how the controller derived by GP performs when the target is
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the unstable state (C∗
1 ,C

∗
2 ) = (0.2107, 0.7226). Again, the figure uses an initial

condition for the unstable state which is different than that used in training
mode.
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Fig. 2. How the controller performs for the stable state (C∗
1 , C∗

2 ) = (0.1207, 0.8801).
Cells (C1) and desired target (C∗

1 ) are shown. The initial condition for the plant is

different than that used in training.

Following the testing of the best individual against the two fitness cases used in
GP runs (although different initial conditions were used in training and testing),
its capability to generalise to unseen target states was tested for target state
(C∗

1 ,C
∗
2 ) = (0.113, 0.8902). The results are shown in Figure 4.

It is worth noting that the final state of the plant after applying the GP con-
troller for 50s is C1 = 0.11310948323366185. The results reported in [5] achieved
for this case the end state C1 = 0.1224 when a neural network controller was
used. From this, it can be clearly seen that the GP controller achieves much bet-
ter accuracy than the neural network controller results published by the bench-
mark proposer.

In Figure 5, the derived controller is tested in the third test problem defined
in [5], where after 50 seconds the target changes and control moves to a desired
state in the unstable region.

The GP controller performed similarly well, when tested with different random
initial conditions of the bioreactor dynamic system.
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Fig. 3. How the controller performs for the unstable state (C∗
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2 ) = (0.2107, 0.7226).
Cells (C1) and desired target (C∗

1 ) are shown. The initial condition for the plant is

different than that used in training.
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Fig. 4. How the controller performs for the state (C∗
1 , C∗

2 ) = (0.113, 0.8902). Cells (C1)
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Fig. 5. How the controller performs for a problem where control is started in a stable
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1 = 0.1237 and after 50 seconds 0.05 is added to C∗

1 , resulting in control about the

unstable point C∗
1 = 0.1737. Cells (C1) and desired target (C∗

1 ) are shown.

4 Conclusions and Further Work

The GP approach is tested in a control problem, a chemical bioreactor, which is
included in the set of challenging control problems for computational intelligence
techniques [6]. A control law which successfully controls the cell mass in the
bioreactor was found.

Current work in progress examines whether this individual control law (or
other control regimes derived by GP) can control the bioreactor subject to noise.

Future research should compare the results of this approach with the results
obtained by more advanced neural networks approaches based on adaptive crit-
ics. Additional work could also aim at the investigation of whether any of the
derived controllers can be proven to be stable by theory.
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A Appendix

The best individual found by GP for which all results are presented in the paper
is shown (unedited) below:

( IGT-ELSE DC C1 ( / R ( * ( - -0.6662863182950214 R )C1 ) )( /
( EXP ( / DC DC ))( IGT-ELSE R C1 ( * ( * ( IGT-ELSE C1 C2 C1 R)
( LN ( IGT-ELSE ( LN ( LN DC ) )( * ( - ( IGT-ELSE C1 R (
IGT-ELSE (* C1 (+ -0.6662863182950214 ( * DC -0.6662863182950214
) ) )( EXP DC ) C2 C1) ( + ( IGT-ELSE R ( EXP ( + ( *
-0.6662863182950214 R ) C1 ) )( EXP C2 )( EXP ( IGT-ELSE C2 ( +
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DC C2 ) )R ) )( + ( * ( LN ( * DC C1 ) )C2 )( IGT-ELSE (+ R (
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Abstract. In the One-Commodity Pickup and Delivery Problem (1-

PDP), a single commodity type is collected from a set of pickup cus-

tomers to be delivered to a set of delivery customers, and the origins and

destinations of the goods are not paired. We introduce a new adaptive

hybrid VNS/SA (Variable Neighborhood Search/Simulated Annealing)

approach for solving the 1-PDP. We perform sequences of VNS runs,

where neighborhood sizes, within which the search is performed at each

run, are adaptable. Experimental results on a large number of benchmark

instances indicate that the algorithm outperforms previous heuristics in

90% of the large size test cases. Nevertheless, this comes at the expense

of an increased processing time.

1 Introduction

The One-Commodity Pickup and Delivery Problem (1-PDP) is an important
problem in transportation and logistics. The problem deals with supplying and
collecting one type of commodity from a number of customers, some of them
are designated as pickup customers and the others as delivery customers. Each
pickup customer provides a certain amount of the commodity, while each delivery
customer consumes a certain amount of the same commodity, i.e., goods collected
from pickup customers can be delivered to any delivery customer. All customers
are served by one vehicle with a limited capacity, and the journey of the vehicle
should start and end at a central depot. The depot can supply or consume
any additional amount of the commodity that is not supplied or consumed by
the customers. Our goal is to find a feasible and minimum cost route for the
vehicle, such that all customers are served without violating the vehicle capacity
constraint (see [4] for a formal definition of the 1-PDP).

The 1-PDP has many applications in practice. For example, the commodity
could be milk that should be collected from farms and delivered to factories
with no restriction on the origin and the destination of the product, or it could
be money that should be distributed between the branches of a bank [5]. It
can also model any logistic situation in which some warehouses have an extra
supply of some commodity, while others are in short of the same commodity. A
typical situation is when some hospitals need to transfer a certain medicament

R. Schaefer et al. (Eds.): PPSN XI, Part II, LNCS 6239, pp. 189–198, 2010.
c© Springer-Verlag Berlin Heidelberg 2010



190 M.I. Hosny and C.L. Mumford

to other hospitals, which are in short of this medicament. For example, an H1N1
vaccination could be transferred in urgent epidemic circumstances [7].

In our research we apply an adaptive hybrid VNS/SA (Variable Neighbor-
hood Search/Simulated Annealing) approach to the 1-PDP. The algorithm is
distinguished by performing the VNS repeatedly, each time starting from the
final solution obtained from the previous VNS run. Also, the algorithm is adap-
tive, in the sense that the maximum neighborhood size allowed in each VNS
run is not fixed and depends on the current stage of the search. Early runs are
allowed to perform wider jumps in the solution space from the current solution,
using large neighborhood sizes. Later runs, on the other hand, are only allowed
smaller explorations of the search space, in the vicinity of the current solution,
to maintain the solution quality. The stopping criterion for each VNS run is also
adaptive and depends on the improvement realized in the current solution. The
basic VNS meta-heuristic systematically increases the neighborhood size, within
which the search is performed, up to a pre-specified maximum size. In our ap-
proach, nevertheless, each VNS run is also terminated when a further increase in
the neighborhood size seems not beneficial, even if the maximum neighborhood
size was not reached. During each VNS run, an SA acceptance criterion is used
to allow the algorithm to escape local optima.

The rest of this paper is organized as follows. Section 2 is a summary of some
related work. Section 3 briefly describes the VNS meta-heuristic and highlights
previous 1-PDP research that utilizes this approach. Section 4 explains in detail
the main components of our proposed heuristic, which we will call an Adaptive
Hybrid VNS/SA (AVNS-SA) technique for solving the 1-PDP. The complete
AVNS-SA algorithm is shown in Section 5. Experimental results are presented
in Section 6, and a summary and future directions are given in Section 7.

2 Related Work

Since the 1-PDP is NP-hard, exact algorithms are only suitable for small prob-
lem sizes. For example, [5] presented a branch-and-cut exact algorithm to solve
instances of up to 60 customers. To deal with large size problems, the same
authors tried two heuristic approaches in [6]. The first approach is a nearest-
neighbor insertion heuristic followed by an improvement phase, using 2-Opt and
3-Opt edge exchanges. The second approach is an incomplete optimization pro-
cedure, to find the best solution in a restricted feasible region.

In [4] a heuristic approach, named hybrid GRASP/VND, is proposed. The ap-
proach combines two optimization heuristics. The first is called GRASP (Greedy
Randomized Adaptive Search Procedure), and is based on a repetition of a con-
struction phase and a local search phase. On the other hand, Variable Neigh-
borhood Descent (VND) is a variant of VNS, which is simply a local search that
gradually increases the neighborhood size whenever a local optimum is reached.
The hybrid GRASP/VND is basically a GRASP, with an added local search
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using VND. After the basic GRASP/VND, a further post-optimization phase is
performed using move forward and move backward operators.1

On the other hand, a GA approach was introduced in [9] to solve the 1-PDP.
The algorithm first starts by creating a population of feasible solutions using
a new nearest-neighbor construction heuristic. The initial population is then
optimized using a 2-Opt neighborhood move. The most distinguishing feature of
the algorithm is a new pheromone-based crossover operator, where the selection
of the next node to be inserted in the child is based on a probabilistic rule that
takes into account the pheromone trail of the edge connecting the last inserted
node and the potential new node, such that edges that have proved successful
in the past are favored by an increased pheromone value. The offspring are
further optimized using a 2-Opt local search. The mutation operator is based on
a 3-exchange procedure. The algorithm was tested on the benchmark instances
created by [6], producing the best so far results in most test cases.

3 Variable Neighborhood Search (VNS) and Its
Application to the 1-PDP

VNS is a relatively new meta-heuristic that was introduced in [2] and [3]. The
idea is to generate new solutions that are distant from the incumbent solution,
by systematically increasing the neighborhood size within which the search is
performed. In addition, a local search is performed on the new solution to reach
a local optimum within the current neighborhood. After the local search phase,
the new solution replaces the current solution if it is better in quality. The basic
steps of the VNS algorithm, as described in [3], are shown below:

– Initialization: Select the set of neighborhood structures Nk, (k = 1, ...kmax);
find an initial solution x; choose a stoping condition;

– Repeat the following until the stopping condition is met:
1. Set k ← 1;
2. Repeat the following steps until k = kmax:

(a) Shaking: Generate a point x′ at random from the kth neighborhood
of x (x′ ∈ Nk(x));

(b) Local Search: Apply some local search method with x′ as initial so-
lution; denote with x′′ the so obtained local optimum;

(c) Move or not : if the local optimum x′′ is better than the incumbent,
move there (x ← x′′), and continue the search with N1 (k ← 1);
otherwise set k ← k + 1.

As previously mentioned in Section 2, a variant of VNS,called Variable Neigh-
borhood Decent (VND) has been tried for the 1-PDP as part of the hybrid
GRASP/VND heuristic proposed in [4]. The VND heuristic does not include a
shaking phase, but only a local search that involves a 2-Opt followed by a 3-
Opt move. The algorithm achieved promising results that were better than the
1 More details about the heuristic in [4] will be given in Section 3.
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results obtained by the same authors in their previous heuristics suggested in
[6]. However, their algorithm apparently was not fully capable of escaping the
trap of local optima. This is evident by the fact that they had to use a post-
optimization phase to improve the final result. According to the authors, this
post-optimization often made the difference between beating the results obtained
by their previous heuristic in [6] or not. The hybrid GRASP/VND heuristic was
also outperformed by the GA in [9], in most test cases. A possible shortcoming
of this heuristic is the absence of a shaking phase, which should help the diversi-
fication of the incumbent solution and allow the succeeding local search phase to
escape local optima. In our proposed approach, we try to apply the basic VNS,
with both the shaking and the local search, hoping to overcome the limitation
of the previous VND attempt on the 1-PDP.

4 The AVNS-SA Heuristic

The main features of our proposed AVNS-SA approach are described below:

The Initial Solution: The construction algorithm we use is the same as the
algorithm proposed by [9], which is a nearest-neighbor construction heuristic.
However, in [9], they stop the construction process when infeasibility is encoun-
tered and try a new starting node. In our approach, we allow violations in the
capacity constraint by continuing the construction process despite infeasibility.

The Objective Function: The objective function we use to estimate the qual-
ity of a solution S is set to: F = (NCV (S)+1)×Dist(S), where NCV (S) is the
number of capacity violations along the route, and Dist(S) is the total distance
of the solution, given the current visiting order of nodes. If there are no capacity
violations in the solution, i.e., the solution is feasible, the total distance will be
the sole measure of the solution cost.

The Shaking Procedure: The shaking procedure is used for diversification of
the search in the VNS. We chose as a shaking procedure a displacement of a
sequence of nodes with some probability of inverting this sequence. Our VNS
algorithm passes the current neighborhood size (NhSize) as a parameter to
the shaking procedure, which will in turn use this parameter as the maximum
possible number of nodes that will be displaced. Specifically, the number of
nodes to be displaced is a random number between 1 and NhSize. So even for
large values of NhSize, small sequences of nodes could still be displaced, and in
fact there is a ‘bias’ toward such small moves, since they have a chance of being
executed in all neighborhood sizes. This is intended to prevent a large disruption
of the current solution, and is recommended by some VNS implementations, as
in [8].

The local search procedure: This procedure is the tool that VNS uses for
intensification of the search. In our algorithm, we chose as a local search a
simple 2-Opt edge exchange algorithm. Our local search exhaustively tests all
possible edge exchanges, and uses best improvement as a replacement strategy.
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Multiple VNS Runs and the Maximum Neighborhood Size: A sequence
of several runs of the VNS procedure is performed to achieve the best result.
Each run starts from the final solution obtained in the previous run. The initial
maximum neighborhood size (NhSizemax) value, sent to the first VNS run in
the sequence, was set to NhSizemax = 2 ×√

n, where n is the total number of
nodes.

However, we realized that during the first VNS run, improvement happens
quickly for most NhSize values, even for the large ones among them. Subsequent
VNS runs, though, usually respond only to smaller changes in the solution. In
other words, smaller neighborhood sizes seem to be more beneficial in subsequent
VNS runs, since larger changes seem to cause a disturbance of the current solu-
tion and may reduce its quality. Accordingly, after each VNS run, NhSizemax

was reduced by 1/4 of its value. The reduction is repeated until NhSizemax

reaches a minimum value of NhSizemax/4, at which stage no further reduc-
tion is performed, and the VNS procedure uses the current NhSizemax for all
remaining runs. Thus, the algorithm is adaptive in the sense that NhSizemax

passed to the VNS is not fixed and depends on the current stage of the search.
The VNS could be repeated for a fixed number of iterations, or until no

improvement is realized in the current solution for a number of attempts. We
chose the second approach, and stopped the repetition of the VNS when no
improvement happens in 5 consecutive attempts.

Stopping and Replacement Criteria for Individual VNS Runs: As ex-
plained in Section 3, VNS is based on systematically increasing the neighbor-
hood size (NhSize), within which a new solution is generated, from 1 up to
NhSizemax. Thus, the shaking and the local search procedures are repeated for
all values of NhSize = 1, 2, 3...NhSizemax. However, we found that in some
cases, the current solution may not respond to changes in the neighborhood size
and reach a stage of stagnation. Therefore, rather than indiscriminately increas-
ing NhSize up to the pre-specified maximum, we chose to also end each VNS
run when the solution has not changed for a certain number of consecutive at-
tempts of increasing NhSize. The number of attempts was again chosen to be
NhSizemax/4. Thus, the VNS will be adaptive in the sense that it will stop the
shaking and the local search cycle, when no benefit seems to be realized from
increasing NhSize.

In our algorithm, the VNS procedure repeats the shaking and the local search
for the same NhSize for a number of trials. When the number of trials reaches
a certain pre-defined limit, the shaking and the local search cycle stops for the
current NhSize, and the VNS moves on to the next NhSize.

The SA Temperature Value: As previously mentioned, we use an SA accep-
tance criterion within the VNS to replace the current solution. To allow for an
adaptive calculation of the SA starting temperature for each instance individ-
ually, we adopted the approach in [1]. The temperature is calculated based on
the average value of Δcost, where Δcost is the difference in the objective value
between some randomly generated solutions for the current problem instance.
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Normally, by the end of each complete VNS run, the SA temperature would
have reached a small value that should not permit the acceptance of any worse
solutions. If we were then to start the next VNS run in the sequence with such
small value, there would be no benefit to the SA acceptance criterion, since all
worse solutions would be rejected. On the other hand, starting a new VNS run
with the initial temperature too high is not advisable, since many worse solutions
would be accepted, possibly causing serious loss of solution quality. To achieve
a balance between these two situations, the final temperature value reached in
the current VNS run is doubled before the beginning of the next VNS run.

5 The AVNS-SA Algorithm

To put it all together, Algorithm 1 shows the main Adaptive VNS-SA (AVNS-
SA) heuristic, which will invoke the VNSSA procedure (Algorithm 2).

Algorithm 1. Adaptive VNS-SA (AVNS-SA) Algorithm
1: Find an initial solution (InitSol) and calculate the starting SA temperature

(StartT emp).

2: NhSizemax ← 2 ×√
n, where n is the number of nodes

3: MaxStagnation ← NhSizemax/4
4: Decrement ← NhSizemax/4
5: Initialize MaxAttempts to a small number (e.g. 5).

6: NoImprovement ← 0

7: repeat
8: NewSol = V NSSA(InitSol, NhSizemax, StartT emp,MaxStagnation)

9: if (NhSizemax > Decrement) then
10: NhSizemax ← NhSizemax − Decrement
11: else
12: NhSizemax ← Decrement
13: if (NewSol is not better than InitSol) then
14: NoImprovement + +

15: else
16: NoImprovement ← 0

17: InitSol ← NewSol
18: StartT emp ← StartT emp× 2

19: until (NoImprovement reaches MaxAttempts)

6 Experimental Results

The algorithm was tested on instances created by [6]. There are 2 types of
problem instances. Small instances have a number of customers n in {20, 30, 40,
50, 60}. For these instances, the optimum is known and was obtained using the
exact method proposed in [5]. There are also large instances with n in {100, 200,



Solving the 1-PDP Using an Adaptive Hybrid VNS/SA Approach 195

Algorithm 2. The VNSSA Algorithm
1: Input: InitSol, NhSizemax, StartT emp, MaxStagnation
2: Output: a new, possibly improved, solution X
3: k ← 0 { Initialize the current neighborhood size k }
4: Stagnation ← 0

5: NumTrials ← LIMIT {LIMIT is the maximum allowed number of trials}
6: X ← InitSol
7: repeat
8: k + + { Increment the current neighborhood size}
9: Trials ← 0

10: while (Trials < NumTrials) do
11: Shaking(X, XI, k) {Displace a sequence of nodes in X up to a maximum of

k, with or without inversion. Result stored in XI}
12: LocalSearch(XI, XII) {2-Opt applied on XI . Result stored in XII}
13: if (Objective(XII) < Objective(X)) then
14: X ← XII
15: else
16: Accept XII using SA acceptance probability

17: StartT emp ← StartT emp× α {Decrement current temperature}
18: Trials++ {Increment number of trials only when a worse solution is found}
19: end while
20: if (X did not change in the last iteration (i.e., for the current neighborhood size

k)) then
21: Stagnation + +

22: else
23: Stagnation = 0

24: until (Stagnation = MaxStagnation) or (k = NhSizemax)

300, 400, 500}. For each combination of n and a different vehicle capacity Q in
{10, 15, 20, 25, 30, 35, 40, 45, 1000}, 10 problem instances have been created
and given the letters {‘A’ to ‘J’}. The data set and the results obtained in [4]
can be downloaded from the Pickup and Delivery Site of Hernández-Pérez2:
http://webpages.ull.es/users/hhperez/PDsite/index.html

We chose the test cases with the smallest vehicle capacity (Q = 10), i.e, the
hardest instances. The algorithm was run 5 times on each test case from 20-300
customers. On the other hand, only one run was performed on test cases of 400
and 500 customers, due to time limitation. Also, a number of computers with
different specifications were used to run the algorithm. For this reason, the run
times we quote here will vary according to the platform.

Results on Problem Sizes 20-60 customers: In this experiment, the algo-
rithm was able to achieve the optimum results at least once in the 5 runs for 39
out of the 50 test cases. The maximum relative difference to the optimum was
less than 2% among the 11 cases where the optimum was not found, which was

2 New best results were obtained by the GA in [9] for vehicle capacity Q = 10, but

they do not appear in the pickup and delivery site yet.

http://webpages.ull.es/users/hhperez/PDsite/index.html
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for test case N50q10D. The processing time ranged on average from 0.66 seconds
for 20 customers problems to 47.79 seconds for 60 customers problems.

Results on Problem Sizes 100-500 customers: Table 1 shows the results
of the AVNS-SA algorithm on large size problems, from 100 to 500 customers.
The table shows the best result achieved and the average result of the 5 runs.
The average value is replaced by the best result for problems of size 400 and 500,
since the algorithm was run only once on these problems. Finally, the previous
best known results are also shown in the table. Most of the best known results
were found by the GA in [9]. The best result achieved by the AVNS-SA algorithm
is shown in boldface if it was better than the best known result.

Table 1. AVNS-SA Results (100-500 customers)

Name Best Avg Prev-Best Name Best Avg Prev-Best

N100q10A 11741 12175.8 11828 N300q10F 24042 24290.6 24826

N100q10B 13066 13410.6 13114 N300q10G 23683 23945 23868

N100q10C 13893 14073.8 13977 N300q10H 21555 21824.6 21625

N100q10D 14328 14597 14253 N300q10I 23871 24110.2 24513

N100q10E 11430 11823.6 11411 N300q10J 22503 22688.8 22810

N100q10F 11813 11947 11644 N400q10A 30657 30657 31486

N100q10G 12025 12118 12038 N400q10B 24248 24248 24262

N100q10H 12821 12844 12818 N400q10C 27853 27853 28741

N100q10I 14025 14278.6 14032 N400q10D 23750 23750 24508

N100q10J 13476 13642.8 13297 N400q10E 24798 24798 25071

N200q10A 17690 17849.2 17686 N400q10F 26625 26625 26681

N200q10B 17618 17887.8 17798 N400q10G 23925 23925 23891

N200q10C 16535 16626.6 16466 N400q10H 25628 25628 25348

N200q10D 21228 21594.2 21306 N400q10I 28262 28262 28714

N200q10E 19220 19485.2 19299 N400q10J 24847 24847 26010

N200q10F 21627 21677.4 21910 N500q10A 27904 27904 28742

N200q10G 17361 17634 17712 N500q10B 26612 26612 26648

N200q10H 20953 21191.4 21276 N500q10C 30247 30247 30701

N200q10I 18020 18328.2 18380 N500q10D 29875 29875 30794

N200q10J 19016 19240.4 18970 N500q10E 29978 29978 30674

N300q10A 22940 23163 23242 N500q10F 28527 28527 28882

N300q10B 22473 22920.4 22934 N500q10G 26171 26171 27107

N300q10C 21183 21454 21800 N500q10H 35805 35805 36857

N300q10D 25220 25500.6 25883 N500q10I 30247 30247 30796

N300q10E 26636 26934 27367 N500q10J 30428 30428 31255

Table 1 shows that the algorithm was able to improve best known results for
50% of the 100 test cases, 70% of the 200 test cases, 100% of the 300 test cases,
80% of the 400 test cases, and finally 100% of the 500 test cases.

The overall average of the 5 runs for all test cases of size 100 is 13091.12,
which is only 1% worse than the average result of the GA in [9], having a value
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of 12954.16. Moreover, our overall average for the 200 test cases is 19151.44, while
the average of the heuristic in [9] for the same test cases in 10 runs is 19339.48,
i.e., our results account for an improvement of approximately 1%. On the other
hand, the overall average of our results for the 300 test cases was 23683.12, with
an improvement of more than 2% compared the average of their results for the
same test cases, which is 24224.28.

In addition, the average result of the 10 instances of size 500 achieved by our
algorithm was 29579.4. This is an improvement of approximately 3% over the
average of the best results of [9], having the value 30377.1. These results may
also indicate that our algorithm seems to perform even better on larger size
problems. The average processing time in this experiment ranged from approxi-
mately 542.22 seconds for 100 customers instances to 151103.04 seconds for 500
customers instances.

To further test the robustness of the AVNS-SA algorithm, we performed an
additional experiment by running the algorithm on 100-customers problems ve-
hicle capacities of 20 and 40, running the algorithm 5 times on each test case. In
this experiment, the algorithm outperformed previous heuristics in 4 out of 10
test cases, for vehicle capacity Q = 20, and was able to match the best known
result in 6 out of 10 cases, for vehicle capacity Q = 40. The average processing
time for Q = 20 instances was 155.76 seconds, and for Q = 40 instances was
146.17 seconds.

Contrary to the exceptional results achieved by our AVNS-SA algorithm, its
processing time in general was to a large extent disappointing. For example, the
average processing time for 100 customers problems was 542.22 seconds, while
the processing time reported by [9] was 21.12 seconds for the same category.

7 Summary and Future Work

In this research, we investigated a new adaptive hybrid VNS/SA approach to the
1-PDP. Adaptation is applied in both the maximum neighborhood size allowed
in each VNS run, and in the stopping condition for each VNS run. Searching
within smaller neighborhood sizes is preferred in our approach, and larger sizes
are only attempted when this looks promising from the search perspective.

Experimental results on a large number of problem instances indicated that
our algorithm outperforms previous heuristics in most hard test cases, where
the vehicle capacity is smallest. This is especially noticeable for large problem
sizes. The algorithm was able to achieve the optimum results for all but few test
cases in the small size problems, and was able to achieve new best known results
for 90% of the large test cases. The algorithm is also robust enough, since it
performs equally well on a wide range of problem instances, e.g. instances with
a different vehicle capacity, without the need for any parameter tuning.

These distinguished results, though, come at the expense of computation time.
Although we cannot provide an accurate analysis at this stage, because of the
use of different processors to run the experiments, we recognize that the running
time of the algorithm is rather too long.
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In the future, we will continue investigating possible techniques to reduce the
run time, for example by reducing the number of VNS runs, or changing the
stopping condition for each individual run. Our computational experimentation
indicates that some problem instances need fewer than 5 consecutive attempts
(without improvement) to reach the best results. However, for other instances,
reducing the maximum number of attempts to less than 5 may cause the algo-
rithm to stop prematurely and produce lower quality result. More investigation
of the best termination criterion is therefore needed to reduce the overall process-
ing time. Other possible improvement attempts, with respect to the run time,
should be oriented towards the local search procedure, since it is the most time
consuming part of the algorithm. We can try to reduce the number of calls to
this algorithm, or make it optimize only part of the solution rather than whole
solution. For example, exchanges can be only restricted to edges with a certain
number of closest neighboring nodes.
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3. Hansen, P., Mladenović, N.: Variable neighborhood search: Principles and applica-

tions. European Journal of Operational Research 130(3), 449–467 (2001)
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Abstract. In this paper we present the Dinosaur Hypothesis, which

states that the behaviour of a market never settles down and that the

population of predictors continually co-evolves with this market. To the

best of our knowledge, this observation has only been made and tested

under artificial datasets, but not with real data. In this work, we attempt

to formalize this hypothesis by presenting its main constituents. We also

test it with empirical data, under 10 international datasets. Results show

that for the majority of the datasets the Dinosaur Hypothesis is not

supported.

Keywords: Dinosaur Hypothesis, Genetic Programming.

1 Introduction

The Dinosaur Hypothesis (DH) is inspired by an observation of Arthur [1]. In
his work, Arthur and his group conducted the following experiment under the
Santa Fe Institute Artificial Stock Market. They first allowed the market evolve
for long enough. They then took the most successful agent with his winning
predictor1 out of this continuously evolving market, “froze” him for a while, and
then returned the agent back to the market. They found that the early winner
could not perform as well as he used to do in the past. His predictors were
out of date, which had turned him into a dinosaur. This is quite an interesting
observation, because it indicates that any successful predictor or trading strategy
can only live for a finite amount of time.

In addition, Chen and Yeh [3] also tested the existence of this non-stationary
market behaviour in their artificial stock market framework; their results verified
Arthur’s observation. Furthermore, they observed that a dinosaur’s performance
decreases monotonically.

Based on these observations, Chen [2] suggested a new hypothesis, called
the Dinosaur Hypothesis. The DH states that the market behaviour never set-
tles down and that the population of predictors continually co-evolves with this
market.
1 Predictor is the model that the agents use for forecasting purposes. In Arthur’s work,

predictor is a GP parse tree. In this work, predictors are Genetic Decision Trees (see

Sect. 3 for more details). We also refer to them as trading strategies.
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In this paper, we first formalize the DH by presenting its main constituents.
In addition, motivated by the fact that both Arthur, Chen and Yeh made their
observations under an artificial stock market framework, we want to examine
whether the same observations hold in the ‘real’ world. We thus test the hypoth-
esis with empirical data. We run tests for 10 international markets and hence
provide a general examination of the plausibility of the DH. Our tests take place
under an evolutionary environment, with the use of GP [7]. One goal of our em-
pirical study is to use the DH as a benchmark and examine how well it describes
the empirical results which we observe from the various markets.

The rest of this paper is organized as follows: Section 2 elaborates on the
DH, and Section 3 briefly presents the GP algorithm that is going to be used
for testing the DH. Section 4 then presents the experimental designs, Section 5
addresses the methodology employed to test the DH, and Section 6 presents and
discusses the results of our experiments. Finally, Section 7 concludes this paper.

2 The Dinosaur Hypothesis

Based on Arthur’s work, we can derive the following statements which form the
basic constituents of the DH:

1. The market behaviour never settles down
2. The population of predictors continuously co-evolves with the market

These two statements indicate the non-stationary nature of financial markets and
imply that strategies need to evolve and follow the changes in these markets, in
order to survive. If they do not co-evolve with the market, their performance
deteriorates and makes them ineffective.

However, as we said earlier, these observations were made in an artificial stock
market framework. What we thus do in this paper is to test the above statements
against our empirical data. We propose the following Fitness Test :

The average fitness of the population of predictors from future periods should

1. Not return to the range of fitness of the base period (P1)
2. Decrease continuously, as the testing period moves further away from the

base period (P2)

As we can see, there is a population of predictors, which in our framework these
are Genetic Decision Trees (GDTs); what we do in this work is to monitor
the future performance of these GDTs in terms of their fitness, in accordance
with Arthur’s and Chen and Yeh’s experiments. More details about the testing
methodology can be found at Sect. 5.

Statement P1 is quite straightforward and is inspired by Arthur [1]. The term
‘range of fitness’ is also explained in Sect. 5. Statement P2 is inspired by the
observation that Chen and Yeh made [3], regarding the monotonic decrease of a
predictor’s performance. However, in our framework we do not require the per-
formance decrease to be monotonic. This is because when Chen and Yeh tested
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for the Dinosaur Hypothesis (they did not explicitly use this term), they only
tested it over a period-window of 20 days, which is relatively short, hence easy
to achieve monotonic decreasing. Thus, requiring that a predictor’s performance
decreases monotonically in the long run would be very strict, and indeed hard to
achieve. For that reason, statement P2 requires that the performance decrease
is continuous, but not monotonic. It should also be mentioned that we are in-
terested in qualitative results, meaning that we want to see how close the real
market behaves in comparison with what is described by the DH.

Finally, in order to make the reading of this paper more comprehensive, we
present two definitions, inspired by Arthur’s work: Dinosaur, is a predictor who
has performed well in some periods, but then ceased performing well in the
periods that followed. This means that his predictor may or may not become
effective again. If it does, then it is called a returning dinosaur.

3 GP Algorithm

Our simple GP is inspired by a financial forecasting tool, EDDIE [6], which learns
and extracts knowledge from a set of data. This set of data is composed of the
daily closing price of a stock, a number of attributes and signals. The attributes
are indicators commonly used in technical analysis [5]: Moving Average (MA),
Trader Break Out (TBR), Filter (FLR), Volatility (Vol), Momentum (Mom),
and Momentum Moving Average (MomMA). Each indicator has two different
periods, a short- and a long-term one, 12 and 50 days respectively.

The signals are calculated by looking ahead of the closing price for a time
horizon of n days, trying to detect if there is an increase of the price by r%. For
this set of experiments, n was set to 1 and r to 0. In other words, the GP tries
to forecast whether the daily closing price will increase in the following day.

Furthermore, Fig. 1 presents the Backus Naur Form (BNF) (grammar) of the
GP. The root of the tree is an If-Then-Else statement. Then the first branch is
a Boolean (testing whether a technical indicator is greater than/less than/equal
to a value). The ‘Then’ and ‘Else’ branches can be a new GDT, or a decision, to
buy or not-to-buy (denoted by 1 and 0). Thus, each individual in the population
is a GDT and its recommendation is to buy (1) or not-to-buy (0). Each GDT’s
performance is evaluated by a fitness function presented below.

Depending on what the prediction of the GDT and the signal in the training
data is, we can define the following 3 metrics:
Rate of Correctness

RC =
TP + TN

TP + TN + FP + FN
(1)

Rate of Missing Chances

RMC =
FN

FN + TP
(2)

Rate of Failure

RF =
FP

FP + TP
(3)



202 M. Kampouridis, S.-H. Chen, and E. Tsang

<Tree> ::= If-then-else <Condition> <Tree> <Tree> | Decision

<Condition> ::= <Condition> “And” <Condition> |
<Condition> “Or” <Condition> |
”Not” <Condition> |
Variable <RelationOperation> Threshold

<Variable> ::= MA 12 | MA 50 | TBR 12 | TBR 50 | FLR 12 |
FLR 50 | Vol 12 | Vol 50 | Mom 12 | Mom 50 |
MomMA 12 | MomMA 50

<RelationOperation> ::= “>” | “<” | “=”

Decision is an integer, Positive or Negative implemented

Threshold is a real number

Fig. 1. The Backus Naur Form that the simple GP uses to construct trees

We use these metrics to define the following fitness function:

ff = w1 ∗ RC − w2 ∗ RMC − w3 ∗ RF (4)

where w1, w2 and w3 are the weights for RC, RMC and RF respectively. The
weights are given in order to reflect the preferences of investors. For our experi-
ments, we chose to include GDTs that mainly focus on correctness and reduced
failure. Thus these weights have been set to 0.6, 0.1 and 0.3 respectively, and are
given in this way in order to reflect the importance of each performance measure
for our predictions.

4 Experimental Designs

Experiments were conducted for a period of 17 years (1991-2007) and the data
was taken from the daily closing prices of 10 international market indices: CAC
40 (France), DJIA (USA), FTSE 100 (UK), HSI (Hong Kong), NASDAQ (USA),
NIKEI 225 (Japan), NYSE (USA), S&P 500 (USA), STI (Singapore) and TAIEX
(Taiwan). For each of these markets, we run each experiment for 10 times.

Each year was split into 2 halves (January-June, July-December), so in total,
out of the 17 years, we have 34 periods2. The GP system was hence executed 34
times. Table 1 presents the GP parameters for our experiments. The behavior of
each GDT can be represented by its series of market timing decisions over the
entire trading horizon. Thus, the behaviour of each rule is a binary vector of 1s
and 0s (buy and not-to-buy). The length or the dimensionality of these vectors
is then determined by the length of the trading horizon, which in this study is 6
months, i.e., 125 days long; hence, the market timing vector has 125 dimensions.

Here we should emphasize that the GP was only used for creating and evolv-
ing the trading strategies. No validation or testing took place, as it happens in
2 At this point the length of the period was chosen arbitrarily to 6 months. We leave

it to a future research to examine if and how this time horizon can affect our results.
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Table 1. GP Parameters. The GP parameters for our experiments are the ones used

by Koza [7]. Only the tournament size has been changed (lowered), and the reason for

that was because we have observed premature convergence under a larger tournament

size. Other than that, the results seem to be insensitive to these parameters.

GP Parameters

Max Initial Depth 6

Max Depth 17

Generations 50

Population size 500

Tournament size 2

Reproduction probability 0.1

Crossover probability 0.9

Mutation probability 0.01

the traditional GP approach. The reason for this is because we were not using
the GP for forecasting purposes; instead, we were interested in using the GP
as a rule inference engine which would evolve profitable trading strategies for
a certain period of time. The GP was thus used for each of the 34 periods to
create and evolve trading strategies. After the evolution of the strategies under a
specific period, these strategies are not tested against another set. This approach
is consistent with the Lo’s Adaptive Market Hypothesis [8], as it states that the
heuristics of an old environment are not necessarily suited to the new ones. Our
no-testing approach is also consistent with the well-tested overreaction hypoth-
esis [4], which essentially states that top-ranked portfolios are outperformed by
bottom-ranked portfolios during the next period. Thus, after evolving a num-
ber of generations (50 in this paper), what stands (survives) at the end (the last
generation) is, presumably, a population of financial agents whose market-timing
strategies are financially rather successful. This population should, therefore, in-
terest us in spirit of Arthur’s adaptive market process; therefore, we use them
to test how those competitive strategies perform in the future periods.

5 Testing Methodology

This section presents the testing methodology. But before we do this, let us first
present some frequently used terms:

– Base period, is the period during which GP was used to create and evolve
GDTs that are going to be used for testing the DH

– Future period(s), is a period(s) which follow the base period (in chronological
order)

We are interested in observing how the average fitness of the population of
GDTs changes throughout time. As we have already seen, we used a simple GP
system to generate and evolve trading strategies for each one of the 34 periods.
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After this step, we apply this evolved population of GDTs to the future periods’
data. In order to better explain this, let us use an example. Let us suppose that
the period we trained the GDTs (base period) was the first semester of 1991
(1991a); we can then calculate the average fitness of the population of these
trees for this period. From this point on, we will be calling this ‘average fitness
of the population of GDTs’ as population fitness. We thus have an indication of
how well the population performs during the base period. Then, we apply all
evolved GDTs to the data of future periods: second semester of 1991 (1991b),
first semester of 1992 (1992a),..., second semester of 2007 (2007b) and calculate
the population fitness for each one of these periods. As a result, we can observe
how this fitness changes over the future periods.

The same procedure is followed for all periods until 2007a, so that all of them
act as a base period. This means that when 1991b is the base period, the GDTs
that were created and evolved during 1991b will be applied to all future periods.
After 1991b, 1992a takes over as the base period and the same procedure happens
again. We do this until 2007a. We obviously cannot do this for 2007b, since there
are no data available after this year. The reader should also bear in mind that
we only apply the evolved GDTs to future periods; for instance, when the base
period is 2000a, we do not apply the GDTs backwards in time, only forwards.
We are not interested in looking what happens in the past; we are only interested
in observing how the fitness of the GDTs is affected in the future.

Given a base period, the population fitness of all periods is normalized by
dividing those population fitnesses by the population fitness in the base period.
Hence, each base period has its normalized population fitness equal to 1 and a
returning dinosaur is a population of strategies from future periods that has its
normalized population fitness ‘close to 1’. At this point, we need to define the
term ‘close to 1’. Strictly speaking, this means that this population’s normalized
fitness is greater or equal to 1. However, in our opinion, other future periods
which do not necessarily satisfy this condition could be considered as return-
ing dinosaurs, too. Let us consider the case of a future period with normalized
population fitness very ‘close to 1’, e.g. 0.99. When this happens, it indicates
that there exist those similar market conditions in this future period, as in the
base period, so that the dinosaurs can again have high performance. Although
this performance may not be exactly equal to 1, we believe that the fact that
the normalized population fitness of these strategies (GDTs) is this ‘close’ to
1, indicates that these GDTs have become successful again, and should thus be
considered as returning dinosaurs.

However, defining a specific range of fitnesses for ‘close’ would be arbitrary;
after all, closeness is only a matter of degree. We therefore present in the next
section the statistics of fitness observed for each stock market. Besides, as we
said in Sect. 2, we are interested in qualitative results; we want to see how close
the 10 empirical markets behave in comparison by what is described by the DH.

If DH holds, we should observe two things: firstly, the normalized population
fitness of the future periods has decreased and does not return to the range of
fitness of the base period (P1), and secondly, this decrease is continuous (P2).
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6 Results

6.1 Statement P1

According to P1, the future periods’ population fitness will not return to the
range of fitness of the base period. As we saw earlier, we test this statement for
one period at a time. The subject period forms our base period.

In order to examine how often dinosaurs return, we iterate through each
base period and calculate the maximum fitness among its future periods. Let
us give an example. If 1991a is the base period, then there is a series of 33
population fitness values for its future periods. We obtain the maximum value
among these 33 values, in order to check how close to 1 this future period is.
This process is then repeated for 1991b and its 32 future periods, 1992a, and
so on, until base period 2007a. We thus end up with a 1 × 33 vector, which
shows the potential returning dinosaur per base period. The graph of this vector
is presented in Fig. 2. Each line represents the results on a different dataset
and they have been divided in four separate subfigures: CAC40-DJIA-FTSE100
(top-left), HSI-NASDAQ-NIKEI (top-right), NYSE-S&P500 (bottom-left), and
STI-TAIEX (bottom-right).

Fig. 2. Fitness Test, P1: The maximum normalized population fitness among all future

periods for each base period. Each line represents a single dataset. Results have been

divided in 4 subfigures.

What we can see from this figure is that only STI has a base period (1992b)
with a maximum normalized population fitness exceeding 1. This indicates re-
turning dinosaurs and goes against statement P1. We cannot observe any more
periods that reach the threshold of maximum population fitness greater or equal
to 1. Nonetheless, all of our datasets seem to have quite high population fitness
values, which many times exceed 0.9 or even 0.95 (e.g. DJIA-1993b, HSI-1998b,
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NASDAQ-2003a, TAIEX-1997b). Therefore, although we cannot strictly talk
about a returning dinosaur, we should also not neglect the fact that this is an
indication that the market environment actually can create conditions that are
very similar to the past and as a result, successful strategies from the past do not
necessarily have a finite lifetime (as the DH implies), but can again be successful
in the future. Thus, our results do not support statement P1.

6.2 Statement P2

To show a continuous decrease in the population fitness, we calculate the sum
of the fitness values of all those future periods that are 1 period away from
the base period, then the sum of those future periods that are 2 periods away,
and so on, up to a period difference between future and base period of 33. In
order to do this, we first need to create a table of distances, like the one in
Table 2(a). Each row of this table presents the distance of the future periods
from their base period. For instance, if 91a is the base (first row), then future
period 91b has distance equal to 1, future period 92a has distance equal to 2,
and so on. Table 2(b) shows the series of population fitness values for the future
periods of each base period. For example, when the base period is 91a (first
row), the normalized population fitness starts from 1 in 91a, then drops to 0.66
(91b), then goes to 0.72 (92a), and so on, until it reaches fitness equal to 0.74
in future period 07b. Let us now denote the sum of fitnesses we mentioned at
the beginning of this section by

∑
|i−j|=m Fit(i, j), where i, j are the base and

future period respectively, |i− j| is their absolute distance, as presented in Table
2(a), and m is the distance from the base period and takes values from 1 to 33.
We divide this sum by the number of occurrences where |i−j| = m. This process
hence returns the average of the normalized population fitness, and allows us to
observe how it changes, as the distance m from the base period increases. We
call this metric Dm and it is presented in (5).

Dm =

∑
|i−j|=m

Fit(i, j)

{#(i, j), |i − j| = m} (5)

Let us give an example: if we want to calculate D32, we need to sum up the
population fitnesses that have distance m = 32. This happens with Fit(91a, 07a)
(fitness of GDTs from base period 91a, when applied to future period 07a) and
Fit(91b, 07b) (fitness of GDTs from base period 91b, when applied to future
period 07b). Therefore D32 would be equal to the sum of these two fitness rates
divided by 2, as there are only 2 periods that can have m = 32.3 By calculating
Dm for all m values, we can have a clear idea of how the average of the population
3 The distance m = 32 can also be found in 07a91a and 07b91b. However, we do not

take them into account because, as we said earlier in Sect. 5, we are not interested in

applying the evolved GDTs of a base period (here 07a and 07b) backwards in time

(91a and 91b, respectively).
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Table 2. (a) Distance of future periods from their base period, over the 17 years 1991-

2007. The further away we move from a period, a single unit of distance is added.

(b) Series of future population fitnesses per base period. Each base period’s series is

presented as a horizontal line of this table. Fitness values have been normalized, so

that the average fitness in the base period is always equal to 1.

(a)

j
91a 91b 92a 92b ... 07b

91a 0 1 2 3 ... 33

91b 1 0 1 2 ... 32

i 92a 2 1 0 1 ... 31

... ... ... ... ... ... ...

07b 33 32 31 30 ... 0

(b)

j
91a 91b 92a 92b ... 07b

91a 1 0.66 0.72 0.78 ... 0.74

91b 1 0.76 0.72 ... 0.70

i 92a 1 0.74 ... 0.77

... ... ... ... ... ... ...

07b ... 1

fitness changes when we move from periods that are close to the base period (low
m), to periods that are further away (high m), and thus observe whether there
is a continuous decrease. Figure 3 presents the results for all datasets. Each line
represents again a single dataset, similar to that in Fig. 2.

What we observe from this figure is that there are upwards and downwards
movements of the Dm metric. This is consistent for all datasets. We do not
observe a continuous, or any kind of decrease in general, in the metric. This
therefore does not validate the P2 statement.

Fig. 3. Fitness Test, P2: Dm values for all m from 1 to 33. Each line represents a single

dataset. Results have been divided in 4 subfigures.
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7 Conclusion

This paper presented and formalized the Dinosaur Hypothesis. The DH says
that the behaviour of a market never settles down and that the strategies in this
market continuously co-evolve with it. This was an observation first made by
Arthur [1] and later by Chen and Yeh [3]. However, these two works made these
observations under an artificial stock market. In this paper, we were interesting
in examining whether these observations could also hold in the real world and
thus tested the hypothesis with empirical data. For our experiments, we used a
fitness test, where we created and evolved trading strategies with a GP system.
Results showed that 1 of the 10 datasets tested demonstrated the existence of
returning dinosaurs; having a returning dinosaur is of course contradicting with
statement P1. However, it would not be accurate to say that the remaining 9
datasets fully support P1. This is because all of population strategies have had
future periods’ average fitness values that are close to the fitness of the base
period; in fact, there were many occasions were this fitness was even more than
90% closer to the population fitness of the base period. Therefore, although there
is no normalized population fitness among these 9 datasets that reaches 1, we can
argue that trading strategies from the past can still be applied to the market and
perform satisfactory, even if many years have passed. Markets can thus have a
number of ‘typical states’, where past rules may become useful again. Returning
dinosaurs hence exist. Finally, regarding statement P2: we did not observe any
continuous decrease in the average population fitness of any of the 10 datasets
tested, and we can thus argue that P2 is not supported by the empirical data in
this work. Overall, we can conclude that the empirical evidence that can support
the Dinosaur Hypothesis is quite weak.
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Abstract. Gene regulatory networks (GRNs) act as cell controllers;

we argue that artificial models of GRNs should therefore make good
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1 Introduction

Natural GRNs can be seen as a cell’s controller; this is particularly clear in the
case of bacteria, but GRNs in multi-cellular organisms also appear as instances
of distributed, self-organised control. Natural GRNs moderate the output of
the genome via protein substrates whose actions depend on complex three-
dimensional shapes only implicit in the genetic code, the mapping between pri-
mary and tertiary structures demanding a still incomplete understanding of the
mechanisms of protein folding. Fractal GRNs, introduced by Bentley[2][5], aim
to exploit an alternative, more tractable, source of complexity in this mapping
from genome to control substrate, but with the same aim of producing a system
that can display a robust and flexible response to environmental change.

The FGRN system is an evolutionary model of a GRN in which proteins are
bitmaps generated from the Mandelbrot set fractal. The system was originally
devised as a developmental system but has since been used more widely, for
example to approximate the value of π[11] and to compute the square root
function[6], and in the early control applications to be described below. FGRNs
have been tested for fault-tolerance and have proved more resistant to damage
than evolved genetic programming alternatives[6], and have also shown increased
robustness and efficiency when evolved beyond explicit fitness requirements[4].

We will evolve FGRNs for direct control and apply them to variations of a
well known benchmark control problem, that of balancing a pole on a moving
cart (also known as the inverted pendulum problem), studying the ability of
the system to balance straight or jointed poles with differing mechanical and
physical characteristics.
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2 Related Work

2.1 GRNs for Control

Surprisingly, given the role of natural GRNs in biology, artificial GRNs have
known little use as controllers and have mainly been applied to relatively sim-
ple problems such as thermostat control and the generation of light-following
behaviour[12]. FGRNs specifically have so far been evolved to act as a robot
controller, guiding a simulated robot to a specific destination while avoiding
obstacles, with the final resulting controllers tested successfully on an actual
robot [3], and to a grid-world, box-pushing, robot control problem [16]. Dürr
et al.[8] did apply a GRN based method to the pole balancing problem (to be
described below) but the GRN’s role was not control as such but the generation
of a neural network based controller.

2.2 The Pole Balancing Problem

Pole balancing is a well-known and well-studied control problem that has been
used as a benchmark for the design and test of many controllers[7]. It is usually
(and here) defined to be the problem of keeping the angular position θ of the
hinged pole within 12◦ of vertical, and the distance h of the cart on which it is
mounted within 2.4m of the centre of the track, using only ‘bang-bang’ control
(a force F of ±10N is applied to the cart at each time step).

The original single pole problem was first solved through reinforcement learn-
ing by Barto et al.[1], with Wieland the first to evolve neural networks for the
control of the system[15] (single pole, jointed pole, and double pole versions of
the problem), and subsequent solutions using various other methods such as
genetic programming[13]. More recently, neuroevolution methods of increasing
sophistication have used various versions of the pole balancing problem for vali-
dation and as a benchmark; Gomez et al. have produced an extensive comparison
of the performance of current neuroevolution methods on the single and double
pole balancing problems with or without velocities as inputs[9].

Fig. 1. The pole balancing problem
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3 Fractal Gene Regulatory Network (FGRN)

3.1 Fractal Proteins

A fractal protein (x, y, z) is a square subset of the Mandelbrot set with sides of
length z and centre coordinates (x, y) that define the real and imaginary parts of
a complex number[2]. The colouring from white to black of a sample point within
the square represents the speed with which the value at that point falls out of
the range [0, 2] upon iteration of the Mandelbrot equation, with black sampling
points generating values that remain bounded within a radius of 2. In principle
a fractal protein is an object of arbitrarily high complexity, though in practice
to limit computational demands the square subsets are usually implemented as
15x15 bitmaps, with the (x, y) value of a pixel being that of the point at its
centre.

A fractal protein has an associated concentration that alongside the concen-
trations of other protein constituents determines the degree to which it can
influence the behaviour of the cell containing it. Although a protein’s concentra-
tion is stored as a single real number it can also be represented as a bitmap for
ease of use in the merging and comparison operations described below; Figure 2
shows an example of a fractal protein at 15x15 resolution and its concentration
bitmap.

Fig. 2. A protein (left) and associated concentration (right)

3.2 Genetic Representation

A FGRN genome contains a set of genes each of which is defined by nine numbers
(two sets of coordinates plus three additional scalars) as shown in Figure 3a. In
more detail each gene comprises:

Gene Type

– Environmental genes provide potential protein input to the system.
– Receptor genes act as a filter, determining how much of an environmental

protein actually enters the cell.
– Regulatory genes perform a control function, determining the system’s

response to that part of the environmental protein that has entered the cell.
– Behavioural genes, when the merged product of receptor-filtered input and

regulatory genes sufficiently matches conditions at the promoter, produce a
protein output that defines a system behaviour or decision.
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Fig. 3. A gene in detail. a) The type specifies that this gene is expressed as both a

Behavioural and a reCeptor gene, but not as a Regulatory or an Environmental gene;

the promoter (xp, yp, zp) and output (x, y, z) protein coordinates define different fractal

portions of the Mandelbrot set. Bottom left: a schema describing the mapping from

protein coordinates to fractal portion. b) Top: the fractal portion pointed at by the

output coordinates (x, y, z) of the gene. Bottom: the resulting 15x15 bitmap.

Promoter Region. This comprises the promoter protein coordinates (xp, yp, zp)
and the real-valued Affinity (AT ) and Concentration (CT ) Thresholds. This re-
gion determines if, and to what degree, the gene will produce an output via the
mechanism outlined below(detailed equations given in ref [5]):

– All proteins in the cell are merged. The bitmap associated with the promoter
coordinates is compared with the merged product and the summed absolute
difference between its non-black pixels and the corresponding pixels in the
merged product is calculated, which determines an activation probability for
the gene.

– If a gene is determined to be activated the Concentration Threshold is used
to regulate the amount by which the concentration of the output protein in
the cytoplasm is increased.

Output Protein Coordinates. The coordinates (x, y, z) specify the gene’s
output protein, which in the case of a behavioural gene will determine a system
action.

3.3 Fractal Protein Chemistry

As described in ref [5], the system is run through a number of iterations, com-
prising successively of setting the environmental protein concentrations to reflect
input, filtering using the output of the receptor gene to determine how much of
the environmental proteins enters the cell, calculating the merged product of all
proteins in the cytoplasm, and comparing the product with conditions at a reg-
ulatory or behavioural gene’s promoter region to determine protein production
or output condition.
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In addition to the comparison procedure used by the promoter region there
are three further fundamental operations as described below:

Decay. At the end of each iteration the concentration values of the regulatory
proteins present in the cytoplasm are decayed and those with values less than a
certain threshold have their concentration set to zero (so are no longer considered
present in the cell). This process is illustrated in Figure 4a.

Mask. This is the mechanism by which a receptor gene controls the amount of
an environmental protein that enters a cell. Black regions of the receptor protein
bitmap are treated as opaque and all others as transparent; this means the more
similar an environmental protein is to the mask the more of it will be allowed to
enter the cell. An example of masking is shown in Figure 4b.

Merge. In principle a merged product is calculated by iterating through the
fractal equations for each protein and choosing as winner for each pixel that
value that becomes unbounded most quickly. In practice merging can be carried
out more simply by comparing the stored values for the bitmaps and choosing at
each point the maximum pixel value (pictorially, that closest to white); merged
proteins thus tend to be dominated by white regions, as can be seen in Figure 4c.
When proteins are merged the concentration at each point becomes that of the
winner, producing a ‘patchwork’ appearance in this example.

Fig. 4. Protein chemistry. a) Decay: the concentration associated to a protein is re-

duced. b) Mask: a protein (centre, above arrow) masks another. c) Merge: three proteins

and their associated concentrations are merged into one. Note the patchwork nature of

the merged protein’s concentration.

4 Experiments

In this section we first present the versions of the pole balancing problem studied,
and the experimental set-up of the FGRN and associated genetic algorithm,
before detailing and discussing the results of these experiments.
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4.1 Problem Set-Up

We evolve FGRNs to solve versions of the single and jointed pole balancing
problem, defined as follows:

Single Pole Balancing (SPB). The system, modelled with the equations of
motion used in ref [14], is used to balance a single unjointed pole with a range
of pole lengths: 0.5, 1.0, and 2.0 metres. (The traditional length is one metre.)

Jointed Pole Balancing (JPB). The system, modelled with the equations of
motion used in ref [15], is used to balance jointed poles of the same total height
(two metres), but with the joint situated at different positions on the pole: one
third, half-way, and two thirds of the total height.

Figure 5 illustrates the problems. In all cases the Euler method was used to
integrate the equations of motion (integration time step 0.02s for SPB, 0.01s for
JPB) with the criterion for success being keeping cart and pole in the required
position ranges for 100,000 0.02s time steps.

(a) SPB(0.5m) (b) SPB(1m) (c) SPB(2m)

(d) JPB( 2
3

: 4
3
) (e) JPB(1 : 1) (f) JPB( 4

3
: 2

3
)

Fig. 5. Pole balancing problems. a) Single pole balancing with half metre pole:

SPB(0.5m). b) Classical single pole balancing: SPB(1m). c) Single pole balancing with

two metre pole: SPB(2m). d) Jointed pole balancing with joint at a third of the pole

length: JPB( 2
3

: 4
3
). e) With joint in the middle of the pole: JPB(1 : 1). f) With joint

at two thirds of the pole length: JPB( 4
3

: 2
3
).

4.2 FGRN Set-Up

The initial random FGRN genomes are composed of one behavioural (output)
gene, four regulatory (hidden) genes, one receptor (input filter) gene, and as
many environmental (input) genes as the problem has inputs (four for SPB, six
for JPB). The genome’s composition can change throughout a run through the
gene duplication/deletion mutation operators.

One aspect of FGRN operation that has not been previously studied is the
most appropriate representation of input concentration in situations where the
associated physical variables (positions and velocities in this case) take on both
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positive and negative values. This issue was found to be of considerable signifi-
cance for the pole balancing problem. Experiments were run with two different
input-to-concentration mapping schemes:

[0,1]. The standard FGRN mapping in which the smallest (most negative)
inputs are mapped to a concentration value of 0 (total absence of environmental
protein) and the largest to 1 (saturation concentration).

[-1,1]. A modified mapping into concentration values [−1, 1], with zero inputs
now being represented by zero concentration and negative inputs by negative
values. Though negative protein concentrations would not make sense biologi-
cally their use is consistent within the FGRN model. This usage is similar to the
introduction of negative weights in artificial neural networks, which have no bio-
logical counterparts but which are a more flexible and efficient way to represent
the action of inhibitory neurons.

4.3 Genetic Algorithms

We will compare the GA used in all previously published FGRN work (here
designated FGA) with the more recently introduced ALPS[10] algorithm. It is
hoped that the capacity of ALPS to avoid premature convergence will ensure so-
lutions are found more reliably throughout the evolutionary runs. The mutation
rate is the same for both GAs (0.02 per gene), and crossover is always applied.
Each experiment is run 100 times.

FGA. The set-up here is the standard one used in past FGRN work. The
population contains 100 individuals with 80 children generated per generation.
The maximum age is set to 10. Parents are selected from the fittest 40 individuals
except in 1% of cases in which a parent is selected randomly. In each run, FGA
is run for 100 generations.

ALPS. The ALPS GA is set up with a layer size of 20 individuals, an age gap of
10, and a layer age-limit power law ageing scheme. Tournament selection is used
in each layer (tournament size of 4 with an elitism of 4). The layer tournament
size and elitism value are chosen to match the characteristics of FGA but on a
smaller population scale. Each ALPS run continues until the number of fitness
evaluations reaches 10,000.

4.4 Results

Figure 6 shows, for each experiment, the number of successful runs as the number
of fitness evaluations increases, and Table 1 presents a summary of the results.
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Fig. 6. Successful runs (out of a total of 100 runs) as the number of fitness evaluations

increases, for each experiment
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Table 1. Results: the table shows for each combination of input mapping and GA the

percentage of successful runs and the average number of fitness evaluations to success

(with the associated standard deviation in parenthesis)

Experiment
[0, 1] inputs [-1, 1] inputs

FGA ALPS FGA ALPS

SPB(0.5m) 85% 2136(1522) 34% 3629(2842) 99% 1045(696) 98% 1827(1822)

SPB(1m) 85% 2154(1362) 45% 4032(2849) 100% 730(329) 100% 1014(923)

SPB(2m) 81% 2335(1662) 35% 4438(2919) 100% 572(298) 100% 768(949)

JPB( 2
3

: 4
3
) 100% 509(256) 100% 580(631) 100% 387(251) 100% 199(192)

JPB(1 : 1) 83% 951(532) 98% 1479(1799) 99% 449(290) 100% 357(418)

JPB( 4
3

: 2
3
) 66% 1407(759) 73% 3237(2926) 98% 411(290) 100% 477(480)

5 Discussion

This work constitutes the first application of direct GRN control to a well known,
difficult, control problem, and a significant test of the utility of the Fractal
Gene Regulatory Network model. The introduction of negative concentrations
for inputs was found to substantially increase the reliability with which a solution
was found for single and jointed pole balancing (p < 0.02) and to reduce the
number of fitness evaluations needed to reach a solution (p < 0.0001).

The jointed version of the problem appeared easier with a lower pole hinge,
possibly because a longer (and therefore heavier) top segment gives the system
more latitude before the top segment reaches a critical angle. The increasing
number of failures with a higher pole hinge was more pronounced when FGA
was used, confirming the capacity of ALPS to avoid premature convergence. Sur-
prisingly, this version also appeared more tractable than single pole balancing,
which we speculate might be due to the two extra inputs provided in this case.
We intend to study the system’s behaviour on more complex variations of the
pole balancing problem with and without velocity input, comparing our results
with competitor methods, and on other benchmark control problems.

Future work will initially focus on the input representation, given both the
notable improvements brought about by the use of negative concentrations and
the unexpected result that the inclusion of extra inputs in the jointed pole bal-
ancing problem seemed to offset the increased innate difficulty of this task. In the
longer term we intend to take further inspiration from the evolutionary mech-
anisms of natural GRNs, improving the evolvability of FGRNs by allowing the
duplication of gene segments such that, for example, a gene’s activation might
be determined by the combined output of multiple promoter segments.
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Abstract. The orienteering problem (OP) consists in finding an elemen-

tary path over a subset of vertices. Each vertex has associated a profit

that is collected on the visitor’s first visit. The objective is to maximize

the collected profit with respect to a limit on the path’s length. The

team orienteering problem (TOP) is an extension of the OP where a

fixed number m of paths must be determined. This paper presents an

effective hybrid metaheuristic to solve both the OP and the TOP with

time windows. The method combines the greedy randomized adaptive

search procedure (GRASP) with the evolutionary local search (ELS).

The ELS generates multiple distinct child solutions using a mutation

mechanism and a local search. The GRASP provides multiple starting

solutions to the ELS. The method is able to improve several best known

results on available benchmark instances.

Keywords: Team orienteering problem, Time windows, Evolutionary

local search, GRASP.

1 Introduction

The orienteering problem (OP) models for example a game in which competitors
must visit a subset of control points in a given area. Once a control point has been
visited the competitor ascribes a profit. The profit is counted only at the first
visit of the control point. The winner of the game is the competitor who collects
the maximum profit and reaches the end point within a prescribed amount of
time. Among other practical applications of the problem can be mentioned for
example scheduling of traveling salesman visits to the most profitable customers
or an intelligent tourist travel guide system. The latter consists in the following
problem. A tourist has a time limit to visit some city and thus he wants to
visit a subset of tourist sites providing him with maximal satisfaction according
to his preferences. Each tourist site is rated by a coefficient of attractiveness.
The aim is to determine a route that respects the time limit and maximizes

R. Schaefer et al. (Eds.): PPSN XI, Part II, LNCS 6239, pp. 219–228, 2010.
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the total attractiveness of visited sites. To give an example, such a system can
implemented in a tourist information board in the airport or in the train station
of a city so that it can propose the traveller a schedule of visits with respect to
his time availability and personal preferences.

OP belongs to the family of travelling salesman problems with profits (TSPPs).
The TSPP is by nature a bi-objective combinatorial optimization problem with
two opposite optimization criteria, the first objective forces to extend the route
and collect as much profit as possible while the other instigates the traveller to re-
duce the length of the route. The OP is however formulated as a single-objective
optimization problem, in which the route length is stated as a constraint and
the sum of the collected profit is maximized.

OP was introduced in [11] and it has been studied extensively since then. A
detailed survey and annotated bibliography related to the OP and its variants
can be found in a recently published article [13].

In this paper we address the team orienteering problem with time windows
(TOPTW). This extension of the classical OP considers additionally a fixed
number m of routes to be used in the solution and a time window associated
with each customer. To the best of our knowledge only two attempts have been
dedicated to the TOPTW: Ant Colony System algorithm (ACS) [7] and Iterated
Local Search (ILS) [12].

This paper describes a hybrid metaheuristic composed of a greedy random-
ized adaptive search procedure (GRASP) and an evolutionary local search (ELS).
The ELS generates a number of child solutions at each iteration by means of a
procedure of perturbation. These solutions are then improved by a local search
procedure. GRASP provides multiple starting solutions to the ELS using a ran-
domized constructive heuristic. The hybrid metaheuristic solves both the OP and
the team OP with time windows. A brief description of TOPTW is provided in
section 2. The hybrid GRASP-ELS metaheuristic is presented in section 3. Com-
putational results and comparisons to the state-of-the-art methods are given in
section 4 and a conclusion ends this paper.

2 Problem Description

Consider a complete graph G(V,E), where V = {v0,v1,...,vn} represents the set
of vertices and E the set of edges. The vertex v0 is reserved for the depot, which
is the starting and the ending point of each route. Each vertex vi (i = 1, 2, ...,n)
has associated a positive integer profit pi while p0 = 0. A service time si is
spent at each customer vertex vi, i �= 0. The visit of a vertex vi can start
only within a predefined time window [ei, li]. The time window is considered
as hard, i.e. the visitor cannot arrive later than the time li and in case the
visitor arrives earlier than ei, he must wait before the service can start. For the
depot vertex, e0 represents the earliest time the visitor can leave the starting
point and l0 is the latest possible arrival time to the depot. A nonnegative travel
time tij is associated with each edge e(i, j) ∈ E. Without loss of generality, the
service time si can be simply added to the arc cost: t̃ij = si + tij . The total
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travel time of each route is limited by a constant Tmax. We assume that Tmax

equals the latest arrival time to the depot, i.e. Tmax = l0. A feasible TOPTW
solution must contain exactly m routes starting and ending at vertex v0 such
that each vertex (except v0) is visited at most once and the limit on each route
duration is respected. The objective is to maximize the sum of the collected
profit. Mathematical models of the problem can be found in [7,12].

3 GRASP-ELS Algorithm

The proposedmethod is a greedy randomized adaptive searchprocedure (GRASP)
enhanced by evolutionary local search algorithm (ELS). GRASP was introduced
in [4]. It is a simple heuristic which generates independent random solutions (using
some randomized heuristic) further improved by a local search procedure.

ELS was originally proposed in [6] for a peer-to-peer problem in telecommuni-
cations. The method extends the classical iterated local search (ILS). ILS starts
with a solution s obtained by a heuristic and generates several child solutions by
applying a perturbation on s. The child solutions are then improved by a local
search. ELS additionally generates multiple copies of s and then applies ILS on
each copy.

The perturbation procedure is a crucial component in the method. If the
perturbation is too strong, the method behaves as a random heuristic and when
it is weak, the solutions are quickly trapped in a local optimum. To control the
perturbation, a parameter p which ranges from pmin to pmax is used.

GRASP-ELS hybrid metaheuristic was presented in [8] for the vehicle routing
problem. It has been further applied with success to the split delivery capaci-
tated arc routing problem (SDCARP) [1]. Main features of the method is the
multi-start solution approach of the GRASP combined with the efficiency of
ELS generating multiple child solutions. The framework of GRASP-ELS can be
described as follows. At each iteration, GRASP first generates an initial solution
s̄. A local search procedure is applied to s̄ and the resulting solution s enters the
ELS mechanism. ELS generates for each copy of s a number of child solutions by
performing random mutations and applies a local search. The best child solution
s′ is recorded and if it improves s then s is replaced with s′ for the next iteration
of ELS. Otherwise ELS performs the next iteration with s as an initial solution
again. Basically the GRASP-ELS is controlled by three parameters determining
respectively the number of child solutions nc generated within one ELS iteration,
the maximum number of ELS iterations ni and finally the number of starting
solutions generated by the GRASP algorithm ns.

3.1 Variable Neighborhood Descent

The local search is organized as a variable neighborhood descent procedure, since
it alternates between two neighborhoods. The first one contains the classical
routing moves which may involve one or two distinct routes:

1. 2-opt – removes and replaces two arcs in a route and reorders vertices,
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2. Or-opt – relocates one vertex,
3. 2-opt* – interchanges two sub-paths between two routes,
4. Exchange – swaps two customers.

These moves aim to reduce route lengths. When m ≥ 2, all these moves are
performed contrarily to the case m = 1 where only the moves 2-opt and Or-opt
and Exchange are executed. In this neighborhood, feasible moves are tested and
the first improving one is retained. Time windows feasibility check is done in
O(1) as shown in [5].

The second set of neighborhoods enables to introduce yet unvisited vertices
into the current solution. A neighborhood Nk(s), k = 0, · · · , kmax, is defined
as the number of consecutive vertices k that are removed from one route and
replaced by a chain of unrouted vertices. The search starts with k = 0, i.e.
no vertex is removed, and scans all routes in order to find a move maximizing
the difference between the total profit of the inserted vertices and the total
profit of the removed ones. Note that only moves with positive difference can be
accepted. The best move for the current k found over all routes is performed and
the search continues within the same neighborhood until no more improvement
can be detected. If no improvement is found with the current value of k, it is
incremented by 1 and the search starts again. The procedure stops if k = kmax

or if an improvement of the solution has been found earlier. Hence the procedure
does not explore necessarily all neighborhoods Nk for k = 0, ..., kmax, since it
would require a great computational effort.

The determination of the entering sequence of vertices is NP-hard. It can
be formulated as follows: given a time slot Tij between two vertices vi and
vj , and a set of unvisited vertices U ⊂ V , find such a sequence of vertices
vl1 , vl2 , · · · , vlq from U that fits the available time slot and maximizes the inserted
profit. In addition, the time window of each vertex must be respected. It is in fact
equivalent to the single route orienteering problem with time windows; vi and vj

can be considered respectively as the starting and ending point of a route limited
by a time budget Tij . Despite the computational complexity, exact evaluation
of the sequence can be practicable for moderate size of k, since the number of
feasible sequences is reduced due to the time windows constraints.

Let π denotes a feasible sequence of vertices from U , i.e. π fits the available
time slot and the latest arrival for each vl ∈ π is respected. Furthermore, let Sπ

be the set of vertices v ∈ U \ π that can extend the sequence π such that the
insertion remains feasible. Finally, p(π) denotes the total profit of π. We define
the dominance relation between two feasible sequences π and π′: π 	 π′ ⇐⇒
(i) the endpoints of π and π′ are equal; (ii) p(π) > p(π′); (iii) Sπ′ ⊆ Sπ.

The evaluation of non-dominated sequences is done with a dynamic program-
ming procedure performing forward and backward search. Similar strategy was
used in [9] for solving the OPTW but the authors have used a relaxation of the
dominance relation. Our implementation evaluates all non-dominated sequences.
The sequence with maximum total profit is returned and if more such sequences
exist, the sequence increasing less the route length is preferred.
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3.2 Perturbation Procedure

The perturbation can be considered as a random mutation of the current starting
solution. The perturbation should ensure the diversification of a solution but
it can also deteriorate its quality. Then there is a risk of spending too much
computational effort to restore the solution. We have therefore used a simple
perturbation mechanism which fulfills both criteria. The procedure first selects
randomly a sequence of p consecutive vertices from each route. Then all unvisited
vertices are considered to build sequences that can be inserted into the emptied
space in each route. The sequence with maximum profit is inserted and the
recently modified route is not considered further. The procedure continues until
all routes have been modified or no more feasible insertion sequence can be
determined. If some route could not be modified at all, the randomly selected
sequence of vertices is simply removed. This can happen if p is too small or if
almost all vertices are already in the solution.

In order to evaluate the entering sequence efficiently, we propose an alternative
heuristic evaluation scheme instead of the dynamic programming procedure. Let
vi be the last vertex of the sequence. Let also Aj be the set of neighbor vertices
reachable from vj without violating their time window. In the following equation
qj denote the cardinality of the set Aj , Δij the time increasing if vj is to be
inserted and pj the profit of vj . The sequence is extended by a vertex vj with
a maximum ratio p̂ij = qj · pj

Δij
among all unvisited vertices if the extension is

feasible. The evaluation of the entering sequence requires O(n2).

4 Computational Experiments

The algorithm was coded in Embarcadero Delphi 2010, a Pascal like environ-
ment. The computational experiments were carried out on a desktop computer
Dell Optiplex GX260 equipped with a Pentium 4 processor; 3 GHz and 1GB of
RAM.

We have tested the GRASP-ELS algorithm on two benchmark data sets pro-
posed in [7,12] The first data set was obtained from instances originally designed
for the vehicle routing problem with time windows (data sets c/r/rc 100 and
c/r/rc 200) by Solomon [10]. The series *100 and *200 are differing in the av-
erage size of time windows (wider for c/r/rc 200). The customer vertices are
either clustered, randomly distributed or random-clustered in the plane. The
second data set (pr01-pr10 and pr11-pr20) was proposed by Cordeau et al [2] for
the multiple depot vehicle routing problem. Similarly, the instances in data sets
pr11-pr20 have wider time windows on average. The travelling time between two
vertices is represented by the Euclidean distance and the profit corresponds to
the customer’s demand. Solomon’s instances contain 56 data files in total, each
containing 100 customers. The other set contains 20 data files with the number
of customers ranging from 48 to 288. The number of routes ranges from 1 to 4.

Several tests have been performed to determine the parameters setting and
to observe the sensitivity. The resulting parameters setting represent the best
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trade-off between the solutions quality and the computational time. There are
seven parameters that must be set up: ns for GRASP iterations, ni for ELS
iterations, nc for the number of child solutions, MaxNoImp representing the
maximum number of GRASP iterations without improvement of the best so-
lution, the minimal value (pmin) and the maximal value (pmax) of the pertur-
bation parameter p and the maximum size kmax of the neighborhood explored
by the local search procedure. The values of ns, ni, nc and MaxNoImp were
set differently for the data sets: (10, 10, 10, 10) for the Solomon’s clustered data
set, (30, 20, 15, 15) for Solomon’s random and random clustered data sets and
(30, 15, 10, 10) for Cordeau’s data sets. Greater values did not lead to much better
solutions. For some instances of the Solomon’s clustered data set were obtained
identical results with lower ni and nc. For the other data sets the reduction of the
number of generated solutions caused worse performance on average. The other
parameters were identical for all instances: pmin = 1, pmax = 4 and kmax = 2.

Table 1 compares the performance of GRASP-ELS, ILS and ACS. For each
method and instance set is reported the average gap to the best known solution
and the average computational time. The results of GRASP-ELS and ACS rep-
resent the average over five runs with different random seeds. At first glance,
GRASP-ELS provides better results than ILS and ACS. ILS is worse on all in-
stance sets, while ACS performed better only on instance set rc100 with m = 1
and r100, rc100 with m = 2. The average computational times reported for
GRASP-ELS are greater than those of ILS, but ACS spends much more effort
than GARSP-ELS. Moreover, the processor that we have used is approximately
two times slower than the Intel Core 2 with 2.5 GHz used for the ILS. This
statement is based on the comparison of various computer systems solving stan-
dard linear equation problems presented in [3]. The performance is evaluated on
a benchmark problem of a dense system of linear equations given by a matrix
of order 100 and 1000. Our Intel Pentium 4 with 3 GHz has achieved 1 571
Mflop/s and 3 650 Mflop/s respectively while for Intel Core 2 (1 core, 2.5 GHz)
the values are 2 426 Mflop/s and 7 519 Mflop/s. The processor used for ACS is
comparable to ours with the performance 1 470 Mflop/s and 3 654 Mflop/s for
the two benchmarks respectively.

Table 2 compares the performance of different components of GRASP-ELS.
Each column (I – IV) reports the average gap and computational time per in-
stance set obtained when one component was disabled: column I (GRASP dis-
abled), II (all routing moves disabled), III (ELS disabled), IV (only one child
generated). Each test was configured so that approximately the same number
of solutions as with the full version was generated. Disabling some components
can reduce the computational time, but as expected the obtained solutions are
worse.

GRASP-ELS hit or improved several best known solutions. Table 3 summa-
rizes the number of improvements and the number of equal solutions found per
instance set. The method improved 141 best known solutions out of 304 tests
and it found the best known solution in 118 cases.
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Table 1. Summary of results of the four metaheuristics

Instance GRASP-ELS ILS ACS

Set Gap(%) Time(s) Gap(%) Time(s) Gap(%) Time(s)

m=1

c100 0.1 4.4 1.1 0.3 0.0 6.3

r100 0.2 9.4 1.9 0.2 0.2 383.4

rc100 0.4 11.2 2.5 0.2 0.0 143.2

c200 0.2 30.0 1.9 1.7 0.2 342.6

r200 -1.2 63.8 1.0 1.7 1.3 1 556.7

rc200 -0.1 111.7 2.3 1.6 0.9 1 544.5

pr01-10 0.4 20.3 4.3 1.8 0.7 1 626.6

pr11-20 -6.7 40.4 1.3 2.0 4.0 887.6

m=2

c100 0.0 79.7 0.8 1.1 0.1 818.0

r100 0.8 56.3 1.9 0.9 0.3 1 559.4

rc100 1.2 75.5 2.2 0.7 0.9 1 375.8

c200 -0.5 28.1 1.5 3.5 0.7 1 398.1

r200 -2.0 98.1 0.5 2.3 1.5 2 735.1

rc200 -2.1 250.7 1.7 2.2 1.4 2 342.7

pr01-10 -1.5 75.4 3.7 4.8 1.0 1 889.7

pr11-20 -3.1 105.8 3.1 5.2 2.2 2 384.8

m=3

c100 0.6 113.6 2.3 1.5 0.6 1 043.2

r100 0.3 87.1 1.2 1.7 0.9 1 668.9

rc100 0.2 136.8 1.7 1.1 0.9 1 476.8

c200 -0.8 1.5 1.1 2.2 0.8 1 320.4

r200 -0.1 18.0 0.2 1.4 0.1 1 171.6

rc200 -0.3 102.2 1.0 1.7 0.5 1 509.6

pr01-10 -2.0 131.3 3.7 9.2 1.1 2 163.8

pr11-20 -4.1 216.7 3.9 9.7 1.2 2 349.9

m=4

c100 0.7 104.6 2.5 2.6 0.8 1 056.1

r100 -0.1 160.3 2.3 2.6 0.8 1 652.5

rc100 -0.1 242.0 2.1 2.0 1.0 1 854.0

c200 0.0 0.0 0.0 1.0 0.0 7.7

r200 0.0 0.5 0.0 0.9 0.0 126.5

rc200 0.0 6.0 0.0 1.1 0.0 566.9

pr01-10 -1.5 200.5 4.4 14.1 0.8 2 447.7

pr11-20 -3.4 280.8 3.1 13.7 0.9 2 583.5
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Table 2. Results on Solomon’s and Cordeau’s instances obtained with different

configurations

Instance I II III IV

Set Gap(%) Time(s) Gap(%) Time(s) Gap(%) Time(s) Gap(%) Time(s)

m=1

c100 0.6 17.1 0.3 2.1 0.3 4.8 0.9 17.1

r100 1.3 2.3 0.6 13.1 1.3 9.3 0.4 13.2

rc100 3.2 1.3 0.2 5.1 3.2 5.6 0.8 8.1

c200 0.7 28.4 0.4 25.5 0.7 15.5 1.3 31.2

r200 1.5 7.8 1.5 25.8 1.1 32.3 -0.5 67.3

rc200 6.0 5.1 2.5 26.8 5.5 22.1 0.3 47.8

pr01-10 5.0 13.5 1.9 6.0 1.5 44.7 0.4 10.4

pr11-20 -3.1 21.2 -4.1 10.0 -4.3 52.9 -6.2 21.2

m=2

c100 0.7 83.8 1.1 44.7 1.5 17.2 1.0 99.9

r100 2.3 7.5 2.1 27.3 2.7 12.6 0.9 86.0

rc100 3.5 4.1 3.0 18.4 2.9 8.1 1.9 43.2

c200 -0.4 25.9 0.4 10.4 -0.2 15.0 -0.5 27.5

r200 -1.6 18.6 -0.1 28.1 -1.0 104.2 -1.5 106.6

rc200 -1.4 13.9 0.6 28.1 -0.3 69.8 -0.9 93.0

pr01-10 -0.4 41.9 2.6 13.2 1.5 102.5 -0.5 36.8

pr11-20 -1.5 61.9 2.3 19.6 0.6 185.2 -2.5 57.1

m=3

c100 1.0 108.8 2.4 44.4 1.6 22.9 1.5 149.0

r100 1.8 15.3 2.4 34.2 2.0 17.2 1.4 64.6

rc100 1.9 8.9 2.8 27.4 3.0 16.2 2.7 29.8

c200 -0.8 1.7 -0.5 4.5 -0.7 4.1 -0.8 1.8

r200 0.0 23.7 0.0 5.6 0.0 16.6 0.0 94.4

rc200 -0.1 13.7 0.1 20.2 0.3 23.6 -0.2 52.6

pr01-10 -1.7 71.2 3.1 27.6 1.7 351.1 -1.9 74.7

pr11-20 -3.7 96.0 2.3 35.4 0.1 280.6 -3.6 104.8

m=4

c100 0.6 99.8 2.7 52.9 2.5 22.7 0.9 97.5

r100 1.6 22.3 2.8 43.7 -0.2 169.2 0.6 90.1

rc100 2.7 13.2 4.4 47.8 0.3 108.8 2.1 67.5

c200 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

r200 0.0 2.0 0.0 0.4 0.0 0.5 0.0 7.6

rc200 0.0 14.6 0.0 1.3 0.0 3.5 0.0 60.4

pr01-10 -0.8 106.4 5.0 37.7 2.2 208.3 -1.1 116.9

pr11-20 -1.9 136.6 3.1 62.8 0.2 222.4 -3.2 128.7
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Table 3. Number of improvements and identical solutions found over the instance sets

m 1 2 3 4

Set # instances # equal # impr # equal # impr # equal # impr # equal # impr

c 100 9 9 0 8 1 5 1 4 2

r 100 12 10 0 3 3 3 4 1 8

rc 100 8 6 0 1 2 0 5 2 5

c 200 8 5 2 2 5 2 5 8 0

r 200 11 0 10 1 10 9 2 11 0

rc 200 8 1 7 0 8 3 5 8 0

pr01 - pr10 10 7 1 2 6 2 7 1 7

pr11 - pr20 10 1 9 1 8 1 9 1 9

Sum 76 39 29 18 43 25 38 36 31

5 Conclusion

The implemented GRASP-ELS algorithm has performed well on the TOPTW
instances with much less computational effort compared to ACS. The best so-
lutions of many instances have been improved and the average performance of
our method is superior to ACS in terms of computational times and to ILS in
terms of the quality of obtained results. Still the performance of GRASP-ELS
might be improved if much simpler evaluation of newly introduced vertices is
used. This could be one stream of future work.

The proposed GRASP-ELS framework can be adapted so that the algorithm
handles additional side constraints. This suggests the idea to apply the method to
other time constrained routing problems with profits proposed in the literature.
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Abstract. Terminal Assignment is an important problem in telecom-

munication networks. The main objective is to assign a given collection

of terminals to a given collection of concentrators. In this paper, we

propose a Discrete Differential Evolution (DDE) algorithm for solving

the Terminal Assignment problem. Differential Evolution algorithm is

an evolutionary computation algorithm. This method has proved to be

of practical success in a variety of problem domains. However, it does

not perform well on dealing with Terminal Assignment problem because

it uses discrete decision variables. To remedy this, a DDE algorithm is

proposed to solve this problem. The results are compared to those given

by some existing heuristics. We show that the proposed DDE algorithm

is able to achieve feasible solutions to Terminal Assignment instances,

improving the results obtained by previous approaches.

Keywords: Communication Networks, Optimisation Algorithms, Dis-

crete Differential Evolution Algorithm, Terminal Assignment Problem.

1 Introduction

In recent years, several combinatorial optimisation problems have arisen in com-
munication networks. This is mainly due to the dramatic growth of communica-
tion networks, their increasing complexity and the heterogeneity of the connected
equipments. In centralised computer networks, several terminals or workstations
are serviced by a central computer. In large networks, concentrators are used to
increase the network efficiency. In these networks a set of terminals is connected
to a concentrator and each concentrator is connected to the central computer.
If the number of concentrators and their locations are known, the problem then
is reduced to determine what terminals will be serviced by each concentrator.
This is known as the Terminal Assignment (TA) problem. Each concentrator is
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limited in the amount of traffic that it can accommodate. For that reason, each
terminal must be assigned to one node of the set of concentrators, in such a
way that any concentrator does not overstep its capacity [1], [2], [3]. The op-
timisation goals are to simultaneously produce feasible solutions, minimise the
distances between concentrators and terminals assigned to them and maintain
a balanced distribution of terminals among concentrators. The TA problem is a
NP-Hard combinatorial optimisation problem. Therefore, finding a polynomial
time algorithm to solve them to optimality is highly unlikely. In this paper we
propose a Discrete Differential Evolution (DDE) algorithm to solve this prob-
lem. Our algorithm is based on the DDE algorithm proposed by Pan et al. [4]
for solving the permutation flowshop scheduling problem. The DDE algorithm
first mutates a target population to produce the mutant population [4]. Then
the target population is recombined with the mutant population in order to
generate a trial population. Finally, a selection operator is applied to both tar-
get and trial populations to determine who will survive for the next generation.
A destruction and construction procedure is employed to generate the mutant
population. Embedded in the DDE algorithm we use a Local Search (LS) pro-
posed by Bernardino et al. [5], which is used to improve the solutions quality.
We compare the performance of DDE with three algorithms: Local Search Ge-
netic Algorithm (LSGA), Tabu Search (TS) algorithm and Hybrid Differential
Evolution algorithm with a multiple strategy (MHDE), used in literature.

The paper is structured as follows. In Section 2 we describe the TA prob-
lem; in Section 3 we describe the DDE algorithm; in Section 4 we discuss the
computational results obtained and, finally, in Section 5 we report about the
conclusions.

2 Terminal Assignment Problem

The TA problem involves to determine what terminals will be serviced by each
concentrator [1]. In the TA problem a communication network will connect N
terminals and each with demand (weight) Li, via M concentrators and each with
capacity Cj . No terminal’s demand exceeds the capacity of any concentrator. A
terminal site has a fixed and known location CTi (x,y). A concentrator site has
also a fixed and known location CPj (x,y).

In this work, the solutions are represented using integer vectors. We use the
terminal-based representation (see Fig. 1). Each position corresponds to a termi-
nal. The value carried by position i of the chromosome specifies the concentrator
that terminal i is to be assigned to.

Fig. 1. Terminal-based representation
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3 The Proposed DDE Algorithm

Differential Evolution (DE) was introduced by Storn and Price in 1995 [6]. DE is
a population-based algorithm using crossover, mutation and selection operators
[7]. The crucial idea behind DE is a scheme for generating trial parameter vectors
[8], [9]. At the mutation step, distinct individuals (usually three) are selected
from population. Mutation adds the weighted difference of two (or more) of
the individuals to the third. At the recombination step, new trial individuals
are created by combining the mutated individual, with the target individual.
Combination takes place according to a strategy (several strategies with different
approaches can be found in literature - see [9]). Thereafter, a selection operator
is applied to compare the fitness value of both competitive solutions, namely,
target and trial solutions to determine who can survive for the next generation.
Most of the discrete problems have solutions presented through permutation
vectors, while DE usually maintains and evolves floating-point vectors.

In order to apply the DE to solve discrete problems, the most important is to
find a suitable encoding scheme, which can transform between floating-point vec-
tors and permutation vectors. DE was first applied to TA problem by Bernardino
et al. [5]. They proposed a Hybrid DE (HDE) algorithm and in [10] proposed an
improved HDE algorithm with a multiple strategy (MHDE). MHDE combines
global and LS by using an evolutionary algorithm to perform exploration while
the LS method performs exploitation. MHDE uses the terminal-based represen-
tation and not floating-point vectors. After applying the standard equations, the
algorithm verifies if the trial solutions contain values outside the allowed range.

In MHDE, if a gene value (concentrator) is outside of the allowed range it is
necessary to apply the following transformation:

IF concentrator > M THEN concentrator = concentrator - M

ELSE IF concentrator <=0 THEN concentrator = concentrator + M

This transformation significantly increases algorithm execution time. To solve
this problem we use a DDE algorithm based on the algorithm proposed by Pan
et al.[4] whose solutions are based on discrete values, which can be applied to
all types of combinatorial optimisation problems [11], [12], [13], [14]. The basic
model of DDE is different from the DE model.

Main steps of the DDE algorithm:
Initialise Parameters

Create initial target Population, P0

Evaluate target Population P0

Find Best Solution in P0, Pg
WHILE stop criterion is not reached

Create Mutant Population, Pmt

Create Trial Population, Ptt

Evaluate Trial Population Ptt

Make Selection and update target population, Pt

Find Best solution in Pt, Ptg
Apply Local Search to Ptg
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Initialisation of parameters
The following parameters, must be defined by the user (1) ni - number of indi-
viduals; (2) ms - maximum number of seconds; (3) pp - perturbation probability;
(4) np - number of perturbations and (5) pc - crossover probability.

Initial target Population
The initial target population (P0) can be created randomly or in a Deterministic
Form (DF). DF is based in the Geeedy algorithm proposed by Abuali et al. [15].
This algorithm assigns terminals to the closest feasible concentrator.

Evaluation of solutions
To evaluate how good a potential solution is relative to other potential solutions
we use a fitness function. The fitness function is based on: (1) the total num-
ber of terminals connected to each concentrator (the objective is to guarantee
a balanced distribution of terminals among concentrators); (2) the distance be-
tween the concentrators and the terminals assigned to them (the objective is to
minimise the distances between concentrators and terminals assigned to them);
(3) the penalisation if a solution is not feasible (the objective is to penalise the
solutions when the total capacity of one or more concentrators is overloaded).
The objective is to minimise the fitness function (equation 4), searching a trade
off among the three objectives mentioned.

totalc =
N∑

t=1

{
1 if(c(t) = c)
0

balc =

{
10 if(totalc = round( N

M ) + 1)
20 ∗ |(round( N

M ) + 1 − totalc)|
(1)

c(t)= concentrator of terminal t, t = terminal, c = concentrator

distt,c(t)) =
√

(CP [c(t)].x − CT [t].x)2 + (CP [c(t)].y − CT [t].y)2 (2)

Penalisation =

{
0 if(Feasible)
500

(3)

fitness = 0.9 ∗
M∑

c=1

balc + 0.1 ∗
N∑

t=1

distt,c(t)) + Penalisation (4)

Mutant Population
A mutant individual is obtained by perturbing the generation best solution in the
target population. The differential variation is achieved in the form of perturba-
tions of the best solution from the previous generation in the target population.
To obtain the mutant individual, the following equation is used:

Pmt
i =

{
DCnp(P t−1

g ) if(r < pp)
MutationClosestConcentrator(P t−1

g )
(5)

P t−1
g is the best solution from the previous generation in the target population

and DCnp is the destruction and construction procedure with the destruction
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size of np as a perturbation operator; and MutationClosestConcentrator is a
simple mutation operator. With this operator, one gene (terminal) is randomly
selected and its value (concentrator) is replaced for a new one (the closest feasi-
ble concentrator). A uniform random number r is generated between 0 and 1. If
r is less than pp then the DC procedure is applied to generate the mutant indi-
vidual. Otherwise, the best solution from the previous population is perturbed
using a simple mutation operator. The DC procedure creates a new solution
by performing multiple moves whose length is specified as np. The algorithm
performs np perturbations to find a new solution. First the algorithm chooses
a random terminal t and searches the closest concentrator. If the concentrator
has enough capacity and maintains a balanced distribution of terminals then
the terminal t is assigned to the closest concentrator, closestC. Otherwise the
algorithm generates two random terminals, t1 and t2. The algorithm verifies the
concentrators, c1 and c2, assigned to them. If the concentrators have enough
capacities and at least one of the concentrators is closest to the terminal that
will be assigned, then the algorithm exchanges the terminals, t1 and t2, between
the concentrators, c1 and c2. The algorithm repeats this process until at least
one exchange is made.

Steps of the DC method:
FOR n=1 TO np DO

t = random(N), closestC=1

FOR c=1 TO M DO /*find the closest concentrator*/

IF distance (t, c) < distance (t, closestC) THEN

closestC=c

IF capacityFree(closestC)>=L(t) and mantainBalanced(closestC) THEN

Assign terminal t to concentrator closestC

ELSE

cond=true

REPEAT

t1 = random(N), t2 = random(N)

c1 = solution (t1), c2 = solution (t2)

IF ( capacityFree(c2) - L(t2)>=L(t1) and capacityFree(c1) -

L(t1)>=L(t2) ) and (distance(t2,c1)<=distance(t1,c1)

or distance(t1,c2) <= distance(t2,c2) ) THEN

Assign t1 to c2 and t2 to c1

cond = false

WHILE cond=true

Trial Population
Following the perturbation phase, a trial individual is obtained such that:

Ptti =

{
CR(Pmt

i,P
t−1
i ) if(r < pc)

Pmt
i

(6)

A uniform random number r is generated between 0 and 1. If r is lower than
pc then the crossover operator is applied to generate the trial individual. The
crossover operator (CR) adopted was 1-point, widely used in literature. CR
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produces two children. In this study, we selected one of the children randomly.
If r is higher or equal to pc then the trial individual is chosen as: Ptti = Pmt

i

The trial individual is made up either from the perturbation operator or from
the crossover operator.

Selection
The selection is based on the survival of the fitness among the trial and target
individuals such that:

P t
i =

{
Ptti if(fitness(Ptti) < fitness(P t−1

i ))
P t−1

i

(7)

Local Search
The LS algorithm applies a partial neighbourhood examination. We generate
a neighbour by swapping two terminals between two concentrators c1 and c2
(randomly chosen). The algorithm searches for a better solution in the initial set
of neighbours. If the better neighbour improves the actual solution then the LS
algorithm replaces the actual solution with the better neighbour. Otherwise, the
algorithm creates another set of neighbours. In this case, one neighbour results
of assigning one terminal of c1 to c2 or c2 to c1. The neighbourhood size is
N(c1)*N(c2) or N(c1)*N(c2) + N(c1)+N(c2).

Steps of the LS algorithm:
c1 = random (M), c2 = random (M)

NN = neighbours of ACTUAL-SOL (one neighbour results of interchange

one terminal of c1 or c2 with one terminal of c2 or c1)

SOLUTION = FindBest (NN)

IF fitness(ACTUAL-SOL) > fitness(SOLUTION) THEN

NN = neighbours of ACTUAL-SOL (one neighbour results of assign

one terminal of c1 to c2 or c2 to c1)

SOLUTION = FindBest (NN)

IF fitness(SOLUTION) < fitness(ACTUAL-SOL) THEN

ACTUAL-SOL = SOLUTION

ELSE

ACTUAL-SOL = SOLUTION

The evaluation process is the most time-consuming step of the algorithm, which
is usually the case in many real-life problems. Our LS procedure has some im-
portant improvements compared to the LS proposed by Bernardino et al. [5].
After creating a neighbour, the algorithm does not perform a full examination
to calculate the new fitness value; it only updates the fitness value based on
the modifications that were made to create the neighbour. The running time is
reduced considerably.

Termination criterion
The algorithm stops when a maximum number of seconds (ms) is reached.

Further information on DDE can be found in [4], [11], [12], [13], [14].
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4 Results

In order to test the performance of our approach, we use a collection of TA
instances of different sizes. We take 9 problems from literature [16]. To compare
our results we consider the results produced with LSGA, TS and MHDE. GA
was first applied to TA by Abuali et al. [15]. GA is widely used in the literature
to make comparisons with other algorithms. TS was applied to this problem by
Xu et al. [17] and Bernardino et al. [16]. We compare our algorithm with LSGA
[18], TS [16] and MHDE [10] algorithms proposed by Bernardino et al. because
they (1) used the same test instances; (2) adopted the same fitness function; (3)
implemented the algorithms using the same language (C++) and; (4) adopted
the same representation (terminal-based).

Table 1 presents the best-obtained results with DDE, LSGA, TS and MHDE.
The first column represents the problem number (Prob) and the remaining
columns show the results obtained (BestF - Best Fitness, Ts - Run Times).
The initial solutions for all algorithms were created using the Greedy algorithm.
The algorithms have been executed using a processor Intel Core Duo T2300. The
Ts (Run Time) corresponds to the execution time that each algorithm needs to
obtain the best feasible solution.

Table 1. Results

Prob LSGA TS MHDE DDE

BestF Ts BestF Ts BestF Ts BestF Ts

1 65.63 <1s 65.63 <1s 65.63 <1s 65.63 <1s

2 134.65 <1s 134.65 <1s 134.65 <1s 134.65 <1s

3 270.26 <1s 270.26 <1s 270.26 <1s 270.26 <1s

4 286.89 <1s 286.89 <1s 286.89 <1s 286.89 <1s

5 335.09 <1s 335.09 <1s 335.09 <1s 335.09 <1s

6 371.12 1s 371.12 <1s 371.12 <1s 371.12 <1s

7 401.21 1s 401.49 1s 401.21 2s 401.21 <1s
8 563.19 7s 563.34 1s 563.19 10s 563.19 2s
9 642.83 7s 642.86 2s 642.83 15s 642.83 3s

Table 2 presents the average fitnesses and standard deviations. The first col-
umn represents the number of the problem (Prob) and the remaining columns
show the results obtained (AvgF - Average Fitness, Std - Standard Deviation).
To compute the results in table 2 we use Â 1

2 second for instances 1-3, 1 second
for instances 4-5, 2 seconds for instance 6, 5 seconds for instance 7, 10 seconds
for instance 8 and 15 seconds for instance 9.

The suggestions from literature helped us to guide our choice of parameter
values for TS [16], LSGA [18] and MHDE [10]. For the TS, we consider a number
of elements in the tabu list between 5 and 20. The parameters of LSGA are set
to crossover probability between 0.3 and 0.4, selection operator=”tournament”,
mutation probability between 0.6 and 0.8, crossover operator=”one-point” and
mutation operator= ”multiple”. The parameters of the MHDE algorithm are set
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Table 2. Average Fitnesses and Standard Deviations

Prob LSGA TS MHDE DDE

AvgF Std AvgF Std AvgF Std AvgF Std

1 65.63 0,00 65.63 0,00 65.63 0,00 65.63 0,00
2 134.65 0,00 134.65 0,00 134.65 0,00 134.65 0,00
3 270.69 0.23 270.76 0.3 270.75 0.15 270.47 0.22

4 286.99 0.13 287.93 0.75 287.17 0.14 286.89 0,00
5 335.99 0.6 335.99 0.59 336.55 0.39 335.26 0.17
6 371.68 0.24 372.44 0.45 373.19 0.42 371.38 0.22
7 402.41 0.5 403.25 0.73 403.61 0.33 401.62 0.28
8 564.94 0.52 564.5 0.54 572.04 0.76 564.07 0.38
9 646.52 0.84 644.18 0.48 648.46 0.48 643.96 0.46

to crossover probability between 0.3 and 0.4, factor F between 0.9 and 1.6 and
strategy=”Best1Exp”. The parameters of DDE are set to crossover probability
between 0.1 and 0.3, perturbation probability between 0.8 and 0.9 and number
of perturbations between [N/10...N/5]. The MHDE and LSGA were applied to
populations of 200 individuals and DDE to populations of 100 individuals. The
values presented in table 2 have been computed based on 50 different executions
(50 best executions out of 100 executions) for each test instance.

The four algorithms reach feasible solutions for all test instances. The DDE
algorithm can reach the best-known solutions for all instances. MHDE and LSGA
can also find the best known solutions but in a higher execution time.

Since we are not trying to dynamically assign terminals to concentrators the
running time is not a significant parameter to determine the quality of the algo-
rithms. The differences in terms of execution time are not significant. To establish
which is the best algorithm we must observe the average quality of the produced
solutions and the standard deviations. As it can be seen in table 2, for larger in-
stances the standard deviations and the average fitnesses for DDE algorithm are
smaller. It means that the DDE algorithm is slightly more robust than LSGA,
TS and MHDE.

We perform comparisons between all parameters (using the 9 instances) in
order to establish the correct parameter setting for the DDE algorithm. We
consider the same instance - 7 (a problem with average difficulty) to show the
comparisons between parameters. To compute the results we use 1500 iterations.

The better results obtained with DDE use np between N/20 and N/3, pp>0.5,
pc<0.5 (Fig. 2) and ni = {90, 100}. These parameters were experimentally found
to be good and robust for the problems tested.

In our experiments we use different population sizes. The number of individ-
uals was set to {10, 20, ..., 200}. We studied the impact on the execution time,
the average fitness and the number of best solutions found. A higher number of
initial solutions significantly increases algorithm execution time (Fig. 3).

The results show that the best population sizes are 90 and 100. With these
values the algorithm can reach in a reasonable amount of time a reasonable
number of good solutions. With a higher number of initial solutions the algorithm
can reach a better average fitness but it is more time consuming (Fig. 3).
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Fig. 2. Influence of parameters, Problem 7

Fig. 3. Number of Individuals, Average Fitness/Execution Time, Problem 7

In our experiments np (number of perturbations) was set to {0, 1, 2, ..., N}
(Fig. 4). In case of a high np the resulting permutation tends to be too random,
which makes it more difficult to generate new improving solutions. A high np
has also a significant impact on the execution time (Fig. 4). A small np did not
allow the system to escape from local minima because the resulting solution was
in most cases the same as the starting permutation.

Fig. 4. Number of Perturbations, Average Fitness/Execution Time, Problem 7

In general, experiments have shown that the proposed parameter setting is
very robust to small modifications.

5 Conclusions

In this paper we present a DDE algorithm to solve the TA problem. The perfor-
mance of our algorithm is compared with LSGA, TS and MHDE. The compu-
tational results show that DDE performed more strongly, improving the results
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obtained by previous approaches. DDE provides good solutions in a smaller ex-
ecution time. Moreover, in terms of average fitness and standard deviation, the
DDE also proved more robust and stable than the other algorithms. Experimen-
tal results demonstrate that the proposed DDE algorithm is an effective and
competitive approach in composing fairly satisfactory results with respect to
solution quality and execution time for the TA problem.

In literature the application of DDE for this problem is nonexistent, for that
reason this article shows its enforceability in the resolution of this problem.

For future work we propose the implementation of parallel algorithms to speed
up the optimisation process.
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Abstract. We propose a decentralized evolutionary approach for study-

ing autonomous heterogeneous agents interacting in a supply chain. Such

logistics networks can be seen as complex networks that need to adapt

their internal structure (e.g. transport routes, interactions) as reaction to

environmental changes, e.g. the market demand, supplier unavailability

or route changes. We model such distributed supply chains as a decen-

tralized multi-agent system in order to draw an analogy to real world

scenarios. This paper describes a decentralized evolutionary optimiza-

tion approach that differs in two ways from traditional EA. First the

fitness calculation is replaced by an economic model. Second the en-

tire agent population constructs only one solution. The connections in

supply-chains can be seen as a complex network of coexisting but simple

interdependent agent strategies producing together the necessary trans-

portation network. We describe how our decentralized approach can be

used to solve inherently distributed problems where no central optimiza-

tion algorithm exist. The simulation results show the applicability of the

approach to transport network optimization.

1 Introduction

Logistics processes and systems (e.g. transportation, telecommunication, infor-
mation) are large and distributed with a huge number of autonomous agents
collaborative working in order to fulfill requirements from customers, service
providers, organizations and other systems. These systems cannot be fixed in
their structure, design and behavior in order to cope with a highly dynamic, com-
plex and unpredictable environment. For inherently distributed systems there
cannot be a special agent aware of the whole system. At first elements are lim-
ited by how much they can communicate and process [6]. The second reason
is information hiding, which means, that not all information can be given to a
central control due to intellectual property or security reasons [9,5,12]. Through-
out this paper we use the term decentralized system for systems without central
control. The aim of this paper is to show a decentralized method to optimize
transport networks.

Typically the flow inside logistic networks is organized in processes that de-
scribe the sequence of activities in the network. So, according to the process

R. Schaefer et al. (Eds.): PPSN XI, Part II, LNCS 6239, pp. 240–249, 2010.
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Fig. 1. a) Distribution process from producer to customer, b) Structure of a logistic

network according to a)

in figure 1a) there are four steps that determine the flow of goods through the
network starting with the production of goods followed by transportation, then
to stocking and finally sale to customers. In figure 1b) a possible logistic net-
work consisting of producers, distributors, wholesaler and retailer is shown. An
actor may have different capabilities and parameters determining its behavior
or strategy (store size, geographic position, etc.) and thus may have an influ-
ence on the network. The goal in logistics is to streamline the network structure
while improving service to the customer [3]. The optimization of such networks
is NP-complete [11].

In this paper we present a multi-agent system that attempts to adapt a dis-
tributed system to a distributed problem of network optimization. As an exam-
ple we use a logistic network based on the process illustrated in Figure 1a) in
a decentralized bottom-up approach. Supply chains consist of autonomous and
heterogeneous organizations and actors, therefore we use a multi-agent system
(MAS) approach where agents represent actors (e.g. producer, retailer, distrib-
utor, wholesaler). Holland introduces in [13] flow as a basic property of complex
adaptive systems and in natural systems the flow of energy has been studied in
a variety of areas [15,4]. Therefore we use evolutionary computation based on an
economic model driven by the flow of money. We assume no central element as
a manager or coordinator; instead we use an economic bottom-up approach for
adaptation in distributed systems by simulation. Decentralization is an inherent
characteristic of logistic networks [9,14] and thus we are especially interested
in exploring the extend to which a decentralized adaptation can lead to an im-
proved result (from a system designers perspective) and how an EC-enabled and
market-based multi-agent system can realize this adaptation appropriately. This
paper presents an approach on how distributed systems can be adapted without
any central entity.

We start by considering in section 2 decentralized evolutionary approaches
and their applications to logistics. Section 3 describes the economic perspec-
tive (3.1), formulates the optimization problem to be solved (3.2), describes the
evolutionary approach (3.3) and the expected properties related to the given
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scenario (3.4). The experimental results are shown and discussed in section 4
followed by conclusion and future works in section 5.

2 Related Work

For specific sub problems like depot location search, known as p-median-problems,
methods exist that are basically heuristic [11]. One of them described as ’fast
interchange heuristic’ by Whitaker in [23] solves the p-median-problem, but ca-
pacity is not considered, which can be seen as unrealistic. A more extensive
survey is presented in [8,14] whereby only top-down algorithms are considered.
First results of an independent market study indicate that most of the available
supply chain management software tools support centrally organized networks
and lack a collaborative planning and execution support [10] and thus also use
a top-down approach with central coordination, which is not applicable to our
problem.

So far, very little work has been conducted on evolutionary computation in
multi-agent systems concerning logistics. We have excluded all papers not ex-
plicitly addressing these three terms. An evolutionary approach using economic
agents for studying strategies in electronic markets is presented by [2]. Here
trading agents are investigated by studying heterogeneous strategies in large
electronic markets. A traditional ’central’ evolutionary algorithm is used and
the process steps are hard wired in the agent system. This make it inappro-
priate for the present problem. A decentralized EC-enabled MAS framework is
presented in [22] where local selection occurs and has been used in [7,21,16]. In
[7,21] Smith and Eymann investigate negotiation strategies in a supply chain
for the production of cabinets but concentrate merely on self-organizing coordi-
nation effects. Explicit control and optimization is not provided. Further, they
consider only coordination effects between agents but not between agents and
the environment. Previous EC-enabled MAS approaches use agents that are
specific in their function and hence the re-usability of agents in different logistic
scenarios or processes is not supported. Further, the use of centralized infras-
tructure like yellow pages may induce a bottleneck as the agent population, the
communication load and the information in the system grows. [16] uses agents
that compete for shared resources directly from the environment. Resources are
not traded between the agents and subsequently replenished to the environment.
In our sample logistic scenario (figure 1) this approach is inadequate, because
agents not only interact with the environment but also perform intermediate in-
teractions. Otto describes in [18,19] a decentralized approach but evaluates only
the optimization within one step of the supply chain.

To the best of our knowledge, there is no decentralized approach to streamline
logistics networks and adapts them by using evolutionary computation. We use
flow of money to direct local recombination and selection in a processes based
complex system. In this paper we use a robust, modern and scalable state of the
art architecture of a multi-agent system without any central control that can
run up to several thousands of agents.
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3 Approach

This section describes how the simulation model was build and which parameters
were taken into consideration. The income possibilities and expenses every agent
has are described and the protocols that are used for communication in the multi-
agent system are explained in further detail. As well we describe how the steps
from the classical, local evolutionary algorithm are mapped onto a supply-chain.

The supply-chain consists of k steps and a number of agents on each step
i = {0, . . . , k}. The set of agents is denoted with A = {a1, . . . , an} and the
subset of agents at i-th step is denoted with Ai. Each agent is located at a
position on a two dimensional map (see figure 1). The chain begins with the
fixed set of customer agents A0 which are normal distributed around a point
p0. The other agents (denoted as supply chain agent) representing the steps
s = {1, ..., k} are initial uniformly distributed over the map. Each customer
agent orders one product per round in the subsequent step in the supply chain.

The definition of the multi-agent system is as follows:

Definition 1 (Multi-Agent System (MAS)). A multi-agent system MAS =
(A,E) consists of a finite set of agents A = {a1, ..., an} in environment E.

Since a MAS contains agents, the following definition for an agent is:

Definition 2 (Agent). An agent a = (I,O, f, s, c) consists of a finite set of
sensory inputs I = {i1, . . . , im}, a finite set of effector outputs O = {o1, . . . , oq},
a function f : I → O which maps sensory inputs to effector outputs, the strat-
egy vector s = (s1, s2, . . . , sr) determining or parameterizing f , and the agents
current funds c ∈ R.

Without loss of generality the access to specific strategy parameters is denoted
by sa(param) for increased readability. The strategy sa contains at least the
position sa(x) = (x1

a,x
2
a), the maximum stock sa(stockmax) and the safety stock

sa(stockmin) of the agent.

3.1 Economic Perspective

In our model we assume a discrete timeline, where all actions take place at
consecutive steps. Agents have to pay a tax Ta(t) to the environment E at every
round t for their actions and according to their strategy parameters sa (e.g. like
inventory or backlog). Given the tax, we can calculate the profit πa an agent a
receives at time t by

πa(t) = Ra(t) − Pa(t) − Ta(t) (1)

where Pa(t) denotes the payment a has to pay to other agents (e.g. orders
placed), Ta(t) denotes tax turned over to the environment and finally a may
have receipts Ra(t) from the orders of other agents. Based on the profit πa(t),
an agent accumulates funds ca over time expressed by:

ca(t + 1) = ca(t) + πa(t) (2)
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where ca(t + 1) denotes the funds of agent a at time (t + 1), ca(t) denotes a’s
funds at time t and πa(t) is the profit of a at time t. Money cannot be ’created’
by the agent, rather it is provided by the customer agents A0 representing the
demand of the market. A0 provides funds in return to services offered by the set
of agents {A \ A0}.

In our model the flow of money is essential to make the distributed evolu-
tionary algorithm work. The recipts Ra(t) are the sum of all order payments an
agent receives in t:

Ra(t) =
∑

orders

(pbuy(t) + profit) · qorder(t) + (Δd · pΔd) (3)

where pbuy denotes the buying price, profit the profit per product sold and qorder

the quantity of products per order. The shipping cost is denoted by the distance
Δd multiplied by the price per unit of distance pΔd. The distance Δd1,2 is the
two dimensional euclidean distance between a1 ∈ Ai and its supplying agent
a2 ∈ Aj on the subsequent step in the supply chain with i > j and i, j ≤ k.
Calculating the order quantity qorder is computed by

qorder(t)=

{
sa(stockmax)−stocka(t)−ppa(t) : stocka(t) + ppa(t)<sa(stockmin)
0 : otherwise

(4)
where stocka(t) represents the current stock and ppa(t) the pending products
(ordered but not received) at time t.

3.2 Optimization

Based on MAS and the economic perspective the distributed optimization prob-
lem is given by:

Definition 3 (Distributed Optimization Problem). A distributed optimiza-
tion problem (DOP) is given by:

minimize
k−1∑
i=0

∑
Ai

Δdi,j , subject MAS

where Δdi,j denotes the distances between every purchaser i and its supplier j.

The MAS represents a complete supply chain with rational and local agents and
their environment. It includes the constraints, e.g.maximum stock (sa(stockmax)),
current stock (stocka(t)), agents funds (ca) or the tax. Every agent has exactly one
supplier (except the producer at the last step k). On the other hand an agent may
have multiple purchasers (except the customers at step 0, see process in figure 1a).
Therefore the overall problem is not known to a single agent and can only be pro-
cessed or solved in a distributed manner.
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3.3 Evolutionary Model

Due to the decentralized structure of real-world supply chains a distributed
evolutionary algorithm [22,18,19] is used. The various steps of the local EA,
like selection and creation of a new individual, had to be mapped onto the
multi-agent system. Every agent is performing all evolutionary steps locally. As
described within the optimization section 3.2 the solution is distributed over the
whole agent population. Thus the novelty of the presented approach differs from
traditional EA as the entire population forms only one solution. Every agent
contributes a small piece to the entire solution and thus we believe our model is
therefore closer to real-world supply chains.

By turning the classical EA design on its head agents act as independent
evolutionary entities and can be seen as an artificial life like approach [1]. Local
reproduction by an agent includes all steps and operations necessary to produce
new offspring, such as local search, recombination and mutation. An agent spe-
cific variable θa is introduced that serves as a threshold and enables agents to
reproduce [18]. Whenever the funds of an agent exceeds this threshold (ca ≥ θa)
it will reproduce. Before reproduction an agent a chooses a random mate a′ and
sends out a message to request the strategy. Previous experiments have shown
no difference between random selection compared to and other strategies [20].
Upon receiving the mates strategy sa′ , the recombination and mutation is done
local by using the breeder genetic algorithm described in [17] to produce the
child strategy sc. Finally a new agent will be created and given the strategy sc,
half of the funds ca

2 and half of the current stock. Due to the local reproduction
trigger the notion of generation number does not exist.

The fitness calculation is done implicitly by following the economic model
in section 3.1. Therefore no comparative fitness calculation is necessary. This
is an important aspect, as fitness comparison among agents would increase the
number of messages and the computation overhead of the overall system.

3.4 Expected Properties

We expect highly adaptive behaviour of the whole system in the following aspects
as described in [18,19]: (i) adaptive population size and (ii) Adaptive system
strategy as a combination of agents strategies. Similar to eco-systems, economic
evolutionary agents tend to stabilize around the so called carrying capacity of the
environment. Therefore the presented approach is usefull for dynamic problems
as well as one time problems. The carrying capacity is given by the customer
agents order behaviour. The emergent behavior of stabilization can be observed
in real scenarios [9] where actors enter and leave the market. Further a long
term adaptivity is expected on the agents strategy forming the supply-chain.
This includes e.g. agent positions in the map and maximum and safety stock
values. We expect the positions of the agents to being close to the customer
agent positions and thus streamlining the overall transport distance within the
supply chain. Even without any central control this effect can be observed.
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4 Evaluation

To demonstrate and verify the viability of the developed approach on the supply
chain given in figure 1 we have conducted a large number of experiments using
different settings and strategies such as mutation rate and searchrate. In defined
intervals every agent searches for a potential supplier in the previous step of the
chain. In order to model decentrality agents can not ’search’ for specific agents.
Instead they will be connected to a random supplier agent of the specified step.
Offers the new supplier a price below the current supplier price (equation 3) the
searching agent replaces its current supplier with the new one. Therefore the
searchrate induces network dynamic and has direct influence on the network
structure. This mechanism performs a search for the cheapest supplier with one
supplier per agent at each time step t.

The analysis applies to experiments with the following settings: map size is
100×100, customer agents A0(|A0| = 100) are normal distributed with N (p0, 5),
where p0 = {75, 75}, all other agents Ai, i = {1, . . . , k}, |Ai| = 10 are initial
randomly distributed, initial funds of agents ca(0) = 140, initial inventory: 15,
buying price for products at the producers site = 10, stock: sa(stockmin) = 5 and
sa(stockmax) = 15, splitting threshold θa = 15 · sa(stockmax) · pbuy · profit

pbuy+profit

(every agent is capable to fill its inventory multiple times dependent to the
position in the chain), profit = 10, searchCost = 10, price per distance unit
pΔd

= 0.01, penalty for one product backlog = 1, stockCost = 0.5. Every
customer orders one product per round. Every setting was averaged over 50
independent simulation runs with 1500 rounds each.

The evolutionary strategy is realized as a hash map of string value pairs. The
values are represented as floats and recombined using the breeder evolutionary
algorithm [17]. The search for a new supplier is a simple random connect to a
supplier at the previous stage of the supply chain. The agent performs a price
request every searchrate rounds and replaces its current supplier if the new
supplier is cheaper compared to the current one.

Mutation rate
Simulations were computed for mutation rates of 1, 5, 10 and 50 percent, the
search rate is 10. Figure 2a) shows the results of this simulations. The overall
distance in the supply-chain in every round is plotted for the above mentioned
mutation rates. In the beginning the distances are almost equal for all mutation
rates. Already after a few rounds, the first search process is carried out and some
agents can create child agents whereas others are removed from the agent system
because they are running out of money. A high mutation rate causes extreme
values for the agents strategy (e.g. position sa(x), safety stock sa(stockmin) and
maximum stock sa(stockmax)). Extreme mutation rates induce a random walk of
the solution as shown in figure 2 (mutationrate = 50%). The best performance
is shown with mutation rate of 1%.

Search rate
Simulations were computed for search rates of 10, 15 and 20, the mutation rate
is set to 1%. In figure 3b) the different results in the supply-chain are plotted. In
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Fig. 2. Different mutationrates and searchrates and their influence to the overall

transport distances

that simulation where the agents look for a more favorable supplier more often
(e.g. decreased searchrate), agents that are further away from the market agents
get removed from the system faster and agents closer to the customer agents get
selected more often. The overall dynamic of the supply-chain increases when the
searchrate decreases.

(a) round 1 (b) round 1500

Fig. 3. Snapshots of the supply chain at a) round 1 and b) round 1500

Location of agents
Figure 3 shows two screen shots of the maps taken after round 1 and at the end
of the simulation (round 1500). In 3a) the initial random distribution of agents
and the direction of the products can be seen. The customers area (mean) is
shown in the right bottom corner as a thick black circle. After 1500 rounds the
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agents are concentrated around the customer agents. Due to the mutation some
agents are placed fare away from the customer agents. These agents are not likely
to be selected as supplier and therefore will be removed from the agent system
immediately. Although the supplier search method is a simple random connect
the overall network of supplier to buyer connections gets minimized.

5 Conclusion and Future Works

We have proposed a decentralized evolutionary framework with self interested
economic agents. The approach uses an economic model instead of a classical
fitness function. This enables the complete distribution of evolutionary steps
and their local execution in the agents scope. Another aspect is the distributed
solution, which is a combination of partial solutions of all agents. In contrast
to conventional EA where each individual contains the complete solution, we
spread the solution over the whole population since the problem of real world
supply chains is inherently distributed.

The simulation results show the existence of optimized strategies (e.g. posi-
tions) throughout the supply chain. Therefore the combination of local strategies
form a streamlined global supply chain. In our test cases the agents adapt to the
the market, e.g. the position of the customer agents. The tests were performed by
varying different values of mutationrate and searchrate. All the agents strate-
gies are intertwined and produce a network of coexisting strategies. The approach
of simple interdependent and coexisting strategies together form an optimized
network of transport routes. Our decentralized approach aims at developing a
more detailed view on complex processes within distributed networks and should
be more suitable as a model to real world supply chains.
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Abstract. From within the variety of research that has been devoted

to the adaptation of Differential Evolution to the solution of problems

dealing with permutation variables, the Geometric Differential Evolu-

tion algorithm appears to be a very promising strategy. This approach

is based on a geometric interpretation of the evolutionary operators and

has been specifically proposed for combinatorial optimization. Such an

approach is adopted in this paper, in order to evaluate its efficiency on a

challenging class of combinatorial optimization problems: the Job-Shop

Scheduling Problem. This algorithm is implemented and tested on a se-

lection of instances normally adopted in the specialized literature. The

results obtained by this approach are compared with respect to those gen-

erated by a classical DE implementation (using Random Keys encoding

for the decision variables). Our computational experiments reveal that,

although Geometric Differential Evolution performs (globally) as well as

classical DE, it is not really able to significantly improve its performance.

1 Introduction

The Differential Evolution (DE) technique is an Evolutionary Algorithm pro-
posed by Storn and Price in the mid 1990s [22]. Characterized by a novel mu-
tation operator, this stochastic search technique has been found to be a power-
ful optimization tool for solving continuous optimization problems [12]. Unlike
other methods such as Genetic Algorithms, the canonical DE scheme is based
on a floating-point representation of the variables. Thus, the treatment of dis-
crete optimization problems requires an adaptation of its original operators. This
latter observation is even more relevant when dealing with permutation-based
problems since such problems involve, in addition to the discrete values restric-
tion, inherent constraints of interdependence among variables.

A significant amount of research has been recently devoted to this issue and
many techniques have been proposed, particularly focusing on methods for con-
verting real variables into permutations. However, none of all these techniques
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has succeeded in avoiding the redundancy in the mapping from real to permu-
tation spaces. As a consequence, the results obtained by DE are not able to
satisfactorily compete with those obtained by other metaheuristics when tack-
ling complex permutation-based problems. The other path for adapting DE to
problems dealing with permutation variables is the modification of the DE’s
operators. In 2009, A. Moraglio et al. adapted a geometric framework (previ-
ously introduced for Particle Swarm Optimization [13]) for its use with the DE
metaheuristic. The differentiation was transformed into a geometric operation,
applicable in any space when adopting an appropriate metric. In [14], the authors
mainly focused on the consideration of binary spaces and reported interesting
results for NK landscapes and Spears-DeJong functions. In a recently released
technical report [15], permutation and program spaces are further tackled. The
aim of the present paper is thus to evaluate the behavior of such a technique,
called Geometric Differential Evolution (GDE) for permutation spaces, on a
challenging problems class.

As a case study, the Job-Shop Scheduling Problem is chosen, for two main
reasons. First, there is no need to emphasize its inherent complexity, already
evidenced in many studies and simply justified by the inability for state-of-the-
art algorithms to identify optimal solutions of complex instances of this prob-
lem. The second reason is a previous work on the JSSP, which analyzed the
performance of techniques based on the transformation of real numbers to per-
mutations [20]. This precedent will allow us to compare the two strategies, i.e.,
transforming either the variable representation mode or the operators. The re-
mainder of this paper is organized as follows. Section 2 presents a short overview
on JSSP, while Section 3 is dedicated to the definition of the permutation-based
GDE algorithm. The experimental methodology and computational results are
presented in Section 4. Finally, some conclusions are drawn in Section 5.

2 Overview of the JSSP

2.1 A Review on Solution Techniques

Scheduling problems, because of their many applications not only in the indus-
trial but also in the service fields [19], have attracted an increasing interest within
the Operations Research community. In the manufacturing area, the Job-Shop
Scheduling Problem is one of the most complex examples. In this problem, a set
of jobs, which all consist of several operations, is processed in a certain order on
a set of machines. The processing sequence of each job operations on the ma-
chines and the associated processing times are the problem data. The objective
is, then, to minimize the completion date of the last scheduled operation.

Because solving exactly the JSSP constitutes a challenging issue, much of
the research efforts have focused on the development of efficient methods. Re-
searchers have first concentrated on exact optimization techniques based on the
disjunctive graph representation [21]. However, the JSSP is hard for exact al-
gorithms and optimal solutions can be provided for instance sizes up to about
10 machines and 10 jobs. This feature has led to the development of heuristics
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methods: the Shifting Bottleneck heuristic (particularly the SB-I and SB-II ver-
sions presented in [1]) is an example of a heuristic which achieves very good
results even for mid-size and large instances.

With the development and enhancement of several metaheuristics, a variety
of local search and population-based heuristics have been applied to the JSSP:
Simulated Annealing [24], Tabu Search [23], Genetic Algorithms [6], GRASP [2],
etc. Aiming at simultaneously exploiting the benefits of several methods, hybrid
techniques have also been frequently used: Genetic Local Search [9], Ant Colony
Optimization coupled with a Tabu Search approach [10], a Tabu Search/Simu-
lated Annealing hybrid [26]. The two Tabu Search based algorithms proposed
by Nowicki and Smutnicki (TSAB [17] and i-TSAB [18]) have provided the best
results reported until now for this problem.

2.2 Problem Formulation

The classical JSSP aims at assigning a finite set O of operations to a finite set
M of machines (|M | = m). Each operation oij ∈ O belongs to the sequence
of a job j and must be processed on a specific machine i. Conversely, each job
j ∈ J is characterized by a subset of operations Oj ⊂ O that must be processed
according to a defined order. Unlike the Flow-Shop case, the processing sequence
differs from one job to another. In most cases, each job j is processed exactly
once on each machine i, so that the total number of operations is |O| = nm and
the commonly used nomenclature refers to n × m-instances.

The typical objective of the classical JSSP is then to minimize the completion
time of the last operation scheduled, namely the makespan, while respecting
the following major constraints: (i) one machine cannot simultaneously process
more than one job at a time, (ii) preemption is not allowed, (iii) the processing
sequence of the operations belonging to a job must be respected (the starting
time of any operation is higher than the completion time of its predecessor).

The solution is an assignment of operations to machines on a precise time
period and is called a schedule. When an appropriate schedule builder is used
(see next section), this solution can be formulated as a multi-permutation, i.e.,
a set of job permutations associated to each machine. The cardinality of all
possible solutions to the JSSP is therefore (n!)m.

2.3 Schedule Classes

Attention must be paid to the fact that, for a given multi-permutation, an infinite
number of schedules might be built. An important issue therefore concerns the
construction of the schedule. Among the feasible schedules, the active schedules
are those for which no operations can be brought forward without delaying
another operation. It is well known that optimal schedules belong to the active
class [16]. Another relevant schedule class is the non-delayed one, for which no
idle time is allowed on a machine if this latter is free and an operation is available
for processing. This latter class also constitutes a subset of the active schedules
class, but may not contain the optimal solution.
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In the following, a schedule builder based on the parameterized Giffler &
Thompson’s algorithm is used [8]. This technique produces schedules that lie on
an region intermediate between the active and non-delayed classes, through the
introduction of a parameter δ that controls the number of possible schedules,
i.e., the number of solutions in the search space of the considered problem. When
δ=0, the built schedule is non-delayed while δ=1 allows the generation of active
schedules. This parameter should be tuned for each treated instance.

3 Geometric DE for Multi-permutation Spaces

The aim of this section is not presenting the whole theoretical framework and
detailed insights of the geometric adaptation of Differential Evolution to permu-
tation spaces, since such information can be found in [15]. We only provide here
the features necessary for a global understanding and for the implementation of
permutation-based GDE.

3.1 A Geometric Framework for DE

The basic idea in GDE is a re-interpretation of the evolutionary operators ac-
cording to a geometric point of view. Considering two vector solutions as points
in the space, the crossover of these two parents can be seen, in this sense, as
a geometric operation returning a point within the segment defined by the two
original solutions. The distance between the offspring vector and both parents
is then implicitly determined by the crossover rate. Clearly, in this context, the
definition of an appropriate metric associated to the considered seach space is
required; but this allows the extension of such concepts to any space endowed
with an adequate distance.

In [14], the reformulation of the DE operators is proposed according to this
geometric paradigm. Consider the classical DE mutation operator:

uG
ij = xG

3j + F (xG
1j − xG

2j), ∀j ∈ {1, ...,N} (1)

where uG
ij is the mutated offspring generated for parent xG

ij , while xG
1j , xG

2j , xG
3j

are randomly selected individuals in the current population (xG
1j �= xG

2j �= xG
3j �=

xG
ij) and F (F ∈ [0,1]) is the scaling factor.
Setting W = 1

1+F , then equation (1) can be written as:

W · uG
ij + (1 − W ) · xG

2j = W · xG
3j + (1 − W ) · xG

1j , ∀j ∈ {1, ...,N} (2)

Consider that U, X1, X2 and X3 are the point-wise representations associated
to vectors uG

ij , xG
1j , xG

2j and xG
3j , respectively. The differentiation operator can

be represented as illustrated in Fig. 1 (taken from [14]): point E is the result
of the convex combination of points X3 and X1 with weights W and 1 − W
respectively, and can be constructed since X1 and X3 are known. Subsequently,
point U can be deduced as the point on the extension ray (ER) going out of X2
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and passing through E (E is the result of the convex combination of points U
and X2 with weights W and 1 − W , respectively). Thus, creating algorithmic
procedures that translate the convex combination and extension ray operations
would allow to design a geometric interpretation of the differentiation operator
based on the definition of a metric adapted to the considered space.

Fig. 1. Construction of U using convex combination and extension ray procedures

Similarly, regarding the crossover procedure, Moraglio et al. prove that the
discrete recombination applied to uG

ij and xG
ij (or, according to the geometric

paradigm, points U and Xi) produces an offspring that can be seen as the
convex combination of points U and Xi with weights Cr and 1−Cr respectively,
where Cr is the crossover rate used within DE.

3.2 GDE for the JSSP

In order to adapt the GDE framework to the job-shop scheduling problem, a
metric must be defined for permutation spaces. The distance between two con-
figurations will subsequently be computed as the sum of the distances between
the permutations, in each schedule, associated to every machine. This is proposed
in [15]. The swap distance appears to be particularly appropriate for the JSSP:
swapping two jobs in a sequence is a neighborhood definition commonly used
within many local search methods. The swap distance between two sequences
is then equal to the number of swapping mutation steps necessary to transform
one permutation into another.

In other words, let us consider that the permutation vectors constitute the
nodes of an undirected graph whose edges represent a swapping move between
two neighbor permutations (i.e. one permutation is attainable from the other
by only one swapping mutation step). The swap distance is thus the shortest
path, on this graph, to get from one vector to another. Note that this concept
involves, for a permutation having n elements, a total “diameter” of the search
space (maximum distance between two permutations) equal to n − 1.

Accordingly, for the convex combination procedure, the swap distance be-
tween both initial vectors is computed and the new vector is derived in such a
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way that it lies between the initial strings, at a distance obtained from multi-
plying each weight by the total swap distance. These distances are interpreted
as probabilities in order to construct a mask that determines, for each position,
to which parent element the offspring must be equal to. A similar procedure is
developed for the extension ray, in such a way that the convex combination of
the new vector and one of the initial ones results in the other parent. When the
distance between the initial strings is equal to the diameter of the search space,
it is impossible to generate an offspring farther away from one of them (outside
the segment defined by the initial vectors). Both of these processes are repeated
for each permutation in the schedule configuration (i.e., for every machine).

The detailed algorithms for all the above-mentioned procedures (computing
swap distances, convex combination and extension ray) are not presented here
but are explained in detail in [15].

4 Computational Experiments

4.1 Methodology

The permutation-based GDE algorithm is evaluated on a selection of instances
chosen among several sets of JSSP instances commonly used in the specialized
literature:

- 3 instances due to [7]: FT06, FT10, FT20.
- 2 instances due to [1]: ABZ5, ABZ6.
- 6 instances due to [3]: ORB01-ORB06.
- 7 instances due to [11]: LA22, LA24, LA25, LA27, LA37, LA38, LA40.
- 4 instances due to [25]: YN1-YN4.

These examples, drawn from the OR-library [5], can be basically divided into
three groups, according to their complexity: easy (FT and ABZ), medium (ORB
and LA) and difficult instances (YN).

With respect to the GDE parameters tuning, population size NG and genera-
tion number NG are set in such a way that the number of objective evaluations
NP × NG is equal to the values commonly reported in the literature (note,
however, that this criterion may not always be fair since, in many cases, a sim-
plified objective computation mode is devised in order to shorten computational
times). Concerning the crossover rate Cr and the amplification factor F, prelim-
inary computations indicated that the best results are obtained when the former
adopts rather high values (between 0.8 and 1) and when the latter adopts values
randomly generated between 0.3 and 0.9.

4.2 Standard Random-Keys DE

As mentioned before, the aim of this study is to compare both strategies when
adapting DE to problems dealing with permutation variables, i.e., adapting the
variable representation mode or the internal DE’s operators. So, according to
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this, the results obtained by the described GDE algorithm are compared here
against those of a standard DE.

The DE version used here, fully described in [20], is DE/rand/1/bin, which
means that the vectors used within the differentiation operator are randomly
selected, only one difference is used and a binary crossover is performed for each
variable independently. Besides, the main feature of the algorithm is the encoding
procedure. In order to handle permutations, the Random Keys method, initially
proposed in [4], was implemented. A real number, bounded between 0 and 1,
is used for each operation and operations corresponding to the same machine
are sequenced according to the increasing order of their associated variable. For
instance, considering 5 jobs with the following variable vector on machine i : [0.41
0.68 0.02 0.85 0.37], the resulting sequencing order is: [2 4 0 1 3]. The Random
Keys technique is chosen here because it proved to be more efficient and effective
than two others (i.e., evolving dispatching rules and binary matrix priority based
on the disjunctive graph) as indicated in the comparative study reported in [20].

Besides, since the differentiation mutation is likely to produce variables lying
outside their bounds, a mixed constraint-handling technique is applied according
to a given probability PB (tuned for each instance): (i) setting the variable value
to the violated bound; (ii) using the violated bound as a symmetry center to
send the considered variable to the feasible side of the boundary.

4.3 Results

For each instance, we performed 20 runs of each method (classical DE and GDE).
The comparison is obviously drawn for equal numbers of objective evaluations.
The values reported in Table 1 indicate, for each technique, Makespan Relative
Errors (with respect to a reference makespan) and standard deviation of the
results over the 20 runs. b-MRE (respectively, to m-MRE) reports the error of
the best objective value found over 20 runs fBest (respectively, the mean value
of the objective over the 20 runs fMean). The reference makespan is, typically, a
lower bound LB (optimal for all instances, except for YN1-YN4). Note that the
standard deviations provided in Table 1 are computed according to the makespan
values and not to the relative errors. The relative error is computed according
to the following formula:

b − MRE = 100 × fBest − LB

LB
(3)

m − MRE = 100 × fMean − LB

LB
(4)

A global observation of Table 1 shows a similarity of both techniques’ perfor-
mance. Regarding the b-MRE indicator, both methods provide similar results
for 36% of the treated instances. With respect to m-MRE, GDE is better in 45%
of the considered cases while the Random Keys DE is better for 50%.

However, some differences appear when considering separately each problem
category. On the one hand, GDE provides the best results for simple and com-
plex instances and, on the other hand, the Random Keys DE performs better
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Table 1. Computational results

Instance Size LB/Opt.
Geometric DE Random Keys DE

b-MRE m-MRE S. Dev. b-MRE b-MRE S. Dev.

FT06 6×6 55 0 0.18 0.31 0 0.18 0.44

FT10 10×10 930 1.40 2.33 4.50 1.40 1.97 5.07

FT20 20×5 1165 1.12 1.12 0.45 1.29 1.45 0.34

ABZ5 10×10 1234 0.41 0.44 1.47 0.41 0.84 4.87

ABZ6 10×10 943 0.53 0.53 0 0.53 0.73 4.97

Average 0.69 0.92 1.35 0.72 1.04 3.14

ORB01 10×10 1059 1.04 1.08 1.79 1.04 1.11 2.40

ORB02 10×10 888 0.68 0.92 1.44 0.79 0.99 1.64

ORB03 10×10 1005 1.59 3.86 9.37 1.59 2.54 6.73

ORB04 10×10 1005 1.09 1.94 3.99 1.29 1.92 4.22

ORB05 10×10 887 0.79 1.89 2.05 1.01 1.91 4.36

ORB06 10×10 1010 1.09 1.78 4.70 0.89 1.89 6.38

LA22 15×10 927 3.67 4.95 5.59 1.40 3.67 7.65

LA24 15×10 935 3.21 4.51 4.85 2.14 2.83 3.56

LA25 15×10 977 3.48 5.32 5.83 2.56 3.50 6.12

LA27 20×10 1235 5.67 7.10 7.28 4.78 6.44 8.85

LA37 15×15 1397 3.58 4.82 5.08 2.08 3.57 9.75

LA38 15×15 1254 4.85 6.59 7.96 3.01 3.71 5.30

LA40 15×15 1222 4.09 5.11 5.96 1.96 2.59 5.04

Average 2.68 3.83 5.07 1.89 2.82 5.54

YN1 20×20 846 12.06 14.02 6.10 13.36 14.59 5.40

YN2 20×20 870 12.64 14.86 7.42 13.86 15.23 6.73

YN3 20×20 840 13.45 14.73 5.47 14.40 15.48 4.60

YN4 20×20 920 14.13 16.01 5.50 14.89 15.49 4.01

Average 13.07 14.91 6.12 14.08 15.20 5.18

for medium instances. This behavior is further moderated for medium instances
since GDE is slightly better for the ORB class while being completely outper-
formed by the Random Keys DE in the LA class. This comment highlights the
fact that understanding why some instances are more difficult for one method
than for another still remains as an open question.

It is worth recalling that state-of-the-art algorithms, such as TSAB and i-
TSAB (complete results available in [17] and [18]) generally perform much bet-
ter than both of the DE versions considered here (specially on hard instances
but also for the simple ones, for which optimal solutions can be systematically
determined). This comment must balance the previous observations concerning
the quality of the obtained results.

The deceiving results obtained by GDE could be tentatively explained by the
extension ray procedure used within the geometrically adapted differentiation.
As underlined in [15], this operation consists in generating point U (the mutant,
see Fig. 1) beyond point E, which is itself computed as the convex combina-
tion of points X1 and X3. However, in many cases, the distance between X2
and E is already equal to the maximum distance between two permutations



258 A. Ponsich and C.A. Coello Coello

(called the “search space diameter” in [15]). As a consequence, point U is equal
to point E, meaning that the differentiation operator degenerates into the sim-
ple convex combination of two parents X1 and X3 : the explorative power of
the method is thus significantly damaged. Note that this phenomenon does not
occur for smaller alphabets (binary search spaces) because the probability to
generate two points separated by the maximum distance is much lower than in
the permutation case. Finally, this observation shows that GDE might not pro-
vide competitive results for high cardinality alphabets, especially if the variable
string size is large.

5 Conclusions

We presented in this study an evaluation of the Geometric Differential Evolu-
tion algorithm, adapted to the treatment of problems dealing with permutation
variables, recently proposed in [15]. The Job-Shop Scheduling Problem has been
adopted because it represents a challenging problem class for which a widely de-
veloped bank of instances is available. The results showed that the permutation-
based GDE globally performs as well as a classical implementation of DE for this
problem class. This may lead to the conclusion that this novel algorithm, based
on a modification of the initial DE’s operator, is really viable and able to com-
pete with a DE version having a special variables encoding mechanism for the
treatment of permutation-based problems. However, GDE is not able to signifi-
cantly improve the performance of classical DE for non-continuous optimization
problems and would be still outperformed by other metaheuristics (particularly
Tabu Search in the JSSP framework). Thus, more research is required in order
to produce a more competitive DE variant for problems such as JSSP.
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Abstract. Since many real-world optimization problems are noisy, vector

optimization algorithms that can cope with noise and uncertainty are re-

quired. We propose new, robust selection strategies for evolutionary multi-

objective optimization in the presence of noise. We apply new measures of

uncertainty for estimating the recently introduced Pareto-dominance for

uncertain and noisy environments (PDU). The first measure is the inter-

quartile range of the outcomes of repeated function evaluations. The sec-

ond is based on axis-aligned bounding boxes around the upper and lower

quantiles of the sampled fitness values in objective space. Experiments on

real and artificial problems show promising results.

1 Introduction

Most real-world multi-objective optimization problems (MOPs) are inherently
noisy because they rely on noisy measurements or require complex simulations
that suffer from noisy conditions as well. Multi-objective evolutionary algorithms
relying on indicator-based selection strategies have been successfully applied to
various real-world as well as artificial MOPs. However, in their canonical form
they do not work well when applied to MOPs with strong noise. By changing
the selection scheme and sampling the objective functions for each candidate
solution several times, the algorithms’ robustness w.r.t. noise and uncertainty
can be improved. Recently, an extension of the Pareto-dominance relation that
addresses the problem of noisy objective function values has been presented in [1].
This extension originally relies on the convex hull of multiple objective function
samples. We propose to consider axis-aligned bounding boxes and per-objective
empirical quartiles instead.

In the following, we briefly introduce Pareto-dominance for uncertain and noisy
environments (PDU) including our adaptation based on axis-aligned bounding
boxes. Thereafter, we describe our empirical evaluation on real-world and artificial
fitness functions before we finish with the conclusions and open questions.

R. Schaefer et al. (Eds.): PPSN XI, Part II, LNCS 6239, pp. 260–269, 2010.
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2 A Robust Variant of Pareto Dominance

Let the noisy MOP (MNOP) be defined in a very general way without assump-
tions on the distribution of the objective function values nor on the error struc-
ture considered (e.g., the definition is not restricted to multiplicative or additive
noise):

Definition 1 (MNOP)

Min. y = (f |x, ε) = (f1, . . . , fk|x, ε) (MNOP)
with y = (y1, . . . , yk) ∈ Y, objectives

(fi|x, εi) ∼ Fi, i = 1, . . . , k, objective functions
Fi, i = 1, . . . , k, distribution functions
x = (x1, . . . ,xn) ∈ X , decision variables
ε = (ε1, . . . , εk), error terms.

We introduce an approach that handles the inherent uncertainty of the opti-
mization problem by a specific variant of Pareto dominance relying on repeated
evaluations of the decision vectors considered. By combining both expectation
E(fi|x, εi) as well as uncertainty U(fi|x, εi) of the resulting objective realiza-
tions an alternative concept of Pareto-dominance (PDU) is set up [2,3]:

Definition 2 (Pareto-Dominance in Uncertain Environments (PDU)).
A solution x of MNOP dominates a solution x∗ iff

∃ i ∈ {1, . . . , k} :E(fi|x, εi) + U(fi|x, εi) < E(fi|x∗, εi) − U(fi|x∗, εi);
∀j = (1, . . . , k), j �= i :E(fj |x, εj) + U(fj |x, εj) ≤ E(fj |x∗, εj) − U(fj |x∗, εj).

The concept of PDU is based on an uncertainty zone around the expected value
at a given solution. Dominance decisions are only made in case the reliability of
the objective values is high enough in the sense that the uncertainty zones of
two points to be compared do not overlap in any dimension (see Fig. 1). The
definition of PDU above implicitly assumes symmetric noise distributions by
estimating only a single U(fi|x, εi) value per objective i at point x.

Expectation. As the required expected value E(fi|x, εi) cannot be observed
directly, we estimate the location of the corresponding distribution based on a
sample of m evaluations of the objective functions. To get a robust estimate, we
consider the median (which is an unbiased estimator of the expectation if the
expectation exists and the distribution is symmetric):

E(fi|x, εi) ≈ med (fim) ∀ i ∈ {1, ..., k} with
med(fm) = (med(f1m|x, ε1), . . . ,med(fkm|x, εk)),

(fim|x, εi) =
(
f1

i , . . . , f
m
i |x, εi

)
, i = 1, . . . , k.

Theoretically, a sample size of m → ∞ is required. As in practice already moder-
ate sample sizes are unrealistic, we suggest to use racing algorithms (see below)
for dynamically adjusting the sample size depending on the amount of variability.
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Uncertainty. There are several possibilities for choosing an indicator for the
uncertainty of the sampled objective values for a given point in decision space.
We will introduce and investigate three different approaches with increasing
complexity.

1. One approach, probably the simplest one to handle noisy objectives, is to
omit a special uncertainty measure and account for the variability solely by
using an estimator for the expected value (i.e., U(fi|x, εi) = 0).

2. The inter-quartile range (IQR) of the objective realizations in each dimension
suggests itself as an appropriate estimator for the inherent uncertainty. We
refer to a non-parametric estimator because this is in line with using the
median as the estimator for the expected value, that is

U(fi|x, εi) = q0.75(fim|x, εi) − q0.25(fim|x, εi) ,

where qα refers to the empirical α-quantile of Fi.
3. Analogous to reverting to convex hulls in [2] we propose the usage of an axis-

aligned bounding box (BB, [4]) based on the upper and lower quartiles of the
sampled values in Rk. Computing the box has a much lower computational
complexity and has the same intuitive interpretation, namely, that with in-
creasing volume of the bounding box the uncertainty of objectives increases
simultaneously. The bounding box BBQ is defined as the cartesian product
of the k intervals each of which is defined by the lower and upper quartile of
the corresponding objective. The average of the distances of med(fm) to the
closest point on BBQ in each dimension (BBQclosest

j ) is taken as the required
uncertainty measure reflecting a deviation to border points (see Fig. 1):

U(fi|x, εi) =
1
k

k∑
j=1

∣∣∣med(fim) − BBQclosest
j

∣∣∣ .

Distribution of Function Evaluations. We apply concepts inspired by se-
lection races [5,6,7] for dynamically controlling the sample size per individual
such that the number of samples is as low as possible while the single objectives
satisfy certain statistical requirements.

3 Preliminary Empirical Evaluation

This section presents the empirical evaluation of the different noise handling ap-
proaches on benchmark functions as well as on two real-life optimization prob-
lems. We considered the (μ+ μ)-MO-CMA-ES (see [8,9]) and the NSGA-II (see
[10]) in our experiments. All experiments have been conducted using the Shark
Machine Learning Library [11]. In the following, we first outline the two real-
world optimization problems from rapid manufacturing before we describe the
experimental setup and the results.
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Fig. 1. Examples of PDU. Uncertainty regions are displayed by striped rectangles.

The grey rectangle indicates the region dominated by the left solution. Black thick

lines visualize distances from the median to the Quartile-BB in each dimension (top,

approach 3) or represent the IQR (bottom, approach 2).

Rapid Manufacturing. Ready-to-use additive manufacturing (RUAM) com-
bines welding and grinding by using a single machine while the optimization of
the weld bead geometry is the crucial part of an efficient process. Structures are
built in a layer-by-layer stepwise procedure which strongly relies on correct wall
thickness and shape. Two different RUAM problems are addressed here.

RUAM1 [3]: Liratzis [12] identified depth of penetration Pd and sidewall pen-
etration Ps to be key weld bead geometry quality factors being objectives to
be minimized. Travel speed (T , [900,. . . 1400] mm/min), wire feed speed (W ,
[8.2,. . . 13.2] m/min), wire distance from side wall (D, [0.3,. . . , 1.2] mm) and
arc length correction (Ac, [-25,. . . , 25] %) are the key decision variables of the
process. Based on Design of Experiment (DoE) methods the following models
were estimated based on coded influence factors in the interval [0, 1] using the
variable bounds listed above:

Pd = 2.55 + 0.35 · W − 0.23 · T + 0.21 · D + 0.18 · Ac + 0.14 · W · Ac

− 0.25 · T · Ac − 0.073 · A2
c + ε1, ε1 ∼ N (0, 0.16612

),

Ps = 0.60 + 0.038 · W − 0.086 · T − 0.074 · D + 0.13 · Ac + 0.025 · W · T
− 0.024 · W · D − 0.043 · T · D − 0.018 · W 2 − 0.022 · T 2

+ ε2, ε2 ∼ N (0, 0.03312
).

RUAM2 [13]: Another aspect is the maximization of the height (H) and simul-
taneous target optimization of the width (W ) of the weld bead while consider-
ing constraints regarding the contact angle (CA) and limitations of the welding
machine. The diameter of wire (X1, [0.8,. . . , 1.2] mm), wire feed speed (X2,
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Fig. 2. Visualization of objectives (left: RUAM1, right: RUAM2)

[1.5,. . . ,14] mm/s) and the wire feed speed divided by the travel speed (X3,
[10,. . . ,20] mm/s) were identified as key decision variables by DoE methods:

H = 3.948 · X1 − 0.5386 · X2 + 0.006262 · X2
3 − 1.123 · X3

1 + 0.03353 · X2
2

− 0.0001578 · X3
3 − 0.0008612 · X3

2 + 0.1668 · X1 · X2 + ε1, ε1 ∼ N (0, 0.132
) ,

W ∗
= |W − 5| + ε2 = |2.5208 · X1 − 0.2699 · X2 + 0.0038 · X2

3 − 0.0004 · X3
2

+ 0.6766 · X1 · X2 − 5| + ε2, ε2 ∼ N (0, 0.61162
) w.r.t.

CA = 101.58 · X2 + 971.94 · X1 − 74.49 · X3 − 251.21 · X2 · X1 − 0.78 · X2 · X3

− 65.41 · X1 · X3 + 0.08 · X2
2 + 7.67 · X2

3 + 4.01 · X2
2 · X1 + 115.47 · X2 · X2

1

+ 0.036 · X2
2 · X3 + 28.50 · X2

1 · X3 + 0.27 · X1 · X2
3 − 0.13 · X3

2 − 306.33 · X3
1

− 0.18 · X3
3 + 0.12 · X2 · X1 · X3 ≤ 90 ; X1 ≤ 0.0043 · X2

2 − 0.1313 · X2 + 1.7876

in addition to the box constraints of the decision variables.

Experimental Setup. We compare the algorithms deploying the respective
combinations of noise handling methods on different classes of benchmark func-
tions. We consider the bi-objective, constrained and non-separable WFG6 and
WFG8 (see [14]). Moreover, the bi-objective, unconstrained and rotated bench-
mark function ELLI1 (see [8]) is used for the performance evaluation. We aug-
ment the assessment by empirically analyzing the performance of the algorithms
on two optimization problems from the domain of rapid manufacturing. For all
of the bi-objective functions, we considered different levels of additive, normally-
distributed noise (see Table 1). For the selection races, we set δ to 0.0001 accord-
ing to the suggestions given in [7] and limited the maximum number of repeated
fitness function evaluations to tmax = 15. The parent and offspring population
sizes have been chosen as μ = λ = 100. In case of the (μ+ μ)-MO-CMA-ES, we
adhered to the parameter setup presented in [9]. For the NSGA-II, we considered
the default parameter setup (see [10]). We conducted 50 independent trials and
aborted every trial after 500 generations.

Results. The performance of the different noise handling strategies is analyzed
by the hypervolume (HV) and the Generalized Spread Indicator (SP) [10] over
the course of generations, where the counting of the generations is done inde-
pendently from the actual number of required fitness reevaluations.

Exemplary visualizations are given in Figs. 3 and 4 for the high noise levels.
The objective function WFG8 is omitted as the results are very similar to WFG6.
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Table 1. Empirical reference points for computing the unary hypervolume indicator

and the per-objective noise levels

Empirical reference point Noise levels

WFG6 (2.6131, 5.47336) σ1,2 ∈ {0.05, 0.1}
WFG8 (2.77644, 5.52929) σ1,2 ∈ {0.05, 0.1}
ELLI1 (2.21839, 2.14453) σ1,2 ∈ {0.1, 1}
RUAM1 (3.89213, 1.629089) σ1 = 0.1661, σ2 = 0.0331

RUAM2 (1, 7.28359) σ1 = 0.13, σ2 = 0.6116

As SP has to be minimized, the negative SP is plotted to be visually in line with
the HV which has to be maximized.

The results of the algorithms without noise handling suggest that both of
them are able to cope with noisy fitness functions to some degree without mod-
ifications. This may be attributed to the population-based approach as well as
to the rank-based selection scheme employed in both algorithms. However, the
performance of the algorithms without noise handling deteriorated quickly for
low signal-to-noise ratios.

In all cases most of the variants of both the (μ + μ)-MO-CMA-ES as well
as the NSGA-II employing the PDU performed better with respect to the final
HV than the variants of the algorithms without noise-handling (No NH). The
same observations can be made for the lower noise levels showing slightly smaller
effects. While the variant without uncertainty measurement (NUT) in some cases
seems to outperform the more sophisticated noise handling approaches IQR and
BBQUT with regard to HV, the analysis of SP shows that both IQR and BBQUT
mostly manage to generate a better spread of solutions in the final front.

In addition, we analyzed the median age of the individuals in the final pop-
ulation. Exemplary results are picked up in Fig. 5. For WFG6, RUAM1 and
RUAM2 the results of the NSGA-II show the same tendencies as for the MO-
CMA-ES, and the WFG8 results are in line with WFG6. It becomes obvious that
the median age of the individuals of both the algorithms without noise handling
as well as the NUT variants is considerably higher than for IQR and BBQUT,
especially for WFG6 and WFG8 with IQR being dominant for the RUAM. Thus,
the approaches No NH and NUT seem to run the risk of generating biased re-
sults with regard to randomly generated solutions which appear to be of high
quality but in fact are not, for example they can be even better than the true
Pareto front. The composition of the actual fronts lasts much longer than for
IQR and BBQUT indicating partial stagnation.

Figure 5 as well lists the median number of nondominated solutions in the
final fronts which decreases with increasing noise level. It is noticeable that the
number of nondominated solutions for all problems but ELLI1 is much lower than
the population size which reveals the increasing complexity of the problems due
to the introduced noise.
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Fig. 3. Evolution of the absolute hypervolume for RUAM1 and RUAM2 over the num-

ber of generations. The upper line in the figures indicates the best results for empiri-

cally determined Pareto-approximations for the non-noisy case. For each of the noise

handling approaches, the average number of fitness function evaluations spent by the

(μ + μ)-MO-CMA-ES (indicated by MO) and the NSGA-II (indicated by NS) are

reported.
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Fig. 4. Evolution of the absolute hypervolume for the fitness functions WFG6 and

ELLI1 over the number of generations. All plots refer to the medians of 50 trials.

For each of the noise handling approaches, the average number of fitness function

evaluations spent by the (μ + μ)-MO-CMA-ES (indicated by MO) and the NSGA-II

(indicated by NS) are given.

The number of non-dominated solutions in the final population is consider-
ably lower than usually observed on standard, non-noisy MOPs. This shows the
importance of the first level sorting criterion – here non-dominating sorting us-
ing different notions of dominance – for the selection process in the presence of
noise and uncertainty.
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Fig. 5. Boxplots of ages of the individuals in the final population. Different noise levels

are given at the bottom of the plot if relevant. The median numbers of nondominated

solutions in the final front are given at the top of each boxplot.

By dynamically distributing fitness function reevaluations, we saved between
7.5% and 9% of a maximum of 750,000 (100 offspring, 500 generations, a max-
imum of 15 evaluations per individual) fitness function evaluations (see Figs. 3
and 4 for the total number of fitness function evaluations spent by the respective
combination of algorithms and noise handling approaches).

4 Conclusions

We presented a generalization of the Pareto-dominance relation for uncertain
environments that is directly applicable within any evolutionary multi-objective
algorithm relying on the well-known indicator-based selection strategy. Two
methods for measuring the uncertainty arising from noisy fitness function values
have been introduced. We empirically investigated the performance of our noise
handling approaches on both real-world optimization problems and artificial fit-
ness functions. Our results suggest that the methods presented here improve
the overall robustness of multi-objective evolutionary algorithms relying on the
indicator-based selection scheme and thus, enhance the algorithms’ performance
in the presence of noise.

Nevertheless, the noise handling framework presented here allows for future
improvements by considering more sophisticated schemes for measuring the un-
certainty. Future work should include an in-depth evaluation on a broad range of
fitness functions and consider different noise distributions. Additionally, we will
study the integration of selection races and PDU. Further, we will consider non-
elitist evolutionary multi-objective algorithms, which may be more appropriate
for noisy problems (e.g., see [15]).
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Abstract. While traditional approaches to machine learning are sensitive to high-
dimensional state and action spaces, this paper demonstrates how an indirectly
encoded neurocontroller for a simulated octopus arm leverages regularities and
domain geometry to capture underlying motion principles and sidestep the super-
ficial trap of dimensionality. In particular, controllers are evolved for arms with
8, 10, 12, 14, and 16 segments in equivalent time. Furthermore, when transferred
without further training, solutions evolved on smaller arms retain the fundamental
motion model because they simply extend the general kinematic concepts discov-
ered at the original size. Thus this work demonstrates that dimensionality can be a
false measure of domain complexity and that indirect encoding makes it possible
to shift the focus to the underlying conceptual challenge.

1 Introduction

Whether tackled through neuroevolution or temporal difference-based approaches, in
reinforcement learning problems, the number of dimensions in the state and action
space is often associated with problem difficulty [6,11,18,19]. Yet the complexity of
problems should not be determined by the dimensionality of such representations, which
are a superficial proxy for the underlying conceptual problem. Instead, the problem
complexity should correlate to the underlying complexity of the principle to be discov-
ered. The argument in this paper is that indirect encoding, which means describing the
solution as a pattern through a compressed representation [1,9,14,16], is the essential
ingredient that will allow reinforcement learning to transcend the superficial aspects of
problem dimensionality.

To make this point, the problem domain in this paper is an octopus arm, which is
approximated as a structure of interconnected muscles that must act together to create a
coordinated behavior. Thus it induces a high-dimensional state space and action space
(i.e. because each muscle in each segment can be articulated independently). In fact, the
high dimensionality of the 10-segment arm provoked previous researchers to dramat-
ically prune the action space by allowing only a small discrete set of pre-coordinated
actions [5].

The octopus arm problem is thus an ideal departure for a study on the ability of in-
direct encoding to transcend such dimensionality. After all, the underlying kinematic
control principle is similar regardless of the precise number of segments, muscles and
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(a) (b) (c) (d) (e) (f)

Fig. 1. Octopus arm actions. While there are theoretically many other combinations of mus-
cle contractions possible, Engel et al. [5] limited their model to these six to make the domain
tractable. Line thickness indicates the strength of the contractive force applied.

sensory inputs, suggesting that an approach that is sensitive to its particular dimension-
ality is missing something fundamental. Thus, to demonstrate this point in this paper,
an indirect encoding called hypercube-based neuroevolution of augmenting topologies
(HyperNEAT) evolves a description of how the weights of a neurocontroller relate to
each other across the domain geometry irrespective of the arm’s precise physical di-
mensionality [3,8,14]. This approach means that the HyperNEAT controller can actu-
ally learn to articulate all the muscles independently without the need to partition the
action space up front. Furthermore, as should be the case in learning such problems,
the indirect encoding learns equivalently across arms with a variable number of seg-
ments. Finally, neurocontrollers trained on arms with eight segments are scaled to a
larger number of segments without further training and still work because they encode
general control principles for the arm.

Thus the major contribution of this work is to demonstrate that indirect encoding is
a potentially critical ingredient in reinforcement learning and control problems if they
are to focus on the true problem complexity rather than the superficial dimensionality
of the state or action space.

2 Background

This section reviews prior work in training multi-segment arms and in indirect encoding
of neural networks.

2.1 Reinforcement Learning for Arm Controllers

An interesting study that provides inspiration for this paper demonstrated the ability
of Gaussian Process Temporal Differencing (GPTD) [4] to learn value functions in a
high-dimensional domain [5]. In it, a control policy is trained for an arm with many
degrees-of-freedom (i.e. the octopus arm [20]). GPTD produced value functions for
motion trajectories that touch targets at unknown locations within 20 trials.

The details of the original octopus arm experiment are interesting because they set
a new standard for high-dimensional control that this paper pushes even further. The
10-segment arm had a state space with 88 dimensions (i.e. position and velocity for
each vertex) that map to the six discrete actions shown in figure 1. Engel et al. [5] chose
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these six actions to reduce the otherwise prohibitively large action space created by so
many muscles.

The next section introduces the indirect encoding in HyperNEAT, which will make
it possible to evolve such high-dimensional controllers without the need to shield the
learner from the true dimensionality of the space.

2.2 Indirect Encoding and HyperNEAT

Neuroevolution, i.e. evolving ANNs, can produce solutions for a broad array of control
tasks [6,15,17,19]. Many such methods are based on direct encodings, which means
each piece of structure in the phenotype is encoded by a single gene, making the
discovery of repeating motifs expensive and improbable. Therefore, indirect encod-
ings [1,9,14,16] have become a growing area of interest in evolutionary computation.

One such indirect encoding designed explicitly for neural networks is the Hypercube-
based NeuroEvolution of Augmenting Topologies (HyperNEAT) approach [14], which
is an indirect extension of the directly-encoded NEAT approach [15,17]. Rather than
expressing link weights as distinct and independent parameters in the genome, Hy-
perNEAT allows them to vary across the phenotype in a regular pattern through an
encoding called a compositional pattern producing network (CPPN) [13].

The idea behind CPPNs is that geometric patterns can be encoded by a composition
of functions that are chosen to represent common regularities. For example, the Gaus-
sian function is symmetric, so when it is composed with any other function alone, the
result is a symmetric pattern. The internal structure of a CPPN is a weighted network,
similar to an ANN, that denotes which functions are composed and in what order, which
means that instead of evolving ANNs as it normally does, NEAT [15,17] can evolve
CPPNs that generate connectivity patterns across an ANN.

Formally, CPPNs are functions of geometry (i.e. locations in space) that output con-
nectivity patterns whose nodes are situated in n dimensions, where n is the number of
dimensions in a Cartesian space. Consider a CPPN that takes four inputs labeled x1,
y1, x2 and y2; this point in four-dimensional space also denotes the connection between
the two-dimensional points (x1, y1) and (x2, y2). The output of the CPPN for that input
thereby represents the weight of that connection (figure 2). By querying every pair of
points in the space, the CPPN can produce an ANN, wherein each queried point is a
neuron position. While CPPNs are themselves networks, the distinction in terminology
between CPPN and ANN is important for explicative purposes because in HyperNEAT,
CPPNs encode ANNs. Because the connection weights are produced as a function of
their endpoints, the final structure is produced with knowledge of the domain geometry,
which is literally depicted geometrically within the constellation of nodes.

As a rule of thumb, nodes are placed in a geometric space called the substrate to re-
flect the geometry of the domain (i.e. the state) [2,8,14]. For example, a visual field can
be laid out in two dimensions such that nodes that receive input from adjacent locations
in the image are literally adjacent in the network geometry. This way, knowledge of the
domain geometry is preserved and exploited by HyperNEAT where regularities (e.g.
adjacency, or symmetry, which the CPPN sees) are invisible to traditional encodings.
This capability is exploited in the octopus arm substrate introduced next.
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x1

y1

x2

y2

CPPN

x1 x2 biasy1 y2

Substrate ANN

connection weight

Fig. 2. Encoding the connectivity pattern. The four-dimensional CPPN encodes the connec-
tivity pattern of the substrate through an evolved network of geometric functions. The substrate
ANN is generated by querying the CPPN for the value of each potential connection from (x1, y1)

to (x2, y2). In this way, CPPNs capture patterns and regularities in domain geometry.

3 Scalable Neurocontroller for an Octopus Arm

The octopus arm domain formalized in this section is particularly challenging because
its state space and action space are both high-dimensional. Although Engel et al. [5]
reduced dimensionally by choosing only six canonical actions, the aim in this paper is
to learn from the full unprocessed action space. Furthermore, unlike any system before,
the learned controller will be asked to scale to even larger arms without further learning.

The simulation domain in this paper, based on Yekutieli et al. [20], models the kine-
matics and dynamics of a two-dimensional muscular hydrostat (which is the mechanism
of the octopus arm [12]) as a chain of quadrilateral polygons with fixed area connected
to a fixed base. The model constructs arms based on length (l), width (w), taper (t),
mass (m), and number of segments (n). At the vertex of each quadrilateral is a point
mass shared by adjacent segments. The dorsal, or upper, and ventral, or lower, edges of
each segment represent longitudinal muscles while the vertical edges between sections
represent transverse muscles. The muscles, modeled as spring-joints, are contracted by
increasing the spring constant and relaxed by reducing the spring constant.

The fixed size and incompressible nature of the arm are the key features that enable
the dynamic motion of the muscular hydrostat. These attributes are modeled by adjust-
ing each segment’s internal pressure: as external forces act to compress a segment, pres-
sure increases; conversely, as forces stretch and expand the segment, internal pressure
decreases. Thus segments change shape to restore the equilibrium between surface ten-
sion and internal pressure. Figure 1 shows the six basic actions utilized in Engel et al. [5]
as examples of the model’s motion effects. However, in this paper, the ANN will have
independent control of all 3n muscles in the arm, creating a high-dimensional action
space.

Because experiments in this paper involve moving towards a perceived object (unlike
Engel et al. [5]), the arm state is defined by sensor inputs that allow the controller to infer
the position of each segment relative to the target. Range sensors along the arm provide
cues about target position. Each sensor at each segment produces 36 radial distance
measurements across the range [−π . . . π] (figure 3a), allowing the target to be seen
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Fig. 3. Target perception and placement. The arm controller perceives the target through range
sensors (a) placed at each segment along the arm; the combined effect is shown (b) with non-
detecting beams removed for clarity. The training targets in this paper (c) are positioned beyond
the reach of the simple actions in figure 1.

by multiple beams simultaneously, especially as the sensor approaches the target or as
sensor resolution is increased. Thus the 36n total beams also create a high-dimensional
input space. Figure 3b illustrates the arm’s view of the target with the non-detecting
beams removed for clarity.

3.1 Substrate Architecture

The octopus arm substrate (figure 4) closely couples sensing to acting. The input layer
accepts sensor data directly and the output layer provides the contractive response for
each muscle. Finally, a hidden layer is provided to support nonlinear operation required
by the gravity and buoyancy effects acting on the arm.

To represent the sensor array described above, the controller must interpret 36
rangefinder inputs per segment. The arm model is composed of segments that have
a necessary order and relationship to the other segments in the arm, i.e. segment 1 con-
nects to segment 2, segment 2 connects to segment 3, etc. Thus, the perception layer is
constructed as a two-dimensional sheet with θ as one axis and the arm’s proximal-distal
(PD) geometry as the other (figure 4, layer A).

To represent the action space, the substrate provides an output for each of the 3n
muscles in the arm. To take advantage of HyperNEAT’s ability to leverage domain ge-
ometry, the proximal-distal axis of the sensor layer is mirrored by the output (contrac-
tive) layer. Furthermore, note in figure 1 how the dorsal and ventral muscles act together
to form coordinated reaching behaviors. This configuration suggests aligning the dorsal,
transverse, and ventral muscles along the proximal-distal axis (figure 4, layer C).

By viewing the substrate architecture as a feedforward network spanning from the
sensor input layer (A), to the hidden layer (B), to the contractive output layer (C),
a CPPN with inputs (x1, y1, x2, y2) and outputs (AB, BC) provides a complete
encoding of the phenotype. Figure 4a illustrates how each of the 7,488 link weights in
an eight-segment controller (left) are set by a single CPPN.
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(a) 8-Segments (b) 16-Segments

Fig. 4. Scalable neurocontroller architecture. The eight-segment substrate (a) can be scaled to
a 16-segment substrate (b) without further training. The substrate at any resolution contains a
two-dimensional input layer A that corresponds to the arm’s sensory input, a two-dimensional
hidden layer B, and a two-dimensional output layer C that controls the musculature. To query
connections between A and B, the proximal-distal (PD) axis is the x1 input and θ is the y1 input.
To query connections between B and C, the x1 input is also PD, and DTV (Dorsal-Transverse-
Ventral) is the y2 input. Because the CPPN encodes kinematic principles, resampling with the
node positions in (b) can produce a similar contractive pattern and arm pose (shown above).

The hope is that the principle that underlies moving a hydrostat is regular across the
segments of the arm and therefore can be captured by the CPPN.

3.2 Scaling

By constructing the substrate to reflect the domain geometry (figure 4a), larger arm
controllers are generated without further evolution by requerying the same CPPN at
higher-resolutions (figure 4b). This approach works because adding segments to the arm
is analogous to increasing the resolution of the hydrostat model. The CPPN provides a
nonlinear interpolation of the behavior policy for each of the 3n muscles.

4 Experiment

The first aim of the experiment is to investigate the ability of indirect encoding to facili-
tate learning to control a hydrostat with dozens of degrees of freedom that are not a pri-
ori restricted or pruned in any way. The second aim is to test the ability of an evolved
CPPN to generate controllers for higher resolution arms without further training. Both
tests can validate that HyperNEAT learns general principles of hydrostat control rather
than a single solution at a particular dimensionality.
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The fitness function is designed to select controller behaviors that approach targets
quickly. The simulator records the distance between the tip of the arm and the target at
each timestep and calculates the average distance over a trial with a single target as:

davg =
tmax∑
t=0

dt

tmax
, (1)

where dt is the distance from the tip of the arm to the target center at time t and tmax

is the maximum number of timesteps in the trial. Individuals in the population are eval-
uated in six trials against six training targets (figure 3c) that are beyond the reach of
the simple movements shown in figure 1. Because the goal is to reduce the average
distance, fitness for a single trial can be expressed as ftrial = d0 − d2

avg , where d0 is
the initial distance and squaring davg emphasizes early innovations that move towards
the target by providing larger rewards for small improvements. Negative fitness values
are set to zero and arms that succeed in touching the target with the tip earn a 25%
bonus.

Because HyperNEAT differs from original NEAT only in its set of activation func-
tions, it uses the same parameters [15]. All experiments were run with a version of the
public domain ANJI package [10] augmented to implement HyperNEAT. The popula-
tion size was 100 and each run lasted 500 generations. The speciation threshold, δt, was
0.2 and the compatibility modifier was 0.3. Available CPPN activation functions were
sigmoid, Gaussian, sine, and linear functions. Recurrent connections within the CPPN
were not enabled. Signed activation was enforced in the CPPN, but the substrate was
unsigned, resulting in a node output range of [−1, 1]. By convention, a connection was
not expressed if the magnitude of its weight is below a minimal threshold of 0.2 [7].
These parameters were found to be robust to moderate variation.

To validate that eight-segment solutions can scale, their evolved CPPNs are requeried
to generate controllers for arms with 10, 12, 14, 16, 18, and 20 segments with no fur-
ther training. It is important to note that these dimensionalities are indeed high because
they impact the necessary dimensionality of the corresponding neurocontroller, (i.e. an
eight-segment controller must set 7,488 connection weights while a 20-segment con-
troller must set 46,800). Also, results cannot be compared directly to controllers trained
by Engel et al. [5] because they seek a single target blindly while those in this paper can
actively touch targets at multiple locations based on sensory inputs.

5 Results

Figure 5 shows training performance over generations when controllers are separately
evolved (i.e. not scaled) for arms with 8, 10, 12, 14, and 16 segments. 20 runs were com-
pleted at each resolution. Remarkably, the number of degrees-of-freedom has no signif-
icant effect on the training curve, suggesting that indirect encoding really is making it
possible to focus on learning the underlying principle independently of dimensionality.

Across all variants, CPPNs with an average of only 10.1 connections (stdev = 2.3)
encode substrates with between 7,488 (8 segments) and 29,952 connections (16 seg-
ments), demonstrating the considerable compression of the indirect encoding.
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Fig. 5. Training at different arm resolutions. HyperNEAT evolves neurocontrollers for arms
with 8, 10, 12, 14 and 16 segments in equivalent time because the CPPN discovers the underlying
kinematic patterns. Measurements are averaged over 20 runs.

Fig. 6. Scaling solutions to larger arm controllers. The distance from the target surface at each
time-step is shown, demonstrating that the ability to move towards the target is preserved as
controllers are scaled to support arms with additional segments. Measurements are averaged over
20 runs.

The main scaling result (figure 6) is that the evolved contractive patterns transfer
well from controllers trained on eight segments to arms with an increasing number of
segments with no additional training. In the figure, the distance from the arm tip to
the target surface is graphed over timesteps, demonstrating that controllers maintain
the ability to approach targets as the physical structure scales; on average, even the
20-segment (worst) case approaches within 0.084 (±0.05 at 95% confidence) units of
the target surface. It is important to note that the qualitative behavior of the arm at all
scales in figure 6 is the same (i.e. they all still approach the target) although the speed
of movement slows gradually and emergent physical characteristics begin to render the
original solution less effective.

The sequence shown in figure 7 demonstrates a typical scaled reaching behavior. The
contractive pattern shown was evolved as an eight-segment arm and applied to a 16-
segment arm with no further training. Videos of evolved arms and scaling are available
at http://eplex.cs.ucf.edu/octopusArm.
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Fig. 7. Typical reaching motion of a scaled hydrostat. This 16-segment controller is scaled di-
rectly from an eight-segment arm solution and illustrates how contracting the transverse muscles
allows the arm to extend beyond its relaxed length.

6 Discussion and Future Work

Finding solutions to problems in control should be about discovering an underlying
principle and not about the number of dimensions in the action or state representa-
tion. Traditional approaches [15,17,18] map state information to effectors as if each is
an independent dimension when in fact they are related. This traditional view of the
problem domain ties complexity to the dimensionality of the physical domain and thus
obfuscates the underlying concept.

The ability to evolve controllers for arms with 8, 10, 12, 14, and 16 segments (which
contain 7,488, 11,700, 16,848, 22,932, and 29,952 connections, respectively) in equiv-
alent time demonstrates that this physical structure’s dimensionality is a false measure
of the domain complexity. By exploring the space of kinematic principles, the indi-
rect encoding approach bypasses the increasing dimensionality of the physical struc-
ture. Similarly, the scaling results demonstrate that solutions evolved specifically for
the eight-segment arm model encompass fundamental kinematic strategies that apply
directly to arms with additional segments.

Thus indirect encoding becomes an important consideration for any problem in which
state or action dimensionality may be misleading, or for learning scalable control poli-
cies. Whether it is a multi-segment arm, a robot hand that can add more fingers, or a
centipede with a variable number of legs, indirect encoding shifts the problem away
from the precise configuration towards the underlying principle, thereby opening up
such problems to machine learning.

7 Conclusions

For many problems, complexity is independent of the number of dimensions. The chal-
lenge is to transcend the distraction of superficial dimensionality by preserving meaning-
ful relationships, e.g. geometric principles like order, orientation, and proximity. The oc-
topus arm model is a good platform to test this idea because it can include an increasing
number of segments. By discovering an underlying kinematic pattern, the HyperNEAT
approach is able to sidestep the increasing dimensionality of the physical structure. Ex-
perimental results demonstrate that this approach yields controllers for arms with 8,
10, 12, 14, and 16 segments in equivalent time and that evolved solutions can provide
controllers for arms with up to twice as many segments without further training. Thus
this paper provides a lesson on the important role of indirect encoding in reinforcement
learning.
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An Island Model for the No-Wait Flow Shop
Scheduling Problem

Istvan Borgulya

University of Pecs, Faculty of Business and Economics, Hungary

Abstract. In this paper we present an evolutionary algorithm (EA) for

the no-wait flow shop scheduling problem. This is a new island model

with special master-slave structure. In all islands runs a hybrid steady-

state algorithm that uses truncation selection, uses only mutation for

the generation of the descendants and it improves the solutions with two

local search procedures. The mutation is based on the new, modified

version of ”the EVL method”, that is a memory based method. The al-

gorithm was tested on benchmark problems; its results are similar to or

better than the results of the particle swarm optimization algorithms.

Keywords: Scheduling, island model, evolutionary algorithm.

1 Introduction

In the no-wait flow shop scheduling problem (NWFSSP), the operation of each
job has to be processed without interruptions between consecutive machines, i.e.,
when necessary, the start of a job on a given machine must be delayed so that
the completion of the operation coincides with the beginning of the operation
on the following machine. Two of the most commonly studied criteria in no-wait
flow shops are flow time and makespan. In this paper our goal is the makespan.

Some typical applications of this problem are encountered in manufacturing
systems, chemical and pharmaceutical processing, metal processing, steel facto-
ries, plastic processing and hot rolling industries (e.g. [4], [7]).

The NWFSSP with more than two machines is NP-hard [8], so exact and
heuristic algorithms have been introduced. For small problems we can use the
branch-and-bound algorithm (e.g. [3]). For larger problems the two most com-
mon heuristic groups are the construction methods and the metaheuristics. The
construction methods build a feasible solution, i.e. a sequence of n jobs, by suc-
cessively completing a (partial) solution according to some rule (e.g. [12], [5], [1]).
The metaheuristics improve the solutions based on the local search paradigm.
We find metaheuristics for the makespan and for the flow time criterions too.
Heuristics for the makespan criterion are e.g. the tabu search (TS) (e.g. [6]), sim-
ulated annealing (SA) (e.g. [1]). The most popular metaheuristics are the EA
versions: genetic algorithm (GA) (e.g. [1]), ant colony optimization (ACO) (e.g.
[14]) various hybrids with SA ([1], [15]) and variable neighborhood search (VNS)
([13]). The novel EA technique, named particle swarm optimization (PSO), has
been proposed too (e.g. [11], ([7]).

R. Schaefer et al. (Eds.): PPSN XI, Part II, LNCS 6239, pp. 280–289, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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We wish to enrich the field of these heuristic methods with a new EA. To
the best of our knowledge, there is no published work addressing the NWFSSP
using island model, so we developed a new island model. With this model:

– we want to improve the results of the heuristics for NWFSSP,
– we want to include a better version of a memory based method, called the

extended virtual loser (EVL) ([2]).

So in our new algorithm:

– we developed a new island model and
– we prepared a new modified version of the EVL method for the NWFSSP.

The paper is organized in the following way: section 2 describes the problem
formulation; section 3 shows the structure of the new island model. Section
4 describes some details of the algorithm: the local search methods used, the
modified EVL method with the mutation operator, and the parameter selection.
Section 5 shows our computational experience with the new model and compares
our model to other heuristics. Section 6 concludes.

2 Problem Formulation

The NWFSSP can be described as follows (based on [11], [7]). Each of n jobs
is to be sequentially processed on machines 1,..., m. The processing time p(i, j)
of job i on machine j is given. At any time, each machine can process at most
one job and each job can be processed on at most one machine. The sequence in
which the jobs are to be processed is the same for each machine. The difference
between the completion time of the last operation of a job and the start time of
its first operation is equal to the sum of the processing times of its operations,
and the completion time of a job on a given machine must be equal to the
starting time of the job on the next machine. The objective is to find a sequence
for the processing of the jobs on the machines that gives the minimum of the
maximum completion time, i.e., makespan (Cmax).

Suppose that the job permutation π={ π1, π2, . . . , πn} represents the sched-
ule of jobs to be processed. Let d(πj−1,πj) be the minimum delay on the first
machine between the start of job πj and πj−1 restricted by the no-wait con-
straint when the job πj is directly processed after the job πj−1. The minimum
delay can be computed from the following expression:

d(πj−1,πj) = p(πj−1, 1) + max

[
0, max

2≤k≤m

{
k∑

h=2

p(πj−1,h) −
k−1∑
h=1

p(πj ,h)

}]

Then the makespan can be defined as

Cmax(π) =
n∑

j=2

d(πj−1,πj) +
m∑

k=1

p(πn, k)
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3 The Island Model for the NWFSSP

3.1 The Structure of the Island Model

Our island model uses a master-slave structure in a way similar to [9], but it
organizes the migration differently than in [9]. Our model uses a centralized
scheme in which slave processors execute the basic EA on their population and
periodically send their best partial results to a master process. The master pro-
cess stores the partial results in a common migration set (MS ), and chooses
random individuals from the MS one after the other for every slave and sends
them to the slaves.

Our model can work with np parallel processors (e.g. 2, 4, 8 or 16), and the
basic EAs run on every parallel processor. The parallel process will be controlled
with the frequ and mignumb parameters. Let EPi be the evolutionary process on
the ith slave processor with Pi population. frequ determines the communication
frequency: after frequ iterations every slave sends migrating individuals into the
MS. Every EPi sends number mignumb individuals to the MS and they select the
best individuals for migration. The master process selects randomly mignumb
individuals from MS for every EPi, and each population Pi get these individuals
from MS. The master process selects the individuals for Pi randomly excluding
the earlier migrant individuals arrived from Pi. Every EPi replaces its worst
individuals in Piwith the incoming ones.

With this island model we want to examine the performance of the island
model’s structure and migration, and to get good results for the NWFSSP. So
we simulated the island model on one processor and did not examine the parallel
environment characteristics in a network. As cost we computed only the run time
that includes the communication time too. Naturally we computed for all parallel
processes only one process time that belonged to the longest process.

3.2 The Basic EA

The same basic EA runs on every processor. Let us denote this basic EA by
NWFS (No-wait flow shop). It is a hybrid EA that improves the new solutions
using local search procedures. It uses a 2-stage algorithm structure where both
stages are steady-state hybrid EAs. The first stage is a quick ”preparatory” stage
which is designated to improve the quality of the initial population.

In the second stage in every generation the algorithm selects a parent by
truncation selection and its copy will be the descendant. It uses a mutation
based on the EVL method and uses two local search procedures to improve the
descendant. As additional operation, the algorithm updates the ECM matrix,
the memory of the EVL method and to speed up the convergence it uses the
Delete, Filter and Restart procedures.

Let us see first the main steps of NWFS:

Procedure NWFS(t, itt, kn, itend, ddp)
Initial population. Initial values of ECM. it=0
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/* First stage
Do itt times

it = it + 1. A random descendant. Local search. Reinsertion.
In every knth generation: Update of ECM. Filter, Delete

od.
/* Second stage
Repeat

it = it + 1. Truncation selection, mutation, local search. Reinsertion.
In every knth generation: Update of ECM. Filter, Delete, Restart.

until it > itend
end

The parameters of the algorithm:
t - the size of the population,
itt - the number of the generations in the first stage.
kn - the populations are checked in every knth generation.
itend - the maximal number of generations.
ddp - parameter of the Delete procedure.

The operations and the characteristics are the following:
Individuals. An individual is a permutation of the job numbers.
Initial population. The first individual is generated by the NEH heuristic [10],

the other individuals of the P population are generated from the first individual
with some random swaps.

Fitness function. The fitness function is the objective function Cmax.
Selection operator. In the first stage the descendants are randomly generated

from the first individual with some random swaps. In the second stage the al-
gorithm selects a parent by truncation selection where only the best individuals
are selected for parents (from the 0.1 proportion of the population).

Mutation operator. The algorithm uses randomly maximum 10 swaps based
on the EVL method (details in section 4.).

Local search. The algorithm uses a sequence of two different local search pro-
cedures one after the other. The neighborhood structures used are: insertion and
swap (details in section 4.).

Filter. This procedure filters out and deletes the close solutions (based on the
Hamming distance, e.g. dH(x,x′) < 2).

Restart. If the fittest solution didn’t change in the last (e.g. 400) generations,
it deletes the weakest solutions (e.g. 90% of the population).

Delete. This deletes the weakest solutions (ddp% of the population).
Reinsertion. In the first stage the descendant may replace the most similar

one of the former solutions (based on the Hamming distance between the in-
dividuals). In the second stage the algorithm selects between the parent and
the descendant. (After Restart, Filter or Delete the new descendants only are
inserted to the population until the population size is completed).

Stopping criterion. The algorithm is terminated if a pre-determined number
of iterations had been performed.
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4 Details of the Implementation

In the above description of the algorithm, some heuristic solutions, shortcuts in
the local search procedures and the selection of the parameters were not detailed.
Let us see them now one-by-one.

4.1 Local Search

In our NWFS algorithm (and the island model, too) one of the most important
determinant of the speed is the local search. We have to decide some details to
reach a good local search procedure. Researchers ask several questions at a given
problem to solve these details e.g.:

– What type of neighborhood structures should be used?
– How can we use different types of neighborhood structures together?
– How often should local search be applied?
– How long should local search be run?

We answered the questions based on the run statistics. We chose 10 difficult test
problems from the benchmark set (the Recxx problem set from the OR-library)
and tried various neighborhood structures, various local search procedures, and
various run parameters in the local search procedures to be applied. We com-
puted the run statistics of the various program versions: the average solution
values, the average best solution values and the average run times. Based on the
best statistics we concluded the following:

– It is appropriate to use only the swap and insert neighborhood structures,
– We can organize two separate 2-opt local search procedures: one with swap

and one with insert structures. We can use the procedures one after the
other.

– It is appropriate if we use the local search procedure in every knth genera-
tion and we apply the local searches for the best descendant of the last kn
generations.

– To reduce the run time of the local search procedures we take only the best
possible move into account for every individual. So we can use the speed-up
methods of [11] to calculate makespan for insert and swap operators. Another
possibility to reduce the run time is if we do not repeat the examination of
the neighborhood structures if a better solution was found. Based on our
examination it is appropriate by larger job numbers (more than 50 jobs).

4.2 The EVL and the Mutation Operator

The principle of the EVL is the following [2]. Let us consider a generic EA, and
suppose that each variable of the individual can have k discrete values. Let us
notice that ECM (explicit collective memory) is an l× k matrix that stores and
learns the relative frequencies of the different values of the variables. This matrix
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is updated through the evolution procedure using a few of the worst performing
individuals.

Let ECMgen
ij be the collected relative frequency of the ith values on the j th

position (variable) until the genth generation. We can update the elements of
the ECM matrix

ECMgen+1
ij = (1 − α)ECMgen

ij + αΔECMij (e.g.α = 0.2)

where ΔECMij is the relative frequency of the ith value on the position j based
on the worse individuals of the genth generation and α denotes some relaxation
factor. For the probability of mutating the j th variable in individual X we can
use the formula

prj = 1 −
∣∣∣∣∣

ECMgen
Xjj∑n

i=1 ECMgen
ij

− aj

∣∣∣∣∣
where B is the best individuals and if Xj = Bj then aj = 1 else aj = 0.

Mutation for NWFS
The generated ECM is based on the worst individuals of the population. The
ECM for NWFS is n x n matrix. Every job has a row and every position of the
permutation has a column in the matrix.

The mutation in NWFS is based on the EVL method. Let X be a descen-
dant. The mutation operator first chooses a random j position of X (in the
permutation). Next it chooses another job for this position. It chooses with prj

probability a value; it searches the position of the value and swaps the values
of the positions. (The algorithm uses a random number of swaps, maximum 10
swaps in all descendants.) In every knth generation the ECM is updated by
using the weakest individuals. In the updating procedure we use 20% of the
population.

We observed that the use of the ECM matrix is insufficiently efficient after
200 - 300 generations, the convergence is slow. So we applied two versions of the
ECM: a long term memory (ECML) and a short term memory (ECMS). The
ECML is updated only during the first 2000 generations and later it does not
change. The ECMS is updated continually but after every 100-150 generations
we delete the value of the ECMS, and we begin the update of ECMS with empty
matrix.

Using the two memories we have to compute the prj probability in another
way, too. Now we can compute a probability based on the ECML (let be plj) and
based on the ECMS (let be psj). As new probability we use the prj = plj ∗ psj .
Using the new probability (and memories) the quality of the results is better to
compare with the earlier version.

4.3 Parameter Selection

To achieve a quick and accurate solution we need appropriate parameter values.
Studying some of the more complex problems of the benchmark set we analyzed
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the process of the convergence to find how the parameter values were affecting
the convergence, the finding of the global optimum and the speed of the calcula-
tion. So we analyzed the population size (t parameter), the frequency of checks
(kn parameter), the generation in the first stage (itt parameter) and the ddp -
parameter of the Delete procedure. Summarizing the results of the analysis, we
chose the following parameter settings: the used parameters were the following:
t = 60, itt = 200, kn = 20, ddp = 10%. The maximum number of the generations
was between 3000 and 7000 depending on the problem. We used these parame-
ters in the island model too and searched appropriate values for the two model
parameters. We found that using the frequ = kn and mignumb = 6 parameter
values we got good results.

5 Experimental Results

Test problems
For the test we chose problems that had already been published in different pa-
pers and so we could compare the published results with the results of ours. So we
tested the island model with 23 benchmark problems from the OR-Library. Prob-
lem dimensions vary from 20 to 100 jobs and 5 to 20 machines. All test instances
can be downloaded from the OR-Library (http://mscmga.ms.ic.ac.uk). Every
test problem was run ten times. The model was implemented in Visual Basic
and run on Intel Core Duo CPU 2.2 GHz with 2 GB RAM under Windows Vista
Business (source code: http://netstorage.ktk.pte.hu/˜borgulya/islandm.zip).

Computational experiences with the island model
We applied the island model with different numbers of islands. We used 1, 2,
4, 8 and 16 islands and for every version we computed the average results. The
models with 2 or more islands were substantially faster and more accurate than
the single island model. Similarly the algorithm with two memories version of
the EVL technique was more accurate than the one memory version.

We found the results of best quality with the 4-island and 16-island versions.
Table 1 shows their results. In the table we give the problem name (name),
the size of the problem (size), the makespan of the RAJ algorithm [12] (RAJ ),
the average relative percentage deviation of the solution (makespan) from the
RAJ (ARPD) in four cases: by the best found solution (best), by the worst
found solution (worst), by the average found solution (aver.), by the standard
deviation of the solutions (SD); and the average run time to the best solutions
(time) (CPU time in seconds). The bottom row (average) shows average values.

We appreciated the result based on the quality of the solutions and on the
run time of the algorithm. We found that the quality of the solutions is good as
the comparison shows and because the average run time of our method is less
than 100 seconds we can say that our run time is acceptable.

Comparative results
We chose several heuristic methods to compare the results of our island model
with. We did not find any other parallel model for the NWFS problem, only
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heuristics without parallel mechanism. We found the best published results with
a TS version and with two PSO versions. So we chose the TS from [6] (TSG),
the hybrid PSO from [7] (HPSO) and the discrete PSO version with VNS from
[11] (DPSO).

Table 1. The results of the island model

4-island 16-island
name RAJ ARPD time ARPD time

best worst aver. SD best worst aver. SD
rec01 1590 -4.03 -4.03 -4.03 0.0 0.9 -4.03 -4.03 -4.03 0.0 0.3
rec03 1457 -6.59 -6.59 -6.59 0.0 0.5 -6.59 -6.59 -6.59 0.0 0.2
rec05 1637 -7.70 -7.70 -7.70 0.0 3.1 -7.70 -7.70 -7.70 0.0 1.2
rec07 2119 -3.63 -3.63 -3.63 0.0 5.2 -3.63 -3.63 -3.63 0.0 0.8
rec09 2141 -4.62 -4.62 -4.62 0.0 1.0 -4.62 -4.62 -4.62 0.0 0.7
rec011 1946 -3.34 -3.34 -3.34 0.0 1.4 -3.34 -3.34 -3.34 0.0 0.5
rec013 2709 -6.05 -6.05 -6.05 0.0 11.0 -6.05 -6.05 -6.05 0.0 2.1
rec015 2691 -6.02 -6.02 -6.02 0.0 1.8 -6.02 -6.02 -6.02 0.0 1.1
rec017 2740 -5.58 -5.58 -5.58 0.0 2.2 -5.58 -5.58 -5.58 0.0 1.5
rec019 3157 -9.72 -9.72 -9.72 0.0 4.1 -9.72 -9.72 -9.72 0.0 8.7
rec021 3015 -6.43 -6.43 -6.43 0.0 18.7 -6.43 -6.43 -6.43 0.0 3.8
rec023 3030 -10.89 -10.89 -10.89 0.0 10.89 -10.89 -10.89 -10.89 0.0 8.7
rec025 3835 -6.31 -6.31 -6.31 0.0 16.1 -6.31 -6.21 -6.28 0.0 11.8
rec027 3655 -6.13 -6.05 -6.06 0.0 31.1 -6.13 -6.13 -6.13 0.0 16.8
rec029 3583 -8.15 -7.87 -8.07 0.2 31.8 -8.15 -8.15 -8.15 0.0 7.2
rec031 4631 -6.97 -6.89 -6.93 0.0 44.2 -6.78 -6.56 -6.62 0.1 21.3
rec033 4770 -7.09 -6.94 -7.01 0.1 93.5 -7.25 -6.71 -6.97 0.3 32.6
rec035 4718 -6.80 -6.42 -6.61 0.2 38.0 -6.80 -6.40 -6.65 0.0 62.7
rec037 8929 -9.95 -9.25 -9.71 0.3 421.0 -9.95 -9.25 -9.53 0.4 314.0
rec039 9158 -7.61 -7.23 -7.48 0.2 655.0 -7.64 -6.98 -7.46 0.3 335.0
rec041 9344 -9.25 -9.16 -9.20 0.1 541.0 -9.27 -8.87 -8.95 0.2 398.8
hel1 780 -9.23 -8.33 -8.89 0.5 240.0 -9.10 -8.72 -8.83 0.2 151.0
hel2 189 -5.29 -5.29 -5.29 0.0 1.0 -5.29 -5.29 -5.29 0.0 0.5
Average -6.84 -6.70 -6.79 0.1 94.5 -6.84 -6.69 -6.76 0.1 60.0

The comparison was encumbered by the use of various programming lan-
guages, operating systems and computers. Only one appropriate aspect of com-
parison could be found, namely the average relative percentage deviation of the
solution from the RAJ, so our table of comparison (table 2) is based on the re-
sults of comparable accuracies. (The TSG was run on Pentium 1GHz, the HPSO
was run on Pentium IV 2.2 GHz and the DPSO was run on Pentium IV 3.0 GHz
processors.)

Table 2 shows the comparative results. We give in the table the average ARPD
values of the best and the average solution for every problem. Some data are
missing: the average solutions of TSG and the results of hel1, hel2 by HPSO.
Analyzing the results we concluded that the average results of our models are the
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best among these methods and concerning the best solutions our models found
in four cases new best solutions (they are highlighted with bold characters in
table 2). Comparing the best solutions of our model and the DPSO we gat in
80% of the test problems the same solutions (probably they are the optimal
solutions), in 3 cases the DPSO has a little bit better and in 4 cases our model
has better solutions.

Table 2. ARPD values of different methods

name TSG 4-island 16-island HPSO DPSO
best best aver. best aver. best aver. best aver.

rec01 -3.96 -4.03 -4.03 -4.03 -4.03 -3.77 -3.39 -4.03 -4.03
rec03 -6.59 -6.59 -6.59 -6.59 -6.59 -6.59 -6.59 -6.59 -6.59
rec05 -7.64 -7.70 -7.70 -7.70 -7.70 -7.39 -7.15 -7.70 -7.68
rec07 -3.63 -3.63 -3.63 -3.63 -3.63 -3.63 -3.63 -3.63 -3.63
rec09 -4.58 -4.62 -4.62 -4.62 -4.62 -4.58 -4.26 -4.62 -4.62
rec011 -3.34 -3.34 -3.34 -3.34 -3.34 -3.34 -2.30 -3.34 -3.34
rec013 -6.05 -6.05 -6.05 -6.05 -6.05 -6.05 -5.47 -6.05 -6.05
rec015 -6.02 -6.02 -6.02 -6.02 -6.02 -6.02 -5.69 -6.02 -6.02
rec017 -5.58 -5.58 -5.58 -5.58 -5.58 -5.58 -5.42 -5.58 -5.58
rec019 -9.25 -9.72 -9.72 -9.72 -9.72 -9.15 -8.50 -9.72 -9.55
rec021 -6.30 -6.43 -6.43 -6.43 -6.43 -5.70 -5.33 -6.43 -6.33
rec023 -10.73 -10.89 -10.89 -10.89 -10.89 -10.80 -9.72 -10.89 -10.85
rec025 -6.31 -6.31 -6.31 -6.31 -6.28 -5.71 -5.17 -6.31 -6.26
rec027 -6.10 -6.13 -6.06 -6.13 -6.13 -6.13 -5.04 -6.13 -5.89
rec029 -8.28 -8.15 -8.07 -8.15 -8.15 -7.81 -6.93 -8.15 -8.07
rec031 -6.13 -6.97 -6.93 -6.78 -6.62 -5.92 -5.20 -6.89 -6.60
rec033 -6.31 -7.09 -7.01 -7.25 -6.97 -5.51 -4.08 -7.09 -6.68
rec035 -6.17 -6.80 -6.61 -6.80 -6.65 -6.02 -5.13 -6.72 -6.53
rec037 -9.49 -9.95 -9.71 -9.95 -9.53 -8.89 -8.20 -10.56 -10.06
rec039 -6.99 -7.61 -7.48 -7.64 -7.46 -6.79 -5.64 -7.56 -7.32
rec041 -8.57 -9.25 -9.20 -9.27 -8.95 -7.94 -6.77 -9.28 -9.07
hel1 -8.21 -9.23 -8.89 -9.10 -8.93 - - -9.36 -9.17
hel2 -5.29 -5.29 -5.29 -5.29 -5.29 - - -5.29 -5.29
Average -6.59 -6.84 -6.79 -6.84 -6.76 -6.35 -5.65 -6.87 -6.75

6 Summary

In this paper, we present a new island model for the no-wait flow shop problem.
The algorithm uses a special master-slave structure. The basic EA in the islands
is a hybrid method; it uses a memory based technique for the mutation, the ex-
tended virtual loser (called EVL) with two special memories. The paper shows
that our algorithm without any sophisticated selection, recombination and mu-
tation operators can solve the no-wait flow shop problem in a simple way. The
results of our algorithm have good quality and the run time of our algorithm is



An Island Model for the No-Wait Flow Shop Scheduling Problem 289

acceptable. This new heuristic gets better average result than the earlier heuris-
tics for NWFSSP - with the help of the island-model and the EVL with two
memories.

Future efforts can focus on improving the results and the speed of the algo-
rithm with the help of speed up techniques similar to ones in [11].

Acknowledgments. The Hungarian Research Foundation OTKA K 68137 sup-
ported the study.
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Abstract. This paper is concerned with a fixed-size population of autonomous
agents facing unknown, possibly changing, environments. The motivation is to
design an embodied evolutionary algorithm that can cope with the implicit fitness
function hidden in the environment so as to provide adaptation in the long run at
the level of the population. The proposed algorithm, termed mEDEA, is shown
to be both efficient in unknown environment and robust with regards to abrupt,
unpredicted, and possibly lethal changes in the environment.

1 Introduction

In this paper, we are interested in a fixed-size population of autonomous physical agents
using local communication (e.g. autonomous robots), facing unknown and/or dynamic
environments. This class of problems typically arises when the environment remains
unknown to the human designer until the population of agents is actually made opera-
tional in the real situation [4], or whenever the environment is known to change during
operation, without any indication on when and how these changes will impact survival
strategies.

The challenge is to design a distributed online optimization algorithm targeting agent
self-adaptation in the long term, that is being able to successfully manage an implicit
pressure resulting from environmental particularities and algorithmic constraint with
regards to the optimization process. Embodied Evolution (EE), as proposed initially
in [5], addresses part of this question as it focuses on algorithms for evolutionary opti-
mization of agent behaviors in an on-line, possibly decentralized manner. On the other
hand, EE requires an objective function designed from the supervisor, which is unavail-
able by definition in the problem setting addressed here.

While concepts and methods from EE may be relevant, we can only assume that
maximizing the integrity of the agent population as well as maintaining a communica-
tion network for exchanging genome are the basic requirements in the present context.
To this end, we propose a distributed algorithm for environment-driven self-adaptation
based on evolutionary operators that takes into account selection pressure from the en-
vironment. The basic assumption behind this algorithm is to consider the strategies as
the atomic elements and the population of agents as a distributed resource onto which
strategies compete with one another. This approach is better illustrated using the Selfish
Gene metaphor [3]: one specific strategy (or set of parameters, or genome) is ”suc-
cessful” if it manages to spread over the population, which implicitly requires to both
minimize risk for its ”vehicles” (ie. the autonomous agents) and maximizing the number
of mating opportunities, though the two may be contradictory.

R. Schaefer et al. (Eds.): PPSN XI, Part II, LNCS 6239, pp. 290–299, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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The general motivation behind the work presented here is to study and provide gen-
eral evolutionary adaptation algorithms that can utlimately be implemented on real
robotic hardware. To this end, the main contribution of this paper is to introduce a new
and simple distributed evolutionary adaptation algorithm for use in population of au-
tonomous agents. While it is yet to be applied in a real robotic setup, this paper focuses
on an indepth experimental analysis of the robustness of the algorithm with regards
to unknown, and changing, environments, under realistic constraints (fixed number of
agents, limited sensors and actuators, etc.).

2 Environment-Driven Distributed Evolutionary Adaptation

As stated in the introduction, our objective is to design a distributed online evolution-
ary algorithm for a fixed population of autonomous physical agents (e.g. autonomous
robots), whenever the human engineer fails to provide a proper description of an objec-
tive function. As a consequence, the key issue behind Environment-driven Distributed
Evolutionary Adaptation (EDEA) relies in the implicit nature of the fitness function.
However, this implicit fitness may be seen as the result of two possibly conflicting mo-
tivations:

– extrinsic motivation: agent must cope with environmental constraints in order to
maximize survival, which results solely from the interaction between the agent and
the environment around (possibly including other agents as well);

– intrinsic motivation: set of parameters (ie. ”genomes”) must spread across the
population to survive, which is imposed by the algorithmic nature of the evolution-
ary process. Therefore, genomes are naturally biased towards producing efficient
mating behaviors as the larger the number of agents met, the greater the opportu-
nity to survive.

The level of correlation between these two motivations does impact problem complex-
ity to a significant amount: high correlation implies that the two motivations may be
treated as one while low correlation implies conflicting objectives. An efficient EDEA
algorithm should indeed address this trade-off between extrinsic and intrinsic motiva-
tions as the ideal optimal genome should reach the point of equilibrium where genome
spread is maximum (e.g. looking for mating opportunities) with regards to survival ef-
ficiency (e.g. ensuring energetic autonomy).

These assumptions have also been extensively studied in the field of open-ended
artificial evolution, with an emphasis on computational model of evolutionary dynam-
ics [1], including a particular focus on the effect of the environment over the evolu-
tionary adaptation process [6]. However, their application within Embodied Evolution
is still an open issue as there is a major difference concerning the working hypothesis
as EE is concerned with a fixed number of physically grounded agents that are usually
ment to target real world environment (e.g. obstacles, energy constraints, etc.).

2.1 MEDEA: A Minimal EDEA Algorithm

Based on these considerations, we introduce the MEDEA algorithm (”minimal EDEA”),
described in table 1. This algorithm describes how evolution is handled on a local basis
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Algorithm 1. The MEDEA algorithm
genome.randomInitialize()
while forever do

if genome.notEmpty() then
agent.load(genome)

end if
for iteration = 0 to lifetime do

if agent.energy > 0 and genome.notEmpty() then
agent.move()
broadcast(genome)

end if
end for
genome.empty()
if genomeList.size > 0 then

genome = applyVariation(selectrandom(genomeList))
end if
genomeList.empty()

end while

and is copied as is within all agents in the population. This algorithm works along with a
communication routine, which purpose is to receive incoming genomes and store these
in the Imported Genome List for later use.

At a given moment, a given agent is driven by a control architecture which parame-
ters are extracted from an ”active” genome, which remains unchanged for a generation.
This genome is continuously broadcasted to all agents within (a limited) communica-
tion range. This algorithm actually implements several simple, but crucial, features, that
can be interpreted from the viewpoint of a traditional evolutionary algorithm structure:

Selection operator: the selection operator is limited to simple random sampling among
the list of imported genomes, ie. no selection pressure on a local individual basis. How-
ever, cumulated local random selection ultimately favor the most widespread genomes
on a global population basis as such genomes have greater probability to be randomly
picked on average. In fact, the larger the population and mating opportunities, the more
accurate the selection pressure at the level of the population.

Variation operator: the variation operator is assumed to be rather conservative to en-
sure a continuity during the course of evolution. Generating altered copies of a genome
only make sense if there is some continuity in the genome lineage: if no variation is
performed, the algorithm shall simply converge on average towards the best existing
genome initially in the population. In the following, we assume a gaussian random mu-
tation operator, inspired from Evolution Strategies [2], which conservative behavior can
be easily tuned through a σ parameter.

Replacement operator: lastly, replacement of the current active genome to control
a given agent is performed by (1) local deletion of the active genome at the end of
one generation and (2) randomly selecting a new active genome among the imported
genome list (cf. selection operator). On a population level, this implies that surviving
genomes are likely to be correlated with efficient mating strategies as a given genome
may only survive through (altered) copies of itself in the long run.



Environment-Driven EE in a Population of Autonomous Agents 293

The positive or negative impact of environmental variability on genome performance
is smoothed by the very definition of the variation operator as newly created genomes
are always more or less closely related to their parent. As a consequence, each genome
results from a large number of parallel evaluations, both on the spatial scale as closely
related copies sharing the same ancester may evaluated in a population, and on the
temporal scale, as one genome is also strongly related to its ancestors. Hence, a sin-
gle genome may get lucky once in a while, but it’s highly unlikely that a ”family” of
closely related genomes manage to survive in the population if there are more efficient
competitors.

3 Experimental Setting

This section provides a description of the experimental setting used hereafter as well
as implementation details. The motivation is here to design a setting such that it is
possible to address several issues regarding evaluation and validation of the proposed
algorithm. In particular, robustness of MEDEA with regards to environmental pressure
and to sudden environmental changes shall be studied.

3.1 The Problem: Surviving in a Dynamic Unknown Environment

Figure 1 shows the environment used for the experiment: a 2D arena with obstacles,
possibly containing food items. The figure also illustrates 100 autonomous mobile
agents loosely inspired from the ePuck mobile robot specifications. This environment
is used to define two different experimental setups, described hereafter:

Fig. 1. Snapshot from the simulator with 100 agents. Yellow: food items. Red: agents, modeled
after an e-puck robot. Blue: range of proximity sensors (communication range is half this range).

1. the ”free-ride” setup
– Description: a population of autonomous mobile agents is immersed within an

environment with few obstacles. As a consequence, an agent dies only if it was
not able to mate with at least one other agent - ie. the current genome is lost for
sure as it does not get a chance to survive within any other agents.

– Motivation: this setup makes it possible to evaluate the mechanisms of the
MEDEA algorithm as environmental pressure should be limited.
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2. the ”energy” setup
– Description: A set of energy resources (”food items”) is spread all over the en-

vironment, which can be harvested by the agents. Agents are endowed with an
energy level, which depends on harvested food items and power consumption.
If the energy level reaches 0, agent dies and genome information is lost. More-
over, harvested food items only ”grow” back after a given number of iterations.

– Motivation: In this setup, genomes also compete for agent resources but have
to deal with environmental pressure as maximizing mating encounters may not
be fully compatible with energy self-sustainability.

The full experimental setup considers starting with the ”free-ride” setup, and then sud-
denly switching to the ”energy” setup after a pre-defined fixed number of generations.
In the meantime, agents are of course unaware of such a change in the environment and
keep on running the same unchanged MEDEA algorithm.

3.2 Representation / Encoding the Problem

Specifications for the autonomous agents are inspired from traditional robotic setup,
with 8 proximity sensors dispatched all around the agent body and 2 motor outputs
(translational and rotational speeds). Moreover, three additional sensory inputs are con-
sidered: the angle and direction towards the nearest food item and the current energy
level (which is set to a fixed value in the ”free-ride” setup). Note that these additional
sensor values are useless in the first setup, and may even be considered as distractors.
Each agent is controlled by a multiple layer perceptron (MLP) with 5 hidden neurons,
which means a total of 72 weights1.

The variation operator is a gaussian mutation with one σ parameter: a small (resp.
large) σ tends to produce similar (resp. different) offsprings. This is indeed a well
known scheme from Evolution Strategy where continuous values are solely mutated
using a parameterized gaussian mutation, where the σ parameter may be either fixed,
updated according to pre-defined heuristics or evolved as part of the genome. In the
scope of this work, we rely on self-adaptive mutation, where σ is part of the genome [2]
(ie. the full genome contains 73 real values).

The current implementation of the σ update rule is achieved by introducing α, a σ
update value, which is used to either decrease (σnew = σold ∗ (1 − α)) or increase
(σnew = σold ∗ (1 + α)) the value of σ whenever a genome is transmitted. The idea
is that whenever an agent broadcast its own genome, probabilities of transmitting an
increased or decreased σ values are equivalent. In the following, α is a predefined value
set prior to the experiment so that it is possible to switch from the larger σ value to the
smaller in a minimum of approx. 20 iterations.

3.3 Experimental Settings

The whole experiment lasts for 150 generations, switching from the ”free-ride” setup
to the ”energy” setup at generation 75. During the course of evolution, some agents

1 11 input neurons ; 5 hidden neurons ; 2 output neurons ; 1 bias neuron. The bias neuron value
is fixed to 1.0 and projects onto all hidden and output neurons.
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may come to a halt either because they did not meet any other agents, thus failing to
import a new genome for use in the next generation, or because they ran out of energy
during the ”energy” setup (each agent can store a maximum of 400 energy units and
consumes 1 unit/step, one generation lasts 400 steps). In the ”free-ride” setup, the agents
remain still (or ”inactive”, ie. without genome), waiting for new genomes imported
from ”active” agents that eventually come into contact. In the ”energy” setup though,
agents requires an external ”human” intervention for refilling energy. Revived agents
remains inactive, but are refilled with enough energy to wait until the end of the current
generation, listening for new imported genome that may be used for the next generation.
While the reviving procedure makes it possible to avoid progressive extinction in the
second setup, extinction is nevertheless possible whenever all agents in the population
fail to meet any other agents during one generation, whatever the cause (bad exploratory
or harvesting strategies). Also, monitoring the number of active agents in a population
provides a reliable indicator of the performance of the algorithm as external intervention
may be viewed as one important cost to minimize (e.g. minimizing human intervention
in a robotic setup). Detailed parameters used for the experiment presented in the next
section are given below.

Parameter Value
arena width and length 1024 ∗ 530 inches

”free-ride” setup duration 75 generations
”energy” setup duration 75 generations

lifetime (ie. generation duration) 400 steps per generation
population size 100 agents

proximity sensor range 64 inches
radio broadcast signal 32 inches

agent rotational velocity 30deg/step
agent translational velocity 2 inches/step

genome length 79 real values (78 MLP weights + σ)
variation operator gaussian mutation with σ parameter
σminV alue 0.01
σmaxV alue 0.5

σinitialV alue 0.1
α (ie. σ update parameter) 0.35

”energy” setup only:
food items 2000

food item diameter 10 inches
food item regrow delay btw 400 and 4000 steps (see text)
energy per food item 100 energy units

agent energy consumption 1 energy unit per step
agent maximum energy level 400 energy units

agent initial energy level 400 energy units

In order to provide a challenging environment, the ”energy” setup is designed so that
the number of food items in the environment depends on the actual number of active
agents. Indeed, a food item grows back whenever harvested, but only after some delay.
If the number of active agents is less than half the population size, then delayregrow

is set to 400 steps. However, if the number of active agents is between 50 and 100,
then the delay linearly increases from 400 steps (fast regrowing) to 4000 steps (slow
regrowing, aggressive environment). In the particular setup described here, switching
from a possibly efficient population of 100 agents from the ”free-ride” setup to the
”energy” setup will have a possibly disastrous impact as the number of agents at the
beginning of the second setup implies longer regrow delays.

At this point, it is important to note that the motivation behind this experimental setup
is both to stress the population for further analysis as well as providing a flexible and
challenging experimental settings that could be re-use to evaluate further version and
variation over the algorithm presented here. To this end, the source code and parameters
for all experiments presented in the following is available on-line in the Evolutionary
Robotics Database2. On a practical viewpoint, one experiment takes approx. 15 minutes

2 Evolutionary Robotics Database: http://www.isir.fr/evorob_db/

http://www.isir.fr/evorob_db/
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to be performed using one core of a 2.4GHz Intel Core 2 Duo computer. The home-
brew agent simulator is programmed in C++ and features basic robotic-inspired agent
dynamics with collision.

4 Results and Analysis

The lack of explicit objective function makes it difficult to compare performance during
the course of evolution. However, the number of active agents and the average number
of imported genomes per generation give a good hint on how the algorithm performs:
it can be safely assumed that ”efficient” genomes lead to few deaths and many mating
opportunities. Moreover, the number of food items harvested gives some indication in
the ”energy” setup. The four graphs in figure 2 give an a synthetic view of the results
over 100 independent runs obtained with MEDEA on the experimental scenario de-
scribed in the previous section. These graphs compile the average values of selected
parameters, or ”indicators”, over generations: number of active agents, average num-
ber of imported genomes per agent, average energy balance per agent, and average σ
mutation parameter values.

In both setups, all indicators rise to reach stable average values and some conclusions
can be drawn: firstly, both setups show an increase in both mating opportunities (number
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Fig. 2. Experimental results - the experiment starts with the ”free-ride” setup from generation 0
to generation 75, then it switches to the ”energy” setup until generation 150
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of imported genomes) and survival rate (number of active agents). Secondly, switching
setups initially leads to a drop for both indicators, followed by a quick recovery through
evolutionary adaptation. This interpretation is reinforced by the increasing value of the
energy balance which is a key element for the second setup. A notable remark is that
the energy balance stays around zero, which is sufficient to guarantee agent survival.
This is not a surprise as over-maximizing harvesting may imply a cost with regards to
looking for mating partners. On the other hand, the gaussian mutation parameter is not
really influenced by the change of environmental setups (except from a slight increase
in maximum values). While the results may vary among runs, with a great difference
between minimal and maximal values for each indicator, values between the upper and
lower quartiles are remarkably close given the noise inherent to this kind of experiment.
Indeed, complete extinctions were even observed after switching to the ”energy” setup
in three of the 100 runs (results not shown).
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Fig. 3. Genomes battles on both setups (left: free-ride setup ; right: energy setup). Average success
scores for each generation, both histograms are the results of 1000+ battles. See text for details.

However, we must be very cautious with the interpretation of these results. For ex-
ample, the quality of the equilibrium between maximizing mating opportunity and cop-
ing with environmental constraints (ie. avoiding walls, avoiding collisions with other
agents, harvesting) is difficult to estimate as such equilibrium may (and appears to)
imply sub-optimal values for both related indicators. As a matter of fact, all interpre-
tations provided so far rely on the assumption that values monitored in the experiment
are actually correlated with genome survival. In order to support this assumption, a new
experimental setup is defined from the results obtained so far: the post-mortem battle
experiment (or battle experiment, for short). The battle experiment is loosely inspired
from competitive coevolution, where each individual competes against a hall-of-fame
of the best individuals from every past generations [8], so as to estimate the fitness rank
of one individual within all possible (or at least, all available) situations. For the current
experiment, one ”battle” is achieved by randomly picking up 10 generations from the
same setup, and extracting one random genome from each of these generations. Then,
each genome is copied into ten different agents, resulting in 100 agents that are im-
mersed in the same setup they were evolving in. Variation is turned off, and evolution
is re-launched. After 100 generations of random selection and replacement, the number
of copies for each genome is accounted for and used to compute a ”survival score”. As
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an example, one genome gets a maximal score if it succeeds in taking control of all the
agents. Average results over 1000 battles are given in figure 3. In both setups, genomes
from later generations display better survival capability than early genomes. Moreover,
battles on the second setup show a very fast recovery after environmental change, pos-
sibly to stable, but limited, strategies as the number of active agents is far from the
maximum. Also, these histograms lack the misleading artifacts observed in previous
graphs regarding the early generations in both setups: genomes from generation 0 do
not benefit from uniform sampling of starting location and genomes from generation 75
do not benefit from high initial energy level.

Fig. 4. Typical examples of agent behavioral traces in both setups (left: free-ride setup ; right:
energy setup). In the energy setup, colored traces show the current energy level of the agent (see
legend). In both setups, the square symbol shows the agent starting points.

The efficiency of the algorithm is also confirmed by looking at the resulting behav-
ioral strategies. Two examples of behaviors are shown in figure 4, resulting from agent
driven by genomes obtained in the late generations of both setups. In the ”free-ride”
setup, genomes tend to lead to rather conservative behaviors, with obstacle avoidance,
but with limited exploratory behavior. On the other hand, genomes from the later gener-
ations of the ”energy” setup show a different behavioral pattern, favoring long distance
travel and few circling around, which is an efficient strategy to avoid being stuck in
an exhausted area. Moreover, a closer look at trajectories (including, but not limited to
what is shown here) show that agents acquired the ability to drive towards a detected
food items under certain conditions, such as favoring safe areas with few obstacles
whenever energy level is low.

5 Conclusions and Perspectives

This paper provides a proof-of-concept for the viability of environment-driven dis-
tributed evolutionary adaptation in a population of autonomous agents. We have pre-
sented the MEDEA algorithm, a particular flavor of Embodied Evolution, tailored to
address evolutionary adaptation with implicit fitness. The proposed algorithm was eval-
uated with regards to our initial motivation and proven to be (1) efficient with regards
to providing distributed evolutionary adaptation in unknown environment and (2) ro-
bust with regards to unpredicted changes in the environment. Moreover, this algorithm
is light-weight and with low complexity, which makes it possible to consider future
implementation within hardware/software setups with limited computational capability
such as robotic agents.
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Many perspectives may be considered from this point, and some are already un-
der investigation. Firstly, the class of problems addressed here is also relevant in the
field of embodied Evolutionary Robotics and we are currently working on implement-
ing the MEDEA algorithm within a population of real robots as part of the european
Symbrion IP project [4]. Secondly, surviving in aggressive environments requires more
complex behavioral patterns, such as self-organization and coordination. Sharing simi-
lar concerns, previous works in collective intelligence and reinforcement learning have
already stressed the issue of the price of anarchy [9], ie. the cost of efficient selfish be-
havior with regards to population global welfare. Then again, solving this issue remains
an open problem, especially if there is no explicit objective function to decompose.
Thirdly, the work presented here targets, and is limited to, providing reliable survival
strategies. However, our motivational claim is that one should first aim at a reliable, sur-
viving population before even considering to optimize a pre-defined objective function.
Within Evolutionary Robotics, similar ideas have been defended in the very last few
years: goal-oriented optimization is often better served with objective that are loosely
related with the targeted goal (e.g. maximizing diversity [7]), while objective function
with extensive goal description often lead to deceiving fitness landscape, and poor re-
sults. Of course, this remains to be extensively studied and demonstrated.
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Abstract. In recent years, Cooperative Coevolution (CC) was proposed as a
promising framework for tackling high-dimensional optimization problems. The
main idea of CC-based algorithms is to discover which decision variables, i.e,
dimensions, of the search space interact. Non-interacting variables can be opti-
mized as separate problems of lower dimensionality. Interacting variables must
be grouped together and optimized jointly. Early research in this area started
with simple attempts such as one-dimension based and splitting-in-half methods.
Later, more efficient algorithms with new grouping strategies, such as DECC-
G and MLCC, were proposed. However, those grouping strategies still cannot
sufficiently adapt to different group sizes. In this paper, we propose a new CC
framework named Cooperative Coevolution with Variable Interaction Learning
(CCVIL), which initially considers all variables as independent and puts each of
them into a separate group. Iteratively, it discovers their relations and merges the
groups accordingly. The efficiency of the newly proposed framework is evaluated
on the set of large-scale optimization benchmarks.

Keywords: Variable Interaction Learning, Large-Scale Optimization, Numerical
Optimization, Incremental Group Strategy, Cooperative Coevolution.

1 Introduction

Evolutionary Algorithms (EAs) have been widely applied for solving both numerically
and combinational optimization tasks [1]. Finding solutions for a problem usually be-
comes harder when the number of decision variables increases because of the curse
of dimensionality. As a consequence, [2] reports that there is a rapid decline in per-
formance of conventional EAs when dealing with large-scale problems. In order to
improve the ability to solve high-dimensional optimization tasks, [3] proposes a co-
evolution approach for combinational optimization problems and [4] further generalizes
the approach to a universal framework: Cooperative Coevolution (CC). CC algorithms
tackle the curse of dimensionality with a divide-and-conquer method which separates
the search space into subspaces of lower dimensionality. They therefore decompose the
decision vector into groups of variables which can be optimized cooperatively in cycles.
After each cycle, the information gained in the separate optimization steps is joined for
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Algorithm 1: (subpop, pop, best) ←− initializeCC(NP)
for i ←− 1 to N do1

subpopi ←− NP i random one-dimensional samples from a given interval;2

pop ←− (subpop1, . . . , subpopN);3

best ← arg min f(pop);4

return (subpop , pop, best);5

the next iteration. This approach yields good performance both in benchmark problems
and real-world applications [4,5]. Despite this success, for the most important part of
CC, the problem decomposition strategy, no satisfying solution has yet been developed.
In this paper, we introduce a general, scalable, and highly efficient method for this pur-
pose, called Cooperative Coevolution with Variable Interaction Learning (CCVIL).

The rest of this paper is organized as follows. In the next section, we give a short
outline of the cooperative cooperationary idea in general and list related work in the
area of problem decomposition in CC. CCVIL is then discussed in detail in Section 3
and experimentally studied by using a set of twenty large-scale benchmark problems in
Section 4. It achieves excellent results in these experiments and frequently outperforms
two related, state-of-the-art CC techniques as well as the optimizer which it uses inter-
nally. We finally conclude our paper in Section 5 where we also give pointers to future
work.

2 Cooperative Coevolution

Many cooperative coevolutionary numerical optimization algorithms consist of three
basic ingredients: [6]: 1) A decomposition method used to divide the N -dimensional
decision vector into groups G1 . . . Gm of variables. Each such group is optimized with
a separate subpopulation of the corresponding dimension |Gi| < N . 2) In order to eval-
uate the fitness of the individuals from a certain subpopulation, a representative element
from each of the other subpopulations is selected. In this cooperation step, a popula-
tion of complete N -dimensional candidate solutions is constructed by concatenating the
representatives to each element of the current subpopulation. 3) An optimizer is applied
to the population for (only) optimizing the decision variables in the current group.

In the conventional CC framework, optimizing a group with the corresponding sub-
population is called a phase. After finishing a phase, CC will turn to optimize the next
group and start a new phase. One iteration over all groups constitutes a cycle. A CC al-
gorithm performs several cycles. In Algorithms 1 and 2, we sketch the flow of a simple
CC algorithm that treats the problem as completely separable [4].

2.1 Discovering Decision Variable Interactions

The decomposition strategy that identifies interacting decision variables and divides the
search space into subspaces of lower dimensionality is the most important component
of CC algorithms. A function f is separable according to [7] if Equation 1 holds, i.e., if
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its global optimum can be reached by successive line search along the axes. Therefore,
if a certain function is not separable, there must be interactions between at least two
variables in the decision vector. Motivated by this, we provide definition of interaction:
two decision variables i and j are interacting if there is a decision vector x whose ith

and jth variable can be substituted with values x′
i and x′

j so that Equation 2 holds.

arg min
(x1,...,xN )

f(x1, . . . , xN) =

(
arg min

(x1)
f(x1, · · ·), . . . , arg min

(xN )
f(· · · , xN)

)
(1)

∃x, x′
i, x

′
j : (f(x1, . . . , xi, . . . , xj , . . . , xN) < f(x1, . . . , x

′
i, . . . , xj , . . . , xN ))∧

(f(x1, . . . , xi, . . . , x
′
j , . . . , xN) > f(x1, . . . , x

′
i, . . . , x

′
j , . . . , xN ))

(2)

The idea behind the decomposition of the decision variables in CC into groups G1,
G2, . . . ,Gm is that the fitness function f can be approximated as a linear combina-
tion of component functions f1, f2, . . . , fm. The domains of the functions fi have the
lower dimensionality |Gi| < N since their results only depend on the variables in the
corresponding group Gi. Although it is usually only possible to compute f but not its
components fi, the knowledge that the groups Gi can be optimized separately can speed
up the optimization process significantly.

For discovering interactions between variables in the decomposition step, a simple
method is suggested in [8]: Assume that best would be the vector of the best values for
each decision variable discovered so far. After coevolutionary optimizing dimension i,
the best individual new in the population popcc of the optimizer only focusing on di-
mension i is extracted as well as a random candidate rand from the global population
pop (with new �= rand �= best ). Based on these three vectors, two new candidate

xj =

{
new i if j = i
bestj otherwise

(3) x′
j =

⎧⎨
⎩

new i if j = i
randk if j = k
bestj otherwise

(4)

vectors x and x′ are created according to Equations 3 and 4 for testing whether di-
mensions i and k interact. The value at index k of x is better than the kth value of x′,
since it comes from the vector of best known values best whereas x′

k stems from the

Algorithm 2: best ←− basicCC(NP) (as introduced in [4])

(subpop, pop, best) ←− initializeCC(NP);1

// Decomposition: implicitly performed based on separability assumption
while stoping criterion not met do // Optimization: Start a new cycle2

for i ←− 1 to N do // Start a new phase3

for j ←− 1 to NP i do // Collaboration4

popccj ←− (best1, . . . , besti−1, subpopi,j, besti+1, . . . , bestN)5

(popcc,new) ←− optimizer(popcc, i)// Optimize the ith subcomponent6

subpopi ←− popcci;7

best i ← new i;8

return best ;9
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random population member rand . Optimizing dimension i should not influence this
relation and f(x) ≤ f(x′) would hold if the variables were separable. Therefore, if
f(x′) < f(x), i.e., x′ is better than x, there likely is an interaction between dimension
i and k [8].

2.2 Related Work

In the early stage of the development of CC, researchers mainly adopted two simple de-
composition methods: one-dimension based and splitting-in-half methods [4,9]. These
two methods do not take the interaction between components into consideration. Thus,
they cannot solve problems consisting of non-trivial variable interactions.

In order to mitigate this problem, a multi-level pyramidal genetic algorithm is uti-
lized in [10] to better deal with multiple-choice scheduling. In the area of numerical
optimization, Yang et al. proposed two effective CC-based algorithms, Differential Evo-
lution using Cooperative Coevolution with adaptive grouping strategy (DECC-G) [6]
and Multilevel Cooperative Coevolution (MLCC) [11]. DECC-G uses a constant group
size, for instance 100, and randomly decomposes the high-dimensional variable vector
into several such groups. These are then optimized with a certain EA. DECC-G with
a small group size works properly for separable problems while highly nonseparable
problems can better be solved with large group size. The problem of DECC-G is that
the best group size is not known in advance. In order to overcome it, MLCC adopts
a multilevel strategy for decomposition. It maintains a decomposer pool from which
decomposers with different group sizes are selected depending on the problem under
investigation and the stage of the evolution. For nonseparable problems, MLCC tends
to select the decomposers with large group sizes. In the opposite case, MLCC prefers to
choose the decomposers with smaller group sizes. However, determining a good pool
of decomposers is hard in practice since the interaction between variables is usually not
known beforehand. This, in turn, would to lead a waste of function evaluations.

By using the technique of learning variable interactions used in [8] and outlined here
in Section 2.1 CC can become more adaptable. Nevertheless, the way it is used in [8]
suffers severe shortcomings. For example, the maximum group size is limited to two,
which rarely is the case real-world problems. Moreover, the choice of the dimensions
i and k for interaction investigation (see Equations 3 and 4), frequently leads to the
detection of non-existing interactions [8]. In [8], it is possible that dimension i and k
are not optimized in successive phases. Thus, changes in other dimensions of best may
take place in the mean time which violates the condition of Equation 2.

CCVIL overcomes the problem of the DECC-G and the MLCC algorithm, i.e., the
group sizing, by using the interaction learning method of [8]. The choice of the dimen-
sions i and k for interaction detection, however, is conducted in a way which prevents
the discovery of non-existing interactions.

3 Cooperative Coevolution with Variable Interaction Learning

We propose a novel CC-framework called Cooperative Coevolution with Variable In-
teraction Learning (CCVIL) with incremental group sizes for solving large-scale op-
timization problems of separable, partially-nonseparable, and nonseparable character.
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Algorithm 3: groupInfo ←− Learning Stage of CCVIL

K ←− 0;1

groupInfo ←− {{1}, {2}, . . . , {N}}// initially assume full separability2

repeat // start a new learning cycle3

Π ←− random permutation of dimension indices {1, 2, . . . , N};4

K ←− K + 1;5

lastIndex ←− 0;6

(subpop, pop, best) ←− initializeCC(3, 3, . . . , 3)// use NP i = 3 ∀i ∈ 1..N7

for i = 1 to N do // start a new learning phase, i.e., tackle next dimension8

if lastIndex �= 0 then9

G1 ←− find(groupInfo, Πi) // find the group containing Πi10

G2 ←− find(groupInfo, lastIndex ) // find group of last optimized variable11

if i = 1 ∨ (G1 �= G2) then12

for j = 1 to NP do13

popccj ←− (best1, . . . , bestΠi−1, subpopΠi,j , bestΠi+1, . . .)14

(popcc,new) ←− optimizer(popcc, Πi) // any optimizer, we used JADE15

subpopΠi
←− popccΠi

;16

bestΠi ← newΠi ;17

if lastIndex �= 0 then18

Compose x and x′ according to Equations 3 and 4;19

if f(x) < f(x′) then // interaction between dim. i and lastIndex ?20

groupInfo ←− ((groupInfo \ {G1}) \ {G2}) ∪ ({G1 ∪ G2});21

lastIndex ←− Πi // only test successively optimized dimensions22

until (|groupInfo| = 1) ∨ [(K > Ǩ) ∧ (|groupInfo| = N)] ∨ (K > K̂);23

return groupInfo // return the set of mutually separable groups of interacting variables24

Instead of setting the group sizes as a constant or defining a set of values from which
to choose them, we allow the optimization process to adapt them by learning the inter-
action between the decision variables. The whole procedure of CCVIL is divided into
two stages, the learning stage and optimization stage executed once in exactly this se-
quence. Both stages are divided into cycles and phases, similar to the conventional CC
framework (see Section 2).

3.1 Learning Stage

The learning stage of CCVIL optimizes one dimension after the other, similar to the
simple CC approach given in Algorithm 2. While doing this, it only tests the currently
and the previously optimized dimension for interaction. Since only these two dimen-
sions changed between the application of the interaction detection mechanism of [8],
Equation 2 can never be violated and only becomes true for real interactions. Therefore,
the flaw of detecting non-existent interactions is avoided. Before each learning cycle,
the order of visiting the dimensions is randomly permutated so that each two dimension
have the same chance to be processed in a row. The details of the learning stage are
presented in Algorithm 3.
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The efficiency of CCVIL becomes clear from a stochastic point of view. The proba-
bility of placing any two (possibly interacting) dimensions i and j in an N -dimensional
problem adjacently in one random permutation Π is 2/N . The probability pcapt(K)
that this happens in at least once in K learning cycles then is given in Equation 5.

pcapt(K) = 1 − (1 − 2/N)K (5)

In a 1000-dimensional problem, the probability of putting any two (possibly interacting)
variables adjacently in a random permutation and examining interaction between them
during K = 500 cycles is already pcapt(K) = 0.6325 and raises to 0.7984 for 800
cycles. Given a limited number of fitness function evaluations, as many learning cycles
as possible should thus be performed. Therefore, the population size and generation
limit of the internal optimizer should be as small as possible during the learning stage
(3 and 1, respectively, in this work). CCVIL issues an independent restart for each cycle
to prevent possible loss of population diversity during the learning stage.

We furthermore set a lower and an upper threshold for the number of learning cy-
cles: Ǩ and K̂. If CCVIL cannot detect interactions between any two variables in the
first Ǩ cycles of learning stage, it assumes that the problem is fully separable or that
the interactions are rather weak and immediately switches to the optimization stage.
Additionally, a transition to the optimization stage is enforced after K̂ cycles even if
not all interactions have been discovered in order to limit the runtime used for learn-
ing. As default settings, we recommend 10 for Ǩ and to set K̂ to the number of cycles
needed to achieve 80% for pcapt(K̂) (see Equation 5). This number can be computed
by K̂ ≥ log(1− 0.8)/ log(1− 2/N). However, K̂ should not lead to a consumption of
more than 60% of the function evaluations in the learning stage.

3.2 Optimization Stage

The user of our CC framework is completely free in the choice of the optimizer to be
used for the variables grouped together. During both, the interaction learning and the
optimization stage of CCVIL, we apply JADE for this purpose. JADE is an enhanced
variant of Differential Evolution (DE) [12,13] with improved speed and reliability com-
pared with plain DE [14]. In each phase of the optimization stage of CCVIL, the op-
timizer is applied to the complete subspace defined by one group Gi ∈ groupInfo
(whereas the remaining variables of the candidate vectors are constant and correspond
to the representatives from the other groups).

During the learning stage, CCVIL may divide the variables into groups of differ-
ent sizes. In the optimization step, the population size NP i and number of generations
Geni granted to the optimizer for processing the group Gi should depend on its size.
As a rule of thumb, we set Geni = min{|Gi| + 5, 500}. Whereas the population size
NP i of JADE is set as small as possible during the interaction learning, in the optimiza-
tion stage, we apply an adaptive strategy. The initial value here is NP i = |Gi| + 10,
which is sufficient for unimodal problems. After the population loses its diversity and
ceases to improve, an independent restart with thrice the population size is performed
as suggested in [15]. This is done when the relative fitness improvement of the current
cycle compared to the previous on is below 10−2, i.e., (fK−1 − fK)/fK < 10−2.
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Table 1. The main characteristics of the 20 benchmark functions [7] used in this paper

Function Sep
Multi Groups
modal real found

f1 Shifted Elliptic Function Yes No 1000 1000
f2 Shifted Rastrigin’s Function Yes Yes 1000 1000
f3 Shifted Ackley’s Function Yes Yes 1000 969
f4 Single-group Shifted 50-rotated Elliptic Function No No 951 963
f5 Single-group Shifted 50-rotated Rastrigin’s Function No Yes 951 952
f6 Single-group Shifted 50-rotated Ackley’s Function No Yes 951 921
f7 Single-group Shifted 50-dimensional Schwefel’s No No 951 952
f8 Single-group Shifted 50-dimensional Rosenbrock’s No Yes 951 1000
f9 10-group Shifted 50-rotated Elliptic Function No No 510 627
f10 10-group Shifted 50-rotated Rastrigin Function No Yes 510 516
f11 10-group Shifted 50-rotated Ackley Function No Yes 510 501
f12 10-group Shifted 50-dimensional Schwefel’s No No 510 522
f13 10-group Shifted 50-dimensional Rosenbrock’s No Yes 510 1000
f14 20-group Shifted 50-rotated Elliptic Function No No 20 232
f15 20-group Shifted 50-rotated Rastrigin’s Function No Yes 20 37
f16 20-group Shifted 50-rotated Ackley Function No Yes 20 39
f17 20-group Shifted 50-rotated Schwefel’s Function No No 20 42
f18 20-group Shifted 50-rotated Rosenbrock’s Function No Yes 20 1000
f19 Shifted Schwefel’s Function 1.2 No No 1 1
f20 Shifted Rosenbrock’s Function No Yes 1 1000

Furthermore, the difficulties in solving the component functions may vary a lot.
Therefore, it is reasonable to stop optimizing converged groups, when no improvements
can be achieved for a certain number of cycles (in the context of this work, we set this
threshold to five).

4 Experimental Studies

4.1 Experimental Setup

For benchmarking CCVIL, we choose the set of twenty 1000-dimensional functions
provided by in [7]. These functions represent high-dimensional problems with different
degrees of variable interactions. This makes them especially suitable to test the ability
of our algorithm which was designed for tackling this kind of tasks. We compared
CCVIL to DECC-G [6], MLCC [11], and JADE [14]. In the experiments, we grant
three million fitness function evaluations to each algorithm run. We fixed the population
size in JADE to 1000 and used default parameter settings for DECC-G and MLCC
are obtained from the related publications [6,11]. For each algorithm and benchmark
function, 25 independent runs were performed.

4.2 Benchmark Functions and Learned Groups

In Table 1, we list the characteristics of the benchmark functions applied in our experi-
ments. The column Sep denotes functions which are separable according to Equation 1.
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Most of the non-separable functions consist of mutually separable groups of interact-
ing variables. f10 is the sum of ten rotated instances of Rastrigin’s function applied to
groups of 50 decision variables each and one non-rotated instance of the same function
applied to the remaining 500 decision variables. Since the plain Rastrigin’s function
is separable (and the rotated version is not), an ideal interaction learning stage would
thus discover 500 separable groups of size 1 and plus 10 groups of size 50, as listed
in column Groups (real). f18 is composed of 20 rotated Rosenbrock’s functions, each
applied to 50 decision variables, leading to 20 “real” groups.

In the last column of Table 1, we noted the median of the number of groups discov-
ered by CCVIL during the 25 runs. From these results, we can clearly see that CCVIL
most often is able to represent the interactions between the variables correctly. Due to
the limitation K̂ imposed on the runtime of the learning stage, it may not discover all
interactions, i.e., may not merge all interacting groups, and thus, yield a slightly higher
number of groups.

Furthermore, we notice that, for most of the benchmark functions related to Ack-
ley’s function (f3, f6, f11), CCVIL combines more variables than expected. The reason
for this is that Ackley’s function is separable according to Equation 1, but not addi-
tively separable [16], i.e., it cannot be divided into an exact arithmetic sum of com-
ponent functions, as pointed out in [17]. Therefore, our algorithm correctly picks up
interactions since it aims at representing the fitness function as linear combination of
component functions.

The decision variables of Rosenbrock’s function, although entirely nonseparable,
exhibit only a very weak interaction. Our algorithm discovers that functions f8, f13, f18

and f20 can best be treated as separable problems, i.e., problems with 1000 independent
decision variables.

4.3 Comparison with Other CC-Based Algorithms and JADE

In Table 2, we provide the results of the comparison of our algorithm with DECC-G,
MLCC, and plain JADE. We list the mean results of the 25 runs for each benchmark as
well as the standard deviations. The columns named R denote the outcomes of a two-
tailed Mann-Whitney U test [18] with 5% significance level. A W in column R1 stands
for statistically significant win of CCVIL against both, DECC-G and MLCC, a L a loss,
and “–” means that no significant difference was found. Column R2 represents the same
comparison between CCVIL and the native JADE (used as optimizer in CCVIL).

Table 2 shows that CCVIL is clearly superior to DECC-G and MLCC. It outperforms
them in 15 benchmarks and only loses on f3, the separable but not additively separable
Ackley function. CCVIL also wins against its internal optimizer JADE alone in ten out
of 20 benchmark functions and loses in six. Especially for separable and highly non-
separable functions, CCVIL proofs to be advantageous. The performance of CCVIL is
worse than its JADE in most single-group non-separable functions. The reason is the
structure of the benchmark set [7] where a large factor (1 million) is put in front of
the nonseparable component function. If even a single interaction is not discovered by
CCVIL, it will perform worse than JADE which treats the fitness function as completely
nonseparable. This fact leads us to the conclusion that CCVIL can achieve much better
results if the learning phase can proceed sufficiently long to discover all interactions.
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Table 2. Comparison with other CC-based algorithms and plain JADE

CCVIL DECC-G MLCC R1 Naive JADE R2

Mean Std Dev Mean Std Dev Mean Std Dev Mean Std Dev
f1 1.55e-17 7.75e-17 2.93e-07 8.62e-08 1.53e-27 7.66e-27 – 1.57e+04 1.38e+04 W
f2 6.71e-09 2.31e-08 1.31e+03 3.24e+01 5.55e-01 2.20e+00 W 7.66e+03 9.67e+01 W
f3 7.52e-11 6.58e-11 1.39e+00 9.59e-02 9.86e-13 3.69e-12 L 4.52e+00 2.41e-01 W
f4 9.62e+12 3.43e+12 5.00e+12 3.38e+12 1.70e+13 5.38e+12 W 6.14e+09 3.81e+09 L
f5 1.76e+08 6.47e+07 2.63e+08 8.44e+07 3.84e+08 6.93e+07 W 1.35e+08 1.21e+07 L
f6 2.94e+05 6.09e+05 4.96e+06 8.02e+05 1.62e+07 4.97e+06 W 1.94e+01 1.79e-02 –
f7 8.00e+08 2.48e+09 1.63e+08 1.38e+08 6.89e+05 7.36e+05 – 2.99e+01 3.30e+01 –
f8 6.50e+07 3.07e+07 6.44e+07 2.89e+07 4.38e+07 3.45e+07 – 1.19e+04 4.92e+03 L
f9 6.66e+07 1.60e+07 3.21e+08 3.39e+07 1.23e+08 1.33e+07 W 2.70e+07 2.08e+06 L
f10 1.28e+03 7.95e+01 1.06e+04 2.93e+02 3.43e+03 8.72e+02 W 8.50e+03 2.30e+02 W
f11 3.48e+00 1.91e+00 2.34e+01 1.79e+00 1.98e+02 6.45e-01 W 9.29e+01 9.66e+00 W
f12 8.95e+03 5.39e+03 8.93e+04 6.90e+03 3.48e+04 4.91e+03 W 6.21e+03 1.34e+03 –
f13 5.72e+02 2.55e+02 5.12e+03 3.95e+03 2.08e+03 7.26e+02 W 1.87e+03 1.11e+03 W
f14 1.74e+08 2.68e+07 8.08e+08 6.06e+07 3.16e+08 2.78e+07 W 1.00e+08 8.84e+06 L
f15 2.65e+03 9.34e+01 1.22e+04 9.10e+02 7.10e+03 1.34e+03 W 3.65e+03 1.09e+03 W
f16 7.18e+00 2.23e+00 7.66e+01 8.14e+00 3.77e+02 4.71e+01 W 2.09e+02 2.01e+01 W
f17 2.13e+04 9.16e+03 2.87e+05 1.97e+04 1.59e+05 1.43e+04 W 7.78e+04 5.87e+03 W
f18 1.33e+04 1.00e+04 2.46e+04 1.05e+04 7.09e+03 4.77e+03 – 3.71e+03 9.58e+02 L
f19 3.52e+05 2.04e+04 1.11e+06 5.00e+04 1.36e+06 7.31e+04 W 3.48e+05 1.67e+04 –
f20 1.11e+03 3.04e+02 4.06e+03 3.66e+02 2.05e+03 1.79e+02 W 2.06e+03 2.01e+02 W

To find a good strategy to distribute runtime between the learning and the optimization
stage of CCVIL is thus an interesting point for future research.

5 Conclusions and Future Work

In this paper, we introduced a novel CC framework called Cooperative Coevolution with
Variable Interaction Learning, or CCVIL for short. In the related work study, we showed
that currently no efficient method for finding groups of interacting variables in CC ex-
ists. CCVIL fills this gap with a two-stage approach: In a learning step, the interactions
between the decision variables of a (potentially very high-dimensional) search space are
detected. In the second stage, these groups are optimized according to the traditional
CC model. We showed in an experimental study based on twenty 1000-dimensional
benchmark functions with different degrees of variable interaction and group sizes that
CCVIL can outperform two very efficient, state-of-the-art CC approaches as well as its
internal optimizer JADE.

The experiments also showed the drawback of CCVIL: finding the optimal distri-
bution of runtime between the learning and the optimization stage is an open ques-
tion. Here, we could only provide some simple rules-of-thumb, but this problem surely
will be subject of our future work. In order to reduce the overall learning time, we
will furthermore explore generating the permutations Π in our algorithm according to
a deterministic scheme instead of creating them randomly. Additionally, we wish to
experiment with possibly more efficient optimizers such as CMA-ES [19] as internal
optimizers.
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Abstract. Systems that utilize evolutionary computation produce large

amounts of data. Quite often, this data has a convenient visual represen-

tation. However, managing and visualizing evolutionary data can be a

difficult and onerous task. By employing techniques used in photo man-

agement software, we have produced a system that helps to organize

and visualize evolutionary data while retaining a complete record of a

simulation. By means of a simple plugin architecture this system can

be extended to import data produced by arbitrary evolutionary systems.

We present the system’s architecture, its features, and we provide a com-

prehensive example, highlighting its advantages in applied research.

1 Introduction

Evolutionary systems produce large amounts of data. Beyond the obvious data
(such as the genotype and phenotype of an individual), there is a considerable
amount of meta-data produced as well. Such data includes the hereditary data,
fitness values, and other attributes of the evolutionary computation approach
being employed.

It is common to manage experimental data by means of a file-system browser,
such as the Finder in Mac OS X, and Windows Explorer in Microsoft Windows.
Searching or organizing individuals according to various criteria is a laborious
task in such systems. Consider a system that organizes the individuals produced
by an experiment into sub-directories by generation, giving each individual its
own file containing its genotype, and phenotype, along with meta-data such
as fitness, or genealogy. Filtering these individuals by fitness value would be a
difficult task with either file-system browser.

An evolutionary system may employ an interface of its own for browsing the
data that it produces. In this case, the visualization procedures and the manage-
ment of the genotype/phenotype data are typically implemented specifically for
the one evolutionary system. However, the universality of evolutionary algorith-
mic approaches renders generic visualization and data management techniques
valuable across various application domains.

In a way, the situation is very similar to managing individual (digitized) image
and music collections. Such libraries can easily consist of thousands of items. A
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number of applications have made the organization and management of such
data much easier for the end user [1,2,4,9]. We propose a system that can deal
with evolutionary data with the same ease of use and flexibility as provided by
these mainstream media management applications.

EvoShelf is an extensible system that allows for the importing and explo-
ration of evolutionary data from evolutionary systems. It solves the challenge of
organizing imported metadata by providing a navigable, and searchable image-
based browser that uses interface design elements from Apple’s photo and music
management software iPhoto [1], and iTunes [2]. Furthermore, it provides a plu-
gin framework for building additional import modules and visualizations. Both
navigation and visualization are optimized for real-time interaction.

In Section 2 we explore the topic of visualizing data in evolutionary systems.
Section 3 presents the design of the EvoShelf system and its graphical user
interface. It also touches upon some of the example visualization techniques
included in EvoShelf, as well as details about its plugin architecture. In Section
4 we use EvoShelf in coordination with an existing evolutionary system for semi-
interactive evolutionary computing, and for analyzing the results produced by
that system. We will conclude in Section 5 with a summary of our work, along
with possible directions in which to take it in the future.

2 Related Work

We briefly outline the data management and user-interface approach of vari-
ous software systems that inspired the EvoShelf visualization and management
system. Secondly, we outline various techniques that have been developed for
visually supporting computational evolutionary experiments.

2.1 Digital Media Libraries

The framework presented in this article was mainly inspired by iPhoto, Apple’s
mainstream photo management application [1]. It is capable of organizing and
browsing thousands of photos. Despite the large amounts of information that
it is capable of presenting to the user, it maintains a very simple and intuitive
interface. It consists of two primary views, an organizer view, and an image
browsing view (Figure 1(a)). Multiple images, up to and including an entire
library of photos, are displayed in the browsing view. The organizer view is used
to filter this view into subsets of photos, such as those represented by a photo
album containing the user’s favorite photos. As photos are imported into the
system they are grouped into events. Pictures taken during a certain period of
time might have all been taken during a vacation and the respective group of
photos could be labeled after the location of the recreational stay.

iTunes is another application from Apple Inc. that manages a large amount
of data in a similar fashion to iPhoto. Unlike iPhoto, whose interface is focused
on visualizing and managing photos, iTunes is targeted towards playing music
and organizing large digital music collections. Visual cover art often decorates
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individual music files, but the iTunes library is mainly organized by sorting and
searching through textual meta-data such as artist name, music category, or
album name (Figure 1(b)). Together, iPhoto and iTunes suggest an interface
that combines visualization and meta-data management techniques that could
be very powerful for organizing evolutionary data.

(a) (b)

Fig. 1. The user interfaces of the media management applications (a) iPhoto and (b)

iTunes

2.2 Evolutionary Visualization Techniques

Various data visualization techniques have been presented in the context of evo-
lutionary computing. On the one hand, individuals can be compared at a glance
based on their multi-dimensional genotypes, independent of the respective in-
terpretation or phenotype. On the other hand, methods of visualization have
been developed that capture characteristics of whole populations, allowing one
to visually track the evolutionary process.

Pohlheim, for instance, presented a toolkit of convergence diagrams, 3D line
plots, and 2D image plots, to visualize the evolution of fitness values and other
individual attributes [10]. Hart and Ross introduced a tree-based visualization
to trace the ancestry of the best individual produced by an evolutionary run [5].
Daida et al. unfold genetic ancestry onto concentric circles on a 2D plane to cre-
ate a compact and highly scalable visualization of hereditary processes [3]. Wu
et al. represent genotypes as sequences of color coded stripes whose colours cor-
respond to different genes [12]. Keim et al. designed a system to visualize search
queries on a (relational) database [7]. Data items that match the query most
closely are arranged in the center of a spiral arrangement. This visualization
technique can be used to relate individuals in an evolutionary system in arbi-
trary ways, e.g. by comparing fitnesses or individual attributes. In [8], Khemka
and Jacob have closely investigated the possibilities to visualize population-based
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optimization processes at various levels of scale—from the individual to sets
of experiments. They provide an easily adaptable user interface with various
interactive manipulators to explore optimization processes across these scales.

3 The EvoShelf System

The interface of EvoShelf is divided into three window panes (Figure 2). The
organization view on the left-hand side is used for selecting and grouping im-
ported experimentation data (Section 3.1). The user’s selection is shown in the
browser view in the center pane. An inspector view (right-hand side) shows fur-
ther details about an individual or an experiment. In addition to importing and
inspecting functions, the toolbar at the top of the window gives access to built-
in visualization methods which are explained in Section 3.2. Typically, a user of
EvoShelf writes a plugin to import and visualize data for his respective evolu-
tionary system, if it does not already exist. We provide details about plugins in
Section 3.3.

EvoShelf makes use of lazy fetching of data. That is, images and attributes
of an individual are only loaded when they are needed. When individuals go
off screen, their data is unloaded. In this way, we have manipulated data sets
with over 40, 000 individuals. Conceivably, EvoShelf can work with even larger
datasets. To further increase the scalability of EvoShelf, high resolution images
of individuals are loaded on demand—if no zoom is required, a low resolution
image is displayed instead.

Fig. 2. The graphical user interface of EvoShelf

3.1 Individuals, Experiments, and Groups

The organizational view to the left of Figure 2 is divided into a library section
and a groups section. In the library section, the user can select either Individuals



314 T. Davison, S. von Mammen, and C. Jacob

or Experiments. In particular, the Individuals selection displays the images of all
the individuals in the library, whereas Experiments shows representative thumb-
nails of all the imported experiments. The user can browse through the set of
individuals of any experiment by hovering with the mouse over its thumbnail.
The individuals of an experiment are revealed when the user double clicks on
the experiment.

The data in the browser view can be sorted or filtered by the experiments’
and individuals’ attributes. Once the user has formed a suitable selection he
can save his selection in a group, which would be equivalent to photo albums or
playlists in [1,2] respectively. In Figure 2, a group labelled Interesting is selected,
which hosts individuals from multiple experiments that the authors found of
interest. Groups can be organized hierarchically. That is, one can form groups
containing groups. When such a group is selected a union is formed from all of
the individuals contained within the subgroups.

The controls at the bottom of the interface allow the user to remove individu-
als from a group or from the library, to sort individuals, to search for individuals
according to arbitrary attributes (such as fitness value or generation), to scale
the size of the images displayed, and to change the display mode. One display
mode shows individuals as a collection of images, another one lists them in tab-
ular format. The latter view is convenient for sorting and searching through
individuals based upon numeric or textual attributes.

The specimen in the upper left corner is selected in the browser view in Fig-
ure 2. The image representing the individual was generated by the evolutionary
system used as a test run for EvoShelf (see Section 4). A play button (a right
pointing arrow) is projected on top of the specimen’s description. It allows one
to re-run the simulation that produced and/or evaluated the selected individual.
If the plugin does not support re-runs of individual simulations, the play button
is not shown.

Below the images in the browser view in Figure 2, blue bars represent the
individuals’ fitnesses. The bars are scaled to the minimum and maximum fitness
of all the individuals currently displayed in the browser view. The higher the
relative fitness, then the brighter and longer the individual bar is. No image is
provided for Swarm35 indicating that the genotype data was successfully im-
ported but no image was found—in the given case, the simulation was terminated
before a screenshot would have been taken.

The inspector view on the right hand side displays several default properties
about the imported data, such as the file name of an individual or experiment.
A custom interface for the inspector can be defined via the plugin architecture
(Section 3.3).

3.2 Built-in Visualization Techniques

EvoShelf employs two basic built-in visualization techniques: star plots of name-
value pairs [8] and FitnessRiver, a derivative of the ThemeRiverTM method,
which integrates local numeric values with global trends [6].
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A star plot in EvoShelf visualizes a set of name-value pairs as a series of
radially arranged line segments (Figure 3(a)). The length of a line segment is
representative of an attribute’s value and it is normalized to the attribute’s
maximum value in respect to the selected individuals. An attribute’s line segment
will consistently appear at the same location in a star plot to render individuals
comparable.

The ThemeRiverTM visualization method produces a stream diagram that
is read from left to right. Currents in the stream represent individual themes
that occur, grow and decay over time. Currents are visually differentiated from
each other by way of colour, and those colours may be reused for non-adjacent
currents. Instead of separating equivalent attributes into individual currents of a
stream diagram, our FitnessRiver visualization method stacks the fitness values
of individuals on top of each other. The width of a current is proportional to the
fitness of the corresponding individual. Different colours are used to distinguish
between individuals. Discontinuing currents indicate the removal of an individ-
ual from the evolutionary process. In the FitnessRiver visualization the x-axis
represents the sequence of generations. A flat baseline is used so that the user
has a greater sense of the progression of the fitness evolution (Figure 3(b)).

In Figure 3(b) we can see a large jump in the overall fitness at about the middle
generation. When we look closely, we see that there are a few very successful
individuals in the previous generation. We can see how these individuals likely
contributed to the next generation. Furthermore, the majority of individuals
in the new generation have noticeably more fitness than those in the previous
generation.

(a) (b)

Fig. 3. (a) Individuals are comparable based on their star plots. (b) The FitnessRiver

visualization shows the evolution of local and the global fitness. It is an adaptation of

ThemeRiverTM [6].

3.3 Plugins

A user can define additional import modules, visualization modules, data mod-
els, and finally custom inspector views for custom data models1. A few basic
1 EvoShelf plugins are written in Objective-C and should follow Apple’s Cocoa API

http://developer.apple.com/cocoa/.

http://developer.apple.com/cocoa/
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classes are provided for these modules and models that serve as plugin tem-
plates. The importing process, including control over import dialogue windows,
can be adapted and alternative visualization modules can be subclassed from
the EvoShelf visualization view controller class.

EVIndividual
Attributes

fitness
generation
identifier
rawDataPath
Relationships

attributes
experiment
fullResImage
lowResImage

EVExperiment
Attributes

date
parameters
rawDataPath
systemName
Relationships

individuals

EVAttribute
Attributes

name
value
Relationships

EVImage
Attributes

image
Relationships

Fig. 4. The default data model for import-

ing and managing EvoShelf data

The default data model (Figure 4)
is well suited for generational sys-
tems such as evolutionary algorithms
(EA) but also supports other heuris-
tic computation concepts, such as
particle swarm optimization (PSO).
For instance, each step in a PSO sim-
ulation could correspond to a gen-
eration in an EA. EvoShelf can be
adapted for other evolutionary sys-
tems by extending the default data model to add new attributes, or relationships.
For instance, the set of attributes of the classes EVExperiment and EVIndividual
can be adapted to match a given evolutionary system. The new attributes auto-
matically determine the searching and sorting options in EvoShelf, as well as the
information provided by the inspector view. In case a more elaborate inspector
view is desired, an interface constructed in Apple’s WYSIWG Interface Builder
application can be loaded.

4 Example Scenario

In this section, we explore the use of EvoShelf with a preexisting evolutionary
system. In the evolutionary system of choice, Swarm Grammars (SGs) are bred
by means of a Genetic Programming algorithm to produce architectural idea
models [11]. SGs are a swarm-based developmental model in which production
and interaction rules guide the movements, constructions and the reproduction
of agents in 3D space.

In a subdirectory for each generation, the genotypes are stored as text files and
snapshots of the corresponding phenotypes as images. Fitness evaluations for the
individuals are stored in an additional file. When importing all the individuals,
including their image representations and their meta-data into EvoShelf, the
original directory structure is automatically copied into EvoShelf ’s database.

Figure 5(a) shows a set of interesting SG specimens. We want to emphasize
that due to the partially very low fitness values of the 2nd, 4th and 20th swarms
from the top, we would have very likely not have inspected these phenotypes
without relying on EvoShelf ’s visual browsing functionality. Based on these un-
dervalued, interesting phenotypes, we were able to improve the fitness function
that drives the SG evolution by repositioning the geometrical focus of the fit-
ness evaluation in respect to the SGs’ constructions to better suit the favored
ones. We also used EvoShelf for a semi-interactive evolutionary process by re-
peatedly selecting and exporting interesting individuals, modifying the fitness
function and parameters to the GA, breeding their offspring for a fixed number
of generations and importing the outcome (Figure 5).
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(a) (b)

Fig. 5. (a) 20 interesting individuals are selected from an experiment and served as

the initial generation for a (b) follow-up experiment

We discovered that the SG GP evolution usually converged prematurely after
at most several hundred iterations. Figure 6 shows the FitnessRiver plot over
300 generations. Overall 20, 000 individuals were computed and imported into
EvoShelf. We noticed that the overall fitness of our individuals had stagnated
by the 100th generation (there is a very slight improvement in fitness past this
point). Figure 7 confirmed our assumption of over-fitting: Up to the fitness stag-
nation at around generation 100, we randomly chose and plotted one of the ten
best individuals every ten generations. For the period afterwards, we plotted
one of the ten best individuals at random every 20 generations. And indeed, the
phenotype images in combination with the star plots reveal a one-sided develop-
ment, most easily recognizable by the inverted T-shaped star plots. Upon closer
investigation, this similarity corresponds to the deployed amounts of two out of
three construction elements provided to the SG agents (rods and layers), and the
amount of construction elements that were placed outside of the intended tar-
get area. As the latter construction elements reduce the fitness of an individual,
their increase might explain the fitness fluctuation as observed in Figure 6.

0 50 100 150 200 250 300

Fig. 6. The FitnessRiver plot shows stagnating and fluctuating fitness development

after about 100 generations. The vertical lines denotes each 50th generation.
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0 10 20 30 40

50 60 70 80 90

100 120 140 160 180

200 220 240 260 280

Fig. 7. First, for every ten generations, then (2nd half) for every 20 generations, a star

plot and phenotype of a randomly selected individual is shown

5 Summary and Future Work

We presented EvoShelf, an easy-to-use application in the same vein as main-
stream media-browsers for managing the experimental data produced by arbi-
trary evolutionary systems. Fast browsing of supplementary images associated
with each specimen or of generic visualizations of those specimens enables the
user to retrace and interactively explore vast amounts of data. Storing, retriev-
ing, and ordering experimental data is facilitated by a simple yet powerful search
function that considers a specimen’s attributes and meta-data (generation, fit-
ness, etc). Hierarchical grouping structures further facilitates the management of
large data sets. In addition to the built-in management and visualization meth-
ods, EvoShelf -can be extended with plugins that implement new import, vi-
sualization or inspection functionalities. According programming templates are
provided that can be easily adjusted or majorly extended, depending on the
user’s demands.

We applied EvoShelf to an evolutionary application that breeds Swarm Gram-
mars to generate architectural idea models [11]. Due to the convenient and fast
browsing functionality of EvoShelf, we have been able to identify specimens that
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received low fitness values despite their appeal. As a consequence,EvoShelf helped
us to adjust the fitness function of the SG GP system to better suit our expecta-
tions. By means of the visualization techniques that come with EvoShelf, Fitness-
River and star plots, we have been able to track and investigate an over-fitting
process in our evolutionary runs. Finally, by using the selection and storing ca-
pabilities of EvoShelf, we have also been able to introduce interactivity into an
otherwise autonomous evolutionary process.

In the future, we would like to add more visualizations, and to improve the
current ones. For instance, it should be possible to automatically overlay differ-
ent individual-based visualizations as we have done in Figure 7. The star plot
visualization should be extended to improve its readability—possibly by using
different coloring schemes, or line strengths. Overall, we found it would be use-
ful to automatically associate representative specimens with global trends, as
attempted by the combination of Figures 6 and 7 or by revealing details as one
mouses over a visualization. The FitnessRiver visualization could also use new
visual queues to track the application of genetic operators and the course of
inheritance. We would also like to explore the possibility of using EvoShelf with
running systems, for controlling systems that use interactive evolution as found
in [8], and to directly execute and manage experiments. Finally, we would like
to release the system as open source software.

References

1. Apple Inc. Apple - iPhoto (April 2010), http://www.apple.com/ilife/iphoto/
2. Apple Inc. Apple - iTunes (April 2010), http://www.apple.com/itunes/
3. Daida, J., Hilss, A., Ward, D., Long, S.: Visualizing tree structures in genetic

programming. Genetic Programming and Evolvable Machines (January 2005)

4. Google. Picasa photo editing (April 2010), http://picasa.google.com/
5. Hart, E., Ross, P.: Gavel-a new tool for genetic algorithm visualization. Evolution-

ary Computation (January 2001)

6. Havre, S., Hetzler, B., Nowell, L.: Themeriver tm: In search of trends, patterns,

and relationships. IEEE Transactions on Visualization and Computer Graphics

(January 2002)

7. Keim, D., Kriegel, H.: Visdb: Database exploration using multidimensional visual-

ization. IEEE Computer Graphics and Applications (January 1994)

8. Khemka, N., Jacob, C.: Visplore: a toolkit to explore particle swarms by visual in-

spection. In: GECCO 2009: Proceedings of the 11th Annual Conference on Genetic

and Evolutionary computation (2009)

9. Nullsoft. Winamp media player (April 2010), http://www.winamp.com/
10. Pohlheim, H.: Visualization of evolutionary algorithms - set of standard techniques

and multidimensional visualization. In: Proceedings of the Genetic and Evolution-

ary Computation Conference, GECCO (1999)

11. von Mammen, S., Jacob, C.: Evolutionary swarm design of architectural idea mod-

els. In: GECCO 2008: Proceedings of the 10th annual Conference on Genetic and

Evolutionary Computation (July 2008)

12. Wu, A., Jong, K., Burke, D., Grefenstette, J., Ramsey, C.: Visual analysis of evo-

lutionary algorithms. In: Proceedings of the 1999 Congress on Evolutionary Com-

putation, CEC 1999 (1999)

http://www.apple.com/ilife/iphoto/
http://www.apple.com/itunes/
http://picasa.google.com/
http://www.winamp.com/


Differential Evolution Algorithms
with Cellular Populations
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Abstract. Differential Evolution (DE) algorithms are efficient Evolu-

tionary Algorithms (EAs) for the continuous optimization domain. There

exist a large number of DE variants in the literature. In this paper, we

analyze the effect of adding a cellular structure to the population of some

of the most outstanding existing ones. The original algorithms will be

compared versus their equivalent versions with cellular population both

in terms of accuracy and convergence speed. As a result, we conclude

that the cellular versions of the algorithms perform, in general, better

than the equivalent state-of-the-art ones in the two considered issues.

1 Introduction

Differential Evolution (DE) algorithms are population based metaheuristics.
They were initially proposed in [1] as a variant of Evolutionary Algorithms
(EAs) [2–4] for continuous optimization problems. The main difference between
DE and other kind of EAs is in the way the population is evolved. In DE, in-
stead of the classical recombination and mutation operators typically applied in
EAs, a mutant vector is generated, and then it is recombined with the evolving
solution. There exist many different variants for generating the mutant vector,
and they usually lie in modifying the variables of the reference vector (one of
the parents) with weighted differences of the same variables of other solutions
in the population (two or more additional parents).

It is well known in the literature of EAs that structuring (or decentralizing)
the population is generally useful for better guiding the search of the algorithm.
The reason is that a structured population provides the algorithm with better
exploration/exploitation capabilities for exploring the search space [5–9, 15]. As
it is shown in Fig. 1, the two main ways for decentralizing the population are
the distributed [15] and cellular [5] schemes.

On the one hand, distributed EAs (dEAs) are composed of several small semi-
isolated subpopulations (called islands) that are independently evolved by sepa-
rate EAs. With some given frequency, the different islands exchange some infor-
mation (e.g., the best local solution found so far) with other neighboring ones.

On the other hand, in the case of cellular EAs (cEAs) individuals are arranged
into a toroidal lattice of very small tightly connected subpopulations (typically

R. Schaefer et al. (Eds.): PPSN XI, Part II, LNCS 6239, pp. 320–330, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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(a) (b) (c)

Fig. 1. Panmictic (a), distributed (b) and cellular (c) population topologies

composed by one single solution). In this model, only those solutions that are
next to each other in the population mesh are allowed to interact during the
evolution process. As an example, we show in Fig. 1 the solutions that could
influence in the generation of the new solution at the center position in the grid
when using the C9 neighborhood (shadowed), composed by its 8 closest solutions,
and itself. We also show the toroidal effect of the lattice in the neighborhood of
the top left solution (dashed line).

Despite that the use of decentralized populations is well extended and studied
in many EA families, like Genetic Algorithms (GAs) [5, 6, 9], Particle Swarm
Optimization (PSO) [10, 11], Genetic Programming (GP) [12], or Estimation
of Distribution Algorithms (EDAs) [13], among others [14, 15], there exist only
a few works dealing with decentralized population DE algorithms. A review of
them can be found in [16].

The main contribution of this work is to propose and evaluate four new designs
based on state-of-the-art DE algorithms by adding a cellular structure into their
populations. The cellular population used allows the algorithms to keep the
diversity of solutions for longer, enhancing their performance in general. The
8 algorithms (4 cellular plus the 4 original ones) are compared in terms of the
quality of solutions and the convergence speed on a wide benchmark of complex
problems, well known in the literature.

The structure of this paper is detailed next. Section 2 describes the DE al-
gorithms studied. Later, cellular EAs are introduced in Section 3. Section 4
summarizes our experiments, describing the benchmark used, the configuration
of the algorithms, and the results obtained. Finally, we conclude this work in
Section 5.

2 Differential Evolution Algorithms

This section presents the description for the different DE algorithms we consider
in this paper. They are a canonical DE and three state-of-the-art DE algorithms,
namely DEGL [17], JADE [18], and SaDE [19].

The canonical DE algorithm we consider in this work follows the design de-
scribed by Storn and Price in [1]. It implements a panmictic (i.e., non-decentrali-
zed) population. Its pseudocode is given in Fig. 2. The algorithm starts by ran-
domly generating the solutions composing the initial population. Then, it iterates
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1: pop = generate initial population()
2: while ! termination condition() do
3: for each individual i in pop do
4: // Choose the three parents
5: choose r0 s.t. 0 ≤ r0 < pop.size & r0 �= i
6: choose r1 s.t. 0 ≤ r1 < pop.size & r1 �= r0 & r1 �= i
7: choose r2 s.t. 0 ≤ r2 < pop.size & r2 �= r1 & r2 �= r0 & r2 �= i
8: // At least variable jrand of i will be modified
9: choose jrand s.t. 0 ≤ jrand < i.numberOfVariables
10: // Generate alternative solution
11: vi = generate mutant vector(xr0 , xr1 , xr2)

12: ui = recombine(xi, vi)
13: // Keep the best solution of the two ones
14: if f(ui) ≤ f(xi) then
15: pop[ind] = ui

16: end if
17: end for
18: end while

Fig. 2. Pseudocode of a classical DE

until the termination condition is reached. This termination condition is usually
either finding the optimal solution or performing a maximum number of gen-
erations. In every iteration (also called generation), the algorithm sequentially
considers all the individuals to be updated. This process lies in randomly choos-
ing three other solutions from the whole population (xr0 , xr1 , and xr2) and using
them to generate a mutant vector. This mutant vector will later be used to mod-
ify the current solution in the recombination step to generate a new one, that
will replace the current solution with some policy (in this work, the replacement
is done if the new solution is better or equal to the current one). Therefore, the
new generated solutions are immediately inserted into the population, so they
can interact with solutions from their parents generation.

There are many mechanisms to generate the mutant vector proposed in the lit-
erature. In this work, we consider a simple one, proposed by Storn and Price [1],
and described in (1). According to this operator, the mutant vector vi is gener-
ated by adding to the reference vector (one of the three parents) the difference
of the other two parents, weighted by parameter F .

vi = xr0 + F · (xr1 − xr2) . (1)

This mutant vector is then used to modify the current solution xi in the recom-
bination process, thus generating a new one. The most common approach for
that is choosing every variable j, of either the mutant vector vi or the current
solution xi, with some given probability CR, as shown in (2). As it can be seen,
we force that at least one variable jrand (randomly chosen) is adopted from the
mutant vector for the new solution ui.

ui,j =
{

vi,j if rand(0, 1) ≤ CR or j = jrand

xi,j otherwise
. (2)
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Finally, the fittest solution between the current and the new ones will remain in
the population, as (3) defines.

xi =
{

ui if f(ui) ≤ f(xi)
xi otherwise

. (3)

The described DE algorithm is usually known in the literature as
DE/rand/1/bin, because the base vector xr0 is chosen randomly, one vector
difference xr1 − xr2 is added to it to generate the mutant vector, and the new
solution variables ui,j are taken from xi and vi using a binomial distribution.

In order to avoid a strong dependency on the control parameters of DE (CR
and F ), we adopt a self-adaptive strategy that automatically chooses good values
for the two parameters [20]. It lies in initially assigning random CR and F
values (in the intervals [0.0, 1.0] and [0.1, 1.0], respectively) to every solution.
Then, when a new solution is created, it inherits these values from the currently
evolving one. Additionally, they are modified with probability 0.1 with random
values in the same intervals considered for the initialization —as shown in (4),
where rand1 to rand4 are random values in the interval [0, 1].

F =
{

0.1 + 0.9 ∗ rand1 if rand2 ≤ 0.1
F otherwise

; CR =
{

rand3 if rand4 ≤ 0.1
CR otherwise

.

(4)
DEGL. DEGL [17] is a DE algorithm with structured population. The solutions
in the population are arranged in a toroidal ring. A neighborhood is defined in it
in such a way that every individual can only interact with a number of the next
and previous ones in the ring. In this algorithm, a combination of two mutation
strategies is used to generate the new solutions. One of them is using the best
solution in the neighborhood, and the other one takes information from the best
global solution in the population.
JADE. JADE [18] is an algorithm implementing the new mutation strategy
DE/current-to-pbest. It is similar to the classical current-to-best one, but with
the difference that a randomly chosen solution from the top 100 · p% individuals
(the authors use p = 0.05 in their experiments in [18]) is selected instead of
the best overall one in the population. The authors propose a second version
of JADE with archive, which is keeping, for every position in the population, a
list (or archive) containing the last S individuals that were in this position. We
borrow this second version for our comparison, because it was concluded to be
better in the original paper.
SaDE. SaDE [19] is a self-adaptive DE that automatically adapts the probabil-
ity of applying four different mutation strategies (DE/rand/1/bin, DE/rand-to-
best/2/bin, DE/rand/2/bin, and DE/current-to-rand/1) depending on the suc-
cess rate of each one in the past generations. The success rate of every strategy is
defined in terms of the number of new solutions they provide to the population
in every generation. This way, the authors are able to combine into one single
DE algorithm several mutation strategies with different features that perform
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Fig. 3. In cellular GAs, individuals are only allowed to interact with their neighbors

during the breeding loop

differently on the distinct problems: some of them are more explorative, and
some others are more exploitative.

3 Cellular Evolutionary Algorithms

Cellular Evolutionary Algorithms (cEAs) [5, 9] are a kind of EA with structured
population, meaning that individuals can only interact with a subset of the
individuals in the whole population. As it was mentioned in Section 1, the use of
decentralized populations in EAs usually leads to more accurate algorithms with
respect to EAs with panmictic populations. Additionally, the few existing works
comparing cellular and distributed EAs usually conclude that cEAs outperform
dEAs, specially when dealing with complex problems [5, 8].

In cEAs, individuals are spread in a (usually) two dimensional toroidal mesh,
and they are only allowed to interact with their neighbors. The degree of iso-
lation of individuals is given in terms of the neighborhood size: the smaller the
neighborhood the higher the isolation of individuals, and thus the slower their
genetic information will be spread through the grid. This information spread is
guaranteed thanks to the overlapping among neighborhoods.

We graphically show in Fig. 3 the different steps performed during the breed-
ing loop in cEAs for every individual. As it can be seen, the parents are chosen
from the neighborhood of the current solution, and then the variation operators
are applied. After that, the newly generated individual is inserted back into the
population (following a given replacement policy) immediately after its creation,
and thus it can interact in the breeding loop of its neighbors, even when they
most probably belong to previous generations.

4 Computational Experiments

We summarize in this section the experiments performed for this work. The
benchmark we used is presented in Section 4.1, and the configurations of the
algorithms are described in Section 4.2. Finally, our results are analyzed in
Section 4.3.
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4.1 Test Problems

We have selected for this work the benchmark that was built for the special ses-
sion on continuous optimization in CEC 2005 [22]. It is composed of 25 complex
functions with different features. Functions F1 to F5 are unimodal, while the
others are multimodal. Among the latter ones, problems F6 to F12 are basic
multimodal functions, while F13 and F14 are expanded multimodal functions,
and F15 to F25 are hybrid compositions of functions.

In our experiments, we have considered the highest problem dimensionality
this benchmark affords: 50 variables.

4.2 Configuration of Algorithms

The parameters for the DE algorithms we are considering in this paper are
discussed in this section. The basic DE algorithm we study implements the
DE/rand/1/bin scheme, it has a population of 50 solutions, and the mutation
strategy is the standard one already described in Section 2. The three parents are
selected by binary tournament, so for every parent we randomly select two can-
didate solutions and choose the best one as the parent. The new solutions replace
the current ones in the population if they have better or equal fitness value, and
the F and CR parameters are self-adaptive as presented in Section 2. Finally,
the sopping condition of all the algorithms is either to find the optimal solution
(with an error < 4.9E − 324) or to perform 500,000 fitness function evaluations.

For the configuration of the compared state-of-the-art algorithms, we have
taken the values proposed in their original papers. However, we would like to
clarify some of these parameters that are not clearly set in the original papers
(i.e., the authors recommend either some intervals for these values or different
alternatives). The population of the algorithms is set to 50 solutions, with the ex-
ception of DEGL, which has a population of 500 solutions arranged in a toroidal
grid with neighborhood size 50. For the weight factor used to combine the local
and global mutation strategies in DEGL, we have chosen the self-adaptive one
proposed in [17]. Regarding JADE, we randomly select one solution from the
best 5% solutions in the population for the DE/current-to-pbest mutation used,
and the archive size for every position in the population was set to the population
size. Finally, in the case of SaDE, the learning period was set to 10 generations.

In the case of the cellular version of the algorithms, the population is composed
by 7×7 solutions, arranged in a 2 dimensional toroidal lattice. Additionally, the
selection of the parents is limited to the C9 neighborhood of the considered
solution. All the other parameters are the same as for the original versions of
the algorithms.

4.3 Results

We proceed now to discuss our results. Table 1 shows the average results obtained
by the different algorithms after 100 independent runs. We put the percentage
of runs in which the problems were solved to optimality in parenthesis when
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Table 1. Average solutions found by the different algorithms

ssDE cDE SaDE cSaDE DEGL cDEGL JADE cJADE

F1 2.50E−14(56%) 1.14E−15(98%) 1.02E−14(82%) 0.0(100%) 2.92E−12 8.70E−14(32%) 5.68E−14 9.44E−14
±2.84E−14 ±8.00E−15 ±2.20E−14 ±0.0 ±1.20E−12 ±7.16E−14 ±0.0 ±2.71E−14

F2 4.61E1 6.10 3.33E3 6.92E−1 2.95E2 9.83E−14(43%) 5.92E−13 1.02E−1
±7.63E1 ±5.49 ±9.54E3 ±4.93E−1 ±6.26E1 ±9.31E−14 ±2.81E−13 ±2.38E−1

F3 8.47E6 8.25E6 9.01E6 1.14E6 7.46E6 6.40E4 9.30E4 2.80E6
±4.96E6 ±4.10E6 ±1.81E7 ±4.58E5 ±1.36E6 ±2.81E4 ±9.04E4 ±1.07E6

F4 3.05E3 4.06E3 6.49E3 4.35E3 1.20E3 4.82E1 3.66E4 4.38E2
±1.70E3 ±2.07E3 ±2.83E3 ±2.12E3 ±2.79E2 ±3.71E2 ±1.43E4 ±3.28E2

F5 3.59E3 4.59E3 1.12E4 8.28E3 3.32E2 3.46E3 3.70E3 3.61E3
±7.84E2 ±8.37E2 ±1.47E3 ±1.24E3 ±1.16E2 ±6.58E2 ±7.16E2 ±1.00E3

F6 4.55E1 4.54E1 2.04E2 1.02E2 3.07E1 2.28 2.49 2.89E1
±3.15E1 ±3.46E1 ±1.86E2 ±5.79E1 ±1.34E1 ±2.36 ±1.10E1 ±2.77E1

F7 6.20E3 6.30E−3(1%) 6.20E3 6.20E3 6.20E3 6.20E3 6.20E3 6.20E3
±6.20E−13 ±1.02E−2 ±4.44E−12 ±6.60E−13 ±2.62E−9 ±1.14E−12 ±7.20E−13 ±4.52

F8 2.11E1 2.11E1 2.08E1 2.07E1 2.11E1 2.11E1 2.13E1 2.11E1
±3.97E−2 ±3.49E−2 ±3.83E−1 ±4.78E−1 ±3.55E−2 ±3.86E−2 ±4.11E−2 ±3.22E−2

F9 1.13E1 1.87E1 9.66E−15(83%) 9.95E−3(99%) 3.26E2 1.12E2 5.63E−14(1%) 4.55E1
±4.75 ±6.94 ±2.15E−14 ±9.95E−2 ±1.43E1 ±2.36E1 ±5.68E−15 ±2.15E1

F10 1.86E2 1.28E2 2.43E2 2.75E2 3.44E2 1.32E2 2.64E2 3.28E2
±1.14E2 ±7.54E1 ±3.54E1 ±4.45E1 ±1.63E1 ±3.15E1 ±1.15E2 ±2.02E1

F11 5.82E1 5.74E1 4.19E1 4.10E1 7.27E1 3.37E1 6.87E1 6.56E1
±1.04E1 ±5.84 ±4.74 ±4.63 ±1.52 ±5.22 ±4.39 ±3.90

F12 2.67E4 3.90E4 3.58E4 2.15E4 9.50E3 2.56E4 2.01E4 2.66E4
±2.36E4 ±2.47E4 ±2.47E4 ±1.23E4 ±7.95E3 ±2.19E4 ±1.93E4 ±2.12E4

F13 5.07 4.42 2.12 1.87 3.00E1 7.14 7.80 2.21E1
±3.59 ±1.88 ±2.91E−1 ±2.03E−1 ±1.18 ±1.65 ±9.39E−1 ±1.49

F14 2.30E1 2.28E1 2.18E1 2.16E1 2.29E1 2.15E1 2.37E1 2.24E1
±2.1950E−1 ±2.7841E−1 ±6.1830E−1 ±5.3498E−1 ±1.6824E−1 ±5.8852E−1 ±2.1198E−1 ±2.8563E−1

F15 3.00E2 3.08E2 3.06E2 3.62E2(1%) 3.33E2 3.82E2 3.19E2(2%) 3.56E2
±9.7326E1 ±9.2724E1 ±1.5229E2 ±1.0166E2 ±9.4317E1 ±5.6059E1 ±9.2035E1 ±7.2295E1

F16 1.50E2 1.21E2 1.57E2 1.25E2 2.54E2 1.60E2 2.29E2 3.01E2
±1.0232E2 ±7.4178E1 ±5.7039E1 ±1.7855E1 ±2.4010E1 ±1.1217E2 ±1.1575E2 ±7.5831E1

F17 2.47E2 2.20E2 1.21E2 1.35E2 2.83E2 1.74E2 3.76E2 3.26E2
±8.5184E1 ±6.6414E1 ±2.1617E1 ±2.4640E1 ±2.1617E1 ±1.2916E2 ±6.9206E1 ±6.7814E1

F18 9.20E2 9.26E2 9.87E2 9.92E2 9.12E2 9.55E2 9.36E2 9.30E2
±1.2770E1 ±5.3856 ±3.1410E1 ±1.7562E1 ±1.0894 ±1.8367E1 ±1.7285E1 ±1.1939E1

F19 9.22E2 9.26E2 9.86E2 9.94E2 9.12E2 9.55E2 9.35E2 9.31E2
±3.4133 ±5.5953 ±4.0976E1 ±1.8461E1 ±9.5186E−1 ±2.3280E1 ±1.6130E1 ±1.1520E1

F20 9.22E2 9.26E2 9.88E2 9.94E2 9.12E2 9.54E2 9.36E2 9.31E2
±4.2001 ±5.3533 ±3.1503E1 ±1.8026E1 ±9.1633E−1 ±2.3415E1 ±1.6098E1 ±1.1512E1

F21 6.62E2 5.95E2 7.65E2 7.29E2 7.16E2 7.64E2 6.86E2 1.02E3
±2.3726E2 ±1.9804E2 ±3.3996E2 ±3.2749E2 ±2.4986E2 ±3.2608E2 ±2.4168E2 ±8.8117E1

F22 9.17E2 9.22E2 9.67E2 9.85E2 9.17E2 9.64E2 9.65E2 9.46E2
±1.5901E1 ±1.7524E1 ±1.7584E1 ±1.8126E1 ±3.9815 ±2.3627E1 ±2.4867E1 ±2.3938E1

F23 7.48E2 6.07E2 7.05E2 6.70E2 7.65E2 8.55E2 6.85E2 1.01E3
±2.3645E2 ±1.6539E2 ±2.8793E2 ±2.6362E2 ±2.3657E2 ±2.3527E2 ±2.2106E2 ±9.7561E1

F24 2.00E2 2.00E2 1.02E3 1.18E3 2.00E2 3.75E2 9.91E2 1.03E3
±1.6815E−12 ±8.1842E−13 ±3.8723E2 ±1.7456E2 ±1.5836E−12 ±3.7456E2 ±1.8249E2 ±1.0708E1

F25 1.38E3 2.21E2 1.41E3 1.42E3 1.40E3 1.37E3 1.40E3 1.40E3
±1.1813E1 ±1.8361 ±1.7135E1 ±1.1230E1 ±4.3774 ±7.7264 ±7.3243 ±6.6738

appropriate. Notice that the initial population was the same for all the algo-
rithms in the different runs (of course, distinct initial populations were used in
every run). In the case of DEGL, 50 solutions were the same as for the other
algorithms, while the rest were randomly generated. The best overall result for
every problem is emphasized in bold font, and the grey background means that
the algorithm was significantly better (with 95% confidence) than its equivalent
one with/without the cellular model according to the Wilcoxon matched-pairs
signed ranks test [23]. The results of this test are shown in Table 2, where p-
value ≤ 0.05 means statistical difference on the comparisons, and high values
of R+ are favoring the cellular versions of the algorithms (these p-values are
emphasized with bold font), while high R− values favor the original ones.

We can see that the cellular algorithms outperform, in general, their equiva-
lent original ones for all the studied DE variants in the considered problems. The
exception is JADE, since it performs better than cJADE in 13 problems (most
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Table 2. Results of Wilcoxon matched-pairs signed ranks test. Panmictic vs. cellular

algorithms

DE SaDE DEGL JADE

(R+, R−) p-value (R+, R−) p-value (R+, R−) p-value (R+, R−) p-value

F1 (1034, 47) 7.21E − 8 (171, 0) 2.14E − 4 (5050, 0) 4.01E − 18 (0, 2211) 1.69E − 12

F2 (4886, 164) 4.86E− 16 (5050, 0) 4.01E − 18 (5050, 0) 4.01E − 18 (0, 5050) 4.01E − 18

F3 (2516, 2534) 0.98 (4434, 616) 5.34E − 11 (5050, 0) 4.01E − 18 (0, 5050) 4.01E − 18

F4 (1505, 3545) 4.56E − 4 (4041, 1009) 1.88E − 7 (4950, 100) 7.76E − 17 (5050, 0) 4.01E − 18

F5 (487, 4563) 2.48E − 12 (4992, 58) 2.27E − 17 (0, 5050) 4.01E − 18 (2663, 2387) 0.64

F6 (2809, 2241) 0.33 (3866, 1184) 4.05E − 6 (5050, 0) 4.01E − 18 (198, 4852) 1.26E − 15

F7 (5050, 0) 4.01E− 18 (3630, 835) 1.38E − 7 (5050, 0) 4.01E − 18 (105, 2380) 2.87E − 11

F8 (2509, 2541) 0.96 (3053, 1997) 0.07 (3168, 1882) 0.03 (5050, 0) 4.01E − 18

F9 (430.5, 4519.5) 9.8E − 13 (153, 18) 3.52E − 3 (5050, 0) 4.01E − 18 (0, 5050) 4.01E − 18

F10 (3589, 1461) 2.56E − 4 (1156, 3894) 2.54E − 6 (5050, 0) 4.01E − 18 (1027, 4023) 2.63E − 7

F11 (3002, 2048) 0.10 (2936, 2114) 0.16 (5050, 0) 4.01E − 18 (3951, 1099) 9.53E − 7

F12 (1412, 3638) 1.30E − 4 (3764, 1286) 2.06E − 5 (744, 4306) 9.28E − 10 (1786, 3264) 0.01

F13 (2238, 2812) 0.33 (4473, 577) 2.15E − 11 (5050, 0) 4.01E − 18 (0, 5050) 4.01E − 18

F14 (3626, 1424) 1.55E − 4 (3005, 2045) 0.10 (5050, 0) 4.01E − 18 (5050, 0) 4.01E − 18

F15 (1098.5, 1602.5) 0.17 (717, 1428) 0.02 (1454, 3496) 3.68E − 4 (1189, 3861) 4.40E − 6

F16 (3102, 1948) 0.05 (4151, 899) 2.29E − 8 (4147, 903) 2.48E − 8 (1026, 3924) 4.30E − 7

F17 (3406, 1644) 2.47E − 3 (1441, 3609) 1.95E − 4 (4518, 532) 7.39E − 12 (4001, 1049) 3.92E − 7

F18 (644, 4406) 1.01E − 10 (2202, 2848) 0.27 (0, 5050) 4.01E − 18 (2984, 2066) 0.12

F19 (590, 4460) 2.92E − 11 (2242, 2808) 0.33 (100, 4950) 7.76E − 17 (2835, 2215) 0.29

F20 (554, 4496) 1.25E − 11 (2207, 2843) 0.28 (100, 4950) 7.76E − 17 (2869, 2181) 0.24

F21 (1460.5, 1095.5) 0.30 (2049, 1521) 0.24 (1692, 3358) 4.21E − 3 (228, 4822) 2.91E − 15

F22 (1646, 3404) 2.52E − 3 (777, 4273) 1.88E − 9 (12, 5038) 5.76E − 18 (4020, 1030) 2.77E − 7

F23 (3615, 1435) 1.80E − 4 (3594, 1456) 2.39E − 4 (1989, 3061) 0.07 (186, 4864) 9.04E − 16

F24 (1783.5, 46.5) 1.67E− 10 (1109, 3941) 1.14E − 6 (125, 2503) 2.58E − 11 (3344, 1706) 4.90E − 3

F25 (5050, 0) 4.01E− 18 (1056, 3994) 4.44E − 7 (5049, 1) 4.13E − 18 (3720, 1330) 4.01E − 5

of them unimodal and basic multimodal functions), being worse for 8 functions.
We think that the reason is the archive of solutions JADE is keeping in every
location of the population, from which the algorithm can get one solution as one
of the parents during the evolution process. This archive is keeping the last 100
individuals that were placed in this location during the evolution. Therefore, the
effect is that diversity is highly increased, thus slowing down the convergence
speed of the population. When combining this technique with the cellular popu-
lation, which is slowing down the convergence speed too, then for some problems
the algorithm cannot run for enough number of iterations to converge to good
solutions. In other words, the use of the archive and the cellular topology in
cJADE provides the algorithm with too explorative capabilities.

If we pay attention to the algorithms finding the best results for every prob-
lem (figures in bold font in Table 1), we see that at least one of the DE vari-
ants implementing the cellular population finds the best results for 17 problems.
Therefore, only for the other 8 functions one of the standard panmictic DEs was
found to be the best one.

To better study the behavior of the different algorithms, we present in Fig. 4
the evolution of the best solution in the population during the run. The results
plotted are averaged over 100 runs for every generation. We can see how, in
general, the new algorithms implementing the cellular population are converging
faster than their equivalent original panmictic versions. It stands out the good
behavior of cDEGL versus DEGL, since it performs faster convergence for all
the functions shown. We can see also how the cellular population helps JADE
algorithm to scape from local optimal solutions in which it gets stuck very early
(see, for example, plots for F6 and F10).
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Fig. 4. Evolution of the best solution in the population during the run for some of the

considered problems (averaged over 100 runs)

5 Conclusions and Future Work

We propose in this paper to enhance the behavior of four state-of-the-art DE
algorithms (a canonical one, DEGL, JADE, and SaDE) by adding a cellular
topology structure into their populations. This topology restricts the interac-
tions among individuals to only close ones, therefore slowing down the spread of
good solutions through the population. The effect is that different parts of the
population will hopefully explore distinct areas of the search space. The algo-
rithms were compared in terms of accuracy and convergence speed. As a main
result, we can summarize that the new algorithms with cellular populations
outperform, in general, the original ones for the canonical, DEGL, and SaDE
variants. The exception is JADE algorithm, because it outperforms cJADE in
average.

As future extensions to this work, we plan to make a deeper study by consid-
ering different population topologies, other benchmark functions, and more DE
variants.
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Flocking in Stationary and Non-stationary
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Strategy for Heading Alignment
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Abstract. We propose a novel communication strategy inspired by ex-

plicit signaling mechanisms seen in vertebrates, in order to improve per-

formance of self-organized flocking for a swarm of mobile robots. The

communication strategy is used to make the robots match each other’s

headings. The task of the robots is to coordinately move towards a com-

mon goal direction, which might stay fixed or change over time.

We perform simulation-based experiments in which we evaluate the

accuracy of flocking with respect to a given goal direction. In our settings,

only some of the robots are informed about the goal direction. Experi-

ments are conducted in stationary and non-stationary environments. In

the stationary environment, the goal direction and the informed robots

do not change during the experiment. In the non-stationary environ-

ment, the goal direction and the informed robots are changed over time.

In both environments, the proposed strategy scales well with respect to

the swarm size and is robust with respect to noise.

1 Introduction

In nature, we observe different activities performed by animals living in groups.
Such activities require collective decision-making even when few individuals have
the needed information. This information then spreads in the group according to
different mechanisms, depending on the species. In some insect and fish species,
information is transferred implicitly without any signaling mechanism [1,2]. Con-
versely, other species utilize explicit signaling mechanisms such as vocalization.
For example, mountain gorillas switch between some daily activities (resting
to travelling/feeding) very rapidly using vocalization [3]. In a honeybee swarm,
when scouts agree on a new nest site, they fly rapidly towards the nest while
signaling the right direction to the rest of the swarm [4].

Coordinated motion of animals is an example of activities which require col-
lective decision-making. For example, flocks of birds and schools of fish move
and maneuver coherently as if they were a super-organism [5]. Recent work in
biology showed that a group of animals can be guided to particular locations
(food sources) even if only a minority of the group is aware of the location [1].

R. Schaefer et al. (Eds.): PPSN XI, Part II, LNCS 6239, pp. 331–340, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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The first studies of flocking in swarm robotics were inspired by Reynolds’
seminal work [6], one of the first regarding flocking outside biology. Reynolds
obtained a realistic computer animation of a flock of birds through three simple
concurrent behaviors: separation (avoiding collisions), cohesion (staying close to
neighbors) and alignment (heading in the same direction as neighbors). These
behaviors are all based on local sensing and local decision rules. Separation and
cohesion control, denoted in the rest of the paper as proximal control, is the
aggregate behavior controlling the relative distance between individuals.

In Reynolds’ work, in order to perform alignment, each individual is assumed
to sense the velocity of its neighbors without noise. This assumption is unreal-
istic in robotics. Subsequent works have tried to relax this assumption. These
works can be organized into three different categories. The first category does
not feature an explicit alignment behavior. Instead, it tries to obtain alignment
intrinsically via other behaviors such as homing [7], leader-following [8] and
light-following [9]. The second category achieves alignment by resorting to the
emulation of a heading sensor [10] or to the estimation of the heading of neigh-
bors [11]. In the third and last category, heading information is spread within the
swarm via local communication [12]. Turgut et al. [13] proposed an algorithm
belonging to the third category. A robot measures its heading with respect to
the North using a compass and broadcasts it periodically so that the heading is
sensed “virtually” by its neighbors. With this method, Turgut et al. [13] achieved
self-organized flocking in a random direction.

Çelikkanat et al. [14], inspired by the implicit decision-making mechanisms of
some animal species [15,2], extended the flocking behavior proposed by Turgut et
al. [13] by providing a goal direction to some of the robots (“informed” robots).
They observed that a large swarm can be guided by only a few robots, which is
in accordance with theoretical results [1].

In this paper, inspired by both biological [3,4] and swarm robotics ideas [14],
we propose a new method for heading alignment. The proposed strategy that we
call information-aware communication, uses only local communication, which
means that robots can communicate only with their neighbors within a given
range and in their line of sight. Our system is composed of informed and un-
informed robots: informed robots relay the goal direction and uninformed ones
just send the average of the messages they receive from their neighbors. We com-
pare the novel information-aware communication with heading communication,
where all of the robots always send the measured heading information to their
neighbors by still relying on local communication only. The latter was used by
Turgut et al. and Çelikkanat et al. [13,14].

We present the results of two sets of experiments. One is conducted in a sta-
tionary environment, in which the goal direction and the informed indivuals do
not change during the experiment. The other is conducted in a non-stationary en-
vironment, in which both the goal direction and the informed robots are changed
at regular time intervals during the experiment.
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2 Methodology

The methodology we use to design the flocking behavior is based on artificial
physics [9]. At each control step, a virtual force vector is computed as:

f = αp + βh + γg,

where p is the proximal control vector; h is the heading alignment vector; g
is the vector that indicates the goal direction. The vectors p and h are each
calculated by a behavior (explained in Section 2.1 and Section 2.2 respectively).
The goal direction vector g is available to some robots, whereas for the others
g = 0. The weights α, β and γ define the relative contribution of the different
force components. In this paper, we do not tune these parameters for obtaining
optimal performance, but we set them to α = 1, β = 5 and γ = 10 to reflect our
prior knowledge on the relative importance of the three components.

2.1 Proximal Control Behavior

The proximal control behavior assumes that a robot perceives the relative po-
sition (range and bearing) of its neighbors in close proximity. This is realized
using LEDs and an omni-directional camera as in [12]. Let k denote the number
of robots perceived at a given time, di and φi denote the range and bearing
measurements of the ith robot, respectively. The virtual force p is given by:

p =
k∑

i=1

pie
jφi ,

where pie
jφi are vectors expressed in polar coordinates. pi is calculated as a

function of di using a force function pi(di) as in [16]. pi is repulsive when di is
smaller than the desired distance (D) and it is attractive when di is greater than
D. The function is:

p(di) = −2D2

d3
i

+
2
di

,

2.2 Heading Alignment Behavior

The heading alignment behavior assumes that, using an onboard light sensor, a
robot r measures its heading (θr) with respect to the common reference frame
represented by a light source. The robot receives an angle θi from its ith neighbor.
The value sent by each neighbor depends on which communication strategy is
used, as explained in the following. Each received angle is transformed into robot
r body-fixed reference frame1. Having received k angles from its k neighbors,
1 We define two reference frames. One is the reference frame common to all of the

robots, and the other is the body-fixed reference frame specific to each robot. The

body-fixed reference frame is fixed to the center of a robot: its x− axis is coincident

with the rotation axis of the wheels and its y− axis points to the front of the robot.
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robot r calculates the average heading vector as:

h =
∑k

i=1 ejθi

‖∑k
i=1 ejθi‖

,

where ‖ · ‖ denotes the norm of a vector.
The proposed communication strategy, that we call information-aware com-

munication strategy, is explained in the following.

Information-aware communication: This communication strategy assumes
that robots are aware of whether they are provided with the goal direction
g or not, that is whether they are informed or non-informed. This awareness
mechanism is implemented by measuring the length of the goal direction vector
g: the robot considers itself non-informed if g = 0 and informed if g �= 0. Each
robot then communicates the following information: if it is non-informed, it sends
� h (� · denotes the angle of a vector) to its immediate neighbors; otherwise, it
sends � g. The intuition behind this strategy is the following: if the robot is
non-informed, it should facilitate the diffusion of the information originating
from the informed robots; if it is informed, it should then directly propagate the
information about the goal location to its immediate neighbors. The information
then eventually reaches the entire swarm thanks to the uninformed robots. Note
that the awareness of each robot is only used to determine which information
should be sent, and is never directly communicated to neighboring robots (i.e.,
each robot never knows if a message is received from an informed or a non-
informed robot).

As a baseline comparison, we implemented another communication strategy
that we call heading communication strategy. This strategy is similar to the one
used in [13].

Heading communication: This communication strategy consists in the local
communication of the robot’s own current heading θ measured with respect to
the common reference frame. In the original work [13], this strategy was used to
simulate robots that are able to measure the heading of their neighbors when
the actual measurement is not physically possible.

2.3 Motion Control

The computed virtual force vector f is mapped into rotational speed of the
wheels. First, using Newton’s second law of motion, the target velocity utarget

is computed:

utarget = ut +
fΔt

m
,

where Δt is the control-step size, m is the mass of the robot and ut is the current
velocity of the robot. The target velocity utarget cannot be followed directly by
the robot due to its non-holonomic constraints. Thus, it is mapped into the
robot’s forward velocity ut+1, which points in the direction of the y − axis and
has magnitude u = ‖ut+1‖ set to:
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u =

{
( utarget

‖utarget‖ · ut

‖ut‖ )umax, if utarget · ut ≥ 0;
0, otherwise.

,

where umax is set to 0.036 m/s.
The angular velocity ω of the robot is determined by a proportional controller

that calculates the deviation of the desired angle from the current heading of the
robot: ω = Kp(� utarget − � ut), where Kp is a proportionality constant whose
value is set to 0.5 s−1. Finally, the rotation speeds of the left (NL) and right
(NR) motors are set to:

NL =
(
u +

ω

2
l
) 1

r
; NR =

(
u − ω

2
l
) 1

r
,

where l is the distance between the wheels and r is their radius.

3 Experiments

In this section, we first introduce the metrics and the experimental setup used to
evaluate the proposed methodology. We then present the results in a stationary
and a non-stationary environment.

3.1 Metrics

In flocking, we are interested in having a group of robots that move compactly,
coherently, within their sensory range and without collisions. Furthermore, the
group should be aligned towards a common direction (in our case the goal di-
rection) and move towards that direction. In this paper, we use two metrics as
in [14]: order and accuracy.

Order: The order metric ψ is used to measure the angular order of the robots.
ψ ≈ 1 when the group has a common heading and ψ � 1 when each robot
is pointing in a random, different direction. The order is defined as:

ψ =
1
N

‖a‖ =
1
N

‖
N∑

i=1

ejθi‖,

where N is the total number of robots in the experiment, and a is the
vectorial sum of the measured headings of the N robots.

Accuracy: The accuracy metric δ is used to measure how accurately close to
the target direction (dependent on the task) robots are moving. δ ≈ 1 when
robots are perfectly aligned (which corresponds also to a high value for the
order metric ψ ≈ 1) towards the correct direction of motion. As in [1],
accuracy can be defined as:

δ = 1 −
√

2 (1 − ψcos(� a − � g))
2

,

where � a is the direction of a and � g is the goal direction with respect to
the common reference frame.
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3.2 The Task and the Experimental Setup

In our experiments, N mobile robots are placed at random positions and with
random orientations in an empty arena of 5 meters × 5 meters. Each robot is a
realistic simulation of a foot-bot, in development for the Swarmanoid project2.
We utilized the following sensors and actuators: i) A light sensor, that is able
to perceive a noisy light gradient around the robot. It is used to measure θr,
the orientation of robot r with respect to a common light source. ii) A range
and bearing communication system, with which a robot can send a message to
other robots that are within 2 meters and in line of sight [17]. iii) Two wheels
actuators, that are used to control independently the left and right wheels speed
of the robot. iv) 24 LEDs and a camera, which are used to detect distance and
bearing from other robots in the proximal control behavior (see Section 2.1). We
conducted two sets of experiments.

Stationary environment: In a stationary environment, a proportion ρ of ran-
domly selected robots are given the information about the goal direction g.
All the other robots remain uninformed for the entire duration of the simu-
lation. In every run, we randomly choose g, as well as the selection of robots
that are informed. The duration of one run is 100 simulated seconds.

Non-stationary environment: A non-stationary environment consists of four
stationary phases of equal length. The proportion of informed robots ρ is kept
fixed during the entire run. However, at the beginning of every stationary
phase, the informed robots are reselected at random. Also, the goal direction
g changes randomly from one stationary phase to the next one. The duration
of one run is 250 simulated seconds.

In the stationary environment, we study the effect of changing the swarm size
N and the proportion of informed robots ρ. In the non-stationary environment,
we also study the effect of noise in the heading alignment vector h. We modeled
this noise as a uniformly distributed random variable controlled by a scaling
parameter σ ∈ [0, 1], which is used to add noise to θr, the robot’s measured
heading: θ̃r = θr + U(−σ2π,+σ2π). For each experimental setting, we execute
100 runs and we report the average results.

3.3 Results in Stationary Environments

The effect of varying the swarm size N is shown in Figure 1a. The information-
aware communication strategy outperforms the classical heading communication
strategy, in the sense that it achieves higher accuracy both with small (10) and
large (100) swarms. In both strategies, the convergence speed is higher with
the smaller swarm size. This can be explained by the fact that smaller swarms
have smaller inertia than larger swarms. However, in the heading communication
strategy, the accuracy level reached with a larger swarm is higher than the one

2 http://www.swarmanoid.org

http://www.swarmanoid.org
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Fig. 1. Information-aware communication against heading communication in a station-

ary environment: (a) effect of varying swarm size N with fixed ρ = 0.25 and σ = 0; (b)

effect of varying the percentage of informed robots ρ with fixed N = 100 and σ = 0

achieved with a smaller swarm. This result is consistent with the findings of [1],
which state that the needed proportion of informed robots to achieve a given
level of accuracy becomes smaller for increasing swarm sizes.

The effect of varying the proportion of informed robots ρ is shown in Fig-
ure 1b. Also in this case, the information-aware communication strategy outper-
forms the classical heading communication. In both strategies, more informed
robots corresponds to higher accuracy. With a proportion of 1% informed robots
(corresponding to 1 robot), the classical alignment communication strategy can-
not achieve an increasing accuracy over time, which means that at the end of
the simulation robots are randomly oriented as they were at the beginning. Dif-
ferently, the proposed information-aware communication strategy can cope also
with a very small proportion of informed robots.

3.4 Results in Non-stationary Environments

The effect of varying the swarm size N is shown in Figure 2a. The same trends
observed in the stationary environment are also present here: The information-
aware communication strategy always outperforms the classical alignment com-
munication. However, here we observe an interesting phenomenon: The accuracy
convergence speed of the information-aware communication strategy in the ini-
tial stationary phase is lower than the one in the subsequent three stationary
phases. This can be explained by the order shown in Figure 2b. The initial order
of the system is very low, and gets higher and higher towards the end of the first
stationary phase. When the change in the environment occurs, order decreases
but does not reach the initial, very low values for any of the techniques. This
means that the swarm is able to make a transition from an ordered state to
another ordered state without a detrimental impact on the order itself, which in
turn corresponds to faster adaptation to changes in the environment.
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Fig. 2. Information-aware communication againts heading communication in a non-

stationary environment: effect on the accuracy (a) and on the order (b) of varying

swarm size N with fixed ρ = 0.25 and σ = 0, (c) effect of varying the percentage of

informed robots ρ with fixed N = 100 and σ = 0; (d) effect of adding noise σ = 0.25
with fixed N = 100 and ρ = 0.25.

The effect of varying the proportion of informed robots ρ is shown in Figure 2c.
The same trends observed in the stationary case apply in this case. Hence, the
information-aware communication strategy scales well to the non-stationary case
even when only 1% of the robots (in this case only one robot) are informed.

Finally, the effect of adding noise σ in the alignment is shown in Figure 2d. As
we can see, noise has a non-significant impact on the accuracy of the information-
aware communication strategy, which still continues to outperform the classical
alignment communication strategy.

4 Conclusions and Future Work

In this paper, we proposed a communication strategy, called information-aware
communication, for heading alignment in self-organized flocking. In the system,
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a swarm of robots is decomposed into informed and uninformed robots: informed
robots possess information about a goal direction, whereas uninformed robots
do not. The proposed strategy works as follows: each robot communicates the
goal direction when it is informed, whereas it communicates the average of its
neighbors messages when it is uninformed. We compared this strategy with the
heading communication strategy, similar to those used in the literature, in which
each robot communicates directly its own heading.

We conducted two sets of experiments. The first set is executed in a sta-
tionary environment, where the goal direction and the informed robots do not
change over time. The second set is executed in a non-stationary environment,
where both the goal direction and the informed robots change over time. Re-
sults show that the proposed information-aware communication strategy always
outperforms the heading communication strategy. Furthermore, the proposed
approach is also robust against noise in the alignment, and it achieves high
accuracy values even if only few robots in a large swarm are informed.

The presented work can be extended in many ways. First, a more complete
scenario may include multiple sources of different information which can be con-
flicting, and perceived by different robots in different ways. In this scenario, we
may need the swarm to be coherent while heading towards a common direction,
or split to different sub-groups, depending on the application. To cope with this
scenario, we might need to include some measure of information quality, per-
ceived by each robot, which can be used to determine a new communication
strategy. Secondly, we plan to port the presented work into real robots. We be-
lieve that the set of assumptions made in this work are all compatible with future
real robots experiments, with the exception of the one in which we assume that
all robots are able to perceive a common environmental cue. As a matter of fact,
the foot-bot robots that we will use are not equipped with a compass, and the
light sensor cannot be used for such an aim because the perception of light is
not uniform in the swarm due to the robots shadowing each other or to their
varying distance from the light source. To avoid the need of a common environ-
mental cue, we plan to extend the information-aware communication strategy to
incorporate the capabilities of a situated communication mechanism, in which
also the range and bearing of the sender is available and has a meaning.
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Abstract. XML has became a standard for structured data, and very

often transformations from one specific format to another are needed.

XSLT stylesheets are programs designed for this purpose, and they use

XPath expressions to select sets of nodes within the document. In this

paper a new version of an evolutionary algorithm that creates XSLT

from examples is presented, improving on previously obtained results by

testing a new individual representation with a new set of operators, based

mainly on evolution of XPaths with a fixed XSLT program structure.

The experiments show that this new representation, and a lower set of

operators, yield better results in less generations that in our previous

version.

1 Introduction

Since the Information Technology industry has settled on different Extensible
Markup Language (XML) dialects as information exchange format, there is a
business need for programs that transform from one XML set of tags to another,
extracting information or combining it in many possible ways; a typical example
of this transformation could be the extraction of news headlines from an on-line
newspaper that uses XHTML.

XSLT stylesheets (XML Stylesheet Language for Transformations) [1], also
called logicsheets, are programs designed for this purpose: applied to an XML
document, they produce another. There are other possible solutions: programs
written in any language that work with text as input and output (using, for
instance, regular expressions) or SAX filters [2], processing each tag in an XML
document in a different way, and not needing to load into memory the whole
XML document. However, these solutions require programming in external lan-
guages, while XSLT is a part of the XML set of standards (in fact, XSLT log-
icsheets are XML documents). This is why XSLT is one of the most common
ways of specifying document transformations. XSLT applies XPath expressions
[3] to select nodes from the source document. XPath (XML Path Language) is a
language created to construct expressions which proccess an XML document to
find and select specific parts of the hierarchical structure of XML. For example,
� Supported by projects AmIVital (CENIT2007-1010) and EvOrq (TIC-3903).
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the XPath route /rss/item[10]/date selects the date node of the 10th item
node of the XML document whose root is rss.

The work needed for logicsheet creation grows dramatically with the number
of input and output formats: for n input and m output formats, n × m trans-
formations will be needed. Considering that each conversion is a hand-written
program and the initial and final formats can vary with certain frequency, any
automation of the process means a considerable saving of effort.

So, the problem is to find the XSLT logicsheet that, from one input XML
document, is able to obtain an output XML document which contains exclusively
the information desired from the first one. This information may be sorted in
any possible way (maybe in a different order to the input document). In this
work, an Evolutionary Algorithm (EA) to solve this problem is presented. The
logicsheet will be evolved using evolutionary operators that take into account
the structure of the program and its components.

Thus, XSLT provides a general mechanism for the association of patterns in
the source XML document to the application of format rules to these elements,
but in order to simplify the search space for the evolutionary algorithm, just three
instructions will be considered in this paper: template, which selects the XML
fragments that will be included when the element in its match attribute is found;
apply-templates, which is used to select the elements to which the transformation
is going to be applied, and delegate control to the corresponding templates; and
copy-of, which includes the text representation of the nodes of the input XML
into the output file (that is, copy all node contents and tags), so the output file
will be a complete XML instead a list of content, as we did in our previous work
[4]. XPath expressions will also be used to select particular elements and sets of
them.

In [5], we published an initial set of XSLT evolution experiments, testing
different document structures, operators and fitness. In this paper we will try
to improve those results with a more simpler XSLT structure: a list of copy-of
nodes with evolvable XPaths. To compare with the previous work we are going
to use the same examples as before: a set of input and output XML documents
with a tree structure. These documents are composed of several nodes, which
makes it easier to compare them with each other. As before, the output XML
will be a complete XML document with a (possibly sorted in a different way)
list of nodes present in the original document.

The rest of the paper is structured as follows: the state of the art is presented
in Section 2. Section 3 describes the solution presented in this work, with the
novel elements introduced. Experiments with the automatic generation of XSLT
stylesheets for different examples are described in Section 4, and finally the
conclusions and lines of future work are presented in Section 5.

2 State of the Art

To our knowledge, there are few works related to the application of genetic
programming techniques to the automatic generation of XSLT logicsheets; one
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of them, by Scott Martens [6], presents a technique to find XSLT stylesheets
that transform an XML file into HTML by using genetic programming. Martens
works on simple XML documents and uses the UNIX diff command as the basis
for its fitness function. He concludes that genetic programming is useful to obtain
solutions to simple examples of the problem, but it needs unreasonable execution
times for complex examples and might not be a suitable method to solve this
kind of problems.

Schmidt and Waltermann [7] addressed the problem taking into account that
XSLT is a functional language, and using functional language program genera-
tion techniques on it, in what they call inductive synthesis. Firstly, they create a
non-recursive program, and then, by identifying recurrent parts, convert it into
a recursive program; this is a generalization of the technique used to generate
programs in other programming languages such as LISP [8], and used thoroughly
since the eighties [9].

A few other authors have approached the general problem of generating XML
document transformations, knowing the original and target structure of the doc-
uments, as represented by its DTD (Document Type Definition): [10,11,12,13,14]
have proposed the semi-automatic generation of transformations for XML doc-
uments, but user input is needed to define the label association. There are also
freeware programs that perform transformations on documents from a XSchema
to another one. However, they must know both XSchemata in advance, and are
not able to accomplish general transformations on well formed XML documents
from examples. In some cases, the transformation is carried out in two steps:
first the input document is compiled to a generic representation, which is then
mapped to the new, required, representation [15,12].

Some other papers try to map the tree structure of input and target documents
[16], but this must be a supervised procedure, in the same way as it was proposed
in [12].

In our previous work [5], we presented an evolutionary algorithm to obtain
an XSLT that extracts information represented in a output XML from an input
XML. Several XSLT structures and operators were presented and studied. The
main drawback of the proposed method in that work is the difficulty of managing
a complete XSLT tree structure since it requires more processing time and larger
sets of operators to manage all possibilities of the trees and routes that are
formed.

3 Methodology

The EA described in this section evolves simpler XSLT stylesheets, which are
generated using a set of operators, and evaluated using a fitness function which is
related to the difference between generated XML and output XML associated to
the example. The way the algorithm works is shown in Figure 1. The solution has
been programmed using JEO [17], an evolutionary algorithm library developed
at the University of Granada as a part of the DREAM project [18], which is
available from http://www.dr-ea-m.org.
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Fig. 1. This figure shows the algorithm workflow. Each individual of the population is

a XSLT stylesheet, whose fitness is computed comparing the XML generated by the

stylesheet (using the input XML) with the output XML.

In our previous work we used a specific XSLT structure, which was selected
from [4]. An example of this structure is shown in Figure 2.

However, this structure has some inconveniences, such as complexity of pro-
cessing, managing and evolution. So, a new XSLT structure is proposed in this
paper (see Figure 3). This new structure is not a recursive stylesheet, it is only
a list of XPaths in copy-of nodes. The bennefits of this kind of structure are
quite obvious: recursive processing is not needed and less management operators
are used.

Thus, in our EA the individual representation is basically a list of XPath
routes, instead of a full tree. This reduces the evolution process and also the
complexity since there is a reduction in the number of operators, which improves
the fitness calculation, and the XSLT processing from the input to the output
file.

There is a smaller set of operators (just 8 instead of 14). The new operators
may be classified in two different types: the first one, are those which modify the
XPath routes in the attributes of the XSLT instructions copy-of); and the other
are the operators used to add or remove routes to the list. In order to ensure
the existence of the elements (tags) added to the XPath expressions and XSLT
instruction attributes, every time one of them is needed it is randomly selected
from the input file.

The first class of operators, those that alter the attributes, can be divided in
two kinds: the operators that modify the list of elements of a route and those
that modify a filter:

– XpathMutatorAddElement: Adds a valid element at the end of the
XPath route.
I.e.: /rss/item → /rss/item/date

– XpathMutatorRemoveElement: This mutator removes the last element
of a route.
I.e.: /rss/item/date → /rss/item
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<?xml version="1.0"?>
<xsl:stylesheet version="1.0"

xmlns:xsl="http://www.w3.org/1999/XSL/Transform">
<xsl:output indent="no" method="xml"/>
<xsl:template match="/">

<rss>
<xsl:apply-templates select="/rss"/>

</rss>
</xsl:template>
<xsl:template match="/rss">

<xsl:copy-of select="div[3]"/>
<xsl:copy-of select="div[1]/h3[5]"/>
<xsl:copy-of select="h1"/>

</xsl:template>
</xsl:stylesheet>

Fig. 2. Example of a final XSLT generated by our previous algorithm. This logicsheet,

applied to the input XML document, produces an XML document that equals the

desired XML output document. Since it is a tree, it is more complex to build and

manage.

On the other hand, the filter operator modifies the cardinality of a filter:

– XpathMutatorModifyFilter: Modifies the cardinality of a valid filter
(that is, only the elements with possible cardinalities can be modified and
the new cardinality is a valid number).
I.e.: /rss/item[10]/date → /rss/item[3]

– XpathMutatorAddFilter: Adds a filter in a valid position
I.e.: /rss/item/date → /rss/item[2]/date

– XpathMutatorRemoveFilter: Removes an existing filter
I.e.: /rss/item[3]/date → /rss/item/date

Finally the XSL operators modify the list of different XPaths:

– XSLAddXPath: Removes an existing XPath.
I.e.:/rss/item[10]→ /rss/item[10]
/rss/title

– XSLRemoveXPath: Adds a valid XPath to the list.

I.e.:
/rss/item[10] → /rss/item[10]

/rss/title

However, these operators are not enough to perform a smooth search; sometimes
the XSLT search converges into a bad solutions area, when we want to select
ordered but alternated items from a node. So, as we proved in our previous
work, it is necessary to add a new operator to increase the diversification of this
solution. This operator, XSLSplitNode, expands a random copy-of node into a
list of complete copy-of with all cardinalities (as shown in Figure 4). The result
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<?xml version="1.0"?>
<xsl:stylesheet version="1.0" xmlns:xsl="http://www.w3.org/1999/XSL/Transform">
<xsl:output indent="no" method="xml"/>
<xsl:template match="/">
<rss>
<xsl:copy-of select="/rss/channel/title"/>
<xsl:copy-of select="/rss/channel/item[10]/category[3]"/>
<xsl:copy-of select="/rss/channel/item[3]"/>
<xsl:copy-of select="/rss/channel/item[5]"/>

</rss>
</xsl:template>

</xsl:stylesheet>

Fig. 3. Example of a final XSLT generated by the algorithm. This logicsheet, applied

to the input XML document, also produces an XML document equals to the desired

XML output document, but it is simpler than the shown in Figure 3.

<xsl:template match="book">
<xsl:copy-of select="chapter"/>

</xsl:template>

<xsl:template match="book">
<xsl:copy-of select="chapter[1]"/>
<xsl:copy-of select="chapter[2]"/>
<xsl:copy-of select="chapter[3]"/>
<xsl:copy-of select="chapter[4]"/>

</xsl:template>

Fig. 4. The left template is transformed into right template applying the split mutator.

The number of chapters in the input XML were 4 (this is known by the algorithm when

it process the input XML at the beginning of execution).

of applying the new XSLT and the previous is the same, but it is easier for
genetic operators to modify the list of copy-of than the generic one (modifying,
adding or removing XPath and/or tags).

The crossover has also been simplified, just a one-point crossover of the list of
routes, instead of a crossover which must comply all the recursive tree structure
restrictions.

The fitness is computed as the XML difference between the desired and the
obtained output, that is, the difference in nodes between the desired T and the
actual document X. This difference breaks down in insertions (nodes in X but
not in T) and deletions (nodes in T but not in X). We will leverage this vectorial
structure of fitness so that evolution can profit from it: instead of using a single
aggregative function, as we did in previous papers [4], fitness is now a vector that
includes the number of node deletions and additions needed to obtain the target
output from the obtained output. The XSLT stylesheet is correct only if the
number of deletions and additions is 0. So, the fitness is minimized by comparing
individuals as follows: An individual is considered better than another

– if the number of deletions is smaller,
– if the number of additions is smaller, being the number of deletions the same.
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Separating and prioritizing the number of deletions helps to guide the evolution,
by trying to find first a stylesheet that includes all the elements in the target
document. As we proved in [5], we do not consider the length of the generated
XSLT, in order to minimize selective pressure, helping in that way the evolution
of existing XPaths. This aids to keep the solutions having the same number
of deletions and insertions but larger size caused by the use of the operator
XSLSplitNode (expanding the copy-of tags).

4 Experiments and Results

In order to test the value of the algorithm we have performed several experiments
with 7 different XML input and output files. The algorithm has been executed 30
times for each input XML. The same input file was used for several experiments:
a RSS feed from a weblog and a XHTML file1.

The computer used to perform the experiments is a Centrino Core Duo at 1.83
GHz, 2 GB RAM, and the Java Runtime Environment 1.6.0.01; the XML and
XSLT processors were the default ones included in the JRE standard library. The
population size was 128 individuals for all runs, generated using the input XML
as information source. The termination criteria was set to 300 generations or until
a solution was found, and selection was performed considering a 5-Tournament.
30 experiments were run, with different random seeds, for each input document.
The mutation operator chooses one of the operators (commented in Section 3)
with the same probability. The crossover and mutation probability have been
set to 0.25 and 0.5, after several experimental runs.

We compare the results with the best structure found in our previous work.
The breakdown of results per input file is shown in Table 1.

The new structure, in general, yielded better results than previously. The
algorithm was able to find an adequate XSLT stylesheet within the pre-assigned
number of generations in most cases, using a more restricted set of operators
than before.

Examples 1, 2, 3 and 6 are complete and ordered lists of elements of one or
several nodes, whose solution is simple, since the algorithm can easily create
a logicsheet that extracts all the children of a specific node. Example 7 takes
specific and repeated elements from distinct nodes, which makes it more diffi-
cult, because different expressions are needed to extract each one of them and
the generated logicsheet is more complex. Finally, examples 4 and 5 focus into
portions of ordered and unordered fragments of an XML section (namely the
3rd and 6th chapters of a book), so the population converges into solutions with
all the elements of a node (selecting all chapters of a book) due to the way the
fitness works. As can be seen in Figure 5, the evolution process starts priorizing
the individuals with all nodes present (that is, 0 nodes deleted). After this, the
algorithm tries to minimize the nodes not present in the output (Inserted in

1 All input and output files and programs used in this experiment are available from

our Subversion repository: http://tinyurl.com/6nxv8c
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Table 1. Number of times, out of 30 experiments, a solution is found (TF, Times

Finished) within the predefined number of generations and the average genera-

tions/standard deviation to find an optimal solution (or reach 300 generations) of

the XSLT tree structure and the XPath list structure.

Example TF XSLT Tree TF XPath List Gens. XSLT Tree Gens. XPath List

1 25 28 66.33 ± 106.85 74.23 ± 71.53

2 30 30 1.1 ± 1.29 8.1 ± 1.67

3 30 30 3.83 ± 2.90 17.6 ± 4.81

4 24 30 71.68 ± 107.24 28 ± 7.07

5 29 30 36.03 ± 50.19 27.7 ± 7.05

6 30 30 19.0 ± 11.12 36.7 ± 8.84

7 13 14 214.0 ± 112.90 231.17 ± 90.52

Figure 5). Since the length of the generated XSLT is not used to calculate the
fitness, this value increases in the period in which best individuals are not found.

When a solution was found, the number of generations and time taken to
find it also varies, as shown in Table 1. In general, the exploration/exploitation
balance seems to be biased towards exploration. Being such a vast and rough
search space makes that, after a few initial generations that create stylesheets
with a small difference from the target, mutations are the main operator at work.

Fig. 5. Evolution of the best fitness in an execution of example 4. The length of the

XSLT is not considered in the fitness calculation.

5 Conclusions and Future Work

In this paper we present a new version of an evolutionary algorithm designed to
search the XSLT logicsheet that is able to make a particular transformation from
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an input XML document into a desired output one. One of the advantages of
this application is that resulting logicsheets can be used directly in a production
environment, without the interaction of a human operator. It tackles a real-world
problem found in many organizations and it is open source software, available
from http://tinyurl.com/5lwjcn.

The performed experiments show that the usage of a simpler structure pro-
duces better results, using less operators. Also we have found that the search
space is particularly rough, with mutations in general leading to huge changes
in fitness. The hierarchical fitness used is probably the cause of having a big loss
of diversity at the beginning of the evolutionary search, leading to the need of
a higher level of explorations later during the algorithm run. This problem will
have to be approached considering explicit diversity-preservation mechanisms, or
by using a multiobjective evolutionary algorithm, instead of the one used now. A
deeper understanding of how different operator rates affect the results will also
be useful; for the time being, operator rate tuning has been very shallow, and
geared towards obtaining the result. In addition, obtained results can be used as
a baseline for future versions of the algorithm, or other algorithms for the same
problem. At any rate, unlike what was mentioned in the pioneering paper [6],
solutions can be found effectively and efficiently.

However, there are some other issues that should have to be addressed in fu-
ture papers. Firstly, using the DTD (associated to an XML file) as a source of
information for conversions between XML documents and for restrictions of the
possible variations or adding different labels in the XSLT to allow the building
of different kinds of documents such as HTML or WML. Another topic to adress
is testing evolution with other type of tools, such as a chain of SAX filters. Ob-
viously, testing different kinds and increasingly complex sets of documents, and
using several input and desired output documents at the same time, to test the
generalization capability of the procedure. Finally, to tackle difficult problems
from the point of view of a human operator: in general, the XSLT stylesheets
found here could have been programmed by a knowledgeable person in around
an hour, but in some cases, input/output mapping would not be so obvious at
first sight. This will mean, in general, increase also the XSLT statements used
in the stylesheet, and also in general, adding new types of operators.
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Abstract. This paper describes the design and implementation of the

Parallel Metaheuristics Framework (PMF), a C++ framework for the

construction of single and multiobjective metaheuristics utilizing Intel’s

Threading Building Blocks library to allow easy parallelization of com-

putationally intensive algorithms. The framework demonstrates a generic

approach to the construction of metaheuristics, striving to provide a gen-

eral representation of core operators and concepts, thus allowing users to

more easily tailor the system for novel problems. The paper describes the

overall implementation of the framework, demonstrates a case study for

implementing a simple metaheuristic within the system, and discusses a

range of possible enhancements.

1 Introduction

Many metaheuristics for optimization problems, and almost all aimed at multi-
objective optimization, exhibit a large degree of potential parallelism that can
be exploited to provide significant gains in execution speed. Historically, most
researchers have not focused on this potential gain. One prominent reason is
simply that such researchers are accustomed to running many separate trials of
each algorithm in order to report statistically significant results, and thus they
already have a free form of parallelism in the form of simply running multiple
independent trials at once.

However, in recent years, increases in processing power on the desktop have
come almost exclusively in the form of additional processing cores, while the
processing power of a single core has largely stagnated. This has led to an increase
in interest in technologies and techniques that enable programmers and users to
take fuller advantage of the parallel processing power on almost every desktop
and laptop. It is generally expected that this trend will only accelerate reaching
more and more cores in the next few years.

In 2007, Intel announced the release of their open source Threading Build-
ing Blocks (TBB) package. TBB provides a high level, task-oriented approach to
developing software to better utilize the many processing cores available in mod-
ern CPUs. This work describes the design and implementation of a framework
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for constructing parallel metaheuristics called, appropriately, the Parallel Meta-
heuristics Framework (PMF) which uses TBB to enable researchers to build
metaheuristics that take full advantage of the power of modern desktop and
server class processors.

The remainder of this document is arranged as follows. Section 2 briefly de-
scribes several existing packages and compares them to PMF with respect to
their design goals. In Section 3, the guiding principles driving the development
of PMF are put forth. Sections 4 and 5 briefly describe Intel’s TBB library with
respect to its usage in PMF. Section 6 details a case study: building a simple
genetic algorithm in PMF. Finally, Section 7 details areas of ongoing work with
PMF.

2 Previous Work

There are a number of other high-quality open source frameworks for exper-
imenting with different flavors of metaheuristics, each with their own focus
and strengths. In this section, some of the most popular packages are briefly
described.

ECJ [1], is one of the most complete packages available for research into
evolutionary computation. It includes particularly strong support for genetic
programming, but all manners of evolutionary algorithms are supported. ECJ
provides excellent support for parallel execution of the algorithms as well. How-
ever, the coverage of multiobjective optimization in ECJ is somewhat sporadic,
and the focus of ECJ is firmly on evolutionary methods, as opposed to general
metaheuristics including various forms of local search.

In the C++ world, ParadisEO [2] is a very good option for general purpose
metaheuristic research. It includes not only very complete support for numerous
multiobjective techniques, but also allows inclusion of several local search and
other methaheuristic algorithms. Furthermore, in the form of ParadisEO-MOEO
[3], the framework has been extended to provide support for parallel execution of
the search algorithms. However, much of the focus of the parallelism in Paradiseo-
PEO is intended to model parallel metaheuristics such as Island model Genetic
Algorithms rather than conventional algorithms executed in parallel.

3 The Parallel Metaheuristics Framework

PMF aims to serve a different role. By focusing exclusively on multicore par-
allelism as opposed to distributed multiprocessing, PMF aims to put a thinner
layer of complexity atop the well-known terminology that researchers and prac-
titioners are already familiar with. As well, TBB provides a fairly simple concur-
rency model which is used consistently throughout the framework, and it should
be easy for researchers to adapt their own algorithms using this framework. It
is the view of the author that there is a large opportunity, due to increases
in desktop computing power, for persons outside the normal academic research
environment to employ metaheuristics to solve important problems, using only



PMF: A Multicore-Enabled Framework 353

the desktop class computers already available. PMF attempts to fill this niche
by providing a simple configuration mechanism by which existing algorithms
may be evaluated, and by providing a simpler model of multicore parallelism
that can be exploited by practitioners without specialized training in concurrent
programming.

PMF is thus intended to fill a need within the metaheuristics community
for an accessible package providing relatively simple support for constructing
metaheuristics that take advantage of modern multicore processors, particularly
with respect to multiobjective optimization using hybridizations of multiple tech-
niques. The combination of, for example, multiobjective evolutionary algorithms
with directed local search methods has proven popular and effective on a number
of real world problems. PMF makes the process of building and experimenting
this type of algorithm in particular very simple. It requires very little awareness
on the part of the user of issues such as locking and synchronization which can
often obscure the details of the algorithms. The use of Intel’s Threading Building
Blocks package to abstract away as much of the parallelization code as possible
allows the user to concentrate on combining the ready-made modules in PMF
with their own custom code as simply as possible.

PMF adheres to other guiding principles as well. One such principle is that
all configuration information must be available at runtime in a simply expressed
form, and must be easily managed from within the code. All configuration is
thus performed through simple text files. In the author’s view, XML is too
cumbersome for the generally simple requirements of algorithm configuration.
Instead, PMF attempts to provide easy ways for the programmer to retrieve
configuration values in a completely type-safe way using template specializations.
Figure 3 shows an example of a typical configuration file used with PMF.

There are a few things to note about this sample file. All options are spec-
ified generally as keyword/value pairs, separated by either a colon (“:”) or an

# configuration file for running NSGA-II on

# an instance of the multiobjective QAP

algorithm = nsga2

encoding = permutation

problem = qap

problem_data = /path/to/data/file.dat

population_size: 100

terminator: evaluation_limit

max_evaluations: 100000

metric: evaluation_count

metric: generation_count

metric: hypervolume

hypervolume_reference_point: 5000000 5000000

trials: 10

Fig. 1. Sample PMF configuration file
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equals (“=”). Comments are allowed, and are considered to run from any “#”
character to the end of the line. The value portion of the configuration lines may
contain multiple values, denoting a list or vector, as in the case of hypervolume_-
reference_point. In addition, keywords may be repeated, in which case PMF
forms a list of values associated with that keyword in the order in which they
appear in the configuration file.

This system provides a great deal of flexibility while retaining a very simple
syntax. From the point of view of the programmer, a single (template) function is
provided with several specializations to handle retrieving values from the user-
specified configuration. Typically, all that is required is to declare a variable
of the desired type to hold the specified value, then pass the variable to the
parameter_value function, along with the keyword in question.

Figure 3 shows example code reading a value from the configuration file,
and demonstrates a number of concepts. In PMF, all accepted keywords are
defined in a dedicated namespace so as to serve as a convenient source of in-code
documentation. Thus the expression, keywords::PROCESSORS refers to a string
defined in that namespace to denote the parameter name used to specify the
number of processors available. The second argument is the variable which will
be used to store the retrieved value. Note that the parameter_value function
is a template which provides instantiations for all supported data types (most
integral and floating point types, bool, and standard template library lists and
vectors of supported types). PMF attempts whenever possible to maintain strong
and strict type safety; it encourages the use of unsigned types when appropriate,
const correctness, etc, and the specification of num_processors as unsigned is
an example of this goal. Finally, the third parameter indicates that specification
of this value is optional. In the case of the number of processors, the default
behavior is to allow the TBB library to apportion threads as it likes.

unsigned int num_processors;

configuration::parameter_value(keywords::PROCESSORS,

num_processors, false);

Fig. 2. Code to read a value from the configuration file

Out of the box, PMF includes support for a large group of optimization al-
gorithms and techniques. In single objective optimization, the broad class of
generational and steady-state evolutionary algorithms are supported, including
many popular operators for selection, crossover, mutation, and replacement or
environment selection. Several local search operators are also available, and may
be embedded either within a population based approach such as one of the evo-
lutionary algorithms or within one of a number of local search containers that
implement strategies such as random restarts, simulated annealing, and tabu
search algorithms.
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Multiobjective optimization is supported through the NSGA-II, SPEA2, and
ε-MOEA algorithms. Again, each supports the incorporation of local search tech-
niques using any of the supported implementations. In addition, multiple options
are available concerning how the local search operators adapt the multiple objec-
tives of the problem into a single-objective function suitable for hill climbing be-
havior. In addition, several multiobjective local search strategies are supported.

PMF treats all problems as multiobjective, but provides comparators that can
single out the first or any specific objective or scalarize the objectives to yield a
single valued function. These mechanisms allow several simple means to provide
classical single objective optimization.

4 Overview of TBB

Threading Building Blocks, or TBB, is Intel’s attempt at a C++ library that ab-
stracts much of the tedium of developing parallel versions of certain algorithms
[4]. As evidenced by the name, TBB is a thread-oriented library, as opposed
to one aimed at distributed memory parallelism such as MPI. TBB provides
template functions implementing parallel algorithms such as parallel_for,
parallel_while, and parallel_reduce, and also more fine-grained concepts
related to parallelism such as locks and atomic types. To truly derive the most
benefit from TBB, it is expected that the programmer will do as much work
as possible within the specified parallel algorithms, resorting to manual locking
and synchronization only when necessary.

As computers have continued to increase in performance, metaheuristics and
optimization in general have become available to a wider audience. Many prac-
titioners who could benefit from optimization will be limited to desktop class
hardware, and without the support infrastructure to help manage the complexity
of massively parallel clusters. Multiprocessing is notoriously difficult, and with-
out this support infrastructure, the problems of writing correct multithreaded
code for the desktop will likely be difficult to overcome for many smaller orga-
nizations. TBB aims to help solve this problem by removing as much manual
intervention as possible from the process of writing multithreaded code. As such,
it is hoped the PMF can provide a base on which new problems and algorithms
may be built while requiring a minimum of explicit thread management. In
practice, this means expressing metaheuristics in terms of the building blocks
provided by the TBB library.

5 Evolutionary Algorithms and the Reduce Operator

In PMF, most forms of evolutionary algorithms are expressed as instances of
the parallel_reduce function. In functional programming languages, reduce
is a well-known function which combines a sequence of values into a single value
through repeated application of a specified operator. For example, given the a
hypothetical functional language, an expression such as
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reduce + 0 [1,2,3,4,5]

generates an expression such as

(((((0+1)+2)+3)+4)+5)

Note that the initial zero in the expression comes from the second argument
passed to the reduce function. In essence, reduce simply applies the given op-
erator to the given primer argument and the head of the specified list. It then
applies the operator to the just computed return value and the next element from
the list, continuing in this fashion until the list has been exhausted, returning
the result of the final application of the given operator.

One important thing to notice about the expansion of the reduce function
is that, at least for the case of addition, the operator imposing the reduction is
associative, and thus we are free to perform the calculations in any equivalent
grouping. One such grouping might be expressed as

f [1,2,3,4,5] = ((0+1)+2)+((3+4)+5)

Expressed in this manner, we see an obvious opportunity for parallelism. A
dual-core machine could perform the first “mini-reduction” on one core while
simultaneously performing the second on the other core. With no communication
overhead, the speedup could be perfectly linear.

The only remaining step is to specify how the algorithm is to combine the
results of the two distinct reductions to obtain the correct solution. In the case
of our simple addition, the answer is trivial. However, we are free to use any
method of combining the results of the independent parallel reductions to obtain
the desired solution.

At this point, it is worthwhile to step back and consider a canonical evolu-
tionary algorithm. The basic steps of such an algorithm are shown in Listing 5.
Consider the body of the while loop. The basic form is that we perform some
initial setup (creating the child population), enter a for loop in which the evo-
lutionary operators are repeatedly applied to generate the offspring population,
and then we consult the replacement operator to combine the parent and child
populations into the next generation’s parent population.

In TBB terms, we could express the inner for loop as a straightforward in-
stance of parallel_for, but each running thread would then need to coordinate
access to the shared child population. Another option is thus to formulate the
algorithm in terms of a parallel_reduce. Unlike the simple example above in-
volving addition over a list of numbers, in this case two different operators are
needed. The first must apply a single iteration of the inner GA loop, producing
two offspring which are inserted into the child population local to that thread.
The second operator is needed to combine all the thread-local child populations
back into a single population that can be passed to the Replacement function to
produce the next generation.

Because parallel_reduce (and all the other algorithms in TBB) are imple-
mented as template functions, we must arrange some way to pass the “block”
of code implementing the GA loop into the function. TBB, like the STL, makes
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Algorithm 1. The Canonical Evolutionary Algorithm
1: Generate initial population P of size n
2: while not done do
3: Create child population P ′

4: for i ← 1, n/2 do
5: (p1, p2) ← Selection(P )

6: (c1, c2) ← Crossover(p1,p2)

7: c1 ← Mutate(c1)
8: c2 ← Mutate(c2)
9: P ′ ← P ′ ∪ {c1, c2}

10: end for
11: P ← Replacement(P, P ′)
12: end while

heavy use of functors for this purpose. A functor in C++ is simply a class that
provides operator(), thus allowing instances of the class to be called as func-
tions. The basic model in TBB is thus to encapsulate all logic that we wish to
be executed in parallel inside of a C++ functor. Any shared resources must be
available inside the functor, and if the resource must be modified, we must ar-
range for a new copy to be allocated inside each copy of the functor. The copied
resources may then be built independently in each thread, and TBB will call
the functor’s join method after all threads have completed, at which time the
shared resource can be combined back into a single unified object.

This model of parallelism is highly adapted for the case of generational par-
allelism, i.e., algorithms which partition the work done during each generation
across multiple cores. PMF has a strong focus toward hybrid algorithms, and this
model of parallelism is especially useful in algorithms that embed time consum-
ing local search algorithms inside a larger generational algorithm. Parallelization
of the evaluation function, for example, is certainly possible, but PMF does not
currently provide special support to address this issue. In the next section, we
will demonstrate the process of building algorithms in TBB by walking through
the implementation of the canonical genetic algorithm.

6 Case Study: The Simple GA in PMF

Implementing a new optimizer in PMF consists primarily of two steps. First, we
must define the high level skeleton of the algorithm. Ideally, we need to express
the algorithm in terms of repeated applications of some inner loop, the iterations
of which may be performed in parallel. For the classic simple genetic algorithm,
this task is fairly easy. As shown in Listing 5, this algorithm consists of a num-
ber of iterations of a loop which performs the defined genetic operators to fill a
child population which becomes the input to the next iteration of the loop. We can
thus parallelize the execution of the genetic operators.Using theparallel_reduce
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void simple_ga::run()

{

while(!terminate())

{

population offspring(m_pop.size());

// note we pass pointers to ourself, our population,

// and copies of pointers to each genetic operator

simple_ga_loop loop(this,&m_pop,m_prob,m_sel_op,m_cross_op,

m_mut_op);

// for simplicity, only show TBB’s automatic method of

// apportioning threads

parallel_reduce(blocked_range<size_t>(0, m_pop.size()/2),

loop,auto_partitioner());

// after all threads have been joined, copy the final

// child population created by joining each thread

copy(loop.offspring().begin(),loop.offspring().end(),

back_inserter(offspring));

m_rep_op->merge(m_pop, offspring, m_pop);

iteration_completed(m_pop);

}

}

Fig. 3. The simple GA control class. (from simple_ga.cpp).

template, we can then join the resulting partial child populations into a single unit
in preparation for the next iteration of the loop. Figure 6 shows the code required
to set up the basic skeleton of the algorithm. (Note that for brevity, the declaration
and initialization of the genetic operators has been elided.)

The basic structure of this method is very simple. It creates a new child
population, then initializes a functor object to perform the generation of offspring
in parallel. Because a parallel_reduce is used, TBB will call the functor’s join
method before returning control to the main loop, and this method will be used
to construct a single child population. That child population is then copied into
the local population and merged using whatever replacement operator the user
has specified (through the m_rep_op variable).

The work of generating the child population is performed inside the functor,
shown in Figure 6 below. Note that instead of looping over the entire parent
population, TBB splits the iteration into disjoint blocks represented by the TBB
type blocked_range. Inside the functor, we then iterate over the range passed to
us by TBB. The important part to notice in the loop functor is that m_offspring
is not a pointer to a shared resource. Rather, each copy of the functor creates
its own local population. In the join method of the functor, which TBB will
repeatedly call until only one such object remains, the offspring are combined
into a single population. It is this unified population which is accessed by the
outer loop when all threads have finished.
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void simple_ga_loop::operator()(const blocked_range<size_t>& r)

{

m_sel_op->set_population(m_pop);

for(size_t i=r.begin(); i!=r.end(); ++i)

{

candidate p1 = m_sel_op->apply();

candidate p2 = m_sel_op->apply();

candidate c1 = p1;

candidate c2 = p2;

m_cross_op->apply(p1, p2, c1, c2);

m_mut_op->apply(c1);

m_mut_op->apply(c2);

m_prob->evaluate(c1);

m_ga->evaluation_completed(c1);

m_prob->evaluate(c2);

m_ga->evaluation_completed(c2);

m_offspring.add(c1);

m_offspring.add(c2);

}

}

void simple_ga_loop::join(simple_ga_loop& that)

{

for(unsigned int i=0; i<that.m_offspring.size(); ++i)

m_offspring.add(that.m_offspring[i]);

}

Fig. 4. The simple GA TBB loop functor. (from simple_ga.cpp).

7 Conclusions and Future Work

PMF provides a ready-to-use system that implements a number of useful opti-
mization algorithms in a form suited for efficient execution on today’s multicore
hardware. In addition, it provides a reasonable simple means by which new prob-
lems and optimization techniques may be incorporated using only knowledge of
standard C++ constructs.

However, there are definite areas in which improvements can be made. While
PMF performs very well, there is some overhead in the mechanism by which
it supports arbitrary encodings. An earlier version of the software relied on
extremely heavy use of C++ template metaprogramming techniques and type
traits to automatically infer at compile time the correct type of numerous pa-
rameters. The result was that there was a statistically significant increase in
performance in the earlier system. However, the usability of the earlier system
suffered due to the drawbacks inherent in extensive use of template metapro-
gramming in C++. It remains an open question if there is a way to reclaim
some of this performance without incurring the most severe of these penalties.
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Another issue in PMF is that the focus on generational parallelism means
that the framework provides little effective support for certain classes of algo-
rithms. A principled and consistent mechanism for providing additional forms
of parallelism is needed to allow maximum flexibility in extending PMF.

PMF has an extremely flexible method of providing performance metrics and
termination criteria, but by nature, this type of information demands global
access. Particularly for researchers making comparisons between algorithms, it is
important that, for example, if we specify a maximum number of fitness function
evaluations, that the algorithm halt in precisely that allotment of evaluations.
However, this means that each thread must have shared access to these global
pieces of information. TBB provides atomic variables and locking primitives, and
PMF uses those to ensure data consistency, but this imposes a slight performance
hit that becomes more significant as more and more cores are enabled. Thus a
further avenue for improvement is to implement a generic and customizable
mechanism by which the trade-off between absolute accuracy in the metrics and
the inherent contention of resources can be managed by the user.

Finally, there are dozens of compelling search and optimization techniques
available that can be incorporated into PMF. The current focus of PMF is on
hybrid metaheuristics for multiobjective optimization, which implies a stronger
representation in the areas of multiobjective evolutionary algorithms and local
search techniques. However, additional paradigms are needed to provide a more
complete package for researchers and practititions to build upon.

PMF is available on Github (http://github.com/˜deong/pmf ) under a non-
restrictive BSD license. For length requirements, this paper omitted detailed
performance measures. The reader is encouraged to download the PMF package
and experiment with the built-in algorithms and problems to get a complete
understanding of the performance characteristics of the framework.
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Abstract. A parallel evolutionary approach of Compaction Problem is

introduced using MapReduce. This problem is of interest for VLSI testing

and bioinformatics. The overall cost of a VLSI circuit’s testing depends

on the length of its test sequence; therefore the reduction of this sequence,

keeping the coverage, will lead to a reduction of used resources in the

testing process. The problem of finding minimal test sets is NP-hard.

We introduce a distributed evolutionary algorithm (MapReduce Paral-

lel Evolutionary Algorithm−MRPEA) and compare it with two greedy

approaches. The proposed algorithms are evaluated on randomly gener-

ated five-valued benchmarks that are scalable in size. The MapReduce

paradigm offers the possibility to distribute and scale large amount of

data. Experiments show the efficiency of the proposed parallel approach.

The project, containing the Hadoop implementation can be found at:

http://sourceforge.net/projects/dcpsolver/ [10].

Keywords: Data Compaction, Static Test, Parallel Algorithm, Evolu-
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1 Introduction

Compaction refers usually to the reduction of a sequence of data with no loss
of information. In our case, there is no need to perform the inverse operation
(decompactation/decompression) for obtaining the initial data. We need to com-
pact a data sequence by maintaining the property of coverage (the compacted
data must cover the initial one). As a real-world problem, there is the need to
compact vectors of tests for the VLSI, so that the faults possibilities are com-
pletely covered [2,3]. Unlike dynamic compaction, static compaction does not
require any modifications to the test generation procedure. Since dynamic com-
paction is based on heuristics and does not achieve the minimum test length,
static compaction is useful even after dynamic compaction has been used, for
further reducing the length of the test sequence [4]. There is a dual motivation for
studying test compaction. First, by reducing test sequence length, the memory
requirements during test application and the test application time are reduced.
Second, the extent of test compaction possible for deterministic test sequences
indicates that test pattern generators spend a significant amount of time gener-
ating test vectors that are not necessary. The compacted test sequences provide
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a target for more efficient deterministic test generators. The scope is to minimize
the amount of data to test a circuit. On the other hand, in biology, there is the
need to reconstruct DNA-sequences, based on the fact that compacted sets of
sequences have to be minimal. These DNA-sequences contain only the characters
’A’,’ ’C’, ’G’, ’T’,’ X’, where ’X’ could initially have been any of the DNA-Acids
(A−adenine, C−cytosine, G−guanine, T−thymine), so it plays the same “Don’t
care” role [7].

2 Problem Description

Consider a set of test sequences T = S1,S2, . . . ,Sn detecting (covering) the set of
faults F = {f1, f2, . . . , fm} of a circuit. Every test sequence Si = {v1, v2, . . . , vLi},
i = 1, . . . ,n is an ordered set of Li test vectors v1, v2, . . . , vLi where Li is the
length of Si. A fault fi within a sequence Sj has the detection cost dij equal to
the number of vectors from the beginning of the sequence until fi becomes de-
tected in Sj . The test compaction problem is to find a collection of subsequences,
i.e. subsets of vector sequences, so that all faults in F are covered, and the test
length of the collection is a minimum. This problem can be reformulated as a
set covering problem, which is NP-complete.

Definition 1 (Compaction Set (CS)). Every test is seen as a string which
contains symbols from the set CS = {‘0’, ‘1’, ‘U’, ‘Z’, ‘X’}.
Definition 2 (Compatible symbols and merge-operation). Two symbols
c1 and c2 are compatible if they are the same or if one of them is ’X’. We
will denote this relation with ∼= and its negation with �∼=. ’X’ is the “Don’t Care”
character. If two symbols are the same, then the merged character is one of them,
otherwise it is the one different from ’X’. The compatibility/merge-relation is
presented in Table 1 ( ‘∗’ means no compatibility).

Table 1. Compatibility/merge-relation

∼= ‘0’ ‘1’ ‘U’ ‘Z’ ‘X’

‘0’ ‘0’ ‘∗’ ‘∗’ ‘∗’ ‘0’

‘1’ ‘∗’ ‘1’ ‘∗’ ‘∗’ ‘1’

‘U’ ‘∗’ ‘∗’ ‘U’ ‘∗’ ‘U’

‘Z’ ‘∗’ ‘∗’ ‘∗’ ‘Z’ ‘Z’

‘X’ ‘0’ ‘1’ ‘U’ ‘Z’ ‘X’

Definition 3 (Compatible tests and merge operation). Two given tests
are compatible if they have the same length and all corresponding symbols (on
the same position) in pairs are compatible. The merged test is obtained by substi-
tuting every symbol sequentially with the merged symbol from the corresponding
position in the two given strings. We will denote this relation also with ∼= and
its negation with �∼=.
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Example 1. The tests t1 = 10ZX0XU and t2 = X0Z10UU are compatible
because t1(i) ∼= t2(i) for all i = 1, . . . , 7 and Merge(t1, t2) = 10Z10UU .

Definition 4 (Coverage Set). For two given sets of tests S1 = {t11, t12, . . . , t1i}
and S2 = {t21, t22, . . . , t2j}, S2 is a coverage set of S1 if for every test t in S1

there is a compatible test in S2. An example is given in Figure 1.

Fig. 1. Examples for VLSI and bioinformatics: S2 is a coverage set for S1. a) S1 contains

15 tests, each having a length of 8. The coverage set contains 5 tests, i.e. its dimension

is 33.33% from dimension of S1. b) S2 is a coverage set for S1. S1 contains 17 tests, each

having a length of 11. The coverage set contains 5 tests, i.e. its dimension is 29.41%

from dimension of S1.

Definition 5 (Test Compaction Problem (TCP)). Given is a set of tests
S1 = {t11, t12, . . . , t1i}, every test t1k, for k = 1, . . . , i, having the same length.
Find a coverage set S2 = {t21, t22, . . . , t2j} of S1, such that the cardinality of S2

is minimal over all coverage sets of S1.

TCP can be generalized by considering any alphabet which contains a “Don’t
Care” symbol. We name this generalization Data Compaction Problem (DCP).

3 Recent Work

The optimal method and two greedy variants, GRBT (Greedy Binary Tree) and
GRNV (Greedy Naive), are proposed in [5,8]. The transformation is made based
on a single sequence, where the start sequence is the given one. At each step, two
compatible sequences are merged, if they exist. Experiments show much better
GRBT results versus GRNV for small compaction rates, e.g. around 20%—
40% compactions from the initial sequence. Also the execution times are better;
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therefore GRBT is the method of choice in such cases. A genetic approach,
GATC (Genetic Algorithm for Test Compaction), based of cloned individuals
and a mutation operator, is introduced in [6]. Here, the fitness function is the
total number of “Don’t care” in the sequence. It provides some better results
than GRBT. As expected, the smaller the compaction rate, the better the quality
results. The biological background and many-sided experiments are presented in
[7], especially the behaviour of both greedy algorithms for different compaction
rates.

4 Parallel Evolutionary Algorithm Using MapReduce

Since the optimal algorithm is exponential, it can be applied in practice only for
small dimensions of input data [5,8]. Our proposed parallel evolutionary algo-
rithm is based on GATC [6] and uses Hadoop. This is the OpenSource MapRe-
duce [1] framework implementation from Apache [9], a batch data processing
system for running applications, which process vast amounts of data in paral-
lel, in a reliable and fault-tolerant manner on large clusters of compute nodes,
eventually running on commodity hardware. It comes with status and moni-
toring tools and offers a clean abstraction model for programming, supporting
automatic parallelization and distribution. Hadoop comes with a distributed file
system (HDFS ) that creates multiple replicas of data blocks and distributes
them on compute nodes throughout the cluster to enable reliable, extremely
rapid computations. The compute and storage nodes are typically the same.
This allows the framework to schedule tasks effectively on the nodes where data
is already present, resulting in very high aggregate rate across the cluster. The
framework consists of a single master JobTracker and one slave TaskTracker per
compute node. The master is responsible for scheduling the tasks for the map-
and reduce-operations on the slaves, monitoring them and reexecuting the failed
tasks. The slaves execute the tasks, as directed by the master.

The applications specify the input/output locations, supply map and reduce
functions and eventually invariant (contextual) data. These comprise the job con-
figuration. The Hadoop job client then submits the job (Java byte code packed in
a jar-archive) and configuration to the JobTracker, which then distributes them
to the slaves, schedules the map-/reduce- tasks, and monitors them, providing
status and diagnostic information to the job client.

A MapReduce job splits the input data into independent chunks (splits), which
are then processed by the map tasks in a completely parallel manner. The frame-
work sorts the maps outputs and forwards them as input to the reduce tasks.

The parallel evolutionary algorithm runs for a given number of generations.
For each generation, it generates a random number of permutations of the “cur-
rent” set of sequences, splits the set of permutations in several subsets (map
operation) and executes GATC [6] on each of them during the reduce opera-
tion. Afterwards, it collects the best individuals (permutations) resulted on each
Reducer node in the cluster and concatenates them. The result constitutes the
new set of sequences for the next generation. The pseudocode is presented in
Figure 1.
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Fig. 2. MapReduce Dataflow

The map operation associates for each generated permutation a subset index
between 0 and reductionFactor−1 randomly, as output key. This index represents
the partition for reduction. In the Shuffle&Sort phase, the sequences get sorted
after their indices, and each reducer node receives and executes GATC in one
call over its subset of sequences having the same index.

5 Implementation Details

The Hadoop application for DCP is available as the Open Source project dcp-
Solver on sourceforge.net[12]. The Java binary application and its dependent li-
braries are archived in dcpSolver.jar. The archive’s entry point (dcpsolver.DcpSol-
verDriver) is a Hadoop program driver that registers the DcpSolver’s application
(dcpsolver.DcpSolverJob). The start command is hadoop jar dcpSolver.jar, and
it gets the name of the DcpSolver’s application: dcp.

DcpSolver uses Apache Commons CLI2 for parsing the command line param-
eters. The command:

hadoop jar dcpSolver.jar dcp -h

displays the help for all available options. If there is the need to build the dcp-
Solver, one can either check out the Java sources with subversion from

https://dcpsolver.svn.sourceforge.net/svnroot/dcpsolver
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Algorithm 1. ALGORITHM MRPEA DCP
initialize(currentSequenceSet)

initialize(mutationRate)

initialize(mutationRate)

for (i ← 1; i ≤ numGenerations; step 1) do
population ← GenerateRandomPermutations(currentSequenceSet)

def MRPGA TCP MAP(seqIndex, sequence)=

context.write(random(0.. reductionFactor−1), sequence)

def MRPGA TCP REDUCE(subsetIndex, Iterable<Sequence>)={
//run GATC on subset
numMutations ← populationSize·mutationRate

applyMutationOperators(numMutations)

calculateFitness(allNewIndividuals)

removeWorstIndividuals(populationSize/2)
completeWithCopyIndividuals(populationSize/2)
context.write(subsetIndex, best element(individuals))

}
job ← NewJob(MRPGA TCP MAP, MRPGA TCP REDUCE)

job.configuration.setNumReduceTasks(reductionFactor)

job.submit and wait

currentSequenceSet ← concatenate reducers parts(job)

end for
return currentSequenceSet

Fig. 3. Implementation of dcpSolver with Java and Hadoop
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or browse them at

http://dcpsolver.svn.sourceforge.net/viewvc/dcpsolver/.

For compiling the Java code there are needed the Java libraries Apache Commons
Math Version 2.0, Apache Commons CLI2 and JUnit 4 (for test units).

6 Experimental Results and Statistical Tests

We generated sets of data artificially with different parameters. We varied the
dimension of the sequences set (n), the size of the sequences (k), the compaction
factor (cf) - i.e. the approximately expected percentage of the compacted se-
quence, and the maximum number of random generated clones (e.g. 100, 200).

Fig. 4. Evolution of a number of cases with GRBT<GRNV, GRBT>GRNV and

GRBT=GRNV for a set of 2583x19 experiments with 100 ≤ n ≤ 1100, 25 ≤ k ≤ 1025,

and compaction factor = 5, 10, 15, . . . , 95

(a) (b)

Fig. 5. a) Distribution on intervals of the difference GRBT−GRNV within 49077

experiments with 100 ≤ n ≤ 1100, 25 ≤ k ≤ 1025, and compaction factor

= 5, 10, 15, . . . , 95; b) Distribution of the percentage of results within 9915 experi-

ments with GRBT<GRNV and GRBT execution time smaller as the GRNVś one, the

reference (blue) is the set of tests where GRBT provides better results as GRNV
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(a) cf = 25 (b) cf = 35

(c) cf = 45 (d) cf = 55

Fig. 6. Experimental results for data sets with n = 100, . . . , 1000, step 100, k =

50, . . . , 550, step 100. The bars are the differences GRNV−MRPEA (red) and

GRBT−MRPEA (green). All over the X-axis they indicate better results for the

MRPEA approach. MRPEA is in the most cases better than GRNV. The bigger the

compaction factor, the better the quality of MRPEA results versus GRBT.

(a) 50 runs, cf = 45, n = 1000, k = 2000 (b) 150 runs, cf = 45, n = 100, k = 200

Fig. 7. Student T-Tests and mean values for sets of experiments show the quality

of results of the MRPEA algorithm versus GRBT and GRNV. Comparisons in pairs

(GRBT vs. MRPEA) and (GRNV vs. MRPEA) induce the rejection of null hypothesis

at significance level = 0.05.

First we ran the two greedy algorithms GRBT and GRNV [5] on 49077 var-
ious artificial generated instances with 100 ≤ n ≤ 1100, 25 ≤ k ≤ 1025,
and compaction factor = 5, 10, 15, . . . , 95. The GRBT is better the smaller the
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compaction factor is. For a compaction factor bigger than 50%, the GRNV is
sensibly better.

In Figure 5 we show the mean values for the difference GRBT−GRNV (as
percentage of compacted sequence) for all experiments.

Table 2. Selective results for the experiments from Fig. 6, (a) and (c)

n k cf = 25 cf = 45

MRPEA(%) GRBT(%) GRNV(%) MRPEA(%) GRBT(%) GRNV(%)

100 50 31.00 35.00 31.00 33.00 34.00 34.00

100 550 26.00 27.00 27.00 41.00 41.00 41.00
200 50 28.50 30.00 32.00 45.50 48.00 46.50

200 550 23.50 26.00 25.00 47.50 48.00 47.50
300 50 26.00 26.67 30.00 45.00 46.33 46.67

300 550 22.67 24.00 23.67 40.33 40.67 41.00

400 50 29.00 30.50 32.25 42.25 42.00 45.50

400 550 23.25 22.00 24.75 40.75 41.75 41.25
500 50 21.60 24.00 26.40 47.20 48.20 48.20

500 550 23.40 21.40 25.40 37.80 37.40 38.20

600 50 26.33 27.67 30.33 48.00 48.17 49.67

600 550 23.17 22.67 24.67 40.00 40.33 40.00
700 50 31.71 30.57 33.00 48.71 48.00 49.86

700 550 27.29 25.14 29.71 42.00 41.71 43.14

800 50 32.88 32.38 36.88 47.25 47.50 48.13

800 550 26.38 25.88 27.00 45.00 45.38 45.88

900 50 28.89 26.44 32.00 49.00 49.56 49.67

900 550 27.00 26.11 27.78 40.56 39.67 41.33

1000 50 28.20 28.80 33.40 49.20 48.80 48.40
1000 550 25.80 21.90 27.40 42.70 43.10 42.90

The experiments were done on a Hadoop cluster with 2 machines. The first
(confi-gured both as Hadoop master and slave) had 4 CPUs Dual Core AMD
Opteron(tm) 280 2.4 GHz and 16G RAM. The second (configured as slave) had
4 CPUs Intel(R) Xeon(TM) CPU 2.80GHz and 12G RAM.

7 Conclusions and Future Work

After a formal description of a compaction problem, we described an efficient
distributed implementation using the MapReduce paradigm−MRPEA DCP. Ex-
periments run on artificially generated five-valued benchmarks showed the effi-
ciency of proposed approach, especially for specific traits of data input. The
benchmarks are scalable in size, number of symbols and compaction factor, i.e.
the approximate expected percentage of the compacted sequence toward the
initial one. This one turns to be an important measure of the input data regard-
ing the applied method. In the experiments, first the most efficient proposed
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greedy approaches for the problem − GRBT DCP and GRNV DCP − are com-
pared, and some useful statistics are provided. An application was written for the
distributed algorithm using the Hadoop implementation for MapReduce [1,9].
This application, together with some benchmarks and statistics, is available as
Open Source project on sourceforge.net: http://sourceforge.net/projects/dcpsol-
ver/. Advantages of the Hadoop implementation are, among others the scalabil-
ity, the robustness, the fault toleration, the possibility to work on commodity
hardware, status reporting and monitoring, and performing the computation
where the data is. Experiments have to be done for larger data sets, testing dif-
ferent distributions for the input sequences, as well some alternative variants for
the map or reduce phases. Applying the proposed algorithms on real-data, e.g.
from VLSI or bioinformatics, could bring some further knowledge regarding their
efficiency and applicability in practice. Further, the problem could be studied as
a multi-valued logic one, eventually with alternative relations for the symbols.
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Abstract. In recent years, there has been a growing interest in ad-

dressing dynamic optimization problems (DOPs) using evolutionary al-

gorithms (EAs). Several approaches have been developed for EAs to in-

crease the diversity of the population and enhance the performance of the

algorithm for DOPs. Among these approaches, immigrants schemes have

been found beneficial for EAs for DOPs. In this paper, random, elitism-

based, and hybrid immigrants schemes are applied to ant colony opti-

mization (ACO) for the dynamic travelling salesman problem (DTSP).

The experimental results show that random immigrants are beneficial for

ACO in fast changing environments, whereas elitism-based immigrants

are beneficial for ACO in slowly changing environments. The ACO algo-

rithm with hybrid immigrants scheme combines the merits of the random

and elitism-based immigrants schemes. Moreover, the results show that

the proposed algorithms outperform compared approaches in almost all

dynamic test cases and that immigrant schemes efficiently improve the

performance of ACO algorithms in DTSP.

Keywords: Ant Colony Optimization, Immigrants Schemes, Dynamic

Optimization.

1 Introduction

Ant colony optimization (ACO) algorithms emulate the behaviour of real ant
colonies when they search for food from their nest to food sources. Ants commu-
nicate using their pheromone trails in order to complete this task as efficiently as
possible. ACO algorithms have proved to be able to solve different optimization
problems in real-world applications [2,3]. Traditionally, researchers have been
focused on stationary optimization problems, where their environment remains
fixed during the execution of the algorithm. However, many real-world applica-
tions have dynamic environments. The problem then becomes more challenging
since the optimum needs to be tracked when dynamic changes occur [12].

Traditional ACO algorithms have been designed for stationary optimization
problems [3], and may not be sufficient anymore for DOPs. This is due to the fact

R. Schaefer et al. (Eds.): PPSN XI, Part II, LNCS 6239, pp. 371–380, 2010.
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that the pheromone trails of the previous environment will not make sense for a
new environment, after a change occurs. A simple way to address this problem
is to re-initialize the pheromone trails and consider every change as the arrival
of a new problem instance which needs to be solved from scratch. Unfortunately,
this restart strategy is computationally expensive and usually not efficient.

Recently, developing ACO algorithms for DOPs has attracted a lot of atten-
tion since they can be useful for real-world applications. Thus, more specialized
strategies have been proposed to maintain the high quality of output efficiently,
which include local and global restart strategies [8], pheromone manipulation
schemes to maintain or increase diversity [4], and memory-based approaches
[6,9]. These methods have been applied on the dynamic travelling salesman prob-
lem (DTSP) due to its importance for many real-world applications. One of the
most efficient and well-studied methods is the memory-based version of ACO,
known as the population-based ACO (P-ACO) algorithm [7]. It has a different
framework from a traditional ACO algorithm since it maintains a population list
(memory), which stores the best ant of every iteration, and is used to generate
the pheromone trails. Taking a closer look at P-ACO, we see that it has the
characteristics of a genetic algorithm (GA) [11] because of the memory. Thus,
it inherits the disadvantage of a GA when a dynamic change may affect the
individual on the genotypic level, which needs to be repaired. Often, the repair
procedure is computationally expensive.

As we have seen on many GAs, immigrants schemes are advantageous when
applied to DOPs [14,15,17]. Immigrants schemes enable the algorithm to main-
tain the diversity of the population to a certain level, by introducing new indi-
viduals into the current population. In this paper, we apply immigrants schemes
into P-ACO. However, instead of using a long-term memory as in P-ACO, we
use a short-term memory, where all the new ants replace the old ones to form a
new population. Later on, a percentage of the worst ants are replaced by immi-
grants. We introduce three types of immigrants, which are traditional random,
elitism-based, and hybrid immigrants. The experimental results show that immi-
grant schemes enhance the performance of ACO into DOPs. However, different
immigrants schemes are advantageous under different environmental conditions.

The rest of the paper is organized as follows. Section 2 describes the standard
ACO and P-ACO algorithms. Moreover, it describes how they are applied to the
DTSP. Section 3 describes our proposed approaches where we apply immigrants
schemes into P-ACO. Section 4 describes the experiments carried out by com-
paring our proposed approaches with P-ACO. Finally, Section 5 concludes this
paper with directions for future work.

2 ACO for Dynamic Environments

2.1 Standard ACO

The traditional ACO algorithm consists of a population of μ ants, where each ant
consists of two modes, the forward mode and the backward mode. Initially, all
ants are placed on a randomly selected city for a TSP and all pheromone trails
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are initialized with an equal amount of pheromone. All ants on their forward
mode choose the next city based on pheromones and some heuristic information
using a probabilistic decision rule, which is defined as follows:

pk
ij =

[τij ]
α [ηij ]

β∑
l∈Nk

i
[τil]

α [ηil]
β
, if j ∈ Nk

i (1)

where τij is the existing pheromone trail between city i and city j, ηij is the
heuristic information available a priory, which is defined as 1/dij and dij is
the distance between the cities. Nk

i denotes the neighbourhood of cities of ant k
when being on city i. α and β are the two parameters that determine the relative
influence of pheromone trail and heuristic information, respectively.

Later on, all ants proceed to their backward mode by retracing their solutions
and deposit pheromone according to their solution quality on the corresponding
trails. However, before adding any pheromone, a constant amount of pheromone
is deduced from all trails due to the pheromone evaporation, which is defined as:

τij ← (1 − ρ) τij , ∀ (i, j), (2)

where 0 < ρ ≤ 1 is the rate of evaporation. Reducing the pheromone values
enables the algorithm to forget bad decisions made in previous iterations [3].
After evaporation, all ants deposit pheromone to the corresponding trails of
their tour as follows:

τij ← τij + Δτk
ij , ∀ (i, j) ∈ T k, (3)

where Δτk
ij = 1/Ck is the amount of pheromone that ant k deposits and Ck is

the cost of the tour T k.

2.2 Population-Based ACO

The P-ACO algorithm is the memory-based version of an ACO algorithm, which
was first applied on the stationary TSP [7]. It differs from the standard ACO al-
gorithm described above since it follows a different framework. Generally, the al-
gorithm maintains a population of solutions, which is used to update pheromone
trails without any evaporation.

The initial phase and the first iterations of the P-ACO algorithm work in
the same way as with the standard ACO algorithm. The pheromone trails are
initialized with an equal amount of pheromone and the population list of a size
K is empty. For the first K iterations, the iteration best ant deposits a constant
amount of pheromone using Eq. (3) where Δτk

ij = (τmax − τinit)/K. Here, τmax

and τinit denote the maximum and initial pheromone amount, respectively. This
positive update procedure is performed whenever an ant enters the population
list. On iteration K+1, the ant that has entered the population list first needs to
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be removed in order to make room for the new one, and thus, a negative update
to its pheromone trails is done, as follows:

τij ← τij − Δτk
ij , ∀ (i, j) ∈ T k, (4)

where Δτk
ij is defined as in the positive update above.

This strategy is based on the Age of ants. However, other strategies have also
been proposed by researchers, such as Quality and Prob [6]. From the experi-
mental results in [6], the default Age strategy is more consistent and performs
better than the others, since the other strategies have more chances to maintain
identical ants into the population list, which leads the algorithm to the stag-
nation behaviour. This is due to the fact that high levels of pheromone will be
generated into a single trail and dominates the search space. Moreover, we have
seen the importance of keeping the pheromone trails into a certain level from the
Max-Min Ant System (MMAS) [13], which is one of the state-of-the-art ACO
algorithms on stationary problems.

2.3 Response to Dynamic Changes

Theoretically, ACO algorithms can adapt to dynamic changes since they are in-
spired from nature, which is a continuous changing environment [12]. In practice,
they can adapt by transferring knowledge from past environments [1]. So far, the
description of ACO algorithms above has been made assuming stationary envi-
ronments. Considering the DTSP, ACO needs to be modified in order to adapt
to environmental changes efficiently.

The dynamics of adding/deleting a city affects both the genotypic and, usually,
the phenotypic level of the ant. Therefore, considering that the solutions are
affected by the change in iteration n, the pheromone trails will not make sense
in iteration n+1. For the ACO algorithms that follow the traditional framework,
it is vital to re-initialize the pheromone trails after a dynamic change, which acts
as a restart of the algorithm.

For the P-ACO approach, the solutions stored in the population list are re-
paired and the pheromone trails are re-generated accordingly. This strategy is
called KeepElitst [9] and uses two greedy heuristics to repair the genotype of the
population: 1) the offended cities are removed from the solutions; and 2) the new
cities are placed individually in a greedy fashion where they cause the minimum
increase on the phenotype.

3 Incorporating Immigrants Schemes to ACO Algorithms

When addressing DOPs, traditional ACO algorithms cannot adapt well to the
environmental changes once the ants reach the stagnation behaviour, where they
follow the same path. The algorithm loses its adaption capability since it does
not maintain diversity within the population. A good start has been made with
the P-ACO algorithm with the use of memory, which maintains a certain level of
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diversity and enables ACO algorithms to be more efficient for DOPs. However,
it is a long-term memory and the solutions need to be repaired once a city is
added or removed. Usually, the repair procedures requires prior knowledge of
the problem and is computationally expensive.

As mentioned above, the application of immigrants schemes has been found
efficient for GAs for DOPs. The principle is to introduce new individuals into
the current population by replacing a percentage of individuals in the population
[5]. The percentage should be relatively small because a high percentage may
lead the algorithm into a too high level of diversity. High diversity does not
always mean good performance on DOPs, because it may lead the algorithm
into randomization [15,17].

In this paper, we apply immigrants schemes into the P-ACO algorithm to
maintain a certain level of diversity in the population and enhance its dynamic
performance. However, we use a short-term memory where the ants of the cur-
rent iteration replace the ants of the old iteration. Moreover, a percentage of
immigrants replace the worst ants of the current population.

The advantages of using a short-term memory are closely related to the sur-
vival of ants in a dynamic environment, where no ant can survive in more than
one iteration. This way, there is no need to use any repair algorithm (apart from
the best ant of the previous iteration for the elitism-based immigrant scheme)
because the changes do not affect the ants stored. Furthermore, there is one main
concern that involves immigrants schemes, i.e., how to generate immigrants.

3.1 Random Immigrants ACO

The random immigrants ACO (RIACO) algorithm uses an immigrants scheme
where ants are generated randomly, and replace the worst ones of the current
population stored in the short-term memory every iteration. It is believed that
“the continuous adaption of such algorithms makes sense only when the environ-
mental changes of a problem are small to medium” [12]. This is due to the fact
that the old environment has more chance to be similar with the new one. After
a change occurs, transferring knowledge from the old environment may provide
a good solution efficiently.

Considering this argument, RIACO may be suitable when changes are not
slight since it provides diversity without considering any knowledge from the old
environment. Moreover, it may be suitable in fast changing environments where
information from the past may not be useful, since the algorithm does not have
sufficient time to converge onto a good solution in order to gain knowledge.

3.2 Elitism-Based Immigrants ACO

The elitism-based immigrants ACO (EIACO) algorithm uses an immigrants
scheme where ants are generated by mutating the best ant of the previous iter-
ation. These immigrants also replace the worst ones in the short-term memory
every iteration as in RIACO. This immigrants scheme transfers knowledge from
old environments and, thus, may be advantageous when changes are small to
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medium. Furthermore, it may be suitable in slowly changing environments since
it needs sufficient time to locate a good optimum which can be useful to the new
environment since the global optimum may be similar.

The mutation of the best ant is carried out using the inversion operator, where
two cities are randomly selected and the sub-tour between them is reversed. How-
ever, there are two types of inversion: 1) the simple one is as explained above;
and 2) the adaptive one is based on the inver-over operator [10]. The adaptive
inversion is much more efficient than the simple one, since several inversions are
carried out under some criteria. This type of inversion has adaptive characteris-
tics which may be more suitable for DOPs.

3.3 Hybrid Immigrants ACO

The hybrid immigrant ACO (HIACO) algorithm uses an immigrants scheme that
combines both random and elitism-based immigrants. The replacing policy is the
same as in RIACO and EIACO algorithms. However, half of the immigrants are
randomly generated and the other half are generated by mutating the best ant.
HIACO attempts to combine the merits of both RIACO and EIACO, where one
is good on slowly and slightly changing environments and the other on fast and
significantly changing environments. Therefore, HIACO may possibly be suitable
under all environmental conditions.

4 Simulation Experiments

4.1 Experimental Setup

In the experiments, we compare RIACO, EIACO, and HIACO with P-ACO
with its best population update policy, that is, Age. All the algorithms have
been applied on the kroA200 problem instance, obtained from TSPLIB1, which
consists of 200 cities. The dynamic environment was generated by taking away
half of its cities and constructing a “spare pool” of cities before running the
algorithms. Every f iterations, a percentage of m cities were randomly chosen
from the spare pool and exchanged with a percentage of m random ones from
the actual instance (the other half cities). This way, the size C of the problem
instance remains the same through the whole run.

The parameters f and m indicate the frequency and magnitude of dynamic
changes, respectively. The f parameter is defined as the number of iterations be-
tween two environmental changes. The m parameter is defined as the percentage
of selected cities from the spare pool that replaces other cities from the actual
instance. The common parameters used for the algorithms were set according
to the guidelines in [3, pp. 71] as follows: α = 1 and β = 2 for Eq. (1), and
τinit = 1/(C − 1). For P-ACO, K was set to 3 and τmax was set to 1.0 as in
[6,7]. For all three proposed algorithms, K was set to 25, in which we replace
6 ants with immigrants (≈ 25% of K). Moreover, μ was set to 25 ants for all

1 Available on http://comopt.ifi.uni-heidelberg.de/software/TSPLIB95/

http://comopt.ifi.uni-heidelberg.de/software/TSPLIB95/
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Table 1. In the first section, values in bold indicate the best results of the overall offline

performance. In the second section, “s−” or “s+” means that the first algorithm is

significant better or significantly worse than the second algorithm, respectively, whereas

“∼” indicates no significant difference between algorithms.

Algorithms & Instances kroA200

f = 20, m ⇒ 10% 25% 50% 75%

P-ACO 27339.89 28497.20 29072.95 29290.05

RIACO 25798.46 26016.24 26029.56 25975.49

EIACO 25822.68 26001.00 26018.47 25996.12

HIACO 25752.20 25985.19 25961.28 25907.79
f = 100, m ⇒ 10% 25% 50% 75%

P-ACO 24284.40 25010.38 25359.90 25394.80

RIACO 24513.54 24799.98 24903.43 24852.92

EIACO 24455.14 24688.14 24749.48 24682.73
HIACO 24421.26 24604.94 24784.14 24683.38

t-Test Results

f = 20, m ⇒ 10% 25% 50% 75%

P-ACO⇔RIACO s+ s+ s+ s+
P-ACO⇔EIACO s+ s+ s+ s+
P-ACO⇔HIACO s+ s+ s+ s+
RIACO⇔EIACO ∼ ∼ ∼ ∼
RIACO⇔HIACO ∼ ∼ s+ s+
EIACO⇔HIACO s+ ∼ s+ s+
f = 100, m ⇒ 10% 25% 50% 75%

P-ACO⇔RIACO s− s+ s+ s+
P-ACO⇔EIACO s− s+ s+ s+
P-ACO⇔HIACO s− s+ s+ s+
RIACO⇔EIACO ∼ ∼ s+ s+
RIACO⇔HIACO ∼ ∼ s+ s+
EIACO⇔HIACO ∼ ∼ ∼ ∼

algorithms in order to have the same number of evaluations in each iteration,
that is, 25 evaluations per iteration.

For each algorithm on a DTSP instance, N = 30 independent runs were
executed on the same random environmental changes. The algorithms were ex-
ecuted for G = 1000 iterations and the overall offline performance is calculated
as follows:

P offline =
1
G

G∑
i=1

(
1
N

N∑
j=1

P ∗
ij) (5)

where P ∗
ij defines the best ant after a change of iteration i of run j [12]. Our

implementation closely follows the guidelines of the ACOTSP2 framework.
The value of f was set to 20 and 100, indicating environmental changes of high

and low frequencies, respectively. The percentage of m was set to 10, 25, 50, and
2 Available on http://www.aco-metaheuristic.org/aco-code

http://www.aco-metaheuristic.org/aco-code
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Fig. 1. Overall offline performance for different dynamic test problems

75, indicating the degree of environmental changes from small, to medium, to
large, respectively. As a result, eight dynamic environments, i.e., 2 values of f ×
4 values of m, were generated from the stationary TSP instance to systematically
analyze the adaption and searching capability of each algorithm on the DTSP.

4.2 Experimental Results

The experimental results regarding the offline performance of the algorithms
with the corresponding statistical results of two-tailed t -test with 58 degrees
of freedom at a 0.05 level of significance are presented in Table 1. Moreover,
to better understand the dynamic behaviour of the algorithm, the results are
plotted in Fig. 1 for the first 500 iterations with f = 20, m = 10 and m = 75,
and f = 100, m = 10 and m = 75. From the experimental results, several
observations can be made by comparing the behaviour of the algorithms.

First, RIACO, EIACO, and HIACO significantly outperform the P-ACO algo-
rithm in almost all test cases. On cases where the frequency is short the P-ACO
algorithm is not able to maintain a population list of useful solutions because
it has slow convergence. This can be observed from Fig. 1, where under large
frequencies P-ACO converges slowly to a better optimum than other algorithms.
However, when the magnitude of changes is small with a large frequency, it is
significant better than the other algorithms. On the other hand, RIACO, EIACO
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and HIACO are able to provide a good solution faster after a change since they
gain more diversity by incorporating immigrants to the population.

Second, RIACO performs slightly better than EIACO on cases where the
frequency is small, as expected. This is because EIACO needs to converge to
a good optimum in order to be effective. This task needs sufficient time as
with the P-ACO algorithm. Recall that in EIACO we use an adaptive inversion,
which provides more exploration than the simple inversion. On the other hand,
EIACO performs significant better than RIACO in almost all slowly changing
environments since it has sufficient time to locate a good solution.

Third, HIACO improves the performance of EIACO and RIACO on cases
where the frequency is small. Incorporating random and elitism-based immi-
grants, diversity is achieved with random ones and the guidance on promising
areas in the search space is achieved by the elitism-based ones. As a result, di-
versity is controlled more since RIACO may generate high levels of diversity and
become ineffective due to the lose of useful solutions found during past itera-
tions. However, HIACO is not improving on cases where the change frequency is
large, but it keeps the merits of EIACO since they are not significant different.

5 Conclusions

Different types of immigrants schemes have been successfully applied to EAs
to address DOPs efficiently. In this paper, we apply random, elitism-based, and
hybrid immigrants schemes into ACO for the DTSP, resulting in the RIACO,
EIACO, and HIACO algorithm, respectively. The difference of these algorithms
lies in the way immigrant ants are generated. The immigrant ants are generated
randomly for RIACO and are generated by mutating the best ant of the previ-
ous iteration for EIACO, respectively. For HIACO, half of the immigrant ants
are generated randomly and the other half are generated using the elitism-based
scheme. All immigrants replace the worst ants of the population on every iter-
ation in order to gain sufficient diversity within the population, which can be
useful for the DTSP.

Comparing with P-ACO, an existing ACO framework developed for DOPs,
on different cases of dynamic environments, the following concluding remarks
can be drawn. First, immigrants schemes are advantageous for ACO algorithms.
Second, the performance of EIACO is significant better than RIACO in slowly
changing environments. Third, the performance of RIACO is slightly better than
EIACO on most fast changing environments, while the performance of HIACO
is significant better than both of them. Forth, the performance of HIACO on
slowly changing environments is competitive with EIACO. Finally, P-ACO may
be a sufficient choice in very slowly and slightly changing environments, or in
cyclic environments since it is a memory-based approach [16].

For further work, it would be interesting to compare the algorithms on other
dynamic environmental cases, i.e., cyclic environments where past environments
reappear, and investigate the effect of other parameters or strategies within the
proposed algorithms, i.e., which ants should immigrants replace.
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Abstract. Reverse algorithm was previously evaluated as encryption

method concluding that its simple adoption is unviable, since it does not

assurance the pre-image existence. Variable-Length Encryption Method

(VLE) was proposed where a alternative algorithm with extra bits is

adopted when pre-image computation is not possible. If an adequate se-

cret key is used with VLE it is expected that the final ciphertext length is

close to plaintext size. Several CA static parameters were calculated for

a set formed by all radius 2 right-toggle rules. A database was generated

associating rules performance in VLE ciphering with its parameters. A

genetic algorithm-based data mining was performed to discover an ad-

equate key specification based on CA parameters. Using such specifica-

tion, ciphertext length is short, encryption process returns high entropy

and VLE has a good protection against differential cryptanalysis.

Keywords: Cellular Automata, cryptography, pre-image computation,

genetic algorithm, data mining.

1 Introduction

Wolfram was the first to suggest the use of CA in cryptography [1]. Several
studies on this topic have been accomplished [2–11]. The CA-based cryptographic
models can be divided into three classes: (i) models that use CA to generate
pseudo-random binary sequences, which are used as cryptographic keys, but the
effective ciphering process is made by another function [1–4]; (ii) models based
on additive, non-homogeneous and reversible CA, that use algebraic properties
of this kind of rules to generate automata of maximum and/or known cycle [5, 6];
and (iii) models based on irreversible CA, which uses the backward interaction
of cellular automata in the ciphering process and the forward interaction to
decipher [7–11], as the model discussed here.

CA backward interaction is also known as pre-image computation and an
efficient reverse algorithm was proposed in [12]. The application of the reverse
algorithm as a ciphering algorithm was early investigated in [9]. Using a spatial

R. Schaefer et al. (Eds.): PPSN XI, Part II, LNCS 6239, pp. 381–390, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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entropy measure to evaluate the ciphering quality, the main conclusion in [9] is
that the simple adoption of the reverse algorithm is not possible since rules with
100% guarantee of pre-image existence are not appropriate for ciphering because
they do not exhibit a chaotic dynamics. A new approach has been emerged from
this previous study: it alternates the original reverse algorithm and a variation
that uses extra bits in encryption when the pre-image computation fails. Since
it is expected that in practice few failures happen, the ciphertext length will be
close to the plaintext. This method was evaluated in [11] where it was named
Variable-Length Encryption Method (VLE). Only small samples of radius 2 and
radius 3 rules were used in [11]. A more representative set formed by all radius 2
right-toggle rules, totalizing 65536 keys (216), was used to evaluate VLE in [10].
These rules represent about 50% of the possible secrete keys in radius 2 space.

CA rules used as secret keys must be properly specified to reduce the proba-
bility of failure occurrence during pre-image computation. Using small samples
of radius 2 and 3 rules applied to cipher a sample of lattices, it was shown in
[9] that the joint use of symmetry (S) and Z parameters could lead us to a
good specification of rules with low probability to fail in pre-image computa-
tion. However, based on an exhaustive analysis of the rule set formed by all
radius 2 right-toggle rules in [10] it was verified that although the majority of
right-toggle rules are suitable to be used with VLE, there are some undesirable
behavior rules in this set that most be avoided as secrete keys.

In the present work, we better investigate the secret key specification. We
employed an analysis based on several CA static parameters to capture the
pattern associated to underperforming rules. Using a genetic algorithm to mine
this pattern [13], we were able to find a good specification of rules to be used as
secret keys. Such specification had shown to be good to filter the complete set
of radius 2 rules and to specify radius 3 rules.

2 Cellular Automata Applied in Cryptography

Cellular automata (CA) are discrete complex systems that possess both a dy-
namic and a computational nature. A cellular automaton consists of two parts:
the cellular space and the transition rule. Cellular space is a regular lattice of
N cells subjected to boundary conditions. A state is associated to each cell at
time t. The transition rule Φ yields the next state for each cell as a function
of its neighbourhood. At each time step, all cells synchronously update their
states according to Φ. For 1D CA, the neighbourhood size m is usually written
as m = 2r + 1, where r is CA radius. In binary-state CA, the transition rule
is given by a state transition table which lists each possible neighbourhood to-
gether with its output bit, that is, the updated value for the state of the central
cell.

CA dynamics is associated with its transition rule Φ represented by its output
bits (b1, b2, ..., bN ). In order to help forecast the dynamic behavior of CA, several
parameters have been proposed [14], some of them are: (i) Z derived from the
pre-image computation algorithm and it is composed by Zleft and Zright. [12];
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(ii) S is the symmetry level of the output bits in a rule transition [9]; and (iii)
Neighborhood dominance (ND) verifies whether the new value of the centre cell
”follows” the state that appears the most in the neighborhood [14].

Cellular automata are particularly well suited for cryptographic application.
Since CA rule is simple, local and discrete, it can be executed in easily-constructed
parallel hardware at fast speeds. Gutowitz proposed a cryptographic model based
on backward evolution of irreversible CA [7]. A toggle rule with radius R is used
as the secret key in his model. A CA toggle rule is sensible in respect to a specific
neighborhood cell - any modification of the state on this cell necessarily provokes
a modification on the new state of the central cell. A pre-image of an arbitrary
lattice of size N is calculated adding R extra bits in each side of the lattice
[7]. Plaintext is the initial lattice and P pre-images are successively calculated.
The ciphertext is the last pre-image obtained and its size is given by N + 2RP .
Such increment is pointed as the major flaw in the model. Reverse algorithm was
proposed in [12] for a generic pre-image computation using a periodic boundary
CA. Such algorithm was evaluated as encryption method in [9]. However, its
usage has the disadvantage that there is no guarantee of pre-image existence for
any given lattice and any given rule.

The major challenge to apply the reverse algorithm as a viable cipher method
was to find a manner to guarantee the existence of at least one pre-image for
any plaintext. Parameters that seemed more relevant to this problem [9] were
the components of Z known as Zright and Zleft and the symmetry level (S).
It was observed that one component of Z, Zright or Zleft, must be equal to
1 and the other one must be different of 1. Moreover, S equal to 1 also must
to be avoided. An observation is that although it was possible to specify rules
with a high probability to find at least one pre-image for any lattice and with
a good perturbation spread, even the better rules evaluated can fail during pre-
image computation. The major conclusion of the analysis in [9] is that the simple
adoption of the reverse algorithm is not viable because rules with 100% guarantee
of pre-image existence are not appropriate for ciphering; they are not chaotic.
A method based on reverse algorithm adopting a contour procedure when pre-
image computation fails was proposed in [9].

3 Variable Length Encryption Method

Since the main conclusion is that the simple adoption of the reverse algorithm is
not possible, an alternative method was proposed in [9] and pruned in [11]. This
method is based on the original reverse algorithm adopting an alternative proce-
dure to apply when the pre-image computation fails. The alternative procedure
adds extra bits only when the pre-image is not possible to calculate, guarantying
the possibility to cipher any plaintext. It is expected that with an appropriate
secret key specification, there is a low probability to this failure occurrence and,
as consequence, rarely use this alternative procedure. For practical reasons, it
can be better to limit the method to operate with only toggle rules. Ciphering
process is defined by the computation of P consecutive pre-images starting from
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a lattice of size N corresponding to the plaintext. The secret key is a CA rule Φ
with radius R. Suppose that ciphering process started pre-images computation
using the reverse algorithm and it fails in the Kth pre-image (K ≤ P ). It uses
the alternative algorithm with extra bits to calculate the Kth pre-image, which
will have N + 2R cells. Ciphering process returns again using reverse algorithm
to calculate the remaining pre-images. If all the subsequent pre-images compu-
tation succeeds the final ciphertext will have a size of N +2R. If the process fails
in F pre-images the final lattice will have N + 2FR. Starting from a lattice of
N cells, the ciphertext size after P pre-images computation will be between N
and N + 2PR. Therefore, it is a variable-length encryption model, named VLE.

Using VLE one has the guarantee that ciphering is possible even if the plain-
text is a Garden-of-Eden state. However a short length ciphertext depends on
the secret key specification. Starting from the information presented in [9], which
uses Zleft, Zright and S, and by using small rule sets the expectative about the
usage of the VLE method had been confirmed [11]: it has a good quality of
ciphering entropy and the ciphertext length is close to the original block size.
However, a lot of open questions remain since experiments in [11] were performed
based on very limited samples of rules. In [10], a more exhaustive analysis was
conducted using the complete set of radius 2 right-toggle rules. This set is com-
posed by 65536 (216) rules, being that all of them have Zleft = 1. These rules
represent about 50% of the possible secrete keys in radius 2 space, if we im-
pose the restriction of using only toggle rules for faster encryption. VLE-based
environment was employed to cipher a hundred 256-bits plaintexts using each
right-toggle rule. The number of consecutive pre-images was not fixed in [10]
aiming to discover a good value of P to be applied with radius 2 rules and 256-
bits plaintexts. P was dynamically defined and the pre-image computation stops
when ciphering achieves a good entropy level. The investigation in [10] suggests
that P = 32 is a good value to be applied in such instance. Moreover, it was
pointed that the usage of parameters Z and S initially investigated in [9] and
[11] are not enough to filter all underperforming rules and a larger number of
static parameters must be investigated.

4 Experiments

An initial analysis was performed using the complete set of radius 2 right-toggle
rules. VLE-based environment was employed to cipher a hundred 256-bits plain-
texts using each right-toggle rule, by calculating P consecutive pre-image steps.
These experiments are similar to those presented in [10] except for the fact that
here we employed a fixed and predefined number of pre-image steps (P ). Initially,
we employed P = 32 as suggested by results in [10]. However, it was possible to
observe that this number of steps was not enough to spread perturbations when
using a considerable portion of rules of the entire set. Thus, different values of
P were considered in this analysis: 32, 40, 48, 56 and 64. Using P = 64, the best
result related to perturbation spread was obtained as expected but additionally
the number of fails increased (when compared with P = 32) in a consider-
able portion of rules. Considering the trade-off between perturbation spread and
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number of fails we conclude that the best evaluated value of P is 48. We present
here the results obtained using VLE to cipher a hundred 256-bits plaintexts by
calculating 48 consecutive pre-image steps. Based on an exhaustive analysis of
radius 2 space we evaluated effects of using as secret keys the complete set of
rules in which the unique restriction is the right-toggle property (Zleft = 1 is a
consequence). This set is formed by 65536 rules.

Applying VLE method, any rule with Zleft = 1 is able to complete ciphering
process starting from any initial lattice, for any P . However, the final length
of the ciphertext can be between N and N + 2PR. We want to evaluate if the
expected final length is in fact close to N . For this, we calculated the mean
length of the ciphertext (Lmean) and the mean number of failures occurred
during ciphering process (Fmean). Mean results were computed considering the
application of all rules to cipher a sample of 100 lattices of 256 bits and we
obtained Lmean = 257.90 and Fmean = 0.476. Fmean is below 0.5, which returns
a mean ciphertext size very close to the original size (256 bits).

Differential cryptanalysis is based on the analysis of some pairs of ciphertexts
generated after similar plaintexts. Sen et al. (2001) analyzed the security of
their CA cryptosystem named CAC to resist to differential attack comparing
it with DES and AES cryptosystems [15]. Several pairs of plaintext (X , X ′)
were used, which differ one of the other by a fixed and small difference D. Each
pair (X , X ′) was used to generate a pair of ciphertexts (Y , Y ′) which differ
one of the other by a difference D′ obtained by Y XOR Y ′ operations. For
each pair (Y , Y ′), the number of 1s in D′ is counted, which corresponds to the
number of different bits between Y and Y ′. Finally, the standard deviation of
this measure is calculated over all the analyzed pairs. As higher is the standard
deviation in D′, as higher is the probability of the ciphertext to be broken
by differential cryptanalysis. An algorithm with standard deviation below 10%
is said to be protected against differential cryptanalysis [15]. In our tests, the
difference D between two plaintexts X and X ′ was fixed in only one bit in any
arbitrary position over the lattice. The computation of D′ to each pair (Y , Y ′)
was performed to obtain the standard deviation (σ). Besides the σ computation,
the difference D′ was also used to compute a second measure related to ciphering
quality. The goal of this measure is to verify if D′ does not keep any pattern which
eventually could help a cryptanalyst. Spatial entropy [9] was calculated on D′ to
evaluate the existence of some undesirable regularity on this difference. Entropy
above 0.75 indicates a random difference enough to expect that ciphertexts Y and
Y ′ do not maintain any similarity, even so they started from similar plaintexts.
Entropy below 0.5 indicates a strong pattern in D′ [9]. Entropy values between
0.5 and 0.75 had been considered fuzzy, since it cannot guarantee the existence of
an ordered or random pattern. Therefore, if any cryptography method is applied
to similar texts returning an Emean > 0.75, it indicates that ciphering adds a high
level of entropy during the process, a necessary characteristic in any encryption
method. We obtained σmean = 3.83% and Emean = 0.876 for the complete set
of right-toggle rules. Since σmean is below 10%, the proposed CA cryptographic
model can be considered secure in relation to differential cryptanalysis. Emean
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is above 0.85 indicating that rules were able to add a high entropy in ciphering,
using P = 48.

Therefore, considering only the mean values of the complete set analyzed,
it returned excellent values on all the measures. However, as pointed in [10],
the analysis of the worst performing rules in the set indicates the existence of
secrete keys not appropriate for ciphering purpose. Considering only the 1000
worst performing rules in each metric we obtained Fmean = 17.645, indicating
that these rules returning ciphertexts with size superior to 320 bits in average.
Fmean represents the mean value size for each rule considering all the 100 lattices
used to test it. However, if we consider the worst result in such lattices, we can
find ciphertexts with a considerable size: we calculated a new metric Fmax, the
mean of the maximum ciphertext size obtained considering the 1000 worst rules,
and obtained Fmax = 25.540. This metric highlights the existence of several
secret keys returning at least one ciphertext with size superior to 350 bits. We
observed that there are around 750 rules in the complete set of right-toggle
rules that returns ciphertext lengths between 352 and 448 bits in the worst case
and there are about 400 rules above 350 bits in average. An analysis of the
worst rules related to entropy values can also be done, similar to the previous
ciphertext length analysis. Considering only the 1000 worst performing rules,
the mean entropy in D′ was obtained: Emean = 0.254, indicating that these
rules does not perform an actual encryption of the plaintexts in average. About
1020 rules returned Emean below 0.5. Emin was also calculated representing the
worst entropy found for each rule. We obtained an average of Emin = 0.036,
considering the 1000 worst rules. These results indicate that there are lattices
not encrypted. The most probable behavior is that the rule only shifts the initial
lattices, not performing an actual encryption of these plaintexts. Although this
behavior is a minor occurrence considering the entire set of CA rules it cannot
be allowed in a secure cryptosystem. Considering the entire rule set, about 3250
rules returned entropy below 0.5 for at least one pair Y and Y ′. Concluding, there
are undesirable behavior rules in the complete set analyzed that must be avoided
as secrete keys. The entire rule space formed by all radius 2 right-toggle rules is
not appropriate to be applied as secret keys in VLE method. Approximate 4000
rules ( 6% of the key space) must be avoided: 3200 due to low entropy and 800
due to long ciphertext length.

Specifications was proposed in [9] and [11] trying to filter such undesirable be-
havior keys, in which S and the components Zleft and Zright were used. However,
experiments in [10] using the complete set of right-toggle rules had evidenced
that their application is not effective as supposed. Aiming to better understand
the relation between CA static parameters and underperforming rules, an anal-
ysis using more than Z and S parameters was conducted here. A series of CA
parameters was calculated for each rule trying to identify a pattern to filter un-
derperforming rules of radius 2 right-toggle rules set. Nine parameters were used
in this analysis: Zright, S, BWLR Symmetry (BWLR), LR Symmetry (LR),
Absolute Activity (AA), Neighborhood Dominance (ND), Sensitivity (μ), Ac-
tivity Propagation (AP ) [14] and Core Entropy (CE) [10]. All these parameters
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were calculated to each one of the 65536 radius 2 rules. A database was elabo-
rated in which each register corresponds to one right-toggle rule and the fields
are composed by the values of the nine parameters calculated for each rule, and
the values of the metrics calculated when the rule is applied to cipher 100 plain-
texts: Fmean and Emean. As a pattern associating parameters with the worst
performing rules in ciphering was not possible to recognize by a simple visual
inspection, we decided to apply a data mining process. A standard GA was
elaborated with this goal based on the model described in [13]. Individual is
composed by I genes, where I is the number of CA static parameters analyzed;
that is, nine fields in our experiments. It is illustrated in Figure 1. The i-th gene
is subdivided into three fields: weight (Wi), operator (Oi) and value (Vi).

Each gene corresponds to one condition in the antecedent part (IF) and the
individual as a whole is the rule antecedent. The weight field is an integer be-
tween 0 and 10. This field determines the insertion of the correspondent gene in
the rule antecedent. If this value is lesser than a boundary-value this gene will
not appear in the rule, otherwise the gene appears. In this work, the value 7
was used as the boundary-value. The operator field can be < (minor), ≥ (larger
or equal) or �= (different). The value field is a floating-point number that can
vary between the 0 and 1, because each parameter was normalized. To establish
the consequent part of the rule, we first analyze the fields Fmean, and Emean of
each register of the database to characterize the underperformed rules in specific
classes. Field Class was added to the database with the classification of each
register in one of these classes: (1) 886 rules with low mean entropy (< 0.5); (2)
750 rules with large mean ciphertext length (> 300 bits); and (3) 63,900 rem-
iniscent rules. The individual in Figure 1 represents only the antecedent part
of the rule (IF). The consequent part is always in the format THEN Class =
C, being that C can be 1, 2 or 3. However, it is omitted in individual’s rep-
resentation. Conversely, it is a fixed execution parameter of GA. Thus, if the
GA is executed with C = 1, all the rules of population represent classification
rules in the format: IF Antecedent THEN Class is ”Low entropy”. All registers
are considered either Class 1 or Not Class 1. Fitness quantifies the quality of
the rule associated to each individual. Individual fitness is given by a weighted
sum between Sensitivity and Specificity indicators [13]. Stochastic tournament
with Tour = 3 is used as the matting selection method. Two-point crossover is
applied and a specific mutation operator is used to each type of gene field with
a rate of 30%. The next generation is formed by selecting the best individuals in
populations. Each GA experiment was formed by 100 runs, using a population
of 100 individuals, which were evolved by 100 generations. The classification rule
that was indeed intended to be mined is Class 3, because it represents appropri-
ate rules to be used in cryptography. However, the other two classification rules
(classes 1 and 2) were also important to achieve our goal, because they better
characterize low entropy rules and long ciphertext ones, given us some important
information to prune the rules returned by GA for Class 3. After several exe-
cutions and post-processing pruning procedures we have found the rule following:
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IF (S �= 1 AND ND ≤ 0.57 AND CE > 0.65 AND Zright �= 1) THEN Class = 3

This rule employs 4 of the 9 CA parameters to characterize adequate secrete
keys. We applied it as a filter in the complete radius 2 right-toggle CA rule
set to remove all secret keys that non attending its conditions. The filtered set
has 51,495 right-toggle rules. It was named Subset. By using the environment
implemented based on VLE, we employed them to cipher a hundred 256-bits
plaintexts, by calculating 48 consecutive pre-image steps, as performed to the
complete rule set. Considering all the remaining rules in each set, Table 1 and
Figure 2 show the results obtained with Subset rules. In such tables and figures,
the results of the complete set (216 rules) is also presented, named as Fullset.
Table 1 shows the mean values obtained with each set considering all the rules
in each one. Considering the totality of the rules, Subset results are better than
those obtained using the entire radius 2 set, but the differences are not so ex-
pressive. However, when the worst performing rules are analyzed the advantage
of such filters is evidenced. While 1020 rules in Fullset returned mean entropy
below 0.5, only 28 rules with such inappropriate low entropy remains in Subset.
Considering the minimum entropy in each rule applied over 100 ciphertexts the
benefice of filter rule application is highlighted: 3243 rules in Fullset presents an
entropy below 0.5 in difference D’ in at least one pair Y and Y’. The number of
such rules downs to 327 in Subset. This improvement can also be recognized by
the mean values of the 500 worst performing rules in Table 1 (Emean and Emin)
and in the curves of Figure 2. An analysis of ciphertext length also evidences
the application of filtered rules: while 758 rules presents an average of ciphertext
length greater than 280 bits, only 217 rules with a ciphertext length above 280
bits remains in Subset. Besides, 835 rules in Fullset returns a maximum cipher-
text length greater or equal to 300 bits, while there are only 291 such rules in
Subset. Therefore we conclude that rule filter is a good specification for CA rules.

Fig. 1. Individual representation

5 Final Remarks

A cryptographic model based on toggle CA rules as secret keys are better inves-
tigated here. This method alternates during ciphering process the employment
of the original reverse algorithm [12] with a variation, which adds extra bits
when a pre-image is calculated. This approach is a variable-length encryption
method named VLE. The average of standard deviation found based on more
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Table 1. Mean values of the complete rule sets and the 500 worst performing rules

Set Number of Rules Complete rule sets 500 worst performing rules

Lmean Fmean Emean σmean Fmean Fmax Emean Emin

Fullset 65536 257.903 0.476 0.876 3.83% 17.620 33.212 0.125 0.036

Subset 51495 257.410 0.352 0.889 3.69% 7.227 18.514 0.787 0.53

than 6 million of tests is 3.83%, showing this method is robust to a differential
cryptanalysis-like attack being much lower than the upper bound limit suggested
in [15]: 10%. Comparing with the results in [15] the superiority of VLE is clear:
12%, 7% and 5% returned by DES, AES and CAC respectively. Besides, the
absence of an ordered pattern when ciphering two very similar plaintexts was
evidenced by the mean entropy found: 0.876. VLE guarantees that ciphering is
always possible with a short length ciphertext expectative: 257.9 bits next to 256
bits of the plaintext. The properly key specification was deeper investigated in
the present work using all the 65,536 radius 2 right-toggle rules. It became clear
that there are some rules in this set inappropriate to be used as secret keys: 1.5%
of them returning long plaintexts and 5% of them exhibiting a more dangerous
behavior, which is not able to encrypt at least one plaintext. Therefore, some
kind of restriction is needed.

Fig. 2. 500 worst performing rules in fullset (white lines) and subset (black lines): (a)

mean D′ entropy (dashed line) and minimum D′ entropy (continuous line). (b) mean

ciphertext length (dashed line) and maximum ciphertext length (continuous line).

We employed an analysis based on several CA static parameters and a genetic
algorithm to mine this information. Therefore, we were able to find a good
specification of rules to be used as valid secret keys. This specification had shown
to be good to filter the complete set of radius 2 rules. A final test was performed
using radius 3 rules with Zright = 1 aiming to evaluate if the filter rule can
also be applied to radius 3 rule space. Since an exhaustive procedure was not
possible in this rule space a new GA was implemented to generate 1,000 right-
toggle radius 3 rules attending the ND filter rule. We employed them using the
VLE environment to cipher a hundred 512-bits plaintexts, by calculating 16
consecutive pre-image steps. Considering 1000 radius 3 rules, we obtained the
following average values: Lmean = 514.507, Fmean = 0.627, Emean = 0.895 and
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σmean = 3.42%. They are satisfactory mean values for criptography. Moreover,
no rule returns low entropy in any ciphered plaintext.
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Abstract. The rooted delay-constrained minimum spanning tree prob-

lem is an NP-hard combinatorial optimization problem arising for ex-

ample in the design of centralized broadcasting networks where quality

of service constraints are of concern. We present two new approaches to

solve this problem heuristically following the concepts of ant colony opti-

mization (ACO) and variable neighborhood search (VNS). The ACO uses

a fast construction heuristic based on node delays and local improvement

exploiting two different neighborhood structures. The VNS employs the

same neighborhood structures but additionally applies various kinds of

shaking moves. Experimental results indicate that both metaheuristics

outperform existing approaches whereas the ACO produces mostly the

best solutions.

1 Introduction

When designing a communication network with a central server broadcasting
information to all the participants of the network, some applications, such as
video conferences, require a limitation of the maximal delay from the server to
each client. Beside this delay-constraint minimizing the cost of establishing the
network is in most cases an important design criterion. In another example we
consider a package shipment organization with a central depot guaranteeing its
customers a delivery within a specified time horizon. Naturally the organization
aims at minimizing the transportation costs but at the same time has to hold
its promise of being in time.

These network design problems can be modeled using a combinatorial op-
timization problem called rooted delay-constrained minimum spanning tree
(RDCMST) problem. The objective is to find a minimum cost spanning tree
of a given graph with the additional constraint that the sum of delays along
the paths from a specified root node to any other node must not exceed a given
delay-bound.

More formally, we are given an undirected graph G = (V,E) with a set V
of n nodes, a set E of m edges, a cost function c : E → R

+
0 , a delay function
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d : E → R+, a fixed root node s ∈ V , and a delay-bound B > 0. An optimal
solution to the RDCMST problem is a spanning tree T = (V,E′), E′ ⊆ E, with
minimum cost c(T ) =

∑
e∈E′ c(e), satisfying the constraints:

∑
e∈P (s,v)

d(e) ≤ B, ∀v ∈ V,

where P (s, v) denotes the unique path from root s to node v.
The RDCMST problem is NP-hard because already the special case with

d(e) = 1, ∀e ∈ E, called hop-constrained minimum spanning tree problem, is
NP-hard [1].

The rest of the paper is organized as follows: In Section 2 existing approaches
are discussed, Section 3 introduces some helpful preprocessing steps to reduce
the problem size, Section 4 describes a metaheuristic method based on general
variable neighborhood search, Section 5 presents a second approach based on ant
colony optimization, Section 6 discusses test results, and Section 7 concludes the
article.

2 Previous Work

Exact approaches to the RDCMST problem have been examined by Gouveia et
al. in [2] based on the concept of constrained shortest paths utilized in column
generation and Lagrangian relaxation methods. A flow-based reformulation of
the problem on layered acyclic graphs is applied to reduce the RDCMST problem
to the well-known and intensively examined minimum Steiner tree problem [3].
Since the size of the layered graph and therefore the efficiency of the according
model heavily depends on the delay-bound B this approach can in practice only
be used for instances with a reasonably small number of possible discrete edge
delay values. Furthermore all these methods can only solve small instances with
significantly less than 100 nodes to proven optimality in reasonable time when
considering complete graphs.

A constructive heuristic approach based on Prim’s algorithm to find a min-
imum spanning tree [4] is described by Salama et al. in [5]. A general problem
of this heuristic especially on Euclidean instances is the fact that the nodes in
the close surrounding of the root node are typically connected rather cheaply,
but at the same time delay is “wasted”, and many distant nodes can later only
be linked by rather expensive edges. The stricter the delay-bound the more this
drawback will affect the costs negatively. This fact led Ruthmair et al. [6] to a
more de-centralized approach by applying the basic concept of Kruskal’s mini-
mum spanning tree algorithm [7] to the RDCMST problem. Two metaheuristics
based on GRASP and variable neighborhood descent improve the constructed
solution in [6].

There are many recent publications dedicated to the rooted delay-constrained
minimum Steiner tree problem which is a generalization of the RDCMST prob-
lem. In this variant only a subset of the nodes has to be reached within the given
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delay-bound, the other nodes can optionally be used as intermediate (Steiner)
nodes. Several metaheuristics have been applied to this variant, such as GRASP
[8,9], path-relinking [10] and variable neighborhood descent [11]. Also exact
methods based on Integer Linear Programming have been explored, e.g. Leggieri
et al. [12] describe a node-based formulation using lifted Miller-Tucker-Zemlin
inequalities.

3 Preprocessing

The following rules are applied in a preprocessing phase in order to possibly
reduce the instance graph without affecting optimal solutions.

3.1 Infeasible Edges

In the following cases an edge e = (i, j) ∈ E cannot be part of a feasible solution
so discarding it safely reduces the search space.
(a) Obviously all edges e ∈ E having a delay d(e) higher than the bound B can
be discarded immediately.
(b) Edges e = (i, j) ∈ E which would exceed the bound in all possible trees can
also be removed from the graph [12] if satisfying these conditions:

dmin(s, i) + d(e) > B ∧ dmin(s, j) + d(e) > B,

whereas minimum delays dmin(s, v) := minP (s,v)

∑
e∈P (s,v) d(e), ∀v ∈ V , are cal-

culated a priori by Dijkstra’s shortest path algorithm [13] applied on the delays.
Both preprocessing tests can be done on all edges E in time O(m + n log n)
including the calculation of dmin values.

3.2 Suboptimal Edges

Suboptimal edges can be part of a feasible solution but may not appear in an
optimal solution, so discarding them safely prunes the solution space.

Comparison to Root Edges. Applying the arc elimination test presented in
[14] to the RDCMST problem results in the removal of edge e = (i, j) ∈ E if
edges (s, i) and (s, j) exist and the following conditions hold:

c(s, j) ≤ c(e), d(s, j) ≤ dmin(s, i) + d(e) ∧
c(s, i) ≤ c(e), d(s, i) ≤ dmin(s, j) + d(e)

This preprocessing rule can be helpful for rather dense or complete graphs but
in sparse graphs only few edges are typically discarded, mainly because of the
small out-degree of the root node. Searching those edges takes time O(m) if dmin

values are already known.
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Extension to Arbitrary Triangles. Considering any triangle in the original
graph consisting of edges e1 = (v1, v2), e2 = (v2, v3), e3 = (v3, v1) ∈ E, edge
e1 cannot appear in an optimal solution if:

c(e1) > c(e2) + c(e3) ∧ d(e1) ≥ d(e2) + d(e3)

If only the second part holds and c(e1) = c(e2)+ c(e3), then edge e1 can be part
of an optimal solution but there has to be at least one other optimal solution
with e1 /∈ E′ and we therefore can also remove it. This preprocessing step can
be done in time O(mn).

Extension to Arbitrary Paths. The last preprocessing step can be further
extended in the following way: Edge e = (i, j) cannot appear in an optimal
solution if there exists a path P (i, j) ∈ E\{e} satisfying the following conditions:

c(e) >
∑

e′∈P (i,j)

c(e′) ∧ d(e) ≥
∑

e′∈P (i,j)

d(e′)

Similarly if the second part is met and c(e) =
∑

e′∈P (i,j) c(e′), then edge e
can be part of an optimal solution but there has to be at least one other op-
timal solution with e /∈ E′. Applying this preprocessing test reduces to solv-
ing the constrained shortest path problem. This problem is NP-hard but ap-
proximable by an FPTAS which implicates the existence of an exact pseudo-
polynomial algorithm. An efficient dynamic programming approach customized
to the RDCMST problem was presented by Gouveia et al. [2]. Nevertheless find-
ing a delay-constrained shortest path runs in time O(mB) which extends to
O(m2B) for the complete preprocessing test.

Especially the last two preprocessing steps must be used with caution. When
having a limited runtime (as in our tests in Section 6) the preprocessing phase
could dominate or even use up the whole time for large instances. So preprocess-
ing can also be counterproductive and finally worsen solution quality.

4 General Variable Neighborhood Search

For constructing a feasible starting solution we use the Kruskal-based heuris-
tic from [6]. To improve the quality of this solution we apply the metaheuris-
tic framework general variable neighborhood search (GVNS) as introduced by
Hansen et al. [15]. In each iteration the so far best solution is perturbed by shak-
ing and then improved by an embedded variable neighborhood descent (VND).

4.1 Variable Neighborhood Descent

The VND used here is the one introduced in [6]. It performs a local search
switching between two neighborhood structures: Edge-Replace and Component-
Renew.
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A move in the Edge-Replace neighborhood removes an edge and connects the
resulting two components in the cheapest feasible way. A neighborhood search is
done by next improvement considering the edges in decreasing cost order until
a local optimum is reached, running in time O(nm).

A Component-Renew move also deletes an edge, but completely dissolves the
component which is now separated from the root node; it then re-adds the in-
dividual nodes by applying Prim’s algorithm [4] respecting feasibility. In some
cases not all nodes can be added due to the delay-bound. These remaining nodes
are again joined to the root component by shortest delay paths, dissolving cre-
ated cycles. A neighborhood search is done in a similar way following a next
improvement strategy considering the edges in decreasing cost order until a lo-
cal optimum is reached, running in time O(n3).

4.2 Shaking

Three different kinds of shaking moves are used in the GVNS framework. The
algorithm always chooses one at random with equal probabilities:
(a) Replacing a random edge by another feasible randomly chosen edge not vi-
olating the delay constraint and tree structure.
(b) Adding the shortest delay path to a random vertex (see Section 3.1).
(c) Adding the delay-constrained least cost path to a random vertex (see
Section 3.2).

To ensure feasibility of the solution two issues have to be considered: Firstly
the last two shaking moves could possibly cause cycles which have to be dissolved,
and secondly the delay-bound in the third move can be set at most to the global
delay-bound reduced by the maximal delay in the subtree of the randomly chosen
vertex. The number of shaking moves performed in one iteration is �|V | ∗ sr�,
where sr ∈ (0, 1] is called shaking rate. This shaking rate is either set to a
fixed value or dynamically changed in the search process. In the latter case sr is
initialized with 0.01, increased by 0.01 when no better solution could be found
in an iteration, limited from above by 0.3, and reset again to 0.01 in case of an
improvement.

5 Ant Colony Optimization

We apply the concept of the MAX −MIN Ant System (MMAS) from Stützle
et al. [16] to our problem implementing the following key features:
(a) Only a single ant is allowed to deposit pheromones at the end of an iteration,
either the best ant of the iteration or the globally best one, focusing the search
to the best solutions found.
(b) Pheromone values are limited to an interval [τmin , τmax ] preventing a stag-
nation of the search.
(c) The initial pheromone values are set to τmax leading to a high diversification
at the beginning of the search.
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Combining all these features provides both intensification and diversification
throughout the search process, which is essential for a well-performing meta-
heuristic.

5.1 Pheromone Values

Pheromone values τv,d ∈ [τmin, τmax] are defined for each node v ∈ V in com-
bination with any delay d ∈ (0,B] it might have. Here, d denotes the sum of
delays of all edges on the path from the root to node v. The root s by definition
always has a node delay 0 and therefore has no pheromone values associated.

Notice that in general delays are real values and therefore pheromone values do
not form a classical finite matrix. However, when considering one special instance
graph the number of feasible node delays is finite (but possibly very large). In an
implementation one has to consider efficient techniques for handling large sparse
matrices [17].

Limits τmin and τmax are initialized and updated according to [16] using pa-
rameter pbest = 0.00005. Preliminary tests have shown that these parameter
settings work well in general.

5.2 Solution Construction

The method for constructing a solution based on the pheromone values is inspired
by the level-based construction heuristic introduced in [18] and runs in time
O(nB + n2):
(a) For each node a delay value is selected with a probability proportional to the
according pheromone value.
(b) All nodes are then sorted by these delay values in ascending order.
(c) The nodes are added in the specified order to the existing tree – initialized
with the root node – always choosing the cheapest possible edge without causing
a node delay higher than the selected delay. If there is no edge satisfying this
constraint, the shortest delay path to the problematic node is added, overriding
the given order but guaranteeing a feasible solution.

5.3 Local Improvement

After its construction, a solution is improved either by the VND or by a local
search in one of the two neighborhoods Edge-Replace or Component-Renew (see
Section 4.1) depending on the instance size. In the latter case the neighbor-
hood Edge-Replace is chosen with probability 0.8 because of its usually higher
performance.

5.4 Depositing Pheromones

After each ant constructed and improved a solution the pheromone values are
updated. Here the mixed strategy suggested in [16] is used: At the beginning



VNS and ACO for the RDCMST Problem 397

Table 1. Comparison of GRASP+VND, GVNS and MMAS on random instance sets

with 500 and 1000 nodes (B: delay-bound, c: average final objective values, σ: standard

deviations; CPU time limit: 300 seconds; best results are printed bold)

B 6 20 50 100

α/sr/p c σ c σ c σ c σ

G+V 0.25 8997.3 672 2048.3 87 942.1 37 616.3 14

dynamic 8703.0 620 1961.5 88 901.1 35 601.1 14

0.05 8701.1 617 1947.2 88 897.7 35 601.1 15

GVNS 0.1 8691.7 618 1938.9 89 893.7 34 599.3 14

0.15 8691.6 618 1942.7 88 894.0 34 599.2 14

R500 0.2 8696.1 618 1947.8 90 896.4 35 599.8 14

0.6 8727.5 616 1937.4 85 891.4 34 598.0 13

0.7 8726.4 614 1935.1 85 889.5 34 597.1 12

MMAS 0.8 8723.4 612 1932.1 84 887.5 34 596.8 13

0.9 8722.4 613 1930.8 82 891.2 36 602.2 14

0.95 8720.4 610 1941.3 83 914.9 40 612.2 14

G+V 0.25 9775.3 487 2473.0 76 1290.3 31 1026.8 9

dynamic 9497.9 486 2377.7 81 1257.4 33 1020.0 7

0.05 9397.2 476 2346.9 80 1253.4 31 1020.1 7

GVNS 0.1 9412.1 480 2353.6 78 1252.5 31 1019.4 7

0.15 9455.2 487 2365.8 80 1254.7 31 1019.6 7

R1000 0.2 9488.3 485 2374.3 80 1257.0 32 1019.9 7

0.5 9385.3 485 2323.4 75 1243.7 28 1021.3 8

0.6 9378.4 483 2312.4 73 1239.3 27 1020.9 8

MMAS 0.7 9376.4 481 2308.8 73 1238.2 27 1022.1 10

0.8 9369.1 478 2309.9 74 1241.3 31 1028.8 14

0.9 9367.7 477 2320.9 76 1281.3 46 1042.8 14

of the search only the best ant of the current iteration is allowed to deposit its
pheromones. Later in the search process intensification has higher priority in
order to concentrate on the surrounding of the so far best solution. This leads
to the following update strategy: The more iterations have been performed, the
higher the frequency of reinforcing the pheromone trail of the so far best solution
instead of the iteration best one. More precisely, an instance-dependent number
of iterations I = 50000

|V | is defined. In iterations [1, I] only the iteration best
solution deposits pheromones, in (I, 2I] the so far best solution is chosen every
fifth iteration, in (2I, 3I] every third iteration, in (3I, 6I] every other iteration
and in (6I,∞) every time. A predefined pheromone decay coefficient p controls
the evaporation and enforcement of the pheromone values.

6 Experimental Results

All tests have been executed on a multicore system consisting of Intel Xeon
E5540 processors with 2.53 GHz and about 3 GB RAM per core.

Since there are no existing benchmark sets in literature with appropriate graph
sizes, we tested our approaches to self-made instance sets called R500 and R1000,
now available at http://www.ads.tuwien.ac.at/~marior/instances/, each
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Fig. 1. Typical run characteristics of all three heuristics applied on a R1000 instance

with B = 6 with a time limit of 300 seconds

containing 30 complete instances with 500 and 1000 nodes, respectively, random
integer edge costs and delays uniformly distributed in [1, 99]. Depending on the
chosen delay-bound B more or less edges can be discarded a priori if d(e) > B
(see Section 3.1).

Each result presented in Table 1 is derived from 30 runs with a CPU time limit
of 300 seconds for each of the 30 instances. Three metaheuristics are included
in the comparison: GRASP+VND from [6], which so far was the best heuristic,
and the new GVNS and MMAS (with 5 ants).

All preprocessing steps except the search for alternate constrained paths (see
Section 3.2) have been applied before starting the search reducing the complex-
ity of the instances significantly. When having higher time limits the omitted
preprocessing step might be advantageous.

The GRASP+VND approach was outperformed by almost all GVNS and
MMAS runs almost independent of the parameter settings, which might be ex-
plained by the fact that the GRASP+VND has no memory. It “forgets” the
solutions of past iterations and therefore cannot build on already obtained in-
formation. The MMAS mostly produces the best solutions probably because it
has the most effective memory of all three methods in terms of the pheromone
values containing the information of many solutions in one data structure.

A matter of high importance when using a MMAS is the fact that it can
typically only exhibit its full effectiveness on a rather high number of iterations
because of the longer exploration phase in the beginning [16], see Figure 1. When
considering the R1000 instances, a full VND improvement of each constructed
solution takes much time which leads to a smaller number of iterations within the
time limit. The pheromone values therefore have not enough time to converge and
the solutions are constructed rather randomly. So a faster local search instead
of the VND produces in general worse solutions in a single iteration but yields
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higher quality in the end due to the higher number of iterations. For the smaller
R500 instances it is better to use the VND improvement since it is fast enough
to allow a sufficient number of iterations before time is running out.

When considering strict delay-bounds finding feasible solutions is more diffi-
cult and therefore the search gets caught in a local optimum more easily. Rather
big changes have to be made to catapult the solution to another basin of at-
traction. Small changes like replacing a single edge to decrease the costs are
often not possible because of a lack of residual delay in the nodes. So choosing
the wrong way in the beginning of the search has more impact on the quality
of the finally best solution than in cases with looser bounds. This fact can be
observed in Table 1 independent of the heuristic method: The stricter the bound
the higher the standard deviations.

A too small pheromone decay coefficient in the MMAS causes a fast conver-
gence of the pheromone values and thus disregards diversification; a too high
p-value has the opposite effect: the exploration phase lasts too long especially
when having a tight time limit.

Relating to the MMAS results the following observation can be made: When
tightening the delay-bound the p-value has to be increased to obtain better
results. This behavior is another consequence of the facts mentioned above: When
having strict bounds the quality and structure of the produced solutions varies
much more and by using a higher p-value a single bad solution has not that
much influence on the pheromone values because of the smoother evaporation
of already deposited pheromones.

Generally speaking, the whole parameter setting of the MMAS heavily de-
pends on the predefined target runtime. Here the small number of five ants
speeds up the evolution of the pheromone values which is necessary for the time
limit of 300 seconds. Regarding the final results it is not disadvantageous that
possibly worse solutions are allowed to update pheromone values.

Applying Wilcoxon signed-rank tests with confidence level 0.95 to the results
for α = 0.25 (GRASP), sr = 0.1/0.05 (GVNS on R500/R1000) and p = 0.8/0.7
(MMAS on R500/R1000) yields the following error probabilities P : GVNS and
MMAS produce better results than GRASP with P = 2.2 · 10−16 for all bounds.
MMAS performs better than GVNS on R500 instances with P = 1 (B = 6),
P = 2.6 · 10−13 (B = 20), P = 2.2 · 10−16 (B = 50, 100) and on R1000 instances
with P = 7 · 10−16 (B = 6), P = 2.2 · 10−16 (B = 20, 50), P = 1 (B = 100).

7 Conclusion

We presented two metaheuristic approaches for solving the rooted delay-con-
strained minimum spanning tree problem, both outperforming existing approa-
ches. The GVNS benefits from sophisticated neighborhood structures and var-
ious shaking moves to quickly converge to high quality solutions, whereas the
MMAS with its balanced mix of diversification and intensification built on a
fast and diverse solution construction extended with efficient local improvement
methods could even exceed the results of the GVNS in most cases.
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Abstract. We utilize an agent-based approach to model the MAPK

signaling pathway, in which we capture both individual and group be-

haviour of the biological entities inside the system. In an effort to adap-

tively reduce complexity of interactions among the simulated agents, we

propose a bottom-up approach to find and group similar agents into a

single module which will result in a reduction in the complexity of the

system. Our proposed adaptive method of grouping and ungrouping cap-

tures the dynamics of the system by identifying and breaking modules

adaptively as the simulation proceeds. Experimental results on our sim-

ulated MAPK signaling pathway show that our proposed method can be

used to identify modules in both stable and periodic systems.

1 Introduction

A signaling pathway is a process by which a cell transfers information from its
external receptors to a target inside [1]. It usually consists of a cascade of bio-
chemical reactions carried out by enzymes. From a software engineering point
of view, a signaling pathway description is similar to a UML diagram describing
which components interact in the cascade. Playing a key role within the cell cy-
cle, the Mitogen-Activated Protein Kinase (MAPK) pathway is one of the most
documented signaling pathways in the literature.The MAPK pathway creates
responses to extracellular stimuli and regulates cellular activities, such as gene
expression, mitosis, differentiation, etc [2].

A multiagent system (MAS) can be composed of a number of agents inter-
acting with their neighbours as well as their environment. This paradigm is a
promising approach to model a biological system in which there are different
entities that interact locally [3,4,5,6]. One of the key challenges associated with
multiagent modeling is its high computational cost. Therefore, there should be a
mechanism for efficient usage of computational resources. Modularization is such
a mechanism in which the average behaviour of similar processes is learned, thus
creating a higher-level algorithmic representation, which is then used instead of
the original, more elementary processes. However, in cases when the behaviour
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of agents changes over time, a static modularization cannot be used. Instead, the
model should have the ability of adaptive modularization, in order to properly
reflect the dynamics of the underlying system.

The goal of this work is to propose such a modularization method and demon-
strate its effectiveness by example of the MAPK signaling pathway. To achieve
this objective, there are various issues to be addressed. The first issue is how to
group different agents into a module and learn their behaviour. Another issue
is whether and how to break or integrate modules whenever the dynamics of
the system is changed. Furthermore, the transition between different states of
the model should be seamless. This research will shed light on how to build a
smooth transition between various models in a complex and multiscale model
and therefore will serve as the first step to multiscale modeling of biological sys-
tems using multiagent systems.

The remainder of this paper is organized as follows. Section 2 reviews related
work in the field of multiagent modeling of biological systems and multiscale
modeling. Section 3 presents the details of our proposed method. Section 4
reports on the experiments conducted to demonstrate the performance of the
proposed method. Finally, concluding remarks are presented in Section 5.

2 Related Work

Amigoni and Schiaffonati [1] present a thorough analysis of multiagent-based
simulation of biological systems. In particular, they discuss three different mul-
tiagent approaches to model the MAPK signaling pathway. The first approach
[2], models every chemical reaction as agents, while the approach proposed in [7]
defines a multiagent system in which each intracellular component is an agent
that uses a blackboard mechanism to interact with other agents in the system.
The third approach [8], models each molecular entity as an agent. In this model,
a reaction is implemented as messages communicated among the agents.

A modularization approach for the MAPK signaling pathway is presented in
[9]. It works by finding the node with the maximum number of neighbours in the
biological interaction network. Further expansion of this node into a subgraph
is called a module. To this end, it is assumed that the graph of the network
is known beforehand and a static graph analysis is performed. Despite being a
static and intuitive algorithm, it serves as a starting point for the modularization
part of this research toward a multiscale model.

Another approach which is proposed by Papin et al. [10] tries to find modules
in an unbiased fashion using mathematically based definitions. These authors re-
viewed three different approaches to calculate correlated reaction sets (Co-Sets).
Co-Sets are groups of reactions in a network whose functional states are simi-
lar. Network-based pathways methods like elementary modes [11] and extreme
pathways [12] aim to optimize a flux-balance equation by finding sets of simi-
lar nodes. Another method is referred to as the flux coupling finder, which also
minimizes or maximizes the ratio between all pair-wise combinations of nodes
[13]. Finally, a correlation coefficient is defined between each pair of nodes in the
network based on their reaction fluxes [14].
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As the technology advances, the prospect of making a multiscale model be-
comes more prominent. In [15], different issues and trends in multiscale modeling
of complex biological systems are addressed. In [16], a software framework for
multiscale model integration and simulation is proposed; however, no specific
modeling techniques are described. There are a few physical multiscale models,
e.g. CPM [17], and Synergetics [18]. However, as of yet, there is no universally
adopted theoretical or computational framework for the assembly of multiscale
biological models [19].

Bassingthwaighte et al. identify a systems approach for developing multiscale
models which includes six steps [20]: (1) defining the model as its highest level
of resolution, (2) designing reduced-form modules, (3) determining the range of
validity of the reduced form modules, (4) monitoring the variables of the sys-
tem, (5) replacing higher resolution models with reduced form modules, and
finally, (6) validating the performance of the multiscale model against available
real data. They further identify issues that must be addressed by any attempt
to multiscale modeling. Examples of these issues are parameter identification of
closed-loop systems, the identification of input-output delays, and the imposi-
tion of known constraints. Their work is among very few attempts to identify
challenges ahead of multiscale modeling from a computer science perspective.

3 Adaptive Modularization in a Multiagent Environment

Modularization is the process of identifying modules within a network that are
functionally similar. By replacing the behaviour of individual nodes with the be-
haviour of their enclosing module, the complexity of the network will be reduced.
This way, a large network can be efficiently analyzed using a reduced number
of nodes. Modularization is usually a static process in which modules are found
before the simulation starts. Furthermore, most modularization approaches as-
sume that the agent interaction graph is completely known as a whole. This
assumption is restrictive, especially in the case of extended networks where the
number of nodes is very large. Furthermore, analyzing the global graph is not
scalable, since with the introduction of each new node the analysis must be per-
formed again. As a result, we propose that the multiagent paradigm can be used
to tackle the problem of scalability and also complexity of large graphs.

A multiagent system usually has no top-down control unit, which operates
on the whole system. Agents cooperate or compete autonomously to perform
various tasks. Contrary to traditional systems, a MAS agent only knows about
its local interactions. Consequently, agents can form their local directed graph
of interaction. Agents can cooperate and share their information (in this case,
their interaction graph) with other agents. This way, they can form groups or
modules in a bottom-up fashion.

In our proposed approach, we aim to find, integrate and break modules dy-
namically as the simulation proceeds. Based on the system dynamics, we expect
our algorithm to find different modules that act together over a period of time.
To this end, we must address several issues as described in [20]. How and when
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Algorithm 1. Module Indentification
m = current module;
Module new module;
Queue q;
q.Enqueue(m);

new module.Add(m);

while !q.empty() do
Module head = q.Dequeue();
for all Agent s in head do

for all Agent t in s.Neighbours()
do

if |ρst| ≥ τedge then
new module.Add(t);
q.Enqueue(t);

end if
end for

end for
end while
return new module;

Algorithm 2. Validity Monitoring
m = current module;
needToBreak = false;

for all Agent s in m do
for all Agent t in s.Neighbours() do

if |ρst − ρ′
st)| > τvalid then

needToBreak = true;
break;

end if
end for

end for

if needToBreak then
simulation.remove(m);

for all Agent s in m do
simulation.add(s);

end for
end if

to integrate nodes to form a module, how to learn the behaviour of a module,
and how to monitor the validity of modules are among the issues that we address
in this section.

3.1 Creating Modules

In our system, agents are associated with an interaction graph as well as an inter-
action history for all their neighbours. The weight of an edge in their interaction
graph is equal to their correlation coefficient with their neighbour. A correlation
coefficient between two statistical variables indicates their linear dependancy. A
zero correlation coefficient means that two variables are independent, while +1
or -1 shows highly correlated variables. The more two variables are correlated,
the more similar their function is. In case there is a series of n measurements of
agents s and t in the form of si and ti, where i = 1, 2, ...,N , their correlation
coefficient (ρst) is defined as follows:

ρst =
∑N

i=1(si − s̄)(ti − t̄)
(n − 1)σsσt

(1)

where s̄ and t̄ are the mean values, and σs and σt are standard deviations of s
and t, respectively.

Having a local weighted graph, each agent then periodically checks if its cor-
relation coefficient with each neighbour is greater than some threshold (τedge).
If so, they form an initial module and repeat this process to identify a cluster
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Fig. 1. Example of an interaction graph. The edges denote the correlation coefficients.

(a) Agent A, Agent C, and Agent E form a module, (b) The new neighbours of this

module are Agent B and Agent D.

of agents that are highly correlated (Algorithm 1). Fig. 1 shows an example in
which Agent A finds Agent C and Agent E, and they form a module. The set of
new neighbours is the union of all neighbours of the underlying nodes. Having
formed such a module, the next step is to train this new module, so that it learns
and imitates the group behaviour of its underlying nodes.

3.2 Learning the Group Behaviour

A module has to subsume the behaviour of its underlying nodes by abstracting
from their behaviour. In other words, the new module has to replace its associ-
ated nodes and produce the same outputs as if there were individual agents in
the system. The learning algorithm can employ neural networks, time series, or
any other function approximation algorithm. No matter what learning algorithm
is used, each node has to have an interaction history to be used during the learn-
ing phase. In our approach, we used a three-layer feed-forward neural network
with back propagation learning algorithm [21] to train the network. This way,
we also have control over the speed of learning.

The structure of the neural network is determined by its inputs, the number
of nodes in the hidden layer, and the outputs. Since in our model, agents are not
aware of their dependent agents (in fact, they only know about their outgoing
edges), the output of the network should simply be all of the underlying nodes (in
the example of Fig. 1, outputs are Agent A, Agent C, and Agent E ). Regarding
the input to the network, there are different design choices. The first one would
be to assign external incoming edges and ignore internal connections (Agent D
in Fig. 1). An alternative approach is to consider internal nodes as well. This
way, the neural network has more meaningful sets of data to be trained with. As
for the number of nodes in the hidden layer, we follow a simple rule-of-thumb
and assign it to be the number of inputs + 2.
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3.3 Monitoring the Validity of Modules

Once a module is found and trained, it subsumes the behaviour of its underlying
nodes. Due to the dynamic behaviour of the system, at some point, the module
might show invalid behaviours. To address this issue, we check the validity of each
module periodically. Nonetheless, we need an indicator to compare the current
and expected behaviour of the module. A heuristic indicator is the previous
correlation coefficients of the underlying nodes before they form a module (ρ′st).
According to Algorithm 2, we compare the current correlation coefficients of the
module to previous values for each individual node, if the difference is larger
than some threshold, we consider the module invalid and consequently break it
into its underlying nodes.

4 Experiments on the MAPK Signaling Pathway

Our proposed adaptive modularization approach can be employed in any system
where there are different agents interacting locally. Signal transduction pathways
are such ideal candidates, as for most of them there is quantized data available.
In general, a signal transduction pathway starts with an external stimulus in a
cascade of biochemical processes, which in turn results in a change of state in a
cell. In the MAPK signaling pathway [22], a hypothetical enzyme E1 stimulates
the cell and results in an increase in production of MAPK-PP enzyme (Fig. 2(a)).
In another model [23], a negative feedback loop causes sustained oscillations in
the production of MAPK-PP (Fig. 2(b)).

(a) (b)

Fig. 2. (a) The MAPK signaling pathway (from [22]), and (b) The MAPK signaling

pathway with a negative feedback (from [23])

4.1 Agent-Based Model of the MAPK Signaling Pathway

Contrary to the differential equation-based approach discussed above, in our
model each substance is considered to be an independent entity which is loosely
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Fig. 3. Agent graphs for the MAPK signaling pathways of Fig. 2

defined as an agent. For each agent, the interaction graph defines its relations
with the substances that appear in its update formula1. Fig. 3 shows the complete
interaction graph for the signaling pathways of Fig. 2.

To validate the performance of the adaptive modularization, we conducted
a series of experiments on both MAPK models. Essentially, there are five pa-
rameters in our algorithm which are summarized in Table 1. We let the system
run in its normal mode for some time (twait) and then start looking for mod-
ules within a time interval (Δfind). twait is important in that the system has
to reach a rather stable condition before the modularization algorithm starts to
work. We keep monitoring the system also in predefined intervals (Δmonitor).
A module is valid as long as its correlation coefficients with its neighbours do
not vary too much with regards to those of individual agents (τvalid). Finally, to
integrate nodes and find modules, the value of an edge in the interaction graph
should be greater than some threshold (τedge). τvalid and τedge have been found
through trial and error. A more detailed exploration of the parameter spaces will
be undertaken in our future work.

Fig. 4(a) shows the result of applying our approach to the first model (Fig.
2(a)) in terms of the number of modules. Initially, each agent is its own module.
The identification of modules starts after t = 1200. The process of construction
and deconstruction of modules results in the emergence of a periodic pattern.
The reason is that whenever a module is broken, all of its underlying nodes start
to work as individual agents again. Naturally, when a module contains a larger
number of nodes, the probability of that module to become invalid is higher.
In other words, since there is no hierarchical learning, after an all-encompassing
single module is created and it breaks, there are again eight individual modules
(one for each agent) in the system. As this modularization/demodularization
process continues, a periodic pattern appears as illustrated in Fig. 4(a). Fig.
4(b) shows that the final concentration successfully resembles that of the PDE
solver.

1 The complete set of update equations can be found in [22] and [23].
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Table 1. Model Parameters

Parameter Name Symbol
Value in

Experiment 1

Value in

Experiment 2

Delay before finding modules twait 1200 1500

Modules finding interval Δfind 300 300

Monitoring interval Δmonitor 20 20

Validity Threshold τvalid 0.1 0.1

Edge Threshold τedge 0.95 0.7
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Fig. 4. Adaptive modularization results for the first MAPK pathway model of Fig.

2(a). (a) Number of agents, (b) Concentration of MAPK-PP.
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Fig. 5. Adaptive modularization results for the second MAPK pathway model of Fig.

2(b). (a) Number of agents, (b) Concentration of MAPK-PP.

Fig. 5 shows the result of adaptive modularization for the second MAPK
pathway. Since this model is periodic, the adaptive modularization algorithm
successively finds, trains, and breaks modules over time. The number of spikes
in Fig. 5(a) shows that the validity period of a composite module is not long
enough. The reason is that the correlation coefficient is a linear indicator which
varies from -1 to +1 over a periodic signal. This variation makes a module in
a periodic system invalid. This result suggests that we have to look for other
parameters when we have a nonlinear system with feedback. Nevertheless, it is
still more reliable than if modules were broken at random.
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5 Conclusion and Future Works

In this paper, we introduced a bottom-up method to reduce the complexity of a
multiagent system simulating the MAPK signaling pathway by adaptive mod-
ularization and demodularization. Although we have shown that this approach
works very well for this specific example, we believe that our module composition
and decomposition algorithm can be applied to a wide range of other multiagent
systems. In particular, individual agents share their interaction graph to build
a higher-level module which subsumes their behaviour. After a new module is
formed, it learns the behaviour of its underlying nodes using a feed-forward neu-
ral network. To monitor the validity of a module, the values of any edge in its
interaction graph is checked – at defined intervals – and compared against the
previous values of its nodes. A module is broken if the difference between the
current and previous value of an edge is greater than some threshold.

We use correlation coefficients to determine the edge value in the agent’s in-
teraction graphs. Although this indicator is mathematically sound, it does not
capture the nonlinear dependance between agents. Looking for other nonlinear
indicators seems to be a promising approach. This work is among very few at-
tempts to find an algorithmic framework to address the complexity reduction in
an agent-based system and can serve as the first step to address the reduction
of complexity in highly complex systems.
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Abstract. In this paper we show that the technique of handling bound-

ary constraints has a significant influence on the efficiency of the Differ-

ential Evolution method. We study the effects of applying several such

techniques taken from the literature. The comparison is based on ex-

periments performed for a standard DE/rand/1/bin strategy using the

CEC2005 benchmark. The paper reports the results of experiments and

provides their simple statistical analysis. Among several constraint han-

dling methods, a winning approach is to repeat the differential mutation

by resampling the population until a feasible mutant is obtained. Cou-

pling the aforementioned method with a simple DE/rand/1/bin strategy

allows to achieve results that outperform in many cases results of almost

all other methods tested during the CEC2005 competition, including the

original DE/rand/1/bin strategy.

1 Introduction

Differential Evolution (DE) [1, 2] has proved an efficient and a very simple
algorithm from the Evolutionary Computation (EC) family. In particular, the
DE scheme overcomes one of the basic difficulties that are met when tuning
an Evolutionary Algorithm (EA), namely, the issue of a proper setting of the
mutation range. In DE, mutation is based on differences between chromosomes
contained in the population, and, since their distribution is influenced by the
shape of the fitness function, the distribution of mutants reflects that shape as
well. This effect has been called by Storn a “contour matching property”.

The basic DE scheme has been introduced for an unconstrained optimization
task, whereas in most of the engineering problems, there may appear additional
constraints that any solution must satisfy. In general, handling constraints in
EC is a problem itself, and a lot of research has been conducted to elaborate
efficient methods of solving it. In this contribution we focus on applying DE
in optimization problems with boundary constraints, where each coordinate of
the solution must fit into the range between a lower and an upper bound. This
form of constraints allows for very easy check for feasibility, and it is also very
easy to define constraint handling strategies that are based on repairing. For
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these reasons, the choice of a technique to handle boundary constraints does not
appear to be a serious problem, and maybe this explains why we were unable to
find a systematic study that addresses the issue of boundary constraints handling
methods. We give an experimental evidence that this issue cannot be treated too
easily, since it may have a surprisingly big influence on the DE effectiveness.

In the research papers devoted to DE we can find several techniques to handle
boundary constraints. Price et al. [1] suggest that random reinitialization (that
is, replacing an infeasible solution by a randomly initialized one) is “the most
unbiased approach”. This method has been also used e.g. in [3, 4]. Price et al. [1]
defined also a “bounce back” strategy, where an infeasible solution y, generated
by mutating a feasible solution x, is replaced by a new feasible solution located
on a line between x and y. This approach has been applied e.g. in [5, 6]. Another
approach to repairing infeasible solutions is to reflect them back from the bound
[7]. Yet another possibility [8] is to project infeasible solutions on bounds, which
consists in changing each parameter that exceeds a boundary value to a new
value which equals the boundary.

Some optimization tasks, e.g. digital filter design, are periodic in nature. Then,
search can be constrained to parameter values from a certain base interval cov-
ering a single period, which are treated feasible. Values outside that range can
be shifted by an integer multiple of the interval length to fit it the feasible area
[9]. We shall call this strategy a wrapping approach.

The motivation for this paper was given by studying the results of the
CEC2005 competition of optimization algorithms [10]. In the CEC2005 pro-
ceedings, 18 papers took part in the competition. Among the submitted papers,
some authors did not report details of handling constraints, and those who re-
ported used various techniques. In the group of algorithms that performed quite
well, one can find a very basic DE method [7]. In this paper we investigate if
the results of this method can be improved by changing the method of handling
boundary constraints.

2 Differential Evolution Algorithm

The outline of the DE algorithm is depicted in Fig. 1. With P t we denote the
population in the generation number t, and P t

i stands for the i-th chromosome
in the population P t; finally, with P t

i,j and xj we denote the j-th coordinate
of the chromosome P t

i,j and x, respectively. All chromosomes are n-dimensional
vectors of real numbers, and μ is the size of the population P t.

The algorithm minimizes the fitness function f : Rn → R. We assume that
for each dimension, a pair of numbers li, ui is defined which are lower and upper
bound of the feasible area in the i-th dimension. Thus, the feasible area is defined
by two vectors composed of lower bound values l and upper bound values u.

In our study we considered a simple DE/rand/1/bin strategy which imple-
ments DE steps in the following way. In the initialization phase, population P 0

is filled with chromosomes that are generated with uniform distribution in the
feasible area [l,u]. The selection rule returns a chromosome x = P t

i where the
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algorithm DE with constraint handling

P 0 ← initialize(l, u)

repeat until stop condition met

for i ∈ 1...μ
x ← selection (P t)

v ← differential mutation(x, P t)

if v is feasible then w ← v
else w ← repair(v, x, P t)

y ← crossover(P t
i , w)

P t+1
i ← replacement(P t

i , y)

end for
t ← t + 1

end repeat

Fig. 1. Outline of a basic DE algorithm

index i is a random variable with uniform distribution in {1, ..., μ}. Differential
mutation uses two chromosomes P t

j and P t
k whose indexes are also random vari-

ables with uniform distribution in {1, ..., μ}. In the result, a chromosome v is
generated according to the formula

v = x + F (P t
j − P t

k) (1)

where F is a scaling factor defined by the user. When a constrained optimization
problem is considered, chromosome v may become infeasible, therefore a repair-
ing strategy is applied that generates a new feasible chromosome w instead of
v. In this paper we study several versions of the repair procedure, and those
versions are discussed in the next subsection. The new chromosome w, which
resulted from repairing the chromosome v, undergoes crossover with the chro-
mosome P t

i . In our study we focus on the binary crossover which is defined as
follows

yj =

{
wj with probability CR

P t
i,j with probability 1 − CR

(2)

where CR is a user-defined parameter. In the replacement step, i-th chromosome
for the next generation results from the tournament of chromosomes P t

i and y:

P t+1
i =

{
y f(y) < f(P t

i )
P t

i otherwise
(3)

Considered Constraint Handling Methods. In the presented study we
compare the following methods of handling boundary constraints which we have
found in the literature.

– Conservatism: If the differential mutation resulted in an infeasible chromo-
some, it is rejected and w = x. This strategy is equivalent to the assumption
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that the infeasible chromosome will not be repaired, but it will be rejected
in the replacement phase.

– Reinitialization: Chromosome w is generated with the uniform distribution
in the feasible area.

– Reflection: Chromosome w is generated by reflecting coordinate values from
the exceeded boundary values

wi =

⎧⎪⎨
⎪⎩

vi li ≤ vi ≤ ui

2ui − vi vi > ui

2li − vi vi < li

(4)

If the resulting chromosome is still infeasible, it is reflected again, and the
procedure is repeated until feasibility is obtained.

– Projection: All coordinate values that exceed bounds are trimmed to the
boundary values

wi =

⎧⎪⎨
⎪⎩

vi li ≤ vi ≤ ui

ui vi > ui

li vi < li

(5)

– Wrapping: All coordinate values that exceed the admissible range are shifted
by an integer multiple of the range such that they become feasible

wi =

{
vi li ≤ vi ≤ ui

vi + ki(ui − li) otherwise
(6)

where ki is an integer number that guarantees feasibility for the i-th dimen-
sion.

– Resampling: Selection of a random chromosome from P t and its differential
mutation is repeated until a feasible chromosome is obtained:

w = differential mutation(selection(P t),P t) (7)

This means that chromosomes x, P t
j and P t

k are selected anew by picking
them with the uniform distribution from the population P t.

3 Experiments and Results

Conditions of testing. We performed an experimental comparison using the
suite of fitness functions that have been defined for the CEC2005 competition.
Detailed description of functions and conditions of testing are defined in [11],
therefore we provide only a brief information about the benchmark.

The benchmark is a compilation of 25 minimization problems that can be
divided into four groups (in brackets we refer to function numbers assumed orig-
inally in the benchmark definition): 1) unimodal functions (f1 up to f5), 2)
basic multimodal functions (f6 up to f12) which include functions by Ackley,
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Griewank, Rastrigin, Rosenbrock, Schwefel, and Weierstrass, 3) expanded func-
tions (f13, f14) which are combinations of Griewank, Rosenbrock and Shaffer
functions, 4) composition functions (f15 up to f25) which resulted from combin-
ing functions from groups 1) – 3). Most of the problems from that benchmark
are defined for a shifted, rotated, and scaled coordinate system. With two ex-
ceptions (f7 and f25), all other problems have boundary constraints. Some of
the benchmark functions have their global minimum on the boundary. Tests are
performed for 10-dimensional and 30-dimensional problems.

For each optimization problem, the algorithm is run 25 times, and each time
it returns the best value found in that run. For each benchmark function its
global minimum is known, so the difference between the fitness value of the
best chromosome and the true global minimum can be treated as the error of
a single run. Thus, for 25 independent runs one obtains populations of 25 error
values whose statistics are reported. For a better readability and compactness,
in our study we decided to reduce the suggested set of reported error statistics
to the mean value and standard deviation. They are computed for populations
of solutions obtained by each of 25 independent runs after n · 10000 evaluations
of the fitness function.

All experiments were performed using a plain DE/rand/1/bin strategy as-
suming the following parameter values: population size μ = 10n, scaling factor
F = 0.8, binary crossover rate CR = 0.9. We applied these settings and per-
formed testing with each of the aforementioned constraint handling techniques.

Results. Results obtained by DE/rand/1/bin with various constraint handling
methods are reported in Tab. 1, 2 for all bounded CEC2005 problems. To facil-
itate the interpretation of results, for each test function we use the mean error
values to assign ranks to all constraint handling methods under comparison.
Then, for each constraint handling method we average its ranks over all test
functions and we report these averaged rank values.

In addition to the mean value and standard deviation of the fitness function,
we indicate the percentage of chromosomes that have been generated outside
the admissible area and required repairing. We provide the mean values of the
percentage of repaired chromosomes for each constraint handling method (av-
eraged over all test functions). This indicates how effectively a constraint han-
dling method avoids generation of infeasible chromosomes. We also report for
each function how frequently a constraint handling method was used (averaging
over all constraint handling methods), which informs about the importance of a
proper choice of a constraint handling method for that particular function.

A general conclusion is that the choice of the constraint handling technique
may significantly influence the final result. Still, for 10-dimensional problems
it is not clear which strategy is the most efficient. For some functions, like
f1, f2,f13, f14, application of any constraint handling technique yields similar
results. Projection and reflection work well when the global minimum is lo-
cated on bounds or close to them, which is the case of functions f5,f18 −
f20. Reinitialization appears extremely effective for the Schwefel 1.2 problem
(f12). Resampling and conservatism are clearly winning strategies only for the
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Table 1. Mean and standard deviation of results yielded by DE/rand/1/bin after

100000 fitness function evaluations for 10-dimensional problems from CEC2005

projection reflection resampling conservative wrapping reinitialize % repaired
f1 mean 7.89E-09 8.14E-09 7.73E-09 8.59E-09 7.59E-09 8.37E-09 8.1

std 1.85E-09 1.26E-09 1.59E-09 9.57E-10 1.50E-09 1.10E-09
f2 mean 8.14E-09 8.65E-09 8.24E-09 8.15E-09 7.73E-09 8.52E-09 11.6

std 1.62E-09 1.05E-09 1.61E-09 1.41E-09 1.39E-09 1.24E-09
f3 mean 1.61E-08 3.58E-08 8.58E-09 1.35E-07 5.33E-08 5.18E-08 15.3

std 8.23E-09 3.81E-08 1.10E-09 1.21E-07 3.41E-08 4.10E-08
f4 mean 8.18E-09 8.21E-09 8.75E-09 8.24E-09 8.28E-09 8.18E-09 11.4

std 1.34E-09 1.48E-09 1.12E-09 1.31E-09 1.26E-09 1.48E-09
f5 mean 1.23E-08 4.91E-05 3.59E-06 1.63E+00 1.33E+00 1.39E+00 67.9

std 8.72E-09 3.88E-05 1.84E-06 6.88E-01 4.92E-02 6.01E-01
f6 mean 3.81E-06 1.59E-01 1.69E-06 1.74E-05 4.66E-06 1.59E-01 7.75

std 6.10E-06 7.81E-01 2.00E-06 1.84E-05 3.76E-06 7.81E-01
f8 mean 2.05E+01 2.05E+01 2.06E+01 2.07E+01 2.05E+01 2.05E+01 15.0

std 7.25E-02 7.35E-02 1.55E-01 1.22E-01 9.82E-02 9.41E-02
f9 mean 2.75E+01 3.34E+01 2.46E+01 2.45E+01 2.32E+01 2.52E+01 13.3

std 1.94E+01 1.30E+01 1.32E+01 1.66E+01 1.71E+01 1.45E+01
f10 mean 2-19E+01 3.39E+01 2.42E+01 2.43E+01 2.49E+01 1.95E+01 11.7

std 1.36E+01 1.45E+01 1.61E+01 1.60E+01 1.66E+01 1.55E+01
f11 mean 6.58E+00 7.35E+00 4.12E+00 4.71E+00 8.79E+00 8.11E+00 16.4

std 2.78E+00 2.30E+00 3.55E+00 3.79E+00 1.38E+00 2.90E+00
f12 mean 1.04E+02 5.22E+00 6.23E+01 1.73E+02 5.54E+01 4.00E-01 13.3

std 4.05E+02 8.11E+00 3.05E+02 4.61E+02 2.64E+02 1.96E+00
f13 mean 2.76E+00 2.77E+00 2.97E+00 3.00E+00 2.85E+00 2.79E+00 3.6

std 1.21E+00 1.22E+00 1.11E+00 9.62E-01 1.12E+00 1.22E+00
f14 mean 3.80E+00 3.69E+00 3.78E+00 3.61E+00 3.94E+00 3.84E+00 17.5

std 6.37E-01 5.20E-01 4.98E-01 6.86E-01 1.39E-01 4.36E-01
f15 mean 3.84E+02 3.02E+02 2.08E+02 2.59E+02 2.05E+02 1.88E+02 11.6

std 9.23E+01 1.31E+02 1.05E+02 1.09E+02 1.13E+02 9.87E+01
f16 mean 1.55E+02 1.53E+02 1.47E+02 1.35E+02 1.48E+02 1.50E+02 13.0

std 3.52E+01 3.16E+01 3.54E+01 2.90E+01 3.08E+01 2.95E+01
f17 mean 1.69E+02 1.78E+02 1.56E+02 1.60E+02 1.55E+02 1.61E+02 16.1

std 2.81E+01 2.60E+01 2.62E+01 2.41E+01 2.35E+01 3.51E+01
f18 mean 3.82E+02 4.00E+02 8.00E+02 7.40E+02 8.00E+02 8.00E+02 12.0

std 1.71E+02 2.00E+02 2.64E-11 1.62E+02 7.61E-10 7.15E-10
f19 mean 3.63E+02 3.40E+02 7.80E+02 7.40E+02 7.40E+02 8.00E+02 11.6

std 1.50E+02 1.36E+02 9.80E+01 1.62E+02 1.62E+02 4.80E-10
f20 mean 3.52E+02 3.60E+02 8.00E+02 7.45E+02 7.64E+02 8.00E+02 11.5

std 1.44E+02 1.62E+02 2.16E-11 1.66E+02 1.38E+02 1.35E-09
f21 mean 5.00E+02 5.00E+02 4.36E+02 4.52E+02 4.92E+02 4.92E+02 7.9

std 8.28E-12 3.20E-12 9.33E+01 8.54E+01 3.92E+01 3.92E+01
f22 mean 7.83E+02 7.04E+02 6.80E+02 6.84E+02 6.27E+02 7.43E+02 12.0

std 2.20E+01 1.76E+02 1.93E+02 1.92E+02 2.24E+02 1.31E+02
f23 mean 5.59E+02 5.59E+02 5.98E+02 6.34E+02 5.85E+02 5.72E+02 8.1

std 1.44E-12 1.68E-12 1.05E+02 1.01E+02 5.93E+01 4.39E+01
f24 mean 2.14E+02 2.00E+02 2.00E+02 2.00E+02 2.00E+02 2.00E+02 8.5

std 6.64E+01 3.15E-12 3.00E-12 9.25E-11 2.86E-11 3.94E-11
avg. rank 2.87 3.35 2.74 3.39 3.00 3.43

% repaired 15.5 12.4 14.7 15.0 13.6 13.7



EC of Methods to Handle Boundary Constraints in DE 417

Weierstrass function f11. Despite of local differences, average percentage of
repaired chromosomes stays on roughly similar level for all methods under
comparison.

In contrast to the 10-dimensional case, for 30-dimensional problems a clear
picture is obtained. Resampling appears the most effective constraint handling
strategy. Projection and reflection seem to be the methods of the second choice.
Reinitialization performs surprisingly bad. As for the average percentage of in-
feasible chromosomes, its clear minimum value is recorded for the reinitialization,
and for the other methods under comparison, this value is roughly similar. Thus
we state a hypothesis that the good performance of the resampling strategy
results from its efficiency in avoiding generation of infeasible chromosomes.

Resampling method is the only one where the repairing cost cannot be guar-
anteed. To estimate it, for each test function we computed the average number
of trial chromosomes that are generated to repair a single infeasible chromosome.
For 10-dimensional problems, the average repairing cost ranged from 2.3 to 6.8
(the mean value was 3.3), and for 30-dimensional problems, it ranged from 3.8
to 29.3 (the mean value was 6.7).

Comparison with other CEC2005 competitors. Interpretation of the pre-
sented results becomes easier after looking at Tab. 3 which contains a comparison
of the results between DE/rand/1/bin with constraint handling by resampling
and the algorithms that were found superior in the summary of the CEC2005
competition [10]. Those algorithms are: DE variants — plain DE/rand/1/bin[7]
(treated as a reference method), DE-535[12] (modified DE/rand/1/bin, scaling
factor generated randomly) L-SaDE[13] (DE with adaptive scaling factor and
local search incorporated); Memetic EA — BLX-GL50[14], BLX-MA[15], SPC-
PNX[16]; Steady state EA — K-PCX[17]; Coevolutionary EA — CoEVO[18];
simple Particle Swarm Optimization DMS-L-PSO[19]; Estimation of Distribu-
tion — EDA[20] and CMA-ES using two restart strategies — G-CMA-ES[21],
L-CMA-ES[22]. For L-SaDE and DMS-L-PSO, no results have been reported for
n = 30, and for DE-520, only results for f1 − f14 are available.

Each cell of the table, which corresponds to a function fi and the competing
algorithm number j, indicates if the mean error achieved by DE/rand/1/bin
with resampling was smaller (symbol ‘+’) or greater (symbol ‘–’) than the mean
error achieved by the algorithm number j for the function fi. Since the com-
pared methods are stochastic, we applied a generalized t-Student’s test of equal
means. This generalization, called Welch test, is applicable for samples driven
from normal distributions with different standard deviations. Symbols ‘–’ or ‘+’
appear when the difference was statistically significant, i.e., when the probability
of accepting the null hypothesis that both mean values were equal was smaller
than 0.05. If the null hypothesis could not be rejected, it is indicated with ‘·’.

Analysis of Tab.3 indicates that, for several test functions, the combination of
the DE with the resampling method could have allowed the DE/rand/1/bin to
perform significantly better than the DE version with reinitialization [7], which
might have allowed to even outperform the winners of the CEC2005 competition
for some functions. This effect is clearly visible in 30 dimensions on multimodal
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Table 2. Mean and standard deviation of results yielded by DE/rand/1/bin after

300000 fitness function evaluations for 30-dimensional problems from CEC2005

projection reflection resampling conservative wrapping reinitialize % repaired
f1 mean 6.82E+01 6.30E+01 1.53E+01 7.07E+02 3.00E+02 3.63E+02 50.0

std 2.61E+01 2.06E+01 7.12E+00 1.98E+02 9.75E+01 1.01E+02
f2 mean 1.61E+02 2.06E+02 1.57E+01 1.23E+03 5.49E+02 6.37E+02 60.7

std 7.11E+01 5.59E+01 6.65E+00 6.20E+02 1.70E+02 2.29E+02
f3 mean 4.96E+05 6.04E+05 5.97E+03 3.93E+06 1.48E+06 1.53E+06 76.8

std 1.93E+05 1.78E+05 2.68E+03 1.75E+06 4.96E+05 4.44E+05
f4 mean 5.57E+02 7.09E+02 7.61E+01 4.18E+03 1.65E+03 1.97E+03 67.3

std 1.93E+02 2.33E+02 3.98E+01 2.54E+03 5.30E+02 5.87E+02
f5 mean 3.93E+03 4.43E+03 9.09E+02 1.17E+04 8.13E+03 9.80E+03 88.1

std 8.23E+02 5.49E+02 4.99E+02 1.50E+03 9.92E+02 1.37E+03
f6 mean 5.14E+04 3.97E+04 1.16E+04 3.90E+06 7.66E+05 1.67E+06 51.4

std 3.26E+04 2.41E+04 9.02E+03 2.38E+06 5.11E+05 1.11E+06
f8 mean 2.10E+01 2.10E+01 2.11E+01 2.11E+01 2.09E+01 2.10E+01 46.3

std 5.22E-02 4.26E-02 2.26E-01 2.18E-01 1.08E-01 5.22E-02
f9 mean 1.16E+02 1.30E+02 8.97E+01 1.84E+02 1.59E+02 1.68E+02 67.3

std 3.36E+01 4.19E+01 1.14E+01 2.94E+01 2.91E+01 3.35E+01
f10 mean 1.41E+02 1.48E+02 9.91E+01 2.41E+02 1.98E+02 2.17E+02 70.5

std 2.58E+01 3.52E+01 4.24E+01 1.60E+01 3.02E+01 1.76E+01
f11 mean 3.98E+01 3.74E+01 2.20E+01 2.56E+01 3.87E+01 3.72E+01 54.2

std 2.73E+00 5.29E+00 5.89E+00 2.50E+00 3.72E+00 5.59E+00
f12 mean 1.00E+05 4.79E+04 1.02E+04 7.65E+04 8.85E+04 6.34E+04 65.7

std 4.45E+04 2.12E+04 6.64E+03 3.00E+04 2.96E+04 2.58E+04
f13 mean 1.85E+01 1.82E+01 1.57E+01 1.92E+01 1.77E+01 1.80E+01 30.0

std 1.07E+00 1.31E+00 1.94E+00 1.44E+00 1.41E+00 1.61E+00
f14 mean 1.35E+01 1.34E+01 1.31E+01 1.31E+01 1.36E+01 1.36E+01 55.9

std 2.46E-01 4.19E-01 9.91E-01 6.40E-01 2.37E-01 2.07E-01
f15 mean 4.48E+02 4.50E+02 4.30E+02 5.11E+02 4.87E+02 4.84E+02 60.9

std 2.59E+01 2.06E+01 3.56E+01 3.22E+01 1.94E+01 4.42E+00
f16 mean 1.65E+02 1.70E+02 1.36E+02 3.01E+02 2.46E+02 2.60E+02 76.3

std 3.13E+01 3.76E+01 2.83E+01 4.05E+01 1.95E+01 1.99E+01
f17 mean 2-47E+02 2.56E+02 1.89E+02 3.36E+02 2.97E+02 2.99E+02 85.8

std 1.87E+01 2.59E+01 5.95E+01 5.34E+01 2.10E+01 1.92E+01
f18 mean 9.22E+02 9.33E+02 8.61E+02 9.93E+02 9.62E+02 9.68E+02 90.6

std 4.52E+00 3.76E+00 5.34E+01 2.80E+01 1.70E+01 2.75E+01
f19 mean 9.22E+02 9.33E+02 8.44E+02 9.95E+02 9.49E+02 9.63E+02 89.9

std 4.52E+00 5.23E+00 5.29E+01 2.40E+01 2.65E+01 2.90E+01
f20 mean 9.22E+02 9.32E+02 8.39E+02 9.94E+02 9.53E+02 9.66E+02 89.8

std 4.51E+00 5.71E+00 5.13E+01 2.41E+01 2.19E+01 2.70E+01
f21 mean 5.25E+02 5.09E+02 5.04E+02 6.76E+02 5.79E+02 6.15E+02 56.1

std 3.28E+01 3.15E+00 1.96E+00 6.92E+01 3.44E+01 5.10E+01
f22 mean 8.88E+02 9.26E+02 9.29E+02 1.02E+03 9.94E+02 9.96E+02 88.0

std 1.01E+01 1.12E+01 1.80E+01 1.47E+01 1.26E+01 1.50E+01
f23 mean 5.50E+02 5.40E+02 5.35E+02 7.52E+02 5.97E+02 6.73E+02 57.3

std 1.09E+01 5.35E+00 2.99E+00 1.24E+02 2.57E+01 1.28E+02
f24 mean 5.62E+02 2.20E+02 2.05E+02 5.45E+02 3.40E+02 4.01E+02 61.9

std 3.61E+02 5.20E+00 1.72E+00 1.16E+02 5.19E+01 7.65E+01
avg. rank 2.74 2.65 1.09 5.30 4.09 4.48

% repaired 73.8 66.2 51.7 71.8 68.6 68.5
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composition functions, where [7] reported rather poor results. For unimodal and
basic multimodal functions, DE/1/rand/bin with any constraint handling tech-
nique is relatively ineffective. In our opinion this indicates a poor performance in
exploitation which can be overcome by intelligent restarting and/or by the hy-
bridization with some local optimization method, like in several other methods
that took part in the competition [13–16, 21, 22].

Table 3. Comparison of the DE/rand/1/bin with resampling versus leading optimiza-

tion methods from CEC2005

n = 10 1 2 3 4 5 6 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
DE/rand/1/bin – – + – – – – – + · + – – · + · – – – + · · ·

DE.535 – · + + + + – – – – · – – · – – – · – + + + –
L.SaDE – – + · + – – – – · · – – – – – · · – · · · ·

BLX.GL50 · · + · – – – – – – · – – + – – – – – + · · ·
BLX.MA + + + + + + – – – · · – – + – – + · · + · + –
SPC.PNX + + + + – + + – – – · – – · – – – – – + · · ·
K.PCX + + + · + · – – – + · – – + – – · · · + · + –
CoEVO + · · · + + – · · + + – · + + + + · + + + + –

DMS.L.PSO – – – + – – – – – · · – – – – – · · + + · + ·
EDA – – – – + – – + + + · · · + + + – – – + + · ·

G.CMA.ES – – – – – – – – – – · – – · – – – – – + · · ·
L.CMA.ES – – – · – – – + + · · – · · – + – – – · · + –

n = 30 1 2 3 4 5 6 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
DE/rand/1/bin – – + – – – – – – + · – · + + + + + + + + + –

DE.535 – + + + + – · – – · – – · – + – · · + + – + –
BLX.GL50 – – – – – – – – – · · – – – – – + + + – – + –
BLX.MA – – + – + – – – · + – – – – + + · + + – – + –
SPC.PNX – – + – + – – – – – · – · – – – + + + – – · –
K.PCX – – – + + – – – – + – – + + – · – · · + + + –
CoEVO – – – + + – – + + + + – · · + + + + + + + + –
EDA + + + + + + – + + + + + + + + + + + + · – + –

G.CMA.ES – – – · – – – – – – · – · – – + + + + – – · –
L.CMA.ES – – – + – – – + + – · – + – – + + + + – – · –

4 Summary

We showed that the results obtained by the DE/rand/1/bin algorithm were sig-
nificantly influenced by the method to handle boundary constraints. A strategy
that repeats the differential mutation until a feasible solution is found appeared
to be a winning one, and in particular, it appeared superior to reinitialization
which is nowadays quite commonly used in DE. This observation might indicate
yet another possibility to improve efficiency of the DE by choosing an appropri-
ate boundary constraint handling technique.
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Abstract. Mastermind is a well-known board game in which one player

must discover a hidden color combination set up by an opponent, using

the hints the latter provides (the number of places –or pegs– correctly

guessed, and the number of colors rightly guessed but out of place in

each move). This game has attracted much theoretical attention, since it

constitutes a very interesting example of dynamically-constrained combi-

natorial problem, in which the set of feasible solutions changes with each

combination played. We present an evolutionary approach to this prob-

lem whose main features are the seeded initialization of the population

using feasible solutions discovered in the previous move, and the use of an

entropy-based criterion to discern among feasible solutions. This crite-

rion is aimed at maximizing the information that will be returned by the

opponent upon playing a combination. Three variants of this approach,

respectively based on the use of a single population and two cooperating

or competing subpopulations are considered. It is shown that these vari-

ants achieve the playing level of previous state-of-the-art evolutionary

approaches using much lower computational effort (as measured by the

number of evaluations required).

1 Introduction

Mastermind is a board game that has enjoyed world-wide popularity since the
70s, when its current design was put forward (antecedents can be traced back to
traditional puzzles such as bulls and cows or AB [1] though). Roughly speaking,
Mastermind is a two-player code-breaking game, or in some sense a puzzle, since
one of the players –the codemaker (CM)– has no other role in the game than
providing a hidden combination, and automatically providing hints on how close
the other player –the codebreaker (CB)– has come to guess this combination.
More precisely, the functioning of the game is as follows:

– The CM sets a length � combination of κ symbols. Therefore, the CB is
faced with κ� candidates to be the hidden combination. This combination

R. Schaefer et al. (Eds.): PPSN XI, Part II, LNCS 6239, pp. 421–431, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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is typically represented by an array of pegs of different colors. We will use
uppercase letters to denote these colors.

– The CB tries to guess this secret code by producing a combination with the
same length and using the same set of symbols as the secret code. As a re-
sponse to this move, the CM provides information on the number of symbols
guessed in the right position (black pegs in the physical board game), and
the number of symbols in an incorrect position (white pegs).

– The CB uses this information to produce a new combination, that is assessed
in the same way. If he correctly guesses the hidden combination in at most
N attempts, the CB wins. Otherwise, the CM takes the game.

There exist other variants of the game in which more information is provided
(i.e., which –rather than how many– symbols are correctly guessed and/or are
out of place), additional constraints are enforced on the hidden combination
(e.g., not allowing repeated symbols in the secret code, as in bulls and cows,
thus reducing the search space), or even allowing the CM to change the code
during the game in a way that is compatible with previous moves (this variant is
aimed to exploit any bias the CB may have when selecting the next combination
played, such as preferring certain symbols over others).

As mentioned before, the game is asymmetrical in the sense that the CM has
no freedom of move after setting up the hidden combination (at least in static
variants of the game in which the hidden combination does not change), and
therefore the CB does not have to outsmart the CM, but he has to put his own
analytical skills at play to determine the course of action given the information
available at each step. The resulting combinatorial problem is enormously inter-
esting, as it relates to other generally called oracle problems such as circuit and
program testing, differential cryptanalysis, uniquely identifying a person from
queries to a genetic database [2] and other puzzle-like games and problems –
check also [3]. It is also a complex problem, which has been shown to be NP-
complete under different formulations [4,5], for which several issues remain open,
e.g., what is the lowest average number of guesses needed to solve the problem
for any given κ and �. Associated to this, there arises the issue of coming up
with an efficient mechanism for finding these guesses in any particular case. To
this end, several attempts have been made to use evolutionary algorithms (EAs)
for exploring the space of feasible (meaning here compatible with the available
information) combinations, e.g., [6,7,8].

Most evolutionary approaches presented for this problem are based on pro-
viding the CB with a set of potential combinations among which he has to select
his next move. This decision-making process is very important, since although
all potential candidates may be compatible with the information available, the
outcome of the move can be very different, ranging from minimal reductions
in the set of potential solutions, to a major pruning of the search space. Sev-
eral metrics have been defined for this purpose. We consider here the use of an
entropy-based criterion, which is further introduced in the fitness function to
guide the search, and provide a variable-size, high-quality set of potential can-
didates. We show that this approach, combined with the seeded initialization of



Entropy-Driven Evolutionary Approaches to the Mastermind Problem 423

the population can result in a large reduction in the computational effort of the
EA, with respect to other evolutionary approaches described in the literature.

2 Background

This section provides a brief overview of the problem, presents its classical for-
mulation, and discusses how it has been tackled in the literature.

2.1 Formulation

As mentioned in Sect. 1, a Mastermind problem instance is characterized by
two parameters, namely the number κ of colors and the number � of pegs. Let
Nκ = {1, 2, · · · κ} be the set of symbols used to denote the colors. Subsequently,
any combination, either the hidden one or one played by the CB, is a string
c ∈ N�

κ. Whenever the CB plays a combination cp, a response h(cp, ch) ∈ N2 is
obtained from the CM, where ch is the hidden combination. A response 〈b,w〉
indicates that the cp matches ch in b positions, and there exist other w symbols
in cp present in ch but in different positions.

A central notion in the context of the game is that of consistency. A combi-
nation c is consistent with a played combination cp if, and only if, h(c, cp) =
h(cp, ch), i.e., if c has as many black and white pegs with respect to the cp as cp

has with respect to the hidden combination. Intuitively, this captures the fact
that c might be a potential candidate to be the hidden combination in light
of the outcome of playing cp. We can easily extend this notion and denote a
combination c as consistent (or feasible) if, and only if, it is consistent with all
combinations played so far, i.e.,

h(c, ci
p) = h(ci

p, ch) 1 � i � n (1)

where n is the number of combinations played so far, and ci
p is the i−th combina-

tion played. Any consistent combination is a candidate solution. It is straightfor-
ward to see that the number of feasible solutions decreases with each guess made
by the CB (provided he always plays feasible solutions). By the same token, the
feasibility of a candidate solution is a transient property that can be irreversibly
lost upon obtaining further information from the CM. This turns out to be a
central feature in the strategies devised to play Mastermind, as shown next.

2.2 Game Strategy

Most naive approaches to Mastermind play a consistent combination as soon as
one is found. An example of such an approach within an evolutionary context
was proposed by Merelo et al. [3]. While this can constitute a simple and fast
strategy early in the game (when there are many feasible combinations left), and
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is ensured to find eventually the hidden combination, it is a poorly performing
strategy in terms on the number of attempts the CB needs to win the game.
Indeed, unless some bias is introduced in the way solutions are searched, this
strategy reduces to random approach, as solutions found (and played) are a
random sample of the space of consistent guesses. It is also highly inefficient in
the last stages of the game (when there are very few –maybe just one– feasible
solutions), since a large part of the feasible space has to be examined to find a
feasible solution. We will return to this latter issue later on.

One of the reasons behind the poor performance of these naive strategies was
anticipated in Sect. 2.1: the feasibility of a solution can vanish upon receiving
feedback from the CM. Thus, a sensible strategy would try to take this into
account when selecting the next move. More precisely, the CB would like to
play a feasible combination that –were it not the hidden one– left him in the
best position in the next move. This leads to a generic framework for defining
Mastermind strategies in which (1) a procedure for finding a large set (even a
complete set) Φ of feasible combinations is firstly used, and (2) a decision-making
procedure to select which combination c ∈ Φ will be played is then used.

Regarding the decision-making procedure, its purpose must be to minimize
the losses of the CB, putting him in the best position for the next move. This is
substantiated in reducing the number of feasible solutions as much as possible,
and hence that the set of available options in the next step is minimal. However,
it is obvious that the reduction in the number of feasible solutions attainable by
a certain guess depends on the hidden combination which is unknown. Therefore,
any strategy based on this principle must rely on heuristics. To be precise, let
us consider the concept of partitions (also called Hash Collision Groups, HCG
[1]) defined as follows:

1. Let Φ be the set of feasible solutions available.
2. Let Ξ be a |Φ| × (� + 1) × (� + 1) all-zero matrix.
3. for each {ci, cj} ⊆ Φ do

(a) 〈b,w〉 ← h(c1, c2).
(b) Ξibw ← Ξibw + 1
(c) Ξjbw ← Ξjbw + 1

Notice that each combination ci has a partition matrix Ξi[·,·], indicating how it
relates to the rest of feasible solutions. Notice also that after playing combination
ci and obtaining response 〈b,w〉, entry Ξibw indicates how many solutions in
Φ remain feasible. Most approaches to Mastermind use the information in this
matrix to select the next combination played, typically using some kind of worst-
case or average-case reasoning. This idea was introduced by Knuth [9], whose
algorithm tries to minimize the worst case by following the strategy of minimizing
the worst expected set size, i.e., let η(ci,Ξ) = max{Ξibw | b,w � �}, then
cp = min−1{η(ci,Ξ) | ci ∈ Φ} (ties are broken by lexicographical order). Using
a complete minimax search Knuth shows that a maximum of 5 guesses (4.478
on average) are needed to solve the game using this strategy for κ = 6, � = 4.
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2.3 Related Work

The path leading to the most successful heuristic (non-evolutionary) strategies
to date include minimization of the worst case [9] or average case [10], or maxi-
mization of entropy [11,12] or number of partitions [13]. We defer to next section
a more detailed description of the use of entropy, which has been the strategy
chosen in this work.

EAs that try to solve this problem have also historically proceeded more or less
in the same way. After using naive strategies that played the first combination
found [6], using suboptimal strategies with the objective of avoiding the search
to be stuck [7], or even playing the best guess each generation in a policy that
resulted in a fast and very bad solution to the puzzle [14,15]. However, it was
not until recently when Berghman et al. [8] adopted the method of partitions to
an EA. The strategy they apply is similar the expected size strategy.

The use of the information in Ξ can be considered as a form of look-ahead,
which is computationally expensive and requires the availability of set Φ. Notice
however that if no look-ahead is used to guide the search, any other way of rank-
ing solutions (i.e., any mechanism that analyze solutions on an individual basis)
might find solutions that were slightly better than random, but not more. In any
case, it has been shown [16] that in order to get the benefit of using look-ahead
methods, Φ need not be the full set of feasible solutions at a certain step: a
fraction of around one sixth is enough to find solutions that are statistically in-
distinguishable from the best solutions found. This was statistically established,
and then tested in an EA termed EvoRank [17], where the most-partitions strat-
egy was used. Solutions were quite competitive, being significantly better than
random search and also similar to the results obtained by Berghman et al., but
using an smaller set size and a computationally simpler strategy.

The strategy presented in this paper provides two fundamental steps beyond
this previous work. On one hand, the use of an entropy-based fitness function and
guided initialization reduces the computational effort required by the algorithm.
On the other hand, it is shown that not fixing in advance the size of the set Φ
(and thus letting the algorithm use limited computational resources to find a set
as large as possible but without any lower bound on its size) does not penalize
performance. This indicates the EA can be run on a fixed computational budget,
rather than until completing a large enough set Φ.

3 Entropy-Driven Approaches

The general framework used in this work is depicted in Algorithm 1. An EA plays
the role of the CB, selecting a combination to be played at each step on the basis
of (i) past guesses and their outcomes, and (ii) the set of feasible solutions found
in the previous step. In the first step no previous information is available, and
all combinations are potentially the hidden one with equal probability. Hence, a
fixed guess is made in this case.
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Algorithm 1. Outline of the evolutionary Mastermind approach
typedef Combination: vector[1..�] of Nκ;1

procedure Mastermind (in: ch: Combination, out: guesses, evals: N);2

var c: Combination;3

var b, w, e: N;4

var P : List[〈Combination, N2〉] ; // game history5

var F : List[Combination] ; // known feasible solutions6

evals ← 0; guesses ← 0; P ← [] ; // initialize game7

repeat8

guesses ← guesses + 1;9

if guesses = 1 then // initial guess10

c ← InitialGuess(�, κ);11

F ← [];12

else13

RunEA (↓ P , � F , ↑ c, ↑ e) ; // run the EA14

evals ← evals + e ; // update cummulative number of evaluations15

endif16

〈b, w〉 ← h(c, ch) ; // current guess is evaluated17

played.Add(〈c, 〈b, w〉〉) ; // game history is updated18

until b �= � ;19

The EA handles a population of candidate combinations. This population is
initialized using the feasible solutions found in the previous step. More precisely,
random sampling with replacement is used to select the initial member of the
population from the set of known feasible solutions. Notice that this set is prob-
ably not exhaustive, since the EA is not guaranteed to have found all feasible
solutions in the previous move. Furthermore, many of these feasible solutions will
no longer be feasible in light of the outcome of the last move. In any case, using
this set as a seed provides the EA with valuable information to focus the search
towards the new feasible region of the search space, which will likely intersect
with the known feasible set (and ideally would be a subset of the latter).

Solutions can be manipulated using standard reproductive operators for re-
combination and mutation. The fitness function is responsible for determining
the feasibility of a given combination given the currently available information.
Every feasible solution discovered during this run of the EA is kept in a secondary
population for post-processing after the run finishes. This post-processing is
aimed to select the single combination that will be played in the next move. The
procedure used for this purpose is analogous to that used for fitness assignment,
so let us firstly describe the latter.

As mentioned in Sect. 2.3, entropy is used as a quality indicator to optimize
the status of the game after the guessed combination is played. To be precise,
the fitness function firstly scans the population to divide the population in two
groups: feasible solutions and infeasible ones. Infeasible solutions are assigned a
fitness value (to be maximized) that indicates its closeness to feasibility. This
is done by computing the Manhattan distance between the score h(c, ci

p) the
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solution obtains against the i-th combination played, and the score h(ci
p, ch) the

latter obtained against the hidden combination. This distance is summed over
all previously played combinations, normalized by dividing by the maximum
possible distance, and deducted from 1.0. This way, the closer (from below) the
fitness is to 1.0, the closer to feasibility the solution is.

Feasible solutions have thus a fitness equal to 1.0, and receive a bonus based
on entropy. To this end, the partition matrix Ξ is computed on the basis of the
feasible solutions contained in the current population. Subsequently, the entropy
Hi(Ξ) of each combination is computed as:

Hi(Ξ) = −
∑

0�b,w��

pi(b,w|Ξ) log pi(b,w|Ξ) (2)

where pi(b,w|Ξ) = Ξibw/
∑

0�b′,w′�� Ξib′w′ . The underlying the idea of using this
entropy measure is to reward feasible solutions tending to produce a uniform par-
tition of the feasible search space, hence minimizing the worst-case scenario. This
procedure can be also regarded as a way of maximizing the average information
returned by the CM once the combination is played. The actual selection of
this combination is done after the EA terminates, using the procedure described
above on the set of feasible solutions discovered in the run.

Three variants of the EA described above have been considered, each one us-
ing a different population management strategy. The first one is an EA that
follows the procedure above on a single population. We will denote this al-
gorithm as eGA. Secondly, we have considered a version of the algorithm in
which the population is divided in two equal-size tiers A and B; partitions (and
subsequently entropy) are computed in a crossed way, i.e., determining how so-
lutions in tier A compare to solutions in tier B and vice versa. The rationale
is to preclude (or at least hinder) the appearance of endosymbiotic relation-
ship (the population evolving to maximize entropy internally, but not globally).
This co-evolving variant is denoted as eGACo. Finally, a third variant is con-
sidered analogously to eGACo, but having combinations in tier B trying to
minimize (rather than maximize) the entropy of combinations in tier A. This
can be regarded as competitive co-evolution [18], aimed to provide a constant
thrust in the search of new feasible solutions. We denote this competitive variant
as eGACm.

4 Experimental Results

The evolutionary approaches considered use a population of 50 solutions (divided
in two subpopulations of 25 solutions in the case of eGACo and eGACm), bi-
nary tournament selection, one-point crossover (pX = .9), random-substitution
mutation (pm = 1/�), and an elitist generational replacement policy. The algo-
rithms are run for a minimum number of 500 evaluations in each move. If no
feasible solution is in the (sub)population(s) at this point, the algorithm keeps
on running until one is found.
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Table 1. Comparison of the evolutionary approaches with random (R) and seeded (S)

initialization. Underlined results are statistically significant.

eGA eGACo eGACm
played evals played evals played evals

κ = 6 R 4.489 ± .011 1872 ± 10 4.448 ± .011 2315 ± 24 4.425 ± .011 2252 ± 20

S 4.438 ± .011 1792 ± 9 4.439 ± .011 1977 ± 14 4.425 ± .011 1982 ± 15

κ = 8 R 5.279 ± .013 2501 ± 20 5.207 ± .013 3456 ± 51 5.207 ± .013 3465 ± 50

S 5.240 ± .013 2348 ± 19 5.222 ± .013 2804 ± 38 5.207 ± .013 2810 ± 37

eGA eGACo eGACm EvoRank
4.41

4.415

4.42

4.425

4.43

4.435

4.44

4.445

4.45

4.455

algorithm

m
ea

n 
nu

m
be

r 
of

 g
ue

ss
es

K=6, L=4

(a)

eGA eGACo eGACm EvoRank

0

0.5

1

1.5

2

x 10
4 K=6, L=4

m
ea

n 
nu

m
be

r 
of

 e
va

lu
at

io
ns

algorithm

(b)

Fig. 1. Results for κ = 6 colors and � = 4 pegs. (a) Mean number of guesses required.

The error bars indicate the standard deviation of the mean. (b) Distribution of the

number of evaluations required.

The experiments have been performed on two Mastermind problems, namely
the classical version defined by � = 4 pegs and κ = 6 colors, and a harder version
involving the same number of pegs but more colors (κ = 8). In both cases a
problem-generator approach has been considered: 5,000 runs of each algorithm
have been carried out, each one of a randomly generated instance (i.e., hidden
combination). To maximize the breadth of the benchmark, instances have been
generated so that any instance in the test set is used at most once more that
any other existing instance.

The first set of experiments is devoted to test the impact of the seeded initial-
ization of the population. For this purpose, the algorithms are run both using
random initial populations and seeded initialization. The results are shown in
Table 1. As it can be seen, there is no remarkable difference in the mean number
of guesses required, but the computational effort is clearly better (with statistical
significance at 0.05 level using a Wilcoxon signed rank test).



Entropy-Driven Evolutionary Approaches to the Mastermind Problem 429

eGA eGACo eGACm EvoRank
5.17

5.18

5.19

5.2

5.21

5.22

5.23

5.24

5.25

5.26

algorithm

m
ea

n 
nu

m
be

r 
of

 g
ue

ss
es

K=8, L=4

(a)

eGA eGACo eGACm EvoRank

0

1

2

3

4

5

6

x 10
4 K=8, L=4

m
ea

n 
nu

m
be

r 
of

 e
va

lu
at

io
ns

algorithm

(b)

Fig. 2. Results for κ = 8 colors and � = 4 pegs. (a) Mean number of guesses required.

The error bars indicate the standard deviation of the mean. (a) Distribution of the

number of evaluations required.

Subsequently, the eGA* variants are compared with EvoRank, a state-of-the-
art algorithm for this problem, on the same set of instances. The results of
the comparison are shown in Figs. 1 and 2. Notice all algorithms perform very
similarly in number of guesses for κ = 6 (statistically not significant results).
EvoRank seems to be slightly better for κ = 8, but note that the difference is
only statistically significant for eGA and eGACo, and there is no statistically
significant difference between eGACm and EvoRank (p-value=.18). The situation
is different in the case of the number of evaluations required: all eGA* variants
are much computationally cheaper than EvoRank (with statistical significance).
Among eGA* variants, the computational cost of eGA* is significantly lower
than that of eGACo and eGACm for κ = 6 and κ = 8.

5 Conclusions and Future Work

Mastermind is a prime example of dynamically constrained problem which of-
fer an excellent playground for optimization techniques. We have presented a
new evolutionary approach for this problem in which in addition to the hard
constraint of consistency with previous guesses, solutions are also evaluated in
terms of maximizing the information potentially returned by the CM. Seeded
initialization of the population with feasible solutions for the previous move
turns out to be an important ingredient for reducing the computational effort of
the algorithm. As a result, it can perform at state-of-the-art level, at lower cost
than other algorithms. This also indicates that entropy-guided construction of a
variable-size feasible set Φ is competitive against other procedures that impose
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a lower bound on the size of this set. We believe this feature will be increasingly
important for larger problem instances, where the search space is vaster and
feasible candidate configurations can be sparsely distributed.

As an avenue for further research, the scalability of the approach will be tested
on larger instances. It will be also interesting to test whether heuristics tricks,
such as using endgames, that is, deterministic or exhaustive search methods
when certain situations arise, would enhance the algorithms, and in which way
(search effort and average number of combinations played).

Acknowledgements. This work is supported by projects NEMESIS (TIN2008-
05941), NoHNES (TIN2007-68083), P06-TIC-02025, and P07-TIC-03044.
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Abstract. Standard game theory relies on the assumption that players

are rational decision makers that try to maximize their payoffs. Exper-

iments with human players show that real people rarely follow the pre-

dictions of normative theory. Our aim is to model the human behavior

accurately. Several classes of equilibria (Nash, Pareto, Nash-Pareto and

fuzzy Nash-Pareto) are considered by using appropriate generative re-

lations. Three versions of the centipede game are used to illustrate the

different types of equilibrium.

Based on a study of how people play the centipede game, an equi-

librium configuration that models the human behavior is detected. This

configuration is a joint equilibrium obtained as a fuzzy combination of

Nash and Pareto equilibria. In this way a connection between normative

theory, computational game theory and behavioral games is established.
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1 Introduction

Standard (non-cooperative) game theory is built on the assumption that players
are rational decision makers acting for maximizing their profit. Moreover each
player understands the other agents behavior. The underlying solution concept is
Nash equilibrium or one of its variants, backward induction, iterated dominance,
etc. This theory has some limitations when applied to explain social life and
fails to account for some aspects of economic transitions. Even very simple well-
defined games are played by real people in manners that significantly differ from
those prescribed by the normative theory.

One simple step towards a more realistic and flexible approach is to relax
the rationality principle and look for the corresponding equilibrium concepts.
According to a meta-rationality principle each agent is characterized by its bias
towards a certain type of equilibrium (Nash, Pareto, etc.) This way several new
types of equilibria, like Nash-Pareto, can be obtained [4].

Our aim is to investigate if there are some equilibrium configuration explaining
how people play games. Experimental and computational aspects of game theory
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are linked together. Each equilibrium concept is described (non necessarily in a
unique manner) by a generative relation on the strategy space.

Heterogenous equilibria are invoked for generating hypothesis about the man-
ner real people act in playing games and making decisions. A new fuzzy Nash-
Pareto equilibrium is defined. Our intuition is the new equilibrium concept is
able to capture the manner real people play games. Experimental results seem
to support this assumption.

1.1 Game Theory Prerequisites

For better understanding, some basic notions related to game theory are
presented.

A finite strategic game is defined as a system Γ = ((N,Si,ui), i = 1,n) where:
- N = {1, ...,n} is a set of n players;
- Si represents the set of actions (pure strategies) available;
- S = S1 × S2 × ... × Sn is the set of all possible situations of the game. An
element of S is a strategy profile (or strategy) of the game;
- for i ∈ N , ui : S → R represents the payoff function.
Denote by (sij , s

∗
−i) the strategy profile obtained from s∗ by replacing the strat-

egy of player i with sij i.e. (sij , s
∗
−i) = (s∗1, s

∗
2, ..., s

∗
i−1, sij , s

∗
i+1, ..., s

∗
n).

The concept of game solution is usually described as a game equilibrium, where
each player has adopted a strategy that they are unlikely to change.

A strategy is a Nash equilibrium [10][1][8] if each player has no incentive to
unilaterally deviate i.e. she can not improve the payoff by modifying her strategy
while the others do not modify theirs.
More formal, the strategy s∗ is a Nash equilibrium if and only if the inequality
ui(si, s

∗
−i) − ui(s∗) ≤ 0, ∀si ∈ Si, ∀i ∈ N holds.

A strategy s′ Pareto-dominates the strategy s′′ if and only if each player has
a better payoff for s′ than for s′′. We write s′≤ps

′′ or (s′, s′′) ∈ Pd.
Formally: (s′, s′′) ∈ Pd if and only if ui(s′) ≥ ui(s′′), ∀i ∈ {1, ...,n} and ∃j ∈
{1, ...,n} : uj(s′) > uj(s′′).

A strategy s′′ is Pareto-non dominated, or Pareto-efficient, if does not exist
s′ ∈ S such that (s′, s′′) ∈ Pd. The Pareto equilibrium of the game is represented
by the set of Pareto-efficient strategies.

2 Centipede Game

The centipede game, introduced by Rosenthal in [11], is a two person, extensive-
form game. Consider two players playing the game. At the first round player
one can either take the larger portion of a fixed pot, or she can pass the pot to
the other player. Player two has the same choices of either taking or passing the
pot. In each round the pot increases according to a previously defined rule, but
the larger portion of the pot in a round will always be smaller than the smaller
portion in the next round. This way passing strictly decreases a player’s payoff
if the opponent takes on the next round. The game continues until one player
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decides to end the game by taking her portion of the pot or for a finite number
of rounds, which is known in advance for both players.
Although the traditional centipede game had a limit of 100 rounds, any game
with this structure but a different number of rounds is called a centipede game.

The centipede game is a very challenging game from a game theoretical point
of view. Rational play suggests that the first player should take the pot right
at the start (corresponding to the Nash equilibrium strategy). However, experi-
ments show, that regular people almost never choose to stop in the first round.

McKelvey and Palfrey [9] studied actual behavior in different versions of the
centipede game: a four move (Figure 1), a six move (Figure 2) and high pay-
off versions (Figure 3), and found that subjects did not follow the theoreti-
cal predictions. Experiments involve human players without a game theoretical
background (they are not informed and they do not make inferences about Nasg
equilibrium). Very few players stopped in the first round, choosing a secure
win, and despite the high payoffs, very few players risked to wait until the last
round of the game. Detailed results about the players’ choices are presented in
Figure 4.

Fig. 1. The four-move version of the cen-

tipede game

Fig. 2. The six-move version of the cen-

tipede game

Fig. 3. The high payoff version of

the centipede game

Four move High payoff Six move

Terminal node version version version

node 1 7% 15% 1%

node 2 36% 37% 6%

node 3 37% 32% 20%

node 4 15% 11% 38%

node 5 5% 5% 25%

node 6 8%

node 7 2%

Fig. 4. The frequencies of each of the terminal

nodes

Our goal is to find a proper equilibrium concept, that would lead to an equi-
librium corresponding to the experienced results.
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3 Evolutionary Equilibria Detection

In this section we describe a general method for detecting different types of
equilibria. Each equilibrium concept is described (non necessarily in a unique
manner) by a generative relation [4] on the strategy space.

An appealing technique is the use of generative relations and evolutionary
algorithms for detecting equilibrium strategies. The payoff of each player is
treated as an objective and the generative relation includes an appropriate
dominance concept, which is used for fitness assignment purpose. Evolution-
ary multi-objective algorithms (EMOAs) are thus suitable tools in searching for
game equilibria.

A population of strategies is evolved and a chromosome is an n-dimensional
vector representing a strategy s ∈ S. The initial population is randomly gener-
ated. Strategy population at iteration t may be regarded as the current equi-
librium approximation. Subsequent application of the search operators (like the
simulated binary crossover (SBX) [2] and real polynomial mutation [3]) is guided
by a specific selection operator induced by the generative relation.

The population of strategies is sorted based on nondomination, where the
dominance concept is induced by the generative relation. The diversity among
nondominated strategies is introduced by using the crowding comparison. [3] In
the case when two strategies have the same domination rank, the one located in
a lesser crowded region is preferred. In this way successive populations produce
new approximations of the equilibrium front, which hopefully are better than
the previous ones.

In case the game does not have a certain equilibrium (in the sense of strict
mathematical characterization) the proposed evolutionary technique may allow
to detect a game situation which is a suitable approximation of this equilibrium.

In the next sections several generative relations for different types of equilib-
ria are presented. The considered equilibria types are evolutionary detected for
the different versions of the centipede game introduced in Section 2. Based on
a study of how people play the centipede game [9], an equilibrium configuration
that models the human behavior is detected. This configuration is a joint equi-
librium obtained as a fuzzy combination of Nash and Pareto equilibria. In this
way a connection between normative theory, computational game theory and
behavioral games is established.

In our numerical experiments a population of 100 strategies has been evolved.
In all experiments the process converges in less then 20 generations.

4 Equilibria and Their Generative Relations

Game equilibria may be characterized by generative relations [4]. The idea is
the non-dominated strategies with respect to the generative relation equals (or
approximate) the equilibrium set. The generative relation is not unique. For Nash
equilibrium we consider two generative relations. Both of them are obtained from
quality measures.
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4.1 Binary Generative Relation for Nash Equilibrium

Let x and y be two pure strategies and k(y,x) denotes the number of players
which benefit by deviating from y towards x: k(y,x) = card{i|ui(x, y−i) >
ui(y)}. k(y,x) is a relative quality measure of y and x – with respect to the
Nash equilibrium.

Strategy y is better than strategy x with respect to Nash equilibrium, and
we write y ≺N x, if and only if k(y,x) < k(x, y). We may consider ≺N as a
generative relation of Nash equilibrium, i.e. the set of non-dominated strategies
with respect to ≺N equals the Nash equilibrium [5]. Unfortunately this relation
is not transitive. A transitive generative relation may be obtained from an unary
quality measure.

4.2 A Generative Relation for Nash Equilibrium Induced by an
Unary Quality Measure

Let us denote by c(x) the number of players that can improve the strategy x by
unilateral deviation (or the number of positions the strategy x can be improved).
We may thus write: c(x) = card{i|∃sij ∈ Si,ui(sij ,x−i) > ui(x)}.

We may define the relation ≺N1 as x ≺N1 y if and only if c(x) < c(y). It
is easy to prove, that if a Nash equilibrium exists then there is a strategy s∗

non-dominated with respect to ≺N1.
Therefore, using the unary quality measure c, we have defined a transitive gen-
erative relation for the Nash equilibrium.

4.3 Nash Equilibrium and the Centipede Game

In case of the centipede game, defection by the first player in the first round is
the unique Nash equilibrium of the game. This can be established by backward
induction. Suppose two players would reach the final round of the game (and
suppose, that at the last round player one would win the larger pot). Player two
would win more, if she chooses to stop the game one round earlier. Since player
one supposes player two would defect, she wins more defecting in the second to
last round. This reasoning proceeds backwards through the game tree until one
concludes that the best action is for the first player to defect in the first round.
The same reasoning can apply to any node in the game tree.

As depicted in Figure 4, Nash equilibrium is rarely played by real people. In
fact in only 7% of the four-move games, 1% of the six-move games, and 10% of
the high payoff game the first player stopped at the first move.
Table 1 describes the Nash equilibrium evolutionary detected in the considered
versions of the centipede game.

4.4 Generative Relation for Quasi Pareto Equilibrium

Let us define the quantity P (y,x) as the number of players having a better payoff
for x than for y: P (y,x) = card{i|ui(y) < ui(x)}.
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Table 1. The evolutionary detected Nash

equilibrium

Game version Terminal nodes Payoffs

Four-move 1 (4, 1)

Six-move 1 (4, 1)

High payoff 1 (16, 4)

Table 2. The evolutionary detected

quasi-Pareto equilibrium

Game version Terminal nodes Payoffs

Four-move 4 (8, 32)

5 (64, 16)

Six-move 6 (32, 128)

7 (256, 64)

High payoff 4 (32, 128)

5 (256, 64)

Consider the relation ≺P defined as y ≺P x if and only if P (y,x) < P (x, y).
We may admit that the relation≺P expresses a certain type of Pareto rational-

ity. Otherwise stated the non-dominated strategies with respect to the relation
≺P represents a variety of Pareto equilibrium, called quasi-Pareto equilibrium.

4.5 Quasi-pareto Equilibrium and the Centipede Game

The Pareto equilibrium of the game is reached when players win as much as
possible. In the case of the centipede game the payoffs increase towards the end
of the game, so the maximum payoffs can be won at the final two rounds. In the
case of the studied versions of the centipede game, player A’s maximal payoff is
at the last round, while player B’s is at the round before the final round. From
the results presented in Figure 4 we can conclude, that very few people choose
to go until the maximal profit, they more likely choose a smaller, but more sure
payoff.

The detected quasi-Pareto equilibrium for the studied versions is presented in
Table 2.

4.6 Generative Relation for Joint Nash-Pareto Equilibrium

Let us consider two strategies: x = (x1,x2, ...,xn), y = (y1, y2, ..., yn) and two
meta-strategies M1 = (x1|r1,x2|r2, ...,xn|rn), M2 = (y1|r1, y2|r2, ..., yn|rn). Let
us denote by IN the set of Nash biased players (N-players) and by IP the set of
Pareto biased players (P-players). Therefore we have IN = {i ∈ {1, ...,n}|ri =
Nash}, and IP = {j ∈ {1, ...,n}|rj = Pareto}.

Let us introduce an operator E, measuring the relative efficiency of meta-
strategies: E : M × M → N, defined as
E(M1,M2) = card({i ∈ IN |ui(xi, y−i) ≥ ui(y),xi �= yi}∪
{j ∈ IP |uj(y) < uj(x),x �= y}),
where (xi, y−i) = (y1, ..., yi−1,xi, yi+1, ..., yn).

E(M1,M2) measures the relative efficiency of the meta-strategy M1 with re-
spect to the meta-strategy M2.
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Consider the relation ≺NP defined as M1 ≺NP M2 if and only if E(M2,M1) <
E(M1,M2). We may consider the relation ≺NP as a generative relation for joint
Nash-Pareto equilibria.

4.7 Joint Nash-Pareto Equilibrium and the Centipede Game

Table 3 and Table 4 describes the evolutionary detected Nash-Pareto and
Pareto-Nash equilibria. These results seem to indicate that in the established
joint equilibria the player with a Pareto rationality has a greater payoff. Also,
the detected equilibria is closer to the Pareto equilibrium.

Table 3. The evolutionary detected

Nash-Pareto equilibrium

Game version Terminal nodes Payoffs

Four-move 2 (2, 8)

4 (8, 32)

Six-move 4 (8, 32)

6 (32, 128)

High payoff 2 (8, 32)

4 (32, 128)

Table 4. The evolutionary detected

Pareto-Nash equilibrium

Game version Terminal nodes Payoffs

Four-move 3 (16, 4)

5 (64, 16)

Six-move 5 (64, 16)

7 (256, 64)

High payoff 3 (64, 16)

5 (256, 64)

4.8 Generative Relation for Fuzzy Nash-Pareto Equilibrium

Each concept of equilibrium may be associated with a rationality type. We con-
sider games with players having several rationality types [5]. Each player can be
more or less biased towards a certain rationality type. This bias may be expressed
by a fuzzy membership degree. A player may have for instance the membership
degree 0.7 to Nash and the membership 0.3 to Pareto. We may also say that the
player has a Nash rationality defect of 0.3.

Let us consider a fuzzy set AN on the player set N i.e. AN : N → [0, 1] AN (i)
expresses the membership degree of the player i to the class of Nash-biased
players. Therefore AN is the class of Nash-biased players. Similar a fuzzy set
AP : N → [0, 1] may describe the fuzzy class of Pareto-biased players.

A fuzzy Nash-Pareto equilibrium concept [6] using an appropriate generative
relation is considered in this section. The concept is a natural generalization of
the sharp Nash-Pareto equilibrium characterization by generative relations and
it is completely different from the notion considered in [7].

Let us consider a game involving both Nash and Pareto-biased players. It is
natural to assume that {AN ,AP } represents a fuzzy partition of the player set.
Therefore the condition AN (i) + AP (i) = 1 holds for each player i.

The relative quality measure of two strategies has to involve the fuzzy mem-
bership degrees. Let us consider the threshold function:

t(a) =
{

1, if a > 0,
0, otherwise
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The fuzzy version of the quality measure k(y,x) is denoted by EN (y,x) and may

be defined as EN (y,x) =
n∑

i=1

AN (i)t(ui(x, y−i) − ui(y)).

EN (y,x) expresses the relative quality of the strategies y an x with respect to
the fuzzy class of Nash-biased players.

The fuzzy version of P (y,x) may be defined as EP (y,x) =
n∑

i=1

AP (i)t(ui(x) −
ui(y)), where AP is the fuzzy set of the Pareto-biased players.

A fuzzy version of the sharp Nash-Pareto equilibrium introduced in [4] can be
considered. The relative quality measure of the strategies y and x with respect to
fuzzy Nash-Pareto rationality may be defined as E(y,x) = EN (y,x) + Ep(y,x).

Using the relative quality measure E we can compare two strategy profiles.
Let us introduce the relation ≺fNP defined as y ≺fNP x if and only if the strict
inequality E(y,x) < E(x, y) holds.

Fuzzy Nash-Pareto equilibrium is the set of non-dominated strategies with
respect to the relation ≺fNP .

4.9 Fuzzy Nash-Pareto Equilibrium and the Centipede Game

As depicted in Figure 4, when regular people play, Nash equilibrium is rarely
observed. Instead, human subjects regularly choose partial cooperation (choose
to pass the pot to the opponent) before eventually defect. It is also rare for
human players to cooperate trough the whole game, so people neither follow
a pure Pareto-type rationality. We can conclude that, in case of the centipede
game, the human rationality is between the Nash and Pareto rationality (and
can be modeled as a fuzzy combination of Nash and Pareto rationality).

According to Figure 4, the most preferred terminal nodes in case of the four
move and high payoff versions of the game are the nodes two and three. In case
of the four move version of the game, 35% of the subjects chose to stop at step
two and 37% stopped at step three. In case of the high payoff version of the
game, these percentages are 37% and 32% respectively. In the case of the six
move version of the game, the most often chosen terminal node is the node four
with a percentage of 38%.

In order to model the human behavior, we need a new equilibrium concept.
Our hypothesis is that the fuzzy Nash-Pareto equilibrium would supply a model
for human behavior. For the studied versions of the game, we search for proper
types of rationality for the two players that would lead to an equilibrium consist-
ing of the terminal nodes chosen by people. The rationality types are modeled
as fuzzy memberships to the Nash and Pareto classes.

Our intuition is that assigning Pareto-type rationality to one player and Nash-
type rationality to the other player would lead to the desired equilibrium.

The desired nodes in case of the four move and high payoff version of the game,
the nodes two and three, have been obtained with the following parameter set-
tings: player A has any membership degree to Pareto from the interval (0.5, 1).
This also means that the membership degree to Nash is in the interval (0, 0.5),
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meaning that rationality of player A is closer to Pareto. For player B we have as-
signed a pure Nash rationality (the membership degree to Nash is one, and to
Pareto is zero). The same parameter settings worked for both the four move ver-
sion and the high payoff version of the centipede game.

In case of the six move version of the game, the proper membership degree
to Nash for player A is 1 (the membership degree to Pareto is 0), so the player
A has a pure Nash rationality. For player B the proper membership degree to
Pareto is from the interval (0.5, 1) (the membership degree to Nash is from the
interval (0, 0.5)), meaning that the rationality of player B is closer to Pareto.
The detected fuzzy Nash-Pareto equilibrium with these memberships contains
the node four, which is the most frequently chosen stopping node.

Table 5 describes the evolutionary detected equilibria using the fuzzy Nash-
Pareto relation with the above described parameters.

Table 5. Evolutionary detected fuzzy Nash-Pareto equilibria

Game Fuzzy Terminal Payoffs

version memberships nodes

AN(1) ∈ (0, 0.5),
Four-move AP (1) ∈ (0.5, 1), 2 (2, 8)

AN(1) + AP (1) = 1 3 (16, 4)

AN(2) = 1; AP (2) = 0

AN(1) = 1; AP (1) = 0

Six-move AN (2) ∈ (0, 0.5) 4 (8, 32)

AP (2) ∈ (0.5, 1)
AN(2) + AP (2) = 1

AN (1) ∈ (0, 0.5)
High AP (1) ∈ (0.5, 1) 2 (8, 32)

payoff AN(1) + AP (1) = 1 3 (64, 16)

AN(2) = 1; AP (2) = 0

Based on the results presented above, we may conclude that the fuzzy Nash-
Pareto equilibrium is a suitable equilibrium (solution) concept for modeling the
human decision making in case of the studied versions of the centipede game.

5 Conclusion

Evolutionary equilibria detection techniques based on generative relations are
considered. A new transitive generative relation for the Nash equilibrium is
introduced.

A connection between equilibrium detection models and experimental game
theory is established. A fuzzy combination of equilibria is proposed and it is used
to explain the manner people play trust games. The fuzzy equilibrium modeling
human behavior does not necessary mean that real players play a fuzzy mixture
of Pareto and Nash. The reason of their behavior might be different.
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The discrete centipede games are investigated. Particular combinations of
fuzzy Nash-Pareto equilibria (explaining observed human decisions) have been
detected. We conjecture the proposed evolutionary method would be of interest
in modeling human players behavior in a large class of behavioral games. This
represents a new connection between computational and behavioral games.
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Abstract. Solutions calculated by Evolutionary Algorithms have come

to surpass exact methods for solving various problems. The Rubik’s Cube

multiobjective optimization problem is one such area. In this paper we

design, benchmark and compare two different evolutionary approaches

to solve the Rubik’s Cube. One is based on the work of Michael Herdy us-

ing predefined swapping and flipping algorithms, the other adapting the

Thistlethwaite Algorithm. The latter is based on group theory, trans-

forming the problem of solving the Cube into four subproblems. We

give detailed information about realizing those Evolutionary Algorithms

regarding selection method, fitness function and mutation operators. Fi-

nally, both methods are benchmarked and compared to enable an inter-

esting view of solution space size and exploration/exploitation in regard

to the Rubik’s Cube.

1 Introduction

Since the Rubik’s Cube’s invention by Erno Rubik in 1974 and its commercial-
ization in 1980 it has been the interest of not only hobbyists but also scientific
research. Primarily mathematicians found themselves working on the Rubik’s
Cube as a discrete optimization problem trying to find efficient ways to solve it.
With its simple structure the classic Rubik’s Cube can reach a total number of
4.3 ·1019 different configurations which induces an underlying complex optimiza-
tion problem. To this day it is impossible to calculate all of those configurations.
Also, the shortest length of sequences to reach any of those configurations (God’s
Number) is still unknown and subject to ongoing research [8]. In this paper we
use two different evolutionary approaches to solve the Rubik’s Cube as a dis-
crete optimization problem. First, we briefly describe some characteristics and
notation for the classic Rubik’s Cube puzzle. We then introduce our two evo-
lutionary approaches, one extending a method by Micheal Herdy [5], the other
building upon Thistlethwaite’s group-theoretic approach [2], [3], [10]. In contrast
to [3] where we introduced our Thistlethwaite Evolution Strategy in detail, this
work concentrates on our improvement of the Herdy Evolution Strategy and a
thorough examination of both ES’ mechanics. The careful benchmark and com-
parison of both algorithms provide an interesting analysis of solution space size
and relation between exploration and exploitation in regard to the Rubik’s Cube.

R. Schaefer et al. (Eds.): PPSN XI, Part II, LNCS 6239, pp. 442–451, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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2 The Rubik’s Cube

2.1 Structure

The classic 33 Rubik’s Cube is widely known and the one subject to this paper.
It consists of 26 pieces: 8 corner pieces, 12 edge pieces and 6 center pieces,
distributed equally on the six sides of the Cube. Each side of the Cube will be
called face, each 2-dimensional square on a face will be referred to as facelet.
Corners, edges and centers are all cubies - representing the physical object. A
corner shows 3 facelets, an edge 2 and a center 1. Each side of the Rubik’s Cube
can be rotated clockwise (CW) and counterclockwise (CCW). Every such single
move changes the position of 4 edges and 4 corners - note that the center facelet
on every of the Cube’s faces always stays in the same position. Thus, the color of
a solved face is always determined by its center color. For each edge and corner
it is of great importance to distinguish between position and orientation: i.e. an
edge can be in its right position (defined by the two adjacent center colors) but
in the wrong orientation (flipped).

2.2 Notation

There are several known notations [6] for applying single moves on the Rubik’s
Cube. We will use F,R,U,B,L,D to denote a clockwise quarter-turn of the
front, right, up, back, left, down face and Fi,Ri,Ui,Bi,Li,Di for a counter-
clockwise quarter-turn. Every such turn is a single move. In Cube related re-
search half-turns (F2,R2,U2,B2,L2,D2) are also counted as single move, we
will do so as well. This notation is dependent on the users viewpoint to the cube
rather than the center facelets’ colors. However, as a convention used for this
research work we assume the classic Rubik’s Cube color configuration which is
white : yellow, red : orange, blue : green where : denotes opposite of . The start-
ing orientation for the scrambles will be F = white,R = red,U = blue,B =
yellow,L = orange,D = green.

2.3 Characteristics

Obviously the Rubik’s Cube fulfills the characteristics of a mathematical group
[4], [9]. The number of all attainable states 4.3·1019 depicts the order of the Cube
group GC =< F,R,U,B,L,D >. All configuration of the Rubik’s Cube can be
reached by using combinations of single moves in this group, thus the single
moves generate GC . Further, there is always a neutral element, i.e. F ·FFFF =
FFFFF = F and F 4 = 1 (also showing the order of each generator in GC is 4)
and an inverse: Fi · F = 1 and Fi = FFF .

The inverse of any operation is quickly calculated by reversing the order of
single moves and their direction. For example the inverse of FRiDLBUi would
be UBiLiDiRFi. Further we can define subgroups of the group GC . Let H =<
R,U > be a such a subgroup. If we only use moves from H there are just 26 ·
38 · 52 · 7 = 73483200 different configurations we can attain [7]. This significantly
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reduces the number of possible states a Cube can reach, but induces certain
constraints like unchangeable edge orientations.

3 Related Work

Only a few evolutionary approaches dedicated to solve the Rubik’s Cube exist.
In 1994 Herdy devised a method which successfully solves the Cube [5] using
pre-defined sequences as mutation operators that only alter few cubies, resulting
in very long solutions. Another approach by Castella could not be verified due to
a lack of documentation. Recently Borschbach and Grelle [1] devised a 3-stage
Genetic Algorithm based on a common human “SpeedCubing” [6] method, first
transforming the Cube into a 2x2x3 solved state, then into a subgroup where it
can be completed using only two adjacent faces (two-generator group).

4 Groundwork

When designing an ES to solve the Rubik’s Cube a few things come to mind.
While ES turn out to be very useful problem-solving algorithms for complex
optimization problems, typically those problems are described in a system of
continuous variables. Small variations of these variables usually lead to small
changes of the value of the fitness function (called strong causality). This is a
fundamental behavior needed in ES to ensure a steady search for better solutions
in the solution space. It is of high importance to transfer this behavior to discrete
optimization problems. This can be done by adapting suitable mutation oper-
ators that work well with the fitness function used. Obviously, the individuals
that will be evolved are actual representations of a Rubik’s Cube. Starting from
the solved state, a certain configuration of a Cube is defined through a sequence
of moves applied. A distinct state most certainly has multiple sequences leading
to it, the state itself however is unique and one of the 4.3 · 1019 possible states.
A scrambled Cube can be evolved by applying moves that hopefully near it to
the solved state. This will be the ground principle of the two forthcoming ES.

4.1 Individual Representation

To enable us a better opportunity for comparison all ES designed for this work
use the same representation of a Rubik’s Cube. Each face is implemented as
a 3 × 3 2-dimensional matrix containing values from 1 to 6 where each value
depicts one color. Thus, one individual is described by 6 matrices, describing
each facelets color configuration. Every quarter- and half-turn can be applied
to this representation, yielding a total of 18 different single moves while leaving
the Rubik’s Cube integrity intact. Additionally the whole Cube can be rotated
clockwise and counterclockwise. This guarantees easy human verification with a
real physical Cube.
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4.2 Mutation

Mutation being the primary search operator of ES is easily realized by not mod-
ifying a single facelet’s color but applying a sequence of moves to the Cube.
This guarantees that the Cube’s integrity stays intact at all times and makes a
separate integrity test superfluous. Allowing mutations which operate on single
facelets and change their color could yield non-existent Cube states, due to its
structure. Every Cube saves the mutations it has undergone, i.e. a list of moves
that have been applied. To keep this list as small as possible, redundant moves
are removed automatically. To clarify: we assume a Cube where only F has
been applied. Let the next mutation be FRRiB. This will automatically yield
in F ·FRRiB = F2B. We will go into further detail when describing each of the
Evolution Strategies.

5 Two Evolutionary Approaches to the Rubik’s Cube
Puzzle

5.1 Herdy Evolution Strategy

In 1994 Michael Herdy presented an (1,50) Evolution Strategy solving the Ru-
bik’s Cube in a mean of 38.7 generations, calculating only a mean of 1935 of
all possible configurations [5]. This algorithm was enhanced and implemented as
follows.

Fitness Calculation. To calculate the fitness of an individual the standard
fitness function proposed by Michael Herdy was used. Three qualities q1, q2, q3

are defined:

q1 is increased by 1 for each facelet whose color differs from the center facelet
on the same face

q2 is increased by 4 for each wrong positioned edge, orientation is not considered
q3 is increased by 6 for each wrong positioned corner, orientation is not

considered

As we see, each of those qualities can reach a maximum of 48, leading us to
max{q1 + q2 + q3} = 144. Obviously the Cube is in a solved state when the
sum’s value reaches 0.

Mutation Operators. Herdy proposed the following mutation operators which
change the fitness of each individual just slightly: two-edge-flip, two-corner-
flip, three-edge-swap, two-edge/two-corner-swap, three-corner-swap, two-corner-
swap and two-edge-swap - each in both directions (meaning the inverse se-
quence). Those were slightly extended using mirrors and adding three-inslice-
edge-swap [2]. Note that each such mutation operator is depicted by a sequence
of x, 6 ≤ x ≤ 14 single moves. The operators in Table 1 change the state of a
Cube just slightly by only affecting 2-4 positions while leaving the rest of the
Cube intact. This guarantees a slow and steady exploration of the solution space,
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Table 1. Herdy ES Mutation Operators (omitting Mirrors)

mutation sequence length

two edge flip cw FRBLULiUBiRiFiLiUiLUi 14

two edge flip ccw FiLiBiRiUiRUiBLFRURiU 14

two corner flip cw LDiLiFiDiFUFiDFLDLiUi 14

two corner flip ccw RiDRFDFiUiFDiFiRiDiRU 14

three edge swap cw UF2UiRiDiLiF2LDR 10

three edge swap ccw UiF2ULDRF2RiDiLi 10

two edge/corner swap cw RiURUiRiUFRBiRBRFiR2 14

two edge/corner swap ccw LUiLiULUiFiLiBLiBiLiFL2 14

three corner swap cw FiUBUiFUBiUi 8

three corner swap ccw FUiBiUFiUiBU 8

three inslice edge swap cw RLiU2RiLF2 6

three inslice edge swap ccw LiRU2LRiF2 6

slightly improving the population per generation. To fully utilize the above oper-
ators potential, the face being the physical front of the Cube has to be randomly
chosen before each mutation as well as the orientation of the Cube. Thus an
actual mutation step looks like this:

1. choose a random face to become the new front, this involves the entire Cube
to be rotated, there are 6 faces to choose from

2. choose a random orientation of the front by rotating the whole Cube cw/ccw
1 or 2 times

Looking at the mutation we see how only very specialized operators are used.
Tests with random sequences or single moves turned out to always get stuck in
local optima which corresponds to the discovery made by Borschbach and Grelle.
Particularly with this fitness function just a single quarter turn of one face will
drastically change the fitness of an individual.

Selection Method. After having applied random mutations to every individual
in the population, they are sorted by their fitness in ascending order (remember
0=solved). Now, the μ best individuals are selected for duplication. There are
several methods to select an individual for duplication from the selection pool,
ranging from very simple ones (gaussian random) to quite complex e.g. non-
linear fitness-scaling. It turns out that simply choosing random individuals (with
a random function that generates values that are equally distributed within the
specified range) is the most effective.

5.2 Thistlethwaite Evolution Strategy

We can say that the grade of specialization of mutation operators corresponds to
the grade of restriction of an Evolutionary Strategy. With the Herdy ES turning
out to be a very restricted ES we wanted to design an ES with the slightest
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possible grade of restriction i.e. truly random mutation operators. To achieve
this, a common method is to break very complex optimization problems down
into smaller parts which are solved independently, at best returning a solution
for each subproblem that can finally be joined to get a solution for the original
problem. This is exactly how the Algorithm devised by Thistlethwaite in 1981
works. In the original algorithm each subproblem is solved by finding a solution
in precalculated lookup-tables. Our ES does not use those lookup-tables to solve
those subproblems, but rather evolves Cubes solving each problem by using a
dedicated fitness function.

Fitness Calculation. The Thistlethwaite Algorithm (TWA) starts with the
Cube in the Go group, a group where all moves are allowed to be applied to the
Cube. This starts a chain of nested groups, i.e. Go > G1 > G2 > G3, with the
order of magnitude of each subsequent group being smaller than the one before.
The groups are defined as follows [10]:

– G0 =< F,R,U,B,L,D >, |G0| = 4.33 · 1019

– G1 =< F,R2,U,B,L2,D >, |G1| = 2.11 · 1016

– G2 =< F2,R2,U,B2,L2,D >, |G2| = 1.95 · 1010

– G3 =< F2,R2,U2,B2,L2,D2 >, |G3| = 6.63 · 105

As we can see, with every subsequent group the total number of possible states the
Cube can achieve (and therefore the number of states the Cube has to be in, to be
solved) by only using moves from this distinct group, is greatly reduced (detailed
group order calculation in [3]). Naturally the higher the group index, the more
constraints we have to fulfill. Once a Cube is maneuvered into a subgroup, we can
freely apply all moves of this subgroup and it will stay in this group. Furthermore
we must only use moves of this subgroup to put it into the next group and so forth.
We can not use any moves from previous groups which are not part of the current
subgroup without destroying what we have reached so far.

Assuming we have some random scrambled Cube. Naturally this Cube will
be in G0 which allows us to apply any move we want. Now, by using moves from
G0 we put the Cube into G1. Applying R would put it back into G0 again, as
this move is not part of G1 and so forth. Thus, we choose to calculate fitness
separately for each group transition. This is done via

phasei = weight · v + c, i = 0, 1, 2, 3 (1)

where v is a count for wrong positioned/oriented cubies in regard to the con-
straints induced by the particular subgroup and c the length of moves already
applied to the current individual. Thus, not only the necessary group transition
but also a short solution sequence length is promoted as the desired goal.

To clarify the constraints induced by different subgroups let us take a closer
look at the group G1. Changing an edge’s orientation on the Rubik’s Cube
implicates the ability to use quarter-turns of adjacent faces. Evidently, this is
not possible once in G1. Thus, G1 induces the constraint that each edge cubie
must be oriented (not necessarily positioned) right. Further subgroups induce
further constraints, detailed in [3].
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Mutation Operators. Dividing the problem of solving the Rubik’s Cube into 5
phases by splitting it into 4 subproblems gives us the ability to use truly random
sequences of single moves as mutation operators. The only restriction is given
by the group transition the Cube is undergoing. Conveniently the maximum
sequence length needed to transform the Cube from one subgroup to another
is given by Thistlethwaite: G0 → G1 : 7, G1 → G2 : 13, G2 → G3 : 15 and
G3 → solved : 17.

In each phase, a sequence of random length between 0 and max. sequence
length (=i) is generated by filling each position with a random single move of
the according group. By allowing the sequence length to be 0, we are artificially
inducing characteristics of an (μ+λ)-ES while actually being an (μ, λ)-ES. Unlike
the Herdy ES where with each mutation the number of applied moves increases,
here a decrease is possible induced by the automatic cleanup of move sequences.

Selection Method. Tests have shown no need for a dedicated Selection method.
Standard EA selection methods except for random choice tend to decrease the
population’s diversity after phase transitions. In early versions this would some-
times lead to a local optimum, thus not solving the Cube. This results from
the TW ES being very sensitive about selection pressure. To counter this prop-
erty a gaussian random function is used to choose from the selection pool for
duplication.

6 Benchmark and Comparison

For benchmark and comparison a total of 100 random scrambles between 10 and
50 single moves were generated and solved by both ES in 5 repetitions. These
tests were conducted on the same hardware and conditions using the shared
Rubik’s Cube framework proposed earlier (individual representation and muta-
tion mechanic). The numbers used for μ and λ were chosen after preleminary
benchmarks found them to be the most effective. The high parent population is
necessary to provide the possibility for a broad spectrum of different sequence
combinations in later generations. In short, large parent populations enable a
high individual diversity - which is crucial in a solution space of this size. This
is even more critical to the Thistlethwaite ES due to the random mutation op-
erators used, contrary to the hard-coded sequences in the Herdy ES.

6.1 Herdy Evolution Strategy

The Herdy Evolution Strategy with (μ, λ) = (100, 5000) is used. Calculations
were repeated 5 times to enable a statistically more precise evaluation. Fast per-
formance, a small number of generations needed and long solution sequences
seem to be typical properties of the Herdy ES. Results for this particular Evo-
lution Strategy are very predictable and perfectly fit the mechanics described
above.
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Table 2. Solutions of 100 random scrambles, 5 repetitions, Herdy ES

run 1 run 2 run 3 run 4 run 5

avg. generations 18.13 18.28 18.06 18.42 18.11

avg. moves 232.27 234.50 233.43 236.62 236.21

avg. time(s) 5.66 5.12 5.00 4.66 4.75

Fig. 1. 100 Random Scramble Test: Distribution of scrambles on solution length, Herdy

ES

96% of the scrambles (Figure 1) could be solved in x moves with 180 <
x < 280, roughly resembling a normal distribution around the x value with
y = max(x). This is when providing a sufficient number and/or versatility of
scrambles.

Comments. The Herdy ES is really a theoretically simple ES for solving the
Rubik’s Cube. It performs amazingly fast, only calculating a tiny fraction of the
total number of possible Cube states, solving the Cube in only few generations
(Table 2). On the downside the mean length of the solution sequences calculated
by this algorithm can be estimated by

11 · g | g := number of generations needed (2)

which is quite huge. Solution sequences with a length of well above 100 are quite
normal. In addition the “random element” which makes up the “evolutionary-
ness” of an ES is quite small - only affecting which cubies will be swapped or
flipped as the mutation sequences are all hard-coded. Tests were conducted that
added the length of the applied moves in each generation to the fitness function.
No improvements could be observed which is not surprising regarding the above
arguments.
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6.2 Thistlethwaite Evolution Strategy

The following settings were used: (μ, λ) = (1000, 50000), weighing factors are
(5, 5, 5, 5, 5), mutation lengths (5, 5, 13, 15, 17) and maximum generations before
reset (250).

Table 3. Solutions of 100 random scrambles, 5 repetitions, Thistlethwaite ES

run 1 run 2 run 3 run 4 run 5

avg. generations 95.72 100.63 92.71 99.66 92.22

avg. moves 50.67 50.32 50.87 50.23 49.46

avg. time(s) 321.78 381.68 393.99 312.98 287.93

Compared to the Herdy ES calculation time is greater by a factor of about
60 (Table 3). This results not only from a higher population size but also, for
some scrambles, the TW ES maneuvers into a local optimum which triggers
a self-reset. A further consequence of this are the relatively high numbers of
generations needed (Figure 2). The solution sequence hits an average of about
50 single moves which is slightly lower than the upper bound of 52 for the classic
Thistlethwaite Algorithm [10].

Comments. The Thistlethwaite ES yields results that resemble the theoreti-
cal solution lengths of the classic Thristlethwaite’s Algorithm without any use
of precalculated lookup-tables. Unlike the Herdy ES which is efficient with a
small population size, the TW ES needs much larger populations to guarantee
a successful solve. This directly affects calculation time. Even though the Cube
solving is broken down into 4 smaller subproblems, each subproblem is still of
great order.

Fig. 2. 100 Random Scramble Test: Distribution of scrambles on solution length,

Thistlethwaite ES
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7 Conclusion

When comparing the results of both Evolution Strategies we notice a tradeoff
between computing time and quality of solution. Although very different in na-
ture both ES solve the same optimization problem. Obviously there are some
important differences. The Herdy ES is a (100, 5000) ES which uses predefined
mutation operators and incorporates a very simple fitness function.

Each of those are reasons for the faster performance of the Herdy ES. We can
look at it the opposite way. The Thistlethwaite ES is a (1000, 50000) ES which
uses randomly generated mutation operators and incorporates a complex fitness
function dividing the solving process into four subproblems.

The differences seem obvious. While the Herdy ES provides fast but long
solutions to any scramble, the Thistlethwaite ES delivers better results in terms
of solution length. This is easily explained with the mutation operators used.
While the TW ES could solve the very simple scramble F by simply returning Fi
as the solution, the Herdy ES would need to perform 2 edge and 2 corner swaps,
resulting in a very long solution for such a simple scramble. This disadvantage
becomes less important when solving more complex scrambles, however the TW
ES performs a shorter solution at all times. Running the TW ES with smaller
μ, λ yields faster calculation but can not guarantee a successful solve. More tests
will have to be conducted for further examination of the TW ES’s behavior
with different parameters and sequence optimization which could result in faster
computation and/or shorter solution lengths and occurrence reduction of self
resets.
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Abstract. When evolutionary algorithm (EA) applications are being

developed it is very important to know which parameters have the great-

est influence on the behavior and performance of the algorithm. This pa-

per proposes using the ANOVA (ANalysis Of the VAriance) method to

carry out an exhaustive analysis of an EA method and the different pa-

rameters it requires, such as those related to the number of generations,

population size, operators application and selection type. When under-

taking a detailed statistical analysis of the influence of each parameter,

the designer should pay attention mostly to the parameter presenting

values that are statistically most significant. Following this idea, the sig-

nificance and relative importance of the parameters with respect to the

obtained results, as well as suitable values for each of these, were obtained

using ANOVA on four well known function optimization problems.

1 Introduction

When using search heuristics such as evolutionary algorithms (EAs), simulated
annealing and local search algorithms, components such as genetic operators,
selection and replacement mechanisms, and the initial population, must first be
chosen. The parameters used to apply some of these elements determine the way
they operate and influence the results obtained. Obtaining suitable values for
them is an expensive, time-consuming and laborious task.

One of the most common ways of setting these parameters is by hand, af-
ter intensive experimentation with different values [21]. As Eiben states, the
straightforward approach is to generate and test [8,28]. An alternative is to use
a meta-algorithm to optimise the parameters [15], that is, to run a higher level
algorithm that searches for an optimal and general set of parameters to solve a
wide range of optimisation problems.

However, as some authors remark, solving specific problems requires specific
parameter value sets [3,18,10] and, as Harik [17] claims, nobody knows the “op-
timal” parameter settings for an arbitrary real-world problem. Therefore, estab-
lishing the optimal set of parameters for a sufficiently general case is a difficult
problem.

R. Schaefer et al. (Eds.): PPSN XI, Part II, LNCS 6239, pp. 452–461, 2010.
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Current best practices are based on intensive test, ad-hoc choices and con-
ventions [29,8,28,9], that is why new practices, based on solid tuning methods
(i.e. robust mathematical methods), are needed. Such a methodology is what we
intend to present in this paper.

Genetic algorithm users adjust their main design parameters (crossover prob-
ability, mutation probability, population size, number of generations, selection
rate) by hand [6,19]. The decision as to which values are best is usually made
in terms of the most common values or experimental formulae given in the bib-
liography, or by trial and error [15,22].

However, other researchers have proposed determining a good set of evolu-
tionary algorithm parameters by analogy, undertaking a theoretical analysis
[2,13,14,16,25,31]. Establishing parameters by analogy means using suitable sets
of parameters to solve similar problems. However they do not explain how to
measure the similarity between problems. Also, a clear protocol has not been
proposed for situations when the similarity between problems implies that the
most suitable sets of parameters are also similar [18,10]. Weyland has described
a theoretical analysis of both an evolutionary algorithm [20] and simulated an-
nealing algorithm [33] to search for the optimal parameter setting to solve the
longest common subsequence problem. However, Weyland does not carry out
this approach to practice.

Some authors have proposed practical approaches that eliminate the need for
a parameter search in genetic algorithms [17]. In these works, a set of parameters
is found, but instead of finding them by means of intense experimentation, the
parameter settings are backed up with theoretical work - meaning that these
settings are robust.

New approaches to the problem of establishing parameter values [23] have
been proposed. Several proposals are based on setting parameter values on-line
(during the run) instead of testing and comparing different values before the
run (parameter tuning). In this sense, some authors propose self-adaptation of
parameters (coding those parameters in the individual’s genome); others pro-
pose non-static parameter settings techniques (controlled by feedback from the
search and optimization process) [9,28,30]. However, control strategies also have
parameters and there are indicators that good tuning works better than control
[8].

Finally, authors proposed in [4] using the ANOVA (ANalysis Of the VAriance)
[12] statistical method to analyze the main parameters involved in the design of
a neuro-genetic algorithm.

It is very important to know which parameter values involved in the design
of an optimization method have the greatest influence on its behaviour and per-
formance and to obtain accurate values for those parameters. In any case, after
performing a detailed statistical analysis of the influence of each parameter, the
designer should pay attention mostly to the parameter providing the values that
are statistically most significant. In this paper, we propose using the ANOVA
statistical method as a powerful tool to analyze a real-coded EA to solve function
approximation problems.
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The ANOVA method allows us to determine whether a change in the results
(responses) is due to a change in a parameter (variable or factor) or due to
a random effect. Thus it is possible to determine the variables that have the
greatest effect on the method that is being evaluated.

The theory and methodology of ANOVA was mainly developed by R.A. Fisher
during the 1920s [12]. ANOVA examines the effects of one, two or more quan-
titative or qualitative variables (called factors) on one quantitative response.
ANOVA is useful in a range of disciplines when it is suspected that one or more
factors might affect a response. ANOVA is essentially a method used to anal-
yse the variance to which a response is subjected, dividing it into the various
components corresponding to the sources of variation, which can be identified.

With ANOVA, we test a null hypothesis that all the population means are
equal against the alternative hypothesis that there is at least one mean that is
not equal to the others. We find the sample mean and variance for each level
(value) of the main factor. Using these values, we obtain a significance value
(Sig. Level). If this level is lower than 0.05, then the influence of the factor is
statistically significant at the confidence level of 95%.

After applying ANOVA (to determine if means are different), another tests
must be used to determine which are different; that will give information about
which parameter values are more accurate. In this sense, either TukeyHDS
(Tukey’s Honestly Significant Difference) [7] or Bonferroni [24] tests can be used.

In this paper, ANOVA will be used to determine the most important param-
eters of an EA (in terms of their influence on the results), and to establish the
most suitable values for such parameters (thus obtaining an optimal operation).

The rest of this paper is structured as follows: Section 2 describes the EA and
the parameters we propose to be evaluated. This section contains an exhaustive
analysis of the method, showing how the parameters are determined. Section 3
details the experimental setup and the statistical study using ANOVA. Obtained
results are analysed in order to establish the most suitable values. Finally, a brief
conclusion and future work is presented in section 4.

2 The EA Method and the Experimental Setup

The purpose of this study is to analyze the dynamics of a typical EA [3,11],
to determine which parameters influence the obtained fitness and to find an
adequate value for the following parameters:

– Generations (G): number of generations.
– Population Size (P): number of individuals in the population.
– Selector (S): Selection operator to generate the offspring. In this paper a

roulette wheel selector, a random selector and a selector based on always
taking the best individual in the popultation are proposed.

– Operators Combination (O): This parameter refers to the percentage of
offspring generated using either an uniform mutator or a BLX-α crossover
operator.
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Table 1 shows the different levels used to evaluate these parameters using ANOVA.
The response variable used to perform the statistical analysis is the fitness in the
last generation. The changes in the response variable are produced when a new
combination of parameters is considered.

Table 1. Parameters (factors) and the abbreviation used as reference later that deter-

mine the EA behaviour and values used to apply ANOVA

Generations (G) Population Operators Selector (S)

Size (P) Combination (O)

160 100 - Crossover only (C) - Roulette Wheel

320 200 - Mutation only (M)

640 400 - Random

1280 800 - Crossover (80%) and

2560 1600 Mut. (20%) (C8M2) - Always the best

5120 3200 individual

- Crossover (90%) and

Mut. (10%) (C9M1)

Thus, 12960 runs were carried out for each problem (30 times * 6 levels for
G * 6 levels for P * 4 levels for O * 3 levels for S, that represent the possible
combinations) to obtain the fitness for each combination.

The application of ANOVA consisted in running an EA using these parameter
combinations to obtain the best fitness. Then R 1 was used to obtain the ANOVA
table. In this paper a simplified table is shown, including for each factor, the sum
of squares (Sum Sq), the value of the statistical F (F value) and its significance
level (Sig. Level). As previously stated, if the latter is smaller than 0.05, then
the factor effect is statistically significant at a 95% confidence level (what means
that some means are different for these parameter values).

In order to evaluate the EA and its parameters, four function approximation
problems are used:

– The Griewangk function [1] is a continuous multimodal function with a high
number of local optima. Its global optimum is located at (0, ..., 0) [5]. This
problem has been used with vectors of 100 real numbers in the interval
[−512, 512].

– The Rastrigin function [32] is a multimodal real function optimisation prob-
lem, whose global optimum is located at point 0 and whose minimum value
is 0. This problem has been addressed with vectors of 100 real numbers in
the interval [−512, 512].

– The Normalized Schwefel function [26] is a multimodal separable real function
optimisation problem, whose global optimum is located at point (x0, ...,xd)
withxi = 420.96, andwhoseminimumvalue is (y0, ..., yd)with yi = −418.9828.
Vectors of 100 real numbers in the interval [−512, 512] were used.

– The Shekel function [27] is a multimodal real function optimisation problem,
whose optimum for dimension 5 is located at point x1 = 8.02, x2 = 9.15,

1 http://www.r-project.org

http://www.r-project.org
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x3 = 5.11, x4 = 7.62, x5 = 4.56 and whose minimum value is −10.4056. This
problem has been addressed with vectors of 5 real numbers in the interval
[−10, 10].

In all cases, the fitness of an individual is calculated as the distance to the
optimum for that function (the optimum is known).

3 Statistical Study and Results Obtained

In this section, the ANOVA statistical tool is applied to determine whether the
influence on parameter values (factors) is significant in the obtained fitness, (to
obtain an optimal operation). The set of tests carried out to apply the ANOVA
method and thus to determine the most suitable parameter values, is described
in detail. In all cases, the goal is to obtain the smallest fitness for the optimised
function.

Table 2. ANOVA tables for the fitness (response) with the EA parameters as factors.

Those parameters with a significance level over 95% are in bold. Although the full

ANOVA table includes combinations of 2, 3 and 4 parameters, only results related to

single parameters are shown.

Param. Sum Sq F value Pr(> F )

G 71278 2.4251 0.1202

O 4540135 154.4671 <2e−16

P 29353 0.9987 0.3182

S 2781525 94.6346 <2e−16

Param. Sum Sq F value Pr(> F )

G 1e+12 2.1689 0.1416

O 7.4e+13 154.4393 <2e−16

P 5.3e+11 1.1018 0.2945

S 4.6e+13 94.9568 <2e−16

Griewangk Rastrigin

Param. Sum Sq F value Pr(> F )

G 6 0.0162 0.898701

O 52393 135.3265 <2.2e−16

P 3857 9.9611 0.002
S 36652 94.6682 <2.2e−16

Param. Sum Sq F value Pr(> F )

G 9.79 2.3170 0.12873

O 18.73 4.4313 0.036
P 79.09 18.7111 1.9e−05

S 118.79 28.1017 1.9e−07

Normalized Schwefel Shekel

We will determine if the influence on a parameter value is significant in the
value of the approximation function (fitness).

Table 2 shows the result of applying ANOVA on proposed approximation
function problems. Parameters with a signification level over 95% are highlighted
in boldface. The ANOVA analysis shows that O and S parameters influence the
obtained fitness, which indicates that changes in these parameters influence the
results significantly. However, this influence is not as important for the rest of
the parameters in all the cases (problems).
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Table 3. Griewangk function: obtained error for the different parameter levels. This

table shows the effect each level has on the fitness.

Param. Means

G 160 320 640 1280 2560 5120

129.5 95.3 81.6 74.3 74.9 70.2

O C M C8M2 C9M1

289.0 57.8 1.7 2.1

P 100 200 400 800 1600 3200

104.5 93.1 91.1 83.1 79.1 75.0

S roulette random best

21.7 23.0 218.3

Table 4. Rastrigin function: obtained error for the different parameter levels. This

table shows the effect each level has on the fitness.

Param. Means

G 160 320 640 1280 2560 5120

525797 387416 321216 296155 288133 295020

O C M C8M2 C9M1

1167593 228796 5560 7211

P 100 200 400 800 1600 3200

419618 382480 359795 337218 316751 297876

S roulette random best

85272 90843 880754

In Normalized Schwefel and Shekel, the P parameter is significant too. This
fact shows how for each problem different set of parameters can influence results
in a different manner.

Once the parameters with greater influence on the results are determined,
accurate parameter values should be established in order to obtain an optimal
operation. To do so, tables of means are calculated to show the effect each level
has on the approximation error.

The obtained error for the Griewangk, Rastrigin, Normalized Schwefel and
Shekel functions and the different parameter levels are shown in Tables 3, 4, 5
and 6.

Lets examine each one of the parameters in turn:

– Focusing attention to the operator combinations (O), using either only mu-
tation or only crossover leads to worse fitness results, which was only to be
expected. According to the tables, using a low crossover and high mutation
probabilities to generate offspring in each generation is the more accurate.
However, as the mutation role is to generate diversity, reducing too much
the mutation probability leads to premature convergence of the population.
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Table 5. Normalized Schwefel function: obtained error for the different parameter

levels. This table shows the effect each level has on the fitness.

Param. Means

G 160 320 640 1280 2560 5120

8.146208 7.848331 8.151095 9.062385 8.641955 7.645236

O C M C8M2 C9M1

3.3e+01 2.2e−01 8.1e−04 6.6e−03

P 100 200 400 800 1600 3200

14.9 11.0 8.0 6.8 5.1 3.8

S roulette random best

0.8 0.7 23.3

Table 6. Shekel function: obtained error for the different parameter levels. This table

shows the effect each level has on the fitness.

Param. Means

G 160 320 640 1280 2560 5120

7.32 6.90 6.78 6.70 6.64 6.63

O C M C8M2 C9M1

8.10 4.14 7.49 7.60

P 100 200 400 800 1600 3200

7.57 7.30 6.94 6.65 6.34 6.19

S roulette random best

6.37 6.48 7.65

On the other hand, applying too much mutation affects exploration, leading
to random search.

– Both P and G have not been reported as significant according to the ANOVA
table in all problems. However, as it can be observed, using the higher values
yields better fitness values, although those values lead to a higher number of
evaluations and time needed to run the algorithm. Logically, the greater the
number of generations or population size, the more possibilities there are of
achieving a good individual from the current population, as there exists a
greater variety of individuals.

– Taking into account the S parameter, using the roulette wheel selector yields
much better results than using a random selector or always taking the best
individual. The reason for this is that the roulette selector produces the
greatest diversification in the EA solutions. The third selector is the most
elitist; obtained results using this one selector (taking the best individual)
are much worse, which indicates that too much selective presion is not appro-
priate (the population must be diverse, otherwise a premature convergence
of the algorithm might occur).
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These conclusions have been confirmed by applying the Bonferroni statistical
test [24]. As can be seen, these results are in agreement with those available in
bibliography. In any case, in this paper we have verified the adequacy of these
parameter values through a rigorous statistical study.

4 Conclusions and Work in Progress

A statistical study of the different parameters involved in the design of an EA
has been carried out by using ANOVA, which consists of a set of statistical
techniques that analyze and compare experiments by describing the interactions
and interrelations between the variables (factors) of the system. The motivation
of the present statistical study lies in the great variety of alternatives that a
designer has to take into account when designing an EA.

Proposed methodology has been applied to four well known function approxi-
mation problems, widely used by practitioners, having determined which param-
eters have a higher influence on obtained results (a change on those parameters
will affect the fitness). Likewise, the more accurate value has been determined
for those parameters in order to obtain an optimal operation.

Accurate results are obtained using the higher value tested for population size
and number of generations, although this increases the number of evaluations
and time needed to run the algorithm. Obviously, as the number of generations
or individuals in the population increases, there is a greater probability that the
fitness of the best individual will be higher.

Paying attention to the selector operator, a roulette wheel selector yields much
better results than using a random selector or always taking the best individual,
due to the fact that the roulette selector produces the greatest diversification in
the EA solutions.

As far as the genetic operator application rates are concerned, reducing too
much the mutation probability leads to premature convergence of the population,
while applying too much mutation is like a random search. According to the
tables, using a low mutation and high crossover probabilities to generate offspring
in each generation is the more accurate.

This methodology based on ANOVA and Bonferroni statistical tests could be
helpful for practitioners in analyzing and adjusting parameters of any optimisa-
tion method.

Our work in progress includes the analysis of modified EA considering other
selection schemes, new genetic operators and other meta-heuristics. As future
work, the implementation of a parameter control method would be of interest,
as proposed by Eiben et al. [9]. In this case, ANOVA could be used to anal-
yse not only the optimisation method parameters but also the control strategy
parameters.
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Abstract. This paper describes a network crossover operator based

on knowledge gathered from either prior problem-specific knowledge or

linkage learning methods such as estimation of distribution algorithms

(EDAs). This operator can be used in a genetic algorithm (GA) to incor-

porate linkage in recombination. The performance of GA with network

crossover is compared to that of GA with uniform crossover and the

hierarchical Bayesian optimization algorithm (hBOA) on 2D Ising spin

glasses, NK landscapes, and SK spin glasses. The results are analyzed

and discussed.

1 Introduction

It has been argued that to solve many difficult classes of problems in a robust and
scalable manner, variation operators of GAs must respect linkages between vari-
ables [1]. Unfortunately, conventional variation operators of GAs often break up
important linkages [1]. To help remedy this problem, competent linkage learning
GAs such as EDAs [2–5] have been developed. EDAs work by building a proba-
bilistic model of promising solutions and sampling new candidate solutions from
the build model. While EDAs have many advantages over standard GAs [4, 6],
the model building is often computationally intensive, and much of the work in
EDAs focuses on efficiency enhancement techniques [7–9].

Often, though, practitioners have prior information about the problem being
solved. For example, in graph-based problems we are implicitly given a guide to
the strongest dependencies in a problem. In addition, EDAs can also be used to
find the structure of the problem by mining their generated models [10, 11]. The
key question is, how do we exploit this information in practice?

One way to do this is to modify the crossover operator in a GA to better
respect the strongest linkages in the underlying problem structure. This paper
discusses a network crossover operator that works with a user-specified network
graph to determine which bits are exchanged. We compare the performance of
GA with network crossover to that of GA with uniform crossover and the hierar-
chical Bayesian Optimization Algorithm [9, 12], which is one of the most powerful
linkage learning GAs. All algorithms are tested on a broad range of problems of
different structure known to be hard for standard evolutionary algorithms.
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The paper is organized as follows. Section 2 describes the network crossover
operator used in this paper. Section 3 outlines the algorithms tested. Section 4
describes the test problems used in this paper. Section 5 presents the experi-
mental results. Finally, section 6 summarizes and concludes the paper.

2 Network Crossover

While uniform crossover is effective at solving many problems [13], it can often
become highly ineffective because it processes each bit independently of others
and is unable to consider dependencies between problem variables [14]. In many
cases it is desirable that crossover preserves combinations of values of variables
that depend on each other while it effectively exploits independencies of other
variables to ensure effective mixing [14]. The operator in this paper tries to do
this by using a network of assumed dependendies between problem variables.

Any two-parent crossover operator starts by creating a binary mask, which
defines what bits to exchange. In this paper we show how we can create a special-
ized mask that respects problem structure encoded in a network of dependencies.

The network crossover requires an n×n incidence matrix G that specifies the
strongest dependencies between bits. Specifically, denoting the element in the
ith row and jth column of G by Gi,j , bits in locations i and j depend on each
other if Gi,j = 1, whereas they are independent if Gi,j = 0. Note that a similar
representation of dependencies in a problem is used in the dependency structure
matrix GA (DSM-GA) [15]. While the network does require information from
the practitioner, it does not require in-depth knowledge of the strength of in-
teractions. For graph problems, such as graph-bipartitioning or graph coloring,
this graph G is inherent to the problem definition. For problems like MAXSAT
and Ising Spin glasses, it is straightforward to specify such a structure from the
additive decomposition of these problems. One may also run an EDA on trial in-
stances of the problem to learn promising network structures as suggested in [10].
The key point to remember when constructing G is that it is not necessary to
specify the entire problem structure, but only the strongest dependencies.

Given the network G, a crossover mask m is then built as follows. First a
random bit i is selected. This bit is then added to the crossover mask by setting
mi = 1. Then a randomized breadth-first search is performed on the network
G, setting each corresponding bit in m to 1, until m reaches the desired size.
If the breadth-first search ends before the desired size is reached, an additional
random starting point is selected and the process repeated. The end result is a
crossover mask that should most often disrupt bits that are not connected in G.

The idea of using a network of dependencies to modify two-parent recombi-
nation operators is not new and has been inspired by past work [16–18]. Our
variant of network crossover most closely resembles the work by Stonedahl [18]
where the mask was built using a random walk through the network structure.
We use the breadth-first search to emphasize the short range dependencies, since
these dependencies were found to be strongest in prior work [10]. However, our
work is not an attempt to improve on this operator, but rather to perform a
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systematic study of network crossover on a broad range of problems, as well as
to compare it to a linkage-learning GA.

3 Tested Algorithms

The genetic algorithm (GA) [13, 19] evolves a population of candidate solutions
typically represented by binary strings of fixed length. The initial population
is generated at random according to the uniform distribution over all binary
strings. Each iteration starts by selecting promising solutions from the current
population; in this work we use binary tournament selection without replace-
ment. New solutions are created by applying variation operators to the popula-
tion of selected solutions. These new candidate solutions are then incorporated
into the population using a replacement operator. The run is terminated when
either the optimum has been found or after a maximum number of iterations.

Instead of using crossover and mutation to create new candidate solutions,
hBOA learns a Bayesian network with local structures [9, 12] as a model of
the selected solutions and generates new candidate solutions from the distribu-
tion encoded by this model. Using Bayesian networks to generate new candidate
solutions ensures effective processing of partial solutions in the class of nearly de-
composable and hierarchical problems [9], including many problems that cannot
be efficiently solved with standard two-parent crossover operators [9, 12].

In both GA and hBOA runs, a deterministic hill climber (DHC) was incor-
porated to improve performance. In each iteration, DHC evaluates all possible
one-bit flips and chooses the one that leads to the maximum improvement of
solution quality. DHC is terminated when no single-bit flip improves solution
quality and the solution is thus locally optimal.

4 Test Problems

In concatenated traps of order 5 (trap-5) [20, 21], the input string is partitioned
into independent groups of 5 bits. This partitioning is unknown to the algorithm
and it does not change during the run. A 5-bit fully deceptive trap function is
applied to each group of 5 bits and the contributions of all trap functions are
added to form the fitness. The contribution of each group of 5 bits is given by

trap5(u) =
{

5 if u = 5
4 − u otherwise , (1)

where u is the number of 1s in the input string of 5 bits. The task is to maximize
the function. An n-bit trap5 function has one global optimum in the string of all
1s and (2n/5 − 1) other local optima. Traps of order 5 necessitate that all bits in
each group are treated together, because statistics of lower order are misleading.

An NK fitness landscape [22] is fully defined by the following components:
(1) The number of bits, n, (2) the number of neighbors per bit, k, (3) a set of
k neighbors

∏
(Xi) for the i-th bit, Xi for every i ∈ {0, . . . ,n − 1}, and (4) a
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subfunction fi defining a real value for each combination of values of Xi and∏
(Xi) for i ∈ {0, . . . ,n − 1}, with each subfunction defined as a lookup table.
In this paper we consider two classes of NK landscape instances: (1) Unre-

stricted NK landscapes and (2) nearest-neighbor NK landscapes. In unrestricted
NK landscapes, thet set of k neighbors for each string position Xi is selected
at random according to the uniform distribution of all subsets of k bits. Then,
a lookup table defining each fi is generated using the uniform distribution over
[0, 1). In this paper we consider unrestricted NK landscapes with k = 5; the
considered class of NK landscapes is NP-complete [23]. In nearest-neighbor NK
landscapes, the bits are arranged on a circle and the neighbors of each bit are
restricted to the k bits that follow this bit in the circle. The bit positions are
shuffled randomly in order to eliminate tight linkage. Nearest-neighbor NK land-
scapes are solvable in polynomial time. The algorithm used to solve nearest-
neighbor NK instances is based on refs. [24, 25]. The branch and bound algorithm
used to solve unrestricted NK landscapes is based on ref. [26].

Ising spin glasses [27] are prototypical models for disordered systems. A simple
model to describe a finite-dimensional Ising spin glass is typically arranged on a
regular 2D or 3D grid where each node i corresponds to a spin si and each edge
〈i, j〉 corresponds to a coupling between two spins si and sj . Each edge has a
real value Ji,j associated with it that defines the relationship between the two
connected spins.

For the classical Ising model, each spin si can be in one of two states: si = +1
or si = −1. Given a set of coupling constants Ji,j , and a configuration of spins
C, the energy can be computed as

E(C) = −
∑
〈i,j〉

siJi,jsj , (2)

where the sum runs over all couplings 〈i, j〉. The task is to find a spin config-
uration for a given set of coupling constants that minimizes the energy of the
spin glass. The states with minimum energy are called ground states. Here we
consider the ±J spin glass, where each spin-spin coupling is set randomly to
either +1 or −1 with equal probability. The ground states of the instances were
obtained from the Spin Glass Ground State Server at the Univ. of Cologne [28].

The Sherrington-Kirkpatrick (SK) spin glass [29] is described by a set of spins
si and a set of couplings Ji,j between all pairs of spins. The SK model does not
limit the range of spin-spin interactions to only neighbors in the lattice. The
goal is to find ground states for the given coupling constants.

Here we consider two types of random instances of the SK model. The first
type uses couplings generated from the Gaussian distribution with zero mean and
unit variance N(0, 1). The second set of SK instances are one-dimensional spin
glasses with power-law interactions [30] where the spins are arranged equidis-
tantly and numbered counterclockwise on a circle with circumference n. While
all spins interact with each other, the interactions between spins located further
from each other are weaker. The effects of distance are controlled with a param-
eter σ; in this paper we examine instances with σ = 2, which gives the model
short ranged behavior. Both types of SK spin glasses are NP-complete [31].
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To find guaranteed ground states, a branch-and-bound algorithm adopted
from ref. [32] was used for the smaller instances. For larger systems, the population-
doubling approach from ref. [33] was used.

5 Experiments

5.1 Experimental Setup

For trap-5, problem sizes of n = 100 to 300 with step 10 were examined and G
was constructed by setting Gi,j = 1 if and only if i and j were in the same trap
partition. For nearest-neighbor NK landscapes, problem sizes of n = 30 to 210
with step 30 were considered and for unrestricted NK landscapes, problem sizes
of n = 20 to 38 with step 2 were used. For NK landscapes of all types, k = 5
and G was constructed by setting Gi,j = 1 if and only if i and j were neighbors.
For 2D Ising spin glasses, problem sizes of n ∈ {256, 324, 400, 484, 576} were
examined and G was constructed by setting Gi,j = 1 if and only if i and j were
neighbors in the underlying spin glass lattice.

For one-dimensional spin glasses with power-law interactions, problem sizes
of n ∈ {100, 150, 200, 300} were examined with σ = 2. For the standard SK
spin glass, problem sizes of n = 300 and n = 400 were considered. For all SK
instances, G was constructed by connecting each node i to a fixed number m of
spins with the strongest magnitude of couplings with i. For example, for m = 4,
i was connected to four other spins that have the strongest couplings with i. For
the experiments with network crossover, m ∈ {1, . . . , 7} were examined.

hBOA and GA with both uniform crossover and network crossover were ap-
plied to all problem instances. For GA runs, bit-flip mutation was used with
a probability pm = 1/n. The probability of crossover was set to pc = 0.6. To
effectively maintain population diversity, new solutions were incoroporated into
the old population using restricted tournament replacement (RTR) [9, 34].

For all problem types except for trap-5, 1000 random instances for each prob-
lem size were tested. Bisection [9] was used to determine the minimum population
size to ensure convergence to the global optimum in 10 out of 10 independent
runs for each instance. For trap-5, bisection was run 10 times to obtain more
reliable results. Each run was terminated when the global optimum had been
found or when the maximum number of generations n × 4 had been reached.
Three results were compared for all solved instances: the number of evaluations,
the number of steps of DHC, and the total execution time in seconds.

5.2 Experimental Results

The number of evaluations, the number of DHC flips, and the execution time to
solve trap-5 is shown in figure 1. GA with network crossover performed the best.
This is to be expected as the network crossover will disrupt much fewer trap
partitions than other algorithms and, unlike hBOA, network crossover is given
the correct problem decomposition on input. hBOA scales similarly as GA with
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Fig. 1. Results on trap-5
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Fig. 2. Results on nearest-neighbor NK landscapes with k = 5 neighbors

network crossover, indicating that hBOA can learn the problem decomposition
scalably. GA with uniform crossover performs very poorly.

Figure 2 shows the performance of the three compared algorithms on nearest-
neighbor NK landscapes. hBOA is the best performing algorithm with respect
to the number of evaluations. However, GA with network crossover is best with
respect to the total execution time and the number of DHC steps. GA with
uniform crossover is the worst scaling algorithm.

The results on unrestricted NK landscapes are shown in figure 3. With respect
to the number of evaluations, hBOA is clearly the best performing algorithm
and GA performs approximately the same regardless of the crossover operator
used. With respect to the number of local search steps, while hBOA starts off
performing poorly, it scales better than GA with uniform or network crossover.
With respect to the total execution time, the results are mixed and all algorithms
seem to scale about the same.

The performance of the three compared algorithms on 2D Ising spin glasses is
shown in Figure 4. We see that hBOA strongly outperforms the other algorithms
with respect to the number of evaluations and local search steps. However, due
to less overhead, GA with network crossover has very similar execution times,
although it scales slightly worse compared to hBOA as the problem size increases.
GA with uniform crossover is shown to have quite poor performance.

Selected experimental results on the one-dimensional SK spin glasses are
shown in figure 5. We see that GA with uniform crossover is the worst per-
forming algorithm. GA with network crossover with m = 3 (each node in the
network is connected to 3 other bits), performs worse than hBOA. For m = 5,
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Fig. 3. Results on unrestricted NK landscapes with k = 5 neighbors
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Fig. 4. Results on 2D Ising spin glasses

while GA with network crossover is the best performer in terms of the execution
time for the smaller problem sizes, hBOA shows superior scaling. The results for
other values of m were omitted as m = 5 was the best performing value found.

Table 1 shows the results of the three compared algorithms on unrestricted
SK spin glasses. For network crossover, the best value of m is used for each
value of n. In contrast to all previous results, for SK spin glasses hBOA is the
worst performing algorithm with respect to the growth of the execution time
with problem size. For n = 300 GA with network crossover (m = 3) performed
best, whereas for n = 400 GA with uniform crossover performed best.

6 Summary and Conclusions

This paper described a network crossover operator which can be used to incorpo-
rate problem-specific knowledge about dependencies between problem variables
into a GA. Performance of GA with the described crossover operator was then
compared to GA with uniform crossover and hBOA on a number of challenging
problem instances from several problem classes.

On most problems, hBOA and GA with network crossover outperformed GA
with uniform crossover. This result is not surprising because all test problems
were additively decomposable and it has been argued that to effectively solve
additively decomposable problems, recombination must often exploit problem
structure to ensure proper mixing and juxtaposition of important partial solu-
tions [1, 14]. GA with uniform crossover was only slightly better on one problem
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Fig. 5. Results on the one-dimensional SK spin glass with power-law interactions, σ = 2

Table 1. Results on the general SK spin glasses. The table includes the best found

value of m for network crossover.

Size Algorithm Evaluations Execution time Number of DHC flips

300 hBOA 6,615 27.1 284,482

300 GA with uniform crossover 11,579 13.5 53,0150

300 GA with netx, m = 3 9,028 10.8 45,0834

400 hBOA 30,021 215.5 1,236,547

400 GA with uniform crossover 26,601 56.8 1,767,551

400 GA with netx, m = 3 32,672 66.7 2,077,639

that contained little structure. The more regular the structure of the problem
was, the better hBOA and GA with network crossover performed.

Network crossover received information about the structure of the problem
on input. That is why it is expected that GA with network crossover would
typically outperform hBOA, which must learn the problem structure on its own.
Nonetheless, the results were somewhat surprising because in most cases, hBOA
showed superior scaling of execution times with problem size. This is in spite of
the fact that hBOA is given no information about the structure of the problem
on input and it is required to obtain such information itself.

While there is no doubt that using information about the structure of the
problem can help in solving many difficult optimization problems more effi-
ciently, learning the problem structure is a computationally intensive task. That
is why it should certainly be beneficial if one could incorporate prior problem-
specific knowledge into the GA if such knowledge is available, and use specialized
crossover operators such as the network crossover discussed here. However, the
mixed results presented in this paper show that this is certainly not a straight-
forward task, and that there are several questions that must be addressed in
future research in this area.

Most importantly, future research in this area should examine whether the
mixed results are a consequence of using two-parent recombination as opposed
to gene-pool recombination, or whether the main reason for these results was in
the specific dependencies used for constructing masks in network crossover. Vari-
ations of network crossover should also be explored, using different approaches
for constructing network masks. Finally, GA with network crossover should be
tested on additional classes of problems.
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Abstract. Population diversity is generally seen as playing a crucial role in the 
ability of evolutionary computation techniques to discover solutions. In genetic 
programming, diversity metrics are usually based on structural properties of in-
dividual program trees, but are also sometimes based on the spread of fitness 
values in the population. We explore the use of a further interpretation of diver-
sity, in which differences are measured in terms of the behaviour of programs 
when executed. Although earlier work has shown that improving behavioural 
diversity in initial GP populations can have a marked beneficial effect on  
performance, further analysis reveals that lack of behavioural diversity is a 
problem throughout whole runs, even when other diversity levels are high. To 
address this, we enhance phenotypic diversity via modifications to the crossover 
operator, and show that this can lead to additional performance improvements. 

1   Introduction 

It is generally accepted that a problem associated with genetic programming and other 
forms of evolutionary computation is that population diversity tends to diminish over 
time [1, 2], and that this may then lead to convergence on local minima from which 
the evolutionary process cannot escape to explore the search landscape more widely 
for solutions. However, more rigorous probing into the whole issue of diversity and 
its possible impact reveals that there is little consensus as to how it should be defined, 
measured, analysed or promoted.  

Broadly speaking, diversity in genetic programming refers to how different each 
individual is from other members of the host population, and although this notion of 
‘difference’ may be interpreted in a variety of ways, previous work has tended to 
categorise diversity as falling into two camps. The first is genotypic, or structural, 
diversity, which is based upon differences between the structure of the trees or other 
representations used to encode individual programs. The second category is 
phenotypic diversity. Ostensibly, this is defined in terms of the behaviour rather than 
the structure of programs, but in practice it has usually corresponded to the spread of 
fitness values amongst members of the population. 

We shall say more about these previously established views of diversity in the next 
section on related work. Following that, in Section 3 we will describe an alternative 
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view of phenotypic diversity which is based not on fitness values, but on the 
behaviour of individuals when they are executed. In Section 4 we will compare the 
extent of the various forms of diversity in several problem domains, with particular 
emphasis on how it changes during the lifetime of GP runs.  In Section 5 we build on 
earlier work concerned with creating more diverse initial populations [3] by 
describing methods for maintaining that diversity in subsequent generations, then go 
on to describe and compare the effects of these techniques in experimentation. 
Finally, Section 6 draws some conclusions and gives pointers to further work. 

2   Related Work 

As it relates to genetic programming, the term ‘diversity’ has a variety of 
interpretations, and hence a number of different ways have been proposed for 
measuring it, creating it and maintaining it. Overviews of diversity measures can be 
found in [4] and [5], while Burke et al [6] give a more extensive analysis of these 
measures and of how they relate to fitness. 

The most common usage of the term is concerned with differences in the structure 
of individual program trees; that is, in their size, their shape, and in the functions and 
terminals used at individual nodes. Recognizing the importance of including a wide 
range of structures in the initial population, Koza [7] proposed the use of a ‘ramped 
half-and-half’ algorithm, and many implementations have continued to follow his 
advice. The approach is claimed to give good diversity in the structure of program 
fragments which can then be combined and integrated to produce more complex and 
hopefully fitter programs. 

Measurements of structural diversity may involve nothing more than simple node-
for-node comparison of program trees;. More sophisticated structural diversity 
metrics may be based on edit distance [8], where the similarity between two 
individuals is measured in terms of the number of edit operations required to turn one 
into the other. 

A difficulty with comparing individuals based on their apparent structure is that 
program trees which are seemingly very different in appearance may in fact compute 
identical functions. Seeing beyond these surface differences requires the use of graph 
isomorphism techniques, but these are computationally expensive and become even 
more so as program trees grow larger over time. A simpler, less costly alternative is to 
check for pseudo-isomorphism [5], in which the possibility of true isomorphism is 
assessed based on characteristics such as tree depth and the numbers of terminals and 
functions present. However, the accuracy of this assessment may be subject to the 
presence of introns in the code; Wyns et al [9] describe an attempt to improve on this 
situation through the use of program simplification techniques to remove redundant 
code. 

In contrast, behavioural or phenotypic diversity metrics are based on the 
functionality of individuals, i.e. the execution of program trees rather than their 
appearance. Usually, behavioural diversity is viewed in terms of the spread of fitness 
values obtained on evaluating each member of the population [10]. One way of 
measuring such diversity is by considering the fitness distribution as an indicator of 
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entropy, or disorder, in the population [11, 9]. Other approaches consider sets or lists 
of fitness values and use them in combination with genotypic measures  [12, 13]. For 
certain types of problem it may be possible to achieve the effect of behavioural 
diversity without invoking the fitness function, via the use of semantic sampling 
schemes [14]. Semantic analysis of programs is also used in the diversity enhancing 
techniques described by Beadle and Johnson [15, 16].  

3   Phenotypic Diversity 

Our own approach to diversity differs from others in that it does not involve structural 
considerations, fitness values or semantic analysis of programs. Instead, it focuses on 
the observed behaviour of individuals when they are executed. To investigate this 
fully, we have applied it to a variety of problem domains; these comprise two Boolean 
problems (6-multiplexer and even-4 parity), two navigation problems (Santa Fe and 
maze traversal), and one numeric problem (symbolic regression of a polynomial).  

The 6-mux, even-4 parity and Santa Fe problems are all standard benchmarks in GP, 
and further details can be found elsewhere (e.g. Koza [7]). In our symbolic regression 
problem we attempt to evolve a program equivalent to the polynomial 4x4 – 3x3 + 2x2 – 
x. The fitness cases consist of 32 x-values in the range [0,1), starting at 0.0 and 
increasing in steps of 1/32, plus the corresponding y-values. Other than this, the problem 
is again fairly standard. Our second navigation problem is that of finding a route 
through a maze. Although less well-known than the ant problem, it has been used as the 
subject for research on introns in several studies [17-19], and again details can be found 
in those papers and in our earlier paper on this topic [3]. Other parameters as they apply 
to the experiments described in the remainder of this paper are shown in Table 1. 

Table 1. GP system parameters common to all experiments 

Population size 500 
Initialisation method Ramped half-and-half 
Evolutionary process Steady state 
Selection 5-candidate tournament 
No. generations 51 generational equivalents (initial+50) 
No. runs 100 
Prob. crossover 0.9 
Mutation  None 
Prob. internal node used as crossover pt. 0.9 

 
In the case of the Boolean problems, the behaviour of an individual is measured in 

terms of the outputs it produces; this is recorded as a string of binary values for each 
of the test cases used during fitness evaluation. So, for the 6-mux problem, there is a 
64-bit string associated with each member of the population, while for the even-4 
parity problem only a 16-bit string need be recorded. To save memory, these can be 
packed into 64-bit and 16-bit integers, respectively. We say that two individuals  
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exhibit phenotypic differences if they differ in any of the corresponding bits in their 
output strings, and that an individual is phenotypically unique in a population if there 
are no other members of that population with exactly the same binary output string. 

For the symbolic regression problem, we again record the outputs produced for 
each test case, but this time it is a vector of 32 floating point results. In comparing 
phenotypes we choose not to look for exact matches, but instead check whether the 
differences between corresponding outputs lie within some pre-defined value epsilon. 
Hence, two individuals are said to be behaviourally identical if, for each x-value, the 
absolute difference between the corresponding y-values is less than epsilon. The value 
for epsilon was arbitrarily chosen to be the same as that used to check for ‘hits’ in 
fitness assessment, i.e. 0.01.  

For the two navigation problems, the situation is complicated by the fact that the 
evolving programs do not produce outputs as such: their behaviour is measured in 
terms of the movements produced by function and terminal execution. Because of 
this, the record we make of an individual’s behaviour is the sequence of moves it 
makes in the grid or maze during execution. We are not concerned with recording any 
left or right turns that are executed while remaining on a square, nor with any decision 
making via execution of statements such as IF_FOOD_AHEAD or WALL_AHEAD. 

To record the path histories, we associate with each individual in the population a 
vector of {north, east, south, west} moves. Each time the executing program moves to 
a different square, the heading is added to the end of the vector. Since a program 
times-out after a fixed number of steps (600 for the ant problem, 1000 for the maze), 
we know that the vector cannot be longer than that number of elements per individual, 
and so memory occupancy is not a huge issue. Determining behavioural differences 
between individuals becomes simply a matter of comparing these direction vectors. 

4   Measuring Diversity 

The first thing we wish to explore is the extent to which diversity is present in 
populations, and how it alters over the lifetime of each run. For this, we need to define 
appropriate metrics. 

We start with structural diversity (SD). This is found by counting the number of 
distinct program structures present in the population and then dividing this by the 
population size. Thus, SD = 1 if and only if every member of the population has a 
different structure, whereas a value of SD close to zero indicates poor structural di-
versity (i.e. much duplication). Behavioural diversity (BD) is defined in a very similar 
way, by counting up the number of distinct behaviours and again dividing by the size 
of the population. As before, BD = 1 only when each individual’s behaviour is 
unique.  

Fitness diversity (FD) is calculated in a slightly different manner. Unlike either 
structural or behavioural diversity, in which every member of the population can be 
unique, the range of possible fitness values tends to be much smaller than the 
population size, and varies from problem to problem. We therefore define fitness 
diversity (FD) to be the number of distinct fitness values found in the population 
divided by the number of possible values. For example, if a given population in the 
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even-4 parity problem contained a total of 5 different fitness values, then its FD 
would be 5/17 = 0.294, since the problem allows for 17 possible fitness values (0-16). 
On this scale, a value of 1.0 would indicate full fitness diversity (which would also 
imply that the population contained a solution!). 
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(a) Ant                                                           (b)  Parity 
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(c) Maze                                                        (d) Mux 
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(e) Regression 

Fig. 1. Diversity changes for each test problem, averaged over 100 runs 

Given these definitions, we can plot the changes that take place in each form of 
diversity. The graphs of Figure 1 show this for each of our benchmark problems. The 
figures are averaged over 100 runs. The first observation that can be made about these 
graphs is that, in four of the five problems, structural diversity increases rather than 
decreases, and tends to reach quite a high level of about 0.9. In other words, only 
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about 10% of individuals have structural clones elsewhere in the population. This 
suggests that crossover is successful at generating structurally unique program trees, 
and that efforts to increase structural diversity in these problems may not have a 
substantial impact. Only in the case of the symbolic regression problem does 
structural diversity fall significantly, dropping to just over 0.2 from generation 10 
onwards.  

The picture is more mixed for fitness diversity: in the ant problem it rises and then 
falls to below its initial level; in the maze and regression problems it rises steadily and 
then remains fairly constant; in the parity problem it tends to hover around a value of 
0.3; and in the multiplexer problem it falls from 0.4 down to about 0.1. 

In all of the problems it is behavioural diversity that comes off worst. Whatever its 
initial value (which in some cases can be comparatively good), it always drops to 
below 0.1. In the even parity and mux problems it reaches as low as 0.02 in genera-
tion 50; this corresponds to only 10 distinct behaviours in a population of 500. For 
most of the problems there is a wide gap between the SD and BD graphs, indicating 
that many programs that are structurally dissimilar do not differ at all in their behav-
iour. The number of distinct behaviours in the parity and mux problems dip to only 10 
despite the number of distinct structures in the population climbing to about 450. 

5   Preserving Diversity 

The experiments of the previous section show that there is relatively little opportunity 
to  increase the structural diversity of a population, but much greater scope for 
increasing behavioural diversity. Fitness diversity also remains low, but doing 
something about this is far more problematic. In initial GP populations, most 
members will have poor fitness, and so the number of distinct fitness values can be 
expected to be quite small. Increasing diversity in these early stages of evolution 
would involve introducing some fitter individuals into the population, but this begs 
the question of how one goes about finding these fitter programs without resorting to 
the evolutionary process that subsequent generations are meant to implement! 

Our approach to promoting diversity is a two-step process. The first phase is to 
establish increased diversity in the initial population. This can be done by making 
changes to the ramped half-and-half algorithm mentioned earlier so that duplicates 
(either structural or behavioural) are eliminated. This approach was covered in detail 
in an earlier paper [3].  

The next task is to attempt to preserve diversity throughout the remainder of the 
evolutionary process. There will be pressure to reduce diversity because of the 
reproduction operator, which simply clones relatively fit individuals. This will be 
counterbalanced to an extent by the recombination operator, which creates new 
individuals via subtree crossover. In most problems, the nature of the terminal and 
function sets, and the way in which crossover points are chosen, is sufficient to ensure 
that entirely novel structures are created. This explains the continually high SD levels 
in the earlier graphs (the regression problem being an exception). 

Unfortunately, crossover does not always introduce new behaviours. A primary 
reason for this is that crossover often takes place at the site of introns, particularly 
during the latter stages of evolution in which bloat is extensive. These introns are 
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often non-executed pieces of code [19], and so the crossover operation creates a child 
which does not differ behaviourally from the parent receiving the subtree. It is for 
these reasons that we have chosen the crossover operator as the focal point for 
changes to maintain at least some of the diversity already introduced during 
initialisation. The changes are simple, as the following pseudo-code shows: 

 
function crossover 
   childnum = 0 
   select parents by tournament 
   select member to be replaced 
   do 
      establish crossover points 
      create child 
      childnum = childnum + 1 
   while (child same as a parent 
          and childnum < MAX_BROOD) 
endfunction 

 
The parents and the individual to be replaced are selected by tournament. The code 
then enters a loop, choosing crossover points and generating offspring until a child is 
found which differs from both its parents. The comparison between a child and its 
parents can be either structural or behavioural. In both cases the variable childnum is 
used to prevent an excessive number of offspring from being produced. We used a 
value of 20 for MAX_BROOD, but found in practice that the actual number of 
children generated in each crossover usually fell far short of that, even when 
searching for behavioural differences. 

Table 2. Effects of diversity promotion on solution discovery rate, given as number of solutions 
found in 100 runs 

Problem Standard GP SD-Initial SD-All BD-Initial BD-All 
6-mux 56 66 70 79 99 
Even-4 14 11 11 23 54 
Regress 10 10 18 24 36 
Ant 13 9 12 18 25 
Maze 14 18 17 51 95 

 
In Table 2 we show the effects of these algorithms on the rate of success at finding 

solutions to our benchmark problems. For each problem, we first of all give the 
success rate of our standard GP system, measured as the number of solutions found in 
100 runs. We also wish to distinguish between the effects of using our first algorithm 
in isolation (i.e. eliminating duplicates in the initial population only), and using both 
algorithms together to promote diversity throughout the lifetime of each run. Hence, 
the column labelled SD-Initial shows what happens when structural clones are 
eliminated in the initial population only, while the column labelled SD-All shows the 
effects of augmenting this initialisation phase with the subsequent attempts to prevent 
structural duplicates being created during crossover. The columns headed BD-Initial 
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and BD-All should be interpreted in the same manner, but based on the promotion of 
behavioural rather than structural diversity. 

What we can see from Table 2 is that the removal of structural duplicates does not 
always have a beneficial effect on solution finding performance. It is worth noting, 
however, that the biggest positive impact of the combined approach to structural 
diversity is on the symbolic regression problem, where the success rate is almost 
doubled. Interestingly, it was the regression problem which the graphs of Fig. 1 
revealed to have the most scope for improvement in the structural diversity levels. 

The situation with regard to behavioural diversity appears more promising. Even if 
we restrict our diversity enhancing measures to the initial population, a substantial 
increase in performance follows for most of our problems, particularly so for maze 
traversal, where the success rate jumps from 14% to 51%. Once we add in the second 
algorithm to preserve behavioural diversity throughout the remainder of each run, 
performance improves even further, with near perfect records being seen for the maze 
and 6-mux problems. A t-test (p < 0.05) performed on the best fitness values found at 
the end of each run indicates that the improvements are statistically significant. 

To make the comparison fair, we have to ask at what cost our improvements are 
obtained. One commonly used method of comparing cost is Koza’s computational 
effort metric [7]. However, this assumes a fixed number of fitness evaluations per 
generation, which for our purposes is not applicable because of the additional effort 
required both to create the initial populations and to assess each member of the broods 
created in our amended crossover operator. 

The cost metric we shall use instead is a count of the number of fitness evaluations 
performed over all 100 runs, divided by the number of solutions found. This gives us 
a measure of effort in terms of the number of evaluations per solution. Table 3 gives 
these figures for each of our problems and diversity enhancing mechanisms. 

Table 3. Effects of diversity promotion on computational effort, measured as number of fitness 
evaluations per solution 

Problem Standard GP SD-Initial SD-All BD-Initial BD-All 
6-mux 23263 16416 18261 12140 7703 
Even-4 151518 195781 208667 101570 58662 
Regress 217612 217486 142659 88430 71465 
Ant 158498 240285 193817 118068 119118 
Maze 150959 115998 130956 8329286 4482422 

 
In most cases, it would seem that when it comes to counting the computational cost 

of finding solutions, our approaches to behavioural diversity enhancement offer 
significant improvements over standard GP, and over systems that attempt to increase 
structural diversity. There is, however, a notable exception. In the maze problem, the 
effort involved in creating the initial behaviourally diverse population is immense; 
and although a dramatic increase in the success rate is observed, this is still not 
enough to bring the number of evaluations per solution down to a level that is 
competitive with standard GP. 
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6   Conclusions 

It is accepted wisdom that lack of diversity in evolutionary computing techniques 
such as genetic programming can hamper the search for solutions, and that diversity 
tends to diminish over the lifetime of a run. The inference to be drawn from this is 
that efforts to promote and maintain diversity should have a beneficial effect. Our 
research supports this, but with the caveat that it very much depends on how the 
notion of diversity is interpreted. 

We have distinguished in this paper between genotypic and phenotypic diversity in 
GP. The former is associated with the structure of program trees making up the 
population; the latter is usually defined as corresponding to the spread of fitness 
values in a population. We have introduced a further interpretation of phenotypic 
diversity, defined in terms of the recorded behaviour of programs as they execute. We 
have also shown that, despite great differences in the nature of problems for which GP 
may be used, the approach is a general one applicable to a wide range of domains. 

When assessing the extent of the various forms of diversity experimentally we find 
that, far from diminishing, structural diversity tends to increase early on in each run, 
and then remain comparatively high throughout the remainder of the run. By contrast, 
behavioural diversity (in the form we have described it) does fall and remain at very 
low levels. Accordingly, when we introduce algorithms to promote structural 
diversity, we see little in the way of performance gains. The greatest improvement is 
seen in the symbolic regression problem; it is perhaps no coincidence that it is this 
problem which has the biggest scope for increasing its structural diversity levels.  

Again in contrast, when the algorithms are used to create and preserve behavioural 
diversity, we see a substantial improvement in the solution finding performance for all 
the problems we studied. Although additional fitness evaluations are required to 
generate an initially diverse population, and then to assess broods of children to 
preserve that diversity during crossover, this is outweighed by the improved success 
rate, so that the computational costs per solution are significantly reduced. The one 
exception to this in our problem set is maze traversal. The reason for this is that the 
physical constraints of the maze make it difficult to generate a set of unique 
behaviours when using an unintelligent initialization algorithm. 

One way of combating this problem would be to place an upper limit on the 
number of new programs that are created for each member that enters the population. 
This would enhance diversity but allow some duplication. Indeed, there is a general 
research issue here as to how different levels of diversity may affect performance, and 
we hope to explore this further. More generally, we plan to investigate the potential 
for exploiting phenotypic diversity in the form we have described it. 
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Abstract. The bandwidth of a sparse matrix is the distance from the

main diagonal beyond which all elements of the matrix are zero. The

bandwidth minimisation problem for a matrix consists of finding the

permutation of rows and columns of the matrix which ensures that

the non-zero elements are located in as narrow a band as possible along

the main diagonal. This problem, which is known to be NP-complete,

can also be formulated as a vertex labelling problem for a graph whose

edges represent the non-zero elements of the matrix. In this paper, a Ge-

netic Programming approach is proposed and tested against two of the

best-known and widely used bandwidth reduction algorithms. Results

have been extremely encouraging.
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1 Background

The Bandwidth Minimization Problem (BMP) is a very well-known problem, fa-
miliar to applied mathematicians and arising in many applications in science and
engineering [18]. BMP consists of finding the permutation of rows and columns
of a matrix which ensures that the non-zero elements are located in as narrow a
band as possible along the main diagonal. One of the most common applications
of bandwidth-minimisation algorithms arises from the need to efficiently solve
large systems of equations [19]. In such a scenario, more efficient solutions are
obtained if the rows and columns of the matrix representing the set of equations
can be permuted in such a way that the bandwidth of the matrix is minimized
[19]. BMP has also connections with a wide range of other problems, including:
finite element analysis of mechanical systems, large scale power transmission
systems, circuit design, VLSI design, data storage, chemical kinetics, network
survivability, numerical geophysics, industrial electromagnetics, saving large hy-
pertext media and topology compression of road networks.

The BMP is NP-complete [18] and, hence, it is highly unlikely that there exists
an algorithm which finds the minimum bandwidth of a matrix in polynomial
time. It has also been proved that the BMP is NP-complete even for trees with
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a maximum degree of three and only in very special cases it is possible to find
the optimal ordering in polynomial time [5].

The first direct method for the BMP was proposed by Harary [9]. Cuthill and
McKee [3] introduced the first heuristic approach to the problem. Their method
is still one of the most important and widely used methods to (approximately)
solve the problem. In this method, the nodes in the graph representation of a
matrix are partitioned into equivalence classes based on their distance from a
given root node. The partition is known as level structure for the given node.
In Cuthill and McKee’s algorithm, the root node for the level structure is cho-
sen from the peripheral nodes in the graph (i.e., nodes which have the highest
distance to any other node in the graph). The permutation chosen to reduce
the bandwidth of the matrix is then simply obtained by visiting the nodes in
the level structure in increasing-distance order. A few years later, Gibbs et al.
[7] proposed an algorithm, known as GPS (which stands for “Gibbs, Poole and
Stockmeyer”), that makes more extensive use of level structures. The algorithm
is substantially faster than the Cuthill and McKee algorithm, and it can occa-
sionally outperform it. However, the algorithm is significantly more complex to
implement. More recently, Barnard et al. [1] have proposed the use of spectral
analysis of the Laplacian matrix associated with the graph representing the non-
zero elements in a sparse matrix as an effective method for the reduction of the
envelope of a graph. In particular, the method permutes a matrix based on the
eigenvector associated with the first non-zero eigenvalue of the Laplacian matrix.
While the envelope is only indirectly related to the bandwidth of a matrix, this
algorithm is very effective at reducing it. Further information on these and other
classic methods for the BMP can be found in [2, 8].

Recently meta-heuristic approaches have been tested to see if they can be
viable alternatives to solve the BMP. For example, Tabu search was employed
by Marti et al. [17] while Lim et al. [14, 16] used a hybrid between genetic
algorithms and hill-climbing to solve this problem. Lim et al. also introduced two
other hybrid algorithms to solve BMP: one combining ant colony optimization
with hill-climbing [12] and one combining particle swarm optimization with hill-
climbing [13]. Recently also simulated annealing has been used to attack the
problem [21].

In this paper, a Genetic Programming (GP) [11, 20] approach is proposed and
tested against a high-performance version of the Cuthill and McKee algorithm [3]
and a version of the spectral analysis proposed by Barnard et al. [1]. To the best
of our knowledge, no prior attempt to use GP to solve BMP has been reported in
the literature. Despite this lack of prior art, the results of our first investigations
have been very encouraging and suggest this is a fertile area for further research.

The paper is organised as follows. In Sect. 2, we provide two equivalent for-
mulations of the bandwidth-minimisation problem. In Sect. 3, we describe our
GP system for the solution of BMP. In Sect. 4, we report the results of our
experiments. Finally, in Sect. 5, we provide some conclusions.
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2 Graph-Theoretic and Matrix Formulations of the BMP

Let G = (V,E) be a finite undirected graph, such that V is the set of vertices,
E is the set of edges and f : V → {1, . . . ,n} is a labeling of its nodes where
n = |V |, then the bandwidth of G under f can be defined as:

Bf (G) = max
(u,v)∈E

|f (u) − f (v)| , (1)

i.e., as the maximum absolute difference between the labels of the adjacent nodes
(i.e., nodes connected by an edge). The bandwidth minimisation problem consists
in finding a labeling f which minimises Bf (G) while the easier bandwidth re-
duction problem requires finding any labeling which reduces Bf (G). Since there
are n! possible labellings for a graph with n vertices, it stands to reason that the
BMP is, in general, a very difficult combinatorial optimisation problem.

The BMP can also be stated in the context of matrices. If A = [aij ]n×n is a
sparse matrix, its bandwidth is defined as

B(A) = max
(i,j):aij �=0

|i − j| . (2)

The matrix bandwidth minimisation problem consists of finding a permutation
of rows and columns which brings all non-zero elements of A into the small-
est possible band around the diagonal. More formally, if σ is a permutation of
(1, 2, ...,n), and Aσ is the matrix obtained by permuting the rows and columns
of A according to σ (i.e., Aσ = [aσiσj ]), then the problem can be formulated as

min
σ

B(Aσ) . (3)

An important concept related to the bandwidth is the notion of profile. Given a
matrix A, its profile is:

P (A) =
n∑

i=1

max
j:j<i,aij �=0

(i − j) . (4)

Naturally, also the profile is influenced by permutations of A.

3 GP for BMP

We used a tree-based GP system implemented in C# with some additional
decoding steps required by BMP and our particular choice of representation for
solutions. A high-level description of the operations of the system is given in
Algorithm 1. Below, the elements of the system are described in detail.

3.1 GP Setup

Individuals in our GP system are tree-like expressions (which, for efficiency rea-
sons, are internally stored as linear arraysusing a flattened representation for trees).
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Algorithm 1. Pseudo-code of our GP system for BMP
1: Randomly generate an initial population of programs from the available primitives.

2: repeat
3: Execute each program in the population.

4: Create the permutation represented by each program.

5: Apply each permutation to the adjacency list of the initial graph/matrix and

generate new adjacency lists.

6: Compute the bandwidth and profile for the adjacency lists obtained in step 5.

7: Calculate the fitness value of each program in the population using Equation (5).

8: Perform selection to choose individual program(s) from the population based on

fitness to participate in genetic operations.

9: Create a new generation of individual program(s) by applying genetic operations

with specified probabilities.

10: until the maximum number of generations is reached.

11: return the permutation represented by the best program in the last generation.

We used the function set {+,−,×,%(protected division), Sin,Abs} and the termi-
nal set {X,Y,Z, c1, ..., c100} where X , Y and Z are floating-point input variables
whose role will be described later and c1, ..., c100 are uniformly-distributed random
constants with floating-point values in the interval [−5.0,+5.0].

The initial population was generated randomly using a modified version of the
ramped half-and-half method [11, 20]. In our system, during the process of tree
initialisation, terminals are not chosen with equal probability from the terminal
set. Instead, we artificially increase the chance of selecting the variables X , Y
and Z ensuring that every tree contains at least one variable.1

Tournament selection was used to choose individual program(s) from the pop-
ulation based on fitness to participate in genetic operations. New individual pro-
grams were created by applying the genetic operations of reproduction, sub-tree
crossover and point mutation with specified probabilities. These and other pa-
rameters of the runs are presented in Table 1. We used elitism to ensure the
best individual in one generation was transferred unaltered to the next. The
termination criterion used was based on the predetermined maximum number
of generations to be run. The permutation extracted from the best program tree
appearing in the last generation was designated as the final result of a run.

3.2 The Generation of Permutations

The GP system described in the previous section is effectively quite similar to a
system one might want to use to solve symbolic regression problems. One may
wonder then how we transform program trees into the permutations which are
needed to actually solve the BMP. We do this using a simple trick: we interpret

1 Trees without variables are a problem for our system because they produce a con-

stant output and, thus, they represent the permutation σ = (1, 2, ..., n). Such a

permutation is useless since it produces no change in bandwidth.
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Table 1. Parameters used in our GP experiments

Parameter Value

Maximum Number of Generations 100

Maximum Length of any GP Program 500

Maximum Depth of Initial Programs 3

Population Size 1000

Tournament Size 5

Elitism Rate 0.1%

Reproduction Rate 0.9%

Crossover Rate 70%

Mutation Rate 29%

Mutation Per Node 0.05%

the outputs produced by a program tree when executed over a set of fitness cases
as a permutation. In this section, we explain this decoding process. The process
is exemplified for a 5 × 5 array (or a 5-node graph) in Fig. 1.

For each program tree, the interpreter is called n times where n is the number
of nodes of a given graph or the dimension of a given matrix. In other words,
the number of fitness cases used depends on the dimension of the permutation
to be generated. Each call of the interpreter executes the selected program with
respect to the different values of the independent variables X , Y and Z.

The fitness cases in our system are somehow peculiar. Firstly, no target output
is specified in the fitness cases. In addition, the values for X , Y and Z for each
fitness case are carefully chosen during the initialisation of the system in such
a way as to maximise the chance that they represent good permutations. In
particular, following the ideas of [1] (see Sect. 1) the X values were set to be the
components of the eigenvector associated with the first non-zero eigenvalue of the
Laplacian matrix associated with the matrix to be optimised. The values of Y
and Z were obtained by using the notion of level structure, which is at the basis of
other high-performance BMP solvers, namely: the GPS algorithm and the reverse
Cuthill-McKee algorithm which construct the level structure of peripheral nodes.
Since the identification of peripheral nodes is expensive, we used the approach
followed in [16] which picked random nodes in a graph and built permutations
using their associated level structures. In other words, to initialise Y and Z we
picked two random nodes and built their level structures. By traversing them we
constructed two permutations. Then we converted these permutations into two
floating point arrays such that, if sorted, they would produce those permutations
back (see below). Finally, we used such arrays to provide the fitness case inputs
associated with the Y and Z variables. It should be noted that the time required
for the process of the initialization of the independent variables X , Y and Z is
negligible compared to the total computational time.

The outputs obtained from each execution of the given tree were stored in
a one dimensional array. This array was then sorted in ascending order while
also recording the position that each element originally had in the unsorted
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Fig. 1. The process of generating a permutation from a program tree

array. Reading such positions sequentially from the sorted array produced the
permutation associated with the original tree.

3.3 The Calculation of Fitness Values

After the creation of the permutation representing a program, this permutation is
applied to the adjacency list of the initial graph (or to a sparse matrix) in order
to generate a new adjacency list which is used for calculating the bandwidth
via (1) or (2).

The standard objective function for the BMP is simply that given in (2) and
its calculation is straightforward. However, although this is precisely the value
that needs to be minimized, it is not an ideal fitness function for a metaheuristic
search. The main reason for this is that there may be many candidate solutions
which have formally the same bandwidth, but which are quite different, with
some being much closer to better solutions than others. A more effective ap-
proach is to use a fitness function which incorporates information about how
close the candidate solution is to better areas of the search space.

As suggested in [10], the incorporation of the profile (see Sect. 2) into the
fitness function used for the BMP can help capture this information. For these
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reasons, in this work we used the product of bandwidth and profile as our fitness
function, i.e.,

f(p) = B(Aσ(p)) × P (Aσ(p)) (5)

where σ(p) is the permutation associated with program tree p.

4 Experimental Results

In the experiments conducted in this study, we used a set of 15 instances from
the well-known Harwell-Boeing sparse matrix collection (available from
http://math.nist.gov/MatrixMarket/data/Harwell-Boeing). This collection
includes benchmarkmatrices arising from problems in linear systems, least squares
and eigenvalue calculations.

In order to evaluate the performance of the proposed GP method, we com-
pared it against two high-performance methods. Firstly, we used the Reverse
Cuthill-McKee (RCM) algorithm contained in the MATLAB library (RCMM).
This is based closely on the SPARSPAK implementation described by George
and Liu [6]. As indicated in Sect. 1, the algorithm first finds a (pseudo) periph-
eral vertex of the graph of the matrix. It then generates a level structure by
breadth-first search and orders the vertices by decreasing distance from the cho-
sen vertex. This algorithm is still one of the best and most widely used methods
for the BMP. Indeed, the results reported in [4] and [15] indicate that RCMM

Table 2. Comparison of our GP approach with the RCMM and Spectral algorithms.

Best results are shown in boldface, while ties are shown in italics.

Harwell-Boeing Matrix Dimension RCMM Spectral GP Approach

Bf (G) Bf (G) Mean Bf (G) (10 runs)

ash85 85 × 85 13 17 12.0
bcspwr01 39 × 39 5 11 5.0
bcspwr02 49 × 49 13 12 10.4
bcsstk01 48 × 48 27 20 24.5

can 24 24 × 24 7 6 5.6
can 61 61 × 61 19 14 13.4
can 62 62 × 62 9 10 8.0
can 73 73 × 73 27 27 23.3
can 96 96 × 96 23 18 15.6
dwt 59 59 × 59 8 10 7.2
dwt 66 66 × 66 3 3 3.0
dwt 72 72 × 72 7 12 6.0
dwt 87 87 × 87 17 19 13.3
lap 25 25 × 25 9 7 6.0
nos4 100 × 100 12 11 11.3

Mean of Bf (G) values 13.27 13.13 10.97

Standard deviation 7.73 5.98 6.16

Standard error of the mean 2.00 1.54 1.59

http://math.nist.gov/MatrixMarket/data/Harwell-Boeing
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is also superior to the well-known GPS [7] algorithm. In addition, we compared
our method with the spectral analysis approach described in [1], summarised in
Sect. 1 and used to set up the variable X in Sect. 3.2.

Each method was tested on our set of 15 benchmark matrices, which had
sizes of up to 100 × 100. Considering the non-deterministic nature of GP, 10
independent runs were executed for each of the selected benchmark instances and
performance values were averaged across such runs. Table 2 shows a performance
comparison of the algorithms under test.

A simple inspection of the results of the experiments reported in Table 2
reveals that our GP approach is superior to both the RCMM algorithm and
the spectral algorithm with respect to the mean of the bandwidth values and
the number of the best results obtained. We performed a paired t-test in order
to determine the statistical significance of the results obtaining a two-tailed P
value of 0.0009 for the RCMM algorithm, and 0.0113 for the Spectral algorithm,
which indicates that performance differences between our approach and these
algorithms are statistically significant.

To give an idea of the reliability of the GP system, in Table 3 we provide its
run-by-run results over the 15 benchmark problems. As one can see the algorithm
produced very good results in all runs.

5 Conclusions

In this paper, a genetic programming approach has been introduced for solving
the problem of the reduction of the bandwidth of a graph or a matrix. The
proposed method was compared to the RCMM and Spectral algorithms which
are among the best methods for solving the BMP. The results obtained on 15
standard benchmark matrices show that the proposed approach performs very
favourably compared to these algorithms. However, it should be noted that the
RCMM and Spectral methods are much faster than our GP-based method: they
process a matrix in our dataset in seconds while our method requires approx-
imately 3 minutes. So, the presented method is particularly appropriate when
execution speed is not critical.

In future work, we will explore the possibility of building a parallel imple-
mentation of the system in order to improve its execution speed. We will also
see if performance can be further enhanced by mutating constants, by using
non-random populations and by hybridising the system by incorporating a local
optimiser as was done in [12–14]. In addition, we will need to assess the gener-
ality and scalability of the proposed method by testing it with larger datasets
and datasets including larger matrices.
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LNCS, vol. 2724, pp. 1594–1595. Springer, Heidelberg (2003)

15. Lim, A., Rodrigues, B., Xiao, F.: A centroid-based approach to solve the band-

width minimization problem. In: 37th Hawaii International Conference on System

Sciences (HICSS), Big Island, Hawaii, p. 30075a (2004)

16. Lim, A., Rodrigues, B., Xiao, F.: A genetic algorithm with hill climbing for the

bandwidth minimization problem, available from Citeseer-X (2002)

17. Marti, R., Laguna, M., Glover, F., Campos, V.: Reducing the bandwidth of a sparse

matrix with tabu search. European Journal of Operational Research 135(2), 450–

459 (2001)

18. Papadimitriou, C.H.: The NP-completeness of the bandwidth minimization prob-

lem. Computing 16(3), 263–270 (1976)

19. Pissanetskey, S.: Sparse Matrix Technology. Academic Press, London (1984)

20. Poli, R., Langdon, W.B., McPhee, N.F.: A Field Guide to Genetic Programming

with contributions by J. R. Koza (2008), Published via http://lulu.com

21. Rodriguez-Tello, E., Jin-Kao, H., Torres-Jimenez, J.: An improved simulated an-

nealing algorithm for bandwidth minimization. European Journal of Operational

Research 185(3), 1319–1335 (2008)

http://lulu.com


Using Co-solvability to Model and Exploit
Synergetic Effects in Evolution

Krzysztof Krawiec and Paweł Lichocki

Institute of Computing Science, Poznan University of Technology, Poznań, Poland
krawiec@cs.put.poznan.pl, pawel.lichocki@gmail.com

Abstract. We introduce, analyze, and experimentally examine co-solva-
bility, an ability of a solution to solve a pair of fitness cases (tests). Based
on this concept, we devise a co-solvability fitness function that makes
solutions compete for rewards granted for solving pairs of tests, in a
way analogous to implicit fitness sharing. We prove that co-solvability
fitness function is by definition synergistic and imposes selection pressure
which is qualitatively different from that of standard fitness function or
implicit fitness sharing. The results of experimental verification on eight
genetic programming tasks demonstrate that evolutionary runs driven by
co-solvability fitness function usually converge faster to well-performing
solutions and are more likely to reach global optima.

1 Introduction

Fitness function in evolutionary algorithms is a technical means to express exper-
imenter’s expectations with respect to the final outcome of the search process. It
is typically designed so as to return a maximum value for an optimal design – an
ideal solution. Unfortunately, a definition of fitness function that is appropriate
from experimenter’s viewpoint is not necessarily also the best one for guiding
the search in solution space.

This issue becomes more evident when one confronts the concept of fitness
in evolutionary computation to its counterpart in natural evolution. In biology,
fitness is an artificial gauge introduced to model the a posteriori probability
of individual’s reproduction or the changes in relative frequencies of genotypes.
The particular value of such an indicator stems from innumerable interactions
between the organism and its environment, including other co-evolving individu-
als. As such, it is inevitably a very crude derivative of individual’s characteristic
and cannot fully reflect the richness of all its aspects.

By an analogy to the aforementioned multiple interactions, in evolutionary
computation one often simulates the behavior of a solution (its phenotype) in
multiple ‘environmental conditions’. This can boil down to, for instance, testing
an evolved machine learning classifier on various examples, simulating an evolved
robot controller in different settings, or querying an evolved function on different
combinations of inputs. Each such environment, typically referred to as fitness
case or test, verifies the solution on a single instance or aspect of the problem.
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The outcomes of interactions with particular tests are usually additively aggre-
gated into scalar fitness value. Analogously to natural evolution, also here such
aggregation is usually simplistic and implies inevitable loss of information.

Theoreticians and practitioners of evolutionary computation have been long
aware of this problem and observed its aftermaths in various undesirable phe-
nomena, including loss of diversity and premature convergence. Diverse coun-
termeasures has been proposed, some of which avoid aggregation into scalar
fitness measure by resorting to multiple objectives, either defined explicitly by
a human (evolutionary multi-objective optimization [3]), or automatically de-
rived from problem structure (multi-objectivization [5] and underlying objec-
tives [2]). Switching to multi-objective perspective brings however other prob-
lems, like weakened selection pressure resulting from solution incomparability
(mutual non-dominance).

The method proposed in this paper relies on scalar fitness and tries to improve
search convergence by adjusting the rewards assigned to solutions for coping
with particular fitness cases, in a way related to implicit fitness sharing [11].
In particular, our contribution is a method that focuses on individual’s ability
to properly handle pairs of fitness cases, and treats such pairs as elementary
competences (skills) for which solutions can be awarded.

2 Preliminaries

We consider here the class of iterative search problems in which solutions are
evaluated on a fixed set of fitness cases. This setup is typical for, among others,
genetic programming (GP), where individuals are programs (procedures) that
cannot be assessed otherwise than by applying them to some external input
data. This mode of evaluation can be considered as a special case of a test-based
problem. This term has been introduced in [1] to delineate a class of coevolution-
ary algorithms, particularly two-population coevolution, where a population of
solutions co-evolves along the population of tests. A test in such scenario corre-
sponds to a fitness case in genetic programming, with the major difference being
that in GP tests typically do not evolve. Because of this analogy, we will identify
these notions in the remaining part of this paper and borrow some terminology
from coevolutionary algorithms.

The implementation of a single act of confronting a solution s with a test t,
termed interaction in coevolution, is problem-dependent, and can boil down to
testing an evolved entity s in particular environmental conditions t, testing an
evolved logical or arithmetic expression s on a specific input-output pair t, or
testing a machine learning classifier s on a specific training example t. Clearly,
this class of problems pertains to a great share of real-world applications.

In following, we focus on problems with binary interaction outcomes: a solu-
tion either solves (passes) a test or not, a fact we denote using logical predicate
s(t) that returns true if solution s solves test t, and false otherwise. Given set
T of tests used to evaluate individuals in population, let s(T ) = {t ∈ T : s(t)}
denote the subset of tests solved by s.
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For this class of problems, the most straightforward way of defining fitness of
a solution is to simply count the number of solved tests (a.k.a. hits in GP):

f(s) = |s(T )| (1)

This definition, rational if no extra information on tests is available, suffers from
substantial drawback: all tests contribute equally to fitness, so f can assume at
most |T |+1 distinct values, which can result in numerous plateaus in the fitness
landscape, particularly when T is small. This in turn weakens selection pressure:
two solutions are likely to be indiscernible in terms of f .

A simple way of improving this state of matter is to weigh the rewards granted
for solving particular tests. Such weights can be sometimes provided by a human
expert and express his/her subjective assessment of test difficulty, test impor-
tance, or both. This, however, requires a substantial amount of domain knowl-
edge and an extra effort. Implicit fitness sharing introduced by Smith et al. [11]
and further explored for genetic programming by McKay [10,9] offers a more
appealing alternative, by letting the evolution alone assess the difficulty of par-
ticular tests. Assuming that individual s is a member of population P , its fitness
is here defined as:

fs(s) =
∑

t∈s(T )

1
|P (t)| (2)

where P (t) ⊆ P denotes the set of population members that solve test t. Thus,
implicit fitness sharing simulates limits imposed on resources: individuals share
the rewards for solving particular tests, each of which can vary from 1

|P | to 1
inclusive. Higher rewards are provided for solving tests that are rarely solved by
population members (small P (t)), while importance of tests that are easy (large
P (t)) is diminished. Additionally, because P (t) typically pertains to the current
population only, the assessed difficulties of tests change with time, which can
help the search process escape local minima (as opposed to fixed weighting).

As such, fitness sharing can be perceived as a simple form of coevolution, where
individuals compete for tests and their fate depends on the performance of other
individuals (though there are no direct, face-to-face interactions between indi-
viduals). From yet another perspective, fitness sharing is a diversity maintenance
technique: an individual that solves a low number of tests can still survive if its
competence is rare. In this way, implicit fitness sharing helps reducing crowding
and premature convergence; it shares this objective with explicit fitness sharing
proposed in [4], where population diversity is enforced by monitoring genotypic
or phenotypic distances between individuals.

3 Co-solvability

In broader terms, implicit fitness sharing enables an evolutionary process to
assess the relative importance of skills, where skill is identified with the ability
to solve a particular test. In real world however, it is often the combination of
skills that matters. For an animal, the skill of digging and the skill of navigation
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can bring substantial benefits independently. However, when combined, they
enable finding the previously buried prey and survive when food is scarce, a
benefit which can be greater than the sum of benefits of its constituents. As
another example, the overall performance of a mobile robot that is intended
to move around a building depends on multiple skills, like the ability to move
straight, the ability to make precise turns, and the ability to estimate its position.
Again, each of these skills alone is not enough for the completion of the task,
but together they make it possible.

Implicit fitness sharing cannot model such nonlinear accumulation of skills:
the reward for simultaneous mastering of two or more skills amounts to the
sum of rewards obtained for each skill individually. To enable synergy between
pairs of skills, we introduce the notion of co-solvability. We call a pair of tests
(ti, tj) co-solvable by s if and only if s(ti) ∧ s(tj). The co-solvability matrix for
a population P evaluated on set of tests T is a |T | × |T | matrix, with elements
defined as

cij =

{
|{s ∈ P : s(ti) ∧ s(tj)}|, i ≤ j

0, otherwise

This matrix allows us to define the co-solvability fitness function fc that rewards
individuals for solving pairs of distinct tests:

fc(s) =
∑

ti,tj∈T :s(ti)∧s(tj),i<j

1
cij

(3)

Similarity of this formula to Formula (2) is not coincidental: co-solvability can be
viewed as second-order fitness sharing. Let us notice that sharing of rewards for
co-solving particular pairs of tests is an essential component here: simply count-
ing the co-solvable tests (|{(ti, tj) : s(ti) ∧ s(tj), i < j}|) orders solutions in the
same way as the standard fitness measure (Formula (1)), yielding precisely the
same proceeding of evolution under any rank-based selection (e.g., tournament
selection).

4 Properties of Co-solvability

Let us start from noticing that co-solvability fitness function fc, similarly to f
and fs, fulfills the fundamental property we expect from any test-based fitness
function, i.e., it is monotonous with respect to inclusion of sets of tests solved:
for any s1, s2, s1(T ) ⊂ s2(T ), it holds that fc(s1) < fc(s2).

Let us consider four solutions s1, s2, s3, s4 such that when tested on four tests
t1, t2, t3, t4, they perform as shown in Table 1a. Next, let us assume that the
population contains a copies of s1, b copies of s2, c copies of s3, and d copies of
s4

1. The co-solvability matrix C for this population is shown in Table 1b.

1 In other words, we work here with equivalence classes of solutions rather than with
single solutions.
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Table 1. An exemplary problem: the performances of solutions on tests (a) and the
corresponding co-solvability matrix (b). Empty cells denote zeroes.

(a)

t1 t2 t3 t4

s1 1 1 0 0
s2 0 0 1 1
s3 0 1 1 0
s4 1 0 0 1

(b)

t1 t2 t3 t4

t1 a+d a d
t2 a+c c
t3 b+c b
t4 b+d

Table 2 presents the fitness values for solutions s1 . . . s4 as assigned by partic-
ular fitness functions: standard fitness f (Eq. (1)), fitness sharing fs (Eq. (2)),
and co-solvability fitness function fc (Eq. (3)). We note that f does not discern
any pair of solutions, no matter how often they occur in population. The ability
of fs and fc to discern solutions depends on the actual values of a, b, c and d.

Let us use the solutions s1 and s3 from the above example to demonstrate that
fc can produce different ordering of individuals than fitness sharing. Technically,
we want to check whether it is possible for fs(s1) < fs(s3) and fc(s1) > fc(s3) to
hold simultaneously. As it follows from Table 2, these two conditions are respec-
tively equivalent to a+d > c+b and a < c, which are fulfilled by infinitely many
quadruples of a, b, c, d ≥ 0. Therefore, fc is able to order solutions differently
from fs. Quite interestingly, it can be proven that four is the minimal number
of tests required to produce such difference.

Let us now translate this observation into evolutionary context and give ex-
amples of scenarios when fc produces substantially different results than fs:

1. Consider two individuals s1, s2 such that s1(T ) ∩ s2(T ) = ∅. Assume they
undergo crossover and produce offspring s such that s(T ) = s1(T )∪s2(T ). Under
fc it has to hold fc(s) > fc(s1) + fc(s2), whereas for f and fs equalities would
hold. Thus, co-solvability is not additive and enforces synergy: for parents that
exhibit mutually exlusive skills, their offspring that adopts all their skills is by
definition better than both of them taken together. Also, fc can be considered
non-Markovian with respect to the changes observed in s(T ) as s undergoes
evolutionary modifications: the increase of individual’s fitness resulting from
acquiring an ability of solving another test depends on the set of tests already
solved by that individual.

2. Consider two individuals s1, s2 such that s1(T ) �= s2(T ) and fc(s1) > fc(s2),
and a test t such that t /∈ s1(T )∪ s2(T ). Then, let us assume that, as a result of
genetic modification both s1 and s2 acquire the skill of solving t, so that for the
resulting solutions s′1 and s′2 it holds s′1(T ) = s1(T )∪{t} and s′2(T ) = s2(T )∪{t}.
As a conclusion from the above analysis, it is possible that fc(s′1) < fc(s′2). In
other words, s2 can gain more from the same modification than s1. Neither
standard fitness nor implicit fitness sharing allow such possibility (the offspring
of s1 would be better than the offspring of s2).
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Table 2. Fitness values assigned to individuals from Table 1 by particular fitness
functions

Fitness definition s1 s2 s3 s4

Standard fitness f 2 2 2 2
Implicit fitness sharing fs

1
a+d

+ 1
a+c

1
b+c

+ 1
b+d

1
a+c

+ 1
b+c

1
a+d

+ 1
b+d

Co-solvability fitness fc
1
a

1
b

1
c

1
d

Co-solvability fitness is usually less discrete than f and fs. For n = |T | tests,
standard fitness function f can return only n + 1 distinct values. For the fitness
sharing method, that number amounts to n|P | if the population is sufficiently
large (precisely: if |P | is greater than the nth prime number2). For co-solvability,
[n(n−1)

2 ]|P | distinct values are possible.
In [7], Lasarczyk et al. proposed a method for selection of fitness cases based on

a concept similar to co-solvability. The method maintains a weighted graph that
spans fitness cases, where the weight of an edge reflects the historical frequency
of a pair of tests being solved simultaneously. Fitness cases are selected based on
a sophisticated analysis of that graph. Compared to that, our co-solvability is
a simpler, parameter-free approach, which does not select the fitness cases but
weighs pairs of them, individually for each solution (in [7], the same selected
subset of fitness cases is used for all solutions).

5 The Experiment

The above analysis proves that co-solvability measure can produce different or-
derings of solutions and thus potentially steer evolution in other directions than
conventional fitness measure f and fitness sharing fs. It is however far from ob-
vious whether this change is beneficial for effectiveness of search. In this section,
we verify whether the fitness pressure imposed by co-solvability improves the
performance of an evolutionary run applied to typical problems of logical func-
tion synthesis: multiplexer, parity, and two types of comparators. To this aim,
we apply the approach of genetic programming (GP), with individuals being
programs (procedures) encoded as expression trees.

For each problem, we prepared two instances, small and large, differing in
the number of inputs. Table 3 summarizes the four considered problems, listing
for each problem instance the number of inputs (independent variables, bits),
the number of tests (|T |), and the proportion of tests for which the output of
the program should be 1 and such for which the output should be 0. In the
Parity-odd problem, the task is to evolve an expression that returns true if an
odd number of ones appears on its inputs. Multiplexer should return the same
value as the state of the addressed input (6-bit multiplexer uses two inputs to
2 Sketch of proof: if |P (t)| is a distinct prime number for each t, every combination of

rewards received for particular tests yields a unique value of fitness fs (Formula 2).
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Table 3. The summary of problems and problem instances

Small instance Large instance

Problem Inputs Tests Proportions Inputs Tests Proportions

Parity-odd 5 32 16:16 6 64 32:32
Multiplexer 6 64 32:32 11 2048 1024:1024
Eq 6 64 8:56 8 256 16:240
Cmp 6 64 28:36 8 256 120:136

Table 4. Success rates of best-of-run individuals produced by the methods, defined as
the probability of run producing an ideal solution estimated from the total of 30 runs

Small instance Large instance

Problem f fs fc f fs fc

Parity-odd 0.133 0.800 0.967 0.000 0.000 0.067
Multiplexer 1.000 1.000 1.000 0.433 0.700 0.567
Eq 0.000 1.000 1.000 0.000 0.700 0.933
Cmp 0.633 1.000 1.000 0.133 0.800 0.933

address the remaining four inputs, 11-bit multiplexer uses three inputs to address
the remaining eight inputs). m-bit comparator Eq returns one if the m

2 least
significant input bits encode a number that is equal to the number represented
by the m

2 most significant bits. The Cmp comparator does the same but only
when the former of these numbers is smaller than the latter.

Concerning GP-specifics, we use the Koza-I-style setup [6] with some modi-
fications. The most important settings include: population of 1024 individuals
initialized using the standard ramped half-and-half method, tournament selec-
tion with tournament of size 7, tree-swap crossover engaged with probability
0.9, subtree-replacing mutation applied with probability 0.1, no elitism. Evolu-
tion lasts for 200 generations. The software testbed has been implemented with
help of ECJ [8] and is available at http://www.cs.put.poznan.pl/kkrawiec.

Table 5. Success effort (the expected number of generations to find the ideal)

Small instance Large instance

Problem f fs fc f fs fc

Parity-odd 1448 159 102 ∞ ∞ 2999
Multiplexer 9 8 8 370 164 224
Eq ∞ 38 33 ∞ 192 121
Cmp 186 32 31 1453 181 136



Using Co-solvability to Model and Exploit Synergetic Effects in Evolution 499

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

F
itn

es
s

 

 
Parity−odd−5:
co−solvability fitness
implicit fitness sharing
standard fitness

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

F
itn

es
s

 

 
Parity−odd−6:
co−solvability fitness
implicit fitness sharing
standard fitness

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

F
itn

es
s

 

 

Multiplexer−6:
co−solvability fitness
implicit fitness sharing
standard fitness

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

F
itn

es
s

 

 
Multiplexer−11:
co−solvability fitness
implicit fitness sharing
standard fitness

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

F
itn

es
s

 

 

Eq−6:
co−solvability fitness
implicit fitness sharing
standard fitness

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

F
itn

es
s

 

 
Eq−8:
co−solvability fitness
implicit fitness sharing
standard fitness

0 20 40 60 80 100 120 140 160 180 200
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Generation

F
itn

es
s

 

 

Cmp−6:
co−solvability fitness
implicit fitness sharing
standard fitness

0 20 40 60 80 100 120 140 160 180 200
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Generation

F
itn

es
s

 

 
Cmp−8:
co−solvability fitness
implicit fitness sharing
standard fitness

Fig. 1. Best-of-generation fitness with ±.95 confidence, averaged over 30 runs
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Table 4 reports the success rates of the best-of-run individuals produced by the
runs that used standard fitness f , implicit fitness sharing fs, and co-solvability
fitness fc (because fitness definition is the only difference between the setups,
in following we refer to them using these symbols). We define success rate as
the estimated probability of run producing an ideal solution estimated from the
total of 30 runs.

The results confirm the common wisdom that Parity problems are the hardest
in the considered group. The function to be learned here exhibits highest possible
input-output sensitivity: the output flips every time a single input changes state.
For the small 5-bit instance, this difficulty seems to be tractable, but the large
instance (only one more input) renders the problem hopelessly difficult for f and
fs. However, we note that co-solvability still manages to find an ideal solution
twice per 30 runs, which is not much, but qualitatively better than f and fs.

It also turns out that, except for Multiplexer-11, fc significantly outperforms
the other approaches on the remaining instances. This happens whenever there
is some space for improvement; otherwise, it does not yield to fs. The gains in
performance appear more convincing when expressed in terms of success effort
reported in Table 5, which we define as the sum of generations in which an ideal
was found divided by the number of successful runs (this is a pessimistic estimate
of the expected number of generations required to find an ideal solution, which
yields ∞ if none of 30 runs succeeds).

Though the failure of fc on the Multiplexer-11 problem requires deeper inves-
tigation, we hypothesize that it is the number of tests that is here the culprit:
2048 tests means over four million elements in the co-solvability matrix.

Figure 1 presents the fitness graphs for all problems averaged over 30 runs.
Because the values of functions that propel evolution in particular methods (f ,
fs, and fc) are mutually incomparable, we plot here fitness defined in the same
way for all approaches, i.e. as f ′(s) = 1/(1 + |T | − |s(T )|), which returns a small
positive number for the worst possible individual (s(T ) = ∅), and 1.0 for an
ideal (s(T ) = T ). Because of nonlinear definition of f ′, the differences observed
in plots mean rather moderate gains in terms of the number of tests solved.
However, the superiority of fc should be judged substantial, as in the domain
of logical function synthesis any deviation from the ideal solution essentially
renders the solution useless.

Most importantly, fc turns out to be never significantly worse than fs ac-
cording to Wilcoxon runk-sum test for equal medians of fitness f ′ applied to
200th generation. And, for both Parity instances and both Eq instances, fc is
significantly better (p < 0.05).

6 Conclusion

We demonstrated here that fitness function based on a simple concept of co-
solvability is qualitatively different from the standard definition of fitness and
implicit fitness sharing and brings in substantial benefits for an evolutionary
search. Though the experimental evaluation comprised only problems from the
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realm of genetic programming, the proposed method abstracts from representa-
tion of solutions and is thus applicable to any test-based search problem. It is
likely then that similar gains could be observed for other classes of problems.

The method is straightforward to implement and its computational overhead
is basically the same as in case of fitness sharing. This extra cost can be consid-
ered negligible when compared to the actual cost of testing a solution on a test
(i.e., determining the outcome of s(t)), which is typically much higher.
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Abstract. A streamlined, open-source implementation of Shared Gram-

mar Evolution represents candidate solutions as grammars that can share

production rules. It offers competitive search performance, while re-

quiring little user-tuning of parameters. Uniquely, the system natively

supports the memoization of return values computed during evaluation,

which are stored with each rule and also shared between solutions. Sig-

nificant improvements in evaluation time, up to 3.9-fold in one case, were

observed when solving a set of classic GP problems – and even greater

improvements can be expected for computation-intensive tasks. Addi-

tionally, the rule-based caching of intermediate representations, specifi-

cally of the terminal stack, was explored. It was shown to produce sig-

nificant, although lesser speedups that were partly negated by computa-

tional overhead, but may be useful in dynamic and memory-bound tasks

otherwise not amenable to memoization.

Keywords: Evolutionary algorithms, genetic programming, grammati-

cal evolution, shared grammar evolution, memoization.

1 Introduction

Genetic Programming (GP) [1] operates on variable-length n-ary syntax trees,
which offer greater representational flexibility than the fixed-length strings used
in the canonical genetic algorithm. One of the main constraints of GP is the
need for closure, i.e., the requirement that any combination of arguments is
syntactically legal. With CFG-GP, Whigham [2] not only introduced the use of
context-free grammars (CFGs) for this purpose, but also included an automatic
mechanism for modifying the grammar based on the fittest solutions, an idea
that has since found further refinement in Grammar-Model-based Program Evo-
lution [3]. Adapting the CFG in this way improves the search bias towards not
just valid, but better performing solutions.

Grammars can also assist in another GP challenge: that of achieving scalabil-
ity. For a variable length representation, search spaces are effectively unbounded;
solutions can exist in higher-dimensional spaces, even if they are structurally sim-
ple. Scalability can be facilitated here by a “divide and conquer” approach, which
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c© Springer-Verlag Berlin Heidelberg 2010



Fast Grammar-Based Evolution Using Memoization 503

decomposes the larger problem into weakly correlated subproblems that can be
dealt with independently. Software engineering practice has inspired techniques
such as Automatically Defined Functions (ADFs) [4] that extend GP by en-
abling the creation and reuse of discovered modules. Nature, however, has its own
means of promoting modularity. Embryogenesis efficiently captures the difference
between a compact, searchable representation (genotype) and the functional,
high-dimensional solution (phenotype). This mapping process can be modelled
with a generative grammar; L-systems have been particularly popular in this
context [5].

Shared Grammar Evolution (SGE) [6] combines the three uses of grammars
for closure, bias, and modularity. Solutions obtained through SGE comply with
a user-defined CFG – but are also represented directly as simple, deterministic
CFGs. One of the notable side-benefits of this is an intrinsic support of memo-
ization, that is, the caching of return values for parts of the evolved solution. As
an evolved population converges, we can expect the similarity between members
to increase, so memoization can accelerate evolution by reducing or even elimi-
nating evaluation time of shared modules. This paper explores the performance
benefits of memoization on solving several classic GP problems with SGE. To-
ward this purpose, we present a streamlined version of SGE that is now publicly
available under an open source license.

1.1 Grammatical Evolution

Grammatical Evolution (GE) [7] is currently the most well-published technique
of applying grammars to evolution. GE and SGE can be used towards the same
tasks and share in common that solutions are derived from context-free gram-
mars (CFGs) defined in Backus-Naur Form (BNF). However, the underlying
mechanics differ substantially. GE employs a genetic algorithm, where the geno-
type is a variable-length bit string that is read left to right to generate 8-bit
integers (so-called codons). The modulus of each codon and the total number of
production rules in the CFG specifies the rule to be applied to the currently re-
placed nonterminal, starting from the axiom (starting symbol) and ending when
all nonterminals have been replaced. If all codons are read but not all nonter-
minals are replaced, the expansion wraps and continues from the start of the
genome, unless a pre-determined maximum number of wrappings has already
been exceeded.

2 Shared Grammar Evolution

With SGE, the user must likewise provide an initial template CFG, which delim-
its the space of valid solution candidates. If we had knowledge of what made a
good solution, we could perhaps define a grammar that only contains good solu-
tions. The user rarely has this information in advance, but it is possible to sample
this space. We do so by deriving a solution candidate from the original grammar,
which again involves choosing between alternative production rules according to
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the original CFG. However, in SGE, these choices specify an i-grammar (indi-
vidual grammar; see Figure 1) that produces just that one solution. i-grammar
rules that originate from the same template rule are legal alternatives to each
other, just as i-grammar axioms constitute alternative solution candidates. Ap-
plying selection to the solution population implies selection of i-grammar rules
through their contribution to the selected solutions. The rule alternatives that
survive are those that contribute to better solutions. As our search converges to-
wards the optimum, so should the suitability of the production rules and hence
the building blocks from which we build the solutions.

<A> ::+ <B> + <C>
<B> ::= a + b

<C> ::- c + d
<C> ::- e + f

A|1

B|1 C|1
a + b c + d

+

::+ <B|1> + <C|1> A|2

+ C|2
e + f

::+ <B|1> + <C|2>

Mutation
C|1 replaced
by alternative

C|2
leads to

new rule
A|2

cache of
a + b

Instantiate i‐grammar...

Template grammar

Terminals

retrieve (or create) cached value
when evaluating solution Axioms

( legal solution candidates)

Nonterminals

i‐grammar production rule 

Fig. 1. Solution candidates are described by production rules initially derived from

the user-defined template grammar. Mutation involves replacing an existing rule with

another rule, either part of another solution (a reuse) or generated from the template

grammar (a reinstantiation). In this example, rule B|1 is shared between two solutions;

memoized results of evaluating this rule can be reused by both solutions.

2.1 Shared Representation

Due to the overhead of having to describe each rule, representing a solution as
a series of production rules is not very efficient. However, if multiple rules have
identical successors, they can be represented by a single rule. Instead of keeping
duplicates, i-grammar rules are shared across multiple solution candidates. If
these solutions are similar, then the population of solutions and rules can be
represented more compactly. Moreover, since i-grammar rules are context-free
and deterministic, every rule leads to a specific derivation. We can therefore
treat an i-grammar rule as an encapsulated module or subroutine that may be
shared and reused among solution candidates. Once it is not required any longer,
the rule is automatically eliminated. Unlike in [6], our new implementation relies
solely on a reference-counting scheme; e.g., a rule that is only referred to by one
other rule, even if that rule is referred to many times, will now have a usage
count of only one.
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2.2 Mutation

Each i-grammar rule has syntactically valid alternatives based on the template
rule it relates to. A new solution candidate can be created by choosing an existing
candidate, then choosing a rule from it, and replacing it with an alternative,
which can either be from any other i-grammar (a reuse of a rule) or by deriving
a new sequence from the template grammar (a reinstantiation of a rule). The
chance of a particular rule being reused is proportional to its reference count;
a rule that is part of many solutions, but only called by few other rules – i.e.,
rarely added successfully to a new solution on its own terms – will be less likely
to be chosen. The reinstantiation probability is decided by the user. A notable
exception is that reinstantiation will be automatically chosen instead of reuse
if there is no valid alternative in existence, or if the production by which a
replacement is to occur is the same as the replacement. During reinstantiation,
the choice between reuse and reinstantiation is separately made for every rule
considered.

If we want to maintain both parent and offspring solution, the production
rules of the parent, between the starting rule and where the replacement occurs,
will need to be copied and pointed to the replacement or the likewise modi-
fied successor. The new implementation is simplified compared to [6], in that
a production rule only affects one point in the derivation tree, not all points
where that rule is called. No recursion can arise from such singular changes, so
for problem tasks that benefit from a recursive description, recursion must be
represented within the solution space by providing recursion operators in the
terminal set. Furthermore, we rely on non-elitist selection to account for cases
where progress is only possible through multiple changes on separate branches
of the derivation tree.

2.3 Memoization

The shared representation does not merely lead to a potentially smaller memory
footprint. As each solution candidate is derived in a series of rule expansion steps,
we can also interpret these as nested subroutine calls. If the same rule is used by
many candidates, then this is equivalent to calling the same subroutine, which
will return the same result. Why not store the result of the first call and re-use
it afterwards? Memoization is a well-established technique that enables a sub-
routine to record, in a local table, values that have previously been calculated.
The term was coined by Donald Michie [8] and is frequently encountered in the
context of functional programming languages. Memoization lowers a function’s
time cost in exchange for space cost; that is, memoized functions are optimized
for speed in exchange for greater use of memory space. This kind of caching is
highly applicable to the evolution of programs and other hierarchies that include
common modules that are reused many times. Its benefits have been exploited
on only a few problems with expensive evaluation functions, such as robot evo-
lution [9] and chess playing [10]. In these instances, however, memoization is
applied only at the level of the terminals, whereas in SGE every rule that can
have a result associated with it (a cacheable rule) can be memoized.
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To be able to look up a result in a table, rather than recompute it, a number
of constraints must be satisfied. Firstly, there needs to be a deterministic out-
come that, preferably, is isolated from its context. If a production A leads to an
expression such as X + X , then 2A would be 2X + X , so knowing the result
of X + X is not helpful here (unlike if A were (X + X)). Secondly, memoiza-
tion becomes impractical for tasks that involve side-effects, e.g., dynamic control
tasks, because of the indirect dependencies that arise between program parts.
Memoizing the evaluated results is therefore not useful in all cases.

As an alternative, we could instead cache the expanded terminal string. It may
be represented as, or compiled into, a form that is easy to compute, i.e., through
an intermediate representation, such as bytecode. The table look-up would then
involve retrieving not the value of a particular evaluation, but essentially a sub-
program that accomplishes the same task as the derivation of the production
rule would – but, ideally, faster. Separating the evaluated representation from
the grammar in this way can bring about further opportunities, e.g., evaluating
solutions on specialized hardware. In this paper, we limit ourselves to testing the
idea of using the terminal stack as the intermediate representation. Thus, rather
than repeatedly deriving from rules and evaluating operator precedences, the
ordered symbol sequence will be shared, with higher-level sequences constructed
from encapsulated, lower-level sequences (or so-called fragments).

3 Implementation

SGE as presented in this paper has been implemented as an open source soft-
ware package written in C++, called COGENT [11]. COGENT reads a template
grammar as well as a set of parameters from a text file, evolves solution candi-
dates to the problem, and evaluates these on user-defined objective functions. We
can optimize towards any number of objectives at the same time; the objectives
can be organized according to their importance. Objectives of identical impor-
tance are sorted according to their Pareto-domination using the NSGA-II [13]. If,
for selection purposes, two solutions are ranked identically, further user-defined
objectives of increasingly lesser importance are taken into account, possibly de-
scribing other aspects of the solution, such as crowding-distance. Grammar def-
initions are BNF-like, extended by allowing you to set multiple production rules
as starting rules (rather than just the first) when following the left-hand side
with a “::+””. Such starting rules are automatically isolated for memoization;
other cacheable rules can be denoted with “::=”. Rules that have only terminals
as their successors are regarded as constant and are represented by one rule for
each successor combination.

Memory for memoization is obtained from a Boost memory pool [12] for fast
allocation when creating a cacheable rule. This is not feasible for variable size
allocations, such as for memoization of intermediate representations. In those
cases, the memory only contains pointers to the allocations, which are allo-
cated conventionally via malloc. COGENT supports multiple threads for deriv-
ing, memoizing, and evaluating solutions, but not for modifying the grammar,
due to the extensive and costly use of the mutexes that would be required.
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Table 1. COGENT parameters for the five problem tasks

Task Description Template CFG Evolution Parameters

Quintic
Regres-
sion

Symbolic regression of x5+
x4 + x3 + x2 + x for 20
equidistant points in x =
[−1, 1)

<EXPR> ::+ (<EXPR> <OP> <EXPR>)

| <VAR>

<OP> ::- add | sub | mul

<VAR> ::- VAR | CONST<1>
Generations: 100

Population size:
100 (200 for 6th-order and
multiplexer)

Selection:
Applied to the combined set
of parents and offspring; elite
of 10, with remaining 90 so-
lutions chosen by tournament
of size 3

Solution size limit:
Maximum size of 800 rules
per solution (if exceeded,
discard solution and retry)

Objectives:
Minimize error; if equal,
minimize solution size, then
minimize solution age (gener-
ations)

6th-order
Regres-
sion

Symbolic regression of x6−
2x4 − x2 for 20 equidistant
points in x = [−1, 1)

<EXPR> ::+ (<EXPR> <OP> <EXPR>)

| <VAR>

<OP> ::- add | sub | mul | div

<VAR> ::- VAR | CONST<1>

Even-5
Parity

Returns true if an even
number of 5 Boolean in-
puts is true (over all 32
combinations of inputs)

<EXPR> ::+ <EXPR> <OP> <EXPR>

| (<EXPR> <OP> <EXPR>)

| <VAR>

| <PREOP> <VAR>

<OP> ::- or | and | xor

<PREOP> ::- not

<VAR> ::- var<0> | var<1>

| var<2> | var<3>

| var<4>

6-bit Mul-
tiplexer

Return the value of a data
register (d0, d1, d2, d3)
specified by the binary ad-
dress (a0, a1) (over all 64
combinations of inputs)

<A> ::+ ( <A> )

<A> ::- <A> and <A>

| <A> or <A>

| not <A>

| if ( <A> ) ( <A> ) ( <A> )

| var | var<1>

| var<2> | var<3>

| var<4> | var<5>

Santa Fe
Ant Trail

Collect 89 food pellets laid
out on a toroidal 32 × 32
grid

<A> ::+ move | left | right

| iffoodahead <A> <A>

| prog <A> <A>

| prog <A> <A> <A>

4 Experiment

The experimental aim is to determine whether evolution can be accelerated using
memoization, but the extent to which this is possible may be highly dependent
on the problem task and the exact evolutionary parameters. Five classic GP
problems were chosen that are already well-understood and also quick to evalu-
ate. The observed results should therefore be closer to the lower bound of what
can be achieved with memoization, rather than artificially inflated. As shown
in Table 1, the experimental setup contains few surprises, but note that SGE
does not have mutation or recombination parameters in the traditional sense;
the reinstantiation probability controls the changes that are made to solutions.
Since rules that are freshly derived from the template grammar are unshared,
we expect this to directly affect the memoization benefit. We hence investigated
the effect of having no reinstantiation, to reinstantiating in 25% of cases, 50% of
cases, and always. Furthermore, the evolutionary runs are timed for four different
memoization scenarios:

1. no caching: solution is explicitly derived for each problem case
2. solution caching: derived solution (i.e., the terminal stack; see section 2.3)

is stored and reused between problem cases
3. fragment caching: each cacheable rule stores its own intermediate terminal

stack
4. value caching: each cacheable rule stores the return value for its evaluation

(i.e., classic memoization)
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Finally, the quintic regression, parity problem, and ant trail were evolved using
GEVA [14], an open-source implementation of Grammatical Evolution, where
they are included as example problems (with equivalent parameters to the above).

4.1 Results

Table 2 lists performance statistics for the best evolved solutions as well as the
total computation time, which is split into an evaluation time and evolution time.
The former specifies how long the program spent on deriving and evaluating all
solutions, whereas the latter includes the remaining computing time, mostly of
the evolutionary algorithm itself and the collection of experimental statistics.
Results are averaged over 100 runs. Random seeds remain constant across dif-
ferent memoization options so that timings are based on the same evolutionary
outcomes.

There is surprisingly little objective performance variation between the dif-
ferent reinstantiation probabilities; only on the two regression problems does
the 100% setting perform significantly worse than the alternative configurations
(p < 0.001 on a two-tailed t-test). It suggests that one need not be particu-
larly careful with this parameter. However, reinstantiation is theoretically very
limited, as it derives changes directly from the template grammar, i.e., a fixed
distribution. Its apparent effectiveness may simply reflect the ineffectiveness of
the opposite: if we just draw building blocks from within the population, overall
entropy will drop and premature convergence may happen. Conversely, random
draws from the template grammar increase entropy, so a trade-off is ultimately
necessary, especially for deceptive problems; i.e., some – but not too much – re-
instantiation is needed. Since it appears to work well for a broad range of values,
however, we cannot deduce much more from this experiment.

The memoization results offer greater clarity. Firstly, evaluating a solution by
deriving it for every variation of a terminal value is about an order of magnitude
slower than if we retain an intermediate representation (the terminal stack)
across all the problem cases. If we break the representation further up by storing
substacks with each evaluable rule, we gain a 50+% improvement in evaluation
speed on quintic and parity problems, over 100+% on the 6th-order polynomial
(all significant to p < 0.001), but just a few percent on the multiplexer (not
significant). One of the explanations for this lies in the evolved solution size. For
the 6th-order polynomial, it is around 300 rules by the 100th generation, but for
the multiplexer, it is only 20-30 rules. The extent to which productions are shared
is directly affected by this; the share ratio indicates that there is 6× as much
sharing happening with the polynomial than with the multiplexer. Additionally,
most of the rules of the multiplexer grammar are not defined as cacheable (and
are not designed to be), whereas all of the rules for the polynomial are. These
factors influence how worthwhile it is to use memoization.

Storing the intermediate representation with each cacheable rule involves a no-
table overhead, as can be observed from the evolution time. On all the cacheable
problems tested here, it negates the entire performance benefit of this strat-
egy. However, on real-world problems with more costly evaluation functions, we
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Table 2. Evolution statistics for each problem, averaged over 100 runs. Best refers

to the fittest solution. The Share Ratio is the number of expressed rules across all

solutions divided by the rules in the global grammar and averaged over all generations.

Indicated run times (in milliseconds) are for each complete run and given separately

for the evaluation and evolution components of the system.

Experiment Success Best Best Share Total Evaluation + Evolution time (ms)

Rate Error Size Ratio for memoization scenario:

None Solution Fragment Value

Quintic

0% reinst. 99% 0.003 39.2 5.47 3,575+ 104 372+ 105 241+ 266 254+ 111

25% reinst. 94% 0.008 58.5 6.02 4,638+ 117 495+ 118 289+ 353 296+ 128

50% reinst. 90% 0.009 90.5 6.99 5,223+ 127 591+ 126 327+ 430 323+ 135

100% reinst. 83% 0.015 80.4 4.81 5,338+ 208 531+ 208 322+ 296 559+ 225

6th-order

0% reinst. 41% 0.009 361.2 9.95 40,091+ 485 5,039+ 495 2,135+ 3233 1,297+ 541

25% reinst. 38% 0.010 315.6 9.23 36,000+ 460 4,384+ 470 1,962+ 2883 1,206+ 515

50% reinst. 44% 0.011 315.6 9.09 36,068+ 473 4,395+ 483 2,000+ 2911 1,225+ 529

100% reinst. 14% 0.020 296.4 6.91 29,592+ 540 3,242+ 550 1,552+ 2331 1,455+ 598

Even-5 Parity

0% reinst. 79% 1.34 35.1 6.11 7,284+ 102 596+ 103 385+ 296 339+ 109

25% reinst. 80% 0.99 38.7 6.89 8,058+ 107 656+ 108 414+ 311 351+ 113

50% reinst. 81% 0.97 37.0 5.67 8,056+ 113 678+ 114 420+ 341 373+ 119

100% reinst. 78% 1.20 36.4 3.73 7,376+ 183 615+ 186 414+ 443 641+ 197

6-bit M.plex

0% reinst. 75% 1.36 29.5 2.81 22,696+ 376 2,468+ 378 2,202+ 703 1,546+ 388

25% reinst. 85% 0.57 24.7 2.60 20,283+ 364 2,280+ 366 2,054+ 662 1,458+ 375

50% reinst. 82% 0.63 20.6 2.23 17,973+ 351 1,997+ 354 1,813+ 613 1,383+ 361

100% reinst. 71% 1.10 19.9 1.91 9,992+ 320 1,224+ 315 1,185+ 441 1,195+ 322

Ant Trail

0% reinst. 11% 21.2 75.5 4.56 147+ 157 N/A

25% reinst. 7% 22.6 80.3 4.48 148+ 168 N/A

50% reinst. 15% 20.3 85.1 4.58 147+ 176 N/A

100% reinst. 19% 21.6 32.7 2.91 138+ 449 N/A

should still expect a substantial net benefit. A more convincing result is pro-
duced by memoization in the classic sense of caching evaluation results. Here,
the evolution cost is only marginally higher than baseline, but the evaluation
improvement is even greater: up to 3.9× on the 6th-order polynomial, and be-
tween 1.4× to 1.9× on the other problems (all significant p < 0.001). These
numbers exclude the 100% reinstantiation setting, as hardly any improvement
is observed there. 100% reinstantiation should lead to less speedup, because any
rules obtained via reinstantiation are new and unshared, and we can accordingly
observe a much lower share ratio for 100% than for any other setting. It is not
clear, however, why this has a much greater impact with value caching than with
stack caching – we may be hitting an implementation bottleneck of some kind
here.
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The Santa Fe ant trail turned out to be a task not suitable for memoization,
as it is not only recurrent but also a single case problem that can be evaluated
directly and more efficiently from its i-grammar than through any other means.
We include it solely for comparative purposes. Likewise intended for informal
comparison are the GEVA outcomes: 20% success rate (with error 0.727) for the
quintic regression, 76% success rate (with error 1.61) for the parity problem, and
8% success rate (with error 23.88) for the ant trail. COGENT appears to perform
slightly better on these problems, significantly so for the regression (p < 10−10),
but since a GE expert could likely improve upon this, we can only say that our
system appears to be competitive without much fine-tuning involved.

5 Conclusion

In this paper we have presented a streamlined implementation of a novel scheme
for evolving solutions from a user-defined CFG, which is performance compet-
itive with GE, requires few parameters to be tuned, and is available as open
source [11]. A particularly noteworthy feature is its support for memoization,
through which we achieved significant improvements to evaluation speed between
1.4−3.9× over just caching the expanded solution between sample presentations.
As the tested problems were quite simple, we expect this to be a lower bound;
real-world problems with expensive evaluation functions should benefit much
more so. Memoization was also noted to be more effective for larger solutions
that share many production rules.

Connected to this, we also explored the reinstantiation probability, which de-
fines the balance between creating new rules from the user-defined CFG and ex-
ploiting existing rules in the population. It affects both sharing and the objective
error of evolved solutions, although significant changes (for the worse) were only
observed when reuse of existing rules was discouraged completely. The observed
tolerance to parameter changes is postulated to be due to its complex relation-
ship to diversity in the population and the associated exploration-exploitation
balance, which needs to be investigated further.

At present, our scheme is used only at its most basic; there are many opportu-
nities for enhancement. For instance, the rule to be changed is chosen randomly,
but one could instead impose and modify probabilities for each rule, e.g., in an
ant-system like manner. Experimental evaluation of such ideas will greatly profit
from faster evolution. Multicore support is currently limited to shared-memory
multithreading for derivation and evaluation of solutions. We intend to expand
this to a distributed memory, multi-grammar approach, but this has implications
on the applicability of memoization that need to be explored. We also hope to
expand on the notion of intermediate representations, especially for more com-
plex problems that share correspondingly complex modules, with more selective
caching to emphasize performance benefits (over the drawbacks) of memoization,
and compilation to faster representations that can run on specialized hardware,
such as GPUs. We will continue to make these changes publicly available; fellow
researchers are welcome to check them out and contribute.
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Abstract. Effective coordination is very important in society. Starting

from the observation that individuals interact through networks of ac-

quaintances, we study the co-evolution of the agents’ strategies and of

the network itself using pure coordination games. We find that coordi-

nation among agents emerges through the self-organization of the social

network into strong and stable clusters in which individuals follow the

same convention.

1 Introduction

Norms and conventions in society can be seen as the product of a gradual evolu-
tion of behaviors such that, in the end, adherence to the convention is a globally
advantageous strategy. This kind of evolution can be modeled in an abstract way
with evolutionary game theory (EGT) concepts [1]. The population dynamics
in EGT is such that those strategies that do better than average increase their
share in the population, while those that do worse decline. The rest points of
the dynamics are the equilibrium states, some of which are called evolutionarily
stable strategies (ESS) and are a subset of the set of Nash equilibria (NE) of
the game, i.e. those ensembles of strategies, one for each player, such that each
strategy is a best response to the strategy of the other players [1]. This frame-
work has allowed to satisfactorily explain a number of aspects and behaviors
in human and animal societies. However, there exist games in which either the
equilibrium posited by the theory is logically and socially unsatisfying, or there
is more than one equilibrium and no way to rationally choose between them,
although some equilibrium clearly appears to be socially more efficient. This
situation is well illustrated by the class of coordination games. In their simplest
form, these games are two-person games in which choosing the same strategy
leads to socially efficient outcomes, while miscoordination is harmful. Here we
study in particular the sub-class of pure coordination games which, for a two-
strategy game, have the normal form depicted in Table 1. The Nash equilibria
in pure strategies correspond to diagonal elements in the matrix where the two
players coordinate on the same strategy, while there is a common lower uniform
payoff for all other strategy pairs which is set to 0 here. Obviously, the payoff ta-
ble can be generalized to any finite number k of strategies. We assume a ≥ b > 0
and thus strategy α is said to be weakly dominant since a player obtains at least
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Table 1. A general two-person, two-strategies pure coordination game

α β

α a, a 0, 0
β 0, 0 b, b

the same payoff as the other player playing α rather than β. For mathemati-
cal convenience, standard EGT is based on infinite mixing populations where
pairs of individuals are drawn uniformly at random at each step and play the
given game. Correlations are absent by definition and the population has an
homogeneous structure. However, everyday observation tells us that in animal
and human societies, individuals usually tend to interact more often with some
specified subset of partners; for instance, teenagers tend to adopt the fashions
of their close friends group; closely connected groups usually follow the same
religion, and so on. Likewise, in the economic world, a group of firms might be
directly connected because they share capital, technology, or otherwise interact
in some way. In short, social interaction is mediated by networks, in which ver-
tices identify people, firms etc., and edges identify some kind of relation between
the concerned vertices such as friendship, collaboration, economic exchange and
so on. Thus, locality of interaction plays an important role. This kind of approach
was pioneered in EGT by Nowak and May [2] by using simple two-dimensional
regular grids. Recently, the dynamical and evolutionary behavior of games on
networks that are more likely to represent actual social interactions than regular
grids has been investigated (see [3] for a comprehensive review). However, most
of these studies have assumed a fixed population size and structure. But real
social networks, such as friendship or collaboration networks, are not in an equi-
librium state, they are open systems that continually evolve with new agents
joining or leaving the network, and relationships being made or dismissed by
agents already in the network. In the present work we take into account some of
these coupled dynamics and we investigate under which conditions coordinate
behavior may emerge and be stable.

Some previous work has been done on evolutionary games on dynamic net-
works essentially dealing with the Prisoner’s Dilemma, e.g. [4–6]. For a recent
review, see [7]. The present study follows our own model described in [8, 9]
and differs from previous ones in the way in which links between agents are
represented and interpreted.

2 Model Description

The model has already been presented in [8, 9] and thus we only give a brief
description here in order to make the paper as self-contained as possible. The
model is strictly local: a player only uses information about the strength of the
links with her first neighbors and the knowledge of her own payoff plus the
strategies of her immediate neighbors.
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Network and Interaction Structure. The network of agents is represented
by a directed weighted graph G(V,E), where the set of vertices V represents
the agents, while the set of oriented edges (or links) E represents their weighted
interactions. The population size N is the cardinality of V . For network structure
description purposes, we shall also use an unoriented version G

′
of G having

exactly the same set of vertices V but only a single unoriented unweighted edge
ij between any pair of connected vertices i and j of G. A neighbor of an agent
i is any other agent j such that there is an edge ij. The set of neighbors of i is
called Vi. For G′ we shall define the degree ki of vertex i ∈ V as the number of
neighbors of i. The average degree of the network G

′
will be called k̄.

Each link in G has a weight or “force” fij that represents in an indirect way
the “trust” player i places in player j and, in general, fij �= fji. This weight
may take any value in [0, 1] and its variation is dictated by the payoff earned
by i in each encounter with j. We define a quantity si called satisfaction of
an agent i as the mean weight of i’s links: si =

∑
j∈Vi

fij

ki
, with 0 ≤ si ≤ 1.

The link strengths can be seen as a kind of “memory” of previous encounters.
However, they must be distinguished from the memory used in iterated games,
in which players “remember” a certain number of previous moves and can thus
conform their future strategy on the analysis of those past encounters [1, 10].
Our interactions are strictly one-shot, i.e. players “forget” the results of previous
rounds and cannot recognize previous partners and their playing patterns over
time.

Strategy and Link Evolution. The dynamics is discrete in time t: t =
{t0, t1, . . .}. At each time step an individual i is chosen uniformly at random
with replacement to play the game with its neighbors. It updates its strategy
according to a local myopic best response rule with probability 1 − q or, with
probability q, agent i may delete a link with a given neighbor j and creates a
new 0.5 force link with another node k. The parameter 0 < q < 1 has the role
of a “temperature”: the higher q the more often links are broken and rewired.
At the end of the step the forces between i and its neighbors Vi are updated.
Myopic best response means that a player chooses, among the available actions,
the one that would give her the best payoff assuming that her neighbors do not
change their previous strategy. Calling Gt the population graph at time t, where
each node is labeled with its present strategy, the resulting stochastic process
{G0,G1, . . .} is a Markov chain since the probability of state Gt only depends on
the previous step: P (Gt|Gt−1,Gt−2, . . .) = P (Gt|Gt−1). To verify the stability
of the process we introduced a small amount of noise equal to 0.01. When noise
is present, a player that decides to update his strategy has a small probability
to chose the wrong strategy. These small random effects are meant to capture
various sources of uncertainty such as deliberate and involuntary decision errors.

The active agent i will, with probability q, attempt to dismiss an interaction
with one of its neighbors, say j, selected proportionally to 1− fij , i.e. the higher
fij , the lower the probability of the link being selected for rewiring. Likewise, the
lower si the higher the probability of dismissing the ij link. If the link is finally
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severed (in both directions), i asks k ∈ Vi \ {j} to select one of its neighbors
l ∈ Vk \ {i} and attempts to create a new link il. Links ik and kl are selected
such that edges with high forces are probabilistically favored. Obviously, this
bias will cause the clustering coefficient of the network to increase over time
due to the transitive closure it causes, i.e. triangles will be more likely in the
evolving graph. The solution adopted here is inspired by the observation that, in
social networks, links are usually created more easily between people who have a
satisfactory mutual acquaintance than those who do not. If the new link already
exists, the process is repeated with l’s neighbors. If this also fails, a new link
between i and a randomly chosen node is created. In all cases the new link is
initialized with a strength of 0.5 in both directions.

3 Simulation Results

3.1 Simulation Settings

The constant size of the network during the simulations is N = 1000. The initial
graph G′

0 is generated randomly with a mean degree k̄ = 6. The companion
oriented graph G0 is trivially built from G′

0 and forces between any pair of
neighboring players are initialized at 0.5.

The non-zero diagonal payoff a has been varied in the range [0.5, 1] in steps of
0.05 with b = 1− a; the range [0, 0.5] is symmetrically equivalent. Each value in
the phase space reported in the following figures is the average of 50 independent
runs. Each run has been performed on a fresh realization of the corresponding
initial random graph.

To detect steady states of the dynamics, i.e. those states with little or no
fluctuation over extended periods of time, we first let the system evolve for a
transient period of 5000×N times steps (= 5×106 time steps when N = 1000).
After a quasi-equilibrium state is reached past the transient, averages are cal-
culated during 500 × N additional time steps. A steady state has always been
reached in all simulations performed within the prescribed amount of time, for
most of them well before the limit.
We have experimented with different proportions of uniformly randomly dis-
tributed initial strategies α belonging to the set {0.05, 0.25, 0.5, 0.75}.

3.2 Discussion of Results

Figure 1 reports the amount of α-strategists in the population when a quasi-
equilibrium state has been reached as a function of the rewiring frequency q.
The upper light part of the plots indicate the region of the parameters space
where the α-strategists are able to completely take over the population. This
can happen because α strategy offers the best payoff since a − b is positive,
therefore β-strategists are prone to adapt in order to improve their wealth.
Figure 1(a) shows the case where both α and β strategies are present in the
same ratio at the beginning of the simulation. The darker region indicates the
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Fig. 1. Average fraction of α-strategists in the population when the quasi-equilibrium

has been reached. (a) shows the case where the initial fraction of α is 0.5 and noise

is absent. In (b) and (c) the initial fraction of α is 0.25. (b) shows the noiseless case

and (c) the case with a noise of 0.01. The light areas denote a higher proportion of α.

Results are averages over 50 independent runs.

situations where diversity is able to resist. This clearly happens when the payoff
difference a − b is zero. In this case both α and β are winning strategies and
the players tends to organize in two big clusters to minimize the links with the
opposing faction. More surprisingly even when one of the two strategies has a
payoff advantage, the evolution of the topology of the interaction allows the less
favorable strategy to resist. The faster the network evolution is (greater q), the
greater the payoff difference that can be tolerated by the agents.

In figures 1(b) the case when α represent only 25% of the initial population
is presented. When no noise is present the stronger strategy needs an increased
payoff advantage to take over the population. When a−b < 0.3 the payoff-inferior
strategy β is able to maintain the majority.

To confirm the stability of the evolution process we did some series of sim-
ulations using a noisy version of strategy evolution rule. This noise is rather
small and does note change the results obtained when the two populations are
equally represented in the initial network, the graphic representation is almost
the same of the one in fig. 1(a) with respect to stochastic fluctuations. However
when the initial share is not the same, the presence of noise allows a considerable
increase in the performance of the Pareto-superior strategy when this strategy
is less represented in the beginning. Figure 1(c) shows the case when the initial
ratio of α-strategists is 25% of the initial population. We can clearly see that
the strategy that offers the higher payoff can recover a considerable amount of
the parameters space even when it starts from an unfavorable situation. The
coexistence of stochastic errors and network plasticity allows the more advanta-
geous strategy to improve its share. In this case, when q > 0.4 the situation is
almost the same as when the initial shares are the same. The same phenomenons
happen when the initial ratio of α is smaller. The case of an initial ratio of 5%
has been verified but it’s not shown here.

Figures 2, and 3 show the evolution of the network G
′

and of the strategy
distribution from the initial state in which strategies are distributed uniformly
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(a) (b)

(c)

Fig. 2. (a) The simulation starts from a random network with N = 100 and 50 players

for each type. (b) In the first short part of the simulation (∼ 500 time steps) the

strategy fractions reach a steady state, the network however is still unorganized. (c) The

community structure starts then to emerge, many small clusters with nearly uniform

strategy appears.

at random up to a final quasi-equilibrium steady state. These results have been
obtained for a symmetric payoff of the strategies a = b and for an equal initial
fraction of α-strategists and β-strategists. It is visually clear that the system
goes from a random state of both the network and the strategy distribution to a
final one in which the network is no longer completely random1 and, even more
important, the strategies are distributed in a completely polarized way. In other
words, the system evolves toward an equilibrium where individuals following the
same convention are clustered together. Since both norms are equivalent in the
sense that their respective payoffs are the same, agents tend to pair-up with other
agents playing the same strategy since playing the opposite one is a dominated
strategy. The process of polarization and, in some cases, even the splitting of the

1 We have checked that the network’s degree distribution function p(k) is no longer

Poissonian but rather long-tailed to the right, and the clustering coefficient is much

larger than that of the corresponding random graph.
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graph into two distinct connected components of different colors, is facilitated
by the possibility of breaking and forming links when an interaction is judged
unsatisfactory by an agent. Even with a relatively small rewiring frequency of
q = 0.15 as for the case represented in the figures, polarization is reached rela-
tively quickly. In fact, since our graphs G and G

′
are purely relational entities

devoid of any metric structure, breaking a link and forming another one may
also be interpreted as “moving away”, which is what would physically happen in
certain social contexts. If, on the other hand, the environment is say, belonging
to one of two forums on the Internet, then link rewiring would not represent any
physical reconfiguration of the agents, just a different web connection. Although
our model is an abstract one and does not claim any social realism, still one could
imagine how conceptually similar phenomena may take place in society. For ex-
ample, the two norms might represent two different dress codes. People dressing
in a certain way, if they go to a public place, say a bar or a concert in which
individuals dress in the other way in the majority, will tend to change place in
order to feel more adapted to their surroundings. Of course, one can find many
other examples that would fit this description. An early model capable of qual-
itatively represent this kind of phenomena was Schelling’s segregation cellular
automaton [11] which was based on a simple majority rule. However, Schelling’s
model lacks the social network dimension as it is based on a two-dimensional
grid. Furthermore, the game theory approach allows to adjust the payoffs for a
given strategy and is analytically solvable in the long run for homogeneous or
regular graphs.

The above qualitative observations can be rendered more statistically rigor-
ous by using the concept of communities. Communities or clusters in networks
can be loosely defined as being groups of nodes that are strongly connected
between them and poorly connected with the rest of the graph. These struc-
tures are extremely important in social networks and may determine to a large
extent the properties of dynamical processes such as diffusion, search, and ru-
mor spreading among others. Several methods have been proposed to uncover
the clusters present in a network (for a recent review see, for instance, [12]).
To detect communities, here we have used the divisive method of Girvan and
Newman [13] which is based on iteratively removing edges with a high value of
edge betweennes. A commonly used statistical indicator of the presence of a rec-
ognizable community structure is the modularity Q. According to Newman [14]
modularity is proportional to the number of edges falling within clusters minus
the expected number in an equivalent network with edges placed at random. In
general, networks with strong community structure tend to have values of Q in
the range 0.4−0.7. In the case of our simulations Q = 0.19 for the initial random
networks with N = 100 like the one shown in fig. 2(a). Q progressively increases
and reaches Q = 0.29 for fig. 2(c) and Q = 0.45 for the final polarized network
of fig. 3. In the case of the larger networks with N = 1000 the modularity is
slightly higher during the evolution, Q ∼ 0.3 at the beginning of the simulation
and Q ∼ 0.5 when the network has reached a polarized state. This is due to the
more sparse structure of these networks.
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To confirm the stability of this topological evolution we performed several
simulation using the noisy strategy update rule. Even in this situation the net-
work will attain a polarized state but due to the stochastic strategy fluctuations
the two main clusters almost never reach a completely disconnected state and
the modularity remains slightly lower (∼ 0.4) compared to the noiseless case.

Fig. 3. In the last phase the network is entirely polarized in two homogeneous clusters.

If the simulation is long enough all the link between the two poles will disappear.

A few comments on the results shown are in order. The case depicted in
the figures is not a particular one; we have performed 50 independent runs for
each parameter set and the results are always qualitatively the same; thus, the
behavior shown here is typical. Also, while in the figures we show results for
systems of size N = 100, this is entirely for illustration purposes. Our simulations
have been always run for N = 1000 but the resulting graphs are a mess and
cannot be shown properly in an image. However, in spite of the relatively small
size, the phenomena are qualitatively the same for N = 100 and N = 1000,
the major difference is just the time to convergence which is much shorter for
N = 100.

As a second kind of numerical experiment, we asked how the population will
react when in a polarized social situation a few connected players of one of the
clusters suddenly switch to the opposite strategy. The results of a particular but
typical simulation are shown in Figs. 4. Starting from the clusters obtained as a
result of the co-evolution of strategies and network described above, a number
of “dark” individuals replace some “pale” ones in the light gray cluster. The
evolution is very interesting: after some time the two-cluster structure disappears
and is replaced by a different network in which several clusters with a majority
of one or the other strategies coexist. However, these intermediate structures are
unstable and, at steady state one recovers essentially a situation close to the
initial one, in which the two poles form again but with small differences with
respect to the original one. Clearly the size of the clusters is different from that
of before the invasion. Even in this case, if the evolution time is long enough,
the two components can become disconnected at the end. This means that, once
formed, polar structures are rather stable, except for noise and stochastic errors.
Moreover if we analyze more rigorously the evolution of the structure we can
see that at the beginning the invasion process the modularity drops slightly due
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(a)

(b) (c)

Fig. 4. (a) A consistent amount of mutant is inserted in one of the two clusters. (b)

This invasion perturbs the structure of the population that starts to reorganize. (c)

With enough evolution time the topology reaches a new polarized quasi-equilibrium.

to the strong reorganization of the network but then increases again and often
reaches a higher value in respect of the previous state. In the case shown here,
the final modularity is 0.56. The same happens in the larger networks where,
after the invasion process Q reaches values of Q ∼ 0.55.

4 Conclusions

In this paper we have studied the behavior of network structured populations
where individuals play a pure coordination game by using numerical simulations
based on the EGT model with best response as a strategy update rule and with
co-evolution of the network of contacts itself as a further degree of freedom. In a
fixed network the stable equilibrium would be for the payoff-dominant strategy
to take over and occupy the whole population. In social terms this means that a
single norm or convention is followed by everybody. However, when links in the
network are allowed to be cut and rewired, even with relatively slow network
evolution one observes that co-existence of stable clusters of both convention-
followers becomes the normal outcome of the dynamics. In social terms, this
means that the possibility of changing neighbors allows individuals to find a
more satisfactory situation in which, being surrounded by agents of the same
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type, their common payoff is higher. Although the model is too abstract to
claim any social realism, still it contains the essential ingredients to explain why
individuals following the same convention or cultural norm often find themselves
interacting with agents of the same type. To gauge the stability of the results
we have added some small noise in the strategy-update decision which is meant
to represent the possibility of rare decision errors by the agents. We find that
the quasi equilibria are robust with respect to that kind of stochastic fluctua-
tions, which may also favor a payoff-weaker norm to be maintained in its own
clusters. Finally, we have simulated a more radical process in which a small but
sizable amount of agents playing the opposite strategy replaces the same num-
ber of agents in a stable cluster. The typical behavior is that, after extensive
rearrangement of the network, the system separates again in clusters following
different norms, albeit with possibly different shapes and different numbers of
individuals with respect to the initial situation. In any case, this behavior in
the face of massive perturbations shows that the separation in clusters, or even
separated components, is the typical and stable behavior of the system. In future
work, we would like to investigate other strategy update rules and use agents
with more heterogeneity which are capable of learning to some extent beyond
the simple best response or imitation learning rules.
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6. Zimmermann, M.G., Egúıluz, V.M.: Cooperation, social networks, and the emer-

gence of leadership in a prisoner’s dilemma with adaptive local interactions. Phys.

Rev. E 72, 056118 (2005)

7. Perc, M., Szolnoki, A.: Coevolutionary games - A mini review. Biosystems 99,

109–125 (2010)

8. Pestelacci, E., Tomassini, M.: Cooperation in coevolving networks: the prisoneros

dilemma and stag-hunt games. In: Rudolph, G., et al. (eds.) PPSN 2008. LNCS,

vol. 5199, pp. 539–548. Springer, Heidelberg (2008)

9. Pestelacci, E., Tomassini, M., Luthi, L.: Evolution of cooperation and coordination

in a dynamically networked society. J. Biol. Theory 3(2), 139–153 (2008)



522 E. Pestelacci and M. Tomassini

10. Axelrod, R.: The Evolution of Cooperation. Basic Books, Inc., New-York (1984)

11. Schelling, T.: Micromotives and Macrobehavior. Norton (1978)

12. Fortunato, S.: Community detection in graphs. Physics Reports 486, 75–174 (2010)

13. Newman, M.E.J., Girvan, M.: Finding and evaluating community structure in net-

works. Phys. Rev. E 69, 026113 (2004)

14. Newman, M.E.J.: Modularity and community structure in networks. Proc. Natl.

Acad. Sci. USA 103, 8577–8582 (2006)



Evolving Strategies for Updating Pheromone
Trails: A Case Study with the TSP

Jorge Tavares1 and Francisco B. Pereira1,2

1 CISUC, Department of Informatics Engineering, University of Coimbra
2 Polo II - Pinhal de Marrocos, 3030 Coimbra, Portugal

ISEC, Quinta da Nora, 3030 Coimbra, Portugal

jorge.tavares@ieee.org, xico@dei.uc.pt

Abstract. Ant Colony Optimization is a bio-inspired technique that can

be applied to solve hard optimization problems. A key issue is how to

design the communication mechanism between ants that allows them to

effectively solve a problem. We propose a novel approach to this issue by

evolving the current pheromone trail update methods. Results obtained

with the TSP show that the evolved strategies perform well and exhibit

a good generalization capability when applied to larger instances.

1 Introduction

Ant Colony Optimization (ACO) draws its inspiration from pheromone-based
strategies of ant foraging. Initially, it was conceived to find the shortest path
in the well-known Traveling Salesman problem (TSP), but soon it was applied
to several different types of combinatorial optimization problems [1]. Examples
of situations addressed include both static and dynamic variants of academic
and real world problems. Usually, the problem is mapped into a fully connected
graph. When seeking for a solution, ants deposit pheromone while traveling
across the graph edges, thus creating a virtual trail. A solution to the problem
will emerge from the interaction and cooperation made by the ants. Different
types of ACO architectures were proposed in the literature [1], with differences,
e.g., in what concerns the way ants deposit pheromone in the graph edges. De-
signing new variants of ACO algorithms is an active area of research, as this
may allow the application of these methods to new situations and/or enhance
its effectiveness on problems that it usually addresses. Typically, the design and
extension of the existing algorithms is carried out manually.

In this paper our approach will be different. We aim to automatically develop
and improve the current components by using Evolutionary Algorithms (EA).
Our framework relies on a Genetic Programming algorithm (GP) [2] to evolve the
way an Ant algorithm updates its pheromone trails. We investigate the evolution
of different strategies and study how they perform when compared to standard
methods. Different instances of the TSP will be used to access the effectiveness
of the proposed approach.

R. Schaefer et al. (Eds.): PPSN XI, Part II, LNCS 6239, pp. 523–532, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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The paper is structured as follows. In section 2 we present the system to evolve
the pheromone trails update strategies. Section 3 contains the experimentation
and analysis, followed by a discussion. Finally, in section 4 we summarize the
main conclusions and highlight directions for future work.

2 Evolving Pheromone Trail Update Methods

There are many research efforts for granting bio-inspired approaches the ability
to self adapt their strategies. On-the-fly adaptation may occur just on the pa-
rameter settings or be extended to the algorithmic components. One remarkable
example of the first type of self-adaptation is the well-known 1/5 success rule
used to control the mutation strength for the (1+1)-ES. In what concerns the
adaptation of the optimization algorithm, Diosan and Oltean recently proposed
an evolutionary framework that aims to evolve a full-featured EA [3].

As for the Swarm Intelligence area, there are also some reports describing the
self-adaptation of parameter settings (see, e.g., [4,5]). Still, there are a couple of
approaches that resemble the framework proposed in this paper. Poli et. al [6] use
a GP algorithm to evolve the update equation that controls particle movement
in a Particle Swarm Optimization (PSO) algorithm. Diosan and Oltean also did
some work regarding PSO structures [7]. Also, Runka [8] applies GP to evolve the
probabilistic rule used by an ACO algorithm to select the solution components
in the construction phase.

2.1 Overview of the System

The framework to evolve pheromone trails update strategies is composed of two
main components: a Genetic Programming (GP) engine and an Ant System (AS)
algorithm. The main task of the GP component is to evolve individuals that en-
code effective trail update strategies, whereas the AS is required to assign fitness
to each generated solution. The GP engine adopts a standard architecture: in-
dividuals are encoded as trees and ramped half-and-half initialization is used
for creating the initial population. The algorithm follows a steady-state model,
tournament selection chooses parents and standard genetic operators for ma-
nipulating trees are used to generate descendants. As for the AS framework,
it closely follows the variants proposed in [1]. It allows the application of the
standard AS, Elite AS (EAS) and Rank-based AS for the TSP, as described in
the aforementioned book. The activation of the pheromone update methods was
defined in a way to allow an easy integration with the GP engine: when an indi-
vidual (i.e., an evolved pheromone trail update strategy) needs to be evaluated,
the GP executes the AS algorithm for a given TSP instance. The result of the
optimization is assigned as the fitness value of the GP individual.

A key decision in the development of the framework is the definition of the
function and terminal sets used by the GP, as they will determine which com-
ponents can be used in the design of pheromone update strategies. In this paper
our aim is to show that the proposed approach is able to evolve such strategies.
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Therefore, to validate our ideas we keep the definition of the function and termi-
nal sets as simple as possible. Our choice is to provide these sets with ingredients
that allow the replication of standard AS and EAS methods. By providing the
self-adaptive algorithm with these components we ensure that a valid strategy
exists and, at the same time, we explicitly verify if the evolutionary process is
able to determine it. The function and terminal sets are composed by:

– (prog2 p1 p2) and (prog3 p1 p2 p3): They allow the sequential execution of
two or three functions/terminals. The result of the last one is returned;

– (evaporate rate): Runs the standard evaporation formula with a given rate.
– (deposit ants amount): ants deposit a given amount of pheromone. The pa-

rameter ants can be an array of ants or a single one.
– (all-ants), (best-ant), (rho): They return: 1) the array with all the ants; 2)

the best ant found so far in a run; 3) a fixed learning rate.
– (integer) and (real): Ephemeral constants.

The evaporation and deposit formulas are the ones defined in the literature
[1], with the exception of the given parameters. Since standard GP needs the
closure property [2], all the functions and terminals are protected to ensure that
no invalid combination can be formed.

3 Experiments and Analysis

Selected instances from the TSPLIB1 are used in the experiments. For all tests,
the GP settings are: Population size: 100; Maximum tree depth: 5; Crossover
rate: 0.9; Mutation rate: 0.05; Tourney size: 3. For the AS algorithms we used
the standard parameters found in the literature [1]. The number of runs for all
experiments is 30. To determine the existence of statistical differences in the
results, we apply the Wilcoxon rank sum and the Kruskalwallis tests (α = 0.05).

3.1 Evolution of the Update Strategies

In the first set of experiments we aim to detect the evolution of feasible update
strategies. A crucial issue that needs to be addressed is the evaluation step of
each evolved strategy, as it requires the execution of an AS algorithm. Two
parameters, the number of runs and the number of iterations per run, define
the optimization effort of the AS and can have a major impact on the behavior
of the self-adaptive framework. On the one hand, if we grant the AS a small
optimization period to evaluate a GP individual, then it might not be enough
to correctly estimate the quality of an update strategy. On the other hand,
a longer evaluation period can increase computational costs to insupportable
levels. For the eil51 instance (a TSP instance with 51 cities adopted for these
experiments), AS variants find a near-optimal solution within approximately 100
iterations. With this value in mind, we defined three different configurations for
1 http://comopt.ifi.uni-heidelberg.de/software/TSPLIB95/

http://comopt.ifi.uni-heidelberg.de/software/TSPLIB95/


526 J. Tavares and F.B. Pereira

 400

 450

 500

 550

 600

 650

 700

1 5 10 15 20 25

Best individual

10 Iterations
100 Iterations

10 Runs x 10 Iterations

 450

 500

 550

 600

 650

 700

 750

 800

1 5 10 15 20 25

Population Average

10 Iterations
100 Iterations

10 Runs x 10 Iterations

Fig. 1. Evolution plots with generations on the x axis and fitness values on the y axis

the evaluation component of the GP individuals: 1) a single AS run with 100
iterations; 2) a single AS run with 10 iterations; 3) 10 AS runs with 10 iterations.
Configuration 1 grants enough time for a strategy to find good solutions. The
second one will test the increase of evolutionary pressure, even knowing that
finding good solutions in 10 iterations is hard. In the third case we want to see
the effect of multiple runs.

The left plot on Figure 1 shows the evolution of the mean best fitness (MBF
- average of the best individuals generated by the GP over 30 runs) for the
three evaluation configurations. The plot on the right displays the evolution of
the average fitness of the population. It is clear that evolution proceeds as in a
typical EA. Although individuals from the early stages of the optimization are
unable to find good solutions for the TSP, after some time the GP starts to
discover effective update strategies (the best solution for eil51 has length 426).

By comparing the three evaluation configurations, we conclude that single
runs perform better, particularly when using 100 iterations. A single run with
10 iterations also enables the discovery of sporadic good quality solutions, but, in
this case there is a larger deviation from the global optimum. This is consistent
with the expected outcome. The time for the AS to build a good solution is
short and the additional evolutionary pressure is not enough to eliminate the bad
solutions. Using multiple runs attained the worst results. The reason is simple:
the fitness assigned to the update strategy is the average of 10 solutions and,
initially, most of these are bad solutions. The number of iterations to counter-
balance this effect would need to be longer. In the subsequent analysis we will
not consider the best tree from the multiple runs configuration since it performs
worse than the other strategies.

3.2 Validation and Analysis of the Evolved Update Strategies

To validate the best evolved solutions we will compare their optimization per-
formance with existing AS variants (AS and EAS). We selected the best three
trees evolved by the system in the experiments described in the previous section:
GP10 is the best update strategy found in 10 iterations, whereas GP100A and
GP100B are the best ones found in 100 iterations. The TSP instance used in
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Table 1. Comparison of the best solution between the Strategies, with 100 iterations

and 1000 iterations for 30 runs

Strategies Iterations Best Worst Mean Best Fitness Deviation Branching

AS 100 442 471 459.10 7.46 5.25

EAS 100 432 467 447.37 9.76 3.54

GP10 100 426 469 446.17 8.83 2.77

GP100A 100 426 456 443.00 9.50 2.50

GP100B 100 426 472 445.70 10.58 2.96

AS 1000 431 454 444.03 5.06 5.17

EAS 1000 428 451 440.40 5.72 3.45

GP10 1000 426 448 435.40 5.89 2.75

GP100A 1000 426 446 435.23 5.35 2.21

GP100B 1000 426 443 434.20 4.78 2.82
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Fig. 2. Plots showing the evolution of the best solution and the branching factor for

100 iterations (x axis). The same pattern is observed with 1000 iterations.

these tests is the same one adopted for the evolution of the update strategies.
Table 1 contains the results obtained by the five AS strategies (3 evolved and 2
standard) for two different optimization scenarios: the upper part of the table
shows the outcomes obtained when the AS was allowed to run for 100 iterations
and the lower part is from experiments that ran for 1000 iterations. In the last
column we include the branching factor (with λ = 0.05), a measure to determine
the convergence of the pheromone matrix. Results clearly show that all evolved
solutions perform better than the standard methods. The optimal solution was
always found by the evolved strategies, whereas AS and EAS were unable to dis-
cover it. An inspection of the MBF values confirms that the evolved strategies
tend to achieve better results. This trend is more evident in longer runs.

The evolved strategies perform well and are competitive with the standard
variants. Even with restrict function and terminal sets it is possible to evolve
behaviors that are not exact copies of the ones adopted by standard AS. The
evolved strategies are elitist in nature (this is not surprising given the compo-
nents at the disposal of the GP algorithm), but there is some originality in the
way they manipulate the pheromone matrix. Figure 2 confirms the distinctive-
ness of the evolved strategies. They mostly resemble the EAS, especially with
regard to the search space exploration (given by the branching factor). Note
one important difference: tree GP100B. This solution starts to act more like AS
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Fig. 3. Scatter plots of the best solution found in 30 runs using 100 iterations

and, after some time, quickly converges to better solutions. For example, with
1000 iterations the MBF achieved by GP100B is lower than that of all other
approaches. The reason for this is related to how the strategies work. GP10 and
GP100A apply a strong evaporation procedure and then allow the best ant to
deposit pheromone. This effectively cleans the pheromone matrix with the ex-
ception of the best ant trails. GP100B carries out a lighter evaporation of the
matrix. Since most of the pheromone is deposited by the best ant, it takes some
time for this extra deposit to take effect. When that happens the convergence
to the best solution becomes faster. For 100 iterations, we only find statistical
significant differences between AS and the evolved strategies, whilst, for 1000
iterations, significant differences also exist with EAS.

To conclude, Figure 3 presents scatter plots of the best solutions found in the
30 runs (y axis) with the iteration when they were built (x axis). We compare
both GP100A and GP100B strategies with the AS and EAS. The plots show that
most of the best solutions found by the evolved strategies have better quality
than the ones produced by the AS. There is a clear separation between both
evolved update methods and AS. This is not so evident when comparing with
EAS. Although there are more solutions from the evolved strategies in the lower
left corner of the plot (which indicates better solutions found in less time) than
solutions from EAS, overall the dispersion is similar. This reinforces the elitist
nature of the evolved strategies and that in spite of being similar, they still
present different performance values.

3.3 Using Different Function and Terminal Sets

Even though the self-adaptive framework evolved moderately different strategies,
the function and terminal sets used in the previous sections allow the exact
replication of the standard AS and EAS trail update strategies. Now we will
slightly change this, as we want to test the ability of the system to evolve effective
solutions with component sets that do not allow to write the standard methods.
The changes are simple: 1) we remove the function (all-ants) thus removing the
possibility of all ants to deposit pheromone; 2) we add the function (rank-ants
n) which ranks the ants by solution quality and returns the best n ants. With
these changes, the evolution of any of the standard AS variants (AS, EAS and
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Fig. 4. Evolution with the new sets, plotting generations (x axis) and fitness (y axis)

Table 2. Comparison of the best solution between the Strategies, with 100 iterations

and 1000 iterations for 30 runs

Strategies Iterations Best Worst Mean Best Fitness Deviation Branching

Rank-AS 100 429 460 439.87 6.66 2.00

GP10s2 100 437 468 453.70 8.62 2.00

GP100As2 100 426 443 432.20 5.13 2.00

GP100Bs2 100 426 437 431.23 2.68 2.01

Rank-AS 1000 428 449 436.63 5.43 2.00

GP10s2 1000 435 490 454.73 13.06 2.00

GP100As2 1000 427 440 431.73 3.56 2.00

GP100Bs2 1000 426 442 430.87 3.52 2.00

Rank-AS) is no longer possible. We also want to see if the evolved strategies
can achieve the same level of success as the previous ones, and if the evolved
behaviors compare to the standard Rank-AS.

We fed the GP with the new sets and repeated the experiments described
in section 3.2 (for configurations 1 and 2). The plots from figure 4 present a
comparison between the results achieved by both sets. A brief perusal of the
charts reveals that the evolution of update strategies is slower with the new test
set, particularly when 10 AS iterations are used to evaluate GP individuals. On
the contrary, the number of GP runs that evolved strategies with the ability to
find the optimal solution increased from 2 to 6.

Once again we performed some additional tests to measure the optimization
performance of three evolved strategies: GP100As2, GP100Bs2, GP10s2. The
first two are examples of strategies that discovered the optimal solution when
100 iterations were performed, whereas the last is the best strategy found with
10 iterations. Table 2 presents an overview of the optimization results. The three
evolved strategies and also the standard Rank-AS were applied to solve eil51,
both for 100 and 1000 iterations. The outcomes confirm that evolved strategies
(with the exception of GP10s2) are effective. Results are even slightly better
than those achieved by the evolved strategies described in section 3.2. The com-
parison with the standard methods is also favorable to the evolved strategies.
GP100As2 and GP100Bs2 act on a similar way. They pick the best 8 to 10 ants
and allow them to deposit a large amount of pheromone. The evaporation step
is performed before and/or after. No specific deposit for the best ant is done.
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This is a surprising consequence. The standard Rank-AS allows all the ants to
deposit, picks the 6 best ants and allows them to deposit a weighted sum of
pheromone and, finally, the best ant deposits the largest amount of pheromone.
In the best evolved strategies, the deposit of the best ant disappears, therefore
removing some greediness. For both 100 and 1000 iterations, we find statistically
significant differences between the evolved trees and all the standard methods.

Figure 5 plots the behavior of these new strategies and the Rank-AS. The
curves are similar in shape, especially in terms of best solution quality, but
different in size. The evolution of the branching factor is interesting since it shows
a larger exploration ability by the ants adopting GP100As2 and GP100Bs2,
followed by a gradual convergence to the best solution. This demonstrates that
the evolved strategies keep more options during the initial stage of the search
and converge to a good solution in the later steps. The scatter plots in Figure
6 help us to see this. They tell us that Rank-AS converges faster but is unable
to reach the best solutions. Evolved strategies take longer, but are consistently
able to find better solutions.

3.4 Generalization to Other TSP Instances

The previous sections dealt with the ability of the self-adaptive framework to
evolve an effective strategy for updating pheromone trails. All tests were done
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Table 3. Results with larger TSP instances using 100 iterations for 30 runs

Strategies Instance Size Best Worst Mean Best Fitness Deviation

AS kroA100 100 22759 24258 23649.90 367.90

EAS 22339 24646 23457.07 535.40

Rank-AS 22004 24285 23113.00 544.00

GP100A 22062 25165 23310.80 726.26

GP100As2 21632 23994 22778.80 560.45

AS d198 198 17487 18533 18098.37 242.21

EAS 17515 18871 18138.77 369.62

Rank-AS 16922 18310 17486.50 309.34

GP100A 16698 18689 17859.80 408.62

GP100As2 16853 18179 17696.13 276.97

AS lin318 318 49075 52449 50742.73 780.21

EAS 47688 54174 50919.20 1553.24

Rank-AS 45804 49505 47665.87 962.95

GP100A 45323 51152 48392.23 1244.16

GP100As2 44534 49782 47037.73 1034.50

AS pcb442 442 64535 69335 67244.40 991.15

EAS 60140 68257 64274.20 2435.61

Rank-AS 60637 70377 66843.77 2070.65

GP100A 58858 67038 63129.54 2215.41

GP100As2 65338 71367 68808.16 1477.87

with a single instance and this raises the question whether the evolved strategies
are general enough so that they can be useful in other situations. To address this
issue, we applied the evolved strategies to solve larger instances. By comparing
the results of the standard approaches and the evolved methods we can obtain
some evidence regarding the generalization ability of the system.

Table 3 contains the results obtained by GP100A and GP100As2 on four larger
TSP instances (other evolved strategies follow a similar pattern). In short, the
evolved strategies generalize. For most cases they attain the best results in terms
of absolute quality and MBF. Although the differences are not large, it proves
that a strategy evolved from a particular instance can be used to solve different
and larger ones. There are significant statistical differences between the evolved
strategies and the other methods for all instances with just a few exceptions
(for kroA100 between both evolved strategies and EAS; and for pcb442 between
EAS and GP100A).

3.5 Discussion

The evolved strategies are effective for solving the instance for which they were
evolved, while they also exhibit a good generalization capability. However, it
must be pointed out that the system uses high-level function and terminal sets,
which resemble the actual standard AS methods. This choice rules out the possi-
bility of evolving strategies that strongly deviate from standard ones. Moreover,
the evolution is not too difficult as the key components are provided and GP
just needs to find the proper arrangement. Nevertheless, the results show that
evolution did not converge to the standard methods (in spite of, for example, the
first sets permitting it) and found different designs in structure and in parame-
ters. This indicates an open space for improvement of the actual methods used
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in Ant-based algorithms. The study described in this paper is a first approach
to this effort. Still, the study and use of high-level sets is important. Finally, as
an example, we show one of the evolved trees GP100A:

(prog2 (prog3 (evaporate 0.064867854)
(deposit (all-ants) 0.064867854)
(prog3 (evaporate (rho))

(evaporate 0.6832942)
(deposit (best-ant) 0.699499)))

(evaporate (rho)))

4 Conclusions

In this paper we proposed a system to evolve strategies for updating pheromone
trails in the standard Ant System architecture. The TSP was used as a test
case and two different function and terminal sets were considered. The evolved
strategies have proven to perform good when compared to the standard AS,
EAS and Rank-AS update methods. Moreover, they showed a generalization
capability when applied to different and larger instances. In the future, we plan
to design and use different function and terminal sets to evolve strategies with a
non-elitist and ranking behavior. Additionally, the generalization of the evolved
strategies to different problems will be addressed.
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Abstract. This paper investigates the role of syntactic locality and semantic
locality of crossover in Genetic Programming (GP). First we propose a novel
crossover using syntactic locality, Syntactic Similarity based Crossover (SySC).
We test this crossover on a number of real-valued symbolic regression prob-
lems. A comparison is undertaken with Standard Crossover (SC), and a recently
proposed crossover for improving semantic locality, Semantic Similarity based
Crossover (SSC). The metrics analysed include GP performance, GP code bloat
and the effect on the ability of GP to generalise. The results show that improv-
ing syntactic locality reduces code bloat, and that leads to a slight improvement
of the ability to generalise. By comparison, improving semantic locality signifi-
cantly enhances GP performance, reduces code bloat and substantially improves
the ability of GP to generalise. These results comfirm the more important role of
semantic locality for crossover in GP.

Keywords: Genetic Programming, Semantics, Syntaxtic, Crossover.

1 Introduction

Locality is important in all search methods. Our only justification for non-random meth-
ods is the assumption that there is some correlation between distance and fitness in the
semantic space (otherwise random search is provably optimal). If we use a separate syn-
tactic representation for the search algorithm, this requirement carries over: if there is
no correlation between syntactic and semantic representation, we might as well use pure
random search. Thus locality (continuity – small changes in genotype corresponding to
small changes in phenotype) has long been seen as a crucial property of Evolutionary
Computation (EC) representations [9,10,20,21].

Assuming a continuous genotype-phenotype mapping, one may then ask, whether
it is better to design operators to control locality in genotype or phenotype space. On
the side of the genotype space lies the advantage of simplicity: it is easy to measure
and control locality directly in the space where the operators are applied. Thus virtu-
ally all such work has relied on genotypic distance through syntactic metrics. On the
other hand, at the cost of greater complexity, one might argue that phenotypic distances,
being (presumably) more closely correlated with fitness, might lead to better metrics.

R. Schaefer et al. (Eds.): PPSN XI, Part II, LNCS 6239, pp. 533–542, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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Is this so? Is it worth the extra complication of designing semantically-based control
of operators? This paper examines this question, comparing our own recent work [24]
on semantics-based control of crossover in Genetic Programming (GP) with a new,
syntactically-based form.

Recent GP research has paid much attention to incorporating semantics in search
[26,11,12,3,5,13,15,15,2,23]. In recent work [24], Uy et al. presented Semantic Simi-
larity based Crossover (SSC), which improves the semantic locality of crossover by
paying attention to the scale of semantic differences between two subtrees. The results
reported in [24] show that SSC significantly improves the performance of GP in solv-
ing a family of real-valued symbolic regression problems. However it also raises an
important question, of the relationship between syntactic and semantic locality. Which
(semantic or syntactic locality) is more important? We compare a crossover designed to
directly improve syntactic locality with one relying on semantic locality for the effects
on three aspects of GP: bloat, performance and generalisation. We show that syntactic
locality plays a role in GP code bloat, but semantic locality is even more important in
improving GP performance and in GP’s ability to generalise.

The remainder of the paper is organised as follows. In the next section, we give a
review of related work on semantic based crossovers in GP and a brief review of locality
in Evolutionary Computation (EC). Section 3 describes SSC and a novel crossover for
improving syntactic locality. The experimental settings are detailed in Section 4. The
results of the experiments are presented and discussed in section 5. Section 6 concludes
the paper and highlights some potential future work.

2 Related Work

2.1 Semantics in Genetic Programming

Recently, semantics in GP has been addressed by a number of researchers. The work
falls into three main strands:

1. using formal methods [11,12,13,15,14]
2. using grammars [26,3,5]
3. using structures such as GP trees [2,23,24]

The first approach was advocated by Johnson in a series of papers [11,12,13]. In these
methods, semantic information extracted from formal methods (e.g., Abstract Interpre-
tation and Model Checking) is used to quantify fitness in problems where it is difficult
to measure by sample point fitness. Katz and Peled consequently used model check-
ing to measure fitness of individuals in solving the Mutual Exclusion problem [15,14].
These formal methods have a strict mathematical foundation, that potentially may aid
GP. Perhaps because of high complexity, however, they have seen only limited research.
Their main application to date has been in evolving control strategies.

The second category presents semantics by using Attribute Grammars. Attributes
added to a grammar can generate some useful semantic information about individuals,
which can be used to eliminate bad individuals [5], or to prevent generating semantically
invalid ones [26,3]. The attributes used to represent semantics are, however, problem
dependent, and it is not always easy to design such attributes for a new problem.
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In the last category, semantics has mainly been used to control the GP operators.
In [2], the authors investigated the effect of semantic diversity on Boolean domains,
checking the semantic equivalence between offspring and parents by transformation to
a canonical form, Reduced Ordered Binary Decision Diagrams (ROBDDs) [6]. This in-
formation is used to decide whether the offspring are copied to the next generation. The
method improved GP performance, presumably because it increased semantic diversity.

Uy et al. [23] proposed Semantics Aware Crossover (SAC), another crossover oper-
ator promoting semantic diversity, based on checking semantic equivalence of subtrees.
It showed limited improvement on some real-value problems. This crossover was then
extended to Semantic Similarity based Crossover (SSC) [24] by improving its seman-
tic locality. The experimental results showed improved performance of SSC over both
SC and SAC [24]. Our aim here is to investigate the effectiveness of semantic locality
through a comparison of SSC with a crossover designed to improve syntactic locality.

2.2 Locality in Evolutionary Computation

In the field of GP in particular and Evolutionary Computation in general, locality (small
change in genotype corresponding to small change in phenotype) plays a crucial role
in the efficiency of an algorithm [9,10,20,21]. Rothlauf [21] investigated the locality
of representations in Evolutionary Computation (EC). To determine the locality of a
genotype-phenotype mapping, we must define two metrics, in the genotype and pheno-
type spaces. He argued that a representation with high locality is necessary for efficient
evolutionary search. Although a representation with high locality is desirable, it may be
very difficult to achieve. Thus many current GP representations are of low-locality, so
that small syntactic changes in genotype can cause large change in phenotype. In this
paper, we extend the concept of representation locality [21] to locality of an operator.
We consider locality in both syntactic and semantic domains.

3 Methods

This section briefly presents SSC before giving details of the new crossover based on
syntactic locality.

3.1 Semantic Similarity Based Crossover

SSC as used here is almost identical to that of Uy et al. [24], with the exception of a
slight change in the definition of the distance measure. We start with a clear defintion
of (sub)tree semantics. Formally, the Sampling Semantics (SS) of a (sub)tree is defined
as follows:

Let F be a function expressed by a (sub)tree T on a domain D. Let P be a sequence
of points sampled from domain D, P = (p1, p2, ..., pN). Then, the Sampling Semantics
of T on P in domain D is the corresponding sequence S = (s1,s2, ...,sN) where si =
F(pi), i = 1,2, ...,N.
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The optimal choice of N and P depend on the problems; we follow the approach
of [24] in setting the number of points for evaluating the semantics equal to the num-
ber of fitness cases (20 points – Section 4) and in choosing the sequence of points P
uniformly randomly from the problem domain.

Based on SS, we define a Sampling Semantic Distance (SSD) between two sub-
trees. It differs from that in [24] in using the mean absolute difference in SS values,
rather than (as before) the sum of absolute differences. Let U = (u1,u2, ...,uN) and
V = (v1,v2, ...,vN) represent the SSs of two subtrees, S1 and S2; then the SSD between
S1 and S2 is defined in equation 1:

SSD(S1,S2) = ∑N
i=1 |ui − vi|

N
(1)

We follow [24] in defining a semantic relationship, Semantic Similarity (SSi), on the
basis that the exchange of subtrees is most likely to be beneficial if they are not seman-
tically identical, but also not too different. Two subtrees are semantically similar if their
SSD lies within a positive interval. The formal definition of SSi between subtrees S1

and S2 is given in the following equation:

SSi(S1,S2) = TruthValue(α < SSD(S1,S2) < β)

where α and β are two predefined constants, the lower and upper bounds for semantics
sensitivity. In general, the best values for these semantic sensitivity bounds are problem
dependent. In this work we set α = 10−4 and several values of β were tested.

The primary objective of SSC was to improve the locality of crossover. Algorithm 1
(adapted from [24]) shows the detailed operation of SSC. The value of Max Trial was
set at 12, a value which was determined through experiment.

3.2 Syntactic Similarity-Based Crossover

For our syntactic crossover, we require a syntactic distance. For this we use the Lev-
enshtein tree distance [17], using the procedure described by Ekart and Nemeth [7] to
compute it. From this, a syntactic similarity relationship between two (sub)trees is de-
fined in a similar way to the semantic counterpart. In other words, two subtrees are said
to be syntactically similar if the syntactic distance (SyD) between them lies in a specific
range. Formally, two subtrees S1 and S2 are syntactically similar (SySi) if

SySi(S1,S2) = TruthValue(α < SyD(S1,S2) < β)

where α and β are two predefined constants, the lower and upper bounds for syntactic
sensitivity. In this paper, α was set to 0, and several values of β were tested.

Based on SyS, a syntactic similarity crossover is proposed. Syntactic Similarity-
based crossover (SySC), is inspired by SSC, using the same algorithm except for the
distance metric. The Max Trial of SySC is set at 4, this value again being experimen-
tally determined.
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Algorithm 1: Semantic Similarity based Crossover

select Parent 1 P1;
select Parent 2 P2;
Count=0;
while Count<Max Trial do

choose a random crossover point Subtree1 in P1;
choose a random crossover point Subtree2 in P2;
generate a number of random points (P) on the problem domain;
calculate the SSD between Subtree1 and Subtree2 on P
if Subtree1 is similar to Subtree2 then

execute crossover;
add the children to the new population;
return true;

else
Count=Count+1;

if Count=Max Trail then
choose a random crossover point Subtree1 in P1;
choose a random crossover point Subtree2 in P2;
execute crossover;
return true;

4 Experimental Settings

To investigate the impact of these operators on GP performance, code bloat, and abil-
ity to generalise, we used six real-valued symbolic regression problems. The problems,
training and testing data are shown in Table 1. The training data is used to train and
measure GP performance and the testing data is used to measure the ability of GP to
generalise. These functions were taken from previous work on GP learning generali-
sation [19]. We note that the testing sets are larger than the training sets and contain
values lying outside the training intervals – i.e. the system is required to extrapolate,
not merely interpolate, requiring greater generalisation capability from GP.

Table 1. Symbolic Regression Functions

Functions Training Data Testing Data

F1 = x4 + x3 + x2 + x 20 random points ⊆ [-1,1] 30 points ⊆[0:0.05:1.5]
F2 = x3 − x2 − x−1 20 random points ⊆ [-1,1] 30 points ⊆[0:0.05:1.5]
F3 = arcsin(x) 20 random points ⊆ [-1,0] 30 points ⊆[-1:0.67:1]
F4 =

√
x 20 random points ⊆ [0,2] 30 points ⊆[0:0.1:3]

F5 = 0.3sin(2πx) 20 random points ⊆ [-1,1] 30 points ⊆[0:0.05:1.5]
F6 = cos(3x) 20 random points ⊆ [-1,1] 30 points ⊆[0:0.05:1.5]
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Table 2. Run and Evolutionary Parameter Values

Parameter Value

Population size 500
Generations 50
Selection Tournament
Tournament size 3
Crossover probability 0.9
Mutation probability 0.05
Initial Max depth 6
Max depth 15
Max depth of mutation tree 5
Non-terminals +, -, *, / (protected version),

sin, cos, exp, log (protected version)
Terminals X, 1
Raw fitness mean absolute error on all fitness cases
Trials per treatment 100 independent runs for each value

The GP parameters used for our experiments are shown in Table 2. Despite this being
an experiment purely concerned with crossover, we have retained a low rate of mutation
with an aim to study crossover in the context of a normal GP run.

For SySC, the the upper syntactic sensitivities were set at 6, 8, 10. These three values
were calibrated from our experiments as good values for the performance of SySC. In
total, three configurations of SySC were tested, denoted as SySCX with X=6, 8, 10.
Three upper semantic sensitivities were tested for SSC: 0.4, 0.5, 0.6. These semantic
sensitivities were also used in [24], and are denoted as SSCX with X=04, 05, 06.

5 Results and Dicussion

This section presents the comparative results of three crossovers on the GP perfor-
mance, GP code bloat effect and the ability of GP to generalise.

5.1 Performance

To compare the performance of the three operators, we recorded a classic performance
metric, the mean best fitness. The results are shown in Table 3. It can be seen from this
table that syntactically-bounded crossover (SySC) does not improve GP performance.
The mean best fitness of SySC is often slightly worse than SC, with exceptions on
function F6. Conversely, the mean best that found by SSC is much better than both SC
and SySC. This is consistent with the results in [24]..

We also statistically tested the performance of SSC versus SC and SySC using
Wilcoxon’s signed-rank test with a confidence level of 99% (Table 3), confirming the
significant improvement of SSC over SC and SySC. Thus despite some advantages in
implementation of SySC, SSC is a better bet in improving perforance.
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Table 3. Comparison of the effects of SC, SSC and SySC on GP performance (mean of the best
fitness). The values are scaled by 102.

Xovers F1 F2 F3 F4 F5 F6

SC 1.51 3.07 0.37 0.96 4.36 1.48

SySC6 1.63 3.20 0.46 1.06 4.42 1.46
SySC8 1.49 3.50 0.43 0.99 4.36 1.98
SySC10 1.56 3.08 0.39 1.18 4.41 2.04

SSC04 0.78 1.30 0.20 0.58 3.36 0.67
SSC05 0.85 1.40 0.21 0.61 3.28 0.81
SSC06 0.87 1.70 0.22 0.38 3.44 0.92

Table 4. Comparison of the effects of SC, SSC and SySC on code bloat (average tree size over
the population)

Xovers F1 F2 F3 F4 F5 F6

SC 53.9 64.7 51.2 54.1 73.2 56.3

SySC6 45.3 49.9 40.0 43.1 56.7 44.8
SySC8 44.6 51.0 39.2 44.9 58.7 45.8
SySC10 45.3 52.0 42.8 45.9 60.8 48.2

SSC04 49.2 59.2 50.1 52.2 66.3 47.2
SSC05 50.1 58.2 50.0 52.1 68.7 50.4
SSC06 50.5 62.2 49.1 52.2 72.1 53.6

5.2 Code Bloat

It has been known since the early days of GP that the average size of programs
inexorably grow [1], and after some generations this may become exponential; the phe-
nomenon is known as code bloat. Given the negative effects of code bloat, many meth-
ods for reducing it, and thus simplifying GP inviduals, have been proposed [16,22].
While bloat was not the primary focus of this work, we decided to examine how syn-
tactically and semantically-limited crossovers affected bloat?

We measured the average size of individuals (number of nodes) over 50 generations,
averaged over 100 runs. This metric is presented in Table 4. Table 4 reveals that improv-
ing syntactic and semantic locality both tend to reduce code bloat, and in this respect,
improving syntactic locality has a greater effect than improving semantic locality. We
also investigated whether reducing the scale of change could further reduce GP code
bloat, and indeed this was the case – but at the cost of poorer performance of SySC; the
syntactic sensitivities used in this paper are some of the best values found for the SySC
operator.

5.3 Ability to Generalise

Strong generalisation is one of the most desirable properties for learning machines [18].
As GP is a form of (evolutionary) machine learning, it is important to test its generali-
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Table 5. Comparison of the effects of SC, SSC and SySC on GP’s ability to generalise (the
number of good solutions)

Xovers F1 F2 F3 F4 F5 F6

SC 18 26 9 75 10 52

SySC6 22 21 10 80 17 56
SySC8 26 28 8 78 21 47
SySC10 21 24 9 77 12 53

SSC04 28 46 15 83 22 65
SSC05 22 41 17 81 20 58
SSC06 31 32 12 88 16 59

sation ability [4]. For most real learning problems, we are most interested in the ability
of an algorithm to generalise over unseen data.

Previous research on improving GP generalisation largely focused on reducing so-
lution size [25,8]. These high-complexity solutions are often poor in their ability to
generalise, resulting from their failure to observe the principle of Ockham’s razor [18]
(simple solutions are prefered). As the previous sections have shown, improving local-
ity helps to both improve GP performance and reduce GP code bloat, so it is important
to test the effect of these crossovers on GP’s generalisation ability.

To measure the generalisation ability, we tested the best individual found using the
training set, for its ability to generalise over independent test sets (see Table 1). Given
ε=0.1, we define a solution ’good’ if the fitness on this set is less than ε. We counted
the number of good solutions out of 100 runs; the results are shown on Table 5. We
can see that improving syntactic locality slightly improves generalisation: the number
of good solutions found by SySC is only slightly greater than for SC on some functions,
perhaps as the result of reducing code bloat. However improving the semantic locality,
as in SSC, substantially improves generalisation. The number of good solutions found
by SSC are usually substantially greater than those found by SC and SySC. Generally,
these results confirm the importance of improving semantic, rather than merely syntac-
tic, crossover locality in GP.

6 Conclusion and Future Work

In this paper, we proposed a new crossover based on syntactic similarity, as a means of
improving syntactic locality. We compared it with similar crossovers based on semantic
similarity, Semantic Similarity based Crossover, and with standard crossover. We based
the comparison on a number of aspects.

In our results, improving semantic locality significantly improves GP performance,
reduces code bloat, and substantially enhances generalisation; in comparison, improv-
ing syntactic locality gives greater control over code bloat, but leads to only a slight
improvement in generalisation over standard crossover. The results confirm the greater
importance of semantic rather than syntactic locality. We hope these results will attract
GP researchers to pay greater attention to semantic mechanisms in future research.
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In the near future, we will study operators incorporating both syntactic and semantic
locality, as these might benefit further from the combined effects of both mechanisms.
We also plan to examine the relationship of these operators to the search landscape.
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Abstract. In this paper we describe and analyze a Computational Intelligence
(CI)-based approach to creating evaluation functions for two player mind games
(i.e. classical turn-based board games that require mental skills, such as chess,
checkers, Go, Othello, etc.). The method allows gradual, step-by-step training,
starting with end-game positions and gradually moving towards the root of the
game tree. In each phase a new training set is generated basing on results of pre-
vious training stages and any supervised learning method can be used for actual
development of the evaluation function.

We validate the usefulness of the approach by employing it to develop heuris-
tics for the game of checkers. Since in previous experiments we applied it to
training evaluation functions encoded as linear combinations of game state statis-
tics, this time we concentrate on development of artificial neural network (ANN)-
based heuristics.

Games provide cheap, reproducible environments suitable for testing new search algo-
rithms, pattern-based evaluation methods or learning concepts. Since the seminal papers
devoted to programming chess [1–3] and checkers [4] in the 1950s., games remained
through decades an interesting topic for both classical AI and CI-based approaches.

Most examples of application of CI methods to mind game playing make use of
either reinforcement learning methods, neural networks-based approaches, evolution-
ary methods or hybrid neuro-genetic solutions, e.g. in chess [5–7], checkers [8–11],
Go [12], Othello [13], or give-away-checkers [14, 15].

The main focus of this paper is on testing the efficacy of what we call Layered Learn-
ing - a generally-applicable approach to building the evaluation function for two-player
games (checkers in here) which can be implemented either in the evolutionary mode
or as a gradient backpropagation-type neural network training. The method, originally
proposed in [16], was used previously by the authors in the case of linear heuristic
composed of checkers-specific components [17, 18]. In this paper a more detailed de-
scription of the method is provided along with some modifications to the previously
used version. Furthermore, as opposed to [17] and [18], where evolutionary learning
methods were employed, this work concentrates on applicability of Layered Learning
to the case of artificial neural networks (ANNs) based evaluation functions with much
lesser use of pre-defined domain knowledge.

R. Schaefer et al. (Eds.): PPSN XI, Part II, LNCS 6239, pp. 543–552, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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The reminder of the paper is organized as follows: in section 1 the basic idea of the
proposed Layered Learning method is described along with its several modifications
and enhancements. The next two sections present the experimental setup and the results
of experiments, respectively. Conclusions and summary of possible research prospects
are placed in section 4.

1 Layered Learning

1.1 Learning Method

Layered Learning (LL), schematically depicted in fig. 1, is an end-game first method.
Similarly to TD(λ) [19] it attempts to propagate the knowledge of final game results
from endgame positions up the game tree. Still, we believe that it differs enough to be
worth separate analysis and evaluation.

This learning scheme starts with division of the game tree into a number of disjoint
stages, depending on the game progress. The simplest criterion that can be employed
here in case of checkers is the number of moves performed. The whole process starts
with positions expected to be very close to the end of the game. They are analyzed by
a minimax algorithm (typically employing alpha-beta pruning) with a null evaluation
function. It is assumed that in most cases the analysis will be able to reach the leaves of
the game tree and the heuristic evaluation function will not be needed. The other cases
are treated as draws and have neutral value assigned by the evaluation function.

Once a set of assessed game positions is obtained, it can be used as training data for
any supervised learning approach, so as to create an evaluation function able to assess
those endgame positions. In our experiments we employed both evolutionary methods
(with various representations of heuristic evaluation functions) and backpropagation
learning methods (in case of ANNs).

Having trained an evaluation function for one stage, the algorithm moves to the next
stage, closer to the beginning of the game. A number of game states from this new stage
are generated and, again, they are analyzed with a minimax algorithm. It is expected that
its search depth will be enough to always reach positions from the previously trained
stage. In that case, the result of previous stage can be used as the evaluation function for
this analysis and another training set can easily be generated. This process, repeated for
all game stages, should lead to creation of an evaluation function capable of assessing
positions from all game stages (or an ensemble of such functions covering the whole
game).

1.2 Method Variations

The general approach described in previous section can be implemented in several dif-
ferent ways and its quality may be influenced by a number of fine details of the algo-
rithm. Implementors of LL scheme have, of course, to tackle all typical hurdles of CI
methods application, such as choosing learning coefficients, designing ANN architec-
ture, or defining evolutionary operators etc. There are, however, also several decisions
typical for LL learning that must be made.
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Fig. 1. Layered Learning method - an overview

First of all, implementors should settle on supervised learning method. Our first ex-
periments concentrated on using evolutionary methods - initially with evaluation func-
tions represented as linear combinations of simple game state features. More sophisti-
cated checkers position description features were introduced afterwards, and the defi-
nition of evaluation function was modified so as to allow dynamic switching of linear
combinations’ coefficients depending on game progress.

In the experiments described in this document we concentrated on evaluation func-
tions represented by ANNs in the form of fully connected feed-forward multi-layer
perceptrons. Input vectors would contain either only board content representation (with
no preprocessing applied) or, alternatively, also values of a number of simple game
state features. The ANNs would be trained either by backpropagation (RPROP [20]) or
evolutionary methods.

Another problem faced by implementors of the LL method may be the risk of trained
evaluators (be it ANN or any other representation) ‘forgetting’ knowledge learned dur-
ing previous stages. There are several ways this issue can be dealt with. It is possible to
train a separate evaluator in each stage and treat the resulting ensemble as the output of
the training process. Each evaluator would then be used only in the stage it was trained
for. Otherwise, special care must be taken to ensure that no (or next to no) ’forgetting’
takes place. One way to achieve that is to make sure, that in each phase, evaluator is
trained not only on positions from the current stage but also a number of game states
from previous stages. These historical positions can be either regenerated each time they
are needed (to improve the diversity of training positions), or reused in all subsequent
training phases (to save time required for their regeneration and minimax analysis).
Whatever the choice, the current stage positions should be slightly over-represented in
the training set, as they introduce new knowledge not yet acquired by trained evaluator.

One of the problems obvious in most training approaches in the domain of CI appli-
cation to mind games is the selection of training games, positions or opponents. Since
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some players can be very successful against specific opponents while at the same time
being of inferior quality to all the others, it is important to train them on a wide selection
of game strategies they should be able to deal with. In the case of LL, training positions
are in the simplest case generated by playing random games till given depth in game
tree is reached.

This approach, however, brings about the risk that the training game states will not
be representative of positions encountered in real games against intelligent players. One
of the possible ways to circumvent this risk is modification of the positions generation
process. Instead of random players, a set of varied intelligent agents can be used to
play the games (possibly changing playing agent after each move) in order to generate
the required collection of game states. Results of preliminary tests of this approach
proved, however, to be unsatisfactory. This may, nevertheless, have been caused by
poor selection of playing agents and we still consider this idea worth further testing.

2 Experiments Setup

First of all, it should be stressed that the aim of the experiment was not to create a
master level player capable of competing with commercial checkers applications. Our
solution was not fully optimized for speed, employed only basic alpha-beta pruning
algorithm with no further modifications and used only simple fully-connected ANNs
for evaluation function representation.

During our experiments we tested several different sets of control parameters in com-
bination with varied evaluation function architectures, which makes it impossible to list
all of them in such a short document. Still, we will point out the most typical values
(or intervals) of the coefficients used during training and indicate whenever an atypical
value was employed. We also believe that there is a huge potential for results improve-
ment by further tuning all the learning parameters and coefficients, considering how
little attention has yet been devoted to the LL method.

We concentrate in this paper on analysis of the learning method itself and try to prove
its applicability to mind games such as checkers, especially in zero-initial-knowledge
training scheme. We hope to present LL method to wider audience and point out possi-
ble directions for further research.

2.1 Neural Networks Architecture

All our ANN-based experiments (as opposed to earlier experiments described in [17,
18]) involved feed-forward fully-connected multi-layered perceptrons. Ideally, we wanted
their input vectors to contain board description only. They would, therefore, consist of
32 neurons representing individual board squares, each with one of five values: −2, −1,
0, 1 and 2 representing, respectively, opponent’s king, opponent’s checker, empty square
and current player’s checker or king. In some of the experiments the input layer would
further be extended to contain a number of simple game state description features:

– differences between player’s and opponent’s checkers and kings counts;
– differences between player’s and opponent’s safe (i.e. adjacent to the edge of the

board) checkers and kings counts;
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– differences between player’s and opponent’s moveable (i.e. able to perform move
other than capturing, ignoring capturing priority) checkers and kings counts;

– difference between player’s and opponent’s aggregated distances of checkers to
promotion line;

– difference between player’s and opponent’s unoccupied fields on promotion line
count.

For comparison, some experiments with input vectors containing only the game state
features (without raw game state representation) were performed as well. In most ex-
periments, the neural networks would contain one hidden layer of up to 10 neurons.
Output layer would always contain a single neuron expected to output game state eval-
uation within the interval [−1,1].

2.2 RPROP Training

During the first phase of our experiments evaluators were trained using RPROP back-
ropopagation method. In order to minimize the chance of random factors hindering the
learning process, learning process was augmented by elements of evolutionary training
procedures. At every stage of the algorithm 8 networks were trained simultaneously on
the same training set. Each training phase consisted of 4 generations. After each gener-
ation, the quality of all candidate evaluators was tested by computing their mean square
errors on a test set. Test set used for this task was separate from training sets and con-
tained a number of game positions from all game stages trained on so far (including the
current one). Candidate solutions were afterwards sorted based on their thus measured
quality and the worse half of them was replaced by mutated copies of the best networks.

During the RPROP learning, training patterns were presented to the networks in ran-
dom order (independent for each network). After each training phase, a more significant
modification of the population took place. Only two best networks survived intact to the
next phase. Additional 4 were generated by mutating them - once with lower (0.01 to
0.03) and once with higher (0.1) mutation probabilities. Further two candidate solutions
were created with fully random weight values.

Mutation was applied independently to each weight in the mutated network, with
each connection having equal probability to mutate. Once it was decided that given
connection value should change, one of four possible mutations would be applied to it
(each with equal probability): multiplication by 2, division by 2, sign change (multipli-
cation by -1) or replacement with random value.

Results of preliminary experiments comparing training for varied number of epochs
and with varied training set sizes (not presented here in details due to lack of space),
suggest that one of the main problems hindering further improvement of the solutions
generated by backpropagation method was the risk of overtraining. With high ANN
capacities, small training sets and long training the networks would quickly loose their
generalization capabilities. This would result in low training set errors but higher test
set errors and poor performance in actual comparison games.

In order to overcome this hurdle, in the subsequent experiments we limited the
ANNs’ sizes and attempted to use training sets as big as possible, which, of course, re-
sulted in slower training process. This meant, however, that in order to keep the training
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time within reasonable limits we had to reuse the same training boards across multiple
training phases (continuously increasing the training set size with positions from lower
depths in game tree).

Finally, we decided to employ early stopping routine as a way to define stop condi-
tion for training, so that the probability of overtraining is reduced. It proved, however,
less successful than we expected. It turned out that the specificity of the problem caused
the validation set error to fluctuate significantly - sometimes rising for several epochs
only to drop afterwards. Early stopping, even modified to accept temporary rise of vali-
dation set error, was prone to ceasing the training too early, which forced us to train all
networks for a preset number of epochs before the technique was employed.

2.3 Evolutionary Training

Second phase of our experiments made use of a simple evolutionary approach. The
trained population would, in this case, contain several dozen (up to 100, depending
on individual experiment settings; 40 in most runs) candidate networks that would be
modified over several hundred generations in each training phase.

In each generation mean square error of training boards assessment was calculated
for each candidate ANN. Afterwards, a number (55% of population size in the most
successful experiments) of the worst performing solutions were discarded. The remain-
ing individuals were replicated with mutation, with a subset of them (typically the top
5% of the original population size) being replicated twice (once with lower and once
with higher mutation probability coefficients). In case the resulting number of individ-
uals was still lower than the requested population size, additional candidate solutions
were generated randomly.

After each phase, population was refreshed in similar manner but with different con-
trol parameters. In that case, only 30% of the population would survive. Thus, after each
generation a significant number of candidate solutions was regenerated randomly.

In most experiments the evolutionary method was additionally augmented by ele-
ment of RPROP training. Namely, each newly created (be it randomly or via replication
and mutation) network was first once trained on all training patterns. The RPROP train-
ing was also repeated for all networks after each training set change, i.e. at the beginning
of each training phase.

3 Results Analysis

3.1 Evaluators Comparison

In order to analyze the results of our experiments we first decided to perform direct
comparison of resulting evaluation functions by means of tournament, in which each
agent played 20 games against every other one (with sides swapped after each game).
Search depth limit for alpha-beta algorithm used in these comparison was set to rela-
tively low limit of 4 - thus increasing the influence of evaluation function quality on the
final score (in the case of greater search depths, score differences might prove less sig-
nificant). Games played by each selected pair of agents were pairwise different thanks
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to the fact that, in each position, available moves were considered by the alpha-beta
algorithm in random order. In order to make the results of the tournament as represen-
tative of the true quality as possible, it included a significant number of various agents
trained in these and earlier experiments. Two scoring schemes were used in the tourna-
ment: games-based and clashes-based. In the former, agents were assigned points for
each individual game: 2 points for a win and 1 point for draw. In the latter, contestants
were scored analogically based on 20-game clashes (series of games against a single
opponent).

Figure 2 presents results of the tournament for selected most important evaluation
functions:

– HG-Expert3Phase the most successful evaluation function generated in the first
Layered Learning experiment described in [18], consisting of 3 linear combinations
of advanced game position features - each applied to one of disjoint phases of the
game;

– BoardsAndFeatures5N - ANN trained with backpropagation method (RPROP), with
5 neurons in its single hidden layer and input vector containing both plain board de-
scription and basic game position numerical features;

– BoardsAndFeatures10N - ANN similar to the previous one but with doubled num-
ber of neurons in hidden layer;

– PlainBoard5N - ANN, differing from BoardsAndFeatures5N only in size of its
input layer, as it did not include precalculated checkers position features;

– PlainBoard10N - ANN similar to the previous one but with doubled number of
neurons in hidden layer;

– EvoPlainBoard10NWithRPROP - ANN trained using evolutionary approach (aug-
mented by RPROP procedure), with hidden layer of 10 neurons;

– EvoPlainBoard10NNoRPROP - ANN with architecture identical to the previous
one, but trained with pure evolutionary approach (with no backpropagation learning
component);

– EvoPlainBoard10NWithRPROPNoBoardsReuse - yet another identical ANN, but
this time trained with training boards set fully regenerated after each phase.

Based on the results of the described tournament and several minor comparisons per-
formed independently, several conclusions can be drawn. First of all, it can easily be
spotted that none of the evaluation functions generated in the current experiment man-
aged to surpass the best results of the original experiment based on game state descrip-
tion features. The explanation of this fact is twofold. Firstly, the experiments differed in
their focus and amount of learning parameters tuning applied. More importantly, how-
ever, it should not be forgotten that the most successful linear heuristics operated on
manually defined advanced game positions characteristics. At the same time ANN had
access to either raw board position or the simplest game position features only.

What is interesting, no significant difference in quality was observed between evalu-
ators being provided with raw board representation only and those having additionally
access to simple game state statistics. Since earlier experiments confirmed that those
statistics are actually important in evaluation function building, it can be inferred that
the trained neural networks were actually able to successfully learn to compute at least
some of them basing on the raw position description only.
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(a) Individual games (b) 20-game clashes

Fig. 2. Comparison of evaluators based on individual games scores or clashes scores

Better results of smaller networks confirmed our preliminary expectations of over-
fitting being a common and serious problem for our training process. It should also not
be omitted here that our decision to mix elements of evolutionary and backpropagation
training was a highly successful one. Both training methods yielded far weaker solu-
tions when used independently. In case of evolutionary method this fact is clearly visible
in figure 2 with EvoPlainBoard10NNoRPROP being scored more than 20% lower than
EvoPlainBoard10NWithRPROP. At the same time, analysis of the training logs of the
backpropagation-based processes clearly indicates that in this case a significant number
of mutations led to improvement of ANNs’ mean square errors.

3.2 Training Progress Analysis

In order to verify the training process itself and evaluators’ quality improvement from
phase to phase, for several selected individual experiments we decided to perform fur-
ther tournaments comparing solutions generated in subsequent phases of the same train-
ing process. We were aware that poor choice of training configuration might cause the
evaluators to loose during the training knowledge gathered in earlier phases. What is
more, any errors in heuristic generated in one of the early phases, would be repeated or
even magnified during the training process, because the results of previous phases are
used to generate training sets for further training.

It should also be stressed that, even if none of the above dangers actually applied,
in case of such a comparison we had no reason to expect a monotonous increase in
scores, as all but the last few evaluation functions were in no way prepared to play full
games, having been trained only on their final stages. This fact might have lead them
to choosing seemingly random moves in the first parts of games which could in conse-
quence cause the objectively better end-game players to arrive at very disadvantageous
positions. We expected, however, the heuristics generated in last training phases to play
significantly better than the earlier ones.
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Since in our experiments we decided to divide the game into 14 stages, we expected
the winner to be one of evaluation functions generated in stages 11 to 14. This assump-
tion proved, in general, to be true. The results of further classification proved, however,
sometimes surprising. In some cases (for example for PlainBoard5N as visible in fig-
ure 3) one or more of the early stage evaluators turned out to be unexpectedly strong
players as well. This can be attributed to the fact that it can be expected for such early
heuristics to rely heavily on material differences and such a simple approach may be
enough to beat opponents using evaluation functions being more sophisticated but ap-
plicable to mid-game positions only (with no ability to play any reasonable opening
moves).

Fig. 3. Comparison of results of subsequent phases

4 Conclusions

In this paper a generally-applicable game learning approach to creating evaluation func-
tion for two-player games has been described.

To verify usefulness of this training method, we decided to apply it to the game of
checkers. Following our previous experiments, in which we evolved linear-combination-
based heuristics, this time we concentrated on training ANNs.

We believe that our experiments prove the method is worth further analysis, testing
its various aspects and applicability to other mind games. We identified some of the
most troublesome aspects of the approach and proposed several modifications to it, that
we think are worth further research.

Although the method was introduced some time ago [16] it hasn’t been extensively
researched yet. Since only few experiments utilizing LL method have been performed
so far, we think that its true potential is still yet to be discovered. We also believe that
the name Layered Learning coined in this paper aptly describes the general idea of the
method.

Our current research is focused on direct comparison of the LL method with the
TD(λ) learning scheme.
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14. Mańdziuk, J., Osman, D.: Temporal difference approach to playing give-away checkers. In:
Rutkowski, L., Siekmann, J.H., Tadeusiewicz, R., Zadeh, L.A. (eds.) ICAISC 2004. LNCS
(LNAI), vol. 3070, pp. 909–914. Springer, Heidelberg (2004)
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18. Mańdziuk, J., Kusiak, M., Walȩdzik, K.: Evolutionary-based heuristic generators for check-
ers and give-away checkers. Expert Systems 24(4), 189–211 (2007)

19. Sutton, R.: Learning to predict by the methods of temporal differences. Machine Learning 3,
9–44 (1988)

20. Riedmiller, M., Braun, H.: Rprop- a fast adaptive learning algorithm (1992),
http://citeseer.ist.psu.edu/riedmiller92rprop.html

http://citeseer.ist.psu.edu/riedmiller92rprop.html


Author Index

Agapitos, Alexandros I-294

Aguirre, Hernán I-657, I-677, II-11

Ahmed, Faraz I-304

Akbarzadeh, Vahab II-141

Akimoto, Youhei I-154

Allmendinger, Richard II-151, II-161

Al Moubayed, Noura II-1

Alt, Leonardo S. II-381

Amaya, Jhon Edgar I-445

Arabas, Jaros�law I-114, II-411

Arenas, Maria I. Garćıa II-341, II-452
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Özcan, Ender I-496

Parizeau, Marc II-141

Pasia, Joseph M. I-677

Peleteiro, Ana I-455

Pelikan, Martin II-462

Pereira, Francisco B. II-523
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