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Preface

The Handbook of Conceptual Modeling: Theory, Practice, and Research Challenges
is about the challenges faced by conceptual-modeling researchers and their suc-
cesses in meeting these challenges by formalizing underlying theory and showing
how to put conceptual modeling into practice. Conceptual modeling is about de-
scribing the semantics of software applications at a high level of abstraction. Specif-
ically, conceptual modelers (1) describe structure models in terms of entities, rela-
tionships, and constraints; (2) describe behavior or functional models in terms of
states, transitions among states, and actions performed in states and transitions; and
(3) describe interactions and user interfaces in terms of messages sent and received,
information exchanged, and look-and-feel navigation and appearance.

In their typical usage, conceptual-model diagrams are high-level abstractions that
enable clients and analysts to understand one another and enable analysts to commu-
nicate successfully with application programmers. It is a challenge to successfully
provide the right set of modeling constructs at the right level of abstraction to enable
this communication. It is an added challenge to formalize these modeling abstrac-
tions so that they retain their ease-of-communication property and yet are able to
(partially or even fully) generate functioning application software. It is also a chal-
lenge to push conceptual modeling toward serving as analysis and development tools
for exotic applications such as modeling the computational features of DNA-level
life or modeling the ability to read and extract information from free-form text.

A central challenge of conceptual modeling is to facilitate the long-time dream
of being able to develop information systems strictly by conceptual modeling. The
handbook begins with a manifesto stating that this dream is becoming reality and
asserting that applications amenable to conceptual modeling should be programmed
abstractly, at the level of conceptual modeling. It thus asserts that “conceptual mod-
eling is programming” and that “the model is the code.” Subsequent chapters support
the manifesto’s assertions by showing not only how to abstractly model complex in-
formation systems but also how to formalize abstract specifications in ways that let
developers complete programming tasks within the conceptual model itself. In addi-
tion to addressing this central challenge, several chapters concern demanding chal-
lenge areas for conceptual modeling. These include system evolution and migration,
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spatial modeling, information integration, conceptual-model-based information ex-
traction, and biological conceptual modeling. The handbook ends with a chapter
reflecting on the theoretical foundations of conceptual modeling and addresses both
a theory of conceptual modeling (how it is practiced) and a theory of conceptual
models (how it is formalized).

Taken together, the chapters selected for inclusion nicely serve the purpose of
a handbook by collecting in a single volume many of the best conceptual-modeling
ideas and techniques, as well as the challenges that drive research in the field. The
handbook is thus suitable as a text for graduate students. It provides a firm founda-
tion for the field of conceptual modeling, and it points toward interesting challenges
and puts researchers on a path toward contributing to the conceptual-modeling dis-
cipline.

Structurally, the handbook consists of five sections, each with two or more chap-
ters. The first section directly explores the central challenge of conceptual modeling
– making conceptual models serve both as high-level abstractions and as executable
code. The second section focuses on structure modeling, while the third and fourth
sections add material whose main focus is process modeling and user-interface mod-
eling. The final section includes several special challenge-area chapters and ends
with central directions for future work both in the theory of conceptual modeling
(its practice) and the theory of conceptual models (its formalization).

Section I: Programming with Conceptual Models

Chapter 1: Conceptual-Model Programming: A Manifesto. The manifesto ex-
pounds upon the vision that all programming activities can and should be carried
out completely at the abstract level of conceptual modeling. It asserts that for ap-
plications amenable to conceptual-model designs, software developers should never
need to write a line of traditional code.

Chapter 2: Model-Driven Software Development. The essence of model-driven
software development is the idea that software models can go beyond being mere
blueprints: they can constitute the basis for automatically or semiautomatically gen-
erating the software system itself. This chapter surveys various major approaches to
model-driven software construction and illustrates how model-driven development
works in practice.

Section II: Structure Modeling

Chapter 3: The Entity-Relationship Model – Toward a Unified View of Data.
To provide historical context, this first chapter in the structure-modeling section is
a reprint of Peter P. Chen’s 1976 article, which originally appeared as the first arti-
cle in the first volume of ACM Transactions on Database Systems. The publication
of this article propelled the ER Model into its place as the foundation for concep-
tual modeling. No conceptual-modeling handbook would be complete without this
historical perspective.

Chapter 4: UML and OCL in Conceptual Modeling. This chapter explains
how the Unified Modeling Language (UML) and its accompanying Object Con-
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straint Language (OCL) support structure modeling for information systems. UML
class diagrams allow information-system-developers to model databases in terms of
classes and associations and more advanced features such as part–whole relation-
ships. OCL allows developers to enrich UML diagrams with textual constraints that
cannot otherwise be expressed.

Chapter 5: Mapping Conceptual Models to Database Schemas. Automated gen-
eration of database schemas from conceptual data models has been a mainstay of
conceptual modeling from its earliest beginnings. This chapter generalizes schema-
generation rules for use with all kinds of conceptual data models and several types
of target databases.

Chapter 6: The Enhanced Entity-Relationship Model. The Enhanced Entity-
Relationship Model (EERM) described in this chapter extends the ER Model with
complex attributes, cluster or generalization types, and relationship types of higher
order. Even with these more complex abstractions, the EERM retains its formal
mapping to database schemas and predicate-logic-based integrity constraints. Fur-
ther, the described EERM extends ER modeling beyond structure modeling to in-
clude functionality in terms of queries, transactions, and workflows. The EERM
thus facilitates codesign of structure and behavior.

Section III: Process Modeling

Chapter 7: Object-Process Methodology for Structure-Behavior Co-Design. Em-
phasizing both structure modeling and behavior modeling, this chapter asserts that
architecting a software system is best approached by codesign using a single model.
The chapter describes the Object-Process Methodology (OPM). OPM enables sys-
tem architects and designers to freely express the tight, inseparable relationships
and interactions between a system’s static and dynamic components.

Chapter 8: Business-Process Modelling and Workflow Design. Business-process
models and workflows provide invaluable understanding of organizational opera-
tions. They support process management from modeling and design to execution,
monitoring, optimization, and reengineering. This chapter explains basic terms and
concepts of process modeling and workflow design and gives details of the three
most extensively described process perspectives: the control flow perspective, the
organizational perspective, and the data perspective. The chapter also explores some
areas of research: problem detection and avoidance in control flow, correctness and
generation of process views, and exploitation of temporal information to improve
performance.

Chapter 9: BPMN Core Modeling Concepts: Inheritance-Based Execution Se-
mantics. This chapter defines an abstract model for the dynamic semantics of
the core process modeling concepts in the Business Process Modeling Notation
(BPMN). Each flow element has a rigorous behavior definition, formalized in terms
of a basic class inheritance hierarchy that includes sequence flow, flow nodes, gate-
ways, events, and activities. Developers can use the model to test reference imple-
mentations and to verify properties of interest for certain classes of BPMN diagrams.
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Section IV: User Interface Modeling

Chapter 10: Conceptual Modelling of Interaction. Just specifying the structure
and behavior of an information system is insufficient – it is also necessary to spec-
ify how end users will interact with the system. This chapter presents a practical
approach to conceptually specifying end-user interaction. The approach is embed-
ded in a model-driven engineering method, called the OO-Method, which allows
full functional systems to be generated from conceptual models. The focus of the
chapter, however, is on how the OO-Method supports interaction modeling.

Chapter 11: Conceptual Modelling of Application Stories. The development of
complex software systems requires an understanding of how the system is to be
used – how actors are to navigate through the system and which actions they are
to execute to perform certain tasks. This chapter explains how conceptual models
describe navigation paths that correspond to “telling stories” about system usage.
The chapter highlights key concepts of storyboarding such as actors, scenarios, and
tasks, as well as composed action schemes called “plots.” The chapter also addresses
the pragmatics of conceptual storyboards and discusses a development methodology
for storyboarding.

Section V: Special Challenge Areas

Chapter 12: Evolution and Migration of Information Systems. The management
of evolution, migration, refinement, and modernization is an essential component
of information-system development. Typical problems include management of evo-
lution and migration; versioning; changes to metadata; system upgrades; modern-
ization in time and space; and change detection, monitoring, and mining. A key
challenge is to minimize service disruption and down time and maximize the avail-
ability of data and applications. This chapter provides insight into several of these
problems from a conceptual-modeling point of view.

Chapter 13: Conceptual Geometric Modelling. This chapter presents a geomet-
rically enhanced ER Model (GERM), which preserves the key principles of ER
modeling while at the same time introducing bulk constructions and types that sup-
port geometric objects. GERM distinguishes between a syntactic level of types and
an explicit internal level, in which types give rise to polyhedra defined by algebraic
varieties. GERM further emphasizes the stability of algebraic operations by means
of a natural modeling algebra that extends the usual Boolean operations on point
sets.

Chapter 14: Data Integration. Data integration is about combining data residing
in different sources (virtually or actually) and providing users with a unified view
of the data. At the heart of data integration is conceptual matching and mappings,
making conceptual modeling of one sort or another central to data integration. This
chapter presents an overview of the relevant research activities and ideas in data
integration, and it discusses as an example the MOMIS system – a framework to
perform information extraction and integration from both structured and semistruc-
tured data sources.

Chapter 15: Conceptual Modeling Foundations for a Web of Knowledge. The
first-generation web is a web of pages. This chapter shows how conceptual modeling
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can play a central role in turning the web of pages into a web of knowledge to be
superimposed over the current web of pages. Success in this endeavor would enable
the web to become a gigantic, queriable database.

Chapter 16: A Conceptual Modeling Approach to Improving Human Genome
Understanding. The main purpose of conceptual modeling is to represent knowl-
edge in some application domain – usually for the purpose of developing and main-
taining information systems. In a slight paradigm shift, it is possible to imagine the
human body as an information system – highly complex, but ultimately built on bi-
ological information-processing molecules. This paradigm shift allows for exciting
possibilities: just like acquiring the source code of a manmade system allows for
postproduction modifications and easy software maintenance, the same could very
well apply to the human body. Acquiring the source code to the human information
system begins with the first step in any information system development – creation
of a comprehensive and correct conceptual model of the human genome. This chap-
ter aims at this objective.

Chapter 17: The Theory of Conceptual Models, the Theory of Conceptual Mod-
elling, and the Foundations of Conceptual Modelling. This final chapter aims at
the heart of conceptual modeling itself. It not only summarizes the foundations of
conceptual modeling, but it also goes beyond this toward the development of both
a theory of conceptual models and a theory of the practice of conceptual model-
ing. A remaining challenge for conceptual modeling is to harness its foundations
in terms of a theoretical perspective that leads to better usage by practitioners and
pushes researchers to meet its challenges head-on and resolve them.

Provo, Utah, USA David W. Embley
Kiel, Germany Bernhard Thalheim
August 2010
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Part I
Programming with Conceptual Models



Chapter 1
Conceptual-Model Programming: A Manifesto

David W. Embley, Stephen W. Liddle, and Óscar Pastor

1.1 Preamble

In order to promote conceptual-model programming (CMP), we present these CMP
articles. We hold these articles to be the defining principles for model-complete
software development.

Essentially, this CMP manifesto asserts that programming activities are to be car-
ried out via conceptual modeling. For applications amenable to conceptual-model
designs, software developers should never need to write a line of traditional code.
Thus, programming is actually conceptual-model programming.

To accommodate CMP, conceptual-modeling languages must be executable.
They must also be capable of completely deploying both databases and user in-
terfaces and conceptually expressing database access and user interaction. To en-
able CMP, a conceptual-model compiler must exist to generate underlying code,
which could be, but is not necessarily, high-level language code that itself needs
further compilation. Important, however, is that model-compiled code is beyond
the purview of CMP programmers – both for initially creating the application sys-
tem being developed and for enhancing or evolving the application system. Thus,
application-system development becomes entirely model-driven, and CMP consti-
tutes model-complete software development.
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1.2 CMP Articles

Conceptual modeling is programming. The conceptual-model instance is the
code, i.e., instead of “the code is the model,” the phrase now becomes “the model
is the code.” A conceptual-model compiler assures that program execution corre-
sponds to the conceptual specification, thus making the conceptual-model instance
directly executable.

The conceptual model, with which modelers program, must be:

• complete and holistic. The conceptual model must provide a holistic view of
all application components. It must include all necessary aspects of data (struc-
ture), behavior (function), and interaction (both component interaction and user
interaction).

• conceptual but precise. The conceptual-modeling elements must be precisely
defined and must be based on an ontological agreement that fixes the concepts
and their associated notation. Parsimony should guide, but not rule, both the mod-
eling elements and the notation.

Application evolution occurs at the level of the model. Conceptual-model pro-
grammers should evolve an application through the model instance, not through
generated, lower-level code.

1.3 Exposition

The principles of the CMP articles are tenable only if (1) a conceptual-model in-
stance is executable (Sect. 1.3.1) and (2) programmers can do all their develop-
ment work by specifying a conceptual-model instance for their application (see
Sect. 1.3.2).

1.3.1 Executable Conceptual Models

Conceptual-model programming (CMP) is about precisely capturing an application
in the language of an executable conceptual model that is sufficient for all storage,
functional, and interaction requirements of an application. Precisely capturing an
application as a conceptual-model instance is programming, i.e., it is conceptual-
model programming (known as CM programming, or CMP).

To illustrate CMP, Figs. 1.1–1.8 show some sample conceptual-model specifica-
tions. These sample specifications consider a free-lance photography agency. Free-
lance photographers register with the agency. They then submit annotated pictures.
An evaluator for the agency determines which pictures to syndicate. Customers use
syndicated pictures and pay royalties. The company pays free-lance photographers
a percentage of the royalties and keeps the rest.
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The particular notation of the conceptual-modeling language is not important, ex-
cept that it is conceptual. What is important is that a collection of conceptual-model
specifications provides all the information needed to generate a fully executable ap-
plication.

Figures 1.1–1.4 show some generic samples covering the full range of develop-
ment activities from specifying database storage structures, through stipulating be-
havior and component interaction, to describing user-interface data exchange. They
represent a coherent collection in which cross-diagram objects and components have
the same name. Together, they constitute, along with additional diagrams needed
to complete the full specification, a CM program for the free-lance photography
agency.

Free-Lance Photographer register
(Name, Address, Email)

confirmRegistration (P-ID)

printCheck

printEnvelope

submitPhotos
(P-ID, (Photo, Annotation)*) Evaluator

syndicatePhoto
(PhotoID, annotatedPhoto) Customer

photoUse
(PhotoID, payment)

cutCheck
(P-ID, Name, Address, Amount)

monthEndAlert

establishAccount
(P-ID, Name, Address, Email)

Receptionist Paymaster

Fig. 1.1 Sample CMP component interaction

establishAccount;
confirmRegistration

@register

Receptionist

Ready

printCheck(Name, Amount);
printEnvelope(Name, Address);
mail the check

@cutCheck

Fig. 1.2 Sample CMP behavior
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AmountDate

Royalty Record Photo: image Annotation

EmailP-ID Photographer

Name Address

PhotoID

Fig. 1.3 Sample CMP database structure

Fig. 1.4 Sample CMP conceptual user-interface specification

Figures 1.5–1.8 illustrate alternative graphical notation and also serve to indi-
cate that the collection of conceptual-model diagrams constituting a CM program
need not all be of the same genre. Figure 1.5 is a UML communication diagram
that corresponds to the interaction diagram in Fig. 1.1. Figure 1.6 is a statechart that
corresponds to the behavior diagram in Fig. 1.2. Figure 1.7 is an entity-relationship
(ER) diagram that is semantically equivalent to the structure diagram in Fig. 1.3.
Additionally, Fig. 1.8 is an OlivaNova user-interface specification that not only es-
tablishes the data to be exchanged, as expressed in Fig. 1.4, but also establishes the
appearance of the interface a user of the free-lance photography sees when submit-
ting photos for potential syndication.

Observe that in all diagrams fundamental constructs have two-dimensional,
graphical representations. Behavior diagrams express control flow graphically; in-
teraction diagrams express sending and receiving actions graphically; database
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Fig. 1.5 UML communication diagram equivalent to the component interaction in Fig. 1.1

Fig. 1.6 Statechart diagram equivalent to the behavior diagram in Fig. 1.2

Fig. 1.7 Entity-relationship diagram equivalent to the database structure diagram in Fig. 1.3
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Fig. 1.8 OlivaNova user-interface specification equivalent to the user-interface specification in
Fig. 1.4. (Note: an additional conceptual specification exists that associates the external names
“Submit Pictures”, “Photographer ID Number”, “Picture”, and “Picture_Description”, respectively,
with the internal names “submitPhotos”, “P-ID”, “Photo”, and “Annotation”. Also, an additional
top-level conceptual specification exists to allow a photographer to navigate to this “Submit Pic-
tures” interface.)

structure diagrams express entities, relationships, and constraints graphically; and
user-interaction diagrams express data exchange and the look-and-feel of a user in-
terface graphically. Text associated with graphical constructs provides names for
objects and components, expressions that naturally appear as text, and connecting
syntax.

Although the ability to render fundamental conceptualizations graphically is a re-
quirement, actually rendering them graphically is not. CM programmers may ex-
press conceptualizations in purely textual languages, so long as the languages are
model-equivalent. In a model-equivalent language each fundamental construct has

...
Photographer [1] P-ID [1];
Photographer [1] Name [1:*];
...
@initialize Receptionist
enter Ready
end;

when Ready new thread
@register(Name, Address, Email) then
...
end;
...

Fig. 1.9 Model-equivalent textual representation
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an isomorphic correspondence to a graphical representation. Figure 1.9 shows some
examples. Photographer [1] Name [1:*] in Fig. 1.9 corresponds to the functional
edge between the nodes Photographer and Name in the database-structure graph in
Fig. 1.3. The [1] and the [1:*] are participation constraints; thus, each Photographer
object associates with exactly one Name object, making the relationship functional.
In Fig. 1.2, the circled Ready denotes the potential for an object to be in the ready
state – when Ready in Fig. 1.9 denotes the same; both the arrows whose tails are
disconnected from the Ready state in Fig. 1.2 and new thread in Fig. 1.9 denote
spawning new threads of control; and the event-condition-action (ECA) box with
the event @register in Fig. 1.2 matches through its name with the interaction regis-
ter(Name, Address, Email) in Fig. 1.1. Allowing experienced CM programmers to
express conceptual-model instances textually provides for economy of expression
without loss of conceptualization. Ideally, CM programmers and analysts can be at
either extreme (no graphics/all graphics), or at a comfortable place in between.

To see that conceptual-model instances can be fully executable, consider the di-
agrams in Figs. 1.1–1.3. In Fig. 1.1, message passing is executable if in the code
the point of initiation of the message is known, the information to be passed is
known, and the point of reception of the message is known. An interaction such
as establishAccount(P-ID, Name, Address, Email) in Fig. 1.1 specifies the infor-
mation to be passed and provides a name for reference within specified origin and
destination active objects. The tail side of the interaction arrow specifies the ori-
gin (Receptionist for establishAccount), and the head side specifies the destination
(Paymaster for establishAccount). Within the behavior diagram of active objects, an
appropriate reference to the name specifies the point of initiation in the originating
behavior diagram and the point of reception in the receiving behavior diagram. In
the behavior diagram in Fig. 1.2, for example, establishAccount in the ECA box
initiates the interaction establishAccount(P-ID, Name, Address, Email) in Fig. 1.1,
and @register is the point of reception for the interaction register(Name, Address,
Email), also in Fig. 1.1.

Behavior diagrams require a full specification of the control flow. The behavior
diagram in Fig. 1.2, for example, consists fundamentally of a collection of ECA
rules: when events (marked by @) occur, if an object’s thread is in a prior state
and specified conditions (if any) hold, the ECA rule fires. Thus, for example, when
a thread of control is in the Ready state in Fig. 1.2 and a Receptionist receives an
@register message, the ECA rule fires, spawning a thread of control to establish an
account and confirm the registration. The new thread of control then dies, but the
original thread of control remains active in the Ready state. In addition to full spec-
ification of control flow, the events, conditions, and sequence of statements in ECA
rules must be formal enough to be compilable into code. In Fig. 1.2, the @register
ECA rule is fully formal: both the event and the actions reference fully specified
messages in the interaction diagram in Fig. 1.1. The @cutCheck ECA rule is also
fully formal if the actions are all primitive or provided in a library. Alternatively,
if the Receptionist is actually a human user of the system, all the ECA rules are
sufficient as instructions. Further, each fully specified message implicitly has a cor-
responding interface form (e.g., Fig. 1.4 for the submitPhotos message in Fig. 1.2),
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CREATE TABLE Photographer (
P-ID VARCHAR(30) PRIMARY KEY,
Email VARCHAR(30) NOT NULL UNIQUE,
Name VARCHAR(30) NOT NULL,
Address VARCHAR(30) NOT NULL
);

CREATE TABLE Photo (
PhotoID VARCHAR(30) PRIMARY KEY,
Annotation VARCHAR(30) NOT NULL,
P-ID VARCHAR(30) NOT NULL REFERENCES Photographer
);

CREATE TABLE PhotoFile (
PhotoID VARCHAR(30) PRIMARY KEY REFERENCES Photo,
Photo BLOB
);

CREATE TABLE RoyaltyRecord (
RoyaltyRecordID INT PRIMARY KEY,
Date DATE NOT NULL,
Amount VARCHAR(30) NOT NULL,
PhotoID VARCHAR(30) NOT NULL REFERENCES Photo,
P-ID VARCHAR(30) NOT NULL REFERENCES Photographer
);

Fig. 1.10 Generated database schema

which can be directly implemented (as-is) or visually enhanced to be more pleasing
with an improved user-interface specification (e.g., Fig. 1.8).

Structure diagrams must fully specify the database schema. From the conceptual-
model instance either in Fig. 1.3 or in Fig. 1.7 the CM compiler can infer the SQL
schema in Fig. 1.10. From Fig. 1.7, for example, the mapping algorithm gener-
ates each entity as a table with its associated attributes and foreign-key references.
Then, since the attribute Photo:image for the entity Photo is an image, which is
to be implemented with the type BLOB, the mapping algorithm generates the at-
tribute Photo:image as a weak entity and thus as the table PhotoFile, which is de-
pendent on the table Photo. Additional constraints, such as check constraints and
alternative-type constraints, can be added to the conceptual database structure di-
agram and propagated into a formal schema specification. The type specification
image in Fig. 1.3 is an example; specifying Amount:smallmoney in place of Amount
in Fig. 1.3 would be another example.

1.3.2 Conceptual Modeling and CMP

CMP development work includes analysis, specification, design, implementation,
deployment, enhancement, and evolution. CM programmers work through every
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stage conceptually, writing all descriptions in a conceptual-modeling language. Typ-
ically, initial stages are informal – progressing through the stages is a process of for-
malizing the CM descriptions until in the implementation stage they are fully formal
and ready for deployment. Subsequent enhancement and evolution makes direct use
of CM descriptions, which are kept for this purpose. CM programmers should never
discard deployed conceptual-model instances (the executable conceptual-model in-
stances are the code), and CM programmers should neither enhance nor evolve de-
ployed applications by altering compiled code, but rather always by altering and
recompiling conceptual-model instances.

The notion of “tunable formalism” plays an interesting role in CMP. The idea is
that formalism in conceptual-model descriptions can be “tuned” “down” or “up” de-
pending on the needs of the development team. When tuned down, clients, who con-
tract with software-development teams to produce application software and who are
typically untrained in CMP, can usually read and understand informal conceptual-
model descriptions. Thus, CM analysts can directly use conceptual-model descrip-
tions, whose formalism is tuned down, to enhance communication between clients
and CM programmers. When tuned up all the way, the application is fully imple-
mented. In between, CM programmers can read and understand the developing ap-
plication abstractly and can begin to see various parts of the system execute as they
become formal enough for emulation or compilation.

CMP accommodates various development strategies. CM developers need not
complete one stage of the process before moving on to the next, and various parts
of the application can be at different development stages at the same time. CM
developers can forge ahead with the development of a kernal for the application and
then treat the remaining development as enhancement and evolution.

At each stage of development CMP offers abundant opportunities for managing
software development and for enhancing communication among development team
members and between team members and clients. We offer a few insights:

• Analysis is about understanding an application and documenting that under-
standing. A strength of conceptual modeling is its ability to promote a common
understanding within a heterogeneous development team. Conceptual modeling
serves analysts well in their role of a “go-between” – it facilitates precise and
concise communication with both clients and programmers. Clients can under-
stand abstract conceptual models with the formalism tuned down; programmers
tune up the formalism to make the application executable. Clients, analysts, and
programmers all use the same CM notation, which results in better communica-
tion.

• Specification is about producing a detailed and precise proposal for a system.
A difficulty with specification is that clients often do not really know what they
want until they see it. Prototyping helps alleviate this concern, and CMP facili-
tates prototyping. Conceptual models with tuned up formalism can execute fully,
but even with the formalism tuned down, they are still executable. Every CM
diagram is executable as a prototype. When an emulator encounters an informal
statement, it can explain its state and display the informal statement it is “execut-
ing,” and it can accept user input to allow it to continue to operate and show in
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mock-up style how the application works. Mock-ups of end-user interfaces can
be real since their specification automatically allows them to execute as part of
the CM application. One view of CM programming is that it is about quickly
developing a prototype and then enhancing the prototype until it becomes the
deployed application.

• Design is about organizing a software system to achieve its goals, e.g., efficiency,
maintainability, extensibility, and similar properties. An example of design is
database normalization; a CM designer can use standard conceptual-modeling
techniques to canonicalize a structure-model diagram to guarantee that a CM
compiler’s database-schema generator produces a normalized schema. A CM
compiler should, as a matter of course, optimize the code it generates, but when
optimization depends on “proper” conceptualization, as it does for database nor-
malization, the CM designer should organize conceptual-model instances so that
the CM compiler generates optimal code. CMP naturally promotes maintainabil-
ity and extensibility. Conceptual-model diagrams are the high-level code. Be-
cause CMP compiles models into executable systems, the models cannot, as so
often is the case with conceptual diagrams, be either summarily discarded or left
in a disheveled state not synchronized with nor updated to match the deployed
application.

• Implementation is about faithfully translating a design into code. For CMP, this
translation is automatic. Thus, implementation requires zero effort. This does
not mean, however, that application development is effortless. Rather, it means
that the effort is shifted upstream. The emphasis is on analysis and specifica-
tion, rather than on translating designs to programming-language syntax. Signif-
icantly, software created via CMP is “defect-free” with respect to the implemen-
tation layer. If the model compiler faithfully translates higher level specifications
into lower-level code, then the only defects that can occur in a CMP-generated
system are either design, specification, or analysis issues or problems with stan-
dard libraries. Thus, by avoiding implementation-layer defects, CMP promotes
early detection of design-level defects.

• Deployment is about delivering the application system for client use. Because
CM programs are immediately executable, at least in prototype fashion, pre-
alpha, alpha, and beta releases follow naturally as CM programmers proceed
through analysis and specification. Eventual deployment is a natural consequence
of fully formalizing and properly organizing conceptual-model instances in ac-
cordance with client requirements.

• Enhancement and evolution are about making deployed applications better
serve end users. In one sense, enhancing and evolving a deployed CMP ap-
plication is no different from enhancing and evolving an application coded in
a high-level language, except that CM programmers continue to work at a con-
ceptual level rather than at the syntax level of the high-level language. Often,
however, when evolving code written in a high-level language, enhancement and
evolution require re-conceptualizing some parts of the application to serve as
a starting place for improvements – either through reverse engineering or by up-
dating and synchronizing conceptual-model instances. Although this step is often
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both necessary and costly when programming in a high-level language, it is never
necessary and never costs anything in CMP application development because the
code is already the model, which renders re-conceptualization unnecessary.

Appendix

1. Principles similar to CMP expounded by others:

Others have set forth principles similar to CMP. In 2004, Brown, Iyengar, Rumbaugh, and
Selic published The MDA Manifesto expounding the principles of Model-Driven Architec-
ture [1]. The MDA Manifesto has three tenets:

1. Direct representation: reduce distance between problem domain and software repre-
sentation

2. Automation: mechanization of facets of software development that do not depend on
human ingenuity and, especially, mechanization of bridging the gap between problem-
domain representation and software representation

3. Open standards: open-source development and accepted industry standards

The CMP Manifesto harmonizes well with the MDA Manifesto. The CMP Manifesto,
however, takes automation a step further. It insists that conceptualizations are to be fully
executable so that there is no gap between a conceptualization and a software represen-
tation. A CMP conceptualization is a software representation. Although not opposed
to domain-specific modeling languages, generic, all-purpose conceptual-modeling lan-
guages must be among the languages available for application development. Ideally,
CM programmers should have a variety of notational choices. Domain-specific nota-
tion is acceptable, and perhaps even preferable, but to be a CMP conceptualization,
a domain-specific conceptualization must be executable.

2. Cautions about CMP:

In 2008, Selic wrote MDA Manifestations [27], a commentary on the MDA Manifesto.
Selic’s commentary includes cautions about Model-Driven Development (MDD). He as-
serts that MDD likely requires the following:

1. Education (shift in view to understanding clients and users and especially an increase
in the introduction of MDD methods in software-engineering education)

2. A comprehensive and systematic theory of MDD (modeling language semantics and
design, model transformations, model analysis of safety and liveness properties, model-
based verification, model management, MDD methods and processes, and tools)

3. Standards (the key to success of any widely used technology)

Selic believes that the shift to MDD is likely to be gradual. He also believes that it will
be tough to see the MDA Manifesto – and by implication the CMP Manifesto – through
to adoption. This does not mean, however, that we should not hold CMP as a goal and
work toward its realization and general acceptance. The benefits appear to be worth the
costs.

3. Extreme non-programming:

We sometimes refer to CMP as XNP (eXtreme Non-Programming). Like XP (eXtreme Pro-
gramming), programmers begin to code early in the development process, and the code is
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the model. Unlike XP, CM programmers do no programming at all – at least, they do not
program in the traditional sense. Instead, the model is the code. XNP retains the advan-
tages of XP and overcomes its disadvantages. A primary advantage of XP is that it allows
clients, analysts, and programmers to begin to see the application run immediately. XNP has
this same advantage. XNP also retains other advantages typically attributed to XP, includ-
ing responsiveness to changing client requirements, short development cycles resulting in
improved productivity, and frequent client checkpoints and continuous client involvement.
Primary disadvantages of XP are that it lacks overall analysis and has no overall design
specification. XNP overcomes these disadvantages because the process focuses directly on
analysis and specification, and the result of XNP is a design specification.

4. CMP in current practice:

Model-driven engineering (MDE), which is also referred to as model-driven development
(MDD) or model-driven architecture (MDA), advocates the creation of software systems
by model specification. As is the case for CMP, the models are abstract conceptualizations
of particular domain concepts, rather than algorithmic specifications written in a high-level
language, and conceptual modeling is the primary means of software production. In MDE,
CASE tools generate code skeletons or, when enough detail is provided, they generate com-
plete, deployable systems. Usually, however, only parts of the deployed system are fully
generated. CMP requires full automation, including the full automation of enhancements
and system evolution. Full automation avoids the prevalent pitfall of having conceptual di-
agrams that are not synchronized with deployed systems. To the extent that MDE supports
full automation, MDE and CMP are the same.

5. CMP status and outlook:

CMP is not just an academic dream. There are numerous commercially available model
compilers, such as IBM Rational Rhapsody, the OlivaNova tool suite from CARE Tech-
nologies, Netfective Technology Group’s Blu Age, Obeo’s Acceleo, the UWE UML Web
Engineering platform, and WebRatio from Web Models to name just a few. As a specific
example, consider the OlivaNova technology, developed by CARE Technologies [3], S.A.
OlivaNova implements the OASIS approach to CMP [21, 22]. OASIS has a conceptual
model with a precisely defined semantics that allows for a formal specification of all func-
tionality needed for a final application. The conceptual model has four views that together
completely specify an application for a management information systems: a static view,
a dynamic view, a functional view, and a presentation view. A conceptual-model compiler
translates modeling primitives into their corresponding software representations. The Oli-
vaNova technology automatically generates the final application from the specification of an
OASIS model. The technology has two main components: a modeling tool called OlivaNova
Modeler and a model compiler called OlivaNova Transformation Engine. The Modeler is
a support tool that allows its users to specify an OASIS conceptual model and to verify
that the conceptual model functions as expected. Then, when ready, the developer sends an
XML representation generated by the Modeler to the OlivaNova Transformation Engine, in-
dicating the target implementation platform and some configuration parameters according
to the selected platform. The Transformation Engine’s compiler automatically generates
the source code of final applications, which is implemented for the selected platforms in
a three-tier software architecture.

6. Additional readings:

Books by Dori [6], by Embley [8], by Embley and Thalheim [10], by Mellor and Balcer [17],
by Morgan [19], by Pastor and Molina [22], by Raistrick et al. [25], and by Rossi, Pastor,
Schwabe, and Olsina [26] directly advocate CMP and explain how it works. Articles by
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Liddle, Embley, and Woodfield [15, 16] describe model-equivalent languages and their role
in CMP.

Books by Olivè [20], by Papazoglou, Spaccapietra, and Tari [23], and by Thalheim [28]
focus more on conceptual modeling itself, but have a strong component that leads to CMP.
A book by Harel and Politi [13] describes a CMP-styled approach to creating executable
systems via statecharts. Another book by Ceri et al. [5] describes WebML, a CMP-styled
approach to creating data-intensive web applications.

Many published articles discuss, argue for, and explain various aspects of CMP: formal
specification of active objects along with rapid prototyping and object reification [21], tun-
able formalism [4], seamlessly combining multiple kinds of conceptual models [7], proto-
typing with conceptual models [14], user-interface modeling patterns [18, 24], and state-
charts, both early work [12] and from a historical perspective [11].

Conceptual modeling itself has a long history. The book edited by Brodie, Mylopoulos,
and Schmidt [2] contains several articles that together provide an early look at the overall
process leading to CMP. Proceedings of the International Conference on Conceptual Mod-
eling [9] contain many articles that describe the research and development of the field of
conceptual modeling. An article by Thalheim [29] summarizes and explains the conceptu-
alization process in terms of an overall theory of conceptual modeling.
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Chapter 2
Model-Driven Software Development

Stephen W. Liddle

Abstract Software development is a complex and difficult task that requires the in-
vestment of significant resources and carries major risk of failure. For decades now,
researchers have proposed “model-driven” approaches to improve the state of the
art in software engineering. Software models are intended to improve communi-
cation among stakeholders and aid in the overall understanding both of a problem
space and a proposed software solution that satisfies given requirements. As with
architectural blueprints or miniature 3D models, software models make it possi-
ble to explore and test a design and its ramifications before investing in the actual
build-out. The traditional approach to software development involves a modeling
process – analysis, requirements specification, design – followed by an implemen-
tation process. In the traditional approach, programmers manually write software
that conforms (more or less) to specifications described in software models; this
process involves transformations that are often incomplete, awkward, and informal.
The essence of model-driven software development is the idea that software models
can go further than being mere blueprints, and constitute the basis for automatically
or semiautomatically generating the software system itself. In this chapter, we sur-
vey various major approaches to model-driven software construction and illustrate
how model-driven development works in practice.

2.1 Introduction

Software development is a complex and difficult task that requires the investment of
significant resources and carries major risk of failure. According to its proponents,
model-driven (MD) software development approaches are improving the way we
build software. Model-driven approaches putatively increase developer productivity,
decrease the cost (in time and money) of software construction, improve software
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reusability, and make software more maintainable. Likewise, model-driven tech-
niques promise to aid in the early detection of defects such as design flaws, omis-
sions, and misunderstandings between clients and developers. The promises of MD
are rather lofty, and so it is only natural to find many skeptics.

As Brooks famously described [27], software engineering will not likely deliver
the sort of productivity gains we experience in hardware engineering where we see
“Moore’s law”-styled doublings every 24 months [121]. Thus, if we accept Brooks’
premise, nobody should expect any innovative approach to software development to
be a “magical silver bullet” that will increase productivity by an order of magnitude
within a decade. Unfortunately, the amount of hyperbole surrounding the various
flavors of MD sometimes makes it seem like advocates believe MD to be a silver
bullet. Model-driven development is no panacea. However, we believe that model-
driven is a superior approach to software construction. This chapter examines the
current state of the art in model-driven software development.

We begin by characterizing the various approaches to model-driven development
(Sect. 2.2). Then we examine what modeling is and why we engage in modeling
(Sect. 2.3). Next, we explore the history of software modeling that has led to current
model-driven approaches and discuss what is required to make our models formal
and executable (Sect. 2.4). With this background laid out, we explore the details
of various model-driven approaches to software development. We commence with
a reference model (Sect. 2.5) and then examine MDA (Sect. 2.6), giving special
attention to the Executable UML variant of MDA (Sect. 2.6.3). In Sect. 2.7 we de-
scribe the OO-Method approach to MD and the comprehensive OlivaNova tool that
implements this approach. We next explore MD in the context of web engineering
(Sect. 2.8) and then examine the argument for an agile approach to MD (Sect. 2.9).
We conclude by summarizing available tools, arguments for and against, and direc-
tions for future research (Sect. 2.10).

2.2 Overview of Model-Driven Approaches

There are numerous ideas that come under the umbrella of model-driven ap-
proaches. We take an expansive view of what “model-driven” means. Model-driven
engineering (MDE) and model-driven development (MDD) are generic terms de-
scribing an approach where we represent systems as models that conform to meta-
models, and we use model transformations to manipulate the various representations
(see, for example, [15, 28, 90, 132]). We use the terms MDD and MDE interchange-
ably.

Although the phrase “model-driven” has been used for decades with respect to
software development, one of the earliest mentions of a “model-driven approach”
comes from the work done by Embley et al. on object-oriented systems model-
ing (OSM) (see [53]; the book’s subtitle is “A Model-Driven Approach”). Object-
oriented methodologies were a topic of lively discussion in the early 1990s, and
OSM eschewed any specific software process methodology in favor of letting model
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creation drive the development process. This is analogous to the idea of maps and
directions: when someone needs help driving to an unfamiliar destination, we can
either give turn-by-turn instructions on how to drive from their current location, or
we can give them the address of the destination and let them use their own map
to determine a route. If the path is relatively straightforward and there are no un-
expected delays or impediments along the way, the instructions approach may be
superior. But when exceptions occur, the map approach may be superior. In prac-
tice, a hybrid approach often gives the best of both worlds: expert guidance based
on local knowledge can help travelers avoid common pitfalls, but their ability to
read maps provides an improved mental model of the travel process, and makes
them more resilient in the face of unexpected challenges. By taking a model-driven
approach to software development, OSM focuses developers on creating models as
central artifacts of interest, and remains independent of, and neutral with respect to,
any particular software process methodology.

A notable MDD initiative is the Object Management Group (OMG) Model
Driven Architecture (MDA) [111, 112, 155]. MDA can be viewed as an instance
of MDD where the core standards and tools are the OMG standards – Unified Mod-
eling Language (UML), MetaObject Facility (MOF), XML Metadata Interchange
(XMI), and the Common Warehouse Metamodel (CWM). Because OMG is an in-
fluential industry consortium, MDA has gathered considerable attention. However,
just as UML is not the only object-oriented modeling language, so also MDA is
not the only model-driven approach. There are numerous non-MDA initiatives –
commercial and academic – that continue to advance the state of the art in MDD.

Metaprogramming, where a program manipulates itself or another program, of-
ten leads to forms of programming that are arguably model-driven, or at least
model-based. One class of metapgrogramming, template-based generic program-
ming, starts with a modeling process to create a template from which programs
can be generated. The related field of domain-specific languages is also inherently
a model-based approach. A domain-specific language, in contrast with a general-
purpose programming language, models aspects of a particular problem domain and
provides special-purpose constructs tailored to the needs of that domain.

Similarly, in the field of modeling, domain-specific modeling (DSM) uses a mod-
eling language customized to a particular domain to represent systems, and often in-
cludes the ability to generate code for corresponding software systems. CASE tools
are forerunners of DSM languages and tools, but they are not the same. A CASE
tool is created by a vendor to address a class of software engineering problems,
whereas DSM tools let clients create custom domain-specific models and generate
code using models and concepts that are specific to the client’s particular needs.

Another closely related area is generative programming, which seeks to model
families of software systems so that they can be created assembly-line style; the
central idea is to generate code for each of the desired systems in an automated way
from a generative domain model [34]. Many researchers have seen a need to indus-
trialize software production. The software factories work gives an excellent descrip-
tion of this perspective [70, 71]. Research in software architecture has demonstrated
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that we can increase productivity by developing families of software systems as
a product line rather than as one-off creations [34, 44].

MD is also a potential solution to the problem of integrating inherently heteroge-
neous systems whose development requires the multi-disciplinary talents of workers
who are experts in widely differing domains [156]. Consider, for example, the soft-
ware required in a modern automobile. Physical control systems may manage the
engine, brakes, and passenger-restraint systems in a mostly automatic and hidden
manner, while an in-dash touch-driven display may give access to a more traditional
information system that offers satellite navigation and mapping features, media
playback, and the viewing of statistical information. The field of model-integrated
computing [156, 161, 168] brings MD techniques to the problem of engineering
these types of systems.

As models become increasingly important, so too does the management of mod-
els and particularly of transformations or mappings between models. Research on
generic model management addresses techniques for treating models and map-
pings as first-class objects that have high-level operations to simplify their man-
agement [18]. The Rondo project provides a working prototype of a programming
platform for generic model management [113, 123].

If a model is a representation of a system, then in some sense, programming in
any language involves some kind of model. A C++ programmer thinks about the
subject domain in terms of C++ classes and instances. A SQL programmer views
the subject domain through the lens of tables that have rows and typed columns.
Whether we explicitly create artifacts we call models – especially conceptual mod-
els – or whether we implicitly map between our internal mental models of the world
and the systems we produce, we are nonetheless involved in a modeling process as
we construct software. And so MD is more about raising the level of abstraction of
our programming models rather than introducing models into the process in the first
place.1

Indeed, as Brown points out [28], there is a spectrum of modeling from code-
only solutions to model-only solutions (see Fig. 2.1). As we have argued, even in
the code-only scenario, developers still create mental models and informal models,
but the system representation is entirely in the code. In the second scenario, the
developer uses models primarily as a means for visualizing the code; a reverse en-
gineering tool reads the code and displays a corresponding model view of what is
captured in the code. In the round-trip engineering scenario, a tool maintains tight
correspondence between model and code; changes made to the code are immedi-
ately reflected in the model and vice versa. In the model programming scenario, the
model is the code, and the lower level of code is simply generated and compiled
behind the scenes; all changes to the system happen at the model level2 (see Chap. 1

1 Our argument is a special case of the assertion in [15] that “[m]odeling is essential to human
activity because every action is preceded by the construction (implicit or explicit) of a model”
(emphasis added).
2 This is analogous to compiling a FORTRAN program by translating it to assembly language,
which is then assembled and linked. The assembler version is to “code” as the FORTRAN version
is to “model”.



2 Model-Driven Software Development 21

Model

Code

Model

Code

Model

Code

Model

Code

“What’s a
model?”

“The code is
the model”

“Code and
model coexist”

“The model
is the code”

“Let’s do
some design”

Code only Code
visualization

Roundtrip
Engineering

Model
programming

Model only

Model

(implicit, informal,
mental-only)

Code

(only informally
connected to model,

if present at all)

Fig. 2.1 The modeling spectrum (adapted from [28])

for a detailed discussion of conceptual model programming). The final scenario is
what happens when either we model without creating an operational system, or we
develop models that are never formally tied to the operational system; perhaps we
start by creating an ER diagram to generate an initial database schema, but then we
evolve the schema independently of the model so that they become disconnected.
We view the round-trip engineering and model programming scenarios as model-
driven, while the others are at best model-based or model-aware.

2.3 Modeling

To understand model-driven software development, it is helpful to review some
background on models and modeling. What is a model, and why do we as humans
and as software developers build models?

The term model is heavily overloaded. A model may be “a set of designs ...
for a projected building or other structure,” or “a three-dimensional representation”
of such a building or structure [131]. In the mathematical logic sense, a model is
a “set of entities that satisfies all the formulae of a given formal or axiomatic sys-
tem” [131]. Within software development, we also overload the term. In this chapter,
when we say “model” without an adjective we mean a diagram or model instance
that conforms to a particular modeling language.

Models come in many forms. Three useful categories of models include graph-
ical, mathematical, and textual. A graphical model is a two-dimensional diagram
that graphically depicts concepts using a combination of lines, shapes, symbols, and
(usually) some text (e.g., an ER diagram). A mathematical model describes some
aspect of a system as a formula (e.g., A D �r2 is a model for the area of a circle).
A textual model describes a portion of a system using narrative and prose (e.g., we
can view a “scenario” description as a textual model of a process).
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No matter the particular form, common to all models is that they represent some
aspect of a system that the modeler is studying or creating [150]. To be useful, such
a representation abstracts (separates or summarizes) some aspect of the underly-
ing system. Abstractions are helpful because they let us focus on specific aspects
of a system without needing to simultaneously consider the complexity of the full
system.

Implicit in our definition of “model” is the fact that it is a written artifact. As
humans we form abstractions of the world around us – we classify, generalize, asso-
ciate, and otherwise construct purely mental models. It is in the writing down of our
models that we make it possible to share, discuss, revise, and implement software
systems that conform to those models [28].

Software engineers create models for many of the same reasons architects and
engineers create blueprints and 3D miniatures:

• Models help us communicate more effectively with the many stakeholders who
need to participate in the software development process. For example, a client
usually finds it easier to understand a graphical class diagram than, say, C++
source code. Improved communication leads to increased understanding, more
reasonable expectations, and a better overall work product.

• Models let us visualize the finished product without requiring its full construc-
tion first. By examining the model we can discover design flaws that are far less
expensive to resolve up-front rather than after construction has begun (or worse,
been completed). In the same way a 3D model of an automobile can be examined
in a wind tunnel to tune its aerodynamic performance, a model of a graphical user
interface can be placed in front of typical users early on to test usability charac-
teristics.

• Models constitute precise specifications of work to be done. They provide an ac-
curate roadmap of the work, thus allowing project managers to estimate, sched-
ule, and otherwise plan the construction phase.

The value of models and abstractions in software is substantial, as the history of
programming languages and operating systems demonstrates [106]. The history of
computing is a study in layers of abstraction. Programming progressed from hard-
wired computers to stored-program machines, to assembly languages, to high-level
languages, CASE tools, object-oriented systems, and domain-specific languages.
Operating systems were introduced to manage the complexities of interfacing with
the hardware. “Device drivers” abstracted out the challenges of interfacing to stor-
age devices, printers, and other peripherals so developers could concentrate on ap-
plication development, not low-level hardware control. The abstraction of “pro-
cesses” introduced multi-tasking in a way that allowed software developers to avoid
dealing with most of the associated complexity. Each step in the evolution of pro-
gramming languages and operating systems has introduced higher level abstractions
into our tools.

Programmers today commonly think in terms of software objects rather than 0s
and 1s stored in a particular location. Software developers can focus on the ap-
plication domain much more readily because the abstractions they use to build their
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products are conceptually much closer to that application domain. Today’s program-
mers often develop to highly virtualized platforms – whether it be a Java virtual
machine or a web-browser environment that uses HTML, CSS, and JavaScript. And
not coincidentally, software development today is also a study in reuse. Develop-
ers commonly leverage large libraries – both built-in and external – in their soft-
ware projects. An underlying reason for these improvements in the state of software
development is that models and abstractions have improved significantly over the
years.

2.4 Software Modeling

Since modeling in general has so many uses and benefits, we should expect mod-
eling to be a major research topic in computing, and indeed this is the case. The
decade of the 1970s saw the development of formal approaches to data model-
ing. Abrial [1] and Senko [154], among others, explored binary relationships as
an abstraction for data modeling. Falkenberg built on this work and developed the
“object-role model” (ORM) framework that used n-ary relationships as a fundamen-
tal data modeling construct [56]. Meanwhile, Chen proposed the highly success-
ful entity-relationship (ER) model [42] that has become nearly synonymous with
database design. Tsichritzis and Lochovski [175] and Brodie [21] describe much of
the early work on data models and conceptual modeling well.

During the 1980s, researchers studied how to improve data models and experi-
mented with so-called semantic data models that introduced additional constructs
with more semantic richness than the earlier, simpler models [79, 140, 177]. Richer
constructs came with more complex notation, and the results were not always an im-
provement over the simpler predecessor data models.3 However, research on seman-
tic data models gave way to work on object-oriented (OO) models [24, 53, 144, 159],
which researchers debated hotly in the early-to-mid 1990s.

The so-called OO method wars led to the proposal of a unified OO model,
and the Unified Modeling Language (UML) emerged in 1995 (as the Unified
Method version 0.8) and was subsequently standardized by OMG. The latest ver-
sion, UML 2.2 [181], defines fourteen different diagram types (see Fig. 2.2), includ-
ing seven that are structural and seven that are behavioral in nature. As with the
work on semantic data models, researchers often criticize UML for its complexity,
among other complaints [57, 83, 96, 165, 174]. However, UML has become not
quite universal, but perhaps ubiquitous, in spite of the criticisms.

Where modeling has worked especially well is in the design of database schemas.
From an ER or OO schema, it is straightforward to generate a corresponding nor-
malized relational database schema. Many practitioners equate conceptual modeling
with database design because the early conceptual models only addressed structural

3 Bolchini and Garzotto discovered this in the domain of MDWE as well [16]; see Sect. 2.8.
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Fig. 2.2 UML 2.2 diagram types (structural and behavioral)

aspects of information systems. ER and ORM, for example, do not attempt to model
behavior.

In contrast, the OO models have been especially helpful in capturing behavioral
aspects of systems. Note that fully half of the diagram types in UML 2.2 address
these behavioral aspects (see Fig. 2.2). Generally, the OO paradigm describes be-
havior in terms of the lifecycles of objects (often represented as a state machine)
and their interactions with other objects.

When we include system behavior in the model, it becomes possible to generate
more than just the system schema from the model; thus we can generate source
code for the system, whether in the form of code skeletons, or in the form of fully
operational code that compiles into a deployable application.

If we make the behavioral model formal, then it becomes executable. OSM
is an example of a modeling language that supports the creation of fully exe-
cutable models [100, 102]. The OSM metamodel is itself expressed formally in
OSM [43, 53, 54, 102]. Given a formal metamodel, it is a straightforward process
to interpret any particular model instance formally. OSM model instances can be
executed simulation-style in a prototyping tool [89] or translated automatically to
a model-equivalent language and executed directly [102].

Many other researchers have also advocated software development approaches
that begin with executable models. Notable examples include the work of (1) Harel
et al. on the Statecharts, STATEMATE, and Rhapsody research line [66, 74–76, 78,
82], (2) Pastor et al. on the OASIS, OO-Method, and OlivaNova group of projects
[138, 139, 141], and (3) Mellor et al. on the executable UML line of research [108,
126, 145, 188]. We address these in subsequent sections of this chapter.

What is different about executable conceptual models is that they include behav-
ior and interaction, not just structural components. Furthermore, executable models
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generally must conform to a precisely, formally specified metamodel so that the
model semantics are clear. We explore this concept further by introducing OSM as
a reference model.

2.5 OSM: Making Conceptual Models Formal and Executable

Object-oriented systems modeling (OSM) views the software development process
as a set of activities with different concerns: analysis, specification, design, imple-
mentation, and evolution [52–54, 102]. The OSM philosophy is that all these activi-
ties should share a single core conceptual modeling language, and shifts in lifecycle
phases merely constitute shifts in perspective. Analysis is the study of system, which
can be existing or planned; typical analysis-phase activities center around gathering
and documenting information regarding user requirements and current system char-
acteristics. Implementation, on the other hand, involves creating a running system
that delivers required functions. In OSM, a single core model serves as the basis for
all development activities.

OSM has three major views (diagram types in UML parlance) for describing ob-
ject and relationship structure, behavior, and interaction, but all three can be com-
bined in a single seamless model. Figures 2.3 through 2.6 give an example. Fig-
ure 2.3 shows a simple object-relationship model instance for the banking domain.
Figure 2.4 shows a simple state net that describes at a high level the behavior of Ac-
count objects. Figure 2.5 shows how customers and banks can interact. Figure 2.6
shows all three views in a single diagram.

OSM notation is fairly consistent with other object-oriented modeling languages.
Rectangles represent object sets and lines represent relationship sets. Lexical object
sets may either have a dashed border or (as Fig. 2.3 shows) no border at all. Min:max
numbers near a relationship-set connection indicate participation constraints (e.g.,
0:4 near account means that an account can be associated with at most four cus-
tomers). Names and reading arrows indicate relationship-set names (e.g., Bank
manages Account and Customer owns Account are the two explicit relationship-

Name
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Birth Date

Customer

Person

Account

Bank

owns

0:4

manages

Account Number

Balance

Fig. 2.3 Banking example object-relationship model instance
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Fig. 2.6 Combined OSM diagram corresponding to Fig. 2.3 through 2.5

set names in Fig. 2.3). Arrow heads on relationship-set lines indicate functional
relationships (e.g., a person has exactly one name and birth date; an account has ex-
actly one account number and vice versa), while no decoration on the line together
with no participation constraint indicates no limit on the number of associations (we
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can also write this as the participation constraint 0:*). An open triangle represents
generalization/specialization (e.g., customer is a person).

A state net (see Fig. 2.4) describes the behavior of an object – its lifecycle
from creation to destruction. We write states as rounded rectangles (e.g., Open and
Closed), and transitions as divided rectangles with a transition trigger written in the
upper portion, and an action written in the lower portion of the transition rectan-
gle. A trigger is a boolean expression, and an “@” sign on a trigger indicates the
occurrence of an event. When the prior state(s) for a transition are all on, we say
that the transition is enabled, and it can fire when the trigger is true. When a transi-
tion fires, it (1) turns off prior states, (2) executes the transition action (if any), and
(3) turns on any subsequent states. Arrows between states and transitions identify
prior and subsequent states, and indicate flow of control. When the tail of an arrow
leaving a state has a half circle slightly separated from the state, this indicates that
the state is not turned off when the transition fires (i.e., a new, concurrent thread of
control can begin when the transition fires). For example, when a balance inquiry
transition executes, the corresponding account still remains in the Open state, and
the Give the balance action executes on its own thread. A transition with no prior
states indicates an initial transition that creates an object, while a transition with no
subsequent states indicates a final transition that destroys an object. Initial and final
transitions may be written as vertical bars as in Fig. 2.4.

An object interaction model instance documents communication or interaction
between objects, as Fig. 2.5 shows. In this example, banks mail statements to cus-
tomers and customers request account balances from banks. When a customer re-
quests an account balance, he or she also indicates the corresponding account num-
ber. An arrow with a lightning-bolt symbol at the center of a circle indicates an
interaction; the tail of the arrow indicates the interaction origin, while the head in-
dicates the destination.

Figure 2.6 shows a unified version of Figs. 2.3 through 2.5. The primary differ-
ence is that in Fig. 2.6 we have represented Account as a high-level object set with
Account Number, Balance, and two relationship sets nested inside. OSM has fully-
reified high-level constructs, meaning that high-level object sets, relationship sets,
states, transitions, and interactions are first-class elements that can be treated just
like their non-high-level forms. High-level components are helpful for organizing
a model and displaying simplified views (see Fig. 2.7, for example).

OSM has a number of features that make it well suited to model execution.
As we observed earlier, OSM has a precise formal foundation; notably, the OSM
metamodel is itself expressed in OSM and translates directly to first-order predi-
cate calculus [53, 54]. Figure 2.8 shows the layers of OSM’s modeling hierarchy.
The metamodel (level M2) contains constructs such as Object Set, Relationship Set,

Customer Bank

owns

0:4

manages

Account

Fig. 2.7 Collapsed high-level view corresponding to a portion of Fig. 2.6
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Fig. 2.8 OSM three-tier
seamless model
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State, and Transition. The model instance (level M1) contains domain constructs,
such as Bank, Customer, and Account in our running example. The data instance
(level M0), contains objects and relationships such as particular accounts, their bal-
ances, customers, and relationships among these objects. This three-tier model is
seamless because a single underlying formalism expresses them all, and elements at
one level are directly connected by is-a relationships with elements at the next level
(Account 1 and Account 2 are instances of Account, and Account is an instance of
Object Set). Constraints and expressions in OSM can refer to elements within any
of the three levels as needed. Furthermore, OSM is computationally complete [102],
and so can directly model any algorithm or data structure.

Additionally, OSM embraces a concept called tunable formalism [37], allowing
users to work at levels ranging from informal to mathematically rigorous. Formal
models generally do not provide enough expressiveness or allow the varying lev-
els of detail and completion that practitioners need to build real systems. On the
other hand, model execution cannot be built on informal models. Because of OSM’s
precise formal foundation, we can interpret any model instance uniformly both at
a summary level and at a detailed level. For example, the model instance in Fig. 2.7
has a completely consistent formal interpretation regardless of whether we include
or ignore the details nested within the high-level Account object set. Similarly, trig-
gers associated with transitions could be written in a natural language at first. In this
form the statements are merely incomplete w.r.t. model execution: they represent
propositional statements whose truth cannot be computed automatically. If we de-
sire automatic computation (as opposed to consulting an external oracle), we simply
replace the incomplete statements with an executable refinement.

For example, the natural-language action description Give the balance in Fig. 2.6
could be refined to an executable construction by specifying for the interaction a re-
turn parameter named balance and then replacing the natural-language phrase with
the statement balance := self.Balance. The right-hand side of the assign-
ment statement is a query that finds the Balance object associated with the current
Account object. Assigning that object to the return parameter completes the action.

OSM has a rapid prototyping tool, IPOST, that allows developers to begin with
an analysis-oriented model instance, and then gradually refine it with formal ex-
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pressions for the various triggers and actions [89]. Using IPOST, a developer can
initially populate a model instance with objects and relationships, and then as the
system executes, the developer can successively refine it. IPOST automatically gen-
erates graphical dialogs to simulate interactions and the firing of transitions. IPOST
can simulate the model instance in Fig. 2.7, but it must ask the user (the external
oracle) to interpret the effect of the natural-language expression Give the balance,
whereas we can directly execute the statement balance := self.Balance
automatically.

OSM was designed to address the poor integration of OO systems across several
dimensions, including the following:

1. the software development lifecycle and the models, languages, and tools used to
develop software;

2. the so-called impedance mismatches between the semantics of persistent objects
and behavioral protocols for objects, between declarative and imperative pro-
gramming paradigms, and between visual and textual styles of programming;
and

3. the reification of abstract objects, particularly meta-information and high-level
abstractions of low-level modeling components.

OSM addresses the lifecycle issues by using a single modeling and develop-
ment environment for all activities; changes in development phases or activities are
merely shifts in perspective for OSM. Furthermore, the concept of model-equivalent
language addresses the impedance mismatch issues. In essence, a language L is
model-equivalent with respect to a model M if each progam written in L has a cor-
responding model instance M whose semantics are one-to-one with the program,
and vice versa [100, 101]. The executable statement described above is written in
OSM’s model-equivalent language, OSM-L. Using OSM-L, programming becomes
just a shift in perspective to focus on efficient algorithms and structures. A “pro-
gram” is just an alternative view of a “model”, and it is easy to iterate rapidly from
one version of the system to another. Also, given OSM’s first-class, fully-reified
abstract elements (high-level object sets, relationship sets, states, transitions, and
interactions), OSM provides the considerable expressiveness and flexibility needed
for MDD. OSM does not have high-quality commercial tool support, but it does
serve as a complete reference model for MDD.

2.6 Model-Driven Architecture (MDA)

We now give an overview of MDA (Sect. 2.6.1), discuss the MDA Manifesto
(Sect. 2.6.2), describe Executable UML (Sect. 2.6.3), and point to further MDA
readings (Sect. 2.6.4).
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2.6.1 MDA Overview

The Object Management Group (OMG) is an industry consortium established in
1989 with the goal of defining standards for interoperability for distributed object
systems. Their initial effort revolved around the Common Object Request Broker
Architecture (CORBA) middleware standard. Their next major standard was the
Unified Modeling Language (UML), adopted as a standard at UML version 1.1, in
1997. Following adoption of the UML standard, OMG began to work on its model-
driven architecture initiative. OMG adopted the Model Driven Architecture (MDA)
standard in 2001 [134]. In a nutshell, MDA is model-driven development that uses
the core OMG standards (UML, MOF, XMI, CWM).

The three primary goals of MDA are (1) portability, (2) interoperability, and
(3) reusability, and the key abstraction for delivering on these goals is “architec-
tural separation of concerns” [112].

MDA describes three main layers of architectural abstraction, called viewpoints:
computation independent, platform independent, and platform specific. As Fig. 2.9
shows, MDA describes systems using models that correspond to the three view-
points. A computation independent model (CIM) describes a system environment
and its requirements using terminology that is familiar to practitioners in the system
domain. A platform independent model (PIM) describes a system’s structure and
functions formally, and yet without specifying platform-specific implementation de-
tails. At the lowest level of the MDA architecture, a platform specific model (PSM)
includes details that are important to the implementation of a system on a given plat-
form. By platform, MDA means a cohesive set of subsystems and technologies on
which a system can execute (such as Sun’s Java EE or Microsoft’s .NET platforms,
for example).

As Fig. 2.9 suggests, model mappings or transformations are a key aspect of
MDA. Each arrow in Fig. 2.9 represents a transformation from one model to an-
other. Mappings happen at many levels and for many purposes, and MDA does not
try to specify precisely how mappings can occur, but a key aspect of MDA trans-

Fig. 2.9 MDA architectural
layers and model transforma-
tions

Computation Independent Model
(CIM)

Platform Independent Model
(PIM)

Platform Specific Model
(PSM)
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Fig. 2.10 MDA modeling and metamodeling layers

formations is that each mapping may involve the addition of information external
to the source model. For example, when mapping from a PIM to a PSM that targets
the Java EE platform, the transformation would likely need to combine a sizeable
Java EE model that includes formal descriptions of various Java EE abstractions –
such as messaging and storage frameworks – with the PIM to generate Java code
that implements the PIM abstractions within the Java EE framework. The resulting
PSM could then be compiled, deployed, and executed on a Java virtual machine.

Transformations are not merely one way, CIM-to-PIM and PIM-to-PSM. There
are mappings between models up and down as Fig. 2.9 suggests. CIM-to-CIM or
PIM-to-PIM mappings represent model refinements, such as the transformation that
occurs when moving from an analysis phase into a design phase [111]. A PSM-to-
PSM transformation may be required in order to configure and package the elements
of a PSM for deployment to the desired target environment. A PSM-to-PIM trans-
formation may be required when refactoring or reverse-engineering a system.

MDA does not expect that there will be only one CIM, one PIM, and one PSM
for any given system. Each model only captures a single view of the system, and
a complete system may consist of many CIM’s and PIM’s. One of the main benefits
of taking a model-driven approach is that the implementation step, PIM-to-PSM
transformation, can presumably be done relatively easily for multiple platforms.
Thus, there may be many PSM’s corresponding to each of the target platforms.

The MDA Guide discusses a wide variety of transformation types, techniques,
and patterns [112]. As with MDD in general, the concept of model transformations
is central to the MDA philosophy.

Also central to the MDA philosophy is the role of modeling layers and meta-
models. Figure 2.10 illustrates some important MDA dimensions. UML, and hence
MDA, has four modeling layers:
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M3: The meta-metamodel layer; describes concepts that appear in the metamodel,
such as Class. For UML, MOF describes the M3 layer.

M2: The metamodel layer; describes concepts that make up a modeling language;
examples include the UML metamodel, the Executable UML profile, and
a domain-specific metamodel created and customized for a particular com-
pany or industry segment.

M1: The user model or model instance layer; class diagrams, statecharts, and
other such artifacts are M1-layer elements.

M0: The data instance layer; objects, records, data, and related artifacts exist at
this level.

In contrast, recall that OSM has three modeling layers because the OSM meta-
model is itself defined using OSM, and thus the M2 and M3 layers collapse for
OSM. Regardless of the specific structure, a formal metamodel is vital to MDD.

As Fig. 2.10 suggests, an MDA process may use any of a number of different
UML profiles or domain-specific metamodels, rather than using UML exclusively
for all modeling activities. While developers usually produce UML diagrams using
UML or UML profiles, it is also possible to create an MDA process that uses a MOF-
conforming domain-specific metamodel to then perform domain-specific modeling
tasks within the MDA framework.

2.6.2 An MDA Manifesto

In 2004, proponents of and major contributors to the MDA initiative working at IBM
Rational Software published an “MDA Manifesto” describing the tenets that moti-
vate MDA [10]. Figure 2.11 illustrates the three basic tenets of the MDA Manifesto:
(1) direct representation, (2) automation, and (3) open standards. We summarize
each of these in turn.

The principle of direct representation expresses a desire to shift the focus of soft-
ware development away from the technology domain and toward the concepts and
terminology of the problem domain. The goal is to represent a solution as directly
as possible in terms of the problem domain. The expectation is that this will lead

MDA
Direct

RepresentationAutomation

Open
Standards

Fig. 2.11 Basic tenets of the MDA manifesto (adapted from [10])
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to more accurate designs, improved communication between various participants in
the system development process, and overall increased productivity.

The principle of automation endorses the concept of using machines to perform
rote tasks that require no human ingenuity, freeing software developers to focus on
creative problem-solving work. Just as database developers today give little thought
to the implementation of B-trees, so too should MDA developers be able to ignore
technological aspects of graphical interfaces, web services, or any of a hundred
other elements of an underlying technology platform. It may be nice to know that
a database index is implemented using a B-tree or that a particular communication
link is implemented via a WSDL/SOAP web service, but dealing directly with the
underlying implementation is not productive per se; it is the solving of business
problems that creates value and thus constitutes productivity.

Building on open standards is important not only because standards promote
reuse, but also because they cultivate the building of an ecosystem of tool vendors
addressing the various needs of MDA. Since MDA has such a large vision, it is diffi-
cult – perhaps impossible – for a single vendor to provide everything that is required
to carry out the vision. According to the manifesto authors, a successful ecosystem
requires a few large vendors who can develop comprehensive tools, along with many
medium-sized vendors and hundreds of small niche vendors. In order to attract such
vendors, the ecosystem must provide standards that form the basis for solid inter-
operability. This turns out to be one of the points of criticism of MDA, i.e., that
vendors have implemented MDA in such a way that even though they conform to
the UML and XMI standards, their products are still not interoperable. The mani-
festo authors point out that this was a downfall of the CASE industry of the 1980s –
vendors trying to “go it alone” [10, 60].

The manifesto authors describe the MDA ecosystem as a gradually evolving
framework that will improve over time. Indeed, it is clear that an enormous amount
of energy has been invested in MDA by a number of vendors, researchers, and prac-
titioners over the years. Much of that work is available as open source, such as
the Eclipse Modeling Framework (EMF), which integrates with the popular open
source Eclipse IDE [51]. An ecosystem of MDA vendors does exist; what remains
to be seen is how effective that ecosystem will be over time.

In a more recent follow-up to the MDA manifesto, one of the authors observes
that the slow pace of MDA adoption is the result of challenges in three general areas:
(1) technical hurdles such as complex tools, vendor lock-in, and lack of a sound
theory of MDD, (2) cultural hurdles such as insufficient practitioner awareness of
MDD benefits and enormous inertia for alternative software development tools and
techniques, and (3) economic hurdles such as the long-term nature of payback for
an investment in MDD. Selic concludes that the way forward for MDA may lie in
the areas of education, research, and standardization [153].
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2.6.3 Executable UML

One of the most concrete instances of MDA is Executable UML (xUML, also some-
times labeled xtUML for Executable/Translatable UML) [108, 145, 188]. The main
idea of Executable UML is to define a UML profile that specifies a well-defined
subset of UML that includes a precise action semantics language (ASL) [188] that
can be used in the procedures associated with states in a model’s statechart dia-
grams. When developers use ASL to specify the underlying state procedures, we
can directly compile and execute the full xUML model.

Figure 2.12 shows a portion of an xUML class diagram. Observe that we asso-
ciate role names and multiplicity constraints with each association connection. In
xUML it is also conventional to name each association with a simple label of the
form Rn so it is easy to refer to associations uniquely. In our example, R1 refers to
the association Bank manages Account (or Account is managed by Bank), while R2
refers to the Customer owns Account association. Attributes may have an associated
tag as shorthand for an OCL uniqueness constraint. In Fig. 2.12, for example, id
on Bank and Account, and email on Customer have the tag {I}, which indicates that
each corresponding attribute must have a unique value within its class. Additionally,
the tag {I2} on accountNumber indicates that it also must be unique within Account.

Figure 2.13 illustrates a small portion of a typical xUML statechart diagram for
our running banking example. Notice that the state procedures are all written as
formal action-language statements that are straightforward to compile into an exe-
cutable system. As Fig. 2.13 shows, when an account is created it receives an ope-
nAccount event with two parameters: a customer who will own the new account, and
an initial balance. After connecting itself to the given customer, the account initial-
izes its balance to the given amount and sends itself a ready signal, which causes the
account to advance to the second state, Waiting for Activity. In this state, when a de-
positOrWithdraw event occurs, the account updates its balance by the given amount

email: InternetEmailAddress   {I}
name: PersonalName
address: MailingAddress

Customer

owns is
owned

by

id: arbitrary_id                    {I}
accountNumber: string     {I2}
balance: Money = 0

Account
R20..* 0..4

is managed by

manages

R1

0..*

0..4

id: arbitrary_id                    {I}
name: string
address: MailingAddress

Bank

Fig. 2.12 Executable UML class diagram example
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Fig. 2.13 Executable UML
statechart diagram example

1. New Account

openAccount (customer, balance)

entry/
// Connect new account with customer
relate self to rcvd_evt.customer across R2;
self.balance = rcvd_evt.balance;
generate ready to self;

2. Waiting for Activity

3. Updating Balance

entry/
self.balance = self.balance
                        + rcvd_evt.amount;
generate done to self;

depositOrWithdraw(amount)done

ready

and generates a done signal, which causes the account to return to the Waiting for
Activity state.

As with OSM, it is possible to represent xUML model instances at varying
degrees of completion [37]. For example, Fig. 2.13 shows compilable statements
in each of the state procedures. However, it is typical in the first version of an
xUML statechart to write the procedures informally, as natural-language statements.
These can easily be encoded as comments in an action language (e.g., the comment
//Connect new account with customer in Fig. 2.13). For initial stages of work, it is
sufficient to capture this sort of behavior requirement informally; in later stages de-
velopers refine the model to the point that all requirements are expressed formally.
Significantly, even in the early stages when the model is incomplete, it is still pos-
sible to simulate the system as far as it is specified. This ability makes it possible to
apply agile software development principles to Executable UML [108, 126].

Since ASL looks so much like ordinary programming, how can Executable UML
really claim any advantage over an ordinary high-level language like C# or Java?
The answer may seem subtle, but it is key to understanding the benefit of model
execution: ordinary code links computation inextricably with data structure, while
action models and languages separate the two. As Mellor explains (see [126], p. 95),
a common way to find the sum of the last ten transactions is to loop through the
transaction history data structure and accumulate the sum with each loop iteration.
The action semantics approach to this problem is to divide the problem into (1) re-
trieving the last ten transaction amounts, and (2) computing their sum. In this way,
with action semantics it is possible to change the underlying data structure without
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affecting the algorithm. This is a key benefit to a model-driven approach: by sepa-
rating data structures cleanly from algorithms, at translation (or compile) time we
can choose different underlying data structures without impacting the algorithmic
specifications. Algorithms written according to action semantics are thus written at
a higher level of abstraction.

Several tools that support Executable UML include BridgePoint by Mentor
Graphics [26], iUML by Kennedy–Carter [86], and Kavanagh Consultancy’s OOA
Tool [135] (which as of this writing could be downloaded at no charge, but only
includes a model editor and not a model compiler).

Executable UML succeeds by narrowing the UML concepts it supports and by
focusing on real-time embedded applications. While it is possible to do general-
purpose modeling and development with xUML, it excels with applications that
have rich and interesting object behavior lifecycles, which is typical in real-time
embedded systems.

2.6.4 MDA Readings

There is a large body of literature that describes MDA. In addition to the OMG
publications [111, 112, 134, 155], there are a number of helpful books. Kleppe
et al. [98] discuss MDA and walk through an extended example of how it actually
works. Frankel [63] provides a thorough discussion of strengths and weaknesses of
MDA, and especially pays attention to enterprise-scale issues. Mellor et al. [126]
give a concise and clear guide to MDA, and advocate an agile approach to MDA
that leverages the strengths of model execution. Nolan et al. [128] describe MDA
from the perspective of the IBM Rational software group that has invested a signif-
icant amount of energy in the MDA initiative, including creating commercial tools
and software development methodologies around MDA and related standards. Stahl
et al. [166] give comprehensive practical guidance. Olivé gives a useful presentation
of the underlying concepts, theory, and formalisms of UML and MDA, along with
a practical case study [133].

In The MDA Journal [60], Frankel and Parodi capture the lively debate from
a number of blog columns originally published on the BP Trends web site that eluci-
date the discussion of general-purpose versus domain-specific approaches to MDD
and respond to various other criticisms of MDA. This book also contains the MDA
manifesto [10].

Chapter 4 of [65] gives a nice overview of MDA, paying special attention to
metamodeling, UML profiles, and model interchange via XMI. Chapter 16 of [50]
gives a good discussion of what it means to be platform independent and offers
criticisms of UML and MDA.

Brown et al. have written several excellent summaries of MDA, issues surround-
ing MDD in general, and the IBM Rational tools that support MDA [19, 28, 29].
Also see [9], which includes two of Brown’s MDA papers [13, 14]. Meservy and
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Fenstermacher give a concise summary and analysis of MDA [115]. Uhl [179] deals
with practicalities of implementing MDD in general at the enterprise level.

A 2003 issue of IEEE Software provides a number of helpful articles on MDD
and MDA [109]. Selic identifies a number of pragmatic issues surrounding MDD
and discusses how tool vendors are addressing them [151]. Seidewitz explores what
models mean, and gives a thorough discussion of how we use models and metamod-
els [150]. Atkinson and Kühne describe the linguistic and ontological dimensions of
MDA-style metamodeling and explain how the second version of MDA improves its
clarity with respect to these dimensions [4]. Sendall and Kozaczynski describe vari-
ous kinds of model transformations and call for an executable model transformation
language [157] (see [113]). Kulkarni and Reddy propose “template abstraction” as
a means for separating concerns at the model and code levels for improved reuse and
system evolution. Finally, Uhl and Ambler engage in a point/counterpoint debate
over whether MDA is “ready for prime time”, with Uhl claiming it is and Ambler
expressing skepticism and asserting that agile MDD is a better approach [7, 178].
Similarly, a 2008 issue of the UPGRADE journal provides a number of helpful
MDA and MDD articles [32].

Finally, Milicev’s work [117] is really about an executable UML, not Mellor’s
Executable UML. Milicev links Java, OQL, and other PSM-specific elements into
an end-to-end approach to MDD. It is comprehensive, but more platform-specific
than most approaches.

2.7 OO-Method

A significant MDD initiative is OO-Method [141] and its realization as the Oli-
vaNova tool suite [33]. OO-Method builds on the OASIS formal specification lan-
guage, which is based on dynamic logic and process algebra [139] and supports
precise specification of modeling constructs, or conceptual patterns. OO-Method
emphasizes the specification of conceptual patterns in precise, unambiguous terms,
followed by the combination of architectural patterns with the system model. As
with OSM and xUML, formal underlying semantics in combination with a suffi-
cient execution model give OO-Method the ability to compile and execute models
directly. The OlivaNova tool includes two main components: the modeler for de-
veloping system models, and the transformation engine, which is a model compiler.
The OlivaNova transformation engine is one of the most robust commercially avail-
able model compilers, and is able to target a number of platforms and architectures.

OO-Method defines four main model types: object model, dynamic model, func-
tional model, and presentation model. The first three constitute the core with which
developers create a conceptual schema, and the fourth lets developers model how
users can interact with the modeled system.

The OO-Method object model contains primitives for capturing structural infor-
mation. It uses a mostly UML-like notation, with the notable addition of constructs
that capture agent relationships. In order to invoke a method, an object must first
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Fig. 2.14 Agent relationships in the OO-Method object model

be classified as an agent for that method. In this way, OO-Method supports non-
uniform service availability [130], a key aspect of dynamic OO types that some
approaches ignore. Agent relationships add another dimension of richness to the en-
capsulation structure of a system. Figure 2.14 illustrates the graphical notation for
an agent relationship between Customer and the depositFunds and withdrawFunds
methods of Account.

The OO-Method dynamic model includes fairly typical state transition and object
interaction diagrams, but unlike UML statecharts, OO-Method places the specifica-
tion of service functionality in a separate functional-model layer. Whereas xUML
associates procedures with states, OO-Method places these service specifications,
which it calls evaluations, in the functional model. The functional model specifies
how the state of objects can change during their lifecycles. An evaluation has an
event that triggers it, an attribute (of some class) that it affects, a condition that may
modify when the evaluation can occur, and an evaluation effect that describes the
result of performing the evaluation. For example, given the partial class diagram in
Fig. 2.14 we may wish to specify an evaluation that automatically issues a service
charge when an account that has a negative balance attempts a funds withdrawal.
Such an evaluation could specify event withdrawFunds, attribute balance, evalua-
tion condition balance <0, and evaluation effect balance = balance – 10.

A distinctive aspect of OO-Method is its presentation model, which specifies
and describes how users can interact with the system. The OO-Method presentation
model is essentially a collection of patterns that specifies the user interface as an
abstract model that has three levels of patterns: (1) system access structure, (2) in-
teraction units, and (3) basic supporting elements. The framework for the presenta-
tion model is an action hierarchy tree that defines the hierarchical structure through
which users access system functions (e.g., it could be implemented as a menu hierar-
chy in a typical GUI application). Nodes of the action hierarchy tree are interaction
units that describe scenarios through which users interact with the system to carry
out specific tasks. Basic element patterns support further specification of the user
interface as we illustrate below.

OO-Method includes four general kinds of interaction units: service, popu-
lation, instance, and master/detail. A service interaction unit (SIU) models hu-
man/computer interaction that results in the execution of a service in the system.
Figure 2.15 shows a simple SIU for depositing funds into an account. Input fields
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Fig. 2.15 Deposit funds ser-
vice interaction unit for ab-
stract graphical interface

Deposit Funds

Account:

Amount:

Note:

OK Cancel

allow the user to specify the account number, amount to deposit, and an explana-
tory note. A button next to the account entry field lets the user look up the account
number from a list. Lower level patterns may also be associated with SIU’s. For
example, we could add several patterns to the amount field in Fig. 2.15, such as (1)
an edit mask ##,###.##, (2) a help message Please enter the amount you want to
deposit, and (3) an underlying datatype of Real for the entered value.

A population interaction unit (PIU) specifies patterns for displaying and inter-
acting with collections of objects (such as lists). Figure 2.16 shows an example for
a list of accounts. In addition to displaying the details of an underlying collection
(population), this PIU has a filter pattern that lets the user display only accounts
whose owner name matches some expression (“La*” in the example) and an order
criteria button that allows the user to sort the results according to various terms. The
PIU in Fig. 2.16 also has a set of action buttons that invoke specific SIUs (e.g. to
add or remove an account) and a set of navigation buttons that move from the cur-
rent dialog to some other interaction unit (e.g. a transaction history PIU). The other
basic-element pattern in Fig. 2.16 is a display-set pattern that indicates which fields
associated with accounts should appear in the user interface.

Instance interaction units specify patterns for displaying and interacting with
individual objects. Instance and population interaction units are similar, with the
exception that the former displays information only about a single object, while
the latter displays information about a collection of similar objects. The fourth ma-
jor category of interaction unit is the master/detail interaction unit (MDIU), which
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Fig. 2.16 Accounts population interaction unit for abstract graphical interface
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models the common scenario where a collection of objects is associated with some
other object (e.g., a list of transactions associated with a particular account). Often,
the “master” portion of an MDIU is an instance interaction unit and the “detail”
portion is a population interaction unit.

With its presentation model, OO-Method is suitable for modeling general-pur-
pose applications that perform typical graphical user interface interactions. Further
developing the presentation model to cover additional interaction scenarios is a par-
ticularly interesting area of ongoing research [8, 120, 138, 143].

OO-Method constitutes an MDA-like approach to model-driven development.
It does not use the OMG standards, and so it is not pure MDA. However, we be-
lieve that OO-Method could be recast as a UML profile, and thus become pure
MDA should its creators choose such a strategy. CARE Technologies [33] has put
a significant amount of resources into commercializing OO-Method and refining
the OlivaNova model execution tool. We see this as one of the more promising
model-driven software development projects. It is possible to compile models into
complete, operational business systems today using the OlivaNova technology.

2.8 Model-Driven Web Engineering (MDWE)

Web engineering is a discipline that is ripe for model-driven development be-
cause web applications fall into a fairly small set of typical patterns (such as
document-centric, workflow-based, transactional, and so forth [94]) and the archi-
tectural concerns of web applications – as opposed to applications in general – are
relatively narrow. In response, researchers have created a number of comprehen-
sive approaches to model-driven web engineering (MDWE). Figure 2.17, adapted
from [158] and [190], gives a concise history of many prominent MDWE initia-
tives, showing how web modeling languages have evolved over time. Wimmer and
Schwinger et al. identify five major groupings of MDWE methods:

• Data-oriented approaches such as RMM [85], WebML [11, 40, 41], and Hera [58,
81, 84, 183] have their origins in database systems, and focus on data-intensive
web applications.

• Hypertext-oriented methods such as HDM [69], HDM-lite [59], WSDM [171,
176], and W2000 [17] originate from work in hypermedia design, and handle
nicely the hypertext nature of web applications.

• Object-oriented approaches follow in the tradition of OO modeling, and include
such methods as OOHDM [147, 162, 163], UWE [80, 91], OOWS [61, 136], and
OO-H [64].

• Software-oriented methods take an approach similar to traditional software de-
velopment. Web Application Extension (WAE) and its WAE2 extension exem-
plify this approach [45].

• MDE-oriented methods explicitly take a model-driven approach to web appli-
cation development and emphasize the automatic generation of source code
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Fig. 2.17 History of web modeling languages, adapted from [158, 190]

from web application models. Examples of this category include Webile [48],
WebSA [116], MIDAS [185], and Netsilon [125].

Moreno et al. divide the various MDWE initiatives into two broad groups:
those that follow the ER modeling style and those that take an object-oriented ap-
proach [124]. In any case, the different categories of MDWE methods reflect diver-
sity both in modeling-language origins and target web application types.

What distinguishes web applications from other types of applications is the
prominence of navigation as a construct that should be modeled explicitly and care-
fully [148]. Navigation modeling essentially consists of describing the information
units that users need to navigate along with the structure of the navigation space
(which nodes are reachable from which other nodes). It is important to note that the
structure of navigation nodes is not the same as the structure of conceptual items
in the problem domain. Navigation nodes are likely to consist of views that com-
bine information from parts of multiple domain objects. Furthermore, the navigation
space structure is not ideally characterized merely by nodes and links. That works
well for simple navigation structures, but typical web applications are more complex
and are better modeled by higher-level abstractions such as sets, lists, and navigation
chains [146].

There are other distinguishing aspects of web applications as well. For example,
personalization is quite common in web applications now, whereas it is less common
in traditional application development. Presentation issues tend to be emphasized
in web applications, though the same issues also exist for traditional applications.
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Web applications typically combine rich media from various sources, and must run
properly on a wide variety of different browsers, operating systems, and physical
devices. The context within which web applications operate evolves quickly, and so
do web applications themselves [127]. A repeating them of MDWE is that there are
common patterns associated with web applications, and it is helpful to document
and reuse these common patterns [68].

To illustrate MDWE, we examine OOHDM, one of the earliest MDWE methods.
The OOHDM method specifies four activities: (1) conceptual modeling, (2) naviga-
tion design, (3) abstract interface design, and (4) implementation. After identifying
actors, performing use case analysis, and creating a conceptual model of the prob-
lem domain – all of which are common to other types of OO development – the
OOHDM developer moves to navigation design, which is of particular interest for
MDWE. The details are extensive [72, 147], but briefly, for each user profile, the
OOHDM developer creates a navigational class schema and then a context schema
that describes web application’s navigation design.

An OOHDM navigational class schema consists of nodes, which are views over
conceptual classes that contain information we want the user to perceive, and an-
chors, which are objects that allow the triggering of links. OOHDM structures the
navigational space into sets of nodes it calls navigational contexts. A unique aspect
of navigational contexts is that intra-set navigation is often desirable, as so we define
each navigational context in terms of (1) its elements, (2) its internal navigational
structure (e.g., can the set be accessed sequentially with next/previous links), and
(3) its associated access structures, called indexes.

Figure 2.18 shows an abbreviated example of an OOHDM navigation context
diagram for a part of our running banking example. Rectangles with solid borders
indicate navigational contexts, while dashed rectangles denote access structures (in-
dexes). Shaded rectangles represent classes (Account, Summary, and Activity in the
example). The arrows with black dots at the origin leading from Main Menu indicate
landmarks that are accessible globally from all contexts (implemented, perhaps, as
a global menu of links on the top or side of the page). The small black box on By
Account is a shorthand notation indicating that there is an associated index for this

Main Menu

Accounts

Bill Pay

Account

Summary

By Account Type

Activity

By Account

...

... ...

Fig. 2.18 OOHDM navigation context diagram abbreviated example
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context. Since Summary and Activity are nested in the same scope, the user can navi-
gate freely between the two views (if this were not desired, we would draw a dashed
line between the two).

The various MDWE methods have different levels of support for model-driven
development (see especially [48, 116, 125, 127, 149, 158, 164, 185]). UWE and
WebML have some of the more comprehensive tool sets for MDD, though most
methods have some tool support. WebRatio Enterprise Edition [189], by Web Mod-
els, is an XML and Java-centric tool that integrates with the Eclipse IDE and sup-
ports WebML modeling [189]. WebRatio generates Java Enterprise Edition (JEE)
code from WebML and BPMN models. UWE has a MagicDraw plugin called
MagicUWE and an Eclipse plugin called UWE4JSF, among other tools [182]. Vi-
sualWade generates PHP code for OO-H web application models [186], but is a bit
dated. The HyperDE tool for OOHDM generates systems for the Ruby on Rails
platform, and is suitable for “creating semantic web prototype applications” [77].

As MDWE methods have evolved and matured, researchers have expressed in-
creasing concern over macro-level issues, such as whether new refinements make
the method too complex and cumbersome [119, 164]. Some have also expressed
concern that MDWE is in a state similar to the OO “method wars” of the 1990s and
now call for consolidation and standardization efforts [184, 190]. The MDWEnet
initiative [184] is working on responding to some of these concerns, and we antici-
pate that researchers will continue to work to bring together the various approaches
where feasible. Interestingly, some of the researchers behind HDM and W2000 sub-
sequently decided that a simpler approach would be more effective for various as-
pects of design, and they proposed the significantly simpler IDM [16], which takes
a dialog-oriented perspective and advocates conceptual, logical, and page-design
activities. We expect that there will be a fair amount of continued refinement and
consolidation research in MDWE.

Many workshops and conferences that have published significant MDWE-related
work including workshops on the World Wide Web and Conceptual Modeling
(WWWCM’99 [36] and WCM2000 [103]), Web-Oriented Software Technology
(IWWOST 2001–present), and Model-Driven Web Engineering (MDWE 2005–
present), and the International Conference on Web Engineering (ICWE 2001–
present), among others. Several books nicely summarize the state of the art in
MDWE [94, 118, 146] (note especially that [146] distills the work published in
IWWOST and WCM). Furthermore, an extensive survey by Schwinger et al. [164]
provides excellent details and analysis of MDWE initiatives.

2.9 Agile MDD

A criticism often leveled against MDD in general, and MDA in particular, is that
it is too complex and difficult to use. Ambler argues that the so-called “generative”
approaches to MDD, such as MDA, are too complex for the current generation of
developers [7]. His argument is that only after a large up-front effort – including
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a steep learning curve for the chosen modeling languages and tools – can we create
the sophisticated models that are required to be able to generate code for the various
platforms we want to target.

In contrast, the agile software development movement advocates making cus-
tomer satisfaction the highest priority, and agilists see early and continuous delivery
of useful software as the path to achieving this goal. They value “individuals and
interactions over processes and tools, working software over comprehensive doc-
umentation, customer collaboration over contract negotiation, and responding to
change over following a plan” [2]. The whole premise of creating complex mod-
els and then generating code from those models seems completely counter to these
agile principles.

However, as one of the original signatories to the Agile Manifesto points out,
there is no conflict between “agile” and “modeling” per se [114]. The conflict is in
how we often use models. If models are not executable, the reasoning goes, then
they cannot be agile. If a model is supposed to be a blueprint against which we later
build a software system, then we must first go through the effort of creating the
blueprint, and then we must go through a second process of construction. This is
a heavyweight, non-agile approach. However, if our models are executable, then we
can immediately use them in the way we typically use code (prototyping early and
often), and thus the same agile principles that apply to programming apply equally
well to modeling [108, 114, 126].

Ambler believes that MDA is flawed and will not succeed for most organizations.
He takes a pragmatic approach and questions MDA along the following dimensions
(among others) [6]:

• It takes a high level of education and training for developers to use MDA tools.
UML (and related standards) are overly complex and may not be what the indus-
try really needs anyway. The MDA standards are incomplete and still evolving.

• Tool vendors have historically been unwilling to create truly interoperable model-
sharing standards (CORBA, also an OMG standard, suffered from tool vendors
who would announce support and then implement the standard in a proprietary
way).

• The industry has seen other approaches, like I-CASE in the 1980s and CORBA in
the 1990s, that made similar promises but never fully delivered. Why will MDA
be any different?

• Business stakeholders do not ask us to develop detailed, sophisticated, platform-
independent models using a precise industry-standard modeling language to de-
scribe their business. Developing complex models is not what they request – they
want working systems that deliver value.

Ambler’s answer is to advocate agile MDD, which replaces the task of creating
extensive models with agile models that are “just barely good enough” to drive the
software development process.

We share most of the concerns Ambler expressed. MDA is built on a complex
set of standards, and those standards do indeed continue to evolve. It is difficult to
achieve true interoperability between different vendors’ products in spite of their
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implementation of XMI import/export. History is full of failures in this arena. How-
ever, it is possible to apply agile techniques in an MDA framework, and indeed it
has been done successfully [108]. When we shift from the use of models as sketches
or blueprints to the use of models as the executable system itself, many of the dif-
ficulties Ambler points out simply go away. Furthermore, we caution readers not
to confuse MDA, which Ambler specifically criticizes, with the broader concept
of MDD; weaknesses (or strengths) of MDA do not necessarily apply to MDD in
general.

2.10 Conclusions

A wide variety of model-driven methods have been proposed over the years and con-
tinue to be developed. MDA is certainly one of the more prominent approaches to
model-driven software development, but it is by no means the only method. Model-
driven techniques have been applied in a range of domains, and have been particu-
larly well accepted in the field of web engineering. Some researchers advocate an
agile approach to MDD because the traditional approach to modeling suffers from
the same problems as the waterfall approach to software development.

There is an ecosystem of model-driven software development researchers, ven-
dors, and practitioners. IBM Rational has been a major player in this field, creating
many research advances and commercial tools for MDD. The Eclipse project has
been prominent as well, with the Eclipse Modeling Framework and numerous re-
lated plugins. Some types of MDD have better tool support than others. For exam-
ple, Executable UML has several good tools (BridgePoint, Rhapsody, and iUML),
and the OlivaNova suite is an excellent and comprehensive model compiler.

On the other hand, many tool vendors have struggled to make sustainable model-
driven tools. OptimalJ by Compuware was recently discontinued by its vendor,
Compuware, even though OptimalJ was generally regarded as technically strong.
A search of the web for model-driven tools yields many links to projects that are no
longer active. Nonetheless, there are a number of active vendors with high quality
tools available today. Altova’s UModel, Artisan’s Studio, Borland’s Together, Gen-
tleware’s Apollo and Poseidon tools, IBM Rational’s various tools (e.g., Rhapsody,
Rose, and Software Architect), No Magic’s MagicDraw, SparxSystems’ Enterprise
Architect, and Visual Paradigm’s tool suite are some (but not all) of the active ven-
dors with quality tools. We expect to see continued energy and innovation in the
MDD tool vendor market in the coming years.

The question remains whether model-driven approaches to software develop-
ment can deliver on the promise of increased productivity, quality, reusability, and
maintainability. The skeptics are abundant, particularly among proponents of agile
techniques, and the vast majority of software today is still developed using non-
model-driven methods. However, the industry has been moving inevitably toward
model-driven approaches, and we expect it will continue to do so. We answer the
skeptics by taking an expansive view of what “model-driven” means; the phrase is
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not owned by any one vendor or consortium, and it does not require cumbersome
or unwieldy solutions, even though that is what many early MDD proponents de-
livered. The move toward model-driven approaches is really the same phenomenon
that has been occurring in computing for decades – a move to ever higher levels of
abstraction.

In his classic essay on software engineering, “No Silver Bullet – Essence and Ac-
cidents of Software Engineering”, Fred Brooks observed that there are two kinds of
complexity: “essential” and “accidental” [27]. His central point was that some com-
plexity aspects of software systems are intrinsic or inherent (essential), while other
aspects are artificially (accidentally) complex. Furthermore, essential complexity
cannot be removed from the software development process. Therefore, unless acci-
dental complexity accounts for at least 90 % of the effort required to develop com-
plex systems, we will never see a “silver bullet” that increases productivity be an
order of magnitude.

For example, a software system capable of making highly accurate weather fore-
casts has significant inherent complexity because the environmental model is quite
involved, gathering the many necessary inputs is a difficult distributed process, and
the algorithms that manipulate that model and its inputs are computationally com-
plex. However, the particular tools we might use today to build such a system have
some measure of accidental complexity. Consider the productivity improvement that
comes with using an integrated development environment to develop in a modern
object-oriented programming language with its extensive libraries of functions as
compared to programming in COBOL or FORTRAN on punch cards. By introduc-
ing an environment that conveniently speeds up the edit-compile-run-test cycle, we
remove some of the accidental programming complexity that software developers
of the 1970s and 1980s experienced. Much of that complexity is now removed with
graphical toolbar buttons and library objects. We can store our programs on conve-
nient, stable, solid-state storage that fits in our pockets rather than on paper cards
and bulky reels of magnetic tape.

Have we seen order-of-magnitude-scale productivity increases over the years?
Yes, certainly we have; but Brooks is still correct. First, he limited his prediction
to a one-decade timespan, so if the tenfold productivity improvement comes over
a period of more than ten years, his thesis holds. Second, because our tools improve
dramatically over time, we are able to tackle increasingly difficult and challenging
tasks, and so we shift the ratio of essential to accidental complexity gradually and
quite naturally. Thus, as our capabilities increase, so too does the essential com-
plexity of the systems we choose to build. As the essential complexity increases, we
naturally begin to devise additional mechanisms for dealing with that complexity,
and consequently the accidental complexity increases as well. Consider the case of
the OMG standards: the UML 2.2 specification [180, 181] is 966 pages long! As
many critics have argued, there is certainly considerable accidental complexity in
UML and the other standards around which MDA is built.

This is the context in which we should examine today’s model-driven software
development approaches. Just as with evolution in nature, ideas in the model-driven
arena have variable quality, with only a subset leading to improvements. Neverthe-
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less, the industry has been moving inexorably toward improved abstractions, and it
will continue to do so. This is the natural arc of evolution for software development.
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Unified View of Data
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A data model, called the entity-relationship model, is proposed. This model incorporates some of
the important semantic information about the real world. A special diagrammatic technique is
introduced as a tool for database design. An example of database design and description using
the model and the diagrammatic technique is given. Some implications for data integrity, infor
mation retrieval, and data manipulation are discussed.

The entity-relationship model can be used as a basis for unification of different views of data:
the network model, the relational model, and the entity set model. Semantic ambiguities in these
models are analyzed. Possible ways to derive their views of data from the entity-relationship
model are presented.
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entity-relationship model, relational model, Data Base Task Group, network model} entity set
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1. INTRODUCTION

The logical view of data has been an important issue in recent years. Three major
data models have been proposed: the network model [2, 3, 7J, the relational model
[8J, and the entity set model [25J. These models have their own strengths and
weaknesses. The network model provides a more natural view of data by separating
entities and relationships (to a certain extent), but its capability to achieve data
independence has been challenged [8]. The relational model is based on relational
theory and can achieve a high degree of data independence, bu t it may lose some
important semantic information about the real world [12, 15, 23J. The entity set
model, which is based on set theory, also achieves a high degree of data inde
pendence, but its viewing of values such as "3" or "red" may not be natural to
some people [25].

This paper presents the entity-relationship model, which has most of the ad
vantages of the above three models. The entity-relationship model adopts the
more natural view that the real world consists of entities and relationships. It

Copyright © 1976, Association for Computing Machinery, Inc. General permission to republish,
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reprinting privileges were granted by permission of the Association for Computing Machinery.
A version of this paper was presented at the International Conference on Very Large Data Bases,
Framingham, Mass., Sept. 22-24, 1975.
Author's address: Center for Information System Research, Alfred P. Sloan School of Manage
merit, Massachusetts Institute of Technology, Cambridge, MA 02139.
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incorporates some of the important semantic information about the real world
(other 'York in database semantics can be found in [1, 12, 15, 21, 23, and 29J).
The model can achieve a high degree of data independence and is based on set
theory and relation theory.

The entity-relationship model can be used as a basis for a unified view of data.
Most 'york in the past has emphasized the difference between the network model
and the relational model [22J. Recently, several attempts have been made to
reduce the differences of the three data models [4, 19, 26, 30, 31J. This paper uses
the entity-relationship model as a framework from which the three existing data
models may be derived. The reader may view the entity-relationship model as a
generalization or extension of existing models.

This paper is organized into three parts (Sections 2-4). Section 2 introduces
the entity-relationship model using a framework of multilevel views of data.
Section 3 describes the semantic information in the model and its implications for
data description and data manipulation. A special diagrammatric technique, the
entity-relationship diagram, is introduced as a tool for database design. Section 4
analyzes the network model, the relational model, and the entity set model, and
describes how they may be derived from the entity-relationship mode1.

2. THE ENTITY-R.ELATIONSHIP MODEL

2.1 Multilevel Views of Dcta

In the study of a data model, \ve should identify the levels of logical views of data
with which the model is concerned. Extending the framework developed in [18, 25J,
we can identify four levels of views of data (Figure 1) :

(1) Information concerning entities and relationships which exist in our minds.
(2) Information structure-organization of information in which entities and

relationships are represented by data.
(3) Access-path-independent data structure-the data structures which are not

involved with search schemes, indexing schemes, etc.
(4) Access-path-dependent data structure.
In the following sections, we shall develop the entity-relationship model step by

step for the first two levels. As we shall see later in the paper, the network model,
as currently implemented, is mainly concerned with level 4; the relational model is
mainly concerned with levels 3 and 2; the entity set model is mainly concerned
with levels 1 and 2.

2.2 Information Concerning Entities end Relationships (Levell)

At this level we consider entities and relationships. An entity is a "thing" which
can be distinctly identified. A specific person, company, or event is an example of
an entity. A relationship is an association among entities. For instance, "father-son"
is a relationship between two "person" entities.'

1 It is possible that some people may view something (e.g. marriage) as an entity while other
people may view it as a relationship. We think that this is a decision which has to be made by
the enterprise administrator [27J. He should define what are entities and what are relationships
so that the distinction is suitable for his environment.

ACM Transactions on Database Systems. Vol. I. No. It March 1976.
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LEVELS OF LOGICAL VIEWS MODELS
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DIAGRAM

Fig. 1. Analysis of data models using multiple levels of logical views

The database of an enterprise contains relevant information concerning entities
and relationships in which the enterprise is interested. A complete description of
an entity or relationship may not be recorded in the database of an enterprise.
It is impossible (and, perhaps, unnecessary) to record every potentially available
piece of information about entities and relationships. From now on, we shall
consider only the entities and relationships (and the information concerning them)
which are to enter into the design of a database.

2.2.1 Entity and Entity Set. Let e denote an entity which exists in our minds.
Entities are classified into different entity sets such as EMPLOYEE, PROJECT,
and DEPARTMENT. There is a predicate associated with each entity set to test
whether an entity belongs to it. For example, if we know an entity is in the entity
set EMPLOYEE, then we know that it has the properties common to the other
entities in the entity set EMPLOYEE. Among these properties is the afore
mentioned test predicate. Let E, denote entity sets. Note that entity sets may not
be mutually disjoint. For example, an entity which belongs to the entity set MALE
PERSON also belongs to the entity set PERSON. In this case, MALE-PERSON
is a subset of PERSON.

2.2.2 Relationship, Role, and Relationship Set. Consider associations among
entities. A relationship set, R i , is a mathematical relation [5J among n entities,

ACM Transactions on Database Systems, Vol. I, No. I, March 1976.
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each taken from an entity set:

{[et, e2, ••• , en] leI EEl, e2 E E2, ••• , en E EnL

and each tuple of entities, eel, ez, ... , en], is a relationship. Note that the E, in the
above definition may not be distinct. For example, a "marriage" is a relationship
between t\VQ entities in the entity set PERSON.

The role of an entity in a relationship is the function that it performs in the
relationship. "Husband" and "wife" are roles. The ordering of entities in the
definition of relationship (note that square brackets were used) can be dropped if
roles of entities in the relationship are explicitly stated as follows: (Til BI, Tz/e2, ... ,
Tn/en), where r, is the role of e, in the relationship.

2.2.3 Attribute, Value, and Value Set. The information about an entity or a
relationship is obtained by observation or measurement, and is expressed by a set
of attribute-value pairs. "3", "red", "Peter", and "Johnson" are values. Values
are classified into different value sets, such as FEET, COLOR, FIRST-NAME,
and LAST-NAME. There is a predicate associated with each value set to test
whether a value belongs to it. A value in a value set may be equivalent to another
value in a different value set. For example, "12" in value set INCH is equivalent
to "1" in value set FEET.

An attribute can be formally defined as a function which maps fro m an entity
set or a relationship set into a value set or a Cartesian product of value sets:

f: e. or n. V, or Vi! X Viz X··· X Vin.

Figure 2 iUustrates some attributes defined on entity set PERSON. The attribute
AGE maps into value set NO-OF-YEARS. An attribute can map into a Cartesian
product of value sets. For example, the attribute NAME maps into value sets
FIRST-NAME, and LAST-NAME. Note that more than one attribute may map
from the same entity set into the same value set (or same group of value sets).
For example, NAME and ALTERNATIVE-NAME map from the entity set
EMPLOYEE into value sets FIRST-NAME and LAST-NAME. Therefore, attri
bute and value set are different concepts although they may have the same name
in some cases (for example, EMPLOYEE-NO maps from EMPLOYEE to value
set EMPLOYEE-NO). This distinction is not clear in the network model and in
many existing data management systems. Also note that an attribute is defined as
a function. Therefore, it maps a given entity to a single value (or a single tuple of
values in the case of a Cartesian product of value sets) .

Note that relationships also have attributes. Consider the relationship set
PROJECT-WORKER (Figure 3). The attribute PERCENTAGE-OF-TIME,
which is the portion of time a particular employee is committed to a particular
project, is an attribute defined on the relationship set PROJECT-WORKER. It
is neither an attribute of EMPLOYEE nor an attribute of PROJECT, since its
meaning depends on both the employee and project involved. The concept of
attribute of relationship is important in understanding the semantics of data and
in determining the functional dependencies among data.

2.2.4 Conceptual Information Structure. We are now concerned with how to
organize the information associated with entities and relationships. The method
proposed in this paper is to separate the information about entities from the infor-
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ENTITY SET

EX

(EMPLOYEE)

ATTRIBUTES

FI

(EMPOYEE-NO)

F4
(AGE)

TheEntity-Relationship Model

VALUE SETS

(EMPLOYEE-NO)

V3

(LAST-NAME)

V4
(NO-OF-YEARS)

13

Fig. 2. Attributes defined on the entity set PERSON

mation about relationships. We shall see that this separation is useful in identifying
functional dependencies among data.

Figure 4 illustrates in table form the information about entities in an entity set.
Each row of values is related to the same entity, and each column is related to a
value set which, in turn, is related to an attribute. The ordering of rows and columns
is insignificant.

Figure 5 illustrates information about relationships in a relationship set. Note
that each row of values is related to a relationship which is indicated by a group
of entities, each having a specific role and belonging to a specific entity set.

Note that Figures 4 and 2 (and also Figures 5 and 3) are different forms of the
same information. The table form is used for easily relating to the relational model.
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ENTITY SETS

EK
(EMPLOYEE)

EJ

(PROJECT)

RELATIONSHIP SETS

Rr
(PROJECT- WORKER)

ATTRIBUTE

F
(PERCENTAGE-OF

TIME)

VALUE SET

VK
(PERCENT)

Fig. 3. Attributes defined on the relationship set PROJECT-WORKER

2.3 Information Structure (level 2)

The entities, relationships, and values at level 1 (see Figures 2-5) are conceptual
objects in our minds (i.e. we were in the conceptual realm [18, 27J). At level 2,
we consider representations of conceptual objects. We assume that there exist
direct representations of values. In the following, we shall describe how to represent
entities and relationships.

2.3.1 Primary Key. In Figure 2 the values of attribute EMPLOYEE-NO can
be used to identify entities in entity set EMPLOYEE if each employee has a
different employee number. It is possible that more than one attribute is needed
to identify the entities in an entity set. It is also possible that several groups of
attributes may be used to identify entities. Basically, an entity key is a group of
attributes such that the mapping from the entity set to the corresponding group
of value sets is one-to-one. If we cannot find such one-to-one mapping on available
data, or if simplicity in identifying entities is desired, we may define an artificial
attribute and a value set so that such mapping is possible. In the case where
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VII v21 v31 v22 v31 V41
(2566) (PETER) (JONES) (SAM) (JONES) (25)

Vl2 v23 V3 2 V24 V33 v42

(3378) (MARY) (CHEN) (BARB) (CHEN) (23)

· · • ·· · · •
• • • •· · · ·
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ATTRIBUTE ............1 I I I I
ENTITY SET I F1 I F2 I F3 : F4 I

"<, I I I (ALTERNATIVE- I I
AND VALUE SET" (EMPLOYEE-NOll (NAME) f NAME) I (AGE) I

I I I I I I I I
I E1 I VI I V2 I V3 I V2 I V3 I V4 I

I I I I I I I I
(EMPLOYEE) I (EMPLOYEE-NO) 1 (FIRST-1(LAST- 1(FIRST-I (LAST- I(NO-OF-YEARS) I

I I I NAME) I NAME) I NAME) I NAME) I I
1----
I
I e l
I
I
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I
I e2

1
I

I
I
I
IL _

Fig. 4. Information about entities in an entity set (table form)

r-----r-----,
I I I

ROLE-----.-t WORKER I PROJECT I
I I I

IF:RELATIONSHIP
I (PERCENTAGEmOF- I
I TIME) I ATTRIBUTE
I

VALUE
SET

VK
(PERCENTAGE)

r-----,.----
ENTITY I E1 I EJ

SET (EMPLOYEE) : (PROJECT) I

I I
I ell I eJI
I I
I I

I • I •
, I

I • I •L __ __ __ _

Fig. 5. Information about relationships in a relationship set (table form)
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EMPOYEE-NO

AGE NO-OF-YEARS

Fig. 6. Representing entities by values (employee numbers)

several keys exist, we usually choose a semantically meaningful key as the entity
primary key (PK).

Figure 6 is obtained by merging the entity set EMPLOYEE with value set
EMPLOYEE-NO in Figure 2. We should notice some semantic implications of
Figure 6. Each value in the value set EMPLOYEE-NO represents an entity
(employee). Attributes map from the value set El\iPLOYEE-NO to other value
sets. Also note that the attribute EMPLOYEE-NO maps from the value set
EMPLOYEE-NO to itself.

2.3.2 Entity/Relationship Relations. Information about entities in an entity
set can now be organized in a form shown in Figure 7. Note that Figure 7 is similar
to Figure 4 except that entities are represented by the values of their primary
keys. The whole table in Figure 7 is an entity relation, and each row is an entity
tuple.

Since a relationship is identified by the involved entities, the primary key of a
relationship can be represented by the primary keys of the involved entities. In
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EMPLOYEE-NO NAME ALTERNATIVE - AGE
NAME

EMPLOYEE-NO FIRST- LAST- FIRST- LAST- NO-OF-YEARSNAME NAME NAME NAME

2566 PETER JONES SAM JONES 25

3378 MARY CHEN BARB CHEN 23

• • • • · ·• • • • • •
• • • • • ·

t--- PRIMARY---1
I KEY I

-r-
I
I

t
w
s
....J
<{
Z
o
f=«
....J
UJ
a:::

l

ATTRIBUTE

VALUE SET
(DOMAIN)

ENTITY
(TUPLE)

Fig. 7. Regular entity relation EMPLOYEE

Figure 8, the involved entities are represented by their primary keys EMPLOYEE
NO and PROJECT-NO. The role names provide the semantic meaning for the
values in the corresponding columns. Note that EMPLOYEE-NO is the primary
key for the involved entities in the relationship and is not an attribute of the
relationship. PERCENTAGE-OF-TIME is an attribute of the relationship. The
table in Figure 8 is a relationship relation, and each row of values is a relationship
tuple.

In certain cases, the entities in an entity set cannot be uniquely identified by
the values of their own attributes; thus we must use a relationship (s) to identify
them. For example, consider dependents of employees: dependents are identified
by their names and by the values of the primary key of the employees supporting
them (i.e. by their relationships with the employees). Note that in Figure 9,

r PRIMARY
........----- KEY

ENTITY RELATION
NAME

-r
I
I

t
lLJ

s
..J
<{
Zo

...J
W

1

ROLE

ENTITY
ATTRIBUTE

VALUE SET
(DOMAIN)

RELATIONSHIP
TUPLE

EMPLOYEE PROJECT

WORKER PROJECT

EMPLOYEE-NO PROJECT-NO PERCENTAGE-
OF-TIME

EMPLOYEE-NO PROJECT-NO PERCENTAGE

2566 31 20

2173 25 lOa

· · ·· · ·· · ·

RELATIONSH IP
ATTRIBUTE

Fig. 8, Regular relationship relation PROJECT-WORKER
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(DOMAIN)
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I
I
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s
...J«
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.....J
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EMPLOYEE

SUPPORTER

EMPLOYEE-NO NAME AGE

EMPLOYEE-NO FIRST-NAME NO-Of-YEARS

2566 VICTOR 3

2173 GEORGE 6

• • •• • •· · ·

RELATIONSHIP
ATTRIBUTE

RELATIONSHIP
ATTRIBUTE

Fig. 9. A weak entity relation DEPENDENT

EJ\1PLOYEE-NO is not an attribute of an entity in the set DEPENDENT but
is the primary key of the employees who support dependents. Each row of values
in Figure 9 is an entity tuple with EMPLOYEE-NO and NAME as its primary
key. The whole table is an entity relation.

Theoretically, any kind of relationship may be used to identify entities. For
simplicity, we shall restrict ourselves to the use of only one kind of relationship:
the binary relationships with 1: n mapping in which the existence of the n entities
on one side of the relationship depends on the existence of one entity on the other
side of the relationship. For example, one employee may have n (= 0, 1, 2, ... )
dependents, and the existence of the dependents depends on the existence of the
corresponding employee.

This method of identification of entities by relationships with other entities can
be applied recursively until the entities which can be identified by their own at
tribute values are reached. For example, the primary key of a department in a
company may consist of the department number and the primary key of the
division, which in turn consists of the division number and the name of the company.

Therefore, we have t\VO forms of entity relations. If relationships are used for
identifying the entities, we shall call it a weak entity relation (Figure 9). If relation
ships are not used for identifying the entities, we shall call it a regular entity relation
(Figure 7). Similarly, we also have two forms of relationship relations. If all
entities in the relationship are identified by their own attribute values, we shall
call it a regular relationship relation (Figure 8). If some entities in the relationship
are identified by other relationships, we shall call it a weak relationship relation.
For example, any relationships between DEPENDENT entities and other entities
will result in weak relationship relations, since a DEPENDENT entity is identified
by its name and its relationship with an EMPLOYEE entity. The distinction
between regular (entity/relationship) relations and weak (entity/relationship)
relations will be useful in maintaining data integrity.
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EMPLOYEE
WORKER

M

PROJECT
PROJECT

N

ENTITY SET RELATIONSHIP
SET

Fig. 10: A simple entity-relationship diagram

ENTITY SET

3. ENTITY-RELATIONSHIP DIAGRAM AND INCLUSION OF SEMANTICS IN
DATA DESCRIPTION AND MANIPULATION

3.1 System Analysis Using the Entity-Relationship Diagram

In this section we introduce a diagrammatic technique for exhibiting entities and
relationships: the entity-relationship diagram.

Figure 10 illustrates the relationship set PROJECT-WORKER and the entity
sets EMPLOYEE and PROJECT using this diagrammatic technique. Each entity
set is represented by a rectangular box, and each relationship set is represented by
a diamond-shaped box. The fact that the relationship set PROJECT-WORKER
is defined on the entity sets EMPLOYEE and PROJECT is represented by the
lines connecting the rectangular boxes. The roles of the entities in the relationship
are stated.

Fig. 11. An entity-relationship diagram for analysis of information in a manufacturing firm
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Figure 11 illustrates a more complete diagram of some entity sets and relationship
sets which might be of interest to a manufacturing company. DEPARTMENT,
EMPLOYEE, DEPENDENT, PROJECT, SUPPLIER, and PART are entity
sets. DEPARTMENT-EMPLOYEE, EMPLOYEE-DEPENDENT, PROJECT
WORKER, PROJECT-MANAGER, SUPPLIER-PROJECT-PART, PRO
JECT-PART, and COl\1PONENT are relationship sets. The COMPONENT
relationship describes what subparts (and quantities) are needed in making super
parts. The meaning of the other relationship sets need not be explained.

Several important characteristics about relationships in general can be found in
Figure 11:

(1) A relationship set may be defined on more than two entity sets. For example,
the SUPPLIER-PROJECT-PART relationship set is defined on three entity sets:
SUPPLIER, PROJECT, and PART.

(2) A relationship set may be defined on only one entity set. For example, the
relationship set COIVIPONENT is defined on one entity set, PART.

'(3) There may be more than one relationship set defined on given entity sets.
For example, the relationship sets PROJECT-WORKER and PROJECT
MANAGER are defined on the entity sets PROJECT and EMPLOYEE.

(4) The diagram can distinguish between l:n, m:n, and 1:1 mappings. The
relationship set DEPART1\1ENT-EI\1PLOYEE is a 1:n mapping, that is, one
department may have n (n = 0, 1,2, ... ) employees and each employee works for
only one department. The relationship set PROJECT-WORI{ER is an m:n
mapping, that is, each project may have zero, one, or more employees assigned to
it and each employee may be assigned to zero, one, or more projects. It is also
possible to express 1: 1 mappings such as the relationship set MARRIAGE. Infor
mation about the number of entities in each entity set which is allowed in a relation
ship set is indicated by specifying "1", "m", 'In" in the diagram. The relational
model and the entity set model- do not include this type of information; the network
model cannot express a 1: 1 mapping easily.

(5) The diagram can express the existence dependency of one entity type on
another. For example, the arrow in the relationship set EMPLOYEE-DEPEND
ENT indicates that existence of an entity in the entity set DEPENDENT de
pends on the corresponding entity in the entity set EMPLOYEE. That is, if an
employee leaves the company, his dependents may no longer be of interest.

Note that the entity set DEPENDENT is shown as a special rectangular box.
This indicates that at level 2 the information about entities in this set is organized
as a weak entity relation (using the primary key of EMPLOYEE as a part of its
primary key) .

3.2 An Example of a Database Design and Description

There are four steps in designing a database using the entity-relationship model:
(1) identify the entity sets and the relationship sets of interest; (2) identify
semantic information in the relationship sets such as whether a certain relationship

2 This mapping information is included in DIA11 II [24J.
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set is an l:n mapping; (3) define the value sets and attributes; (4) organize data
into entityjrelationship relations and decide primary keys.

Let us use the manufacturing company discussed in Section 3.1 as an example.
The results of the first two steps of database design are expressed in an entity
relationship diagram as shown in Figure 11. The third step is to define value sets
and attributes (see Figures 2 and 3). The fourth step is to decide the primary
keys for the entities and the relationships and to organize data as entity/relation
ship relations. Note that each entity/relationship set in Figure 11 has a corre...
spending entity/relationship relation. We shall use the names of the entity sets
(at level 1) as the names of the corresponding entity/relationship relations (at
level 2) as long as no confusion will result.

At the end of the section, we illustrate a schema (data definition) for a small
part of the database in the above manufacturing company example (the syntax
of the data definition is not important). Note that value sets are defined with
specifications of representations and allowable values. For example, values in
EMPLOYEE-NO are represented as 4-digit integers and range from 0 to 2000.
We then declare three entity relations: EMPLOYEE, PROJECT, and DE
PENDENT. The attributes and value sets defined on the entity sets as well as
the primary keys are stated. DEPENDENT is a weak entity relation since it uses
EMPLOYEE.PK as part of its primary key. We also declare two relationship
relations: PROJECT-WORKER and The roles
and involved entities in the relationships are specified. We use EMPLOYEE.PK
to indicate the name of the entity relation (EMPLOYEE) and whatever attribute
value-set pairs are used as the primary keys in that entity relation. The maximum
number of entities from an entity set in a relation is stated. For example, PROJECT
WORKER is an m:n mapping. We may specify the values of m and n. We may
also specify the minimum number of entities in addition to the maximum number.
EMPLOYEE-DEPENDENT is a weak relationship relation since one of the
related entity relations, DEPENDENT, is a weak entity relation. Note that the
existence dependence of the dependents on the supporter is also stated.

DECLARE

DECLARE

VALUE-SETS REPRESENTATION ALLOWABLE-VALUES
EMPLOYEE-NO INTEGER (4) (0,2000)

FIRST-NAME CHARACTER (8) ALL
LAST-NAME CHARACTER (10) ALL
NO-DF-YEARS INTEGER (3) (0,100)
PROJECT-NO INTEGER (3) (1,500)

PERCENTAGE FIXED (5.2) (0,100.00)

REGULAR ENTITY RELATION EMPLOYEE
ATTRIBUTE/VALUE-SET:

EMPLOYEE-NO/EMPLOYEE-NO
NAME/(FIRST-NAME, LAST-NAME)
ALTERNATIVE-NAME/(FIRST-NAME,LAST-NAME)
AGE/NO-OF-YEARS

PRIMARY KEY:
EMPLOYEE-NO
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DECLARE REGULAR ENTITY RELATION PROJECT

ATTRIBUTE/VALUE-SET:

PROJECT-NO/PROJECT-NO
PRIMARY KEY:

PROJECT-NO

DECLARE REGULAR RELATIONSHIP RELATION PROJECT-WORKER

ROLE/ENTITY-RELATION.PK/MAX-NO-OF-ENTITIES
WORKER/EMPLOYEE.PK/m

PROJECT/PROJECT.PK/n (m:n mapping)

ATTRIBUTE/VALUE-SET:

PERCENTAGE-0F-TIME/PERCENTAGE

DECLARE WEAK RELATIONSHIP RELATION EMPLOYEE-DEPENDENT

ROLE/ENTITY-RELATION.PK/MAX-NO-OF-ENTITIES
SUPPORTER/EMPLOYEE.PK/l

DEPENDENT/DEPENDENT.PK/n
EXISTENCE OF DEPENDENT DEPENDS ON
EXISTENCE OF SUPPORTER

DECLARE WEAK ENTITY RELATION DEPENDENT
ATTRIBUTE/VALUE-SET:

NAME/FIRST-NAME
AGE/NO-OF-YEARS

PRIMARY KEY:

NAME
EMPLOYEE.PK THROUGH EMPLOYEE-DEPENDENT

3.3 Implications on Data Integrity

Some work has been done on data integrity for other models [8, 14, 16, 28J. With
explicit concepts of entity and relationship, the entity-relationship model will be
useful in understanding and specifying constraints for maintaining data integrity.
For example, there are three major kinds of constraints on values:

(1) Constraints on allowable values for a value set. This point was discussed in
defining the schema in Section 3.2.

(2) Constraints on permitted values for a certain attribute. In some cases, not
all allowable values in a value set are permitted for some attributes. For example,
we may have a restriction of ages of employees to between 20 and 65. That is,

AGE (e) E (20,65), where e E EMPLOYEE.

Note that we use the level 1 notations to clarify the semantics. Since each entity/
relationship set has a corresponding entityjrelationship relation, the above expres
sion can be easily translated into level 2 notations.

(3) Constraints on existing values in the database. There are two types of
constraints:

(i) Constraints between sets of existing values. For example,

{NAME(e) leE MALE-PERSON} {NAME(e) leE PERSON}.
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(ii) Constraints between particular values. For example,

TAX(e) <SALARY(e), e E EMPLOYEE
or

BUDGET(ei) = LBUDGET(ei), where e, E COMPANY
e, E DEPARTMENT

and [ei,eiJ E COMPANY-DEPARTMENT.

23

3.4 Semantics and Set Operations of Information Retrieval Requests

The semantics of information retrieval requests become very clear if the requests
are based on the entity-relationship model of data. For clarity, we first discuss
the situation at level 1. Conceptually, the information elements are organized as
in Figures 4 and 5 (on Figures 2 and 3). Many information retrieval requests can
be considered as a combination of the following basic types of operations:

(1) Selection of a subset of values from a value set.
(2) Selection of a subset of entities from an entity set (i.e. selection of certain

rows in Figure 4). Entities are selected by stating the values of certain attributes
(i.e. subsets of value sets) and/or their relationships with other entities.

(3) Selection of a subset of relationships from a relationship set (i.e. selection
of certain rows in Figure 5). Relationships are selected by stating the values of
certain attribute(s) and/or by identifying certain entities in the relationship.

(4) Selection of a subset of attributes (i.e. selection of columns in Figures 4
and 5).

An information retrieval request like "What are the ages of the employees whose
weights are greater than 170 and who are assigned to the project with PROJECT
NO 2547" can be expressed as:

IAGE(e) 1 e E EMPLOYEE, WEIGHT(e) > 170,
[e, ej] E PROJECT-WORKER, e, E PROJECT,
PROJECT-NO(ej) = 254};

or

{AGE(EMPLOYEE) IWEIGHT(EMPLOYEE) > 170,
[EMPLOYEE,PROJECTJ E PROJECT-WORKER,
PROJECT-NO(EMPLOYEE) = 254}.

To retrieve information as organized in Figure 6 at level 2, "entities" and
"relationships" in (2) and (3) should be replaced by "entity PI{" and "relationship
PK." The above information retrieval request can be expressed as:

/AGE(EMPLOYEE.PK) I > 170
(WORKER/EMPLOYEE.PK,PROJECTjPROJECT.PK) E IPROJECT- WORKER.PK},
PROJECT-NO (PROJECT.PK) = 254}.

To retrieve information as organized in entity/relationship relations (Figures 7,
8, and 9), we can express it in a SEQUEL-like language [6J:

SELECT
FROM
WHERE

AGE
EMPWYEE
WEIGHT> 170
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levell

Table 1. Insertion

level 2

operation:
insert an entity to an entity set

operation:
insert a relationship in a relationship set

check:
whether the entities exist

operation:
insert properties of an entity or a relationship

check:
whether the value is acceptable

operation:
create an entity tuple with a certain entity-PK
check:
whether PK already exists or is acceptable

operation:
create a relationship tuple with given entity

PRs
check:
whether the entity PKs exist

operation:
insert values in an entity tuple or a relation

ship tuple
check:
whether the values are acceptable

AND EMPLOYEE.PK =
SELECT WORKERjEMPLOYEE.PK
FROM PROJECT-WORKER
WHERE PROJECT-NO = 254.

I t is possible to retrieve information about entities in two different entity sets
without specifying a relationship between them. For example, an information
retrieval request like "List the names of employees and ships which have the same

Table II. Updating

levell

operation:
• change the value of an entity attribute

operation:
• change the value of a relationship attribute

level 2

operation:
• update a value
consequence:
• if it is not part of an entity PK, no conse

quence
• if it is part of an entity PK,

•• change the entity PKs in all related
relationship relations

•• change PKs of other entities which use
this value as part of their PKs (for
example, DEPENDENTS' PRs use
EMPLOYEE'S PK)

operation:
• update a value (note that a relationship

attribute will not be a relationship PK)

ACM Transactions on Database Systems, Vol. 1, No. I I March 1976.



Entity-Relationship Model (Reprinted Historic Data) 73

level!

The Entity-Relationship Model

Table III. Deletion

level 2

25

operation:
• delete an entity
consequences:
• delete any entity whose existence depends

on this entity
• delete relationships involving this entity
• delete all related properties

operation:
• delete a relationship
consequences:
• delete all related properties

operation:
• delete an entity tuple
consequences (applied recursively) :
• delete any entity tuple whose existence de

pends on this entity tuple
• delete relationship tuples associated with

this entity

operation:
• delete a relationship tuple

age" can be expressed in the level 1 notation as:

{(NAME(ei),NAME(ei») lei E EMPLOYEE,ej E SHIP, AGE(ei) = AGE(ei)}'

We do not further discuss the language syntax here. What we wish to stress is
that information requests may be expressed using set notions and set operations
[17J, and the request semantics are very clear in adopting this point of view.

3.5 Semantics and Rules for Insertion, Deletion, and Updating

It is always a difficult problem to maintain data consistency following insertion,
deletion, and updating of data in the database. One of the major reasons is that
the semantics and consequences of insertion, deletion, and updating operations
usually are not clearly defined; thus it is difficult to find a set of rules which can
enforce data consistency. We shall see that this data consistency problem becomes
simpler using the entity-relationship model.

In Tables I-III, we discuss the semantics and rules" for insertion, deletion, and
updating at both level! and level 2. Levell is used to clarify the semantics.

4. ANALYSIS OF OTHER DATA MODELS AND THEIR DERIVATION FROM THE
ENTITY..RELATIONSHIP MODEL

4.1 The Relational Model

4.1.1 The Relational View of Data and Ambiguity in Semantics. In the re
lational model, relation, R, is a mathematical relation defined on sets Xl, X 2, ••• ,

x;
R = {(Xl, X2, ••• , Xn ) I Xl E Xl, X2 E X 2, ••• , Xn E X n } .

The sets Xl, x 2, ••• , X; are called domains, and (Xl, X2, ••• , Xn ) is called a tuple.
Figure 12 illustrates a relation called EMPLOYEE. The domains in the relation

3 Our main purpose is to illustrate the semantics of data manipulation operations. Therefore,
these rules may not be complete. Note that the consequence of operations stated in the tables
can be performed by the system instead of by the users.
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ROLE

DOMAIN

TUPLE

P. P...S. Chen

LEGAL LEGAL ALTERNATIVE ALTERNATIVE

EMPLOYEE- FIRST- LAST- FIRST- LAST- NO-OF-
NO NAME NAME NAME NAME YEARS

2566 PETER JONES SAM JONES 25

3378 MARY CHEN BARB CHEN 23

Fig. 12. Relation EMPLOYEE

are E:\1PLOYEE-NO, FIRST-NAJ\IE, LAST-NAJVIE, FIRST-NAME, LAST
NA!\JE, NO-OF-YEAR. The ordering of rows and columns in the relation has
no significance. To avoid ambiguity of columns with the same domain in a relation,
domain names are qualified by roles (to distinguish the role of the domain in the
relation). For example, in relation E11PLOYEE, domains FIRST-NAME and
LAST-NA1VIE may be qualified by roles LEGAL or ALTERNATIVE. An attribute
name in the relational model is a domain name concatenated with a role name [10J.
Comparing Figure 12 with Figure 7, we can see that "domains" are basically equiva
lent to value sets. Although "role" or "attribute" in the relational model seems to
serve the same purpose as "attribute" in the entity-relationship model, the se
mantics of these terms are different. The "role" or "attribute" in the relational
model is mainly used to distinguish domains with the same name in the same
relation, while "attribute" in the entity-relationship model is a function which
maps from an entity (or relationship) set into value set(s).

Using relational operators in the relational model may cause semantic ambi
guities. For example, the join of the relation EMPLOYEE with the relation
ElVIPLOYEE-PROJECT (Figure 13) on domain EMPLOYEE-NO produces the

PROJECT-NO EMPLOYEE-NO

7 2566

3 2566

7 3378

Fig. 13. Relation EMPLOYEE-PROJECT
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LEGAL LEGAL ALTERNATIVE ALTERNATIVE

PROJECT- EMPLOYEE- FIRST- LAST- fIRST- LAST- NO-Of-
NO NO NAME NAME NAME NAME YEARS

7 2566 PETER JONES SAM JONES 25

3 2566 PETER JONES SAM JONES 25

7 3378 MARY CHEN BARB CHEN 23

Fig. 14. Relation EMPLOYEE-PROJECT' as a "join" of relations EMPLOYEE and
EMPLOYEE-PROJECT

relation EMPLOYEE-PROJECT' (Figure 14). But what is the meaning of a
join between the relation EMPLOYEE with the relation SHIP on the domain
NO-OF-YEARS (Figure 15)? The problem is that the same domain name may
ha.;e different semantics in different relations (note that a role is intended to dis
tinguish domains in a given relation, not in all relations). If the domain NO-OF
YEAR of the relation EMPLOYEE is not allowed to be compared with the domain
NO-OF-YEAR of the relation SHIP, different domain names have to be declared.
But if such a comparison is acceptable, can the database system warn the user?

In the entity-relationship model, the semantics of data are much more apparent.
For example, one column in the example stated above contains the values of AGE
of EMPLOYEE and the other column contains the values of AGE of SHIP. If
this semantic information is exposed to the user, he may operate more cautiously
(refer to the sample information retrieval requests stated in Section 3.4). Since
the database system contains the semantic information, it should be able to warn
the user of the potential problems for a proposed "join-like" operation.

4.1.2 Semantics of Functional Dependencies Among Data. In the relational
model, "attribute" B of a relation is functionally dependent on "attribute" A of the
same relation if each value of A has no more than one value of B associated with
it in the relation. Semantics of functional dependencies among data become clear

SHIP-NO NAME NO-Of-YEARS

037 MISSOURI 25

056 VIRGINIA 10

Fig. 15. Relation SHIP
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in the entity-relationship model. Basically, there are two major types of functional
dependencies:

(1) Functional dependencies related to description of entities or relationships.
Since an attribute is defined as a function, it maps an entity in an entity set to a
single value in a value set (see Figure 2). At level 2, the values of the primary key
are used to represent entities. Therefore, nonkey value sets (domains) are func
tionally dependent on primary..key value sets (for example, in Figures 6 and 7,
NO-OF-YEARS is functionally dependent on EMPLOYEE-NO). Since a relation
may have several keys, the nonkey value sets will functionally depend on any key
value set. The key value sets will be mutually functionally dependent on each
other. Similarly, in a relationship relation the nonkey value sets will be functionally
dependent on the prime-key value sets (for example, in Figure 8, PERCENTAGE
is functionally dependent on EMPLOYEE-NO and PROJECT-NO).

(2) Functional dependencies related to entities in a relationship. Note that
in Figure 11 we identify the types of mappings (1: n, m: n, etc.) for relationship
sets. For example, PROJECT-l\1ANAGER is a l:n mapping. Let us assume that
PROJECT-NO is the primary key in the entity relation PROJECT. In the re
lationship relation PROJECT-l\1ANAGER, the value set EMPLOYEE-NO will
be functionally dependent on the value set PROJECT-NO (i.e. each project has
only one manager) .

The distinction between level 1 (Figure 2) and level 2 (Figures 6 and 7) and
the separation of entity relation (Figure 7) from relationship relation (Figure 8)
clarifies the semantics of functional dependencies among data.

4.1.3 3NF Relations Versus Entity-Relationship Relations. From the definition
of "relation," any grouping of domains can be considered to be a relation. To avoid
undesirable properties in maintaining relations, a normalization process is proposed
to transform arbitrary relations into the first normal form, then into the second
normal form, and finally into the third normal form (3NF) [9, We shall
show that the entity and relationship relations in the entity-relationship model
are similar to 3NF relations but with clearer semantics and without using the
transformation operation.

Let us use a simplified version of an example of normalization described in [9J..
The following three relations are in first normal form (that is, there is no domain
whose elements are themselves relations) :

EMPLOYEE (EMPLOYEE-NO)
PART (PART-NO, PART-DESCRIPTION, QUANTITy-oN-HAND)
PART-PROJECT PROJECT-NO, PROJECT-DESCRIPTION,

PROJECT-MANAGER-NO, QUANTITY-COMMITTED).

Note that the domain PROJECT-IVIANAGER-NO actually contains the
EMPLOYEE-NO of the project manager. In the relations above, primary keys
are underlined.

Certain rules are applied to transform the relations above into third normal
form:

EMPLOYEE' (EMPLOYEE-NO)
(PART-NO, PART-DESCRIPTION, QUANTITY-ON-HAND)
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PROJECT' (PROJECT-NO, PROJECT-DESCRIPTION, PROJECT-MANAGER-NO)
PART-PROJECT' (PART-NO, PROJECT-NO, QUANTITY-COMMITTED).

Using the entity-relationship diagram in Figure 11, the following entity and
rela tionship relations can be easily derived:

entity

relations

relationship

relations

PART" (PART-NO, PART-DESCRIPTION, QUANTITY-ON-HAND)
PROJECT' r (PROJECT-NO, PROJECT-DESCRIPTION)

EMPLOYEE' '(EMPLOYEE-NO)

PART-PROJECT' , (PART/PART-NO, PROJECT/PROJECT-NO,
QUANTITY-COMMITTED)

PROJECT-MANAGER" (PROJECT/PROJECT-NO,

MANAGER/EMPLOYEE-NO).

The role names of the entities in relationships (such as MANAGER) are indicated.
The entity relation names associated with the PKs of entities in relationships and
the value set names have been omitted.

Note that in the example above, entity/relationship relations are similar to the
3NF relations. In the 3NF approach, PROJECT-IVIANAGER-NO is included in
the relation PROJECT' since PROJECT-MANAGER-NO is assumed to be
functionally dependent on PROJECT-NO. In the entity-relationship model,
PROJECT-MANAGER-NO (i.e. EMPIJOYEE-NO of a project manager) is
included in a relationship relation PROJECT-MANAGER since EMPLOYEE-NO
is considered as an entity PK in this case.

Also note that in the 3NF approach, changes in functional dependencies of data
may cause some relations not to be in 3NF. For example, if we make a new as
sumption that one project may have more than one manager, the relation
PROJECT' is no longer a 3NF relation and has to be split into two relations as
PROJECT" and PROJECT-MANAGER". Using the entity-relationship model,
no such change is necessary. Therefore, we may say that by using the entity
relationship model we can arrange data in a form similar to 3NF relations but with
clear semantic meaning.

It is interesting to note that the decomposition (or transformation) approach
described above for normalization of relations may be viewed as a bottom-up
approach in database design.' It starts with arbitrary relations (level 3 in Figure 1)
and then uses some semantic information (functional dependencies of data) to
transform them into 3NF relations (level 2 in Figure 1). The entity-relationship
model adopts a top-down approach, utilizing the semantic information to organize
data in entityjrelationship relations.

4.2 The Network Mod el

4.2.1 Semantics of the Data-Structure Diagram. One of the best ways to explain
the network model is by use of the data-structure diagram [3J. Figure 16(a) illus
trates a data-structure diagram. Each rectangular box represents a record type.

'Although the decomposition approach was emphasized in the relational model literature, it is
a procedure to obtain 3NF and may not be an intrinsic property of 3NF.
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(b)

DEPT
EMP

(b)

PROJ
WORKER

Fig. 16. Relationship DEPART
MENT-EMPLOYEE

(a) data structure diagram
(b) entity-relationship diagram

Fig. 17. Relationship PROJECT-WORKER
(a) data structure diagram

(b) entity-relationship diagram

The arrow represents a data-structure-set in which the DEPARTMENT record
is the oumer-record, and one owner-record may own n (n = 0, 1, 2, ... ) member
records. Figure 16(b) illustrates the corresponding entity-relationship diagram.
One might conclude that the arrow in the data-structure diagram represents a
relationship between entities in two entity sets. This is not always true. Figures
17 (a) and 17(b) are the data-structure diagram and the entity-relationship diagram
expressing the relationship PROJECT-WORKER between two entity types
E:\1PLOYEE and PROJECT. We can see in Figure 17(a) that the relationship
PROJECT-WORI(ER becomes another record type and that the arrows no
longer represent relationships between entities. What are the real meanings of the
arrows in data-structure diagrams? The answer is that an arrow represents an 1: n
relationship between two record (not entity) types and also implies the existence
of an access path from the owner record to the member records. The data-structure
diagram is a representation of the organization of records (level 4 in Figure 1)
and is not an exact representation of entities and relationships.

4.2.2 Deriving the Data-Structure Diagram. Under what conditions does an
arrow in a data-structure diagram correspond to a relationship of entities? A close
comparison of the data-structure diagrams with the corresponding entity-relation
ship diagrams reveals the following rules:

1. For 1: n binary relationships an arrow is used to represent the relationship
(see Figure 16(a)).

2. For m:n binary relationships a "relationship record" type is created to repre
sent the relationship and arrows are drawn from the "entity record" type to the
"relationship record" type (see Figure 17 (a»).

3. For k-ary (k 2:: 3) relationships, the same rule as (2) applies (i.e. creating a
"relationship record" type).

Since DBTG [7J does not allow a data-structure-set to be defined on a single
record type (i.e. Figure 18 is not allowed although it has been implemented in
[13J), a "relationship record" is needed to implement such relationships (see
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(0) (b)

PERSON PERSON

HUSBAND

PERSON

WIFE

Fig. 18. Data-structure-set de
fined on the same record type

Fig. 19. Relationship MARRIAGE (a) data struc
ture diagram (b) entity-relationship diagram

Figure 19(a)) [20J. The corresponding entity-relationship diagram is shown in
Figure 19(b).

It is clear now that arrows in a data-structure diagram do not always represent
relationships of entities. Even in the case that an arrow represents a 1: n relation
ship, the arrow only represents a unidirectional relationship [20J (although it is
possible to find the owner-record from a member-record). In the entity-relationship
model, both directions of the relationship are represented (the roles of both en
tities are specified). Besides the semantic ambiguity in its arrows, the network
model is awkward in handling changes in semantics. For example, if the relationship
between DEPARTMENT and EMPLOYEE changes from a l:n mapping to an
m:n mapping (i.e. one employee may belong to several departments), we must
create a relationship record DEPARTMENT-EMPLOYEE in the network model.

Fig. 20. The data structure diagram derived from the entity-relationship diagram in Fig. 11
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Fig. 21. The "disciplined" data structure diagram derived from the entity-relationship diagram
in Fig. 11

In the entity-relationship model, all kinds of mappings in relationships are handled
uniformly.

The entity-relationship model can be used as a tool in the structured design of
databases using the network model. The user first draws an entity-relationship
diagram (Figure 11) I He may simply translate it into a data-structure diagram
(Figure 20). using the rules specified above. He may also follow a discipline that
every entity or relationship must be mapped onto a record (that is, "relationship
records" are created for all types of relationships no matter that they are 1: n or
m:n mappings). Thus, in Figure 11, all one needs to do is to change the diamonds
to boxes and to add arrowheads on the appropriate lines. Using this approach
three more boxes-DEPARTI\1ENT-EMPLOYEE, EMPLOYEE-DEPEND
ENT, and PROJECT-::\1ANAGER-\vill be added to Figure 20 (see Figure 21).
The validity constraints discussed in Sections 3.3-3.5 will also be useful.

4.3 The Entity Set Model

4.3.1 The Entity Set View, The basic element of the entity set model is the
entity. Entities have names (entity names) such as "Peter Jones", "blue", or
"22". Entity names having some properties in common are collected into an
entity-name-set, which is referenced by the entity-name-set-name such as "NAME",
"COLOR", and "QUANTITY".

An entity is represented by the entity-name-set-name/entity-name pair such as
NAME/Peter Jones, EMPLOYEE-NOj2566, and NO-OF-YEARSj20. An entity
is described by its association with other entities. Figure 22 illustrates the entity
set view of data. The "DEPARTMENT" of entity EMPLOYEE-NO/2566 is the
entity DEPARTMENT-NOj405. In other words, "DEPARTMENT" is the role
that the entity DEPARTMENT-NO/405 plays to describe the entity EM
PLOYEE-NO/2566. Similarly, the "NAME", "ALTERNATIVE-NAME", or
"AGE" of EMPLOYEE-NOj2566 is "NAME/Peter Jones", "NAME/Sam Jones",
or "NO-OF-YEARSj20", respectively. The description of the entity El\fPLOYEE-
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NOj2566 is a collection of the related entities and their roles (the entities and
roles circled by the dotted line). An example of the entity description of "EM
PLOYEE-NO/2566" (in its full-blown, unfactored form) is illustrated by the set
of role-name/entity-name-set-name/entity-name triplets shown in Figure 23. Con
ceptually, the entity set model differs from the entity-relationship model in the
following ways:

(1) In the entity set model, everything is treated as an entity. For example,
"COLOR/BLACK" and "NO-OF-YEARS/45" are entities. In the entity-relation
ship model, "blue" and "36" are usually treated as values. Note treating values as
entities may cause semantic problems. For example, in Figure 22, what is the
difference between "EMPLOYEE-NOj2566", "NAME/Peter Jones", and
"NAME/Sam Jones"? Do they represent different entities?

(2) Only binary relationships are used in the entity set model,' while n-ary
relationships may be used in the entity-relationship model.

AGE

NO-OF-YEARS/20

NAME/SAM JONES

NAME/PETER JONES

NAME

ALTERNATIVE-NAME

DEPARTMENT-NO/405

EMPLOYEE-NO/2566

NAME

NAME/ACCOUNTING

Fig. 22. The entity-set view

s In DIAM II [24J, n-ary relationships may be treated as special cases of identifiers.
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THE ENTITY-
RELATIONSH IP ATTRIBUTE VALUE SET VALUE
MODEL TERMINOLOG'f OR ROLE

THE ENTITY SET "ENTITY-NAME-

MODEL TERMINOLOGY 1/ ROLE-NAME" SET-NAME
II lIENTITY-NAME"

IDENTIFIER EMPLOYEE-NO 2566

NAME NAME PETER JONES

NAME NAME SAM JONES

AGE INO-OF-YEARS I 25

DEPARTMENT DEPARTMENT-NO 405

Fig. 23. An "entity description" in the entity-set model

4.3.2 Deriving the Entity Set View. One of the main difficulties in under
standing the entity set model is due to its world view (i.e. identifying values with
entities). The entity-relationship model proposed in this paper is useful in under
standing and deriving the entity set view of data. Consider Figures 2 and 6. In
Figure 2, entities are represented by e/s (which exist in our minds or are pointed
at with fingers). In Figure 6, entities are represented by values. The entity set
model works both at levelland level 2, but we shall explain its view at level 2
(Figure 6). The entity set model treats all value sets such as NO-OF-YEARS
as "entity-name-sets" and all values as "entity-names." The attributes become
role names in the entity set model. For binary relationships, the translation is
simple: the role of an entity in a relationship (for example, the role of "DEPAR'r
MENT" in the relationship DEPARTMENT-EMPLOYEE) becomes the role
name of the entity in describing the other entity in the relationship (see Figure
22). For n-ary (n > 2) relationships, we must create artificial entities for relation
ships in order to handle them in a binary relationship world.
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Chapter 4
UML and OCL in Conceptual Modeling

Martin Gogolla

Abstract The development of the entity-relationship (ER) model is one of the cor-
nerstones for conceptual modeling of information systems. The Unified Modeling
Language (UML) and the Object Constraint Language (OCL) take up central ideas
from the ER model and put them into a broad software development context by
proposing various graphical sublanguages and diagrams for specialized software
development tasks and by adding more precision through textual constraints. The
first section of this contribution will introduce the correspondence between basic
ER modeling concepts and their UML counterparts. The next part will explain how
more advanced conceptual modeling concepts can be formulated in UML. In the
following section we will use OCL for features not expressible in diagrammatic
form. Then we turn to the description of relational databases with UML. Before we
conclude, we will show how to metamodel conceptual modeling features with UML
itself and discuss further relevant work from the literature.

4.1 Introduction

The development of the entity-relationship (ER) model is probably one of the cor-
nerstones for conceptual modeling of information systems. The Unified Modeling
Language (UML) takes up central ideas from the ER model and puts them into
a broad software development context by proposing various graphical sublanguages
and diagrams for specialized software development tasks. It is said that the most
commonly used UML diagram form is the class diagram. Entities and relationships
have their counterparts there and are called classes and associations. Additionally,
UML class diagrams allow the developer to include behavior in the form of opera-
tions.

Martin Gogolla
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The first versions of UML were developed in the mid-1990s. UML has changed
since then and is still under development. For many years UML has included a tex-
tual language, the Object Constraint Language (OCL), whose main task is to enrich
UML diagrams by textual constraints that cannot be expressed otherwise. However,
apart from constraining, OCL can be used for querying UML models as well.

The rest of this chapter is structured as follows. The first section will introduce
the correspondence between basic ER modeling concepts and their UML counter-
parts. The next section will explain how more advanced conceptual modeling con-
cepts can be formulated in UML. The following section will use OCL for features
not expressible in diagrammatic form. Then we turn to a description of relational
databases with UML. Before we conclude, we will show how to metamodel con-
ceptual modeling features with UML itself.

4.2 Basic Conceptual Modeling Features in UML

This section introduces the central features of UML [19, 20], namely class and ob-
ject diagrams, and the Object Constraint Language (OCL) [18, 21, 25] which is part
of UML.

4.2.1 Class and Object Diagrams

The main purpose of class diagrams within UML is to capture the basic static struc-
tures and operations of a system. In this subsection we will briefly explain the most
important features in class diagrams such as classes and associations. In later sec-
tions we discuss more advanced features.

Classes: A class is a descriptor for a set of objects sharing the same structure and
behavior. In the database context, we concentrate on the structural aspect, although
the behavioral aspect may be represented in UML as well. Object properties can be
described by attributes classified by data types like String or Boolean. Later we
will see that properties can also stem from roles in associations that connect classes.

Example: Figure 4.1 follows the example from Chen’s original paper [6] on the
ER model and shows the classes Supplier, Project, and Part together with
some basic attributes including their data types, e.g., we identify Supplier::
Name:String and Project::Budget:Integer. In this contribution, the
general scheme for denoting properties (attributes and roles) is Class::
Property:PropertyType. Most names for entities, relationships, and attribu-
tes are taken from Chen’s original article. Our UML and OCL examples have been
realized in the tool USE [11, 12]. USE supports the development of information
systems with UML and OCL by testing, validation, and verification techniques.

Associations: An association represents a connection between a collection of
classes and may be given a name. An association is manifested by a set of object
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Fig. 4.1 Example UML class diagram 1

connections, so-called links, sharing the same structure. A binary association can be
defined between two different classes. Objects of the respective classes play a par-
ticular role in the association. A binary association can also be defined on a single
class; then objects of the class can play two different roles. Such a binary association
is called reflexive. A ternary association involves three roles. The notion n-ary asso-
ciation refers to a ternary or higher-order association. Binary associations are shown
with a simple line and an n-ary association with a small rhomb-shaped polygon.

Example: In Fig. 4.1, we identify the binary association ProjectPart with
roles project and part, the ternary association SupplierProjectPart
with roles supplier, suppliedProject, and suppliedPart, and the re-
flexive association Component with roles parent and child.

Objects and links: Structural aspects in UML can also be represented in an ob-
ject diagram showing objects, links, and attribute values as manifestations of classes,
associations, and attributes. An object diagram shows an instantiation of a class di-
agram and represents the described system in a particular state. Underlining of ob-
jects and links is used in object diagrams in order to distinguish them clearly from
class diagrams.

Example: Figure 4.2 shows an object diagram for the class diagram from
Fig. 4.1. Objects, links, and attribute values fit to the classes, associations, and at-
tributes. The object identity is shown in the top part of the object rectangle to the
left of the class to which the object belongs. Formally, there is no connection be-
tween the object identity and attribute values. For the example classes Supplier
and Part, we have chosen object identities that are close to but not identical with
the attribute Name, but for the class Project the object identities have no con-
nection to the attribute values. There are two Project objects, two Supplier
objects, and five Part objects. Each Part object represents a piece of software
realizing controller (Ctrl) code that is responsible for a particular portion of a car.
The Component links express part–whole relationships, for example, the Engine
Code (engineCtrl) includes the Battery Code (batteryCtrl) and
the Motor Code (motorCtrl).
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Fig. 4.2 Example object diagram 1 (and other USE functionality)

Roles: Proper roles must be specified on a class diagram in order to guarantee
unique navigation, in particular in the presence of reflexive associations or when
two or more associations are present between two classes. Navigation in a class
diagram means fixing two classes and considering a path from the first class to the
second class using associations. The roles on the opposite side of a given class in an
association determine also properties of the given class by navigating via the roles.
Therefore, in UML and OCL the opposite-side roles must be unique. Recall that
properties can also come from attributes.

Example: On links, also the roles are captured. This is necessary in reflexive
associations and in other situations, for example, if two associations are present
between two given classes. For example in Fig. 4.2, if we consider the link be-
tween carCtrl and engineCrtl, without roles we could not tell which ob-
ject played the parent role and which one the child role. In the class dia-
gram in Fig. 4.1, the class Project has two direct navigation possibilities with
respect to class Part: one via association ProjectPart and the other via asso-
ciation SupplierProjectPart. One obtains, therefore, two properties in class
Project returning Part objects: Project::part:Set(Part) from associ-
ation ProjectPart and Project::suppliedPart:Set(Part) from as-
sociation SupplierProjectPart. In the object diagram we obtain, for example,
that ford.part evaluates to Set{motorCtrl} and ford.suppliedPart
gives Set{}.

Class diagram versus database schema: In the database context, it is interest-
ing to remark that the connection between a class diagram and its object diagrams
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resembles the connection between a database schema and its associated database
states: The class diagram induces a set of object diagrams and the database schema
determines a set of database states; object diagrams and database states follow the
general principles formulated in the class diagram and database schema, respec-
tively. Because example object diagrams have to be displayed on screen or paper,
they tend to show less information than proper, large database states. They may,
however, explain the principles underlying a class diagram pretty well if the exam-
ples are well chosen.

4.2.2 Object Constraint Language

UML includes a textual language that allows the developer to navigate in class di-
agrams and to formulate queries and restricting integrity constraints for the class
diagram: the Object Constraint Language (OCL). Roughly speaking from a practi-
cal perspective, OCL may be viewed as an object-oriented version of the Structured
Query Language (SQL) originally developed for the relational data model. Roughly
speaking from a theoretical perspective, OCL may be viewed as a variant of first-
order predicate logic with quantifiers on finite domains only. The central language
features in OCL are navigation, logical connectives, collections, and collection op-
erations.

Navigation: The navigation features in OCL allow you to determine connected
objects in the class diagram by using the dot operator “.”. Starting with an ex-
pression expr of start class C, one can apply a property propC of class C re-
turning, for example, a collection of objects of class D by using the dot operator:
expr.propC. The expression expr could be a variable or a single object, for ex-
ample, or a more complicated expression. The navigation process can be repeated
by writing expr.propC.propD, if propD is a property of class D.

Examples: Given the object diagram in Fig. 4.2, the following navigation ex-
pressions are syntactically valid in OCL and yield the stated return values and return
types. OCL uses the

convention that types are denoted by parentheses ( ) and values by braces { }:

chrysler.part ==
Set{batteryCtrl,motorCtrl}:Set(Part) (1)

batteryCtrl.project.supplier ==
Bag{codeMart,mcCode}:Bag(Supplier) (2)

carCtrl.child ==
Set{engineCtrl,radioCtrl}:Set(Part) (3)

carCtrl.child.child ==
Bag{batteryCtrl,motorCtrl}:Bag(Part) (4)

carCtrl.child.child.child ==
Bag{}:Bag(Part) (5)
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Expressions (3) and (4) are similar insofar as expression (3) employs the dot in
one place and expression (4) in two places. The difference in the result type, namely
Set(Part) vs. Bag(Part), will be explained below.

We have used above the notation LEFT == RIGHT with double use of the
equals sign. This indicates that the OCL term LEFT evaluates to RIGHT, which
represents also an OCL term optionally equipped with its type. The OCL equal-
ity check introduced below is written with a single equality symbol, e.g., we will
have 42=43 == false.

Logical connectives: OCL offers the usual logical connectives for conjunction
and, disjunction or, and negation not, as well as the implication implies and
a binary exclusive or xor. An equality check =, an inequality check <>, and a con-
ditional if then else endif is provided on all types.

Examples: If we consider the objects ford and chrysler from Fig. 4.2, re-
peated in Fig. 4.3 for ease of tracing the resulting values, an OCL engine will deliver
the following results:

ford.Budget>16 and chrysler.Budget>16
== false:Boolean

ford.Budget>16 or chrysler.Budget>16 == true:Boolean
not(ford.Budget>16) == false:Boolean
ford.Budget>16 implies chrysler.Budget>16

== false:Boolean
ford.Budget>16 xor chrysler.Budget>16 == true:Boolean
ford=ford == true:Boolean
ford=chrysler == false:Boolean
if ford.Budget>16 then 42 else 43 endif == 42:Integer
if chrysler.Budget>16 then mcCode else codeMart endif

== codeMart:Supplier

Collections: In the original OCL there were three kinds of collections: sets, bags,
and sequences. Later ordered sets were added, which we do not discuss here because
they are similar to sequences; a discussion of OCL collections can be found in [3].
A possible collection element can appear at most once in a set, and the insertion
order in the set does not matter. An element can appear multiple times in a bag,
and the order in the bag collection does not matter. An element can appear multiple
times in a sequence in which the order is significant.

Examples: The following expressions state the characteristic features of OCL
collections:

Set{11,22} =Set{22,11} == true
Bag{11,22} =Bag{22,11} == true
Sequence{11,22} =Sequence{22,11} == false

Fig. 4.3 Objects ford and
chrysler from Example
Object Diagram 1
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----------------------------------------------
Set{11,22} =Set{11,22,11} == true
Bag{11,22} =Bag{11,22,11} == false
Sequence{11,22} =Sequence{11,22,11} == false
----------------------------------------------
Set{11,11,22} =Set{11,22,11} == true
Bag{11,11,22} =Bag{11,22,11} == true
Sequence{11,11,22}=Sequence{11,22,11} == false

We use terms of type Set(Integer) to demonstrate these features. However,
we could have used terms of type Set(Project) as well, e.g., Set{ford,
chrysler}, instead of Set{11, 22}. Sets are insensitive to insertion order and
insertion frequency. Bags are insensitive to insertion order but are sensitive to inser-
tion frequency. Sequences are sensitive to insertion order and insertion frequency.

Conversions: OCL collections can be nested and converted to each other. Bags
and sequences can be converted to sets with ->asSet(), sets and sequences to
bags with ->asBag(), and sets and bags to sequences with ->asSequence().
The conversion to sequences assumes an order on the elements. The arrow notation
will be explained in more detail below.

Examples: The following evaluations give an impression of how the conversions
work:

Sequence{11,22,11}->asBag() ==
Bag{11,11,22}:Bag(Integer)

Sequence{11,22,11}->asSet() ==
Set{11,22}:Set(Integer)

Bag{11,22,11}->asSet() ==
Set{11,22}:Set(Integer)

Special type OclAny: Collection terms in OCL possess a type as in the follow-
ing examples:

Sequence{ford,chrysler,ford}: Sequence(Project)
Set{42,41,40}: Set(Integer)

However, the special type OclAny is a supertype of all other types, and OclAny
can be used for collections. Therefore, the following expressions are valid in OCL:

Set{’Talking Heads’, 3.14, 42, false}: Set(OclAny)
Bag{Set{8, 9}, Set{ford, carCtrl}}: Bag(Set(OclAny))

Collection operations: There is a large number of operations on collections
in OCL. A lot of convenience and expressibility is based upon them. The most
important operations on all collection kinds are forAll, exists, select,
collectNested, collect, size, isEmpty, includes, and including.
Table 4.1 gives an overview on the functionality of the operations.

There are also special operations available only on particular collections, e.g., the
operation at on sequences for retrieving an element by its position. All collection
operations are applied with the arrow notation already mentioned above. Roughly
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Table 4.1 Important collection operations

Operation Functionality

forAll Realizes the universal quantification
exists Formulates existential quantification
select Filters elements with a predicate
collectNested Applies a term to each collection element
collect Applies a term to each collection element, flattening the result
size Determines the number of collection elements
isEmpty Tests on emptiness
includes Checks whether the collection includes a possible element
including Returns a collection that includes an element

speaking, the dot notation is used when a property follows, i.e., an attribute or a role
follows, and the arrow notation is used when a collection operation follows.

Variables in collection operations: Most collection operations allow variables
to be declared (possibly including a type specification), but the variable may be
dropped if it is not needed.

Example: The following expressions are equivalent:

motorCtrl.project->forAll(Budget<120) == true
motorCtrl.project->forAll(p|

p.Budget<120) == true
motorCtrl.project->forAll(p:Project|

p.Budget<120) == true

Another important possibility is a feature that allows one to retrieve the finite
set of all current instances of a class by appending .allInstances to the class
name. In order to guarantee finite results, .allInstances cannot be applied to
data types like String or Integer.

Examples: With regard to collection operations, an OCL evaluator would obtain
the following results in the above object diagram:

motorCtrl.project->forAll(Budget<120) == true:Boolean
chrysler.supplier->exists(s|s.SupplierNo=99) ==

false:Boolean
Part.allInstances->select(PartNo>=300) ==

Set{batteryCtrl,engineCtrl,motorCtrl}:Set(Part)
chrysler.part->collect(p|p.Name) ==

Bag{’Battery Code’,’Motor Code’} : Bag(String)
chrysler.part->collectNested(p|p.parent) ==

Bag{Set{engineCtrl},Set{engineCtrl}}:Bag(Set(Part))
chrysler.part->collect(p|p.parent) ==

Bag{engineCtrl,engineCtrl}:Bag(Part)
chrysler.part->collectNested(p|p.parent)->size() ==

2:Integer
ford.supplier->isEmpty() == true:Boolean
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Table 4.2 Result types of collection operations

Argument collection Collection operation Result type

Set/Bag/Sequence(T) forAll Boolean
Set/Bag/Sequence(T) exists Boolean
Set/Bag/Sequence(T) select Set/Bag/Sequence(T)
Set/Bag/Sequence(T) collectNested Bag/Bag/Sequence(T’)
Set/Bag/Sequence(T) collect Bag/Bag/Sequence(T’)
Set/Bag/Sequence(T) size Integer
Set/Bag/Sequence(T) isEmpty Boolean
Set/Bag/Sequence(T) includes Boolean
Set/Bag/Sequence(T) including Set/Bag/Sequence(T)

chrysler.part->includes(carCtrl) == false:Boolean
chrysler.part->including(carCtrl) ==
Set{batteryCtrl,carCtrl,motorCtrl}:Set(Part)

Result types in collection operations: The result types of collection operations
are shown in Table 4.2. Most notably, the operations collectNested(...) and
collect(...) change the kind of argument collection Set(T) to a Bag(T’)
collection. The reason for this is that the term inside the collect may evaluate for
two different collection elements to the same result. In order to reflect that the result
is captured for each collection element, the result appears as often as a respective
collection element exists. This convention in OCL resembles the same approach in
SQL: SQL queries with the additional keyword distinct return a set; plain SQL
queries without distinct return a bag. In OCL, the convention is similar: Plain
collect(...) expressions return a bag; using the conversion asSet() as in
collect(...)->asSet() returns a set.

Example: With respect to return types in collection operations, we see the fol-
lowing evaluation in which collect(...) is applied to a set, but it properly
returns a bag:

Set{radioCtrl,motorCtrl}->
collect(p|p.Name.substring(7,10)) ==

Bag{’Code’,’Code’}:Bag(String)

In the above examples, we also saw this result for a collectNested term:

chrysler.part ==
Set{batteryCtrl,motorCtrl} : Set(Part)

chrysler.part->collectNested(p|p.parent) ==
Bag{Set{engineCtrl},Set{engineCtrl}}:Bag(Set(Part))

Thus the collectNested(...) operation applied to Set(Part) with the
inner term p.parent, which returns Set(Part), yields Bag(Set(Part)).
In this example, a bag is needed in order to capture the result correctly.

Operation flatten(): In OCL, collections can be nested. For example, one
can build bags whose elements are sets. In order to flatten nested collections to
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unnested ones, the operation flatten() is available. The kind of the result col-
lection is determined by the outermost collection. For example, bags of sets of
something would be flattened to bags of something. For building sequences, an
implementation-dependent order is chosen.

Example: The following expressions demonstrate the effect of flatten():

Set{Set{10,20},Set{30,40}}->flatten() ==
Set{10,20,30,40}:Set(Integer)

Set{Set{10,20},Set{20,30}}->flatten() ==
Set{10,20,30}:Set(Integer)

Bag{Bag{10,20},Bag{30,40}}->flatten() ==
Bag{10,20,30,40}:Bag(Integer)

Bag{Bag{10,20},Bag{20,30}}->flatten() ==
Bag{10,20,20,30}:Bag(Integer)

Bag{Set{10,20},Set{30,40}}->flatten() ==
Bag{10,20,30,40}:Bag(Integer)

Bag{Set{10,20},Set{20,30}}->flatten() ==
Bag{10,20,20,30}:Bag(Integer)

Dot shortcut: Another convenient OCL feature is the dot shortcut, which allows
the developer easy navigation through a class diagram using multiple roles. Speak-
ing technically, a property propD may follow a dot as in the term expr.propC.
propD, although the left part expr.propC yields a collection and only a collec-
tion operation and not a property (attribute or role) would be expected. However,
the term expr.propC.propD is understood as a shortcut for expr.propC->
collect(x|x.propD). The aim of this shortcut is to avoid explicitly writ-
ing calls to collect(...) and to simply navigate with properties (attributes or
roles), as for example in expr.propC.propD.propE. The dot shortcut is on the
one hand very convenient because it allows the developer easy navigation through
a class diagram. On the other hand, it blurs the distinction between a single object
and an object collection insofar as a property can be applied with the dot shortcut to
a collection as if the collection were an object.

Examples: The following examples illustrate the dot shortcut and the effects of
flatten() in the context of the above object diagram:

chrysler.part->collectNested(p|p.parent)
== Bag{Set{@engineCtrl},Set{@engineCtrl}}:
Bag(Set(Part))

chrysler.part->collectNested(p|p.parent)->flatten()
== Bag{@engineCtrl,@engineCtrl}:Bag(Part)

chrysler.part->collect(p|p.parent)
== Bag{@engineCtrl,@engineCtrl}:Bag(Part)

chrysler.part->collectNested(p|p.parent)->flatten()->
collect(p|p.Name)
== Bag{’Engine Code’,’Engine Code’}:Bag(String)

chrysler.part.parent.Name
== Bag{’Engine Code’,’Engine Code’}:Bag(String)
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Example: Above we mentioned the term carCtrl.child with the type
Set(Part) and the term carCtrl.child.childwith the type Bag(Part).
This difference in the type is essentially a consequence of a combination of the
dot shortcut and the fact that collect returns a bag when applied to a set:
carCtrl.child.child is short for carCtrl.child->collect
(child), which is a term having the type Bag(Part).

Operation definitions with OCL: OCL may be used to define side-effect-free
operations. You may associate a correctly typed OCL term with an operation name.
The term may use the declared parameters. The operation definition may be recur-
sive.

Example: In the class Project one could define an operation partCom-
petitors() returning type Set(Project). This operation should yield the set
of those projects needing at least one common part with the considered project. The
OCL operation excluding (used below) eliminates an element from a collection:

Project::partCompetitors():Set(Project) =
self.part.project->excluding(self)->asSet()

The operation is formulated within the class Project. Therefore, the variable
self references the current object on which the operation is called.

As an example of a recursive operation, we define in the class Part the transitive
closure childPlus() of the role child with the help of an auxiliary recursive
operation.

Part::childPlus():Set(Part)=childPlusAux(self.child)
Part::childPlusAux(aPartSet:Set(Part)):Set(Part)=
let oneStep:Set(Part)=aPartSet.child->asSet() in
if oneStep->exists(p|aPartSet->excludes(p))

then childPlusAux(aPartSet->union(oneStep))
else aPartSet endif

The last example uses the following OCL features not mentioned yet: let al-
lows the developer to define subexpressions to be used in various places; union is
another collection operation with the obvious meaning. We emphasize that the oper-
ation childPlus defined in the above manner is well defined and terminating for
all possible object diagrams. Recall that the class Part (as any other class) has only
finitely many instances in each system state. Therefore, the recursion finally termi-
nates. The maximal set that can be computed is Part.allInstances. Analo-
gously to the transitive closure childPlus(), one could define the transitive and
reflexive closure childStar().

4.3 Advanced Conceptual Schema Elements in UML

This section shows how to describe conceptual schemas in UML class diagrams
without using any OCL features. In the first part, those UML class diagram features
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are introduced that are relevant for conceptual schema representation. In the second
part, we discuss how to represent standard ER modeling concepts with these UML
features.

4.3.1 Class Diagram Features for Conceptual Schemas

The language features in UML class diagrams introduced above are classes, data-
valued attributes, associations, and roles. We now turn to describe object-valued,
collection-valued, and compound attributes, role multiplicities, association classes,
generalizations, aggregations, compositions, and invariants.

Object-valued attributes: Attributes in UML may not only be data-valued as
above, but the attribute type may be a class as well that leads to object-valued at-
tributes. Like associations, object-valued attributes also establish a connection be-
tween classes. The object-valued attribute is, however, only available in the class in
which it is defined. The information from that attribute is not directly present in the
attribute type class. Thus an object-valued attribute may be regarded as a unidirec-
tional association without an explicit name and where only one role is available.

Examples: The examples in this section will be discussed in the context of the
class diagram in Fig. 4.1 and the class diagram in Fig. 4.4, which extends the for-
mer one by introducing the new classes Employee, Dependent, and Project-
Worker and the associations EmployeeDependent, ProjectManager, and
ProjectWorker. The fact that ProjectWorker is mentioned as a class as well
as an association will be explained below. The object diagram in Fig. 4.5 shows an
example state for the class diagram from Fig. 4.4. As a forward reference we remark
that we will come back later to the fact that ada’s project participation sums up to
110 %.

As an example of an object-valued attribute and as an alternative to the as-
sociation ProjectManager, we could extend the class Project by an at-

Fig. 4.4 Example UML class diagram 2
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Fig. 4.5 Example UML object diagram 2

tribute manager with type Employee. This could be represented altogether as
Project::manager:Employee.

Collection-valued attributes: We have already introduced the collection kinds
set, bag, and sequence. These collection kinds can be used as type constructors on
data types and classes. For building attribute types, the constructors may be nested.

Examples: An attribute could possess a type like Set(Project). As an
alternative to the association ProjectManager we could have one attribute
managedProject:Set(Project) in the class Employee and another at-
tribute manager:Employee in the class Project. There is, however, an im-
portant difference between the model with the association ProjectManager, in-
cluding the roles manager and managedProject, and the model with the two
attributes manager and managedProject. In the model with the association,
we would always have that the roles managedProject and manager represent
the same set of object connections, i.e., the following two OCL expressions will
evaluate to true in that model:

Employee.allInstances->forAll(e|
e.managedProject.manager->includes(e))

Project.allInstances->forAll(p|
p.manager.managedProject->includes(p))

These two OCL expressions are not always true in the model possessing the two
attributes. In this case the two attributes managedProject and manager are
independent of each other and may represent different sets of object connections.
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Another useful application of collection-valued types are collections over data
types like Set(Sequence(String)). A value for an attribute typed in that way
could be, for example, the complex value Set{Sequence{‘Rome’, ‘Euro’},
Sequence{‘Tokyo’, ‘Yen’}}.

Compound attributes: Apart from using the collection constructors Set, Bag,
and Sequence for attributes, one can employ a tuple constructor Tuple. A tuple
has a set of components each possessing a component discriminator and a compo-
nent type. The collection constructors and the tuple constructor may be nested in an
orthogonal way.

Examples: The above value for the type Set(Sequence(String)) could
be represented also with the type

Set(Tuple(Town:String,Currency:String))

and with the corresponding value

Set{Tuple{Town:‘Rome’, Currency:‘Euro’},
Tuple{Town:‘Tokyo’, Currency:‘Yen’}}.

As a further example of a compound attribute using the Tuple constructor, we
see in the class diagram in Fig. 4.4 the attribute Name in class Employee, which
is a compound attribute with type Tuple(First:String, Last:String).

Role multiplicities: Associations may be restricted by specifying multiplicities.
In a binary association, the multiplicity on the other side of a given class restricts
the number of objects of the other class to which a given object may be connected.
In a simple form, the multiplicity is given as an integer interval low..high (with
low�high), which expresses that every object of the given class must be con-
nected to at least low objects and at most high objects of the opposite class. The
high specification may be given as *, indicating no higher bound. A single integer
i denotes the interval i..i, and * is short for 0..*. The multiplicity specification
may consist of more than one interval.

Examples: The multiplicity1 on the role supporter indicates that an object of
the class Dependentmust be linked to exactly one object of the class Employee
via the association EmployeeDependent.

Association classes: Associations may be viewed again as classes, leading to the
concept of an association class. Association classes are shown with a class rectangle
and are connected to the association (represented by a line or a rhomb) with a dashed
line. Association classes open the possibility of assigning attributes to associations.

Examples: The association ProjectWorker is modeled also as a class:
ProjectWorker is an association class. This makes it possible to assign the at-
tribute PercentageOfTime to the association ProjectWorker. In the class
diagram, ProjectWorker can be found redundantly as the class name and as the
association name. The specification as the class name would be sufficient.

Generalizations: Generalizations [23] are represented in UML with directed
lines having an unfilled small triangle pointing to the more general class. Usually
the more specific class inherits the properties from the more general class. Gener-
alizations are known in the database context also as ISA (IS-A) hierarchies. In the
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Fig. 4.6 Different example generalizations and specializations in UML

programming language context often the notion of inheritance shows up. Viewed
from the more general class, its more specific classes are its specializations. In gen-
eral, a class may have many specializations, and a class may have many general-
izations. A set of generalizations may be restricted to being disjoint and a set
of generalizations may be classified as complete. The classification disjoint
means that no two specific classes are allowed to have a common instance. The la-
bel complete means that every instance of the general class is also an instance
of at least one more specific class. The explicit keywords overlapping and
incomplete may be attached to sets of generalizations for which no respective
restriction is made.

Examples: Figure 4.6 shows different specializations of the class Employee.
The subclasses FemaleEmployee and MaleEmployee represent a disjoint
and complete classification. The subclasses CapricornEmployee, Aquarius
Employee, and PiscesEmployee classify employees according to their birth-
day (December 22–January 20, 21 January–19 February, 20 February–20 March,
respectively). This classification is disjoint but incomplete. The subclasses Ground
StaffEmployee and FlightStaffEmployee in the context of an airline
company are labeled overlapping and complete because each airline employee ei-
ther works on the ground or during a flight and, for example, a steward is allowed to
work on the ground during boarding and of course during the flight. The subclasses
FrenchEmployee and ItalianEmployee are overlapping because employ-
ees may have two citizenships, but it is incomplete because, e.g., Swiss employees
are not taken into account.

Special care must be devoted to the classifications overlapping and incom
plete. As already stated, they represent the general case and no restriction is made
by these classifications. But the wording could improperly suggest that an overlap
must exist and the incompletion must occur, although this is not the case. Altogether,
overlapping and incomplete in the class diagram would accept an object
diagram that is disjoint and complete, but disjoint and complete in
the class diagram would not accept an object diagram being overlapping or
incomplete.
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Fig. 4.7 Component as association, aggregation, and composition

Aggregations: Part–whole relationships [23] are available in UML class dia-
grams in two forms. The first form represents a loose binding between the part and
the whole, while the second form realizes a stronger binding. Both forms can be
understood as binary associations with additional restrictions. The first form, called
aggregation, is drawn with a hollow rhomb on the whole side and is often called
a white diamond. The second form, called composition, is drawn with a filled rhomb
on the whole side and is often called a black diamond. The links in an object diagram
belonging to a class diagram with a part–whole relationship must be acyclic if one
regards the links as directed edges going from the whole to the part. This embodies
the idea that no part can include itself as a subpart. Such cyclic links are allowed,
however, for arbitrary associations. Part objects from an aggregation are allowed to
be shared by two whole objects, whereas this is forbidden for composition.

Examples: The class diagrams in Fig. 4.7 show on the left the association
Component already introduced and on the right two alternatives in which the as-
sociation is classified as an aggregation with a white diamond and as a composition
with a black diamond, respectively. Recall that roles are essential in reflexive as-

Fig. 4.8 Forbidden and allowed object diagrams for aggregation and composition
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sociations and therefore in reflexive part–whole relationships. Here the parent
objects play the whole role and the child objects play the part role. The two ob-
ject diagrams in Fig. 4.8 explain the differences between association, aggregation,
and composition. The diamonds are shown as gray diamonds, a symbol that does
not exist in UML. We will discuss what happens if the gray diamond is substituted
by a white or black one. If the gray diamond is replaced by a white diamond, the
left object diagram is forbidden because there is a cycle in the part–whole links that
would mean that the object carCtrl is a part of itself. This would also hold for
the other two objects in the cycle. Recall that if we were to have a simple asso-
ciation instead of the gray diamond, this object diagram would be allowed. If the
gray diamond were replaced by a white diamond, the right object diagram would be
an allowed object diagram. Here, the object radioCtrl is shared by the objects
carCtrl and truckCtrl. Naturally, if the gray diamond became an association,
the right object diagram would be allowed as well.

Compositions: Compositions pose further restrictions on the possible links in
addition to the required acyclicity. Part objects from a composition cannot be shared
by two whole objects. Table 4.3 gives an overview of association, aggregation, and
composition properties.

Table 4.3 Overview of properties of associations, aggregations, and compositions

Acyclicity Prohibition of
sharing

Association � �
Aggregation C �
Composition C C

Examples: Let us now discuss what happens in Fig. 4.8 if the gray diamond is
substituted in order to represent compositions. If the gray diamond is replaced by
a black diamond, the left object diagram is again forbidden because there is a cycle
in the part–whole links. If the gray diamond is replaced by a black diamond, the right
object diagram is a forbidden object diagram for compositions because the sharing
of objects is not allowed in that case. To show also a positive example of compo-
sition and aggregation, we state that, if we remove the link from motorCtrl to
carCtrl in the left object diagram, we get a valid object diagram for composition
and aggregation.

Data types and enumeration types: UML offers a collection of predefined data
types with common operations on them. The data types include Integer, Real,
String, and Boolean. Application-dependent enumeration types can also be de-
fined in a class diagram. The enumeration type name is followed by the list of al-
lowed enumeration literals. Enumeration types can be used as attribute, operation
parameter, or operation return types.

Examples: Figure 4.9 shows two enumeration types useful in the context of our
example. The type Gender may represent the gender of an employee and the type
CivilStatus his or her civil status.
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Fig. 4.9 Enumerations in
UML

Invariants: OCL allows the developer to specify invariants, i.e., conditions that
must be true during the complete lifetime of an object (or perhaps more precisely,
at least, in moments when no activity in the object takes place). Such invariants
are implicitly or explicitly universally quantified OCL formulas introduced with the
keyword context.

Example: In order to require that employees have an age of at least 18, one could
state the following invariant:

context Employee inv EmployeeAreAtLeast18: Age>=18

That constraint has an implicit variable self of type Employee and is equiva-
lent to

context self:Employee inv EmployeeAreAtLeast18:
self.Age>=18

Instead of self we could have used any other name for the variable, e.g., the
variable e. The invariant corresponds to the following OCL formula, which must be
true in all system states:

Employee.allInstances->forAll(self|self.age>=18)

4.3.2 Representation of Standard ER Modeling Concepts

This section explains how those basic ER modeling concepts that do not need OCL
can be expressed in UML class diagrams. Some more advanced ER modeling con-
cepts needing OCL, e.g., primary keys or computed attributes, are explained later
when OCL is also used.

The main concepts from the ER model have a direct representation in UML class
diagrams. The ER diagram in Fig. 4.10 shows the ER representation of what has
been shown in the UML class diagram in Fig. 4.4.

• Standard entities are represented in the ER notation and in the UML as rectan-
gles. In the ER notation, single lines are used for ordinary entities and double
lines for dependent entities.

• In the ER approach, binary relationships and n-ary relationships are shown as
rhombs with the relationship name within the rhomb. Binary relationships are
pictured as lines in the UML. N -ary relationships in UML are shown with small
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Budget : Integer

Employee Project

EmployeeDependent

ProjectWorker

ProjectManager

EmployeeNo : Integer

Age : Integer

Name

First : String

Last : String

PercentageOfTime : Real

ProjectNo : Integer

Age : IntegerFirstName : String
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Fig. 4.10 Example ER diagram

rhombs. The relationship respectively association name is given close to, but not
inside, the rhomb.

• Simple ER cardinalities (called multiplicities in UML) as in the example diagram
can equivalently be shown with the UML multiplicities 0..* and 1. But be
warned: The ER notation with intervals as in (0,*) is placed differently in the
ER approach and UML.
In the context of relationships, we emphasize that relationship names are usually
mandatory in the ER approach. Association names are, however, optional in the
UML in general. This fact shows that relationships play a more important role
in ER than associations in the UML. One reason for this may be seen in the fact
that one generates relational schemas from relationships and one needs names
for these schemas.

• Standard attributes have an extra symbol in ER, but the attributes are integrated
into the class rectangle in UML.

• Roles are shown in a similar way in ER and UML, although we have not explic-
itly shown them in the ER approach.

• Weak entities depicted in ER as double-lined rectangles do not have an explicit
notation in UML but may be expressed with a 1..* multiplicity. In addition,
the owning entity could indicate ownership with a black diamond. Additional
OCL constraints that are discussed in the next section will govern the object
identification.

• ISA hierarchies [23] from ER may be represented in UML with generalizations
and additional constraints. Union, disjoint, overlapping, and partitioned ISA hi-
erarchies as discussed in the ER literature correspond to generalizations with
constraints, as shown in Table 4.4.

• Compound and multivalued attributes are realized in UML with the Tuple and
collection constructors Set, Bag, and Sequence.

• Mandatory or optional participation in relationships is expressed in UML with
multiplicities.
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Table 4.4 Correspondence between ISA hierarchies and UML constraints

ISA notion UML notion

Union Complete and overlapping
Disjoint Complete and disjoint
Overlapping Incomplete and overlapping
Partitioned Incomplete and disjoint

• Part–whole relationships [23] have been proposed in the ER approach with sev-
eral notations. Part–whole relationships are represented in UML with a white or
black diamond.

4.4 Employing OCL for Conceptual Schemas

This section will explain the use of UML extension concepts like constraints and
stereotypes for standard ER concepts such as keys and derived and computed at-
tributes. The section will also show how to utilize queries that are executed on sam-
ple database states during database schema development.

4.4.1 Standard ER Concepts Expressed with OCL

Keys: An identification mechanism for objects is probably a very fundamental ap-
plication of OCL within conceptual modeling. In databases, objects often possess
a set of attributes that identify an object uniquely.

Example: In the running example, we assume Employee objects are identified
by the attribute EmployeeNo. This is expressed in OCL as follows.

context e1:Employee inv EmployeeNoIsKey:
Employee.allInstances->forAll(e2|
e1<>e2 implies e1.EmployeeNo<>e2.EmployeeNo)

Alternatively and equivalently, we could state the implication the other way
around:

context e1:Employee inv EmployeeNoIsKey:
Employee.allInstances->forAll(e2|
e1.EmployeeNo=e2.EmployeeNo implies e1=e2)

We emphasize that within the context of an object-oriented data model like the
one from UML, there is a difference between specifying no keys at all and desig-
nating the set of all attributes as the key. Assume Part objects are identified by the
combination of the part number and the name. Recall that name and part number
are the only attributes of the class Part.
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context p1:Part inv NamePartNoIsKey:
Part.allInstances->forAll(p2|

p1<>p2 implies
(p1.Name<>p2.Name or p1.PartNo<>p2.PartNo))

Requiring this invariant is different from giving no key specification, because
with this invariant it is not possible to have two differentPart objects with the same
PartNo and Name. But this is possible in a model where no keys are specified.

In order to represent the identification of Dependent objects in the spirit of the
ER model, the key restriction for class Dependent would look as follows:

context d1:Dependent inv FirstNameEmployeeNoIsKey:
Dependent.allInstances->forAll(d2| d1<>d2 implies
(d1.FirstName<>d2.FirstName or
d1.supporter.EmployeeNo<>d2.supporter.EmployeeNo))

As a variation, a similar requirement could be stated using an inequality on
Employee objects.

context d1:Dependent inv FirstNameEmployeeNoIsKey:
Dependent.allInstances->forAll(d2| d1<>d2 implies

(d1.FirstName<>d2.FirstName or
d1.supporter<>d2.supporter))

Further possibilities for conceptual modeling of keys are discussed in [9].
Derived or computed attributes: We have discussed compound and multival-

ued attributes above. Another variation for attributes are so-called derived or com-
puted attributes. Derived respectively computed attributes can be realized in OCL
with an invariant or with a derivation rule within an operation.

Example: Assume we want to record for Part objects the number of direct (not
indirect) children the respective Part object has with respect to the Component
association. This could be realized with an invariant assuming the class Part has an
additional attribute NumOfChildren or as a definition of an additional operation
NumOfChildren():

context Part inv NumOfChildrenDerived:
NumOfChildren=self.child->size()

Part::NumOfChildren()=self.child->size()

4.4.2 Constraints and Stereotypes

General OCL invariants may be employed for conceptual modeling in order to de-
scribe integrity constraints for a conceptual schema. UML makes it possible to de-
note such invariants in explicit form or the constraints may be indicated as a shortcut
by using stereotypes.

Keys as stereotypes: Because certain kinds of constraints appear frequently in
conceptual modeling, it makes sense to indicate this recurring structure by indicating
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the constraints only with stereotypes. A very good example for this are keys. At least
two alternative notations for key stereotypes can be conceptualized: (1) indicating
for each attribute separately whether it contributes to the key or (2) indicating the
set of key constituents as a whole.

Example: For the running example, key specifications for selected classes could
look as shown in Fig. 4.11. In the class Employee the key consists of the attribute
EmployeeNo. For Part, the key is made of PartNo and Name. The key for
Dependent consists of FirstName and the reference to the key of the supporter.

Alternative keys could be indicated similar to the above-mentioned key stereo-
type notation (2) in which the complete set of alternative key attributes would be
indicated as a whole. As a side remark, we mention that the underlining of attributes
in UML class diagrams, which is used in some ER notations to indicate keys, al-
ready has a fixed, different meaning in UML: Underlined attributes indicate class
attributes that, in contrast to ordinary object attributes, describe properties of the
class and not properties of the single instances belonging to the class.

Stereotypes for general invariants: Due to UML’s and OCL’s flexibility, apart
from keys, various useful patterns for invariants could be provided by stereotypes,
e.g., attribute restrictions, commutativity restrictions, and existence dependencies.

• Attribute restrictions could be an alternative for enumeration types with the ad-
ditional advantage that respective operations would be applicable then as well.
For example, an attribute month:Integer could be restricted by a stereo-
type «1..12».

• Commutativity restrictions could indicate that two paths in the class diagram are
commutative in the sense that the two paths either yield the same result or that the
result of one path is included in the other. Given the context of a particular class
and appropriate roles, for example, self.role1.role2=self.role3
would require that the results of the two expressions involving the roles coin-
cide. Instead of requiring equality, one could allow that one specifies an inclu-
sion with the stereotype «subset». For example, within the context of the class

Fig. 4.11 Keys represented as UML stereotypes
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Employee, the requirementself.managedProject «subset» self.
project would express that a manager works on her or his projects.

• Existence dependencies, like that for Dependent objects, could be specified by
providing a term indicating the master object the slave object depends on. For ex-
ample, within the context of the class Dependent the term self.supporter
within the class rectangle in a special section labeled «dependency» could in-
dicate that for each Dependent object, a supporting employee must exist. In
easy cases like the one above, dependencies can also be shown with a multiplic-
ity specification.

• Apart from these application-specific constraints, the UML provides a standard
constraint for requiring that two or more associations exclude each other with
the keyword xor and a standard constraint expressing that one association is
included in the other by using the keyword subset.

Transitive closure: By means of appropriate operations it is possible in UML
and OCL to define the transitive closure as a built-in language. Any property
C::prop:Set(C) for a class C can be extended to C::propPlus:Set(C)
for yielding the transitive closure and to C::propStar:Set(C) for yielding the
transitive and reflexive closures. One would automatically extend the model with
appropriate operations as indicated below:

C::propPlus():Set(C)=propPlusAux(self.prop)
C::propPlusAux(aSet:Set(C)):Set(C)=
let oneStep:Set(C)=aSet.prop->asSet() in
if oneStep->exists(p|aSet->excludes(p)) then

propPlusAux(aSet->union(oneStep)) else aSet endif
C::propStar():Set(C)=propPlus()->including(self)

This notation can be generalized to bags and sequences.
Example: The requirement that no Part object can be connected to itself with

a chain of Component links in the child direction could be stated as follows:

context p:Part inv ComponentNotReflexive:
not(p.childPlus->includes(p))

General constraints: Apart from constraints indicated with stereotypes, one can
naturally employ the invariant mechanism of OCL and define special, application-
dependent invariants.

Examples: Above we discussed what would happen if the association Project
Manager were to be replaced by two object-valued attributes in the participating
classes. In order to only allow similar object diagrams as in the model with the
association, one would need then the following two invariants:

context Employee inv ManagerManagesOwnProjects:
managedProject->forAll(p|p.manager=self)

context Project inv ProjectManagedByProjectManager:
manager.managedProject->includes(self))
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Note that, in general, both directions of the constraint, and not only one direction,
have to be stated.

Another example of a general constraint concerns the attribute Percentage
OfTime in the relationshipProjectWorker. The sum of percentages for a single
employee should not be more than 100%:

context Employee inv SumPercentageOfTimeLessEqual100:
self.projectWorker.PercentageOfTime->sum()<=100

With respect to this constraint, the object diagram from Fig. 4.5 is invalid because
the sum of ada’s project participation is 110%.

The above example also shows one OCL feature that we have not covered yet:
In the context of association classes it is possible to navigate from a participat-
ing class to the association class and also from the association class to the partic-
ipating classes. Above, the role projectWorker is a property within the class
Employee having the result type Set(ProjectWorker).

4.4.3 Queries

OCL also supports the formulation of queries. Ordinary SQL following the select-
from-where pattern would be formulated in OCL obeying an allInstances-select-
collect pattern.

Example: Find the employee numbers of employees having at least two depen-
dents.

select EmployeeNo
from Employee
where exists

(select *
from Dependent d1, Dependent d2
where d1.EmployeeNo=d2.EmployeeNo and

d1.EmployeeNo=Employee.EmployeeNo and
d1.FirstName<>d2.FirstName)

Employee.allInstances->
select(dependent->
exists(d1,d2|d1.FirstName<>d2.FirstName))->

collect(EmployeeNo)

Employee.allInstances->
select(e:Employee|e.dependent->
exists(d1,d2|d1.FirstName<>d2.FirstName))->

collect(EmployeeNo)

The SQL query, which is formulated on a relational database schema, uses a sub-
query to filter the result and a select clause to indicate which attributes are wanted.
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Fig. 4.12 Foreign keys represented graphically with UML stereotypes

In OCL, one starts with an allInstances expression, then filters the objects with
a select expression, and finally obtains the desired attributes with a collect expres-
sion.

4.5 Describing Relational Schemas with UML

This section will show how relational schemas are represented in UML. Constraints
and stereotypes will represent primary keys and foreign keys.

4.5.1 Relational Schemas

Relational schemas in UML: There are radically different alternatives for repre-
senting relational schemas in UML. (1) One might represent each entity and each
relationship from the conceptual schema as a separate class, or (2) one could use the
type constructors offered by OCL (like Tuple and Set) and represent the entire
database as a single complex value. There are other solutions that lie between these
extreme points. We will further follow an alternative in which a relational schema is
represented by a class; however, we will briefly also explain the other extreme.

Example: Let us consider only the two entities Employee and Project to-
gether with their relationship ProjectWorker, and let us further assume that we
translate this into three relational schemas. If we give a separate class for each entity
and each relationship, we achieve the representation in Fig. 4.12. If we represent the
three relational schemas with a complex value, we achieve the structure in Fig. 4.13.
Primary and foreign keys would have to be formulated additionally as OCL invari-
ants.
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DB:Tuple(Employee:Set(Tuple(EmployeeNo:Integer,
FirstName:String,
LastName:String,
Age:Integer)),

Project:Set(Tuple(ProjectNo:Integer,
Budget:Integer)),

ProjectWorker:Set(Tuple(EmployeeNo:Integer,
ProjectNo:Integer)))

Fig. 4.13 Relational schemas as complex value

4.5.2 Constraints for Primary and Foreign Keys

Representing primary keys and foreign keys: Primary keys in a relational schema
can be shown with a stereotype as primary keys in the conceptual schema. For the
representation of foreign keys there are again two alternatives, a graphical one and
a textual one. (1) In the graphical solution, the relational schema possessing the
foreign key would point to the relational schema in which the referenced primary
key occurs. Technically, this pointing to would be a UML dependency pictured in
graphical form using a stereotype. (2) In the textual solution, the relational schema
possessing the foreign key would indicate the relational schema in which the ref-
erenced primary key occurs. On the technical level, this would again be a UML
dependency, but this time displayed in textual form.

Example: Figures 4.12 and 4.14 show the graphical and textual alternatives for
the example. The graphical alternative has the advantage of visually showing the
connection between the relational schemas. But the graphical representation also has
the disadvantage that it becomes more complicated, and even not understandable,
if the foreign key consists of more than one attribute and if additionally the foreign
key references attributes in the same relational schema.

Stereotypes for primary keys and foreign keys are only shortcuts for more in-
volved OCL invariants not explicitly shown, but being present behind the visual
representation. In our example, we would have that the stereotypes are shortcuts for
the following OCL invariants:

Fig. 4.14 Foreign keys represented textually with UML stereotypes
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context e1:Employee inv EmployeeNoIsKey:
Employee.allInstances->forAll(e2 |

e1<>e2 implies e1.EmployeeNo<>e2.EmployeeNo)
context p1:Project inv ProjectNoIsKey:
Project.allInstances->forAll(p2 |

p1<>p2 implies p1.ProjectNo<>p2.ProjectNo)
context pw1:ProjectWorker inv EmployeeProjectNoIsKey:
ProjectWorker.allInstances->forAll(pw2 |

pw1<>pw2 implies
(pw1.EmployeeNo<>pw2.EmployeeNo or
pw1.ProjectNo<>pw2.ProjectNo))

context pw:ProjectWorker inv EmployeeNoIsForeignKey:
Employee.allInstances->exists(e |

pw.EmployeeNo=e.EmployeeNo)
context pw:ProjectWorker inv ProjectNoIsForeignKey:
Project.allInstances->exists(p |

pw.ProjectNo=p.ProjectNo)

As a final remark, we emphasize that foreign keys are not associations because
an association would imply that it will be manifested by links, which is not true for
foreign keys. Foreign keys are dependencies and can be represented by stereotypes.
We also emphasize that we represent relational schemas as classes. In this UML
representation, there are no associations or relationships, only dependencies.

4.6 Metamodeling Data Models with UML

This section studies a UML metamodel for the ER and the relational data model.
UML is well suited for the description of metamodels. We start by describing the
syntax of the ER data model through the introduction of classes for ER schemas,
entities, and relationships. We also describe the semantics of the ER data model
by introducing classes for ER states, instances, and links. The connection between
syntax and semantics is established by associations explaining that syntactical ob-
jects are interpreted by corresponding semantical objects. Analogously this is done
for the relational data model. The CWM metamodel from [17] is, to a certain ex-
tent, comparable to our approach. However, there only the syntax of data models is
treated, not the interpretation of database schemas as in our approach.

4.6.1 Class Diagram

Consider the class diagram in Fig. 4.15. It shows four packages: in the left part
a solid gray and a solid black package, in the right part a dashed gray and a dashed
black package. The two solid left packages model the syntax of the data models,
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Fig. 4.15 Class Diagram Metamodeling the ER and Relational Data Model

the two dashed right packages the semantics; the upper two packages describe the
ER data model, the lower two packages the relational data model. The ER and re-
lational data models share some concepts, namely, the parts in the middle specify-
ing data types, attributes, and their semantics. We have indicated the multiplicities
in the class diagram. All role names are identical to the respective class, with the
first letter of the class name converted to a lower case letter, e.g., we have the role
names dataType and relDBSchema. The various parts of this class diagram
will be explained below with the scenario from Fig. 4.16 and the object diagrams in
Figs. 4.17–4.20.

Syntax of the ER data model: This part introduces the classes ErSchema, En-
tity, Relship, Relend, Attribute, and DataType.ErSchema objects
consist of Entity and Relship objects, which in turn may possess Attri-
bute objects typed through DataType objects. Relend objects represent the
connection points between the Relship objects and the Entity objects.

Semantics of the ER data model: In this part we set up the classes ErState,
Instance, Link, RelendMap, AttrMap, and Value. The interpretation
is as follows. An ErSchema object is interpreted by possibly many ErState
objects. An Entity is given semantics by a set of Instance objects, and a
Relship by a set of Link objects. DataType objects are given life through
a set of Value objects. Relend and Attribute objects are interpreted by
a set of RelendMap objects and AttrMap objects, respectively.

Syntax of the relational data model: Here the classes RelDBSchema, Rel
Schema, Attribute, and DataType are needed. RelDBSchema objects
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----------+---------------+------------------+--------------

Person | passport | gender
--------+----------+----------

| 123      | ’female’
| 456      | ’male’

Marriage | wife_passport | husband_passport | date

| 123           | 456              | ’1981/07/29’

diana charlesMarriage

123 ’female’ 456 ’male’’1981/07/29’

wife husband

Person Marriage

passport:Integer

gender:String

date:String

husband

wife

Person(passport:Integer,gender:String)

Marriage(wife_passport:Integer,husband_passport: Integer,date:String)

Fig. 4.16 Content of Example Scenario

consist of RelSchema objects that possess Attribute objects typed through
DataType objects.

Semantics of the relational data model: The last part utilizes the classes Rel-
DBState, Tuple, AttrMap, and Value. RelDBSchema objects are inter-
preted by a set of RelDBState objects. Each RelDBState object consists of
a set of Tuple objects that are typed by a RelSchema. Tuple objects in turn
consist of a set of AttrMap objects assigning a Value object to an Attri-
bute within the Tuple.

Let us briefly mention the attributes and operations that are relevant for the class
diagram but not displayed. All classes in the (left) syntax part possess an attribute
name of data type String. The class Attribute has an additional boolean-
valued attribute isKey indicating whether this attribute contributes to the key of the
Entity or the RelSchema. The class Value possesses the attribute content
of data type String, indicating the actual content of the Value object.

Concerning operations, the classes Instance, Link, and Tuple have an op-
eration applyAttr() with a State and an Attribute parameter returning
the actual Value object of the Attribute. The class Link has an operation
applyRelend() with an ErState and a Relend parameter returning the ac-
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Fig. 4.17 Viewing the example scenario as an ER schema

Fig. 4.18 Viewing the example scenario as an ER state

tual Instance of the Relend. The classes Entity and RelSchema possess
an operation key() returning the set of its key attributes.
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4.6.2 Object Diagrams

The modeling is best explained by an example. Figure 4.16 shows an example sce-
nario that is represented in Fig. 4.17 as an ER schema, in Fig. 4.18 as an ER state,
in Fig. 4.19 as a relational schema, and in Fig. 4.20 as a relational state.

Syntax of the ER data model: Figure 4.17 shows the metamodel representation
of the example ER schema. There is one ErSchema object connected to one
Entity and one Relship object. The two Relend objects connect the
Relship with the Entity. The three attributes stand in connection with the
Entity resp. Relship on which they are defined and with the DataType of
the respective attribute. We regard the upper representation as the concrete syntax
of the ER schema and the lower representation in the form of an object diagram
as the abstract syntax.

Semantics of the ER data model: Figure 4.18 displays on the left a part of the ER
schema and on the right semantic objects instantiating the objects from the ER
schema on the left. The semantic objects are typed by horizontal links going
to the left. The ErState is typed by an ErSchema, the Instance by an
Entity, the Link by a Relship, the RelendMap object by a Relend ob-
ject, each AttrMap object by an Attribute object, and each Value object

Fig. 4.19 Viewing the example scenario as a relational schema
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Fig. 4.20 Viewing the example scenario as a relational state

by a DataType object. In order to be comprehensible, this left part does not
show the complete ER state, but only a part of it.

Syntax of the relational data model: Figure 4.19 represents the relational data-
base schema with two relational schemas. The first relational schema has two
attributes, and the second one three attributes. All five attributes are typed by
appropriate data types.

Semantics of the relational data model: Figure 4.20 gives a part of the relational
database state. Only one tuple with three components, i.e., with three AttrMap
objects, is shown. The three Value objects are typed with links into the left syn-
tax part. For example, the two Value objects i_123 and i_456 are connected
to the DataType object Integer.

4.6.3 Constraints

The multiplicities in the class diagram constrain the valid object diagrams and are
so-called model-inherent constraints. Apart from these constraints, all parts in the
class diagram must be restricted by appropriate explicit constraints. In total we ob-
tain about 50 constraints. We do not go into the details here, which can be found
in [10], but show only one typical example from each of the four parts.
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Syntax of the ER data model: Within one Entity, differentAttributes have
different names.

context self:Entity inv uniqueAttributeNamesWithinEntity:
self.attribute->forAll(a1,a2 |

a1<>a2 implies a1.name<>a2.name)

Thus we would obtain an invalid ER schema if we changed the name attribute
of the genderEr object from ‘gender’ to ‘passport’ in Fig. 4.17.

Semantics of the ER data model: Two different Instances of one Entity
can be distinguished in every ErState (where both Instances occur) by
a key Attribute of the Entity.

context self:Instance inv keyMapUnique:
Instance.allInstances->forAll(self2 |

self<>self2 and self.entity=self2.entity
implies
self.erState->intersection(self2.erState)->forAll(s |
self.entity.key()->exists(ka |

self.applyAttr(s,ka)<>self2.applyAttr(s,ka))))

One would achieve an invalid ER state if we changed the content attribute of
the i_123 object from ‘123’ to ‘456’, because there is another Instance
object (not shown in Fig. 4.18), namely, charlesEr, with passport number
‘456’, and passport is the only key attribute in the example ER schema.

Syntax of the relational data model: The set of key Attributes of a Rel-
Schema is not empty:

context self:RelSchema inv relSchemaKeyNotEmpty:
self.key()->notEmpty

We would get an invalid relational schema if we changed the isKey attribute
of the passportRel object from true to false, because then the relational
schema named Person would not have any key attributes.

Semantics of the relational data model: As shown in Fig. 4.21, the Attributes
connected to the RelSchema of a Tuple are identical to the Attributes
connected to the AttrMap of the Tuple. In other words, there are attribute
assignments for all Attributes of a Tuple (and for only those).

context self:Tuple inv commutativityAttribute:
self.relSchema.attribute=self.attrMap.attribute->asSet

We would obtain an invalid relational state if we deleted the marriage-
WifePassportRel object. Then there would exist an Attribute with
the name wife_passport, which is present in the relational schema named

Fig. 4.21 Excerpt
from metamodel class
diagram explaining
commutativityAttribute
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Fig. 4.22 Three consecutive ER states

Marriage, but one tuple for this relational schema would miss the attribute
assignment for the attribute wife_passport, i.e., there would be no corre-
sponding AttrMap object.

Our example scenario included only one ER state, namely, an ER state where two
entities and one relationship connection are present. The metamodel is, however,
more general in the sense that not only can one ER state be described, but it is
possible to link several ER states to a single ER schema. For example, the three ER
states displayed in Fig.4.22, together with the corresponding ER schema, could be
represented as a single object diagram in the metamodel.

Apart from describing the data models, it is also possible to give a metamodel
for the transformation of ER schemas into relational database schemas. We will not
go into details here but only refer to the detailed metamodel, which can be found
in [10]. By characterizing the syntax and semantics of the data models and also the
transformation itself within the same (meta-)modeling language, one can include
equivalence criteria on the syntactic and semantic levels for the transformation. In
particular, one can give a semantic equivalence criterion requiring that the ER states
and the corresponding relational states carry the same information.

4.7 Further Related Work

Relevant related work has been mentioned already in the respective chapters. In ad-
dition, we want to point to the following books and papers relating on the one hand
UML and conceptual modeling and on the other hand UML and constraint devel-



4 UML and OCL in Conceptual Modeling 119

opment. Further relevant literature can be found by using the “Complete Search’;
facility on DBLP by searching with “Conceptual UML Model” or “UML Database
Design,” for example.

An early approach to developing databases with object-oriented design tech-
niques is given in [4]. Comparisons between designing (database) schemas and class
diagrams with UML and with ORM are discussed in [13, 14]. Object-oriented and
object-relational schemas described with UML and other object-oriented techniques
are studied in [2, 15, 24]. The work in [1] proposes a UML profile for database de-
sign, whereas in [26] a UML profile for conceptual modeling in connection with
data warehouses is worked out.

Constraints and OCL have been used for conceptual modeling since the early
days of UML. [8] treats the transformation of OCL constraints into relational
database requirements. The textbook [16] uses OCL and UML in a radical way for
all facets of conceptual modeling. [22] discusses the impact of MOF on develop-
ing database schemas. [5] is a further approach using OCL for conceptual modeling
that proposes special treatment of typical, schematic integrity constraints. [7] em-
phasizes the incremental development of OCL constraints.

4.8 Conclusions

This contribution has explained how UML can be employed for conceptual model-
ing of information systems. On the one hand, UML supports all classical features
of the ER model, and on the other hand, more advanced features like part–whole
relationships are expressible as well. Within UML, the textual constraint and query
language OCL is available. OCL has many similarities to SQL.

However, support for conceptual modeling within UML can be improved in
a number of ways. Proposals have been advanced for a UML profile for data mod-
eling, but an overall accepted solution is still missing. Such a profile should take
into account data modeling on various abstraction levels, e.g., the conceptual, the
logical, and the physical levels. Complete metamodeling of these data models re-
specting syntactic and semantic aspects is another open issue. One reason for the
success of the relational model is probably the well-studied relationship between
descriptive languages like tuple or domain calculus and operationally effective lan-
guages like relational algebra. OCL as a central ingredient for conceptual modeling
and as a descriptive language within UML would benefit from a clear relationship
to an operationally effective UML execution language.
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Appendix A: Original ER Diagram from Chen’s Paper

Fig. 4.23 Original ER diagram from Chen’s paper

Fig. 4.24 Plain UML class diagram corresponding to Fig. 4.23
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context e1:Employee inv EmployeeNoIsKey:
Employee.allInstances->forAll(e2|

e1<>e2 implies e1.EmployeeNo<>e2.EmployeeNo)
-- above invariant analogously for other classes
context d1:Dependent inv FirstNameEmployeeNoIsKey:
Dependent.allInstances->forAll(d2| d1<>d2 implies
(d1.FirstName<>d2.FirstName or
d1.supporter.EmployeeNo<>d2.supporter.EmployeeNo))

Fig. 4.25 Stereotyped UML class diagram corresponding to Fig. 4.23
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Chapter 5
Mapping Conceptual Models
to Database Schemas

David W. Embley and Wai Yin Mok

Abstract From the beginning, a primary objective of conceptual modeling has been
to generate good database schemas. This chapter surveys and explains the principles
and practices of algorithmically mapping conceptual models to database schemas.
An important unifying theme is that the underlying principles are independent of
conceptual-modeling languages and notation. Although illustrated mainly in terms
of the entity-relationship model, the chapter explains and illustrates the applica-
tion of the mapping principles to extended entity-relationship models, the unified
modeling language, and generic conceptual-model hypergraphs. Besides explaining
conceptual-model-independent mapping rules, the chapter also addresses normal-
ization issues, explaining both the map-then-normalize approach and the normalize-
then-map approach to schema normalization. In addition to mapping conceptual
models to flat relations for standard relational databases, the chapter also shows
how to map conceptual models to nested relations applicable for object-based and
XML storage structures.

5.1 Introduction

The mapping of a conceptual-model instance to a database schema is fundamentally
the same for all conceptual models. A conceptual-model instance describes the rela-
tionships and constraints among the various data items. Given the relationships and
constraints, the mappings group data items together into flat relational schemas for
relational databases and into nested relational schemas for object-based and XML
databases.
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Although we are particularly interested in the basic principles behind the map-
pings, we take the approach of first presenting them in Sects. 5.2 and 5.3 in terms
of mapping an entity-relationship (ER) model to a relational database. In these sec-
tions, for the ER constructs involved, we (1) provide examples of the constructs and
say what they mean, (2) give rules for mapping the constructs to a relational schema
and illustrate the rules with examples, and (3) state the underlying principles. We
then take these principles and show in Sect. 5.4 how to apply them to the unified
modeling language (UML). This section on UML also serves as a guide to apply-
ing the principles to other conceptual models. In Sect. 5.5 we ask and answer the
question regarding the circumstances under which the mappings yield normalized
relational database schemas. In Sect. 5.6 we extend the mappings beyond flat re-
lations for relational databases and show how to map conceptual-model instances
to object-based and XML databases. We provide pointers to additional readings in
Sect. 5.7. Throughout, we use an application in which we assume that we are design-
ing a database for a bed-and-breakfast service. To illustrate all conceptual-modeling
features of interest, we take the liberty of poetic license in imagining what features
might be of interest to the application.

This chapter assumes a solid understanding of several other chapters in this
handbook: the entity-relationship model (Chap. 3), the enhanced entity-relationship
model (Chap. 6), the unified modeling language (Chap. 4), and the theory of func-
tional dependencies and normalization (as introduced in many database text books,
e.g., [11, 13, 15]). We do not extensively discuss any of these topics. We do, how-
ever, add enough commentary about these topics to make this chapter reasonably
self contained. This chapter also assumes a minimal understanding of the relational
data model, SQL, object-oriented databases, object-relational databases, and XML
Databases. We make no explanatory comments about these topics.

5.2 Entity-Relationship Model Mappings

5.2.1 Basic Mappings

We give an ER diagram in Fig. 5.1 a and the database schema generated from the ER
diagram in Fig. 5.1b. In our bed-and-breakfast application, as modeled in Fig. 5.1,
registered guests occupy rooms and are signed up for activities such as golf, tennis,
and horseback riding. Although there may be other occupants of a room in a reg-
istered guest’s party, in this initial example, we only capture each registered guest
(presumably the ones who are paying the bill). Further, in this example we only
allow a registered guest’s party as a whole to sign up for various activities.

Notationally, each box in Fig. 5.1a represents an entity set, e.g., Room, Guest,
and Activity. The diamonds with lines connected to entity sets represent relationship
sets among the connected entity sets, e.g., occupies and is signed up for. The ovals
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Room 

RoomNr

Type 

occupies Guest
is 

signed up 
for

Activity

GuestNr

Address Name 

Description

Duration 

ExtraCharges Time 

Rate 

Date 

RoomName

Fig. 5.1 Basic mappings. ER diagram and Generated schemas

represent attributes, e.g., RoomNr, Date, and Duration, which may be connected
with either entity sets (boxes) or relationship sets (diamonds).

Cardinality constraints for binary relationship sets are one of the following:

1. many–many, indicated by the absence of arrowheads on the lines connecting
entity sets and relationship sets, e.g., is signed up for;

2. many–one, indicated by an arrowhead on the one side, e.g., occupies is many–
one from Room to Guest, and thus there can be only one registered guest’s party
occupying a room, although the registered guest’s party may occupy one or more
rooms;

3. one–many, which is the same as many–one, only in the opposite direction, e.g.,
occupies is one–many from Guest to Room; and

4. one–one, indicated by arrowheads on both sides, e.g., occupies would be one–
one if the bed and breakfast had the policy that a guest’s party could occupy at
most one room.

Cardinality constraints for attributes are many–one from entity set to attribute
or from relationship set to attribute. If an entity-set attribute is a key, however, as
indicated by underlining of the attribute name, then the cardinality is one–one. Thus,
for example, Type is many–one from Room to Type so that many rooms can be of
the same type (e.g., the bed and breakfast can have several single rooms, several
double rooms, and several suites). RoomNr, on the other hand, is a key attribute for
Room, and thus each room has one room number and each room number designates
one room. RoomName is also a key for Room (each room has a name such as the
“Gold Room” or the “Penthouse Suite”). Although rare, relationship sets may also
have keys designated by an underline (e.g., a guarantee number for a guest’s room
reservation). Relationship sets, of course, have keys, often a composite of the keys
for its related entity sets (e.g., {GuestNr, Description}, which is a composite key1

for the relationship set is signed up for). The standard ER model, however, provides
no way to directly designate composite keys for relationship sets.

ER Mapping Rule #1. An entity set E with n key attributes A1, . . . , An and m
nonkey attributes B1, . . . , Bm maps to the relational schemaE.A1; : : : ; An; B1; : : :,
Bm/. The underlines designate keys for the relational schema. If there is only one

1 Here and throughout the chapter “composite key” always designates a minimal key, so that if
any of the attributes of the key is removed, the remaining attribute(s) no longer provide the unique
identification property of a key.
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key, it is the primary key; if there are several keys, one is designated as the primary
key. ER Mapping Rule #1 applies when E is a regular entity set (i.e., not a weak
entity set) and has no entity set E 0 connected to E by a relationship set that is one–
one or is many–one from E to E 0.

ER Mapping Rule #1 applies to Activity in Fig. 5.1a. Activity is a regular entity
set (as are all entity sets in Fig. 5.1a), and its only connected relationship set is
many–many. When we apply ER Mapping Rule #1 to Activity, since Description is
a key attribute and Duration is a nonkey attribute, we obtain Activity(Description,
Duration), which is the first relational schema in Fig. 5.1b. ER Mapping Rule #1 also
applies to Guest, yielding the second relational schema in Fig. 5.1b. ER Mapping
Rule #1 does not apply to Room because the connected relationship set occupies is
many–one from Room to Guest.

ER Mapping Rule #2. LetE be a regular entity set with n key attributesA1, : : :,
An, m nonkey attributes B1; : : : ; Bm, and p many–one-connected entity sets whose
primary keys are C1; : : : ; Cp, and that have q attributesD1; : : : ;Dq associated with
the p many–one relationship sets. Assuming E has no one–one-connected entity
sets, E maps to E.A1; : : : ; An; B1; : : : ; Bm; C1; : : : ; Cp;D1; : : :, Dq/.

ER Mapping Rule #2 applies to Room in Fig. 5.1a. Room has two key attributes
(RoomNr and RoomName), two nonkey attributes (Type and Rate), and one many–
one-connected entity set with a primary key (GuestNr) and with an attribute (Extra-
Charges) on its connecting relationship set (occupies). Thus, applying ER Mapping
Rule #2 to Room, we obtain Room(RoomNr, RoomName, Type, Rate, GuestNr, Ex-
traCharges), the third relational schema in Fig. 5.1.2

ER Mapping Rule #3. Let E and E 0 be two regular entity sets connected by
a single one–one relationship set R between them. Let E have n key attributes
A1; : : : ; An, m nonkey attributes B1; : : : ; Bm, and p many–one-connected entity
sets whose primary keys are C1; : : : ; Cp and that have q attributes D1; : : : ;Dq

associated with the p many–one relationship sets. Let E 0 have n0 key attributes
A0

1; : : : ; A
0
n0 , m0 nonkey attributes B 0

1; : : : ; B
0
m0 , and p0 many–one-connected entity

sets whose primary keys are C 0
1; : : : ; C

0
p0 and that have q0 attributes D0

1; : : : ;D
0
q0

associated with the p0 many–one relationship sets. And let R have r attributes
R1; : : : ; Rr. Then, E , E 0, and R together map to the single relational schema
R.A1; : : : ; An; A

0
1, : : :, A0

n0 ; B1, : : :, Bm; B
0
1, : : :, B 0

m0 ; C1, : : :, Cp; C
0
1, : : :, C 0

p0 ,

D1; : : : ;Dq ;D
0
1; : : : ;D

0
q0 ; R1; : : : ; Rr/.

ER Mapping Rule #3 does not apply to the ER model instance in Fig. 5.1. It
would apply if occupies were one–one, which would mean that a guest’s party
would occupy one room and could only occupy one room. If occupies were one–
one, then we would map Room, Guest, and occupies together to occupies(RoomNr,
RoomName, GuestNr, Type, Rate, Name, Address, ExtraCharges). Furthermore,
there would be no separate schemas for Room and Guest schema since both would
be entirely included in this occupies schema.

2 Unless otherwise explicitly stated, the first key listed in a relational schema is the primary key –
RoomNr in this example.
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It becomes unwieldy to formally specify further generalizations of ER Mapping
Rule #3. Furthermore, these generalizations seldom arise in practice. The general-
izations involve adding more and more entity sets in a one-to-one correspondence
with the entity sets already in a one-to-one correspondence. In principle, we just
combine together into a single relational schema all the attributes of these entity sets,
of their connecting one–one relationship sets, and of their connecting many–one re-
lationship sets (but not their connecting one–many and many–many relationship
sets), and all the primary-key attributes of their connecting many–one relationship
sets. Unfortunately, however, we have to be careful. Basically the connected one–
one relationship sets must all have mandatory participation; and if there are cycles
in the set of entity sets in the one-to-one correspondence, the one–one relationship
sets must all be semantically equivalent.3

ER Mapping Rule #4. Let R be a many–many binary relationship set with at-
tributes A1, . . . , An. Let E and E 0 be the entity sets connected by R, and let P be
the primary-key attribute of E and P 0 be the primary-key attribute of E 0. Then R
maps to R.P; P 0; A1; : : : ; An/.

ER Mapping Rule #4 applies to is signed up for, a many–many relationship set
whose attributes are Date and Time. Its connected entity sets are Guest and Activity,
whose primary keys are, respectively, GuestNr and Description. Thus, when we
apply ER Mapping Rule #4, we obtain IsSignedUpFor(GuestNr,Description, Date,
Time, which is the last relational schema in Fig. 5.1b.

General Principle #1. In general, mappings of conceptual models to relational
schemas are about finding key attributes and composite key attributes and grouping
these attributes together into relational schemas along with attributes that directly
depend on them. Finding key attributes and composite key attributes is about observ-
ing cardinality relationships among attributes (one–one, one–many, many–one, and
many–many). Finding directly dependent attributes is about finding attributes that
functionally depend on keys, but only on keys within the group of attributes mapped
together into a relational schema (i.e., never on some nonkey attribute or attribute
group, never on a proper subset of a composite key, and never on a combination of
a proper subset of a composite key and nonkey attributes). Functional dependency
arises from cardinality constraints – an attribute B functionally depends on another
attribute A if there is a many–one (or one–one) relationship fromA to B . More gen-
erally, an attribute B functionally depends on a set of attributesA1A2 : : : An if there
is a many–one (or one–one) relationship from the n-tuples in A1A2 : : : An to B .

General Principle #2. Graphical instantiations of conceptual models dictate car-
dinality relationships among attributes. Sometimes the graphical instantiations of
conceptual models are insufficient to express all needed cardinality relationships.
In this case, we express the missing cardinality constraints we need using a formal
constraint language when one is defined for the conceptual model or notes in the
absence of a defined formal constraint language.

3 We refer the interested reader to the additional readings in Sect. 5.7 for these esoteric mappings.
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General Principle #3. The following algorithm generally applies to all concep-
tual models.

Step 1 Group keys, which may be single-attribute keys or composite-attribute
keys, into sets in which the keys in a set are all in a one-to-one correspon-
dence with each other. (In practice, these key sets will often be singleton
sets.)

Step 2 In each key set, designate one of the keys (or the only key) as the primary
key for the key set.

Step 3 To each key set add all directly dependent nonkey attributes, plus, from
among other key sets, the attributes of all directly dependent primary keys.

Step 4 For each group of attributes formed in step 3, select a name and form
a relational schema. (Name selection is often obvious. Since keys are for
entity sets or relationship sets, we typically use the entity-set name or the
relationship-set name.)

If we apply general principle #3 to the ER diagram in Fig. 5.1a, step 1 yields
the following set of key sets: {{Description}, {GuestNr}, {RoomNr, RoomName},
{GuestNr Description}}.4 In step 2 we designate RoomNr as the primary key
for the key set {RoomNr, RoomName}. All other key sets are singleton sets, and
thus each key in these singleton sets is a primary key. In step 3 we group at-
tributes, and in step 4 we select names for these attribute groups and form rela-
tional schemas. For the key set {Description}, the only directly dependent attribute
is Duration. Hence, we add it, yielding (Description, Duration). Based on the dia-
gram in Fig. 5.1a, the obvious name for this attribute group is Activity. Thus, Ac-
tivity(Description, Duration) becomes the relational schema for the key set {De-
scription}. This is the first relational schema in Fig. 5.1b. The key set {GuestNr}
has two directly dependent attributes: Name and Address. Thus, with the addition
of the obvious schema name, Guest(GuestNr, Name, Address) becomes the rela-
tional schema for the key set {GuestNr}. This is the second relational schema in
Fig. 5.1b. The key set {RoomNr, RoomName} has three directly dependent non-
key attributes: Type and Rate from the entity set Room and ExtraCharges since it is
an attribute of occupies, the many–one relationship set from Room to Guest. From
among the other key sets, GuestNr is the only primary key directly dependent on
RoomNr.5 Thus, with the addition of the obvious schema name, Room(RoomNr,
RoomName, Type, Rate, GuestNr, ExtraCharges) becomes the relational schema.
This is the third relational schema in Fig. 5.1b. Finally, for {GuestNr Descrip-
tion}, which is the key set for the relationship set is signed up for, the only directly

4 Here we make use of the common set notation in the relational database literature that lets a se-
quence of attribute names designate a set. Thus, {GuestNr Description} is a key set with a single
composite key consisting of two attributes, whereas {RoomNr, RoomName} is a key set with two
keys.
5 Note that although Name and Address functionally depend on RoomNr and also on RoomName,
they do not directly functionally depend on either RoomNr or RoomName because they functionally
depend on GuestNr, which is not a key attribute for the key set {RoomNr, RoomName} for which
we are building a relational schema.
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dependent attributes are Date and Time.6 Thus, with the addition of the obvious
schema name, IsSignedUpFor(GuestNr, Description, Date, Time) becomes the rela-
tional schema.

Observe that ER Mapping Rules #1–4 are simply special cases of the general
principles written specifically for the ER model. ER Mapping Rule #1 gathers to-
gether key attributes and nonkey attributes from a single regular entity set that has
no connecting functionally dependent entity sets. ER Mapping Rule #2 gathers to-
gether key attributes and nonkey attributes from a single regular entity set along
with directly functionally dependent attributes that are not keys and the attributes
of a primary key from each entity set functionally dependent on the single regular
entity set for which we are constructing the relational schema. ER Mapping Rule
#3 and its generalizations gather together all attributes from all entity sets in a one-
to-one correspondence, plus all attributes connected to any of the relationship sets
forming the one-to-one correspondence, plus all primary-key attributes of all the
entity sets connected by a many–one relationship set from any one of the entity sets
in a one-to-one correspondence, plus all attributes of these many–one relationship
sets. ER Mapping Rule #4 identifies the special case where the composite key for
a relationship set consists of primary key attributes of its connecting entity sets. The
attributes from these two primary keys, along with any attributes connected to the
relationship set, form the relational schema.

5.2.2 Complex Key Attributes

Key identification is a central component of mapping conceptual models to database
schemas. Conceptual models commonly provide a direct way to identify keys via di-
agramming conventions. For the ER model, it is common to underline key attributes
for entity sets, as shown by Fig. 5.1a. This convention, along with cardinality con-
straints imposed over relationship sets, provides sufficient information for identify-
ing many keys for entity and relationship sets – indeed most keys in practice.

ER diagramming conventions, however, are not sufficient to allow us to identify
all keys. Two common cases are (1) composite keys for entity sets and (2) keys for
relationship sets not derivable from information about entity-set keys coupled with
relationship-set cardinality constraints. The ER diagram in Fig. 5.2 a gives examples
of these two cases.

1. The entity set Guest in Fig. 5.2a has no key attribute. Neither Name alone nor
Address alone uniquely identifies a guest. Many different people with the same
name may make reservations, and we may wish to make it possible for different
people with the same address to make reservations. Name and Address together,
however, may uniquely identify Guest, and we may designate that this must

6 Note that Duration functionally depends on Description, but since Description is a proper subset
of GuestNr Description, we exclude Duration. Similarly, we exclude Name and Address since
GuestNr is a proper subset of GuestNr Description.
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Fig. 5.2 Mappings for complex key attributes. ER diagram and Generated schemas

hold in our database so that Name Address becomes a composite key. If no
diagramming convention or other formal convention provides a way to designate
composite keys for an entity set,7 it is best to record this information in a note. In
our notes here, we use standard functional dependency (FD) notation, allowing
both attribute names and entity-set names to appear as components of left-hand
and right-hand sides of FDs. To say that Name Address is a key for Guest, we
write the FD Name Address ! Guest as shown in Fig. 5.2a.

2. Since only one guest’s party can occupy a room on any given date, RoomNr and
Date uniquely identify a reservation. Thus RoomNr and Date constitute the com-
posite key for the many–many relationship set has reservation for. This is con-
trary to the usual convention, which would have the key consist of the primary
keys from the connecting entity sets. It is easy to see, however, that RoomNr
Name Address cannot be the key because it would allow multiple parties to oc-
cupy the same room on the same day. We designate the key for a relationship
set by including all the primary-key attributes of all connecting entity sets and
all the attributes of the relationship set in an FD. Thus, for example, we write
RoomNr Date ! Name Address Rate as shown in Fig. 5.2a. Similarly, we write
Name Address Date Time ! Description NrInParty to designate Name Address
Date Time as a composite key for is signed up for, i.e., a guest’s party can only
sign up for one activity at a given time on a given date.

7 There are many ER variants, and some have conventions to designate composite keys for entity
sets (e.g., a connecting line among underlined attributes of an entity set).
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Figure 5.2b shows the relational schemas generated from Fig. 5.2a. We obtain
these relational schemas by following the algorithm in general principle #3. In step 1
we generate keys for each of the entity sets and each of the many–many relationship
sets. This step yields the set of key sets {{Name Address}, {Description}, {RoomNr
Date}, {Name Address Date Time}, {RoomNr}}. Since each key set has only one
key, it becomes the primary key called for in step 2. Next we add all directly de-
pendent nonkey attributes and needed directly dependent primary-key attributes as
called for in step 3 and select names as called for in step 4. The result consists of
the relational schemas in Fig. 5.2b.8

ER Mapping Rule #10, ER mapping rule #20, and ER mapping rule #30. The
mapping rules for entity sets with possible composite keys are straightforward gen-
eralizations of ER Mapping Rules #1–3. Their formal statement, however, is quite
complex. Basically, instead of just simple single-attribute keys, we must also allow
for composite keys. Thus, for example, for ER mapping rule #10 (the generalization
of ER Mapping Rule #1), we include all attributes that are keys, all attributes that
are parts of composite keys, and all nonkey attributes in the generated relational
schema. It is possible, though rare, for composite keys to overlap. For example, if
we had kept RoomName from Fig. 5.1a in our example for Fig. 5.2a, we would also
have the composite key RoomName Date grouped with the composite key RoomNr
Date. In this case, the mapping rule should only generate three attributes (not four)
for these two composite keys. The single occurrence of Date in the relational schema
would be part of both composite keys.

ER Mapping Rule #40. For any relationship set, we gather together all attributes
constituting primary keys of all related entity sets plus all attributes of the rela-
tionship set. We then determine, from among these attributes, which attributes and
attribute sets are keys. This becomes the relational schema for the relationship set,
except in two special cases having to do with ER Mapping Rules #20 and #30. If the
primary key of one and only one of the connected entity sets E of relationship set
R is a key for R, then as part of mapping rule #20, all the attributes of the relational
schema for R become part of the relational schema for E; there is no separate rela-
tional schema for R. If the primary keys of two or more of the connected entity sets
E1, . . . , En of relationship set R is each a key for R, then as part of ER Mapping
Rule #30, all the attributes from the relational schemas forE1, . . . , En, andR are all
combined to form a single relational schema for the database.

5.2.3 Recursive Relationship Sets and Roles

To be understood, recursive relationship sets require roles. Figure 5.3a shows an
example. The role Connecting Room helps us understand that the relationship set

8 Whether we should keep a relation for Room here is an interesting question. Observe that its data
may be completely recorded in the relation HasReservationFor. If so, we can discard it. In our
application, however, it is possible (even likely) that there is no current reservation for some of the
rooms. Thus, to preserve all room numbers in our database, we keep it.



132 D.W. Embley and W.Y. Mok

Connecting
Room

Room

RoomNr

Type

is 
connected

with

(a) ER Diagram.

Room(RoomNr, Type)
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(b) Generated Schemas.

Fig. 5.3 Mappings for roles. ER diagram and Generated schemas

denotes adjoining rooms with a doorway between them: a Room is connected with
a Connecting Room.

Roles also help us choose attribute names for recursive relationship sets. We
map a recursive relationship set to a relational schema in the same way we map
regular relationship sets to a relational schema. One–one and many–one recursive
relationship sets become part of the relational schema for the entity set, and many–
many recursive relationship sets become relational schemas by themselves. In all
cases, however, there is one difference – we must rename one (or both) of the
primary-key attributes. Because the regular mapping for a recursive relationship
set would make the primary key of the entity set appear twice, and since a rela-
tional schema cannot have duplicate attribute names, we must rename one (or both)
of them. The role helps because it usually gives a good clue about what one of
the names should be. As Fig. 5.3b shows, we map the many–many recursive rela-
tionship set to the relational schema with attribute names RoomNr and Connecting-
RoomNr.

We can also use roles in this same way even when a relationship set is not re-
cursive. For example, we could have added a role Occupied Room to the Room
side of occupies in the ER diagram in Fig. 5.1a. In this case we could have gen-
erated Room(OccupiedRoomNr, OccupiedRoomName, Type, Rate, GuestNr, Extra-
Charges) in which OccupiedRoomNr replaces RoomNr and OccupiedRoomName
replaces RoomName in the relational schema in Fig. 5.1b. Using the role name in
this way is optional but may be useful for distinguishing the roles attributes play
when we have more than one relationship set between the same two entity sets.
For example, we could have also had has reservation for in addition to occupies as
a relationship set between Room and Guest in Fig. 5.1a.
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5.2.4 Weak Entity Sets

A weak entity set is an entity set with no key among its directly associated attributes.
If we augment our bed-and-breakfast example to a chain of bed-and-breakfast es-
tablishments as shown in Fig. 5.4a, the room number no longer uniquely identifies
a room. Every bed and breakfast in the establishment likely has a room #1 and
a room #2 and probably more. Thus, Room has no key among its directly associated
attributes, and it becomes a weak entity set.

In an ER diagram, we designate a weak entity set by enclosing the name of
the weak entity set in a double box. In addition, we add a special relationship
set connecting the weak entity set to the entity set on which the weak entity set
depends for its key. We designate these special relationship sets by a double di-
amond and by adding an arrowhead on the side connecting to the entity set on
which the weak entity set depends. Adding the arrowhead is appropriate since
there is always a many–one relationship from the weak entity set to the entity set
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is forRoomRoomNr
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NrPersons

Name
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Duration

BedAndBreakfast

is forReservation

Name
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Name Location → BedAndBreakfast 
Name Location RoomNr → Room 
GuestNr Name → Person 
GuestNr Name Date Time → ActivityRegistration 

(a) ER Diagram.

BedAndBreakfast(Name, Location,YearOpened)
Room(Name, Location, RoomNr, Type)
Reservation(GuaranteeNr, Name, Location, RoomNr, GuestNr)
Guest(GuestNr, NrPersons)
Person(GuestNr, Name, Age)
Activity(Description, Duration)
ActivityRegistration(GuestNr, Name, Date, Time, Description)

(b) Generated Schemas.

Fig. 5.4 Mappings for weak entity sets. ER diagram and Generated schemas
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on which the weak entity set depends. The ER model does not, by the way, pre-
clude an entity set on which a weak entity set depends from itself being a weak
entity set.

Figure 5.4a is an ER diagram showing the three situations in which we normally
find weak entity sets. Weak entity sets typically arise (1) when there is an organiza-
tional subdivision (e.g., Room is an organizational division of the BedAndBreakfast
chain), (2) when one entity depends on the existence of another (e.g., for the bed-
and-breakfast database, Person depends on the existence of a registered Guest), and
(3) when we wish to view relationship sets as entity sets (e.g., an Activity Registra-
tion rather than just a relationship set between Person and Activity).9

The general principles tell us how to map weak entity sets to relational schemas.
We first identify keys. In every case in which we find a weak entity set, the iden-
tity of entities in the weak entity set depends on the key for some other one
or more entity sets. The identity of a room depends on the bed and breakfast
in which the room is located. The key for BedAndBreakfast, which for our ex-
ample is the composite key Name Location,10 plus a RoomNr uniquely identify
a room. Thus, the key for Room is the composite of all three attributes, namely,
Name Location RoomNr. For Person, names are not unique identifiers, but are
usually unique within a family, which often constitutes a registered guest’s party.
In our example, we require unique names within a registered guest’s party, and
thus the key for the weak entity set Person is the composite of GuestNr and
Name (of Person). A person can sign up for only one activity at a given time on
a given date. Thus, to uniquely identify an ActivityRegistration, we need the key
of Person, which is GuestNr Name, as well as Date and Time, to all be part of
the key. Thus, the composite key for ActivityRegistration is GuestNr Name Date
Time.

After identifying keys for a weak entity set (and designating one as the primary
key in case there are several), we add all directly dependent nonkey attributes and
directly dependent primary-key attributes. We then choose a name – usually the
name of the weak entity set – and form a relational schema. Figure 5.4b shows
the result for the ER diagram in Fig. 5.4a. For the weak entity set Room, the
only directly dependent attribute is Type. Thus, since the key is the composite
Name Location RoomNr, the relational schema is Room(Name, Location, RoomNr,
Type), the second relational schema in Fig. 5.4b. Similarly, for Person, since Age
is the only directly dependent attribute, the relational schema for the weak en-
tity set is Person(GuestNr, Name, Age). For the weak entity set Activity
Registration, Description is a directly dependent primary-key attribute. Thus, since
the composite key is GuestNr Name Date Time, we generate the last relational
schema in Fig. 5.4b.

9 Note, by the way, that the entity set Reservation is not weak, even though it is certainly a re-
lationship set we view as an entity set. When we turned it into an entity set, we gave it a key,
GuaranteeNr, so that it did not become a weak entity set.
10 Location is meant to be a simple city or town or other designated place. Several bed-and-
breakfast establishments can be in the same location (e.g., Boston), but each establishment in the
same location must have a different name. Thus, Name Location ! BedAndBreakfast.
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ER Mapping Rule #5. Let W be a weak entity set, let E be an entity set on
which W depends (E may itself be weak), and let F1, . . . , Fm be the m other
entity sets (if any) in a many–one relationship from W to Fi .1 � i � m/. Form
a relational schema called W with attributes consisting of all the attributes of W ,
the primary-key attribute(s) of E , all the primary-key attributes of F1, . . . , Fm, and
all the attributes (if any) of the many–one relationship sets fromW to each Fi .1 �
i � m/. From among the attributes, determine the keys for W and designate one as
the primary key. Each key ofW is formed by adding one or more attributes ofW to
the primary key for E .11

5.3 Extended Entity-Relationship Model Mappings

Extended ER models include generalization/specialization or ISA hierarchies, with
possible union, disjoint, overlapping, partition, and intersection constraints. They
also include compound attributes, multivalued attributes, computed attributes, and
designations for mandatory and optional participation. In this section, we consider
mappings for each of these extensions.

5.3.1 ISA Mappings

Figure 5.5a shows an ER diagram with several ISA constructs. Graphically, trian-
gles denote ISA constructs, which fundamentally designate entity sets as subsets
and supersets.12 An entity in a subset entity set is also an entity in its superset entity
set – thus the “ISA” designation. The apex of a triangle connects to superset entity
sets, and the base connects to subset entity sets. In Fig. 5.5a, both CurrentGuest
and FutureGuest are subsets of Guest, and ReturningGuest is a subset of both Cur-
rentGuest and FutureGuest. We can constrain the subsets by placing symbols in the
triangles: \ for intersection, [ for union, C for mutual exclusion, and ] for parti-
tion. An intersection constraint requires that the subset entity set be exactly the in-
tersection of the superset entity sets (e.g., in Fig. 5.5a ReturningGuest is exactly the
intersection of CurrentGuest and FutureGuest). Without the intersection constraint
(triangle with no special constraint inside it) the subset entity set could be a proper
subset of the intersection. Union requires that the superset be exactly the union of
the subsets (e.g., Guest is defined to be exactly the union of those guests who are
currently at the bed and breakfast and those who will be future guests). Mutual
exclusion requires that the subsets pairwise have an empty intersection (e.g., High-

11 Typically, as in our examples here, W has only one key. But, for example, if we also had
RoomName for the weak entity set Room, we would have a second key for Room, namely, Name
Location RoomName.
12 In this context, we call subset entity sets “specialization entity sets” or just “specializations” and
superset entity sets “generalization entity sets” or just “generalizations.”
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CostActivity and FreeActivity have an empty intersection). Partition requires both
union and mutual exclusion (e.g., a room must be a single room, a double room, or
a suite).

Figure 5.5b shows the relational schemas generated from the ER diagram in
Fig. 5.5a. For ISA hierarchies, there are three basic mappings, which we label as
ER Mapping Rules #6.1–6.3. (Combinations over multiple-level hierarchies are also
possible.)

ER Mapping Rule #6.1. Make a relational schema for all entity sets in the hier-
archy. Although not always best, this is the most straightforward mapping for ISA
hierarchies. The mapping for an entity set in an ISA hierarchy that has no generaliza-
tion is the same as the mapping for any entity set. The mapping for a specialization
is also the same except that the primary-key attribute(s) of the generalization(s)13
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Room(RoomNr, RoomType)
Guest(GuestNr, Name, ExtraCharges?, CreditCardNr?, CreditCardExpiration?,

NrOfReservations?, Discount?)
Activity(Description, Duration)
HighCostActivity(Description, Cost, DownPayment, AdvanceReservationRequirement)
FreeActivity(Description, EquipmentDeposit, NotificationRequirement)
HasReservationFor(RoomNr, Date, GuestNr, Rate)
IsSignedUpFor(GuestNr, Description)

(b) Generated Schemas.

Fig. 5.5 Mappings for ISA hierarchies. ER diagram and Generated schemas

13 Since all specializations in an ISA hierarchy are subsets of their generalizations, entities in the
specializations inherit their identity from their generalization(s). In most common cases there is
only one generalization. When a specialization has more than one generalization, it inherits its
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are also added to the relational schema. In general any key for the specialization
can be the primary key. Normally, however, there will be only one key, the inherited
primary key. In Fig. 5.5 we map the ISA hierarchy rooted at Activity in this way.
The relational schema for Activity in Fig. 5.5b is the same as it would be without the
ISA hierarchy. HighCostActivity and FreeActivity, however, both inherit the primary
key Description from Activity and include it as the primary key for their relational
schemas along with all directly dependent attributes.

ER Mapping Rule #6.2. Make a relational schema for only root entity sets. For
this mapping, we collapse the entire ISA hierarchy to the entity set of the root gen-
eralization,14 so that all attributes of specializations become attributes of the root
and all relationship sets associated with specializations become relationship sets as-
sociated with the root. We then map this single entity set to a relational schema in
the usual way. After doing the mapping, we determine which attributes are nullable.
All attributes that would not have been in the mapping if we had not collapsed the
ISA hierarchy are nullable. In our relational schemas, we mark nullable attributes
with a question mark. When we transform generic relational schemas to SQL cre-
ate statements for implementation, we allow nullable attributes to have the value
NULL; nonnullable attributes may not have the value NULL. In Fig. 5.5 we map
the ISA hierarchy rooted at Guest in this way. When collapsing the ISA hierarchy,
the attributes of the three specializations all become nullable attributes of Guest. As
Fig. 5.5b shows, these five attributes all have an appended question mark.

We might wonder if this mapping causes us to lose track of which guests are
current guests, which are future guests, and which are returning guests. For this ex-
ample we do not lose the information. According to the semantics of the ER model
instance in Fig. 5.5a, only returning guests will have Discount values, whereas cur-
rent and future guests who are not returning guests will not have Discount values.
Future guests will have a value for NrOfReservations, whereas current guests will
not. Similarly, current guests will have extra charges, credit card numbers, and credit
card expirations, whereas future guests will not. Sometimes, however, it is not pos-
sible to know the specialization categories based on attribute values, and even when
it is possible, we may wish to have a way to record the specialization categories. The
following two additions to mapping rule #6.2 show us how we can provide attributes
in which we can record this information about specializations.

• ER Mapping Rule #6.2a. Add a new attribute for each specialization. When
mapping the generalization entity set to a relational schema, generate an addi-
tional attribute for every specialization entity set. Values for these attributes are
Boolean, saying for each record of the relational schema whether the entity the
record represents is or is not in the specialization. If we were to add these ad-

identity from all generalizations. Often, however, all generalizations have the same identifying
attribute inherited from some root generalization. ReturningGuest in Fig. 5.5 a inherits its identity
from both CurrentGuest and FutureGuest, but these entity sets, in turn, both inherit their identity
from Guest. Thus, GuestNr becomes the one and only key attribute that identifies returning guests.
14 Although rare, if there are multiple roots, we collapse the hierarchy to all roots. Any entity set
that is the specialization of multiple roots collapses to all of them.
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ditional attributes for Guest, the relational schema for Guest in Fig. 5.5b would
instead be:

Guest(GuestNr, Name, ExtraCharges?, CreditCardNr?,
CreditCardExpiration?, NrOfReservations?, Discount?,
CurrentGuest, FutureGuest, ReturningGuest).

If we wish, we could omit ReturningGuest and just compute its value for a record
as yes if both values for CurrentGuest and FutureGuest are yes and as no other-
wise.

• ER Mapping Rule #6.2b. Add only one new attribute representing all specializa-
tions. This mapping only applies when the specializations are mutually exclusive.
If so, when mapping the generalization entity set to a relational schema, we only
need to generate one additional attribute to represent all specializations. The spe-
cialization entity-set names can be the values for this new attribute. In Fig. 5.5a,
Room has three mutually exclusive specializations that designate the room type.
We therefore generate a new attribute, RoomType, for the generalization entity
set Room. The values for this attribute can be the names of the specialization en-
tity set. The generated relational schema for Room in Fig. 5.5b has the attributes
RoomNr and RoomType. Values for RoomType would be “Single,” “Double,” and
“Suite” or any other designating value to say that the room is a single room,
a double room, or a suite.

ER Mapping Rule #6.3. Make a relational schema for only the leaves in the
hierarchy. The leaf entity sets inherit all attributes and all relationship sets from par-
ents along a path all the way back to the root.15 This mapping only applies when
union constraints are present along all paths. If a union constraint were missing,
there could be members of the entity sets in the hierarchy that would not appear in
the leaf entity sets and thus would be lost in the implementation. Further, we usually
only apply this mapping when mutual exclusion is also present along all paths. If
not, then members of the entity sets could appear in more than one leaf entity set and
thus would appear as duplicates in the implementation, once for each leaf entity set
in which a member appears. As an example, assume that there are only high-cost ac-
tivities and free activities and thus that the constraint for the ISA hierarchy rooted at
Activity in Fig. 5.5 a is a partition (]) constraint rather than a mutual-exclusion (C)
constraint. Applying the mapping in which we only represent the leaves of the ISA
hierarchy, we would replace the three relational schemas Activity, HighCostActivity,
and FreeActivity in Fig. 5.5b by the following two relational schemas:

HighCostActivity(Description, Duration, Cost, DownPayment,
AdvanceReservationRequirement)

FreeActivity(Description, Duration, EquipmentDeposit,
NotificationRequirement.)

Observe that both HighCostActivity and FreeActivity include the attribute Dura-
tion as well as Description and that the connection to the IsSignedUp

15 If there are multiple roots, the leaves inherit from all roots.
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For relational schema is accounted for through the Description attributes. When
we make a relational schema for only the leaves in an ISA hierarchy, we must ac-
count for all attributes and relationship-set connections of all ancestors of each leaf
entity set.

General Principle #4. Map ISA hierarchies to relational schemas by choosing
to make a relational schema for (1) all entity sets in an ISA hierarchy, (2) only root
entity sets, or (3) only leaf entity sets. Although there are guidelines that typically
indicate which of the three mappings to use, making the best choice is often appli-
cation dependent. Deciding among the possibilities depends on the ISA constraints
and the number of attributes involved. Designers use the following rule-of-thumb
guidelines.

• Select (1) when the generalizations and specializations all have many attributes.
• Select (2) when the specializations collectively have few attributes.
• When the specializations have no attributes, select (2a) either for an ISA union

constraint or for an ISA with no constraint.
• When the specializations have no attributes, select (2b) either for an ISA partition

constraint or for an ISA mutual-exclusion constraint.
• Select (3) for an ISA partition constraint, especially when there are many at-

tributes for the specializations and few for the generalizations.

Often there is no obvious best choice. In this case the developer must choose one.
Furthermore, in some complex cases, especially with large hierarchies, it may be
best to make a separate choice for each individual ISA configuration in the hierarchy.
In the end the mappings must account for representing all possible entities in every
entity set in the ISA hierarchy and all possible relationships and attributes of these
entities.

5.3.2 Mappings for Complex Attributes

Extended ER models allow for several types of complex attributes. Figure 5.6a in-
cludes examples for each type.

• A multivalued attribute is an attribute whose values are sets of values. In an
extended ER diagram, we denote a multivalued attribute by a double oval. In
Fig. 5.6, ActivityInterest is a multivalued attribute. Guests may be interested in
several activities – one guest may be interested in the set of activities {golf, horse-
back riding, canoeing}, while another guest may be interested in the set of ac-
tivities {chess, hiking, canoeing}. View is also a multivalued attribute whose sets
might be {Ocean, CityOverlook} or just {Ocean} depending on what can be seen
by looking out the window(s) of a room in the bed-and-breakfast establishment.

• A compound attribute is an attribute with component parts each of which is also
an attribute. In an extended ER diagram, we denote compound attributes by at-
taching component attributes directly to the compound attribute. In Fig. 5.6a,
NameAndAddress is a compound attribute whose component attributes are Name
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(b) Generated Schemas.

Fig. 5.6 Mappings for complex attributes. ER diagram and Generated schemas

and Address. The component attribute Address is also compound; its component
attributes are StreetNr, City, StateOrCountry, and PostalCode.

• A computed attribute is an attribute whose value can be computed. In an extended
ER diagram, we denote a computed attribute by a dashed oval. In Fig. 5.6a,
FCAmount and Rate are computed attributes.

• An entity-set attribute, called in other contexts a class attribute, is an attribute
whose value is the same for all entities in the entity set and thus can be thought
of as applying to the entire set of entities rather than each individual entity in
the set. In an extended ER diagram, we denote an entity-set attribute by a small
circle. In Fig. 5.6a, Fee is an example. It is a percentage and is meant to be the
fee collected by the bed-and-breakfast establishment for accepting payment in
a foreign currency.

Figure 5.6b shows how we map the various complex attributes in Fig. 5.6 a to
relational schemas. Basically, the mappings are straightforward applications of the
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general principles. The cardinality constraints for multivalued attributes make them
have the properties of many–many relationship sets. The collapsing of compound-
attribute trees make the leaves of these trees have the properties of directly depen-
dent attributes. Computed attributes are the same as regular attributes except we
may not need to store them. Although entity-set attributes could be treated as reg-
ular attributes, their singleton property makes them amenable to a different kind of
mapping, making entity-set attributes an exception to the general principles.

ER Mapping Rule #7. Fundamentally, multivalued attributes are in a many–
many relationship with the entity set to which they are connected. Each entity in an
entity set E with a multivalued attribute A relates to n values v1, . . . , vn of A, and
each value of A relates to m entities e1, . . . , em in E . Thus, unless the number of
values in A, jAj, is fixed and small, we treat A as if it were another entity set E 0 in
a many–many relationship withE;E 0’s only attribute, and therefore its primary-key
attribute, is A. When jAj is fixed and small, it is possible to treat it as jAj attributes
v1, . . . , vjAj of E whose values are Boolean stating whether an entity e relates to
that value or does not relate to that value.

• ER Mapping Rule #7a. If entity set E has a multivalued attributeA, then if P is
the primary key of E , generate the relational schemaN.P;A/. If the primary key
of E happens to be composite, P represents the attribute list for the composite
primary key. N is a chosen name – often a concatenation of the name of E and
the name of A. The relational schema GuestActivityInterest in Fig. 5.6b is an
example. A guest can be interested in may different activities, and an activity can
be of interest to many different guests. Thus, since GuestNr is the primary key
of Guest, we generate GuestNr and ActivityInterest as the attributes and as the
composite key for the relational schema.

• ER Mapping Rule #7b. As an exception to ER Mapping Rule #7a, if entity set
E has a multivalued attribute A, n is the size of A, and n is fixed and small,
then if A D fV1; : : : ; Vng, add V1; : : : ; Vn as Boolean attributes to the relational
schema formed for E . The relational schema Room in Fig. 5.6b is an example.
As specified in a note in the diagram, a room can have only up to three views
(Ocean, Mountain, or CityOverlook). Thus, for the multivalued attribute View of
Room, we add these three view names, Ocean, Mountain, and City, as attributes
to the relational schema. Values for these attributes are Boolean: if a front corner
room has all three views, all three attribute values would have the value yes, and
if a back center room looks out only on the mountains, the Mountain value would
be yes and the Ocean and cityOverlook values would be no.

ER Mapping Rule #8. Treat each leaf attribute of a compound attribute tree T of
an entity set E as an attribute of E; then mapE in the usual way. In addition, if any
nonleaf nodeN of T is a key for E , form a composite key from the leaf attributes of
the subtree rooted at N . In Fig. 5.6a Guest has a compound attribute NameAndAd-
dress. Its leaf attributes are Name, StreetNr, City, StateOrCountry, and PostalCode.
Thus, for Guest we form a relational schema with these attributes along with the
regular attributes GuestNr and Discount. (Being multivalued, ActivityInterest is not
a regular attribute and is not included – nor are the nonleaf attributes of the com-
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pound attribute tree, NameAndAddress and Address.) Further, since the nonleaf at-
tribute NameAnd
Address is a key for Guest, we form a composite key from all its leaf attributes,
as shown in Fig. 5.6b.

ER Mapping Rule #9. If a computed attribute is to be stored in the database,
treat it as a regular attribute for the purpose of mapping it to a relational schema.
When values for attributes are computed, we may or may not want to store their
values in the database. If computed values serve to initialize a field and the field
value may later change, we store the values. In this case, there must be an attribute
for it in the generated relational schema. On the other hand, if the value is computed
from other existing values whenever we need it, we need not store it. In this case,
we ignore it when generating relational schemas. In our example in Fig. 5.6a, Rate
is an initial value, which depends on a guest’s discount and the room’s rack rate but
which can be set to another value. Thus, we generate an attribute for Rate in the
relational schema for HasReservationFor, the place it would go if it were a regular
attribute. FCAmount, however, is only computed when a guest wants to know how
much to pay if the amount owed is to be paid in a foreign currency. Thus, we do not
generate an attribute for FCAmount in any relational schema.

ER Mapping Rule #10. For an entity-set attribute A, we either ignore it or map
it to a single-attribute, single-valued relation A.A/. Values for entity-set attributes
may be constants established in the program code, may be values accepted as input
values when needed, or may be stored in the database and updated occasionally. In
our example, we store the fee value as a percentage number in the database and thus
need the relational schema Fee(Fee), as Fig. 5.6b shows.

5.3.3 Mappings for Mandatory/Optional Participation

Figure 5.7a illustrates mandatory and optional participation in an ER diagram. We
designate optional participation by placing a small “o” near a connection for at-
tributes and relationship sets, and we designate mandatory participation by the ab-
sence of an “o.” Optional participation for an attribute A means that an entity in an
entity set need not have a value for A; mandatory participation means that an entity
must have a value. In Fig. 5.7 a a Guest need not provide an Address when regis-
tering (i.e., the database system will allow the Address field in a record for a Guest
to be null). Optional participation for a relationship set R means that an entity in an
entity set need not participate in the relationship set; mandatory participation means
that it must participate. For example, a Room in Fig. 5.7a need not be occupied, need
not be anyone’s favorite, and need not be reserved by anyone. Similarly, someone
recorded as a Guest in the database need not have a reservation, need not occupy
a room, and need not have a favorite room. The database would allow, for example,
a record to be kept for someone who had been a guest but is not currently occupying
a room, has no reservation, and has no particular favorite room.
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(a) ER Diagram.

RoomAndOccupant(RoomNr, Type, GuestNr?)
GuestAndFavoriteRoom(GuestNr, Name, Address?, RoomNr?)
HasReservationFor(RoomNr, Date, GuestNr, Rate)

(b) Generated Schemas.

Fig. 5.7 Mappings for mandatory/optional constructs. ER diagram and Generated schemas

Figure 5.7b shows how we consider optionality when we map to relational
schemas. As before, the question mark means that an attribute is nullable. When
attributes are optional, they are nullable; when they are mandatory, they are not
nullable. Thus, for example, Address has an appended question mark in GuestAnd-
FavoriteRoom whereas Name does not. When attributes of a relationship set plus
the primary-key attributes of the associated entity sets are mapped into a relational
schema for an entity set, if participation in the relationship set is optional, these im-
ported attributes are all nullable. When participation is mandatory, these attributes
are not nullable. Thus, for example, GuestNr is nullable in RoomAndOccupant. Be-
cause occupies is many–one from Room to Guest, the primary key for Guest, which
is GuestNr, becomes one of the attributes of RoomAndOccupant, and because partic-
ipation of a Room in the occupies relationship set is optional, GuestNr is imported as
a nullable attribute. Similarly, RoomNr is nullable in GuestAndFavoriteRoom since
the has favorite relationship set is many–one from Guest to Room and Guest option-
ally participates in has favorite. Observe that the relationship set has reservation for
is many–many and is not imported into either Room or Guest. Thus, there is no
special mapping based on the optionality of reservations for rooms and guests.

ER Mapping Rule #11. Mark all nullable attributes in generated relational
schemas. Attributes that are the primary key of a relational schema or that are in
the composite primary key of a relational schema are never nullable. All other at-
tributes may be nullable and should be so marked if their value for a record can be
NULL.
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This rule is a little different from all other rules. It is written with respect to
generated schemas. Thus, it does not say how to generate schemas, nor does it say
exactly how to decide which attributes are nullable. Rather, it says which attributes
are and are not potentially nullable, and it says that among those that are potentially
nullable the database designer should decide which ones should allow null values.
The reason for writing the rule this way is twofold:

1. Many ER diagrams never specify mandatory/optional participation (sometimes
because the notation does not allow it, and sometimes just because it is not
commonly done). Thus the nullable properties of attributes in relational schemas
are often not derivable from an ER diagram.

2. When mandatory/optional participation can be specified in an ER diagram, even
if someone specifies that an attribute that turns out to be part of the primary key
of some relational schema should be nullable, it cannot be nullable. Relational
database systems do not allow nulls in primary keys.

To illustrate reason #1, we can consider the ER diagrams in Figs. 5.1–5.6 in
which no optional participation explicitly appears. One view we can take for all
these diagrams is that there is no optional participation. In this case, all generated
relational schemas remain as they are. This point of view, however, does say some-
thing about the semantics of the schemas. For example, in the Room schema in
Fig. 5.1b, we can only record room numbers, type, and rate for occupied rooms.
If we want to store this information for unoccupied rooms, we would be forced to
enter some bogus GuestNr (e.g., �1) and some bogus value for ExtraCharges (e.g.,
0). It may be better to simply allow these attributes to be nullable. The same is true
for the address of a guest in the Guest schema in Fig. 5.1b. Even if the guest is in
the process of moving and has no address to give, or if the guest refuses to give an
address, something (e.g., “none”) must be entered.

To illustrate reason #2, consider what it would mean if RoomNr for RoomAnd-
Occupant in Fig. 5.7b were marked as optional and thus allowed to be nullable.
This means that some rooms would have no identifier – no room number. Suppose
we try to store information about several no-number double rooms that currently
have no occupants. Even if the database would let us store the room number as
null, we would have trouble since we could not distinguish the rooms from one
another. We would not even know how many unoccupied double rooms we had.
This motivates the rule: attributes of primary keys in a relational schema may not
be null. Note that this rule does not say that key attributes cannot be null, only that
primary-key attributes cannot be null. Suppose, for example, that a guest can have
a guarantee number (GuaranteeNr) that uniquely identifies the guest in addition to
a guest number (GuestNr). We could then add GuaranteeNr as a key attribute to the
attributes already in GuestAndFavoriteRoom in Fig. 5.7b and let it be nullable so
that not all guests would have to have a guarantee number. Note also that this rule
does not say that primary-key attributes imported into a relational schema cannot be
null. Indeed, GuestNr is nullable in RoomAndOccupant, where it is not the primary
key, even though it is the primary key for GuestAndFavoriteRoom.
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General Principle #5. Make attributes nullable if they can have NULL as their
value. Attributes of primary keys in a relational schema are not nullable.

5.4 UML Mappings

In this section, we explain how to generate relational schemas from UML class
diagrams. We base our procedure on the general principles, and thus this explanation
serves as an example of how to develop mapping rules to map any conceptual model
to relational schemas. In general, we first need to understand the syntactic features of
the conceptual model and determine which corresponding ER features or extended
ER features they denote. We can then map them to relational schemas in the same
way we map ER features to relational schemas.

We illustrate our UML mappings using the class diagram in Fig. 5.8 as an ex-
ample. We begin by pointing out several syntactic features of this class diagram
and explain how they correspond to (extended) ER features. First, UML does not
provide a graphical notation for specifying keys.16 UML does, however, provide
an Object Constraint Language (OCL), in which we can express FDs. Figure 5.9
shows an example of how to specify the FD name location ! BedAndBreakfast.
Thus, to derive keys of classes in a class diagram, we consult the OCL expressions
associated with the class diagram. Second, we can use attribute multiplicity in class
diagrams to specify optional attributes and multivalued attributes. In Fig. 5.8, age is
an optional attribute and activityInterest is a multivalued attribute. Third, UML al-
lows the definition of a class to rely on the definition of another class. This allows us
to specify compound-attribute groups. For example, MailingAddress is a compound
attribute group on which the class Guest depends. Fourth, UML allows operations
to be defined in class diagrams. For example, rate, a computed attribute for the as-
sociation Reservation, takes on the result of the operation calcRate() as its initial
value.

Based on the general principles, we now present a high-level algorithm that gen-
erates relational schemas from a UML class diagram. As an example, we show how
the UML diagram in Fig. 5.8 along with the OCL constraints in Fig. 5.9 map to the
relational schemas in Fig. 5.10.

Step 1 Based on General Principles #1 and #2, identify keys for each class. In our
example, the UML OCL provides us with these keys. The left-hand side
of each FD in Fig. 5.9 is the key for the class on the right-hand side of the
FD.

Step 2 Based on General Principles #1 and #2, identify keys for each associa-
tion. Usually multiplicity constraints of associations, along with keys for
classes, determine these additional FDs. For example, if A is an n-ary as-
sociation that connects n classes C1, . . . , Cn whose primary keys are, re-

16 UML does not use underlines to denote keys for classes; rather it uses underlines to denote static
attributes – attributes that belong to classes, not attributes applicable to instances of classes.
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Fig. 5.8 UML class diagram

context BedAndBreakfast
inv: BedAndBreakfast.allInstances()-> forAll(b1, b2 |

b1.name = b2.name and b1.location = b2.location implies b1 = b2)
-- name location → BedAndBreakfast

... -- roomNr name location → Room

... -- guestNr → Guest

... -- date → DateDiscount

... -- name guestNr → Person

... -- description → Activity

... -- name guestNr date time → ActivityRegistration

Fig. 5.9 OCL for an FD plus other FDs declared for classes in Fig. 5.8

spectively, P1, . . . , Pn and the maximum value of the multiplicity for Cn

in this association is 1, then the FD P1 : : : Pn�1 ! Pn holds for A. In our
example, we have roomNr name location date ! GuestNr for the ternary
association Reservation in Fig. 5.8. When an association has no max-1
multiplicity constraints, the key is the composite of the primary keys for
all associated classes. For example, roomNr name location guestNr is the
key for FavoriteRoom.

Step 3 Based on General Principle #4, determine how generalization/
specialization should be mapped. Since the ISA constraints for the only
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generalization/specialization in Fig. 5.8 are incomplete and disjoint, and
since there are no associations for the specializations, we choose to intro-
duce one new attribute, costLevel, representing all specializations as sug-
gested by ER Mapping Rule #6.2b.

Step 4 Based on General Principle #3, map classes to relational schemas. We
generate a relational schema R for a class C as follows. R has the follow-
ing attributes:

• All the attributes of C except (1) those whose multiplicity is greater
than one (e.g., activityInterest in Fig. 5.8) and (2) those compound at-
tributes that reference another class (e.g., nameAndAddress in Fig. 5.8);

• All leaf attributes of compound attributes (e.g., name, streetNr, city,
stateOrCountry, and postalCode are all included in the relational
schema for Guest);

• All attributes included in the primary key forC , if not already included
(e.g., name and location from the class BedAndBreakfast are included
in the relational schema for Room); and

• For each association A, if a key of A is also a key of R, then (1) all
attributes of A, if any, and (2) for each class C 0 connected to C by A,
the primary-key attributes of C 0 (e.g., description, the primary key of
Activity, belongs in the relational schema for ActivityReservation).

Step 5 Based on General Principle #3, map the remaining associations to rela-
tional schemas. An association remains after step 4 only if it is not one–one
and not one–many or many–one. We generate a relational schema R for
each remaining association A as follows. For each class C connected by
A, R includes the primary-key attributes of C . FavoriteRoom and Reser-
vation in Fig. 5.10 are examples.

Step 6 Based on General Principle #3, map multivalued attributes to relational
schemas. For each multivalued attribute M in a class C , generate a re-
lational schema that includesM and the primary-key attributes of C . The
multivalued attribute activityInterest in Guest in Fig. 5.8 is an example that
yields the relational schema GuestActivityInterest in Fig. 5.10.

BedAndBreakfast(name, location, yearOpened)
Room(roomNr, name, location, type, rackRate)
ConnectingRoom(roomNr, name, location, connectingRoomNr)
Guest(guestNr, name, streetNr, city, stateOrCountry, postalCode, nrPersons)
GuestActivityInterest(guestNr, activityInterest)
FavoriteRoom(roomNr, name, location, guestNr)
DateDiscount(date, discount)
Reservation(roomNr, name, location, date, guestNr, rate)
Person(name, guestNr, age?)
Activity(description, duration, costLevel?)
ActivityRegistration(name, guestNr, date, time, description)

Fig. 5.10 Schemas generated from Figs. 5.8 and 5.9
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Step 7 Based on General Principle #5, identify nullable attributes. In our exam-
ple, age is nullable because it is a single-valued, optional attribute of Guest,
and costLevel is nullable because the ISA hierarchy in Fig. 5.8 has an in-
complete constraint.

Once we have relational schemas for the database, like those in Fig. 5.10, we
can derive SQL DDL for a relational database. We illustrate here17 how to turn
generated relational schemas into SQL table creation statements. Figure 5.11 shows
our SQL DDL for the first three relational schemas in Fig. 5.10. The translation is
straightforward.

1. Obtain the name and basic attribute structure for the tables to be created directly
from the generated schemas. As Fig. 5.11 shows, the BedAndBreakfast table
has the attributes name, location, and yearOpened. We can rename attributes to
make them more understandable. BandBname and BandBlocation are preferable
to name and location in Room (otherwise most people would read name in Room
as the name of the room and location as the location of the room).

2. Represent the constraints captured in the diagram and generated schemas. The
primary-key constraints come directly from the relational schemas, as do other
uniqueness constraints. The foreign-key constraints come indirectly from the
relational schemas. An attribute or attribute group that is not a key in a rela-
tional schema R but is a key in a relational schema S is a foreign key for R that

create table BedAndBreakfast(name varchar(20),
location varchar(20),
yearOpened number(4) not null,
primary key (name, location));

create table Room(roomNr number,
BandBname varchar(20),
BandBlocation varchar(20),
type varchar(10) not null,
rackRate money not null,
primary key (roomNr, BandBname, BandBlocation),
foreign key (BandBname, BandBlocation) references BedAndBreakfast (name, location));

create table ConnectingRoom(roomNr number,
BandBname varchar(20),
BandBlocation varchar(20),
connectingRoomNr number,
primary key (roomNr, BandBname, BandBlocation, connectingRoomNr),
foreign key (roomNr, BandBname, BandBlocation) references Room,
foreign key (connectingRoomNr, BandBname, BandBlocation)

references Room (roomNr, BandBname, BandBlocation)),
check (roomNr != connectingRoomNr));

...

Fig. 5.11 SQL for generated schemas

17 We could have illustrated the derivation of SQL DDL for all earlier generated schemas as well
as this one, but we only illustrate this derivation once.
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references S . BandBname and BandBlocation, for example, constitute a com-
posite foreign key in Room that references the composite key name and location
in BedAndBreakfast. If desired, we also add check constraints, such as roomNr
!= connectingRoomNr. These constraints, however, are not derivable from the
relational schemas we generate.

3. Add type declarations, which are usually only implicit in the conceptual-model
instance. The types varchar, number, and money are examples.

4. Reflect the null properties of the relational schemas in the SQL DDL. Primary-
key attributes are not null by default. All other attributes are nullable unless
otherwise specified by a not null constraint.

5.5 Normal-Form Guarantees

When mapping conceptual models to database schemas, the question of normaliza-
tion naturally arises. Are generated relational schemas fully normalized? By “fully
normalized” we mean they are in PJNF – Project-Join Normal Form – which also
implies that they are in 4NF, BCNF, 3NF, 2NF, and 1NF. Interestingly, we can an-
swer “yes” for conceptual-model diagrams that are canonical.

Although circular, the easiest way to define canonical is that when mapped ac-
cording to the mapping rules or algorithms, every relational schema is fully nor-
malized. In practice, many (if not most) diagrams are canonical.18 Giving a general
statement that characterizes canonical for all types of conceptual models (or even
for one type of conceptual model) is difficult especially if the characterization is to
be given in the least constraining way. Many conceptual-model instances, however,
satisfy stronger than necessary conditions, and it is easy to see that they are canon-
ical. We can see, for example, that an ER model instance is canonical by checking
the following criteria.

1. Each attribute is atomic (i.e., not decomposable into component attributes we
wish to access in the database).

2. Each entity set has one or more keys (possibly inherited if the entity set is weak
or in an ISA hierarchy) but has no other FDs among attributes with left-hand
sides that are not keys.

3. Each many–many relationship set has one or more keys, but no other FDs among
attributes with left-hand sides that are not keys.

4. Every n-ary relationship set .n � 3/ is fully reduced (i.e., we cannot losslessly
decompose it into two or more relationship sets).

5. There are no relationship-set cycles, or if there are cycles, then every path from
one entity set to another is nonredundant in the sense that we cannot compute
any relationship set as combinations of joins and projections of other relation-
ship sets.

18 Many argue that if conceptual-model diagrams are not canonical, they are not good quality
diagrams.
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All the earlier ER diagrams in Sects. 5.2 and 5.3 are canonical. Thus, all the
generated relational schemas are fully normalized. Based on a similar set of criteria
for UML, we can see that the UML diagram in Sect. 5.4 is also canonical and that
its generated database schema is thus fully normalized.

To see that not all diagrams are canonical, consider Fig. 5.12. This ER diagram
violates the conditions listed above for being canonical. Supposing that we wish to
access the first name and last name of the registered guest, Name is not atomic and
thus is an example of a violation of condition #1. The diagram violates condition #2
because of the FD Type ! RackRate, whose left-hand side is not a key for Room.
The diagram violates condition #3 because the left-hand side of the FD Date !
Discount is not a key for the relationship set has reservation for. (We are assuming
for this example that the discount amount depends on the date – i.e., whether it
is a weekend, weekday, holiday, during the off season, etc.) The diagram violates
condition #4 because we can losslessly decompose has reservation for into three
relationship sets: one between Package Deal and Guest (which also happens to be
equivalent to the has relationship set), one between Guest and Activity (which also
happens to be equivalent to the is signed up for relationship set), and one between
Room and Guest. (Perhaps this original quaternary relationship set in Fig. 5.12 arose
because a designer was told that when guests make reservations they always also
sign up for a package deal that includes certain activities.) The diagram violates
condition #5 because of the cycle through the relationship sets has, includes, and is

Type → RackRate 
RoomNr Date → GuestNr Rate Discount 
Date → Discount 
Rate = (1 – Discount/100)×RackRate 
Includes = πPackage,Description(Has |×| IsSignedUpFor) 
IsSignedUpFor = πGuestNr,Description(Has |×| Includes) 
HasReservationFor = |×|(Package GuestNr, 
     GuestNr Description, RoomNr Date GuestNr Discount Rate) 

includes

has

Room

RoomNr

Rate 

has 
reservation 

for 
Guest

is 
signed up

for

Activity

Name

Description

Duration
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NrInParty
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GuestNr

Package

Fig. 5.12 ER diagram with constraints whose standard mapping will yield normal-form violations
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signed up for, in which includes and is signed up for are computable from the other
two relationship sets in the cycle.

As we shall see in Sect. 5.5.1, if we use standard schema-generation proce-
dures, we would generate relational schemas that are not normalized. We should
then normalize them using standard normalization techniques. We will also see in
Sect. 5.5.2, however, that we can rearrange the diagram so that it has the same se-
mantics but is canonical. If we then use standard schema-generation procedures, the
resulting relational schemas will be fully normalized. We will thus see that there are
two approaches to ensuring that generated relational schemas are fully normalized.
(1) We can first generate relational schemas and then normalize using standard nor-
malization techniques. (2) We can first canonicalize a conceptual-model diagram
and then generate relational schemas.

5.5.1 Map – Then Normalize

Figure 5.13 shows the relational schemas we would generate according to the stan-
dard ER Mapping Rules in Sects. 5.2 and 5.3. We must now recognize the normal-
form violations and fix them.

• Guest is not in 1NF because Name is not atomic. We replace Name by First-
Name and LastName in Guest, which yields Guest(GuestNr, FirstName, Last-
Name, NrInParty, Package).

• HasReservationFor is not in 2NF because of Date ! Discount. We decompose
HasReservationFor, which yields HasReservationFor(RoomNr, Date, GuestNr,
Rate, Package, Description) and a new relational schema DateDiscount(Date,
Discount).

• Room is not in 3NF because of Type ! RackRate. We decompose Room, which
yields Room(RoomNr, Type) and a new relational schema RoomType(Type, Rack-
Rate).

• The relationship set HasReservationFor is not in 4NF/PJNF because of the join
dependency ‰(Package GuestNr, GuestNr Description, RoomNr Date GuestNr
Rate). (Note that Discount is missing because we have already decomposed
HasReservationFor in a step above.) We thus decompose HasReservationFor
according to the join dependency, which yields three relational schemas: Has-
ReservationFor(RoomNr, Date, GuestNr, Rate), one whose schema is (GuestNr,

Room(RoomNr, Type, RackRate)
Guest(GuestNr, Name, NrInParty, Package)
Activity(Description, Duration)
HasReservationFor(RoomNr, Date, GuestNr, Rate, Discount, Package, Description)
IsSignedUpFor(GuestNr, Description)
Includes(Package, Description)

Fig. 5.13 Generated relational schemas – not normalized
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Fig. 5.14 Normalized relation
schemas

Room(RoomNr, Type)
RoomType(Type, RackRate)
Guest(GuestNr, FirstName, LastName, NrInParty, Package)
Activity(Description, Duration)
HasReservationFor(RoomNr, Date, GuestNr, Rate)
DateDiscount(Date, Discount)
Includes(Package, Description)

Description), and one whose schema is (GuestNr, Package). Since (GuestNr,
Description) is the same as IsSignedUpFor, we discard it, keeping only Is-
SignedUpFor, and since (GuestNr, Package) is embedded in Guest, we discard
it, keeping only Guest.

• Finally, we observe that the schema IsSignedUpFor is redundant because Is-
SignedupFor D �GuestNr,Description(Has ‰ Includes). Note that although Includes
is also redundant because Includes D �Package,Description.Has ‰ IsSignedUpFor/,
IsSignedUpFor and Includes mutually depend on each other. Thus, we can only
remove one of them.

Normalizing the relational schemas as described results in the database schema in
Fig. 5.14.

5.5.2 Normalize – Then Map

In the alternative approach to normalization, we first make the conceptual-model
diagram canonical. We then map it to relational schemas. Because the conceptual-
model instance is canonical, the generated relational schemas will be normalized.

To make a conceptual-model instance canonical, we check for and ensure compli-
ance with the basic criteria for characterizing canonical model instances presented
earlier. We illustrate this process for ER model instances by making the diagram in
Fig. 5.12 canonical.

1. Nonatomic attributes. Assuming we wish to have FirstName and LastName for
Guest, Name is not atomic. We add these attributes, making Name a compound
attribute, as Fig. 5.15 shows.

2. FDs whose left-hand sides are not keys. Recognizing the FD Type ! RackRate
as an FD whose left-hand side is not a key, we create a new entity set, Room
Type, as Fig. 5.15 shows. Type is a key attribute for RoomType, and Rack
Rate is a regular attribute. Further, as Fig. 5.15 shows, because the FD Date
! Discount is another FD whose left-hand side is not a key, we create another
new entity set, DateDiscount. Its attributes are Date and Discount, with Date
being a key attribute.

3. Reducible n-ary relationship sets. We can losslessly decompose the relation-
ship set has reservation for. After adding the new entity set DateDiscount to
this relationship set, the relationship set has reservation for has become a 5-ary
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relationship set. We can decompose it losslessly into two binary relationship
sets and one ternary relationship set. Since the two new binary relationship sets
equate to the existing relationship sets has and is signed up for, we discard them.
This leaves us with the ternary relationship set has reservation for in Fig. 5.15.

4. Reducible cycles. The cycle of relationship sets from Guest to PackageDeal to
Activity and back to Guest is a reducible cycle. We can remove either includes
or is signed up for because either is computable from the other two relationship
sets. We cannot remove both, however, because we need each one to compute
the other. We choose to remove is signed up for, as Fig. 5.15 shows.

Figure 5.15 shows the resulting canonical ER diagram, and Fig. 5.14 shows the
relational schemas generated from the canonical ER diagram. It should not be a sur-
prise that we obtain the same results whether we first generate relational schemas
and then normalize or we first canonicalize the diagram and then generate relational
schemas.

An alternative way to do conceptual-model-diagram canonicalization is to (1)
transform the conceptual-model diagram to a hypergraph whose nodes are attributes
and whose edges are relationship sets,19 (2) transform the hypergraph to a canoni-
cal hypergraph, and (3) map the canonical hypergraph to relational schemas. There
are several advantages of this approach. (1) Transforming a conceptual-model di-
agram to a hypergraph lets us explicitly add all connections among attributes. In
particular, it lets us add the troublesome FD connections among attributes that are
only implicit in diagrams that force attributes to be attached only to entity sets (e.g.,
ER) or classes (e.g., UML).20 (2) Since all the constraints needed for normalization
appear directly in the diagram, the canonicalization process proceeds entirely with

RoomNr Date → GuestNr Rate 
Rate = (1 – Discount/100)×RackRate

includes
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Fig. 5.15 ER diagram transformed to generate normalized relational schemas

19 Any ISA hierarchies remain intact without alteration.
20 Some conceptual models (e.g., ORM [9] and OSM [8]) are directly based on hypergraphs and
already include all connections among attributes. These conceptual models need no transformation
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the diagram alone. (3) Finally, this approach leads to more straightforward map-
ping algorithms and, as we shall see in Sect. 5.6, leads to mapping algorithms for
object-based schemas and XML schemas.

We illustrate this approach beginning with the noncanonical ER diagram in
Fig. 5.12, which we first convert to the noncanonical hypergraph in Fig. 5.16. We
convert an ER diagram to a hypergraph as follows.

1. Make every attribute be a lexical node in the hypergraph. Lexical refers to read-
able/writable data; lexical nodes represent the data we store in a database. We
represent lexical nodes by dashed boxes, as Fig. 5.16 shows.

2. Make every entity set be a nonlexical node in the hypergraph. Nonlexical refers
to real-world objects that, if represented in a database, would be represented by
object identifiers. We represent nonlexical nodes by solid boxes; Room, Guest,
PackageDeal, and Activity are the nonlexical nodes in Fig. 5.16.

3. Make every relationship set be an edge in the hypergraph. The relationship set
has reservation for, for example, connects the four nonlexical nodes that were
originally entity sets and the three lexical nodes that were originally attributes,
as Fig. 5.16 shows. If there is a functional relationship among all the nodes
of the relationship set, we represent this functional relationship set by marking
the functionally determined nodes with arrowheads. The has relationship set
between Guest and PackageDeal is an example. If there are other functional

has 
reservation 

for 

is 
signed 
up for

for

includes

Package

NrInParty

Duration

Rate = (1 – Discount/100)×RackRate 
Includes = πPackage,Description(Has |×| IsSignedUpFor) 
IsSignedUpFor = πGuestNr,Description(Has |×| Includes) 
HasReservationFor = |×|(Package GuestNr, 
     GuestNr Description, 
     RoomNr Date GuestNr Discount Rate) 

Room

RoomNr

Rate

Guest

Activity

Name

Description

Date

Type

RackRate

Discount
PackageDeal

GuestNr

Date Room → Guest PackageDeal Rate Discount

Fig. 5.16 Hypergraph generated from ER diagram in Fig. 5.12

to hypergraphs. For these hypergraph-based conceptual models, the canonicalization and mappings
to relational schemas proceed as we describe here.
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relationships among some or all the nodes, we add an edge for each one. To keep
the diagram from becoming too cluttered, we may visually add these additional
edges as FDs (but they are nevertheless edges in the hypergraph). Figure 5.16
includes the FD Date Room ! Guest PackageDeal Rate Discount, which is
a functional edge relating all nodes of the 7-ary relationship set except Activity.

4. Make every connection between an entity set and its attributes be an edge in the
hypergraph. For multivalued attributes, the edge is many–many (nonfunctional).
For compound attributes, the edge is functional from entity set to leaf attribute,
one edge for every leaf attribute. (Nonleaf attributes are discarded.) For all other
attributes, the edge is functional from entity set to attribute. The functional edge
from Activity to Duration in Fig. 5.16 is an example. For singleton key attributes
we also add a functional edge from attribute to entity. When we have a func-
tional edge between an entity set and an attribute in both directions, we combine
them as a single, bidirectional, one–one edge. In Fig. 5.16, RoomNr for Room,
GuestNr for Guest, Package for PackageDeal, and Description for Activity are
all examples. For each composite key consisting of n attribute nodes, we add an
.nC 1/-ary functional edge from the n attribute nodes constituting the compos-
ite key to the entity-set node. We also combine the .nC 1/-ary functional edge
with the n functional edges from the entity set to these attribute nodes to form
a single, one–one edge between the entity-set node and the n attribute nodes
constituting the composite key.

5. For every FD among lexical nodes, add an edge. For our example, we add the
edges Type ! RackRate and Date ! Discount, as Fig. 5.16 shows.

We next make a noncanonical hypergraph canonical in three main steps.21 We
illustrate these steps by converting the noncanonical hypergraph in Fig. 5.16 to the
canonical hypergraph in Fig. 5.17.

1. Decompose all hyperedges that can be losslessly decomposed. In Fig. 5.16 we
decompose the 7-ary edge along with the edge represented by the FD to a 4-ary
functional edge Room Date ! Guest Rate plus several other edges, all of which
eventually turn out to be redundant. Fiure 5.17 shows this 4-ary edge, but none
of the redundant edges.

2. Remove all redundant edges and all redundant hyperedge components. In ad-
dition to the redundant edges just generated and ignored, we also remove the
Room–RackRate edge and the Guest–Activity edge.

21 Usually these three main steps are enough. Exceptions arise when (1) the hypergraph is cyclic
after redundancies have been removed and (2) optional participation interferes with our ability to
capture all element values. An example of the first would be an additional edge between Descrip-
tion and Duration where one means the average duration for an activity and the other means the
maximum allowable duration. In this case, we need to qualify Duration to be, say, AveDuration
and MaxDuration, and generate the relational schema for Activity with three attributes, Duration,
AveDuration, and MaxDuration. An example of the second would be optional participation for
Name where we might want to keep all names of guests even if they have no guest number. In
this case, we need a separate table for Name alone since we cannot capture all names in the Guest
relational schema, which demands a GuestNr for every Guest. We can resolve both of these issues
by adding roles. See [4] for details.
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3. Merge each nonlexical node with its key (any one key, if there is more than one
choice). For example, we merge Room with its primary key RoomNr, which, as
Fig. 5.16 shows, are in a one-to-one correspondence. The result of this merge
is the lexical node RoomNr, which has been merged with Room as Fig. 5.17
shows. Similarly, we merge Package with PackageDeal, GuestNr with Guest,
and Description with Activity.

Once we have a canonical hypergraph, the conversion to a relational database
schema is straightforward. With one mapping rule, we can obtain a set of normalized
relational schemas:

Every edge becomes a relational schema. If the edge is functional in only one direction, the
tail attribute(s) constitute the key. If the edge is functional in both directions [from tail(s) to
head(s) and from head(s) to tail(s)], the head attribute(s) constitute a key as well as the tail
attribute(s). If the edge is not functional, all the connected attributes constitute the key.

For example, RoomNr ! Type is a functional edge whose generated relational
schema is (RoomNr, Type), and RoomNr Date ! GuestNr Rate is another func-
tional edge whose generated relational schema is (RoomNr, Date, GuestNr, Rate).
The edge between Package and Description is a nonfunctional edge, and thus its
generated relational schema is (Package, Description). We have no edge that is func-
tional in both directions. To illustrate a bidirectional edge, suppose, as in Fig. 5.1,
that in addition to room numbers, rooms in a bed-and-breakfast establishment also
have identifying names. We would then have another attribute RoomName in a one-
to-one correspondence with RoomNr. In this case, we would generate the relational
schema (RoomNr, RoomName) in which both RoomNr is a key and RoomName is
a key.

Although this single rule generates relational schemas that are all normalized, it
fragments the database into more relational schemas than necessary. Thus, to final-
ize the relational schemas for the database, we merge as many as we can without
violating any normal form using the following simple rule:

Merge schemas that have a common key.

room
type 

has 
reservation 

for includes
NrInParty

Duration
Rate = (1 – Discount/100)×RackRate

RoomNr

Rate

GuestNr

Description

NameDate

Type

RackRate

Discount

Package

Fig. 5.17 Canonical hypergraph
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For example, we would merge (GuestNr, Name), (GuestNr, Package), and (Guest
Nr, NrInParty) because they all have the key GuestNr. We also add a name as
we merge so that we have a standard relational schema. We would thus ob-
tain Guest(GuestNr, Name, Package, NrInParty). Note that we would not merge
(RoomNr, Type) and (RoomNr, Date, GuestNr, Rate) because they do not have
a common key – RoomNr is not the same as the composite key RoomNr Date.
Forming the relational schemas from Fig. 5.17 and then merging those that have
a common key results in the relational schemas in Fig. 5.14, except that Name ap-
pears in place of FirstName and LastName since we started with Name rather than
FirstName and LastName in Fig. 5.12.

Note that we have said nothing about ISA hierarchies. This is because there
is no change in the way we map ISA hierarchies to relational schemas. There is
a change, however, when we convert noncanonical hypergraphs to canonical hyper-
graphs. When we merge a nonlexical node with its key, we propagate this merge
all the way down the hierarchy. Thus, for example, when we convert the ER di-
agram in Fig. 5.5 to a canonical hypergraph, every node in the ISA hierarchy
rooted at Guest becomes a lexical node with the name GuestNr.22 If we choose
to have a relational schema for every node in the ISA hierarchy, we simply do
not merge relational schemas in the ISA hierarchy that share a common key. If
we choose to have a relational schema only for the root of the ISA hierarchy,
we merge in the usual way. If we choose to have relational schemas only for the
leaves of the ISA hierarchy, we merge along every path from the root to each of the
leaves.

5.6 Mappings for Object-Based and XML Databases

In this section, we show how to generate generic hierarchical structures, called
scheme trees, from a canonical hypergraph. Since scheme trees are generic hier-
archical structures, it is straightforward to map scheme trees to database schemas
that support hierarchical data. As an example, we show how to map scheme trees
to object-relational database schema instances and XML schema instances. Since
object-oriented databases are similar to object-relational databases, our example for
object-relational databases serves for object-oriented databases as well.

The central idea of generating scheme trees is to ensure that each instance of
a hyperedge in a canonical hypergraph only appears once in a scheme-tree instance.
To do so, our scheme trees observe the many–one and one–one constraints in the
hypergraph. We capture the essence of the idea in the following algorithm.23

22 To keep the various nodes straight, we should add comments to the diagram. Unless these com-
ments help us keep the nodes conceptually straight and may help us choose names for relational
schemas, we can ignore these comments.
23 The algorithm is a simplified version of the heuristic n-ary algorithm in [12], which generates
scheme trees from a canonical hypergraph.
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While there is an unmarked hyperedge, do:
Select a subset V of vertices in an unmarked hyperedgeE

as the root node of a new scheme tree T .
While we can add an unmarked hyperedgeE to T , do:

(We can add an unmarked edge E if the following conditions hold:
E must have a nonempty intersection S of vertices with T .
A node N must exist in T such that the set S is contained in
the union of the nodes above or equal to N and S functionally
determines the union of the nodes above or equal to N .)

Add E to T as follows:
If S functionally determines E � S

Add the vertices in E � S to node N .
Else

Make a node consisting of the vertices in E � S and add it to
the tree as a child node of N .

Mark E as used.

If we select Package (a subset of the vertices in the edge GuestNr ! Package)
as the root node, this algorithm generates the scheme tree in Fig. 5.18a. Having
selected {Package} as the root for T and E D fPackage;GuestNrg as the edge we
are considering, we see that all conditions of the while loop trivially hold (as they
always do for the initial selection of a root and an edge). Since S D fPackageg
does not functionally determine E � S D fGuestNrg (it is actually the other way
around), we add {GuestNr} as a child node of the node {Package}. Continuing,
we next consider the edge GuestNr ! Name. Here, the conditions of the while loop
also hold with S D fGuestNrg,N D fGuestNrg, and GuestNr ! GuestNr Package.
Since S functionally determinesE�S D fGuestNr;Nameg�fGuestNrg D fNameg,
we add Name to the node containing GuestNr. Similarly, we add NrInParty to this
node, thus completing the second node in Fig. 5.18a. We next consider the edge
RoomNr Date ! GuestNr Rate. The intersection of S with T is {GuestNr}, which is
contained in nodeN we just created. Further, GuestNr ! GuestNr Name NrInParty
Package so that it functionally determines the union of N and the node above N
(the root). Since S does not functionally determine E � S (i.e., {GuestNr} does
not functionally determine {RoomNr, Date, Rate}), we make a new node consisting
of {RoomNr, Date, Rate} and place it below N as Fig. 5.18a shows. Continuing,
we next consider the nonfunctional edge {Package, Description}. The nonempty
intersection S with the scheme tree T we have built so far is {Package}. Since
{Description} does not functionally determine {Package}, we form a new node
consisting only of {Description} and add it as another child node of {Package},
resulting in the scheme tree T in Fig. 5.18a. Of the remaining four edges, Type !
RackRate has an empty intersection with T , and the rest (Date ! Discount, RoomNr
! Type, and Description ! Duration) do not satisfy the functional-dependency
condition of the while loop for the scheme tree in Fig. 5.18a.

Figure 5.18b shows the textual representation for the scheme tree in Fig. 5.18a. In
the textual representation, each node appears within parentheses with a star to indi-
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Package

GuestNr, Name, NrInParty Description

RoomNr, Date, Rate 

(a) Tree Representation.

(Package, (GuestNr, Name, NrInParty, (RoomNr, Date, Rate)* )*, (Description)* )*

(b) Textual Representation.

Fig. 5.18 Scheme-tree representations. Tree representation and Textual representation

cate repetition; parenthesized nodes appear in line according to their nested position
in the scheme tree.

Choosing the best starting place to run the algorithm depends on the semantics of
the application. In our example, starting with Package is probably not best. The main
point of the application is to rent rooms to guests, not the activity packages they may
choose. Thus, most of the processing is likely to be about looking up guests. Hence,
a likely better starting place for our scheme-tree algorithm is to choose GuestNr
as the root. When we start with GuestNr as the root of the first tree and run the
algorithm repeatedly until all edges are in some scheme tree, we obtain the scheme
trees in Fig. 5.19.

In Fig. 5.19 we have marked keys in the usual way. In our example, GuestNr,
Date, Type, and Description values must all be unique in the usual way we expect
key values to be unique. Since RoomNr Date ! GuestNr, RoomNr-Date value pairs
must be unique in the nested relation in which they appear. Similarly, since RoomNr
! Type, RoomNr values must also be unique in the nested relation in which they
appear.

Figure 5.20 shows an object-relational database schema instance derived from the
first scheme tree in Fig. 5.19. The main idea of this derivation is to scan a scheme
tree bottom up and generate object types and collection types as we go up the scheme
tree. Specifically, consider a leaf node v whose parent is u. We generate an object

(GuestNr, Name, NrInParty, Package, (RoomNr, Date, Rate)* )*
(Date, Discount)*
(Type, RackRate, (RoomNr)* )*
(Description, Duration, (Package)* )*

Fig. 5.19 Generated scheme-tree forest
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create type reservation as object (
roomNr integer,
reservationDate date,
rate number,
static function createReservation(roomNo integer, resDate date, rate number)

return reservation,
static function createReservation(roomNo integer, resDate date) return reservation);

create type body reservation is
static function createReservation(roomNo integer, resDate date, rate number) return reservation is

begin
return reservation(roomNo, resDate, rate);

end;
static function createReservation(roomNo integer, resDate date) return reservation is

begin
return reservation(roomNo, resDate, (1-discount.getDiscountRate(resDate)/100)*

roomType.getRackRate(roomNo));
end;

end;
create type collectionOfReservation as

varray(200) of reservation;
create type guest as object (

guestNr integer,
name varchar2(30),
nrInParty integer,
package varchar2(40),
reservations collectionOfReservation);

create table tableOfGuest of guest;

Fig. 5.20 Derived object-relational database schema instance

type tv for v such that tv has all the attributes in v. Then, we create a collection
type of tv . Afterwards, we generate an object type tu for u such that tu has all the
attributes in u and a field whose type is the collection type of tv. We then continue
this process up to the root node of the scheme tree. Thus, for example, for the first
scheme tree in Fig. 5.19, we create an object type called reservation that includes
three fields: roomNr, reservationDate, and rate. We then create a collection type
called collectionOfReservation, which is a variable-length array that stores reserva-
tion objects. Finally, we create an object type called guest for the root node. Note
that there is a field called reservations in guest whose type is collectionOfReser-
vation. To store guest objects, we create tableOfGuest – a table of this type. Un-
fortunately, declared key constraints are not typically provided by object-relational
databases. Thus, as for any constraint we wish to enforce that is not directly sup-
ported by the database, we must provide our own code to check and enforce it.

Figure 5.21 shows the first and last parts of a derived XML schema instance
for the generated scheme-tree forest in Fig. 5.19. Several derivations are possible;
Fig. 5.21 shows one derived as follows. For each nesting of a scheme tree we provide
two names – one for describing the group and one for describing an individual in the
group. Thus, for the scheme tree (Type, RackRate, (RoomNr)* )* we introduce the
name RoomTypes for the group, RoomType for the individuals in the group, Rooms
for the nested group, and Room for the individuals in the nested group. We nest these
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< ?xml version="1.0" encoding="UTF-8"?>
< xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema" elementFormDefault="qualified">

< xs:element name="Document">
< xs:complexType>

< xs:sequence>
< xs:element ref="Guests" minOccurs="0"/>
< xs:element ref="Activities" minOccurs="0"/>
< xs:element ref="DateDiscounts" minOccurs="0"/>
< xs:element ref="RoomTypes"/>

< /xs:sequence>
< /xs:complexType>

< /xs:element>
...

< xs:element name="RoomTypes">
< xs:complexType>

< xs:sequence>
< xs:element name="RoomType" maxOccurs="unbounded">

< xs:complexType>
< xs:sequence>

< xs:element name="Rooms">
< xs:complexType>

< xs:sequence>
< xs:element name="Room" maxOccurs="unbounded">

< xs:complexType>
< xs:attribute ref="RoomNr"/>

< /xs:complexType>
< /xs:element>

< /xs:sequence>
< /xs:complexType>

< /xs:element>
< /xs:sequence>
< xs:attribute name="Type" type="xs:ID"/>
< xs:attribute name="RackRate" type="xs:double"/>

< /xs:complexType>
< /xs:element>

< /xs:sequence>
< /xs:complexType>
< xs:key name="RoomNrKey">

< xs:selector xpath="./RoomType/Rooms/Room"/>
< xs:field xpath="@RoomNr"/>

< /xs:key>
< /xs:element>
< xs:attribute name="RoomNr" type="xs:integer"/>
< xs:attribute name="Date" type="xs:date"/>
< xs:attribute name="Package" type="xs:string"/>

< /xs:schema>

Fig. 5.21 Derived XML schema instance

names appropriately, as shown by Fig. 5.21. We then put the attributes in their proper
place – we nest Type and RackRate under RoomType and RoomNr under Room.
The type for Type is xs:ID, making it unique throughout the document. Since Type
appears nowhere else in the scheme-tree forest in Fig. 5.19, this simple declaration
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is sufficient. For RoomNr, which does appear in one other scheme tree, we scope the
extent of uniqueness to be within RoomTypes and make a key declaration as shown
by Fig. 5.21. Further, when an attribute appears in more than one scheme tree, we
use ref to reference a single declaration for its type. RoomNr is an example; its
type declaration along with the type declarations for Date and Package, which also
appear in more than one scheme tree, appear globally at the end of the XML schema
instance in Fig. 5.21. In the first part of the XML schema instance in Fig. 5.21,
we have declarations for the roots of each of the scheme trees, Guests, Activities,
DateDiscounts, and RoomTypes, all under the ultimate root, Document. We allow
each of them to be optional except RoomTypes. (Although there may be no guests,
activities, or date discounts, if there are no rooms, there is no bed-and-breakfast
establishment.)

5.7 Additional Readings

From the beginning, mappings from conceptual-model instances to database
schemas have been an important part of the conceptual-modeling literature. Peter
Chen’s seminal article on the ER model includes an extensive discussion of map-
ping the ER model to various database models [2]. Ever since the appearance of
this article, discussions of mapping conceptual-model instances to database schemas
have continued. Notable, along the way, are an ACM Computing Surveys article [14]
and a foundational book on conceptual database design [1]. Most current database
textbooks (e.g., [11, 13, 15]) contain chapters on mapping conceptual models to
database schemas.

Normalization concerns have also always been a part of mapping conceptual-
model instances to database schemas. Chen’s seminal article [2] addressed normal-
ization, and his mappings did yield relations in 3NF under his assumptions. Along
the way other researchers have added insights about normalization. Researchers
have suggested both the map-then-normalize approach [14] and the normalize-then-
map approach [3, 10]. In [1] the authors take the point of view that ER diagrams are
not of good quality unless they are canonical, and they talk about canonicalizing ER
diagrams as one way to help create high-quality diagrams. The hypergraph approach
to normalization appeared initially in [5]; full details appeared later in [4].

Only recently have articles appeared that describe the process of mapping con-
ceptual models for object-based, object-oriented, and XML databases. Some initial
thoughts appeared in [4, 6]. Proofs that generated scheme trees have no redundancy
appeared later [12].
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Chapter 6
The Enhanced Entity-Relationship Model

Bernhard Thalheim

Abstract This chapter introduces an extended entity-relationship model. Structural
extensions are complex attributes, cluster or generalisation types, and higher-order
relationship types. These extensions still allow a hierarchical construction of schema
items. Therefore, a layered predicate logic can be defined. Classical integrity con-
straints are thus definable on the basis of this logics. The structuring of a database
consists of a schema together with a set of static integrity constraints. Database de-
sign is nowadays based on the co-design of structuring and functionality. Therefore,
extended entity-relationship model languages are supported by explicit functional-
ity. The relational algebra and aggregation functions are generalised for extended
entity-relationship models. Therefore, queries, transactions and workflows can di-
rectly be defined within the model. Additionally, views can be defined in a more
general setting. This extension also supports a novel and sophisticated simple defi-
nition of the OLAP cube and its treatment. Semantics generalises the entire theory
of relational integrity constraints in such a way that constraint handling and spec-
ification can be entirely managed at the conceptual level. Finally, we show how
constraint specification can be supported.

6.1 Database Design

6.1.1 Database Design and Development

The problem of information system design can be stated as follows:

Design the logical and physical structure of an information system in a given database man-
agement system (DBMS) (or for a database paradigm), so that it contains all the informa-
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tion required by the user and required for the efficient behaviour of the whole information
system for all users. Furthermore, specify the database application processes and the user
interaction.

The implicit goals of database design are:

• to meet all the information (contextual) requirements of the entire spectrum of
users in a given application area;

• to provide a ‘natural’ and easy-to-understand structuring of the information con-
tent;

• to preserve the designers’ entire semantic information for a later redesign;
• to meet all the processing requirements and also achieve a high degree of effi-

ciency in processing;
• to achieve logical independence of query and transaction formulation on this

level;
• to provide a simple and easy-to-understand user interface family.

These requirements must be related to database models. We distinguish be-
tween relational database models, hierarchical and other graphical database models,
object-oriented database models, and object-relational models. The enhanced ER
model discussed in this chapter is the only database model that supports mappings
to all kinds of database models.

Over the past few years database structures have been discussed extensively.
Some of the open questions have been satisfactorily solved. Modelling includes,
however, additional aspects:

Structuring of a database application is concerned with representing the database
structure and the corresponding static integrity constraints.

Functionality of a database application is specified on the basis of processes and
dynamic integrity constraints.

Distribution of information system components is specified through explicit spec-
ification of services and exchange frames that specify the architecture and the col-
laboration among components.

Interactivity is provided by the system on the basis of foreseen stories for a num-
ber of envisioned actors and is based on media objects which are used to deliver the
content of the database to users or to receive new content.

This understanding has led to the co-design approach to modelling by specifica-
tion structuring, functionality, distribution and interactivity. These four aspects
of modelling have both syntactic and semantic elements.

There are numerous database specification languages. Most of them are called
database models. The resulting specification is called a database schema. Simple
database models are the relational model and the entity-relationship (ER) model. In
this chapter we introduce extensions of the ER model which are consistent, easy to
use and have a translation to relational, object-relational and XML database models.
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The specification of databases is based on three interleaved and dependent parts:

Syntactics (syntax): Inductive specification of databases is based on a set of
base types, functions and predicates, a collection of constructors and a theory
of construction limiting the application of constructors by rules or by formulas
in deontic logic. In most cases, the theory may be simplified to the usage of
canonical rules for construction and interpretation. Structural recursion is the
main specification vehicle.

Semantics: Specification of admissible databases on the basis of static and dy-
namic integrity constraints describes those database states and those database
sequences which are considered legal. If structural recursion is used, then a vari-
ant of hierarchical first-order predicate logic may be used for the description of
integrity constraints.

Pragmatics: Description of context and intension is based either on explicit ref-
erence to the enterprise model, to enterprise tasks, to enterprise policy and envi-
ronments or on intensional logic used for relating the interpretation and meaning
to users depending on time, location and common sense.

Specification is often restricted to the description of syntactical elements. This
restricted approach can only be used for simple applications with simple structuring.
However, most applications require the analysis of data, integration or federation of
data, advanced aggregation of data, and advanced basic data types.

6.1.2 Implicit Assumptions and Inherent Constraints
of Database Specification Languages

Each language used should be based on a clear definition of structure, semantics,
operations, behaviour and environment. At the same time, languages presuppose
implicit assumptions and constraints. The enhanced or extended ER (EER) model
might, for instance, use the following assumptions:

Set semantics: The default semantics of entity and relationship types are set se-
mantics. If extended type constructors are used, then their semantics are explicitly
defined.

Identifiability: Each entity type is identifiable. Each component type needs to be
labelled whenever it cannot be distinguished from other components. In relation-
ship types, components are ordered. Their labels can be omitted whenever there
is an identification. Set semantics implies the identifiability of any element in the
database.

Partial unique name assumption: Attribute names are unique for each entity and
relationship type. Entity type names and relationship type names are unique for the
ER schema.
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Referential integrity: If a type is based on component types, then each value for
this type can only use such values in components which exist as values in the com-
ponent instance.

Monotonicity of semantics: If integrity constraints ˚ are added to a given set of
integrity constraints˙ , then the set of possible instances which satisfy the extended
set of constraints˙ [˚ is a subset of the set of instances which satisfy ˙ .

We do not use the entity integrity assumption. The database can use null values
in keys as well [24]. The entity integrity assumption can be enforced by the profile
used during mapping schema specifications to logical database languages.

6.1.3 Storage and Representation Alternatives

The classical approach to objects is to store them based on strong typing. Each real-
life thing is thus represented by a number of objects which are either coupled by
the object identifier or by specific maintenance procedures. This approach has led
to a variety of types. Thus, we might consider two different approaches.

Class-wise, strongly identification-based representation and storage: Real
things may be represented by several objects. Such choice increases maintenance
costs. For this reason, we couple things under consideration and objects in the
database by an injective association. Since we may be not able to identify things
by their value in the database due to the complexity of the identification mecha-
nism in real life, we introduce the notion of the object identifier (OID) in order to
cope with identification without representing complex, real-life identification. Ob-
jects can be elements of several classes. In the early days of object orientation it was
assumed that objects belonged to one and only one class. This assumption has led
to a number of migration problems which have not been satisfactorily resolved. The
association among facets of the same thing that are represented by several objects is
maintained by the object identifier.

Object-wise representation and storage: Graph-based models which have been
developed in order to simplify the object-oriented approaches [3] display objects
by their sub-graphs, i.e. by the set of nodes associated to a certain object and the
corresponding edges. This representation corresponds to the representation used in
standardisation.

Object-wise storage has a high redundancy which must be maintained by the sys-
tem, thereby decreasing performance to a significant extent. Besides performance
problems, such systems also suffer from low scalability and poor utilisation of re-
sources. The operation of such systems leads to lock avalanches. Any modification
of data requires a recursive lock of related objects.
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Therefore, objects-wise storage is applicable only under a number of restrictions:

• The application is stable and the data structures and the supporting basic func-
tions necessary for the application do not change during the lifespan of the sys-
tem.

• The data set is almost free of updates. Updates, insertions and deletions of data
are only allowed in well-defined restricted ‘zones’ of the database.

A typical application area for object-wise storage is archiving or information pre-
sentation systems. Both systems have an update system underneath. We call such
systems play-out systems. The data are stored in such a way so that they are trans-
ferred to the user. The data modification system has a play-out generator that ma-
terialises all views necessary for the play-out system.

Two implementation alternatives are already in use, albeit more on an intuitive
basis:

Object-oriented approaches: Objects are decomposed into a set of related ob-
jects. Their association is maintained on the basis of OIDs or other explicit refer-
encing mechanisms. The decomposed objects are stored in corresponding classes.

XML-based approaches: The XML description allows one to use null values
without notification. If a value for an object does not exist, is not known, is not
applicable or cannot be obtained, etc., the XML schema does not use the tag corre-
sponding to the attribute or the component. Classes are hidden. Thus, we have two
storage alternatives for XML approaches which might be used at the same time or
might be used separately:

Class-separated snowflake representation: An object is stored in several classes.
Each class has a partial view on the entire object. This view is associated with the
structure of the class.

Full-object representation: All data associated with the object are compiled into
one object. The associations among the components of objects with other objects
are based on pointers or references.

We may use the first representation for our storage engine and the second rep-
resentation for our input engine and our output engine in data warehouse ap-
proaches. The input of an object leads to the generation of a new OID and to a bulk
insert into several classes. The output is based on views.

The first representation leads to an object-relational storage approach which is
based on the ER schema. Thus, we may apply translation techniques developed for
ER schemata [25].

The second representation is very useful if we want to represent an object with all
its facets. For instance, an Address object may be presented with all its data, e.g. ge-
ographical information, contact information, acquisition information, etc. Another
Address object is only instantiated by geographical information. A third one has
only contact information. We could represent these three objects by XML files on
the same DTD or XSchema.
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6.1.4 The Higher-Order Entity-Relationship Model

The ER model has been extended by more than three-score proposals. Some ex-
tensions contradict other extensions. In this chapter we use the higher-order (or hi-
erarchical) entity-relationship model (HERM). It is a special case of an extended
entity-relationship (EER) model (e.g. [9, 11, 15, 25]).

The HERM used in this chapter has the following basic and extended modelling
constructs:

Simple attributes: For a given set of domains there are defined attributes and their
corresponding domains.

Complex attributes: Using basic types, complex attributes can be defined by
means of the tuple and the set constructors. The tuple constructor is used to define
complex attributes by Cartesian aggregation. The set constructor allows construc-
tion of a new complex attribute by set aggregation. Additionally, the bag, list, and
variant constructors can be used.

Entities: Entity types are characterised by their attributes. Entity types have a set
of attributes which serve to identify the elements of the type class. This concept is
similar to the concept of the key in relational databases.

Clusters: A disjoint union P[ of types whose identification type is domain compat-
ible is called a cluster. Cluster types (or variant types) are well known in program-
ming languages but are often overlooked in database models, where this absence
creates needless fragmentation of the databases, confusing mixing of generalisation
and specialisation and confusion over null values.

First-order relationships: First-order relationship types are defined as associa-
tions between single entity types or clusters of entity types. They can also be char-
acterised by attributes.

Higher-order relationships: The relationship type of order i is defined as an as-
sociation of relationship types of order less than i or of entity types and can also be
characterised by attributes.

Integrity constraints: A corresponding logical operator can be defined for each
type. A set of logical formulas using this operator can define the integrity constraints
which are valid for each instance of the type.

Operations: Operations can be defined for each type.

• The generic operations insert, delete, and update are defined for each
type.

• The algebra consists of classical set operations, such as union, intersection, dif-
ference and restricted complement, and general type operations, such as selec-
tion, map [particular examples of this operation are (tagged) nest, unnest, projec-
tion, renaming], and pump (particular examples of this operation are the classical
aggregation functions). The fixpoint operator is not used.
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• Each type can have a set of (conditional) operations.
• Based on the algebra, query forms and transactions can be specified.

The extensions of the ER model should be safe in the sense that appropriate se-
mantics exist. There is a large variety of proposals which are not safe. Some reasons
for this include higher-order or function types, such as those used for the definition
of derived attributes, or the loss of identification.

It can be observed that higher-order functions can be attached to the type system.
However, in this case types do not specify sets, although their semantics can be
defined by topoi [12, 21]. This possibility limits simplicity for the introduction of
constraints and operations. Furthermore, these semantics are far too complex to be
a candidate for semantics. The ER model is simpler than OO models.

6.2 Syntax of EER Models

6.2.1 Structuring Specification

We use a classic three-layered approach to inductive specification of database struc-
tures. The first layer is the data environment, called the basic data type scheme,
which is defined by the system or is the assumed set of available basic data. The
second layer is the schema of a given database. The third layer is the database itself
representing a state of the application’s data and knowledge.

The second layer is treated differently in most database models. Nevertheless,
there are common features, especially type constructors. A common approach in
most models is the generic definition of operations according to the structure of
the type. The inductive specification of structuring is based on base types and type
constructors.

A type constructor is a function from types to a new type. The constructor can
be supplemented with

• A selector for retrieval (like Select) with a retrieval expression and update func-
tions (like Insert, Delete, and Update) for value mapping from the new type to
the component types or to the new type;

• Correctness criteria and rules for validation;
• Default rules;
• One or several user representations; and
• A physical representation or properties of the physical representation.

A base type is an algebraic structure B D .Dom.B/;Op.B/;Pred.B// with
a name, a set of values in a domain, a set of operations and a set of predicates.
A class BC on the base type is a collection of elements fromDom.B/. Usually, BC

must be set. It can also be a list (denoted by< : >), multiset (fj:jg), tree, etc. Classes
may be changed by applying operations. Elements of a class may be classified by
the predicates.
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The value set can be discrete or continuous, finite or infinite. We typically assume
discrete value sets. Typical predicates are comparison predicates such as <;>, �,
¤, �, D. Typical functions are arithmetic functions such as C, �, and �.

The set of integers is given by the IntegerSet, e.g. integers within a 4-byte repre-
sentation and basic operations and predicates:

integer WD .IntegerSet; f0; s;C;�;�;�; g; fD;�g/ :
The base type is extended to a data type by explicit definition of properties of the
underlying value sets:

Precision and accuracy: Data can be precise to a certain extent. Precision is the
degree of refinement in the calculations. Accuracy is a measure of how repeatable
the assignment of values for properties is.

Granularity: Scales can be fine or coarse. The accuracy of data depends on the
granularity of the domain which has been chosen for the representation of prop-
erties.

Ordering: The ordering of values of a given domain can be based on ordering
schemes such as lexicographic, geographic or chronological ordering or on exact
ordering such as orderings on natural numbers. The ordering can also be based
on ontologies or categories. Scales have a range with lowest values and highest
values. These values can be finite or infinite. If they are finite, then overflow or
underflow errors might be the result of a computation.

Classification: The data can be used for representation of classifications. The
classification can be linear, hierarchical, etc. The classification can be mono-
hierarchical or poly-hierarchical, mono-dimensional or poly-dimensional, ana-
lytical or synthetical, monotetical or polytetical. The classification can be based
on ontologies and be maintained with thesauri.

Presentation: The data type can be mapped to different representation types de-
pending on several parameters. For instance, in Web applications, the format
chosen for presentation types of pictures depends on the capacity of the channel,
on the compression, etc. The presentation might be linear or hierarchical and can
be layered.

Implementation: The implementation type of the attribute type depends on the
properties of the DBMS. The implementation type also influences the complexity
of computations.

Default values: During the design of databases, default values can be assigned in
order to store properties regarding the existence of data such as ‘exists but not at
the moment’, ‘exists but not known’, ‘exists but under change’, ‘at the moment
forbidden/system defined/wrong’, ‘not reachable’, ‘until now not reachable’, ‘not
entered yet’, ‘not transferrable/transferred’, ‘not applicable to the object’. Usu-
ally, only one default value is allowed. An example of a specific default value is
the null value.

Casting functions: We assume that type systems are (strongly) typed. In this case
we are not able to compare values from different domains and to compute new
values from a set of values taken from different domains. Casting functions can
be used to map the values of a given domain to values of another domain.
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Table 6.1 Data types and their main canonical assumptions

Kind of data type Natural order Natural zero Predefined functions Example

Extension based

Absolute C C=� C=� Number of boxes
Ratio C C=� + (type dependent) Length, weight

Intension based

Nominal � � (�) (except concatenation) Names of cities
Ordinal C � � Preferences
Rank C C � Competitions
Interval C � (C) (e.g. concatenation) Time, space

It should be noted [16, 17] that the data type restricts the operations which can
be applied. Databases often store units of measure which are measured using a scale
of some sort. Scales can be classified [6] according to a set of properties such as the
following: a natural origin point of scale represented usually by a meaningful ‘zero’
which is not just a numeric zero; applicability of meaningful operations which can
be performed on the units; existence of natural orderings of the units; the existence
of a natural metric function on the units. Metric functions obey a triangular prop-
erty, are symmetric and map identical objects to the origin of the scale. For instance,
adding weights is meaningful, whereas adding shoe sizes looks odd. The plus op-
eration can be different if a natural ordering exists. Metric values are often relative
values which are perceived in different ways, e.g. the intensity of light.

Typical kinds of data types are compared in Table 6.1.
We thus specify basic data types by the extended data type that extends the data

type by description � of precision and accuracy, granularity, order, classification,
presentation implementation, special values, null, default values, casting functions,
and scale.

This extended specification approach avoids pitfalls of aggregation. Aggregation
functions can be applied to absolute and ratio values without restriction. Additive
aggregation and min/max functions can be applied to interval values. The average
function can only be applied to equidistant interval values. The application of ag-
gregation functions such as summarisation and average to derived values is based
on conversions to absolute or ratio values. Comparison functions such as min/max
functions can be applied to derived values only by attribution to ratio or absolute
values. The average function can only be applied to equidistant interval values. Ag-
gregation functions are usually not applicable to nominal values, ordinal values, and
rank values.

Given a set of (extended) base types T and a set of names U , a data scheme
.DD D .U; T ; dom// is given by a finite setU of type names, by a set T of extended
base types, and by a domain function dom W U ! T which assigns to each base type
name its ‘domain’ type.
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We denote DD by fA1 WW dom.A1/; : : : ; Am WW dom.Am/g in the case where the
set of type names U D fA1; : : : ; Amg of the data scheme is finite. The Ai are called
atomic attributes or basic attributes.

Given additionally a set of names NA different from U and a set of labels L
that is distinct from NA and U , we inductively introduce the set UN of complex
attributes or complex attribute types:

• Any atomic attribute is a complex attribute, i.e. U � UN .
• If X 2 UN , then l W X 2 UN for l 2 L (labelled attribute).
• If X 2 UN , then ŒX� 2 UN (optional attribute).
• If X1, : : :, Xn 2 UN and X 2 NA, then X .X1; : : : ; Xn/ is a (tuple-valued)

complex attribute in UN . This attribute type can also be used in the notation X .
• If X 0 2 UN and X 2 NA, then XfX 0g is a (set-valued) complex attribute in
UN .

• No other elements are in UN .

Set L is used as an additional naming language. Each attribute can be labelled by
names or labels from L. Labels can be used as alias names for attributes. They are
useful for shortening expressions of complex attributes. They can carry a meaning
but do not carry semantics. They can be omitted whenever it is not confusing.

Additionally, other type constructors can be used for defining complex attributes:

• Lists of values, e.g. < X >, ;
• Vectors or arrays of values, e.g.XMax

Min .Y / with an index attribute Y , and minimal
and maximal index values; and

• Bags of values, e.g. fjX jg .

For reasons of simplicity we restrict the model to tuple and set constructors. How-
ever, list and bag constructors can be used whenever type constructors are allowed.

Typical examples of complex attributes are as follows:

Name : (FirstNames < (FirstName,use) > , FamName, [NameOfBirth,]
Title:fAcadTitleg P[FamTitle)

Contact : (Phone(fAtWorkg, private), email, . . . )
DateOfBirth :: date
AcadTitle :: titleType
PostalAddress : (Zip, City, Street, HouseNumber)
for dom(Zip) = String7, dom(City) = VarString, dom(Street) = VarString,

dom(HouseNumber) = SmallInt:

Now we can extend the function dom to Dom on UN .

• Dom.�/ D ;.
• For A 2 U , Dom.A/ D dom.A/.
• For l W X 2 UN , Dom.l W X/ D Dom.X/.
• For ŒX� 2 UN , Dom.ŒX� D Dom.X/ [ � for the empty word �.
• For X .X1; : : : ; Xn/ 2 UN , Dom.X/ D Dom.X1/ � : : : � Dom.Xn/,

where M1 � : : : �Mn denotes the Cartesian product of the sets M1; : : : ;Mn.
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• For XfX 0g 2 UN , Dom.XfX 0g/ D Pow.Dom.X//,
where Pow.M/ denotes the powerset of the set M .

Two attribute types X , Y are called domain-compatible if Dom.X/ D Dom.Y /.
For the data scheme DD the set DDD denotes the union of all sets Dom.X/ for

X 2 UN .
The subattribute A of B is inductively defined in the same manner (denoted by

A 	 B). A is a non-proper subattribute of A but not a proper subattribute of A.
X

�
Xi1 ; : : : ; Xim

�
andX

�
X 0

1; : : : ; X
0
n

�
are subattributes ofX .X1; : : : ; Xn/ for sub-

attributes X 0
j of Xj (1 � j � j ). XfX 00g is a subattribute of XfX 0g for a subat-

tribute X 00 of X 0.
A tuple (or object) o on X � UN and on DD D .U;D; dom/ is a function

o W X �! DDD with t.A/ 2 Dom.A/forA 2 X :
An entity type E is defined by a triple .attr.E/; id.E/;˙/, where

• E is an entity set name,
• attr.E/ is a set of attributes,
• id.E/ is a non-empty generalised subset of attr.E/ called the key or

identifier, and
• ˙ is a set of integrity constraints.

Trivial elements may be omitted. The set of all attributes is the trivial identifier.
The empty set ; is a trivial set of integrity constraints. Let us assume for the moment
that ˙ D ;. We shall introduce integrity constraints below.

The following types are examples of entity types:

Person $ .fName;Address;Contact;DateOfBirth;PersNo W EmplNo P[ : : : ; : : :g/
Course $ .fCourseNumber;CNameg; fCNumberg/;
Room $ .fBuilding, RoomNumberg; fBuilding, RoomNumberg/;
Department $ .fDName, Director, PhonesfPhonegg; fDNameg/;
Semester $ .fYear, Seasong; fYear, Seasong/:

The notion of entity types can be extended to entity types with key sets:

E $
�
attr.E/; fidj .E/ j 1 � j � mg� with m keys :

We assume that attributes are unique in an entity type. Therefore, we can omit the
set brackets. Identifiers may be given by underlining the corresponding attributes.

Entities or objects o of E can now be defined as tuples on attr.E/.
An entity of the type Person is for instance the object

ˇ W ..< .Karl,SecondChristian/; .Bernhard,Christian/ >;Thalheim;
fProf., Dr.rer.nat.habil., Dipl.-Math.g/;
CAU Kiel; ..fC49 431 8804472;C49 431 8804054g; _/;
thalheim@is.informatik.uni-kiel.de/; 10:3:1952; 637861; : : :/:
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At any fixed moment in time t an entity class EC for the entity type E is

• a set of objects o on attr.E/ for which

– id.E/ is a key, i.e. the inequality oid.E/ ¤ o0
id.E/

is valid for any two different

tuples o, o0 from EC, and
– the set of integrity constraints˙ is valid.

In some cases, (entity) types may be combined into a union of types or so-called
cluster types. Since we need to preserve identification, we restrict the union opera-
tion to disjoint unions. Clusters based on entity types can be defined by the disjoint
union of types. Furthermore, we require that the identification types of the compo-
nents of a cluster are domain-compatible. Take now the set of types fR1; : : : ; Rkg
as given.

These types can be clustered by a “category” or a cluster type

C $ l1 W R1 C l2 W R2 C : : :C lk W Rk:

Labels can be omitted if the types can be distinguished.
Examples of cluster types are as follows:

JuristicalPerson$ Person P[ Company P[ Association,
Group$ Senate P[ WorkingGroup P[ Association.

For a cluster type C $ l1 W R1 C l2 W R2 C : : :C lk W Rk we can similarly define
the cluster class C C as the ‘disjoint’ union of the setsRC

1 , : : :,RC
k

. IfR1, : : :,Rk are
entity types, then C is a cluster of entity types. The cluster is defined if RC

1 ; : : : ; R
C
k

are disjoint.
Entity types E1, : : :, Ek are now given. A (first-order) relationship type has

the form R $ .ent.R/; attr.R/;˙/, where

• R is the name of the type,
• ent.R/ D l1 W R1; : : : ; ln W Rn is a sequence of (labelled) entity types and of

clusters of these,
• attr.R/ D fB1; : : : ; Bkg is a set of attributes from UN , and
• ˙ is a set of integrity constraints.

First-order relationship types which have only one entity type are called unary,
those with two entity types are called binary and those with several labelled occur-
rences of the same entity type are called recursive. Labels can be omitted if the types
can be distinguished.

Example of first-order relationship types are as follows:

InGroup $ (Person, Group, fTime(From [,To]);Positiong);
DirectPrerequisite $ (hasPrerequisite : Course, isPrerequisite : Course);
Professor $ (Person, f Specialisation g);
Student $ ( Person, f StudNo g);
Enroll D (Student, CourseHeld, f Result g);
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Major $ ( Student, Program, ; );
Minor $ ( Student, Program, ; ):

If each Ri is an entity type, then a first-order relationship set RC is a set of relation-
ships, i.e.

RC � RC
1 � : : : � RC

n � dom.B1/ � : : : � dom.Bk/ :

An assumption that is typically made for representations is that relationships use
only the identification part of the objects which participate in the relationships.

If Ri is a cluster Ri;1 C : : : C Ri;k, then the relationships in RC are distinct
according to Ri , i.e. for r; r 0 2 RC either r:Ri ¤ r 0:Ri and RC

i;j \ RC
i;j 0 for distinct

j , j 0 or r:Ri determines the componentRi;j of Ri , i.e.

r:Ri 2 RC
i;j n [j 0¤jR

C
i;j 0 :

The latter disjointness can be weakened by labels.
We may generalise the notion of first-order relationship types to relationship

types of arbitrary order. Given now entity types E1, : : : Ek and relationship and
cluster types R1, : : :, Rl of orders not higher than i for i > 0, an .i C 1/-order
relationship type has the form

R $ .compon.R/; attr.R/;˙/ ;

where

• R is the name of the type,
• compon.R/ is a sequence of (labelled) entity and relationship types or clusters

from fE1; : : : ; Ek; R1; : : : ; Rl g,
• attr.R/ D fB1; : : : ; Bkg is a set of attributes from UN , and
• ˙ is a set of integrity constraints.

We may also use constructors �;[; P[; f:g; fj:jg; < : > [Cartesian product, union,
disjoint union, powerset, bags (multisets), list] to define complex components.

The disjointness for clusters can be weakened for relationship types.
Examples of higher-order relationship types are as follows:

Has $ (Project, PrimaryInvestigator:Professor C Member:Person, ;);
Supervisor$ (Student, Professor, f Since g):

Higher-order types allow a convenient description of classes which are based on
other classes. Let us consider a course planning application. Lectures are courses
given by a professor during a semester and a number of programs. Proposed courses
extend lectures by descriptions of who has made the proposal, who is responsible
for the course, which room is requested and which time proposals and restrictions
are made. Planning of courses assigns a room to a course that has been proposed and
assigns a time frame for scheduling. The kind of course may be changed. Courses
held are based on courses planned. The room for a course may be changed. We use
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the following types for the specification:

ProposedCourse $ .Teacher W Professor;Course;
Proposal W Kind;Request W Room;
Semester; Set4 W fProgramg;Responsible4Course W Person;
InsertedBy W Person; fTime.Proposal; SideCondition/g/;

PlannedCourse $ .ProposedCourse; ŒKind�; ŒRoom�; fTimeFrameg/;
CourseHeld $ .PlannedCourse; ŒRoom�/:

The last two types use optional components in the case where a proposal or the
planning of rooms or kinds is changed.

Assume now a relationship type, R $ .R1; : : : ; Rn; fB1; : : : ; Bkg/ and classes
RC

1 ; : : : ; R
C
n . A relationship r is an element of the Cartesian product

RC
1 � : : : � RC

n � Dom.B1/ � : : : � Dom.Bk/ :

The relationship class RC is a set of relationships, i.e.

RC � RC
1 � : : : � RC

n � Dom.B1/ � : : : � Dom.Bk/ :

IfRi is a clusterRi;1C: : :CRi;k, then the relationships inRC are distinct according
to Ri , i.e. for r; r 0 2 RC either r:Ri ¤ r 0:Ri and RC

i;j \ RC
i;j 0 for distinct j; j 0, or

r:Ri determines the component Ri;j of Ri , i.e. r:Ri 2 RC
i;j n [j 0¤jR

C
i;j 0 . The last

disjointness condition can be weakened by labels. If we use extended relationship
types, then identifying subcomponents can be used instead of the full representation.

A set fE1; : : : En; R1; : : : ; Rmg of entity, cluster and (higher-order) relationship
types on a data scheme DD is called complete if any relationship types use the
types from fE1; : : : En; R1; : : : ; Rmg as components. A complete set of types is also
called EER schema S. The EER schema is going to be extended by constraints. The
EER schema is defined by the pair .S; ˙/.

We can represent a complete set of entity, cluster and relationship types by ER
diagrams. One possible kind of diagram is displayed in Fig. 6.1. Entity types are
represented graphically by rectangles. Attribute types are associated with the cor-
responding type. Relationship vertices are represented graphically by diamonds.
Clusters are represented by diamonds labelled with a root illustrated

L
or simply

as a common input point to a diamond.
This style of drawing diagrams is one of many variants which have been consid-

ered in the literature. The main difference in representation is the style of drawing
unary types. Three different styles are depicted in Fig. 6.2. We prefer the compact
style in the left diagram.

The notion of subattributes can be extended to substructures of an EER structure
in a similar form. Substructures use the components of a type. Given two substruc-
turesX and Y of a type T , the generalised unionXtT Y is the smallest substructure
of T that has bothX and Y as its substructures. The generalised intersectionXuT Y

is the largest substructure of both X and Y .
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Course
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Course[ ]
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Fig. 6.1 A sample HERM diagram with higher-order relationship types
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ProfessorIsA

Fig. 6.2 Variants for representation of unary relationship types

We have introduced the essentials of extended ER models. The ER model has
attracted a lot of research. A large variety of extensions have been proposed. We
conclude this subsection with a brief introduction on main extensions.

We do not use so-called weak types that use associations among a schema for
a definition of their identification. For a discussion on the pitfalls of these types, we
refer the interested reader to [25].

A number of domain-specific extensions have been introduced to the ER model.
One of the most important extensions is the extension of the base types by spatial
data types [19] such as point, line, oriented line, surface, complex surface, oriented
surface, line bunch, and surface bunch. These types are supported by a large variety
of functions such as meets, intersects, overlaps, contains, adjacent, planar opera-
tions, and a variety of equality predicates.

We distinguish between specialisation types and generalisation types. Special-
isation is used whenever objects obtain more specific properties, may play a vari-
ety of roles, and use more specific functions. Typically, specialisation is specified
through IS-A associations. Specific relationship types which are used to describe
specialisation are as follows: Is-Specific-Kind-Of, Is-Role-Of, Is-Subobject-Of, Is-
Subset-Of, Is-Property-Of, Has-Effect-Of, Has-Function-Of, Is-Partial-Synonym-
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Of, Entails, and Part-Of. Functions are typically inherited downwards, i.e. from the
supertype to the subtype.

Generalisation is used for types of objects which have the same behaviour. The
behaviour and some of the components may be shifted to the generalisation if they
are common for all types which are generalised. Typical generalisations are Is-Kind-
Of, Considered-As, and Acts-In-Role. In relationship types generalisation tends to
be an abstraction in which a more general (generic) type is defined by extracting
common properties of one or more types while suppressing the differences between
them. These types are subtypes of the generic type. Thus, generalisation introduces
the Role-Of relationship or the Is-A relationship between a subtype entity and its
generic type. Therefore, the constructs are different. For generalisation the generic
type must be the union of its subtypes. Thus, the subtypes can be virtually clustered
by the generic type. This tends not to be the case for specialisation. The specialisa-
tion of a role of the subtype can be changed. This is the case for generalisation.

Generalisation is usually defined through a cluster type. The cluster type can
be translated to a relational type or to a relational view. Functions are inherited
upwards, i.e. from the type to the abstraction. Abstractions typically do not have
their own functions.

The distinction into specialisation and generalisation may be based on an intro-
duction of kernel types. These types are either specialised or generalised and form
a ‘centre’ of the hierarchy. A pragmatic rule for detection of such types is based on
the independent existence of objects. Those object sets that exist (relatively) inde-
pendently of other object sets are candidates for kernel sets. They form an existence
ridge within the schema.

Hierarchy abstraction allows one to consider objects in a variety of levels of
detail. Hierarchy abstraction is based on a specific form of the general join op-
erator [26]. It combines types which are of high adhesion and which are mainly
modelled on the basis of star subschemata. Specialisation is a well-known form of
hierarchy abstraction. For instance, an Address type is specialised to the Geograph-
icAddress type. Other forms are role hierarchies and category hierarchies. For in-
stance, Student is a role of Person. Undergraduate is a category of Student. The
behaviour of both is the same. Specific properties have been changed. Variations
and versions can be modelled on the basis of hierarchy abstraction.

Hierarchies may be combined and the root types of the hierarchies are gener-
alised to a common root type. The combination may lead to a graph which is not
a tree but a forest, i.e. an acyclic graph with one root. The variation of the root type
is formed by a number of dimensions applicable to the type. For instance, addresses
have a specialisation dimension, a language dimension, an applicability dimension
and a classification dimension.

Schemata may have a number of dimensions. We observe that types in a database
schema are of very different usage. This usage can be made explicit. Extraction of
this utilisation pattern shows that each schema has a number of internal dimensions:
specialisation dimension based on roles objects play or on categories into which
objects are separated; association dimension through bridging related types and in
adding metacharacterisation on data quality; usage, meta-characterisation or log
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dimension characterising log information such as the history of database evolution,
the association to business steps and rules, and the actual usage; data quality, life-
span and history dimension. We may abstract from the last two dimensions during
database schema development and add these dimensions as the last step of concep-
tual modelling. In this case, the schema considered up to this step is concerned with
the main facets of the application.

The metadata dimension describes the database data. Metadata guide utilisation
of evaluation functions. The management of metadata is based on a number of steps:

Creation of meaningful metadata is based on a proper characterisation of the data
by their history, their association to the documents from which the data have
been taken, and an evaluation of the quality of the source. Metadata must be
appropriate to their use within the model suite. At the same time they must be
adequate. Meaningful metadata help to understand the data which are available
and provide information on how these data can be used.

Maturing metadata can be based on adding the context of the data and the meta-
data, e.g. by a characterisation of time and integrity. Any change in the data must
be reflected by changes in the metadata. This change management is based on
explicit maintenance of data heritage with respect to the real world at the time
the data were initially captured and stored and on data lineage depending on the
path taken by the data from initial capture to their present location and how they
were altered along that path.

Management of metadata becomes important whenever the redundancy of data
increases, e.g. in data warehouses, in files of data which reuse, aggregate and
combine their data from other or their own data. Simple metadata management
has been built into data dictionaries and is used in data modelling tools. Extended
metadata management has been incorporated into data repositories. Nowadays
metadata are becoming an essential source of information and a supporting facil-
ity for sophisticated search. Metadata management supports sophisticated stor-
age, concurrent and secured access, and ease of use with browsing, searching,
indexing, integration and association facilities.

Maintenance of metadata must be automated, includes quality assurance and re-
processing, uses intelligent versioning, configuration and combination, and has
refreshment cycles.

Migration and sharing of metadata becomes crucial if data sources are kept dis-
tributed and are heterogeneous, if they are shared among different kinds of usage,
if interoperability of different data sources is necessary, and if portability requires
a change due to different operational uses while maintaining old applications.

Schemata may have a metastructure and may consist of several components [27].
These components may be interrelated and may intersect. Some of them are inde-
pendent. Some of them are interrelated through specific associations by connector
types. This metastructure is captured by the skeleton of the schema. This skeleton
consists of the main modules without capturing the details within the types. The
skeleton structure allows one to separate some parts of the schema from others.
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The skeleton displays the structure at a large. At the same time, schemata have an
internal meta-structure.

Component-based ER modelling does not start with the singleton type. First,
a skeleton of components is developed. This skeleton can be refined during the
evolution of the schema. Then, each component is developed step by step. Each
refinement leads to a component database schema. If components share elements
then any change for one component must be harmonised with changes to all related
components.

Temporality is described for EER models in a variety of ways.

• Data may be temporal and depend directly on one or more aspects of time. We
distinguish three orthogonal concepts of time: temporal data types such as in-
stants, intervals or periods, kinds of time, and temporal statements such as current
(now), sequenced (at each instant of time) and non-sequenced (ignoring time).
Kinds of time are existence time, lifespan time, transaction time, change time,
user-defined time, validity time and availability time. The first two kinds of time
are not considered in databases since they are integrated into modelling deci-
sions. Temporal data are supported by specific temporal functions. These func-
tions generalise Allen’s time logic [1].

• The database schema may be temporal as well. The evolution covers the aspect
of changes in the schema. The best approach to handling evolution is the separa-
tion of parts of the schema into those types that are stable and those types of the
schema that change. The change schema is a meta-schema on those components
that evolve.

• Database systems have to support different temporal viewpoints and temporal
scopes of users. Therefore, the database schema has a temporal representation di-
mension. Typical large systems such as SAP R/3 support this multi-view concept
by providing views on the same data. These views are updateable and are equiv-
alent to each other. Another extension of the ER model which supports multi-
scoping is the explicit introduction of multiple representations of each type. The
types are enhanced by a controller that supports the generation of the appropriate
view on the type.

6.2.2 Functionality Specification

The HERM uses an inductive structuring. This inductive structuring can also be
used for the introduction of the functionality. Functionality specification is based
on the HERM algebra and can easily be extended to HERM/QBE, query forms and
transactions. This framework for functionality specification supports the introduc-
tion of some kinds of dynamic integrity constraints and consideration of behaviour.
The greatest consistent specification (GCS) approach is used for integrity enforce-
ment instead of rule-triggering pitfalls. Another advantage of this approach is that
interactivity may be introduced in integrated form based on dialogue scenes, co-
operation, messages and scenarios [23]. The translation portfolio may be used for
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translation and for compilation of functionality to object-relational, relational and
semi-structured languages.

The EER algebra uses type-preserving and type-creating functions. Simple type-
preserving functions generalise the classical set-theoretic functions. Let RC1 and
RC2 be classes over the same type R.
The union RC1 [ RC2 is the standard set union of RC1 and RC2 .
The difference RC1 n RC2 is the standard set difference of RC and RC2 .
The intersection RC1 \ RC2 is the set intersection of RC1 and RC2 .
Clearly, the types of the union, the intersection and the difference are T .

Type-creating functions on type systems can be defined by structural recur-
sion [2, 5, 29]. Given types T and T 0 and a collection type C T on T (e.g. set of
values of type T , bags, lists) and operations such as generalised union [C T , gen-
eralised intersection \C T , and generalised empty elements ;C T on C T . Given fur-
ther an element h0 on T 0 and two functions defined on the types h1 W T ! T 0 and
h2 W T 0 � T 0 ! T 0, we define the structural recursion by insert presentation for RC

on T as follows:

srech0;h1;h2
.;C T / D h0I

srech0;h1;h2
.jfjsjgj/ D h1.s/ for singleton collections jfjsjgjI

srech0;h1;h2
.jfjsjgj [C T RC/ D h2.h1.s/; srech0;h1;h2

.RC//

iff jfjsjgj \C T RC D ;C T :

All operations of the relational database model and of other declarative database
models can be defined by structural recursion.

• Selection is defined by �˛ D srec;;�˛ ;[ for the function

�˛.fog/ D
(

fog if fog ˆ ˛

; otherwise
:

and the type T 0 D C T .
Selection is a type-preserving function.

• Projection is defined by �X D T ŒX� D srec;;�X ;[ for the subtype X of T , the
function

�X .fog/ D fojXg

which restricts any object to the components of X and the type T 0 D CX .
• (Natural) join is defined by ‰D srec;;‰T ;[ for the type T D T1 � T2, the

function

‰T .f.o1; o2/g/ D fo 2 Dom.T1 [ T2/ j ojT1
D o1 ^ ojT2

D o2g

and the type T 0 D C T1[T2 .
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The natural join is equal to the Cartesian product of the intersection of T1 and T2

is empty and is equal to the intersection if T1 and T2 coincide.
The Cartesian product RC � SC is a class of the scheme T D R ı S and equals
f.r1; : : : ; rm; s1; dots; sn/j.r1; : : : ; rm/ 2 RC ; .s1; sn/ 2 SC g. The concatena-
tion of types is denoted by ı.

• Renaming is defined by �X;Y D srec;;�X;Y ;[ for the subtype X of T , for a type
Y with Dom.X/ D Dom.Y /, for the function

�X;Y .f.o/g/ D fo0 2 Dom..T nX/ ı Y / j ojT nX D o0jT nX ;^ojX D o0jY g
and for the type T 0 D C .T nX/ıY .

• Nesting is defined by 	X D srec;;�X;fXg;h2
for the subtype X of T D R, for the

type T 0 D C .RnX/tRfXg, and for the function

h2.fo0g; T 0C / D fo0g [ T 0C ifo0jX 62 �X .T
0C /

h2.fo0g; T 0C / D fo 2 Dom.T 0/j9o0 2 T 0C W ojRnX D o0jRnX

^o.X/ D fo00ŒX�jo00 2 T 0C ^ o0jRnX D o00jRnX gg
in the case where o0jX 2 �X .T

0C /.
• Unnesting is defined by 
X D srec;;�X;fXg;h2

for the set subtype fXg of T D R,

for the type T 0 D C .RnfXg/ıX , and for the function

h2 .fo0g; T 0C � D fo0g[
f o 2 Dom.T 0/ j 9o00 2 RC W oŒR n fXg� D o00ŒR n fXg� ^ ojX 2 o00jXg :

We distinguish aggregation functions according to their computational com-
plexity:

• The simplest class of aggregation functions uses simple (one-pass) aggregation.
Typical examples are the simple statistical functions of SQL: count (absolute
frequency), average (arithmetic mean), sum (total), min, max.

• More complex aggregation functions are used in cumulative or moving statistics
which relate data subsets to other subsets or supersets, e.g. growth rates, changes
in an aggregate value over time or any dimension set (banded reports, control
break reports, OLAP dimensions). Typical examples are queries like:
“What percentage does each customer contribute to total sales?”
“Total sales in each territory, ordered from high to low!”
“Total amount of sales broken down by salesman within territories”.

Aggregation functions distinguish between normal values and null values. We
use two functions for null values:

h0
f .s/ D f 0 if s D NULL;

f .s/ if s ¤ NULLI
hundef

f(s) D undef if s D NULL;
f .s/ if s ¤ NULL:
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Then we can introduce the main aggregation through structural recursion as follows:

• Summarisation is defined by sumnull
0 D srec0;h0

Id;C or sumnull
undef D srec0;hundef

Id ;C.
• The counting or cardinality function counts the number of objects:

countnull
1 D srec0;h0

1
;C or countnull

undef D srec0;hundef
1

;C .
• Maximum and minimum functions are defined by

– maxNULL D srecNULL;Id;max or minNULL D srecNULL;Id;min,
– maxundef D srecundef;Id;max or minundef D srecundef;Id;min.

• The arithmetic average functions can be defined by

sum

count
or

sumnull
0

countnull
1

or
sumnull

undef

countnull
undef

:

SQL uses the following doubtful definition for the average function:

sumnull
0

countnull
1

:

One can distinguish between distributive, algebraic and holistic aggregation func-
tions:

Distributive or inductive functions are defined by structural recursion. They pre-
serve partitions of sets for a given set X and a given partion X D X1 [ X2 [
: : : [ Xn of X into pairwise disjoint subsets. Then for a distributive function f
there exists a function g such that f .X/ D g.f .X1/; : : : ; f .Xn//. Functions
such as count, sum, min, max are distributive.

Algebraic functions can be expressed by finite algebraic expressions defined over
distributive functions. Typical examples of algebraic functions in database lan-
guages are average and covariance. The average function, for instance,
can be defined on the basis of an expression on count and sum.

Holistic functions are all other functions. For holistic functions there is no limit
on the size of the storage needed to describe a subaggregate. Typical examples
are mostFrequent, rank and median. Usually, their implementation and
expression in database languages require tricky programming. Holistic functions
are computable over temporal views.

We use these functions to define the derived elementary modification functions:

Insertion of objects: The insert function Insert(RC; o) is the union RC [ fog
for classes RC and objects o of the same type R.

Deletion/removal of objects: The delete function Delete(RC; o) is defined
through the difference RC n fog for classes RC and objects o of the same type R.

Update of objects: The modification Update(RC; ˛; �) of classes RC uses log-
ical conditions ˛ and replacement families � D f.o;RCo/g that specify which
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objects are to be replaced by which object sets. The update function Update(RC,
˛, � ) is defined through the set

RC n �˛.R
C/[

[

o2�˛.RC/

RCo :

We notice that this definition is different from the expression RC n �˛.R
C/ [ RC 0

which is often used by DBMSs instead of update operations, e.g. by Delete(RC,
o); InsertUpdate(RC; o0). If, for instance, �˛.R

C/ D ; andRC 0 ¤ ;, then the
effect of the update operation is lost.

Structural recursion on collection types, together with canonical operations, pro-
vides us with a powerful programming paradigm for database structures. If col-
lections are restricted to ‘flat’ relations, then they express precisely those queries
which are definable in the relational algebra. By adding a fixed set of aggregate
operations such as sum, count, max, min to comprehension syntax and restricting
the input to ‘flat’ relations, we obtain a language which has the expressive power
of SQL. It should be noted that structural recursion is limited in expressive power
as well. Non-deterministic tuple-generating while (or object generating) programs
cannot be expressed. The definition of structural recursion over a union presentation
uses the separation property since the h2 function is only defined for disjoint collec-
tions. Therefore, programs which are not definable over the disjoint union of parts
are not representable. However, most common database operations and all database
operations in SQL are based on separation. The traversal combinator [10] concept
is more general. It captures a large family of type-safe primitive functions. Most
functions that are expressed as a sequence of recursive programs where only one
parameter becomes smaller at each recursive call are members of this family. How-
ever, this restriction excludes functions such as structural equalities and ordering
because they require their two input structures to be traversed simultaneously. The
uniform traversal combinator generalises this concept by combinators each of which
takes functions as inputs and returns a new function as output which performs the
actual reduction.

An EER query is simply an EER expression of the EER algebra. The expression
is defined on the EER typesR1; : : : ; Rn and maps to the target type S1; : : : ; Sm. Any
database schema D which contains R1; : : : ; Rn is therefore mapped to the schema
Sq D fS1; : : : ; Smg. EER queries may be enhanced by parameters. We can consider
these parameters as an auxiliary schema A. Therefore, an EER query is a mapping
from D and A to S, i.e.

q W D � A ! Sq :

An EER query for which the schema Sq consists of a singleton atomic attribute and
base type is called a singleton-value query.

The relational database model only allows target schemata consisting of one type.
This restriction is not necessary for EER models. The target schema of the EER
query is an EER schema as well. Therefore, we can build query towers by applying
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queries to the schemata obtained through query evaluation. Therefore, an EER query
is a schema transformation.

Transactions combine modification operations and queries into a single pro-
gram. Following [18], we define a transaction T over .S; ˙/ as a finite sequence
o1I o2I o3I : : : I om of modification and retrieval operations over .S; ˙/. Let
read.T / and write.T / be the set of basic read and write operations in T .

Transactions may be applied to the database state DC sequentially and form
a transition T .DC/ D om.: : : .o2.o1.DC////. The result of applying the transac-
tion T to a database (state) DC is the transition from this database to the database
T .DC/. The transaction semantics is based on two assumptions for a database
schema D D .S; ˙/:

Atomicity and consistency: The program is executed entirely and preserves the
semantics of the database.

Exhaustiveness: The transaction is executed only once.

The effect of applying T to DC is defined as an atomic constraint-preserving tran-
sition

T .DC/ D T .DC/ if T .DC/ ˆ ˙ ;

DC if T .DC/ 6ˆ ˙ :

We note that atomic constraint-preserving transitions can only be applied isolated
from each other. Transactions T1 and T2 are competing if read.T1/\write.T2/ ¤ ;
or read.T2/ \ write.T1/ ¤ ; or write.T2/ \ write.T1/ ¤ ;.

Parallel execution of transactions T1 kT2 is correct if either the transactions
are not competing or the effect of T1kT2.SC/ is equivalent to T1.T2.SC// or to
T2.T1.SC// for any database SC. If parallel execution is correct, then transaction
execution can be scheduled in parallel.

Exhaustiveness can be implemented by assigning to each transaction two states:
inactive (for transactions that are not yet executed) and completed (for transactions
that have lead to a constraint-preserving transition).

A large variety of approaches to workflow specification has been proposed in the
literature. We use basic computation step algebra introduced in [28]:

Basic control commands are sequence I (execution of steps in sequence), parallel
split j^j (execute steps in parallel), exclusive choice j˚j (choose one execution path
from many alternatives), synchronisation jsync j (synchronise two parallel threads of
execution by an synchronisation condition sync , and simple merge C (merge two
alternative execution paths). The exclusive choice is considered to be the default
parallel operation and is denoted by jj.
Structural control commands are arbitrary cycles � (execute steps without any
structural restriction on loops), arbitrary cycles C (execute steps without any struc-
tural restriction on loops but at least once), optional execution Œ � (execute the step
zero times or once), implicit termination # (terminate if there is nothing to be done),
entry step in the step % and termination step in the step &.
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The basic computation step algebra may be extended by advanced step com-
mands:

Advanced branching and synchronisation control commands are multiple
choice j.m;n/j (choose between m and n execution paths from several alternatives),
multiple merge (merge many execution paths without synchronizing), discriminator
(merge many execution paths without synchronizing, execute the subsequent steps
only once) n-out-of-m join (merge many execution paths, perform partial synchro-
nisation and execute subsequent step only once), and synchronizing join (merge
many execution paths, synchronise if many paths are taken, simple merge if only
one execution path is taken).

We also may define control commands on multiple objects (CMO) such as
CMO with a priori known design time knowledge (generate many instances of one
step when a number of instances is known at design time), CMO with a priori known
runtime knowledge [generate many instances of one step when a number of in-
stances can be determined at some point during the runtime (as in FOR loops)],
CMO with no a priori runtime knowledge [generate many instances of one step
when a number of instances cannot be determined (as in a while loop)], and CMO
requiring synchronisation (synchronisation edges) (generate many instances of one
activity and synchronise afterwards).

State-based control commands are deferred choice (execute one of two alterna-
tive threads; the choice which thread is to be executed should be implicit), inter-
leaved parallel executing (execute two activities in random order, but not in parallel),
and milestone (enable an activity until a milestone has been reached).

Finally, cancellation control commands are used, e.g. cancel step [cancel (dis-
able) an enabled step] and cancel case [cancel (disable) the case].

These control composition operators are generalisations of workflow patterns and
follow approaches developed for Petri net algebras.

Operations defined on the basis of this general frame can be directly translated to
database programs. So far no theory of database behaviour has been developed that
can be used to explain the entire behaviour and that explains the behaviour in depth
for a run of the database system.

6.2.3 Views in the Enhanced Entity-Relationship Models

Classically, (simple) views are defined as singleton types by which data are collected
from the database by some query.

create view NAME (PROJECTION VARIABLES) as
select PROJECTION EXPRESSION

from DATABASE SUBSCHEMA

where SELECTION CONDITION

group by EXPRESSION FOR GROUPING

having SELECTION AMONG GROUPS

order by ORDER WITHIN THE VIEW I
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Since we may have decided to use the class-wise representation, simple views
are not the most appropriate structure for exchange specification. The EER schema
allows one to directly specify a view schema by

• a schema V D fS1; : : : ; Smg, an auxiliary schema A and
• a query q W D � A ! V defined on D and V .

Given a database DC and the auxiliary database AC, the view is defined by
q.DC � AC/.

Additionally, views should support services. Views provide their own data and
functionality. This object orientation is a useful approach whenever data should be
used without direct or remote connection to the database engine.

We generalise the view schema by the following frame:

generate MAPPING : VARS ! OUTPUT STRUCTURE

from DATABASE TYPES

where SELECTION CONDITION

represent using GENERAL PRESENTATION STYLE

& ABSTRACTION (GRANULARITY, MEASURE, PRECISION)
& ORDERS WITHIN THE PRESENTATION & POINTS OF VIEW

& HIERARCHICAL REPRESENTATIONS & SEPARATION

browsing definition CONDITION & NAVIGATION

functions SEARCH FUNCTIONS & EXPORT FUNCTIONS & INPUT FUNCTIONS

& SESSION FUNCTIONS & MARKING FUNCTIONS

The extension of views by functions seems to be superficial during database de-
sign. Since we extensively use views in distributed environments, we save efforts of
parallel and repetitive development due to the development of the entire view suite
instead of developing each view independently.

Let us consider an archive view for the schema in Fig. 6.1. The view may be
materialised and used as a read-only view. It is based on a slice that restricts the
scope to those courses given in the summer term of the academic year 2000/2001

Archive.Semester := e(Semester) for e D �SemesterShortNameD00SS00=0100 .
The view is given through the expressions

Archive.Course := e(CourseHeld [Course]),
Archive.Person := e(CourseHeld[PlannedCourse[ProposedCourse

[Responsible4Course : Person]]]),
Archive.CourseHeld := e(CourseHeld[PlannedCourse[ ProposedCourse[Course,

Program, Teacher:Professor, Responsible4Course : Person], Kind]]).
The types Program, Kind, Professor are given by similar expressions.

We additionally specify the functions which can be used for the archive view. The
type Semester consists of one object and thus becomes trivial. This type is denoted
by a dashed box. The view schema obtained is displayed in Fig. 6.3. We observe
that this view can be used directly for a representation through an XML schema.
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Course
retrieve

Semester
slice/sort

Professor
retrieve

Person
retrieve

Kind
retrieve

Course
Held

retrieve

Program
retrieve

{}

Description = “SS00/01”

Teacher

Responsible4Course

Fig. 6.3 EER view for archiving courses

Views may be used for distributed or collaborating databases. They can be en-
hanced by functions. Exchange frames are defined by

• An exchange architecture usually provided by a system architecture integrating
the information systems through communication systems,

• A collaboration style specifying the supporting programs, the style of coopera-
tion and the coordination facilities, and

• A collaboration pattern specifying the data integrity responsibilities, the poten-
tial changes within one view and the protocols for exchange of changes within
one view.

6.2.4 Advanced Views and OLAP Cubes

The EER model can be used to define an advanced data warehouse model. Classi-
cally, the data warehouse model is introduced in an intuitive form by declaring an
association or relationship among components of the cube (called dimensions), by
declaring attributes (called fact types) together with aggregation functions. Compo-
nents may be hierarchically structured. In this case, the cube schema can be repre-
sented by a star schema. Components may be interrelated with each other. In this
case the cube schema is represented by a snowflake schema. Star and snowflake
schemata can be used for computing views on the schemata. View constructors are
functions like drill-down, roll-up, slice, dice, and rotate. We demonstrate the power
of the EER model by a novel, formal and compact definition of the OLAP cube
schema and the corresponding operations.

The data warehouse model is based on hierarchical data types. Given an ex-
tended base type B D .Dom.B/;Op.B/;Pred.B/; � /, we may define a number of
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equivalence relations eq on Dom.B/. Each of these equivalence relations defines
a partition ˘eq of the domain into equivalence classes. These equivalence classes
c may be named by nc . Let us denote named partitions by ˘�. The trivial named
partition that only relates elements to themselves is denoted by ?�. We denote the
named partition that consists of fDom.B/g and a name by >�.

Equivalence relations and partitions may be ordered. The canonical order of par-
titions on DOM.B/ relates two partitions˘�; ˘ 0�. We define ˘� 	 ˘ 0� iff for all
.c; nc/ from ˘� there exists one and only one element .c0; nc0/ 2 ˘ 0� such that
c � c0. We also may consider non-classical orderings such as the majority order
	choice

m that relates two named partitions iff for all .c; nc/ from ˘� there exists
one and only one element .c0; nc0/ 2 ˘ 0� such that

either jc \ c0j > maxfjc \ c00j j .c00; nc00/ 2 ˘ 0�; c00 ¤ c0g
or .c0; nc0/ 2 ˘ 0� is determined by a (deterministic) choice operator among

fcC 2 ˘ 0�jjc \ cCj D maxfjc \ c00jj.c00; nc00/ 2 ˘ 0�gg.

If the last case does not appear, then we omit the choice operator in 	choice
m .

The DateTime type is a typical basic data type. Typical equivalence relations are
eqhour and eqday that relate values from Dom.DateTime/ which belong to the same
hour or day. The partitions ?�, Days, Weeks, Months, Quarters, Years, and >� de-
note the named partitions of highest granularity, the named partitions of DateTime
by days, by weeks, by months, by quarters, by years, and the trivial no-granularity
named partition respectively. We observe ?� 	 ˘� and ˘� 	 >� for any named
partition in this list. We note, too, that Days 	 Months 	 Quarters 	 Years.
Weeks 	m Months is a difficult ordering that causes a lot of confusion.

This notion of hierarchical data types can be extended to complex attribute types,
entity types, cluster types and relationship types. These extended types are also
called hierarchical types. Aggregation functions are defined for extension-based
data types. The cube definition uses the association between attribute types and
aggregation functions.

The grounding schema of a cube is given by a (cube) relationship type
R D .R1; : : : ; Rn; f.A1; q1; f1; /; : : : ; .Am; qm; fm/g/ with

• Hierarchical types R1; : : : ; Rn which form component (or dimension) types,
• (“Fact”) attributesA1; : : : ; Am which are defined over extension-based data types

and instantiated by singleton-value queries q1; : : : ; qm and
• Aggregation functions f1; : : : ; fm defined over A1; : : : ; Am.

The grounding schema is typically defined by a view over a database schema.
Given a grounding schema R D .R1; : : : ; Rn; f.A1; q1; f1; /; : : : ; .Am; qm;

fm/g/, a class RC, and partitions ˘i on DOM.Ri / for any component R1; : : : ; Rn.
A cell of RC is a non-empty set �R12c1;:::En2cn

.RC/ for ci 2 ˘i and for the se-
lection operation �˛ . Given now partitions ˘1; : : : ;˘n for all component types, a
cube cube˘�

1
;:::;˘�

n .RC/ on RC and on ˘�
i , 1 � i � n consists of the set

f�R12c1;:::Rn2cn
.RC/ ¤ ;jc1 2 ˘1; : : : ; cn 2 ˘ng
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of all cells of RC for the named partitions ˘�
i ; 1 � i � n. If ˘�

i D >�, then we
may omit the partition˘�

i .
Therefore, a cube is a special view which may be materialised. The view may

be used for computations. Then each cell is recorded with its corresponding ag-
gregations for the attributes. For instance, sum.�PriceOfGood.�SellingDate2W eekx

.RC///

computes the total turnover in week x.
Spreadsheet cubes are defined for sequences ˘�

1 	 : : : 	 ˘�
n of partitions for

one or more dimensional components. For instance, the partitions Days, Months,
Quarters, Years define a spreadsheet cube for components defined over DateTime.

The cube can use another representation: instead of using cells as sets, we may
use the names defining the cells as the cell dimension value. This representation is
called a named cube.

This definition of the cube can be now easily used for a precise mathematical
definition of the main operations for cubes and extended cubes. For instance, given
a cube with partitions ˘�; ˘ 0� for a one-dimensional component with ˘� 	 ˘ 0�,
the drill-down operation transfers a cube defined on ˘ 0� to a cube defined
on ˘�. Roll-up transfers a cube defined on ˘ to a cube defined on ˘ 0�.
The slice operation is nothing more than the object-relational selection oper-
ation. The dice operation can be defined in two ways: either using the object-
relational projection operation or using > partitions for all dimensional compo-
nents that are out of scope. More formally, the following basic OLAP query
functions are introduced for a cube cube˘�

1
;:::;˘�

n .RC/ defined on the cube schema
R D .R1; : : : ; Rn; f.A1; q1; f1; /; : : : ; .Am; qm; fm/g/, a dimension i , and parti-
tions ˘�

i 	 ˘ 0�
i 	 >�

i :

Basic drill-down functions map the cube cube˘�

1
;:::;˘ 0�

i
;:::;˘�

n .RC/ to the cube
cube˘�

1
;:::;˘�

i
;:::;˘�

n .RC/.
Basic roll-up functions map the cube cube˘�

1
;:::;˘�

i
;:::;˘�

n .RC/ to the cube
cube˘�

1
;:::;˘ 0�

i
;:::;˘�

n .RC/. Roll-up functions are the inverse of drill-down func-
tions.

Basic slice functions are similar to the selection of tuples within a set. The cube
cube˘�

1
;:::;˘�

n .RC/ is mapped to the cube �˛.cube
˘�

1
;:::;˘�

n .RC//. The slice
function can also be defined through cells. Let dimension.˛/ be the set of all
dimensions that are restricted by ˛. Let further

� ų.ci / D
(

; ifRi 2 dimension.˛/ ^ �˛.ci / ¤ ci ;

ci otherwise:

Close slice functions restrict the cube cells to those which entirely fulfill the selec-
tion criterion ˛, i.e.

f�R12�u

˛ .c1/;:::Rn2�u

˛ .cn/.R
C/ ¤ ;jc1 2 ˘1; : : : ; cn 2 ˘ng :

Liberal slice functions restrict the cells to those which partially fulfill the selection
criterion ˛, i.e. to cells f�R12�˛.c1/;:::Rn2�˛.cn/.R

C/ ¤ ;jc1 2 ˘1; : : : ; cn 2
˘ng. Lazy and eager slice functions apply the selection functions directly to
values in the cells.
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Basic dice functions are similar to projection in the first-order query algebra. They
map the cube cube˘�

1
;:::;˘�

i
;:::;˘�

n .RC/ to the cube cube˘�

1
;:::;>�

i
;:::;˘�

n .RC/. Ba-
sic dice functions are defined as special roll-up functions. We also may omit
dimension i . In this case we lose the information on this dimension.

Generalising the first-order query algebra, [25] defines additional OLAP opera-
tions such as

join functions for mergers of cubes,
union functions for the union of two or more cubes of identical type,
rotation or pivoting functions for rearrangement of the order of dimensions, and
rename functions for renaming of dimensions.

Our new definition of the cube allows us to generalise a large body of knowledge
obtained for object-relational databases to cubes. The integration of cubes can be
defined in a similar way [20].

6.3 Semantics of EER Models

6.3.1 Semantics of Structuring

Each structuring also uses a set of implicit model-inherent integrity constraints:

Component-construction constraints are based on the existence, cardinality and
inclusion of components. These constraints must be considered in the translation
and implication process.

Identification constraints are implicitly used for the set constructor. Each object
either does not belong to a set or belongs only once to the set. Sets are based on
simple generic functions. The identification property may be, however, only rep-
resentable through automorphism groups [3]. We shall later see that value repre-
sentability or weak-value representability leads to controllable structuring.

Acyclicity and finiteness of structuring supports axiomatisation and definition of
the algebra. It must, however, be explicitly specified. Constraints such as cardinality
constraints may be based on potential infinite cycles.

Superficial structuring leads to the representation of constraints through struc-
tures. In this case, implication of constraints is difficult to characterise.

Implicit model-inherent constraints belong to performance and maintenance
traps. We distinguish between constraints with a semantic meaning in the applica-
tion. Either these constraints must be maintained or their validity can be controlled
by a controller. Constraints can either be declared through logical formulas or given
by four layers:

• Constraints are declared at the declaration layer based on logical formulas or
constructs and based on the schema declaration.
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• Constraints are extended at the technical layer by methods for their maintenance,
by rules for compensation of their invalidity, and by enactment strategies and
auxiliary methods.

• Constraint maintenance is extended at the technological layer under explicit con-
sideration of the DBMS programs (e.g. for update in place, in private or in sepa-
ration) and by transformation to dynamic transition constraints.

• Constraint specification is extended at the organisational layer by integration
into the architecture of the system, by obligations for users that impose changes
in the database, and for components of the system.

Relational DBMS use a constraint specification at the declaration and technical
layers. For instance, foreign key constraints explicitly specify which constraint en-
forcement technics are applied in the case of invalidity of constraint. The systems
DB2, Oracle and Sybase use different scheduling approaches for constraint mainte-
nance at the technological layer. Constraints may be maintained mainly through the
DBMS or partially maintained through interface programs restricting invalidation
of constraints by users.

Implicit language-based integrity constraints are typically based on the mini-
semantics of the names used for denotation of concepts. EER modelling is based
on a closed-world approach. Constructions which are not developed for a schema
either do not exist in the application or are unimportant for the database system.

Synonyms form typical implicit constraints. Given two queries q1; q2 on D, an
empty auxiliary schema A and the target schema S, a synonym constraint q1 
 q2

is valid for the database DC iff q1.DC/ D q2.DC/. Homonyms S G T describe
structural equivalence combined at the same time with different meanings and se-
mantics. Homonyms may be simply seen as the negation or inversion of synonymy.
Hyponyms and hypernyms S 4 T hint at subtype associations among the types
under consideration. Type T can be considered a more general type than S . Over-
lappings and compatibilites S d T describe partial similarities.

Exclusion constraints state that two schema types or, in general, two expressions
on a schema will not share any values or objects. Given two queries q1; q2 on D, an
empty auxiliary schema A and the target schema S, an exclusion constraint q1jjq2

is valid for the database DC iff q1.DC/ \ q2.DC/ D ;.
Implicit model-based exclusion constraints exclude common values for basic

data types. For instance, the constraint Semester[Year] jj Room[Number] is assumed
in the schema in Fig. 6.1 without any explicit specification. Implicit language-based
exclusion constraints use the natural understanding of names. For instance, the con-
straint Course[Title] jj Professor[Title] is valid in any university application.

Inclusion constraints state that two schema types or, in general, two expressions
on a schema are in a subtype association. Given two queries q1; q2 on D, an empty
auxiliary schema A and the target schema S, an inclusion constraint q1 � q2 is
valid for the database DC iff q1.DC/ � q2.DC/.

Implicit model-based inclusion constraints form the most important class of im-
plicit constraints. The EER model assumesR1ŒR2ŒID�� � R2ŒID� for any relation-
ship type R1, its component type R2, and the identification ID of R2.
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The axiomatisation of exclusion and inclusion is rather simple [25]. It may be
either based on the logics of equality and inequality systems or on set-theoretic
reasoning.

Explicit integrity constraints can be declared based on the B(eeri–)V(ardi)
frame, i.e. by an implication with a formula for premises and a formula for the impli-
cation. BV constraints do not lead to rigid limitation of expressibility. If structuring
is hierarchic, then BV constraints can be specified within the first-order predicate
logic. We may introduce a variety of different classes of integrity constraints:

Equality-generating constraints allow one to generate for a set of objects from
one class or from several classes equalities among these objects or components of
these objects.

Object-generating constraints require the existence of another object set for a set
of objects satisfying the premises.

A class C of integrity constraints is called Hilbert-implication-closed if it can be
axiomatised by a finite set of bounded derivation rules and a finite set of axioms. It
is well known that the set of join dependencies is not Hilbert-implication-closed for
relational structuring. However, an axiomatisation exists with an unbounded rule,
i.e. a rule with potentially infinite premises.

Functional dependencies are one of the most important class of equality-
generating constraints. Given a type R and substructuresX , Y of R.
The functional dependency R W X �! Y is valid in RC if ojY D o0jY whenever
ojX D o0jX for any two objects o; o0 from RC.

A key dependency, or simply key X , is a functional dependency R W X �! R.
A key is called minimal if none of its proper substructures forms a key. The set of all
minimal keys of R is denoted byKeys.R/. We note that this set may be very large.
For instance, an entity type E with n atomic attributes may have

�
n

b n
2

c
�

minimal

keys, which is roughly 2n

c
p

n
.

The example depicted in Fig. 6.1 uses the following functional dependencies and
keys:

Keys(Person) = ff PersNog, fName, DateOfBirthgg
Keys(PlannedCourse) = ffCourse, Semesterg, fSemester, Room, Timeg,

fSemester, Teacher, Timegg
PlannedCourse : fSemester, Time, Roomg �! ffProgramg, Teacher, Courseg
PlannedCourse : fTeacher, Semester, Timeg �! fCourse, Roomg
ProposedCourse : fSemester, Courseg ! fTeacherg

The following axiomatisation is correct and complete for functional dependen-
cies in the EER [14] for substructures X; Y;Z of the EER type R:
Axioms: R W X tR Y �! Y

Rules:

R W X �! Y

R W X �! X tR Y

R W X �! Y;R W Y �! Z

R W X �! Z

R0 W X �! Y

R W R0ŒX� �! R0ŒY �
:
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The typeR0 denotes a component type ofR ifR is a relationship type of order i and
R0 is of order i � 1.

Domain constraints restrict the set of values. Given an EER type R, a sub-
structure T 0 of R, its domain Dom.T 0/, and a subset D of Dom.T 0/, the domain
constraint R W T 0 � D is valid in RC if �T 0.RC/ � D.

For instance, we may restrict the year and the description of semesters by the
constraints

Semester.Year � {1980, . . . , 2039} and
Semester.Description � {WT, ST}.

Cardinality constraints are the most important class of constraints of the EER
model. We distinguish two main kinds of cardinality constraints. Given a relation-
ship type R $ .compon.R/; attr.R/;˙/, a componentR0 of R, the remaining sub-
structure R00 D R n R0 and the remaining substructure R000 D R00 uR compon.R/
without attributes of R.

The participation constraint card.R;R0/ D .m; n/ holds in a relationship class
RC if for any object o0 2 R0C there are at least m and at most n objects o with
ojR0 D o0, i.e. m � jfo 2 RCjojR0 D o0gj � n for any o0 2 �R0.RC/.

The lookup constraint look.R;R0/ D Œm; n� holds in a relationship class RC if
for any object o00 2 Dom.R00/ there are at leastm and at most n related objects o0
with ojR0 D o0, i.e.m � jfo0 2 �R0.RC/jo 2 RC ^ojR0 D o0 ^ojR000 D o000gj � n

for any o000 2 Dom.R000/.
Lookup constraints were originally introduced by P.P. Chen [7] as cardinality

constraints. UML uses lookup constraints. They are easy to understand for binary
relationship types without attributes but difficult for all other types. Lookup con-
straints do not consider attributes of a relationship type. They cannot be expressed
by participation constraints. Participation constraints cannot be expressed by lookup
constraints. In the case of a binary relationship type R $ .R1; R2;;; ˙/ without
attributes, we may translate these constraints into each other:

card.R;R1/ D .m; n/ iff look.R;R2/ D Œm; n�:

Furthermore, participation and lookup constraints with an upper bound of 1 and
a lower bound of 0 are equivalent to functional dependencies for a relationship
type R:

card.R;R0/ D .0; 1/ iff R W R0 �! R00 and

look.R;R0/ D Œ0; 1� iff R W R000 �! R0 :

The lower bounds of lookup and participation constraints are not related to each
other. They are, however, related for binary relationship types. The lower bound 1
expresses an inclusion constraint:

card.R;R0/ D .1; n/ iff RŒR0� � R0 and

look.R;R0/ D Œ1; n� iff RŒR000� � R000:
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Cardinality constraints are restrictions of combinatorics within a schema. Sets of
cardinality constraints defined on a subschema S 0 may be finitely inconsistent in the
sense that any database on S 0 has either a class for a type in S 0 that is empty or that
is infinite.

Consider, for instance, the following relationship type:

DirectPrerequisite $ .HasPrerequisite W Course;

IsPrerequisite W Course;;; ˙/
card.DirectPrerequisite;HasPrerequisite/ D .0; 2/ and

card.DirektVoraussetz; IsPrerequisite/ D .3; 4/:

These cardinality constraints are only satisfied in a database with either an empty
set of courses or an infinite set of courses.

Participation and lookup constraints can be extended to substructures and inter-
vals. Given a relationship typeR, a substructureR0 ofR, the remaining substructure
R00 D R nR0 and the remaining substructure R000 D R00 uR compon.R/ without at-
tributes ofR. Assume furthermore an interval I � N0 of natural numbers including
0.

The (general) cardinality constraint card.R;R0/ D I holds in a relationship
class RC if for any object o0 2 �R0.RC/ there are i 2 I objects o with ojR0 D o0,
i.e.
jfo 2 RCjojR0 D o0gj 2 I for any o0 2 �R0.RC/.

A participation constraint card.R;R0/ D .m; n/ is just a general cardinality con-
straint with the interval fm; : : : ; ng. A lookup constraint look.R;R0/ D Œm; n� is
just a general cardinality constraint card.R;R000/ D I with the interval fm; : : : ; ng.

General cardinality constraints are necessary whenever we consider sets of cardi-
nality constraints. There are examples of participation constraints for which general
cardinality constraints can be inferred which cannot be expressed through lookup or
participation constraints.

IfR D R0, then the general cardinality constraint specifies the cardinality bounds
of the relationship class. The definition of general cardinality constraints can be
extended to entity types as well.

Cardinality constraints restrict relationships. We are not able to defer equalities.
Consider for instance the following relationship type:

Spouse $ .IsSpouse W Person;OfSpouse W Person; fFrom;Tog; ˙/:
Neither card(Spouse, IsSpouse From) D .0; 1/ and card(Spouse, OfSpouse From) D
.0; 1/ nor look(Spouse, IsSpouse) D Œ0; 1� and look(Spouse, OfSpouse)
D Œ0; 1� express the statement of monogamic societies that the spouse of the spouse
is the person itself. The lookup constraints are only valid if a person can be married
once. The Islamic rule would be that either the spouse of a spouse is the person itself
or the spouse of the spouse of the spouse is the spouse.
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Cardinality constraints combine equality-generating and object-generating con-
straints into a singleton construct. This convenience for declaration is paid back by
the impossibility of axiomatising these constraints.

Participation cardinality constraints cannot be axiomatised [25]. If axiomatisa-
tion is restricted to the upper bound, then an axiomatisation can be based on the
following system for one-type derivations [13]:

Axioms: card.R;X/ D .0;1/I

Rules:
card.R;X/ D .0; b/

card.R;X tR Y / D .0; b/

card.R;X/ D .0; b/

card.R;X/ D .0; b C c/
:

Functional dependencies can be defined through generalised cardinality constraints,
i.e. the functional dependencyR W X �! Y is equivalent to card.RŒXtRY �;X/ D
.0; 1/. The Armstrong axiomatisation provided above can be combined with the ax-
iomatisation for upper bounds of participation constraints and the following system:

R W X �! Y; card.R; Y / D .0; b/

card.R;X/ D .0; b/

card.R;X/ D .0; 1/

R W X �! R
:

These three systems are complete and correct for the derivation of upper bounds.
We may also conclude rules for many-type derivations [25]. A typical rule is the

following one:

card.R;R0/ D .m; n/; card.R0; R00/ D .m0; n0/
card.R;R00/ D .m �m0; n � n0/

:

Multi-valued dependencies are best fitted to the ER model and are difficult
to define, teach, handle, model and understand within relational database models.
Given an EER type R and partition of components of R into X , Y and Z, the
multivalued dependencyX � Y jZ is ER-valid in a class RC defined over the type
R (denoted byRC ˆER X � Y jZ) if the type can be decomposed into three types
representing X , Y and Z and two mandatory relationship types defined on X [ Y

and X [Z respectively.
The multi-valued dependency can be represented by a decomposition of the type

R displayed in Fig. 6.4.
We may use the more compact schemata given in Fig. 6.5. In this case, the rela-

tionship type with the components (X)Z is based on the X-components. It allows us
to show the direct decomposition imposed by the multi-valued dependency.

The deductive system in Fig. 6.6 consisting of the trivial multi-valued depen-
dency, the root reduction rule, and the weakening rule is correct and complete for

Y XY X XZ Z
(1,n) (1,n)

X-components form
a component type of
the relationship type R

Fig. 6.4 ER representations of a multi-valued dependency for a first-order relationship type



6 The Enhanced Entity-Relationship Model 199

Y(X) X (X)Z
(1,n) (1,n)

abbreviated notation for
X-components that form
an entity type of the
relationship type R

Fig. 6.5 Compact representations of a multi-valued dependency

X∪Z XAxiom

Root
reduction

rule

Y (X) X∪V (X)Z

Y∪Z(X) X (X)V

(X)Z∪VXY (X)

X'∪Y (X) (X)X''∪ZX

Weakening
rule

Y
(X∪X'
∪X'')

(X∪X'
∪X'')

ZX∪
X'∪X''

Fig. 6.6 Deductive system for ER schema derivation of multi-valued dependencies

inference of multi-valued dependencies. We observe that the axiomatisation of func-
tional and multi-valued dependencies can be derived in a similar way.

The constraints discussed above can be used for the decomposition of types and
restructuring of schemata. Pivoting was introduced in [4] and allows one to in-
troduce a higher-order relationship type after factoring out constraints which are
applicable to some but not all of the components of the relationship type.

Let us consider the schema depicted in Fig. 6.1. The relationship type Proposed-
Course has an arity of 8. In the given application, the following integrity constraints
are valid:

fCourseg� fProgramg
fProgramg� fCourseg
fCourse;Programg �! fResponsible4Course W Persong :
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The last functional dependency is a ‘dangling’ functional dependency, i.e. the
right-side components are not elements of any left side of a functional or multi-
valued dependency. Considering the axiomatisation of functional and multi-valued
dependencies we conclude that right-side components of a dangling functional de-
pendency can be separated from other components. The first two constraints can be
used for separation of concern of the type ProposedCourse into associations among

Course;Program;Responsible4Course W Person

and

Course;Kind; Semester;Professor;Time.Proposal; SideCondition/;

Room; InsertedBy W Person:

According to the decomposition rules we find additional names for the independent
component sets in ProposedCourse, i.e. in our case CourseObligation. We addition-
ally observe that InsertedBy : Person can be separated from the last association.
This separation is based on pivoting, i.e. building a relationship type ‘on top’ of the
‘remaining’ type:

ProposedCourseRevised$ .Teacher W Professor;Course;

Proposal W Kind;Request W Room; Semester; fTime.Proposal; SideCondition/g/:
Finally, let us consider a constraint on Course and Kind. In the given application

we assume that the selection of the kind for a course is independent of the other
components, i.e.

ProposedCourseRevised W fCourse; Semesterg� fKindg:
This constraint hints at a flaw in modelling. The association between Course and
Kind may vary over semesters for lectures. Kind is an enumeration type that cate-
gorises the style of how lectures are given. The selection of the kind becomes easier
if we develop an abstraction Applicable that collects all possible associations be-
tween Course and Kind.

We may also use a pragmatic rule for naming. If a decomposition leads to a sepa-
ration based on roles, then we may use the role name for the relationship type name.

One of our separation rules allows us to separate optional components of a rela-
tionship type by pivoting the type into a new relationship type. We use this rule for
pivoting PlannedCourse and CourseHeld.

Finally we derive the schema displayed in Fig. 6.7. This schema is based on
CourseProposal, CoursePlanned and Lecture.
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Course
Planned Assigned

TimeFrame

Change4
Planning Lecture

Course
Proposal

Time(Proposal,
SideCondition)

Inserted
By

Semester

RoomApplicableKind

Course

Course
ObligationProgram

Professor

Responsible
Person Person

Change4
Lecturing

Fig. 6.7 Decomposition of HERM diagram in Fig. 6.1

6.3.2 Semantics of Functionality

Static constraints in a schema .S; ˙/ can be transformed into transition con-
straints [25]. A transition constraint .�pre; �post/ defines the preconditions and post-
conditions for state transitions of databases defined over S. Given a transition  con-
verting the database SC1 to the database SC2 D .SC1/, the transition constraint
.�pre; �post/ is valid for the transition .SC1 ; .SC1// if from SC1 ˆ �pre it follows
that SC2 ˆ �post.

Static constraints˙ are therefore converted to a transition constraint .˙;˙/.
Database dynamics is defined on the basis of transition systems. A transition

system on schema S is a pair T S D .S; f a�!j a 2 Lg/
where S is a non-empty set of state variables,

L is a non-empty set (of labels), and
a�!� S � .S [ f1g/ for each a 2 L.

State variables are interpreted by database states. Transitions are interpreted by
transactions on S . Database lifetime is specified on the basis of paths on T S. A path

� through a transition system is a finite or ! length sequence of the form s0
a1�!

s1
a2�! : : : The length of a path is its number of transitions.
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For the transition system T S we can introduce now a temporal dynamic database
logic using the quantifiers 8f (always in the future)), 8p (always in the past), 9f

(sometimes in the future), 9p (sometimes in the past).
First-order predicate logic can be extended on the basis of temporal operators.

The validity function I is extended by time. Assume a temporal class .RC; lR/.
The validity function I is extended by time and is defined on S.ts; RC; lR/. A for-
mula ˛ is valid for I.RC;lR/ in ts if it is valid on the snapshot defined on ts, i.e.
I.RC;lR/.˛; ts/ D 1 iff IS.ts;RC;lR/.˛; ts/.

• For formulas without a temporal prefix the extended validity function coincides
with the usual validity function.

• I.8f˛; ts/ D 1 iff I.˛; ts0/ D 1 for all ts0 > ts;
• I.8p˛; ts/ D 1 iff I.˛; ts0/ D 1 for all ts0 < ts;
• I.9f˛; ts/ D 1 iff I.˛; ts0/ D 1 for some ts0 > ts;
• I.9p˛; ts/ D 1 iff I.˛; ts0/ D 1 for some ts0 < ts.

The modal operators 8p and 9p (8f and 9f respectively) are dual operators, i.e.
the two formulas 8h˛ and :9h:˛ are equivalent. These operators can be mapped
onto classical modal logic with the following definition:

�˛ � .8f˛ ^ 8p˛ ^ ˛/I
Þ˛ � .9f˛ _ 9p˛ _ ˛/:

In addition, the temporal operators until and next can be introduced.
The most important class of dynamic integrity constraint are state-transition

constraints ˛Oˇ which use a precondition ˛ and a postcondition ˇ for each op-
eration O . The state-transition constraint ˛Oˇ can be expressed by the temporal

formula ˛
O�! ˇ.

Each finite set of static integrity constraints can be equivalently expressed by

a set of state-transition constraints f^˛2˙˛
O�! ^˛2˙˛/jO 2 Alg.M/g.

Integrity constraints may be enforced

• either at the procedural level by application of

– trigger constructs [18] in the so-called active event-condition-action setting,
– greatest consistent specialisations of operations [21],
– or stored procedures, i.e. fully fledged programs considering all possible vio-

lations of integrity constraints,

• or at the transaction level by restricting sequences of state changes to those which
do not violate integrity constraints,

• or by the DBMS on the basis of declarative specifications depending on the fa-
cilities of the DBMS,

• or at the interface level on the basis of consistent state-changing operations.

Database constraints are classically mapped to transition constraints. These tran-
sition constraints are well understood as long as they can be treated locally. Con-
straints can thus be supported using triggers or stored procedures. Their global in-
terdependence is, however, an open issue.
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The transformation to event-condition-action rules is not powerful enough. Con-
sider the following example [22]:

R1 $ .R3; R4;;; ˙1/; card.R1; R4/ D .1; n/;

R2 $ .R5; R6;;; ˙2/; card.R2; R5/ D .0; 1/; card.R2; R6/ D .1; n/;

R3 $ .R6; : : : ;;; ˙3/; card.R3; R6/ D .0; 1/; and R4jjR5:

The greatest consistent specialisation of the operation Insert(R1; .a; c/) is the
operation

Insert(R_1,(a,c))!
if c 62 R2ŒR5� then fail

else begin Insert (R_1,(a,c))I
if a 62 R1ŒR3� then Insert (R_2,(a,d))

where d 62 R1ŒR4� [ R2ŒR5� endI

This operation cannot be computed by trigger constructs. They result in the dele-
tion of a from R1ŒR3� and the deletion of c from R2ŒR5� and thus permit insertion
into R1.

6.4 Problems with Modelling and Constraint Specification

The main deficiency is the constraint acquisition problem. Since we need a treatment
for sets, a more sophisticated reasoning theory is required. One good candidate is
visual or graphical reasoning that goes far beyond logical reasoning [8].

Most modelling approaches assume constraint set completeness, i.e. all con-
straints of certain constraint classes which are valid for an application must be ex-
plicitly specified or derivable. For instance, normalisation algorithms are based on
the elicitation of complete knowledge on all valid functional dependencies. There-
fore, the designer should have tools or theories on how to obtain all functional de-
pendencies which are independent of the functional dependencies already obtained
and which are not known to be invalid.

Excluded functional constraints X �! =Y state that the functional dependency
X �! Y is not valid. Excluded functional constraints and functional dependencies
are axiomatisable by the following formal system [25].

Axioms

X [ Y ! Y

Rules

.1/
X �! Y

X [ V [W �! Y [ V
.2/
X �! Y; Y �! Z

X �! Z
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.3/
X �! Y;X �! =Z

Y �! =Z

.4/
X �! =Y

X �! =Y [Z
.5/
X [Z �! =Y [Z

X [Z �! =Y

.6/
X �! Z;X �! =Y [Z

X �! =Y
.7/
Y �! Z;X �! =Z

X �! =Y

Rules (3) and (7) are one of the possible inversions of rule (2) since the implication
˛ ^ ˇ ! � is equivalent to the implication :� ^ ˇ ! :˛. Rules (4) and (5)
are inversions of rule (1). Rule (6) can be considered the inversion of the following
union rule, valid for functional dependencies:

.8/
X �! Y;X �! Z

X �! Y [Z :

This rule can be derived from the axiom and rule (2).

Constraint elicitation can be organised by the following approach:

Specification of the set of valid functional dependencies˙1: all dependencies
which are known to be valid and all those which can be implied from the set
of valid and excluded functional dependencies.

Specification of the set of excluded functional dependencies˙0: all dependencies
which are known to be invalid and all those which can be implied from the set of
valid and excluded functional dependencies.

This approach leads to the following simple elicitation algorithm:

1. Basic step: Design obvious constraints.
2. Recursion step: Repeat until the constraint sets ˙0 and˙1 do not change.

 Find a functional dependency ˛ that is neither in ˙1 nor in ˙0.

– If ˛ is valid, then add ˛ to ˙1.
– If ˛ is invalid, then add ˛ to ˙0.

Unknown
validity

Σ0

Σ1

Unknown
validity

Σ0

Σ1

Unknown
validity

Σ0

Σ1

Σ0

Σ1

... ...

Initial step Intermediate steps Final step

Fig. 6.8 Constraint acquisition process
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 Generate the logical closures of ˙0 and ˙1.

This algorithm can be refined in various ways. All the known elicitation algorithms
are variations of this simple elicitation algorithm.

The constraint acquisition process based on this algorithm is illustrated in
Fig. 6.8.
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Chapter 7
Object–Process Methodology for
Structure–Behavior Codesign

Dov Dori

Abstract Function, structure, and behavior are the three major facets of any sys-
tem. Structure and behavior are two inseparable system aspects, as no system can
be faithfully modeled without considering both in tandem. Object-Process Method-
ology (OPM) is a systems paradigm and language that combines structure–behavior
codesign requirements with cognitive considerations. Based on the formal math-
ematical foundations of graph grammars and a subset of natural language, OPM
caters to human intuition in a bimodal way via graphics and autogenerated nat-
ural language text. In a nutshell, OPM processes transform objects by creating
them, consuming them, or changing their states. The concurrent representation of
structure and behavior in the same, single diagram type is balanced, creating syn-
ergy whereby each aspect helps understand the other. This chapter defines and
demonstrates the principles and elements of OPM, showing its benefits in facili-
tating structure–behavior codesign and achieving formal, semantically sound, and
humanly accessible conceptual models of complex systems in a host of domains
and at virtually any complexity level.

7.1 The Cognitive Assumptions and OPM’s Design

Text and graphics are two complementary modalities that our brains process in-
terchangeably. Conceptual modeling, which is recognized as a critical step in ar-
chitecting and designing systems, is an intellectual activity that can greatly benefit
from concurrent utilization of the verbal and visual channels of human cognition.
A conceptual modeling framework that employs graphics and text can alleviate cog-
nitive loads [12]. OPM is a bimodal graphics–text conceptual modeling framework
that caters to these human cognitive needs. This section argues for the value of the

Dov Dori
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OPM holistic approach in addressing the dual-channel, limited channel capacity, and
active processing assumptions. Bimodality, complexity management via hierarchi-
cal decomposition, and animated simulation, respectively, address these cognitive
needs.

7.1.1 Mayer’s Three Cognitive Assumptions

Humans assimilate data and information, converting them into meaningful knowl-
edge and understanding of systems via the simultaneous use of words and pictures.
During eons of human evolution, the human brain has been trained to capture and
analyze images so it can escape predators and capture food. In contrast, processing
of spoken words, let alone text, is the product of a relatively very recent glimpse
in the history of mankind. As our brains are hard-wired to process imagery, graph-
ics appeal to the brain more immediately than words. However, words can express
ideas and assertions that are far too complex or even impossible to express graph-
ically (try graphing this sentence to get a feeling for the validity of this claim). So
while a picture is worth a thousand words, as the saying goes, there are cases where
a word, or a sentence, is worth a thousand pictures. A problem with the richness of
natural languages is the potential ambiguity that arises from their use. This certainly
does not imply that pictures cannot be ambiguous as well, but graphic ambiguity
can be greatly reduced, or even eliminated, by assigning formal semantics to picto-
rial symbols of things and relations among them. Since diagrams usually have fewer
interpretations than free text, they are more tractable than unconstrained textual no-
tations.

Mayer [26] found that when corresponding words and pictures are presented near
each other, learners can better hold corresponding words and pictures in working
memory at the same time, enabling the integration of visual and verbal models.
A main contribution of diagrams may be that they reduce the cognitive load of
assigning abstract data to appropriate spatial and temporal dimensions. For example,
Glenberg and Langston [19] found that where information about temporal ordering
is only implicit in text, a flow diagram reduces errors in answering questions about
that ordering.

Mayer [26] and Mayer and Moreno [27] proposed a theory of multimedia learn-
ing that is based on the following three main research-supported cognitive assump-
tions.

1. Dual-channel – humans possess separate systems for processing visual and ver-
bal representations [2, 8].

2. Limited capacity – the amount of processing that can take place within each
information processing channel is extremely limited [2, 7, 29].

3. Active processing – meaningful learning occurs during active cognitive process-
ing, paying attention to words and pictures, mentally organizing and integrating
them into coherent representations. The active-processing assumption is a mani-
festation of the constructivist theory in education, which puts the construction of
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knowledge by one’s own mind as the centrepiece of the educational effort [45].
According to this theory, in order for learning to be meaningful, learners must
engage in constructing their own knowledge.

7.1.2 Meeting the Verbal–Visual Challenge

As the literature suggests, there is great value in designing a modeling approach and
supporting tool that meet the challenges posed by the three cognitive assumptions.
While Mayer and Moreno [27] used these assumptions to suggest ways to reduce
cognitive overload while designing multimedia instruction, the same assumptions
can provide a basis for designing an effective conceptual modeling framework. In-
deed, conceptual modeling can be viewed primarily as the active cognitive effort
of concurrent diagramming and verbalization of one’s thoughts. The resulting di-
agrams and text together constitute the system’s model. A model that is based on
a compact set of the most primitive and generic elements is general enough to be
applicable to a host of domains and simple enough to express the most complex
systems. A sufficiently expressive model can be simulated for detecting design-level
errors, reasoning, predicting, and effectively communicating one’s design to other
stakeholders.

Such a modeling environment would help our brains to take advantage of the
verbal and visual channels and to relieve cognitive loads while actively designing,
modeling, and communicating complex systems to stakeholders. These were key
motivations in the design of OPM [11]. The OPM modeling environment imple-
mentation by OPCAT1 [17] embodies these assumptions. Stateful objects – things
that exist in some state – and processes – things that transform objects by changing
their state or by creating or destroying them – are the generic building blocks of
OPM. Structural and procedural links express static and dynamic relations among
entities (objects, object states, and processes) in a system, and a number of refine-
ment/abstraction mechanisms are built into OPM for complexity management.

7.1.3 Dual-Channel Processing and the Bimodality of OPM

Considering the dual-channel assumption, an effective use of the brain is to simul-
taneously engage the visual and the verbal channels (and hence probably also the
two brain hemispheres) for conveying ideas regarding a system’s architecture. In-
deed, OPM represents knowledge about the system’s structure and behavior both
pictorially and verbally in a single unifying model. When the user expresses a piece
of knowledge in one modality, either graphics or text, the complementary one is
automatically updated so the two remain coherent at all times.

1 An academic individual version of OPCAT for modeling small systems can be obtained from
opcat.com.
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In order to show how the cognitive assumptions have been accounted for, we
follow a stepwise example of bread baking. Figure 7.1 depicts OPCAT’s graphical
user interface, which displays simultaneously the graphic (top) and textual (bottom)
modalities for exploiting humans’ dual-channel processing. The top pane presents
the model graphically in an object–process diagram – OPD, while the one below
it lists the same model textually in Object–Process Language – OPL. OPCAT rec-
ognizes OPD constructs (symbol patterns) and generates their OPL textual counter-
parts. OPL is a subset of natural English. Each OPD construct has a textual OPL-
equivalent sentence or phrase. For example, Baking, the central system’s process,
is the ellipse in Fig. 7.1. The remaining five things are objects (the rectangles) that
enable or are transformed by Baking. Baker and Equipment are the enablers of

Fig. 7.1 GUI of OPCAT showing the system diagram (SD, top-level diagram) of the Baking sys-
tem. Top: object–process diagram (OPD). Bottom: The corresponding, automatically generated
Object–Process Language (OPL) paragraph



7 Object–Process Methodology for Structure–Behavior Codesign 213

Baking, while Ingredients Set, Energy, and Bread are its transformees – the ob-
jects that are transformed by Baking. As the direction of the arrows indicates, In-
gredients Set and Energy are the consumees – they are consumed by Baking, while
Bread is the resultee – the object created as a result of Baking. As soon as the mod-
eler starts depicting and joining things on the graphics screen, OPL sentences start
being created in response to these inputs. They accumulate in the OPL pane at the
bottom of Fig. 7.1, creating the corresponding OPL paragraph, which tells in text
the exact same story that the OPD does graphically.

As the example shows, the OPL syntax is designed to generate sentences in plain
natural, albeit restricted, English, with sentences like “Baking yields Bread.” This
sentence is the bottom line in Fig. 7.1. An English subset, OPL is accessible to
nontechnical stakeholders, and other languages can serve as the target OPL. Unlike
programming languages, OPL names can be phrases like Ingredients Set.

To enhance the text–graphics linkage, the text colors of the process and object
names in the OPL match their colors in the OPD. Since graphics is more imme-
diately amenable to cognitive processing than text, modelers favor modeling the
system graphically in the OPD pane, while the textual interpretation is continuously
updated in the OPL pane.

The OPL sentences that are constructed or modified automatically in response
to linking graphic symbols on the screen provide the modeler and her/his audience
with immediate feedback. This real-time humanlike response “tells” the modeler
what the modeling environment “thinks” he or she meant to express in the most
recent graphic editing operation. When the text does not match the intention of
the modeler, a corrective action can be taken promptly. Such immediate feedback
is indispensable in spotting and correcting logical design errors at an early stage
of the system lifecycle, before they have a chance to propagate and incur costly
damage. Any correction of the graphics changes the OPL script, and changes can
be applied iteratively until a result that is satisfactory to all the stakeholders from
both the customer and the supplier sides is obtained. While generating text from
graphics is the prevalent working mode, OPCAT can also generate graphics from
text.

The System Diagram (SD, the top-level OPD) is constructed such that it con-
tains a central process, which is the one that carries out the main function of the
system, the one that delivers the main value to the beneficiary, for whom the system
is built. In our case, Baking is the process that provides the value – the Bread. This
is an example of the application of the Function as a seed OPM principle, which
states that modeling of any system starts with specifying the function of the system
as the main process in the System Diagram, SD. Then, objects involved as enablers
or transformees are added and both the function and the objects are refined, as de-
scribed in the sequel. In this system, all the things – objects and processes – are
physical, denoted by their shading. Energy is also environmental – it is not part of
the system, as it is supplied by an external source but is consumed by the system.
This is denoted by the dashed contour of Energy.
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7.1.4 Limited Capacity and the Refinement Mechanisms of OPM

Figure 7.1 is the SD, the bird-eye’s view model of the Baking system. This OPD
already contains six entities and five links, approaching the limit of the human infor-
mation processing capacity determined by the “magic number seven plus or minus
two” of Miller (1956). However, we have not even started to specify the subpro-
cesses comprising the Baking process or the members (parts) of the Ingredients
Set. To cater to humans’ processing limited capacity, OPM advocates keeping each
OPD simple enough to enable the diagram reader to quickly grasp the essence of the
system by inspecting the OPDs without being intimidated by an overly complicated
layout. Overloading the SD with more artifacts will put its comprehension at risk, so
showing additional details is deferred to lower-level OPDs, which can be more de-
tailed, as the reader is already familiar with some of their features from upper-level
OPDs.

To manage the system’s inherent complexity, when an OPD approaches humans’
“comprehensibility limit,” the model is refined. Refinement in OPD entails primarily
the application of the in-zooming refinement mechanism on a process. Figure 7.2
shows a new OPD that resulted from zooming in on the Baking process in Fig. 7.1.

This OPD, which is automatically given the name SD1 (Baking in-zoomed),
elaborates on the SD in several respects. First, Baking is inflated, showing within

Fig. 7.2 The new OPD resulting from zooming in on the Baking process in Fig. 7.1
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it the four subprocesses Mixing, Forming, Heating, and Cooling, as well as the
interim objects Dough and Loaf. Bread is created in the initial state hot, and after
Cooling ends, it is edible.

7.1.5 Active Processing and the Animated Simulation of OPM

The active-processing assumption is tacitly accounted for in that each and every
modeling step requires complete engagement of the user – the system architect
or modeler who carries out the conceptual modeling activity. While modeling, the
modeler is active in creating the model, inserting and rearranging elements – entities
and links – on the screen. At any time during this process, the modeler can inspect
the OPL textual interpretation that is continuously created in response to each new
graphic input. At times, he or she needs to rearrange the graphic layout to make it
more comprehensible by such actions as grouping entities and moving links to avoid
crossings. When the current OPD becomes too busy, it is approaching the limited
channel capacity, in which case a new OPD needs to be created via in-zooming or
unfolding.

Another aspect of active processing that is unique to OPM is its animated sim-
ulation. Humans have been observed to mentally animate mechanical diagrams in
order to understand them. Using a gaze tracking procedure, Hegarty [21] found that
inferences were made about a diagram of ropes and pulleys by imagining the motion
of the rope along a causal chain. Similarly, an active processing aspect of OPCAT
is its ability to simulate the system by animating it. The animation enables the mod-
eler to simulate the system and see it “in action” at each point in time during the
design. Like a program debugger, the modeler can carry out “design-time debug-
ging” by running the animation stepwise or continuously, back and forth, inserting
breakpoints where necessary.

Figure 7.3 is a snapshot of the animated simulation of the Baking system, show-
ing it at the point in time when Heating just ended, yielding Bread at its hot state.
Currently, as the dots on the arrows to and from Cooling indicate, Cooling is hap-
pening, as indicated by its dark filling. The timeline within an in-zoomed process
is from top down, so Cooling is the last subprocess of Baking, which is therefore
dark blue. Rectangular objects (except those with rounded corners) exist at this time
point, while white ones (like Ingredients Set) are already consumed (or not yet cre-
ated, but in Fig. 7.3 no such objects exist). The active participation of the modeler
in inspecting the system behavior and advancing it step by step has proven highly
valuable in communicating action and pinpointing logical design errors, which are
corrected early on, saving precious time and avoiding costly troubles downstream.

The ability to animate the system in a simple and understandable manner is
yet another benefit of the structure–behavior integration of the OPM model in one
type of diagram – the OPD. Splitting the single model into several structural views
and several other behavioral views would unnecessarily complicate and obscure the
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Fig. 7.3 Animated simulation of the OPD in Fig. 7.2

model, preventing it from being amenable to such clear, eye-opening animated sim-
ulation.

Having introduced OPM via this simple baking system example, we now define
and discuss basic concepts underlying OPM as both a language and a methodol-
ogy. In parallel, this chapter shows how structure-behaviour codesign is served by
the single-model and single-diagram approach of OPM, enabling system architects
and designers to freely express the tight, inseparable relationships and interactions
between the system’s static and dynamic aspects.

7.2 Function, Structure, and Behavior: The Three Major System
Aspects

All systems are characterized by three major aspects: function, structure, and behav-
ior. The function of an artificial system is its value-providing process, as perceived
by the beneficiary, i.e., the person or group of people who gain value from using
the system. For example, the function of the organization called hospital is patients’
health level improving. Each patient is a beneficiary of this system, the customer
may be a government or a private entity, and the medical staff constitutes the group
of users.

Function, structure, and behavior are the three main aspects that systems exhibit.
Function is the top-level utility that the system provides its beneficiaries who use
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it or are affected by it, either directly or indirectly. The system’s function is en-
abled by its architecture – the combination of structure and behavior. The system’s
architecture is what enables it to function so as to provide value to its beneficiaries.

Most interesting, useful, and challenging systems are those in which structure
and behavior are highly intertwined and hard to separate. For example, in a man-
ufacturing system, the manufacturing process cannot be contemplated in isolation
from its inputs – the raw materials, the model, machines, and operators – and its
output – the resulting product. The inputs and the output are objects, some of which
are transformed by the manufacturing process, while others just enable it. Due to
the intimate relation between structure and behavior, it only makes sense to model
them concurrently rather than try to construct separate models for structure and be-
havior, which is the common practice of current modeling languages like UML and
SysML. The observation that there is great benefit in concurrently modeling the
system’s structure and behavior in a single model is a major principle of OPM.

The structure of a system is its form – the assembly of its physical and logical
components along with the persistent, long-lasting relations among them. Structure
is the static, time-independent aspect of the system. The behavior of a system is
its varying, time-dependent aspect, its dynamics – the way the system changes over
time by transforming objects. In this context, transforming means creating (generat-
ing, yielding) a new object, consuming (destroying, eliminating) an existing object,
or changing the state of an existing object.

With the understanding of what structure and behavior are, we can define a sys-
tem’s architecture.

The architecture of a system is the combination of the system’s structure and
behavior that enables it to perform its function.

Following this definition, it becomes clear why codesign of a system’s structure
and behavior is imperative: they go hand in hand, as a certain structure provides
for a corresponding set of system behaviors, and this, in turn, is what enables the
system to function and provide value. Therefore, any attempt to separate the design
of a system, and hence its conceptual modeling, into distinct structure and behavior
models is bound to hamper the effort to arrive at an optimal design. One cannot
design the system to behave in a certain way and execute its anticipated function
unless the ensemble of the interacting parts of the system – its structure – is such
that the expected behavior is made possible and can deliver the desired value to the
beneficiary.

It might be interesting to compare our definition of architecture to that used by
the U.S. DoD Architecture Framework (DoDAF 2007), which is based on IEEE
STD 610.12:

Architecture: the structure of components, their relationships, and the princi-
ples and guidelines governing their design and evolution over time.
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The common element in both definitions is the system’s structure. However, the
DoDAF definition lacks the integration of the structure with the behavior to pro-
vide the function. On the other hand, the DoDAF definition includes “the principles
and guidelines governing the design and evolution of the system’s components over
time.” However, these do not seem to be part of the system’s architecture. Rather,
principles and guidelines govern the architecting process, which culminates in the
system’s architecture.

7.2.1 Function vs. Behavior

The above definitions lead to the conclusion that the function of a system is iden-
tical with its top-level process. Moreover, the architecture of a system, namely its
structure–behavior combination, is what enables the system to execute its top-level
process, and thereby to perform its function and deliver value to its beneficiary.

The value of the function to the beneficiary is often implicit; it is expressed in
process terms, which emphasize what happens, rather than the purpose for which
the top-level process happens. This implicit function statement can explain why the
function of a system is often confused with the behavior or dynamics of the system.
However, it is critical to clearly and unambiguously distinguish between function
and behavior. Function is the value of the system to its beneficiaries. The function is
provided by operating the system, which, due to its architecture – structure–behavior
combination – functions to attain this value. Function explicitly coincides with be-
havior only at the top-most level. At lower levels, behaviors manifested by subpro-
cesses indirectly serve the function. For example, the electric motor of a water pump
in a car with an internal combustion engine functions to circulate water, which in
turn cools the engine, which in turn drives the car. The function of the car is driving,
but processes at various levels of granularity are required to make this happen.

This distinction between function and behavior is of utmost importance since in
many cases a system’s function can be achieved by different architectures, i.e., dif-
ferent combinations of processes (system behavior) and objects (system structure).
Consider, for example, a system for enabling humans to cross a river with their vehi-
cles. Two obvious architectures are ferry and bridge. While the two systems’ func-
tion and top-level process – river crossing – are identical, they differ dramatically in
their structure and behavior. Similarly, a time-keeping system can be a mechanical
clock, an electronic watch, or a sundial, to name a few possible system architec-
tures, each with its set of “utilities” (availability, maintainability, precision). Failure
to recognize this difference between function and behavior may lead to a premature
choice of a suboptimal architecture. In the river-crossing system example above,
this may amount to making a decision to build a bridge without considering the
ferry option altogether.

Capturing the knowledge about existing systems and the analysis and design of
conceived systems requires an adequate methodology, which should be both formal
and intuitive. Formality is required to maintain a coherent representation of the sys-
tem under study, while the requirement that the methodology be intuitive stems from
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the fact that humans are the ultimate consumers of the knowledge. OPM [10, 11]
is an ontology- and systems-theory-based vehicle for codesign via conceptual mod-
eling, as well as for knowledge representation and management, which perfectly
meets the formality and intuition requirements through a unique combination of
graphics and natural language.

Modeling of complex systems should conveniently combine structure and be-
havior in a single model. Motivated by this observation, OPM is a comprehensive,
holistic approach to the modeling, study, development, engineering, evolution, and
lifecycle support of systems. Employing a combination of graphics and a subset
of English, the OPM paradigm integrates the object-oriented, process-oriented, and
state-transition approaches into a single frame of reference that is expressed in both
graphics and text. Structure and behavior coexist in the same OPM model without
highlighting one at the expense of suppressing the other to enhance the comprehen-
sion of the system as a whole.

A systems modeling methodology and language must be based on a solid, generic
ontology. The next section discusses this term as an introduction to presenting the
OPM ontology that follows.

7.2.2 Ontology

Ontology is defined as a branch of philosophy that deals with modeling the real
world [48]. Ontology discusses the nature and relations of being, or kinds of exis-
tence [31]. More specifically, ontology is the study of the categories of things that
exist or may exist in some domain [40]. The product of such a study, called ontology,
is a catalog of the types of things that are assumed to exist in a domain of interest
from the perspective of a person who uses a specific language, for the purpose of
talking about that domain.

The traditional goal of ontological inquiry is to discover those fundamental cate-
gories or kinds that define the objects of the world. The natural and abstract worlds
of pure science, however, do not exhaust the applicable domains of ontology. There
are vast, human-designed and human-engineered systems, such as manufacturing
plants, hospitals, businesses, military bases, and universities, in which ontological
inquiry is just as relevant and equally important. In these human-created systems,
ontological inquiry is primarily motivated by the need to understand, design, engi-
neer, and manage such systems effectively. Consequently, it is useful to adapt the
traditional techniques of ontological inquiry in the natural sciences to these domains
as well [23].

The types in the ontology represent the predicates, word senses, or concept and
relation types of the language L when used to discuss topics in the domain D. An
uninterpreted logic, such as predicate calculus, conceptual graphs, or Knowledge
Interchange Format [22], is ontologically neutral. It imposes no constraints on the
subject matter or the way the subject may be characterized. By itself, logic says
nothing about anything, but the combination of logic with ontology provides a lan-
guage about the entities in the domain of interest and relationships among them.
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An informal ontology may be specified by a catalog of types that are either
undefined or defined only by statements in a natural language. In every domain,
there are phenomena that the humans in that domain discriminate as (conceptual
or physical) objects, processes, states, and relations. A formal ontology is speci-
fied by a collection of names for concept and relation types organized in a partial
ordering by the generalization–specialization (also referred to as the type–subtype
or class–subclass) relation. Formal ontologies are further distinguished by the way
the subtypes are distinguished from their supertypes. An axiomatized ontology dis-
tinguishes subtypes by axioms and definitions stated in a formal language, such
as logic; a prototype-based ontology distinguishes subtypes by a comparison with
a typical member or prototype for each subtype. Examples of axiomatized ontolo-
gisms include formal theories in science and mathematics, the collections of rules
and frames in an expert system, and specifications of conceptual schemas in lan-
guages like SQL. OPM concepts and their type ordering are well defined; hence
OPM belongs to the family of axiomatized ontologies.

The IDEF5 method [23] is designed to assist in creating, modifying, and main-
taining ontologies. Ontological analysis is accomplished by examining the vocab-
ulary that is used to discuss the characteristic objects and processes that compose
a domain, developing definitions of the basic terms in that vocabulary, and char-
acterizing the logical connections among those terms. The product of this analy-
sis, ontology, is a domain vocabulary complete with a set of precise definitions, or
axioms, that constrain the meanings of the terms sufficiently to enable consistent
interpretation of the data that use that vocabulary.

Rather than requiring that the modeler view each of the system’s aspects in iso-
lation and struggle to mentally integrate the various views, OPM offers an approach
that is orthogonal to customary practices. According to this approach, the struc-
ture and behavior system aspects can be inspected in tandem rather than in iso-
lation, providing for better comprehension, as argued above. Complexity is man-
aged by the ability to create and navigate via possibly multiple detail levels, which
are generated and traversed through two refinement/abstraction mechanisms: in-
zooming/out-zooming and unfolding/folding.

OPM strives to be as generic as possible. Hence its domain is the universe, and
its building blocks are things – objects and processes, defined below. Due to its
structure–behavior integration, OPM provides a solid basis for representing and
managing knowledge about complex systems, regardless of their domain. The re-
mainder of this chapter provides an overview of OPM, its ontology, semantics, and
symbols. It then describes applications of OPM in various domains.

7.3 The OPM Ontology

The elements of the OPM ontology, shown in Fig. 7.4, are divided into three groups:
entities, structural links, and procedural links.
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7.3.1 Entities: Objects, Processes, and Object States

Entities, the basic building blocks of any system modeled in OPM, are of three types:
stateful objects, namely, objects with states, and processes. Each entity type stands
alone as a concept in its own right, unlike links, which connect two entities. The
symbols for these three entities are respectively shown as the first group of symbols
on the left-hand side of Fig. 7.4, which contains the symbols in the toolset available
as part of the GUI of OPCAT.

Objects are our way of knowing what exists, or in other words, the structure of
systems. To know what happens, to understand systems’ behavior, a second, com-
plementary type of thing is needed – processes. We know of the existence of an
object if we can name it and refer to its unconditional, relatively stable existence,
but without processes we cannot tell how this object changes over time.

Objects and processes, collectively referred to as OPM things, are the two types
of OPM’s universal building blocks. OPM views objects and processes as being on
equal footing, so processes are modeled as “first-class citizens” that are not subordi-
nate to objects. This is a principal departure from the object-oriented (OO) approach,
which places objects as the only major players, and they “own” processes, which in
OO jargon are called operations or services or methods.

Major system-level processes can be as important as, or even more important
than, objects in the system model. In particular, we already noted that the top-
level process of a system is its function, the objective for which the system is built
and used. Hence, processes must be amenable to being modeled independently of
a particular object class. In OPM, both objects and processes are first-class citizens.
They stand on equal footing, such that neither one has supremacy over the other.
This OPM object–process equality principle enables OPM to model real-world sys-
tems in a single model, in which structure and behavior are concurrently represented
and can be codesigned. Due to this structure–behavior unification, the single OPM
model is simple and intuitive in spite of its formality. The third and last OPM en-
tity, after object and process, which are OPM things, is state. A state, discussed in
more detail below, is a situation in which an object can be at some point during its
lifetime.

Being able to tell objects and processes apart and use them properly in a model
is a key to modeling in OPM. To define these fundamental concepts and to commu-
nicate their semantics, we next discuss the concepts of existence and transforma-
tion.

Fig. 7.4 The three groups of OPM symbols
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7.4 Existence, Things, and Transformations

Webster’s New World College Dictionary [50] defines existence as the noun derived
from exist, which is be, have being, continue to be. To exist means to stand out, to
show itself, and have an identifiable, distinct uniqueness within the physical or men-
tal realm. A thing that exists in physical reality has “tangible being” at a particular
place and time. Because it stands out and shows itself, we can point to it and say:
“Now, there it is.”

That which we can never identify, or have its identity be inferred in some way,
can have no existence for us. In other words, “to stand out” requires a continuous
identifiability over an appropriate duration of time, either physically or informati-
cally, as we elaborate below.

When we consider existence along the time dimension, there are two modes of
“standing out,” or existence of things. In the first mode, the “standing out” takes
place during a positive, relatively substantial time period. This “standing out” needs
to be observable in a form that is basically unchanging, stable, or persistent. We call
that which stands out in this mode an object.

7.4.1 Physical and Informatical Objects

Webster’s 1997 Dictionary [50] defines an object as follows.

[An object is] a material thing; that to which feeling or action is directed; end or
aim; word dependent on a verb or preposition.

Webster’s 1984 Dictionary [49] provides a different set of relevant definitions for
object:

• Anything that is visible or tangible and is stable in form.
• Anything that may be apprehended intellectually.

These two definitions correspond to our notion of a physical object and an infor-
matical object. The first definition is the one we normally think of when using the
term object in daily usage. The second definition pertains to the informatical, intan-
gible facet of objects. Informatical objects are different from their physical counter-
parts in that informatical objects have no physical existence and, being intangible,
they do not obey the basic laws of physics. However, the existence of informatical
objects does depend on their being symbolically recorded, inscribed, impressed, or
engraved on some tangible medium. This information-carrying medium is a physi-
cal object. It can be a stone, papyrus, paper, some electromagnetic medium, or the
human brain.
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7.4.2 Object Defined

Since OPM uses objects that are physical or informatical, we define object as some-
thing that captures these two facets without committing to either one, while includ-
ing the element of “existence throughout time.”

An object is a thing that exists or can exist physically or informatically.

This definition is quite remote from the classical definitions of object found in
the OO literature, which can be phrased as follows: “An object is an abstraction of
attributes and operations that is meaningful to a system.” For example, in Wikipedia,
an object in computer science is defined as a language mechanism for binding data
with methods that operate on those data.

A process, on the other hand, is typically a transient, temporal thing. It “hap-
pens” or “occurs” to an object rather than something that “exists” in its own right.
We cannot think of a process independently of at least one object, the one that the
process transforms. By their nature, happenings or occurrences involve time. What
actually exists as a process is an informatical object that represents the pattern of
behavior, which the objects that are involved in the interaction exhibit as time goes
by. This idea is elaborated on next.

7.4.3 Process as a Transformation Metaphor

There are two perspectives from which a system can be contemplated. One perspec-
tive is an instantaneous, snapshotlike, structural one, which views the world at some
moment of time. This perspective is timeless; it has no time dimension. The struc-
tural perspective represents objects and time-independent relationships that may ex-
ist among them. This perspective has no room for processes, as by definition they
occur over time, which is not considered in this view. A second perspective is the
temporal one, where time is considered as a central theme, such that time-dependent
relationships among things are representable. From this temporal viewpoint, the ex-
istence of an object is persistent. As long as the object is not involved in a process,
it remains unchanged.

We noted that there are two modes of standing out. The first is in space, the
second – in time. In the time mode, that which stands out is changing and may have
different names as it undergoes its transformation. In particular, the name given
to what stands out after the change is complete may be different from the name
the thing had before the change occurred. In this case, it is convenient to think of
the thing – a process – that has brought about a transformation as some carrier
that is “responsible” for this transformation. Hence, the concept of process is our
abstraction of the thing behind the series of transformations that one or more objects
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undergo. For the convenience of language or thinking, we associate this patterned
changing with the “carrier,” to which we mentally assign the “responsibility.”

We define transformation as a generalization of change, generation, and destruc-
tion of an object.

Transformation is the generation (construction, creation) or consumption
(destruction, elimination) or change (effect, state transition) of an object.

When we say that the process brought about the creation (or generation or con-
struction) of an object, we mean that the object, which had not existed prior to the
occurrence of the process, now exists and is identifiable against its background.
Analogously, when we say that the process brought about the elimination (or con-
sumption or destruction) of an object, we mean that the object, which once stood
out, has undergone a radical change, due to which it no longer exists. These radical
changes of creation and elimination are extreme versions of transformation. Pro-
cesses are the only things that cause creation and elimination of objects as well as
changes in the objects’ states. Collectively, creation, elimination, and change are
termed transformation.

We call the carrier that causes transformation process, and we say that the process
is the thing that brings about the transformation of an object. However, that carrier
is just a metaphor, as we cannot “hold” or touch a process, although that process
may be entirely physical, such as filling a glass of water. What we may be able to
touch, see, or measure at given points in time is the object, or one or more of its
attributes, as the process transforms the object. For example, we can see the glass
and the water being poured into it, gradually changing the “fullness” attribute of the
glass from empty to full.

At any given point in time before, during, or after the occurrence of the process,
the observed object can potentially be different from what it was at a previous point
in time. Using our human memory, we get the sense of a process by comparing the
present form of the object being transformed to its past form. Hence, we can almost
say that a process is only in a human’s mind, as only through comparing objects or
their states at various points in time can we tell that a process took place. Unlike
objects, processes do not exist; they happen or occur. The only possible existence of
processes is in our minds, where they are recorded as informatical abstract concepts
of patterns of object transformations.

7.4.4 Process Defined

According to Webster’s 1997 Dictionary [50], a process is “a state of going on,
series of actions and changes, method of operation, action of law, outgrowth.” The
American Heritage Dictionary [1] defines process as “a series of actions, changes,
or functions, bringing about a result.” Focusing on transformation and the result
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or effect that it induces, and based on the observations noted above, we adopt the
following definition.

A process is a transformation that an object undergoes.

This definition of process acting on an object immediately implies that no process
exists unless it is associated with at least one object, which the process transforms.
This is where the symmetry between objects and processes breaks. While we could
refer to an object without necessarily using the term “process,” the opposite is not
possible – the ability to conceive a process depends on the existence of at least one
object, which undergoes transformation due to that process. Another asymmetry
between an object and a process is related to states. Whereas objects can be stateful,
processes do not have states. What can be thought of as states of a process are its
possible subprocesses.

The transformation of an object takes place over some time. It may be as minor as
moving the object from one location to the other, or as drastic as destroying or creat-
ing the object. Without processes, all we can describe are static, persistent structural
relations among objects. In a theoretic, frozen, static universe at absolute zero tem-
perature, no processes of interest occur. In a more realistic setting, processes and
objects are of comparable importance as building blocks in the description and un-
derstanding of systems and the universe as a whole.

As an example, consider Newton’s first law, which can be formulated as “Every
object persists in a state of rest or uniform motion in a straight line unless compelled
by an external force to change that state” [44]. Here, the object is physical, and the
“external force” is the process that acts on the object to change its state. The state
can be either “moving at constant speed” (including “resting,” which amounts to
“moving at constant speed that is equal to zero”) or “moving at variable speed.”
As long as no process acts on the object, the object persists in its current state of
“moving at constant speed.”

7.4.5 Cause and Effect

One insight from investigating the time relationship is cause and effect. Certain ob-
jects, when brought into the right spatial and temporal relationship, enable a process
to take place. This is the preprocess object set – the precondition for the process
occurrence. For the process to actually happen, it needs to be triggered. If it is trig-
gered and all the preconditions are met, the process occurs. When the process is
over, at least one of the objects involved (as input, output, or both) is transformed
(consumed, generated, or changed). The “cause” is the trigger – the event that took
place in the concurrent presence of the collection of objects (some of which might
need to be in a certain state) that enabled the process – the object transformation.
The transformation is the “effect.” For example, the process of running an internal
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combustion engine is contingent upon the presence of the object air–gasoline vapor
mixture, at the right pressure and temperature (which are attributes of the mixture),
inside the object cylinder, and the concurrent presence of a spark (created by a pre-
vious timed process) – the trigger that ignites the mixture. As a result of this process,
the gasoline mixture is consumed and the blast increases the pistons’ kinetic energy
value. If the spark – the trigger – is timed before the mixture is ready or after is
has dissipated, no process takes place. In general, the trigger has to be timed such
that the process precondition is met; otherwise the trigger has no influence on the
system.

7.5 Syntax vs. Semantics

To make it possible to refer to things (both objects and processes) and distinguish
among them, natural languages assign names to them. The name of a thing consti-
tutes a primary identifying symbol of that thing, making it amenable to reference
and communication among humans. These thing names are known as nouns. How-
ever, being part of speech, noun is a syntactic term, while objects and processes are
semantic terms. We elaborate on this issue next.

7.5.1 Objects to Semantics Is Like Nouns to Syntax

In natural languages, both objects and processes are syntactically represented as
nouns. Thus, for example, both “brick” and “construction” are nouns. However,
brick is an object, while construction is a process. This can be verified by the fact
that the phrase the construction process is plausible, while the brick process is not.
Analogously, the phrase the object brick is plausible, while the object construction is
much less plausible. Natural languages are often even more confusing in this regard.
For example, the object building (house, edifice, a noun), which is the outcome of
the building (construction) process, is spelled and uttered the same as the process
of building (verb). It is only from their context inside a sentence that these two
semantically different words – building and building – are distinguishable. These
examples demonstrate that we need a semantic, content-based analysis to tell objects
from processes.

While in many natural languages nouns primarily represent objects, not every
noun is an object, as the examples above demonstrate. Thus, while construct is
an object, construction is a process, yet both are nouns. This is a source of major
confusion. We must be aware of this distinction between object and noun and be
able to tell apart nouns that are objects from nouns that are processes.
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7.5.2 Syntactic vs. Semantic Sentence Analysis

The difficulty we often experience in making the necessary and sufficient distinction
between objects and processes is rooted in our education. It is primarily due to the
fact that as students in high school we have been trained to think and analyze sen-
tences in syntactic terms of parts of speech: nouns, verbs, adjectives, and adverbs,
rather than in semantic terms of objects and processes.

This is probably true for any natural language we study and use, be it our mother
tongue or a foreign language. Only through semantic sentence analysis can we over-
come superficial differences in expression and get down to the intent of the writer
or speaker of some text. Nevertheless, the idea of semantic sentence analysis, in
which we seek the deep meaning of a sentence beneath its appearance, is probably
a relatively less accepted idea. Sentences in Object–Process Language (OPL) are
constructed automatically in response to the OPM modeler’s graphic input. These
sentences have a simple syntax that expresses unambiguous semantics. In OPL, bold
Arial font denotes nonreserved phrases, while nonbold Arial font denotes reserved
phrases. In OPCAT, various OPM elements are colored with the same color as their
graphic counterparts (by default, objects are rectangular, processes are oval, and
states are rectangular with rounded corners).

7.6 The Process Test

To apply OPM in a useful manner, one should be able to tell the difference between
an object and a process. The process test, defined in this section, has been devised to
help identify nouns that are processes rather than objects. Its importance lies in the
fact that it is very instrumental in helping analysts to make the essential distinction
between objects and processes, a prerequisite for successful system analysis, mod-
eling, and design. Providing a correct answer to the question “Is noun X an object
or a process?” is crucial and fundamental to the entire object–process paradigm.
The object–process distinction problem is simply stated as follows: Classify a given
noun as either an object or a process.

By default, a noun is an object. To be a process, the noun has to pass the following
process test. A noun passes the process test if and only if it meets each of the four
process criteria:

• Object involvement,
• Object transformation,
• Association with time, and
• Association with verb.



228 D. Dori

7.6.1 The Preprocess Object Set and Object Involvement

The first process criterion, object involvement, implies that in order for the noun in
question to be a process, i.e., to happen, a set of one or more nouns, which would
be objects, some possibly in certain required states, must be involved.

The process test object involvement criterion is satisfied if the occurrence of
the noun in question involves at least one other noun, which would be an
object.

If the noun is indeed a process, the objects that need to exist for the process to
happen constitute the preprocess object set of that process, as defined below.

The preprocess object set of a process is the set of one or more objects that
are required to simultaneously exist, possibly in certain states, in order for
that process to start executing once it has been triggered.

Existence of all the objects in this preprocess object set, possibly in their required
states, is the process precondition – the condition for the occurrence of the process.
As a process, this noun does not exist, but rather occurs, happens, operates, executes,
transforms, changes, or alters at least one other noun, which would be an object.

Let us consider two process examples: Flight and Manufacturing. For Man-
ufacturing, the preprocess object set may consist of Raw Material, Operator,
Machine, and Model, without which no Manufacturing can occur. In the Flight
example, Airplane, Pilot, and Runway are objects in the preprocess object set,
since Flight cannot occur without them. Moreover, there may be requirements for
the state of each of these objects. For Flight to take off, it is required that Airplane
be operational, Pilot be sober, and Runway be open.

7.6.2 The Postprocess Object Set and Object Transformation

The postprocess object set is defined analogously to the preprocess object set as
follows.

The postprocess object set of a process is the set of one or more objects that
simultaneously exist, possibly in certain states, after that process has finished
executing.

Existence of all the objects in the postprocess object set, some possibly in speci-
fied states, is the postcondition of that process.
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The preprocess object set and the postprocess object set are not necessarily dis-
joint; they can be overlapping. In the Flight example, all three objects in the pre-
process object set, Airplane, Pilot, and Runway, are also in the postprocess object
set. However, only Airplane and Pilot are transformed, as their Location attributes
change from source to destination. In the Manufacturing example, Raw Material,
Operator, Machine, and Model are in the preprocess object set, while Operator,
Machine, Model, and Product are in the postprocess object set. Here, Raw Ma-
terial is transformed by being consumed, while Product is transformed by being
created.

The second process criterion, object transformation, stipulates that a process
must transform at least one of the objects in the preprocess object set or in the
postprocess object set. In other words, at least one object from the preprocess object
set or the postprocess object set must be transformed (consumed, created, or change
its state) as a result of the occurrence of the noun in question.

The process test object transformation criterion is satisfied if the occurrence
of the noun in question results in the transformation of at least one other noun,
which would be an object.

As noted, the transformed object can belong only to the preprocess object set (if
it is consumed), only to the postprocess object set (if it is created), or to both (if it is
affected, i.e., if its state changes).

Continuing the two previous process examples, Flight transforms Airplane by
changing its Location attribute from origin to destination. Manufacturing trans-
forms two objects: Raw Material (by consuming it) and Product (by generating
it). Here, only Raw Material is a member of the preprocess object set, and only
Product is a member of the postprocess object set.

7.6.3 Association with Time

The third process criterion, association with time, is that the process must represent
some happening, occurrence, action, procedure, routine, execution, operation, or
activity that takes place along the timeline.

The process test association with time criterion is satisfied if the noun in ques-
tion can be thought of as happening through time.

Continuing our example, both Flight and Manufacturing start at a certain point
in time and take a certain amount of time. Both time and duration are very relevant
features of these two nouns in question.
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7.6.4 Association with Verb

The fourth and last process criterion, association with verb, requires that a process
be associated with a verb.

The process test association with verb criterion is satisfied if the noun in ques-
tion can be derived from, or has a common root with, a verb.

Flying is the verb associated with Flight. The sentence “The airplane flies” is
a short way of expressing the fact that the Airplane is engaged in the process
of Flight. Similarly, manufacture (produce, yield, make, create, generate) is the
verb associated with Manufacturing. The sentence “The operator manufactures
the product from raw material using a machine and a model” is the natural language
short way of saying in OPL that:

Operator handles Manufacturing.
Manufacturing requires Machine and Model.
Manufacturing yields Product.

It is not mandatory that the verb be syntactically from the same root as the pro-
cess name, as long as the semantics is the same. For example, Marrying is a pro-
cess, which is associated with the verb marry. Wed is also a legal verb, albeit less
frequently used. Alternatively, we could use Wedding to fit it to the verb wed.

Many objects, such as Apple and Airplane, are not associated with any verb,
so they do not fulfill this process criterion. It is easy to verify that both Apple and
Airplane do not meet any one of the previous three process criteria either. As noted,
however, failure to fulfill even one of the four criteria results in failure of the entire
process test.

7.6.5 Boundary Cases of Objects and Processes

While objects are persistent (i.e., they exhibit static perseverance, or, in other words,
the value of their Perseverance attribute is static) and processes are transient (i.e.,
they exhibit dynamic perseverance, or, in other words, the value of their Persever-
ance attribute is dynamic), boundary examples of persistent processes and transient
objects exist.

7.6.5.1 Persistent, State-Preserving Processes

Persistent processes are state-preserving processes. They act to preserve, maintain,
or keep a steady state or a status quo of a system. They include such verbs as holding,
maintaining, keeping, staying, waiting, prolonging, delaying, occupying, persisting,
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preventing, including, containing, continuing, supporting, and remaining. Rather
than induce any real change, the semantics of these verbs leaves the state of the
object as is, in its status quo, for some more time.

A persistent process is a pseudo process that acts to preserve, maintain, or
keep a steady state or a status quo of the system.

Strictly speaking, these are not real processes, as they fail the object transforma-
tion criterion of the process test. Indeed, the static nature of these verbs is contradic-
tory to the definition of process, which requires that it transform some object. In fact,
the process test for “Supporting” in a system in which a pedestal supports a statue
fails because it does not meet the object transformation criterion, as no object is
transformed by the support.

Surrounding in the context of a Highway that surrounds a City is another ex-
ample. Surrounding in this context is not a real process – it too does not meet
the object transformation criterion, as no object is transformed by it. Such cases
are actually specifications of some structural relation between two objects and are
therefore better modeled using tagged structural links, defined and described in the
sequel. For example, surrounds is a tagged structural relation, from which the OPL
sentence “Highway surrounds City” is derived.

From another perspective, some of the verbs expressing state preservation can
be considered as working against some “force” that would otherwise change some
object. For example, a Pedestal supporting a Statue works against gravity, so we
can think of Supporting as a “falling-prevention” process, without which the state
of the Statue would change from stabilized to fallen.

7.6.5.2 Transient Objects

A transient object is a short-lived object that exists only in the context of some
subprocess in a system model. Examples of transient physical objects are unstable
materials or particles, such as an interim short-lived compound in a chemical reac-
tion or an atom in an excited state that spontaneously decays to the ground state by
emission of X-rays and fluorescent radiation [3]. Examples of transient informatical
objects are pointers to memory locations in a database system or typed passwords
in a Web-based system that are created and immediately deleted after being used.

A transient object is an object that exists only in the context of some process
in a system model.

The context of the transient object is the process within which it is created and
consumed. For example, a packet of data in a telecommunications network is a tran-
sient informatical object that lives only in the context of the particular instance of
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a data communication process. Such a packet can reside for a short while at some
router on its way and leave no trace of its stay there once the target node has received
it and assembled it into a file from which it was derived.

In an OPM model, a transient object that is created by some subprocess within
a process and is immediately consumed by a subsequent subprocess can be skipped
by using the invocation link. This lightening-shaped link is a procedural link that
directly connects the two processes, as discussed in the sequel.

7.6.6 Thing Defined

We have seen that objects exist while processes occur. Objects are relatively persis-
tent, static things, while processes are transient, dynamic things. Objects cannot be
transformed (generated, affected, or eliminated) without processes, while processes
have no meaning without the objects they transform. Hence, objects and processes
are two types of tightly coupled complementary things. The extent of this coupling
is so intense that if we wish to be able to analyze and design systems in any domain
as intuitively and naturally as possible, we must consider objects and processes con-
currently. While this point has already been made more than once in this chapter, it
is worth repeating.

Given a system model in which objects and processes are described in tandem,
we are immediately able to tell the set of objects that are transformed by each pro-
cess and the nature of the transformation of each transformed object – generation,
consumption, or state change. Moreover, we are able to tell how refineables – parts,
features, or specializations of these objects, discussed later – are involved in sub-
processes of these process. This is the extent to which objects and processes are
interwoven and the corresponding value of modeling them concurrently.

As we shall see, objects and processes have much in common in terms of re-
lations such as aggregation, generalization, and characterization. The need to talk
about a generalization of these two concepts necessitates the advent of a term that
is more abstract than an object and a process, and which generalizes the two. As we
have already seen, we call this concept simply a “thing.”

Thing is a generalization of object and process.

The concept of “thing” enables us to think and to express ourselves in terms
of this abstraction and refer to it without the need to repeatedly iterate the words
“object or process.” The term “thing” is based on the ontology of Bunge [5, 6] and
Wand and Weber [46, 47]. Their first premise is that the world is made of things that
have properties. According to this definition, thing seems to be synonymous with
the OPM notion of object. However, during the last two decades, the term “object”
has become deeply rooted, at least in the software engineering community, with the
object-oriented concept of object as an encapsulation of attributes and operations. In
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SysML, object has been replaced by “block.” It therefore seems justified to extend
the semantics of thing from an object to the generalization of object and process.

7.6.7 States

Objects can be stateful, i.e., they may have one or more states.

A state is a situation in which an object can exist or a value it can assume at
certain time intervals.

Since a state is always related to or “owned by” an object, it can be found only
inside an object. Unlike OPM things – objects and processes – which, as argued,
stand on equal footing, a state is a tad lower in this hierarchy, as by definition it is
affiliated with the object that owns it.

A stateful object, i.e., an object that has states, can be affected by a process. In
that case, the affecting process changes the current state of the stateful object.

Effect is a change in the state of an object.

A process that affects an object changes the state of that object from the input
(initial) state to the output (final) state.

Input state is the state in which the object being affected is at the beginning
of the affecting process.

Output state is the state at which the object being affected is at the end of the
affecting process.

An object can be in some of its states (or assume one of its values), but it can
also be in transition between two of its states. This is the case when a process is
transforming the object, such that the object is no longer in its input state and is not
yet at its output state.

Table 7.1 presents the symbols and descriptions of states and values. A value is
in principle no different than a state. However, we refer to a situation as a state when
there is a small number of discrete situations and they are of an enumerated type.
We refer to it as a value when there is a large number of such situations and they are
often numeric and continuous.
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Table 7.1 Entities of the OPM ontology and Thing variants due to different Essence and Affilia-
tion attributes

ENTITIES
Name  Symbol OPL Definitions 

T
hings

Object

Process

B is physical. (shaded rectangle)

C is physical and environmental. 
(shaded dashed rectangle)

E is physical. (shaded ellipse)

F is physical and environmental. 
(shaded dashed ellipse) 

An object is a thing that exists. 

A process is a thing that
transforms at least one object.

Transformation is object 
generation or consumption, or
effect—a change in the state of an
object. 

State 

A is s1.

B can be s1 or s2.

C can be s1, s2, or s3.
s1 is initial.
s3 is final.

A state is situation an object can 
be at or a value it can assume. 

States are always within the 
object that owns them. 

A state can be initial, final, or
both. 

7.6.8 Things and States Are Entities, Entities and Links
are Elements

The word Thing may sound too mundane, so one might wish to use the more so-
phisticated word “entities” instead. However, an entity tends to be interpreted more
statically than dynamically, i.e., more as an object than as a process, while we wish
to use a word that is as neutral and abstract as possible, so “thing” is preferable.
However, we do use “entity” when we wish to refer collectively to things and states.
As we have seen, a state is a situation in which an object can be. As such, the se-
mantics it conveys is also static. OPM therefore uses the term Entity to generalize
a Thing and a State.2

Entity is a generalization of thing and state.

Things (objects and processes) and states are collectively called entities. Since
a state can only exist within an object, a stateful object with n distinct states can
be thought of as n distinct stateless objects, each with its state name preceding the

2 As we shall see, the meanings of Value and State are very close. In this chapter, we use value and
state interchangeably.
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name of the stateful object. For example, the stateful object Car, which can be in two
states, operational and broken, is equivalent to two stateless objects: Operational
Car and Broken Car.

Climbing one level higher in this hierarchy, links connect entities. Collectively,
links and entities are OPM elements.

Element is a generalization of entity and link.

Element is highest in the hierarchy. To specify this hierarchy formally, we use
a reflective metamodel, described next.

7.7 A Reflective Metamodel of OPM Elements

We have already defined a substantial part of OPM, but so far we have only done
so in text, contrary to the claim that there is great value in formal graphic modeling.
This will change right now, as we start modeling the language of OPM. A model-
based representation of a modeling language is done via metamodeling it to create
a metamodel – a model that specifies the modeling language.

A language metamodel is a specification of a modeling language by a model-
ing language.

If the modeling language used to create the metamodel is the same as the model-
ing language being specified, then the metamodel is a “self metamodel” or a reflec-
tive metamodel [34].

A reflective metamodel is a specification of a modeling language by itself.

7.7.1 An Initial OPM Reflective Metamodel

Figure 7.5 is a portion of a reflective metamodel of the OPM elements hierarchy. At
the top of the hierarchy is OPM Thing, which, in turn, specializes into Object and
Process. The generalization–specialization (“is-a”) link, which is a structural link,
is symbolized graphically as an empty isosceles triangle whose tip is linked to the
general thing and whose bottom – to the specialized thing(s).
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Object is an OPM Thing.
Process is an OPM Thing.
States Set consists of a least one State

State is a Stateless Object.
Stateful Object is a State.

Stateful Object is an Object.
Stateless Object is an Object.
Stateful Object exhibits States Set.
Stateful Object is in States Set of

Stateful Object.

a

b

Fig. 7.5 An initial OPM reflective metamodel of the OPM elements hierarchy. a Object–process
diagram (OPD). b Corresponding Object–Process Language (OPL) paragraph

7.7.2 The OPM Graphics–Text Equivalence Principle

Any OPM model is represented concurrently in two modalities: graphics and text.
The graphics–text equivalence OPM principle is as follows.

In any OPM system model, each OPD – the graphic modality – has an equiv-
alent OPL paragraph – the textual modality, such that both contain exactly
the same information and are therefore reconstructible from each other.

Figure 7.5b contains the OPL paragraph that is the textual representation of the
OPD in Fig. 7.5a. The OPM graphics–text principle can be verified here. For ex-
ample, the first OPL sentence is “Object is an OPM Thing.” This is the textual
equivalence of the generalization–specialization link from OPM Thing to Object.

7.7.3 The Five Basic Thing Attributes

Things – objects and processes alike – have five basic attributes: Perseverance,
Essence, Affiliation, Origin, and Complexity. Perseverance determines if the
thing is an object or a process. Essence pertains to whether the thing is physical
or informatical. Affiliation concerns the place where the thing belongs – the sys-
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tem or the system’s environment. Origin describes whether the thing is natural or
artificial.

Perseverance is a basic thing attribute that determines whether the thing is
static (an object) or dynamic (a process).

Perseverance enables distinction between objects and processes.

Essence is a basic thing attribute that determines whether the thing is physical
or informatical.

The default Essence is informatical.

Affiliation is a basic thing attribute that determines whether the thing is sys-
temic (part of the system) or environmental (external to the system).

The default Affiliation is systemic.

Origin is a basic thing attribute that determines whether the thing is artificial
or natural.

To define Complexity, which can be simple or nonsimple, we need to first define
refineables – parts, features, or specializations of a thing.

A refineable of a thing T is a part of T, a feature of T, or a specialization of T.

The thing being refined is called a refinee.

A refinee is a thing that has one or more parts, features, or specializations.

According to this definition, a refineable is a generalization of part, feature, and
specialization. For example, Wheel is a refineable of Car since it is a part of Car,
and Car is the refinee. Similarly, Car is a refineable of Vehicle since it is a special-
ization of Vehicle, and Vehicle is the refinee.

Some things have refineables while others do not. For example, an integer does
not have refineables. It only has instances, such as 1, 0, 2010, etc. This distinction
between things is the basis for the definition of a thing’s complexity attribute.
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A thing is simple if it has no refineables and nonsimple, or compound, other-
wise.

Complexity is a basic thing attribute that determines whether the thing is
simple or nonsimple.

Perseverance, Essence, and Affiliation have graphical symbols. Table 7.1 shows
the entities in the OPM ontology with their graphical symbols. A thing whose per-
severance is static – an object – is symbolized by a rectangle, while a thing whose
perseverance is dynamic – a process – is symbolized by an ellipse. Both shapes have
solid lines with no shading, indicating their default values: informatical Essence
and systemic Affiliation.

A thing whose Essence is physical is symbolized by a shaded shape (rectangle
or ellipse). A thing whose Affiliation is environmental is symbolized by a dashed
contour. As Table 7.1 shows, any combination of a thing’s Essence and Affiliation
value is possible.

7.8 OPM Links

OPM links are the mortar that can connect any two OPM entities. Without links,
all we could model would be a collection of isolated OPM entities with no ability
to say anything about how they relate to each other structurally or procedurally. If
entities are the nodes in a graph, the links are the edges. However, an OPD is more
expressive than a plain mathematical graph with nodes and edges, since the entities
and the links are of several types and any legal entity–link–entity combination con-
veys a specific defined semantics that is also translated to an English OPL sentence
or part of a sentence.

Figure 7.6 extends the reflective metamodel of the OPM elements hierarchy in
Fig. 7.5 with links.

At the top level, the metamodel asserts that an OPM link connects two OPM
Things. At the next level, OPM Link specializes into Structural Link and Proce-
dural Link.

7.8.1 Structural Links

A structural link is a link that specifies the long-term, time-independent rela-
tions between two things.
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Fig. 7.6 An elaboration of the OPM reflective metamodel of the OPM elements hierarchy from
Fig. 7.5 enhanced with the OPM links hierarchy

An example of a structural link in Fig. 7.6 is the generalization–specialization
link from OPM Element to OPM Link and to OPM Thing. This generalization–
specialization relation between these objects holds true and does not change over
time.

As this example shows, structural links usually connect two things that have the
same persistence value, namely, either two objects (things whose persistence value
is static, as in this example) or two processes (things whose persistence value is
dynamic). Two OPL sentences express this:

Structural Link connects 2 Objects.
Structural Link connects 2 Processes.

The only exception to this is the exhibition-characterization relation defined be-
low.
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7.8.2 Procedural Links

A procedural link is a link that specifies the short-term, time-dependent rela-
tions between two things.

Procedural links usually connect two things that have different persistence values,
namely, an object and a process.

7.9 OPM Structure Modeling

As noted, structural links graphically express static, time-independent relations be-
tween pairs of entities, most often between two objects. Structural links, shown as
the middle group of six symbols in Fig. 7.4, are of two types: fundamental and
tagged. Fundamental structural links are a set of four structural links that are used to
denote frequently occurring relations between two entities in a system. Due to their
prevalence and usefulness, and in order to prevent too much text from cluttering
the diagram, these relations are designated by the four distinct triangular symbols
shown in Fig. 7.4. The four fundamental structural relations are as follows:

1. Aggregation–participation, a solid triangle, , which denotes the relation be-
tween a whole thing and its parts;

2. Generalization–specialization, a blank triangle, , which denotes the relation
between a general thing and its specializations, giving rise to inheritance;

3. Exhibition–characterization, a solid interior blank triangle, , which denotes
the relation between an exhibitor – a thing exhibiting one or more features (at-
tributes or operations) – and the things that characterize the exhibitor; and

4. Classification–instantiation, a solid circle inside a blank triangle, , which
denotes the relation between a class of things and an instance of that class.

Table 7.2 lists the four fundamental structural links and their respective OPDs and
OPL sentences. The name of each such relation consists of a pair of dash-separated
words, e.g., aggregation–participation. The first word in each pair is the forward
relation name, i.e., the name of the relation as seen from the viewpoint of the refinee
– the thing up in the hierarchy that is being refined – down to its refineables. The
second word is the backward relation name, i.e., the name of the relation as seen
from the viewpoint of the refineables – the things down in the hierarchy of that
relation looking up to the refinee.

Each fundamental structural link has a default, preferred direction, determined
by how natural the OPL sentence that expresses its semantics sounds. In Table 7.2,
the preferred shorthand name for each relation is underlined. The forward direction
is the preferred one in all the links except the classification–instantiation.
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Table 7.2 Fundamental structural relation names, OPD symbols, and OPL sentences

Structural Relation Name 

Forward Backward 

Refinee-

Refineables 

OPD with 3 
refineables

OPL Sentences with 1, 2, 
and 3 refineables 

Aggregation Participation
Whole- 

Parts

A consists of B.
A consists of B and C.
A consists of B, C, and D.

Exhibition Characterization 
Exhibitor-

Features

A exhibits B.
A exhibits B and C.
A exhibits B, C, and D.

Generalization Specialization 
General-

Specializations 

B is an A.
B and C are As.
B, C, and D are As.

Classification Instantiation
Class-

Instances

B is an instance of A.
B and C are instances of A.
B, C, and D are instances of A.

As Table 7.2 shows, each one of the four fundamental structural relations is char-
acterized by the hierarchy it induces between the refinee – the thing attached to the
tip of the triangle – and the refineables – the thing(s) attached to the base of the
triangle, as follows.

1. In aggregation–participation, the tip of the solid triangle, , is attached to the
whole thing, while the base is attached to the parts.

2. In generalization–specialization, the tip of the blank triangle, , is attached to
the general thing, while the base is attached to the specializations.

3. In exhibition–characterization, the tip of the solid interior blank triangle, , is
attached to the exhibitor (the thing which exhibits the features), while the base
is attached to the features (attributes and operations).

4. In classification–instantiation, the tip of the solid circle inside a blank triangle,
, is attached to the thing class, while the base is attached to the thing instances.

Table 7.3 presents the structural relation names, OPD symbols, OPL sentences,
and semantics. It shows that there is almost symmetry between objects and processes
in that for all the structural relations, whatever applies to objects also applies to
processes.

Having presented the common features of the four fundamental structural rela-
tions, in the next four subsections we provide a small example of each one sepa-
rately.
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Table 7.3 Structural relation names, OPD symbols, OPL sentences, and semantics

STRUCTURAL LINKS 

Name  Symbol OPL Semantics 

A consists of B and C.
Aggregation-
Participation 

A consists of B and C.

A is the whole, B and C are 
parts.

A exhibits B, as well 
as C.Exhibition- 

Characterization 

A exhibits B, as well 
as C.

Object B is an attribute of A and 
process C is its operation 
(method).

A can be an object or a process. 

B is an A.
C is an A.Generalization- 

Specialization 

B is A.
C is A.

A specializes into B and C. 

A, B, and C can be either all 
objects or all processes. 

Fundam
ental Structural R

elations 

Classification-
Instantiation B is an instance of A.

C is an instance of A.

Object A is the class, for which 
B and C are instances. 
Applicable to processes too. 

Unidirectional & 
bidirectional tagged 

structural links 

A relates to B.
(for unidirectional) 
A and C are related. 
(for bidirectional) 

A user-defined textual tag 
describes any structural relation 
between two objects or between 
two processes. 

7.9.1 Aggregation–Participation

Aggregation–participation denotes the relation between a whole and its comprising
parts or components. Consider, for example, the excerpt taken from Sect. 2.2 of the
RDF Primer [28]:

. . . each statement consists of a subject, a predicate, and an object.

This is a clear case of a whole–part, or aggregation–participation, relation. The
OPM model of this statement is shown in Fig. 7.7. The OPL sentence, “RDF State-
ment consists of Subject, Predicate, and Object” was generated by OPCAT auto-
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Fig. 7.7 OPD of the sentence “RDF Statement consists of Subject, Predicate, and Object”

matically from the graphic input and is almost identical to the one cited from the
RDF Primer. The same OPD (disregarding the graphical layout) can be produced
exactly by inputting the text of the OPL sentence above. This is a manifestation of
the OPM graphics–text equivalence principle.

7.9.2 Generalization–Specialization

Generalization–specialization is a fundamental structural relationship between
a general thing and one or more of its specializations. Continuing our example from
the RDF Primer [28], consider the very first sentence from the abstract:

The Resource Description Framework (RDF) is a language for representing information
about resources in the World Wide Web.

Let us take the main message of this sentence, which is that RDF is a language.
This is exactly in line with the OPL syntax, so we can input the OPL sentence “RDF
is a Language” into OPCAT and see what we get.

The result, without any diagram editing, is shown in Fig. 7.8, along with the
conversation window titled “Add new OPL sentence,” in which this sentence was
typed prior to the OPD creation. In fact one can justifiably argue that RDF is not
a specialization of a language but rather an instance of a language. Indeed, instances
are the leaves of the specialization hierarchy [11]. In this case we would use the
classification–instantiation link, which is exemplified below.

Fig. 7.8 OPD obtained by inputting into OPCAT the OPL sentence “RDF is a Language”
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Fig. 7.9 The OPD representing the sentence “RDF has a simple data model”

7.9.3 Exhibition–Characterization

We continue to scan the RDF Primer [28], where in Sect. 2.2.1 we find the sentence
RDF has a simple data model.

To model this statement, we need to rephrase this sentence into the following
three sentences:

1. RDF is characterized by a data model.
2. The data model of RDF is characterized by a complexity attribute.
3. The value of this complexity attribute is “simple.”

These three sentences are further rephrased to conform to the OPL syntax as
follows:

1. RDF exhibits Data Model.
2. Data Model exhibits Complexity.
3. Complexity is simple.

Figure 7.9 shows the OPD representing the sentence “RDF has a simple data
model.”

7.9.4 Classification–Instantiation

Reading through the RDF Primer, we find in Sect. 3.3 on data types the following
sentence:

1. Data types are used by RDF in the representation of values, such as integers, floating
point numbers, and dates.
. . .

2. RDF predefines just one data type, rdf:XMLLiteral, used for embedding XML in RDF.

An OPL interpretation of the structural aspect of these two sentences, respec-
tively, is as follows:

1. RDF exhibits many Data Types.
2. XML Literal is an instance of Data Type.
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Fig. 7.10 The OPM model of XML Literal, an instance of a Data Type of RDF

Figure 7.10 is the OPM model of XML Literal, an instance of a Data Type of
RDF.

7.10 OPM Behavior Modeling

Procedural links connect entities (objects, processes, and states) to express the dy-
namic, time-dependent behavior of the system. Behavior, the dynamic aspect of
a system, can be manifested in OPM in three ways, giving rise to three types of
procedural links:

1. An object can enable a process without being transformed by it, giving rise to
enabling links.

2. A process can transform (generate, consume, or change the state of) one or more
objects, giving rise to transforming links.

3. A thing can control the behavior of a system, giving rise to control links.

The control is done via a condition link, an event link, or an exception link.
An object or a process can trigger an event that might, in turn, invoke a process
if, as explained earlier, the process precondition is met, i.e., all the objects in the
preprocess object set exist, each in its required state.

7.10.1 Enabling Links

The first group of procedural links in Table 7.4 presents the group of the three en-
abling links.

An enabler of a process is an object that must be present, possibly at some
specified state, for that process to occur.
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Table 7.4 The OPM enabling links, their OPD symbols, OPL sentences, and semantics

OPM ENABLING LINKS

Name  Symbol OPL Semantics 

Agent Link A handles B.
Denotes that object A is a 
human operator who triggers 
process B.  

Instrument 
Link 

B requires A.
"Wait until" semantics: Process 
B cannot happen if object A 
does not exist.  

State-
Specified

Instrument 
Link 

B requires s1 A.
"Wait until" semantics: Process 
B cannot happen if object A is 
not at state s1. 

An enabling link is a procedural link that links an enabler to the process it
enables.

Enablers are of two types: agents and instruments.

An agent is a human enabler. An instrument is a nonhuman enabler.

The distinction between these two types of enablers is made primarily since hu-
mans and other objects need to be addressed differently. Humans are capable of
intelligent decision making and need good interface with the system. Table 7.4 spec-
ifies the OPM enabling links, their OPD symbols, OPL sentences, and semantics.
Agent link, the first line in Table 7.4, is a “black lollipop” – a line ending with
a solid, filled-in circle.

The agent link has the semantics of a trigger – an event that attempts to launch
the process to which it is attached. Indeed, humans are triggers to many high-level
processes in complex systems, following which nonhuman instruments take over
control of lower-level subprocesses.

An agent is just an enabler and is not supposed to be affected by the process
it enables. If the human triggering a process is affected by that process, then he is
no longer just an enabler but, more importantly, an affectee. For example, a person
taking a medication is affected by the process of medication taking. In this case, the
effect link, described below, shall be used instead of the agent link.

The agent link helps system designers to quickly locate all the places in the sys-
tem where humans interact with the system, as these are places where more than
just adequate human–machine interfaces will have to be designed.

Instrument link, the second line in Table 7.4, is a “white lollipop” – a line ending
with a blank, white circle. An easy way to remember this difference is to think of
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a human as being worth more than an instrument, so the former is filled, while the
latter is empty.

The semantics of an instrument link is that of a wait-until, in the sense that when
triggered, the process in question cannot start unless the instrument exists. In other
words, the process is enabled if and only if the instrument exists.

The state-specified instrument link, shown in the bottom line of Table 7.4, is
an instrument link from a specific state, s1, of object A to process B. The semantics
of this link is also that of a wait-until, in the sense that when triggered, the process
in question cannot start unless the instrument exists in the specified state. In other
words, process B is enabled if and only if A is in state s1.

As we shall see next when discussing the transforming links, the set of two links
– instrument link and its refined state-specified instrument link – is a repeating pat-
tern of two related links: a procedural link and its state-specified refinement. At the
metamodel level, we can think of the state-specified link as a specialization of the
corresponding link that does not involve a state.

A stateless–stateful links pair is a pair of procedural links with almost iden-
tical semantics, in which one link connects an object to a process while the
other link connects an object state to a process.

One can justifiably ask, then, what about a state-specified agent link? There is no
state-specified agent link since we can always use an instrument link from a specific
value or state of an attribute of the agent. For example, a voter can elect a US pres-
ident if and only if she or he is a US citizen, so while the agent link will be from
Voter to the President Electing process, the instrument link will be from the state
US citizen of the attribute Citizenship of Voter to the President Electing process.
The OPL paragraph of this system follows.

Voter exhibits Citizenship.
Citizenship can be US citizen, resident alien, or nonresident alien.
Voter handles President Electing.
President Electing requires US citizen Citizenship.
President Electing yields President.

7.10.2 Transforming Links

By the definition of process, a process must transform at least one object. State
change is the least drastic transformation that an object can undergo. The transfor-
mation of an object can be done in one of three ways: (1) consumption of an object,
(2) generation of an object, or (3) change of an object’s state. Accordingly, and simi-
lar to the stateless–stateful instrument link pair discussed above, there are three pairs
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Table 7.5 The OPM transforming links, their OPD symbols, OPL sentences, and semantics

OPM TRANSFORMING LINKS

Name Symbol OPL Semantics

Consumption
Link 

B consumes A. Process B consumes Object A. 

State-
Specified
Consumption
Link 

B consumes s1 A. Process B consumes Object A 
when it is at State s1. 

Result Link B yields A. Process B creates Object A. 

State-
Specified
Result Link 

B yields s1 A. Process B creates Object A at 
State s1. 

Effect Link B affects A.

Process B changes the state of 
Object A; the details of the 
effect may be added at a lower 
level.

State-
Specified
Effect Link 
(Input-Output
Links Pair)

B changes A from 
s1 to s2.

Process B changes the state of 
Object A from State s1 to State 
s2.

of stateless–stateful transforming links, giving rise to the six transforming links in
Table 7.5.

1. The pair consisting of a consumption link and its refined state-specified con-
sumption link has the semantics of consumption. Referring to the first two lines
in Table 7.5, the consumption link denotes that occurrence of process B elimi-
nates object A. The state-specified consumption link denotes that the occurrence
of process B eliminates object A, provided that object A is at state s1.

2. The pair consisting of a result link and its refined state-specified result link has
the semantics of generation or creation. Referring to the two middle lines in Ta-
ble 7.5, the result link denotes that the occurrence of process B yields object A.
The state-specified result link denotes that the occurrence of process B yields
object A at state s1.

3. The pair consisting of an effect link and its refined state-specified effect link has
the semantics of state change. Referring to the two bottom lines in Table 7.5, the
effect link denotes that the occurrence of process B changes the state of object A.
The state-specified effect link, also called an input–output links pair, is a pair
of two links in opposite directions, denoting that the occurrence of process B
changes the state of object A from its input state s1 to its output state s2.
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Fig. 7.11 Effect link (a) and state-specified effect link (b). The effect link denotes that Cashing
changes the state of Check. The state-specified effect link denotes that Cashing changes Check
from uncashed to cashed

Figure 7.11 exemplifies the effect link in Fig. 7.11a and the state-specified ef-
fect link in Figure 7.11b. We can think of the effect link as an abstraction of its
refined version. Sometimes we may not be interested in specifying the states of an
object but still show that a process does affect an object by changing its state from
some unspecified input state to another unspecified output state. To express this, we
suppress (hide) the input and output states of the object, so the edges of the input
and output links “migrate” to the contour of the object and coincide, yielding the
bidirectional effect link as a superposition of two opposite-pointing arrows.

An effect is object transformation in which a process changes the state of an
object from some input state to another output state. When these two states are
expressed (i.e., shown explicitly), as in the OPD in Fig. 7.11b, then we can use
the pair of input and output links to specify the source and destination states of
the transformation. When the states are suppressed (hidden), we express the state
change by the effect link, a more general and less informative transformation link.

The two more extreme transformations are generation and consumption, denoted
respectively by the result and consumption links. Generation is a transformation
that causes an object that had not existed prior to the process execution to become
existent. In contrast to generation, consumption is a transformation that causes an
object that had existed prior to the process execution to become nonexistent.

7.10.3 Control Links

The OPM control links (Table 7.6) control the dynamics of the system, expressed
as the conditions and order of flow of processes and the associated object transfor-
mations that take place as the system becomes operational. Most OPM control links
are combinations of a procedural link with an event or a condition.

The first stateless–stateful links pair is the instrument event link and its refined
state-specified instrument event link. The instrument event link combines the se-
mantics of the instrument link with the semantics of event. Referring to the first line
in Table 7.6, the creation of object A is an event that triggers process B. B will start
executing if its precondition (i.e., all the objects in the preprocess object set exist,
and are in their required states, if so specified) is met. Since A is an instrument, it
will not be affected by B.
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Table 7.6 OPM control links, their OPD symbols, OPL sentences, and semantics

OPM CONTROL LINKS  

Name Symbol OPL Semantics 

Instrument  
Event Link A triggers B.

B triggers A.

Generation of object A is an event that 
triggers process B. B will start executing 
if its precondition is met. Since A is 
instrument it will not be affected by B. 

State-
Specified
Instrument 
Event Link 

A triggers B.
when it enters s1.
B requires s1 A.

Entering state s1 of object A is an event 
that triggers process B. B will start 
executing if its precondition is met. 
Since A is instrument it will not be 
affected by B. 

Consumption
Event Link  

A triggers B.
B consumes A.

Generation of object A is an event that 
triggers process B. B will start executing 
if its precondition is met, and if so it will 
consume A. 

State-
Specified
Consumption
Event Link 

A triggers B when 
it enters s2.
B consumes s2 A.

Entering state s2 of A is an event that 
triggers process B. If B is triggered, it 
will consume A. B will start executing if 
its precondition is met, and if so it will 
consume A.

Condition
Link 

B occurs if A
exists.

Existence of object A is a condition for 
the execution of B. If A does not exist, 
then B is skipped and regular system 
flow continues. 

State-
Specified
Condition
Link 

B occurs if A is 
s1.

Existence of object A at state s2 is a 
condition for the execution of B. If A is 
not in s2, then B is skipped and regular 
system flow continues. 

Invocation
Link  B invokes C.

Execution termination of process B is an 
event that triggers process C. B yields a 
temporary object that is immediately 
consumed by C and therefore not shown 
explicitly in the model. 

Exception 
Link 

A triggers B when 
it lasts more than 
4 seconds.

Process A has to be assigned with 
maximal acceptable time duration, 
which, if exceeded, triggers process B.  

The state-specified instrument event link combines the semantics of the state-
specified instrument link with the semantics of event. Referring to the second line
in Table 7.6, entering state s1 of object A is an event that triggers process B. B will
start executing if its precondition is met, again without affecting B since A is an
instrument.

The second stateless–stateful links pair is the consumption event link and its re-
fined state-specified consumption event link.
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The consumption event link combines the semantics of the consumption link
with the semantics of event. Referring to the third line in Table 7.6, the creation of
object A is an event that triggers process B. B will start executing if its precondition
is met, in which case it will consume B.

The state-specified consumption event link combines the semantics of the
state-specified consumption link with the semantics of event. Referring to the fourth
line in Table 7.6, entering state s2 of object A is an event that triggers process B. B
will start executing if its precondition is met, in which case it will consume B.

The third stateless–stateful links pair is the condition link and its refined state-
specified condition link. Referring to the fifth line in Table 7.6, the semantics of the
condition link is that the existence of object A is a condition for the execution of B.
If A does not exist, then B is skipped and regular system flow continues.

Referring to the sixth line in Table 7.6, the semantics of the state-specified con-
dition link is that the existence of object A in state s2 is a condition for the execution
of B. If A does not exist in s2, then B is skipped and regular system flow continues.

A fourth stateless–stateful links pair is the consumption condition link and its
refined state-specified consumption condition link. This pair, which does not appear
in Table 7.6, is graphically similar to the consumption event link and its refined
state-specified consumption event link, except that the letter c appears instead of the
letter e. The semantics of this pair is similar to the condition link and its refined
state-specified condition link, except that if B occurs, it consumes A.

The last two control links, shown in the two bottom lines in Table 7.6, are the
invocation link and the exception link. They are exceptional among the procedural
links, as unlike the other procedural links, which connect an object with a process,
they connect two processes. The invocation link semantics is that execution termi-
nation of process B is an event that triggers process C. B yields a temporary object
that is immediately consumed by C and therefore not shown explicitly in the model.
The exception link semantics requires that process A be assigned with maximal
acceptable time duration, which, if exceeded, triggers process B. This is a way to
avoid indefinite waiting for a process that, for some reason, got stuck and delays
further execution of the system. C is an exception handling process, which has to be
designed to take care of the failure of B to terminate within the time allotted for its
execution by taking a remedial action or notifying a human.

7.11 Complexity Management

Complexity is inherent in real-life systems. An integral part of a system development
methodology must therefore include control and management of this complexity.
Like most classical engineering problems, complexity management entails a trade-
off that must be balanced between two conflicting requirements: completeness and
clarity. On one hand, completeness requires that the system details be stipulated
in the model to the fullest extent possible. On the other hand, the need for clarity
implies that no diagram of the model be too cluttered or overloaded. This can be
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achieved by imposing an upper limit on the level of complexity of each individual
diagram. OO development methods, notably the UML standard [30] and its SysML
derivative, address the problem of managing systems complexity by dividing the
system model into different views for the various aspects of the system – structure,
dynamics, event sequence, physical architecture, state transitions, etc.

The approach OPM takes is orthogonal, advocating the integration of the various
system aspects into a single model. Rather than applying a separate model for each
system aspect, OPM handles the inherent system complexity by introducing a num-
ber of abstraction–refinement mechanisms. These enable presenting and viewing the
things that comprise the system at various detail levels. The entire system is com-
pletely specified through its OPD set – a hierarchical set of interconnected OPDs
that together provide a full picture of the system being investigated or developed.
Along with the OPD set goes the automatically generated OPL system specifica-
tion. This section elaborates on these complexity management issues and specifies
the various abstracting–refining mechanisms.

Complexity is managed in OPM via three refinement–abstraction mechanisms:
in-zooming and out-zooming, unfolding and folding, and state expression and sup-
pression. These mechanisms allow for looking at any complex system at any desired
level of granularity without losing the context and the “big picture.” We elaborate
on complexity management in this section.

7.11.1 The Need for Complexity Management

The very need for systems analysis and design strategies stems from complexity.
If systems or problems were simple enough for humans to grasp by merely glanc-
ing at them, no methodology would be required. Due to the need for tackling size-
able, complex problems, a system development methodology must be equipped with
a comprehensive approach, backed by a set of reliable and useful tools, for control-
ling and managing this complexity. This challenge entails balancing two forces that
pull in opposite directions and need to be traded off: completeness and clarity. Com-
pleteness means that the system must be specified to the last relevant detail. Clarity
means that to communicate the analysis and design outcomes, the documentation,
be it textual or diagrammatic, must be legible and comprehensible. To tackle com-
plex systems, a methodology must be equipped with adequate tools for complexity
management that address and solve this problem of completeness–clarity tradeoff
by striking the right balance between these two contradicting demands.

OPM achieves clarity through abstracting and completeness through refining.
Abstracting, the inverse of refining, saves space and reduces complexity, but it
comes at the price of completeness. Conversely, refining, which contributes to com-
pleteness, comes at the price of loss of clarity. There are “no free meals”; as is
typically the case with engineering problems, there is a clear tradeoff between com-
pleteness of details and clarity of their presentation. The solution OPM proposes
is to keep each OPD simple enough and to distribute the system specification over
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a set of consistently interrelated OPDs that contain things at various detail levels.
Abstracting and refining are the analytical tools that provide for striking the right
balance between clarity and completeness.

Analysis and design are the first steps in the lifecycle of a new system, product, or
project. Creating (sometimes unconscious) resistance on the side of the prospective
audience to accept the analysis and design results, because they look too complex
and intimidating, may have an adverse effect of jeopardizing the success of subse-
quent phases of the product development. The severity and frequency of this detail
explosion problem calls for an adequate solution to meet the needs of the systems
analysis community. A major test of any analysis methodology is therefore the qual-
ity of tools for managing the ever-growing complexity of analysis outcomes in a co-
herent, clear, and useful manner. Such complexity management tools are extremely
important for organizing the knowledge the architect accumulates and generates
during the system architecting process. Equally important is the role of complex-
ity management mechanisms in facilitating the communication of the analysis and
design results to stakeholder, including customers, peers, superiors, and system de-
velopers down the development cycle road – implementers, testers, and users.

7.11.2 Middle-Out as the De Facto Architecting Practice

Analyzing is the process of gradually increasing the human analyzer’s knowledge
about a system’s structure and behavior. Designing is the process of gradually in-
creasing the amount of details about the system’s architecture, i.e., the structure and
behavior combination that enables the system to attain its function. For both anal-
ysis and design, managing the system’s complexity therefore entails being able to
present and view the system at various levels of detail that are consistent with each
other. Ideally, analysis and design start at the top and make their way gradually to
the bottom – from the general to the detailed. In real life, however, analysis typically
starts at some arbitrary detail level and is rarely linear. The design is not linear either.
Almost invariably, these are iterative processes, during which knowledge, followed
by understanding, is gradually accumulated and refined in the conceptual model.

The system architect often cannot know in advance the precise structure and be-
havior of the very top of the system – this requires analysis and becomes apparent
at some point along the analysis process. Step by step, the analyst builds the system
specification by accumulating and recording facts and observations about things in
the system and relations among them. Using OPM, the accumulated knowledge is
represented through a set of OPDs and their corresponding OPL paragraphs. The
sheer amount of details contained in any real-world system of reasonable size over-
whelms the system architect soon enough during the architecting process. Trying
to incorporate the details into one diagram, the amount of drawn symbols gets very
large, and their interconnections quickly become an entangled web. For all but the
simplest systems, this information overload happens even if the method advocates
using multiple diagram types for the various system aspects. Because the diagram
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has become so cluttered, it is increasingly difficult to comprehend it. System ar-
chitects experience this detail-explosion phenomenon on a daily basis, and anyone
who has tried to analyze a system will endorse this description. The problem calls
for effective and efficient tools to manage this inherent complexity.

Due to the nonlinear nature of these processes, unidirectional “bottom-up” or
“top-down” approaches are rarely applicable to real-world systems. Rather, it is fre-
quently the case that the system under construction or investigation is so complex
and unexplored that neither its top nor its bottom is known with certainty from the
outset. More commonly, analysis and design of real-life systems start in an unknown
place along the system’s detail-level hierarchy. The analysis proceeds “middle-out”
by combining top-down and bottom-up techniques to obtain a complete understand-
ing and specification of the system at all the detail levels. It turns out that even
though architects usually strive to work in an orderly top-down fashion, more often
than not, the de facto practice is the middle-out mode of analysis and design. Rather
than trying to fight it, we should build software tools that provide facilities to handle
this middle-out architecting mode. Such facilities cater also to both top-down and
bottom up approaches.

During the middle-out analysis and design process, facts and ideas about objects
in the system and its environment, and processes that transform them, are being
gathered and recorded. As the analysis and design proceed, the system architect tries
to concurrently specify both the structure and the behavior of the system in order to
enable it to fulfill its function. For an investigated (as opposed to an architected) sys-
tem, the researcher tries to make sense of the long list of gathered observations and
to understand their cause and effect relation. In both cases, the system’s structure
and behavior go hand in hand, and it is very difficult to understand one without the
other. Almost as soon as a new object is introduced into the system, the process that
transforms it or is enabled by it begs to be modeled as well. By supplying the single
object–process model, OPM caters to this structure–behavior concurrency require-
ment. It enables modeling these two major system aspects at the same time within
the same model without the need to constantly switch between different diagram
types.

If the OPD that is being augmented becomes too crowded, busy, or unintelligible,
a new OPD is created. This descendant OPD repeats one or more of the things in
its ancestor OPD. These repeated things establish the link between the ancestor and
descendant OPDs. The descendant OPD does not usually replicate all the details of
its ancestor, as some of them are abstracted, while others are simply not included.
This new OPD is therefore amenable to refinement of new things to be laid out in
the space that was saved by not including things from the ancestor OPD. In other
words, there is room in it to insert a certain amount of additional details before it
gets too cluttered again. When this happens, a new cycle of refinement takes place,
and this goes on until the entire system has been completely specified.
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7.11.3 The Completeness-Comprehension Dilemma

We face a dilemma here, called the completeness-comprehension dilemma, which
is typical in conceptual modeling. The dilemma is that on one hand we wish to
continue adding facts to the system under study or design, but on the other hand
we do not want to compromise the clarity of the graphics by overcluttering it. This
dilemma pops up regardless of the conceptual modeling language used – it is simply
an unavoidable outcome of details starting to pile up that require and compete for
diagram “real estate.”

A balance needs to be struck and a tradeoff has to be found between complete-
ness of details on the one hand and keeping the model legible on the other. The
solution OPM offers to solve this problem is dividing the model into a set of sep-
arate yet logically integrated and hierarchically organized OPDs via a couple of
refinement mechanisms. The mechanism we have used is in-zooming. In-zooming
creates a new, descendant OPD and provides for refining the blown-up process by
modeling its subprocesses and their interactions with lower-level objects. Another
OPM refinement mechanism is unfolding, in which refineables of a thing are linked
using one of the fundamental structural links in a new OPD or in an existing one.

7.12 Applications and Standardization of OPM

OPM has been applied in a variety of domains, including real-time systems [32],
Web-based systems [35, 43], Enterprise Resource Planning [15, 39], systems ar-
chitecture [38], web service composition [51], Product Lifecycle Engineering [14],
molecular biology [13], data warehouse construction [12], privacy management in
medical records [4], software reuse and design patterns [36, 37], domain analysis
[41], exceptions modeling [33], intelligent house [52], and multiagent systems [42].

The domain-independent nature of OPM makes it suitable as a general, com-
prehensive, and multidisciplinary framework for knowledge representation and rea-
soning that emerge from conceptual modeling, analysis, design, implementation,
and lifecycle management. The ability of OPM to provide comprehensive lifecy-
cle support for systems of all kinds and complexity levels is due to its foundational
ontology that builds on a most minimal set of stateful objects and processes that
transform them. Another significant trait of OPM is its unification of system knowl-
edge from both the structural and behavioral aspects in a single model expressed
diagrammatically via the OPD set and textually via the set of corresponding OPL
paragraphs. OPM features dual knowledge representation in graphics and text, so
users have the capability to automatically switch between these two modalities. It is
hard to think of a significant domain of discourse and a system within it where struc-
ture and behavior are not interdependent and intertwined. Due to its single model,
expressed in both graphics and text, OPM lends itself naturally to representing and
managing knowledge, as it is uniquely positioned to cater to the tight interconnec-
tions between structure and behavior that are so hard to separate, making it a most
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suitable language for structure–behavior codesign. The ability to model physical
and informatical things also makes OPM ideal for hardware–software codesign.

OPM is not just a language but also a system development and lifecycle-support
methodology, for which a comprehensive reflective metamodel (which uses OPM)
has been developed [34]. Indeed, in a 2008 survey by INCOSE – the International
Council on Systems Engineering [18] – OPM was recognized as one of the six
leading model-based systems engineering (MBSE) methodologies, which include
also IBM Telelogic Harmony-SE, INCOSE Object-Oriented Systems Engineering
Method, IBM Rational Unified Process for Systems Engineering for Model-Driven
Systems Development, Vitech Model-Based System Engineering Methodology, and
JPL State Analysis.

Several activities are being undertaken to leverage the potential benefits of OPM
in international standardization bodies. Work is under way by ISO TC184/SC5 OPM
Working Group to develop a Draft International Standard (DIS) for OPM that will
be the basis for authoring model-based enterprise standards and other technical doc-
uments [20, 24, 25]. This DIS is expected to be presented in the ISO TC184/WG5
annual meeting in the USA in 2011.
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Chapter 8
Business Process Modeling and Workflow Design

Horst Pichler and Johann Eder

Abstract Detailed knowledge about the structure and functionality of a business
process within an enterprise is of utter importance for a thorough understanding of
organizational sequences. This is a crucial requirement in business process man-
agement (BPM) and business process re-engineering (BPR), which cover the entire
process lifecycle, from modeling and design, to execution, monitoring, and opti-
mization. Throughout this lifecycle, process models are required to represent an
enterprise’s processes, so that they can be documented, communicated, verified,
simulated, analyzed, automated, evaluated, or improved. This chapter provides an
overview of business process modeling and workflow design, discusses their com-
monalities and differences, explains how different process perspectives are modeled,
and gives an overview of several business process modeling related research topics.

8.1 Introduction

Detailed knowledge about the structure and functionality of a business process
within an enterprise is of utter importance for a thorough understanding of orga-
nizational sequences. This is a crucial requirement in business process management
(BPM) and business process re-engineering (BPR), which cover the entire process
lifecycle, from modeling and design, to execution, monitoring, and optimization.
Throughout this lifecycle, process models are required to represent an enterprise’s
processes, so that they can be documented, communicated, verified, simulated, ana-
lyzed, automated, evaluated, or improved.
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In this chapter, we provide an overview of process modeling and workflow de-
sign, which is organized as follows: Section 8.1 clarifies relevant terms and con-
cepts. Section 8.2 explains which perspectives are typically part of a process model,
distinguishes different modeling techniques, and discusses current standardization
efforts. Section 8.3 goes into depth on three of the most extensively described pro-
cess perspectives: the control flow perspective, the organizational perspective, and
the data perspective.

The remainder of the chapter deals with selected research topics. Section 8.4 de-
scribes various problems that can arise in the control flow and explains how to de-
tect and avoid them. Section 8.5 deals with the correctness and generation of process
views. Section 8.6 shows how to model timed processes and describes a method that
exploits temporal information in order to improve the performance and the quality
of processes.

8.1.1 Business Process Modeling and Workflow Design

A business process is set of one or more activities (tasks) that collectively realize
a business objective or policy goal, normally within the context of an organizational
structure defining functional roles and relationships. A workflow is the automation
of a business process, in whole or part, during which documents, information, or
tasks are passed from one participant to another. A workflow requires a workflow
management system (WfMS), which is a system that defines, creates, and manages
the execution of workflows, interacts with workflow participants, and – where re-
quired – invokes the use of IT tools, applications, and services [1].

Business process modeling is the activity of capturing and representing all re-
quired information about an enterprise’s business process, whereas workflow design
aims at creating an executable model of this process within the enterprise’s technical
environment. A business process model is the description of an operational sequence
of a real world business process, whereas a workflow model (aka workflow process
definition or workflow schema) is the mapping of a process model to a information
system.

8.1.2 Business Process Modeling Versus Workflow Design

Naturally, business process models and workflow models have many things in com-
mon, as they are often just separate steps in the life cycle of one specific business
process: from business process modeling for documentation, communication, and
analysis purposes, to workflow design for automatization purposes. Correspond-
ingly, the disciplines of process modeling and workflow design continuously grow
together, e.g., business process modeling tools that export process definitions to
workflow systems or the other way around in re-engineering scenarios.
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Fig. 8.1 The BPM hourglass [2]

Figure 8.1 shows the relationship between a business process model (in this case
a BPMN model) and the corresponding executable process definition (in this case
a BPEL process definition) [2]. The different audiences require information about
diverse process perspectives on different levels of detail. For example, a business
analyst may be interested in the organizational structure or in the communication
sequences with external systems, but might not be interested in the technical details
of selecting a specific participant from an organizational resource repository and
assigning a task to him, or in the parameter types of called interfaces, which is an
indispensable piece of information for software engineers. Therefore it is important
to notice that although business process modeling and workflow design have many
things in common, workflow models have a focus on technical issues, which are
often not required in business process models.

8.1.3 Workflow Characteristics

When talking about workflows, one must in principle distinguish between the build
time and the run time phase, as shown in Fig. 8.2 [3].

During the build time phase (design phase), a process designer analyzes and de-
fines the process. The result is a formal process definition, which describes every
required perspective of the process such that it can be interpreted and executed by
the WfMS. This definition contains among other things the steps of the process,
a description of the order of execution for these steps, the participants involved,
data used, applications invoked, constraints, and exceptions.

During the run time phase (execution phase), the workflow process definition
serves as description for process execution. Each time a process is started, the work-
flow enactment service (workflow engine) creates a new instance of the process and
executes it according to the sequence of activities specified in the process definition.
The workflow engine assigns tasks to participants (agents), which are presented as
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Fig. 8.2 Workflow system characteristics [3]

work items in their worklists. Apart from driving the process, the workflow engine is
responsible for the interaction with workflow participants and external applications;
it logs every step, and it monitors whether instances are still compliant to specified
constraints.

8.2 An Overview of Process Modeling

As mentioned previously, process models are used for different purposes – like doc-
umentation, analysis or automatization – in different stages of the process life cycle.
Correspondingly, the information required for each of these purposes will vary ac-
cording to the goals to be achieved and the target environments. Therefore, there is
no common agreement about the information that a process model should contain,
nor is there a global consensus about how this information shall be represented. This
section gives a brief overview of the information to be captured in a process model,
the various representation techniques, and current standardization efforts.

8.2.1 Process Perspectives

A process model (or process definition) is composed of information on diverse pro-
cess perspectives (also called process aspects). The following five perspectives are
the most frequently mentioned (e.g. [4–6]):
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1. The control flow perspective (behavior perspective) specifies the execution order
of activities (steps) in a process.

2. The organizational perspective (resource perspective) specifies the organiza-
tional structure, process participants, roles, or resources, and their assignment
to specific activities in the process.

3. The data perspective (information perspective) deals with data objects used and
accessed in the process as well as with the flow of data between process activi-
ties.

4. The functional perspective (task perspective) describes the semantics and func-
tionality of each activity in the process. Such a step is a logical unit of work
with characteristics that may include a description, the set of operations to be
performed, pre-conditions, priority, triggers, expected duration, and due date.

5. The operational perspective (application perspective) describes the implementa-
tion of operations within each activity, for example: the invocation of programs
for the manual manipulation and the presentation of associated data, the invoca-
tion of applications, or the message exchanges with external services.

Which perspectives are part of a process model and how detailed they must be
described depends on the business goals, the application area, and the target envi-
ronment or system. For instance, the operational perspective will be required for
process automation within a workflow environment; this is not necessarily the case
if one wants to model a process for mere documentation purposes.

Note that this list is neither complete nor fixed; it may be arbitrarily modified or
extended, depending on the needs of a specific application domain. Other perspec-
tives might include a temporal perspective that comprises activity durations and
temporal constraints like deadlines, which are required for the determination of crit-
ical paths in a process; a performance perspective that describes process arrival fre-
quencies, activity duration estimations, and branching probabilities for simulation in
a process analysis tool such as ADONIS1; a history perspective that comprises data
in a workflow log; a causal perspective that describes the conditions under which
a process can be executed; a integrity and failure perspective; a compensation per-
spective; a transactional perspective, and more (e.g., [5, 6]).

There is often no clear distinction between perspectives. For example, in BPMN,
diverse perspectives such as failure, compensation, or transaction are integral parts
of the control flow perspective2. Furthermore, complex perspectives cannot always
be captured directly in the process model, but only through referral to an external
resource repository. For instance, elements in the organizational model of an ERP
system (users, organizational units, roles) are referred by activities in the control
flow model to describe possible assignments of activities to resources – thus the
organizational structure itself is not part of the process model [5].

1 http://www.boc-group.com.
2 BPMN meta model download available at http://www.bpmn.org.
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8.2.2 Process Modeling Techniques

Many process modeling techniques have been proposed for the specification of busi-
ness processes and workflows, either as graphical notations or text-based languages.
Many of them are based on existing modeling techniques, such as flow charts, Gantt
charts, or Petri nets, and others are proprietary techniques tailored to specific work-
flow systems. In 1998 the US National Institute for Standards and Technology pro-
vided a survey of techniques frequently applied for process modeling [7]. They iden-
tified several dozen different techniques and showed that most of them focus on the
control flow perspective and that none is perfectly suited for process modeling, as
often diverse techniques have to be combined to capture all required perspectives
of a business process. Basically, process modeling techniques can be categorized as
follows (e.g., [5–8]):

• Specification types – The most frequently applied specification type is activity-
based, which focuses on modeling the tasks involved in a process and their prece-
dence dependencies. Less often applied are constraint-based methods and rule-
based methods, which describe a process by means of a set of constraints and
rules on tasks, which are used to decide when a task is enabled and ready for exe-
cution. Rarely applied types are communication-based or speech-act approaches
that model a process as an interaction between (at least) two participants that
follow a structured cycle of conversation.

• Supporting modeling concepts are the modeling notations used for process mod-
eling, for instance: example flow charts, precedence graphs, activity diagrams,
role activity diagrams, sequence diagrams, state charts, Petri nets, and so on. The
majority of these notations are representations for activity-based process specifi-
cation.

Fig. 8.3 Graphical and textual process representations in @enterprise [9]
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• Representation types – Process models may have a graphical representation
(a notation), usually based on one of the supporting modeling concepts and/or
a textual representation (a language), which is usually defined in a programming
language-style.

Figure 8.3 shows the graphical representation and the corresponding textual rep-
resentation of a process in the WfMS @enterprise [9]. It offers an activity-based
specification, with flow charts as supporting modeling concept, augmented with spe-
cific elements for the control flow perspective, the data perspective, and the organi-
zational perspective. The textual representation of this process is a process definition
written in @enterprise’s proprietary Workflow Process Language WPL.

8.2.3 Standardization Efforts

Since the early 1990s, diverse endeavors have aimed at the development of standard
business process modeling notations and languages. Among the most prominent
representatives are: the process interchange format PIF, the ICAM definition lan-
guages IDEF, the Process Specification Language PSL, the Business Process Defi-
nition Language BPDL, or even the Unified Modeling Language UML 2.0, which
features several concepts specifically introduced for business process modeling.

Standardization efforts in the workflow field are even more problematic, as nearly
every workflow system provides its own proprietary process definition language.
Concept and structure of these languages are based on inherent features and under-
lying process representation models, which are tailored to the specific needs of the
particular field of application. Nevertheless, the WfMC3 introduced a standard spec-
ification for process definitions – also known as a process definition interface [10]
– as part of their workflow meta model, along with its XML-based successor, the
XML Processing Description Language XPDL [11].

The most recent standardization effort is the graphical Business Process Mod-
eling Notation BPMN [12]. It is already supported by many tool vendors and its
acceptance increased dramatically with the WfMC’s decision to use XPDL 2.0 as
textual representation format to exchange BPMN process models between tools
and systems of different vendors [11]. Additionally, BPMN can be used to visual-
ize inter-organizational process models defined with the textual XML-based Web
Service Business Process Execution Language WS-BPEL, specifically designed
for executable inter-organizational workflows [12, 13]. These examples are further
proof that business process modeling and workflow design continuously grow to-
gether.

3 The Workflow Management Coalition (WfMC, www.wfmc.org) is a global organization that
creates and contributes to process related standards.
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8.3 Modeling Process Perspectives

8.3.1 Control Flow Perspective

The control flow or behavior perspective has a central position in the definition
of a business process as it specifies the execution order of activities, such that tasks
can be assigned to participants in this anticipated order. Information about other per-
spectives is often attached to elements of the control flow. Correspondingly, it is the
most intensively researched and described perspective. For instance, in the BPMN
meta model, the majority of several dozen classes describe the control flow, whereas
the organizational perspective is only reflected by the classes Pool and Lane, or the
data perspective which is reflected by MessageFlow, Data Object, and Association.

8.3.1.1 Control Flow Representation

Numerous modeling techniques are in use, but among all alternatives one class is fa-
vored: the activity-based directed graph representation, like flow charts augmented
with special symbols, Petri net variants like WF-nets, precedence graphs with con-
trol nodes, and so on. Figure 8.4 shows a BPMN process model as an example of
such a representation. Sequence flows (directed edges, transitions) specify the prece-
dence between diverse types of nodes, where rectangles represent activities or tasks
to be executed by agents and diamonds represent gateways (control nodes) with
special execution semantics. Splits (forks) are control nodes where a single path
of execution is split into several paths of execution, and joins (merges) are control
nodes where multiple paths are merged into one path.

The popularity of this representation form has various reasons: clear and simple
concepts make them intuitively comprehensible, as they follow the natural order-
ing of individual tasks; they are well suited for monitoring purposes, as it is easy
to determine the current state of execution; and the flow-based model can be com-
pleted with additional information from other perspectives, like the data flow [15] or
temporal constraints between tasks [14]. This is also of advantage when discussing
business processes with non-experts or customers. Therefore, the majority of pro-
cess modeling standards and workflow systems also rely on this modeling paradigm.

8.3.1.2 Control Flow Patterns

Although many control flow structures are used and interpreted alike in process
and workflow models, there was for a long time no real common consensus about
their execution semantics. In the mid-nineties the Workflow Management Coalition
provided a definition of some basic control flow elements in their terminology [1].
Some years later the notion of control flow patterns was introduced [16]. A control
flow pattern is a frequently applied flow structure with defined execution semantics.
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Basic control flow patterns are supported by most process modeling notations
and languages. The execution semantics of the basic patterns in Fig. 8.4 are to be
interpreted as follows:

• Sequence – A node in a process is enabled after the completion of another node
in the same process instance. Sequences are represented as a single directed edge
between a predecessor and its successor node. Activity B will (can) be started
when activity A is finished, and after B the succeeding parallel split will be per-
formed.

• Parallel split, And-split – A point in the process where a single thread of con-
trol splits into multiple threads of control which can be executed in parallel,
thus allowing activities to be executed simultaneously or in any order. Note that
where a process includes parallel activities, a process instance may include mul-
tiple concurrent threads of execution, which also means that multiple activity in-
stances are executed at the same time [1]. In BPMN the parallel split it is called
and-gateway – a diamond with a plus-sign – with multiple outgoing transitions.
Activity C and activity D will be started when activity B is finished.

• Synchronization, And-join – A point in the process where two or more parallel ex-
ecuting activities converge into a single common thread of control. At this point,
an execution thread waits until all parallel execution threads are completed and
the next activity can be initiated [1]. In BPMN, the and-join is also represented by
an and-gateway (this time with multiple incoming transitions). The and-gateway
will wait until the parallel paths via C and via D are completed in order to syn-
chronize the two threads of execution.

• Exclusive choice, Xor-split – A point within the process where a single thread of
execution decides which branch to take when encountered with multiple alterna-
tive workflow branches [1]. This structure is exclusive, as exactly one of several
branches must be chosen, according to specified conditions. An undefined result
of condition evaluation is usually not permitted [6], which is avoided by either
adding an otherwise-transition [11] or marking one of the transitions as default
transition to be selected if none of the other conditions evaluate to true [12]. In
BPMN, the exclusive choice is represented by an xor-gateway – a diamond with

Fig. 8.4 BPMN Sample process – basic control flow patterns
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an x. After the execution of activity D, activity E will be started when the condi-
tion x � 10 holds; otherwise, activity F will be started.

• Simple merge, Xor-join – A point within the process where two or more alterna-
tive workflow branches re-converge to a single common activity as the next step
within the workflow [1]. It will be triggered once any of the incoming transitions
are triggered [16]. In BPMN, the xor-join is also represented by an xor-gateway
(this time with multiple incoming arcs), where the process execution proceeds
when any of the preceding activities – either E or F – finishes.

Advanced control flow patterns Most commercial workflow systems offer many
more additional control flow elements with diverse semantics. To date, 41 different
control flow patterns have been identified4. Besides (1) basic patterns, they can be
categorized as follows: (2) Iteration patterns deal with repetitive behavior in pro-
cesses, for instance the structured loop pattern or the recursion pattern. (3) Advanced
branching and synchronization patterns add more complex branching and merging
concepts which arise in business processes. This includes, for instance, the multi-
choice pattern (m out of n paths may be executed in parallel, according to defined
conditions) and the corresponding multi-merge pattern. (4) Termination patterns de-
scribe the circumstances under which a process is considered to be completed, for
instance, explicit termination when the end node of the process has been reached.
(5) Cancellation and force completion patterns deal with the cancellation of activi-
ties which may already be active. For instance, the cancel region pattern, which can
be used to disable a set of tasks in a process instance when an exception is thrown in
this region. (6) Multiple instance patterns describe situations where there are mul-
tiple threads of execution active in a process model that relate to the same activity
(and hence share the same implementation definition). (7) State-based patterns re-
flect situations that require the notion of a process or system state. For instance, the
milestone pattern, which allows execution of a certain activity only if the process
has reached a defined state (for example, another activity in a parallel branch must
already be finished). Finally, (8) Trigger Patterns deal with situations where external
signals are required to start certain tasks.

8.3.2 Organizational Perspective

The organizational or resource perspective deals with elements and relations in an
enterprise’s organizational structure and how activities are assigned to them for ex-
ecution. Most graphical process modeling notations provide a few concepts, which
direct the viewer’s attention to the organizational perspective. For instance, BPMN
shows the organizational affiliation of activities by placing them into pools, which
can be divided into swimlanes, which may again be divided into further swimlanes
(which allows tree hierarchies of organizational units or roles). Figure 8.5 presents
a simple example. The organizational model of BPMN is obviously very simplistic,

4 http://www.workflowpatterns.com.
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Fig. 8.5 BPMN process model with organizational and data perspective

which is mainly caused by the fact that the specification of BPMN 1.0 had a very
strong focus on the Web Service-based Business Process Execution Language WS-
BPEL, where such a model suffices.

8.3.2.1 Organizational Model

However, an organizational model like the one in BPMN is not sufficient for defining
the organizational view of in-house processes or workflows, as enterprises often im-
plement very complex organizational structures and task assignment mechanisms.
An activity may for instance be assigned to a certain organizational unit (e.g., a de-
partment) for execution, where only certain users who inhabit a specific role within
this unit may be allowed to execute this activity.

Although standardization approaches aimed to capture these structures in orga-
nizational meta models, they were bound to fail. For instance, the organizational
meta model of the WfMC [3], as depicted in Fig. 8.6, assigns activities of a process
to participants, like users, roles, resources, or organizational units, which may be
related to each other and hierarchically structured. First of all, there is no global
common consensus on the elements, their semantics, and how they are related to
each other. Further, this model contains only part of the organizational concepts re-
quired and supported in real workflow systems like FlowMark or Workparty or even
more complex models of ERP systems like SAP [21]. Especially, ERP systems fea-
ture complex human resource (HR) modules, to be used by not only the workflow
component but also by other modules. In such an environment, the organizational
structure is an external component to be referenced in process models for the as-
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Fig. 8.6 WfMC Organizational meta model [3]

signment of activities to specific system resources (e.g., users) described by various
organizational characteristics.

8.3.2.2 Basic Assignment Policies

Assignment policies describe how activities are assigned to resources. In [5] three
different policies are distinguished, which are to be specified as part of the organi-
zational perspective (usually attached to activities) in a process model or workflow
definition:

• Direct designation – An activity is assigned to one or more resources (users)
of the organizational model. At run time, a workflow engine can directly look
up these resources and assign a corresponding task to one of them. Although
this concept is very easy to handle for process designers and administrators, it is
rather inflexible, as every modification of the organizational population or change
of assignment rules results in the modification of the process definition.

• Assignment by role – This concept was introduced to decouple the resource
model from the process model. A user may inhabit one or more roles, which
describe a specific organizational role or function (e.g., head of department, en-
gineer). These roles can be assigned to activities, which means that every user
who inhabits the specified role may be selected to perform this activity. Pools
and swimlanes in BPMN can be used to model this concept. Figure 8.3 shows
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the realization of such a role concept in the workflow system @enterprise: all
users are allowed to perform the activity ‘apply’, only team leaders are allowed
to perform ‘check_application’, and so on.

• Assignment by formal expression – The most complex form of task assignment
allows the specification of expressions on the resource model which are evalu-
ated during run time. For instance, an expression like superior(resource(process-
Starter)) or role(boss) may be used to select possible users for task assignment.
Naturally these expressions require knowledge about the resource model, its en-
tity types, and their relationships, as well as a set of operations to query the model
(e.g., superior). Additionally, it must feature attributes that are dependent on the
currently running process instance (e.g., processStarter).

8.3.2.3 Resource Patterns

Closely related to these three basic assignment policies are the resource patterns
[22], which aim at the description of the various ways resources are represented,
utilized, and assigned in workflow systems. At this point, 43 different resource pat-
terns5 have been identified, categorized, and described in detail. The most frequently
applied categories are: (1) Creation patterns are specified at design time and come
into effect at the time a task (or work item) – for an activity that is ready for exe-
cution – is created and must be assigned to a resource. The three basic assignment
policies explained above are also creation patterns. (2) Push patterns describe sit-
uations where a new task is automatically distributed to resources for execution by
the system, as opposed to (3) pull patterns, in which the resource takes the initiative
and selects tasks offered by the system, either directly or through a shared worklist.
(4) Detour patterns refer to situations where tasks are interrupted either by the sys-
tem or by the assigned resource itself, in order to be delegated to another resource,
cancelled, postponed to be finished later, and so on.

8.3.3 Data Perspective

The data or information perspective deals with all kinds of data used by a process
and how the data is accessed by the process. The workflow community distinguishes
between three different types of data related to a business process [1, 23]. (1) Work-
flow relevant data, also known as case data, is required by the process instance. For
instance, data artifacts (like forms) passed from user to user or expressions in con-
ditions to determine a path after an xor-split. Workflow relevant data is primarily of
interest for process models. (2) Application data is specific to applications invoked
by the process and not accessible by the workflow management system (for instance,
an external database). (3) Workflow control data is only accessed by the workflow

5 http://www.workflowpatterns.com.
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engine and is not directly accessible by processes. Examples of this include the cur-
rent state of process instances, information on recovery and restart points, and so
on.

8.3.3.1 Modeling Workflow Relevant Data

The specification of data is required for a thorough understanding of a business
process as well as for the execution of a workflow process. In graphical notations
like BPMN, the possibilities of representing data usage are usually very limited.
Although the BPMN standard describes diverse data-related properties, there is no
graphical representation for most of them. A simple example is presented in Fig. 8.5,
where an order form is passed from one activity to another activity. BPMN model-
ing tools usually also allow one to attach sample forms (documents) to the process
model, which helps analysts to comprehend which data is used and and how it is
accessed in the process.

However, in BPMN there is no possibility to define the structure of the order
form with fields, data types, constraints, or to indicate that the variable ‘approved’
is related to a field of the same name in the order form, which are indispensable
features for workflow process definitions. The process definition language XPDL,
which can also be used to export BPMN models, features additional data-related
concepts, for instance the specification of parameter sets for applications invoked in
steps of the process. In the Business Process Execution Language WS-BPEL, the
structures of data passed between process and Web services must be specified in
XML Schema, which is usually supported by process modeling tools. Accordingly,
vendors of BPMN modeling tools that feature XPDL or WS-BPEL export offer
additional specification dialogs where data-specific details can be entered (e.g., Ac-
tiveBPEL6, Oryx7).

An executable workflow definition requires a lot more information on data.
The process definition in Fig. 8.3 shows how the usage of data is specified in
the WfMS @enterprise. The field ‘hire1’ of an attached form ‘application_form’
is used in an xor-node to determine which path shall be chosen after the activity
‘check_application’. In addition to this the process designer must specify the struc-
ture of the ‘application_form’ with the fields it contains and their data types, along
with access permissions (read, write) for organizational roles in the different steps
of the workflow [9].

6 http://www.activevos.com.
7 http://bpt.hpi.uni-potsdam.de.
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8.3.3.2 Data Flow

Apart from the structure and usage of data in a process, it is also of interest how
data is passed between activities of a process. Basically, three different types of data
flow can be distinguished [23]:

• Explicit data flow – In this approach, the data flow is explicitly modeled between
different activities. The data flow transitions are distinct from control flow tran-
sitions, but the data flow is not independent from the control flow. For instance,
an activity with incoming data flow transitions cannot be executed until the re-
quired data arrives, even if it is ready for execution according to the control flow.
The BPMN process in Fig. 8.5 contains an explicit data flow, where a document
is passed from activity ‘Review Order’ to activity ‘Approve Order’. Please note
that as both control flow and data flow between these activities are modeled in the
example, they describe the same flow behavior: ‘Review Order’ must be finished
before ‘Approve Order’ can be started.

• Implicit data flow integrated with control flow – In this approach, the control flow
is used to pass data from one activity to another. Data and control transitions are
always identical. The main disadvantage of this approach is that data created in
one activity and required by another activity must be transported over all activi-
ties on the path between them. Such an approach is also called ‘case processing’.
For instance, in administrative processes, a folder of documents is often passed
from participant to participant [23].

• Implicit data flow via shared elements – This approach is similar to data han-
dling used in many programming languages. Shared data elements (variables)
are passed to activities as input or output parameters. This approach is used by
the majority of workflow systems. For instance, SAP workflow uses so-called
workflow containers to hold all variables accessed in a process8. For each step
in the process, it is required to define the data flow from the container into each
step (before the step is executed) and the data flow from each step into the con-
tainer (after the step has been finished). The data flow with shared elements can
be analyzed by deriving an explicit data flow from the specification of variable
accesses in the process steps.

In addition to data flow, BPMN also features message flow between activities
of different processes in inter-organizational scenarios. Message flows also indicate
from where in the internal process external services and processes are accessed. This
is also of interest when using BPMN as modeling notation for executable WS-BPEL
processes.

8.3.3.3 Data Patterns

Workflow data patterns aim to capture the various ways in which data is represented
and utilized in workflows [24]. Thus far, 40 different data patterns have been identi-

8 http://help.sap.com.
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fied9, which were categorized as follows. (1) Data visibility patterns describe where
workflow related data (including control data and application data) is visible and can
be accessed, for example: task data, which is accessible within tasks of a process, or
case data, which is accessible by all components of a process during execution. (2)
Data interaction patterns deal with different variants of data flow within a process
(e.g., from task to task, from case to task, etc.), whereas (3) data transfer patterns
focus on the implementation details of the data flow (e.g., transfer by value or refer-
ence, input transformations), and (4) data-based routing patterns capture the various
ways how data elements interact with information from other perspectives (e.g., pre-
and post-conditions for task execution).

8.4 Detection and Avoidance of Control Flow Errors

Many modeling notations and languages allow arbitrary combinations of control
flows elements. The reasons for this are very pragmatic: it offers a greater degree of
modeling freedom and is easy to learn for non-experts. However, the problem is that
arbitrary combinations of control flow patterns enable the specification of process
structures which may cause problems during process execution (in a workflow sys-
tem). As these errors result in very costly failures at run-time, they must be detected
and avoided during the process design phase.

8.4.1 Control Flow Errors

Several run time problems may arise due to such control flow errors. The most
frequently mentioned include incorrect usage (dangling or unconnected nodes or
edges), deadlock or livelock (process is stuck and cannot be finished), unintended
multiple execution (activities are executed multiple times), or active termination
(process ends, although activities are still active) [17, 18]. Figure 8.7 presents two
examples which show that problems are frequently caused by an inappropriate com-
bination of splits and joins of different types. To represent the current state of exe-
cution, we added tokens (black dots) to the currently active tasks in the process.

• Unintended multiple execution – This example combines an and-split with an
xor-join. The and-split produced two tokens, one for each of its successors A1
and B1, and the xor-join passes each received token to its successor C1, which
therefore will be executed twice.

• Deadlock – This example combines an xor-split with an and-join, which produces
a typical deadlock situation. After the execution of activity A2, the token is passed
to the succeeding and-join, which has to wait for the second token from activity
B2, which never arrives because the xor-split generated only one token.

9 http://www.workflowpatterns.com.
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Fig. 8.7 Examples of control flow errors

8.4.2 Blocked Structures

The WfMC distinguishes three different conformance classes for control-flow mod-
els: non-blocked, loop-blocked, and full-blocked [10]. (1) Non-blocked means that
there are no structural restrictions for processes of this class. Activities and control
nodes may be connected in an arbitrary order. (2) The conformance class loop-
blocked demands that for cycles, only a blocked representation may be used (cmp.
to loop-statements in structured programming languages). Arbitrary cycles10 are not
allowed, which implies that the activities and transitions of the process definition
must form an acyclic directed graph. (3) Full-blocked demands that for each split,
there is exactly one corresponding join of the same kind.

Fig. 8.8 BPMN Sample process – full-blocked control flow

10 Arbitrary cycles are possible in languages with GOTO-statements; which allows jumps from any
point to any other point in the process.
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Therefore a full-blocked process consists of basic building blocks that may be
nested but must not overlap. Figure 8.8 visualizes the blocks in the sample pro-
cess, which is composed of nested block structures (sequence-blocks, and-blocks,
xor-blocks). Each xor-split has a corresponding xor-join, each and-split has a corre-
sponding and-join, and each block has exactly one entry and exactly one exit.

8.4.3 Sound Processes

It is important to note that because of the restrictions imposed on full-blocked mod-
els, they render the above mentioned control flow errors impossible [16]. One way
of guaranteeing valid control flows, therefore, is to allow only full-blocked con-
trol flow models. Some languages and workflow systems, such as SAP workflow or
the Business Process Execution Language WS-BPEL, force designers to define the
control flow in a full-blocked fashion. Many modeling notations and workflow lan-
guages don’t, for instance, the languages of Tibco Staffware or @enterprise. They
use transition-based models or allow concepts like the goto-statement. Therefore,
designers must be made aware of the problems that may occur, as well as of the
existence of modeling concepts, patterns, anti-patterns, and verification tools that
aim at error-free control flows. To examine process control flow structures and iden-
tify possible design errors, the concept of soundness has been introduced. Literally
a workflow is sound “if and only if, for any case, the process terminates properly,
i.e., termination is guaranteed, there are no dangling references, and deadlock or
livelock are absent” [19]. To check the soundness and detect control flow errors at
build time, verification tools like Woflan [20] may be used. In this section, we briefly
describe the formal foundations of the soundness property – as introduced in [19] –
which is based on Petri net theory.

8.4.3.1 Petri Nets and WF-Nets

A Petri net is a triple .P; T; F /, where P is a finite set of places, T is a finite set
of transitions, and F is a set of arcs (directed flow relations). A place p is called
an input place of a transition t , if there exists a directed arc from t to p. Place p is
called an output place of transition p, if there exists a directed arc from p to t . t
denotes the set of input places for a transition t , t denotes the set of output places
for a transition t , and the notations p, p are to be interpreted analogously for
a place p. A path is defined by two nodes (place or transition) that are connected by
sequences of arcs. A Petri net is strongly connected if a directed path exists between
any pair of nodes n1 and n2, where n1; n2 2 P [ T; n1 ¤ n2 .

A workflow net or WF-net is a Petri net with two additional constraints. (1)
A WF-net has exactly one source place i , where i D ;, and exactly one sink place
o, where o D ;. (2) If we add a transition that connects place o with i , then the
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Fig. 8.9 Petri net of Process 2 in Fig. 8.7

resulting Petri net is strongly connected, which means that every node is on a path
between the source and the sink (no dangling places or transitions). The example
in Fig. 8.9 shows the WF-net representation of Process 2 in Fig. 8.8. As shown, the
activities are represented as places, the xor-split as two separate transitions, and the
and-join as transition that merges two incoming arcs.

8.4.3.2 Execution of Petri Nets

Petri nets are used to describe and analyze the execution semantics of business pro-
cesses. Any place may contain an arbitrary number of tokens – drawn as black dots
– to represent the current state of execution. The number of tokens in place changes
during the execution of the net according to the following firing rules: (1) A tran-
sition is enabled if each of its input places contains at least one token. (2) Each
enabled transition may fire. (3) If a transition fires, it consumes one token from each
input place and produces one token in each output place.

A state – also called marking – is described by a distribution of tokens over
places. For instance,M D .0; 1; 0; 0; 0/ represents the current state of the process in
Fig. 8.9, where place 1 contains no token, place 2 contains 1 token, and so on. A state
M2 is reachable from a state M1 if there exists a firing sequence that produces the
stateM2 starting from the stateM1. Figure 8.10 shows the whole reachability graph
of the WF-net introduced above, where the initial marking has exactly one token
in the input place, followed by two markings that can be reached by either firing
transition t1 or transition t2 (which describes the or-split semantics). After that, no
other transition is enabled.

Fig. 8.10 Reachability graph for WF-net in Fig. 8.9
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8.4.3.3 Soundness Property

The initial state Mi is described by a marking with exactly one token in the source
place i , and the final state Mo is described by a marking where all tokens are in the
sink place o and all other places are empty. A WF-net is sound if: (1) For every state
M reachable from the initial state Mi , there exists a firing sequence leading from
M to the final state Mo. (2) The final state Mo is the only state reachable from the
initial state Mi with at least one token in place o. (3) There are no dead transitions,
which means that for each transition t there exists a state M that is reachable from
Mi , where t is enabled.

The soundness property ensures that for any case, the process can terminate,
which means that it contains no infinite loops and is free of deadlocks. Furthermore,
there are no activities in the process that cannot be reached, and at the moment the
process terminates, there are no active activities. The example process in Fig. 8.9 is
not sound, as it violates the condition that the output place o can never be reached,
due to a deadlock caused by a wrong combination of xor-split and and-join.

8.5 Process Views

Business process models may contain hundreds of connected activities, augmented
with information of diverse perspective, which are – corresponding to the applica-
tion domain – required for the presentation of the process’s universe of discourse.
Accordingly, it is hard for various stakeholders in the process lifecycle to get a focus
on the areas of interest. For instance, consider a business analyst who wants to exam-
ine the activities of certain user groups or roles, a process manager who wants to see
the critical regions with error-prone activities or frequently overloaded resources,
or a software engineer striving to find out which parts of the process are required
to communicate with external processes. Furthermore, external stakeholders might
only be allowed to see permitted parts of a process. This can be accomplished by
means of process views. A process view is an extract of a process that contains only
relevant (selected) activities or aggregations of them. Currently, most process view-
related research publications are either focused on visualization of process views
for different stakeholders (e.g., [25]) or the generation of views with correct control
flows (e.g., [26, 27]). The latter either apply activity aggregation or activity elimi-
nation methods, assuming that a set of already selected view-relevant control flow
elements is given, such that the resulting view fulfills certain correctness criteria. In
this section, we outline the formal foundations of view correctness and view gener-
ation as described in [27].
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8.5.1 Process Graph

A process graph G D .N;E/ consists of a set of nodes N and a set of edges E .
The type of a node n 2 N can either be n.t = activity or one of the control types
n.t = start j end j or-split j or-join j and-split j and-join. An edge .n1; n2/ 2 E

determines the execution sequence of two nodes n1; n2 2 N , such that n1 must be
finished before n2 can be started. Additionally n determines a single successor of
n and nı depicts the set of multiple successors of n (for split nodes). Analogously,
we define n for a single predecessor and ın for the set of predecessors (for join
nodes).

8.5.2 Correctness of Process Views

In order to construct correct process views, it is necessary that activities in a view
have the same ordering as in the original process. In other words, a process view
must not change the ordering of the activities of the original workflow. Such a view
is called an order-preserving view and is formally defined as follows: A process
graph G0 D .N 0; E 0/ is a correct view of a process graph G D .N;E/ if the
following properties hold:

• G0 is a valid full-blocked process graph.
• N 0 � N

• 8a; b 2 N \N 0: Œa > b�G0 , Œa > b�G , where Œa > b�G0 and Œa > b�G denote
the existence of a directed path between nodes a and b in G and G0 respectively.

The second property defines that all nodes ofG0 must also be nodes ofG. The last
property defines the requirement that if a node b is a direct or transitive successor of
node a in the original process graph, it must also be a direct or transitive successor
in the process view.

8.5.3 Generation of Process Views by Activity Elimination

The input for the algorithm is G D .N;E/, which must be block-structured, and R,
a set of view-relevant activities. The algorithm generates a process viewG0 by delet-
ing all irrelevant activities a 2 N � R; a:type D activity from G while preserving
still required control flow structures.

1. Remove irrelevant activities: Remove every irrelevant activity a 2 N � R

from N; and every corresponding edge .a; s/ and .p; a/ from E , and connect
a’s predecessor with its successor, which means add (p; s) to E .

2. Treat and-pairs: An empty path is a direct connection .s; j / between and-split s
and and-join j . If only empty paths between s and j are left, remove both nodes
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Fig. 8.11 Generation of process views

and corresponding edges, and connect the predecessor of s with the successor
of j . If only a single non-empty path between s and j is left, remove both nodes
and corresponding edges and connect the predecessor of s to the successor of s,
and the predecessor of j with the successor of j .

3. Treat (x)or-pairs: If only empty paths between the (x)or-split s and the (x)or-
join j are left, proceed as in step 2. If at least one empty path and at least one
non-empty path are left, then remove the direct edges .s; j / of all empty paths
and add an ‘otherwise’ edge between s and j .

The output of the algorithm is again a block-structured valid process graph. Step
3 describes the insertion of an ‘otherwise’ edge, which is necessary if one or more
complete conditional paths between an xor-split and an xor-join are eliminated. This
edge expresses the fact that an activity in the view will only be executed under
certain conditions defined on the corresponding still existing conditional edge, and
otherwise not. Figure 8.11 presents an example of an original process graph along
with two views with different sets of relevant activities.

8.6 Timed Processes

Temporal information about business processes, like expected execution durations
of activities or process deadlines, is essential for process designers and for process
execution. Apart from documentation and simulation purposes, this information can
be used to generate timed process graphs, which allow temporal analysis and tem-
poral verification of the process. Examples of this include: the calculation of the
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expected remaining time between an activity and the end of the process to be com-
municated to impatient customers or the prediction of future deadline violations in
already late processes [29]; the identification of activities on the critical path (with
the longest execution duration) to be monitored carefully, as delays on this path will
delay the whole process; or checking the satisfiability of time constraints during de-
sign time, which means identifying constraints that are specified too tight and can
therefore never be fulfilled [28]. In this section, we describe how temporal informa-
tion is modeled in BPMN and show a method which helps to improve the quality
and performance of processes.

8.6.1 Modeling the Temporal Perspective

The temporal perspective of a process comprises different types of temporal in-
formation [6]. For instance, activity durations are often used for process analysis
and simulation purposes. Activity durations may stem from empirical knowledge
(extracted from the workflow history, where past process executions are logged),
derived from expert estimations, or even defined by third parties in case an activ-
ity communicates with an external process or service. Furthermore, processes may
inhibit different types of time constraints: maximum activity durations and process
deadlines that must not be exceeded, fixed-date constraints to bind the execution
of tasks to certain dates and times, lower bound constraints to specify minimum
time spans between two tasks, or upper bound constraints to specify maximum time
spans between two tasks [14, 28]. Such time constraints usually stem from laws,
organizational rules, or contracts placed with customers (which may also include
penalty payments if a deadline is exceeded).

We have already mentioned that perspectives are sometimes integrated into other
perspectives, which is often the case for temporal information. For instance, the
process definition language XPDL offers task attributes to specify the estimated du-
ration of tasks. Additionally, this duration can be divided into waiting time (queuing
time) and working time (execution time) of a task. Furthermore, XPDL features
timer elements to model deadlines, maximum durations, timed triggers, and even
forced process pauses (e.g., ‘wait for one hour’). They can be specified on single
tasks, groups of tasks, a whole process, and on transitions between tasks (to model
pauses). In BPMN, these timers are represented by a specific timer symbol (a clock)

Fig. 8.12 Temporal concepts in BPMN
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to be inserted into the control flow of the process. Figure 8.12 shows a simple ex-
ample of how timer elements are used in a BPMN process model that contains the
following temporal concepts: a new process instance will be started each day at 8
a.m.; if activity ‘wait for bus’ is not finished within 15 minutes, then ‘walk’, other-
wise ‘get on bus’ then ride the bus for 5 minutes and finally get of the bus.

8.6.2 Timed Graph

Structural control flow information and temporal information about activity dura-
tions and process deadlines can be exploited to calculate a timed graph which can be
applied for various predictive and proactive time management applications [28, 29].

8.6.2.1 Temporal Information

Explicit temporal information is described by means of [min,max]-intervals. For
instance, the expected duration of a node n 2 N is denoted by an interval n:d D
Œdmin; dmax�, which implies that the duration of n will presumably not fall below
dmin and presumably not exceed dmax. Furthermore, a process may be constrained
by a maximum duration ı, which must not be exceeded by any process instance. We
assume that these values are specified in a predefined basic time unit like seconds,
minutes, or hours. The following interval operations are required for the subsequent
calculations:

• Interval addition: Œa1; b1�C Œa2; b2� D Œa1 C a2; b1 C b2�

• Interval subtraction: Œa1; b1�C Œa2; b2� D Œa1 � a2; b1 � b2�

• Interval disjunction: Œa1; b1� _ Œa2; b2� D Œmin.a1; a2/;max.b1; b2/�

• Interval conjunction: Œa1; b1� ^ Œa2; b2� D Œmax.a1; a2/;max.b1; b2/�

As the disjunction and conjunction are commutative and associative, they can be
extended to j time intervals ti denoted as

Wj
iD1 ti and

Vj
iD1 ti .

8.6.2.2 Timed Graph Calculation

Now we can calculate three time properties for each node: (1)The earliest possible
start n:eps of a node n determines the duration between the start of the process
and the start of n. It is calculated by adding up durations of nodes in a forward
topological sort order, starting from the first node. (2) The expected remaining time
n:rt of a node n determines the duration between the end of the process and the end
of node n. It is calculated by adding up durations of nodes in a backward topological
sort order, starting from the end node. (3) If a deadline ı is available, we can also
determine the latest allowed end n:lae by subtracting the expected remaining time
of a node n from the deadline. Table 8.1 gives an overview of the forward and
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Table 8.1 Calculation rules per node type

n:type Forward calculation of n:eps Backward calculation of n:rt Calculation of
n:lae

Start Œ0; 0� n � :rt C n � :d ı � n:rtmax

End �n:eps C �n:d Œ0; 0� ı � n:rtmax

Activity �n:eps C �n:d n � :rt C n � :d ı � n:rtmax

And-split �n:eps C �n:d
V

8s2nı
.s:rt C s:d/ ı � n:rtmax

And-join
V

8p2ın.p:eps C p:d/ n � :rt C n � :d ı � n:rtmax

Or-split �n:eps C �n:d
W

8s2nı
.s:rt C s:d/ ı � n:rtmax

Or-join
W

8p2ın.p:eps C p:d/ n � :rt C n � :d ı � n:rtmax

Fig. 8.13 Timed Process Graph

backward calculation operations for each node type. Figure 8.13 shows an example
of a timed graph along with timed properties for each node. The numbers below
the nodes indicate the forward topological sort order required for the calculation of
eps-intervals, which are to be reversed for the backward calculation of rt-intervals.
The lae-values are determined by means of the given maximum duration ı D 18

(deadline).

8.6.2.3 Timed Graph Application

The timed graph can be used to achieve several objectives:

• Checking constraint satisfiability – If any n:lae; n 2 N is negative, the deadline
is defined too tight. To guarantee a violation-free execution, the deadline must be
relaxed or the process has to be redesigned. Alternatively, it is also an option to
optimize single activities in order to speed them up (decrease their duration n:d ).

• Determination of buffer times and critical activities – The buffer time (slack) of
an activity is extra time that may be consumed without endangering the overall
process deadline. It is determined as n:slack D n:lae � .n:epsmax C n:dmax/.
Buffer time is produced by relaxed deadlines, parallel control flow structures, and
during run time by activities that finished faster than expected. Negative buffer
times indicate that a future deadline violation is very likely. Critical activities
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are activities with zero buffer time – a delay immediately endangers the process
deadline, therefore they should be monitored during process execution,

• Scheduling – The earliest possible start time n:eps and latest allowed end time
n:lae determine the valid execution interval of an activity n, as it cannot start
earlier than n:eps and must not end later than n:lae. This knowledge can be
exploited for task scheduling and task predispatching when a new process is in-
stantiated.

• Forecasts – At process instantiation and during process run time, the remaining
time n:rt enables us to predict the expected remaining duration (or alternatively
the finishing date) of a process. Furthermore, the earliest possible start time n:eps
can be used to forecast the expected arrival of tasks in order to inform participants
about upcoming future tasks.

• Early deadline violation detection and avoidance – The latest allowed end time
n:lae defines when an activity n must be finished in order to meet the overall
deadline of the process. If this threshold is exceeded during process execution,
a future deadline violation is very likely. When the system detects this, diverse
(evasive) actions may be invoked, such as adding extra resources to speed up the
process, skipping tasks that are not essential (e.g., a second review), calling for
administrators’ help, early escalation which may save time and money, and so
on.

8.7 Conclusions

Business process models and workflow models contain information about different
process perspectives. Depending on goals to be achieved and the current stage in the
business process life cycle, the information required will vary and therefore also the
perspectives that need to be modeled. Correspondingly, it is hard to define common
standards for process modeling notations and process definition languages that are
suitable for all possible purposes. Nevertheless, great standardization efforts in re-
search and industry are currently under way to close the gap between the disciplines
of process modeling and workflow design, for example, business process modeling
tools that export executable process definitions to workflow systems or the other
way around in re-engineering scenarios. In addition to these standardization efforts,
research in the area of process modeling frequently identifies and tackles a great va-
riety of different problems. We have introduced a few selected topics: the detection
of control flow problems, the generation of process views, and the calculation and
validation of temporal information in timed processes.
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Chapter 9
BPMN Core Modeling Concepts:
Inheritance-Based Execution Semantics

Egon Börger and Ove Sörensen

Abstract We define an abstract model for the dynamic semantics of the core process
modeling concepts in the OMG standard for BPMN 2.0. The UML class diagrams
associated therein with each flow element are extended with a rigorous behavior def-
inition, which reflects the inheritance hierarchy structure by refinement steps. The
correctness of the resulting precise algorithmic model for an execution semantics
for BPMN can be checked by comparing the model directly with the verbal expla-
nations in [8]. Thus, the model can be used to test reference implementations and to
verify properties of interest for (classes of) BPMN diagrams. Based on the model
the second author has implemented a native BPMN 2.0 Process Engine.1

9.1 Introduction

The Business Process Modeling Notation (BPMN) is standardized by the Object
Management Group (OMG). We explain here its main modeling concepts with a fo-
cus on the behavioral meaning of processes, based upon the currently (March 2010)
available OMG document [8]. As a distinctive feature we adapt a stepwise refine-
ment technique to follow the successive detailing of the BPMN execution semantics
along the inheritance hierarchy in [8].
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We associate with each UML class diagram defined in [8] for the syntax of be-
havioral BPMN elements a description of their behavior. These descriptions make
the natural language formulations in the standard document precise at the mini-
mal level of rigor needed to faithfully capture a common understanding of busi-
ness processes by business analysts and operators, information technology special-
ists and users (suppliers and customers). Such a common understanding, which
must not be obfuscated by mere formalization features, is crucial to faithfully link
the three different views of business processes by designers, implementors, and
users.

To obtain such a precise, inheritance-hierarchy-based high-level description of
the execution semantics of BPMN, we use the semantic framework developed in [6]
for business process modeling notations and applied there to BPMN 1.0 [7]. Since
it is based only on standard document terms, it allows one to check by direct in-
spection the faithfulness of the description with respect to the verbal explanations
in [8]. On the other hand, the rigorous operational character of the description of-
fers the possibility to use it as the reference model for two purposes: (a) for testing
and for comparing different implementations among them and with the refinement
of the model to an implementation of a native BPMN 2.0 Process Engine in [9],
where processes can be linked with graphical models; (b) for a mathematical anal-
ysis of properties of interest for classes of BPMN process diagrams, comparable to
the Event-B-based work done in 2010 by W. Wei (pers. comm.). Since the standard-
ization process is still ongoing, our BPMN model leaves all those issues open that
are not (yet?) sufficiently clarified in [8]. However, our work shows that it would
have been possible to provide a succinct and complete, rigorous, and thereby ob-
jectively checkable BPMN execution semantics, although the OMG standardization
committee seems to have voted against such an endeavor ( [8], Chap. 14) in favor of
an informal description with various loose ends that later implementations will have
to clarify.

Technically speaking, we assume the reader has an understanding of what it
means to execute simultaneously finitely many transition rules of the form

if Condition then Actions

prescribing a set of actions to be undertaken if some events happen; the occurrence
of events is expressed by conditions becoming true. For a simple foundation of the
semantics of such rule systems, which constitute abstract state machines (ASMs)
and can be viewed as a rigorous form of pseudocode, we refer the interested reader
to [5]. Such rules are inserted as behavioral elements at appropriate places in the
BPMN class hierarchy. The ASM refinement concept supports strictly following
the inheritance steps in the BPMN class hierarchy. In Sect. 9.2 we describe the
class hierarchy of BPMN elements, focusing on message flow and the behaviorally
relevant diagram structure, which is represented by the so-called sequence flow of
flow nodes. In Sects. 9.3–9.5 we describe the three main subclasses of the BPMN
FlowNode class, namely, for gateways, activities, and events. To avoid repetitions,
we frequently rely upon the explanations or illustrating diagrams in the standard
document and assume the reader will have a copy of it at hand.
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9.2 Structure of the Class Hierarchy of BPMN 2.0

We restrict our attention to those features of the BPMN class hierarchy that are rel-
evant for the behavioral description of single processes, namely, diagram structure,
flow elements, and message flow. The class FlowElement in [8], Fig. 8.23, contains,
besides SequenceFlows and FlowNodes, also Data objects, which we represent by
ASM locations. Their read/write operations represent what is called a “data asso-
ciation execution” ( [8], Fig. 10.63). Due to space limitations we investigate the
single process view (called orchestration) and treat process interaction features –
the collaboration of and communication between processes, called choreography –
in terms of abstract interface conditions.

9.2.1 Message Flow

The interaction between multiple processes happens in BPMN via communica-
tion (messages between pools, activities, and events) or shared data. The concept
of monitored locations in the ASM framework provides an exact interface of pro-
cess instances to message handling, which abstracts in particular from the BPMN
choreography diagrams in [8, Sect. 12], and in particular from correlation issues
for the delivery of messages. Consider an abstract operation SEND.payload.m/;
receiver.m// that is refined for all related elements of the BPMN MessageFlow class
diagram [8, Fig. 8.38]; we write sender for sourceRef and receiver for targetRef. The
operation is restricted by the stipulation that the receiver of a message is a participant
(here appearing as a pool), an activity, or an event. Thus message arrival is reflected
as an update by payload.m/ of a location that is monitored by receiver.m/; reading
a message means to read such a monitored location.

9.2.2 Diagram Structure (Sequence Flow)

The BPMN diagram structure is used to pictorially represent a business process
and is defined by the SequenceFlow class diagram [8, Fig. 8.48]. The sequence
(“control”) flow shows the order of flow elements in a process. Such a diagram is
a graph of flow nodes (gateways, activities, events) connected by arcs (Fig. 9.1).

Therefore we use standard graph-theoretic concepts like source.arc/ and
target .arc/ for the source and target nodes of an arc (denoted sourceRef resp.
targetRef and restricted by [8, Table 8.60], to certain flow nodes), pred.node/ for
the (possibly ordered) set of source nodes of arcs with target node, inArc.node/ for
the set of arcs ingoing the target node, succ.node/ for the (possibly ordered) set of
target nodes of arcs with source node, outArc.node/ for the set of arcs outgoing the
source node, etc. If in a diagram a node has only one incoming or one outgoing
arc, and if from the context the node in question is clear, we write in=out instead of
inArc.node/ D fingoutArc.node/ D foutg.
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Fig. 9.1 Basic class hierarchy of diagram contents

We model the token-based BPMN interpretation of control flow by associat-
ing tokens – elements of an abstract set Token – to arcs, using a dynamic func-
tion token.arc/. Since a token is characterized by the process ID of the process in-
stance pi to which it belongs (via its creation at the start of the process instance), we
distinguish tokens belonging to different instances of one process p, writing tokenpi

to represent the current token marking in the process diagram instance of the pro-
cess instance pi a token belongs to. Thus tokenpi.arc/ denotes the multiset of tokens
belonging to process instance pi and currently residing on arc. We can suppress the
parameter pi due to the single process view where pi is clear from the context.

For a rule at a target node of incoming arcs to become fireable some arcs must be
Enabled by tokens being available at the arcs. This condition is usually required to
be an atomic quantity formula stating that the number of tokens (belonging to a pro-
cess instance pi ) and currently associated to in (read: the cardinality of tokenpi.in/,
denoted j tokenpi.in/ j, used in particular in connection with complex gateways
and called there ActivationCount, but also for readying activities where it is called
StartQuantity) is at least the quantity inQty.in/ required for incoming tokens at this
arc. Unless otherwise stated the assumption is made that inQty.in/ D 1, as sug-
gested by the warning in Table 10.3, Sect. 14.2.2. [8].
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Enabled.in/ D .j token.in/ j� inQty.in//

Correspondingly the control operation CTLOP of a workflow usually consists of two
parts, one describing which (how many) tokens are CONSUMEd on which incoming
arcs and one describing which (how many) tokens are PRODUCEd on which out-
going arcs, indicated by using an analogous abstract function outQty (for activities
called CompletionQuantity). We use macros to encapsulate the details.

CONSUME.t; in/ D DELETE.t; inQty.in/; token.in//
PRODUCE.t; out/ D INSERT.t; outQty.out/; token.out//
CONSUMEALL.X/ D forall x 2 X CONSUME.x/

PRODUCEALL.Y / D forall y 2 Y PRODUCE.y/

The use of abstract DELETE and INSERT operations instead of directly updating
token.a; t/ serves to make the macros usable in a concurrent context, where mul-
tiple agents may want to simultaneously operate on the tokens on an arc. It is also
consistent with the special case that in a transition with both DELETE.in; t/ and
INSERT.out; t/ one may have in D out, so that the two operations are not consid-
ered as inconsistent, but with a cumulative effect.

Structural relations between the consumed incoming and the produced outgo-
ing tokens can be expressed by using an abstract function firingToken.A/, which is
assumed to select for each element a of an ordered set A of incoming arc tokens
from tokenpi.a/ that enable a and can be CONSUMEd. firingToken.Œa1; : : : ; an�/

D Œt1; : : : ; tn� denotes that for each i , ti is the (set of) token occurrence(s) se-
lected to be fired on arc ai . We write firingToken.in/ D t instead of firingToken
.fing/ D Œt �. Apparently the idea of a hierarchical token structure, which appeared
in [8] and was modeled in [6], has been abandoned for BPMN 2.0 [10] so that we
write CONSUME.in/ and PRODUCE.out/, where the type of underlying tokens (as-
sumed to belong to one process instance) is irrelevant or clear from the context.

9.2.3 Flow Nodes

The behaviorally central class is FlowNode, a subclass of FlowElement and com-
ing with subclasses Gateway, Activity, Event (as explained above, we disregard the
fourth subclass ChoreographyActivity). Each instance node of this subclass repre-
sents a workflow construct whose behavioral meaning is expressed by a transition
rule FLOWNODEBEHAVIOR.node/ stating upon which events and under which fur-
ther conditions – typically on the control flow, the underlying data, and the avail-
ability of resources – the rule can fire to execute the following actions:

• Perform specific operations on the underlying data (“how to change the internal
state”) and control flow (“where to proceed”).

• Possibly trigger new events (besides consuming the triggering ones) and releas-
ing some resources.
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FLOWNODEBEHAVIOR.node/ D
if EventCond.node/ and CtlCond.node/ and DataCond.node/

and ResourceCond.node/ then
DATAOP.node/
CTLOP.node/
EVENTOP.node/
RESOURCEOP.node/

FLOWNODEBEHAVIOR, associated with the class FlowNode, is a rule scheme, tech-
nically an ASM with well-defined semantics (see [5]). Its abstractions are refined by
further detailing in the next three sections the guards (conditions) resp. the opera-
tions (submachines) for workflow transitions to describe the behavioral meaning for
instances of each of the three subclasses of FlowNode. When we need to consider
to which process instance a flow node instance belongs, we write procInst.node/, to
be distinguished from process.node/ (the BPMN diagram) node belongs to.

9.3 Gateways

Gateway is a subclass of FlowNode used to describe the divergence (splitting) or
convergence (merging) of control flow [8, p. 263] in two forms:

• To create parallel actions or to synchronize multiple actions,
• To select (one or more) among some alternative actions.

Gateway has five concrete subclasses for exclusive, inclusive, parallel, event-
based, and complex gateways (Fig. 9.2), which come with specific constraints (for-
mulated in [8, Table 8.47]) in terms of an attribute gatewayDirection on the number
of their incoming and outgoing arcs.

Each gateway behavior is an instance of a scheme GATEBEHAVIORPATTERN

associated with the abstract class Gateway and is defined as follows, refining the
FLOWNODEBEHAVIOR: two (possibly ordered) sets of incoming resp. of outgo-
ing arcs are selected where tokens are consumed resp. produced. To describe these
sets we use functions the selectConsume.node/ and selectProduce.node/, which will be
constrained in various ways for specific gateways. The general control condition2

is that all arcs in the selected (usually required or assumed to be nonempty) set of
incoming arcs are enabled and that the process instance the gateway node belongs
to is Active (see Sect. 9.4 for the concept of activity lifecycle). The control op-
eration consists in (a) consuming the firing tokens on each selected incoming arc
and (b) producing the required tokens on each selected outgoing arc (in the normal
case that no exception occurs). DATAOP.node/ consists of multiple assignments.o/
associated to the outgoing arcs o.

The THROW.exc; node/ macro is used to indicate when an exception is thrown
from a node to its possible catcher, triggering an event that is attached to the inner-

2 Except the special case analyzed in Sect. 9.3.4.1 of an event-based gateway used to start a process.
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Fig. 9.2 Basic class hierarchy of gateways

most enclosing scope instance (if any) and may be able to catch the exception. We
assume a detailed definition of this macro to include the performance of the data
association for throw events. This has the effect that when a throw event is trig-
gered, it happens with the corresponding data in its scope assigned to what [8] calls
the “event data,” from where the related catch event assigns them (Sect. 9.5) to the
so-called data elements in the scope of the catch event [8, Sect.10.4.1].

GATEBEHAVIORPATTERN.node/ D
let I D selectConsume.node/
let O D selectProduce.node/

FLOWNODEBEHAVIOR.node; I;O/ where
CtlCond.node; I / D forall in 2 I Enabled.in/

and Active.procInst.node//
CTLOP.node; I;O/ D

CONSUMEALL.{.tj; inj/ j 1 � j � n}/
where Œt1; : : : ; tn� D firingToken.I /; Œin1; : : : ; inn� D I

if NormalCase.node/ then PRODUCEALL.O/

else THROW.GateExc; node/
DATAOP.node; O/ D forall o 2 O

forall i 2 assignments.o/ ASSIGN.toi; fromi/

Active(p) = (lifeCycle(p) = active)
We now refine this rule to the behavior of the five gateway subclasses.
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9.3.1 Parallel Gateway (Fork and Join)

PARGATEBEHAVIOR is associated with the class ParallelGateway. Its behavior is
to synchronize multiple concurrent branches (called AND-Join) by consuming one
token on each incoming arc, and to spawn new concurrent threads (called AND-
Split or Fork) by producing one token on each outgoing arc. A parallel gateway is
not allowed to throw an exception. Thus it refines GATEBEHAVIORPATTERN.

PARGATEBEHAVIOR.node/ D GATEBEHAVIORPATTERN.node/ where
selectConsume.node/ D inArc.node/ // AND-JOIN merging behavior
selectProduce.node/ D outArc.node/ // AND-SPLIT (branching behavior
NormalCase.node/ D true // gate throws no exception
forall in 2 inArc.node/ inQty.in/ D 1

forall out 2 outArc.node/ outQty.out/ D 13

Fig. 9.3 Parallel gateway
– unconditionally spawn
and synchronize threads of
execution

9.3.2 Exclusive Gateway (Data-Based Exclusive Decision)

EXCLGATEBEHAVIOR is associated with the class ExclusiveGateway.
Its behavior is to react to the enabledness of just one incoming arc (no matter

which one, a feature named pass-through semantics), namely, by consuming an en-
abling token, and to enable exactly one outgoing arc, namely, the first one (in the di-
agram order) whose associated DataCondition evaluates to true (so-called exclusive
data-based decision). Usually a default case is specified to cover the situation where

Fig. 9.4 Exclusive gateway –
choose exactly one thread of
execution for synchronization
and spawning

3 The two constraints on inQty and outQty seem to be intended for all flow node instances, except
where stated differently, so that from now on we assume them to be added implicitly.
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none of these DataConditions is true; otherwise in this case an exception is thrown.
Thus EXCLGATEBEHAVIOR is an instantiation of GATEBEHAVIORPATTERN.

EXCLGATEBEHAVIOR.node/ D GATEBEHAVIORPATTERN.node/ where
j selectConsume.node/ jD 1 // exclusive merge
selectProduce.node/ D fst.{a 2 outArc.node/ j DataCond.a/}/
NormalCase.node/ if and only if

{a 2 outArc.node/ j DataCond.a/} 6D ; or
some default sequence flow is specified at node

9.3.3 Inclusive Gateway

INCLGATEBEHAVIOR is associated with the class InclusiveGateway.
It enables every outgoing arc whose associated DataCondition is true (branch-

ing [8, 10.5.3]), with the same convention on exceptions as for exclusive gateways,
and to synchronize the (required-to-be-nonempty) set of incoming arcs that are en-
abled or have an “upstream token” (UpstreamToken 6D ;) in the graph, not waiting
for tokens on those unenabled arcs that “have no token upstream.”

INCLGATEBEHAVIOR.node/ D GATEBEHAVIORPATTERN.node/ where
selectConsume.node/ D // NB. all to be enabled to fire

{in 2 inArc.node/ j Enabled.in/ or UpstreamToken.in/ 6D ;}
selectProduce.node/ D {a 2 outArc.node/ j DataCond.a/}
CtlCond.node; I;O/ D

CtlCondGATEBEHAVIORPATTERN.node; I;O/ and I 6D ;
NormalCase.node/ D NormalCaseEXCLGATEBEHAVIOR.node/

An incoming arc “without token anywhere upstream” is defined in [8, Ta-
ble 14.3], as an unenabled arc to which there is no directed sequence flow path
from any (arc with a) token unless

• path visits the inclusive gateway or
• path visits a node that has a directed path to a nonempty incoming sequence flow

of the inclusive gateway and does not visit the gateway.4

Fig. 9.5 Inclusive gateway –
synchronize and spawn some
threads of execution

4 The last conjunct has been added in [10], correcting the definition which originally appeared
in [8]. Upstream tokens are called there tokens that have an inhibiting path but no anti-inhibiting
path to the gateway.
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t 2 UpstreamToken.in/ if and only if InhibitingPath.t; in/ 6D ; and
thereIsNo j 2 inArc.node/ AntiInhibitingPath.t; j / 6D ;

where
p 2 InhibitingPath.t; in/ D
p 2 Path.t; in/ and token.in/ D ; and target .in/ 62 VisitedBy.p/

p 2 AntiInhibitingPath.t; in/ D
p 2 Path.t; in/ and token.in/ 6D ; and target .in/ 62 VisitedBy.p/

VisitedBy.p/ D {n j n 2 Node and n occurs as source or target on p}
Path.t; in/ D Path.arc; in/ if t 2 token.arc/

9.3.4 Event-Based Gateway (Event-Based Exclusive Decision)

For event-based gateways the standard describes two behaviors, depending on
whether the gateway is used to start a process or not, resulting in two ASM
rules associated to the class EventBasedGateway. The EVENTGATEBEHAVIOR

for the second case, in which the gateway is required to have some incoming
sequence flow, is pictorially represented by Fig. 9.6. In the first case the event-
based gateway may have no (or only some special) incoming sequence flow; its
EVENTGATEPROCSTARTBEHAVIOR is described in Sect. 9.3.4.1.

EVENTGATEBEHAVIOR does not throw any exception. It has pass-through se-
mantics for incoming sequence flow and the activated outgoing arc is defined to be
the first one at which an associated gateEvent Occurs and can be CONSUMEd. Thus
EVENTGATEBEHAVIOR refines GATEBEHAVIORPATTERN as follows:

• selectConsume.node/ chooses for each activation one incoming sequence flow.
• selectProduce.node/ yields one (dynamically determined5) outging sequence flow,

namely, the one whose associated gateEvent Occurs first (so-called exclusive
event-based decision).

• NormalCase.node/ D true: event-based gateways “cannot throw any exception.”
• The selected gateEvent is CONSUMEd.

Fig. 9.6 Event-based gateway
– choose exactly one thread of
execution, depending on the
first triggered gate event

5 The standard document interpretes this choice as “deferred until one of the subsequent Tasks
or Events completes” [8, Sect. 14.3.3]. This creates an ambiguity for two successive enablings
of the gate with deferred choice of an outgoing branch. We avoid this ambiguity by letting
EVENTGATEBEHAVIOR fire only when the choice is possible due to at least one gate event oc-
curring.
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We use a dynamic function fst to select an outgoing arc among those whose as-
sociated gateEvent (required to be either an event that has to be Triggered or
a receiveTask that has to be Completed) Occurs “first”; fst resolves the conflict for
concurrently occurring events. Receive tasks are tasks that wait for a message to
arrive and are Completed by receiving the message [8, p. 139 and Sect. 9.4.1].

EVENTGATEBEHAVIOR.node/ D // case with incoming arcs
GATEBEHAVIORPATTERN.node/ where

j selectConsume.node/ jD 1

EventCond.node/ D
forsome a 2 outArc.node/ Occurs.gateEvent .a//

selectProduce.node/ D fst.{a 2 outArc.node/ j Occurs.gateEvent .a//}/
EVENTOP.node/ D CONSUME.gateEvent .selectProduce.node///
NormalCase.node/ D true // event gate throws no exception
Occurs.gateEvent .a// D�

Triggered.event .a// if gateEvent .a/ D event .a/
Completed.receiveTask.a// if gateEvent .a/ D receiveTask.a/

9.3.4.1 Event-Based Gateways for Process Start

If event-based gateways are used to start a process P , to be declared by setting
their instantiate attribute to true, it is required that (except for the case described
in the next footnote) they have no incoming sequence flow – the only case of gate-
ways with no ingoing arc [8, Sect. 14.4.1].6 The standard document considers two
cases depending on whether there is only one event-based gateway (called exclusive
event-based gateway) or a group of multiple event-based gateways that are used
to start P . Such group elements are required to participate in the same conversa-
tion, and at each gateway one event “needs to arrive; the first one creates a new
process instance, while the subsequent ones are routed to the existing instance” [8,
Sect. 14.4.1] “rather than creating new process instances” [8, p. 402]. In both cases
EVENTGATEPROCSTARTBEHAVIOR is obtained by analogous refinement condi-
tions as for event-based gateways with incoming sequence flow; however, the in-
coming arc selection and related control condition are empty and the control opera-
tion essentially creates a new instance of P .

To precisely reflect what is intended to happen when some expected gate events
happen concurrently at multiple event-based gateways belonging to the same group
(and to avoid a repetition of the first part of the behavior, which is almost the same
for singleton and multiple-element groups), we use a virtual node group to which
EVENTGATEPROCSTARTBEHAVIOR is attached.7 The formulation uses two modes

6 The allowed case of incoming sequence flow whose source is an untyped start event [8, p. 276]
is covered by the description explained below, including the usual conditions and operations for
pass-through semantics.
7 The standard document makes the distinction in terms of an eventGatewayType attribute set to
parallel for the case of multiple group elements.
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with corresponding subbehaviors, the second one being performed only if the group
has more than one element. This reflects the requirement that for groups with mul-
tiple elements upon a “first” event a new process instance is created “while the
subsequent ones are routed to the existing instance” [8, p. 252].

EVENTGATEPROCSTARTBEHAVIOR.group/ D
EVENTGATEPROCSTARTBEHAVIORStart.group/
EVENTGATEPROCSTARTBEHAVIORProgress.group/

In mode D Start, upon the “first” arrival of an event EVENTGATEPROCSTART

BEHAVIORStart performs the following three actions:

• Create a new instance of the to-be-started process and make it Active.8

• Mimic the EVENTGATEBEHAVIOR.g/ for a node g 2 group where a gate
Event Occurs “first.”

• In case there are other group members, switch to mode D Progress, whereby
the EVENTGATEPROCSTARTBEHAVIORProgress becomes firable if some gate
Event Occurs at some other group member.

We use the dynamic abstract function fst here to select both a group member and
an outgoing arc where a “first” gateEvent Occurs.

EVENTGATEPROCSTARTBEHAVIORStart.group/ D
GATEBEHAVIORPATTERN.group/ where

selectConsume.group/ D ;
CtlCond.group/ D .mode.group/ D Start/
EventCond.group/ D forsome g 2 group Occurs.gateEvent .g//
let g D fst.{g 2 group j Occurs.gateEvent .g//}/

selectProduce.group/ D fst.{a 2 outArc.g/ j
Occurs.gateEvent .g; a//}/

CTLOP.group; O/ D
let P D new Instance.process.group//

PRODUCE.selectProduce.group/P/
lastCreatedProcInst.group/ WD P

lifeCycle.P / WD active
Seen.g/ WD true
if j group j> 1 then mode WD Progress
EVENTOP.group/ D CONSUME.gateEvent .selectProduce.g///

NormalCase.group/ D true // no event gate throws an exception
Occurs.gateEvent.g// D forsome a 2

outArc.g/Occurs.gateEvent.g; a//

8 In general upon being enabled a process first becomes Ready and can GETACTIVE only after
some input became available, see Sect. 9.4. But since at an event-based gateway the only allowed
triggers are catch events or receive tasks that have no input data assignment, the newly created
process becomes immediately Active.
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EVENTGATEPROCSTARTBEHAVIORProgress is executed in mode D Progress
each time a gateEvent for a remaining group member Occurs – until each group
member has been Seen, in which case mode.group/ switches back to Start and resets
Seen.9 The standard document leaves this case underspecified. For definiteness we
formulate here the following interpretation: (a) once a group element has been Seen
(because one of its gateEvents Occurs), it is not reconsidered for another gateEvent
to Occur before each group element has been Seen; (b) no subsequent gateEvent
PRODUCEs additional tokens (on the arc where the gateEvent Occurs) before each
group element has been Seen.

EVENTGATEPROCSTARTBEHAVIORProgress.group/ D
GATEBEHAVIORPATTERN.group/ where

selectConsume.group/ D ;
CtlCond.group/ D .mode.group/ D Progress/
EventCond.group/ D

forsome g 2 {g 2 group j not Seen.g/} Occurs.gateEvent .g//
let g D fst.{g0 2 group j Occurs.gateEvent .g0// and not Seen.g0/}/

selectProduce.group/ D fst.{a 2 outArc.g/ j
Occurs.gateEvent .g; a//}/

EVENTOP.group/ D CONSUME.gateEvent .selectProduce.group///
CTLOP.group; O/ D

if LastSeen.g; group/ then // reset group state
mode.group/ WD Start
forall g0 2 group Seen.g0/ WD false

else Seen.g/ WD true
PRODUCE.selectProduce.group/lastCreatedProcInst(group)/

NormalCase.group/ D true
LastSeen.g; group/ D .group D {g0 j Seen.g0/} [ {g}/

9.3.5 Complex Gateway

COMPLGATEBEHAVIOR is associated with the class ComplexGateway. It has two
rules [8, Table 14.5]: COMPLGATEBEHAVIORstart describing the behavior in mode
waitingForStart and COMPLGATEBEHAVIORreset for reset mode.

COMPLGATEBEHAVIOR D COMPLGATEBEHAVIORstart

COMPLGATEBEHAVIORreset

If waitingForStart, a complex gateway waits for its activationCondition to be-
come true. This attribute expresses a (somehow restricted) condition on data and
the number of tokens on incoming arcs (called activationCount) so that we repre-
sent it as DataCond. When the rule fires, it consumes a token from each enabled

9 This reflects the standard document requirement that “one event out of each group” has to arrive
to complete the process instance created upon the “first” arrival of an event.
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Fig. 9.7 Complex gate-
way – user-defined split-
ting/synchronizing behavior

incoming arc and produces a token on each outgoing arc whose associated condi-
tion is true. The evaluated expressions may depend on the value of waitingForStart.
If none of these conditions is true and no default flow has been specified, an excep-
tion is thrown. In addition, when no exception occurrs, (a) the mode switches by
setting waitingForStart to false and (b) the set of in waitingForStart mode enabled
incoming arcs (where therefore a token has been consumed) is recorded for use in
reset mode. Thus COMPLGATEBEHAVIORstart refines GATEBEHAVIORPATTERN as
follows:

COMPLGATEBEHAVIORstart.node/ D GATEBEHAVIORPATTERN.node/
where
DataCond.node/ D activationCondition.node/ and

waitingForStart.node/
selectConsume.node/ D {in 2 inArc.node/ j Enabled.in/}
selectProduce.node/ D {o 2 outArc.node/ j DataCond.a/ D true}
CTLOP.node; I;O/ D

CTLOPGATEBEHAVIORPATTERN.node; I;O/
if NormalCase.node/ then

atStartEnabledArc.node/ WD selectConsume.node/
waitingForStart WD false

NormalCase.node/ D NormalCaseEXCLGATEBEHAVIOR.node/

In the reset case (i.e., if waitingForStart D false), a complex gateway awaits a to-
ken on each incoming arc that has not been enabled when waitingFor
Start, except on unenabled arcs that have no token upstream (as defined above
for inclusive gateways). It consumes tokens from each of these arcs, produces
a token on each outgoing arc whose associated condition is true, and resets its
mode to waitingForStart D true. No exception is thrown in reset mode. Thus
COMPLGATEBEHAVIORreset is an instantiation of GATEBEHAVIORPATTERN, re-
fined as follows:

COMPLGATEBEHAVIORreset.node/ D GATEBEHAVIORPATTERN.node/
where

DataCond.node/ D not waitingForStart.node/
selectConsume.node/ D {in 2 inArc.node/ n atStartEnabledArc.node/ j

Enabled.in/ or UpstreamToken.in/ 6D ;}
// NB. all to be enabled to fire
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selectProduce.node/ D {o 2 outArc.node/ j DataCond.a/ D true}
CTLOP.node; I;O/ D

CTLOPGATEBEHAVIORPATTERN.node; I;O/
waitingForStart WD true

NormalCase.node/ D true // no exception thrown in mode reset

9.4 Activities

The Activity subclass of FlowNode is associated with an ACTIVITYBEHAVIOR that
describes the general form of the behavior of an Activity node, whether atomic or
compound and whether performed once or repeatedly. It is refined for each of the
three subclasses Task, SubProcess, and CallActivity of Activity (Fig. 9.8).

Activities have associated InputSets and OutputSets that define the data require-
ments for input/output to/from the activity (via an InputOutputSpecification; [8,
Fig. 10.54]. At least one InputSet must be Available for the activity to become Active
with data input from the first Available set; at the completion of the activity, some
data output may be produced from the first Available OutputSet if it satisfies the
activity’s IORule expressing a relationship between that OutputSet and the InputSet
used to start the activity. An exception is thrown if there is no Available OutputSet at
all or if the IORule is not satisfied for the first Available OutputSet [8, Sect. 14.2.2].

Activities can be without incoming sequence flow. Examples are compensation
activities, (event) subprocesses, and a Receive task in a process without start event

Fig. 9.8 Basic Class Hierarchy of Activities
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that is used to start this process. We treat such specialized activities separately and
describe first the behavior of activities that do have some incoming sequence flow.

When at least one among possibly multiple incoming arcs is Enabled10 (so-
called uncontrolled flow), a new activity instance is created, is linked by a parent
function to the process that triggered it, and becomes Ready waiting to GET

ACTIVE.11 The two parameters for the corresponding set InstSet of process in-
stances and the trigger process TriggerProc will be instantiated below to describe
variations of this ACTIVITYENTRY behavior. If the activity is not Interrupted, its
lifecycle switches to Active, to STARTEXECution, after an input set from Inputsets
becomes Available (in which case this set is recorded for use when the activity is
completed) [8, pp. 130, 393]. selectInputSets expresses which input set is chosen, spec-
ified by the standard document as the first available input set (with respect to a given
order). INTERRUPT, among others, switches the lifeCycle to Withdrawn, Failed, or
Terminated; we abstain from completing here the loose declaration of intents for the
activity lifecylce in [8, Sect. 14.2.2].

ACTIVITYENTRY.node; InstSet;TriggerProc/ D
FLOWNODEBEHAVIOR.node/

where
CtlCond.node/ D forsome in 2 inArc.node/ Enabled.in/
CTLOP.node/ D

let arc D selectConsume.{in 2 inArc.node/ j Enabled.in/}/
CONSUME.firingToken.arc/; arc/

let a D new InstSet
lifeCycle.a/ WD ready
parent.a/ WD TriggerProc

step GETACTIVE.a; node/12

GETACTIVE.a; node/ D
if Ready.a/ and forsome i 2 inputSets.node/ Available.i/ then

let i D selectInputSets.{i 2 inputSets.node/ j Available.i/}/
STARTEXEC.a; node/
lifeCycle.a/ WD active
currInputSet.node/ WD i

if Interrupted.a/ then INTERRUPT.a/

Ready.a/ D .lifeCycle.a/ D ready/

10 Enabledness is defined here to mean that “the required number of Tokens
: : : StartQuantity : : : is available,” as reflected by our macro definition in Sect. 9.2.2.
11 The 1.0 standard version required in addition that the activity must have no currently active
instances, in accordance with the suggested transformation to BPEL. Such an additional guard
guarantees that all instances of an activity are ultimately triggered by one enabling token, which
reflects the intended termination behavior of all activity instances in case of a failure. Probably also
for 2.0 this guard should be added.
12 step denotes the interruptable FSM-like variant of sequential execution of ASMs (see [4] for an
explicit definition).
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ACTIVITYBEHAVIOR is an instance of ACTIVITYENTRY, where the instance
node of the activity is added to the set of instances of this activity in the process
instance that node belongs to, and the parent process is this process instance.

ACTIVITYBEHAVIOR.node/ D ACTIVITYENTRY.node;
Instance.node; procInst.node//; procInst.node//

In the following subsections this rule is instantiated for the three Activity subtypes
by refining the abstract STARTEXEC machine. See Sect. 9.4.4 for the instantiation
for iterated activities (standard loops and multi-instance loops).

9.4.1 Tasks

A task is an atomic activity describing work in the given process that “cannnot
be broken down to a finer level of detail” [8, Sect. 10.2.3], although it may take
its (in the process not traceable) execution time. This atomicity is expressed by
the sequentiality operator seq for structuring ASMs (see [5]), which turns a low-
level sequential execution view of two machinesM followed byN into a high-level
atomic view of one machineM seqN .

Therefore STARTEXEC.task; t/means (a) to EXECute the task (instance to which
the triggering token t belongs) whose exact definition depends on the type of the task
and (b) when the execution is Completed without failure to produce an outgoing
sequence flow [CompletionQuantity.task/ many tokens on each arc are emitted by
the task [8, pp. 130, 393], possibly together with some output.13 selectOutputSets is
defined as yielding the first available output set in a given order [8, p. 393]. Thus
TASKBEHAVIOR refines ACTIVITYBEHAVIOR as follows:

TASKBEHAVIOR.node/ D ACTIVITYBEHAVIOR.node/ where
STARTEXEC.a; node/ D EXEC.a/ seq

if Completed.a/ then EXIT.a; node/
if Interrupted.a/ then INTERRUPT.a/

if CompensationOccurs.a/ then
TRIGGERCOMPENSATION.a/

lifeCycle.a/ WD compensating
EXIT.a; node/ D

forall o 2 outArc.node/PRODUCE.o/14

DELETE.a; Instance.node; procInst.node///
PUSHOUTPUT.a; node/

13 We skip the cases where a task may fail or terminate due to a fault in the environment. We also
skip the Completing activity mode, which is foreseen for the final 2.0 version of the standard
but not yet further specified in [8, p. 393].
14 Here again our macro definition of PRODUCE captures that the “number of tokens indicated by
. . . CompletionQuantity is placed” on the outgoing arcs [8, p. 393].
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PUSHOUTPUT.a; node/ D
if forall o 2 outputSets.node/ not Available.o/

then THROW.noAvailOutputExc; node/
else let o D selectOutputSets

.{o 2 outputSets.node/ j Available.o/}/
if IORules.node/.o; currInputSet.a// D false

then THROW.noIORulesExc; node/
else PUSH.output.o//

Remark. In the case of an activity without an outgoing sequence flow, forallo 2
outArc.task/ PRODUCE.o/ is an empty rule, so that if there are no end events in the
containing (sub)process, the activity terminates here.

There are seven types (subclasses) of Task, each coming with characteristic at-
tributes, constraints, and meaning of EXECution [8, Fig. 10.10]; no further specified
tasks are considered as abstract tasks.

TaskType D {Send;Receive; Service;User;Manual; Script;
BusinessRule}

Each of these subclasses is associated with a refinement of TASKBEHAVIOR de-
fined by refining EXEC.taskŒ; i �/ and Completed.task/ as follows. A further specifi-
cation of the abstractions we use in these definitions appears either in the standard
document or comes with the task instantiation. For example, RECEIVE.m/ is de-
scribed as “waiting for m until it arrives” [8], Sect. 14.2.3), job.t/ for type.t/ 2
fService; Script;User;Manualg as the associated service or script or user task or
manual task [also denoted operationRef.t/ for service tasks]. Since abstract tasks
(read: with undefined type) are considered as “never actually executed by an IT
system,” we treat them here as empty actions.

EXEC.t/ D let i D currInputSet.a/ in8
ˆ̂̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂̂
ˆ̂
ˆ̂
<

ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂̂
ˆ̂
ˆ̂
ˆ̂
:̂

SEND.payload.mssg.t//; receiver.mssg.t///
if type.t/ D Send

RECEIVE.mssg.t//
if type.t/ D Receive

INVOKE. job.t/; i/
if type.t/ 2 {Service; Script}

ASSIGN. job.t/; i; performer. job.t/; i//
if type.t/ 2 {User;Manual}

CALL.businessRule.t/; i/
if type.t/ D BusinessRule

skip
if Abstract.t/

Sent.mssg.t// is described for t of type Send as true “upon instantiation” of t ,
Received.mssg.t// for t of type Receive as true “when the message arrives.”
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Completed.t/ D8
ˆ̂̂
ˆ̂
<̂

ˆ̂̂
ˆ̂
:̂

Sent.mssg.t// if type.t/ D Send
Received.mssg.t// if type.t/ D Receive
Completed. job.t// if type.t/ 2 {Service; Script}
Completed.businessRule.t// if type.t/ D BusinessRule
Done. job.t// if type.t/ 2 {User;Manual}
true if Abstract.t/

There is a special case that requires an additional rule. A Receive task that is
“used to start a Process,” a fact indicated by an Instantiate.task/ flag, is required
to either have no incoming arc in its associated process without a start event or
to have an incoming arc with source.in/ being a start event of the associated pro-
cess [8, p. 139]. For the first case a special instance of FLOWNODEBEHAVIOR.task/
is added that has no control condition and no control operation and where Event
Cond.task/ is defined as Received.mssg.task//.

There are also further refinement constraints for some tasks. For example service
tasks are required to have exactly one input set and at most one output set.

9.4.2 Subprocesses

Subprocesses are activities that encapsulate a process [8, p. 394]. They define a con-
textual scope that can be used for attribute visibility or for the handling of transac-
tions, events, exceptions, and compensations [8, p. 152]. Their behavior concerning
exception handling and compensation is described below when explaining the be-
havior of intermediate events that are placed on the boundary of an activity. Their
normal behavior along their inner sequence flow is described by the behavior of
tasks, events, and gateways, which constitute their internal details. What remains to
be described for arbitrary subprocesses is (a) the activation of subprocesses, which
involves an activity instantiation and passing data from caller to callee, and (b) how
to EXIT subprocesses upon their completion. For the special internal control and
exit behavior of elements of the AdHocProcess subclass of class SubProcess, see
Sect. 9.4.2.2, for elements of the subclass Transaction of SubProcess, Sect. 9.4.2.3.

9.4.2.1 Subprocess Activation

There are two cases of subprocess activation, depending on whether the subpro-
cess node has an incoming sequence flow or not. In the first case the associ-
ated SUBPROCESSBEHAVIOR refines ACTIVITYBEHAVIOR; in the second case
SUBPROCESSNOINFLOWBEHAVIOR refines FLOWNODEBEHAVIOR.

For a subprocess with some incoming sequence flow its activation is triggered
through tokens produced by the caller process on the (unique) incoming arc. It con-
sists in (a) creating a new instance of the subprocess as child process of the caller
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Fig. 9.9 Basic class hierarchy of subprocesses

process (which we retrieve, for the sake of example, from the token produced by the
latter on the arc incoming the subprocess) and (b) triggering its start.

Triggering the new process instance has in [8, 14.2.4] two versions, depending
on whether the subprocess either has a (and then unique) startEvent or otherwise
a nonempty set StartNode of “activities and gateways without incoming sequence
flow.” In the first subcase, simply the startEvent is triggered.

In the second subcase we interpret the stipulation that “all such activities and
gateways get a token” by associating in the graph with each n 2 StartNode a (virtual)
entry arc in.n/ that can be enabled by producing a new token on it (in the new
process instance, thus triggering n there; using a process subscript distinguishes
elements in the current process from their analogs in the new instance).

SUBPROCESSBEHAVIOR.node/ D ACTIVITYBEHAVIOR.node/ where
STARTEXEC.a; node/ D

if startEvent.node/ 6D undef then
let {t} D trigger.startEvent.a//
TriggerOccursP.t; startEvent.a// WD true

else
forall n 2 StartNode.node/ PRODUCE.startToken.a; node/; in.n//

For a subprocess without an incoming sequence flow, there must be a nonempty
set StartEvent of “start events that are the target of sequence flow from outside the
subprocess” [8, 14.2.4]. It is stipulated that each such start event “that is reached by
a token”15 generates a new subprocess instance, similar to the pass-through seman-
tics for incoming sequence flow. In other words a triggered start event with a trigger

15 This sounds ambiguous: where should the token arrive if there is no incoming sequence flow?
We interpret it as meaning that some caller process triggers a start event in the callee, the targetyRef
subprocess node [8, p. 215].
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is chosen, it is consumed, a new process instance is created, and the trigger of the
chosen start event is set in the new subprocess instance.

For the special case of a so-called event subprocess (denoted by setting the
triggeredByEvent flag), it is required that it have no incoming or outgoing sequence
flow and exactly one startEvent, so that StartEvent D fstartEventg. In this case
a new instance is started each time this startEvent is triggered while theparent pro-
cess is active.16 The parent process can be interrupted or not, depending on whether
the start event isInterrupting or not.

We incorporate both behaviors into one refinement EVENTSUB

PROCESSBEHAVIOR of FLOWNODEBEHAVIOR, defined for event subprocess
nodes as follows. The corresponding start event rule defined in Sect. 9.5 describes
how the new subprocess instance starts its execution once (one of) its start events is
triggered.

EVENTSUBPROCESSBEHAVIOR.node/ D FLOWNODEBEHAVIOR.node/
where

EventCond.node/ D
forsome e 2 StartEvent.node/ Happened.e/

and if triggeredByEvent.node/
then Active.parent.procInst.node///

let e D selectStartEvent.{n 2 StartEvent.node/ j Happened.e/}
let {t} D selectTrigger{t 2 trigger.e/ j TriggerOccurs.t; e/}

EVENTOP.node/ D CONSUME.t; e/

CTLOP.node/ D
let P D new Instance.process.node//

caller.P / WD

8
ˆ̂
<

ˆ̂
:

parent.procInst.node//
if triggeredByEvent.node/

caller.node/
else

TriggerOccursP.t; e/ WD true
if isInterrupting.node/ then CANCEL.parent.procInst.node///

Happened.e/ D forsome t 2 trigger.e/ TriggerOccurs.t; e/

9.4.2.2 Ad hoc Processes

Ad hoc processes are called nonoperational elements for which “only a concep-
tual model is provided which does not specify details needed to execute them on
an engine” [8, p. 389]. This means that the standard document intends to specify
ad hoc processes only loosely so that we leave their treatment here at the same de-
gree of underspecification. Each subprocess marked as ad hoc has a static set of

16 Op. cit., p. 156., Sect. 14.4.4 says “Running,” a term which is not defined in Fig. 14.2 and
seems to request an active parent process only for initiating a non-interrupting event subprocess.
We disregard here the baroque looking additional feature mentioned on p. 405 that “An Event Sub-
Process can optionally retrigger the Event through which it was triggered, to cause its continuation
outside the boundary of the associated Sub-Process.”
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InnerActivities intended to be executed (if Enabled) in an order that is mainly “de-
termined by the performers of the activities” [8, Sect. 10.2.5, p. 161]. We denote
by EnabledInnerAct.node/ the runtime set of Enabled elements of InnerActivities,
which is required to be initially the set of inner activities without an incoming
sequence flow [8, Sect. 14.2.5]. We reflect the performers’ choice by a function
selectEnabledInnerAct(node) together with a monitored predicate ActivationTime to ex-
press the moment where a new selection takes place. Nevertheless an adHocOrder-
ing function is provided to specify either a parallel execution (the default case that
the dynamic and initially empty set RunningInnerAct of concurrently running in-
ner activities is finite) or a sequential execution [where “only one activity can be
performed at a time” [8, Table 10.22] so that RunningInnerAct is empty or a sin-
gleton set]. An AdHocCompletionCondition is evaluated each time an inner activ-
ity completes and defines whether the subprocess completes by EXITing (possi-
bly producing some output). In the parallel case this depends on whether the at-
tribute CancelRemainingInstances is true: if it is, all elements of RunningInnerAct
are CANCELed, otherwise the ad hoc subprocess is required to wait for completion
until each element of RunningInnerAct has completed or terminated. We use the
await CondM construct to describe such waiting for the execution of M until the
Condition becomes true, as defined for ASMs in [3].

Therefore the behavior ADHOCBEHAVIOR of class AdHocProcess elements is
the following refinement of ACTIVITYBEHAVIOR. For simplicity of exposition and
without loss of generality we assume that each launched inner activity upon com-
pletion enables a (virtual) link that enters the evaluation of the AdHocCompletion
Condition of its ad hoc subprocess.

ADHOCBEHAVIOR.node/ D ACTIVITYBEHAVIOR.node/ where
STARTEXEC.a; node/ D

while not AdHocCompletionCond.node/
if adHocOrdering.node/ D Sequential

then LAUNCHINNERACT.node/
if adHocOrdering.node/ D Parallel then

if ActivationTime.node/ then LAUNCHINNERACT.node/
seq

if CancelRemainingInstances.node/ then
forall a 2 RunningInnerAct.node/

CANCEL.a/

EXIT.a; node/
else awaitforall a 2 RunningInnerAct.node/

Completed.a/ or Terminated.a/
EXIT.node/

LAUNCHINNERACT.node/ D
if enabledInnerAct.node/ 6D ; then

let e D selectEnabledInnerAct(node).EnabledInnerAct.node//
ACTIVITYBEHAVIOR.e/

INSERT.e;RunningInnerAct.node//
DELETE.e;EnabledInnerAct.node//
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9.4.2.3 Transaction

Transactions are subprocesses whose behavior is also controlled by a transaction
protocol, which is assumed to be given. They come with a special method to undo
a transaction when it is cancelled. The behavioral instantiation of a transaction
comes up to add in the specification of the entry and exit actions the details for
creating the transactional scope and for what should happen when a transaction fails
(rollback and possibly compensation of the involved processes). We do not spec-
ify this behavior here because it is only loosely hinted at in the BPMN standard
document.

9.4.3 Call Activity

Any CallActivity (also called a reusable subprocess) “calls a pre-defined pro-
cess” and “results in the transfer of control” to the “CallableElement being in-
voked,” using the data inputs and outputs as well as InputSets and OutputSets
of the referenced callable element [8, 10.2.5/6]. We denote the called activity by
activity.reference.node//, of which a new instance is created and added to the set
of active instances of the activity, having triggered one of its start events (possibly
provided with some available input).

CALLACTIVITYBEHAVIOR.node/ D
ACTIVITYENTRY.node; Instance.activity.reference.node///; node/

where STARTEXEC.a; node/ D
choose n 2 {n 2 StartEvent.a/ j trigger.n/ D None}
TriggerOccursa.None; n/ WD true
INSERT.a;ActiveProcInst.activity.reference.node/////

9.4.4 Iterated (Loop) Activities

Loop and Multiple Instances activities act as wrappers for an activity that can be
iterated resp. spawn multiple instances in parallel or sequentially. We interpret the
wrapper as providing the input, but probably other interpretations are allowed by the
standard. An activity with LoopCharacteristics has an iterative behavior either of
a StandardLoopCharacteristics or of a MultiInstanceLoopCharacteristics type [8,
Fig. 10.6].

The standard loop characteristics define a LoopCondition that is checked, as in-
dicated by a testBefore attribute, either before or after an execution of the loop body
to decide whether the loop completes at this moment or not:

• If testBefore is true, then LoopCond is evaluated before the first iteration of the
activity to be iterated is started (and then again after each iteration), in which
case the loop activity corresponds to the while construct.
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• If testBefore is false, then LoopCond is evaluated after the first iteration has fin-
ished (and then again after each iteration), in which case the loop activity corre-
sponds to the until construct.

A loopMaximum can be used in the loopCond. We use a function inputs to de-
scribe the data flushed to the selected input set currInputSet.node/ in the following
refinement STANDARDLOOPBEHAVIOR of ACTIVITYBEHAVIOR. To ACTIVATE

the loop body means to trigger the execution of the BPMN process defined by the
body; ACTIVATE is defined depending on the type of its argument process. For sim-
plicity of exposition and without loss of generality we make a similar assumption as
for the ADHOCBEHAVIOR rule, namely, that each body process upon its completion
enables a (virtual) link that enters the evaluation of the loopCondition.

STANDARDLOOPBEHAVIOR.node/ D ACTIVITYBEHAVIOR.node/ where
STARTEXEC.a; node/ D

let i D inputs.currInputSet.node//
if testBefore.node/ D true then

while loopCond.a; node/ ACTIVATE.body.a; node/; i/
if testBefore.node/ D false then

until loopCond.node/ ACTIVATE.body.a; node/; i/
seq if Completed.a; node/ then EXIT.a; node/

Completed.a; node/ D�
not loopCond.a; node/ if testBefore.node/ D true
loopCond.a; node/ if testBefore.node/ D false

The multi-instance loop characteristic determines how many instances of an ac-
tivity are spawned to be executed sequentially or in parallel. A loopCardinality ex-
pression defines the number of activity instances to be created, and an isSequential
attribute determines whether the instances are executed sequentially (“a new in-
stance is generated only after the previous one has been completed”) or in parallel.
As for ad hoc activities, a MiCompletionCondition is evaluated each time an in-
stance completes, and when it becomes true, the remaining instances are cancelled
and the multi-instance loop completes. There are four types of instance completion
behavior determining “when events shall be thrown from an activity instance that is
about to complete” [8, Table 10.26]:

• Case behavior D All: “no event is ever thrown; a token is produced after com-
pletion of all instances.”

• Case behavior D None: An event noneBehaviorEventRef is thrown each time an
instance completes.

• Case behavior D One: An event oneBehaviorEventRef is thrown “upon the first
instance completing.”

• Case behavior D Complex: A complexBehaviorDefinition determines “when and
which events are thrown.”
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MULTINSTLOOPBEHAVIOR refines ACTIVITYBEHAVIOR in two respects:

• Refining the input selection and output production to data collections whose
elements are associated to the activity instances; this is a signature refine-
ment defined in [8, Sect. 14.2.7], as is the corresponding refinement of the
PUSHOUTPUT.p/ component of EXIT.p/ for multiple instance activities p.

• Refining the definition of STARTEXEC.

For simplicity of exposition and without loss of generality we make a similar
assumption as for the STANDARDLOOPBEHAVIOR rule, namely, that each inner ac-
tivity instance upon completion enables a (virtual) link entering the MiCompletion-
Condition evaluation. The events thrown by EMITEVENT each time an inner activ-
ity completes are instances of the class ImplicitThrowEvent, read: events that are
automatically thrown to be caught by a boundary event on the multi-instance activ-
ity [8, Table 10.28]. The standard document does not explain the data input/output
behavior of multiple instances, so we do not enter its formalization here.

MULTINSTLOOPBEHAVIOR D ACTIVITYBEHAVIOR.node/ where
STARTEXEC.a; node/ D

while MiCompletionCond.a; node/ D false
if isSequential.node/ then

LAUNCHINSTANCE.node/ // run first instance until completion
step // creation of further instances

while loopCardinality.node/ >j ActiveInnerAct.a; node/ j
LAUNCHINSTANCE.a; node/ // run next instance until completion

else // parallel case: new instances created at activation time
while loopCardinality.node/ >j ActiveInnerAct.a; node/ j

if ActivationTime.node/ then // run one more instance
LAUNCHINSTANCE.a; node/

step
forall b 2 ActiveInnerAct.a; node/ CANCEL.b/

EXIT.a; node/ // NB with refined PUSHOUTPUT

LAUNCHINSTANCE.a; n/ D
let act D new Instance.innerAct.n//�

ACTIVATE.act/
INSERT.act;ActiveInnerAct.a; n//

step await Completed.act/ EMITEVENT.n/

EMITEVENT.n/ D8
ˆ̂̂
<̂

ˆ̂
ˆ̂:

THROW.noneBehaviorEventRef.n/; n/ if behavior.n/ D None
THROW.oneBehaviorEventRef.n/; n/ if behavior.n/ D One

andj Instance.innerAct.n// jD 1

forall e 2 ComplexBehaviorDefinition
THROW.e; n/ if behavior.n/ D Complex
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9.5 Events

Events are used in BPMN to control the execution order or timing of process activ-
ities [8, Sect. 8.3.6]. Event splits into two subclasses, ThrowEvent and CatchEvent,
both of which can contain intermediate events, which may throw or catch triggers,
the causes of events. EndEvents are ThrowEvents because they typically “throw”
a result when a process ends, whereas StartEvents “catch” a trigger to start a pro-
cess and thus form a subclass of CatchEvent, as do the elements of BoundaryEvent
which are typically attached as intermediate events to an activity. When an event is
thrown, its trigger is propagated to the innermost enclosing scope instance where an
attached event can catch the trigger. For some cases (e.g. for errors or escalations) it
is intentionally left underspecified what should happen when no catching event can
be found.

We indicate by trigger.node/ the set of types of event triggers that may be as-
sociated to node as defined in [8, Table 10.77]: a message (arriving from another
participant), a timer, a condition, a signal (broadcasted from another process) or
none (and in event subprocesses also escalation, error, or compensation).

In the following subsections we explain the behavior of these Event subclasses,
mostly abstracting from the data events may carry. The (throw) behavior of so-
called implicit throw events, which are used in connection with multi-instance
activities, has already been described when defining the EMITEVENT macro in
Sect. 9.4.4.

Fig. 9.10 Basic Class Hierarchy of Events
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9.5.1 Start Events

A start event has no incoming arc (except when attached to the boundary of a sub-
process to which a higher-level process may connect), and every process contain-
ing some (possibly more than one) start event is required to have no other flow
elements without incoming sequence flow (except intermediate events attached to
an activity boundary, event subprocesses or compensation activities, see below) [8,
Chap. 10.4.2]. When at a start event a TriggerOccurs – a predicate representing
that an event “happens” during the course of a business process, see definition in
Sect. 9.5.3.2 – a new process instance is created and started by producing a (unique)
startToken on every outgoing arc.

If there are multiple ways to trigger a process, only one trigger is required to
occur except in the special case where all elements of trigger.node/ must be trig-
gered to instantiate the process. This is expressed by the following two refinements
of FLOWNODEBEHAVIOR.node/ for start event nodes without incoming arc.17

STARTEVENTBEHAVIOR.node/ D FLOWNODEBEHAVIOR.node/
where // normal case without parallel multiple trigger

EventCond.node/ D ParallelMultiple 62 trigger.node/ and
forsome e 2 trigger.node/ TriggerOccurs.e; node/

EVENTOP.node/ D
choose e 2 {e 2 trigger.node/ j TriggerOccurs.e; node/}

CONSUME.triggerOccurrence.e//

CTLOP.node/ D
let P D new Instance.process.node//
forall o 2 outArcP.nodeP/ PRODUCE.startTokenP.node/; o/

STARTEVENTPARMULTBEHAVIOR.node/ D FLOWNODEBEHAVIOR.node/
where // case with parallel multiple triggers

EventCond.node/ D ParallelMultiple 2 trigger.node/ and
forall e 2 trigger.node/ n {ParallelMultiple}

TriggerOccurs.e; node/
EVENTOP.node/ D

forall e 2 trigger.node/ n {ParallelMultiple}
CONSUME.triggerOccurrence.e//

Fig. 9.11 Start Events – None, Message, Timer, Escalation, Error, Compensation, Signal, Multiple,
Parallel Multiple

17 Since in this chapter we do not investigate BPMN choreography features, we disregard the case
of start events that participate in a conversation including other start events where only one new
process instance is created for the specific conversation.
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CTLOP.node/ D
let P D new Instance.process.node//
forall o 2 outArcP.nodeP/ PRODUCE.startTokenP.node/; o/

In the special case of a start event node with an incoming arc in, the event
must be attached to the boundary of a subprocess to which a higher-level pro-
cess may connect. This situation can be modeled by treating in as a virtual in-
coming arc that can be Enabled by a token produced by the higher-level process,
so that Triggered.node/ is instantiated to Enabled.in.node// and CONSUMEVENT

.node/ to CONSUME.firingToken.in.node//; in.node//.
Remark on processes without a start event. Constructs without an incoming

arc and belonging to a process without a start event must be activated when the
process is instantiated. For simplicity of exposition we model such processes by
equipping them with a virtual start event from which a virtual arc leads to each
construct without incoming sequence flow. Then these constructs are all triggered
when by the instantiation of the process the start event is triggered.

Table 10.77 in [8] explains how TriggerOccurs is defined. For a conditional trig-
ger e CONSUME.triggerOccurrence.e// is required to let the corresponding condi-
tion become false between two occurrences of that trigger.

9.5.2 End Events

An end event is used to indicate where a process will end and thus has incom-
ing arcs (where each arriving token will be consumed) and no outgoing sequence
flow (except when the end event is attached to the boundary of a subprocess from
where a higher-level process may proceed); furthermore every process containing
some (possibly more than one) end event is required to have no other flow ele-
ments without an outgoing sequence flow (except compensation activities, see be-
low) [8, Sect. 10.4.3]. An end event may emit (possibly multiple) results belonging
to its resultType set containing elements of the following types: message, signal,
terminate, error, escalation, cancel, compensation, or none [8, Table 10.81].

Thus ENDEVENTBEHAVIOR refines FLOWNODEBEHAVIOR as follows:

ENDEVENTBEHAVIOR.node/ D FLOWNODEBEHAVIOR.node/ where
CtlCond.node/ D forsome in 2 inArc.node/ Enabled.in/
CTLOP.node/ D choose in 2 {in 2 inArc.node/ j Enabled.in/}

CONSUME.firingToken.in/; in/

Fig. 9.12 End Events – None, Message, Escalation, Error, Cancel, Compensation, Signal, Multi-
ple, Termination
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if Multiple 62 resultType.node/ // normal case without multiple results
then let {res} D resultType.node/ in EMITRESULT.res; node/
else forall res 2 resultType.node/ n {Multiple}

EMITRESULT.res; node/

EMITRESULT is detailed in [8, Table 10.81]. For a message result type the
MessageFlow determines the message(s) to be sent from the sender to the receiver.
For a signal result type the corresponding signalRef is BROADCAST from node to
“any process that can receive it” (we write receivers.signalRef.node/; node/). An
error result type yields THROWing an error – to be caught by an enclosing inter-
mediate event if there is any; otherwise it is intentionally left unspecified as to what
should happen – and terminating all the activities that are currently active in the sub-
process (assumed to include all instances of multi-instances). Similarly THROWing
an Escalation or Cancel type from node has the effect of triggering an enclosing
targetIntermEv.escalation; node/ in an attempt to catch the escalation and, in case
it is not caught there, to propagate it further up; the cancel case is required to be
used only within a transaction subprocess, with targetIntermEv.resType; node/ at-
tached to the boundary of the transaction, and in addition a transaction protocol can-
cel message has to be sent to any entities involved in the transaction; we represent
this behavior as a CALLBACK to each participant in the set listener.Cancel; node/.
A compensation result type yields THROWing a compensation event, which is re-
quired to activate the compensation handler of the corresponding activity (or set of
activities) actRef.node/ after their completion. If resType D Terminate “all activi-
ties in the process should be immediately ended,” including multiple instances; this
can be achieved by deleting all tokens on any arc in the given process.node/ and
in any active inner activity, deleting the latter from the set of active inner activities.
For resType D None in the special case of an end node of a subprocess that has
completed, when the subprocess is Completed the flow has to go back to the caller
process, to which effect a token is PRODUCEd on the arc which outgoes the caller
of the process instance to which the end node belongs, and the process instance is
deleted from the set of active instances of the called activity.reference.node//.

EMITRESULT.resType; node/ D
if resType D Message then forall m 2 MessageFlow

if sender.m/ D node then SEND.payload.m/; receiver.m///
if resType D Signal then

BROADCAST.signalRef.node/; receivers.signalRef.node/; node//
if resType D Error then

THROW.error; node/
forall a 2 ActiveActivity.process.node// TERMINATE.a/

if resType 2 {Cancel;Escalation} then
THROW.resType; node/
if resType D Cancel then

CALLBACK.mssg.Cancel; node/; listener.Cancel; node//
if resType D Compensation then

THROW..compensation; actRef.node//; node/
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if resType D Terminate then INTERRUPT.process.node//
if resType D None and IsSubprocessEnd.node/

and Completed.process.node// then
PRODUCE.returnToken.node/; out.caller.process.node////
DELETE.process.node/;

ActiveProcInst.activity.reference.node////
where

CALLBACK.m;L/ D forall l 2 L SEND.payload.m/; l/
INTERRUPT.p/ D

DELETEALLTOKENS.p/

forall q 2 ActiveInnerAct.p/
DELETEALLTOKENS.q/

DELETE.q;ActiveInnerAct.p//

9.5.3 Intermediate Events

Intermediate events occur between start and end events and may either throw or
catch triggers, namely, to send or receive messages or to establish a condition or to
react to its satisfaction, where the conditions may concern timing features or excep-
tions or compensations. If an intermediate event is enabled during normal process
flow, it will either (“throw use”) immediately set off the event trigger and perform
its normal sequence flow CTLOP (CONSUME its enabling token and PRODUCE to-
kens on its outgoing sequence flow) or (“catch use”) wait to perform its normal
CTLOP until its trigger occurs. When intermediate events are used in an activity
to describe exception or compensation handling that is outside the normal flow
of the activity, they are attached to the boundary of that activity (represented by
attachedTo D activity), formally as elements of boundaryEventRefs.activity/. Such
events can only catch their triggers during an execution of the activity they are at-
tached to, thereby starting an exception or compensation flow that may interrupt the
activity (as error or cancel intermediate events always do).

The intermediate events that can be used in normal flow or as attached to an
activity boundary are listed in [8, Tables 10.82 and 10.83]. In the following two
sections we describe the associated normal flow behavior; for the boundary event
behavior see Sect. 9.5.4.

9.5.3.1 Intermediate Throw Events in Normal Flow

An intermediate throw event is required to have some (“uncontrolled” if mul-
tiple) incoming and (except intermediate link events) some (simultaneously ac-
tivated if multiple) outgoing sequence flow [8, Sect. 10.4.4]. The details of its
event operation SETEVENTTRIGGER depend on the trigger type associated to the
event.
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Fig. 9.13 Intermediate Throw Events – Message, Escalation, Compensation, Signal, Multiple

SETEVENTTRIGGER yields message SENDing in the case of a Message trigger
type, a BROADCAST for a Signal trigger type, triggering (the unique) targetLink for
trigger type Link and THROWing an escalation or compensation18 for an Escalation
or Compensation trigger type. If trigger.node/ contains multiple trigger elements,
then SETEVENTTRIGGER.node; t/ is performed for each trigger element t 2
trigger.node/.

Thus INTERMEDIATETHROWEVENTBEHAVIOR refines FLOWNODEBEHAVIOR

as follows and is associated to the class INTERMEDIATETHROWEVENT:

INTERMEDIATETHROWEVENTBEHAVIOR.node/ D
FLOWNODEBEHAVIOR.node/ where

CtlCond.node/ D forsome in 2 inArc.node/ Enabled.in/
CTLOP.node/ D choose in 2 {in 2 inArc.node/ j Enabled.in/}

CONSUME.firingToken.in/; in/
PRODUCEALL.outArc.node//19

EVENTOP.node/ D
if Multiple 62 trigger.node/ // case with only one trigger

then let {t} D trigger.node/ in SETEVENTTRIGGER.t; node/
else forall t 2 trigger.node/ n {Multiple}

SETEVENTTRIGGER.t; node/
SETEVENTTRIGGER.t; n/ D8

ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂̂
ˆ̂
<̂

ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂̂
ˆ̂
ˆ̂
:̂

forall m 2 MessageFlow with sender.m/ D node
SEND.payload.m/; receiver.m//

if t D Message
BROADCAST.signalRef.n/; receivers.signalRef.n/; n//

if t D Signal
Triggered.targetLink.n// WD true

if t D Link
THROW.escalation; n/

if t D Escalation
THROW..compensation; actRef.node//; node/

if t D Compensation

18 We do not provide further details about compensation because this concept is only unsatisfacto-
rily sketched in the standard document, in particular when it comes to speak about compensation
of multiple activities.
19 If for a source intermediate link event outArc.node/ D ;, then PRODUCEALL.;/ D SKIP .
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9.5.3.2 Intermediate Catch Events in Normal Flow

An intermediate catch event, when token Enabled, will wait to perform its normal
CTLOP until its EventCondition is satisfied expressing that the triggers to be caught
occur. When it becomes true, the normal CTLOPeration is performed and the oc-
curring event triggers are consumed (where relevant, e.g., for link types where the
Triggered predicate at sourceLink.node/ has to be reset to false; [8, Sect. 10.4.6]).

Thus INTERMEDIATECATCHEVENTBEHAVIOR refines FLOWNODEBEHAVIOR

as follows and is associated to the class INTERMEDIATECATCHEVENT. The predi-
cate TriggerOccurs.t; node/ is defined in [8, Table 10.82].

INTERMEDIATECATCHEVENTBEHAVIOR.node/ D
FLOWNODEBEHAVIOR.node/ where

CtlCond.node/ D forsome in 2 inArc.node/ Enabled.in/
EventCond.node/ D

.ParallelMultiple 62 trigger.node/
// only one trigger required to occur

and forsome t 2 trigger.node/ TriggerOccurs.t; node//
or
.ParallelMultiple 2 trigger.node/ // all triggers required to occur

and forall t 2 trigger.node/ TriggerOccurs.t; node//
EVENTOP.node/ D

let TriggOcc D {t 2 trigger.node/ j TriggerOccurs.t; node//}
if ParallelMultiple 62 trigger.node/ then

choose t 2 TriggOcc CONSUME.triggerOccurrence.t//
else forall t 2 TriggOcc CONSUME.triggerOccurrence.t//

CTLOP.node/ D choose in 2 {in 2 inArc.node/ j Enabled.in/}
CONSUME.firingToken.in/; in/
PRODUCEALL.outArc.node//

TriggerOccurs.t; node/ D8
ˆ̂
<

ˆ̂
:

forsome m 2 Message Received.m; node/ if t D Message
TimerCondition.node/ D true if t D Timer
EventExpression.node/ D true if t D Conditional
Triggered.sourceLink.node// D true if t D Link

As shown in Table 10.94 in [8], the TimerCondition.node/ typically involves
t imeData.node/ or cycleData.node/. Timer as well as conditional triggers are
implicitly thrown, meaning that when activated they wait until TriggerOccurs,
namely, when their time-based or state-based condition becomes true.

Fig. 9.14 Intermediate Catch Events – Message, Timer, Escalation, Error, Cancel, Compensation,
Signal, Multiple, Parallel Multiple
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9.5.4 Boundary Events

An intermediate event that is attachedTo the boundary of an activity has no incom-
ing but has (possibly multiple) outgoing sequence flows – except intermediate events
with a Compensation trigger that are required not to have any outgoing sequence
flows, although they may have an outgoing association. When a boundary interme-
diate event is triggered, three things happen: (a) the event trigger occurrence is con-
sumed; (b) if the cancelActivity.act/ attribute is true,20 the activity is INTERRUPTed
(including all its inner activity instances in case of a multi-instance activity; see the
definition in Sect. 9.5.2); (c) the CTLOP enables the outgoing sequence flow ac-
tivating an event handler [8, pp. 234, 253, Sect. 14.4.3]. For a compensation event
trigger to occur means that the toBeCompensatedActivity has Completed, so that the
compensation handler for that activity is activated (for which reason a compensation
event must be noninterrupting).

Thus BOUNDARYEVENTBEHAVIOR refines FLOWNODEBEHAVIOR. The defi-
nition of TriggerOccurs.t; node/ from Sect. 9.5.3.2 is extended by [8, Table 10.83]

BOUNDARYEVENTBEHAVIOR.node/ D FLOWNODEBEHAVIOR.node/
where

EventCond.node/ D
.ParallelMultiple 62 trigger.node/

// only one trigger required to occur
and forsome t 2 trigger.node/ TriggerOccurs.t; node//

or
.ParallelMultiple 2 trigger.node/ // all triggers required to occur

and forall t 2 trigger.node/ TriggerOccurs.t; node//
EVENTOP.node/ D

let TriggOcc D {t 2 trigger.node/ j TriggerOccurs.t; node//}
if ParallelMultiple 62 trigger.node/ then choose t 2 TriggOcc

CONSUME.triggerOccurrence.t//
if t D Compensate then

ACTIVATE.compensation.attachedTo.node///
else forall t 2 TriggOcc

CONSUME.triggerOccurrence.t//

Fig. 9.15 A task activity with
an intermediate catching error
event attached to its boundary

20 It is required to always hold for Error and to never hold for Compensate type.
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if Compensate 2 TriggOcc then
ACTIVATE.compensation.attachedTo.node///

CTLOP.node/ D
PRODUCEALL.outArc.node//
if cancelActivity.attachedTo.node//

then INTERRUPT.attachedTo.node//

TriggerOccurs.t; node/ D8
ˆ̂
ˆ̂̂
ˆ̂
ˆ̂
ˆ̂
<̂

ˆ̂
ˆ̂
ˆ̂
ˆ̂̂
ˆ̂
:̂

forsome m 2 Message Received.m; node/ if t D Message
TimerCondition.node/ D true if t D Timer
EventExpression.node/ D true if t D Conditional
forsome n node 2 receivers.signalRef.n/; n/

and Arrived.signalRef.n/; node/ if t D Signal
triggerOccurrence.t/ D .Completed; a/

and Completed.a/ if t D Compensate
Caught.t; node/

if t 2 {Escalation;Error;Cancel}

9.6 An Example

We illustrate the preceding definitions by the workflow in Fig. 9.16. It has two pools:
One is used as an abstract blackbox for an external participant and is left empty, the
other one is assumed to contain all the other elements and is drawn with an invisible
outline.

The workflow execution begins with the start event in the upper left corner. Since
there is no specific trigger type associated with this event, it has to be triggered
manually. When such a manual TriggerOccurs, EventCond is true and the under-
lying BPMN scheduler can choose to fire this start event. This process consumes
through the EVENTOP the event trigger and produces through CTLOP a token on
the outgoing edge, thus enabling the following subprocess to start. The subprocess
is instantiated by SUBPROCESSBEHAVIOR through triggering its start event.

Within the subprocess, the exclusive gateway is used as a join. It can fire upon
the arrival of the produced single incoming token because EXCLGATEBEHAVIOR

restricts its consumption function by jselectConsume.node/j D 1. The next workflow
element is a collapsed subprocess, Process Input, which loops over some input that
is not further specified, using multiple instances, as indicated by the vertical bars.
After consuming the firing token through an application of ACTIVITYBEHAVIOR,
the refined version of STARTEXEC for multi-instance looping activities invokes its
inner activity with simultaneous multiple instances because the loop is marked as
nonsequential. The exact mechanism involves mapping a collection of input data
to those instances by means of some input association and is carried out by the
interpreter. The inner process activities are instantiated via the ACTIVATE macro.

In case none of the created instances raises an error, the loop activity will even-
tually be finalized via EXIT, which places a token on the ougoing edge of the loop
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Fig. 9.16 Example – a compensatable process with a remote arbiter

activity. In case at least one instance of the loop subprocess raises an error that
is not caught within its scope, all instances of the subprocess are terminated by
EMITRESULT. The interpreter searches now for a suitable boundary event matching
this error, rethrowing it on every level in the process hierarchy. In the example there
is a catching intermediate event of type error directly on the boundary of the Process
Input subprocess. Assuming that its definition matches the error that was thrown, the
interpreter will signal its associated trigger, thereby fulfilling its EventCond.

The only flow node that can be fired at this stage is the Generate Report task.
Apart from collecting and processing information about the caught error, it dis-
patches a message to the external participant represented by the empty pool. From
the local point of view of the single example process no details about what hap-
pens in the empty pool are known except that its participant adheres to the message
exchange indicated in the diagram. The following event-based gateway due to its
EventCond can only be enabled after one of its associated events is triggered. This
can be an external message requesting to repeat the Process Input activity, a mes-
sage informing that the process failed, or a failure to receive at least one of these
messages within a certain time frame. The latter case is also regarded as a failure.
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Choosing the appropriate outgoing edge on which to place a token relies on an or-
dering among the triggers, as expressed by the fst function that is used in selectProduce

within EVENTGATEBEHAVIOUR.
In the Retry case, a token is placed on the edge leading back to the exclusive

join, resulting in another iteration. In the failure and timeout cases, the token is
produced on a path that ends with the error end event Escalate. The intermediate
event on whose incoming edge the token is placed initially has in all possible cases
a true EventCondition and thus can fire without delay. This is guaranteed by the
selectProduce function of the event-based gateway and the fact that the triggers are
only cleared by the following events.

The subprocess can be exited via one of the two end events or via some un-
caught terminating trigger further down in the process hierarchy. The Escalate end
event signals a terminal failure of the process and throws an error that can possibly
be caught in an enclosing context to handle the exception. Because the outermost
process that is modeled in this diagram has no designated event handlers, it would
automatically be terminated as well when this end event is triggered. The other end
event only throws the none trigger, so if the subprocess token arrives, it is Completed
there and thus via EMITRESULT returns to the caller process.

Finally, the top-level process exits via either the Success or the Undo end event.
In the first case, control is returned to the calling instance higher in the hierarchy,
or to the interpereter if there was no such instance. The Undo end event has an at-
tached trigger of type compensation. The trigger that it throws contains a reference
to the activity that is to be compensated, as expressed by the actRef function in
EMITRESULT. Compensations are different from errors in that they are usually di-
rected from an outer toward an inner context. As described in the text, we assume
that the interpreter will catch the trigger and find the associated compensation activ-
ity of the enclosed reference. In our case, the Undo end event references the inner
subprocess, so the Handle Compensation activity would be invoked to undo the ef-
fects of the Process Input subprocess.

9.7 Conclusion

One could simplify considerably the BPMN execution semantics by restricting it
to a core of BPMN constructs in terms of which all the other constructs could be
defined, to streamline the standard as suggested already in already in [6]. Up to now
missing or ambiguous issues one would like to see clarified by the standard docu-
ment can be integrated into the model once they are decided. We believe that the
standard document leaves too many relevant issues underspecified, e.g., the lifecy-
cle concept for activities and its relation with exception handling and compensation.
As a consequence, it remains doubtful whether this standard will provide a practi-
cal basis for truly interoperable (platform independent) business process specifica-
tions; reference implementations are no remedy. The underspecification also limits
serious verification efforts for challenging real-life process properties, in particu-
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lar if machine-supported verification is at stake. The fact that the invariants needed
in [11] to reflect details that are missing in the OMG document seem to grow even
for simple properties at an extradinary rate with the complexity of the analyzed di-
agrams points in this direction. Comparable Event-B-based verification efforts for
properties of BPEL processes in [1, 2] seem not to suffer from such a deficiency.

Appendix: BPMN in a Nutshell

We list here the behavioral rules associated with the subclasses of the BPMN
FlowNode class.

FLOWNODEBEHAVIOR.node/ D
if EventCond.node/ and CtlCond.node/ and DataCond.node/

and ResourceCond.node/ then
DATAOP.node/
CTLOP.node/
EVENTOP.node/
RESOURCEOP.node/

9.7.1 Gateway Behavior

GATEBEHAVIORPATTERN.node/ D
let I D selectConsume.node/
let O D selectProduce.node/

FLOWNODEBEHAVIOR.node; I;O/
where

CtlCond.node; I / D forall in 2 I Enabled.in/
and Active.procInst.node//

CTLOP.node; I;O/ D
CONSUMEALL.{.tj; inj/ j 1 � j � n}/ where
Œt1; : : : ; tn� D firingToken.I /; Œin1; : : : ; inn� D I

if NormalCase.node/ then PRODUCEALL.O/

else THROW.GateExc; node/
DATAOP.node; O/ D forall o 2 O forall i 2 assignments.o/

ASSIGN.toi; fromi/

Active.p/ D .lifeCycle.p/ D active/

PARGATEBEHAVIOR.node/ D GATEBEHAVIORPATTERN.node/ where
selectConsume.node/ D inArc.node/ // AND-JOIN merging behavior
selectProduce.node/ D outArc.node/ // AND-SPLIT (branching behavior
NormalCase.node/ D true // gate throws no exception
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EXCLGATEBEHAVIOR.node/ D GATEBEHAVIORPATTERN.node/ where
j selectConsume.node/ jD 1 // exclusive merge
selectProduce.node/ D fst.{a 2 outArc.node/ j DataCond.a/}/
NormalCase.node/ D NormalCaseEXCLGATEBEHAVIOR.node/

INCLGATEBEHAVIOR.node/ D GATEBEHAVIORPATTERN.node/ where
selectConsume.node/ D // NB. all to be enabled to fire

{in 2 inArc.node/ j Enabled.in/ or UpstreamToken.in/ 6D ;}
selectProduce.node/ D {a 2 outArc.node/ j DataCond.a/}
CtlCond.node; I;O/ D

CtlCondGATEBEHAVIORPATTERN.node; I;O/ and I 6D ;
NormalCase.node/ if and only if // as for the exclusive case

{a 2 outArc.node/ j DataCond.a/} 6D ; or
some default sequence flow is specified at node

EVENTGATEBEHAVIOR.node/ D // case with incoming arcs
GATEBEHAVIORPATTERN.node/ where

j selectConsume.node/ jD 1

EventCond.node/ D
forsome a 2 outArc.node/ Occurs.gateEvent .a//

selectProduce.node/ D fst.{a 2 outArc.node/ j Occurs.gateEvent .a//}/
EVENTOP.node/ D CONSUME.gateEvent .selectProduce.node///
NormalCase.node/ D true // event gate throws no exception
Occurs.gateEvent .a// D�

Triggered.event .a// if gateEvent .a/ D event .a/
Completed.receiveTask.a// if gateEvent .a/ D receiveTask.a/

EVENTGATEPROCSTARTBEHAVIOR.group/ D
EVENTGATEPROCSTARTBEHAVIORStart.group/
EVENTGATEPROCSTARTBEHAVIORProgress.group/

EVENTGATEPROCSTARTBEHAVIORStart.group/ D
GATEBEHAVIORPATTERN.group/ where

selectConsume.group/ D ;
CtlCond.group/ D .mode.group/ D Start/
EventCond.group/ D forsome g 2 group Occurs.gateEvent .g//
let g D fst.{g 2 group j Occurs.gateEvent .g//}/

selectProduce.group/ D
fst.{a 2 outArc.g/ j Occurs.gateEvent .g; a//}/

CTLOP.group; O/ D
let P D new Instance.process.group//

PRODUCE.selectProduce.group/P/
lastCreatedProcInst.group/ WD P

lifeCycle.P / WD active
Seen.g/ WD true
if j group j> 1 then mode WD Progress

EVENTOP.group/ D CONSUME.gateEvent .selectProduce.g///
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NormalCase.group/ D true // no event gate throws an exception
Occurs.gateEvent .g// D

forsome a 2 outArc.g/ Occurs.gateEvent .g; a//

EVENTGATEPROCSTARTBEHAVIORProgress.group/ D
GATEBEHAVIORPATTERN.group/ where

selectConsume.group/ D ;
CtlCond.group/ D .mode.group/ D Progress/
EventCond.group/ D

forsome g 2 {g 2 group j not Seen.g/} Occurs.gateEvent .g//
let g D fst.{g0 2 group j Occurs.gateEvent .g0// and not Seen.g0/}/

selectProduce.group/ D
fst.{a 2 outArc.g/ j Occurs.gateEvent .g; a//}/

EVENTOP.group/ D CONSUME.gateEvent .selectProduce.group///
CTLOP.group; O/ D

if LastSeen.g; group/ then // reset group state
mode.group/ WD Start
forall g0 2 group Seen.g0/ WD false

else Seen.g/ WD true
PRODUCE.selectProduce.group/lastCreatedProcInst.group//

NormalCase.group/ D true
LastSeen.g; group/ D .group D {g0 j Seen.g0/} [ {g}/

COMPLGATEBEHAVIOR D COMPLGATEBEHAVIORstart

COMPLGATEBEHAVIORreset

COMPLGATEBEHAVIORstart.node/ D GATEBEHAVIORPATTERN.node/
where
DataCond.node/ D activationCondition.node/

and waitingForStart.node/
selectConsume.node/ D {in 2 inArc.node/ j Enabled.in/}
selectProduce.node/ D {o 2 outArc.node/ j DataCond.a/ D true}
CTLOP.node; I;O/ D

CTLOPGATEBEHAVIORPATTERNnode; I;O/
if NormalCase.node/ then

atStartEnabledArc.node/ WD selectConsume.node/
waitingForStart WD false

NormalCase.node/ D NormalCaseEXCLGATEBEHAVIOR.node/

COMPLGATEBEHAVIORreset.node/ D GATEBEHAVIORPATTERN.node/
where

DataCond.node/ D not waitingForStart.node/
selectConsume.node/ D {in 2 inArc.node/ n atStartEnabledArc.node/ j
Enabled.in/ or UpstreamToken.in/ 6D ;}

// NB. all to be enabled to fire
selectProduce.node/ D {o 2 outArc.node/ j DataCond.a/ D true}
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CTLOP.node; I;O/ D
CTLOPGATEBEHAVIORPATTERN.node; I;O/
waitingForStart WD true

NormalCase.node/ D true // no exception thrown in mode reset

9.7.2 Activity Behavior

ACTIVITYENTRY.node; InstSet;TriggerProc/ D
FLOWNODEBEHAVIOR.node/

where
CtlCond.node/ D forsome in 2 inArc.node/ Enabled.in/
CTLOP.node/ D

let arc D selectConsume.{in 2 inArc.node/ j Enabled.in/}/
CONSUME.firingToken.arc/; arc/

let a D new InstSet
lifeCycle.a/ WD ready
parent.a/ WD TriggerProc

step GETACTIVE.a; node/
GETACTIVE.a; node/ D

if Ready.a/ and forsome i 2 inputSets.node/ Available.i/ then
let i D selectInputSets.{i 2 inputSets.node/ j Available.i/}/

STARTEXEC.a; node/
lifeCycle.a/ WD active
currInputSet.node/ WD i

if Interrupted.a/ then INTERRUPT.a/

Ready.a/ D .lifeCycle.a/ D ready/

ACTIVITYBEHAVIOR.node/ D ACTIVITYENTRY.node;
Instance.node; procInst.node//; procInst.node//

TASKBEHAVIOR.node/ D ACTIVITYBEHAVIOR.node/ where
STARTEXEC.a; node/ D EXEC.a/ seq

if Completed.a/ then EXIT.a; node/
if Interrupted.a/ then INTERRUPT.a/

if CompensationOccurs.a/ then
TRIGGERCOMPENSATION.a/

lifeCycle.a/ WD compensating
EXIT.a; node/ D

forall o 2 outArc.node/ PRODUCE.o/

DELETE.a; Instance.node; procInst.node///
PUSHOUTPUT.a; node/

PUSHOUTPUT.a; node/ D
if forall o 2 outputSets.node/ not Available.o/

then THROW.noAvailOutputExc; node/
else let o D selectOutputSets.{o 2 outputSets.node/ j Available.o/}/
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if IORules.node/.o; currInputSet.a// D false
then THROW.noIORulesExc; node/
else PUSH.output.o//

EXEC.t; i/ D let i D currInputSet.a/ in8
ˆ̂̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂̂
ˆ̂
ˆ̂
ˆ̂
<

ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂̂
ˆ̂
ˆ̂
ˆ̂
:̂

SEND.payload.mssg.t//; receiver.mssg.t///
if type.t/ D Send

RECEIVE.mssg.t//
if type.t/ D Receive

INVOKE. job.t/; i/
if type.t/ 2 {Service; Script}

ASSIGN. job.t/; i; performer. job.t/; i//
if type.t/ 2 {User;Manual}

CALL.businessRule.t/; i/
if type.t/ D BusinessRule

skip
if Abstract.t/

SUBPROCESSBEHAVIOR.node/ D ACTIVITYBEHAVIOR.node/ where
STARTEXEC.a; node/ D

if startEvent.node/ 6D undef then
let {t} D trigger.startEvent.a//
TriggerOccursP.t; startEvent.a// WD true

else
forall n 2 StartNode.node/ PRODUCE.startToken.a; node/; in.n//

EVENTSUBPROCESSBEHAVIOR.node/ D FLOWNODEBEHAVIOR.node/
where

EventCond.node/ D
forsome e 2 StartEvent.node/ Happened.e/

and if triggeredByEvent.node/
then Active.parent.procInst.node///

let e D selectStartEvent.{n 2 StartEvent.node/ j Happened.e/}
let {t} D selectTrigger{t 2 trigger.e/ j TriggerOccurs.t; e/}

EVENTOP.node/ D CONSUME.t; e/

CTLOP.node/ D
let P D new Instance.process.node//

caller.P / WD�
parent.procInst.node// if triggeredByEvent.node/
caller.node/ else

TriggerOccursP.t; e/ WD true
if isInterrupting.node/ then CANCEL.parent.procInst.node///

Happened.e/ D forsome t 2 trigger.e/ TriggerOccurs.t; e/

ADHOCBEHAVIOR.node/ D ACTIVITYBEHAVIOR.node/ where
STARTEXEC.a; node/ D

while not AdHocCompletionCond.node/
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if adHocOrdering.node/ D Sequential then
LAUNCHINNERACT.node/

if adHocOrdering.node/ D Parallel then
if ActivationTime.node/ then LAUNCHINNERACT.node/

seq
if CancelRemainingInstances.node/ then

forall a 2 RunningInnerAct.node/
CANCEL.a/

EXIT.a; node/
else await forall a 2 RunningInnerAct.node/

Completed.a/ or Terminated.a/
EXIT.node/

LAUNCHINNERACT.node/ D
if enabledInnerAct.node/ 6D ; then

let e D selectEnabledInnerAct(node).EnabledInnerAct.node//
ACTIVITYBEHAVIOR.e/

INSERT.e;RunningInnerAct.node//
DELETE.e;EnabledInnerAct.node//

CALLACTIVITYBEHAVIOR.node/ D
ACTIVITYENTRY.node; Instance.activity.reference.node///; node/

where STARTEXEC.a; node/ D
choose n 2 {n 2 StartEvent.a/ j trigger.n/ D None}
TriggerOccursa.None; n/ WD true
INSERT.a;ActiveProcInst.activity.reference.node/////

STANDARDLOOPBEHAVIOR.node/ D ACTIVITYBEHAVIOR.node/ where
STARTEXEC.a; node/ D

let i D inputs.currInputSet.node//
if testBefore.node/ D true then

while loopCond.a; node/ ACTIVATE.body.a; node/; i/
if testBefore.node/ D false then

until loopCond.node/ ACTIVATE.body.a; node/; i/
seq if Completed.a; node/ then EXIT.a; node/

Completed.a; node/ D�
not loopCond.a; node/ if testBefore.node/ D true
loopCond.a; node/ if testBefore.node/ D false

MULTINSTLOOPBEHAVIOR D ACTIVITYBEHAVIOR.node/ where
STARTEXEC.a; node/ D

while MiCompletionCond.a; node/ D false
if isSequential.node/ then

LAUNCHINSTANCE.node/ // run first instance until completion
step // creation of further instances

while loopCardinality.node/ >j ActiveInnerAct.a; node/ j
LAUNCHINSTANCE.a; node/ // run next instance until completion
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else // parallel case: new instances created at activation time
while loopCardinality.node/ >j ActiveInnerAct.a; node/ j

if ActivationTime.node/ then // run one more instance
LAUNCHINSTANCE.a; node/

step
forall a 2 ActiveInnerAct.a; node/ CANCEL.a/

EXIT.a; node/ // NB with refined PUSHOUTPUT

LAUNCHINSTANCE.a; n/ D
let act D new Instance.innerAct.n//�

ACTIVATE.act/
INSERT.act;ActiveInnerAct.a; n//

step await Completed.act/ EMITEVENT.n/

EMITEVENT.n/ D8
ˆ̂
ˆ̂
<

ˆ̂̂
:̂

THROW.noneBehaviorEventRef.n/; n/ if behavior.n/ D None
THROW.oneBehaviorEventRef.n/; n/ if behavior.n/ D One
and j Instance.innerAct.n// jD 1

forall e 2 ComplexBehaviorDefinition
THROW.e; n/ if behavior.n/ D Complex

9.7.3 Event Behavior

STARTEVENTBEHAVIOR.node/ D FLOWNODEBEHAVIOR.node/
where // normal case without parallel multiple trigger

EventCond.node/ D ParallelMultiple 62 trigger.node/ and
forsome e 2 trigger.node/ TriggerOccurs.e; node/

EVENTOP.node/ D
choose e 2 {e 2 trigger.node/ j TriggerOccurs.e; node/}

CONSUME.triggerOccurrence.e//
CTLOP.node/ D

let P D new Instance.process.node//
forall o 2 outArcP.nodeP/ PRODUCE.startTokenP.node; o/; o/

STARTEVENTPARMULTBEHAVIOR.node/ D FLOWNODEBEHAVIOR.node/
where // case with parallel multiple triggers

EventCond.node/ D ParallelMultiple 2 trigger.node/ and
forall e 2 trigger.node/ n {ParallelMultiple}

TriggerOccurs.e; node/
EVENTOP.node/ D

forall e 2 trigger.node/ n {ParallelMultiple}
CONSUME.triggerOccurrence.e//

CTLOP.node/ D
let P D new Instance.process.node//
forall o 2 outArcP.nodeP/ PRODUCE.startTokenP.node; o/; o/
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ENDEVENTBEHAVIOR.node/ D FLOWNODEBEHAVIOR.node/ where
CtlCond.node/ D forsome in 2 inArc.node/ Enabled.in/
CTLOP.node/ D choose in 2 {in 2 inArc.node/ j Enabled.in/}

CONSUME.firingToken.in/; in/
if Multiple 62 resultType.node/ // normal case without multiple results
then let {res} D resultType.node/ in EMITRESULT.res; node/
else forall res 2 resultType.node/ n {Multiple}

EMITRESULT.res; node/

INTERMEDIATETHROWEVENTBEHAVIOR.node/ D
FLOWNODEBEHAVIOR.node/ where

CtlCond.node/ D forsome in 2 inArc.node/ Enabled.in/
CTLOP.node/ D choose in 2 {in 2 inArc.node/ j Enabled.in/}

CONSUME.firingToken.in/; in/
PRODUCEALL.outArc.node//

EVENTOP.node/ D
if Multiple 62 trigger.node/ // case with only one trigger

then let {t} D trigger.node/ in SETEVENTTRIGGER.t; node/
else forall t 2 trigger.node/ n {Multiple}

SETEVENTTRIGGER.t; node/
SETEVENTTRIGGER.t; n/ D8

ˆ̂
ˆ̂̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂̂
<

ˆ̂
ˆ̂̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂̂
:

forall m 2 MessageFlow with sender.m/ D node
SEND.payload.m/; receiver.m//

if t D Message
BROADCAST.signalRef.n/; receivers.signalRef.n/; n//

if t D Signal
Triggered.targetLink.n// WD true

if t D Link
THROW.escalation; n/

if t D Escalation
THROW..compensation; actRef.node//; node/

if t D Compensation

INTERMEDIATECATCHEVENTBEHAVIOR.node/ D
FLOWNODEBEHAVIOR.node/ where

CtlCond.node/ D forsome in 2 inArc.node/ Enabled.in/
EventCond.node/ D

.ParallelMultiple 62 trigger.node/
// only one trigger required to occur

and forsome t 2 trigger.node/ TriggerOccurs.t; node//
or
.ParallelMultiple 2 trigger.node/ // all triggers required to occur

and forall t 2 trigger.node/ TriggerOccurs.t; node//
EVENTOP.node/ D

let TriggOcc D {t 2 trigger.node/ j TriggerOccurs.t; node//}
if ParallelMultiple 62 trigger.node/ then
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choose t 2 TriggOcc CONSUME.triggerOccurrence.t//
else forall t 2 TriggOcc CONSUME.triggerOccurrence.t//

CTLOP.node/ D choose in 2 {in 2 inArc.node/ j Enabled.in/}
CONSUME.firingToken.in/; in/
PRODUCEALL.outArc.node//

TriggerOccurs.t; node/ D8
ˆ̂
<

ˆ̂
:

forsome m 2 Message Received.m; node/ if t D Message
TimerCondition.node/ D true if t D Timer
EventExpression.node/ D true if t D Conditional
Triggered.sourceLink.node// D true if t D Link

BOUNDARYEVENTBEHAVIOR.node/ D FLOWNODEBEHAVIOR.node/
where
EventCond.node/ D

.ParallelMultiple 62 trigger.node/
// only one trigger required to occur

and forsome t 2 trigger.node/ TriggerOccurs.t; node//
or
.ParallelMultiple 2 trigger.node/ // all triggers required to occur

and forall t 2 trigger.node/ TriggerOccurs.t; node//
EVENTOP.node/ D

let TriggOcc D {t 2 trigger.node/ j TriggerOccurs.t; node//}
if ParallelMultiple 62 trigger.node/ then choose t 2 TriggOcc

CONSUME.triggerOccurrence.t//
if t D Compensate then

ACTIVATE.compensation.attachedTo.node///
else forall t 2 TriggOcc

CONSUME.triggerOccurrence.t//
if Compensate 2 TriggOcc then

ACTIVATE.compensation.attachedTo.node///
CTLOP.node/ D

PRODUCEALL.outArc.node//
if cancelActivity.attachedTo.node//

then INTERRUPT.attachedTo.node//

TriggerOccurs.t; node/ D8
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂<

ˆ̂
ˆ̂̂
ˆ̂
ˆ̂
ˆ̂
:̂

forsome m 2 Message Received.m; node/ if t D Message
TimerCondition.node/ D true if t D Timer
EventExpression.node/ D true if t D Conditional
forsome n node 2 receivers.signalRef.n/; n/

and Arrived.signalRef.n/; node/ if t D Signal
triggerOccurrence.t/ D .Completed; a/

and Completed.a/ if t D Compensate
Caught.t; node/

if t 2 {Escalation;Error;Cancel}
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Chapter 10
Conceptual Modelling of Interaction

Nathalie Aquino, Jean Vanderdonckt, José Ignacio Panach, and Óscar Pastor

Abstract The conceptual model of an information system cannot be considered to
be complete after just specifying the structure and behaviour of the system. It is
also necessary to specify how end users will interact with the system. Even though
there are several proposals for modelling interaction, none of them have become
widely known or widely used in academia and industry. After illustrating the state
of the art in this field, this chapter briefly presents a practical approach with the
aim of showing how interaction modelling can be faced. The presented approach
is called OO-Method, a Model-Driven Engineering method that allows full func-
tional systems to be generated from a conceptual model. The chapter explains how
OO-Method supports the interaction modelling by means of its Presentation Model.
Apart from this description, the chapter comments on some limitations of the pre-
sentation model to satisfy end user interaction requirements related to preferences
and different contexts of use. This problem is faced by distinguishing an abstract and
a concrete level for interaction modelling. The abstract perspective focuses on what
must be presented to end users in order to allow their interaction with an information
system, and the concrete perspective focuses on how those elements are presented.
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Upon the basis of a whole interaction model, abstract and concrete perspectives are
separated. On the one hand, the OO-Method presentation model is shown to be an
example of abstract interaction modelling. On the other hand, an extension based
on transformation templates is proposed to cover the concrete interaction modelling
perspective. To illustrate how both interaction modelling levels can be used, this
chapter models the interaction of a photography agency system.

10.1 Introduction

The idea that the conceptual model is the code is becoming more and more a re-
ality in software engineering and information systems design. Some explicit state-
ments for this perspective can be found in the conceptual schema-centric develop-
ment (CSCD) challenge [24], the Extreme Non-Programming initiative [21, 25],
and the set of both academic and industrial approaches and tools proposed within
the frame of model-driven engineering (MDE), with the intention of providing op-
erative solutions. Conceptually aligned with these ideas and specifically represented
in this book under the term Conceptual Modelling Programming (see Chap. 1), we
strongly believe that conceptual modelling is programming. As stated in the man-
ifesto of Chap. 1, the conceptual model, with which modellers program, must be
complete and holistic. In practice, this statement requires every necessary aspect of
data (structure), behaviour (function), and interaction (both component interaction
and user interaction) to be adequately included.

User interaction modelling is the issue in this chapter. We are especially con-
cerned with the answer to an apparently simple question: What are the most rele-
vant conceptual primitives or modelling elements that should guide the construction
of a conceptual interaction model? This question arises since the conceptual model
community provides widely accepted and widely used data models with strong stan-
dards such as the entity-relationship model (ERM) [10] or UML Class Diagrams,
as well as widely accepted and widely used behaviour models (from the “old” data
flow diagrams [34] to the more recent collaboration, sequence, or activity UML Di-
agrams). However, it is surprising that clear and concrete conceptual models to rep-
resent interaction have not yet been provided. There are still questions about which
interaction models will allow us to address conceptual modelling of user interfaces
and how these models can be properly embedded into the whole conceptual model,
which includes data, behaviour, and interaction. This is particularly surprising since
the answer to these questions are so evident for the data and behaviour perspec-
tives of conceptual modelling, especially when considering the great importance of
user interface design in the whole process of building an information system. Ev-
eryone accepts that a final software application is much more than a well-defined
database and a set of programs that incorporate the needed functionality. If a con-
ceptual model is to be viewed as the code of the system, every essential aspect
of software must be considered, and, of course, user interface plays a basic role
in this context. Going back to the Conceptual Modelling Programming manifesto
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in Chap. 1, to make the goal of having a conceptual model complete and holis-
tic a reality, the proper specification of user interface conceptual models (not only
user interface sketches of the system) is strictly required. Therefore, the conceptual
modelling elements behind user interface specification must be defined precisely,
and must be based on a corresponding ontological agreement that fixes the concepts
and their associated representation and notation.

To achieve these goals, this chapter explores two aspects. First, a particular ex-
ample of what user interface modelling means in terms of modelling primitives and
model specification is introduced. The selected approach is the presentation model
of OO-Method [27]. This approach constitutes a practical case of how interaction
modelling from the user interface perspective is joined to data and behaviour mod-
elling in a unified way, and how this conceptual model includes all the relevant
information that is needed to face the subsequent conceptual model compilation
process to obtain the corresponding software system. Conceptual primitives are in-
troduced to show how user interface modelling can be specifically put in practice,
bridging the gap between “conventional” (data- and behaviour-oriented) conceptual
modelling and user interface modelling.

Second, this chapter deals with an important feature that is associated with user
interface modelling. An interaction model can fix the presentation style, but this
presentation style normally needs to be adapted to the end user’s tastes and wishes.
Talking about the user interface is not the same as talking about the final data and
program structure. In general, end users want to participate in defining the way in
which the human-software interaction is going to be accomplished, and this can-
not be done if the user interface model does not allow the conceptual model to
be adapted to their particular interaction requirements. Some authors use the term
“beautification” to refer to this situation [31].

A common solution for solving this problem consists in explicitly distinguishing
between two levels in the interaction conceptual model: an abstract level and a con-
crete level. This approach has been presented in several works ([9, 16, 18, 22, 30,
39], among others), and it is currently being applied in the context of user interface
development according to MDE. While the abstract level focuses on the high-level
perspective of the interaction, the concrete level identifies several possible represen-
tations of the abstract modelling primitives and gives modelers the chance to adapt
them according to the target platform and the end user’s preferences.

This distinction between abstract and concrete provides a two-level approach
that makes it possible to differentiate concerns that are very important within the
scope of interaction modelling. On the one hand, there are higher-level abstractions
that fix the main relevant user interface properties (e.g., the set of interaction units
that should make up the main menu of an application). These abstractions represent
which elements are going to be shown in each interface. On the other hand, there
is a more concrete level where interfaces are specified for particular software en-
vironments. This concrete model represents how the elements of the interface will
be presented (e.g., the particular, concrete presentation style chosen for presenting
those main menu options to the end users).
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In accordance with these ideas, this chapter is structured in the following way:
in Sect. 10.2, a related work analysis is presented to understand what other authors
have proposed and how the interaction modelling issue is confronted from a concep-
tual model perspective in current MDE approaches. In Sect. 10.3, the presentation
model of OO-Method is introduced as an example of how interaction modelling
is properly embedded in an MDE-based software production process where con-
ceptual models are the only key software artefacts. In Sect. 10.4, we propose an
extension to explicitly distinguish between the abstract level and the concrete level,
indicating how to accomplish this distinction in practice. The chapter ends with
concluding remarks and the list of references used.

10.2 Related Work

Since its inception in the 1980s, the domain of human-computer interaction (HCI)
has experienced a dramatic increase in research and development, to the point where
it is recognized that interaction should also be modeled just like any other aspect of
an interactive system. For more than a decade, several model-based approaches have
evolved in parallel in order to cope with the different challenges raised by the design
and development of user interfaces in continuously evolving technological settings.
We can identify various generations of works in this area [36].

The first generation of model-based approaches focused basically on deriving ab-
stractions for graphical user interfaces (for example, UIDE [13]). At that time, user
interface designers focused mainly on identifying relevant aspects for this kind of
interaction modality. A second generation of approaches focused on expressing the
high-level semantics of the interaction. This was mainly supported through the use
of task models and associated tools, which were aimed at expressing the activities
that users intend to accomplish while interacting with the application (for example,
Adept [15], GTA [42], ConcurTaskTrees (CTT) [29], Trident [5], Humanoid [35]).
Since then, a consensus has been reached in the community to structure interaction
modelling according to different levels of abstraction in almost the same way as in
other areas (i.e. database engineering and information systems).

In this context, one of the most recent works is the Cameleon Reference Frame-
work [9]. Cameleon structures the development life cycle into four levels of abstrac-
tion, starting from task specification to a running interface (see Fig. 10.1):

• Task and concepts: This level considers (a) the logical activities (tasks) that need
to be performed in order to reach the end users’ goals; and (b) the domain objects
manipulated by these tasks.

• Abstract User Interface (AUI): This level represents the user interface in terms of
interaction spaces (or presentation units), independently of which interactors are
available and even independently of the modality of interaction (e.g., graphical,
vocal, haptic).

• Concrete User Interface (CUI): This level represents the user interface in terms of
“concrete interactors”, which depend on the type of platform and media available
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Fig. 10.1 Relationships between components in the Cameleon reference framework

and which have a number of attributes that more concretely define how the user
interface should be perceived by the end user.

• Final User Interface (FUI): This level consists of source code, in any program-
ming or markup language (e.g., Java, HTML5, VoiceXML, X+V). It can then be
interpreted or compiled.

These levels are structured with both a relationship of reification, going from
a more abstract level to a more concrete one, and a relationship of abstraction, going
from a more concrete level to a more abstract one. There can also be a relationship
of translation between models at the same level of abstraction, but conceived for
different contexts of use. These relationships are depicted in Fig. 10.1.

There are other approaches for representing the interaction based on UML
models (http://www.uml.org/). Wisdom [23] is a UML-based software engineering
method that proposes an evolving use-case-based method in which the software sys-
tem is iteratively developed by incremental prototypes until the final product is ob-
tained. The UML notation has been enriched with the necessary stereotypes, labeled
values, and icons to allow user-centered development and a detailed user interface
design. Three of its models are concerned with interaction modelling at different
stages: the interaction model, at the analysis stage, and the dialog and presentation
models during the design stage, as refinements of the interaction model.

Another important proposal is UMLi [12], which is a set of user interface models
that extends UML to provide greater support for user interface design. UMLi intro-
duces a new diagram: the user interface diagram, which can be considered to be the
first reliable proposal of UML to formally capture the user interface. However, the
models are so detailed that the modelling turns out to be very difficult. Middle-sized
models are very hard to specify, which may be the reason why UMLi has not been
adopted in industrial environments.
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In addition, there are several proposals that model the interaction abstractly by
means of the ConcurTaskTrees (CTT) notation [29]. Examples of these types of pro-
posals are TERESA [22] and SUIDT [4]. TERESA (Transformation Environment
for inteRactivE Systems representAtions) is a tool that supports transformations in
a top-down manner, providing the possibility of obtaining interfaces for different
types of devices from logical descriptions. This tool starts with an overall envi-
sioned task model and then derives concrete and effective user interfaces for mul-
tiple devices. SUIDT (Safe User Interface Design Tool) is a tool that automatically
generates interfaces using several models that are related to each other: a formal
functional core, an abstract task model, and a concrete task model. CTT notation is
used in the abstract task model and in the concrete task model.

We have mentioned different types of approaches for representing the interaction
in an abstract manner. However, a suitable language that enables integration within
the development environment is still needed. For this purpose, the notion of User In-
terface Description Language (UIDL) has emerged to express any of the aforemen-
tioned models. A UIDL is a formal language used in HCI to describe a particular
user interface independently of any implementation technology. As such, the user
interface might involve different interaction modalities (e.g., graphical, vocal, tac-
tile, haptic, multimodal), interaction techniques (e.g., drag and drop), or interaction
styles (e.g., direct manipulation, form fillings, virtual reality). A common funda-
mental assumption of most UIDLs is that user interfaces are modeled as algebraic
or model-theoretic structures that include a collection of sets of interaction objects
together with behaviours over those sets.

The design process for a UIDL encompasses the definition of the following arte-
facts:

• Semantics: This expresses the context, meaning, and intention of each abstraction
captured by the underlying meta-models on which the UIDL is based.

• Abstract syntax: This is a syntax that makes it possible to define user interface
models (in accordance with the UIDL semantics) independently of any represen-
tation formalism.

• Concrete syntax/es: These are (one or more) concrete representation formalisms
intended to syntactically express user interface models.

• Stylistics: These are graphical and textual representations of the UIDL abstrac-
tions that maximize their representativity and meaningfulness in order to facili-
tate understanding and communication among different people.

As we have seen in this section, there are a lot of proposals to represent the inter-
action. Each proposal is based on a specific notation, like UML or CTT. However,
as far as we know, these proposals support interaction modelling but do not support
the modelling of the persistence and functionality of a system. Moreover, the works
mentioned in this section have seldom been used in industrial environments.

In the next section, we present an approach that has solved both of these lim-
itations: the modelling of interaction in a holistic conceptual modelling approach
and the practical applicability of interaction modelling in an industrial context. Fur-
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thermore, we show how the interaction can be represented by means of conceptual
primitives.

10.3 The Presentation Model of OO-Method

OO-Method [27] is an object-oriented method that allows the automatic genera-
tion of software applications from conceptual models. These conceptual models are
structured in four system views. (1) The Object Model specifies the static prop-
erties of the interactive application by defining the classes and their relationships.
(2) The Dynamic Model controls the application objects by defining their life cycle
and interactions. (3) The Functional Model describes the semantics of object state
changes. (4) The Presentation Model specifies the user interface.

OO-Method is supported by a commercial software suite named OlivaNOVA
that was developed by CARE Technologies (http://www.care-t.com). OlivaNOVA
edits the various models involved and applies subsequent transformations until the
final code of a fully functional application (persistence, logic, and presentation) is
generated for different computing platforms: C# or ASP running on .NET or .NET
2.0; and EJB, JSP, or JavaServer Faces running on Java. Thus, OO-Method defines
a holistic conceptual model that includes the interaction perspective as well as the
structural and behavioural ones. Furthermore, it is currently being used successfully
in an industrial environment.

This section presents the conceptual primitives of the OO-Method presentation
model. These primitives allow a user interface to be modeled in a convenient way,
and offer enough expressiveness to represent any management information system
interface. In this section and the following, we present an illustrative example re-
lated to a photography agency system. The agency manages illustrated reports for
distribution to newspaper editorials, and operates with photographers who work as
independent professionals.

The OO-Method presentation model is structured with a set of interaction pat-
terns that were defined in [20]. These interaction patterns are ordered in three levels
(see Fig. 10.2):

• Level 1 – Hierarchical Action Tree (HAT) organizes the access to the system
functionality through a tree-shaped abstraction.

• Level 2 – Interaction Units (IUs) represent the main interactive operations that
can be performed on the domain objects (executing a service, querying the pop-
ulation of a class, and visualizing the details of a specific object).

• Level 3 – Elementary Patterns (EPs) constitute the building blocks from which
IUs are constructed.

In the next three subsections, we provide more details about the interaction pat-
terns from these three levels, going from the most specific to the most general ones.
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10.3.1 Elementary Patterns

Elementary patterns (EPs) constitute the primitive building blocks to build IUs.
They represent specific aspects of the interaction between a human and a system
and cannot be combined in an arbitrary way. On the contrary, each of them is appli-
cable in specific IUs.

In the current OO-Method presentation model, there are 11 EPs that can be re-
lated to their corresponding relevant IUs (see Fig. 10.2):

• Introduction captures the relevant aspects of data to be entered by the end user. In-
teraction aspects that can be specified include edit masks and valid value ranges.

• Defined selection enables the definition (by enumeration) of a set of valid values
for an associated model element.

• Argument grouping defines the way in which input arguments for a given service
are presented to the end user allowing these input arguments to be arranged in
groups and subgroups.

Fig. 10.2 OO-Method pre-
sentation model
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• Dependency enables dependency relationships to be defined between the value
or state of an input argument of a service and the value or state of other input
argument of the same service. The definition is based on ECA-type rules (event,
condition, action).

• Population preload allows the designer to specify that the selection of an object
as an input argument of a service will be carried out with or without changing
the interaction context.

• Conditional navigation allows navigation to different IUs after the successful or
failed execution of a service. In order to specify which IU to navigate to, it is
also necessary to establish a condition that must hold after the execution of the
service.

• Filter defines a selection condition over the population of a class, which can
be used to restrict the object population of the class, thereby facilitating further
object search and selection operations.

• Order criterion defines how the population of a class is to be ordered. Ordering is
done on the values of one or more properties of the objects, taking into account
ascending/descending options.

• Display set determines which properties of a class are to be presented to the user
and in what order.

• Actions define the set of available services that can be performed on the objects
of a given class.

• Navigations determine the information set that can be accessed via navigation of
the structural relationships found in an initial class.

10.3.2 Interaction Units

An Interaction Unit (IU) describes a particular scenario of the user interface through
which users are able to carry out specific tasks. In the OO-Method approach, there
are three different basic kinds of interaction scenarios: execution of a service, ma-
nipulation of one object, and manipulation of a collection of objects. For each of
these basic interaction scenarios, the OO-Method approach proposes a specific IU
that is appropriate for handling it. A fourth IU is proposed to combine the other IUs.
As shown in Fig. 10.2, the OO-Method presentation model defines these four IUs:

• Service IU: enables a scenario to be defined in which the user interacts with the
system in order to execute a service. The user must provide the arguments and
launch the service.
As shown in Fig. 10.2, six of the EPs can be used to complete the specification
of a Service IU: introduction, defined selection, argument grouping, dependency,
population preload, and conditional navigation. Figure 10.3 shows the final user
interface generated from a Service IU.
The user interface for this Service IU allows a photographer to fill in an applica-
tion form for working in a photography agency. The photographer must provide
personal and contact data as well as data related to its professional equipment.
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Fig. 10.3 User interface generated from a Service IU with argument groupings (a) and defined
selection (b)

• Instance IU: represents a scenario in which information about a single object is
displayed, including the list of services that can be executed on it, as well as the
scenarios of related information to which the user can navigate. All this infor-
mation is structured by means of three EPs: display set, actions, and navigations
(see Fig. 10.2).
Figure 10.4 shows the final user interface generated from an Instance IU. The
user interface for this Instance IU shows data related to a photographer of the
agency.

Fig. 10.4 User interface generated from an Instance IU with display set (a), actions (b), and navi-
gations (c)
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Fig. 10.5 User interface generated from a Population IU with filter (a), order criterion (b), display
set (c), actions (d), and navigations (e)

• Population IU: represents an interaction scenario where multiple objects are pre-
sented. This scenario includes the appropriate mechanisms to do the follow-
ing: select and sort objects, choose the information and available services to
be shown, and list other scenarios that can be reached. All this information is
structured by means of five EPs: filter, order criteria, display set, actions, and
navigations (see Fig. 10.2).
Figure 10.5 shows the final user interface generated from a Population IU. The
user interface for this Population IU shows data related to multiple photographers
of the agency at the same time.

• Master/Detail IU: presents the user with a scenario for the interaction with multi-
ple collections of objects that belong to different interrelated classes. This forms
a composite scenario in which two kinds of roles can be defined: a master role,
which represents the main interaction scenario, and detail roles, which represent
secondary, subordinated interaction scenarios that are kept synchronized with the
master role (see Fig. 10.2).
Figure 10.6 shows the final user interface generated from a Master/Detail IU in
which the master role corresponds to an Instance IU, which shows data related
to a photographer of the agency, and the detail role corresponds to a Population
IU, which shows the list of reports related to the photographer.

The user interfaces depicted in Figs. 10.3–10.6 have been generated by Oli-
vaNOVA for the desktop .NET platform.



346 N. Aquino, J. Vanderdonckt, J.I. Panach, and Ó. Pastor

Fig. 10.6 User interface generated from an Master/Detail IU with master role (a) and detail role (b)

10.3.3 Hierarchical Action Tree

Once the interaction scenarios have been described through the corresponding IUs,
it is necessary to determine how these IUs are to be structured, organized, and pre-
sented to the user. This structure will characterize the top level of the user interface,
establishing what could be described as the main menu of the application. The Hi-
erarchical Action Tree (HAT) serves this purpose.

The HAT defines an access tree that follows the principle of gradual approxi-
mation to specify the manner in which the interactive user can access system func-
tionality. This is achieved by arranging actions into groups and subgroups by using
a tree abstraction, from the most general to the most detailed. Intermediate (i.e.,
non-leaf) nodes in the tree are simply grouping labels, whereas tree leaves reference
pre-existing IUs (see Fig. 10.2).
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10.4 Explicitly Distinguishing Abstract
and Concrete Interaction Modeling in OO-Method

The OO-Method presentation model constitutes a unified interaction model in which
there is no explicit distinction between an abstract level and a concrete level. This
model can be considered a good starting point for adequately modelling interaction,
since it provides a good basis to include user interface generation in the conceptual
model compilation process. However, it still presents an important problem: the in-
teraction style of the resultant software application is fixed by the model compiler,
and there is no way to adapt the presentation style to the particular needs and in-
dividual tastes of end users. In this section, we show how to make this distinction
feasible. We also extend the above approach in this direction, and add a concrete
level that incorporates decisions related to platforms and users. In particular, the
transformation templates approach is presented as a means for concrete interaction
modelling.

10.4.1 Abstract Interaction Modeling

As explained in Sect. 10.3, the OO-Method presentation model provides primitives
that allow the designer to define user interfaces in a homogeneous and platform-
independent way. All of its interaction patterns, from the three levels, capture the
necessary aspects of the user interface without delving into implementation issues.
In other words, the OO-Method presentation model focuses on what type of user
interaction is desired, and not on how this interaction will be implemented in the
resulting software product. Therefore, the OO-Method presentation model can be
considered an abstract model from which the model compiler can automatically
generate a user interface for different interaction modalities and platforms.

10.4.2 Concrete Interaction Modeling: Transformation Templates

At the abstract level, the OO-Method presentation model does not provide primitives
that allow the structure, layout, and style of user interfaces to be expressed. These
decisions are delegated to the model compiler and are hard-coded in it. Thus, design
knowledge and presentation guidelines are implicit and fixed in the tool that per-
forms the model-to-code transformation and cannot be edited or customized. Thus,
even though different final user interface implementations are potentially valid when
moving from the abstract to the final user interface, it is not possible to adapt the
user interface generation according to end user requirements and preferences. This
results in the generation of predetermined user interfaces, all of which look alike,
and which may not always satisfy the end user.
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Fig. 10.7 An OO-Method
presentation model and
a transformation template
are inputs for the model com-
piler
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Because of these issues, it has been necessary to extend the OO-Method presen-
tation model with a new concrete level that provides the required expressiveness
in order to enable the customization of user interfaces before their generation. An
approach based on transformation templates has been defined for this purpose.

A transformation template [2, 3] aims to specify the structure, layout and style of
a user interface according to preferences and requirements of end users, as well as
according to the different hardware and software computing platforms and environ-
ments in which the user interface will be used.

A transformation template is composed of parameters with associated values that
parameterize the transformations from the OO-Method presentation model to code.
Figure 10.7 illustrates the use of a transformation template with OO-Method. The
model compiler takes a presentation model and a transformation template as input.
The transformation template provides specifications that determine how to trans-
form the presentation model to code. The specifications are expressed by means
of parameters with values and selectors. Selectors define the set of elements of the
OO-Method presentation model that are affected by the value of the parameter. The
transformation engine follows the specifications to generate the code.

In this way, transformation templates externalize the design knowledge and pre-
sentation guidelines and make them customizable according to the characteristics of
the project that is being carried out. Transformation templates can then be reused in
other projects with similar characteristics.

Even though the idea behind transformation templates is based on cascading style
sheets [6], there are significant differences between the two approaches, with the
main one being that transformation templates are applied to user interface models
and not directly to the code. Another difference is that transformation templates are
supposed to be used in an MDE process for user interface generation for different
contexts of use, not only for web environments.

Figure 10.8 depicts the main concepts or primitives that characterize the trans-
formation templates approach. The concepts in this figure are related to context, to
user interface models, and to the transformation templates themselves. These con-
cepts are explained in the following paragraphs.
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10.4.2.1 Context

• Context (see Fig. 10.8): refers to the context of use of an interactive system. We
have defined context according to the Cameleon reference framework [9], which
is widely accepted in the HCI community. According to this framework, a context
of use is composed of the stereotype of a user who carries out an interactive task
with a specific computing platform in a given surrounding environment.
The purpose of conceptualizing context is that we want it to be possible to define
different transformation templates for different contexts of use.

10.4.2.2 User Interface Models

The transformation templates approach makes use of two concepts related to user
interface models (see Fig. 10.8):

• User interface meta-element: represents, in a generic way, any of the OO-Method
interaction patterns presented in Sect. 10.3.

• User interface element: represents an element of the OO-Method presentation
model, that is, a specific instance of any of the above mentioned interaction pat-
terns.

Note that even though in this chapter we are presenting the transformation tem-
plates approach as an extension of OO-Method, it can also be used with other MDE
approaches related to user interface development. In fact, the user interface meta-
element is a generic representation of any meta-element of a user interface meta-
model. Similarly, the user interface element is a generic representation of any ele-
ment of a user interface model.

TRANSFORMATION
TEMPLATE PARAMETER

VALUE

SELECTOR

CONTEXT USER INTERFACE 
ELEMENT

PARAMETER 
TYPE VALUE TYPE USER INTERFACE 

META-ELEMENT

Context sledoM ecafretnI resUsetalpmeT noitamrofsnarT

Parameter type definition level
Parameter definition level

Fig. 10.8 Main concepts of the transformation templates approach



350 N. Aquino, J. Vanderdonckt, J.I. Panach, and Ó. Pastor

10.4.2.3 Transformation Templates

With regard to concepts specifically related to the transformation templates ap-
proach, we distinguish between two levels: one in which parameter types are de-
fined, and another one in which the previously defined parameter types are instanti-
ated as parameters in a transformation template.

In the parameter type definition level, there are two concepts (see Fig. 10.8):

• Value type: refers to a specific data type (e.g., integer, URI, colour, etc.) or to an
enumeration of the possible values that a parameter type can assume.

• Parameter type: represents a design or presentation option related to the struc-
ture, layout, or style of the user interface. We can distinguish between low-level
and high-level parameter types. Low-level ones operate at the attribute level of
user interfaces; for instance, colour or font type are low-level parameter types
related to style. High-level parameter types operate at the concept level of user
interfaces and can be used to specify the structure of the user interface, the type
of components (containers, widgets) that will be used, or the alignment of the
components.
Defining a parameter type subsumes specifying the list of user interface meta-
elements that are affected by it, as well as its value type. A parameter type, with
all or a set of its possible values, can be implemented in different contexts of use.
In order to decide about these implementations, we propose that each possible
value receive an estimation of its importance level and its development cost for
different relevant contexts of use. In this way, possible values with a high level of
importance and a low development cost can be implemented first in a given con-
text, followed by those with a high level of importance and a high development
cost, and so on. Possible values with a low level of importance and a high devel-
opment cost would not have to be implemented in the corresponding context. For
each relevant context of use, usability guidelines can be assigned to each possible
value of a parameter type. These guidelines will help user interface designers in
choosing one of the possible values by explaining the conditions under which the
values should be used.

Table 10.1 shows an example of the definition of a parameter type named group-
ing layout for input arguments. This parameter type is useful for deciding how to
present the input arguments of a service that have been grouped using the argument
grouping interaction pattern presented in Sect. 10.3.1.

Table 10.1 (a) shows that this parameter type affects two interaction patterns of
the OO-Method presentation model. It also shows that four different possible values
have been defined.

Table 10.1 (b) shows that the parameter type has been associated to two contexts
of use: a desktop platform and a mobile one. For each context of use and each
possible value, the importance level and development cost have been estimated.

Table 10.1 (c) presents a list of usability guidelines for the desktop context and
each possible value of the parameter type. These usability guidelines have been
proposed from an extraction from [14].
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Table 10.1 Parameter type: grouping layout for input arguments

Parameter Type
Name Affects Possible values enumeration

Value Graphical description

Grouping layout
for input
arguments

Two patterns of
the OO-Method
presentation
model: Service IU
and argument
grouping

Group box Personal Data Contact Data

Tabbed dialog box Personal Data Contact Data

Wizard Personal DataPersonal Data

CancelNext

Contact DataContact Data

CancelOk

Accordion Personal Data

Contact Data

(a)

Contexts
SW: C# on .NET - HW: laptop or PC SW: iPhone OS - HW: iPhone

Possible value Importance level Development cost Importance level Development cost

Group box High Low High Low
Tabbed dialog box High Low Medium Medium
Wizard Medium Medium Low High
Accordion Low Medium Medium Medium

(b)

Possible value Usability guidelines (for desktop context)

Group box Visual distinctiveness is important. The total number of groups will be small
Tabbed dialog
box

Visual distinctiveness is important. The total number of groups is not greater
than 10

Wizard The total number of groups is between 3 and 10. The complexity of the task
is significant. The task implies several critical decisions. The cost of errors is
high. The task must be done infrequently. The user lacks the experience it takes
to complete the task efficiently

Accordion Visual distinctiveness is important. The total number of groups is not greater
than 10

(c)

In the parameter definition level, there are four concepts (see Fig. 10.8):

• Transformation template gathers a set of parameters for a specific context of use.
• Parameter: each parameter of a transformation template corresponds to a param-

eter type and has both a value and a selector.
• Value is an instance of a value type. The value of a parameter corresponds to

a possible value of the corresponding parameter type.
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• Selector delimits the set of user interface elements that are affected by the value
of a parameter. We have defined different types of selectors that allow the de-
signer to choose a specific user interface element; all the user interface elements
of a certain type; the first or last element contained in a specific type of user
interface element; or other options.

Figure 10.9 represents the user interface that could be obtained for the Service IU
that was presented in Fig. 10.3, if the parameter grouping layout for input arguments
is applied with value wizard (see Table 10.1) and if the following two parameters
are also applied: a parameter for specifying the widget to be used to display defined
selections with value radio button; and a parameter for specifying the alignment of
labels with value vertical.

10.5 Conclusion

This chapter emphasizes the importance of interaction modelling on the same level
of expressiveness as any other model involved in the development life cycle of an in-
teractive application. In the same way that a conceptual model of the domain could
be used to derive a database for a future application, a conceptual model of the
interaction could be used to derive a user interface for this same application [37].
A system with a suitable functionality and persistence may be rejected by end users
if the interface does not satisfy their expectations. Therefore, the designer must be
provided with the suitable conceptual primitives to represent every relevant charac-
teristic of the final interface; otherwise, a complete code generation from a concep-
tual model cannot become a reality.

Today, the community has reached a level of progress in which this has now
become a reality that goes beyond mere prototypes. In the past, model-based ap-
proaches were exploited to capture the essence of a user interface into a conceptual
model of the user interface to be subsequently used for design, specification, genera-
tion, and verification. More recently, model-driven engineering (MDE) approaches
have been introduced in order to make the user interface development life cycle
more precise, rigorous, and systematic.

The main difference between model-based approaches and model-driven engi-
neering approaches [40, 41] is that in the former, only models are used, while in
the latter all models comply with a meta-model that is itself defined according to
a meta-meta-model. Similarly, all operations are captured through transformations
that are themselves compliant with the same meta-model, as opposed to earlier ap-
proaches in which no meta-model was present. Not all model-based approaches for
user interface development could be considered as compliant with Model-Driven
Architecture (MDA) [40].

Indeed, the following MDE/MDA definition was approved unanimously by 17
participants of the ORMSC – Object and Reference Model Subcommittee of the
Architecture Board of the Object Management Group (OMG) – plenary session
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Fig. 10.9 User interface that could be generated from a Service IU after applying different param-
eters
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meeting in Montreal on 23–26 August 2004. The stated purpose of the paragraph
was to provide principles to be followed in the revision of the MDA guide:

“MDA is an OMG initiative that proposes to define a set of non-proprietary standards that
will specify interoperable technologies with which to realize model-driven development with
automated transformations. Not all of these technologies will directly concern the transfor-
mation involved in MDA. MDA does not necessarily rely on the UML, but, as a specialized
kind of MDD (Model-Driven Development), MDA necessarily involves the use of model(s)
in development, which entails that at least one modelling language must be used. Any mod-
elling language used in MDA must be described in terms of the MOF (MetaObject Facility)
language to enable the metadata to be understood in a standard manner, which is a precon-
dition for any activity to perform automated transformation”.

This definition is now completely applicable to some MDE approaches for in-
teraction modelling, such as OO-Method and its presentation model presented in
this chapter. Taking this presentation model as input, we state that the interaction
modelling must be divided into two views: abstract [27, 38, 39] and concrete [2, 3].
The abstract view represents what will be shown in each interface. This view cor-
responds to the presentation model of OO-Method, which represents the interface
independently of the platform and the design. The concrete view represents how the
elements will be shown in each interface. This model is built by means of transfor-
mation templates.

At first glance, designers might be concerned that more effort on their part is
required for modelling the concrete level. However, this problem can be resolved
thanks to the use of default transformation templates for a specific context of use.
Once the abstract interaction model has been specified, the concrete interaction
model can be determined by just choosing the default transformation template for
the context of use in which the information system is going to be used. These de-
fault transformation templates must be designed only once, and can then be reused.
Designers might only have to change the value and/or scope of some parameters in
order to adequate the concrete modelling to end user requirements.

Future avenues of this work include:

• Integration with requirements engineering. We plan to develop a method to cap-
ture interaction requirements that is compliant with holistic development based
on conceptual models. These requirements would help the designer to determine
the user’s needs and preferences in order to guide the interaction modelling. The
capture of requirements would be based on tasks, which is the notation that is
most commonly used in the HCI community.

• Inclusion of a usability model in the transformation process. We will include us-
ability characteristics in both the abstract and concrete interaction models. These
characteristics will help the designer to build quality systems according to usabil-
ity guidelines and heuristics. This will be helpful not only for evaluating usability
during the transformation process, but also to guarantee to some extent that user
interfaces issued by this approach are somewhat usable by construction [1] so as
to provide a general computational framework for user interfaces [32].

• Building various transformation sets for various development paths. We will
build new transformation sets that would support other development paths [17]



10 Conceptual Modelling of Interaction 355

than merely forward engineering. For instance, ReversiXML [7, 8] performs re-
verse engineering of web pages into a concrete interface model expressed in
UsiXML [18] by using derivation rules, but not transformation rules. Similarly,
MultimodaliXML [33] generates multimodal user interfaces based on the same
conceptual models, but involves other sets of transformation rules.

• Building multi-fidelity editors for each model. We plan to develop model ed-
itors that enable modelers to rely on different levels of fidelity, not just high
fidelity [19], for instance by sketching the model [11], ranging from low fidelity
to high fidelity.

As for any MDA approach, it is crucial to develop any work that contributes to
obtain a low threshold, a high ceiling, and wide walls as much as possible to expand
the capabilities of expressiveness and their transformation into a larger gamma of
user interfaces. This is reflected in Fig. 10.10: the first generation of MDA software
usually suffered from a high threshold (they required a high amount of resources
to get some results), a low ceiling (the capabilities of the user interface generated
were limited), and narrow walls (there was only one user interface generated for one
computing platform). The second generation improved this situation by lowering the
threshold, increasing the ceiling, and enlarging the walls. Right now, we are in the
third generation, where user interface capabilities have been expanded for multiple
computing platforms and contexts of use.

This race is to be continued.
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356 N. Aquino, J. Vanderdonckt, J.I. Panach, and Ó. Pastor

Acknowledgements We gratefully acknowledge the support of the ITEA2 Call 3 UsiXML project
under reference 20080026; the MITYC under the project MyMobileWeb, TSI-020301-2009-014;
the MICINN under the project SESAMO, TIN2007-62894, co-financed with ERDF; the Gener-
alitat Valenciana under the project ORCA, PROMETEO/2009/015, and the grant BFPI/2008/209.
Jean Vanderdonckt also thanks the FP7 Serenoa project supported by the European Commission.

References

1. Abrahão S, Iborra E, Vanderdonckt J (2008) Usability evaluation of user interfaces generated
with a model-driven architecture tool. In: Law E, Hvannberg E, Cockton G (eds) Maturing
usability: quality in software, interaction and value, HCI Series, vol. 10. Springer, London, pp
3–32

2. Aquino N, Vanderdonckt J, Pastor O (2010) Transformation templates: adding flexibility to
model-driven engineering of user interfaces. In: Shin SY, Ossowski S, Schumacher M, Palakal
MJ, Hung CC (eds) Proceedings of the 25th ACM symposium on applied computing, SAC
2010, Sierre, March 2010. ACM Press, New York, pp 1195–1202

3. Aquino N, Vanderdonckt J, Valverde F, Pastor O (2009) Using profiles to support model trans-
formations in the model-driven development of user interfaces. In: López Jaquero V, Montero
Simarro F, Molina Masso JP, Vanderdonckt J (eds) Computer-aided design of user interfaces
VI, Proceedings of 7th international conference on computer-aided design of user interfaces,
CADUI 2008, Albacete, June 2008. Springer, Berlin, pp 35–46

4. Baron M, Girard P (2002) SUIDT A task model based GUI-builder. In: Pribeanu C, Vander-
donckt J (eds) Task models and diagrams for user interface design: Proceedings of the first
international workshop on task models and diagrams for user interface design, TAMODIA
2002, Bucharest, July 2002. INFOREC Publishing House, Bucharest, pp 64–71

5. Bodart F, Hennebert AM, Provot I, Leheureux JM, Vanderdonckt J (1994) A model-based
approach to presentation: a continuum from task analysis to prototype. In: Paternò F design,
specification and verification of interactives systems’94, Proceedings of the first international
Eurographics workshop, Bocca di Magra, June 1994. Springer, Berlin, pp 77–94

6. Bos B, Çelik T, Lie HW, Hickson I (2007) Cascading style sheets level 2 revision 1 (CSS
2.1) specification. Technical report. World Wide Web Consortium (W3C), http://www.w3.org.
Accessed 6 December 2010

7. Bouillon L, Limbourg Q, Vanderdonckt J, Michotte B (2005) Reverse engineering of web
pages based on derivations and transformations. In: Proceedings of 3rd Latin American Web
congress LA-Web 2005 Aires, 31 October 2005. IEEE Computer Society Press, Los Alamitos,
pp 3–13

8. Bouillon L, Vanderdonckt J, Chow KC (2004) Flexible re-engineering of Web sites. In: Pro-
ceedings of 8th ACM international conference on intelligent user interfaces IUI 2004, Funchal,
13–16 January 2004. ACM Press, New York, pp 132–139

9. Calvary G, Coutaz J, Thevenin D, Limbourg Q, Bouillon L, Vanderdonckt J (2003) A unifying
reference framework for multi-target user interfaces. Interact Comput 15(3):289–308

10. Chen PP (1976) The entity-relationship model – toward a unified view of data. ACM Trans
Database Syst 1(1):9–36

11. Coyette A, Vanderdonckt J (2005) A sketching tool for designing anyuser, anyplatform, any-
where user interfaces. In: Costabile MF, Paternò F (eds) Proceedings of 10th IFIP TC 13
international conference on human–computer interaction, INTERACT 2005, Rome, 12–16
September 2005, Lecture Notes in Computer Science, vol 3585. Springer, Berlin, pp 550–564

12. da Silva PP, Paton NW (2003) User interface modeling in UMLi. IEEE Softw 20(4):62–69
13. Foley JD, Sukaviriya PN (1994) History, results, and bibliography of the user interface design

environment (UIDE), an early model-based system for user interface design and implementa-
tion. In: Paternò F design, specification and verification of interactives systems’94. Proceed-



10 Conceptual Modelling of Interaction 357

ings of the first international Eurographics workshop, Bocca di Magra, June 1994. Springer,
Berlin, pp 3–14.

14. Galitz, WO (2002) The essential guide to user interface design: an introduction to GUI design
principles and techniques. Wiley, New York

15. Johnson P, Wilson S, Markopoulos P, Pycock J (1993) ADEPT: advanced design environ-
ment for prototyping with task models. In: Ashlund S, Mullet K, Henderson A, Hollnagel E,
White TN (eds) Human–computer interaction. Proceedings of INTERACT ’93, IFIP TC13 in-
ternational conference on human–computer interaction, Amsterdam, 24–29 April 1993. ACM
Press, New York, p 56

16. Limbourg Q, Vanderdonckt J (2004) USIXML: a user interface description language support-
ing multiple levels of independence. In: Matera M, Comai C (eds) Engineering advanced web
applications: Proceedings of workshops in connection with the 4th international conference on
web engineering, ICWE 2004, Munich, 28–30 July 2004. Rinton Press, Paramus, pp 325–338

17. Limbourg Q, Vanderdonckt J (2009) Multi-path transformational development of user inter-
faces with graph transformations. In: Seffah, A, Vanderdonckt J, Desmarais M (eds) Human-
centered software engineering, HCI Series. Springer, London, pp 109–140

18. Limbourg Q, Vanderdonckt J, Michotte B, Bouillon L, López-Jaquero V (2005) USIXML:
A language supporting multi-path development of user interfaces. In: Bastide R, Palanque
PA, Roth J (eds) Proceedings of 9th IFIP working conference on engineering for human-
computer interaction jointly with 11th international workshop on design, specification, and
verification of interactive systems, EHCI-DSVIS 2004, Hamburg, 11–13 July 2004. Lecture
Notes in Computer Science, vol 3425. Springer, Berlin, pp 200–220

19. Michotte B, Vanderdonckt J (2008) GrafiXML, a multi-target user interface builder based on
UsiXML. In: Greenwood D, Grottke M, Lutfiyya H, Popescu M (eds) Proceedings of 4th
international conference on autonomic and autonomous systems, ICAS 2008 Gosier, 16–21
March 2008. IEEE Computer Society Press, Los Alamitos, pp 15–22

20. Molina PJ, Meliá S, Pastor O (2002) Just-UI: a user interface specification model. In: Kolski
C, Vanderdonckt J (eds) Computer-aided design of user interfaces III, Proceedings of the 4th
international conference on computer-aided design of user interfaces, CADUI 2002, Valenci-
ennes, 15–17 May 2002. Kluwer, Alphen aan den Rijn, pp 63–74

21. Morgan T (2004) Doing IT better. Keynote address at the 3rd conference on information sys-
tems technology and its applications, ISTA 2004. Salt Lake City, 15–17 July 2004

22. Mori G, Paternò F, Santoro C (2004) Design and sevelopment of multidevice user interfaces
through multiple logical descriptions. IEEE Trans Softw Eng 30(8):507–520

23. Nunes NJ, e Cunha JF (2000) Wisdom: A software engineering method for small software
development companies. IEEE Software 17(5):113–119

24. Olivé A (2005) Conceptual schema-centric development: a grand challenge for information
systems research. In: Pastor O, e Cunha JF (eds) Advanced information systems engineering,
Proceedings of 17th international conference, CAiSE 2005, Porto, 13–17 June 2005, Lecture
Notes in Computer Science, vol 3520. Springer, Berlin, pp 1–15

25. Pastor O (2006) From extreme programming to extreme non-programming: is it the right time
for model transformation technologies? In: Bressan S, Küng J, Wagner R (eds) Proceedings
of 17th international conference on database and expert systems applications, DEXA 2006,
Krakow 4–8 September 2006, Lecture Notes in Computer Science, vol 4080. Springer, Berlin,
pp 64–72

26. Pastor O, e Cunha JF (eds) Advanced information systems engineering, Proceedings of 17th
international conference, CAiSE 2005, Porto, 13–17 June 2005, Lecture Notes in Computer
Science, vol 3520. Springer, Berlin

27. Pastor O, Molina JC (2007) Model-driven architecture in practice: a software production en-
vironment based on conceptual modeling. Springer, Secaucus

28. Paternò F (ed) (1994) Design, specification and verification of interactive systems’94, Pro-
ceedings of the first international Eurographics workshop, 8–10 June 1994, Bocca di Magra.
Springer, Berlin

29. Paternò F. (1999) Model-based design and evaluation of interactive applications. Springer,
London



358 N. Aquino, J. Vanderdonckt, J.I. Panach, and Ó. Pastor

30. Paternò F, Santoro C, Spano LD (2009) MARIA: a universal, declarative, multiple abstraction-
level language for service-oriented applications in ubiquitous environments. ACM Trans
Comput-Hum Interact, 16(4)

31. Pederiva I, Vanderdonckt J, España S, Panach JI, and Pastor O (2007) The beautification
process model-driven engineering of user interfaces. In: Baranauskas MCC, Palanque PA,
Abascal J, Barbosa SDJ (eds) Proceedings of 11th IFIP TC 13th international conference on
human–computer interaction, INTERACT 2007, Río de Janeiro, 10–14 September 2007, Lec-
ture Notes in Computer Science, vol 4662. Springer, Berlin, pp 411–425

32. Puerta AR, Eisenstein J (1999) Towards a general computational framework for model-based
interface development systems, Knowl-Based Syst 12(8):433–442

33. Stanciulescu A, Limbourg Q, Vanderdonckt J, Michotte B, Montero F (2005) A transforma-
tional approach for multimodal web user interfaces based on UsiXML. In: Lazzari G, Pia-
nesi F, Crowley JL, Mase K, Oviatt SL (eds) Proceedings of the 7th international conference
on multimodal interfaces, ICMI 2005, Trento, 4–6 October 2005. ACM Press, New York,
pp 259–266

34. Stevens WP, Myers GJ, Constantine LL (1974) Structured Design. IBM Syst J 13(2):115–139
35. Szekely PA (1990) Template-based mapping of application data interactive displays. In: Hud-

son SE (ed) Proceedings of the 3rd annual ACM symposium on user interface software and
technology, UIST 1990, Snowbird, 3–5 October 1990. ACM Press, New York, pp 1–9

36. Szekely PA (1996) Retrospective and challenges for model-based interface development In:
Bodart F, Vanderdonckt J (eds) Design, specification and verification of interactive sys-
tems’96, Proceedings of the 3rd International Eurographics workshop, Namur, 5–7 June 1996.
Springer, Berlin, pp 1–27

37. Torres I, Pastor O, Limbourg Q, Vanderdonckt J (2005) Una experiencia práctica de gen-
eración de interfaces de usuario a partir de esquemas conceptuales. In: Puerta AR and Gea
M (eds) Proceedings of VI congreso interacción persona ordenador, Interacción 2005 – CEDI
2005, Granada, 13–16 September 2005. Thomson Paraninfo, Madrid, pp 401–404

38. Valverde F, Panach JI, Aquino N, Pastor O (2009) New trends on human–computer interaction.
Research, development, new tools and methods. Dealing with abstract interaction modelling
in an MDE development process: a pattern-based approach. Springer, London, pp 119–128

39. Valverde F, Panach JI, Pastor O (2007) An abstract interaction model for a MDA software
production method. In: Grundy JC, Hartmann S, Laender AHF, Maciaszek LA, Roddick. JF
(eds) Challenges in conceptual modelling. Proceedings of tutorials, posters, panels and in-
dustrial contributions at the 26th international conference on conceptual modeling, ER 2007,
Auckland, 5–9 November 2007, CRPIT, vol 83. Australian Computer Society, pp 109–114

40. Vanderdonckt J (2005) A MDA-compliant environment for developing user interfaces of in-
formation systems. In: Pastor O, e Cunha JF (eds) Advanced information systems engineering,
Proceedings of 17th international conference, CAiSE 2005, Porto, 13–17 June 2005, Lecture
Notes in Computer Science, vol 3520. Springer, Berlin, pp 16–31

41. Vanderdonckt J (2008) Model-driven engineering of user interfaces: promises, successes, and
failures. In: Buraga S, Juvina I (eds) Proceedings of 5th annual Romanian conference on
human–computer interaction ROCHI’2008, Iasi, 18–19 September 2008. Matrix ROM, Bu-
carest, pp 1–10

42. Van Der Veer GC, Lenting BF, Bergevoet BAJ (1996) GTA: groupware task analysis – mod-
eling complexity. Acta Psychol 1:297–322



Chapter 11
Conceptual Modelling of Application Stories

Antje Düsterhöft and Klaus-Dieter Schewe

Abstract The development of complex systems requires an understanding of how
the system is supposed to be used. This corresponds to describing how actors are
supposed to navigate through the system and which actions they are to execute in
order to perform certain tasks. As descriptions of navigation paths correspond to
“telling stories” about the system usage, a conceptual model for application stories
is needed. This chapter highlights the key concepts of storyboarding such as actors,
scenarios and tasks, and the composed action scheme called “plot”. Furthermore,
the pragmatics of storyboards is addressed, i.e. what the model means to users. The
chapter is rounded out by discussing inferences to analyse storyboards.

11.1 Introduction

Since its very beginnings conceptual modelling has aimed at describing complex
systems – existing ones as well as those still to be built – on a high level of abstrac-
tion, such that the model could be used to mediate between the technically-oriented
system developers and the users, who understand the system from an application
point of view. Thus, conceptual models have to be grounded in the application and
at the same time be precise to serve as a blueprint for further system development.

Application stories describe how a system is supposed to be used. Naturally,
a conceptual model for application stories must be centred around users: what they
do and why. The conceptual model of storyboarding (see e.g. [26]) takes this up by
providing an integrated model comprising the story space capturing the stories and
the plot, actors and tasks. Inspired by approaches in theatre and film, the story space

Antje Düsterhöft
Hochschule Wismar, Department of Electrical Engineering and Computer Science, Wismar,
Germany, e-mail: antje.duesterhoeft@hs-wismar.de

Klaus-Dieter Schewe
Software Competence Center Hagenberg, Hagenberg, Austria, e-mail: kd.schewe@scch.at

D. W. Embley and B. Thalheim (eds), Handbook of Conceptual Modeling. 359
DOI 10.1007/978-3-642-15865-0, © Springer 2011



360 A. Düsterhöft and K.-D. Schewe

comprises scenes and actions on these scenes, and the plot describes the details
of the action scheme. Furthermore, the model describes actors in these scenes, i.e.
groups of users, which leads to roles, profiles, goals, preferences, obligations and
rights. The actors are linked to the story space by means of tasks.

The link to system requirements (see e.g. [21]) is achieved via pragmatics, which
analyses the meaning of storyboards for users, and provides guidelines to derive
the complex storyboards from informal ideas without any technical bias. Based on
a fundamental understanding of facets of intentions, the key concepts for storyboard
pragmatics are life cases, user models and contexts. Life cases capture observations
of user behaviour in reality. Life cases can be used in a pragmatic way to specify
the story space. User models comprise user and actor profiles, and actor portfolios,
which can be used to get a better understanding of the tasks.

As storyboards are centred around the users, it becomes desirable to customise
them to user preferences. Storyboarding provides an inferential approach to person-
alisation on the basis of an algebraic formalisation of plots (see e.g. [27]). Further-
more, storyboards are also governed by obligations and rights that correspond to
roles. Storyboarding permits formal reasoning about these.

Chapter Overview In Sect. 11.2 we first present the syntax and semantics of sto-
ryboards. We emphasise the key concepts such as scenes, actions, actors, tasks and
plots, and illustrate them by a detailed example. We also highlight various supple-
mentary details. Section 11.3 complements the picture by a discussion of storyboard
pragmatics, i.e. the question of what the storyboard means to its users. We empha-
sise the modelling of system usage by means of life cases, user models and contexts,
and continue with our illustrative example. Section 11.4 is devoted to formal aspects
of storyboards such as consistency with respect to deontic constraints, which govern
the rights and obligations of actors, and customisation to user preferences through
inferences. We conclude the chapter by bibliographic remarks in Sect. 11.5 about
the historic development of storyboarding and its relation to other published work.

11.2 The Conceptual Model of Storyboarding

On a high level of abstraction the usage of an information system can be described
by a storyboard [26], which in an abstract way specifies who will be using the sys-
tem, in what way and for what goals. In a nutshell, a storyboard consists of three
parts:

• A story space, which itself consists of a hierarchy of labelled directed graphs
called scenarios, one of which is the main scenario, whereas the others define
the details of scenes, i.e. nodes in a higher scenario, and a plot which is specified
by an assignment-free process, in which the basic actions correspond to the labels
of edges in the scenarios;
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• A set of actors, i.e. abstractions of user groups that are defined by roles, which
determine obligations and rights, and user profiles, which determine user prefer-
ences; and

• A set of tasks that are associated with goals the users may have.

In addition, there are many constraints comprising pre- and postconditions, trig-
gering and enabling the events, rights and obligations of roles, preference rules for
user types, and other dependencies on the plot. Details of storyboarding have been
described in [26]. An overview of our method for the design of WISs was presented
in [25].

11.2.1 The Storyboard

For modelling application stories we may think of a set of abstract locations through
which users navigate, and on their navigation paths they execute a number of ac-
tions. We regard a location together with local actions, i.e. actions which do not
change the location, as a unit called a scene. Then the story space can be described
by an edge-labelled directed multi-graph, in which the vertices represent the scenes
and the edges represent transitions between scenes. Each such transition may be
labelled by an action.

A story is a path in the story space. It tells what a user of a particular type might
do with the system. The combination of different stories to a subgraph of the story
space can be used to describe a “typical” system usage. Therefore, we call such
a subgraph a scenario. Usually storyboarding starts with modelling scenarios in-
stead of stories, coupled by the integration of scenarios to the story space. Further-
more, we may add a triggering event, a precondition and a postcondition to each
action, i.e. we specify exactly, under which conditions, an action can be executed
and what effects it will have. In the same way we may further add entry conditions
and completion conditions to scenes. Scenarios can be organised in a hierarchical
way, i.e. the details in a scene can be described by a scenario.

Example 11.1. Let us consider a tourism service, where users have a choice between
three different kinds of tours:

Fly&Sleep: A user interacts with the system to book a flight, one or more hotels,
and optionally also some events.

All-Inclusive: A user interacts with the system to book a flight, accommodation
and events.

Bicycle: A user interacts with the system to book accommodation and optionally
some events.

Each package is coupled with specific expectations. In our case, Fly&Sleep tours
are characterised by the aim of finding hotels close to the airport, where users can
choose between several hotels and events. For All-Inclusive tours a user can book
a bundle consisting of a flight, hotel and optional events. Bicycle tours are charac-
terised by the need to find hotels not too far away from each other.
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We use abbreviations ˛i for the actions:

˛1 D get_intention ˛2 D book_flight ˛3 D book_hotel

˛4 D book_event ˛5 D confirm ˛6 D proceed_payment

˛7 D cc_details ˛8 D bank_details

The story space is illustrated by the labelled graph in Fig. 11.1, which results
from integrating three scenarios for the different kinds of tours. Actually, only the
scenario for the Bicycle tour differs from the complete story space, as it does not
contain the scene ‘Flight Booking’. The dashed arrows in the figure highlight a story
for a Bicycle tour.

We also use the following abbreviations for conditions:

'1 � fly&sleep '2 � all-inclusive '3 D bicycle

'4 � flight_selected '5 � hotel_selected '6 � events_selected

'7 � pay_by_cheque '8 � pay_by_credit '9 � pay_by_direct-debit

Then, '1 _ '2 _ '3 is the postcondition of ˛1, and '1 _ '2 is a precondi-
tion for ˛2. For the scene ‘Hotel Booking’ the information production consists of
travel_period and number_travellers, while the information consumption comprises
hotel_list. The leave condition for the scene is '5.

Users can be classified according to their roles, intentions and behaviour. We use
the term actor for such a group of users. The role of an actor indicates a particular
purpose of the system. As such, it is usually associated with obligations and rights,

Fig. 11.1 Story space of a tourism service
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which lead to deontic integrity constraints. The intention of an actor can be mod-
elled by goals, i.e. postconditions to the story space, which are also connected with
the tasks. Modelling the behaviour of an actor leads to user profiles, which can be
modelled by giving values for various properties that characterise a user. Further-
more, each profile leads to rules that can again be expressed by constraints on the
story space.

In addition, each actor has an information portfolio, which specifies the informa-
tion needs as well as the information entered into the system. We do not model the
information portfolio as part of an actor, but instead we will model the information
‘consumed’ and ‘produced’ with each more-detailed specification of a scene.

The presence of roles indicates a particular purpose of the system. A role is de-
fined by the set of actions that an actor with this role may execute. Thus, a role
is associated with obligations and rights, i.e. which actions have to be executed or
which scenes are disclosed. An obligation specifies what an actor in a particular role
has to do. A right specifies what an actor in a particular role is permitted to do. Both
obligations and rights together lead to complex deontic integrity constraints. We use
the following logical language L for this purpose:

• All propositional atoms are also atoms of L.
• If ˛ is an action on scene s and r is a role associated with s, then O do.r; ˛/,

P do.r; ˛/, F do.r; ˛/, and do.r; ˛/ are atoms of L.
• For '; 2 L we also have that :', ' ^  , ' _  , ' )  and ' ,  are also

formulae in L.

The interpretation is standard. In particular, O do.r; ˛/ means that an actor with
role r is obliged to perform action ˛, P do.r; ˛/ means that an actor with role r is
permitted to perform action ˛, F do.r; ˛/means that an actor with role r is forbidden
to perform action ˛, and do.r; ˛/ means that an actor with role r actually performs
action ˛.

Example 11.2. In the tourism service Example 11.1 we have only a single role ‘cus-
tomer’, but three different tasks. Therefore, for deontic constraints we simple write
do.˛/ instead of do.customer; ˛/. We then have the following (selected) deontic
constraints expressing the rights and obligations of customers:

'1 ) O do.˛2/ ^ O do.˛3/ ^ P do.˛4/

'2 ) O do.˛2/ ^ O do.˛3/ ^ O do.˛4/

'3 ) F do.˛2/ ^ O do.˛3/ ^ P do.˛4/

do.˛5/ ) O do.˛6/ '8 ) O do.˛7/

Modelling the behaviour of an actor leads to user profiles. We may ask which
properties characterise a user and provide values for each of these properties. Each
combination of such values defines a profile, but usually the behaviour for some of
these profiles is the same. Furthermore, each profile leads to rules that can again be
expressed by constraints on the story space.

The dimensions used in user profiles depend on the application, e.g. the ability
to search for solutions, solve problems, detect and resolve conflicts, and schedule



364 A. Düsterhöft and K.-D. Schewe

work tasks, the communication skills and computer literacy, the knowledge and edu-
cation level regarding the task domain, the frequency and intensity of system usage,
the way information is handled, i.e. the direction of the information flow, the nec-
essary and optional input, the intended information usage, the amount and size of
information and the complexity of information, and the experience in working with
the system and with associated tasks.

Formally, in order to describe such user profiles, we take a finite set � of user
dimensions, and for each dimension ı 2 � we assume to be given a set sc.ı/ of
possible values called the scale of ı. For � D fı1; : : : ; ıng the set of user profiles is
gr.�/ D sc.ı1/ � � � � � sc.ın/. A user type over� is a subset U � gr.�/.

We then add user types to the story space by assigning a set of user types to each
scene. This indicates which stories will be supported for which user profiles.

Example 11.3. Without going into too much detail, we may have the following user
types in our tourism service example. The type ‘Leary’ is only interested in getting
the tour done, i.e. will always book a Flight&Sleep tour, but never books events.
The type ‘Saver’ is interested in cheap offers, and therefore will always look for
accommodation first. The type ‘Culty’ is culturally interested and will first look for
events to book. We will use these types in Sect. 11.4 for personalisation.

The actions performed by a user usually correspond to a certain task. Such tasks
can be the effort of a single user or the cooperative effort of several users. Tasks de-
scribe the general purposes of the system. They combine roles that are involved in
the task, actions executed by actors in these roles, and consequently scenes to which
these actions belong, information consumed by the actions, and data flowing be-
tween the actions. In addition, there is an event that triggers the task. Actions can be
grouped together into subtasks to provide a more concise form of task specification.

Formally, a task  consists of a set act./ D f1; : : : ; ng of subtasks, which may
be actions in the story space, and a triggering event ev./, which is the combination
of a Boolean condition ' on the story space and the fact that a particular action ˛
was executed by some role r , i.e. ev./ D .'; do.r; ˛//. Furthermore, with each
subtask i we associate a set of scenes and a set of roles. If i is atomic, i.e. an
action ˛, then it will be associated with exactly one scene s and exactly one role r .

Example 11.4. We already mentioned in Example 11.2 that there are three different
tasks, i.e. book a Fly&Sleep tour, an All-Inclusive tour, or a Bicycle tour. These
three tasks define three different goals:

'10 � book_fly&sleep '11 � book_all-inclusive '12 � book_bicycle

For these we get the additional constraints:

'10 ) '1 '11 ) '2 '12 ) '3



11 Conceptual Modelling of Application Stories 365

11.2.2 Plots

Looking at scenarios or the whole story space from a different angle, we may con-
centrate on the flow of actions:

• For the purpose of storyboarding actions can be treated as atomic, i.e. we are not
yet interested in how an underlying database might be updated. Then each action
also belongs to a uniquely determined scene.

• Actions have pre- and postconditions, so we can use annotations to express con-
ditions that must hold before or after an action is executed.

• Actions can be executed sequentially or in parallel, and we must allow (demonic)
choice between actions.

• Actions can be iterated.
• By adding an action skipwe can then also express optionality and iteration with

at least one execution.

These possibilities to combine actions lead to operators of an algebra, which
we will call a story algebra. Thus, we can describe the plot of a storyboard by an
element of a suitable story algebra.

Let us now take a closer look at the storyboarding language SiteLang [32],
which in fact defines a story algebra. So, let Sc D fs1; : : : ; sng be a set of scenes,
and let A D f˛1; : : : ; ˛kg be a set of (atomic) actions. Furthermore, assume a map-
ping � W A ! Sc, i.e. with each action ˛ 2 A we associate a scene �.˛/.

This can be used to define inductively the set of processes P D P.A;Sc/ deter-
mined by A and S. Furthermore, we can extend � to a partial mapping P ! Sc as
follows:

• Each action ˛ 2 A is also a process, i.e. ˛ 2 P , and the associated scene �.˛/ is
already given.

• skip is a process, for which �.skip/ is undefined.
• If p1 and p2 are processes, then also the sequence p1Ip2 is a process. Further-

more, if �.p1/ D �.p2/ D s or one of the pi is skip, then �.p1Ip2/ is also
defined and equals s, otherwise it is undefined.

• If p1 and p2 are processes, then also the parallel process p1kp2 is a process.
Furthermore, if �.p1/ D �.p2/ D s or one of the pi is skip, then �.p1kp2/ is
also defined and equals s, otherwise it is undefined.

• Ifp1 andp2 are processes, then also the choicep1�p2 is a process. Furthermore,
if �.p1/ D �.p2/ D s or one of the pi is skip, then �.p1�p2/ is also defined
and equals s, otherwise it is undefined.

• If p is a process, then also the iteration p� is a process with �.p�/ D �.p/, if
�.p/ is defined.

• If p is a process and ' is a Boolean condition, then the guarded process f'gp and
the post-guarded process pf'g are processes with �.f'gp/ D �.pf'g/ D �.p/,
if �.p/ is defined.

Doing this we have to assume tacitly that navigation between scenes is also rep-
resented by an activity in A, and the assigned scene is the origin of the navigation.
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SiteLang provides a few more constructs, which we have omitted here, because
they can be represented by the constructs above, e.g. non-empty iteration pC and
optionality Œp� can be expressed by pC D pIp� and Œp� D p�skip respectively.

Mathematically, a story algebra carries the structure of a Kleene algebra with
tests (see e.g. [26]). A Kleene algebra (KA) K consists of a carrier-setK containing
at least two different elements 0 and 1 and a unary operation � and two binary
operations C and � on K such that the following axioms are satisfied (adopt the
convention to write pq for p � q, and assume that � binds stronger than C):

• C and � are associative, i.e. for all p; q; r 2 K we have pC.qCr/ D .pCq/Cr
and p.qr/ D .pq/r ;

• C is commutative and idempotent with 0 as neutral element, i.e. for all p; q 2 K
we have p C q D q C p, p C p D p and p C 0 D p;

• 1 is a neutral element for �, i.e. for all p 2 K we have p1 D 1p D p;
• for all p 2 K we have p0 D 0p D 0;
• � is distributive over C, i.e. for all p; q; r 2 K we have p.qC r/ D pqCpr and
.p C q/r D pr C qr ;

• p�q is the least solution x of q C px � x and qp� is the least solution of
q C xp � x, using the partial order x � y � x C y D y.

A Kleene algebra with tests (KAT) K consists of a Kleene algebra .K;C; �; �;
0; 1/, a subset B � K containing 0 and 1 and closed under C and �, and a unary
operationNon B , such that .B;C; �;N; 0; 1/ forms a Boolean algebra.

Example 11.5. Let us continue Example 11.1 using the abbreviations ˛i and 'j for
actions and Boolean conditions (tests) respectively. Then the following KAT expres-
sion defines the plot of the story space:

˛1.'1 C '2 C '3/..'1 C '2/.˛2k˛3k.˛4 C '1//C '3.˛3k.˛4 C 1///

'4'5.'6 C '2'3/˛5˛6.'7 C '8˛7 C '9˛8/

With this formalisation preference rules associated with user types can be ex-
pressed by equations, e.g.:

• An equation p1 Cp2 D p1 expresses an unconditional preference of activity (or
process) p1 over p2.

• An equation '.p1 C p2/ D 'p1 expresses a conditional preference of activity
(or process) p1 over p2 in case the condition ' is satisfied.

• Similarly, an equation p.p1 C p2/ D pp1 expresses another conditional prefer-
ence of activity (or process) p1 over p2 after the activity (or process) p.

• An equation p1p2 C p2p1 D p1p2 expresses a preference of order.

In the same way, constraints on the story space can also be captured by equations
as follows:

• If an action p has a precondition ', then we obtain the equation N'p D 0.
• If an action p has a postcondition  , we obtain the equation p D p .
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• If an action p is triggered by a condition ', we obtain the equation ' D 'p.
• In addition, we obtain exclusion conditions ' D 0 and tautologies 'C D 1.

Example 11.6. The preferences of the user types in Example 11.3 lead to the follow-
ing KAT equations (here p refers to the complete plot as in Example 11.5):

for Leary: ˛4 D 0 p D p'10

for Saver: ˛2 C ˛3 D ˛3˛2

for Culty: ˛2 C ˛3 C ˛4 D ˛4.˛2 C ˛3/ p D p'6

11.3 Pragmatics of Storyboarding

In the previous section we looked at the syntax and semantics of storyboarding.
Both syntax and semantics are part of semiotics, which in general is concerned
with the relationship between signs, concepts and things of reality. With respect to
modelling languages, syntax is concerned with the construction of the language,
while semantics is concerned with the interpretation of the words of the language.
The third main branch of semiotics is pragmatics, which is concerned with the use
of the language and the context of words for the user.

So the storyboarding model would be incomplete without pragmatics. Due to the
central importance of users for application stories, the key to understanding story-
board pragmatics is usage analysis (see e.g. [28]). For this we look at typical appli-
cation scenarios, which lead to life cases, the classification of users, and contexts.

11.3.1 Life Cases

Life cases are characterised by observations, processes, assessment, individual pro-
files, inter-personal coherence, significance of time and place, user characteristics,
and experiences and skills. We are interested in the collection and assessment of
behaviour relating to a specific application. This would typically involve an obser-
vation of behaviour of users in real environments, including a background check
that relates usage to intentions, goals or tasks.

This involves arranging all the actions observed in an application into a main
logical and coherent pattern. In some case, deviations of the main pattern must be
modelled through exceptions. In most cases, we can use parallel execution of inde-
pendent actions. This further involves the reconstruction of the sequence of actions
and specific behaviour of users, which will aid in understanding the role each in-
dividual has within the story, and it assists in developing the user profile. A list of
background characteristics, including physical and behavioural characteristics, of
individuals is conducted. This list can also be used for deriving the most appropriate
interview technique, discussed below.

A variation in activity will relate to variations in other life cases. The choices
made also depend on mobility, surroundings, and schedules of events of interest.
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Individuals using a service may be grouped by characteristics. Based on this group-
ing a similar behaviour is observed. Individuals may have their own experience with
services provided in real life and thus use different behavioural patterns of service
employment.

In general, life case studies are designed to produce a picture of service em-
ployment that is as accurate as possible. Determining why, how, where, when and
why a service is called using which data provides a better picture for a utilisation
scenario. As life cases are used for quality control, we must carefully record our
observations. We can either use a natural language specification or a semi-formal
one.

Life cases may be developed and interpreted step by step:

1. The first step during life case collection is the survey of possible application
cases we might consider. The observations could have more than one meaning
and may follow a variety of user-related goals. In this case we consider the most
likely meaning.

2. The second step involves a deep assessment of the life cases. We extract the
different execution orders, the relationships among actions, and the roles indi-
viduals play in these actions.

3. The third step extracts those life case characteristics that are distinguishing fea-
tures and are relevant for time and location. At the same time we search for
similarities within these life cases.

4. The final step is concerned with the characterisation of potential users, their
behavioural patterns, and their roles in various stages of the life case.

Collectively, this information will produce a picture of the life case intended to be
supported. This may produce further life cases, or it may aid in reducing the amount
of development. It may result in a prioritisation of life cases under consideration,
assist in the linkage of potentially related life cases, provide the developers with rel-
evant leads and strategies, and keep system development on track and undistracted.
Life cases are mapped to scenarios in the sequel. The integration of scenarios can
also be based on life cases.

Example 11.7. Let us look at the life case ‘prepare_holiday_trip’. The general char-
acterisation of the outcome is given by a trip schedule comprising decisions on dates
and time, locations to visit, means of transportation, accommodations, and other ac-
tivities. Tasks are to book transport if needed, book accommodations, and book other
activities if desired. Main problems are to check the consistency and feasibility of
the trip.

The life case flow comprises a coarse plan with milestones for confirmed book-
ings and feasibility and consistency checks. Content consumed comprises informa-
tion about hotels, flights if needed, events if considered and costs. The produced
content is defined by the schedule and the bookings made.

Actors associated with the life case are the scheduler and travel partner, e.g. fam-
ily, club or company. Expected profiles can be all-inclusive tourists, eco-tourists or
individuals. Collaboration is required for tour planning and feasibility checking.
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11.3.2 User Modelling

While life case analysis supports the design of the story space, user models address
the actors. In particular, user models support defining user profiles, which lead to
preference rules that are decisive for personalisation. User modelling has changed
the development to human–computer interfaces and allows for tailoring systems to
users, their needs, abilities and preferences. User modelling is based on the spec-
ification of the user profile, which addresses a user’s characterisation, and on the
specification of the user portfolio, which describes a user’s tasks, involvement and
collaboration.

In general, user profiles can be specified through the education profile based on
an insight into the knowledge, skills and abilities of potential users, the work profile
with a specification of the specific work approaches of users, and the personality
profile representing the specific properties of users. These three profiles cover the
most important properties of users which influence the storyboard by means of pref-
erence rules associate with them.

• The education profile is characterised by properties obtained during education,
training and other educational activities, i.e. education, capabilities and applica-
tion knowledge. The education is characterised by the technical and professional
training a user has received. Technical training emphasises the understanding and
practical application of basic principles of science and mathematics. Professional
training places major emphasis upon the theories, understanding and principles
in such fields as science and engineering. It results in erudition, knowledge and
literacy.

• The work profile is mainly characterised by task-solving knowledge and skills
in the application area, i.e. task expertise and experience, system experience,
and information and interaction profiles. For instance, task expertise describes
the exact and partial knowledge of data, procedures, algorithms, functions, etc.,
while task experience identifies both positive experience, e.g. applicable knowl-
edge, strategies, models and theories, and negative experience, e.g. development,
support or knowledge deficits, etc. The information profile is based on the infor-
mation needs of a user, discussed below, i.e. the intentions in approaching the
system, the amount of information a user can cope with and the complexity of
information a user can handle. The interaction profile of a user is determined by
his frequency, intensity and style of system utilisation.

• The personality profile of a user characterises his/her general properties, his/her
preferences in dealing with the WIS and his/her polarity profile, which addresses
a user’s psychological properties.

We group users by their information demand and requested content, their utili-
sation patterns and their specific utilisation and context. The abstraction of a group
of users is called an actor. Actors are characterised by profiles and portfolios. As
with users, actor profiles consist of the education, work and personality profiles.
Profiles are used for the derivation of preferences. These preferences are used to
adapt scenes to specific actors.
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A portfolio in general is determined by the responsibilities one has and is based
on a number of targets. Thus, the actor portfolio within an application is based on
a set of tasks an actor has or intends to complete and for which solution the actor
has the authority and control. The portfolio is additionally based on a description of
involvement within the task solution.

Task modelling means understanding what a user wants to accomplish, and at
the same may lead to a reorganisation of the work processes to be supported. Task
analysis leads to a description of things users do and things they need to know.
It does not specify how a task is accomplished. The supported tasks need to be
representative of the application, relevant within the application, and completely
supported. Task support can be customised depending on the profile and the context
of the actors.

A task is a usually assigned piece of work which often has to be finished within
a certain time by a user or a set of users whose duty is its completion. It implies work
imposed by a user in authority and an obligation or responsibility to perform. A task
may consist of subtasks, so we assume that tasks can be constructed on the basis of
elementary tasks. Thus, a task is characterised by a problem statement, target states,
initial states, profiles and instruments for task completion, and auxiliary conditions.

• Tasks are associated to problems, for which often a class of solution strategies is
provided. Additionally, problems often require collaboration with the local and
global systems and with other actors.

• After successfully completing a task we may observe a change in the state of
the application system. Target states are specified by means of target conditions.
Some of the target conditions can be optional. If no optional conditions are given,
then all conditions are obligatory. Target states correspond to intentions.

• The necessity for task enactment is based on the insufficiency of the current state
of affairs. Additionally, task enactment conditions may specify the circumstances
under which task execution can be started.

• The completion of a task requires skills, experience and knowledge that must be
presupposed by the user whenever the task is going to be activated. Tasks may
be embedded into a certain organisational context. The profile also presupposes
a certain technical environment, e.g. communication, information and workspace
systems.

• Task enactment is supported by instruments such as actions and data. Problems
are solved on the basis of an information demand and within a class of functions
that might be used for task solution. Later on the information demand is mapped
to database views or media objects. The function utilisation is organised on the
basis of workflows.

• The settling of tasks may be restricted. Typical auxiliary conditions are based on
rights for direct handling and retrieval, roles of the antagonist and the protagonist,
and obligations required for settling a task.

Example 11.8. Let us look at the profile of an ‘eco-tourist’. As part of the work
profile we identify the task expertise, i.e. where the user wants to go and when.
Task experience can be assumed to be general. General properties in the personality
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profile will characterise such a user as an individual who prefers using a bicycle and
thus is not interested in booking flights. The profile is based on the goal '12, i.e. to
book a Bicyle tour.

11.3.3 Contexts

Taking the commonly accepted meaning, a context characterises the situation in
which a user finds him-/herself at a certain time in a particular location. More gener-
ally, a context captures everything that surrounds a utilisation situation of a user and
can throw light on its meaning. Therefore, context is characterised by interrelated
conditions for the existence and occurrence of the utilisation situation such as the
external environment, the internal state, location, time, history, etc. This comprises
the mental context which is based on the profile of the actor or user, the storyboard
context which is based on the story leading to a situation, the data context which is
based on the available data, the stakeholder context, and the collaboration context.

When determining context we already know the major life cases we would like
to support, the user and actor characterisation on the basis of profiles and portfolios,
and the technical environment we are going to use. These restrictions enable a more
refined understanding of contexts. The user model, the specified set of life cases and
the intentions can be used for a disambiguation of the meaning and an injection of
context. In this way we distinguish between actor, storyboard, system and temporal
contexts.

• The system is used by actors for a number of tasks in a variety of involvements
and well-understood collaboration. These actors impose their quality require-
ments on the usage as described by their profiles. They need additional auxiliary
data and auxiliary functions. The variability of use is restricted by the actor’s
context, which covers the actor’s specific tasks and specific data and function
demand, and by chosen involvement, while the profile of actors imposes excep-
tions. The involvement and collaboration of actors is based on assumptions of
social behaviour and restrictions due to organisational decisions. These assump-
tions and restrictions are components of the actor’s context.

• The meaning of content and functionality to users depends on the stories, which
are based on scenarios which reflect life cases and the portfolios of users or ac-
tors. According to the profile of these users, a number of quality requirements
such as privacy, security and availability must be satisfied. The actor’s scenario
context describes what the actor needs to understand in order to efficiently and
effectively solve his/her tasks in the actual portfolio. The actors determine the
policy for following particular stories.

• The purposes and intentions lead to a number of decisions about the system ar-
chitecture, the technical environment and the implementation. The architecture
has an impact on its utilisation, which often is only implicit and thus leads to
puzzling system behaviour. The technical environment restricts the user due to
restrictions imposed by server, channel and client properties. Adaptation to the
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current environment is defined as context adaptation to the current channel, to the
client infrastructure and to the server load. At the same time a number of legal
decisions based on regulations, laws and business rules have been incorporated
into the system.

• The utilisation of a scene by an actor depends on his/her utilisation history. Ac-
tors may interrupt and resume their activities at any given moment. As they may
not be interested in repeating all previous actions they have already successfully
completed, the temporal context must be taken into account. Depending on the
availability of content and functionality, the current utilisation may lead to a dif-
ferent story within the same scenario.

Example 11.9. Let us look at the storyboard context for a Bicycle tour. In this case
the intent ‘Bicycle Tour’ defines the pre-scene context for the ‘Start’ scene. Sim-
ilarly, the post-scene context is defined by the possible continuation through the
scene ‘Hotel Booking’, which would imply the action ˛3, with the additional con-
straint that the hotel should be supportive of bikers. The super-imposed metadata for
the scene context are defined by security data associated with the additional intent
to prevent theft.

11.4 Analysis of Storyboards

The formal aspects of storyboards such as constraints and preference rules give rise
to problems which have to be analysed. Let us concentrate on only two of these
problems: personalisation and deontic consistency. For the former, the starting point
is a plot and a set of preference rules. We want to obtain a simplified plot in which
the choices corresponding to the preferences have already been incorporated. Fol-
lowing [27, 29] this problem can be addressed by term rewriting on KATs. For the
latter problem we have to ensure that the deontic constraints, which express rights
and obligations, make tasks executable. Following [29] this can also be addressed
by term rewriting, which permits us to reduce the plot to one that is compatible
with the deontic constraints. Combining both approaches, priority has to be given to
rights and obligations, as these are binding.

11.4.1 Customisation with Respect to Preferences

The high-level specification by means of a storyboard is an open invitation for per-
sonalisation with respect to functionality. Assume a plot p to be given by an ex-
pression on the KAT K, and let ˙ denote a set of equations on K corresponding
to preference rules. Then we look for a simplified KAT expression p0 such that p
and p0 represent the same element in K=˙ . In [27] it was suggested to use term
rewriting for this. As is standard in order-sorted algebraic specifications, we take
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two sorts B and K ordered by B � K , and the following (nullary, unary, binary)
operators:

0; 1 W! B C; � W K K ! K � W K ! K N W B ! B

Using these sorts and operators we can define terms in the usual way. A rewrite
rule is an expression of the form � %, with terms � and % of the same sort, such
that the variables on the right-hand side % are a subset of those on the left-hand
side �. A conditional rewrite rule is an expression of the form t1 D t2 ! �  %,
in which in addition the terms t1 and t2 contain the same variables and these form
a superset of the set of variables in the left-hand-side term �.

The application of a rewrite rule �  % to a term t is standard: if t contains
a subterm t 0 that can be matched with �, i.e. there is a substitution � such that the
application of � to � results in t 0 (denoted �:� D t 0), then replace t 0 in t by �:%.

The application of a conditional rewrite rule t1 D t2 ! �  % to a term t is
defined analogously. That is, if t contains a subterm t 0 that can be matched with �,
i.e. there is a substitution � such that the application of � to � results in t 0 (denoted
�:� D t 0), then replace t 0 in t by �:%. However, in this case we have to show that
�:t1 D �:t2 holds for the substitution � . For this we start a separate term-rewriting
process that aims at showing �:t1  � � �  �:t2. We call this separate rewriting
process a co-routine, because we can run it in parallel to the main rewriting process.
The risk is of course that if we fail to verify �:t1 D �:t2, then we will have to
backtrack to t for the main rewriting process.

In order to exploit term-rewriting for the personalisation problem, we formulate
the axioms of KATs and the personalisation equations as (conditional) rewrite rules,
then start with p and apply the rules until we finally obtain a term of the form
p0 to which no more rules can be applied. Note that p is closed, i.e. it does not
contain variables, so during the whole rewriting process we will only have to deal
with closed terms.

We use p; q; r; : : : (if needed with additional indices) as variables of sort K , and
a; b; c; : : : (also with indices) as variables of sort B . Then we use the following
general (conditional) rewrite rules:

p C .q C r/ .p C q/C r p.qr/ .pq/r

p C p p p C 0 p

p1 p 1p p

p0 0 0p 0

p.q C r/ pq C pr .p C q/r  pr C qr

1C pp� p� 1C p�p p�

pq C q D q ! p�q C q q qp C q D q ! qp� C q  q

p C q q C p a b ba

a Na 0 Naa 0

a C Na 1 NaC a 1
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In addition, the personalisation equations from above give rise to further rewrite
rules:

• A conditional preference equation gives rise to a rule of the form a.pCq/ ap.
• A precondition gives rise to a rule of the form Nap 0.
• A postcondition gives rise to a rule of the form p Na 0.
• An invariance condition gives rise to a rule of the form a p Na C Napa 0.
• An exclusion condition gives rise to a rule of the form a b 0.

As is usual with term-rewriting approaches, we must solve two related problems:
ensure termination and produce a unique final result (the Church-Rosser property).
Both problems were handled in [29]. For termination a condition based on formal
power series was developed exploiting a well-founded order on terms [7]. For the
Church-Rosser property an approach based on critical pair completion [14] was
adopted.

Example 11.10. Let us consider the plot from Example 11.5 together with the pref-
erences for the user type ‘Leary’ in Example 11.6. In this case the plot can be sim-
plified, i.e. personalised, as follows:

˛1'1.˛2k˛3/'4'5˛5˛6.'7 C '8˛7 C '9˛8/'10

11.4.2 Deontic Consistency

For deontic consistency we first need a formal semantics for the deontic logic. For
this, a status set of L is a set S of atoms satisfying P do.r; ˛/ 2 S iff F do.r; ˛/ … S.

If ˙ is a set of formulae in L, then a status set S is feasible iff it satisfies ˙ in
the usual propositional sense, i.e. S determines the truth values of the atoms, and
the usual interpretation of negation, conjunction and disjunction applies. S is closed
iff we have O do.r; ˛/ 2 S ) do.r; ˛/ 2 S and do.r; ˛/ 2 S ) P do.r; ˛/ 2 S.
Obviously, we can use the rules defining closed status sets to build the closure of
any status set.

Now consider a sequence S0 ! S1 ! � � � ! Sn to be enabled iff all Si are
closed and feasible with respect to ˙ , and for each i D 0; : : : ; n � 1 there is some
action ˛i and some role r with do.r; ˛i / 2 Si such that the execution of ˛i will
produce the status set SiC1 and the sequence of actions ˛0; ˛1; : : : ; ˛n is permitted
by the plot.

As not all sequences of actions which are permitted by the plot are compatible
with deontic constraints, the question arises whether the plot can be rewritten in
a way that all stories it defines correspond to an enabled sequence of status sets.

For this we consider only deontic constraints associated with a single role. If ˙
is such a set of deontic constraints, we can assume that each formula ' 2 ˙ is
written as a disjunction of literals, i.e. atoms or negated atoms. If this were not the
case, we could transform ' into a conjunctive normal form, say ' � '1 ^ � � � ^ 'n,
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and replace ' by '1; : : : ; 'n. This does not change the semantics, as satisfaction of
a conjunction of constraints is equivalent to satisfaction of all conjuncts.

For ' 2 ˙ define P' as the set of Boolean atoms  with : occurring in ',
negated Boolean atoms N with  occurring in ', and actions ˛ such that one of
F do.r; ˛/, :P do.r; ˛/, :O do.r; ˛/ or :do.r; ˛/ occurs in '. Let C' be the set of
actions ˇ such that O do.r; ˛/ or do.r; ˛/ occurs in '. Let P' D fp1; : : : ; pkg and
C' D fq1; : : : ; qmg. Then each permutation � of f1; : : : ; kg gives rise to an equation

p�.1/ : : : p�.k/ D
mX

j D1

p�.1/ : : : p�.k/qj

which degenerates to p�.1/ : : : p�.k/ D 0 in case C' D ;.
Thus, each set ˙ of deontic constraints defines a set E of equations on the plot.

In contrast to the preference rules, however, the equations in E do not just express
preferences, but strict restrictions. Technically speaking, if we can rewrite the plot p
to a plot p0 using the equations in E , then each story enabled by p0, i.e. a sequence
of actions, corresponds to a sequence of status sets that is enabled by ˙ . We can
then apply term rewriting with respect to preference rules to the plot p0.

11.5 Bibliographic Remarks

The conceptual model of storyboarding originates from the field of Web information
systems (WISs), i.e. database-backed information systems which are accessible via
the World Wide Web. Here several conceptual models have been developed such as
ARANEUS [2], WebML [4], WSDM [6], HERA [13], HDM [11], OOHDM [30],
UML-based methods [5, 19], and the co-design approach [26]. These models share
the view that content, navigation and presentation are key problems in WIS design,
but storyboarding is one of the key features of the co-design approach. This was
motivated by the basic consideration that WISs are open systems in the sense that
they can be accessed by almost anyone, and thus an anticipation of user behaviour
would be necessary.

The concrete shape of storyboards has undergone various changes, from its be-
ginnings in the Cottbusnet project [10] over the first formalisation of the algebraic
language SiteLang [32] to the consolidated version in [26]. Linking storyboarding
to strategic modelling as the initial step in WIS design was handled in [21]. It builds
on and extends models of actors and goals [23]. Personalisation by term rewriting on
Kleene algebras with tests [16–18] was intensively studied in [27, 29]. Consistency
with respect to deontic constraints is based on the semantics of deontic action pro-
grams [9] with connections to more general studies of deontic constraints [3, 8, 34].

The study of storyboarding pragmatics started with work on metaphorical struc-
tures in [31]. Usage analysis, i.e. life cases, user models and contexts as decisive
components of storyboarding pragmatics, was systematically handled in [28]. It
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builds on the immense work on user modelling, e.g. [12, 15, 20, 24], and abstracts
from contextual information bases [1, 22, 33].
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Chapter 12
Evolution and Migration of Information Systems

Meike Klettke and Bernhard Thalheim

Abstract Modernisation of information systems is a fundamental but sometimes
neglected aspect of conceptual modelling. The management of evolution, migration
and refinement and the ability for information systems to deal with modernisation
is an essential component in developing and maintaining truly useful systems that
minimise service disruption and down time and maximise availability of data and
applications. Many approaches to handling evolution and migration have been pro-
posed in various areas of data management. Most of them are rather informal de-
scriptions of the project management of either evolution management or migration
management. Typical problems that have been considered are modelling and man-
agement of evolution and migration; handling of changes and versioning; managing
information system upgrades and schema changes; semantics of modernisation in
time and space; handling changes in metadata, schema evolution, migration and
versioning; change detection, monitoring and mining.
This chapter provides a systematic inside look at the first two problems. We show
that migration and evolution are interwoven aspects. Three migration strategies (big
bang, chicken little, butterfly) can be based on systematic evolution steps. Evolution
steps use the theory of model suites. An information system is specified by models
such as the database structure model, the view model, the functionality model and
the interaction model. Model suites thus support the co-evolution of models during
system evolution and migration. We restrict migration and evolution to model as-
pects. The theory, technics and methodology can, however, be extended to database
or information base evolution and migration by the derivation of corresponding sup-
port functions based on mappings among the models.
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12.1 Introduction

12.1.1 Information System Modernisation

Information system modernisation, e.g. by evolution and migration, is clearly
among the most challenging engineering tasks to date. The problem of database evo-
lution and migration arises in the context of long-lived database applications, where
data have become valuable in their own right and are worthy of being preserved
even following any changes made to database specifications and database technol-
ogy. Database modernisation includes a wide range of operations such as explicit
architecture changes, versioning of databases, restructuring of databases or parts of
them, adaptation to new technology or languages, application redevelopment, inter-
face modernisation, change of platforms or DBMS, wrapping and componentisation
of databases, or redevelopment of a database. Typically, modernisation should not
result in loss of (legacy or, better, heritage) data. It needs to be conservative in the
sense that it allows for querying of all data through user-definable version interfaces.

We may distinguish a number of targets for system modernisation. Modernisation
of an information system may be oriented towards a modernisation of the database,
the interfaces, the DBMS or the paradigms.

Database
evolution

Restructuring

Big
bang

Chicken
little

Butterfly

Database migration

Database migration Database
systems

refinement

Database modernisation DBMS
modernisation

Wrapping Encap-
sulation

Interfaces
modernisation

Paradigms
modernisation

Information system modernization

This chapter mainly discusses the main database modernisation techniques: evo-
lution and migration.

12.1.2 Models for Information Systems

Theories for evolution and migration of information systems should be indepen-
dent of whatever modelling technique or language has been used. The intention is,
however, to be able to handle all kinds of modifications of all components of the in-
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formation system model.1 We therefore intend to develop an approach that handles
changes in database structuring, database functionality, and database support mod-
els. Several approaches can be taken to the modelling of information system model
evolution. We can explicitly add an orthogonal component to models that handle
the validity of models through macro states for birth, transformation, death, etc. An-
other approach is based on the explicit representation of the version history of the
application model in its entirety. A third approach is to keep the version history per
element of the application model. Since database structuring and functionality are
based on the principle of compositionality, we consider the third approach the most
appropriate one.

An information system is typically specified by an application model that consists
of a database model for specification of the database schema, of a functionality
model for specification of information system operation, and of support models such
as views or interaction schemata.

Database
schema

Static
integrity

constraints

Database structure
model
M struct

Database
functionality

model

Dynamic
integrity

constraints

Database function
model
M f unct

View
model
M view

Interaction
model
M interact

... model

Database support models

Information system model
M IS

Therefore, the modernisation of an information system may involve a large vari-
ety of improvement steps. We concentrate in this chapter on the following modifi-
cation operations in the following tree.

Structure
improvement

Operations
improvement

Quality
improvement

Constraint
maintenance
improvement

Architecture
improvement

Change operations for application models

1 This chapter considers mainly changes in information system models. We do not consider
changes in databases themselves.
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12.2 Overview of System Modernisations

Successful database systems have been used for decades, and the amount of data
stored in databases is enormous. Long-living databases are called legacy databases.
They have some significant characteristics:

• Data are stored over very long periods of time without or only with minor
database changes. Therefore, data in a databases become very comprehensive.

• Usually, data in databases are very important or even essential for a company or
organisation to run its business.

Database structures and functions of these systems were developed many years
ago. Often, the original developers are no longer available. Code that is uncom-
mented, hard to understand, and hard or impossible to maintain is rather common.

Nevertheless, sometimes changes in a legacy system are necessary. There are
several reasons for changes:

1. Errors in the database structure or incompleteness of the structure may require
extensions or modifications of databases.

2. The whole environment changes, for instance new interfaces, new applications,
or new laws require adaptations of the legacy systems.

3. New kinds of information need to be added or new functions need to be pro-
vided.

4. More efficient solutions are necessary.
5. Technology changes bring about the need for migration processes.

Databases usually exist much longer than other software products. This results
in necessary modernisation operations from time to time. System modernisation
(introduced by Comella-Dorda et al. in [8]) ensures that a system will be adapted to
new requirements and that errors in a system will be corrected. Small changes are
called maintenance or the evolution of a system.

12.2.1 Fundamental Terms

Evolution

According to Roddick [26], ‘Schema evolution deals with the need to retain current
data when database schema changes are performed. Formally, schema evolution is
accommodated when a database system facilitates database schema modification
without the loss of existing data.’

We extend this definition. Not only may the database structure change and the
data have to be preserved. Changes include also user-defined functions, stored pro-
cedures, defined views, integrity constraints, check constraints, and the interfaces of
a database. All these kinds of information are influenced by changes in database
structures and have to be retained or adapted.
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Data Migration

Data migration implies that the platform used for data storage is replaced. A new
version of a database management system, another database management system
or new hardware requires such data migration. During the migration, it has to be
guaranteed that a version of the database (as an operational database system) will
always be available. The data migration process is often embedded into a system
migration.

System Migration

System migration means that a complete application is moved onto a new platform.
In this way, data consistency and the functionalities of the system have to be pre-
served. System migration is a project on its own. It is a complicated process consist-
ing of several subtasks. Different existing migration strategies (big bang, chicken
little, and butterfly) exist and will be explained in Sect. 12.4. A system migration
project usually requires several attempts; an operational system has to be available
during the entire migration process.

Legacy System

A legacy system is a system that is established, contains valuable data or important
functionalities and is in use for some time. A legacy system represents a proven
and successful solution. It is difficult to maintain, change or evolve a legacy system,
which is why it is preserved and encapsulated.

12.2.2 Interrelationships Between Migration, Evolution,
and Legacy Systems

Figure 12.1 shows the typical life cycle of a software product. Business require-
ments determine the design process. A system becomes operational and is in use
over a long period of time. Changes in business requirements cause a step-by-step
evolution of the application. These are minor changes which are executed from time
to time and adapt the functions, interfaces, data storage and so forth.

System migrations are larger changes which replace the complete system and
which are necessary if the application no longer meets the business requirements.

Within a system migration, all components are redesigned and evolved. That
means that the evolution of an existing application is a part of the migration process.

During a system migration some components can be preserved. These compo-
nents are called legacy systems; they are not changed or adapted, and access takes
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Functionality

Design

Evolution

Evolution

Migration

Time

Business
Requirements

System functionality

System 1 System 2

Fig. 12.1 Evolution and migration in the application life cycle; figure similar to that of [8]

place using interfaces. The reasons for keeping legacy systems unchanged are multi-
faceted. It is possible that:

• Developers who completely understand the legacy source code are no longer
available.

• An application consists of uncommented source code or monolithic blocks of
code. The risk from changing such code is considerable.

• Costs for redevelopment are too high.
• The legacy system is very efficient, efficient enough for current and future re-

quirements.

If one or more of these conditions is met, we preserve the legacy system instead
of migrating it and use it as a component in a complex application, e.g. black-box
evolution in Sect. 12.2.3.

12.2.3 Evolving Information Systems

An evolving information system model is given

• by an information system model MIS defined in some language L and
• a set of model changes M that can be applied to a model.

Model modifications are typically built on a sequence of elementary model
changes.

Model modifications typically have a scope within a model. For instance, if an
attribute is changed, then the corresponding functions, triggers, stored procedures,
views and interactions must be changed as well. Therefore, a model change is given
by a rule:

if cond then Apply.ChangeOperation.Model// by Bindings
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This specification frame is similar to the specification frame used in Chap. 9. The
bindings are not random; they are induced by the changes within the model and
those model elements that are not changed but interrelated to the changed elements.
We develop a contracting approach for explicit binding.

An evolution trace consists of an initial application model MI and a finite set
of model modifications Oi;j where i; j denote a pair of versions that induce a tree
partial order Ý over model versions, i.e. Oik.Oik�1

.: : : .Oi2.Oi1.calMI ///// is
the model derived from MI by application of operationsOi1 ; Oi2 ; : : : ; Oik for a se-
quence of indexes i1; : : : ; ik with ij Ý ij C1 for 1 � j < k. This sequence is called
the evolution path for MI .

We thus introduce model changes in an incremental form. The semantics of
changes is obvious and is thus omitted. Operations may change model semantics.

Evolution involves more extensive changes than maintenance. It aims at the
conservation of a significant portion of an existing system. These changes typi-
cally include system restructuring, important function enhancements, or new soft-
ware artefacts. Typically, the information system undergoing modernisation still has
a business value that must be preserved. We may distinguish evolution frameworks
by the level of system changes and the evolution effort.

White-Box Evolution Frameworks

White-box evolution requires an initial reverse engineering to gain an understanding
of the information system. Components of the system are identified, and a represen-
tation of the system at a higher level of abstraction is produced. The understanding
of the application system involves modelling of all system components and includes
database structuring, database functionality and database support systems. It creates
an abstraction that allows one to understand the system architecture. This abstrac-
tion can be used for analysing the system.

After the information system is analysed and understood, white-box evolution
includes system restructuring, mutation and component selection. Restructuring can
be understood as the transformation from one representation form to another at the
same relative abstraction level, while preserving those components that are harder
to maintain, e.g., components responsible for external systems behaviour. Mutation
changes the relationship between constructs in the database model and the view
model. Selection removes elements from a database model and from a view model.
Selections are typically forgetful and do not allow one to re-establish the previous
information system. Database slicing is a particularly popular technique of selection.
It is based on the notion of cohesion among system components.

White-box evolution is typically based on a quality improvement plan. Evolution
is typically used to augment some of the quality characteristics of the information
system.
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Black-Box Evolution Frameworks

Black-box evolution is based on a description of the behaviour of the information
system. Typically, the inputs and the outputs of a system under modernisation is
examined in order to gain an understanding of the system’s external behaviour.

Black-box evolution is often based on wrapping and encapsulation techniques.
Wrapping consists of surrounding the system under modernisation with a software
layer that hides the unwanted complexity of the old system and exports a modern
interface. It allows one to remove mismatches between the interface exported by the
old system and interfaces required by current integration practices. Ideally, informa-
tion systems’ internals are ignored.

Encapsulation is a stronger architecture evolution technique. The system or some
of its components are enclosed within or as if within walls. Any structure or func-
tion that is not visible in the black-box input–output behaviour is captured by the
old system. These system components define the interoperability interface. The old
system is kept as a local system within a distributed system. Nothing is changed
within the old system.

Differences between these approaches from an outside perspective can be given
by the following table:

Mstruct Mfunct Mview Minteract

White-box Visible/
changeable

Visible/
changeable

Visible/
changeable

Visible/
changeable

Black-box: wrapping Invisible Invisible Visible Visible/
changeable

Black-box: encapsulation Invisible Invisible Invisible Visible

Note that migration frameworks also apply replacement (chicken little) ap-
proaches to those system components that cannot keep pace with business needs
and for which evolution is not possible or cost-effective.

12.3 Foundations of Evolution and Migration Transformations

12.3.1 Specification of Information System Models

Typically, a model is defined in a certain language. A model language L D LSC

for a model uses some signature S and a set of constructors C that allows one
to build a set of all possible expressions in this language. Typically constructors are
defined by structural recursion [31]. The set of constructors may allow one to build
expressions that do not fulfill certain quality or, more generally, integrity conditions.
Therefore we introduce a set ˙SC of well-formedness conditions.
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Example 12.1. The enhanced entity-relationship (ER) model HERM is based on
a number of well-formedness conditions. Each entity type has at least one attribute,
and each attribute must be used at least once. Attribute types are compositionally
built through the application of constructors. Basis attribute types are associated to
a domain type. Entity types have at least one identification through keys. The type
structure is strictly hierarchical, and each cluster and relationship type has at least
one component type. A key has at least one component. Keys use components of
the same type. Classes of types are defined through set semantics. Each structure in
the higher-order ER model is also based on a set of implicit model-inherent integrity
constraints:

Component-construction constraints are based on the existence, cardinality and
inclusion of components. These constraints must be considered in the translation
and implication process.

Identification constraints are implicitly used for the set constructor. Each object
either does not belong to a set or belongs only once to the set.

Acyclicity and finiteness of structuring supports the axiomatisation and definition
of the algebra. It must, however, be explicitly specified. Constraints such as car-
dinality constraints may be based on potential infinite cycles.

Some model languages allow several equivalent expressions for the same model.
Some of them might be inadequate. For instance, superficial structuring leads to the
representation of constraints through structures. In this case, the implication of con-
straints is difficult to characterise. Superficial structuring also results in performance
and maintenance traps.

The unique name assumption requires that elements with different names be dif-
ferent. If we need to use the same name for different purposes, then we use name
spaces if a unique identification is needed. The closed world assumption presumes
that the only possible elements are those which are specified. The domain closure
assumption limits the elements in the language to those which can be named through
the vocabulary, the states of the vocabulary or the rules. The unique meaning as-
sumption postulates that any function or rule has the same meaning despite mod-
ularisation. Due to the variety of choices we might use additional assumptions for
development. The most general architectural assumption is the possibility of layer-
ing a system into subsystems.�EoE

A model kind KLSC
D .LSC; ˙LSC

/ is defined by a pair consisting of the lan-
guage of the model LSC of signature SC and by constraints ˙LSC

2 L.˙WellFormed
SC

/

applicable to all models defined in the given language.
Model kinds allow one to restrict models to a specific form. The extended entity-

relationship (EER) model uses, for instance, a strict separation of structural model
elements into attribute, entity, relationship and cluster types. This separation is
a variant of the ‘Salami slice’ form of XML documents which require that each
element represent an object and use an ensemble of XML elements which are inter-
related by references. XML models may be based on the so-called Venetian blind or
Russian doll representation. The latter specific form requires that elements be closed
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in the sense that they contain all essential definitions of type, element and attribute
declarations.

Model languages LS1C1
; : : :LS1Cn

may be bound to each other by partial map-
pings Ri;j W LSi Ci

! LSj Cj
based on their signatures. These mappings typically

define the association of elements among the languages.
A model is based on an expression in a given language. Typically, it has a struc-

ture definition, a semantic definition and a pragmatics definition. Semantics restricts
the models we are interested in, whereas pragmatics restricts the scope of model
users. We explicitly define a model M by an expression st ructM in a language
LSC which obeys˙LSC

and by a set of constraints ˙M defined in the logics of this
language. Therefore, each model has its model kind. We denote by MK or Mi for
some i the set of all models of this type.

Example 12.2. The language of the EER model allows one to define an EER schema
MEER through its structure and a set of static integrity constraints, i.e. .S; ˙/ for
a finite set S of types. A typical requirement for an EER schema is that it be closed,
i.e. any non-basic element used is defined within the schema. Attribute types in an
EER schema are defined by the type equation t D b j .A1 W t1; : : : ; An W tn/ j ftg j
Œt � j ` W t where b denotes a base type and ` a label. Similarly, we may define entity,
relationship and cluster types, e.g. for cluster types C $ .`1 W t1/C : : :C .`n W tn/
for entity, relationship or cluster types ti .�EoE

An expression M in a language is incrementally built. Therefore we can define
a subexpression M0 of M and denote this relation by M0 	 M. We typically
assume that M0 is a model as well. Any model M introduces a set of new names.
This name set is denoted by N.M/.

The information system model is defined by a number of interrelated languages:

• The database structure language Lstruct is based on a notion of a (ground)
database schema Mstruct that reflects the structure of the database and its (static)
integrity constraints.

• The database functionality language Lfunct is defined on top of Lstruct through
application of algebraic operations. The application of these operations may be
bound by dynamic integrity constraints. Operations use parameters which are
related to schema or view notions. Instead we may use any other functional lan-
guage.

• The database support language Lsupport contains at least a view-specification
language Lview and a language for interaction specification Linteract. Views can
recursively be defined as algebraic expressions of the language Lfunct on top of
Lstruct.

• The database management system language is outside the scope of this chapter.

An information system model consists of at least four submodels

MIS D .Mstruct;Mfunct;Mview;Minteract/

which define the information system:
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• The database structure model is given by a database schema Mstruct from Lstruct.
• The database view model is given by a view schema Mview from Lview.
• The database functionality model is given by an operation model Mfunct from

Lfunct whose parameters are restricted to Mstruct and Mview.
• The database interaction model Minteract is given by an interaction schema, by

a storyboard and interface expressions from Linteract.

We omit the subscript IS if we consider the entire information system model.
We assume that the model is closed, i.e. all types t 2 MIS are defined within MIS

or are base types.
This general definition allows one to consider a variety of application models

such as ER-based models, object-oriented models, object-relational models and
XML models.

12.3.2 Model Construction and Combination

The model construction and association algebra .M;O;P/ consists of

• A manifold of models M of model kinds KLS1C1
; : : :KLSmCm

under considera-
tion;

• Algebraic operations O for computing complex models such as a combination
‰ of models, abstraction �; � of models by projections or selections, quotient �
of models, renaming � of models, union d of models, intersection e of models,
and recombination# of a model;

• Predicates P stating associations among models such as the submodel relation

4, a statement
9
e about whether models can be potentially associated with each

other, a statement
6 9
e about whether models cannot be potentially associated with

each other, a statement
9
d about whether models are potentially compatible with

each other, and a statement
6 9
d about whether models are incompatible with each

other.

We will not define these operations in detail and will only sketch their definitions
in the sequel. We abstract from integrity constraints.

The combination M1 ‰ M2 of two models results in a model which has all
components of the two models.

The abstraction is used for a reduction of the components of a model either
by restricting �.M; X/ the model to components in X and their definitions or by
restricting �.M; ˛/ to those components which satisfy ˛.

The quotient M1 � M2 allows one to concentrate on those components of the
first model which do not appear in the second model. It is the largest submodel M0

1

of M1 with N.M0
1/ \N.M2/ D ;.

Renaming ��.M/ is based an a bijective mapping � of the name space of a model
N.M/ to �.N.M//.
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The union M1 dM2 takes all components of the two models but does not
combine common components into one component. We additionally assume that
N.M1/ \ N.M2/ D ;. The intersection M1 eM2 of models is the largest sub-
model M0 of both M1 and M2.

These operations can be used for to define derived operations. The insertion of
a model M1 into a model M can be defined by the union M dM1. The deletion
of a model M1 from a model M can be defined by the quotient M � M1. An
update of a model is defined by a deletion followed by an insertion. Recombination
# consists of a sequence of insertion, deletion and update operations.

Operations can also be defined by �-expressions. For instance, union is definable
by the property �M3.8M4..M4 <M3/ $ .M4 <M1 ^ M4 <M1///.

The predicates should not span all possible associations among the models but
only those which are meaningful in a given application area. We may assume that
two models are either potentially associated or cannot be associated with each other.
The same restriction can be made for compatibility.

This model world is very general and allows one to derive more advanced oper-
ations and predicates. If we assume completeness of compatibility and association
predicates, we may use expressions defined by the operations and derived predi-
cates:

The predicate g WD 9
e ^ 6 9
d is used for diverging models.

The predicate GWD 6 9
e ^ 6 9
d is used for models which are isolated from one another.

The predicate f WD 9
e ^ 9
d ^ 6< ^ 64 is used for homogenisable models.

The predicate Y WD 6 9
e ^ 9
d is used for heterogeneous models.

These operations and predicates are very general. We aim to introduce a general
setting for evolution and migration. This general setting can be defined for more
specific model languages with direct specialisation of operations and predicates to
the model language.

Example 12.3. The higher-order ER model in Chap. 6 uses a number of primitive
operations for direct changes in ER schemata. The property of being a model is
based on the enforcement of changes. A type has an environment, i.e. types that use
the type. Therefore, the environment must be taken into consideration. Since HERM
is built incrementally, we can use a definition frame for each of the operations and
the required enforcement. Given two models M1 and M2, where M1 	 M for the
model M that is going to be changed. Additionally we use a context MC and its
binding to M1 and M2. The binding associates each component in MC to one com-
ponent in M1 and to one component in M2. Any change operation O in a HERM
structured model Mstruct is represented by the frame

O .MC;M1;M2; �/ :

The change operation can be represented by a graph production rule

OG W M1 dMC ) M2 dMC
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Fig. 12.2 Model change operations decompose (a) and pivot (b) with split of context

that is applied to a given model M with M1 dMC 	 M that uses

a left side M1 dMC,
a context graph that binds each component in MC to one component in M1 and

to one component in M2, and
a right side M2 dMC.

The resulting modelM0 glues M2dMC into M along the context graph instead
of M1 dMC.

The decomposition operation can be applied to any type that is used in Mstruct. It
must also consider the components of Mstruct which refer to the type under decom-
position. The context can either also be split to the new types or remain with one of
the types. The pivot operation decomposes a relationship type into two relationship
types where the first of these is based on the second one.

For illustration let us consider the model Mstruct, its types L1; L2; L3; L4; K1;

K2, and the model change operations

decompose .fK1; K2g; fL1g; fR1; R2; R3g; �d/

pivot
�fK1; K2g; fL1; L2; L3; L4g; fR1; R2; L2; L3; L4g; �p

�

in Fig. 12.2. The given model M has a context K1; K2 for the type L1. This envi-
ronment is associated to the types R1 and R2 in the resulting schema. The result is
a schema that splits the environment together with the decomposition or the pivot-
ing.

12.3.3 Evolving Information Systems

Model Mappings

Evolution and migration of information systems and of application systems can be
based on mappings between these models. These mappings must be faithful in the
sense that the corresponding databases are synchronised. To introduce this synchro-
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nisation we first develop a general notion of model embedding and database model
transformation.

Heterogeneous models M1;M2 which should be synchronised consist of con-
verging submodels, i.e. M1 D M1;0 dM1;2 and M2 D M2;0 dM1;2 with
M1;0gM1;2 and M2;0gM1;2.2 Moreover, this model is limited by the assumption
that the submodel M1;2 is common for both models. For heterogeneous models we
assume thatMi D Mi;0dMi;1 from Li andMj D Mj;0dMj;1 from Lj for mod-
els Mi ;Mj that are going to be synchronised where the submodels Mi;0;Mi;1

and Mj;0;Mj;1 are disjoint. Given, furthermore, a mapping ti;j W Mi;1 7�! Mj;1

tj;i W Mj;1 7�! Mi;1 for which extensions of Ri;j ;Rj;i exist in Li and Lj , respec-
tively.

Mi

extract ei;j���������! Mi;1

transform ti;j����������! Mj;1

load li;j������! Mj

The product ei;j ı ti;j ı li;j of the mappings is denoted by puti;j . This product is
neither left-inverse to putj;i nor must have a right-inverse putj;i . This phenomenon
is well known for updates of views in databases [1, 15]. Since models must obey
integrity constraints of their types, we might have models for which puti;j is not
defined. Two models Mi and Mj are called coexisting if puti;j .Mi / 4 Mj and
putj;i .Mj / 4Mi . We observe that a model Mi may have many coexisting models
Mj .

The mappings puti;j , ei;j , ti;j , and li;j may be generally given for the set of all
models defined on the model types KLSi Ci

and KLSj Cj
. In this case the submodel

embedding must be canonical.

Co-Evolution and Coexistence of Models

We observe that a model Mi may have many coexisting models Mj . If we use
a canonical embedding, then the mappings puti;j can be defined on the basis of the
constant complement [1, 15], i.e. „.Mj ; i / D Mj ˇ ej;i .Mj /. We may now extend
the mapping puti;j by the constant complement of the range model and define an
integration condition by Mj D put�i;j .Mi ;„.Mj ; i //. If the integration condition
is valid for coexisting models, then we may also support changes in one model and
propagate the changes to the other model.

2 d denotes the generalised union of models, g denotes the separatability or divergency of models,
and ‰ denotes the generalised join.
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We require that the put� mappings be well behaved, i.e.

put�j;i .put�i;j .Mi ;„.Mj ; i //;„.Mi ; j // must be defined and
put�j;i .put�i;j .Mi ;„.Mj ; i //;„.Mi ; j // D Mi .

The coexistence of models is not sufficient for change propagation. If Mj is
changed to M0

j by the change operation changej , then the change diagram should
commute, i.e. this change operation has a related change operation changei that
allows one to changeMi directly to M0

i . The change operation is defined on two ar-
guments: the original model Mj and an auxiliary model Maux. Model suite change
is called synchronised for i; j and a set Ochange

j of change operations defined on

Mj if for each change operation oj .Mj ;Maux/ from Ochange
j a change opera-

tion oi .Mi ;Maux/ in the set Oi of operations on Mi exists so that the change
diagram commutes for the same auxiliary model Maux, i.e. oi .Mi ;Maux/ D
put�j;i .M0

j ;„.Mi ; j // for M0
j D oj .put�i;j .Mi ;„.Mj ; i //;Maux/.

The complement should be constant. Therefore, we may use „.Mi ; j / instead of
„.oi .Mi ;Maux/; j /.

Change operations are used for model evolution. The order of changes is im-
portant. We call two change operations oi ; oj liberal with respect to the models
Mi ;Mj if M0

i D put�j;i .M0
j ;„.Mi ; j // and M0

j D put�i;j .M0
i ;„.Mj ; i // for

M0
i D oi .Mi ;Maux/ and M0

j D oj .Mj ;Maux/. Liberality can be extended to
confluence and Church–Rosser properties [31]. Liberal change operations allow one
to change a model and then to apply all the changes to coherent model suites.

This liberal change condition is necessary since the application model consists
of at least four interdependent submodels. Therefore, we easily get into a change
situation like the following one.

12.3.4 Properties of Evolving Information Systems

Model Coherence Through Contracts

Coherence within an information system model can be specified through a set of
logical formulas that are specified in an appropriate language. Information system
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models typically use layered models. The function model Mfunct uses the struc-
ture model Mstruct. Both models are used to describe the view model Mview. The
three models are used to describe the interaction model Minteract. Therefore, we can
use model inclusion constraints for change propagation throughout the information
system model. These constraints allow us to track which construct C is defined in
which submodel M1 and which model M2 uses the construct C . Therefore, we
can formally express this property by the constraint M1ŒC � � M2ŒC �. This form
of model inclusion constraints can be axiomatised in a form similar to the classical
relational inclusion constraints [31].

We may, however, also use an information system model which is not entirely
layered. For instance, the view model may introduce constructs which are used in
the structure model. An information system model is called coherent if it obeys all
model inclusion constraints. Let us denote the model inclusion constraints by

˙Coherence
MIS

D
[

i;j 2fMfunct;Mstruct;Mview;Minteractg
i¤j

˙Coherence
i;j :

We base our approach on a four-layer treatment in contracted development:

1. Declaration of constraints which are applied to a singleton model or to sets of
collaborating models;

2. Description of enforcement mechanisms (when the constraint must be checked,
how the constraint is checked, what to do if the constraint is violated, what
mechanism can be used to trigger the constraint) which support constraint va-
lidity during development, change, and evolution of model suites;

3. Description of change and evolution steps which can be applied for refinement
or modification of sets of model suites based on scopes of constraints and oper-
ational use of constraints;

4. Support by tools or workbenches that maintain the validity of constraints.

The third layer may also consider the development of model suites within devel-
opment teams. In this case, team members are supported by approaches to collabo-
ration, e.g. explicit services and exchange frames [30].

An information system model contract C consists of a declaration of constraints,
a description of the enforcement mechanism and a prescription of modification steps
which change a coherent information system model into a coherent one. A contract
may include obligations, permissions and sanctions.

Therefore:

• Contracts declare the correctness of an information system model, separate ex-
ceptional states from normal states for these models, and forbid meaningless
models.

• Contracts enable the direct change of the model as transparently as possible and
offer the required feedback in the case of invalidation of constraints based on
echo back, visualisation of implications, deferred validation, instant projection
and hypothetical compilation.
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• Contracts consider mechanisms which address the long-term coherence of a mod-
el by forecasting confirmation, by anticipating changes made in a team, by pro-
viding a mechanism for adjusting and confirming correctness and by specifying
diagnostic queries for inspection of models.

The contract C on MIS consists of the constraints˙Coherence
MIS

, a description of the
enforcement mechanisms for any operation which can be used for a change of one
model, and a set of consistent evolution transformations.

Contract management becomes in this case rather simple. Enforcement may di-
rectly be applied to all coexisting models. We also may restrict a change operation
by no action, cascade, and oblige enforcements. No action means that
if a change operation cannot be propagated to another model, then this change opera-
tion is rolled back. Cascade enforcement requires that the other model be changed
as well. Oblige enforcement allows one to delay the change operation on the other
model to a later stage.

Evolution and Migration Changes

Migration and evolution are lossless changes of an information system. We are in-
terested in maintaining the legacy database after application of change operations.
The mappings between models have been so far only partial. We also need to estab-
lish a database equivalence between information system models. This equivalence
is defined through two mappings between two models M1 and M2 on the basis
of M1,struct dM1,view and M2,struct dM2,view. Let us assume that there are map-
pings put1;2 and put2;1 between M1,struct dM1,view and M2,struct dM2,view. These
mappings can also be extended to the databases and the views for these models, i.e.
cput1;2 and cput2;1. We use the database as well as the views since views may be ma-
terialised. Also, view object sets may be equivalent to database object sets and thus
be used instead of the latter.

These mappings are based on an extraction mapping ei;j , a transformation map-
ping ti;j and a load mapping li;j . We also may extend these mappings to instance
mappings. The mapping cput1;2 is called conservative if for each databaseDB1 and
its views V1 on M1 there exist a database DB2 and its views V2 on M2 such that
cput1;2.DB1dV1/ D be2;1.DB2dV2/. Conservative mappings provide an embedding
of databases on M1 into databases on M2.

Example 12.4. The mapping put1;2 may decompose a type T into types T1; : : : ; Tk.
In this case, the mapping cput1;2 translates objects from T C into objects from
T C

1 ; : : : ; T
C

k . At the same time, migration must be faithful in the sense that it does
not introduce new objects in DB2 if there are no corresponding objects in DB1.
�EoE
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Consistency of Models Through Infomorphisms

The mappings cput1;2 and cput2;1 form an infomorphism of M1 and M2 if for i; j
with fi; j g D f1; 2g and for each database DBi and its views Vi on Mi there exist
a database DBj and its views Vj on Mj such that cputi;j .DBi d Vi / D DBj d Vj .

Infomorphisms allow that one of the databases and its views are redundant and
have a lower granularity and a different structuring. We may extend this notion
also by an introduction of OIDs. In this case Mfunct must also provide an explicit
mechanism for the creation of identifiers.

An evolving information system model is called lossless if an infomorphism ex-
ists for each change operation from M.

A conservative migration of one information system IS1 to another IS2 struc-
tured by models M1;IS and M2;IS , respectively, is defined

• by mappings of database structuring models put1;2; put2;1 that relate models to
each other, i.e. put1;2.M1/ 	 M2 and M1 	 put2;1.M2/, and

• by mappings map1;2 and map1;2 of databases DB1;DB2 induced by put1;2 and
put2;1

• such that map1;2.o1/ E DB2 iff map2;1.o2/ E DB1 for each object o1 2 DB1

and o2 2 DB2.

A forgetful mapping is a mapping cput1;2 from M1,struct dM1,view to M2,struct d
M2,view for which no corresponding mapping cput2;1 exists that could form an info-
morphism with cput1;2. It thus removes types from the database model and the view
model in such a way that the original database and views cannot be reestablished.

An evolutionary selection uses additionally a selection function �˛ from Mi;funct

for cputi;j .�˛.DBi dVi //. Archiving is based on evolutionary selection. Also, aging
is based on evolutionary selection. An evolutionary mutation is based on exchanges
of types between the database model and the view model which defines an info-
morphism. An evolutionary recombination is based on changes through recombina-
tion operations which define an infomorphism. An evolutionary Baldwin3 change is
based on a change in the database model due to changes in the view model. This kind
of change is typically observed during performance tuning of a database schema due
to quality and performance requirements which stem from the application itself.

12.4 Strategies for Migration

From time to time, a legacy system containing voluminous databases has to be mod-
ernised. That means this legacy system (with its legacy databases usually with very
valuable data) has to be redesigned on a new platform, on a new database manage-
ment system, or for a new version of the database management system. Otherwise
the application becomes old and cannot fulfill its task.

3 The Baldwin effect is observed for the genotype after the phenotype is changed through a learning
process.
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During the migration step database structures as well as functions will be:

• extended,
• reduced, or
• changed.

Only in some cases is exactly the same functionality redeveloped.
Concerning the migration, different strategies can be applied known as big bang

(in the literature sometimes also called cold turkey), chicken little, and butterfly. The
strategies are distinguished by the following characteristics:

• When are the redeveloped components available for end users?
• How long do parallel versions of the legacy system and the evolved system exist?
• Which kinds of data are used for testing the redesigned system?
• How long is the system unavailable during the take-over of the data?

All migration strategies have their advantages and disadvantages. In the follow-
ing sections, we describe the three different migration strategies in detail. The deci-
sion on which strategy is best suited for a concrete application depends on:

• System complexity,
• Modularisation of the legacy system,
• Frequency of data changes,
• Amount of data in the database, and
• Acceptable delay time of the system.

In the following sections, we also want to show which migration strategy is suit-
able for which kinds of applications.

12.4.1 Big Bang

Big bang entails the following migration strategy. A legacy application is the starting
point. All user accesses are realised on the legacy application. During the whole re-
development process of the system, the legacy application is the operational system
(Fig. 12.3a).

Using a big bang migration strategy, the complete legacy system is redeveloped
at once (Fig. 12.3b). All tasks occurring in the software life cycle (requirements
analysis, design, implementation, test and so on) are made for the target system that
will replace the legacy system. Redevelopment means that all available functions,
programs, data and interfaces are newly developed from the ground up. The aim is
to design a system on new hardware using a modern architecture. Ideally, the target
system is modularised to be prepared for future changes.

The target database design cannot be completed prior to the target system’s im-
plementation is finished and tested. All data from the legacy database are trans-
formed into the structure of the target database and inserted into the target database
(Fig. 12.3c).
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b) Complete redesign of the applicationa) Starting point, legacy application
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Fig. 12.3 Phases of big bang migration strategy
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The migration process is finished when the target system is fully implemented
and tested and also the data are transferred from the legacy database to the tar-
get database. From this point on, the new system replaces the legacy application
(Fig. 12.3d). The target system becomes operational and the legacy system is deac-
tivated. These steps happen at once.

The advantage of this method is that the migration process is quite easy to man-
age. The migration process is a completely new development, all parts of the new
system are tested with test data only (selected from the legacy database) and the
results are compared with the results of the legacy system. The new functions or
programs have to produce the same results and have to have the same behaviour as
the legacy system.

However, this strategy contains several disadvantages as well.

• This method has the risk that the take-over of a system may cause errors. In this
case it might happen that the complete system is not available.

• A complete redevelopment of existing applications can take a long time (several
months or, for real applications, even several years). During that time end users
cannot see the modified system. Thus, it is not possible to consider end-user
feedback.

• Because system development takes a very long time, legacy system changes
and adaptations to new requirements during that time cannot be prevented. All
changes in the legacy system must also be taken into account in the new system.

• The redevelopment of a system usually takes several years. During that time,
technology advances and the new system becomes obsolete before it becomes
operational.

• There is a risk that the new (redeveloped) system will only be tested as a stand-
alone and not in interaction with other systems. This can lead to errors when the
evolved system becomes operational.

• The take-over of the active data from a legacy system to a redeveloped system
may take a long time, especially if another database system is used and if the
database schema has been changed. During that time of the take-over, neither the
legacy application nor the target application will be available for end-users.

12.4.1.1 Evaluation of the Big Bang Migration Strategy

The following table enumerates the strengths, weaknesses and risks of the big bang
migration strategy.

Because of these disadvantages, this strategy can only be applied in some cases.
If the time that is necessary for redevelopment is acceptably short, a big bang strat-
egy seems promising.
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Strengths: • The migration process is easily managed.
• Application redesign is clean.
• Testing may be done with selected data from the legacy application.

Weaknesses: • Requires a long development time (for the whole application); during that
time:

– Requirement changes must be considered.
– There is no feedback from users for developers.
– Technology improves; the new system may become obsolete before it

becomes operational.
Risks: • All operating data are taken over at one time.

• The system is not available during data take-over.

12.4.2 Chicken Little

Another approach, called chicken little, is based on the complete modularisation
of a legacy system. By applying a divide-and-conquer strategy for the migration
process, all components are migrated separately. Thus, a complex migration task
is separated into several small and easy-to-handle migration tasks. All the compo-
nents (including data, applications, programs, and functions) are adapted step by
step.

In this section, we give an overview of this migration strategy, the subtasks that
developers have to fulfil and the advantages and disadvantages of the strategy.

Figure 12.4 represents the main phases of the chicken little approach. The starting
point is a legacy application (Fig. 12.4a) consisting of a legacy database with a de-
fined database structure Mstruct, views Mview, stored procedures, triggers, functions
Mfunct, integrity constraints and check constraints. The legacy application consists
of a legacy program, user interfaces and interfaces to access the data.

The first task is to divide the application into modules or components. The aim
is to separate the different functions and processes of an application with as few
dependencies as possible remaining between the modules (Fig. 12.4a). Even if we
decompose a complex application into separate components, there will be some
interactions between the components that will have to be taken into account in the
migration process.

The chicken little migration strategy redevelops the components step by step.
If a component is completely redeveloped, then end users can use this component
immediately. Thus, the redevelopment of the whole application is divided into the
redevelopment of smaller components. Each of these takes only a short time to de-
velop (Fig. 12.4b,c).
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Fig. 12.4 Chicken little migration, use of backward and forward gateways
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We first mentioned that during the migration process there are still interactions
or connections between the components. Therefore, database gateways are neces-
sary during the redevelopment process. These database gateways enable functions
to access the databases, in cases where a legacy function uses a target database
(Fig. 12.4b) or a target function uses a legacy database (Fig. 12.4c).

Furthermore, function gateways are necessary if there are interrelations between
two functions and the evolution process starts with one of these functions. These
function gateways ensure that interrelations between functions can be bypassed dur-
ing the redevelopment process.

These different kinds of necessary gateways must be implemented in the migra-
tion process and make the management of chicken little migration projects more
complex.

Database-First Approach (Forward Migration Method)

A chicken little migration strategy may start with the migration of the database. The
first step here is redesigning the database within a new database system. The data
are migrated to the target database and all applications must access the data in the
new database. To do this, forward gateways are used which translate the queries
from the existing database to the target database (Fig. 12.4c).

Database-Last Approach (Reverse Migration Method)

Another possibility is to start the migration process by programming the target func-
tions (Fig. 12.4c). Functions and programs are renewed. During redevelopment, the
new functions use the data of the legacy database. Backward gateways are applied
to access these data.

The second step entails redesigning and migrating of the database. When the
database redesign is completed, then the data of this component are copied from
the legacy database to the target database. The take-over of the information system
is realised incrementally. After finishing the migration, all target components are
operational and the gateways are no longer necessary.

12.4.2.1 Evaluation of the Chicken Little Migration Strategy

Following a divide-and-conquer strategy, a complex migration task is divided into
several subtasks. The migration strategy has the following characteristics:
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Strenght: • The divide-and-conquer approach divides the migration task into several
easy-to-handle small migration projects.
• The necessary development time for the redesign of each component is short;
several advantages arise:
• Requirement changes are uncommon during the migration process.
• Feedback from end users can be used for the redesign of the next components
immediately.
• Short migration processes increase the motivation of developers.

Weaknesses: • The interactions between legacy and target applications and data have to be
realised during the entire migration process.
• Database and function gateways are necessary; hence the migration project
is more costly in terms of labour and time.
• The development of gateways requires additional effort.

Risks: • Unstable states during the migration: components of legacy and target appli-
cations have to interact via gateways during the migration process.

The main advantage of this migration strategy is that the risk of this approach
is reduced because the migration process is done incrementally. The development
time is short for the redevelopment of each single component.

12.4.3 Butterfly

This strategy combines elements from the big bang and the chicken little migration
approaches. The main focus is on the migration of the database because of the as-
sumption that data in the database are the most important part of the legacy system.

The butterfly strategy includes the following steps:

1. An available legacy application is the starting point. As the first step, the
database is frozen and used in the following procedure as a read-only stor-
age solution for the legacy application. All changes in the data (comprising up-
dates as well as schema evolution) are logged in temporary data stores (TDSx)
(Fig. 12.5b).

2. A legacy system needs an interface to access the data because the data are avail-
able either in the read-only database or in a temporary data store (TDSx) if it
has already been changed during the migration process.4

This interface is called the Data Access Allocator (DAA) and uses the database
as well as all temporary data stores TDS1; : : : ;TDSn. During the entire evolution
process end users are able to use the legacy application.

3. A data transformation process starts with the database. First, we transform the
data of the read-only database. During the migration process, we successfully
transfer all temporary data stores (TDSx) to the new database. A crystalliser
component is responsible for this task (Fig. 12.5c). The crystalliser transfers the

4 Data access in the butterfly migration approach is similar to computer caches: data can be avail-
able in the cache (here: TDS) or on the storage device (here: read-only database).
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Fig. 12.5 IButterfly: stepwise data transformation, redevelopment of system. a Starting point,
legacy application. b Freezing the database, adding temporary data stores. c Take-over of read-
only database and data in temporary data stores. d Take-over, transformation of last temporal data
store

data from the legacy database format and the temporary data stores TDS to the
target database structure and inserts the data into the target database.

4. In the temporary data stores TDSx , all data that have been changed are collected.
If the data store TDSx attains a given size, then the crystalliser transforms the
data of TDSx . The legacy application stores all further data changes in TDSxC1.

5. After the introduction of the DAA interface, the legacy system is evolved, and
new functions are implemented and tested against the available data. The butter-
fly migration approach demands a complete redesign of the entire application.
Similar to the big bang approach, end users use only the legacy system during
the entire migration process.

6. At the end of the migration process, all programs, functions, interfaces and so
forth are redeveloped. The take-over of the data is easy because only the data in
the last TDSn (containing the last updates) have to be transformed into the new
data format (Fig. 12.5c).

The user is now able to use the new target system; the old system is no longer
necessary and can be deactivated.

12.4.3.1 Advantages

• One advantage of the butterfly approach is that the take-over is easy to realise.
During the take-over, only the last temporary data store has to be transferred to
the target database.
The butterfly migration approach means that the data are transferred successively,
each TDSx separately. The risk of this iterative data transferral is much lower than
in the big bang methodology.

• Furthermore, the butterfly method does not need gateways during the migration
process because end users use one system at a time. During the migration pro-
cess the legacy system and after the cut-off the redesigned system are used. The
administration of butterfly migrations therefore is easier than chicken little mi-
grations.

12.4.3.2 Disadvantages

• This approach starts with a new database design prior to functions being rede-
veloped. Therefore, the legacy database influences the target database solution
heavily; it makes it difficult to consider changes and new requirements because
they cause schema evolution steps of the target database.
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• The temporary data stores can easily deal with updates of values. They store all
data in the structure of the legacy database. Most likely, the structure of the target
database schema will differ from the legacy database schema. The crystalliser has
to realise the transformation steps for overcoming the heterogeneous schemas.

• The target system is iteratively developed; during this process, changes in the
target database schema are possible. They also cause the update and adaptation
of the already stored data, functions, stored procedures and views which must
take place.

• Another disadvantage is that end users use only the legacy solution during the
entire migration process. New functions are not tested by end users during the
evolution process; this results in missing interaction, missing feedback and miss-
ing motivation for the developers.

• Efficiency of query realisation decreases because of the overhead of the DAA
which has to query the read-only database and all temporary data stores (TDS1;

: : : ;TDSn). The amount of data in the temporary data stores increases constantly
and leads to a decrease in efficiency of querying data in the legacy system.

12.4.3.3 Evaluation of the Butterfly Migration Strategy

The following overview summarises the characteristics of the butterfly migration
strategy.

Strenght: • An entire application is redesigned, and tests can be conducted with real data
from the legacy application which is already available during the migration
process.
• The migration process is quite easy to manage.

Weaknesses: • There is a long development time for the whole application (requirement
changes during that time which have to be considered, no feedback for the
developers, technology improves, the new system may become obsolete before
it is operational).
• The database design of the target system is influenced heavily by the legacy
database.
• Schema evolution on the target database during the migration process is com-
plicated; database evolution and changes to the crystalliser are necessary.

Risks: • The risk is very low; only the take-over of the last temporary data store has
to be carried out.

Besides redesign on a new platform, all migration strategies also contain the
system evolution. The next section introduces this modernisation task in detail.
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12.5 Evolution

12.5.1 Evolution on a Small Scale

Small-step structuring evolution – also called database model change – is a small
change to a database schema which improves database structuring without changing
the semantics of the database. Refactoring has been introduced as a programming
technique which supports a disciplined restructuring of code in small steps. It thus
merely improves the design of the code – nothing more and nothing less. A database
model change is a simple change to a database schema that improves its design while
retaining its semantics.

There are two fundamental reasons why one would want to adopt small-step
evolution:

• To repair existing legacy databases: Small-step evolution supports local changes
to an information system without changing the system outside the scope of the
change. This is clearly much less risky than a “big bang” approach where you
rewrite the information system model.

• To support evolving information system development: Most information system
development processes are evolutionary in nature. Modern co-design processes
are based on both information system structuring and database functionality.

Methodologies for Evolution of Information System Models

The conceptual model for evolving information system models is based on a formal
evolution methodology consisting of

• an extended information system model MIS which supports a standard notion of
evolving models (equipped with all the usual model change operators) for which
a semantics is provided;

• a collection of interesting reasoning tasks to support the design and management
of an evolving model;

• a set of tasks that are combined into a transformation portfolio, a testing portfolio
and a data migration portfolio for transformation.

This methodology allows one to define specific evolution steps. For instance, the
change methodology (generalised from [2]) consists of two evolution steps:

• The intermediate evolution step transforms the initial model to an intermediate
model that is tested in application situations and has a validity deadline. If the
validity deadline is reached without transformation success, then the initial model
and the initial database are enabled and the intermediate model and databases are
disabled.

• The finalisation evolution step transforms the intermediate model to the finalised
model and applies this transformation to the application system as well in the
case where the validity deadline has successfully been reached.
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A methodology typically provides a comprehensive set of constructs and rules
for their application that serve as the background for constructing applications. We
may systematically separate a number of concerns according to the classical project
management frame: ‘what’ (level 1) provides a specification; ‘how’ (level 2) defines
the way the framework is going to work; ‘do’ (level 3) prescribes the application of
the operations and their effect; ‘plan’ (level 4) provides the methodology for the
application; ‘manage’ (level 5) allows the governance of the change framework;
‘coordinate’ (level 6) integrates the framework into the entire development process;
and ‘optimize’ (level 7) revises the change management.

We will elaborate only levels 1, 2 and 3 of the methodology. The specification
level consists of a specification of model changes. It can be extended by specific
policies for various development methods such as agile development. The control
or technical level provides guidance for the control procedures such as setting the
control management, deriving the scope of control and defining the control tasks
and their actors. The application or technology level handles the management of
changes.

Structural Elementary Model Changes

Simple structural elementary schema change operations that can be applied to
schemata in the EER model are as follows: add a type, drop a type, change type
name and change attribute domain type. The types under consideration can be at-
tribute types, entity types, relationship types and cluster types. The change operation
taxonomy is thus built by combining model language elements, which are subject
to change, with the elementary modifications, add, drop, and change, which they
undergo.

Elementary change steps evolve an existing application model and the corre-
sponding database in small steps at a time to improve the quality of the model and
the application without changing the static and dynamic semantics and interaction.

Any modification of an application model must be verified by a full regression
test on the system. We must ensure that the application model and the database
actually work.

We shall illustrate now structural elementary model changes. We use control
functions for the control of the intermediate evolution. Control functions are at-
tached to type structures or their components or to functions. For instance, the con-
trols [event = on update|insert of invoice], [modification kind = slave], [policy =
materialise] and [drop date = 1-1-2011] denote the automatic enforcement of eval-
uation of a value of a function or value, the master–slave change of a dependent
value or function, the explicit storage of results of function applications and the
maintenance deadline of the intermediate schema.

Example 12.5. Let us consider a simplified example used for managing transporta-
tion data in Fig. 12.6. We assume that cars which are owned by owners are used to
transport goods from one store belonging to a supplier to another store belonging
to a market. The first choice could be a complex relationship type on entity types
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TransportMarket
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Transport
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Insurance
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Fig. 12.6 Decomposable independent concepts

Owner, Car, Market, Supplier and Store, where store type is used recursively. We
abstract from attributes such as Time for Transport.

This schema can be restructured if we take into account a number of observa-
tions:

• Insurance is issued for cars and companies. The transport application is restricted
to this kind of insurance.

• Billing is typically applied to the entire transportation event.
• Cars and owners from the first side, markets and their stores from the second

side, and good and their location from the third side are relatively independent
from each other. This relative independence is not complete.

This schema is now going to be restructured based on the application of the piv-
oting graph grammar rule and on application of the decomposition graph grammar
rule.

• We may separate by pivoting rules cars with their owners and insurance from the
transport request and transport events.

• Markets have their stores (MLocation). Goods are stored at a store (GLocation).
We thus separate these direct associations by pivoting.

• A transport request relates goods with their location to markets with their stores.
We thus reduce transports to transport requests.

• A transport event relates a transport request with a car used for transport. We thus
pivot transport events from transport requests.

• Billing applies to the transport event and thus relates to the transporting car and
the transport request. It inherits thus the transport request. The transformation to
a relational schema that does not use identifier attributes for separate types results
in a relational schema with markets, their stores, goods and their stores, cars and
additional attributes such as time of the transport event. Billing is issued to the
market that requested a transport. We do not assume other kinds of billing.

The resulting schema is displayed in Fig. 12.7. This schema is the result of a se-
quence of operations:
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Fig. 12.7 Representation of independent concepts by relationship types

1. Projection: Cars and transport companies are associated to each other. We may
introduce a new type ownership.

2. Shifting: Transports are carried by cars. The ownership for cars is independent.
3. Pivoting: Transports are completed events based on an issuing event such as

requests.
4. Multiple shifting: Insurances are issued for cars and are independent of transport

events and transport requests. They are assumed to be independent of ownership.
5. Decomposition: Transport requests are considered to relate markets with their

stores to goods with their location. Therefore, we introduce the new types MLo-
cation and GLocation. These new types form the basis for storing data about
transport requests.

12.5.2 Wrapper-Based Evolution

Black-box evolution frameworks are based on wrapping [32] or encapsulation of
the existing system. Both approaches extend the lifetime of existing components by
facilitating an integration of existing subsystems into modern distributed systems.
The subsystems are typically not altered. At the same time, heterogeneity is pro-
vided due to the extensive use of interfaces that are added to the subsystems. New
capabilities are going to be added on the basis of interfaces. These subsystems can
be used either through both their interfaces and the subsystem itself or only through
their interfaces. The first approach is based on the development of wrappers. The
second approach results in the introduction of system components.

A wrapper is defined by a wrapper schema and a common query language for the
data as viewed through the wrapper schema. In this case, we use the models of an
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Fig. 12.8 Forward and backward wrappers supporting the coexistence of new and legacy applica-
tions

information system model MIS D .Mstruct;Mfunct;Mview;Minteract/ in a specific
form. The database function model Mfunct allows one to define the database view
model Mview. The database view model is used for associating the new application
or legacy application systems with the database. It is thus a ‘washer’ between the
database and the applications. The query language allows one to directly access
the wrapped data to modify these data. Wrappers may either be used as forward
wrappers which connect the existing system to new applications or as backward
wrappers which connect the old application with the migration database.

Backward wrappers are used for incomplete migration of applications. Forward
wrappers are typically applied during system evolution.

Wrapper models .Mstruct;Mfunct;Mview;Mview
funct/ are introduced as a special

kind of media type [23]. At the core of a wrapper model we have a view which is
extended by operations. First recall that a view is nothing but a stored query. For this
we assume familiarity with the higher-order ER model (HERM) in Chap. 6. A view
V on a HERM schema Mstruct D .S; ˙/ consists of a schema SV and a query qV

with a query mapping inst.S; ˙/ ! inst.SV /. A view model Mview for wrappers
consists of a set of views.

The addition of operations leads first to the notion of wrapper type as defined (in
a simplified form) next. A wrapper type W over an extended ER schema Mstruct D
.S; ˙/ primarily consists of a view VW D .SW ; qW / and a set O of interaction
operations. Each wrapper operation in O from Mview

funct consists of an operation name
op, a list of input parameters i1 W D1; : : : ; ik W Dk with domain names Di , an
(optional) output domain Dout, a subattribute sel of XE , and a wrapper operation
body, which is built from the usual programming constructs operating on instances
over Mstruct D .S; ˙/ and constructs for creating and deleting wrapper objects.

Apart from this, wrapper types extend types by cohesion in order to enable adap-
tivity. Cohesion introduces a controlled form of information loss exploiting the par-
tial order � on nested attributes. If XM is the representing attribute of a typeM and
sub.XM / is the set of all nested attributes Y with XM � Y , then a preorder 	M on
sub.XM / extending the order � is called a cohesion preorder.
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Large elements in sub.XM / with respect to 	M define information to be kept
together, if possible. Clearly, XM is maximal with respect to 	M . This enables
a controlled form of information decomposition [29]. Thus we obtain the following
(simplified) definition of a wrapper type. A wrapper type is a type M together with
a cohesion preorder 	M .

As the core of a wrapper type is defined by a view, the core problem of wrapper
type integration is that of view integration. So we start with two views V1 and V2

on an EER schema Mstruct D .S; ˙/. The result should be a new integrated view
V such that SV results from the integration of the schemata SV1

and SV2
, and for

each instance db over .S; ˙/ the two query results qV1
.db/ and qV2

.db/ together
are equivalent to qV .db/.

In particular, view integration requires precise notions for schema dominance and
equivalence, which we will introduce now. A HERM schema M0

struct D .S 0; ˙ 0/
dominates another HERM schema Mstruct D .S; ˙/ by means of the language
L (notation: .S; ˙/ vL .S 0; ˙ 0/) iff there are mappings f W inst.S; ˙/ !
inst.S 0; ˙ 0/ and g W inst.S 0; ˙ 0/ ! inst.S; ˙/, both expressed in L such that
the composition g ı f is the identity. If we have .S; ˙/ vL .S 0; ˙ 0/ as well as
.S 0; ˙ 0/ vL .S; ˙/, we say that the two schemata are equivalent with respect to L
[notation: .S; ˙/ ŠL .S 0; ˙ 0/].

We may obtain different notions of dominance and equivalence. vH and ŠH
refer to the use of the HERM algebra or, equivalently, the HERM calculus [31] as
the language in which transformations f and g are to be expressed. Analogously,
vHext

and ŠHext
refer to the use of the extended HERM algebra or the extended

HERM calculus [31]. In what follows we will always refer to vcomp and Šcomp and
therefore drop the index and simply write v for dominance and Š for equivalence.

Now, if schemata SV1
and SV2

are ‘cleaned’, we may combine queries qV1
and

qV2
into one, yielding a query mapping inst.S; ˙/ ! inst.SV1

[SV2
/ defined by the

query qV1
[ qV2

. If we simply integrate schemata SV1
and SV2

into SV according to
the method described above, we obtain an induced mapping f W inst.SV1

[SV2
/ !

inst.SV/. As we deal with computable queries, f is the query mapping of some
computable query qf . Taking qV D qf ı .qV1

[ qV2
/, V becomes a view over

Mstruct D .S; ˙/with schemaMview D SV and defining query qV. Finally, we must
adapt wrapper operations and the cohesion preorder. View cooperation [31] provides
an alternative to view integration in which the integrated view is only virtual. That is,
the constituting views are kept and exchange functions are designed to provide the
same functionality as if the views were integrated. Let Vi D .SVi

; qVi
/ (i D 1; 2) be

views (on the same or different HERM schemata). V1 cooperates with V2 iff there
are subschemata S 0

Vi
of SVi

and functions f1 W inst.S 0
V1
/ ! inst.S 0

V2
/ and f2 W

inst.S 0
V2
/ ! inst.S 0

V1
/, such that both f1 ı f2 and f2 ı f1 are the identity function.

Basically, view cooperation expresses that part of view V1; precisely that one cor-
responding to subschemaS 0

V1
can be expressed by the part of view V2 corresponding

to subschema S 0
V2

. Now, if we want to obtain a cooperation between given views V1

and V2, we may simply apply view integration to them using the same transforma-
tion rules. This will result in an integrated view V D .SV; qV/. With respect to this
integrated view both S 0

V1
and S 0

V2
will be identified with a subschema S 0

V. In partic-
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ular, we obtain functions f 0
i W inst.S 0

Vi
/ ! inst.S 0

V/ and g0
i W inst.S 0

V/ ! inst.S 0
Vi
//

(i D 1; 2), with g0
i ıf 0

i D id and f 0
i ıg0

i D id. Thus, f1 D g0
2 ıf 0

1 and f2 D g0
1 ıf 0

2

define the view cooperation functions. Consequently, if the view integration method
takes care of operations and cohesion, we also obtain cooperating wrapper types.

12.5.3 Refinement of the Information System Model

The theory of conceptual modelling may also be used for a selection and devel-
opment of an assembly of modelling styles. Typical well-known styles [31] are
inside-out refinement, top-down refinement, bottom-up refinement, modular refine-
ment and mixed skeleton-driven refinement.

The perspectives and styles of modelling rule the kind of refinement styles. As
an example we consider structure-oriented strategies of development:

Inside-out refinement uses the given specification for extending it by an additional
part. These parts are hocked onto the current specification without changing it.

Top-down refinement uses the decomposition of functions in the vocabulary and re-
finement of rules. Additionally, the specification may be extended by functions
and rules that have not yet been considered.

Bottom-up refinement applies the composition and generalisation of functions and
of rules to more general or complex ones. Bottom-up refinement also uses the
generation of new functions and rules that have not yet been considered.

Modular refinement is based on parqueting of applications and on the separation
of concern. Refinement is only applied to one module and does not affect oth-
ers. Modules may also be decomposed. Modules are typically associated through
a skeleton that reflects the application architecture or the technical architecture.

Mixed skeleton-driven refinement is a combination of refinement techniques. It uses
a skeleton of the application or a draft of the architecture. This draft is used for
deriving plans for refinement. Each component or module is developed on its
own based on top-down or bottom-up refinement.

These different kinds of refinement styles allow one to derive plans and primi-
tives for refinement.

Börger and Schellhorn [6, 27] have developed a general theory of refinement.
Control of correctness of refinement takes into account (a) a notion of refined struc-
ture and refined vocabulary, (b) a restriction to information system structures of
interest, (c) abstract information system computation segments, (d) a description
of database segments of interest, and (e) an equivalence relation among those data
of interest. The theory developed in [6, 27] allows one to check whether a given
refinement is correct or not.

Given two information system modelsMIS andM�
IS, a refinement of information

systems is based on

a refinement of the information systems’ structure by a mapping F from Mstruct to
M�

struct,
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Fig. 12.9 Information system
application models and in-
formation system refinement
scheme
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a correspondence relation ' between the information systems’ application mod-
els of interest . OMstruct OMview; OMinteract/ and . OM�

struct;
OM�

view;
OM�

interact/, whereby
these models of interest are submodels of MIS and M�

IS, respectively,
information systems’ transaction computations 1; : : : ; m on MIS and �1; : : : ; �n

on M�
IS,

information systems’ segments of interest IS and IS� defined on . OMstruct; OMview;OMinteract/ and on . OM�
struct;

OM�
view;

OM�
interact/, respectively, and

an equivalence relation Ñ on information systems’ segments of interest.

We use a partial correspondence relation ' between the structures since modernisa-
tion of information systems is partial in the sense that some structures are not refined
but remain within the old models (e.g. wrapper architectures such as in Fig. 12.8).
Figure 12.9 displays a refinement scheme with the refinement mapping QF extended
to IS and IS� and the correspondence relation ' and with abstract information
systems’ computation segments that transfer IS 0 and IS 0 and IS� and IS 0�, re-
spectively. The transaction computations 1; : : : ; m and �1; : : : ; �n can differ in
length and in behaviour. Their final result matches, however, for QF andÑ. The front
part consisting of OIS�

0 , OIS�
1 , OIS0 and OIS1 can be considered the observable part of

the information systems.
M�

IS is called a correct refinement of MIS if

• for each M�
IS transaction computation IS�

0 ; : : : ; IS
�
k ; : : :

• there is an MIS transaction computation IS0; : : : ; ISs; : : : and
• sequences i0 < i1 < : : : and j0 < j1 < : : : such that
• i0 D j0 D 0 and OIS ik Ñ OIS�

jk
for each k and

• both computations terminate and their final states are the last pair of equivalent
states.

A complete refinement is given if MIS is a correct refinement of M�
IS and M�

IS
is a correct refinement of MIS.
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12.6 Related Work

Parnas enumerates the reasons why software ages and why software evolution is
necessary [24]. He also illustrates why software modernisation is such a complicated
task. We used the chicken little and big bang methods introduced in [7] and aimed
at defining these approaches in a precise way. This definitions could also be used
for a definition of the butterfly approach to migration. This chapter has concentrated
on model-based evolution and migration. Database evolution follows model-based
evolution and is based on a transaction approach [21].

Comella-Dorda et al. represent in [8] an overview on the subtasks of system
modernisation. They establish the term modernisation, in contrast to maintenance of
existing systems and replacement (migration). The notion of system modernisation
was introduced in [25]. The notion of evolving database systems is sketched in [12].

Some publications [3, 4] introduce different migration strategies, enumerating
migration issues and subtasks of each migration strategy. The most detailed article
[3] introduces big bang, chicken little, and butterfly migrations, enumerating the
advantages and disadvantages of each migration strategy. Small-step evolution or
chicken little strategies can be based on refactoring techniques [2, 33]. This chapter
extended refactoring and wrapping [32] by graph grammar rules for transformation.
Our approach to evolution and migration got its practical experimentation in [19]
and in [28].

Some publications develop schema evolution approaches which propagate evo-
lution steps on a conceptual model to database or XML schema evolution steps
[10, 16–18].

Evolution and migration are based on model mapping techniques, e.g. [5, 13, 14,
20, 22]. These techniques target model compilation, transformation or interpreta-
tion within another target model. We extended these techniques to the integration
of models. [11] bases co-evolution of information system models on model suites.
Model suites extend the versioning approach in [12] and the category approach used
in [9]. The view injection used in this chapter is based on view updates [15] and on
system collaboration [30]. Model suites can be based on the EER model [31] as well
as on other incrementally definable model languages.

Refinement and data refinement techniques are often defined in a rather fuzzy
way. The calculus of model suites extends the approach introduced by [25] and the
redefined model suite refinement using abstract state machine refinement [6].
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Chapter 13
Conceptual Geometric Modelling

Hui Ma and Klaus-Dieter Schewe

Abstract This chapter starts with a review of existing spatial data models in the lit-
erature to show some key problems that need to be addressed by conceptual models
to include spatial data and more generally geometric data. Motivated among other
things by the need to support spatial modelling for the sustainable land use initiative
we present a geometrically enhanced ER model (GERM), which preserves the key
principles of ER modelling and at the same time introduces bulk constructions and
types that support geometric objects. The model distinguishes between a syntactic
level of types and an explicit internal level, in which types give rise to polyhedra that
are defined by algebraic varieties. It further emphasises the stability of algebraic op-
erations by means of a natural modelling algebra that extends the usual Boolean
operations on point sets.

13.1 Introduction

In recent years there have been increasing demands from applications to store, pro-
cess and manage spatial data. Applications that use spatial data include geographi-
cal information systems (GISs), environmental management, urban planning, trans-
portation, land use management, CAD-CAM, architecture, visual perception and
autonomous navigation, tracking and medical imaging, etc. [24, 33].

Therefore, conceptual models need to be extended to model spatial information.
In general, conceptual data models abstract from details of data storage and there-
fore serve as communication tools between users and application developers. Con-
ceptual modelling of spatial data concerns geometry of spatial objects, the geometric
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relationship between the objects, their representation at multiple resolutions, their
geometric evolution over time, and their spatial integrity constraints [33].

The goal of our research is to provide a conceptual model supporting geometric
modelling. One motivation is the need for spatial data modelling in the context of
the sustainable land use initiative (SLUI), which addresses erosion problems in the
hill country. At the core of the SLUI whole farm plans (WFPs) are required, which
capture farm boundaries, paddocks, etc. and provide information about land use
capability (LUC) such as rock, soil, slope, erosion, vegetation, plants, poles, etc.
This should then be used to get an overview of erosion and vegetation levels and
water quality, and to use this information for sustainable land use change.

As spatial data are a special case of geometric data, we consider it appropriate
to look more generally at conceptual geometric models. For instance, technical con-
structions such as rotary piston engines can be supported by trochoids, which are
plan algebraic curves that were already known by the Greeks [2]. Bézier curves and
patches [26] are also commonly applied in these applications. Together with hull
operators [12] they can also be used for 3-D models of hill shapes in WFPs.

There is a lot of sophisticated mathematics around to address geometric mod-
elling in landcare, and this has a very long tradition, as shown in [2]. Nonetheless,
spatial and geometric modelling within conceptual modelling has mainly followed
two lines of research; for an overview see [32]. The first one is based on mod-
elling spatial relationships such as disjointness, touching, overlap, inside, boundary
overlap, etc. and functions such as intersection, union, etc. that are used for spa-
tial primitives such as points, lines, polygons, regions, etc. In [33] pictograms are
added to the common ER model to highlight spatial objects and relationships. Price
et al. deal in particular with part–whole relationships [25], Ishikawa et al. apply con-
straint logic programming to deal with these predicates [15], McKenny et al. handle
problems with collections [21], and Chen et al. use the predicates in an extension of
SQL [8]. Point is defined as an entity type in [18].

The work in [5, 8] links to the second line of research expressing the spatial re-
lationships by formulae defined on point sets applying basic Euclidean geometry or
standard linear algebra respectively. Likewise, point sets are used in [30] to express
predicates on meshes of polygons in order to capture motion. Frank classifies spa-
tial algebra operation into local, focal and zonal ones based on whether only values
of the same location, of a location and its immediate neighbourhood, or all of all
locations in a zone, respectively, are combined [9].

In Sect. 13.2 we will review spatial data models which focus on how to store
data and how to effectively and efficiently realise operations on such data. This is
hardly what is needed in conceptual modelling, which aims at capturing application
domain knowledge. The spatial relationships and functions discussed in the litera-
ture are in fact derived from underlying representations of point sets, so we need
representations on multiple levels, as also proposed in [4]. Furthermore, when deal-
ing with point sets it is not sufficient to define spatial relationships and functions in
a logical way. We also have to ensure “good nature” in the numerical sense, i.e. the
operations must be as accurate as possible when realised using floating-point arith-
metics. For instance, Liu et al. [17] discuss spatial conflicts such as determining the
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accurate spatial relationship for a winding road along a winding river as opposed to
a road crossing a river several times, leading to a classification of line–line relation-
ships. The accuracy problem has motivated a series of modifications to algebras on
point sets that go way beyond the standard Boolean operators [12].

Therefore, in Sect. 13.3 we introduce the geometrically enhanced ER model
(GERM) as an approach to dealing with the problems discussed. As the name sug-
gests, the intent is to preserve the aggregation-based approach of the ER model [13]
by means of (higher-order) relationship types [34], but we enhance roles in rela-
tionship types by supporting choice and bulk constructors (sets, lists, multisets).
However, unlike [14], neither the bulk constructors nor the choice constructor is
used to create first-class objects (defining so-called clusters in [34]).

Furthermore, GERM retains the fundamental distinction between data types such
as points, polygons, Bézier curves, etc. and concepts. The former are used to de-
fine the domains of (nested) attributes, while the latter are represented by entity
and relationship types, e.g. a concept such as a paddock is distinguished from the
curve defining its boundary. In this way we also guarantee a smooth integration with
non-geometric data such as farm ownership, processing and legal information, etc.,
which is also relevant for WFPs but does not present any novel modelling chal-
lenges.

As already stated, GERM supports modelling on multiple levels. On a syntac-
tic level we provide an extendible collection of data types such as line sequences,
polygons, sequences of Bézier curves, Bézier patches, etc. with easy surface rep-
resentations. For instance, a polygon can be represented by a list of points, and
a Bézier curve of order n can be represented by n C 1 points – the case n D 2

captures the most commonly known quadratic Bézier curves that are also supported
in LATEX. On an explicit internal level we use a representation by polyhedra [12] that
are defined by algebraic varieties, i.e. sets of zeros of polynomials in n variables.
All curves that have a rational parametric representation such as Bézier curves [26]
can be brought into this ‘implicit’ form, e.g. Gao and Chou describe a method for
implicitisation based on Gröbner bases [10], and many classical curves that have
proven their values in landcare for centuries can be represented in this way [2].
This kind of explicit representation is in fact equivalent to the polynomial model of
spatial data introduced by Paredaens and Kuijpers [24], except that the ploynomial
model permits quantifiers, which due to an old result by Tarski can be eliminated.
The internal level of GERM is discussed in Sect. 13.4.

The use of a good natured algebra on point sets defines in fact a third derived
level, which we present in Sect. 13.4.1. For the algebra we build on the research
in [12] to guarantee stability by using a generalised natural modelling algebra, which
supports much more than just Boolean operations. The leveling of GERM deter-
mines the outline of the paper. In Sect. 13.3 we introduce the basic GERM model
emphasising the syntactic level. This remains more or less within the framework
of the ER model in the general form defined in [34] with the differences discussed
above.
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13.2 Spatial Data Models

There are many spatial data models discussed in the literature. In [11] spatial data
models are classified into two types, object-based models and the field-based mod-
els, with the latter ones also being referred to as tessellation models. Taking a simi-
lar architectural approach as for databases, spatial data types can be studied at three
levels: user model, conceptual model, and implementation [27].

The focus of the study in [27] is on describing the structure of spatial objects
(e.g. points, lines and regions) and spatial operations representing geometric func-
tions and can be applied to these objects. Paredaens et al. [23, 24] compare five
spatial data models: the raster model and the Peano model, which represent spatial
data by finite point sets that are either uniformly or non-uniformly distributed over
the plane, respectively, the spaghetti model based on contours defined as polylines,
the polynomial model based on formulae that involve equality and inequality of
polynomials, and the PLA model, which uses some kind of topological information
without dealing with exact position and shape.

Paredaens et al. use the term ‘geomatic data models’ to distinguish them from
the classical data models by four characteristics [23].

• Geomatic data models can be used to model information about the n-dimensional
space R

n, i.e. an infinite and non-enumerable set of points. To represent infinite
information, different intentional techniques are used in a geomatic data model.
For a particular geomatic database, the choice of data model depends on the
operations to be defined and on the efficiency requirement of the implementation.

• Operations are either defined within the model or user-defined and as such influ-
enced by the intentional aspect of the geomatic data model. The models must be
closed under all the operations. This property is hard to have satisfied because of
a rich set of operations required by geomatic applications.

• Some particular algorithms, are needed to implement the vast information, which
do not have the elegant geometic properties of a human-created structure, but
mostly use visualisation of symmetryless phenomena abstracted from nature. The
algorithms are based on algebraic, geometric and topological properties.

• The genericity property that normally applies to classical data models does not
hold for geomatic data models. That is, the result of some operations in geomatic
data models is intrinsically influenced by the content.

In what follows we briefly review some common spatial data models – the survey
in [24] is much more detailed – and show one of their key problems, the lack of
conceptual abstraction. The conclusion drawn in [23, 24] is that while some models
lack theoretical foundations, those that are grounded in theory do not bother much
about efficient implementations. On the other hand, there are several attempts to use
the ER model for spatial information systems; however, they hardly permit any of
the needed spatial operations. In particular, the complexity of spatial problems leads
to the request for significant extensions [18].
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The Raster Model. The raster model represents geomatic information by a finite
number of raster points using the semantics whereby points in the environment of
a raster point p have the same properties as p [23]. To represent lines that contain no
raster points, many applications approximate them with representable lines. Due to
the approximation, translation-generic queries are not supported by the raster model.
The raster model is a field-based model.

The Vector Model. The vector model first uses points and their coordinates to
represent spatial features such as points, lines and areas and then organises geomet-
ric objects and their spatial relationships into digital data files so that a computer
can access, interpret and process them [6]. The vector model is an object-oriented
approach built on two common concepts: decomposing spatial objects into points,
lines and polygons (or areas) and using topology to represent spatial objects [19].

The Spaghetti Model. The spaghetti model represents space as a series of dis-
crete point lines of polygon units which are geographically referenced by cartesian
coordinates. When vector data are collected but not structured, it is said to be in
a spaghetti data model. For example, vector data obtained by map digitising is in this
model. This is demonstrated in [18] with some examples to show how the spaghetti
model can be used for conceptual modelling of line-oriented objects, e.g. polylines,
polygons and polyhedra. For example, a conceptual model for a set of polygons can
be delimited by polylines which are defined by end points and inner points.

The Peano Model. The Peano model represents information with a finite num-
ber of points which are not uniformally distributed. It makes use of quadtrees, in
which a node is either a leaf or has four children. The Peano model is used to
represent areas and volumes that are not based on contours. Spatial data is stored
in relations with each tuple representing subsquares. The relation takes the form
PR.OID;PID; S; A1; : : : ; An/, where PR is the name of the Peano relation, OID
is an object identifier, PID is the Peano key, which is the label of the bottom-left
unit subsquare of the square it represents, S is the edge length of the subsquare,
andA1; : : : ; An are attributes. For example, .background; 0; 2;white/ is a tuple over
relation schema FACE.OID;PID; S;Colour/. For the Peano model some algebra is
proposed to perform joins. However, as mentioned in [23], it has not been proven
that the operation is complete.

The Polynomial Model. Similar to the Peano model, the polynomial model also
stores information in relations whose schema contains at most one spatial attribute
and some non-spatial attributes. The spatial attribute is in the form f.x1; : : : ; xn/ j
x1; : : : ; xn 2 R ^ P g. For example, for a given relation schema PATTERN(From,
Name, Colour), .f.x; y/jx D 8 ^ y D 3g; A; black/ is a query over the schema.
Queries in the polynomial model can be expressed in polynomial calculus, but not
all the queries can be [23].

The PLA Model. The PLA model handles topological information on points, lines
and areas without dealing with the exact position and form of the spatial objects [7].
The two-dimensional plane is described by a set of cells with the information about
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the interrelation of the position of the lines, the areas and the points. For this model
a suitable query language needs to be defined so that queries and their results can be
expressed in the model [23].

13.3 Geometrically Enhanced ER Model (GERM)

In this section we start with the presentation of GERM focussing on the syntactic
(or surface) level, which is what will be needed first for modelling geometrically
enhanced applications. We will concentrate on the definition of entity and relation-
ship types and their semantics, but we will dispense with discussing keys or other
constraints. For attributes we will permit structuring.

13.3.1 Data Types and Nested Attributes

Definition 13.1. A universe is a countable set U of simple attributes together with
a type assignment tp that assigns to each attribute A 2 U a data type tp.A/.

In most cases the associated type tp.A/ for A 2 U will be a base type, but
we do not enforce such a restriction. We do not further specify the collection of
base types. These can be INT, FLOAT, STRING, DATE, TIME, etc. A base data
type t is associated with a countable set of values dom.t/ called the domain of t .
For the types listed the domain is the standard one. For an attribute A 2 U we let
dom.A/ D dom.tp.A//, and also call dom.A/ the domain of A.

We use constructors to define complex data types. In particular, we use .�/ for
record types, f�g, Œ�� and h�i for finite-set, list and multiset types, respectively, ˚ for
(disjoint) union types, and ! for map types. Together with a trivial type 1l – its
domain is a singleton set: dom.1l/ D f?g – we can define (complex types) t by
abstract syntax (here b represents base types):

t D1l j b j .a1 W t1; : : : ; an W tn/ j .a1 W t1/
˚ � � � ˚ .an W tn/ j ftg j Œt � j hti j t1 ! t2

with pairwise different labels ai in record and union types. Furthermore, we allow
complex types to be named and used in type definitions in the same way as base
types with the restriction that cycles are forbidden. Domains are then defined in the
usual way.

Example 13.1. We can define named complex types that can be used for geomet-
ric modelling such as Point D .x W FLOAT; y W FLOAT/ for points in the two-
dimensional plane, Polygon D ŒPoint�, PolyLine D ŒPoint�, Bezier D ŒPoint�,
and PolyBezier D ŒBezier�. In particular, these constitute examples of types with
equal surface representations but different geometric semantics (as we will discuss
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in Sect. 13.4). A polyline is a curve that is defined piecewise linearly, while a poly-
gon is a region that is defined by a polyline border. A sequence of n points defines
a Bézier curve of order n�1, and a curve that is defined piecewise by Bézier curves
is a PolyBézier curve.

The trivial type 1l can be used in combination with the union constructor to define
enumerated types, i.e. types with finite domains such as Bool D .T W 1l/˚ .F W 1l/,
Gender D .male W 1l/˚ .female W 1l/ or .n/ D .1 W 1l/˚� � �˚ .n W 1l/ for any positive
integer n, which gives a domain representing f1; : : : ; ng. The map constructor can
be used to define arrays such as Patch D .i W .n/; j W .m// ! Point represent-
ing Bézier patches, and vectorfields of different dimensions such as Vectorfield1 D
fPointg ! FLOAT , which could be used for sensor data such as water levels, and
Vectorfield2 D fPointg ! Point, which could be used for modelling other mea-
surements such as wind capturing force and direction by a two-dimensional vector.
Finally, TimeSeries D .d W DATE; t W TIME/ ! Vectorfield1 could be used to
model a series of observed data over time.

Complex types are used in connection with nested attributes extending the defi-
nitions in [34].

Definition 13.2. The set A of nested attributes (over universe U) is the smallest set
with U � A satisfying X.A1; : : : ; An/; XfAg; XŒA�;X.A1 ! A2/; XhAi; X1.A1/

˚ � � � ˚Xn.An/ 2 A with labels X;X1; : : : ; Xn and A;A1; : : : ; An 2 A.

The type assignment tp extends naturally from U to A as follows:

• tp.X.A1; : : : ; An/ D .a1 W tp.A1/; : : : ; an W tp.An// with labels a1; : : : ; an,
• tp.X1.A1/˚ � � � ˚Xn.An// D .X1 W tp.A1//˚ � � � ˚ .Xn W tp.An//,
• tp.XfAg/ D ftp.A/g, tp.XŒA�/ D Œtp.A/�, tp.XhAi/ D htp.A/i, and
• tp.X.A1 ! A2// D tp.A1/ ! tp.A2/.

13.3.2 Entity and Relationship Types

Following [34] the major difference between entity and relationship types is the
presence of components r W R (with a role name r and a name R of an entity
or relationship type) for the latter ones. We will therefore unify the definition and
simply talk of database types as opposed to the data types in the previous subsection.
We will, however, permit structured components.

Definition 13.3. The set C of component expressions is the smallest set contain-
ing all database type names E , all set and multiset expressions fEg and hEi, re-
spectively, all union expressions E1 ˚ � � � ˚En with component expressionsE;Ei

that are not union expressions, and all list expressions ŒE� with component expres-
sionsE . A structured component is a pair r W E with a role name r and a component
expression E 2 C.
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Note that this definition permits neither record and map constructors in com-
ponent expressions nor full orthogonality for union, set, list and multiset construc-
tors. The reason for the absence of the record constructor is that it corresponds
to aggregation, i.e. whenever a component of a relationship type has the structure
of a record, it can be replaced by a separate relationship type. The reason for the
absence of the map constructor is that functions on entities and relationships that
depend on instances seem to make very little sense and are not needed at all. The
reason for allowing only restricted combinations of the other constructors are the
intrinsic equivalences observed in [31]. If in fEg we had a union component ex-
pression E D E1 ˚ � � � ˚ En, this would be equivalent to a record expression
.fE1g; : : : ; fEng/, to which the argument regarding records can be applied. The
same holds for multiset expressions, while nested union constructors can be flat-
tened. In this way we guarantee that we will deal only with normalised, and thus
simplified, structured components that contain no hidden aggregations.

Definition 13.4. A database typeR of level k � 0 consists of a finite set comp.R/ D
fr1 W E1; : : : ; rn W Eng of structured components with pairwise different role names
r1; : : : ; rn, and a finite set at t r.R/ D fA1; : : : ; Akg � A of nested attributes. Each
Ei is a database type of level at most k � 1, and unless comp.R/ D ;, at least one
of the Ei must have exactly the level k � 1.

Note that this definition enforces comp.R/ D ; iff R is a type of level 0. So we
call types of level 0 entity types and types of level k > 0 relationship types. In what
follows we use the notation R D .comp.R/; at t r.R// for a type.

Note that while we discarded full orthogonality for component constructors, we
did not do this for the nested attributes, leaving a lot of latitude to modellers. The
rationale behind this flexibility is that the attributes should reflect pieces of informa-
tion that is meaningful within the application context. For instance, using an attribute
shape with tp.shape/ D Polygon (thus, shape 2 U) indicates that the structure
of polygons as lists of pairs of floating-point numbers is not relevant for the con-
ceptual model of the application, whereas the alternative, having a nested attribute
shape.Œpoint.x-coord; y-coord/�/ with tp.x-coord/ D tp.y-coord/ D FLOAT , would
indicate that points and their coordinates are conceptually relevant beyond repre-
senting a data type. Nested attributes also give rise to generalised keys, whereas we
do not delve into the structure of complex types for this discussion.

Furthermore, the way we define structured components permits alternatives and
bulk constructions in database types which can be used to model a farm with a set
of paddocks and a time series of measured water levels, but neither disjoint unions
nor sets, lists and multisets can be used to model first-class database types, i.e. a set
of paddocks will never appear outside a component. This differs from [34], where
disjoint union clusters are used independently of relationship types, and from [14],
where this has been extended to sets, lists and multisets. The reason is that such
stand-alone constructors are hardly needed in the model, unless they appear within
a component of a database type.
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13.3.3 Schemata and Instances

Finally, we put the definitions of the previous subsections together to define
schemata and their instances in the usual way.

Definition 13.5. A GERM schema S is a finite set of database types such that when-
ever ri W Ei is a component of R 2 S and the database type name E appears in Ei ,
then also E 2 S holds.

The definition of a structural schema, which is normally just called a schema,
covers the syntactic side of our conceptual model. For the semantics we need in-
stances of schemata, which we will define next starting with ‘entities’. For this, if
I.E/ is a set of values for a database type name E , then this defines a unique set
of values I.Ei / for each Ei 2 C. This extension is defined in the same way as the
extension of dom from base types to complex types.

Definition 13.6. An entity e of typeR is a mapping defined on comp.R/[at t r.R/
that assigns to each ri W Ei 2 comp.R/ a value ei 2 I.Ei /, and to each attribute
Aj 2 at t r.R/ a value vj 2 dom.Aj /. Here I.Ei / is built from sets of entities I.E/
for all E appearing in Ei .

We use the notation e D .r1 W e1; : : : ; rn W en; A1 W v1; : : : ; Ak W vk/ for an entity
e of type R D .fr1 W E1; : : : ; rn W Eng; fA1; : : : ; Akg/. Strictly speaking, if R is of
level k > 0, e should be called a relationship.

Definition 13.7. An instance I of a GERM schema S is an S-indexed family
fI.R/gR2S , such that I.R/ is a finite set of entities of type R, and only these sets
are used in the definition of entities.

13.4 Geometric Types and Algebraic Varieties

Usually, the domain of a type defines the set of values that are used for operations.
This is no longer the case with geometric types. For instance, a value of type Bezier
as defined in the previous section is simply a list of nC 1 points Ep0; : : : ; Epn 2 R

2.
However, it defines a Bézier curve of order n in the two-dimensional Euclidean
plane, i.e. a set of points.

Thus, we need a different association gdom, which associates with a geometric
type t a set of point sets in n-dimensional Euclidean space R

n together with a map-
ping dom.t/ ! gdom.t/. In what follows we will concentrate on the case n D 2,
i.e. we focus on points, curves and regions in the plane, but most definitions are
not bound to this restriction. We will use algebraic varieties and polyhedra to define
point sets of interest.

Definition 13.8. An (algebraic) variety V of dimension n is the set of zeros of
a polynomial P in n variables, i.e. V D f.x1; : : : ; xn/ 2 R

n j P.x1; : : : ; xn/ D 0g.
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A base polyhedron H is the intersection of half planes, i.e. H D f.x1; : : : ; xn/ j
Pi .x1; : : : ; xn/ � 0 for i D 1; : : : ; kg with polynomials P1; : : : ; Pk . A polyhe-
dron H is the finite union of base polyhedraH1; : : : ;H`.

Algebraic varieties in the plane cover all classical curves [2]. As P.x1; : : : ;

xn/ D 0 , P.x1; : : : ; xn/ � 0 ^ �P.x1; : : : ; xn/ � 0 holds, base polyhedra
are simple generalisations.

A representation as in Definition 13.8 by means of zeros of polynomials is called
an implicit representation, as opposed to an explicit parametric representation �.u/
for real u [10]. Each parametric representation can always be turned into an implicit
one, but the converse is not necessarily true. For most curves of interest, however,
we also find rational parametric representations.

Example 13.2. A Bézier curve of degree n is defined by n C 1 points Ep0; : : : ; Epn.

A parametric representation is B.u/ D
nP

iD0

Bin.u/ � Epi (0 � u � 1) with the i th

Bernstein polynomial Bin.u/ of degree n defined as Bin.u/ D �
n i

�
ui .1 � u/n�i .

A Bézier curve of order 1 is simply a straight line between the two points defining
it. For n D 2 and B.u/ D .x; y/ we obtain quadratic equations x D au2 C buC c

and y D du2 C eu C f . Dividing these by a and d , respectively, and subtracting
them from each other eliminates the quadratic term u2. This can then be solved to
give u, plugged back in to give x and y, leading to a polynomial in x and y of
degree 2 that defines the implicitisation of the Bézier curve.

Similarly, an .n�m/ array of points Epij defines a Bézier patch with a parametric

representation P.u; v/ D
nP

iD0

mP

j D0

Bin.u/ � Bjm.v/ � Epij . In this case u D 0 and

v D 0 define Bézier curves P.0; v/ and P.u; 0/, respectively.

Definition 13.9. The geometric domain gdom.t/ of a geometric data type t is a set
of point sets. Each element of gdom.t/ has an implicit representation by a poly-
hedron H D H1 [ � � � [ H` with base polyhedra Hi (i D 1; : : : ; `) defined by
polynomials Pi1; : : : ; Pini

. In addition, the variety defined by Pij has an explicit
parametric representation �ij .Eu/, unless this is impossible.

The definition of polyhedra for polygons or, more generally, lists of Bézier curves
that define a region may require some triangulisation.

Note that in general polyhedra are closed under union and intersection, but not
under set difference. Polyhedra are always closed with respect to the standard topol-
ogy on R

n, but the difference of closed sets is not necessarily closed. We may,
however, regain a polyhedron by building the closure. Thus, it may be useful to

have the interior
ı
X , boundary @X , and the closure NX available for any point set X .

These are defined in the usual way by
ı
X D fx 2 X j 9U.x/:U.x/ � Xg,

@X D fx j 8U.x/:U.x/ \ X ¤ ; ¤ U.x/ � Xg, and NX D X [ @X . Here
U.x/ denotes an open environment of point x.
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13.4.1 Natural Modelling Algebra

The two layers of GERM support the storage and retrieval of geometric objects
within a conceptual model. The challenge is, however, the manipulation of such
objects by queries and transactions. For this we now present an algebra on geometric
objects. As we always have an internal representation by point sets, we first focus
on these.

Standard operations on point sets are of course the Boolean ones, i.e. union, in-
tersection and difference (or complement). In combination with interior, closure and
boundary these operations are in principle sufficient to express a lot of relationships
between the geometric objects as discussed widely in the conceptual GIS literature
(see e.g. [5, 32]). For instance, A�B D ; is equivalent to A � B , so we only need

difference and an emptyness test. Similarly, VA \ B D ; ^ @A \ @B ¤ ; express
that A and B touch each other but do not intersect.

However, relying on the Boolean set operations is insufficient. We have to address
at least two problems. (1) The set of point sets of interest must be closed under the
operations. We already remarked at the end of the previous section that this is not
true for the set difference (and likewise for the complement). (2) The operations
must be numerically stable in the sense that they do not produce larger errors than
those that are unavoidable due to the rounding that is necessary when dealing with
floating-point representations of real numbers.

We may circumvent the closure problem, as we are merely interested in point
sets ‘up to their boundary’, i.e. we could deal with an equivalence relation � with
A � B iff NA D NB . Then each equivalence class has exactly one closed representa-
tive, a polyhedron. The problem is then that the Boolean operations do not preserve
this equivalence, and we lose some of the properties of a Boolean algebra. However,
these properties are lost anyway by the necessary modifications that we propose to
deal with the stability problem.

As for the stability problem, some conceptual modellers will argue that this con-
cerns only an implementation. We do not share this opinion, as any result obtained
by operations of point sets, i.e. the polyhedra on the internal level, must be re-
interpreted by a value of some data type on the surface level. For instance, the union
and intersection of polygons must again be represented as a polygon with a surface
representation by a sequence of points. Similarly, we must take into account that the
intersection of two curves may be more than just a discrete set of points, if stabil-
ity is addressed. Thus, stability considerations have a non-negligible impact on the
surface level of GERM.

It is known that Boolean operations on point sets may be unstable. For instance,
for the intersection point of two straight lines may be only obtainable with an in-
tolerable error. This problem occurs when the angle between the two lines is very
small. Our solution will replace the intersection operation by a modified operation,
which in this case will enlarge the result – so we actually obtain a point set in-
stead of a single point. The enlargement will depend on the operands, so that for the
uncritical cases we almost preserve the Boolean operations.
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In general, we use the following new operations on point sets: A ] B D A [
B [ q.A;B/ and A B D .A\ B/[ q.A;B/ with a natural modelling function q
that assigns a point set to a pair of point sets. We do not modify the complementX 0
of a set X . With A B D .A0 B 0/0 and A B D .A0 ] B 0/0 we obtain two more
modified operations.

The simple idea behind these operations is to slightly enlarge (or reduce) unions
and intersections in order to cope with the stability problem. The enlargement (or
reduction) depends on the arguments; critical operands require larger modifications
than uncritical ones. The name ‘natural modelling’ is adopted from [12], as it should
reflect properties associated with stability and the original union and intersection
operations in a natural way.

Definition 13.10. A function q from pairs of point sets to point sets is called a nat-
ural modelling function iff it satisfies the following properties for all A;B:

q.A;B/ D q.B;A/ q.A0; B/ D q.A;B/ q.A;;/ D ; :
We require q to be symmetric as the stability problem for building intersec-

tions and unions does not depend on the order. Analogously, the potential instability
caused by A and B is the same as that caused by A0 and B .

Definition 13.11. The natural modelling algebra consists of the set of equivalence
classes of polyhedra with respect to � and the operations ], , and with a natural
modelling function q.

Hartwig has studied the algebraic properties of the direct modelling algebra
(P.E/;]; ) and the small modelling algebra (P.E/;]; ) [12]. In both cases we
obtain a weak Boolean algebra, i.e. the existence of neutral and inverse elements
is preserved, and the de Morgan laws still hold, but other properties of Boolean
algebras have been abandoned.

13.4.2 Computing with Polyhedra and Surface Representations

The key question is of course how to choose a good natural modelling function q.
Before addressing this let us first look at the modified operations on polyhedra. As

Fig. 13.1 a: intersection of two polygons; b: intersection of two regions with a boundary defined
by Bézier curves
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these are defined by algebraic varieties, it will be decisive (and sufficient) to under-
stand the operations on two half-planes A D f.x1; : : : ; xn/ j P.x1; : : : ; xn/ � 0g
andB D f.x1; : : : ; xn/ j Q.x1; : : : ; xn/ � 0g. IfA andB are plane curves, we have
to compute their intersection point(s) in order to determine a surface representation
of their union and intersection respectively. Let us discuss this further for polygons
and regions defined by a sequence of Bézier curves.

Example 13.3. Let us look at the union/intersection of two polygons depicted in
Fig. 13.1a, one defined by the points A;B;C , the other by D;E;F . With A D
.1; 1/, B D .3; 4/, C D .7; 2/, D D .3; 0/, E D .7; 4/ and F D .9; 1/ the line
through D and E is defined by P.x; y/ D x � y � 3 D 0, and the line through
B and C is defined by Q.x; y/ D x C 2y � 11 D 0. They intersect at the point
H D .5:66; 2:66/. This intersection divides the plane into four parts depending on
whether P.x; y/ and Q.x; y/ take positive or negative values.

If we can compute the intersection points H and K , then A;B;H;E; F;D;K
defines the surface representation of the union, while K;H;C defines that of the
intersection.

However, the angle between lines DE and AC at intersection point K is rather
small, which may cause a different result defined by the operations ] and instead
of [ and \ respectively. The resulting polygon for the modified union may become
A;B;H;E; F;D;K1; K2, while the resulting polygon for the modified intersection
may become K 0

1;H; C;K
0
2, with points K1; K2; K

0
1; K

0
2 in a small neighbourhood

of K .
At H the angle between the two intersecting lines is nearly a right angle, so the

modified intersection may coincide with the normal one.

Example 13.4. Look at the two regions defined in Fig. 13.1b, both defined by val-
ues of type PolyBezier, the first one by Œ.A;B/; .B;E;C /; .C;A/�, the second one
by Œ.D;B; F /; .F;G/; .G;D/�. As in the previous example, the two intersection
points H and K of line .A; C / with Bézier curve .D;E; F / are decisive for the
computation of the union and intersection.

With A D .16; 5/, B D .22; 4/, E D .20; 3/, C D .21; 0/, D D .13; 4/, F D
.19; 0/ and G D .13; 0/ the parametric representation of the Bézier curve can be
easily obtained asB.u/ D .�12u2C18uC13;�4u2C4/, and the straight line gives
rise to x C y � 21 D 0. Substituting B.u/ D .x; y/ in this gives rise to a quadratic

equation with the roots u1=2 D 9˙p
17

16
, i.e. u1 D 0:304 and u2 D 0:82, which de-

fine H D .17:32; 3:64/ and K D .19:69; 1:31/. Then the union can be represented
by Œ.A;B/; .B;E;C /; .C;K/; .K; F 0; F /; .F;G/; .G;D/; .D;D0;H/; .H;A/� of
type PolyBezier, while the intersection is represented by Œ.H;H 0; K/; .K;H/�.
Once H and K are known, it is no problem to obtain the necessary points D0 and
H 0, as sections of Bézier curves are again Bézier curves.

As in Example 13.3 the computation of point K can be expected to be rel-
atively stable, whereas H is not. Using ] instead of the usual union, we end
up with a modified union represented by Œ.A;B/; .B;E;C /; .C;K/; .K; F 0; F /;
.F;G/, .G;D/; .D;D0;H1/; .H1;H2/; .H2; A/� of type PolyBezier, whereH1 and
H2 are points in the vicinity of H on the Bézier curve and the straight line
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.H;A/ respectively. Analogously, using instead of \, we obtain a representation
Œ.H 0

2;H
0
1/.H

0
1;H

0; K/; .K;H 0
2/� with points H 0

1;H
0
2 in the vicinity of H on the

Bézier curve and the straight line .H;K/ respectively.

13.4.3 The Choice of the Natural Modelling Function

In view of the discussion in the previous subsection, it is sufficient to consider
base polyhedra, i.e. if H D H1 [ � � � [ Hn and H 0 are polyhedra, we define

q.H;H 0/ D
nS

iD1

q.Hi ;H
0/. Furthermore, for base polyhedra it is sufficient to con-

sider the boundary, i.e. if H and H 0 are base polyhedra, we define q.H;H 0/ D
q.@H; @H 0/. In the two-dimensional plane E D R

2 we can therefore concentrate
on plan curves. If such a curve � is defined by a union of (sections of) algebraic

varieties, say V1 [ � � � [ Vn, then we define again q.�; � 0/ D
nS

iD1

q.Vi ; �
0/. If q is

symmetric, the naturalness conditions in Definition 13.10 are obviously satisfied.
In order to obtain a good choice for the natural modelling function q, it is there-

fore sufficient to look at two curves �1 and �2 defined by polynomials P.x; y/ D 0

and Q.x; y/ D 0 respectively. Let Ep1; : : : ; Epn be the intersection points of these
curves – unless �1 D �2, we can assume that there are only finitely many. Then we
define q.�1; �2/ D Sn

iD1 Ui with environmentsUi D U�1;�2
. Epi /, as defined next.

Definition 13.12. For " > 0 the "-band of a variety V D f.x; y/ j P.x; y/ D 0g is
the point set B".V / D f.x0; y0/ j 9.x; y/ 2 V:jx � x0j < " ^ jy � y0j < "g.

13.5 Key Application Area GIS

Spatial data models which contain spatial data types, operations and predicates
are used universally to represent geometric information in all kinds of spatial ap-
plications. Application areas include geosciences, e.g. geography, hydrology, soil
sciences, and government and administration. It is predicted that geoinformation
technology will be one of the most important and promising technologies in the
future [29].

As we mentioned, this study is motivated by the need for spatial data modelling
in the context of the sustainable land use initiative (SLUI). Now let us look in more
detail at the information that should be kept for the SLUI program. To manage land
in the hill country sustainably, the aim of the SLUI and whole farm plans (WFPs)
is to propagate land use change. For the long term the SLUI programme has an
objective of having 75,000 ha of land improved in the next 10 years. To demonstrate
that the considerable funds being spent are achieving worthwhile outcomes, WFPs
should be monitored to measure the progress toward the objective. For example,
WFP data, including spatial and non-spatial data, need to be kept to create WFPs
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Fig. 13.2 Example paddock map [1]

and to analyse the effectiveness of the programme, e.g. area of land being improved.
During the environmental assessment of farms a bunch of artefacts is generated,
including legal titles and parcels maps, paddock maps, Land Resource Inventory and
Land Use Capability maps, soil fertility and nutrient maps, pasture production maps,
summary of resource issues and recommendations for sustainable management of
land resources. Figure 13.2 contains an example paddock map which shows the
boundary of paddocks within a farm. To model the maps, we need to consider spatial
data, e.g. paddock boundaries, as well as non-spatial data, e.g. paddock codes.

Land resources have been described and evaluated according to the Land Re-
source Inventory (LRI) and Land Use Capability (LUC) classification. The area
under study is divided into landscape units by drawing boundaries around areas
with similar soil characteristics. A unit polygon represents an area of similar soil
characteristics. The LRI system involves delineating landscape units according to
five inventory factors. LRI is then classified as LUC, which further groups similar
units according to their capacity for sustainable production under arable, pastoral,
forestry or conservation uses. The LUC code indicates general capability (1 to 8
classes), the major limitations and the capability unit to link with regional classifi-
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Fig. 13.3 Example LUC map [1]

cations and known best management practices. Figure 13.3 shows a LUC and a LRI
map. Again to model the information on LRI and LUC maps, we need to consider
spatial data, e.g. LRI and LUC boundaries, and non-spatial data, e.g. LUC code,
class and subclass of each LUC unit.

Detailed assessment of land strengths and weaknesses are given by LUC unit.
Based on this assessment, a catalogue of environmental works is recommended.
Recommendations for either land use change or management change are based pri-
marily on the degree, severity and location of the soil erosion and the resultant ef-
fects. A set of maps is created to show the locations of planned work. For example,
as shown in Fig. 13.4, the location of tree planting or a fence to be built is shown on
the maps. To model the data on WFP maps, we need to model the location informa-
tion of the planned work, presented as polygons, points or arcs, as well as additional
information of the planned work, which includes the financial support information
provided by the regional council.

As we see, WFP data include classic relational or non-spatial data (attribute data),
such as owner information, investment information and land usability data, and
spatial data (locational data), such as paddock boundaries, LUC unit boundaries,
buildings, land and water resources, bridges, tracks, track crossings, enhancement
plantings, fences and stone pickings. There is a need to integrate the spatial and
non-spatial data in the SLUI application so that users can analyse the effectiveness
of the SLUI program, e.g. by calculating the areas of land units that have some
LUC properties improved. Our goal is to support conceptual modelling of WFPs
for integration into the SLUI information system by providing representations of
the spatial relationships and functions on multiple levels, by providing relationships
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Fig. 13.4 Example WFP map [1]

Fig. 13.5 Sketch of a GERM schema for a WFP (attributes omitted) including types for water
consent, quality and waste water agreement

and functions in a logical way when dealing with point sets, and by providing suit-
able operations when realised using floating-point arithmetic.
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Example 13.5. Let us look at a sketch of a GERM schema for a WFP as illus-
trated in Fig. 13.5. At its core we have a schema capturing the geographic infor-
mation related to a farm. The central entity type FARM will have the attributes
owner, boundary and address with tp.boundary/ D PolyBezier, and tp.owner/ D
tp.address/ D STRING. The type PADDOCK is used to capture the major (farming)
units with the attributes boundary and usage of types tp.boundary/ D PolyBezier
and tp.usage/ D .cattle W 1l/˚.dairy W 1l/˚.hort W 1l/˚.sheep W 1l/˚� � �˚.other W 1l/
respectively. For BUILDING we have the attributes kind and area with another enu-
meration type associated with kind, and tp.area/ D Polygon. Other landcare units
with non-agricultural usage are captured by the type LUC with an attribute luc with
tp.luc/ D .bush W 1l/ ˚ .rock W 1l/ ˚ .slope W 1l/. The relationship type FENCE

has a set of PADDOCK components, a set of PATH components referring to the pad-
docks and paths it borders and attribute shape with tp.shape/ D fPolyLineg. The
type PATH has the attribute location with tp.location/ D POLYBEZIER indicating
the course of the path by a curve, and an attribute width with tp.width/ D FLOAT.

The types RIVER, POND and WELL model the water resources of farms. RIVER

has the attributes left and right, both of type PolyBezier, which are used to model
the course of the left and right border of a river. For WELL we have the attributes
depth and boundary of types FLOAT and Circle, respectively, and POND has a type
boundary of type PolyBezier. The relationship type INSIDE is needed to model that
some units may lie inside others, e.g. a rock LUC may be inside a paddock, a river
may have islands, a well may be inside a paddock, a path may cross a paddock, etc.
This relationship makes it easier to model ‘holes’ rather than permitting them to be
considered as part of the data types.

A water consent for a farm refers to several water extraction points, each refer-
ring to a source, which is a river, well or pond. Therefore, WATEREXTRACTION-
POINT has the attributes location, minimum, and capacity of types Point, Month !
FLOAT , and FLOAT respectively. The latter two model the (season-dependent) wa-
ter level below which it cannot fall and the amount of water that could be taken
out. WATERCONSENT has an the attribute allowance of type Month ! FLOAT
modelling the total amount of water the farm is permitted to use.

Similarly, WATERQUALITY models the measurement of oxygen, nitrate and
other levels, and WASTEWATERAGREEMENT models the contracted minimum and
maximum values governing water quality. We omit further details.

13.6 Conclusion

In this chapter we analysed approaches to conceptual geometric modelling, an area
comprising in particular spatial models and geographic models. We discovered first
that many published models either remain on the surface not linking concepts to
underlying geometric objects or are exclusively devoted to lower-level spatial data
types and operations on them.
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We then presented the geometrically enhanced ER model (GERM) as an ap-
proach to conceptual geometric modelling. GERM preserves aggregation as the pri-
mary abstraction mechanism of the ER model, but loosens the definition of rela-
tionship types permitting bulk and choice constructors to be used for components
without first-class status of bulk objects. Geometric objects are dealt with within
attributes, which can be associated with types for geometric modelling. This defines
a syntactic level of GERM that largely remains within the ER framework and thus
enables a smooth integration with non-geometric modelling. It also allows users to
deal with modelling tasks that involve geometry in a familiar, non-challenging way,
thereby preserving all the positive experience gained with conceptual ER modelling.

The syntactic level is complemented by an internal level which employs algebraic
varieties, i.e. sets of zeros of polynomials, to represent geometric objects as point
sets. The use of such varieties leads to a significant increase in expressiveness way
beyond standard approaches which mostly support points, lines and polygons. In
particular, common shapes as defined by circles, ellipses, Bézier curves and patches,
etc. are captured in a natural way. However, for polynomials of high degrees we face
computational problems.

The highly expressive internal level of GERM makes geometric modelling not
only very flexible, but it is the only basis for an extended algebra that generalises
and extends the standard Boolean operators on point sets. By using this algebra,
GERM enables a higher degree of accuracy for derived geometric relationships.

GERM is still under development with planned investigations of further back-
and-forth translations between the syntactic and the internal level of GERM and
special cases of the natural modelling algebra for specific applications [22].
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Chapter 14
Data Integration

Sonia Bergamaschi, Domenico Beneventano, Francesco Guerra, and Mirko Orsini

Abstract Given the many data integration approaches, a complete and exhaustive
comparison of all the research activities is not possible. In this chapter we will
present an overview of the most relevant research activities and ideas in the field in-
vestigated in the last 20 years. We will also introduce the MOMIS system, a frame-
work to perform information extraction and integration from both structured and
semistructured data sources, that is one of the most interesting results of our re-
search activity. An open source version of the MOMIS system was delivered by the
academic startup DataRiver (www.datariver.it).

14.1 Outcomes and Challenges in Data Integration

Modern enterprises are often organized as “virtual networks,” where the nodes, i.e.,
enterprises, operate through inter-enterprise cooperative processes. The enterprises
hold proprietary information systems, i.e., legacy systems, thus the problem of data
exchange among autonomous, possibly heterogeneous, data sources must be faced.
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A key issue, in managing inter-enterprise processes and data exchange systems,
is mediating among the many heterogeneous information systems. Data integration
is the best technological solution to perform mediation.

One of the key challenges in data integration is dealing with the problems arising
from the heterogeneity of data sources (both structural and semantic):

• Structural heterogeneity arises when the data sources use different data models
or when the same data model is used but a different conceptualization is chosen
to represent the same data in different sources.

• Semantic heterogeneity derives from different meanings and interpretations:
schemata might use the same term to denote different concepts (homonyms) or
different terms to denote the same concept (synonyms). A seminal work address-
ing these problems for E/R schemata integration in 1986 is [5]. Data sources
are structurally heterogeneous when different data models are adopted to rep-
resent real-world objects (e.g., relational databases, XML files, object-oriented
databases and linked open data sources, etc.). Structural heterogeneity may also
arise in the presence of the same data model if the same concept is represented in
different ways in different sources. The same real object is represented as a (set
of) class(es), (set of) property(ies), or a combination of both, thus generating the
need for a structural reconciliation.
Another important issue concerns semantic heterogeneity, i.e., detecting homonyms
and synonyms. Different techniques for identifying the fragments of the databases
related to the same concept use rule-based and learning-based techniques [65]
and annotations of the source terms with respect to external knowledge bases
and ontologies [64].

On the side of available commercial solutions for integrating data coming from
different databases, we cannot ignore data warehouse platforms [44]. Data ware-
house is defined as a “subject-oriented, integrated, time-variant (temporal), non-
volatile collection of summary and detailed data, used to support strategic decision-
making processes for the enterprise.” We can refer to the data warehouse approach
as materialized data integration: the information from the source databases is ex-
tracted, transformed, and then loaded into the data warehouse (the ETL process)
(Fig. 14.1).

The aim of this chapter is to describe the different approaches to performing data
integration, i.e., virtual data integration, emerging from the research community
and facing the problem of integrating heterogeneous and distributed data sources
(Fig. 14.2). An integration designer builds a mediated schema (often called a global
schema) over which a user poses queries. Data reside at the data sources, which
are interfaced with wrappers, if needed (wrappers are format translators). A gener-
ally agreed definition of virtual data integration or data integration is the following:
“Data integration is the problem of combining data residing at different sources,
and providing the user with a unified view of these data” [virtual global schema
(GS)] [48].

The research community has been investigating data integration for about 20
years: several research communities (Database, Artificial Intelligence, Semantic
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Fig. 14.1 Data warehouse: materialized data integration

Fig. 14.2 Virtual data integration

Web) have been developing and addressing issues related to data integration from
different perspectives. Many different theoretical approaches and a large number of
prototypes have been proposed, making it difficult to provide a complete overview.
In what follows we will try to provide the basic concepts, approaches, and systems
proposed.

Data integration assumes over time different shades, with respect to the particu-
lar contexts where integration has been applied, the different technologies support-
ing the process and the evaluation of related technologies.

We observe that the majority of the research effort has been devoted to inves-
tigating issues related to providing techniques for the integration of the schemata
of the different sources. The assumption of the systems based on these techniques
is that data integration passes through the integration of a set of database schemas,
thus providing a common container, i.e., a global schema, for heterogeneous data
sources. This implies the development of techniques for many difficult tasks: data
cleaning, reconciliation, and fusion [22], to manage inconsistent or overlapping
databases. Moreover, the creation of a uniform view of the data sources, i.e., the
global schema, does not cover all the issues to be solved. The capability of quering
the global scheme receiving a unique and complete answer is another relevant issue
for a data integration system.
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Given the many data integration approaches, we will propose in the following
an overview of the most relevant research outcomes and challenges. This overview
does not provide an exhaustive and detailed analysis of the state of the art, but a point
of view of researchers (the authors) working on the area since 1998.

In one of the first classifications proposed in the literature [43], the data integra-
tion approaches were grouped into (1) integrated read-only views, where a schema
of the integrated data sources (usually called a mediated schema) is available and
queries can be made against that schema; (2) federated systems, i.e., systems able
to interconnect databases with a minimized central authority yet support partial
sharing and coordination among database systems [42]; (3) integrated read-write
views, where the integrated view is materialized thereby increasing the system per-
formance; and (4) workflow systems providing a uniform interface for specifying the
multitude of interactions that take place between the databases of an enterprise.

The advantage of this classification is to envisage three possible perspectives:
virtual integration, materialized integration, and integration achieved through co-
ordination tasks.

The last perspective may be considered only “improperly” as an integration ap-
proach, actually being an “integrated use” of multiple databases. Therefore, work-
flow solutions are no longer considered as facets of the data integration area but as
autonomous research directions.

Virtual integration builds and integrates the database schemas, keeping the
database instances on the original data sources (Fig. 14.2). On the other hand, ma-
terialized integration integrates a copy of the original databases (both schemas and
instances).

The advantages of a virtual approach are related to the management of the
changes in the sources. Since in database applications schemas do not frequently
change, virtual approaches do not require strong updating policies as data are re-
trieved at run time. In contrast, in materialized approaches, the need to keep the in-
tegrated database aligned leads to restart in prefixed intervals the integration process
(as in the case of data warehouses). The performance achieved with a materialized
approach makes possible its use in commercial environments as a part of the ETL
system populating the data warehouse.1

The number of sources involved in a data integration process is a critical factor
for determining the success of the integration.

A few data sources may allow the user supervising the process to manually build
the global schema, whereas a large number of data sources makes it impossible,
requiring semiautomatic techniques (as will be shown in what follows). In the case
of peer-to-peer architectures, the number and the independence of the data sources
require the adoption of automatic techniques. This is the motivation of the devel-
opment of peer data management systems (PDMSs) that aim to replace the single
logical schema with an interlinked collection of semantic mappings between peers
individual schemas [40].

1 See for example Talend, http://www.talend.com, an open source ETL and data integration system.
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Moreover, the advent and growth of the Semantic Web has determined the de-
velopment of a large amount of ontology-based applications and, consequently, the
need to apply integration techniques to perform ontology matching. In this context,
integration is typically in the form of alignments that express correspondences be-
tween concepts belonging to different ontologies (see [31, 77] for a complete survey
of the approach).

Finally, most recent data integration approaches propose a pay-as-you-go ap-
proach, i.e., the integration system needs to be able to incrementally evolve its un-
derstanding of the data it encompasses as it runs [54]. The idea behind these systems
is to implement as much as possible automatic techniques, able to model uncertainty
at all levels: queries, mappings, and underlying data. The result is a “shallow” in-
tegrated schema in the form of clusters of schema elements, where the mappings
between them are approximate. In PAYGO [54], structured queries are replaced by
keyword-based search queries providing a ranked set of results.

This chapter is organized as follows. In Sect. 14.1.1, we introduce mediator-
based systems, which definitely represent the most studied architecture for data
integration systems, and we reference the most famous research systems devel-
oped. Moreover, we describe the matching and mapping techniques proposed in
the Database and Semantic Web research area. In Sect. 14.2, an open source sys-
tem, MOMIS, based on this architecture, is described. MOMIS has been developed
by the DBGROUP of the University of Modena and Reggio Emilia (www.dbgroup.
unimore.it). A startup company, DATARIVER, was founded in 2009 by some mem-
bers of the DBGROUP to deploy MOMIS, and the first release of the open source
MOMIS system was delivered on April 2010 (www.datariver.it).

14.1.1 Mediator-Based Systems

Mediators definitely represent the main component of the architectures of data in-
tegration systems. Several systems were developed by research centers between the
years 1995 and 2002 (e.g., some of the pioneer systems are TSIMMIS [50], In-
formation Manifold [49], GARLIC [71], SIMS [3], COIN [23], MOMIS, and OB-
SERVER [57]). Later on, the research community moved on addressing specific
aspects of the data integration such as the development of techniques and archi-
tectures improving the automation of the data integration process, the management
of uncertainty and the development of techniques for entity recognition and record
linkage (object fusion) [22].

In the most general definition, a mediator is “a software module that exploits
encoded knowledge about certain sets or subsets of data to create information for
a higher layer of applications” [84]. To achieve this goal, the mediator builds a uni-
fied schema, a.k.a. a global schema, of several (heterogeneous) information sources,
a.k.a. local sources, and allows users to formulate queries on it. By managing all the
collected data in a common way, the GS allows the user to pose a query according
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Fig. 14.3 An example of query resolution in a mediator-based data integration system

to a global perception of the handled information. A query over the GS is translated
and executed on the local sources.

Figure 14.3 shows a simple example of how such systems work. The user formu-
late a query over the GS (in most cases in SQL). The mediator provides a translation
of the user’s query for each source involved in the integration process. Such a trans-
lation takes into account the schema and the language adopted by the source. In
the example case, both the global and local schemas are relational. Consequently,
the mediator formulates a new SQL query for each source on the basis of its local
schema. The query is executed by any local source and the results are fused by the
mediator and the answer returned to the user.

The typical architecture of mediator-based systems is composed of three layers:
the layer of the data sources (data layer), which represents the sources to be inte-
grated, the mediator layer containing the modules enabling the integration process,
and the user layer, which manage the user’s interaction with the system. A mediator
performs two main tasks: the creation of the unified representation (publishing task)
and the formulation and execution of a query in the unified representation (querying
task). For each task and for each layer, there are several issues that a mediator-based
system must deal with, as shown in Fig. 14.4 [85].

In what follows, we will analyze each layer for the publishing task, elaborating
on the main outcomes achieved by the research community and the open challenges
where more research is still needed. Elaborating on the main outcomes and chal-
lenges of the querying task is beyond the scope of this chapter.
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Fig. 14.4 The architecture of mediator-based data integration systems

14.1.1.1 The Data Layer

Wrappers are specific software modules in charge of managing the interaction be-
tween the mediator layer and the data sources [72]. Wrappers logically guarantee
two main operations: (1) in the publishing task, translate the schema from the local
source model into the common data model adopted by the mediator, dealing with
the necessary conversions, and (2) in the querying task, execute the query on the
local source and return its result to the mediator.

For conventionally structured information sources (e.g., relational databases,
object-oriented databases, flat files), the local schema is available for authorized
users and can be directly translated into the selected common data model by wrap-
pers. Available wrappers for these kinds of sources usually perform syntactic and
semantic transformations. For semistructured and unstructured information sources,
schema description is in general not directly available, since the schema is specified
directly within data. In these more complex cases, the application of information ex-
traction techniques allows the extraction of structured information such as entities,
relationships between entities, and attributes describing entities [74].

Concerning the querying task, wrappers typically perform only the role of inter-
face between the mediator, which provides the queries in the language adopted by
the source, and the data source, where the query is executed.

The development of wrappers has been addressed by a substantial amount of
work (see, e.g., TSIMMIS [50], FLORID [52], DEByE [47], W4F [73], Lixto [36],
and MOMIS [17], for research systems).

14.1.1.2 The Mediator Layer

This layer is the core of the integration system since it is in charge of building the
integrated schema GS (publishing task) and performing the querying task.



448 S. Bergamaschi, D. Beneventano, F. Guerra and M. Orsini

The building of a GS implies addressing the following issues:

• Selection/development of a model and a language for representing the GS;
• Selection/development of techniques for supporting the creation of the GS;
• Selection/development of techniques for matching and mapping the GS and the

local sources;
• Selection/development of techniques for managing updates on the local sources.

The querying task requires addressing the following issues:

• Selection/development of a model and language for querying the GS;
• Selection/development of techniques for query unfolding/rewriting w.r.t. the lo-

cal sources;
• Selection/development of techniques for data fusion and cleaning, i.e., to perform

the process of fusing multiple records representing the same real-world object
into a single, consistent, and clean representation [22].

Models and languages for representing the integrated schema. The GS is
a schema, thus the requirements on it its data model/language is that its expressive-
ness be greater than/equal to the ones of the data sources to be integrated.

Different models have been proposed in the literature. The relational data model
(e.g., the Information Manifold, extends it with a Description Logics layer), object-
oriented models (e.g., MOMIS and GARLIC extended in different ways the ODMG
standard model, SIMS and COIN proposed an object-oriented model enriched with
logics capability), and semistructured models (e.g., OEM in TSIMMIS). Finally,
some more recent systems support XML, RDF/RDF-S.

Modeling the mapping among sources and the GS is a crucial aspect. Two
basic approaches for specifying this mapping have been proposed in the literature:
local-as-view (LAV), and global-as-view (GAV) [39, 48, 81] (Fig. 14.5).

The LAV approach is based on the assumption that the classes2 of each source are
modeled as views over the GS. This assumption is effective when the data integration
system is based on a GS that is stable and well established in the organization (not

Fig. 14.5 GAV vs. LAV

Mapping query

Local Sources 
Global Schema

GAV

LAV

2 We use classes for including both the object-oriented and relational models.
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always true). Another negative aspect of LAV is the complexity of query processing
to be performed [39]. On the other hand, as a positive aspect, the LAV approach
favours the dynamics of the integration process: adding a new source simply means
enriching the mapping with a new assertion, without other changes.

The GAV approach is based on the assumption that the classes of the GS are
modeled as views over the local sources. GAV favors the system in carrying out
query processing, because the knowledge of “how to use the local sources to retrieve
data” is coded into the views and by query unfolding the queries to be executed by
the local sources are more easily obtained. This is the reason for which most systems
are based on the GAV approach. However, extending a system with a new source is
now more difficult: the new source may indeed have an impact on the definition of
various classes of the GS whose associated views need to be redefined.

Let us show a simple example of the two approaches.
LAV approach: example

• Global schema with all the professors:
Prof_DB (name, email, area, country)

• Local source S1 contains professors from the database area:
S1 (name, email, country)
Thus, the view over the GS that has to be created for S1 is as follows:

CREATE VIEW S1 AS
SELECT name, email, country
FROM Prof_DB
WHERE area = ’database’

Since in LAV sources are modeled as views over the GS, we have to answer
queries on the basis of the available data in the views, rather than on the raw
data in the database; then query processing needs reasoning (query reformulation
complex) [48].

• Local source S2 contains Italian professors:
S2 (name, email, area)
Thus, the view over the GS that must be created for S2 is as follows:

CREATE VIEW S2 AS
SELECT name, email, area
FROM Prof_DB
WHERE country = ’Italy’

GAV approach: example

• Source S1 contains professors from the database area:
S1 (name, email, country)

• Source S2 contains Italian professors:
S2 (name, email, area)
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• The GS will contain a global class Prof_DB whose attributes are the union of
the attributes of the two local classes (name, email, area, country),
and the view will be defined by a view over S1 and S2; for example, a full outer
join on the name attribute, i.e., (S1 JOIN S2) UNION ftuples of S1 and not in
S2 with null values for the area attribute and tuples of S2 and not in S1 with null
values in the country attributeg.

Matching and Mapping Techniques. Matching and mapping techniques are ex-
ploited for data management mainly in two contexts. In data integration, mappings
are exploited for connecting the GS with the local source schemata (as shown
above). Mappings may also be used for data translations, when they connect source
and target preexisting schemata potentially describing different data semantics [33].
Techniques for matching and mapping the GS and local source schemata are ex-
ploited in both the GAV and LAV approaches. In Fig. 14.6 the difference beteween
schema mapping and schema integration is shown. Both schema mapping systems
(CLIO, SF, S-MATCH, LSD) and the schema integration system (MOMIS) are in
general considered data integration systems.

A simple example of matching is shown in Fig. 14.7.
Matching may be applied to the schema elements, i.e., schema matching, and in

this case it takes two schemata as input and produces a mapping between elements
of the two schemata that semantically correspond to each other [70].

Data

Schema S1

Data

Schema S2

Data

Schema S3

Integrated
schema

The Integrated Schema represents
the union of the source schemas

Data

Source
Schema S 

Data

Target
Schema T 

Schemas pre-exist and 
may describe different 
data semantics Schema

Mappings

Fig. 14.6 Schema integration and schema mapping (thanks to Yannis Velegrakis, University of
Trento)
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Fig. 14.7 Schema matching: a simple example

Instance matching, a.k.a. record linkage, is the task of quickly and accurately
identifying records corresponding to the same entity from one or more data
sources [27, 46].

Schema and instance matching have been extensively investigated by the research
community since they represent the core of data integration systems. Schema match-
ing typically relies on the analysis of the schema labels and of the schema structures.

Instance matching is generally based on techniques for entity resolution provid-
ing each object with an identifier. Instance analysis is computationally a heavy task
since it involves a great number of elements.

Schema matching techniques have been classified under several perspectives.
In [70], the authors show that matchers may be based on one (i.e., individual
matcher) or several techniques (i.e., combining matchers, as the Schemr proto-
type [29] and COMA++ [4]). Such techniques may analyze the data source ele-
ments or the structures applying linguistic-based, constraint-based approaches or
techniques based on external knowledge sources (Fig. 14.8).

In [35], the previous classification is further elaborated on. The authors observe
that matching techniques can be based on string, language, linguistic resources, con-
straint, graph analysis, taxonomy analysis, repository of structures, and model anal-
ysis. These techniques may be applied with different granularities, i.e., to the data
source elements and to the structures (Fig. 14.9).

The CLIO project, similarity flooding, and the corpus-based technique represent
interesting examples of matching techniques. The Clio project [32], a joint project
between the IBM Almaden Research Center and the University of Toronto begun
in 1998 [59], pioneered the use of schema mappings, developing a tool for semi-
automatically creating mappings between two data sources. In the Clio framework
a source schema is mapped onto a different, but fixed, target schema. Moreover,
the semiautomatic tool for creating schema mappings, developed in Clio, employs
a mapping-by-example paradigm that relies on the use of value mappings, describ-
ing how a value of a target attribute can be created from a set of values of source
attributes. In the first idea, mappings in CLIO were in the form of 1:1 correspon-
dences [67]. Recently, a more general form of mapping connecting a number of
source attributes with a target attribute via transformation functions has been pro-
posed [55].
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Fig. 14.8 Schema matching – classification from [70] (database area)

Fig. 14.9 Schema matching – classification from [31, 77] (ontology alignment area)

Similarity flooding [56] is a fixpoint computation-based matching technique that
is usable in different scenarios. For computing the matches, the algorithm intuition
is that elements of two distinct models are similar when their adjacent elements are
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similar. The approach is iterative: a set of mappings, eventually surpervised by the
user, is selected. These mappings are used to increase the strength of other mappings
until a fixpoint is achieved (Figs. 14.10 and 14.11). Depending on the particular
matching goal, we then choose a subset of the resulting mapping using adequate
filters after the algorithm is run; a human is expected to check and, if necessary,
adjust the results. The protoplasm matcher [19] is based on this algorithm.

In [53] a corpus of schemas and mappings to augment the evidence about the
schemas being matched (so they can be matched better) is exploited. The corpus is
used in two ways: first, to increase the evidence about each element being matched
by examining similar elements in the corpus. Second, statistics about elements and
their relationships provide hints about the semantics of the elements in the schemas.

Building the GS schema. In the majority of approaches, the unified schema is
manually provided by the user. In these cases, the data integration process is really
similar to a “data transformation” process.

The automatic building of an integrated view from a set of sources is a complex
issue since the heterogeneity of the data sources generates some conflicts between
the global and the local representations. In [68], such conflicts are classified as rep-
resentation, metamodel, and fundamental conflicts. Representation conflicts arise
when two source schemas describe the same concept in different ways. Metamodel
conflicts occur when the merge result violates schema constraints specific to a given
metamodel, e.g., we have to map an XML source onto a relational source. Finally,
fundamental conflicts arise when the merge result is not a well-formed schema ac-
cording to the rules of the meta-meta-model, e.g., two attributes in two different
sources represent the same real-world features through two different data types. An
algorithm for automatically reconciliating these kinds of conflicts is proposed.

Fig. 14.10 Example of similarity flooding [56]



454 S. Bergamaschi, D. Beneventano, F. Guerra and M. Orsini

Fig. 14.11 Example of similarity flooding [56]

In [69], some requirements that a mediated schema should satisfy are pro-
posed. In particular, the authors propose completeness (all information in the source
schema should be exposed in the global schema), overlap/extended overlap preser-
vation (each overlapping element and instances specified in the input mapping is
exposed in the global schema), normalization (independent entities and relation-
ships in the source schemata should not be grouped together in the same relation of
the global schema), and minimality as features that an integrated view has to sat-
isfy. An algorithm that generates mediated schema according to the above features
is introduced.

Managing the updates. In an integration system, changes occur when the data
sources change or when the users/applications using the integrated data source need
a different conceptualization. For data integration systems following the LAV ap-
proach, managing dynamics means adding/modifying/removing at the local source
level. In this case, a change in a local data source does not affect the other sources.
For systems following the GAV approach, a change in a local data source may affect
the unified view. Consequently, all the mappings between the global view and the
local sources may in principle be affected by a source change.

Two main approaches have been developed for managing source dynamics: the
evolution approach [9], which aims at facing the dynamics problem in all its com-
plexity and managing all the consequences that changes require, and the versioning
approach, which tries to cope with the complexity of the problem of computing
multiple versions of the same integration [45].
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14.1.1.3 The User Layer

Data integration systems are typically queried by means of requests expressed in
the native query languages (in general structured and typed query languages such
as SQL, OQL, SPARQL, etc.). This is definitely a limit for a large exploitation of
these systems: it requires skilled users and also imposes on data integration systems
some of the limitations intrinsic to the query languages. A complete knowledge of
the underlying data structures and their semantics is needed to formulate queries in
a structured query language. Unfortunately, the former require the user to deeply
explore the structure of the source, which is an error-prone and time-consuming
process when a source is composed of hundreds of unknown tables and attributes.
The latter may be too large and too complex to be communicated to the user. Un-
derstanding the semantics conveyed by the unified view means to know both the
semantics conveyed by the data sources involved in the integration process and how
the semantics of the local views are mapped to the integrated view. Therefore, it
is clear that such a requirement may nullify the whole motivation for integrating
sources.

Keyword-based searching has been introduced as a viable alternative to the
highly structured query languages. Nevertheless, the current approaches to keyword
searching over databases are based on information retrieval indices that allow the
discovery of the structures that are related to one or more keywords. This kind of
approach is not applicable to mediator systems since there is no data materializa-
tion and consequently it is not possible to build indices on the database contents.
Only a few approaches propose keyword searching interfaces for mediators: in [75]
an extension of the XQuery language called CQuery is proposed, and in [34] some
indices on the concepts represented in the mediator system are exploited for solv-
ing user keyword queries. Keymantic is a project3, currently under development,
that aims to develop a keyword-based search engine based only on the data source
structural knowledge [38].

14.1.1.4 The Querying Task

Issues related to the querying task in a GAV approach (see below) will be described
in Sect. 14.2.4, with reference to the MOMIS system. For data integration systems,
the interested reader may refer to [48] for a survey about query unfolding/rewriting
issues and to [22] for a complete introduction to data fusion. Nevertheless, we need
to introduce here some definitions to present the issues. Whether the system is GAV
or LAV, partial answers are returned by the local sources including objects not over-
lapping/overlapping. To have a unified answer, we need to retrieve and fuse partial
answers to identify different instantiations of the same object in different sources
and to solve inconsistencies arising from inconsistent data on the same real-world
object.

3 See http://www.dbgroup.unimo.it/keymantic/.
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The first step in a data fusion process is object identification, i.e., the identifica-
tion of instantiations of the same object in different sources (also known as record
linkage, duplicate detection, reference reconciliation, and many other names).

The topic of object identification is a very active research area with significant
contributions both from the artificial intelligence [80] and database [2, 28] com-
munities. The full outer join is the operator one needs when the local data sources
are relational to keep all tuples in both the left and the right relations when no
matching tuples are found, padding attributes present in only one relation with null
values [82].

The second step in a data fusion process is data reconciliation, i.e., to solve
conflicts among instantiations of the same object in different sources.

Taking into account the problem of inconsistent information among sources is
a hot research topic [20, 37, 51, 63]. The querying task in a GAV data integration
system will be described in Sect. 14.2.

14.2 The MOMIS Integration Framework

The MOMIS (Mediator envirOnment for Multiple Information Sources) [17] is
a framework for performing information extraction and integration from both struc-
tured and semistructured data sources. An object-oriented language, called ODLI 3 ,
derived from the standard ODMG with an underlying Description Logics, is in-
troduced for information extraction. Information integration is then performed in
a semiautomatic way by exploiting the knowledge in a common thesaurus (defined
by the framework) and ODLI 3 descriptions of source schemata with a combina-
tion of clustering techniques and Description Logics. This integration process gives
rise to a virtual integrated view of the underlying sources (the GS – GS) for which
mapping rules and integrity constraints are specified to handle heterogeneity.

An open source version of the MOMIS system is delivered by the academic
startup DataRiver (www.datariver.it).

14.2.1 The MOMIS Integration System

MOMIS follows a GAV approach for the definition of mappings between a GS (GS)
and local schemata: the GS is expressed in terms of the local schemata. This means
that for each global class G a view over the local classes of G must be defined.

An Integration System IS D hGS;N ;Mi is constituted by:

• A GS, which is a schema expressed in ODLI 3 [17], a modified version of the
Object Definition Language4; In particular, in the GS we have is-a relationships
and both key and foreign key constraints.

4 www.service-architecture.com/database/articles/odmg_3_0.html.
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• A set N of local sources; each local source has a schema also expressed in
ODLI 3 ;

• A set M of GAV mapping assertions between GS and N , expressed as follows.
For each global class G 2 GS we define:

1. A nonempty set of local classes, denoted by L.G/, belonging to the local
sources in N ;

2. A queryQG over L.G/.

Intuitively, the GS is the intentional representation of the information provided
by the Integration System, whereas the mapping specifies how such an intensional
representation relates to the local sources managed by the Integration System. The
semantics of an Integration System is defined in [15, 24].

The GS and the mapping assertions (mappings for short) have to be defined at
design time by the integration designer. This is done by using the integration builder
graphical interface, built upon the MOMIS framework. One of the main innovations
of the MOMIS system is that information integration is performed in a semiauto-
matic way: an integration process gives rise to a GS of the underlying sources and,
for each global class of the GS, the associated view may be automatically composed
by the system. The integration process has the integration designer as actor and is
composed of the following main steps:

1. Global schema generation: The system automatically extracts the schemata of
the local sources and, on the basis of a semiautomatic annotation activity of the
local sources, detects semantic similarities among the involved source schemas,
automatically generates a bootstrap GS and the semantic relationships among
the GS and the local schemata (Sect. 14.2.2);

2. Global schema refinement: The integration designer interactively refines and
completes the integration process as follows (Sect. 14.2.3):

a. The semantic relationships that have been automatically created by the sys-
tem are fine-tuned;

b. The query associated to each global class is refined/defined;
c. The global schema can be enriched by adding is-a relationships and key and

foreign key constraints.

14.2.2 Global Schema Generation

The MOMIS process for GS generation (Fig. 14.12), has five phases (for a more de-
tailed description of this process, please refer to [17]; for an example of the process
please see the manual of the MOMIS system available at www.datariver.it):

1. Extraction of Local Source Schemata:
Wrappers acquire schemas of the involved local sources and convert them into
into the common language ODLI 3 . Schema description of structured sources
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Fig. 14.12 Functional representation of the process for building the GS

(e.g., relational database and object-oriented database) can be directly trans-
lated, while the extraction of schemata from semistructured sources requires
suitable techniques as described in [1]. To perform information extraction and
integration from HTML pages, research, and commercial Web data, extraction
tools such as ANDES [60], Lixto [6], and RoadRunner [30] have been tested
and adopted in some research projects.

2. Local Source Annotation:
In this step, we want to render explicit the meaning of terms, that may come
from different sources and possibly expressed in different languages in the local
ontologies, with respect to a common multilingual lexicon ontology. Therefore,
we perform an annotation, which is a mapping of a given term (class and at-
tribute names) into a well-defined set of concepts of a lexical ontology. In the
current version of MOMIS we adopt as lexical ontology Wordnet [58]; we also
use a multilingual lexical ontology such as EuroWordNet [83].
The integration designer can manually choose the appropriate Wordnet mean-
ing(s) for each term or perform an automatic annotation that associates to each
term the first meaning of Wordnet. The manual annotation is a two-step process:

a. Word form choice: In this step, the WordNet morphologic processor aids
the designer by deriving the correct word form corresponding to the given
term. More precisely, the morphologic processor stems (i.e., converts to
a common root form) the term and checks if it exists as a word form. If the
stemmed term is not available as a word form, if there is an ambiguity [e.g.,
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axes has three word forms: ax (1 sense), axis (5 senses), axe (2 senses)], or
the selected word form is not satisfactory, the designer can choose another
word form from the list available in WordNet.

b. Meaning choice: The designer can choose to map an element on zero, one,
or more senses. For example, WordNet has 14 meanings for the word form
address, from which the most appropriate ones to the particular context are
chosen.

If the reference lexical ontology does not contain a satisfactory meaning for
a concept expressed in a given data source, the integration designer may anno-
tate it with a similar one, generating a partial loss of knowledge. On the other
hand, the integration designer might not annotate the concept at all, with a total
loss of semantics. In [7], we proposed WNEditor, a tool that aims at guiding the
integration designer during the creation of a domain lexicon ontology, extending
the preexisting WordNet ontology. New terms, meanings, and relations between
terms are virtually added and managed by preserving the WordNet internal or-
ganization.

3. Common Thesaurus Generation:
Starting from the annotated local schemata, MOMIS builds a common thesaurus
that describes intra- and interschema knowledge in the form of the following se-
mantic relationships: synonyms (SYN), broader terms/narrower terms (BT/NT),
meronymy/holonymy (RT), equivalence (SYNext), and generalization (BText) re-
lationships. The common thesaurus is incrementally built by adding schema-
derived relationships (automatic extraction of intraschema relationships from
each schema separately), lexicon-derived relationships (interschema lexical re-
lationships derived by the annotated sources and Wordnet interaction), designer-
supplied relationships (specific domain knowledge capture), and inferred rela-
tionships (via Description Logics equivalence and subsumption computation).

4. GS Generation:
Starting from the common thesaurus and the local source schemata, MOMIS
generates a GS consisting of a set of global classes, plus mappings to connect
the global attributes of each global class with the local sources’ attributes. MOre
precisely, GS generation is a process whereby ODLI 3 classes describing the
same or semantically related concepts in different sources are identified and
clusterized into the same global class. Then the system automatically generates
a mapping table (MT) for each global class G of the GS whose columns repre-
sent the local classes L.G/ belonging to G and whose rows represent the global
attributes of G. An element MTŒGA�ŒL� represents the set of local attributes of
the local classL that are mapped onto the global attribute GA. The integration
designer may interactively refine and complete the proposed integration results;
in particular, the mappings that have been automatically created by the system
can be fine-tuned, as will be discussed in the next section.

5. GS annotation and OWL exportation:
The GS is semiautomatically annotated, i.e., each of its element is associated to
the meanings extracted from the annotated sources; the GS annotation can be
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Fig. 14.13 Mapping table of Enterprise

useful for making the GS available, as a domain ontology, to external users and
applications, as discussed in [9]. Moreover, the GS may be exported in OWL
format.

In [8] we showed our methodology applied to the integration of five Web sites,
three Italian and two American, that describe enterprises and products in the tex-
tile domain. The result of the GS generation phase was five global classes with the
corresponding mapping tables: Enterprise, Business_Organization, Category, Pro-
ductClassification, and Goods (Fig. 14.14). Figure 14.13 shows a screenshot taken
from the open source version of the MOMIS system at www.datariver.it; in partic-
ular, the mapping table of the global class Enterprise that groups the local classes
Company and Enterprise is shown.

14.2.3 Global Schema Refinement

In this phase of the integration process, the integration designer interactively refines
and completes the integration result obtained in the GS generation.

First of all, for a global class, its mapping table, which representes the semantic
relationships automatically created by the system among global and local attributes,
may be fine-tuned by changing its elements or by adding some new global attributes.
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Then, the integration designer defines, for each global class, the associated map-
ping query QG ; this is the main task of global schema refinement, and it is per-
formed in the following two steps:

1. Data Transformation: To transform local attribute values into a global attribute
value by means of the data transformation functions.

2. Data Fusion: A global class performs data fusion among its local class instances
when multiple records coming from local classes and representing the same
real-world object are fused into a single and consistent record of the global
class [22]. The integration designer must decide if he or she wants the system
to perform data fusion on a global class or not. If so, the query QG associated
to the global class is automatically composed by the system on the basis of
the process described in the Data Fusion section below. If not, the integration
designer may update the query automatically associated to the global class or
compose the mapping query.

Data Transformation. The integration designer defines how local attribute val-
ues are to be transformed into corresponding global attribute values by means of
data transformation functions. For each local class L and for each non-null ele-
ment MTŒGA�ŒL� of the mapping table a data transformation function DTFŒGA�ŒL�
must be specified. DTFŒGA�ŒL� is a function that must be executable/supported by
the local source of class L; for example, for relational sources, DTFŒGA�ŒL� is an
SQL value expression. The following defaults hold: if MTŒGA�ŒL� D fLAg, then
DTFŒGA�ŒL� D LA, i.e., no transformation is applied (identity transformation); if
MTŒGA�ŒL� contains more than one string attribute, then DTFŒGA�ŒL� is the string
concatenation.

In [12] we proposed the data transformation system of MOMIS and we demon-
strated its capability by responding to all challenges provided by the THALIA
benchmark. THALIA (Test Harness for the Assessment of Legacy information In-
tegration Approaches) [41] provides researchers with a collection of downloadable
data sources representing university course catalogs, a set of 12 benchmark queries,
and a scoring function for ranking the performance of an integration system. The
THALIA benchmark focuses on syntactic and semantic heterogeneities in order to
pose the greatest technical challenges to the research community.

As an example of the data transformation function, let us consider L2 D
Enterprise and the global attribute Web (Fig. 14.13); for the element MTŒWeb�
ŒL2� D fURL;Webg, we define DTFŒWeb�ŒL2� D coalesce.web; URL/,
where coalesce returns the first non-null value from the list of its arguments.
In this way, the WEB value at the global level is the WEB value at the local level,
if non-null; otherwise the URL value is considered.

Data Fusion. In the MOMIS system, data fusion is performed at the level of global
classes, by the mapping query QG associated to a global class. The first step of the
data fusion process is object identification, which is a problem beyond the scope of
the MOMIS framework. In what follows we introduce the concept of join conditions
as a convenient way to perform object identification when it is possible to assume
that error-free and shared object identifiers exist among different sources (see the
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example below). Moreover, this is a situation where the step of object identification
has already been performed and its result is the assignment of an object identifier to
each record: two records with the same object identifier indicate the same object in
different sources.

Join Conditions. Given a global class G, to identify instances coming from its lo-
cal classes and representing the same real-world object, we introduce join conditions
among pairs of local classes defined as follows. We specify a set of global attributes
JA of G, called join attributes, such that for each join attribute JA 2 JA and for
each local class L 2 L.G/ belonging to G, the element MTŒJA�ŒL� is not null.
Given JA D fJA1; JA2; : : : ; JAkg, for each pair of local classes L1; L2 2 L.G/, the
join condition between L1 and L1, denoted by JC.L1; L2/, is defined as follows:

DTFŒJA1�ŒL1� D DTFŒJA1�ŒL2�

and : : : and DTFŒJAk�ŒL1� D DTFŒJAk �ŒL2� :

As an example, if the global attribute Name is chosen as a join attribute for
the global class Enterprise (Fig. 14.13), we have that JC.L1; L2/ is equal to
L1:CompanyName D L2:Name. If Name and Phone are chosen as join at-
tributes, i.e., JA1 D Name and JA2 D Phone, then JC.L1; L2/ is equal to

L1:CompanyName D L2:Name and L1:Phone D L2:Tel :

On the basis of these join conditions, multiple records (coming from different local
classes and representing the same real-world object) are combined into a single
record by means of a full outer join operator.

Resolution Functions. In a global class, conflicts may arise for global attributes
mapped onto more than one local class; data reconciliation is then performed by res-
olution functions, as proposed in [22, 63]. In other words, for each global attribute
GA such that there is more than one nonempty element MTŒGA�ŒL�, we must define
a resolution function to obtain, starting from the values computed by the transforma-
tion functions DTFŒGA�ŒL�, the corresponding value for GA. The MOMIS system
provides some standard kinds of resolution functions:

• Random function: results in having the value of one of the local attributes ran-
domly chosen;

• Aggregation functions: for numerical attributes: SUM, AVG, MIN, MAX, etc.;
• Precedence function: the highest informational quality value on the basis of an

information quality model;
• Coalesce function: the first non-null value among the local attributes values.

As an example, in the global class Enterprise we can use for AboutUs as res-
olution function a precedence function to say that LC1.Description has a higher
precedence than LC2.AboutUs.

If the integration designer knows that there are no data conflicts for a global
attribute mapped onto more than one source (that is, the instances of the same real
object in different local classes have the same value for this common attribute), he
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can define this attribute as a homogeneous attribute. Of course, for homogeneous
attributes resolution functions are not necessary.5

To sum up, in the MOMIS system, data fusion is performed by combining the
SQL operator of a full outer join with resolution functions; this operation is called
a full outer join merge [62]. This data fusion operation is automatically defined by
the MOMIS system; the integration designer must only define data transformation
and resolution functions and the join attributes.

On the other hand, the integration designer may change the query automatically
created for a global class, i.e., QG , by explicitly composing it.

Finally, the integration designer can enrich the GS by adding is-a relationships
and key and foreign key constraints. In our example, the GS contains five global
classes, Enterprise, Business_Organization, Category, ProductClassification, and
Goods (Fig. 14.14); the integration designer defines the following is-a relationships
(represented by a green arrow in the figure): Business_Organization is-a Enterprise
and ProductClassification is-a Category; moreover, the integration designer defines
the following foreign key constraints (represented by a blue arrow in the figure):
in Business_Organization, the attribute HasCategory refers to Category and in Pro-
ductClassification the attribute HasGoods refers to Goods.

Fig. 14.14 GS of textile domain

5 A global attribute mapped onto only one source is a particular case of a homogeneous attribute.
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14.2.3.1 Full Outerjoin-Merge Operator

In this section we first introduce the definition of the full outerjoin-merge operator
(as given in [62]) and use it to define the mapping query for a global class. Then we
will show an SQL implementation of this operator.

The join-merge operator returns tuples for G that are joined from tuples in Li

and Lj using the join condition defined by join attributes. Without loss of generality
we consider a single join attribute denoted by ID. For all the attributes provided
only by Li the values of Li are used, and for all attributes provided only by Lj

the values of Lj are used. For the common attributes, the join-merge operator ap-
plies the resolution function f to determine the final value. The values of all other
attributes of G are padded with null values.

Definition 14.1 (Resolution function). Let D be an attribute domain and DC WD
D[ ?, where ? represents the null value. A resolution function f is an associative
function f W DC �DC ! DC with

f .x; y/ WD

8
ˆ̂̂
<

ˆ̂̂
:

? if x D ? and y D ? ;

x if y D ? and x 6D ? ;

y if x D ? and y 6D ? ;

g.x; y/ else ;

where g W D �D ! D. Function g is an internal associative resolution function.

Let G be a global class with schema S.G/ and let L be a local class of G;
we denote by LT the transformation of L by means of the data transformation
function DTF; the schema of LT , denoted by S.LT /, is a set of global attributes,
i.e., S.LT / � S.G/; in particular, ID 2 S.LT /. As an example, for the local class
LC2=Enterprise, we have (Fig. 14.13):

.S.LC2T / D fAboutUs; ID;NumOfEmployee; Phone;Webg/;
with.ID D Name/ :

Given a set of global attributes X � S.G/, the null tuple on X , denoted by t?ŒX�,
has a null value assigned for all attributes in X .

Definition 14.2 (Full outerjoin-merge operator t). Let G be a global class with
schema S.G/, and let Li and Lj be two local classes of G; we consider LT

i , LT
j

and the related schemas S.LT
i / and S.LT

j /.

The full outerjoin-merge of LT
i and LT

j , denoted by LT
i t LT

j , is defined as

LT
i tLT

j D JoinMerge [ Lef tPart [RightPart



14 Data Integration 465

where

JoinMerge D frŒID�rŒXLi �sŒXLj �resŒXLiLj �t?ŒX� j 9r 2 LT
i ; 9s 2 LT

j

with rŒID� D sŒID�;

where

XLi D S
�
LT

i

� n S �
LT

j

�
; i.e., the global attributes provided only by Li ;

XLj D S
�
LT

j

� n S �
LT

i

�
; i.e., the global attributes provided only by Lj ;

XLiLj D S
�
LT

j

� \ S
�
LT

i

�
; and 8A 2 XLiLj ; A 6D ID;

resŒA� D f .rŒA�; sŒA�/;

where f is a resolution function as defined above,

X D S.G/ n .S �
LT

j

� [ S �
LT

i

�
/:g

Lef tPart D ˚
rŒS

�
LT

i

�
�t?ŒX� j 9r 2 LT

i ; 6 9s 2 LT
j

with rŒID� D sŒID�;X D S.G/ n S �
LT

i

��

RightPart D ˚
sŒS

�
LT

j

�
�t?ŒX� j 9s 2 LT

j ; 6 9r 2 LT
i

with sŒID� D rŒID�;X D S.G/ n S �
LT

j

��

On the basis of the above definitions, resolution functions and full outerjoin-
merge is defined on transformed local classes, LT . As an example, Fig. 14.15 shows
LC T

1 t LC T
2 (where LC1 D Company and LC2 D Enterprise are the local

classes of Enterprise introduced in Fig. 14.13) (some attributes are omitted); we use
the following resolution functions:

• precedence for AboutUs: precedence(LC T
1 :AboutUs, LC

T
2 :AboutUs)

• coalesce for Phone: coalesce(LC T
1 :Phone, LC T

2 :Phone)
• AVG for NumOfEmployee: AVG(LC T

1 :NumOfEmployee, LC T
2 :NumOf -

Employee)

Given a global class G with local classes LG, the mapping queryQG associated
to G is defined on the basis of the full outerjoin-merge operator, using ID as join
attribute.

When the global class has more than two local classes, the evaluation order is not
relevant, since the t operator is an associative operator.
Proposition (associativity of t). Let G be a global class. Then:

�
LT

1 tLT
2

� tLT
3 D LT

1 t �
LT

2 t LT
3

�

for each L1, L2, and L3 belonging to G.

Definition 14.3 (Mapping queryQG). LetG be a global class and let L.G/ be the
set of its local classes. The mapping queryQG associated toG is defined as follows:

QG D
G ˚

LT
i j Li 2 L.G/

�
:
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LCT
1

AboutUs ContactPerson Fax Name NumOfEmployee Phone

Champions Moratti 3-3-3 Inter 11 4231
D. Alberto Milito 3-3-3 Il principe 30 1234
Special One Mourinho NULL Triplete 3 NULL

LCT
2

AboutUs Name NumOfEmployee Phone

Campioni Inter 13 NULL
Bernal Il principe 34 1234

Zeru Tituli Milan -12 6-0

LCT
1 �LCT

2
AboutUs ContactPerson Fax Name NumOfEmployee Phone

Champions Moratti 3-3-3 Inter 12 4231
D. Alberto Milito 3-3-3 Il principe 32 1234
Special One Mourinho NULL Triplete 3 NULL
Zeru Tituli NULL NULL Milan -12 6-0

Fig. 14.15 Example of full outerjoin-merge

In [21, 62] an implementation of the full outerjoin-merge operator is proposed; the
underlying engine of the entire process is the XXL framework, an extensible li-
brary for building database management systems [16]. In the MOMIS system, an
SQL implementation of the full outerjoin-merge operator is adopted: first, the full
outer-join expression is computed with an SQL engine and then resolution func-
tions are applied. To get an intuition of this implementation, the computation of
QG D FfLT

1 ; L
T
2 ; L

T
3 g is performed in the following two steps:

1. The SQL query, denoted by FOJ.LT
1 ; L

T
2 ; L

T
3 /, is executed:

(T_L1 full join T_L2 on JC(L1,L2))
full join T_L3 on (JC(L1,L3) OR JC(L2,L3))

2. QG is obtained by applying the resolution functions to the attributes resulting
from FOJ: for each global attribute GA the related resolution function is applied.

As we will show in the next section, at query time, this computation of QG is
executed over the partial results coming from the local classes on the basis of the
query unfolding process described in Sect. 14.2.4.2.

14.2.4 Querying the MOMIS System

A query is intended to provide the specification of which data to extract from the
virtual database represented by the integration system. Queries are posed in terms
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of the GS and are expressed in a query language over the alphabet GS ; we will
restrict our attention to conjunctive queries.

For example, given the GS of the textile domain of Fig. 14.14, suppose we want
to find the name, address, and Web address of the enterprises having a category,
a contact person, and a Web address that ends with “.com.” For the sake of simplic-
ity, we consider the query in an SQL-like format:

Q = SELECT Name, Address, Web
FROM Enterprise, BusinessOrganization, Category
WHERE Enterprise.Name=BusinessOrganization.Name
AND BusinessOrganization.HasCategory=

Category.Category_Code
AND ContactPerson = ’yes’
AND NumOfEmployee < 100
AND Web LIKE ’*.com’

Query processing is carried out in two steps:

1. Query expansion: The query posed in terms of the GS is expanded to take into
account the integrity constraints (in our case, is-a relationships, key constraints,
and foreign key constraints): all constraints in the GS are compiled in the ex-
pansion, so that the expanded query can be processed by ignoring constraints.
Then, the atoms (i.e., subqueries referring to a single global class) are extracted
from the expanded query.

2. Query unfolding: The atoms in the expanded query are unfolded by taking into
account the mappings between the GS and its local sources.

In what follows, we show an example of query expansion (the algorithm for
query expansion was introduced in [25, 26]; then it was adapted in the context of
the MOMIS system in [15]), and we discuss the unfolding process of an atom by
taking into account the mapping queryQG introduced in Sect. 14.2.3.

14.2.4.1 Query Expansion Example

The output of the query expansion process is an expanded query (called EXPQuery)
and its atoms (called EXPAtoms); EXPQuery is a union of conjunctive queries on
the GS; an EXPAtom is a single class query on a global class of the GS.

As an example, the query expansion process for the previous query Q produces:

• EXPQuery = Q1 UNION Q2, where Q1 = Q and Q2 is obtained from Q by
substituting Category with ProductClassification, i.e., Q2 takes into
account the constraint ProductClassification is-a Category:

Q = SELECT Name, Address, Web
FROM Enterprise, BusinessOrganization,

ProductClassification
WHERE Enterprise.Name=BusinessOrganization.Name
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AND BusinessOrganization.HasCategory=
ProductClassification.Category_Code

AND ContactPerson = ’yes’
AND NumOfEmployee < 100
AND Web LIKE ’*.com’

• A set of EXPAtoms:

ExpAtom1 = SELECT Name, Address, Web
FROM Enterprise,
WHERE ContactPerson = ’yes’
AND NumOfEmployee < 100
AND Web LIKE ’*.com’

ExpAtom2 = SELECT HasCategory
FROM BusinessOrganization

ExpAtom3 = SELECT Category_Code
FROM ProductClassification

14.2.4.2 Query Unfolding

The query unfolding process is performed for each EXPAtom which is a single
global query Q over a global class G of the GS:

Q = SELECT <Q_SELECT-list>
FROM G
WHERE <Q_condition>

where <Q_condition> is a Boolean expression of positive atomic constraints:
(GA1 op value) or (GA1 op GA2), with GA1 and GA2 attributes of G. Let
L;L2; : : : Ln be the local classes related to the G, i.e., which are integrated into G.

To answer a query over a global classG, the query must be rewritten as an equiva-
lent set of queries expressed on the local schemata (local queries); this query transla-
tion is performed by considering the mapping between the global class and the local
schemata. MOMIS follows a GAV approach and for each global class G a mapping
query QG over the schemas of its local classes L.G/. Then the query translation is
performed by means of query unfolding, i.e., by expanding a global query on
a global classG of the PV V according to the definition of this mapping queryQG .

The query unfolding of a global query Q produces, for each local class L belong-
ing to G, a local queryQ_L:

Q_L = SELECT <Q_L_SELECT-list>
FROM L
WHERE <Q_L_condition>

where the select list is a list of local attributes of L and the local query condition on
L. These local queries are executed on the local sources, and local query answers
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are then fused by means of the mapping queryQG to obtain the answer of the global
query.

In what follows we will give an intuitive and informal description of the query
unfolding process by considering some examples; for more details see [15].

Let us consider the SQL version of EXPAtom1:

SELECT Name,Address,Web
FROM Enterprise
WHERE Web like ’*.com’
AND ContactPerson = ’yes’
AND NumOfEmployee < 100

The mapping table of the class Enterprise involved in the query is in Fig. 14.13. The
steps to compute a local queryQ_L are as follows:

(1) Local Query Condition:
In this step, the constraint is rewritten into one that can be supported by the local
class L. The atomic constraint mapping is performed on the basis of the mapping
functions defined in the mapping table. Moreover, the atomic constraint mapping
depends on the presence of nonhomogeneous attributes and of the related resolution
function. For example, if the numerical global attribute GA is mapped onto L1 and
L2, and we define the AVG function as a resolution function, the constraint (GA D
value) cannot be pushed at the local sources because the AVG function must be
calculated at a global level, so the constraint may be globally true but locally false.
In this case, the constraint is mapped as true in both the local sources.

On the other hand, if GA is a homogeneous attribute, the constraint can be pushed
at the local sources; recall that a global attribute GA mapped on only one local class
is a particular case of a homogeneous attribute.

We can summarize as follows. An atomic constraint .GA op value/ is mapped
onto the local class L as follows:

.DTFŒGA�ŒL� op value/ if GA is a homogeneous attribute and

DTFŒGA�ŒL� is not null and

the op operator is supported in L

true otherwise

In our example, we have the following local query conditions:

• for Company: coalesce(Web,URL) LIKE ’*.com’
• for Enterprise: ContactPerson=’yes’

(2) Residual Condition:
Intuitively, as explained before, conditions expressed over notnomogeneus at-

tributes are residual, i.e., must be solved at the global level. More precisely, an
atomic constraint .GA op value/ is a residual if there exists a local class L such
that DTFŒGA�ŒL� is not null and .GA op value/ is mapped onto L as true.

In the example, the residual condition is equal to: NumOfEmployee < 100.
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(3) Local Select List:
The select list of query LQ for the local class L is obtained by the union of the

attributes of the global select list, the join condition, and the residual condition;
these attributes are transformed on the basis of the mapping table. With the local
select list the local query is complete.

In the example, we have the following local queries:

Q_Company = SELECT CompanyName,Address,Web,
Employee_avg

FROM Company
WHERE coalesce(Web,URL) LIKE ’*.com’

Q_Enterprise = SELECT Name,Address,Web, mean_Employee
FROM Enterprise
WHERE ContactPerson=’yes’

(4) Full Outer Join Computation:
Generation of FOJ.LQ1;LQ2; : : : ;LQn/, which computes the full outerjoin-

merge of the LQs (Sect. 14.2.3.1). The SQL implementation of FOJ
(Sect. 14.2.3.1) in our example is:

\textit{FOJ} = Q_Company full join Q_Enterprise on
(Q_Company.CompanyName=Q_Enterprise.Name)

(5) Application of the Resolution Functions:
For the GA of the global query the related resolution function f .LQ1:GA;

LQ2:GA; : : : ;LQn:GA/ is applied; in our example the result is the relation
R_FOJ(Name,Address,Web,NumOfEmployee).

(6) Application of the Residual Condition:
The result of the global query is obtained by applying the residual condition to

R_FOJ:

SELECT Name,Address,Web
FROM R_FOJ
WHERE NumOfEmployee < 100

Such a query unfolding process is fully implemented in the MOMIS system, which
uses a “relational engine” to perform steps 4 (FOJ Computation) and 6 (Application
of the Residual Condition).

Let us conclude this section with some open issues related to query optimization.
First, the full join operation in the FOJ computation can be optimized by re-
ducing it to a left, right join or to an inner join; some preliminary ideas are
discussed in [10]. Moreover, to support algebraic query optimization, [61] analyzes
different properties of the resolution functions, e.g., commutativity, order depen-
dance, decomposability, etc; these play an important role when deciding whether
a condition can be pushed down below a join. Rules for decomposable, order-, and
duplicate-insensitive functions, such as max and min, can be taken from the litera-
ture on the optimization of grouping and aggregation. In [61] some rules are intro-
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duced to perform this kind of optimization, for some specific resolution functions;
however, it is an open issue for general and more complex functions.

14.2.5 New Trends in the MOMIS System

In this section we briefly discuss some extensions to the MOMIS system that we
are studying and developing (not included in the software release at www.datariver.
com).

Automatic Annotation by PWSD. Instead of forcing the determination of
a unique best meaning of a term, in [66] we proposed the Probabilistic Word
Sense Disambiguation (PWSD) method that automatically annotates source el-
ements and associates to any annotation a probability value that indicates the
reliability level of the annotation. The PWSD method is based on a probabilistic
combination of different WSD algorithms. The use of different WSD algorithms
leads to an epistemic uncertainty, i.e., the type of uncertainty that results from
a lack of knowledge about a system; for this reason, we explored the Dempster–
Shafer theory, which best deals with this kind of uncertainty [76]. After this task
of probabilistic lexical annotation, it is possible to automatically extract prob-
abilistic lexical relationships across elements of different schemata/ontologies,
on the basis of relationships defined among meanings in the lexical database
(WordNet in our case). PWSD has been implemented in the Automatic Lexical
Annotation tool [78].

Schema Label Normalization. The accuracy of semiautomatic lexical annota-
tion methods on real-world schemata suffers from an abundance of nondictionary
words such as compound nouns and word abbreviations. In [79], we addressed
this problem by proposing a method of performing schema label normaliza-
tion that increases the number of comparable labels. Unlike other solutions, this
method semiautomatically expands abbreviations and annotates compound terms
(a minimal manual effort is required if the user wants to set configuration pa-
rameters). We empirically proved that our normalization method helps in the
identification of similarities among schema elements of different data sources,
thus improving schema matching accuracy by reducing the number of false pos-
itive/false negative lexical relationships. Moreover, in [11] we proposed a new
method for the annotation of nondictionary compound nouns, which draws its
inspiration from works in the natural language disambiguation area.

Toward a Unified View of Data and Services. The increasing availability of data
and eServices on the Web allows users to search for relevant information and to
perform operations through eServices. Current technologies do not support users
in the execution of such activities as a unique task; thus users have first to find
interesting information and then, as a separate activity, to find and use eServices.
In [14, 18] we presented a framework capable of building and querying a seman-
tically unified view of data and semantically described eServices.
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Data and Multimedia Sources. In [13] the capabilities of the MOMIS integra-
tion system and the MILOS multimedia content management system were cou-
pled, thus providing a methodology and a tool for building and querying a popu-
lated ontology representing data and multimedia sources.

14.3 Conclusions

Given the many data integration approaches, a complete and exhaustive comparison
of all the research activities is not possible. In this chapter, we presented an overview
of what we think are the most relevant research activities and ideas in the field in
the last 20 years.

We also introduced the MOMIS system, a framework to perform information
extraction and integration from both structured and semistructured data sources,
that is one of the most interesting results of our research activity. An open source
version of the MOMIS system is delivered by the academic startup DataRiver
(www.datariver.it).
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Chapter 15
Conceptual Modeling Foundations
for a Web of Knowledge

David W. Embley, Stephen W. Liddle, and Deryle W. Lonsdale

Abstract The semantic web purports to be a web of knowledge that can answer our
questions, help us reason about everyday problems as well as scientific endeavors,
and service many of our wants and needs. Researchers and others expound various
views about exactly what this means. Here we propose an answer with concep-
tual modeling as its foundation. We define a web of knowledge as a collection of
interconnected knowledge bundles superimposed over a web of documents. Knowl-
edge bundles are conceptual model instances augmented with facilities that provide
for both extensional and intensional facts, for linking between knowledge bundles
yielding a web of data, and for linking to an underlying document collection pro-
viding a means of authentication. We formally define both the component parts of
these augmented conceptual models and their synergistic interconnections. As for
practicalities, we discuss problems regarding the potentially high cost of construct-
ing a web of knowledge and explain how they may be mitigated. We also discuss
usage issues and show how untrained users can interact with and gain benefit from
a web of knowledge.

15.1 Introduction

Ideas about the semantic web have been with us ever since Tim Berners-Lee pub-
lished his book Weaving the Web [9], and his Scientific American article The Seman-
tic Web [10] with Hendler and Lassila. They and others have continued to discuss
these ideas in an effort to more fully explain the Semantic Web vision – its practical-
ities, successes, and challenges [1, 57]. The W3C Web site introduces the semantic
web simply as “a web of data” [64].
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Many of these ideas hark back even to the days of Plato [48] and Aristotle [5]
and the beginnings of philosophical discussions about ontology, epistemology, and
logic. Here, we begin with this ancient view of semantics and show how it leads
to a view of the semantic web rooted in conceptual modeling. In particular, we
show how conceptual modeling can unify a view of these fundamental concepts and
provide a practical way to realize them. Our intent is not to resolve questions about
what the semantic web is, but rather to provide a practical view of one possible
path toward realizing some of the benefits claimed by semantic web visionaries. We
call our conceptual-modeling view of the semantic web a “web of knowledge” (a
“WoK”).

To motivate our vision of a WoK, consider the current web of pages, which con-
tains a wealth of knowledge. Unfortunately, most of the knowledge is not encoded
in a way that enables direct user query. We cannot, for example, directly google for
a car that is a 2003 or newer selling for under 15 grand; or for the names of the
parents of great-grandpa Schnitker; or for countries whose population will likely
decrease by more than 10% in 50 years. A way to enable direct query for facts em-
bedded in Web pages and facts implied by these stated facts is to annotate facts
with respect to ontologies. Annotating facts implicitly populates these ontologies,
turning them into a database over which structured queries can be executed. Anno-
tation links also provide a form of provenance and authentication, allowing users
to verify query results by checking original sources. Furthermore, facts and onto-
logical concepts may appear in more than one populated ontology. Linking facts
and ontological concepts across ontologies can provide navigation paths to explore
additional, related knowledge. The web, with a superimposed layer of interlinked
ontologies each annotating a myriad of facts from the underlying web, becomes
a web of knowledge, a WoK.

Although this vision of a WoK is appealing, there are significant barriers pre-
venting both its creation and its use. Ontology languages exist, with OWL being the
de facto standard. RDF files can provide data for these ontologies and can also store
annotation information linking data to facts in Web pages and linking equivalent
information in RDF files to one another. The SPARQL query language is a standard
for querying RDF data. SWRL rules can provide for reasoning. Thus, all constituent
components for a WoK are W3C standards in common use, and they even all work
together allowing for immediate WoK development and usage. Nevertheless, the
barriers to creation and usage remain high and effectively prevent WoK deploy-
ment. The creation barrier is high because of the cost involved in developing OWL
ontologies and annotating Web pages by linking RDF-encoded facts in Web pages
to these OWL ontologies. The usage barrier is high because untrained users cannot
write SPARQL queries and SWRL rules.

In this exposition, we show how conceptual modeling can enable a WoK – can
provide a firm foundation for a WoK and ways to break through the barriers to WoK
creation and usage. We begin in Sect. 15.2 by discussing a computational view of
ontology, epistemology, and logic. We argue that conceptual models, augmented in
a particular way, build nicely upon these philosophical ideas so as to enable a WoK.
In Sect. 15.3 we formalize this foundation. The formalization leads to a clear under-
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standing of what must be done to create a WoK and make it usable. We then discuss
initiatives we have investigated to address these challenges and opportunities – for
construction in Sect. 15.4 and for usage in Sect. 15.5. We conclude in Sect. 15.6.

15.2 WoK Conceptualization

To think about constructing and using a WoK, we first ask some fundamental ques-
tions: What are data? What are facts? What is knowledge? How does one reason
and know? Philosophers have pursued answers to these questions for millennia;
and although we do not pretend to be able to contribute to philosophy, we can use
philosophers’ ideas about ontology, epistemology, and logic to guide us in building
and using a WoK.

• Ontology is the study of existence. It asks: “What exists?” In our quest to build
a WoK, we must find computational solutions to the question: “What concepts,
relationships, and constraints exist?” We answer computationally, saying that we
can declare a formal conceptual model for some domain of knowledge that cap-
tures the relevant concepts along with the relationships among these concepts
and the constraints over these concepts and relationships.1

• Epistemology is the study of the nature of knowledge. It asks: “What is knowl-
edge?” and “How is knowledge acquired?” To build a WoK, we provide compu-
tational answers to “What is digitally stored knowledge?” and “How do raw data
become algorithmically accessible knowledge?” Our answer is to turn raw data
into knowledge by populating conceptual models – by embedding facts in the
concepts and relationships in accord with constraints. We further follow Plato’s
lead in wanting our knowledge to be justified [48], and thus we provide (1) an-
notation links that connect facts embedded in ontologies to sources from which
they are extracted and (2) data and concept “same-as” connections that link ob-
jects and concepts across populated ontologies.

• Logic comprises principles and criteria of valid inference. It asks: “What is
known?” and “What can be inferred?” In the computational context of a WoK,
it can answer the question “What are the known facts, both given and implied?”
We ground our conceptual model in a description logic – a decidable fragment
of first-order logic [12]. To make this logic practical for nonlogicians, we must
and do add a query generator whose input consists of ordinary free-form textual
expressions or ordinary fill-in-the-blank query forms. Both query modes funda-
mentally depend on conceptual-model-based ontologies to convert free-form and
form-based queries to structured queries. Justification of query results relies on
tracing annotation links back to source data and on following reasoning chains.

1 Purists argue that conceptual models are not ontologies [39, 40, 58]. We agree that when concep-
tual models play their traditional role in aiding in database schema design, they typically are not
ontologies. But when they are used to answer “What exists?” and thus when they formally capture
the concepts, relationships, and constraints that exist in a domain, they are ontologies.
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Fig. 15.1 Sample car ad Web pages

To illustrate these ideas, we give some examples. Suppose we wish to find a used
car to purchase. We might pose this query: “Find me a red Nissan for under $5000,
a 1990 or newer with less than 100 K miles on it,” or this query: “I’d like a Japanese-
made car for under 15 grand.” Figure 15.1 shows some Web pages with cars for
sale that satisfy these queries. Two of the three Nissans satisfy the first query, and
all the Nissans and the Mitsubishi, but not the Toyota, satisfy the second query.
Unfortunately, however, search engines do not access the facts within these ads in
the way we would wish to find these cars. Our approach of superimposing a WoK
over a web of pages makes these facts visible from outside the page and directly
accessible to query engines (as opposed to search engines).

To make this work, we need an ontology for car ads. Figure 15.2 shows an ex-
ample. The ontology is a conceptual model. It consists of object sets that are either
lexical (dashed boxes in Fig. 15.2) or nonlexical (solid boxes). Instances in lexical
object sets are strings of characters such as “Nissan” or “1990,” whereas instances in
nonlexical object sets are object identifiers that stand for real-world objects – Car73

and Car1194, for example, identify specific cars. Relationship sets in the conceptual
model are lines connecting object sets. Min–max participation constraints impose



15 Conceptual Modeling Foundations for a Web of Knowledge 481

1:*
0:1

1:*

0:*

1:*

0:1

0:1

1:*

0:1

1:*

0:1

1:*

1:*

0:10:1

1:*

1:*0:*

TrimModel

ModelTrimYear

Make

Price

Mileage

Color

Transmission

AccessoryBodyType

Engine

FeatureCar

Fig. 15.2 Car ad ontology

restrictions on the relationship sets: a car described in a car ad can have zero or
more features (0:*), but at most one make (0:1). Ontologies for our WoK vision also
support hypernym–hyponym is-a hierarchies and holonym–meronym part-of hier-
archies. A white triangle denotes an is-a hierarchy, so that, for example, a BodyType
is-a Feature in Fig. 15.2. The plus symbol (+) in the triangle specifies a disjointness
constraint among the specializations; it is also possible to declare union constraints
([) specifying that a generalization object set is a union of its specialization object
sets and partition constraints (]) specifying that specialization object sets partition
their generalization. A black triangle denotes a part-of hierarchy. In Fig. 15.2, for ex-
ample, a model such as “Accord” aggregated with a trim specification such as “LX”
constitutes the concept “Accord LX,” which has some ModelTrim object identifier
(e.g.,ModelT rim39).

Whereas an ontology tells us what kind of knowledge exists in our domain of
interest, epistemological specifications tell us what the knowledge is and how it is
acquired. For our WoK vision, populating an ontology yields knowledge. We can
populate the car-ad ontology in Fig. 15.2 with facts derived from car ads. Assum-
ing Car73 denotes the Nissan Altima pictured in Fig. 15.1, some of the object-set
facts are Car(Car73), Year(2003), and Transmission(“Automatic”), and some of the
relationship facts are CarYear(Car73, 2003) and CarFeature(Car73, “Automatic”).

The way we intend to acquire knowledge in our WoK vision is particularly inter-
esting. Although possible to simply encode by hand, this is far too labor intensive
and does not scale. We must find ways to automatically identify facts and associate
them with ontologies. Sometimes information is structured in such a way that it is
possible to reverse engineer it into an ontology; sometimes it is possible to resort
to available outside knowledge sources to align semistructured information with an
ontology; but sometimes the information yields to neither of these techniques. For
this latter case, we augment the ontologies themselves so that they are capable of
recognizing, annotating, and extracting relevant facts with respect to their ontologi-
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Fig. 15.3 Data frames

cal descriptions. We call these augmented ontologies extraction ontologies because
they are capable of locating and extracting facts from any kind of document, un-
structured as well as semistructured and structured.

The augmentation that turns an ontology into an extraction ontology is a data
frame [30]. Data frames are linguistically grounded abstract data types – they en-
capsulate everything we wish to know about categorized data instances including
their internal and external representations and their applicable operations. Linguistic
grounding consists of providing recognizers for instances of object and relationship
sets. Figure 15.3 shows examples of the kind of recognizers we currently use in our
WoK vision, but any kind of information extractor [54] is possible, e.g., machine-
learned wrappers (e.g., [66]), NLP-based recognition techniques (e.g., [35]), and
elaborate handcrafted rules (e.g., [38, 41]). The recognizers in Fig. 15.3 are of two
types – regular expressions and lexicons – which operate independently or together.
The regular expression for the external representation of Price in Fig. 15.3 recog-
nizes price instances such as “$23,900” and “15 grand.” The external-representation
recognizer for Make, on the other hand, is a lexicon that lists all the makes of cars, in-
cluding their alternate spellings and abbreviations. Context keywords such as price
and asking in Fig. 15.3 help disambiguate instances that may be recognized for
more than one concept (e.g., MSRP price vs. asking price). Operators also have rec-
ognizers. Keywords such as “less than,” “<,” and “under” in Fig. 15.3 indicate the
applicability of the LessThan operator. A price instance following these keywords
becomes the second parameter p2 in the operation, the car price being assumed as
the first.

Justification of captured knowledge is a natural consequence of acquiring and se-
mantically annotating knowledge. When we reverse engineer structured knowledge
into a fact-filled ontology, align facts in a knowledge source with an ontology, or
extract facts from data-rich documents, the WoK system keeps track of the source
of each fact. Later, when someone queries for these facts, the WoK system provides,
in addition to the standard query results, a cached page with the fact instances high-
lighted. For example, if we query for a red Nissan Altima for under 15 grand, as
part of the answer the WoK system can retrieve the cached page of the Altima in
Fig. 15.1 and display it with the strings Red, Nissan, Altima, and $6,990 highlighted.
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Besides enabling fact recognition in source documents, extraction ontologies also
enable free-form query processing. For example, a WoK system with the ontology in
Fig. 15.1 augmented with the data-frame recognizers in Fig. 15.3 can interpret and
process the query: “Find me a red Nissan Altima for under 15 grand.” The system as-
sociates the recognized instances “red,” “Nissan,” “Altima,” and “15 grand,” respec-
tively, with the object sets Color, Make, Model, and Price, and it associates “under”
with the LessThan operator in the Price data frame and the price “15 grand” with the
operator’s parameter p2. Generating a formal select-project-join query from these
recognized associations is straightforward: do outer join over the ontology’s struc-
ture, select based on the identified constants and Boolean operations, and project on
the mentioned object sets.

Retrieving inferred facts is more complex. To illustrate, consider processing the
query “I’d like a Japanese-made car for under 15 grand.” For this query the WoK
system needs a way to determine which cars are Japanese. Suppose we have a sec-
ond ontology about car manufacturers such as the one in Fig. 15.4. Observe that the
concept Make in Fig. 15.1 is semantically the same as the concept Make in Fig. 15.4.
Connecting these concepts with a between-ontologies same-as link is an example of
the interconnecting links in the weblike structure constituting a WoK. With these
two ontologies and the interconnecting link, we now have the information we need
to declare inference rules that can reason about a car being Japanese-made. A car in
a car ad that has a make produced by a manufacturer whose headquarters is in Japan
is a Japanese-made car.

Next observe that populated ontologies are in reality first-order-language theories
of predicate calculus. Each object set S is a one-place predicate S.x/. Each n-ary
relationship set R is an n-place predicate, R.x1; : : : ; xn/. The constraints of our
conceptual-modeling language are all expressible as closed well-formed formulas of
predicate calculus. Populating an ontology provides the ground facts for a first-order
theory. When all the constraints hold for a populated ontology, we have a model
of the first-order theory, and we can reason over the model with logic languages,
appropriately restricted to make them decidable and tractable.

For our query about Japanese-made cars, suppose we have the following logic
rule (expressed in Datalog-like syntax) for the car manufacturer ontology:

JapaneseMake(x) :- Make(x), CarManufacturerMake(y, x),
CarManufacturerHeadquarters(y, z),
CountryHeadquarters(’Japan’, z).

Fig. 15.4 Car manufacturer
ontology 1
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1

1:*1
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CountryCityModelMake

HeadquartersCarManufacturer
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Similar to linguistically grounding operators in our ontologies, we can linguistically
ground logic rules. Thus, the phrase “Japanese-made car” should indicate that this
rule applies. Now, when a user poses a query for Japanese-made cars for under 15
grand, the WoK system recognizes that the two ontologies apply and generates the
following formal query over the two theories CarAd and CarManuf :

CarAd.Car(x) :- CarAd.CarPrice(x, y),
CarAd.LessThan(y, 15000), CarAd.CarMake(x, z),
CarManuf.JapaneseMake(z).

Here, the same-as link lets us seamlessly navigate among populated ontologies in
a WoK. As an aside, note the conversion of “15 grand” to the integer 15000. As
indicated in the Price data frame in Fig. 15.3, the type for the internal representation
is integer. As the WoK system extracts data for an ontology, it also converts the data
to declared internal representations.

By way of summary for this informal introduction to our WoK vision, we see
a WoK consisting of logic theories, interconnected and superimposed over web doc-
uments. Logic theories are populated ontologies. From an epistemological point of
view, populated ontologies are extensional knowledge. And with the addition of
inference rules, populated ontologies also embody intensional knowledge.

15.3 WoK Formalization

We base our foundational conceptualization for a WoK on the conceptual modeling
language OSM (Object-oriented Systems Modeling) [27]. OSM, however, simply
provides a graphical representation of a first-order-logic language. Here we restrict
OSM to be decidable, yet powerful enough to represent desired ontological con-
cepts and constraints. We call our restriction OSM-O, short for OSM-Ontology. We
thus base our foundational conceptualization directly on an appropriate restriction
of first-order logic. This WoK foundation should be no surprise since it is the basis
for modern information systems and has been the basis for formalizing information
since the days of Aristotle [5].

Definition 15.1. OSM-O is a triple (O , R, C ):

• O is a set of object sets; each is a one-place predicate; and each predicate has a
lexical or a nonlexical designation.

• R is a set of n-ary relationship sets (n � 2); each is an n-place predicate.
• C is a set of constraints:

– Referential integrity: 8x1 : : :8xn.R.x1; : : : ; xn/ ) S1.x1/ ^ : : : ^ Sn.xn/

for each n-ary relationship set R connecting object sets S1, . . . , Sn.
– Participation constraint min:max cardinality: for every connection of an object

set S to an n-ary relationship set R, 8xi .S.xi / ) 9�min < x1; : : : ; xi�1;

xiC1; : : : ; xn > .R.x1; : : : ; xn/// if min > 0, and 8xi .S.xi / ) 9�max < x1;
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: : : ; xi�1; xiC1; : : : ; xn > .R.x1; : : : ; xn/// if max is not * (the symbol
denoting an unbounded maximum).

– Generalization/specialization: 8x.S1.x/ _ : : : _ Sn.x/ ) G.x// for each
generalization object setG of specialization object sets S1, . . . , Sn in a hyper-
nym–hyponym is-a hierarchy. In addition, 8x.Si .x/ ) :Sj .x// for 1 � i ,j
� n and i ¤ j if the specialization object sets are disjoint and 8x.G.x/ )
S1.x/ _ : : : _ Sn.x// if the generalization object set is complete is a union of
the specialization object sets.

– Aggregation: holonym–meronym relationship sets grouped as an aggregation
in an is-part-of hierarchy.�

Example 15.1. Figure 15.2 shows an OSM-O model instance. Car.x/ and Model-
Trim.x/ are the one-place predicates for the two nonlexical object sets.
Mileage.x/ and Engine.x/ are two of the one-place predicates for the lexical
object sets. CarYear.x; y/ is a two-place predicate for the relationship set con-
necting Car and Year. For readability, we may provide a more descriptive name
for a relationship set so long as the naming phrase for the relationship set in-
cludes the names of its object sets. We then typically use infix notation and
write, for example, Car.x/hasYear.y/ for the CarYear.x; y/ relationship set or
Car.x/costsPrice.y/ for the CarPrice.x; y/ relationship set. One of the referential
integrity constraints is 8x8y.CarYear.x; y/) Car.x/ ^ Year.y//. One of the par-
ticipation constraints is 8x.Car.x/ ) 9�1y.CarYear.x; y///, where we drop the
tuple-grouping angle brackets for the common case of only one variable being exis-
tentially quantified. The formula 8x.Engine.x/ _ BodyType.x/ _ Accessory.x/
_ Transmission.x/ ) Feature.x// defines the generalization/specialization; its
disjointness constraint includes 8x.Engine.x/ ) : BodyType.x// as one of its
terms. An aggregation groups several relationship sets denoting subparts of super-
parts: Model.x/isSubpartOfModelTrim.y/ and Trim.x/isSubpartOfModelTrim.y/
are the two relationship sets of the aggregation in Fig. 15.2; their inverses are, re-
spectively, ModelTrim.x/isSuperpartOfTrim.y/ and ModelTrim.x/isSuperpartOf-
Model.y/. Although graphical in appearance, an OSM-O diagram is merely a two-
dimensional rendition of predicates and closed formulas as defined in Defini-
tion 15.1.�

Definition 15.2. Let M = (O , R, C ) be an OSM-O model instance. Let I be an
interpretation for M that has a domain D = LID [ OID, where LID \ OID D Ø,
and a declaration of True or False for each valid instantiation of each predicate
in O [ R. For predicates in O , valid instantiations require lexical predicates to
be instantiated with values in LID and nonlexical predicates to be instantiated with
values in OID. For predicates in R, valid instantiations require each value v to be
lexical or nonlexical according to whether the connected object set for v is lexical
or nonlexical, respectively. If all the constraints of C hold, I is a model ofM , which
we call a valid interpretation ofM (to avoid an ambiguous use of the word “model”
when also discussing conceptual models). An instantiated True predicate for a valid
interpretation is a fact.�
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Example 15.2. A valid interpretation of the OSM-O model instance in Fig. 15.2
contains facts about cars. A valid interpretation might include the facts Car(Car3),
Year(2003), CarYear(Car3, 2003), Model(“Accord”), Trim(“LX”),
ModelTrim(ModelTrim17), CarModelTrim(Car3, ModelTrim17),
and Trim.“LX”/isPartOfModelTrim.ModelTrim17/. The object sets Car and Model-
Trim, being nonlexical, have object identifiers for their domain-value substitutions
(which we denote by object-set names with a subscript). The constraint 8x.Car.x/
) 9�1y.CarYear.x; y/// holds for Car.Car3/ if CarYear(Car3, 2003) is the only
car-year pair that exists with Car3 as its first element.�

Similar to the work by Buitelaar et al. [7], we now show how to linguistically
ground OSM-O. Linguistically grounding OSM-O turns OSM-O model instances
into OSM-Extraction-Ontology model instances (OSM-EO model instances). We
begin by defining an ordinary abstract data type for each object set and relation-
ship set. We then add linguistic recognizers for instance values, operators, operator
parameters, and relationships.

Definition 15.3. An abstract data type is a pair (V , O), where V is a set of values
and O is a set of operations.�

Definition 15.4. A data frame is an abstract data type augmented as follows:

1. The data frame has a name N designating the set of values V , and it may have
a list of synonyms for N .

2. The value set V has instance recognizers that identify lexical patterns denoting
values in V .

3. For a lexical object set, the operator set O includes input operators to convert
identified instances to an internal representation and output operators to convert
the internal representation of instances to displayable strings.

4. An operation o inO may have a recognizer that identifies lexical patterns in text
that indicate that o applies. Further, the recognizer identifies lexical patterns that,
along with instance recognizers, identify parameters for o.�

Example 15.3. In Fig. 15.3 the value set V for the Price data frame is of the type
Integer. Its recognizer is a potentially lengthy list of regular expressions augmented
by keywords. Its operation setO includes the LessThan operator and potentially has
many more operations. The LessThan operator has keyword phrases that indicate its
applicability as well as how to identify its parameters.�

For relationship sets, the definition of a data frame does not change, but a typical
view of the definition shifts as we allow value sets to be n-tuples of values rather
than scalar values. Further, like recognizers for operators, they rely on instance rec-
ognizers from the data frames of their connected object sets.

Example 15.4. Suppose the Car object set in Fig. 15.2 has a relationship set to a
Person object set. The relationship-set data frame may have recognizers for any one
of several possible relationships such as fPersong is selling fCarg, fPersong posted
fCarg ad, or fPersong is inquiring about fCarg. Here, the braces enclose references
to data frames for the nonlexical object sets Car and Person.�
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As is standard, implementations of abstract data types are hidden, and we hide
implementations for data frames as well. Similar to data independence in database
systems, this approach accommodates any implementation. In particular, it allows
for new and better recognizers, which we can draw from the large body of work
devoted to information extraction [54].

Definition 15.5. IfM is an OSM-O model instance with a data frame for each object
set and relationship set, M is an OSM-EO model instance.�

An OSM-EO model instance is linguistically grounded in the sense that it can
both “read” and “write” in some natural language. To “read” means to be able to
recognize facts in natural language text and to extract fact instances with respect
to the ontology in the OSM-EO model instance. To “write” means to display fact
instances so that they are human-readable.

How well a particular OSM-EO model instance can “read” and “write” makes
a difference in how well it performs. Our experience is that OSM-EO model in-
stances can “read” some documents well (over 95% precision and recall [22]), but
it is clear that opportunities abound for further research and development. Writ-
ing human-understandable descriptions is less difficult to achieve – just select any
one of the phrases for each object set and relationship set [e.g., Person.Person17/ is
selling Car.Car734/, Car.Car734/ has Make(Honda)]. Making written descriptions
more pleasing, of course, is more difficult.

Continuing in our quest to define the components of our WoK vision, we now
define its “knowledge,” and we explain how we see its knowledge being justified
and how we envision its knowledge components being interconnected.

Definition 15.6. The collection of facts in an OSM-O model instance constitutes
its extensional knowledge. The collection of implied facts derived from the exten-
sional knowledge by inference rules2 constitutes its intensional knowledge. The
extensional and intensional knowledge together constitute the knowledge of the
OSM-O model instance.�

Although this view of knowledge is common in computing, Plato, and those who
follow his line of thought, also demand of knowledge that it be a “justified true
belief” [48]. “Knowledge” without some sort of truth authentication can be unsup-
ported and even misleading. For our vision of a WoK, we attempt to establish truth
via provenance and authentication. When an extraction ontology extracts a fact from
a source document, it retains a link to the fact; and when a query answer requires
reasoning over rules, the system records the reasoning chain. Users can ask to see
fact sources and rule chains, and in this way they can authenticate facts and reason-
ing the way we usually do – by checking sources and fact-derivation rules.

Definition 15.7. A knowledge bundle (KB) is a 5-tuple (O , E , S , I , R), where O
is an OSM-O model instance, E is an OSM-EO instance whose OSM-O instance is

2 As the work on logic and particularly on description logics [12] continues to expand, we can take
advantage of the work of this community (e.g., [16, 17, 53]) to employ better and more powerful
reasoning engines.
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O , S is a set of source documents from which facts for E are extracted, I is a valid
interpretation for O whose facts are extracted from the documents in S , and R is
a set of inference rules.�

Finally, to make the envisioned WoK truly a web of knowledge, we interconnect
knowledge bundles (KBs). Facts about the same object may appear in more than one
KB. We can directly connect these objects so that users may navigate among KBs
and obtain additional information about an object. Concepts in more than one KB
may also be essentially the same as the concept Make, and also the concept Model, in
their respective ontologies in Figs. 15.2 and 15.4. We also connect concepts across
ontologies to provide additional navigation paths.

Definition 15.8. A Web of Knowledge (WoK) is a collection of knowledge bundles
interconnected with binary links,< x, y >, of two types: (1) object identity: nonlex-
ical object identifier x in knowledge bundle B1 refers to the same real-world object
as nonlexical object identifier y in knowledge bundle B2. (2) Object-set identity:
object set x in knowledge bundle B1 designates the same kind of real-world objects
as object set y in knowledge bundle B2.�

15.4 WoK Construction

To construct a WoK, we must be able to construct a knowledge bundle (KB), and
we must be able to establish links among KBs. We can construct KBs and establish
links among them by hand (and this should always be an option). However, scaling
WoK construction demands semiautomatic procedures, with much of the construc-
tion burden placed on the system – all of it when possible. Our KB construction
tools transform, or aid in transforming, source information into KB components.
For links among KBs we apply record-linkage and schema-mapping tools.

Definition 15.9. A transformation is a 4-tuple (R, S , T , ˙), where R is a set of
resources, S is the source conceptualization, T is the target conceptualization for an
S -to-T transformation, and˙ is a set of source-to-target transformation statements.
�

Definition 15.9 leaves several of its components open – to take on specific mean-
ings in a variety of KB building tools. The “set of resources” is undefined, but we
intend this to mean semantic resources such as WordNet and a data-frame library.
“Target conceptualizations” are KBs or KB components. “Source conceptualiza-
tions” depend on sources whose fact conceptualizations can be formal, semiformal,
or informal. “Source-to-target transformation statements” can be declarative or pro-
cedural and can be written in a variety of formal languages.

To the extent possible, we want our transformations to preserve the information
and constraints in source documents and repositories. When sources are formalized
as predicate calculus or in a formalization equivalent to predicate calculus, we can
guarantee the preservation information and constraints. We identify the predicates
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and the facts for the predicates (thus preserving information) and formulate a closed
well-formed formula for each constraint (thus preserving constraints). If the source
interpretation is valid, the target interpretation will be valid as well. When sources
are informal with respect to predicate calculus, the predicates, facts for the pred-
icates, and constraints are implicit. The challenge is nevertheless to discover and
extract them.

Definition 15.10. Let S be a predicate calculus theory with a valid interpretation,
and let T be a populated OSM-O model instance constructed from S by a trans-
formation t . Transformation t preserves information if there exists a procedure to
compute S from T . Let CS be the closed, well-formed formulas of S , and let CT

be the closed, well-formed formulas of T . Transformation t preserves constraints if
CT ) CS.�

Our goal has been and is to successfully develop automatic and good semiauto-
matic transformations over a broad spectrum of documents for a variety of ontolog-
ical contexts. For sources whose facts and constraints over these facts have formal
declarations, transformations should preserve all facts and constraints. For sources
whose facts and constraints are implicit, we seek to identify the facts and constraints
that are applicable to a given ontology, or, in the absence of a given ontology, we
seek to determine and populate the implicit ontology based on the documents’ data
and on applicable external knowledge resources.

Longstanding research endeavors can all contribute to various parts of WoK
construction. These include reverse engineering [2], table and form understand-
ing [20, 23], ontology learning [18], ontology alignment [31], data integration
[13, 42, 50], and record linkage [24]. In Sects. 15.4.1–15.4.4 we explain how we
have taken advantage of some of this work for WoK construction. In Sect. 15.4.1
we show how to reverse engineer XML data repositories into KBs. In Sect. 15.4.2
we describe how we can interpret collections of nested tables in hidden Web pages
and thus turn the collection into a KB. In Sect. 15.4.3 we explain how we integrate
a group of semantically overlapping tables to create a KB. And in Sect. 15.4.4 we
give a way via form creation and information harvesting to generate KBs. Find-
ing and implementing other ways to construct WoK components are interesting and
worthwhile research endeavors.

15.4.1 Construction via XML Reverse Engineering

We have designed a conceptual model for XML, called C-XML (Conceptual XML).
C-XML adds a few XML-specific concepts to OSM-O, including, in particular, a se-
quencing construct and a choice construct. Being formally defined as templates over
OSM-O constructs, however, these additions remain within the purview of OSM-O.

Reverse engineering an XML schema to C-XML effectively defines a mapping
to OSM-O for all XML documents complying with the XML schema [3]. The basic
translation strategies for mapping XML Schema to C-XML are straightforward, al-
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though some parts of the translation require some sophisticated manipulation. In the
translation, elements and attributes become object sets. Elements that have simple
types become lexical object sets, while elements that have complex types become
nonlexical object sets. Attributes become lexical object sets since they always have
a simple type. Built-in data types and simple data types for an element or an at-
tribute in XML Schema are specified in the data frame associated with the object
set representing the element or the attribute. XML parent–child connections among
elements and XML element–attribute connections both become binary relationship
sets in C-XML. The constraints minOccurs and maxOccurs translate directly to par-
ticipation constraints in C-XML.

Unfortunately, not everything is straightforward. Translations for keys, exten-
sion, restriction, substitution groups, and mixed content are all quite interesting.
The translation also involves a myriad of detail extending to over 40 pages in [3].
Although extensive, the translation details provide a constructive proof that the
transformation from XML Schema to C-XML preserves both information and con-
straints.

The result of doing information- and constraint-preserving transformations of
XML documents complying to an XML schema is a KB. Further, to the extent that
we can automatically infer an XML schema specification directly from an XML
document, we can also reverse engineer raw XML documents into populated C-
XML model instances and thus into KBs.

15.4.2 Construction via Nested Table Interpretation

Table Interpretation with Sibling Tables (TISP) is a tool of ours that interprets ta-
bles in sibling pages [59]. To interpret a table is to properly associate table category
labels with table data values. Using Fig. 15.5 as an example, we see that Identifi-
cation, Location, and Function are labels for the large rectangular table. Inside the
cell labeled Identification is another table with headers IDs, NCBI KOGs, Species,
etc. Nested inside of this table are two more tables, the first starting with the label
CGC name and the second starting with the label Gene Model. We associate labels
with data values by observing the table structure. A cell in a table associates with
its header label (or labels in the case of multidimensional tables). For nested ta-
bles, we trace the sequence of labels from the outermost label to the data cell. Thus,
for example, the label for the value F47G6.1 under Sequence name is Identifica-
tion.IDs.Sequence_name.

Although automatic table interpretation can be complex, if we have another page,
such as the one in Fig. 15.6, that has essentially the same structure, the system
can usually obtain enough information to make automatic interpretation possible.
We call pages that are from the same Web site and have similar structures sibling
pages. The two pages in Figs. 15.5 and 15.6 are sibling pages. They have the same
basic structure, with the same top banners that appear in all the pages from this
Web site, with the same table title (Gene Summary for some particular gene), and
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Fig. 15.5 Nested table from a molecular-biology Web page

a table that contains information about the gene. Corresponding tables in sibling
pages are called sibling tables. If we compare the two large tables in the main part
of the sibling pages, we can see that the first columns of each table are exactly the
same. If we look at the cells under the Identification label in the two tables, both
contain another table with two columns. In both cases, the first column contains the
identical labels IDs, . . . , Remarks, although the table in Fig. 15.6 has one additional
label, Notes. Further, the tables under Identification.IDs also have identical header
rows, and the tables under Identification.Gene model(s) have nearly identical header
rows. The data values, however, vary considerably. Generally speaking, we can look
for commonalities in sibling tables to find labels and look for variations to find data
values.

Given that we can interpret a table – find labels and values and properly associate
them – we can create a conceptualization of the table linking labels as metadata with
values as instance data. This simple conceptualization may not always be best, but
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Fig. 15.6 Sibling page of the page in Fig. 15.5

for some tables it works well. In particular, it works well for nested tables like those
in Figs. 15.5 and 15.6.

Observe that for these nested tables, the conceptual, nested, label-value structure
is isomorphic to a simple XML schema. There exists a single, nested, label path
to every data value. For the sequence name F47G6.1 in the top row of the table
in Fig. 15.5, the label path is Identification.IDs.Sequence_name. This nested-label
property lets us conceptualize these tables in an XML-like conceptual tree with la-
bels as tags and instance values as leaf strings in a nested tag structure, as Fig. 15.7
illustrates. Note that the tree structure in Fig. 15.7 precisely captures the nesting of
the tables in Figs. 15.5 and 15.6. Note also that the conceptualization can account for
the variation among tables. In Fig. 15.7, for example, Gene Models relates option-
ally to Swissprot because the ontology-generation process observes that one table
(Fig. 15.5) has an entry for Swissprot whereas the other (Fig. 15.6) does not. The
end result is an automatically generated KB containing all the data from the given
set of sibling tables.
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Fig. 15.7 Generated conceptual model instance

15.4.3 Construction via Semantic Integration

Table ANalysis for Generating Ontologies (TANGO) provides another way to cre-
ate KBs. Given a collection of tables all in the same application domain, we re-
verse engineer each table into a conceptual-model instance and then integrate the
conceptual-model instances into an ontology that represents the domain. During the
process we analyze each table individually, inferring concepts, relationships among
concepts, and data values for concepts and relationships. The result of this process is
a conceptual-model instance for the table, which we call a “mini-ontology” – “mini”
because the number of concepts in a table is usually small. We then exploit schema-
mapping techniques to discover interrelationships among the mini-ontologies, en-
abling us to merge the generated conceptual-model instances into an ontological
structure for the domain.

TANGO operates in three steps:

1. Recognize and canonicalize table information.
2. Construct mini-ontologies from canonicalized tables.
3. Discover interontology mappings and merge mini-ontologies into a growing ap-

plication ontology.

We illustrate with an example.

15.4.3.1 Table Recognition and Canonicalization

Tables appear in many shapes and sizes; most, but not all, have rectangular grid
layouts. Figure 15.8 is an example of a table without a clearly delineated grid layout.

In our first step, we canonicalize tables by converting them to “Wang notation,”
a layout-independent formalization for tables [65]. Wang notation has two parts:
(1) label structure and (2) data-value/label-structure association. The label structure
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Fig. 15.8 World populations and religions

consists of a collection of dimension trees, one for each coordinate that indexes
a data cell. A dimension tree organizes labels in a tree structure: each path from
root to leaf provides an index coordinate for a data value. In our example, the table
in Fig. 15.8 has two dimensions. In Wang notation, these two dimension trees are:
(DT1Root, f

(Population (July 2001 est.), Ø),
(Religion, f

(Albanian Orthodox, Ø),
(Muslim, Ø),
(Roman Catholic, Ø),
(Shi’a Muslim, Ø),
(Sunni Muslim, Ø),
. . .
(other, Ø)
g))

(Country, f
(Afghanistan, Ø),
(Albania, Ø),
. . .
g)

Wang associates data with dimension trees in ı-statements. Each combination of
paths through dimension trees can have a value:

ı(DT1Root.Population (July 2001 est.), Country.Afghanistan) = 26,813,057
ı(DT1Root.Religion.Albanian Orthodox, Country.Afghanistan) = ?
. . .
ı(DT1Root.Religion.other, Country.Afghanistan) = 1%
ı(DT1Root.Population (July 2001 est.), Country.Albania) = 3,510,484
. . .

Here, the first statement is for the data cell containing 26,813,057, the population
of Afghanistan. The other three index an empty cell, the 1% for “other” religions
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Table 15.1 Canonicalized table for world religious populations

Religion
Population Albanian Roman Shi’a Sunni

Country (July 2001 est.) Orthodox Muslim Catholic Muslim Muslim . . . Other
Afghanistan 26,813,057 15% 84% 1%
Albania 3,510,484 20% 70% 10%
...

Table 15.2 Canonicalized table for people

Population Median Age (2002) Population Growth Rate
Country (July 2003 est.) Total Male Female (2003 est.)
Afghanistan 28,717,213 18.9 years 19.1 years 18.7 years 3.38%*
Albania 3,582,205 26.5 years 24.8 years 28.1 years 1.03%
...
* Note: this rate does not take into consideration the recent war and its continuing impact

Table 15.3 Canonicalized table for geography

Country Location Description Geographic Coordinates
Afghanistan Southern Asia, north and west 33 00 N, 65 00 E

of Pakistan, east of Iran
Albania Southeastern Europe, bordering 41 00 N, 20 00 E

on the Adriatic Sea and Ionian
Sea, between Greece and Serbia
and Montenegro

...

in Afghanistan, and the 3,510,484 for the population of Albania. Similarly, we can
index all values for all countries in Fig. 15.8.

We consider any collection of data that we can represent in Wang notation to be
a table. Further, given a table in Wang notation, we can display the table in a standard
grid form. We place the first dimension above the data, the second to the left of the
data, the third to the left of the second with the second replicated for every leaf of the
third, . . . . We omit implicit roots, such as the root DT1Root for Dimension Tree 1.
Table 15.1 displays the table in Fig. 15.8 in this standard way. Tables 15.2–15.6
show several additional examples, which together with Fig. 15.8 constitute, for our
example here, the tables to be merged into a KB.

We [23, 44, 60], and others (e.g., [20, 37, 49, 52, 69]), are working toward fully
automatic table-interpretation tools. These tools take as input a table such as the
one in Fig. 15.8 and produce as output Wang notation, which we can display in
a standard way. In our tools, we augment Wang notation so that it can capture more
than just labels and values. We also capture a table’s title, its footnotes, and its units
of measure. In the absence of fully automated tools, we have developed tools that let
a user efficiently mark a table’s label areas, data areas, title, and other augmentations
[43, 47]. As a principle, it should always be possible for a knowledge worker to
manually specify any output to be generated by the system, even though we aim
to automate as much as possible. Manual specification ensures that we can always
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Table 15.4 Canonicalized table for largest populations

Population
Asia 3,674,000,000
Africa 778,000,000
...
New York City, New York 8,040,000
Los Angeles, California 3,700,000
...
Mumbai, India 12,150,000
Buenos Aires, Argentina 11,960,000
...
China 1,256,167,701*
India 1,017,645,163*
...
*January 15, 2000

Table 15.5 Canonicalized table for US topographical maps

Place Type Elevation* USGS Quad Lat Lon
Bonnie Lake Reservoir Unknown Seivern 33 72 N 81 42 W
Bonnie Lake Lake Unknown Mirror Lake 40 71 N 110 88 W
...
New York Town/city Unknown Jersey City 40 71 N 74 01 W
New York Town/city 149 meters Leagueville 32 17 N 95 67 W
New York Mine Unknown Heber City 40 62 N 111 49 W
...
*Elevation values in this table are approximate, and often subject to a
large degree of error. If in doubt, check the actual value on the map.

Table 15.6 Canonicalized table for most-spoken languages

Pos Language Speakers Where Spoken (Major)
1 Mandarin 885,000,000 China, Malaysia, Taiwan
2 Spanish 332,000,000 South America, Central America, Spain
3 English 322,000,000 USA, UK, Australia, Canada, New Zealand

...

complete a task and that we can correct any errors our automated procedures may
introduce.

15.4.3.2 Construction of Mini-Ontologies

Figure 15.9 gives a graphical representation of each of the mini-ontologies for our
six sample canonicalized tables in Tables 15.1–15.6. The notation differs slightly
from our earlier notation for OSM-O. In this notation, we represent graphically the
four common participation constraints: 0:*, 0:1, 1:*, and 1:1. A zero minimum
makes participation optional, which we denote with an “o” on the relationship-set
line near the object set whose objects participate optionally. The absence of an “o”
makes the participation mandatory – equivalent to a 1-minumum in a participation
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Fig. 15.9 Mini-ontologies constructed from the tables in Figs. 15.1–15.6. a World religious pop-
ulations. b People. c Geography. d Largest populations. e US topographical maps. f Most-spoken
languages

constraint. Thus, for example, the mini-ontology in Fig. 15.9e declares that a Place
must have a Name and may, but need not, have an Elevation. A 1-maximum in a par-
ticipation constraint makes the relationship set functional, which we denote with
an arrowhead on the opposite side of a relationship-set line. Thus, for example, in
Fig. 15.9, a Place has one Name, at most one Elevation, one USGS Quad (the map
in which the center of the place appears), and one pair of Geographic Coordinates.
The functional (arrowhead) notation also allows us to express functional dependen-
cies whose left-hand side is composite. Thus, for example, in Fig. 15.9 we have
the functional dependency Country Religion ! Percent. The notation also provides
explicitly for object values with large black dots, which are object sets (one-place
predicates) limited to having a single value.
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To construct mini-ontologies from canonicalized tables, we must discover what
concepts (object sets) are involved and how they are related (relationship sets). We
must also determine the constraints that hold over the relationship sets (functional,
mandatory/optional participation, aggregations) and among the object sets (gen-
eralization/specialization). We do so by appealing to the structural constraints of
canonicalized tables and to outside resources such as WordNet and a data-frame li-
brary [45]. Aligning model instances with outside resources also makes them easier
to integrate.

As an example, we obtain the mini-ontology in Fig. 15.9a from the table in
Fig. 15.1 as follows. Country is a key and appears in the leftmost column, strongly
suggesting that it should be the tail side of functional dependencies. Population de-
pends on Country but also on July 2001. Knowledge from the data-frame library
recognizes that the values in the Religion columns are Percent values. The religions,
which could either be object sets or values, are values since there are many (our cur-
rent threshold is five). Given that religions are values, we therefore have a ternary
relationship among Country, Religion, and Percent. Based on constraint mining, we
can determine that Country and Religion together functionally determine Percent.
Creation of the remaining five mini-ontologies is similar.

15.4.3.3 Mapping Discovery and Ontology Merge

Our approach to discovering interontology mappings is multifaceted [25, 26], which
means that we use all evidence at our disposal to determine how to match concepts.
These facets include label matching [25], value similarity [25], expected values via
matching values with data frames [25, 33], constraints [8], and structure [26, 32].
In using this evidence we look not only for direct matches, as is common in most
schema-matching techniques [11, 36, 50], but also for indirect matches [68]. Thus,
for example, we are able to split or join columns to match the single Geographic
coordinates column in Fig. 15.3 with the pair of columns Lat and Lon in Fig. 15.5,
and we are able to divide the values in the Place column in Fig. 15.5 into several
different object sets.

Once we have discovered mappings between mini-ontologies or between a mini-
ontology and the ontology we are building, we can begin the merge process. Some-
times the match is such that we can directly fuse two ontologies by simply keeping
all the nodes and edges of both and merging nodes and edges that directly corre-
spond. Often, however, merging induces conflicts that must be resolved. We resolve
conflicts synergistically based on Issue/Default/Suggestion (IDS) statements [8, 46].
When a conflict arises, the system brings the issue to the attention of a knowl-
edge worker. It provides a default resolution – the one it will take if the user does
not intervene – and it makes some suggestions about alternate possibilities. In the
tool we have created [46], a user can specify mappings that the automated match-
ing algorithms may miss, can remove mappings that the matching algorithms may
have incorrectly suggested, can run the merge automatically (allowing the system
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to take all the default resolutions for any conflict), can run merge interactively (re-
solving each IDS statement manually), and can manually adjust the results after
merge.

Given a collection of mini-ontologies, such as those in Fig. 15.9, we look initially
for mini-ontologies that exhibit as large of an overlap as possible (as measured by
the number of interontology mappings); thereafter we select mini-ontologies with
the largest overlap with our growing ontology. In our example we begin by merging
the mini-ontologies in Figs. 15.9a and 15.9b.

1st Merge Country matches Country and Population matches Population. Both
July 2001 and July 2003 are date components associated with Population, and
we merge them as Date.

2nd Merge Building on the 1st Merge, we add the mini-ontology in Fig. 15.9d and
obtain the emerging ontology in Fig. 15.10. Here, we encounter IDS statements
that help us reconcile the lexical/nonlexical Country object sets so that Country
becomes nonlexical with an associated name and also that Population becomes
an inherited property and is thus omitted from the Country specialization.

3rd Merge Continuing, we merge the mini-ontology in Fig. 15.9f with the grow-
ing ontology in Fig. 15.10. Here, the data in the object sets Geopolitical Entity
and Where Spoken largely overlap, but it is not 100% clear whether one set should
be a subset of the other, whether they are overlapping siblings in an is-a hierarchy,
or whether they should be the same set. An IDS statement is therefore appropri-
ate, and we assume the issue is resolved by declaring that the sets are the same
and should be called Geopolitical Entity. This merge thus adds Region as a spe-
cialization of Geopolitical Entity and adds Language and Speakers connected to
Geopolitical Entity in the same way they are connected to Where Spoken (Major)
in Fig. 15.9f.

4th Merge Continuing, we next add the mini-ontology in Fig. 15.9c. Here, the
constraints on the Location Description in Fig. 15.9c declare that the relation-
ship is mandatory for both Country and Location Description and functional from
Country to Location Description. Because of the lack of location descriptions for
most countries in our growing collection, however, we have enough evidence to
override the mandatory declaration and make the relationship for Country op-
tional.

5th Merge Continuing, we next add the mini-ontology in Fig. 15.9e and obtain the
growing ontology in Fig. 15.11. Here, with the help of IDS statements, we must
recognize that Geopolitical Entity is a specialization of Place. Other adjustments
come readily, including inheriting Name from Place and making the existence of
USGS Quad optional for Place based on a lack of map locations for most places.

As we transform tables into mini-ontologies and merge them, we also retain the
data. The end result is a populated ontology and thus a KB that represents the do-
main described by the given collection of tables.
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Fig. 15.10 Growing ontology after merging the mini-ontologies in Figs. 15.9a, 15.9b, and 15.9d.
(The object sets with lighter-shaded, “red,” borders are those most recently added)
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Fig. 15.11 Growing ontology after merging all mini-ontologies. (The object sets with lighter-
shaded, “red,” borders are those most recently added)
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15.4.4 Construction via Form Filling

Although the KB construction methods discussed in Subsects. 15.4.1–15.4.3 are
largely automatic, they have the disadvantage that users have little or no control
over the ontological structure created and the data that populate the ontological
structure. Users could take the final generated result and edit it by hand – a rea-
sonable possibility if the desired ontological structure and the data are almost the
same as the generated structure and data. In this subsection, we discuss an alter-
native that gives users a way to create a custom-designed ontological structure for
a KB and to populate it with values harvested from a diverse collection of Web
pages. This method works particularly well when the information to be collected
for the KB comes from machine-generated collections of semistructured Web pages
such as those commonly found in most hidden-Web/deep-Web sites.

Forms-based Ontology Creation and Information Harvesting (FOCIH) [62] is
a tool that lets users specify ontologies without having to know any conceptual-
modeling language or any ontology language. We observe that forms are a natural
way for humans to collect information. As an everyday activity, people create forms
and ask others to fill in the blanks. FOCIH lets users create their own forms to
describe information they wish to harvest. Once defined, users can fill in forms from
Web pages by copy and paste. From the form specification and user cut-and-paste
actions, FOCIH generates an ontology, extracts data, and annotates the Web page
with respect to the ontology. Further, if the Web page is machine-generated and has
sibling pages, FOCIH is able to harvest the specified information from all the sibling
pages, often without further user intervention.

FOCIH’s form-creation mode provides users with an intuitive method for defin-
ing different kinds of form features. FOCIH has five types of form fields: single-
label/single-value, single-label/multiple-value, multiple-label/multiple-value, mu-
tually exclusive choice, and nonexclusive choice. Users create standard forms by
stringing these form elements together in any order and nesting them within one an-
other to any depth. The form in the left panel of Fig. 15.12 shows an example. The
form is for collecting country information. It starts with three single-label/single-
value fields for Name, Capital, and Geographic Coordinates, followed by a single-
label/multiple-value field for Religion, and a multiple-label/multiple-value field for
Population-Year estimates. The Life Expectancy field is a nonexclusive choice field
for either Male or Female Life Expectancy or both. The final field shows the nesting
of three form fields for Water, Land, and Total under a single-label/single-value field
for Area.

FOCIH’s form-fill-in mode lets users browse to a Web page they wish to annotate
and copy and paste values into form fields. A user highlights values in the page and
then clicks on the form field to fill in a value. Figure 15.12 shows a Web page for
the Czech Republic in the right panel. Copied values from the Web page appear in
the form in the left panel. The pencil icon lets a user drop a highlighted value into
a form field, and the x icon lets a user remove a value. The plus icon lets a user
concatenate a second part of the value to a partial value already in the form field.
Thus, for example, if the latitude and longitude values are disjoint, perhaps labeled
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Fig. 15.12 Filled-in FOCIH form

Latitude: and Longitude: and appearing on separate lines in a web page, a user can
concatenate the two as a single value in the Geographic Coordinates field.

From the filled-in form FOCIH can generate a conceptual model and populate it
with values. Note that filled-in nested forms are identical in structure to the nested
tables discussed in Sect. 15.4.2. Thus, the generated ontologies are similar and are
like the OSM-O model instance in Fig. 15.7. In addition to generating a conceptual
model and populating it, FOCIH also records the following information: (1) paths
to leaf nodes in the DOM tree of an HTML page containing each value and, for
concatenated values, each value component; (2) for each value the most specific
instance recognizer from the data-frame library (e.g., string, number, percentage,
year, geographic coordinate); and (3) enough left, right, and delimiter context within
each leaf node to identify the value or values within the DOM-tree node. This en-
ables FOCIH to harvest the same information from other machine-generated sibling
pages from the same Web site.

The result of running FOCIH over a collection of sibling pages is a custom-
built KB containing the information in the collection. Further, FOCIH can harvest
information from other sibling-page collections with respect to the same custom-
built ontology, which can further augment the KB.

15.5 WoK Usage

The construction of extraction ontologies leads to “understanding” within a WoK.
This “understanding” leads to the ability to answer a free-form query because, as
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we explain in this section, a WoK system can identify an extraction ontology that
applies to a query and match the query to the ontology. Hence, a WoK system can
reformulate the free-form query as a formal query, so that it can be executed over
a KB. In addition, “understanding” leads to establishing a context of discourse, al-
lowing the system to expose its conceptualization of the subject and thus allowing
users to more effectively communicate their information needs to the system. In
both cases results returned for a query include not only answers to queries but also
answer justification. Users can obtain a reasoning chain justifying each answer as
well as provenance links identifying each ground fact supporting the answer.

Definition 15.11. Let S be a source conceptualization and let T be a target concep-
tualization formalized as an OSM-EO model instance. We say that T understands
S if there exists an S -to-T transformation that maps each one-place predicate of S
to an object set of T , each n-place predicate of S to an n-place relationship set of
T (n � 2), each fact of S to a fact of T with respect to the predicate mappings, and
each operator of S to an operator in a data frame of T , such that the constraints of
T all hold over the transformed predicates and facts.�

Observe that although Definition 15.11 states how T is formalized, it does not
state how S is formalized. Thus, the predicates and operators of S may or may not
be directly specified. This is the hard part of “understanding” – to recognize the
applicable predicates and operators. But this is exactly what extraction ontologies
are meant to do. If an OSM-EO model instance is linguistically well grounded, then
it can “understand” so long as what is stated in S is within the context of T – that is,
if there is an object set or relationship set in T for every predicate in S and if there
is an operator in a data frame of T for every operator in S .

Applications of understanding include free-form query processing, grounded rea-
soning chains, and KB building for research studies. We explain and illustrate each
in turn. In doing so, we also illustrate our WoK prototype system, which we are
building as a way to experiment with our vision of a WoK [28].

15.5.1 Free-Form Query Processing

Figure 15.13 illustrates free-form query processing within our WoK prototype. To
“understand” a user query, our WoK prototype first determines which extraction on-
tology applies to the query by seeing which one recognizes the most instances, pred-
icates, and operators in the query request. For the query in Fig. 15.13, we assume
that the WoK prototype chooses the Car extraction ontology illustrated in Figs. 15.2
and 15.3. The WoK prototype then applies the S -to-T transformation highlight-
ing what it “understands” (“Find me a honda, 2003 or newer for under 15 grand”).
Figure 15.14 shows the result of this transformation – each predicate and each op-
eration is mapped correctly and the constraints of the OSM-EO model instance all
hold. Given this “understanding,” it is straightforward to generate a SPARQL query.
Before executing the query, our WoK prototype augments it so that it also obtains
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Fig. 15.13 Screenshot of WoK prototype showing free-form query processing

the stored annotation links. Then, when our WoK prototype displays the results of
the query (e.g., in the lower-left box in Fig. 15.13), it makes returned values click-
able. Clicking on a value causes our WoK prototype to find the page from which the
value was extracted, highlight it, and display the page appropriately scrolled to the
location that includes the value. The right panel of Fig. 15.13 shows several high-
lighted values, which happens when a user checks one or more checkboxes before
clicking.�

The form in Fig. 15.14 is for an alerter system that we have implemented for
craigslist.org. We use the form in two ways: (1) for comprehensive feedback to in-
dicate its “understanding” of the query and (2) for giving users advanced options
for query specification. As feedback, it lets users know the context in which the
system “understands” the query being asked (i.e., the system displays the name
of the extraction ontology and its details as form elements) and (2) it lets users
know exactly what has been “understood” (i.e., the system displays constant val-
ues in fields for object sets or for operations applicable to object sets). With re-
spect to advanced options, it lets users know what else can be asked in the con-
text of the query. A user then has the opportunity to adjust the query or add ad-
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Fig. 15.14 Generated form
showing the system’s “Under-
standing” – its “Understood”
instances within its “Under-
stood” ontological context

ditional constraints. For example, besides Hondas, a user may wish to also know
if Toyotas are for sale but only if they are not Camrys. Clicking on OR for Make
and adding Toyota and then clicking on NOT for Model and adding Camry makes
this possible. The plus icons show that more operators are available; clicking on
the plus displays them. For example, a user may wish to limit the search to cars
whose odometer reading is less than 100 K miles; clicking on the “+ Options”
button shows the Boolean operators for Mileage and lets a user enter this limita-
tion.

15.5.2 Grounded Reasoning Chains

To illustrate grounded reasoning chains, we give an example from family-history
research. Many millions of handwritten records such as those in the census record
in Fig. 15.15 have been transcribed by human indexers [34]. Using extraction on-
tologies, we can extract from the transcription to associate names, dates, places,
and other information with a genealogical ontology. Bounding boxes for names and
other information in the image are also available, so we know where in the image
information appears.
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Fig. 15.15 Census record

It is not hard to see that, among others, the following rules hold and are useful
for establishing family relationships implied by the information in the census record
in Fig. 15.15:

Person(x)isHusbandOfPerson(y) :- Person(x), Person(y),
Person(x)hasGender(‘Male’),
Person(x)hasRelationToHead(‘Head’),
Person(y)hasRelationToHead(‘Wife’),
Person(x)isInSameFamilyAsPerson(y).

Person(x)isInSameFamilyAsPerson(y) :-
Person(x)hasFamilyNumber(z)inCensusRecord(w),
Person(y)hasFamilyNumber(z)inCensusRecord(w).

Person(x)named(y)isHusbandOfPerson(z)named(w) :-
Person(x)isHusbandOfPerson(z),
Person(x)hasName(y),
Person(z)hasName(w).
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The first rule states that a person x is the husband of person y if x is a male head
of the family, y is the wife, and x and y are in the same family. The second rule
assures that they are in the same family by checking to see that their family number
is the same, and the last rule associates the husband and wife with their names.

When we associate a rule with an ontology, we must ensure that it is grounded
in the base predicates of the ontology. The set of rules forms a graph over a “head
predicate depends-on body predicate” relation, and this graph must lead to predi-
cates declared in the ontology as object-set predicates, relationship-set predicates,
or Boolean operations declared for the ontology. Recursive rules such as the follow-
ing rules to compute ancestors are possible but must also be grounded.

Person(x)isAncestorOfPerson(y) :-
Person(x)isParentOfPerson(y).

Person(x)isAncestorOfPerson(y) :-
Person(x)isParentOfPerson(z),
Person(z)isAncestorOfPerson(y).

Here, the predicate Person(x)isParentOfPerson(y) must be a rule head that eventu-
ally resolves down to ground predicates such as Person(x)hasRelationToHead(’Son’)
or Person(x)hasRelationToHead(’Daughter’).

Linguistically we ground a rule r by declaring a data frame for r in the same way
we declare a data frame for an object set (if the head of r is a one-place predicate)
or for a relationship set (if the head of r is an n-place predicate, n � 2). Thus,
for example, fPersongns*isn.*husbandns*ofns*fPersong may be one of the regular
expressions for the rule head Person(x)isHusbandOfPerson(y).

Now when we pose the query “Who is the husband of Mary Bryza?,” we can
match the query to our genealogy ontology and specifically to the rule and thus also
the chain of rules needed to answer the query. The returned result would yield “John
Bryza” and perhaps others if other Mary Bryzas are known within the KB. Clicking
on “John Bryza” yields both the reasoning chain in Fig. 15.16 and the highlighted

Fig. 15.16 Reasoning chain for query
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Fig. 15.17 Census record with ground facts highlighted

census record in Fig. 15.17. The reasoning chain is simply a list of rules invoked
with instance data filled in for the variables and reformatted to be more readable.
The highlighted census record shows the source of all the extracted ground fact
values used to yield the answer.

15.5.3 Knowledge Bundles for Research Studies

In addition to “understanding” queries, it should be clear that “understanding” is
also about fact finding. The fundamental intent of linguistically grounding extrac-
tion ontologies is to allow them to recognize facts in structured, semistructured, and
unstructured text. As an example, we give a plausible scenario, based on the WoK
components we have presented, for gathering facts for a bioresearch study and stor-
ing them as a KB for further analysis [29]. Gathering tasks for these research studies
often take trained bioresearchers several man-months of work. Thus any significant
speed-up extraction ontologies can provide would be of great benefit in biomedical
research.

Suppose a bioresearcher B wishes to study the association of TP53 polymor-
phism and lung cancer. To do this study, B wants information from the NCBI db-
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Fig. 15.18 Form filled in with information from an SNP page

SNP repository3 about SNPs (chromosome location, SNP ID and build, gene lo-
cation, codon, and protein), about alleles (amino acids and nucleotides), and about
the nomenclature for amino-acid levels and nucleotide levels. B also needs data
about human subjects with lung cancer and needs to relate the SNP information to
human-subject information.

To gather information from dbSNP, B uses FOCIH to construct the form in the
left panel in Fig. 15.18. Form construction consists of selecting types of form fields
and organizing and nesting form fields so that they are a conceptualization of the in-
formation B wishes to harvest for the research study. B next finds a first SNP page
in dbSNP from which to begin harvesting information. (The created form and lo-
cated page need not have any special correspondence – no schema correspondence,
no name correspondence, and no special structure requirements – but, of course,
the page should have data of interest for the research study and thus for the created
form.) B then fills in the form by cut-and-paste actions, copying data from the page
in the center panel in Fig. 15.18 to the form in the left panel.

To harvest similar information from the numerous other dbSNP pages, B gives
a list of URLs, as the right panel in Fig. 15.18 illustrates (although there would
likely be hundreds rather than just the six in Fig. 15.18). The FOCIH system au-
tomatically harvests the desired information from the dbSNP pages referenced in
the URL list. Since one of the challenges bioresearchers face is searching through
the pages to determine which ones contain the desired information, FOCIH should

3 The Single Nucleotide Polymorphism database (dbSNP) is a public-domain archive for a broad
collection of simple genetic polymorphisms hosted by the National Center for Biotechnology In-
formation (NCBI) at www.ncbi.nlm.nih.gov/projects/SNP/.
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Fig. 15.19 Paper retrieved from PMID using an extraction ontology

provide a filtering mechanism. By adding constraints to form fields, bioresearchers
can cause the FOCIH harvester to gather information only from pages that satisfy
the constraints. B , for example, might only want coding SNP data with a significant
heterogeneity (i.e., minor allele frequency> 1%).

For the research scenario, B may also wish to harvest information from other
sites such as GeneCard. B can use FOCIH with the same form to harvest from as
many sites as desired. Interestingly, however, once FOCIH harvests from one site,
it can use the knowledge it has already gathered to do some of the initial cut-and-
paste for B . In addition to just being a structured knowledge repository, the KB
being produced also becomes an extraction ontology capable of recognizing data
items it has already seen. It can also recognize data items it has not seen but are like
the data it has seen, e.g., numeric values or DNA snippets.

Using KBs as extraction ontologies also lets bioresearchers search the literature.
Suppose B wishes to find papers related to the information harvested from the db-
SNP pages. B can point the extraction ontology to a repository of papers to search
and cull out those that are relevant to the study. Using the KB as an extraction ontol-
ogy provides a sophisticated query of the type used in information retrieval resulting
in high-precision document filtering. For example, the extraction ontology recog-
nizes the highlighted words and phrases in the portion of the paper in Fig. 15.19.
With the high density of not only keywords but also data values and relationships
all aligned with the ontological KB, the system can designate this paper as being
relevant for B’s study.

For collecting human-subject information, B may decide to obtain information
from INDIVO, a database containing personally controlled health records. Based on
reverse-engineering techniques, the system can automatically reverse engineer the
INDIVO database to a KB and present B with a form representing the schema of the
database. Figure 15.20 shows an example. B can then modify the form, deleting
fields not of interest and rearranging fields to suit the needs of the study. Further,B
can add constraints to the fields so that the system only gathers data of interest.

With all information harvested and organized into a KB, B can now issue queries
and reason about the data to do some interesting analysis. Figure 15.21 shows a sam-
ple SPARQL query over the data harvested from the pages referenced by the six
URLs listed in Fig. 15.18. The query finds three SNPs that satisfy the query’s crite-
ria and, for each, returns the dbSNP ID, the gene location, and the protein residue.
As Fig. 15.21 shows, B wishes to see the source of the query result <rs55819519,
TP53, His Arg>.
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Fig. 15.20 Some human-subject information reverse engineered from INDIVO

Fig. 15.21 Screenshot of our WoK prototype

15.6 Conclusion

We have described a web of knowledge (WoK) as a collection of interconnected KBs
superimposed over a web of documents. Our WoK vision has conceptual modeling
at its foundation. As described, a WoK consists of KBs, which are conceptual-model
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instances augmented with facilities that provide for (1) both extensional and inten-
sional facts, (2) linking between KBs yielding a web of data, and (3) authentication
by linking to source documents and explicating reasoning chains.

We have provided a formal foundation for WoK components – ontologies
(OSM-O) in terms of decidable first-order logic and extraction ontologies (OSM-
EO) linguistically grounded via data-frame recognizers. In addition, we have for-
malized a WoK as a collection of interconnected knowledge bundles (KBs) con-
sisting of OSM-EO model instances with valid interpretations superimposed over
source documents.

Further, we have addressed concerns about WoK construction. Transforma-
tions map source conceptualizations to target conceptualizations. Information- and
constraint-preserving transformations guarantee that target conceptualizations com-
pletely and accurately capture source conceptualizations. We have explained how
reverse engineering of some documents can yield source conceptualizations guar-
anteed to preserve information and constraints. We conclude, however, that many
source conceptualizations (ranging from semistructured sources such as ordinary
human-readable tables and forms to unstructured sources such as free-running text)
likely require best-effort automation methods and may involve some user supervi-
sion. We have given, as examples, a way to transform a collection of ordinary tables
with overlapping information from some domain into a KB and a way to construct
KBs via form creation and form filling.

Finally, we have addressed concerns about WoK usage. When transformations
exist that map source predicates and operations to an established ontology, the on-
tology is said to have “understood” the information in the source. “Understanding”
applied to free-form queries allows untrained users to query the envisioned WoK.
Users receive direct answers to queries, rather than pages that may contain answers.
They may, however, ask for justification by clicking on displayed answers, which
yields the pages from which the answers were taken and also yields an explanation
of any reasoning used to generate inferred answers for the query. As another exam-
ple of WoK usage, we have illustrated the process of creating a KB for biomedical
research studies.

We have implemented a WoK prototype [28] including some prototypical ex-
traction ontologies [22]. We have also done some work on automated extraction-
ontology construction [45, 60–62] and some work on free-form query processing
[4, 63]. We nevertheless still have much work to do, even on fundamental WoK com-
ponents such as creating a sharable data-frame library, constructing data frames for
relationship sets, finding ways to more easily produce instance recognizers, devel-
oping processes for reverse engineering additional genres of semistructured sources
into KBs, investigating bootstrapping as a way to construct extraction ontologies,
enhancing query processing, incorporating reasoning, and addressing performance
scalability. We also see many opportunities for incorporating the vast amount of
work done by others on information extraction, information integration, and record
linkage. We cite the following as relevant examples: KnowItAll [21], OMNIVORE
[15], best-effort information extraction [56], C-PANKOW [19], Q/A systems [51],
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bootstrapping pay-as-you-go data integration [55], large-scale deduplication [6],
and OpenDMAP [41].

These collective efforts will eventually lead to a WoK – a realization of ideas
of visionaries from Bush [14] to Berners-Lee [10] and Weikum [67]. Conceptual
modeling can and should play a foundational role in these efforts.
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Chapter 16
A Conceptual Modeling Approach to Improve
Human Genome Understanding

Óscar Pastor, Matthijs van der Kroon, Ana M. Levin, Juan Carlos Casamayor, and
Matilde Celma

Abstract Information systems cannot be designed nor programmed without prior
elicitation of the knowledge they need to know. Representing this knowledge in an
explicit form is the main application of a conceptual model. By allowing for a minor
paradigm shift, one can imagine the human body as an information system; highly
complex and built of biological molecules, rather than man-made hardware, but an
information system nonetheless. It is this paradigm shift that allows for exciting
possibilities. Just as acquiring the source-code of a man-made system allows for
post-production modifications and easy software maintenance, the same could very
well apply to the human body: essentially, the act of debugging life itself. Acquiring
the source-code to the human information system begins with the first step in any in-
formation system development: the creation of a comprehensive, correct conceptual
model of the human genome.

16.1 Introduction

As stated in [1], conceptual modeling is the activity that elicits and describes the
general knowledge a particular information system needs to know. The main objec-

Óscar Pastor
Centro de Investigación en Métodos de Producción de Software, e-mail: opastor@pros.upv.es

Matthijs van der Kroon
Centro de Investigación en Métodos de Producción de Software, e-mail: mkroon@pros.upv.es

Ana M. Levin
Centro de Investigación en Métodos de Producción de Software, e-mail: alevin@pros.upv.es

Juan Carlos Casamayor
Centro de Investigación en Métodos de Producción de Software, e-mail: jcarlos@dsic.upv.es

Matilde Celma
Centro de Investigación en Métodos de Producción de Software, e-mail: mcelma@dsic.upv.es

D. W. Embley and B. Thalheim (eds), Handbook of Conceptual Modeling. 517
DOI 10.1007/978-3-642-15865-0, © Springer 2011



518 Ó. Pastor et al.

tive of conceptual modeling is to obtain that description. Information systems cannot
be designed or programmed without first eliciting the knowledge they need to know.
The only option we have is whether or not to explicitly describe that knowledge. But
when this knowledge is not explicitly described, the behavior of the system that is
to be built can be considered to be just unpredictable. This is a well-known phe-
nomenon strongly recognized within the conceptual modeling and Model-Driven
Development communities: only by having a well-defined conceptual model can
a sound information system be constructed. The disadvantages of having the gen-
eral knowledge of a system only in the designers’ heads are well known; this is
why, for many researchers, the conceptual model is the only important description
that needs to be created in the development of an information system.

If we want to find a domain where such a well-defined and precise conceptual
model can be seen as a strong need, and where its absence generates all the problems
related with poor quality of data – problems that are so well-known in the context of
information systems analysis and design – the bioinformatics domain clearly arises.
In particular, if we want to answer the old and challenging question of why we are
the way we are, we face a really big problem. If we try to use and manage the huge
amount of information that has been generated in the recent years, and continues
to be generated, in what we will call the genomic domain – a term that we will
use to refer to the study of the genomes of organisms – the conclusion is clear: no
precise conceptual model means no sound strategy to guide the correct storage and
interpretation of the tons of data that daily increase the complexity of the domain.

This chapter proposes a concrete contribution to the definition of a conceptual
modeling-based strategy by introducing a conceptual model that could be used to fix,
clarify, and appropriately manage the concepts that characterize the human genome.
If there is a domain where conceptual modeling can show clearly its benefits, it
is the genomic domain. Many people talk about databases, talk about ontologies,
but always as a partial approach, with no holistic, unified perspective. The lack
of conceptual models makes it very complicated – although not impossible – to
talk about data commonalities, differences, consistency, conceptual redundancy. In
short, it becomes very difficult to talk about data quality and how to exploit the
subsequent knowledge.

In Sect. 16.2, we elaborate on the idea of why a conceptual model for the human
genome is so desirable, extending the arguments introduced above and justifying the
genomic domain as a really challenging domain for modern conceptual modeling.
Section 16.3 introduces the problem domain in more detail, with the intention of
clarifying the biological terms that need to be understood through the rest of the
chapter, such as genotype, phenotype, SNPs, attempts to store human genome data
as HapMap, and ENCODE. Section 16.4 presents more concrete, existing modeling
and ontology-based approaches that in some way face the analyzed problem, with
the goal of introducing as a final, concrete result a proposal of a conceptual model
for the human genome in Sect. 16.5.
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16.2 Why a Conceptual Model for the Human Genome?

Today’s genomic domain evolves around insecurity: too many imprecise concepts,
too much information to be properly managed. Considering that conceptualization is
the most exclusive human characteristic, it makes full sense to try to conceptualize
the principles that guide the essence of why humans are as we are. This question
can, of course, be generalized to any species, but we are especially interested in
showing how conceptual modeling is strictly required to understand the “execution
model” that human beings “implement”. The main issue is to defend the idea that
only by having an in-depth knowledge of the conceptual model that is associated to
the human genome, can this human genome properly be understood. This kind of
model-driven perspective of the human genome opens challenging possibilities, by
looking at individuals as implementations of that conceptual model, where different
values associated to different modeling primitives will explain the diversity among
individuals and the potential, unexpected variations together with their unwanted
effects in terms of illnesses.

It is true that genomics is often not an exact science, due to the immense com-
plexity of nature and its processes. It is true that basic concepts like genes, alleles,
and mutations are frequently variable in their precise definition. Their exact denota-
tion often depends on both context and position in time. A gene, for instance, can be
defined as a locatable region of genomic sequence, corresponding to a unit of inher-
itance, which is associated with regulatory regions, transcribed regions, and or other
functional sequence regions. However, the existence of splicing, in which gene ex-
pression changes at runtime, complicates this view as is very well described by [2]:
“in eukaryotes, the gene is, in most cases, not yet present at DNA-level. Rather, it is
assembled by RNA processing”. [3] and [2] provide recent insights on the evolution
of the gene concept, and the matter is discussed in more detail in Sect. 16.3.

But for efficient research to take place, it is obvious that clear definitions of con-
cepts and a common vocabulary are crucial. This is especially the case in research
where worldwide various separate research groups are collaborating and exchang-
ing information on a regular basis. Formally describing concepts, ruling out ambi-
guity and relating concepts to each other and their context is the main objective of
model-driven software development. Simply put, a conceptual model is a simplified
representation of reality, devised for a certain purpose and seen from a certain point
of view. The objective of a conceptual model is simulation of reality; it therefore
needs to react to input in the same way as reality would. It is in this context that
a precise connection between the genomics domain and the conceptual modeling
approach makes full sense.

Describing a system by means of conceptual models means viewing the world
as consisting of objects that belong to different classes, have distinct properties, and
are related to each other in various ways. This way of viewing a system provides
a powerful representation and reasoning tool. When modeling a domain in term of
concepts, either the models serve by use as a reasoning tool to gain a deeper un-
derstanding of the domain at hand, usually as part of the design of an information
system, or they guide the creation of a system which is ultimately directed at control-
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ling or modifying that same domain. In the first application, the conceptual model
serves as a visual representation of the domain, linking concepts and their respec-
tive behaviors while the latter resembles the blueprint used in traditional building.
Not surprisingly, conceptual models and ontologies are closely intertwined, as is
discussed in Sect. 16.4.

From an information systems point of view, present-day genomics is largely sit-
uated in the first phase of systems design, the analysis. Due to the youth of the
genomics domain, many aspects of what is driving the mechanisms of life are still
unknown, even though science never sits still and regularly updates knowledge. This
work presents an interdisciplinary approach, in which experience in information sys-
tems development is put to practice by applying a conceptual modeling approach to
genomics, fixing the present-day knowledge about the human genome in a visual
form.

By allowing for a minor paradigm-shift, the human genome (or any genome,
more specifically) can be considered an information system, a natural and highly
complex form perhaps, but an information system nonetheless. Stated in a very sim-
plified manner, data that is stored in DNA undergoes recombination, processing, and
ultimately translation to proteins. It is the combination of these proteins and the in-
fluence from external factors (the environment) that define how an individual looks
and behaves. These characteristics map neatly to the generic characteristics usu-
ally associated with information systems, only replacing man-made hardware (in
the form of chips and circuits) with biological molecules and physics. As Chikofsky
and Cross [4] state, reverse engineering is defined as the process of analyzing a sub-
ject system to (i) identify the systems components and their inter-relationships and
(ii) create representations of the system in another form or at a higher level of ab-
straction. Just as software can be reverse-engineered in order to apply after-market
changes or facilitate maintenance [5], it might very well be possible to reverse-
engineer life itself and create a higher level of abstract representation in the form
of a conceptual model. In this case, after-market changes and maintenance include
treatments and/or prevention of previously untreatable disorders and disease – in the
jargon of information systems, debugging life itself.

The value of a conceptual model of the human genome is thus two-fold. First,
it allows for a visual and formal representation of the domain. Fixing a vocabulary
and conceptual gamut from which scientists can draw, in order to ensure commu-
nication, takes place based on the same dictionary, using the same concepts. The
conceptual model that we propose here is expected to evolve along with the ad-
vancing understanding of the domain in time. This evolution capability is an extra
value in itself for a domain where knowledge is continuously being generated, and
thus continuously subject to change. Only by having a well-defined, precise con-
ceptual background – the conceptual model – can this new knowledge be properly
incorporated, be understood, and be adequately managed.

Second, as part of a more abstract and ambitious objective, modeling the human
genome serves as a tool for deeper understanding itself. As has been proven in many
other domains, before a successful system can be created, a thorough understanding
of its context is crucial. The tools devised for exactly this purpose, among others the
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MDD-based (model-driven design) software production tools, often based on the
UML notation, are now applied to the area of genomics.

Before introducing and explaining the basic components of the intended concep-
tual model of the human genome, we provide a short but necessary summary of the
main properties of the genomic domain. These properties need to be understood in
order to be adequately represented in the target conceptual model.

16.3 Models: Explaining the Domain

In a conceptual modeling-based approach, it is essential to distinguish between
problem space and solution space. In conventional programming terms, problem
space is associated with conceptual models, while the solution space is associated
with programs. In the genomic domain that we consider here, the problem space
represents in a conceptual model the concepts and their relationships that character-
ize the human genome. The solution space is composed of the set of real-life facts
that conform and explain our human life. When developing a conceptual model for
the human genome, we proceed in a bottom-up way: from the “implementation” (as
we consider individuals here), we can build the conceptual model that captures the
essential, relevant concepts. To do this, it is necessary to have a precise understand-
ing of the notions that are found in “our” solution space – life itself. The goal of
this section is to fix these main concepts, to understand the domain that we want to
model in this case.

The history of this domain is very recent. We can start by going back to 1990,
when the human genome project was initiated to identify all the genes contained
in it and determine the sequence of the three billion base pairs that make up hu-
man DNA [6]. The genomic data was then stored in databases and analyzed to im-
prove disease diagnosis and determine genetic susceptibility [7]. Many different
approaches to extract useful information from the genomic sequence followed the
publication of the first draft sequence of the human genome in 2001 [8]. These so-
called post-genomic approaches included high-throughput groups of technologies
in genomics, transcriptomics, proteomics, and metabolomics that measure and ana-
lyze thousands of DNA sequences, RNA transcripts, proteins, and metabolic fluxes
in a single experiment. Thanks to these studies, it is now possible to understand
specific aspects of the disease process and develop clinical applications. Some of
the diseases that have already benefited from these types of data are cardiovascular
disease [9, 10], obesity [11–13] and diabetes [14–16], among others.

After the appearance of these approaches and the high-throughput fever, the focus
switched to knowledge-based studies that aim to decipher functional associations
by combining several types of biological evidence. This is due to the fact that the
integration of information from multiple data types is seen as a more robust and ac-
curate approach to unravel functional associations. With the attention shifting from
genes and proteins to biological systems, enormous amounts of high-throughput ex-
perimental data from diverse sources have become available, with the subsequent
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urgent need for integration. Evolution of tools for large-scale function annotations
of genes, multi-member gene families and networks is crucial. [17] is an example
of such tools.

Genotype

The distinction between phenotype and genotype is fundamental to the understand-
ing of heredity and development of organisms. A genotype can be defined as an
individual’s collection of genes. When the information encoded in the genes is used
to make proteins and RNA molecules, we say that the genotype is expressed; the
expression of the genotype contributes to the individual’s observable traits, called
the phenotype. The phenotype of an organism is the collection of observable traits,
such as height, eye color, and blood type. Some traits are largely determined by the
genotype, while other traits are largely determined by environmental factors [18].

Organisms are characterized by great variation from one to another. On aver-
age, there are three million nucleotide differences between any two people taken at
random. Even very closely related individuals have many genetic differences. Only
twins have identical genomes, but still many mutations occur during the process of
growth and development of the cells that form our body, which means that even
the cells of the same individual do not contain identical genomes. Moreover, identi-
cal twins differ from each other due to environmental variations. This is why every
human is different.

With this brief introduction to genotypes and genomes, we now consider some
of the most interesting attempts of extracting useful information from the enormous
amount of data provided by the human genome project.

Single Nucleotide Polymorphisms (SNPs)

Single-nucleotide polymorphisms (SNPs) are variations in the DNA sequence that
occur when only one nucleotide changes. An illustrative example of a SNP is the
change of a sequence from TAGGCTCA to TTGGCTCA. The concept is old; be-
fore the human genome was sequenced, it was known as nucleotide substitution
and was used by yeast, worm and fly geneticists. SNPs, which are the most com-
mon form of human genetic variation, occur once every 1200 base pairs (bp) in the
human genome [19] and at least in 1% of the population [20]; nucleotide substi-
tutions at lower frequencies are not considered SNPs but mutations. This is due to
the fact that SNP variations have no negative effect on the organism. When a vari-
ation has a negative effect on the organisms that carry it, the intensity with which
the environment tends to eliminate it from the population is high; this is why mu-
tations that produce disease are present at lower frequencies in populations. The
harmless effect of SNPs lowers the selective pressure, thus raising the frequency in
random populations. However, it is widely accepted that some SNPs could predis-
pose people to disease or influence their response to a drug. This is why scientists
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have sought statistically significant associations between one or a few SNPs and
a certain phenotype, like response to certain drugs or complex diseases such as
hypertension, Alzheimer’s, or schizophrenia. At the same time, clinical pharmacol-
ogists have sought statistically significant associations between one or a few SNPs
and a certain phenotype, like effects of a new drug on asthma, diabetes or heart dis-
ease, or a new drug on treating a type of cancer. Such publications have often been
followed by several reports refuting the original conclusion, as is stated in [21].

The HapMap

The International HapMap Project [22], completed between 2003 and 2006, is
a joint effort to identify and catalog genetic similarities and differences in human be-
ings. The information obtained from the HapMap is used by researchers around the
world in experiments aiming to find genes that affect health, disease, or individual
responses to medications and environmental factors. To make this information freely
available to all scientists, all the data generated by the Project can be downloaded
with minimal constraints through the HapMap webpage [23]. DNA samples studied
in the first phase included samples from the six participating countries: Yoruba in
Ibadan, Nigeria (YRI); Japanese in Tokyo, Japan (JPT); Han Chinese in Beijing,
China (CHB); and Centre d’Etude du Polymorphisme Humain (CEPH) samples
from Utah, having Caucasian ancestry from northern and western Europe (EU).
When the International HapMap Project was completed, the researchers demon-
strated that the ten million SNPs described variants, clustered into local neighbor-
hoods called haplotypes [24], and that they can be accurately sampled by as few
as 300,000 carefully chosen SNPs. New technological systems allow these SNPs to
be systematically studied in high-throughput facilities that dramatically lower the
cost [25].

ENCODE

Another example of research using the human genome data has been the Encyclope-
dia of DNA Elements (ENCODE) Pilot Project that ran from 2004 to 2007. In this
project, about 1% of the human genome (30 Mb) was carefully selected and stud-
ied in great detail by a worldwide consortium made up of several research groups
with diverse backgrounds and expertise [26]. The idea was to map a large variety of
sequences, genes (protein-coding and non-coding exons), promoters, enhancers and
repressor/silencer sequences amongst others. The consortium produced more than
200 data sets, representing more than 400 million data points, 200 Mb of compar-
ative sequences (e.g., human genome versus chimpanzee), and guidelines for rapid
release of all data [27]. Some highlights of their discoveries are: extensive over-
lap of gene transcripts and many non-protein coding regions; complex networks
of transcripts; many new transcription start-sites, with an arrangement of far more
complex regulatory sequences and binding of transcription factors, as is explained
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in detail in [28]. The extremely elaborate findings of the ENCODE Project pro-
duced significant confusion in the field, since they questioned previous concepts
of what constitutes a gene [2]. Previously, a gene was defined as “A segment of
DNA, including all regulatory sequences for that DNA, which encodes a functional
product whether it is a protein, small peptide, or one of the many classes of regula-
tory RNA.” The proposed definition post-ENCODE, aiming to avoid complexities of
regulation and transcription, changed to: “A union of genomic sequences encoding
a coherent set of potentially overlapping functional products”. The success of the
pilot project was enough to collect new funding from NHGRI in September 2007
to scale the ENCODE Project to a production phase on the entire genome. In this
phase of the project, the consortium continues with additional pilot-scale studies but
also includes a data coordination center and a data analysis center to track, store and
display ENCODE data and assist in integrated analyses of it.

Genome-Wide Association (GWA) Studies

A genome-wide association study (GWAS) is an approach used in genetics research
to associate specific genetic variations with particular diseases. The method involves
scanning genomes from many different people looking for genetic markers that can
be used to predict the presence of a disease. Once genetic markers are identified,
they can be used to understand how genes contribute to the disease and develop
better prevention and treatment strategies.

The basis of genome-wide association studies are the comparisons between cases
(patient with a disease) and controls (unaffected people), to identify the genetic
differences that make a healthy person become sick. In common diseases, these
individual differences may be subtle, but many slightly altered genes together with
a risky environment may add up resulting in a higher chance to develop that disease.
By identifying those risks, new clues for the development of preventive therapies
will be identified [29].

Only after the HapMap Project catalogued millions of SNPs used to detect com-
mon disease and the development of high-throughput genotyping platforms, were
GWA scans of whole genomes financially achievable. An early example of success
was the discovery of a variant in the complement factor H gene (major risk factor
for age-related macular degeneration). This finding, discovered by GWAS, provided
a completely new perspective to prevent blindness in the elderly [30].

Phenotype and Metabolism

Although the genetic information of an individual is an important component of
its uniqueness, it accounts for only a portion of this variation. An individual’s phe-
notype is achieved and maintained by every different metabolic activity of the cell
and the complex interactions among genotype, metabolic phenotype, and the en-
vironment. High-throughput technologies producing millions of data from a single
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experiment have transformed studies from a reductionist concept into a holistic prac-
tice where many metabolic phenotypes and the genes involved in that metabolism
can be measured through functional genomics and metabolic profiling.

Metabolites are small molecule intermediates and products of metabolism. It is
widely accepted that small changes in the activities of individual enzymes lead to
small changes in metabolic fluxes, but can lead to large changes in metabolite con-
centrations [31]. Metabolomics is the discipline that studies metabolite composition
and dynamics, as well as interactions among them or responses to changes in their
environment; it is widely used in medical and nutritional systems biology [32–36],
where the metabolome is useful to link the genotype and the environment. Changes
in metabolic composition are likely to be subtle in the early stages of any disease.
Many key metabolites from different pathways have a role in disease development,
and the ability to simultaneously detect and measure all these metabolites allows
for a more global analysis of the state of the disease. This discipline is more than
forty years old, but in its early years, knowledge and technologies available were
very limited. Insufficient information existed to link metabolite measurements to
the human genome or physiology. The key milestone in this context was again the
publication of the human genome sequence [8] and the subsequent appearance of
different -omics approaches to extract useful information from it [37]. In addition,
the invention of electrospray ionization (ESI) [38] finally allowed studies of intact
molecules and facilitated coupling of liquid chromatography to mass spectrometry,
which was a real revolution in the field.

Since GWAS became affordable, the most costly steps for the discovery of the
genetic bases of disease have switched from genotyping to phenotyping. The dis-
cipline of phenomics, described by [39] as “the systematic study of phenotypes on
a genome-wide scale,” is still in an early phase of development. The data obtained
in the analysis of human genomes reflects only one level of biological knowledge
that may impose new constraints on the modeling of higher-level phenotypes. The
redefinitions of phenotypes should be guided not only by gene expression findings,
but also by data produced using models of cellular systems and signaling pathways.
As is suggested by [40] the human phenome project will keep biomedical scien-
tists busy for the next century. Understanding the true dimensionality of the human
genome and reduction of its complexity are the main concerns at the moment. But
this problem is minimum in comparison to defining the dimensions of the human
phenome.

The scientific problem behind the mapping of the human phenome is large, and
the solution is still unclear. It is obvious that, due to the amount of data that should
be taken into account, only those strategies based in computational methods will
be successful. This is already happening. Bioinformaticians around the world work
on solutions that aim to cluster genes based on metabolism and signaling pathways
data. By using the same collaborative approach to describe phenomes, the pathways
that connect genomic variation to phenotypes will be revealed. An extra modeling
effort should be made to develop high quality models that link the knowledge de-
rived from human genome analysis with the knowledge obtained from the phenomic
data. This is the key aspect in the context of this work. While major improvements
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in computational methods have been constant in bioinformatics research, there is
a lack of application of sound information systems notions that would allow to
structure the huge amount of information that is involved in this process of contin-
uous generation of knowledge. A detailed, precise conceptual schema of the human
genome would enable researchers to organize the relevant concepts correctly in or-
der to guide the process of understanding the genomic information, and manage it
effectively and efficiently.

Privacy and Personal Health Records

The early years of the 21st century have been characterized by a rapid advance in
the biomedical field, thanks to the publication of the human genome sequence and
the subsequent development of -omics approaches coupled with the emerging new
discipline of bioinformatics. A real revolution in medicine is predicted when data
from genomics, metabolomics and phenomics can be combined to not only diagnose
existing diseases but also predict those that may come. For decades, personalized
medicine has captured the imagination of physicians, politicians, and patients in
general. Any human-related behavioral pattern could be seen as the expression of
well-localized genomic information, which may soon provide answers to a question
that humans have tried to resolve for centuries: why we are as we are, and what are
the concepts that explain our essential characteristics as species.

Numerous relevant publications and projects have been released in recent years,
especially in the clinical application domain: the first disease with a whole genome
sequence, the acute myeloid leukemia genome [41], the initiation of the 1000
Genomes Project [42] aiming to obtain a detailed catalogue of human genetic vari-
ation, and the International Human Microbiome Consortium [43], to study and un-
derstand the role of the human microbiome in the maintenance of health and cause
of disease and to use that knowledge to improve the ability to prevent and treat
disease [39]. Other collaborations are still in progress, such as the Copy Number
Variation Project [44] and the Cancer Genome Atlas [45]. Furthermore, plenty of
genome-wide association studies associate specific loci to a variety of diseases.

The personalized medicine of the future will develop new treatments that com-
bine data from the variations in the patient with the molecular bases of the disease
itself. It will also help to identify sub-groups of patients for whom the different
treatments will work best or groups of patients with higher risk of developing some
diseases and, ideally, will help them to change their lifestyle or give them treatments
to delay onset of a disease or reduce its impact. In the coming decades, a healthcare
revolution will take place. At the biomedical level, new diagnostic and prognostic
tools will increase our ability to predict the outcomes of drug therapy, and the use
of biomarkers – biological molecules that indicate a particular disease state – could
result in more focused and targeted drug development. Personalized medicine also
offers attractive possibilities for politicians and decision-makers, since it has the
potential to make health care more cost-effective.
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But personalized medicine is an issue that is yet to come, even as there is much
hope in the field. Many optimistic reviews continue to appear [46–48], but others
are quite critical that it is not yet possible to assign a patient to an unequivocal phe-
notype and especially relate it to an unequivocal genotype mostly due to the amount
of new findings and studies that appear almost monthly and that will increase in the
future. We maintain that a conceptual model for the human genome is essential to
make all these challenges feasible.

Although the advantages of genetics research are obvious and large, there is also
a downside. To understand the difficulties, one needs to look beyond the technical
aspects of the problem. Potential difficulties include technical security issues that
may never guarantee a digital genetic data-set to be perfectly protected from intrud-
ers, or the considerably larger impact of digital data theft. While an old-fashioned
paper file is as prone to theft or loss as its digital equivalent, it is the ease with which
thousands of digital files can be stolen or damaged instantly that make the impact
so much greater. However, it is the characteristics of the domain itself that make the
discussion of ethics so intricate. Ethics, privacy awareness, and confidentiality are
concepts closely related to identity. And the success with which they are practiced is
strongly correlated to the separation of an individual’s identifying features, and the
studied object. It is here that storing an individual’s genetic sequence makes matters
difficult. In addition to being the object under study, that sequence is at the same time
the very essence of biological identity, crystallized in four base molecules. Who we
are, what sets us apart from each and every other individual, is largely defined by
our genetic sequence. Even excluding certain parts of the sequence in order to avoid
identification is very difficult, due to linkage disequilibrium [49], as has been shown
by [50] in their attempt to uncover the unpublished ApoE gene of Dr. James Watson.

As we have discussed, biomolecular research has experienced enormous progress
over the last decade, from the completion of the human genome project to functional
genomics. The application of this knowledge has greatly improved our understand-
ing of health and disease. It is now clear that disease states cannot be explained only
by genomic information, since it involves the interaction between our genome and
the environment. This interaction, reflected in the phenotype, is starting to be un-
derstood thanks to the different visions of the same problem captured by different
post-genomic approaches. The logical step forward is to integrate all of these visions
into a high-level model that can be at the same time informative and predictive.

16.4 Existing Modeling/Ontology-Based Approaches

Today’s geneticists must negotiate a wide variety of genomic data repositories.
Present-day genomics is closely tied to diversity. As the subject under investigation
often relates to genetic diversity, the storage of current genetic knowledge is highly
dispersed over a variety of resources. The National Center for Biotechnology Infor-
mation (NCBI) [51] is a United States government-run initiative to create automated
systems for storing and analyzing knowledge about molecular biology, biochemistry



528 Ó. Pastor et al.

and genetics. The Human Gene Mutation Database at the Institute of Medical Genet-
ics in Cardiff (HGMD) [52] represents an attempt to collate known (published) gene
lesions responsible for human inherited disease. The goal of MutDB [53] is to anno-
tate human variation data with protein structural information and other functionally
relevant information, if available. And many more repositories exist, among which
BIC [54], HGNC [55], HapMap [22–25, 56] and EMBL [57]. It is clear that this
variety of data sources, although understandable from a biologist’s point of view,
leads to undesirable effects. Undesired data redundancy, as an effect of heterogene-
ity, leads to problems in keeping data updated. Curation often happens by human
effort, which is prone to introducing errors and is costly in both time and money.
Centralizing these data repositories, not in terms of physical storage but rather un-
derlying conceptual vocabulary, or logical design, is thus of main concern for any
future research and exploitation of genetic data. Fixing a conceptual gamut is best
done through the use of a conceptual model.

An informational approach to this specific biological problem space is not en-
tirely new. [58] describes the conceptual schema of a DNA database using an ex-
tended entity-relationship model. [59] has indicated how an extended object data
model can be used to capture the properties of scientific experiments, and [60] in-
cludes models for representing genomic sequence data. [61] advanced on this work
by presenting a first effort in conceptually modeling the S. cerevisiae genome, which
is a type of yeast, by proposing a collection of conceptual data models for genomic
data. Among these conceptual models are a basic schema diagram for genomic data,
a protein-protein interaction model, a model for transcriptome data, and a schema
for modeling alleles. Whereas [62] provides a broader view by presenting con-
ceptual models for describing both genome sequences and related functional data
sets, [63] further elaborated on the basic schema diagram for genomic data, thereby
narrowing the focus and specializing it for the human genome.

Banning ambiguity in the genomics domain has been subject of many earlier at-
tempts, including ontologies and formal descriptions in natural language. From the
computer scientist perspective, ambiguity is always considered an undesirable and
often avoidable feature. Indeed, in computer design, the behavior of the system is
always intended to be known. In biology, and especially genomics, this is simply
not the case. Complexity, derived from the randomness that created the conditions
allowing life to emerge, today obscures the processes driving this very same sys-
tem. Earlier attempts at solving this undesired ambiguity include the application of
ontologies. [64] provides an overview of gene ontology (GO) and how it is used to
solve ambiguity in the genomics domain in general. [65] describes the application of
gene ontology to the SNP concept. [66] then provides an ontology-based converter
that allows for solving the notational problems associated with heterogeneous SNP
descriptions. But all of these approaches are far from what we could call a precise
conceptual definition. Generally, while the application of an ontology is considered
necessary, it only forms part of the solution.

From our review of literature on the subject, it is clear that most of the work
that has been going on is ontology-based. It appears crucial to identify the essen-
tial differences between ontologies and conceptual schemas, or more specifically,
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how they are complementary. We feel that the extensive use of different ontologies
in the genomic domain denotes the lack of an adequate conceptual modeling-based
approach in the domain, under the assumption that a formal ontology should con-
stitute the conceptual base over which a conceptual model is properly elaborated.
A common vocabulary is necessary, but not sufficient to structure and manage ade-
quately the huge amount of information generated in the genomic context.

In the remainder of this section, we focus on describing both methods, especially
focusing on the properties that – apparently – make them different. For a proper
understanding of any domain, both are vital. Ontologies and conceptual schemas
belong to two different epistemic levels, they have different objects, and are cre-
ated with different objectives. As [67] states: ontologies should deal with general
assumptions concerning the explanatory invariants of a domain – those that provide
a framework enabling understanding and explanation of data across all domains
inviting explanation and understanding. Conceptual schemas, on the other hand,
should address the relation between such general explanatory categories and the
facts that exemplify them in a particular domain.

Assmann [68] describes models as having a causal connection to the modeled
part of reality; they must form true or faithful representations so that queries of the
model make reliable statements about reality; simulate reality. That is, a model is
an external and explicit representation of a part of reality as seen by the people
who wish to use that model to understand, change, manage, and control that part of
reality. Also, while models represent reality faithfully, they may abstract from irrel-
evant details. [68] describes ontologies as formal explicit specifications of a shared
conceptualization. Considering that according to [69], an ontology is an explicit
specification of a conceptualization, this definition implies that an ontology is a spe-
cific type of model. To identify the exact difference between models and ontologies,
some other qualities of models require introduction. Following the above defini-
tion, ontologies are models shared by a group of people. In general, models are not
necessarily shared. An important property of ontologies is the open-world assump-
tion, stating that anything not explicitly expressed by an ontology is unknown. In
contrast, most systems models underlie the assumption that what has not been spec-
ified is either implicitly disallowed or implicitly allowed, the so-called closed-world
assumption. Further, models are usually considered to be of prescriptive nature in
that they form the templates from which the system is later implemented. Because
of their open-world assumptions, ontologies should then be regarded as descrip-
tive models. Summarizing the above discussion, ontologies focus on description
and conceptualization (structural modeling) of things, while models focus on the
specification, control, and generation of systems. It is conceivable that a conceptual
model can be used as visualization layer on top of an ontology, thus further fading
the distinction.

The main difference between ontologies and conceptual models thus seems to
exist in the intention with which they are created. Ontologies are considered de-
scriptive by nature and usually serve to ensure that concepts are indicated by the
same terms, essentially disambiguating domain jargon. Models are prescriptive,
commonly defined as part of a design process. Their function is to disambiguate,
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and at the same time simulate reality. [70] states that two ontologies can be different
in the vocabulary used (using English or Italian words, for instance), while sharing
the same conceptualization. The vocabulary used in this work to capture the onto-
logical concepts of the genomic domain comes in the form of a conceptual model.
The conceptual modeling approach discussed here thus serves to specify an onto-
logical description. It shows that representing concepts in a descriptive manner, as
is common in creation of ontologies, is very well facilitated by the application of
a conceptual model.

It is interesting to remark that, although many databases and ontologies exist and
they include a lot of diverse genomic information, it is hard to see their correspond-
ing, precise conceptual models that would enable characterization, comparison and
evaluation of the quality of their data. It is the main goal of the next section to intro-
duce such a conceptual model as the main contribution of this chapter, to show that
it is possible to provide the required formal structure for all the data that are consid-
ered relevant to understand and interpret this huge amount of genomic information.

16.5 Results of Conceptual Modeling

This section proposes a conceptual model of the human genome. Due to sheer size,
the model is divided in three main views: gene-mutation, transcription, and genome.
Each view is discussed in turn. The model is described using the widely-accepted
UML standard [71], using a data projection centered on attributes that allows one to
see the final model as an ER-like model. Since the complete schema is too large to
be presented in A4 format, we refer the reader to a digital version: http://www.pros.
upv.es/images/stories/imgc_cshg.jpg. [62] describes the evolution of the conceptual
model of the human genome, while [63] describes the evolution of the model more
in general and provides a descriptive overview of how the model was initially con-
figured, and from where it evolved to what it is now.

Gene-Mutation View

As depicted in Fig. 16.1, the gene-mutation view, models the knowledge about
genes, their structure and their allelic variants. It models current knowledge about
the atomic entity of heredity, genes, and the various real-world instances of this
rather abstract concept. These instances are the actual encountered genetic se-
quences, or alleles, in individuals among populations. The principal classes in this
view are the Gene class and the Allele class. The Gene class models the concept
of a generic gene, independent of their samples stored in public databases. The at-
tributes of the Gene class are: id_Hugo (universal code for the gene in HGNC [55]);
id_symbol (alphanumeric code for the gene in HGNC, i.e. NF1 for Neurofibromin 1,
a neurofibromatosis-related protein); name (name of the gene), summary (summary
extracted from NCBI [51]); chromosome (chromosome number where the gene is
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Fig. 16.1 Gene-mutation view

located), and locus (gene location within the chromosome). Genes have been his-
torically characterized by their coding capacity; being able to synthesize protein
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through an everyday better-known transcription process. But this is not the only
role of genes. Recent advances show, for instance, how important it is to identify
DNA sequences that are able to activate/disactivate the coding behavior of genes.
This important feature is easily incorporated into the model by introducing a self-
referencing relation intended to represent which genes play the regulator function
with respect to which genes.

The Allele class represents instances of a generic gene, as stored in public
databases. The model represents relevant information about alleles: allele database
source (through the class DataBank), type of allele (reference or variant), vari-
ants of an allele (mutations), Allele segmentation, and the corresponding transcrip-
tion process. The attributes of the Allele class are: ord_num (internal identifier);
start_position and end_position in the chromosomic sequence, and DNA sequence
of the allele.

Alleles are classified as reference alleles or variant alleles (Allelic Variant and
Reference Type classes as specializations of Allele). Reference Type represents the
alleles used as references in public databases. The association between Reference
Type and Allelic Variant represents the relationship between a reference allele and
its variations. The specialization hierarchy from the Allelic Variant class classifies
allelic variants by three criteria: (i) location, (ii) description, and (iii) effect.

Location represents the scope of the variation. In case the variation only affects
one gene, it is said to be Genic. However, when the variation has an impact on
various genes, and thus becomes a deviation at chromosomal level, it is considered
Chromosomic.

Description represents the degree of completeness and accuracy to which the
variation is described in the source, i.e. if the variation is precise (Precise) or im-
precise (Imprecise). If the variation is imprecise, there is a description attribute that
stores the information in the same format as in the source, generally natural lan-
guage. If the variation is considered precise, the position of the variation within the
corresponding allele is stored in the position attribute. The precise variations are
classified in four specializing classes: (i) Insertion, (ii) Deletion, (iii) Indel and (iv)
Inversion. Variations that qualify as Insertions introduce, at the specified position,
a given sequence at a given amount of repetitions. Deletions qualify the event of
mutations in which a number of bases are deleted from the sequence starting from
the specified position. An Indel can be considered as the combination of an Inser-
tion and a Deletion, in which, at the specified position, a deletion of del_bases nu-
cleotides occurs, while inserting an ins_sequence of nucleotides, an ins_repetition
amount of times at that very same position. Inversion indicates the event in which
a mutation consists of an inversion of a number of nucleotides, as defined in the
bases attribute.

Effect classifies the allelic variant by the effect(s) on phenotype, and determines
if a variation is Mutant (i.e. has a pathologic effect), Neutral Polymorphism (has
a neutral effect on phenotype), or Unknown Consequence (the effect is unknown).
The Mutant class further classifies the mutation by its effect on the protein synthe-
sis process. Its specialized classes are: (i) Splicing, in case the mutation affects the
splicing process (frequently located at splice junctions); (ii) Regulatory, in case the
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mutation affects the regulation of the gene; (iii) Missense, in case a point mutation
results in a codon change (usually resulting in a non-functional protein), and (iv)
Others, including other types of point mutations like nonsense (in which the muta-
tion results in a premature STOP-codon, and thus eventually a shortened protein) or
mutations that provoke frame shift.

The SNP entity is one of the more recent additions to the model. It handles the
Single Nucleotide Polymorphism concept discussed earlier in Sect. 16.2. The ge-
nomic domain has developed many uses, and accordingly various definitions to this
specific term. A very practical, widely spread application of the SNP concept is
as a predictive marker. Here, due to high costs of sequencing an entire genome,
rather specific parts that contain so-called genetic markers (often SNPs) undergo
sequencing. By using the property of linkage disequilibrium [49], it is then possi-
ble to predict certain alleles in other parts of the sequence. This application, born
out of practical reasons and high costs, is not facilitated in the proposed conceptual
model, as it does not contribute to a deeper understanding of the human genome
itself. Rather, it is a clever solution to a problem risen from the relative youth of
the field. An SNP itself is considered to be a single nucleotide polymorphism, thus
a specific variation of the type Indel. Crucial to the SNP concept is that no causal
relation exists with a negative phenotype, it can therefore only be a variation of the
type Neutral Polymorphism.

The Category, Feature, Value, Measurable and Syndrome concepts associate a
Variation with phenotype. A Syndrome is what corresponds most to the general
concept of disease; neurofibromatosis and Huntington’s disease are examples of
instances of this class. A Syndrome can be provoked by a single or various varia-
tions, and a Variation can have multiple diseases associated to it. Syndromes are
usually characterized by various features, instances of the class Feature; in the case
of neurofibromatosis, this includes so-called cafe-au-lait spots. These Features are
in turn classified by Categories, which have a recursive property indicated by the
self-referencing relation. An example of a Category would be ‘Cardiovascular’, or
‘Skeletal’. In the case of neurofibromatosis, the previously mentioned cafe-au-lait
spots fall under the ’Skin’ category. Adding to this, each Feature consists of a col-
lection of Values, which represent the measurable effects on phenotype (Measur-
able). For instance, a Feature blood pressure that has Value 160/100 and has Mea-
surable properties mm/Hg represents the Syndrome high blood pressure. In some
cases, like cafe-au-lait spots, the Feature has no Measurable; rather, cafe-au-lait
spots are present or not. It is important to note that Variations might have a Value
associated directly to them, without provoking any Syndrome. This is the case for
variations, typically SNPs, that provoke neutral phenotypes like eye-color.

This view also models the allele segmentation for the transcription process.
(The part of the conceptual model associated to the transcription process itself
is explained below.) The Segment class represents a segment of the allele. Its at-
tributes are: ord_num (identifies a certain segment among all the allele segments),
start_position and end_position (initial and end position of the segment in the chro-
mosome), and sequence (DNA sequence between start_position and end_position).
The Segment entity has four specialized entities classified by their function in the
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transcription process: Promoter (DNA sequence region that facilitates the initiation
of the transcription process); TranscribedSequence (DNA sequence transcribed by
the RNA polymerase II); Terminator (DNA sequence that signals the end of the
transcription process); and RegulatorSequence (DNA sequence that regulates one
or many transcription units). The Transcription Unit class models (as its name indi-
cates) the biological concept of a transcription unit; the attribute ord_num identifies
a specific transcription unit in the system. This class is defined as being a compos-
ite of a Promoter segment, many TranscribedSequence segments (many transcribed
sequences may exist in the same transcription unit, all starting at the same position),
many Terminator segments (a transcription unit may have more than one termi-
nator segment), and many RegulatorSequence segments (a transcription unit may
have many regulatory segments, shared by different transcription units belonging to
several genes in the most general case). It is interesting to note here that regulator
sequences do not necessarily have to reside within the gene they regulate, even more
they can reside on entirely different chromosomes [72].

The model also includes some restrictions, expressed in natural language and
mostly related to the allele segmentation for the transcription process. The restric-
tion associated with the Segment entity regulates the order in which Transcrip-
tionUnits can happen. The first Segment is always of the type Promoter, and the
last is always a segment of the type Terminator; what comes between is a com-
bination of TranscribedSequences and RegulatorSequences. Also, note that there
cannot exist gaps between Segments; this means that every Segment needs to have
a start_position equal to the end_position of the preceding Segment.

Transcription View

Transcription is the biological process in which the genetic sequence in DNA is
transferred, or transcribed onto RNA, a molecule very similar to DNA. This allows
the genetic sequence to leave the cell nucleus, in order to reach other biological sys-
tems that will eventually lead to the construction of complex proteins. A gene can
be thought of as a set of separate blocks of nucleotides. The coding blocks, or exons,
eventually form the transcript, although which exons are included in which version
of the transcript may vary. The process that regulates which exons are included, and
discards all of the introns, is called splicing; see [2] for more information. The tran-
scription view in Fig. 16.2 models the basic steps in protein synthesis. The Primary
Transcript class represents the transcribed copy from DNA to RNA of the Tran-
scribedSequence. In the biological process of transcription, the primary transcript is
an RNA molecule, containing a literal copy of the DNA sequence of a gene, includ-
ing all coding (exons) and non-coding (introns) fragments. Its sequence attribute is
a derived attribute from the Segment class. The PrimaryTranscriptPath class mod-
els the different splicing factor-driven partitions of the Primary Transcript; its at-
tribute ord_num identifies a partition from the complete set of partitions of a Pri-
mary Transcript. In the ElementTranscript class, the ord_num attribute identifies
a specific fragment within the partition. The Exon and Intron classes specialize the
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Fig. 16.2 Transcription view

type of partition fragments. The Spliced Transcript class represents different exon
combinations (sequences) of a Primary Transcript; its ord_num attribute identifies
it among all the allele spliced transcripts. The result of these combinations will be
the mRNA and others RNA types (specialized classes from Spliced Transcript).

The mRNA contains a nucleotide sequence that could potentially encode a pro-
tein; this is known as ORF (Open Reading Frame). The id attribute of an ORF
identifies it in the system, and the sequence attribute stores the codifying sequence.
The Primary Polypeptide class describes the protein primary structure: the amino
acid chain obtained as a result of the translation of an ORF. This amino acid chain
undergoes chemical transformations, and the final result is a functional protein, rep-
resented in the model as the Protein class. A protein can consist of one or more
Primary Polypeptides. In the Protein, its name attribute represents the name of the
resulting protein, and its sequence attribute the amino acid sequence.
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Genome View

The genome view in Fig. 16.3 models individual human genomes. This view is in-
teresting for future applications, since massive parallel sequencing technologies will
allow the complete sequencing of individual genomes at a very low price in the near
future [10]. The class Research Centre represents the labs or research centers where
an individual human genome is sequenced. A genome (Genome) is considered a set
of chromosomes (Chromosome). The number attribute identifies a chromosome in
a genome. The couple relation on the Chromosome class represents the concept of

Fig. 16.3 Genome view
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homologue pairing, i.e. every human cell will carry two equivalent chromosomes –
one from the father and one from the mother – with the same genes but different
alleles for each gene.

The ChromosomeSegment class represents the segments that constitute the chro-
mosome. This class has a sequence attribute that stores the corresponding DNA
sequence delimited by start_position and end_position attributes. A chromosome
has two main types of segments: coding-related segments (GenicSegment) and non-
coding-related segments (NonGenicSegment). Two classes specialize NonGenicSeg-
ment: the IntergenicRegion class (the regions between genes) and ChromosomalEle-
ment class, which in turn has three specializing classes that describe other elements
of the chromosomes (Centromere, Telomere and ORI) whose function is to keep the
chromosome functional and are not involved in protein production.

These three conceptual views are the components in which the entire concep-
tual model is structured. This conceptual model specification shows how conceptual
modeling can improve the understanding of biological, genomic information. Taken
together, these three views provide the desired, holistic conceptual model intended
to enable the storage, management and subsequent adequate understanding of the
information associated to the human genome.

16.6 Problem Statement and Conclusions

It has been our intention here to demonstrate that a conceptual model for the human
genome is not only necessary but feasible. The precise interpretation of the human
genome faces some of the most fascinating questions that humans have asked since
the very beginning of civilization: Why are we as we are? What rules lead and ex-
plain our behavior? To answer these questions from a systemic perspective implies
to specify the conceptual models that the genomic code of each individual imple-
ments. This systemic perspective would interpret an individual as a program whose
instructions are executed according to that genetic code. To discover the basic in-
structions and their meaning directly from the final code seems to be a colossal task.
We propose to face these questions from a pure conceptual modeling perspective,
the main objective being to introduce a conceptual model intended to guide the de-
sign and implementation of a genomic database, where the link between genotype
and phenotype is led by the conceptual model and not by the uncontrolled accumu-
lation of information that is becoming more and more heterogeneous, inconsistent,
redundant, and almost impossible to exploit adequately.

In this direction, we have introduced a conceptual model that covers the per-
spectives of genotype, phenotype, and variation/mutations. Concepts behind each
perspective are determined and represented in the conceptual model, providing the
basis for creating the required database where all relevant information associated
with the human genome could be correctly represented and exploited.

We want to emphasize the potential of such a concept-centric database. Instead
of having the current model of isolated islands of different types of genomic infor-
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mation, this logical central repository would be ready to represent all the relevant
information in a way that would make possible to manage it, relating genotype with
phenotype in a precise way.

More than that, the conceptual model-oriented characteristic of such a database
would guarantee its evolution according to the incorporation of new knowledge to
the domain, something that happens continuously in the genomic domain.

It is our intention to include all relevant information in such a formal data repos-
itory. Gene by gene, incorporating genotype and phenotype relationships already
discovered from wherever they are stored, as well as incorporating new pieces of
relevant information as they are discovered by the researchers, we can talk about
building an information system for the human genome that adheres strictly to the
good principles of conceptual modeling, assuring the quality of the stored data, and
facilitating the mechanisms that should allow to exploit the information to enable –
for instance – the objectives introduced in Sect. 16.3 when talking about personal-
ized medicine.

We close with a challenging analogy to explore the possibilities that we have
discussed here. We, humans, are able to create robots that in some years could re-
produce particular human behavior. Let us imagine that these robots survive a cli-
mate disaster, unfortunately a fashionable topic nowadays, and that the silicon life
resists where the organic life fails. These robots could evolve according to their pro-
grammed capabilities created by us, humans; at a given moment, they could wonder
where they come from and why they are as they are. To answer this question, they
would need to know and understand the conceptual models that their creators used
to create them. We hope that this chapter could help them understand the path to
follow in order that they might find their answers.
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Chapter 17
The Theory of Conceptual Models,
the Theory of Conceptual Modelling
and Foundations of Conceptual Modelling

Bernhard Thalheim

Abstract Conceptual modelling is a widely applied practice and has led to a large
body of knowledge on constructs that might be used for modelling and on methods
that might be useful for modelling. It is commonly accepted that database applica-
tion development is based on conceptual modelling. It is, however, surprising that
only very few publications have been published on a theory of conceptual modelling.
Modelling is typically supported by languages that are well-founded and easy to ap-
ply for the description of the application domain, the requirements and the system
solution. It is thus based on a theory of modelling constructs. Modelling is ruled
by its purpose, e.g., construction of a system, simulation of real-world situations,
theory construction, explanation of phenomena, or documentation of an existing
system. Modelling is also an engineering activity with engineering steps and engi-
neering results. It is thus engineering.

17.1 Towards a Theory of Conceptual Models
and Conceptual Modelling

Models are different for different purposes. We may develop a model for analysis
of an application domain, for construction of a system, for communicating about an
application, for assessment, and for governance. These different purposes result in
different goals and task portfolios.
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Models are an essential part of computer science. While preparing a survey on
models, we realised that computer science uses more than 50 different models. In
analysing these different models, we discover four commonalities:

Purpose: Models and conceptual models are governed by the purpose. The model
preserves the purpose. Therefore the purpose is an invariant for the modelling
process.

Mapping: The model is a mapping of an origin. It reflects some of the properties
observed or envisioned for the origin.

Language as a carrier: Models use languages and are thus restricted by the ex-
pressive power of these languages. Candidates for languages are formal or graph-
ical languages, media languages, illustration languages, or computer science con-
structions.

Value: Models provide a value or benefit based on their utility, capability and
quality characteristics.

The purpose of a model covers a variety of different intentions and aims. Typical
purposes are:

Perception support for understanding the application domain.
Explanation and demonstration for understanding an origin.
Preparation to management and handling of the origin.
Optimisation of the origin.
Hypothesis verification through the model.
Construction of an artifact or of a program.
Control of parts of the application.
Simulation of behaviour in certain situations.
Substitution for a part of the application.

Depending on the purpose we shall use different models.
Models are author-driven and addressee-oriented. Figure 17.1 illustrates the as-

sociation between an origin and the model.
A model is typically a schematic description of a system, theory, or phenomenon

of an origin that accounts for known or inferred properties of the origin and may be
used for further study of characteristics of the origin. Conceptual modelling aims
to create an abstract representation of the situation under investigation, or more
precisely, the way users think about it. Conceptual models enhance models with

Fig. 17.1 The origin-model-
author-addressee relationship
for models addressee

modelorigin

author

covers uses

intention

develops

analogy
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concepts that are commonly shared within a community or at least between the
stakeholders involved in the modelling process.

This chapter extends the theory of conceptual models, conceptual modelling and
modelling act proposed by [20] and systematises the four main dimensions of mod-
els: purpose, mapping, language, and value. It is based on an explicit application of
concepts and constructs of languages.

The value of a model is given by the objective value and by the subjective value.

Models as enduring, justified and adequate artifacts. The artifact can be qualified
as an ‘objective’ model, if the artifact

1. is adequate by certain notion of ‘adequacy’,
2. is reusable in a rule system for new models and refinement of models, and
3. is not equivalent to models, which can be generated with the aid of facts or

preliminary models in the particular inventory of models by a rule system.

Models as the state of comprehension or knowledge of a user. Models are used for
comprehension of a user or stakeholder. Therefore, a model can be understood
as the knowledge of a user. Different kinds of toknow are:

1. The state or fact of knowing.
2. Familiarity, awareness, or understanding gained through experience or study.
3. The sum or range of what has been perceived, discovered or learned.
4. Learning; erudition: teachers of great knowledge.
5. Specific information about something.
6. Carnal knowledge.

We conclude that it is necessary to deliver models as enduring, justified and ad-
equate artifacts to users depending on context, user demands, desiderata and inten-
tion, whereby these aspects are supported by the environment, the profile and tasks
of the users. The tasks of users require a special model quality.

17.1.1 Artifacts, Concepts and Intentions

17.1.1.1 The Conceptual Model Space

At the same time, we may distinguish four different aspects of conceptual models.
Conceptual models use concepts. Thus, the model space is characterised through (1)
its origin, (2) its concepts, (3) its representation of model elements, and (4) its com-
prehension by users or stakeholders involved. Model elements cannot be considered
in isolation. For this reason, we consider the use of model chunks as a suite of model
elements consisting of images of pieces observed for the origin, concepts, repre-
sentations and comprehension. These aspects are interdependent from each other.
Figure 17.2 displays the conceptual model space.
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Fig. 17.2 The four aspects of the model space: origin aspect through properties, foundation aspect
through concepts, representation aspect through language, user aspect through user comprehension

17.1.1.2 Intentions Driving Modelling

Modelling, and especially conceptual modelling, is not yet well understood and is
misinterpreted in a variety of ways. The first goal of the chapter is to overcome some
myths of conceptual modelling, such as:

1. Modelling equals documentation.
2. You can think everything through from the start.
3. Modelling implies a heavyweight software process.
4. You must “freeze” requirements and then you can start with modelling.
5. Your model is carved in stone and changes only from time to time.
6. You must use a CASE tool.
7. Modelling is a waste of time.
8. The world revolves around data modelling.
9. All developers know how to model.

10. Modelling is independent of the language.

The second goal of this chapter is the development of a framework for modelling.
Modelling is based on an explicit choice of languages, on application of restrictions,
on negotiation and on methodologies.

Restrictions depend on logics (deontic, epistemic, modal, belief, preferences) and
use shortcuts, ambiguities, and ellipses.

Negotiation supports management or resolution of conflicts and the development
of strategies to overcome these strategic, psychological, legal, and structural barri-
ers.

Development methodologies are based on pragmatism and on paradigms. Since
modelling is an activity that involves a number of actors, the choice of languages
becomes essential.

Modelling is a process and is based on modelling acts. These modelling acts are
dependent from the purpose of modelling itself. Therefore we can distinguish differ-
ent modelling acts such as understand, define, conceptualise, communicate, abstract,
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construct, refine, and evaluate. Depending on the purpose of model development, we
might use such acts as construct and evaluate as primary modelling acts.

The third goal of this chapter is to draw attention to explicit consideration of
modelling properties both for the models themselves and for the modelling acts.
This side of conceptual modelling is often only considered in an implicit form.

The modelling process is governed by goals and purposes. Therefore, we must
use different models such as a construction model, a communication model or a dis-
cussion model. Modelling is restricted by the application context, the actor context,
the system context and the theory and experience context. These contexts restrict
the model and the modelling process.

17.1.2 Dimensions of Models and Modelling

17.1.2.1 Main Dimensions of Modelling

Building upon the commonalities observed above for computer science, we intro-
duce four main dimensions of models and modelling:

Purpose (“wherefore”) of models and modelling, with the intentions, goals, aims,
and tasks that are going to be solved by the model.

Mapping (“whereof”), with a description of the solution provided by the model,
the characterisation of the problem, phenomena, construction or application do-
main through the model.

Language (“wherewith”), with a careful selection of the the carrier or cargo [10]
that allows one to express the solution, the specification of the world or the con-
struction.

Value (“worthiness”) of a model, by explicit statement of the internal and external
qualities, and the quality of use, e.g. explicit statement of invariance properties
relating the model to its associated worlds or by preservation properties that are
satisfied by the model in dependence on the associated worlds.

These main dimensions of models and modelling govern the model and the mod-
elling acts. There are extended by secondary dimensions that are used to shape and
to adapt the model. We will discuss these dimensions after beginning with a discus-
sion of the ruling dimension: the purpose dimension.

The task of model development is never completed (ta panta rhei (˛ �˛	˛ ���),
‘the rivers flow’). Models are changing artifacts due to changes imposed by:

Scope insight, for conscious handling of restriction, capabilities, opportunities.
Guiding rules, for convenience, for completion, refinement, and extension.
Development plans, for partial delivery of models, partial usage and deployment.
Theories supporting development of models.
Quality characteristics for model completion, model evolution, model engineer-

ing.
Mapping styles for mapping models among abstraction layers.
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17.1.2.2 The Purposes Dimension

The purpose dimension rules the development of models and the application of mod-
els. The main reason for using a model is to provide a solution to a problem. We thus
may describe the purpose by characterisation of the solution to the problem by the
model. We can distinguish a number of concerns, such as:

The impact of the model (“whereto”) for a solution to a problem.
The insight into the origin’s properties (“how”) by giving details how the world

is structured or should be structured and how the functionality can be described.
Restrictions on applicability and validity (“when”) of a model for some specific

solutions. for the validity interval, and the lifespan of a model.
Providing reasons for model value (“why”) such as correctness, generality, use-

fulness, comprehensibility, and novelty.
The description of how a model functions (“for which reason”) based on the mod-

el capacity.

This general characterisation of purposes of models can be specialised for database
and information system models. The main purposes of information system models
are given within Gregor’s taxonomy [6]:

I. Analysis: Says what is.
The model does not extend beyond analysis and description. No causal relation-
ships among phenomena are specified and no predictions are made. It thus pro-
vides a description of the phenomena of interest, analysis of relationships among
those constructs, the degree of generalisability in constructs and relationships
and the boundaries within which relationships, and observations hold.

II. Explanation: Says what is, how, why, when, and where.
The model provides explanations but does not aim to predict with any preci-
sion. There are no testable propositions. The model provides an explanation of
how, why, and when things happened, relying on varying views of causality and
methods for argumentation. This explanation will usually be intended to promote
greater understanding or insights by others into the phenomena of interest.

III. Prediction: Says what is and what will be.
The model provides predictions and has testable propositions but does not have
well-developed justificatory causal explanations. It states what will happen in the
future if certain preconditions hold. The degree of certainty in the prediction is
expected to be only approximate or probabilistic in IS.

IV. Explanation and prediction: Says what is, how, why, when, where, and what
will be.
The model provides predictions and has both testable propositions and causal
explanations. A special case of prediction exists where the model provides a de-
scription of the method or structure or both for the construction of an artifact
(akin to a recipe). The provision of the recipe implies that the recipe, if acted
upon, will cause an artifact of a certain type to come into being.
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V. Design and action: Says how to do something.
The model gives explicit prescriptions (e.g., methods, techniques, principles of
form and function) for constructing an artifact.

Based on this characterisation of the purpose, we infer a number of requirements
for languages used for modelling and modelling methodologies:

Means of representation. The model must be represented physically in some way:
in words, mathematical terms, symbolic logic, diagrams, tables or graphically.
Additional aids for representation could include pictures, models, or prototype
systems.

Constructs. These refer to the phenomena of interest in the model (Dubin’s
“units”). All of the primary constructs in the model should be well defined. Many
different types of constructs are possible: for example, observational (real) terms,
theoretical (nominal) terms and collective terms.

Statements of relationship. These show relationships among the constructs. Again,
these may be of many types: associative, compositional, unidirectional, bidirec-
tional, conditional, or causal. The nature of the relationship specified depends on
the purpose of the model. Very simple relationships can be specified.

Scope. The scope is specified by the degree of generality of the statements of
relationships (signified by modal qualifiers such as “some”, “many”, “all”, and
“never”) and statements of boundaries showing the limits of generalizations.

Causal explanations. The model gives statements of relationships among phe-
nomena that show causal reasoning (not covering law or probabilistic reasoning
alone).

Testable propositions (hypotheses). Statements of relationships between constructs
are stated in such a form that they can be tested empirically.

Prescriptive statements. Statements in the model specify how people can accom-
plish something in practice (e.g., construct an artifact or develop a strategy).

17.1.2.3 The Artifact Dimension

The main product of modelling is the model, i.e. an artifact that is considered to be
worthy for its purpose by the author. The model can, for instance, be used for the
description of the world of origins or for the prescription of constructions. There are
a number of explicit choices an author makes and that rule application of models.
Modelling of information systems depends on the following choices:

The abstraction layer, e.g., requirements, specification, realisation or implemen-
tation layer.

Chosen granularity and precision of the work product itself.
Resources used for development of a model such as the language.
Level of separation of concern such as static/dynamic properties, local/global

scope, facets.
Quality properties of the input, e.g., requirements, completeness, conciseness, co-

herence, understandability.
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Decomposition of the work products into ensembles of sub-products.

In addition, modelling of information satisfies quality characteristics such as quality
in use, internal quality, and external quality.

17.1.2.4 The User Dimension

A number of users are involved in the development of models. The user dimension
thus reflects intentions, understanding, the comprehension and other characteristics
of users in a variety of roles, for example:

Author (“by whom”). Results in reflections of the educational level, application
of templates, pattern or reference models.

Addressee (“to whom”). Restricts the utilisation of the model or supports the ex-
tended application beyond the purpose originally intended.

The broad public (“whichever”). Develops a common understanding of the model
depending on the group or the culture of the public.

Users are different and thus modelling has different results because of

attitudes of users and their preferences;
the ability to understand, to model, to reason, to survey, to communicate with

others, to analyse, to construct systems, to validate, verify, or test models, to use
or develop documentation;

mastering of complexity, improvements, and realisation;
knowledge, skills, competency of users for representing the world or for coping

with representations;
restricted expressivity due to restricted leads or due to human preference of local

reasoning instead of global consideration of all properties of an artifact;
experience to cope with varieties of problem solutions through generic problem

solving; and
referential solutions to be used for solution of similar problems together with re-

finement of the given approach.

One important relationship among the users is the form of partnership during the
development or application of models. The partnership is characterised by:

Roles during activities such as stakeholder, developer, consultant, supplier, con-
tractor, documentation developers, or business user.

The practised collaboration partnership based on communication acts, coopera-
tion business processes, and coordination agreements.

Teamwork during all activities with separation of different tasks.
Historical people such as teachers, legacy (heritage) developers, or coders.
Builders of earlier models.

Finally, the user dimension imposes an important restriction to the development,
the application, the understanding of models: Models tend to be too large for a single
person.
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17.1.2.5 The Domain Dimension

The domain dimension clarifies:

• The domain depending on the model’s purpose (“for what”), such as an applica-
tion domain, properties reflected or neglected.

• The scope to specific elements (“what”) that are considered to be typical and
whose properties should be reflected.

• The attention within the domain depending on the model’s purpose (“where”)
that limits the model to the ‘normal’ aspects.

• The orientation of the domain (“wherefrom”) that restricts the attention and the
directions for the current activities supported by the model.

• The sources for origins or the infrastructure considered (“whence”) for the
model.

• The restrictions of the world (“wherein”) associated with the model.

A typical influence of the application domain can be illustrate by an example
in [10]. Areas in Königsberg are connected through bridges. The question is whether
there is a path that uses each bridge but only once. Such a path is called an Euler
path.

The two models display the same problem as in the original domain. We might
also use a tree model that enumerates each starting point and associates a node with
its predecessor and potential next point if there is an unused bridge. This model is
inadequate for the general problem whether there is an Euler path within a topo-
graphical model. The main quality property for the models is the preservation of the
Euler path problem.

17.1.2.6 The Context Dimension

The context dimension is typically used for restricting a model to a specific scope,
and thus limits the general utilisation of models. It additionally requires an explicit
consideration of these restrictions if the model is used outside its main application
area. Context abstraction is a useful vehicle for restricting attention. Typical specific
context restrictions to models include:
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The worlds (“whereat”) considered for the model, such as the world that is cur-
rently accepted, the world that will be never considered, and the world that might
be considered in future in dependence on the model value.

The background knowledge (“whereabout”) that forms the model and limits the
model.

Envisioned evolution paths (“whither”) for the adaptation of the model to future
requirements.

17.1.3 Postulates of Modelling

17.1.3.1 General Properties of Models

This discussion can be summarised in a number of postulates that are of importance
for models, modelling, and modelling acts.

Mapping property: Each model has an origin and is based on a mapping from the
origin to the artifact.

Truncation property: The model lacks some of the ascriptions made to the origi-
nal and thus functions as an Aristotelian model by abstraction of irrelevant.

Pragmatic property: The model use is only justified for particular model users,
tools of investigation, and period of time.

Amplification property: Models use specific extensions which are not observed
for the original.

Distortion property: Models are developed for improving the physical world or
for inclusion of visions of better reality, e.g. for construction via transformation
or in Galilean models.

Idealisation property: Modelling abstracts from reality by scoping the model to
the ideal state of affairs.

The first three properties are based on Stachowiak’s theory of models [12, 16].
The fourth property has been formulated in [17]. The fifth property has been dis-
cussed in [9]. The sixth property has been developed within natural sciences (chem-
istry).

17.1.3.2 Prescription by Models and Description for Models

Figure 17.3 depicts the association between origin and artifacts.
Similarly, we may describe the application of models for construction of other

artifacts such as software and hardware. Figure 17.4 gives the reflection of the pos-
tulate. We observe that the completion activities change compared with Fig. 17.3.
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17.1.3.3 The Model Capacity

The model

• is based on an analogy of structuring, functionality, or behaviour,
• satisfies certain model purposes, and
• provides a simple handling or service or consideration of the things under con-

sideration.

Any model is therefore characterised by a model capacity that describes

• how the model provides some understanding of the origin or can be used depend-
ing on the purpose,

• how the model provides an explanation of demonstration through auxiliary in-
formation and thus makes the origin or the associated elements easier or better to
understand,

• how the model provides an indication and facilities for making properties view-
able,

• how the model allows to provide variations and support optimisation,
• how the model support verification of hypotheses within a limited scope,
• how the model supports construction of technical artifacts,
• how the model supports control of things in reality, or
• how the model allows a replacement of things of reality and acts as a mediating

means.

17.1.3.4 Resulting Restrictions To Be Accepted by Stakeholders

Models are governed by their purpose. They may support this purpose or not. They
have a value and may thus be used depending on their capacity.

Prohibition of estrangement: Models serve a purpose and cannot be used in gen-
eral outside the scope of the purpose.

17.1.4 Artifacts and Models

The four aspects of the conceptual model space in Fig. 17.2 are interwoven. Models
use artifacts. Models have their specific representation. Models are supported by
conceptualisations.

The interrelationship between models, representations and concepts should be
very flexible. We can assume that models may use different representations or arti-
facts. Artifacts may contain sub-artifacts. Conceptual models are based on concepts.
Concepts may be typical for a model within a certain degree of typicality. Concepts
may consist of sub-concepts. Therefore, we may associate a model with a concept
that has its own sub-concepts.
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Fig. 17.5 The association between artifacts, representations, and concepts

We assume that concepts are independent of representations. Additionally, we
may assume that representations are dependent on the language and some ontology
to be used. They are typically commonly accepted or shared within a community or
culture. This understanding leads to the structure displayed in Fig. 17.5.

17.2 The Theory of Conceptual Models

17.2.1 Conceptual Models and Languages

17.2.1.1 The Language Dimension

Models are represented by artifacts that satisfy the pragmatic purposes of users.
We restrict this discussion to formal languages that are typically used for concep-
tual models. In this case, artifacts are linguistic expressions that describe the model.
Linguistic expression are built within a language with some understanding. There-
fore, artifacts use syntax, semantics and pragmatics built into the chosen language.

Semantic annotation in current content management systems is usually restricted
to preselected ontologies and parameter sets. Rich conceptual data models are only
available in more sophisticated systems. They are adapted to certain application
domains that incorporate preselected and tailored ontologies.

The model-artifact association is agreed upon within a community. This commu-
nity is based on a web of knowledge of their members (see Chap. 15).

17.2.1.2 Languages Used for Representation of Models

Languages are the carrier for models. We may accept a logics approach to semiotics
and define the language similar to Chap. 12. Each constructive language is based on
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Fig. 17.6 Artifacts with a language, their properties and postulates

a signature, on a set of base items, and a set of constructors. The language consists of
words that are allowed due to well-formedness constraints. LanguagesL are used for
a number of reasons, e.g. reasoning, representation, illustration, etc. These reasons
are driven by the model purposes in our case.

We may now use a subset of words and accept those as postulates for a model.
To be considered faithful or useful, a model must satisfy these postulates.

We may develop different artifacts as a potential models. We are, however, in-
terested in some properties that these models must satisfy. We therefore develop
a general understanding of artifacts that are used for models within a language.

Postulates must be explicitly given. They might be changed whenever the pur-
pose of modelling is changing. They do not restrict models to one artifact. Instead,
we might also use a number of artifacts in parallel. Figure 17.6 displays the rela-
tionship between an artifact and its postulates and properties.

Constructive languages thus provide support for:

• prescribing postulates that restrict the judgement that an artifact can be accepted
as a model,

• scoping our attention to those artifacts that can be considered for a model or for
parts of a model, and

• orienting the user on certain properties that are of interest for the purpose of
modelling.

This approach is very general. It can be applied in many areas. Consider, for
instance, the following table:

L QG 	.G/ corresponds G scope ˚.G/

Logics Axioms Satisfy Structure Satisfy Essential properties
N Peano axioms Satisfy Standard

model
Derivable Peano arithmetics

Empirism Postulates Accepted Artifact Supports Observation
Technics Construction

requirements
Enforce Product Has Properties
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This approach also carries classical approaches used in mathematical logic:

L QG 	.G/ corresponds G scope ˚.G/

Logics Axioms Satisfy Structure Consider Essential properties of G
Logics Axioms Satisfy Structure Satisfy Relevant theorems of

.L QG; 	.G//

We, therefore, may define a theory by the pair .L QG ; �.G//. The model class
MODL QG .�.G// is defined to be the set of all structures that satisfy �.G/. A struc-
ture G is a model of �.G/ and thus G 2 MODL QG s.�.G//. A theory T h.K/ � L QG
is given for a class K of structures and consists of all language expressions that are
satisfied by each of the structures in K.

The same approach can also be used for conceptual modelling:

L QG 	.G/ corresponds G scope ˚.G/

Database Requirements Realise DB schema Satisfy Integrity constraints
Workflow Requirements Realise WF schema Satisfy Integrity constraints

Thus, ingredients used for modelling of databases, information systems and
workflow systems are languages, restrictions, negotiations for the property to be
a model, and methodologies for artifact development. Languages are given with
syntactics, semantics, and pragmatics. We typically use inductive expression for-
mation based on alphabets. Inductive construction also supports the description of
behaviour defined on expressions.

Restrictions depend on the logics to be used, e.g., first-order hierarchical pred-
icate logics [18], deontic logics, epistemic logics, modal logics, logics for belief
reasoning of for preference derivation. Negotiations provide a means to identify,
define analyse barriers and manage or resolve conflicts. Methodologies of develop-
ment are based on engineering approaches and are guided by certain pragmatism
and a number of paradigms.

17.2.1.3 Principles of Language Use

Languages may, however, also restrict modelling. This restriction may either be
compensated by over-development of language components or by multi-models.
Over-development of language components has been observed within the theory
of integrity constraints in the relational model of data. More than 95 different and
necessary classes of integrity constraints have been developed. Multi-modelling is
extensively used for UML. The Sapir-Whorf hypothesis [22] results in the following
principle:



558 B. Thalheim

Principle of linguistic relativity: Actors skilled in a language may not have a (deep)
understanding of some concepts of other languages. This restriction leads to
problematic or inadequate models or limits the representation of things and is
not well understood.

The principle of linguistic relativity is not well understood. Therefore, we il-
lustrate this principle by a discussion that highlights the deficiencies we need to
overcome.

17.2.1.4 The Matter of Language Choice

Let us consider a well-known example: traffic light control. Given a crossroad with
two intersecting streets (north-south, east-west), and traffic lights that direct traf-
fic, we assume at the first glance that traffic lights might switch from red to green
and from green to red. We also might assume that both opposite cross lights show
the same colour. Software engineering approaches, Petri net approaches, process
algebra approaches etc. typically start with a model for each cross light. Next, the
interdependence among the state changes is either modeled through integrity con-
straints or through implicit modelling constructs. The best solution we know so far
is the Petri net solution depicted in Fig. 17.7. It uses an external timer and switches
between the directions.

This model neither scales nor has a good development, internal, or dynamic qual-
ity. The extension to yellow colour is an intellectual challenge as well the extension
to more flexible directing. This example is typically chosen due to everyday life
experience of the students despite its complete inadequacy. This pitfall has already
discussed in [8], who tried to find a better solution based on state change diagrams
and failed due to complex integrity constraints. Implementations neglect this solu-
tion and implement a completely different solution.

The main reason for the poor quality and the conceptual and implementation
inadequacy is its wrong attitude, wrong scope, wrong abstraction, and wrong gran-
ularity.

N/S green

N/S red
W/E green

W/E red

Time for switch

Time for wait

Fig. 17.7 Traffic control based on Petri nets
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Explicit assumptions can also be derived for the traffic light control application.
We first need to decide whether the analogy to real-life is based on the behaviour
of the entire system or on the combined behaviour of the behaviour of components.
This distinction directly implies a choice between a model that represents the entire
application as one system and the components as its elements (local-as-view model)
and a model that combines local models with a global one (global-as-view model).
All conceptual solutions known in literature use the global-as-view model. In this
case, state tables and (ASM) state transfer rules like the following ones are used:

Controller location state clock reset switch

e . . . . . . . . . . . . . . .

if Switch(e) then UPDATE(e,collocated(e)); CHANGESWITCH(e) .

These states and rules may obey a number of rather complex integrity constraints.
We might prefer the local-as-view approach. States reflect the entire state of the

crossroad, i.e. NSredEWgreen, NSredEWred, NSgreenEWred. The last state reflects
that the north-south direction is open and the east-west direction is closed. We might
add the state NSredEWred for representation of the exception state and the state
NSnothingEWnothing for the start and the end state. The state NSgreenEWgreen is
a conflict state and thus not used for the model.

The other decisions discussed in this section can now made in a similar manner.
We choose a full controller for all lights. We might, however, choose a local con-
troller for each cross light. In this case, the local controller is nothing else than a view
on the global schema. The model we propose supports simulation as well as under-
standing, reasoning, variation and extension, optimisation and technical artifacts.
The workmanship also includes a collection of extensions that seems to be prob-
able, such as: people calling a state change, exceptional situations, yellow lights,
specific directions, etc. The local schemata are based on views and on the master-
slave principle. Update is central and display is local.

This model also allows one to explicitly specify which states are never under
consideration, which states are a ‘must’ and which states are used for later exten-
sions. We further assume that reality can be mapped to discrete variables, clocks are
based on linear time logics, and control is restricted to vehicle and pedestrian di-
rection gauge. This model also extends the real-life application by adding a global,
combined state. Its main advantage is that the context conditions for correct traffic
lights for all coexisting directions are directly coded into the model domain space
and thus do not need any explicit support.

The local-as-view model is based on a two-layer architecture that uses a global
schema and local view schemata. The extended ER model [25] provides a number of
opportunities for the representation of hierarchies. A typical hierarchy in our traffic
light application is the specialisation hierarchy for states. Since states can be multi-
ply classified depending on the time of day and the day of the week, we might choose
the bulk representation for the classification of types through a StateKind instead of
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Fig. 17.8 The traffic light support database schema

explicit specialisation types. State changes may also be classified in a similar way.
We might, however, prefer to separate calls for state change made by pedestrians
from those state changes that are triggered by a clock.

Based on these choices, we derive modelling activities for the database schemata
and workflow rules. We explicitly specify properties and binding among the global
and local schemata, e.g. master-slave binding.

The given application can be specified through different modelling concepts.
These modelling concepts provide a number of alternatives and a number of op-
portunities. The ER schema in Fig. 17.8 represents one of the possible schemata for
the global schema. The state changes and the pedestrian calls are not recorded after
they have been issued.

The scheduler is based on this schema and might use workflow diagrams, trigger
rules or ASM rules [2] for specification of BPMN diagrams. We can use a generic
pattern approach that supports extensions, e.g. for kinds of states and kinds of state
changes. Typical examples are:

CHANGEACTION := getState; choosePossibleStateChange(state);
apply(possibleStateChange(state)

ALARMACTION := on alarm changeStateToErrorState
CLOCK := on tick observeWhetherChangeRequired
NORMALACTION := if change = true then CHANGEACTION

PEDESTRIANCALL := on callAtPoint(cp) CHANGENEXTSTEPISSUEDAT(cp).

Similarly, we can specify views for local display.

17.2.1.5 Pragmatics that Cannot Be Neglected

While syntax and semantics of language expressions has been well explored, its
pragmatics apart from the use of metaphors has not. Pragmatics is part of semi-
otics, which is concerned with the relationship between signs, semantic concepts
and things of reality. This relationship may be pictured by the so-called semiotics
triangle. The main branches of semiotics are syntactics, which is concerned with the
syntax, i.e. the construction of the language; semantics, which is concerned with the
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interpretation of the words of the language; and pragmatics, which is concerned with
the current use of utterances by the user and context of words for the user. Pragmat-
ics permits the use of a variety of semantics depending on the user, the application
and the technical environment. Most languages defined in computer science have
a well-defined syntax. Some of them possess a well-defined semantics. Few of them
use pragmatics through which the meaning might be different for different users.

Syntactics (often called syntax) is often based on a constructive or generative
approach: Given an alphabet and an set of constructors, the language is defined as
the set of expressions that can be generated by the constructors. Constructions may
be defined on the basis of grammatical rules.

Semantics of generative languages can be either defined by meta-linguistic se-
mantics, e.g. used for defining the semantics of predicate logics, by procedural or
referential semantics, e.g. operational semantics used for defining the semantics of
programming languages, or by convention-based semantics used in linguistics. Se-
mantics is often defined on the basis of a set of relational structures that correspond
to the signature of the language.

We must distinguish pragmatics from pragmatism. Pragmatism means a practical
approach to problems or affairs, and is the “balance between principles and practical
usage”. Here, we are concerned with pragmatics, which is based on the behaviour
and demands of users, and therefore depends on the understanding of users.

Let us consider an example for a well-known class of constraints in databases.
A similar observation can be made for multivalued, join, inclusion, exclusion and
key dependencies. Functional dependencies are the best-known class of database
constraints and commonly accepted. They are one of the most important class of
equality-generating constraints.

Given a type R and substructuresX , Y of R.
The functional dependency R W X �! Y is valid in RC if ojY D o0jY whenever
ojX D o0jX for any two objects o; o0 from RC .

Functional dependencies carry at least five different but interwoven meanings.
The notion of the functional dependency is thus overloaded. It combines different
properties that should be separated:

Explicit declaration of partial identification. Functional dependencies typically
explicitly declare a functional association among components of types. The left

hand attribute uniquely identifies right side attributes, i.e. X
Ident�! Y .

Identification can either be based on surrogate or on natural attributes [1].
Tight functional coupling. Functional dependencies may also be numerical con-

straints. We denote such constraints by i.e.X
Num�! Y . Another denotation is based

on cardinality constraints [18].
Semantic constraint specific for the given application. Constraints may be

stronger than observed in usual life since the application has a limited scope
and allows us to strengthen the constraint. In this case, constraints restrict the
application only to those cases in which the left side has only one associated
right side value, even though this restriction may not be valid for any application.

We denote this case by X
Sem�! Y
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Semantical unit with functional coupling. Semantical units are those reducts of
a type that are essential in the given application. Their components cannot be
separated without losing their meaning. Semantical units may have their inner
structure. This structure tightly couples dependent object parts with those that

determine them [18]. We denote this coupling by X
Unit�! Y .

Structural association among units. Semantical units may allow a separation of
concern for certain elements. Their separation supports a more flexible treatment
while requiring that the dependent part cannot exist without the determining
part. If this dependence is functional we may represent such by the constraint

X
Struct�! Y .

17.2.2 Concepts and Models

Concepts are the basis for conceptual models. They specify our knowledge what
things are there and what properties things have. Concepts are used in everyday life
as a communication vehicle and as a reasoning chunk. Concepts can be based on
definitions of different kinds.

Thus, our goal for the development of a theory of conceptual modelling and of
conceptual models can only be achieved if the conceptual model definition covers
any kind of conceptual model description and goes beyond the simple textual or
narrative form.

A general description of concepts is considered to be one of the most difficult
tasks. We analysed the definition pattern used for concept introduction in mathemat-
ics, chemistry, computer science, and economics. This analysis resulted in a number
of discoveries:

• Any concept can be defined in a variety of ways. Sometimes some definitions
are preferred over others, are time-dependent, have a level of rigidity, are usage-
dependent, have levels of validity, and can only be used within certain restric-
tions.

• The typical definition frame we observed is based on definition items. These
items can also be classified by the kind of definition. The main part of the defini-
tion is a tree-structured structural expression of the following form:

SpecOrderedTree(StructuralTreeExpression
(DefinitionItem, Modality(Sufficiency, Necessity),

Fuzziness, Importance, Rigidity,
Relevance, GraduationWithinExpression, Category))) .

• Concepts typically also depend on the application context, i.e. the application
area and the application schema. The association itself must be characterised by
the kind of association.

Concepts are typically ordered hierarchically and can thus be layered. We assume
that this ordering is strictly hierarchical and the concept space can be depicted by
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Fig. 17.9 The main schema for concept definition and formation

a set of concept trees. A concept is also dependent on the community that prefers
this concept. A concept is typically given through an embedding into the knowledge
space of users involved.

The schema in Fig. 17.9 displays the general structure for content definition.
This schema also covers all aspects discussed in [13]. This schema extends the
relationship between artifacts, representations and concepts introduced in Fig. 17.5.

Concept gathering can be understood as a technique that combines concept rep-
resentation [5, 13, 19] and (algorithmic) learning approaches.
A concept gathering system is based on:

a set of concepts and available experience C ,
a set of domain knowledge D ,
a set of representable meta-knowledge M ,
a set of learning goals G , and
a set of representable hypotheses H .

The set of representable knowledge and concepts is denoted by R D C [ D [
M [ G [ H .

The concept gathering system .�; �; 	;C ;R/ consists of

a concept generator � W C � R ! C ,
a learning function � W C � R ! H , and
an evaluator 	 W C �R ! Q where Q denotes set of quality characteristics.

A run of the concept gathering system results in

a concept detection sequence C1; C2; : : :; Cf with Ci 2 C and
a learning sequence R0; R1; R2; : : :; Rf with Ri 2 R where R0 denotes the
initial knowledge and Rf denotes the final knowledge.
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The run is typically recorded and is dependent on the concepts gathered thus far.
Additionally, the concept gathering system records

the background knowledge of the user B � D [ M [ G and
the actual available knowledge B [ H 0.

17.2.3 Information Exchange of Stakeholders Based on Models

Stakeholders such as the author of a model and the addressee for a model use mod-
els in a variety of ways. The main use of models is information (or knowledge)
exchange among stakeholders. There are several definitions of “information”:

• The first category of definitions is based on the mathematical notion of entropy.
This notion is independent of the user and thus inappropriate in our project con-
text.

• The second category of definitions bases information on the data a user has cur-
rently in his data space and on the computational and reasoning abilities of the
user. Information is any data that cannot be derived by the user. This definition is
handy but has a serious drawback. Reasoning and computation cannot be prop-
erly characterised. Therefore, the definition becomes fuzzy.

• The third category is based on the general language understanding of informa-
tion: the communication or reception of knowledge or intelligence. Information
can also defined as

– knowledge obtained from investigation, study, or instruction;
– intelligence or news;
– facts and data.

Information can also be the act of informing against a person.
Finally, information is a formal accusation of a crime made by a prosecuting
officer, as distinguished from an indictment presented by a grand jury.

All these definitions are too broad. We are instead interested in a definition that
is more appropriate for the internet age:

Information as processed by humans,

• is carried by data
• that is perceived or noticed, selected and organized by its receiver,
• because of his subjective human interests, originating from his instincts, feel-

ings, experience, intuition, common sense, values, beliefs, personal knowledge,
or wisdom,

• simultaneously processed by his cognitive and mental processes, and
• seamlessly integrated in his recallable knowledge.

Therefore, information is directed towards pragmatics, whereas content may be
considered to highlight the syntactical dimension. If content is enhanced by concepts
and topics, then users are able to capture the meaning and the utilisation of the
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data they receive. In order to ease perception, we use metaphors or simply names
from a commonly used namespace. Metaphors and names may be separated into
those that support perception of information and into those that support usage or
functionality. Both carry some small fraction of (linguistic) semantics.

The information transfer from a user A to a user B depends on the two users
and on their abilities to send and to receive the data, to observe the data, and to
interpret the data. Let us formalise this process. Let sX denote the function used
by a user X for data extraction, transformation, and sending of data. Let rX denote
the corresponding function for data receipt and transformation, and let oX denote
the filtering or observation function. The data currently considered by X is denoted
by DX . Finally, data filtered or observed must be interpreted by the user X and
integrated into the knowledge KX that user X has. Let us denote by iX the binary
function from data and knowledge to knowledge. By default, we extend the function
iX by the time tiX of the execution of the function.

Thus, the data transfer and information reception (or, briefly, information trans-
fer) is formally expressed by

IB D iB.oB.rB.sA.DA///;KB; tiX / :

In addition, the time of sending, receiving, observing, and interpreting can be taken
into consideration. In this case, we extend the above functions with a time argument.
The function sX is executed at moment tsX

, rX at trX
, and oX at toX

. We assume
tsA

� trB � toB � tiB for the time of sending data from A to B . The time of
a computation f or data considerationD is denoted by tf or tD, respectively. In this
extended case, the information transfer is formally expressed by

IB D iB.oB.rB.sA.DA; tsA
/; trB/; toB/;KB; tiB/ :

The notion of information considers senders, receivers, their knowledge and expe-
rience. Figure 17.10 displays the multi-layering of communication, the influence of
explicit knowledge and experience on the interpretation.

communication
actsender receiver

data
(information, misinformation)

sender-receiver relationship

appeal to

receiver

form
appearance,

gestalt
presentation

explicit
knowledge

explicit
knowledge

experienceexperience data

Fig. 17.10 Dimensions of the communication act
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The act of communication is specified by

• the communication message with the content or content chunk, the characterisa-
tion of the relationship between sender and receiver, the data that are transferred
and may lead to information or misinformation, and the presentation;

• the sender, the explicit knowledge the sender may use, and the experience the
sender has; and

• the receiver, the explicit knowledge the receiver may use, and the experience the
receiver has.

17.2.4 Mappings Among Models and Originals

17.2.4.1 Modelling Supported by Mapping

Thus far, two of the four main dimensions have been established. Let us now con-
sider the mapping between two worlds: source world and target world. Examples of
source-target pairs include:

• origins from the real world mapped to an artifact that is considered to be a model;
• elements of an artifact that serves as a model for a realisation of the artifact by

an implementation; and
• elements of one model are mapped to elements of another model.

The first mapping (e.g., in Fig. 17.3) is typically based on a description of the ori-
gins that is represented by a model about these origins. The second mapping (e.g., in
Fig. 17.4) is typically based on a prescription made by the model for a realisation of
the model by a technical artifact. The third mapping has been used above for the as-
sociation between the topographical model and the graph model for the Königsberg
bridge problem on page 551.

We can observe other pairs of such mappings, depending on the purpose. For
instance, documentation uses an artifact to be documented and another artifact that
documents essential elements of the first artifact. It typically extends the first artifact
for pragmatic rules for exploitation of the first artifact and by behavioural scenario
as examples of deployment. It bases the documentation also on an idealisation of
the first artifact.

A similar association may be developed for the other purposes:

• perception support for understanding the application domain;
• explanation and demonstration for understanding;
• preparation to management and handling of the original;
• optimisation of the application domain operating;
• hypothesis verification through the model;
• control of parts of the application;
• simulation of behaviour in certain situations; and
• substitution for a part of the application.
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Fig. 17.11 Mappings between source artifacts and target artifacts

We may now combine these observations with the treatment of languages intro-
duced in Fig. 17.5. We add to this treatment the logical framework. It defines for
a set of artifacts a language and a theory that can be used for reasoning on prop-
erties of the artifacts and for explicit consideration of postulates. In this case, we
need to consider two languages: the language of the origin of the mapping and the
language of the target of the mapping. Figure 17.11 displays the mappings between
the different artifacts.

Furthermore, we observe another important property of the mapping:

Principle of conservative stability of source properties. The properties of the
source are relatively stable. This results in some kind of target conservativeness:
Any target artifact revision that cannot be reflected already in the current set of
properties of the source is entirely based on explicit changes considered for the
first artifact.

Principle of consistency of mapping. Main properties of the source artifact should
be stable for the target artifact.

These principles can be extended by other principles for mappings that are often
assumed but not necessary:

Conceptualization principle. Only aspects of the source artifact should be taken
into account when constructing the target artifact.

95% principle. All the relevant aspects of the source artifact should be described
in the target artifact. We notice that this principle is weaker than the classical
100 % used in software engineering. It better reflects the engineering component
of modelling.

Formalization principle. Target artifacts should be formalisable in order to be re-
alisable.
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Semiotic principle. Target artifacts should be easily interpretable and understand-
able.

Correspondence condition for knowledge representation. The target artifact should
be such that the recognizable constituents of it have a one-to-one correspondence
to the relevant constituents of source artifact.

Invariance principle. Target artifacts should be constructed on the basis of such
entities detected for the source artifact that are invariant during certain time peri-
ods within the world of the source artifact.

Construction principle. In order to construct a good target artifact, it is important
first to construct relevant sub-artifacts and then to search for connections between
them.

The main postulate for the mapping is however the

Postulate of purpose invariance. The purpose of the modelling activity can be re-
alised through the target artifact. It can be considered both for the source artifact
as well as for the target artifact.

This postulate requires that the mapping must obey an invariance property for the
purpose. It has several implications:

• The mapping is a realisation of an analogy property.
• It is possible to re-map properties observed for the target artifact to the source

artifact if those are not caused by idealisation, distortion or amplification.
• The target artifact can also be used for other mapping with different intentions

and goals.

We shall discuss specific forms of analogies below.
As an example, we may refine Fig. 17.11 to classical ER modelling, as displayed

in Fig. 17.12. This figure allows also to reason on the advantages and on the disad-
vantages of the ER modelling approach.
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Fig. 17.12 The relationship between application domain world and Entity-Relationship modelling
language world
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17.2.4.2 Modelling with a Manifold of Models

Typical modelling follows a number of purposes. The UML is an example of model
suites that are used at the same time. Class diagrams reflect the structuring of object
sets and the functionality provided for the object sets. Object diagrams may be based
on class diagrams. They may, however, also reflect things in the application domain
as a combined set of class objects. Interaction diagrams reflect the message and
control flow among objects in the first setting of object diagrams.

A similar picture is observed for models that are developed for different pur-
poses. Consider, for instance, models that have been developed for construction of
a technical artifact, for communication and discussion of properties among stake-
holders, for documentation, and for analysis. Figure 17.13 displays the manifold of
models developed for different purposes for an origin.

Figure 17.13 displays one pitfall of multi-language modelling. The models may
consider different aspects of the origin, they may contradict and they may not be in-
tegratable. For instance, if we use class diagrams, statecharts, activity diagrams, time
diagrams, component diagrams, interaction diagrams and others within a software
development team, then integration of different aspects might become infeasible.
Thus, we may apply two rather rigid modelling restrictions, which serve as the main
principles for multi-language modelling:

Principle of coherence of models. Models are coherent if their common reflection
of the origin is consistent, i.e., sub-models that reflect the same properties of the
origin can be injective mapped to each other.

Principle of origin property completeness. Models partially reflect the same set
of properties of the origin. None of the model uses properties that are different
from properties that can potentially be used for another model.

Chapter 12 considered co-evolution of models and introduced a formalism to handle
coherence. Coherence describes a fixed relationship between the models in a model
suite. Two models are coherent when each change in one of the models is propa-
gated to the other model. This change transfer implicitly assumes that the integrity
constraints of the corresponding model types remain to be valid. Models are non-
coherent if there is a random or changing relationship. We aim for an explicit spec-
ification of the association schema and use an explicit specification of the collab-
oration among models. For instance, the master-slave association or collaboration
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Fig. 17.14 Coherent models reflecting different purposes on a complete set of origin properties

propagates any change of the master to its slaves. Slaves do not have any right the
change the master without consensus with the master.

If we enforce these principles, then the model variety can be handled in a simpler
and feasible way. Figure 17.14 displays the advantages of a coherent set of models,
based on a complete set of properties of the origin. It allows us to introduce a binding
between these models. This binding can be mapped to a contract in the sense of
Chap. 12. The contract may be used for the derivation of constraints the different
models must obey in order to be coherent.

This approach directly results in a coordination of models on the basis of sepa-
ration of aspects.

17.2.5 Development Phases That Use Models

17.2.5.1 Description Through Models and Prescription by Models

One of the main combined purposes of models is the description of an application
domain that subsequently uses the developed model as a prescription for the reali-
sation of a technical artifact. Conceptual modelling adds to the model a number of
concepts that are the basis for an understanding of the model and for the explanation
of the model to the user.

This two-phase development cycle of technical artifacts is the kernel of concep-
tual modelling of information systems and database systems. There are different
other forms of this two-phase database system development. We may use the as-
sociation between the model and the application for model refinement and model
evolution. Models are typically parameterised. The parameters may be adopted to
the actual or intended situation. Models are integrated during bottom-up modelling.
They can be refined, optimised, validated, or improved before the realisation phase
starts. Verification typically involves checking the properties of a model and the
properties of a realisation. Testing checks the relationship between properties in the
application domain and properties of the realisation.
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artifact

17.2.5.2 Reasoning Support for Modelling

Design science [7] has been aiming at an explicit support for the modelling pro-
cess. This support includes an explicit consideration of the quality of the model, the
modelling process, and supporting theories. We may combine the informal discus-
sions with our approach and separate the modelling acts by the things that are under
consideration.

Figure 17.16 displays the different ways of working during a database systems
development. We use here the two-phase model: description followed by prescrip-
tion.
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Φ

Ψ

Ψ

Fig. 17.16 Reasoning processes and reasoning support for description followed by prescription

These different “ways of working” characterise

• the modelling acts with its specifics; [20]
• the foundation for the modelling acts with the theory that is going to support this

act, the techniques that can be used for the start, completion and for the support
of the modelling act, and the reasoning techniques that can be applied for each
step;

• the partner involved with their obligations, permissions, and restrictions, with
their roles and rights, and with their play;

• the aspects that are under consideration for the current modelling acts;
• the consumed and produced elements of the artifact that are under consideration

during work; and
• the resources that must be obtained, that can be used or that are going to be

modified during a modelling act.

Consider, for instance, the way of requiring. It includes specific facets such as

• to command, to require, to compel, and to make someone do something with
supporting acts such as communicating, requesting, bespeaking, ordering, for-
bidding, prohibiting, interdicting, proscribing;

• to ask, to expect, to consider obligatory, to request and expect with specific sup-
porting acts such as transmitting, communicating, calling for, demanding;

• to want, to need, to require, to have need of with supporting acts of wanting,
needing, requiring;

• to necessitate, to ask, to postulate, to need, to take, to involve, to call for, to
demand, to require as useful, to just, or to proper.
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The ways of functioning, understanding, elicitation, modelling, reasoning, as-
sessment, and construction can be characterised in a similar form.

The rigor stage may be replaced by other stages that support different purposes.
We have concentrated on prescription and construction of new systems. Another

application is model refinement similar to two-model representation of the Königs-
berg bridge problem on page 551.

Design science aims at another kind of model refinement by adding more rigor
after evaluation of a model. This refinement is essentially model evolution. Another
refinement is the enhancement of models by concepts. This refinement is essentially
a ‘semantification’ or conceptualisation of the model. Experimentation and justifi-
cation of models is a third kind of adding rigor to (conceptual) models.

17.2.6 Properties of the Models-Origin
and the Models-Reflections Analogies

Figure 17.1 bases modelling on a quadruple of origin, model, author and addressee.
The origin-model association, as well as the experimentation, construction or rea-
soning with models, is based on an explicit consideration of the notion of an anal-
ogy between the model and the origin or the model and its reflection in theories,
constructions, hypotheses, or illustrations. Therefore we need a characterisation of
analogies.

Analogies are statements of similarity, statements of adjustment, statements of
emphases. They characterise the approximation made by the model. These charac-
terisations can be given by:

Degree of structural analogy. The degree of similarity of either the original with
the model or of the model with its reflection.

Degree of qualitative analogy. The degree to which the character and constitution
is reflected.

Degree of structural adjustment. The extent to which the structure is considered
independent on the later use.

Degree of qualitative adjustment. Characterizes what is going to be used for the
later exploitation and what part is not going to be used.

Degree of functional adjustment. Characterises the functions that are considered
and the functions that are not considered.

Degree of contrast and emphasis. Provides a means to specifically consider the
distortion, amplification and idealisation made by the model.

Degree measurement is based on the ratio between the good or bad cases against
all possible cases. We may consider a number of ratio measurements Recall evalua-
tion relates the number of positive observations to the number of all possible obser-
vations. Fallout evaluation measures the negative observations against the number
of all possible observations. Precision evaluation typically measures the relevant
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observations similar to recall observations. Measurement functions often use met-
rics. Another kind of measurement uses model-checking functions that are based on
predicates that evaluate certain properties. These properties can be used to decide
whether a work product is consistent and can be refined for work products at the
implementation layer.

Additionally, we need an approach to provide tolerance of the results and devia-
tions from the either the origin or the realisations.

We also need a logics that provides us with a means for reasoning on analogy and
for using analogy for transfer of derived statements and properties into the other do-
main. This directly results in a logics of analogical reasoning. Such logics have
been developed in artificial intelligence and logics research. We may use, for in-
stance, derivation rules for a source object s and a target object t of the following
form

t 
˛ s; ˛ ı ˇ

ˇ.t/ WD ˇ.s/
:

This rule allows us to conclude that whenever the source and the target object are
analoguous based on a certain predicate ˛, and the predicate ˛ entails another pred-
icate ˇ, then we may transfer the value for ˇ for the source to the target.

Another such rule is:

t 
˛ s; ˛.s/

˘˛.t/ :

If we know that s and t are ˛-analog and we observe the value ˛.s/ then it is plau-
sible to assume ˛.t/.

We also may incorporate lifting relations or bridge rules between an origin and
the model or the model and its reflections. These rules must consider a certain con-
text for both the model and the origin, or both the model and its reflection. Therefore
we use mappings between two languages with an additional context parameter for
a context C :

± W L1 � C ! L2 :

If we consider formulas ˛ in context Ci the rules need to be extended:

.˛1; i1/ : : : .˛n; in/

.˛; i/
' :

Such rules state that .˛1 : : : ˛n/ in their contexts .Ci1 : : : Cin/ imply ˛ in the context
Ci if the applicability condition ' is valid.

Such rules are considered in calculi of plausible reasoning that incorporate ab-
duction and induction. Plausible reasoning uses inference pattern which can yield to
uncertain conclusions even if the premises are certain. It is typical for situations in
which the knowledge is incomplete. The modelling situation is based on incomplete
information or incomplete knowledge.
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The most important property for the analogy relationship is adequacy. Adequacy
requires the satisfaction of the following four properties:

Similarity between origin and model, or between model and reflection, in depen-
dence on the purpose of the model is based on an explicitly given similarity
relation that allows also to reason on the restrictions of similarity. That is, in the
case of origin and model we may base similarity in subsets of properties ˚.O/
and ˚.M/ that are defining the similarity. Similarity supports the deployment
of the model instead of the origin, or the reflection instead of the model, in all
situations in which there is a similarity between the two sides.

Regulative factors form a standardisation on the basis of exact rules which are
given within a well-defined system. These rules permit one to derive the proper-
ties and do not result in exceptions that cover specific properties of the target that
are not observed for the source.

Copiousness is based on the capacity of the model. The model is a far better
medium for reasoning about the origin or the reflection. It makes it simpler to
draw conclusions, to reason about properties and to state postulates.

Simplicity of the model is based on its concentration on the essential and relevant
properties in dependence on the model’s purpose.

17.3 Conclusion

The aim of this chapter has not been to develop a complete theory of conceptual
modelling. Rather, our aim was to develop a programme for the theory. We described
the general purpose of this theory, demonstrated how different paradigms can be
selected, and showed which scope, modelling acts, modelling methods, modelling
goals and modelling properties might be chosen for this theory.

The programme requires far more work. The theory needs a variable taxonomy
that allows a specialisation to languages chosen for a given application domain,
must be based on a mathematical framework that allows one to prove properties,
must be flexible for coping with various modelling methodologies, must provide an
understanding of the engineering of modelling, and finally should be supported by
a meta-CASE tool that combines existing CASE to to a supporting workbench.

The following are the findings of this chapter:

• A model is a representation of something for someone’s purpose somebody and
developed by someone else.

• Each model is author-driven and addressee-oriented, is aspect-related, is purpose-
specific, is limited in space, context and time, and is perspective.

• The model quality is also given by those elements that are not observed for the
origin or not realised in the reflection or realisation.

• Due to amplification, distortion and idealisation, models cannot be used outside
their purpose. If the purpose changes then the model should change as well.
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• Models are similar to concepts; they are abstract and concrete; they associate
worlds, e.g., the world of origins and models.

• Conceptual models are similar to other systems that are context- and utilisation-
dependent. They have their value within the purpose range.

Models are imperfect and diverge from the real world. They are incomplete, have
a different behaviour, and also exhibit other kinds of errors. Imperfection is based
on exceptional states (events, time lags), on incompleteness to limitations of the
language and consideration, and on errors either based on real errors and exceptional
states or based on biases.

A theory of conceptual modelling can be based on a system of guiding principles.
This paper shows that at least three guiding principles must be explored in detail:

Internal principles are based on a set of ground entities and ground processes.
Bridge principles explain the results of conceptual modelling in the context of

their usage, for instance for explanation, verification/validation, and prognosis.
Engineering principles provide a framework for mastering the modelling process,

for reasoning on the quality of a model, and for termination of a modelling pro-
cess within a certain level of disturbance tolerance (error, incompleteness, open
issues to be settled later, evolution).
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