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Preface

We are very pleased to present to you this LNCS volume, the proceedings of
the 11th International Conference on Parallel Problem Solving from Nature
(PPSN 2010). PPSN is one of the most respected and highly regarded con-
ference series in evolutionary computation, and indeed in natural computation
as well. This biennial event was first held in Dortmund in 1990, and then in Brus-
sels (1992), Jerusalem (1994), Berlin (1996), Amsterdam (1998), Paris (2000),
Granada (2002), Birmingham (2004), Reykjavik (2006) and again in Dortmund
in 2008.

PPSN 2010 received 232 submissions. After an extensive peer review pro-
cess involving more than 180 reviewers, the program committee chairs went
through all the review reports and ranked the papers according to the review-
ers’ comments. Each paper was evaluated by at least three reviewers. Additional
reviewers from the appropriate branches of science were invoked to review into
disciplinary papers. The top 128 papers were finally selected for inclusion in the
proceedings and presentation at the conference. This represents an acceptance
rate of 55%, which guarantees that PPSN will continue to be one of the con-
ferences of choice for bio-inspired computing and metaheuristics researchers all
over the world who value the quality over the size of a conference.

The papers included in the proceedings volumes cover a wide range of topics,
from evolutionary computation to swarm intelligence, from bio-inspired comput-
ing to real-world applications. Machine learning and mathematical games sup-
ported by evolutionary algorithms as well as memetic, agent-oriented systems are
also represented. They all are the latest and best in natural computation. The
proceedings are composed of two volumes divided into nine thematic sections.

In accordance with the PPSN tradition, all papers at PPSN 2010 were pre-
sented as posters. There were nine sessions of posters. Each session consisted
of around 15 papers. For each session, we covered as wide a range of topics as
possible so that participants with different interests could find some relevant
papers at every session.

PPSN 2010 featured three distinguished keynote speakers: John Garibaldi,
Zbigniew Michalewicz and Darrell Whitley who delivered lectures entitled: En-
semble Fuzzy Reasoning, Some Thoughts on Wine Production, and Elementary
Landscapes Made Easy, respectively.

PPSN 2010 also included eight interesting tutorials. These covered the wide
area of natural computing science. The first of them “A Rigorous Theoretical
Framework for Measuring Generalization of Co-evolutionary Learning” (X. Yao)
was devoted to the genetic algorithm theory while the following two “Founda-
tions of Evolutionary Multi-objective Optimization” (F. Neumann, T. Friedrich)
and “Hybrid Optimization Approaches” (G. Raidl) introduced important groups
of algorithms inspired by nature. The next tutorials, “Natural Computing and
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Finance” (T. Brabazon, M. O’Neill), “Heuristic and Meta-heuristic Approaches
for Scheduling in Large Scale Distributed Computing Environments” (F. Xhafa)
and “Artificial Immune Systems in Optimization and Classification Problems
with Engineering and Biomedical Applications” (T. Burczyński, M. Bereta,
W. Kuś), focused on important engineering, business and medical applications.
Finally, “Learning to Play Games” (S. M. Lucas) and “The Complexity of
Elections: New Domain for Heuristic Computations” (P. Faliszewski) concerned
games and social problems.

PPSN 2010 also included four workshops. They made an excellent start to the
five-day event. The workshops offered an ideal opportunity for participants to
explore specific topics in natural computation in an informal setting. They sowed
the seeds for the future growth of natural computation. The first of them “Self-
tuning, Self-configuring and Self-generating Search Heuristics (Self* 2010)” (G.
Ochoa, M. Schoenauer, D. Whitley) focused on developing automated systems to
replace the role of a human expert in the design, tuning and generation of search
heuristics. The next pair of workshops “Understanding Heuristics: How Do We
Get the Best of Both Theory and Empirical Methods?” (E. Ozcan, A. Parkes, J.
Rowe) and “Experimental Methods for the Assessment of Computational Sys-
tems (WEMACS)” (T. Bartz-Beielstein, M. Chiarandini, L. Paquete, M. Preuss)
concerned two complementary theoretical and experimental approaches to the
analysis of heuristic and meta-heuristic algorithms. The last one “Workshop on
Parallel and Cooperative Search Methods” (D. Ouelhadj, E. Ozcan, M. Toulouse)
dealt with cooperative parallel searches improving performance, especially when
dealing with large scale combinatorial optimization problems.

The success of any conference depends on its authors, reviewers and orga-
nizers. PPSN 2010 was no exception. We are grateful to all the authors who
submitted their papers and to all the reviewers for their outstanding work in
refereeing the papers on a very tight schedule. We relied heavily on a team of
volunteers, especially those in Kraków, to keep the PPSN 2010 wheel turning.

PPSN XI would not have been possible without the support of Microsoft
Poland, Intel and HP.

September 2010 Robert Schaefer
Carlos Cotta

Joanna Ko�lodziej
Günter Rudolph
Juan J. Merelo

Hans-Paul Schwefel
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Djamila Ouelhadj, Ender Özcan and Michel Toulouse

Tutorials

A Rigorous Theoretical Framework for Measuring Generalization of
Co-evolutionary Learning

Xin Yao

Foundations of Evolutionary Multi-objective Optimization
Frank Neumann and Tobias Friedrich

Hybrid Optimization Approaches
Günther Raidl

Natural Computing and Finance
Tony Brabazon and Michael O‘Neill

Heuristic and Meta-heuristic Approaches for Scheduling in Large Scale
Distributed Computing Environments

Fatos Xhafa

Artificial Immune Systems in Optimization and Classification
Problems with Engineering and Biomedical Applications
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Gabriela Ochoa, Sébastien Verel, and Marco Tomassini



XII Table of Contents – Part I

Differential Mutation Based on Population Covariance Matrix . . . . . . . . . 114
Karol Opara and Jaros�law Arabas

General Lower Bounds for the Running Time of Evolutionary
Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

Dirk Sudholt

A Binary Encoding Supporting Both Mutation and Recombination . . . . . 134
Karsten Weicker

Towards Analyzing Recombination Operators in Evolutionary Search . . . 144
Yang Yu, Chao Qian, and Zhi-Hua Zhou

Theory of Evolutionary Computing (II)

Bidirectional Relation between CMA Evolution Strategies and Natural
Evolution Strategies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154

Youhei Akimoto, Yuichi Nagata, Isao Ono, and Shigenobu Kobayashi

A Fine-Grained View of GP Locality with Binary Decision Diagrams
as Ant Phenotypes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164

James McDermott, Edgar Galván-Lopéz, and Michael O’Neill
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XIV Table of Contents – Part I

A Cooperative Coevolutionary Approach to Partitional Clustering . . . . . 374
Mitchell A. Potter and Christine Couldrey

Feature Selection for Multi-purpose Predictive Models: A
Many-Objective Task . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 384

Alan P. Reynolds, David W. Corne, and Michael J. Chantler

Incorporating Domain Knowledge into Evolutionary Computing for
Discovering Gene-Gene Interaction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 394

Stephen D. Turner, Scott M. Dudek, and Marylyn D. Ritchie

The Application of Pittsburgh-Style Learning Classifier Systems to
Address Genetic Heterogeneity and Epistasis in Association Studies . . . . 404

Ryan J. Urbanowicz and Jason H. Moore

Threshold Selection, Mitosis and Dual Mutation in Cooperative
Co-evolution: Application to Medical 3D Tomography . . . . . . . . . . . . . . . . 414

Franck P. Vidal, Evelyne Lutton, Jean Louchet, and
Jean-Marie Rocchisani

Comparative Analysis of Search and Score Metaheuristics for Bayesian
Network Structure Learning Using Node Juxtaposition Distributions . . . 424

Yanghui Wu, John McCall, and David Corne

Analyzing the Credit Default Swap Market Using Cartesian Genetic
Programming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 434

Laleh Zangeneh and Peter J. Bentley

Memetic Algorithms, Hybridized Techniques, Meta
and Hyperheurisics

A Memetic Cooperative Optimization Schema and Its Application to
the Tool Switching Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 445

Jhon Edgar Amaya, Carlos Cotta, and Antonio J. Fernández Leiva

Ownership and Trade in Spatial Evolutionary Memetic Games . . . . . . . . . 455
Juan C. Burguillo and Ana Peleteiro

A Hyper-Heuristic Approach to Strip Packing Problems . . . . . . . . . . . . . . . 465
Edmund K. Burke, Qiang Guo, and Graham Kendall

Asymptotic Analysis of Computational Multi-Agent Systems . . . . . . . . . . 475
Aleksander Byrski, Robert Schaefer, Maciej Smo�lka, and
Carlos Cotta

Path-Guided Mutation for Stochastic Pareto Local Search
Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 485

Madalina M. Drugan and Dirk Thierens



Table of Contents – Part I XV

Scheduling English Football Fixtures over the Holiday Period Using
Hyper-heuristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 496

Jonathon Gibbs, Graham Kendall, and Ender Özcan
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Optimal Fixed and Adaptive Mutation Rates
for the LeadingOnes Problem

Süntje Böttcher, Benjamin Doerr, and Frank Neumann

Algorithms and Complexity, Max-Planck-Institut für Informatik,

Saarbrücken, Germany

Abstract. We reconsider a classical problem, namely how the (1+1)

evolutionary algorithm optimizes the LeadingOnes function. We prove

that if a mutation probability of p is used and the problem size is n, then

the optimization time is

1
2p2 ((1 − p)

−n+1 − (1 − p)).

For the standard value of p = 1/n, this is approximately 0.86n2. As our

bound shows, this mutation probability is not optimal: For p ≈ 1.59/n,

the optimization time drops by more than 16% to approximately 0.77n2.

Our method also allows to analyze mutation probabilities depending

on the current fitness (as used in artificial immune systems). Again, we

derive an exact expression. Analysing it, we find a fitness dependent mu-

tation probability that yields an expected optimization time of approx-

imately 0.68n2, another 12% improvement over the optimal mutation

rate. In particular, this is the first example where an adaptive muta-

tion rate provably speeds up the computation time. In a general context,

these results suggest that the final word on mutation probabilities in

evolutionary computation is not yet spoken.

1 Introduction

Evolutionary algorithms [1] are a class of randomized algorithms [2] that have
found many applications in different problem domains. Understanding the be-
havior of this kind of algorithms is a challenging and difficult task due to different
random components that are involved. Considering evolutionary algorithms as
randomized algorithms from a theoretical point of view allows to analyze them
with respect to their runtime behavior in a rigorous way.

Analyzing the runtime behavior of evolutionary algorithms has become a ma-
jor branch in the theoretical analysis of these algorithms. Starting with results on
simple pseudo-Boolean functions (see e. g. [3,4]), different results have been ob-
tained for classical combinatorial optimization problems such as shortest paths,
minimum spanning trees, or maximum matchings (see [5] for an overview).

Almost all results mentioned are asymptotic ones. In particular, most of the
results give little information about the leading constants, which are of high
interest when using such methods for realistic input sizes. There are only a few
results that give at least give a bound on the leading constant.

R. Schaefer et al. (Eds.): PPSN XI, Part I, LNCS 6238, pp. 1–10, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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It is folklore that the (1+1) evolutionary algorithm finds the optimum of the
most simple test function OneMax, counting the number of 1-bits in the bit-
string of length n, in time at most (1 + o(1))en ln(n). This follows immediately
from an elementary proof using coupon collector type arguments. However, the
corresponding lower bound was only recently given in [6].

For linear functions, Jägersküpper was the first to give a bound including the
constant, namely (1+o(1))2.02en ln(n). This was improved to (1+o(1))1.39en ln(n)
in [7]. There also the (1− o(1))en ln(n) lower bound for OneMax was extended
to all linear functions with non-zero coefficients.

In this paper, we present an exact analysis for the function LeadingOnes

introduced by Rudolph [8]. This function is one of the classical test problems and
has been extensively studied (see e. g. [3,9,10]). Our analysis yields an exact for-
mula for the expected number of iterations (expected optimization time) needed
to find the optimum of the LeadingOnes function. Let n be the problem size,
that is, the length of the bit-strings forming the search space, and let p be a
mutation probability. The typical choice for the mutation probability is p = 1/n
[3], but our analysis works for all possible values.

Given n and p, we show that the expected optimization time is

1
2p2 ((1 − p)−n+1 − (1 − p)).

From this formula, we see that the standard value for the mutation probability of
p = 1/n leads to an expected optimization time of less than 1

2 (e−1)n2 ≈ 0.86n2,
where the first expression is tight up to terms of order n. This improves the best
known upper bound of en2 and lower bound of n2/6 given in [3].

Our formula also allows to determine the optimal mutation probability. This in
particular shows that the standard mutation probability of 1/n is not optimal.
For p ≈ 1.59/n, the expected optimization time drops by more than 16% to
approximately 0.77n2 (for n sufficiently large).

We should add that, while p = 1/n is generally the preferred good choice for
the mutation probability, there are examples known where mutation probabilities
even having a different order of magnitude like Θ(log(n)/n) are much better
than 1/n, see [11]. However, these example functions look custom-tailored to
demonstrate this effect.

Our method also allows to analyze mutation probabilities depending on the
current fitness. Such ideas have been used under the name artificial immune
systems in [12,13]. However, contrary to the common belief that one should start
the optimization process with a larger mutation probability and then successively
reduce it, none of these works could show that varying the mutation probability
yields an improvement. This is different in our analysis. If we choose the mutation
probability to be the reciprocal of the current fitness value (that is, the number
of leading ones), then the expected optimization time again reduces to a number
T , which satisfies 1

4en
2− 1

4en ≤ T ≤ 1
4en

2+ 1
4en. We do have an exact expression

for T as well.
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2 Problem and Algorithms

Our aim is to study the optimization behavior of a simple randomized search
heuristic for the well-known pseudo-Boolean function f = LeadingOnes :
{0, 1}n → �0 defined by

f(x) = LeadingOnes(x) =
n∑

i=1

i∏
j=1

xj .

We investigate a simple baseline evolutionary algorithm called (1+1) EA. It
works with a population size of 1 and produces in each iteration one offspring by
mutation. If not worse, this offspring forms the new population. As mutation,
we use standard bit mutation, that is, each bit is flipped independently with
probability p. Note that many authors implicitly assume p = 1/n, whereas we
do allow all values for p.

Algorithm 1 ((1+1) EA with mutation probability p)
1. Choose x ∈ {0, 1}n uniformly at random.
2. Flip each bit of x independently with probability p to produce an offspring y.
3. If f(y) ≥ f(x) then x := y.
4. Go to 2.

For our theoretical investigations we consider the expected number of iterations
until our algorithms produces an optimal solution for the LeadingOnes problem
for the first time. This is called the expected optimization time. Note that the
mutation rate p in Algorithm 1 is constant for given n, that is, it does not vary
over time or with respect to the current fitness of the population.

It is a common belief that one can gain improvements by varying the mu-
tation probability. In particular, it is said that in the early stages of the opti-
mization process the mutation probability should be larger to faster approach
the optimum, whereas at the end, it should be smaller to avoid large jumps that
potentially lead away from the optimum.

Such a varying mutation probability could be implemented by making the mu-
tation probability depend on the time the optimization process already lasts. A
difficulty here is that one would need a good guess on the expected optimization
time.

An alternative approach is to let the mutation probability depend on the
current fitness value. Here, of course, one would need a guess on the maximum
possible fitness. Still, this seems to be easier than guessing the expected opti-
mization time.

To incorporate this concept into the (1+1) EA above, let p : {0, . . . ,n} →
(0, 1) be a function. We think of pk := p(k) being the mutation probability
used when we have a LeadingOnes-value of k. This leads to the following
Algorithm 2, which we call Adaptive (1+1) EA.
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Algorithm 2 (Adaptive (1+1) EA)
1. Choose x ∈ {0, 1}n uniformly at random.
2. Flip each bit of x independently with probability pf(x) to produce an off-

spring y.
3. If f(y) ≥ f(x) then x := y.
4. Go to 2.

Algorithms such as artificial immune systems make use of such adaptive mutation
rates. For some recent asymptotic results on the runtime of these algorithms, we
refer to [12,13].

3 A Formula for the Expected Optimization Time

The key to our analysis (and the topic of this section) is noting that the expected
optimization time can be fully described by the expected times needed to improve
the fitness (conditional on a particular fitness level). The latter can easily be
expressed via the (current) mutation probability.

3.1 Combining the States

We first exploit the fact that we start with a random individual. This allows
a simplified view, namely that we do not have to regard the remaining ex-
pected optimization time for each possible individual, but only for a few random
states.

Lemma 1. Let x be a (random) individual produced by Algorithm 1 or 2 within
a fixed number t of iterations. Let f(x) denote its fitness. Then xf(x)+1 = 0 with
probability one. For all i > f(x) + 1, we have Pr[xi = 1] = Pr[xi = 0] = 1

2
independent from all other bits.

Proof. Simple induction over the time t.

3.2 Improvement Times

As discussed above, the base of our analysis is (later) noting that the expected
optimization time can be expressed in terms of the waiting times for an improve-
ment. We now use Lemma 1 to, very elementarily, determine these waiting times
relative to the current fitness.

Lemma 2. Let 0 ≤ j < n. Let x ∈ {0, 1}n be random subject to f(x) =
LeadingOnes = j. Let y be the offspring of x obtained by mutation with some
mutation probability pj. Then the probability that y is strictly fitter than x, the
improvement probability, is Pr[f(y) > f(x)] = (1− pj)jpj.

Proof. Since f(x) = j, a mutation step increases the f -value if and only if the
first j bits do not change and the (j + 1)st bit does change. All other bits are
irrelevant.

The actions of the different bits are independent. A bit flips with probability pj

and remains unchanged with probability 1−pj. Thus the probability of improving
the f -value is Pr[f(y) > f(x)] = (1− pj)jpj .
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Given this improvement probability, we can simply compute the waiting time
for such an improvement. Denote by Ai the expected time needed to find an
improvement given that the initial solution has a fitness of n− i (that is, we are
i levels from the optimum). We compute the Ai.

Theorem 1. Let x ∈ {0, 1}n be random with f(x) < n. Then the time An−f(x)

we need to wait for an improvement is

An−f(x) =
1

Pr[f(y) > f(x)]
.

Consequently, for all 1 ≤ i ≤ n, we have

Ai =
1

(1− pn−i)n−ipn−i
.

Proof. Follows from elementary properties of the geometric distribution and the
previous lemma.

3.3 Expected Optimization Time

We now express the expected optimization time in terms of the improvement
times just determined. Note that since the latter depend on the (possibly vary-
ing) mutation probability, this immediately tells us how the mutation probability
influences the expected optimization time.

We denote by Tn−i the expected number of steps needed to find the optimum
starting from a random initial individual with f -value i. Obviously, at most n− i
improvements are necessary.

Lemma 3. The time needed to find the optimum given a random solution with
f -value n− i is

Ti = Ai +
i−1∑
j=0

2j−iTj ,

where Ai is the improvement time as defined in the previous subsection and
T0 = 0.

Proof. For i = 0, the time we need to finish obviously is T0 = 0. For 0 < i ≤ n,
the remaining time is given by the time for the next improvement, Ai, plus
the expected remaining time conditional on this improvement. Let x̄ denote the
individual right after the improvement to an f -value of more than n − i. Since
the bits n− i+ 2, . . . ,n are still random, we have Pr[f(x̄) = n− i+ j] = 2−j for
j = 1, . . . , i− 1 and Pr[f(x̄) = n] = 2−(i−1). Since T0 = 0, we may write

Ti = Ai+
i−1∑
j=0

2j−iTj . ��

We now express the remaining optimization time Ti fully via the improvement
times Aj .
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Theorem 2. The time needed to find the optimum given a random solution with
f -value n− i is

Ti = Ai +
1
2

i−1∑
j=1

Aj .

Proof. By induction we show that our claim

Ti = Ai +
i−1∑
j=0

2j−iTj = Ai +
1
2

i−1∑
j=1

Aj

holds for all 0 < i ≤ n.
For i = 1 we have T1 = A1 + 1

2

∑0
j=1 Aj .

Assume that Tk = Ak + 1
2

∑k−1
j=1 Aj holds for all 0 < k ≤ i. Then

Ti+1 = Ai+1 +
i∑

j=0

2j−(i+1)Tj = Ai+1 +
1
2
Ti +

1
2

i−1∑
j=0

2j−iTj

= Ai+1 + Ti − 1
2
Ti +

1
2

i−1∑
j=0

2j−iTj = Ai+1 + Ti − 1
2
Ai

= Ai+1 +Ai +
1
2

i−1∑
j=0

Aj − 1
2
Ai

= Ai+1 +
1
2

i∑
j=1

Aj . ��

The bound of Theorem 2 matches our intuition that all improvements apart
from the current one produce a waiting time only with probability 1/2.

4 The Optimal Fixed Mutation Rate

We first investigate the optimal choice for the mutation rate when working with
a fixed mutation rate. Depending on the chosen mutation rate p, we compute
the expected optimization time of the (1+1) EA. Remember that the time for an
improvement for LeadingOnes is Ai = 1

p (1 − p)i−n and the overall expected
optimization time is T = 1

2

∑n
i=1 Ai. This leads to the following result.

Theorem 3. The expected optimization time of (1+1) EA with fixed mutation
rate p for LeadingOnes is

T =
1

2p2

[
(1− p)1−n − (1− p)

]
.
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Proof. Using our previous observation, we can calculate the expected optimiza-
tion time directly and get

T =
1
2

n∑
i=1

Ai =
1
2

n∑
i=1

1
p
(1− p)i−n

=
1
2p

n−1∑
i=0

(1− p)i−n+1 =
1
2p

(1− p)1−n
n−1∑
i=0

(1− p)i

=
1
2p

(1− p)1−n · 1− (1 − p)n

1− (1− p)

=
1

2p2

[
(1− p)1−n − (1− p)

]
. ��

Based on the previous theorem, we can determine the optimal choice of p for
(1+1) EA and LeadingOnes. To do this we compute the derivative of T with
respect to p. In particular, we solve d

dpT = 0. This leads to

− 1
p3

[
(1− p)1−n − (1− p)

]
+

1
2p2

[−(1− n)(1− p)−n + 1
]

= 0.

We cannot solve this equation in an algebraic way. Therefore, we provide a
numerical approximation. This gives that the optimal mutation rate p con-
verges to a value around 1.5936

n , which implies an expected optimization time
of ≈ 0.77201n2 for n sufficiently large. Compared to this, the expected opti-
mization time is ≈ 0.85914n2 when choosing p = 1/n. Therefore, the optimal
mutation rate leads to an improvement of 16.1% compared to the standard
choice.

5 The Optimal Adaptive Mutation Rate

After having investigated the optimal mutation rate for (1+1) EA, we want to
examine whether an adaptive mutation rate which depends on the fitness of the
currently best solution can lead to further improvements.

With our general framework we can optimize the remaining time T and ex-
amine the Adaptive (1+1) EA in the following.

As Ai is a function in pi, the overall optimization time T = 1
2

∑n
i=1 Ai is a

function in (p1, . . . , pn). Let (p∗1, . . . , p
∗
n) minimize T , thus ∂

∂pi
T (p∗1, . . . , p

∗
n) = 0.

Note that the indices are renamed for the sake of simplicity. Here, pi is the
mutation probability if the currently best solution has fitness f(x) = n − i. In
order to determine the optimal choice of the optimal adaptive mutation rates, we
compute the partial derivatives according to the overall expected optimization
time T .
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We get

∂

∂pi
T (p1, . . . , pn) =

∂

∂pi

1
2

n∑
i=1

Ai

=
1
2

n∑
i=1

∂

∂pi
Ai

In order to find the optimal value of pi, we need to solve

1
2

n∑
i=1

∂

∂pi
Ai = 0.

Remember that Ai is the waiting time for one improvement, thus Ai ≥ 0. Hence
it follows that this equation holds if and only if ∂

∂pi
Ai = 0 holds for all i. Thus

we have to compute ∂
∂pi

Ai.

Theorem 4. Let Ai = 1
pi

(1 − pi)i−n. Then the optimal mutation rate is

pi =
1

n− i+ 1
.

Proof. We calculate the derivative

∂

∂pi
Ai = − 1

p2
i

(1− pi)i−n − 1
pi

(i− n)(1− pi)i−n−1

and get the optimal mutation rate by resolving

− 1
p2

i

(1 − pi)i−n − 1
pi

(i− n)(1− pi)i−n−1 = 0

⇐⇒ − (1 − pi)i−n−1

[
1− pi

p2
i

+
i− n

pi

]
= 0

⇐⇒ 1
p2

i

+
i− n− 1

pi
= 0

⇐⇒ 1 + pi(i− n− 1) = 0.

Hence, we get pi = 1
n−i+1 . ��

Thus we have shown that pi = 1
n−i+1 is an optimal mutation rate for the Adap-

tive (1+1) EA for optimizing LeadingOnes. We use this mutation rate for
determining the expected optimization time for Adaptive (1+1) EA. First, we
consider the time to reach an improvement in dependence of pi.

The expected waiting time for an improvement is given by

Ai =
1
pi

(1 − pi)i−n =
1
1

n−i+1

(
1− 1

n− i+ 1

)i−n

=
(
n− i+ 1
n− i

)n−i

(n− i+ 1) .
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Using this expression, we can compute almost matching upper and lower bounds
on the expected optimization time.

Theorem 5. Let pf(x) = 1
f(x)+1 , then the expected optimization time of the

Adaptive (1+1) EA is upper bounded by e
4n

2 + e
4n.

Proof. Let Ai =
(

n−i+1
n−i

)n−i

(n− i+ 1). Then

T =
n∑

i=0

2i−n−1Ti

=
1
2

n∑
i=1

Ai

=
1
2

n∑
i=1

(
n− i+ 1
n− i

)n−i

(n− i+ 1)

≤ 1
2

n∑
i=1

e(n− i+ 1)

=
e

4
n2 +

e

4
n. ��

Similarly we can compute a lower bound for the expected optimization time.

Theorem 6. Let pf(x) = 1
f(x)+1 , then the expected optimization time of the

Adaptive (1+1) EA is lower bounded by e
4n

2 − e
4n.

Proof. Let Ai =
(

n−i+1
n−i

)n−i

(n− i+ 1). Then, as above,

T =
1
2

n∑
i=1

(
n− i+ 1
n− i

)n−i

(n− i+ 1)

≥ 1
2

n∑
i=1

(
n− i

n− i+ 1

)
e(n− i+ 1)

=
e

4
n2 − e

4
n. ��

Summarizing the results for the adaptive mutation rate, we get an improvement
of 12.0% compared to the expected optimization time using the optimal constant
mutation rate of approximately p = 1.59

n and an overall improvement of 20.9%
to the expected optimization time with standard mutation rate p = 1

n .

6 Conclusions

Most of the theoretical studies on the runtime behavior of evolutionary algo-
rithms deal with asymptotic results. We have presented an exact analysis for
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the (1+1) EA and the test function LeadingOnes. This in particular showed
that one may speed up the computation by 16% when using the optimal mu-
tation rate compared to the standard mutation rate of 1/n. Furthermore, our
investigations on the adaptive mutation rate show that a further improvement
of 12% is possible when using such an approach. We are optimistic that further
exact investigations will allow a deeper understanding of the right parameter
setting for evolutionary algorithms.
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Abstract. This paper reveals the surprising result that a single-parent non-elitist
evolution strategy (ES) can be locally faster than the (1+1)-ES. The result is
brought about by mirrored sampling and sequential selection. With mirrored sam-
pling, two offspring are generated symmetrically or mirrored with respect to their
parent. In sequential selection, the offspring are evaluated sequentially and the it-
eration is concluded as soon as one offspring is better than the current parent.
Both concepts complement each other well. We derive exact convergence rates of
the (1, λ)-ES with mirrored sampling and/or sequential selection on the sphere
model. The log-linear convergence of the ES is preserved. Both methods lead to
an improvement and in combination the (1,4)-ES becomes about 10% faster than
the (1+1)-ES. Naively implemented into the CMA-ES with recombination, mir-
rored sampling leads to a bias on the step-size. However, the (1,4)-CMA-ES with
mirrored sampling and sequential selection is unbiased and appears to be faster,
more robust, and as local as the (1+1)-CMA-ES.

1 Introduction

Evolution strategies (ESs) are robust stochastic search algorithms designed to minimize
objective functions f that map a continuous search space�d into�. The (1, λ)-ES is a
non-elitist and rather local search algorithm where λ candidate solutions, the offspring,
are created from a single parent, Xk ∈ �d. The λ offspring are generated by adding
λ independent random vectors (N i

k)1≤i≤λ to Xk. Then, the best of the λ offspring
Xk + N i

k, i.e., the solution with the lowest objective function value, is selected to
become the next parent Xk+1. The elitist version of this algorithm, the (1 + λ)-ES,
selects Xk+1 as the best among the λ offspring and the parent Xk.

The (1+1)-ES is arguably the most local, and the locally fastest, variant of an evolu-
tion strategy. In a local search scenario, the (1+1)-CMA-ES outperforms its non-elitist
counterparts typically by a factor of about 1.5 [10]. Also in the BBOB-2009 bench-
marking exercise1, the (1+1)-CMA-ES, restarted many times, performed surprisingly
well on two highly multi-modal functions with weak overall structure (f21 and f22).

1 http://coco.gforge.inria.fr/doku.php?id=bbob-2009

R. Schaefer et al. (Eds.): PPSN XI, Part I, LNCS 6238, pp. 11–21, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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However, we regard elitist selection generally as less robust, as for instance witnessed
by its poor performance on the BBOB-2009 noisy testbed [5] (a single outlier fitness
measurement can survive for an arbitrarily long time) or its failure on the attractive
sector function f6. Therefore, we pursue the objective to construct local non-elitist ESs
with a convergence speed competitive to the (1+1)-ES and without the disadvantages of
elitist selection. This is achieved by derandomization of random samples and a greedy
acceptance mechanism in the (1, λ)-ES with (very) small λ.

Derandomization of random numbers has been previously introduced as antithetic
variables for isotropic samples [11] and for the CMA-ES by replacing the sequence
of uniform random numbers used for sampling a multivariate normal distribution by
scrambling-Halton and Sobol sequences [3, ref. [27]]. However, both approaches can
introduce a bias on the step-size update as we will discuss later.

Objectives of this paper. In this paper we present the concepts of mirrored (deran-
domized, antithetic) sampling and sequential selection within evolution strategies. We
derive theoretical results on their convergence rates. We discuss their implementation
into CMA-ES, in particular with respect to the question of an unbiased step-size, and
present some empirical performance results.

2 Mirrored Sampling and Sequential Selection

In this section, we present the concepts of mirrored samples and sequential selection,
which we have recently benchmarked in the special case of the (1,2)- and the (1,4)-
CMA-ES [3, ref. [3–10]]. Here, we describe both concepts for the (1+, λ)-ES.

given: Xk ∈ �d, j ∈ �, λ ∈ �+, f : �d → �

i ← 0

while i < λ do
i ← i + 1, j ← j + 1

if mirrored sampling and j ≡ 0 (mod 2) then
X i

k = Xk − N i−1
k use previous sample

else
X i

k = Xk + N i
k

if sequential selection and f(X i
k) < f(Xk) then

j ← 0 start with a new sample in the next iteration
break;

end while
return Xk+1 = argmin{f(X1

k ), . . . , f(X i
k)}

Fig. 1. Left: If for a unimodal function with convex sub-level sets, a sampled solution is bet-
ter than its parent (dark arrow into shaded region of better objective function values), the mir-
rored one (gray) is always worse. Right: Pseudocode for one iteration step of mirrored sampling
and sequential selection, returning the new parent Xk+1. N 0

k+1 = N λ
k and before the first it-

eration, j is even. The pseudocode captures all combinations with/without mirrored sampling
and/or sequential selection. The last line depicts comma-selection but can be replaced by plus
selection.
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Mirrored sampling uses a single random vector instantiation to create two offspring,
one by adding and the other by subtracting the vector. In Fig. 1, the (1, λm)-ES is given,
but mirrored sampling is entirely independent of the selection scheme.

We denote by Xk the parent at iteration k and consider the (1 +, λm)-ES with even
λ. In each iteration k, we sample λ/2 random vectors (N 2i−1

k )1≤i≤λ/2. A given vector
N 2i−1

k is used for two offspring that equal Xk + N 2i−1
k and Xk − N 2i−1

k . They
are thus mirrored or symmetric with respect to the parent Xk. For odd λ, every other
iteration, the first offspring uses the mirrored last vector from the previous iteration,
see j in Fig. 1. Consequently, in the (1+1m)-ES, a mirrored sample is used if and only
if the iteration index is even. Note that in the (1 +, λm), two mirrored offspring are
entirely dependent and, in a sense, complementary, similarly to antithetic variables for
Monte-Carlo numerical integration [3, ref. [14]].

Mirrored sampling has also been used in an attempt to increase the robustness of
Evolutionary Gradient Search (EGS) [1]. In contrast to its use here, its utility in EGS
lies in the ability to compute a stochastic gradient approximation by means of finite
differences that do not involve the (possibly noisy) fitness value of a single parental
solution. With a large sample size, the use of mirrored samples also increases the rate
of convergence of EGS on the sphere model.

Sequential selection. Evaluating a sampled solution and its mirrored counterpart can
result in unnecessary function evaluations: on unimodal objective functions with con-
vex sub-level sets, {x | f(x) ≤ c} for c ∈ �, such as the sphere function, f(x) = ‖x‖2,
the mirrored solution Xk−N must be worse than the parent Xk, if Xk +N was better
than Xk, see Fig. 1. Sequential selection, originally introduced to save such unneces-
sary function evaluations, is however independent of mirrored sampling: in sequential
selection, the offspring are evaluated one by one, compared to their parent, and the iter-
ation is concluded immediately if one offspring is better than its parent. If the first λ−1
offspring are worse than the parent, the original selection scheme is applied.

Sequential selection applied to (1+λ)-selection coincides with (1+1)-selection: in
both cases any offspring is accepted if and only if it is better than the parent2. The
(1, λ)-ES with sequential selection is denoted as (1, λs)-ES and shown in Fig. 1. Note
that an alternative view of the (1,λs)-ES is as (1+1)-ES that periodically replaces the
parent if no improvement is found after λ candidate samples.

Combining mirrored sampling and sequential selection. As the concepts of mirrored
sampling and sequential selection are independent, they can be applied simultaneously.
With plus selection we obtain the (1+1s

m)-ES, independently of λ. Compared to the
(1+1m)-ES, the (1+1s

m)-ES does not use the mirrored vector after a success. With
comma selection, the resulting algorithm is denoted by (1, λs

m)-ES and shown in Fig. 1.
In order to profit most profoundly from the interplay of mirrored sampling and sequen-
tial selection—namely from the increased likelihood that the mirrored solution is good,
if the unmirrored solution was poor—we intertwine newly sampled solutions and their
mirrored versions, i.e., we evaluate the offspring in the order Xk + N 1

k, Xk − N 1
k,

Xk + N 3
k, Xk −N 3

k, . . .

2 However, the iteration counters differ and other parts of the algorithm might essentially depend
on λ or the iteration counter.
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3 Convergence Rates on the Sphere and Lower Bounds

In this section, we investigate theoretically the gain we can expect from mirrored sam-
ples and sequential selection on spherical functions. We are interested in convergence
rates for isotropic (1, λ)-ESs with adaptive step-size where an offspring i at iteration k
equals Xk +σkN i with σk > 0 being the step-size. Here, (N i)1≤i≤λ will denote i.i.d.
random vectors following a multivariate normal distribution with identity covariance
matrix. Though (independently) sampled anew each iteration, we drop the dependency
on k in the notation.

The dynamics and thus the convergence rate of a step-size adaptive ES obviously
depends on the step-size rule. We will study here an (artificial) step-size setting that we
call scale-invariant step-size, where σk is proportional to the distance to the optimum
assumed w.l.o.g. in 0, that is σk = σ‖Xk‖ for σ > 0. We will also explain how
convergence rates with scale-invariant step-size on spherical functions relate to optimal
bounds for convergence rates of general adaptive step-size ESs.

Preliminaries. The fastest convergence that can be achieved by step-size adaptive ESs
is linear convergence, where the logarithm of the distance to the optimum decreases
to −∞ linearly like the number of function evaluations increases [3, ref. [13]]. An
example of linear convergence is illustrated in Fig. 2 for three different instances of
the (1,2)- and (1,2m)-ESs. We now establish a formal definition of linear convergence
taking into account that different numbers of evaluations are performed per iteration.
Let Tk be the number of function evaluations performed until iteration k. Almost sure
(a.s.) linear convergence takes place if there exists a constant c = 0, such that

1
Tk

ln
‖Xk‖
‖X0‖ → c a.s.3 (1)

The convergence rate c is the slope of the curves in Fig. 2. The (1+, λ)- and (1+, λm)-ES
perform λ evaluations per iteration and therefore Tk = λk. In the sequel M denotes
the set of functions g : � �→ � that are strictly increasing.

How do we prove linear convergence for scale-invariant step-size? We explain now
the main idea behind the proofs that we cannot present in detail due to space limitations
but which can be found in [3]. Assume that the number of offspring per iteration is fixed
to λ such that Tk = λk. The first step of the proofs expresses the left-hand side (LHS)
of (1) as a sum of k terms exploiting standard properties of the logarithm function:

1
λ

1
k

ln
‖Xk‖
‖X0‖ =

1
λ

1
k

k−1∑
i=0

ln
‖Xi+1‖
‖Xi‖ . (2)

We then exploit the isotropy of the sphere function, the isotropy of the multivari-
ate normal distribution and the scale-invariant step-size rule to prove that all terms
ln(‖Xi+1‖/‖Xi‖) are independent and identically distributed. A law of large num-
bers (LLN)4 therefore implies that the right-hand side (RHS) of (2) converges when

3 Literally, convergence of Xk takes place only if c < 0.
4 This also requires verifying some technical conditions, such that the expectation and the vari-

ance of ln(‖Xi+1‖/‖Xi‖) are finite.
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k goes to infinity to E[ln(‖Xi+1‖/‖Xi‖)] almost surely. For more details see [3, ref.
[13]].

Convergence rate for the (1, λ)-ES. Linear convergence for the (1, λ)-ES with scale-
invariant step-size has been shown for instance in [4]. We restate the result while denot-
ing the first coordinate of a vector Z by [Z]1.

Theorem 1. For a (1, λ)-ES with scale-invariant step-size (σk = σ‖Xk‖ > 0) on the
class of spherical functions g(‖x‖), g ∈M, linear convergence holds with

1
λ

1
k

ln
‖Xk‖
‖X0‖ −−−−→k→∞

1
2

1
λ
E

[
ln
(

1 + σ min
1≤i≤λ

(
2[N i]1 + σ‖N i‖2))] a.s., (3)

where (N i)1≤i≤λ are λ independent random vectors.

The proof follows the sketch presented above. Exploiting the isotropy of the sphere and
the scale-invariant step-size rule, we find that the random variable ‖Xi+1‖2/‖Xi‖2,
for all i, is distributed as the random variable Z(1,λ) = 1 + σmin1≤i≤λ(2[N i]1 +
σ‖N i‖2). Applying the LLN to (2), we prove the linear convergence with convergence
rate 1

2
1
λE[ln(Z(1,λ))].

Convergence rate for the (1, λm)-ES. In a similar manner we derive the linear conver-
gence for the (1, λ)-ES with mirrored samples.

Theorem 2. For a (1, λm)-ES with even λ and scale-invariant step-size (σk = σ‖Xk‖
> 0) on the class of spherical functions g(‖x‖), for g ∈ M, linear convergence holds
and

1
λ

1
k

ln
‖Xk‖
‖X0‖ −−−−→k→∞

1
2

1
λ
E

[
ln
(

1 + σ min
1≤i≤λ/2

(−2|[N i]1|+ σ‖N i‖2))] a.s. (4)

where (N i)1≤i≤λ/2 are λ/2 independent random vectors.

The difference to the previous proof lies in the expression of the random variable
‖Xi+1‖2/‖Xi‖2 equal to Z(1,λm) = 1 + σmin1≤i≤λ/2

(−2|[N i]1|+ σ‖N i‖2) in
distribution.

Convergence rate for the (1, 2s)-ES. To tackle the convergence of algorithms with se-
quential selection, we need to handle the fact that Tk, the number of offspring evaluated
until iteration k, is a random variable, because the number of offspring per iteration is
itself not a constant but a random variable in this case. This difficulty can be solved for
λ even as we illustrate for λ = 2.

Theorem 3. For a (1, 2s)-ES with scale-invariant step-size (σk = σ‖Xk‖ > 0) on the
class of spherical functions g(‖x‖), for g ∈M, linear convergence holds and

1
Tk

ln
‖Xk‖
‖X0‖ −−−−→k→∞

1
2
E
[
ln
(
1+σ

(
Y11{Y1<0}+min(Y1,Y2)1{Y1≥0}

))]
2−ps(σ)

a.s. (5)

where Tk is the random variable for the number of function evaluations until iteration
k, Y1 = 2[N 1]1 + σ‖N 1‖2, Y2 = 2[N 2]1 + σ‖N 2‖2 with N 1, N 2 being two inde-
pendent random vectors and ps(σ) = Pr(2[N 1]1 + σ‖N 1‖2 < 0) corresponds to the
probability that the first offspring is better than its parent.
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Fig. 2. Left: Evolution of distance to the optimum versus number of function evaluations for the
(1,2)-ES (3 upper curves) and (1,2m)-ES (3 lower curves) with scale-invariant step-sizes (d = 20,
σ = 0.6/d) on f(x) = ‖x‖2; Right: Convergence rate c(σ) multiplied by the dimension d
versus σ · d for different algorithms with scale-invariant step-size in dimension d = 20. The
estimated best convergence rate for each algorithm is depicted by a marker

The first step of the proof expresses the LHS of (5) as Ak = k/Tk times Bk =
1
k ln(‖Xk‖/‖X0‖). Then we handle both terms separately. For Bk, we proceed as be-
fore and obtain convergence towards 1

2E[lnZ(1,2s)] with Z(1,2s) = 1 + σ
(
Y11{Y1<0}

+ min(Y1,Y2) 1{Y1≥0}
)
. For the term Ak, we denote by Λi the number of offspring

evaluated at iteration i. Then, Tk = Λ1 + . . .+ Λk and 1/Ak = 1
k

∑k
i=1 Λi. Using the

isotropy of the sphere function and the multivariate normal distribution and exploiting
the scale-invariance of the step-size, we prove that Λi are identically distributed and
independent. We can again apply the LLN and prove that 1/Ak converges almost surely
to E(Λ1). Moreover, we prove that E(Λ1) = 2− ps(σ).

Convergence rate for the (1, 2s
m)-ES. To establish the results for the (1,2)-ES with

mirrored samples and sequential selection, we proceed exactly as in Theorem 3. Note
that similar results can be derived for the (1,4)-ES with sequential selection [3].

Theorem 4. For a (1, 2s
m)-ES with scale-invariant step-size (σk = σ‖Xk‖ > 0) on the

sphere function g(‖x‖), for g ∈ M, linear convergence holds and

1
Tk

ln
‖Xk‖
‖X0‖ −−−−→

k→∞
1
2

1
2− ps(σ)

×E [ln (1− 2σ|[N ]1|+ σ2‖N ‖2)] a.s. (6)

where Tk is the random variable for the number of function evaluations until iteration
k, N is a random vector following a multivariate normal distribution, and ps(σ) =
Pr(2[N ]1 + σ‖N ‖2 < 0) is the probability that the first offspring is successful.

Link between convergence rates on the sphere and lower bounds for convergence.
The convergence rates in (3), (4), (5) and (6) depend on σ. The RHS of Fig. 2 illustrates
the dependence on σ for λ = 2. For the (1, λ)- and the (1, λm)-ES, the minimal values
in σ of the RHS of (3) and (4) correspond to the fastest convergence rate that can be
achieved on any function with any step-size adaptation technique. The proof is similar
to the one presented in [3, ref. [13]] for the (1+1)-ES. For the (1, λs)-ES and (1, λs

m)-
ES, our result might be less general, but the minimal values in σ of the RHS of (5) and
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Fig. 3. Estimated optimal convergence rates on the sphere function for several algorithms with
scale-invariant-constant step-size depending on the dimension d

(6) are at least the fastest convergence rates that can be achieved on spherical functions
with any step-size adaptation technique. We refer to [3] for details of the proofs.

Numerical simulation of convergence rates. To evaluate the improvements that can be
brought about by mirrored samples and sequential selection, we now compare the differ-
ent convergence rates. However, those convergence rates are expressed only implicitly
as the expectation of some random variables. We therefore simulate the convergence
rate with a Monte-Carlo technique. For each convergence rate expression, we have sim-
ulated 106 times the random variables inside the expectation and averaged to obtain
an estimate of the convergence rate for different σ. Here, σ has been chosen such that
0.01 ≤ σ · d ≤ 3 and with steps of 0.01 in σ · d. The minimum of the measured conver-
gence rates over σ ·d is used as estimate of the best convergence rate for each algorithm
and dimension—resulting in a slightly (systematically) smaller value than the true one,
due to taking the minimal value from several random estimates. The right-hand plot of
Fig. 2 shows resulting convergence rate estimates versus σ in dimension 20. The step-
sizes for the best measured convergence rates for the (1,2)-ESs are smaller than for the
(1+1)-ES. The same is true for the (1,4)-ESs (not shown).

Fig. 3 presents the estimated best convergence rates for several algorithms for differ-
ent dimensions. The strongest effect is observed from mirrored sampling in the (1,2)-
ES. Only in dimension 2, the improvement is smaller than a factor of 1.5. Sequential
selection alone offers little benefit for the (1,2)-ES, but the effect from mirrored sam-
pling and sequential selection is clearly overadditive and the (1,2s

m)-ES almost achieves
the progress rate of the (1+1)-ES. In the (1,4)-ES, the impact of mirrored sampling or
sequential selection is similar and less than a factor of 1.5. Their combined effect is
close to additive and the (1,4s

m)-ES becomes significantly faster than the (1+1)-ES.

4 Application to the CMA-ES Algorithm

We implemented mirrored sampling and sequential selection into the well-known Co-
variance Matrix Adaptation Evolution Strategy (CMA-ES), where in addition to the
step-size, the covariance matrix of the multivariate normal distribution is adapted [3, ref.
[16,17,21,23]]. The additional implementational and numerical effort for the method is
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Fig. 4. Left: Step-size σ versus number of function evaluations of 20 runs on a purely random
fitness function in dimension 10. The upper ten graphs show the (5/5W, 10)-CMA-ES revealing
a random walk on log(σ). The lower ten graphs show the (5/5W , 10m)-CMA-ES and reveal
a strong bias of σ due to the recombination of mirrored vectors. Right: Number of function
evaluations to reach function value 10−9 on the 20-D sphere function, versus multiplier of the
default damping parameter dσ for the (1, 2s

m)-CMA-ES starting from search point all-ones with
σ = 1. Shown are three runs per dσ-value. For smaller values of the multiplier the algorithm fails

negligible and even fewer random numbers need to be sampled with mirrored vectors.
For parent number μ = 1, the implementation is straightforward in both cases. Taking
μ > 1 with sequential selection, the decision for when to conclude the iteration is not
entirely obvious and we stick to μ = 1 for sequential selection.

Mirrored sampling with recombination. Taking μ > 1 seems to have, a priori, no
impact on the implementation of mirrored samples. Unfortunately, for μ > 1, mirrored
sampling introduces a strong bias on the step-size and the covariance matrix update
in the (μ/μW, λ)-CMA-ES under neutral selection (i.e., “pure random” selection). This
effect is shown in Fig. 4, left. The bias is due to the recombination of mirrored offspring
and systematically reduces the sampling variance. The bias can facilitate premature
convergence for example in a noisy selection situation and is therefore considered as
undesirable [6]. On the other hand, the bias can help to focus the convergence to a
single optimum in a multi-modal or rugged search landscape. We have experimented
with several ways to remove the bias, but leave the question of “which way is the best”
open to future work. In the following also for mirrored sampling, only μ = 1 is used.

Parameter setting. We modified the damping parameter for the step-size to dσ =
0.3 + 2μW/λ + cσ . Here, 1 ≤ μW ≤ μ is the effective selection mass determined by
the recombination weights and therefore μW = μ = 1 in our case and usually cσ � 1
[7]. For a given μW, the modification introduces a dependency of dσ on λ. The setting
was found by performing experiments on the sphere function, where the convergence
rate is a unimodal function of dσ . The default dσ was chosen, such that in all cases (a)
decreasing dσ from the default value by a factor of two led to a better performance than
increasing it by a factor of two, (b) decreasing dσ by a factor of three never led to an
observed failure (this is not always achieved for λ = 2 without mirroring), and (c) the
performance with dσ was at most two times slower than the optimal performance in
the tuning graph. An example of a tuning graph for the (1, 2s

m)-CMA-ES is shown in
Fig. 4, right. The graph meets the specifications (a)–(c), but ideally dσ could have been
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Fig. 5. Serial convergence rates d ln(‖Xk‖/‖X0‖)/Tk versus dimension d of the CMA-ES on
the sphere function with ‖X0‖ = 1, initial step-size 1/d and ‖Xk‖ ≈ 10−150. ◦: default
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m)-CMA-ES. For each
setting, five runs are shown and lines connect the median. Lower values are better

chosen almost two times smaller in this case. For λ as large as 1000 and dimension up
to 5, even smaller values for dσ are useful, but not exploited in the given default value.

For μW/λ = 0.35 and μW ≤ d + 2, where d is the dimension, the former default
setting of dσ is recovered. For a smaller ratio of μW/λ or for μW > d+2, the new setting
allows faster changes of σ and might be harmful in a noisy or too rugged landscape. In
order to prevent a detrimental increment of the step-size for very large values of μW, the
step-size multiplier is clamped from above at exp(1).

The learning rate for the covariance matrix in the CMA was originally designed for
values of λ ≥ 5. We rectified the learning rate of the rank-one update for small values
of λ: the multiplier 2 is replaced by min(2, λ/3), resulting in c1 = min(2, λ/3)/((d+
1.3)2+μW). Similar as for the damping factor dσ , the new value was guided by the spec-
ifications (a)–(c) from above when replacing dσ with 1/c1 and optimizing the sphere
function with a non-spherical initial covariance matrix and (d) the condition number of
the final covariance matrix is smaller than ten. The learning rate for the rank-μ update
of the covariance matrix is unchanged and zero for μ = 1 [3, ref. [17,20]].

Convergence speed on the sphere. Similar to Fig. 3, we show in Fig. 5 the convergence
speed of various CMA-ES variants on the sphere function. We used cmaes.m, version
3.41.beta, fromhttp://www.lri.fr/˜hansen/cmaes_inmatlab.html
for implementing mirrored sampling and sequential selection. The resulting code is
available at http://coco.gforge.inria.fr/doku.php?id=bbob-2010-
results. In Fig. 3, the variance of the sample distribution was chosen optimal. In the
CMA-ES, the covariance matrix is adapted and either cumulative step-size adaptation
or the 1/5th success rule is used for step-size control, in the non-elitist and the elitist
variant respectively. While the overall convergence speed in moderate or large dimen-
sion is roughly two times slower than in Fig. 3, the ordering of the different variants
essentially remains the same. The new sampling and selection schemes lead to a sig-
nificant speedup. In low dimension, the convergence rate remains far from optimal, in
accordance with observations in [2].

http://www.lri.fr/~hansen/cmaes_inmatlab.html
http://coco.gforge.inria.fr/doku.php?id=bbob-2010-results
http://coco.gforge.inria.fr/doku.php?id=bbob-2010-results
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Experiments with BBOB-2010. The (1,2)- and the (1,4)-CMA-ES with mirrored sam-
pling and/or sequential selection have been extensively empirically studied on 54 noisy
[9] and noiseless [8] functions in the companion papers [3, ref. [3–10]]. Mirrored sam-
pling improves the performance (number of function evaluations to reach a target func-
tion value) consistently on many functions by about a factor of two in the (1,2)-CMA-
ES and by a much smaller but non-negligible factor in the (1,4)-CMA-ES. The larger
factor for λ = 2 mainly reflects the comparatively poor performance of the baseline
(1,2)-selection. On the attractive sector function f6, the performance gain is more than
a factor of three even for the (1,4)-CMA-ES in dimension 20. Additional sequential
selection improves the performance again on many functions, typically by 10–30%
for both values of λ. Even for the (1,4)-ES, the effect of mirrored sampling is still
slightly more pronounced than that of sequential selection. Overall, the (1, 4s

m)-CMA-
ES is consistently faster than the (1,2s

m)-CMA-ES. On the noisy functions, the picture
is qualitatively the same. Surprisingly, the differences are not less pronounced. Even
sequential selection never impairs the performance significantly. In conclusion from
this rather huge benchmarking exercise, the (1, 4s

m)-CMA-ES becomes the candidate
of choice to replace the (1+1)-CMA-ES as the fast and robust local search ES.
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project ANR-08-COSI-007-12.
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Abstract. The chief purpose of research in optimisation is to under-

stand how to design (or choose) the most suitable algorithm for a given

distribution of problem instances. Ideally, when an algorithm is devel-

oped for specific problems, the boundaries of its performance should be

clear, and we expect estimates of reasonably good performance within

and (at least modestly) outside its ‘seen’ instance distribution. How-

ever, we show that these ideals are highly over-optimistic, and suggest

that standard algorithm-choice scenarios will rarely lead to the best al-

gorithm for individual instances in the space of interest. We do this by

examining algorithm ‘footprints’, indicating how performance generalises

in instance space. We find much evidence that typical ways of choosing

the ‘best’ algorithm, via tests over a distribution of instances, are seri-

ously flawed. Also, understanding how footprints in instance spaces vary

between algorithms and across instance space dimensions, may lead to a

future platform for wiser algorithm-choice decisions.

1 Introduction

The chief purpose of research in optimisation is to understand how to find the
most suitable algorithm for a given space of problem instances. When researchers
concentrate on algorithm design without reference to specific problems, this view
implies that the outcomes of such research should provide salient results on the
applicability of the designed algorithms in terms of distributions of instances
in one or more problem domains. Similarly, when research is clearly tied to a
problem domain, the ideal outcomes would include a characterisation of the
space of instances in that domain for which the studied algorithms are favoured.

We note that all of these desired outcomes are rare. However, such outcomes
are extraordinarily important for two reasons: (a) it is easy to imagine practi-
tioners choosing an algorithm for their problem on the basis of a research paper,
and then applying it to real problems from a quite different instance distribution
to that examined in the paper (indeed, often the paper’s distribution is a small
set of specific instances); (b) despite c. 50 years of research in optimisation, there
is little re-usable knowledge that aids a priori choice/configuration of algorithms
based on knowledge of the target distribution of instances.

Here we contribute to and explore the issues in (a) and (b) by examining algo-
rithm ‘footprints’. Such a ‘footprint’ indicates how an algorithm’s comparative

R. Schaefer et al. (Eds.): PPSN XI, Part I, LNCS 6238, pp. 22–31, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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performance generalises in instance space (with reference to a collection of al-
gorithms under consideration). In particular, we find much evidence to support
the claim that the typical ways of choosing the ‘best’ algorithm, via tests over a
distribution of instances, are seriously flawed: this may rarely yield an algorithm
that is best on many well-defined subsets within that instance space, and sim-
ilarly outside that instance space. Also, algorithms have footprints in instance
space that define the regions of prowess of certain configurations. Understanding
these footprints, how they vary between algorithms and across instance space
dimensions, may lead to a future platform for wiser algorithm-choice decisions.

The remainder is set out as follows. After discussing related work and associ-
ated issues in Section 2, Section 3 simulates the task of choosing an algorithm
for a given space of instances, for each of two problem domains. After establish-
ing the ‘best’ algorithm, by sampling from an instance space, we then partition
instance space into subspaces and do further experiments on samples from these
subspaces, in turn summarising the results by showing that individual algorithms
have performance ‘footprints’ over the instance subspaces. This reveals, for ex-
ample, the extent to which the presumed ’best’ algorithm is not best for most of
the instance subspaces. We discuss the implications of this in discussions within
section 3, and conclude in section 4.

2 Related Work and Associated Issues

There is a rich academic literature concerned with understanding how to dis-
cover the ideal algorithm for a given problem. This broad topic encompasses
many inter-related questions. High-level such questions include how we are to
define both ‘best algorithm’ and ‘given problem’. In different circumstances, the
best algorithm may be defined in terms of mean quality of solution, speed of
convergence, or some function of these and/or other factors. The given problem
may be a suite of test problems from one or more domains, or a stochastically
defined space of instances.

Given some appropriate context that disambiguates these high level questions,
most research in algorithm design and configuration focuses on algorithms for
configuration search. In such work, it is common to use a ‘training set’ of in-
stances, and treat algorithm configuration as an optimisation problem in which
we seek to optimise a measure of performance over this set. In some cases, the
optimally configured algorithm’s performance is validated on a test set. How-
ever the latter is quite rare in many factions of the literature on optimisation
algorithms, in which the typical approach is to test algorithms on a suite of
instances commonly used in the literature, with little or no consideration given
to estimating performance on different instances.

Recently prominent in algorithm configuration research are Hoos and co-
workers [1,2,3], who have designed stochastic search algorithms such as paramILS
[4], which is very successful at finding ideal configurations for a given algorithm
and set of problem instances. ParamILS is one of several approaches that have
been independently investigated for this task (e.g. [5,6,7,8]), and is distinguished
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from others by its attention to the problems of ‘over-confidence’ (performance
on the training instances becoming an over-optimistic estimate of performance
on unseen instances) and ‘over-tuning’ (the familiar machine learning scenario,
in which prolonged training will lead to worse performance on the test set).

Essentially, such work (and similar, e.g. [9,10,11]) finds an algorithm that
works best (given some definition) on a given instance distribution. Often this is
a point distribution - a specific set of instances that may or may not be divided
into training and test sets. It is worth noting that, though [4] deals with issues
of over-confidence and over-tuning, such work rarely considers generalisation
outside or within the instances considered. That is, the optimised configuration
is delivered with (in [4], for example) some justified confidence that it is close
to ideal for the training instances. However, it remains open how we might
estimate its performance on alternative instances, or indeed on strict subsets of
the training instance space.

To gain intuition for the significance of strict subsets of the instance space,
consider configuring an algorithm for a job shop based on a given distribution of
instances. By either using these instances directly, or constructing a generator
based on them (e.g. with a distribution of processing times inferred from the in-
stances), tuning will typically be biased towards some specific algorithm B, with
an ideal mean performance over this instance space. However, there is an arbi-
trarily large number of coherent subsets of this space (defined by, for example, a
given mean task length, or a given value for the range of processing times, and
so forth) on which B’s performance may well by trumped by an alternative con-
figuration. The extent to which B may under-perform on new instances could be
dramatic. When generalising outside the instance distribution, standard lessons
from machine learning lead us to expect that, the better the performance of B
on the test set, the worse its performance may be on unseen out-of-distribution
instances. Although Hutter et al [4] avoid over-fitting in appropriate versions
of ParamILS, this applies to the given instance distribution, and provides no
certificates about performance outside this distribution.

Another area of related work is ‘per-instance tuning’, in which models are
developed which enable an algorithm to be tuned based on features of the given
instance [12–16]. In such work, typically preliminary experiments are done to
capture the performance of several configurations of an algorithm on several in-
stances. A model (e.g. perhaps a neural network) is then inferred, which predicts
performance characteristics from combined instance features and algorithm pa-
rameters. Given a new instance, this model can then be used to predict the
performance of any given configuration, and indeed a simple search can be
wrapped around this, yielding predictions of ideal parameters for that instance.
Smith-Miles et al [17] explore a variant of such ideas, concerned with algorithm
choice based on instance features. In [17], 75,000 instances of a single-machine
earliness/tardiness problem are generated, and on each instance they compare
the earliest-due-date heuristic (EDD) and the shortest-processing time heuristic
(SPT). A selection of learning methods are then applied, to infer models that
relate instance features (e.g. mean due date, range of processing times, etc.) to
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the choice of either EDD or SPT. Results were very promising; some rules in-
ferred from a training set of instances could predict with c. 97% accuracy the
best choice between these two heuristics on a test set. In turn, this gives promises
for better-informed choice of algorithm than may be obtained, say, by resorting
to the single algorithm that was best over a wide distribution of instances that
included the instance in question.

Our arguments and contributions are complementary to such findings from the
work so far on the per-instance tuning approach. The latter studies typically re-
veal that small differences between instances correspond to differences in the ideal
algorithm for those instances. By arguing (and confirming in test domains) that
an algorithm tuned over a space of instances may rarely be the ideal algorithm
for subsets of that space (let alone outside that space), we deliver similar findings
from an alternative perspective. However our emphasis is different, focusing on
the particular subset of instances that is best addressed by a given algorithm. We
argue that the nature of this ‘footprint’ is particularly interesting to study, and
understanding how the footprints of individual algorithms vary (e.g. simulated an-
nealing versus population-based search) may lead to new ways to choose the right
algorithm for a given problem domain, especially where the model development
costs of accurate per-instance tuning (for example) are infeasible due to problem
size and associated concerns regarding computational expense.

3 Empirical Examples

3.1 Overview of Experiments

In the sequel, empirical footprints in instance spaces are produced for a selec-
tion of algorithms and two domains. The domains are single-machine job shop
(SMT; optimising tardiness) and vehicle-routing (VRP; optimising a weighted
combination of distance, tardiness and overtime). These were chosen partly for
convenience (the SMT is simply implemented and evaluation of solutions is com-
putationally light) and partly for relevance: both are very common in industry,
and are such that individual sources of instances (e.g. factories, warehouses, dis-
tributors) can be expected to draw their real-world instances from individually
characteristic instance spaces. Further domains (e.g. the quadratic assignement
problem) are under study, but space restraints here limit us to two.

Our experiments had the following overall shape. A set A of algorithm variants
is defined, and a distribution p(I) of instances is defined over a space of instances
I. Simulating a simple algorithm-choice scenario, each algorithm in A is applied
(with n independent trials) to a sample from p(I), and we record the algorithm
Abest that achieves the best overall performance. To measure performance we
consider both the fitness values reached after the maximum allowed time (a
given number of fitness evaluation), and the time (evaluation number) in each
trial when the best fitness of that trial was found. The details of defining ‘best’
are as follows: given the |A| ×n results for each sample instance, we consider all
pairs of results from distinct algorithms in distinct trials on the same instance;
in each such pair, the algorithm with the better fitness gains a point, with
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ties broken by speed of finding the solution. These points are accumulated over
several instances. The algorithm with most points over a set of instances is
considered best for that set, and the significance of its peak position (assessed
by randomisation testing [18]) is considered in context. We found this more
reliably inforative than simply resorting to mean fitness values per algorithm
(which were not sfficiently distinguishing of algorithms on several of the smaller
SMT instances).

We presume that Abest would be the algorithm delivered to the ‘client’, to be
used to solve future real-world instances. Each of these phases of experimentation
(to find Abest on a master instance space) typically involved from 4 to 400 billion
evaluations: applying c. 200 algorithms to c. 1000 instances, for (usually) 20 trials
of between 1,000 and 100,000 solution evaluations each.

Following this, we define several instance subspaces by partitioning p(I) (de-
tails later), and we find the Ai

best for each subspace i; we then visualise the
footprints of chosen algorithms - in particular we view the footprint of Abest,
typically observing that it covers few of the instance subspaces. Further, when
we explore subspaces, we include several outside the master space; this allows
us to observe how Abest generalises beyond its deemed area of prowess.

The footprint graphics are obtained as follows. Each instance subspace is
represented by a specific square. A given algorithm variant is identified by cir-
cles of a given shade. E.g. Abest (on the master space in context) is always
black. If a square contains a shaded circle, then the corresponding algorithm
was best in the corresponding subspace. The size of the circle is a measure of
signifiance. Following the ‘instance subspace’ experiments, 1000 randomisation
tests are done, in each of which the (best-fitness, evaluation number) pairs for
each trial are randomly permuted within the results for the same instance. The
points-assignment system (given above) is repeated each time, and this enables
us to find (i) the signifiance of any given algorithm with at least the same num-
ber of points as the ‘best’ on that subspace, and (ii) the significance of the
difference in performance between the best and second-best algorithms. The
first signifiance value was always 1 (100%) in all of our experiments, confirm-
ing that the ‘all algorithms were equivalent’ hypothesis is easily rejected. The
second signifiance value varied widely, indicating a ‘distance’ in performance
between the best and second-best algorithms. The size of the circle relates to
this second signifiance measure. Broadly speaking, large indicates that the al-
gorithm was much better than the second-best, and that the difference is likely
to be significant. A small circle means there was not a very distinct difference
between the best and second best. Our code (for all experiments, for the ran-
domisations, as well as producing the footprint graphics) can be obtained from
http://macs.hw.ac.uk/~dwcorne/pubs.htm

3.2 Footprints in SMT Instance Space

First, experiments were performed to explore the performance of a collection of
algorithm parameterisations on a distribution of instances of the single-machine
tardiness (SMT) problem. In the SMT variant used here, T tasks, t1, ..., tT need

http://macs.hw.ac.uk/~dwcorne/pubs.htm
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to be scheduled on a single machine, each task ti having a processing time pi

and a due date di. A candidate solution is a permutation of the tasks, defining
an order of processing on the machine. Given that order of processing (and with
setup times assumed to be zero) each task has a finish time, and an individual
task’s tardiness is Li, which is the maximum of {0,Ti − di}. Fitness (to be
minimised) is simply the sum of the Li.

The first ‘master’ instance distribution was defined by setting the number of
tasks to be fixed at 20, and setting uniform ranges of processing times and due
dates from the (integer) intervals [10, 40] and [10, 550] respectively. In the second
phase, 40 separate subsets of instance distributions were used. Each subset was
defined by a (processing time, due date) pair (p, d), and instances were produced
by generating 50% of the tasks with processing times uniformly generated from
a sub-range of the processing time distribution - the interval [p, p+10] - and with
due dates similarly generated from the interval [d, d+ 60]. Further details are in
the caption of Figure 1. In this way, each instance generated within an instance
subset is ‘included’ in the master instance space, with a nontrivial chance of
being generated in the master instance distribution, however each such subspace
is also clearly a well defined subset. Moreover, such a clustered nature in the due
date and processing time distributions is consistent with what we may expect
for sets of orders that many machine shops need to handle. E.g. clients tend
to prefer deliveries at certain times, or certain products or processes may be
particularly popular in certain periods.

The set of algorithms tested comprised 204 variants of hillclimbing (HC) and
an evolutionary algorithm (EA). The 204 variants emerged from the rates of four
distinct operators: adjacent-swap mutation, any-swap mutation, shift-2 muta-
tion, and shift-3 mutation. The first two need no explanation; shift-n mutation
means choosing a gene position i uniformly at random, and moving it to i + n
(treating the permutation as circular), while decrementing the positions of genes
previously in positions i + 1, ..., i + n. An algorithm configuration was a vector
of rates for the first three operators (the probability of the fourth being 1 minus
their sum), ranging through all subsets of {0.1, 0.2, ..., 0.7}3 whose components
summed to 0.9 or below. The second set of algorithms were simple steady state
EAs using binary tournament selection, with population sizes in {10, 20, 30},
and operators defined and allowed to vary precisely as described for HC.

Two SMT master instance spaces are considered here, corresponding to 20-
task and 30-task problems. For each instance space, we consider footprints at
different evaluation limits (1,000, 10,000 and 100,000). The resulting footprints
are in Figure 1. The six footprint graphics each show footprints for a selection of
five algorithm variants (each with its own shade of grey). In every case, ‘black’
denotes the algorithm that earned Abest on the master instance space. The four
other algorithms are those deemed best most frequently over the subspaces.
Where no circle appears, this means that the best algorithm for that subspace
was best in few (if any) more subspaces It turns out that HC variants were always
better than EA variants in the SMT cases studied here; the best algorithm in
each subspace was an HC variant.
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Fig. 1. Six groups of footprints for selected algorithms in SMT instance space. The

leftmost (rightmost) three relate to 20 (30)-task problems, and from left to right in

each group of three, the footprints relate to max evaluation limits of 1,000, 10,000,

and 100,000. Each square indicates an instance subspace, in which the foci for task

processing times are, from left to right, [10, 20], [20, 30], [30, 40] and [40, 50], and

the due date focus for 20-task problems varies from top to bottom from [10, 70], [70,

130], ..., [550, 610]. For 30-task problems the due dates start at [10,100] and end with

[820-910]. The rightmost columns and lowest rows always represent subspaces outwith

the master instance space. Black represents Abest. Four other footprints are shown in

each of the six groups, for the four algorithms that (neglecting the ‘black’ one) ‘won’

most frequently among the 40 instance subsets.

Figure 1 reveals a number of interesting points. The ‘black’ algorithm (always
Abest for the master space in context) is rarely the best on the subspaces. In
practice this suggests that, when an algorithm is tuned on the basis of a master
instance space (or perhaps a set of specific instances), the delivered algorithm
may rarely be fit for purpose. Footprints are generally patchy, however there
are hints that algorithms have ‘regions’ of prowess. Considering the best in each
subspace (including the infrequently winning algorithms in empty cells - whose
display in further alternative shades of grey would confuse the visualisation), we
explored the level of regionalisation by calculating the degree to which neighbour-
ing (Von Neumann neighbourhood) subspaces shared the same best algorithm.
In all cases in Figure 1 this was significant, as evaluated by randomisation tests
that permuted ‘bests’ randomly within the subspaces. Confidence levels were
(respectively for the six cases in Figure 1 in left to right order), 98.9%, 90.8%,
99.5%, 98.8%, 99.6 99.6%. The hints of regionalisation in the figures remain
clear in the footprints not displayed - although such algorithms tended to win
infrequently, their regions of high performance tended to be in the same neigh-
bourhood. Results for subspaces in the rightmost columns and lowest rows speak
to generalisation of the ‘black’ algorithm slightly beyond master instance space.
Clearly, the performance of Abest beyond the master space is no better than its
surprisingly poor showing in subspaces of the master space.
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3.3 Footprints in VRP Instance Space

We considered a space of vehicle routing problems (VRP) in which up to three
vehicle handle a total of 30 orders, each with a given 60 unit time window. We
invented 50 customer locations (and one depot location) uniformly at random
from {0, 1, 2, ..., 100}2, and a random selection of 10 customers were stamped
as ‘regulars’. Distances were asymmetric (reflecting some amount of one-way
systems and related factors), and generated by adding a uniform perturbation
from [−p, p], where p was 20% of the Manhattan distance.

An instance comprised 30 orders, each defined by a customer anda time window.
Orders were generated first with a 50% chance of drawing the customer uniformly
fromregulars, otherwise drawnuniformly from all customers. Then, one of five pos-
sible time windows (the first five indicated in the caption of Figure 2) was chosen
uniformly at random. A candidate solution was a permutation of 32 numbers, al-
leles 0–29 indexing the orders, while 30 and 31 were ‘dividers’, separating vehicles.
Reading left to right, from one to three (depending on the divider positions) vehicle
routes are calculated in the natural way. Fitness combined distance, lateness and
idle time. Full and clear details may be found in the available code.

Instance subspaces were defined by a pair of time windows in which orders
would be focussed (e.g. reflecting plausible business practice for many clients).
Each subspace corresponded to a pair of the 7 windows listed in Figure 2’s
caption, as follows: when a customer was (not) regular, there was a 40% chance
of the time window being the first (second) of the pair; otherwise time windows
were drawn uniformly from all windows.

Figure 2 shows footprints for the cases of maximum evaluations of 10,000 (left)
and 20,000 (right). We note first that, in contrast to the SMT cases, the winning
algorithms in all subspaces for the VRP were EA variants. Otherwise, much the
same can be said as was said for the SMT, although the ‘black’ algorithm is
more prominent in this case. However one clear difference is that fewer distinct
algorithms are represented as winners of the subspaces - the mean number of
subspaces per winning algorithm was generally c. 3 in the SMT footprints, but
c. 4 for the VRP. Also, the appearance of these footprints suggests regionalisa-
tion, but in fact the level of neighbour similarity is insignificant in both cases
(again deterined by randomisation tests). I.e. there is no more regionalisation
than would be expected for a random permutation of the same distribution of
winning algorithms within the subspaces. Another difference is that the circles
are generally larger. This suggests that choosing an algorithm based on subspace
performance in this case may generally be a confident choice, but one which may
often generalise poorly, given the general lack of regional similarity.

The nature of the footprints we have observed is clearly a function of the
chosen algorithm collection, the problem domains, the instance spaces, and the
way we have partitioned instances into subspaces. Further research is needed
to understand these dependencies. If, for example there tend to be high levels
of regionality for certain algorithms in certain domains, this would allow some
confidence for generalisation of performance outside the master space; in other
cases, it may be that ideal algorithm choice is highly sensitive to the co-ordinates
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Fig. 2. Two groups of footprints for selected algorithms in a vehicle-routing instance

space. Each group relates to a given max number of evaluations: 10,000 (left), 20,000

(right). Instance subspaces are defined by foci on regular and non-regular customer

time windows (see text), from left to right (and top to bottom), [60, 120], [120, 180],

[180, 240], [300, 360] and [360, 420],[420, 480]. The rightmost columns and lowest rows

are outside the ‘master’ space. Black again represents Abest on the ’master’ space.

Four other footprints are shown, for the (other) algorithms that ‘won’ most frequently

among the 36 subspaces.

of instance subspace - such a situation demands extra care in delivering the right
algorithm, perhaps indicating a per-instance tuning approach. In particular, it
could be that distinct tyes of algorithm have distinct footprint characteristics
that tend to appear across domains. Especially when prior tuning approaches
are costly, such characteristics may be used to inform algorithm choice.

Meanwhlle, the footprints we have examined here clearly challenge certain
prior expectations of the robustness of a standard algorithm tuning approach.
Our experiments arise from essentially arbitrary but representative and relevant
choices of algorithms, domains and instance distributions, and we see similar
findings in other domains (work in progress), so we do not expect these to be
pathologic cases. Finally, however, we do not claim that the footprints captured
herein have clear statistical signifiance in context, but we appeal to their being
indicative of the general nature of algorithm footprints in optimisation.

4 Summary and Conclusion

We examined algorithm ’footprints’ in the domains SMT and VRP. The footprint
of an algorithm indicates how its performance generalises across different dimen-
sions of instance space. In particular, we have found much evidence in support
of the claim that the typical way of choosing the ‘best’ algorithm, via tests over
a distribution of instances, is seriously flawed. The algorithm best overall on a
broadly defined collection of instances may rarely be best on many well-defined
subsets within that instance space, and similarly outside that instance space. The
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results also hint at potentially systematic differences between footprints, depend-
ing on algorithm family and domain. Such differences, given further understand-
ing in future, may be usefully informative as regards algorithm-choice decisions in
many scenarios. In particular, if the natures of footprints tend to generalise well
across domains, footprint-oriented algorithm choice may be informative without
the need for time-consuming development work that may otherwise be needed.
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Abstract. We show that the (1+1) evolutionary algorithm using an

arbitrary mutation rate p = c/n, c a constant, finds the optimum of any

n-bit pseudo-Boolean linear function f in expected time Θ(n log n).

Since previous work shows that universal drift functions cannot exist

for c larger than a certain constant, we define drift functions depending

on p and f . This seems to be the first time in the theory of evolution-

ary algorithms that drift functions are used that take into account the

particular problem instance.

1 Introduction

The introduction of drift analysis to the theory of evolutionary algorithms was a
major breakthrough in this field [12,14]. Its most visible achievement is a simple
and clean analysis of how the classical (1+1) evolutionary algorithm ((1+1) EA)
optimizes linear (pseudo-Boolean) functions. This made obsolete the highly tech-
nical proof of Droste, Jansen and Wegener [6]. Other fundamental applications
of drift analysis in the theory of evolutionary computation include [8,9,11,17,15].

Recent work by Johannsen, Winzen and the first author [5,4] shows that the
drift analysis, as currently employed, strongly relies on the mutation probability
being relatively small. The drift (=potential) function used in the first paper [12],
as observed already in [13], is only admissible if the mutation probability p is
less than 1/n, where n is the length of the bit-strings of the search space.

This was fixed in [14], where a drift function was presented that works for
the most common value of p = 1/n. As observed in [5], however, it ceases to
work for p greater than or equal to 4/n. This cannot be overcome by choosing a
different drift function. As shown in [5], if p > 4/n, then for any drift function
(from the class of log-of-linear functions) there is a linear objective function and
a search point such that the drift from this point is negative. This problem does
not change substantially if we use the averaging approach of Jägersküpper—
that approach fails for p ≥ 7/n [4].

The results of [5,4] suggest that drift analysis, while successful for many par-
ticular problems, is still not that well-understood in the context of evolutionary
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algorithms and remains a topic asking for further research. For the particular
test problem of analyzing linear functions, the results show that, unless com-
pletely different methods are invented, we cannot use a drift function that is
defined independently of the objective function.

This seems to be a bad news, since typically it is quite tricky to come up with
a feasible drift function. Currently, there seems to be little general advice of how
to design such drift functions.

Nevertheless, we solve this problems in this paper by defining drift functions
individually for each objective function and each mutation probability p = c/n.
In consequence, we prove that the (1+1) EA with any such mutation probability
optimizes any linear function in time O(n logn). A corresponding lower bound
follows easily from standard arguments, see Section 6.

While we feel that the major contribution of this work is providing a way to
overcome previous limitations of drift analysis, we should point out that also the
result on the optimization time for linear functions a priori was neither known
nor expected. Changing the mutation probability can make quite a difference.
E.g., [3] showed that there are strictly monotone functions having an exponential
optimization time for mutations probabilities p > 33/n, whereas all monotone
functions are optimized in polynomial time for p ≤ 1/n.

2 Analyzing the (1+1) EA via Drift Analysis

In this section, we introduce the (1+1) EA with general mutation probability p,
describe drift analysis to the extent needed to analyze the optimization behavior
of the (1+1) EA on linear functions, and discuss known and our result for linear
functions. For other uses of drift analysis and the general background, we refer
to the papers cited above.

2.1 The (1+1) Evolutionary Algorithm for Optimizing Functions
Defined over Bitstrings

Let f : {0, 1}n → R be a linear objective function. Without loss of generality,
we may assume (and shall assume in this paper) that f is to be minimized, that
0 := (0, . . . , 0) is the unique minimum, and that f(0) = 0.

The randomized search heuristic that we study is the well-known (1+1) evo-
lutionary algorithm. It starts with an initial solution, x, chosen uniformly at
random from the search space {0, 1}n. In each iteration, from its existing solu-
tion x, it generates a new solution x′ by flipping each bit of x with probability
p independently. In other words, for each i ∈ {1, . . . ,n} independently, we have
Pr(x′i = 1 − xi) = p and Pr(x′i = xi) = 1 − p. This step is called mutation. In
the subsequent selection step, if f(x′) ≤ f(x), the EA accepts x′ as a solution,
meaning that the next iteration starts with xnew := x′. Otherwise, the next it-
eration starts with xnew := x unchanged. Since we are interested in analyzing
how many iterations are necessary until an optimal solution is found, we do not
specify a termination criterion here.
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We should stress that the (1+1) EA typically is not used to actually solve
difficult optimization problems. For these, one would instead choose more com-
plex search heuristics. However, understanding the optimization behavior of the
(1+1) EA often helps in predicting the behavior of other, complicated EAs,
which mostly are too complex to admit a rigorous theoretical analysis.

2.2 Drift Analysis

The idea of drift analysis is to measure the progress of the optimization, not
necessarily with respect to the fitness function, but with respect to a suitably
chosen potential function (or artificial fitness function), which we shall call drift
function. The definition below is adapted to our aim of analyzing linear objective
functions.

Definition 1. We call Φ : {0, 1}n → R a feasible drift function for f and the
(1+1) EA with mutation probability p, if the following conditions are satisfied.

1. Φ(0) = 0;
2. Φ(x) ≥ 1 for all x ∈ {0, 1}n \ {0};
3. there is a constant δ > 0 (independent of n) such that for all x ∈ {0, 1}n\{0},

E(Φ(xnew)) ≤ (1 − δ/n)Φ(x),

where, as above, we denote by xnew the solution resulting from executing a
single iteration (consisting of mutation and selection) with initial solution x.

As a semi-trivial example, note that if f is a linear function with coefficients
at least one, then f itself is a feasible drift function for f and all mutation
probabilities p = c/n. However, this often is not a very useful drift function.

When feasible drift functions exist, they allow an elegant analysis yielding up-
per bounds for the expected optimization time of EAs. The optimization time of
a randomized search heuristic is usually defined to be the number of evaluations
of the objective function f performed until the optimum is found. In case of the
(1+1) EA, this is (apart from an additive deviation of one) equal to the number
of mutation-selection iterations.

The following theorem, taken from [5], shows how the expected optimization
time can be bounded using a drift function. Similar arguments appear in other
contexts, see e.g. [10], [12] or, in the context of coupling proofs, [7, Section 5].

Theorem 1. Let Φ : {0, 1}n → R. Denote by Φmax the maximum value
max{Φ(x) | x ∈ {0, 1}n} of Φ. If Φ is a feasible drift function for f and the
(1+1) EA with mutation probability p, then the expected optimization time of f
is O(n log(Φmax + 1)).

Theorem 1 indicates that a drift function is better if its maximum value, Φmax,
is small. For example, taking Φ = f only yields an expected optimization time
of O(n log fmax). If f is a function like the binary value function binval defined
by binval(x) =

∑n
i=1 2i−1xi, we obtain a bound of only O(n2) for the expected

optimization time.
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2.3 Drift Analysis for Linear Functions

Finding feasible drift functions is typically quite tricky. If the mutation probabil-
ity p is 1/n, then He and Yao [14] showed that the drift function Φ̃ : {0, 1}n → R

defined by Φ̃(x) = ln(1+
∑	n/2


i=1 xi +2
∑n

i=	n/2
+1 xi) is a feasible drift function
for all linear objective functions (in the additive setting they regard, that is,
they have E(Φ̃(xnew)) ≤ Φ̃(x) − δ for all non-optimal x). With similar argu-
ments, one can show that Φ(x) =

∑	n/2

i=1 xi + (5/4)

∑n
i=	n/2
+1 xi is a feasible

drift function [5] as defined above, again valid for all linear functions f . Since
Φmax = Θ(n), we obtain an expected optimization time of O(n log n), which
is asymptotically optimal [6]. Discovering such “universal” drift functions (ap-
plicable for all linear functions) is a beautiful and elegant way of solving the
problem.1

Unfortunately, such universal drift functions only exist for small mutation
probabilities p (cf. the introduction of this paper). In consequence, for larger
values of p, the drift function has to depend on the particular objective function.

Non-trivial drift functions of this type were not known previously. Conse-
quently, it was an open problem, prior to this work, to determine whether the
O(n log n) time bound extends to mutation probabilities greater than p = 4/n.
(We show that it does.) In this paper, we assume that the mutation probability
is p = c/n, for an arbitrary constant c. This is appropriate because existing
results of Droste, Jansen and Wegener [6, Theorems 13 and 14] show that this
is the optimal order of magnitude for mutation probabilities.

In this paper, we solve the above-mentioned problems. For each p and f , we
explicitly construct a feasible drift function Φ that is piecewise polynomially
bounded. See Section 3.1 for a definition of this notion and the extension of
Theorem 1 to such drift functions.

This result is interesting for two reasons. On the methodological side, it greatly
enlarges our understanding of how good drift functions have to be chosen. This
might help analyzing problems like the minimum spanning tree problem [16] or
the single-criterion formulation of the single-source shortest path problem [1].
For both problems, the expected optimization time contains a log(fmax)-factor
stemming from the fact that, at least implicitly, drift analysis with the trivial
drift function f is conducted.

On the other hand, naturally, our construction of drift functions proves that
linear functions are optimized by the (1+1) EA in time O(n log n), regardless of
what mutation probability p = c/n is used.

Theorem 2. Let c be an arbitrary constant. Then the (1+1) EA with mutation
probability p = c/n finds the optimum of any linear function f : {0, 1}n → R in
an expected number of O(n log n) iterations.2

1 We should add that a very similar function Φ was already used in the proof of [6].

However, without the use of drift analysis, the proof became highly technical.
2 Without proof, let us remark that this bound also holds with high probability 1−n−d,

where d is an arbitrary constant. This follows from [2].
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3 Preliminaries and Notation

3.1 Piecewise Polynomially Bounded Drift and Fitness Based
Partitions

Let f be an objective function to be minimized via the (1+1) EA as introduced
in Subsection 2.1. We start with an elementary observation about the drift func-
tion Φ, namely that we do not really need Φmax to be polynomially bounded
to obtain an O(n log n) bound on the expected optimization time. We can af-
ford a constant number of ‘huge jumps’. Suppose that M = M0, . . . ,Mk is a
partition of the search space {0, 1}n. Similar as in [18], we say that M is a
fitness-based partition if M0 = {0} and, for all i < j, x ∈ Mi and y ∈ Mj , we
have f(x) < f(y). We use the notation min f(Mj) to denote min{f(x) | x ∈Mj}
and the notation max f(Mj) to denote max{f(x) | x ∈Mj}.
Lemma 1. LetM = M0, . . . ,Mk be a fitness based partition of the search space
{0, 1}n, where k is a constant independent of n. Suppose that Φ is a feasible drift
function for f . Then the expected optimization time of f is

O

(
n

k∑
j=1

(
log(maxΦ(Mj)) − log(minΦ(Mj))

))
.

We say that Φ is piecewise polynomially bounded (with respect to f and the
(1+1) EA), if there is a constant k (independent of n) and a fitness based par-
tition M = M0, . . . ,Mk of the search space such that for every j ∈ {1, . . . , k},
log(maxΦ(Mj))− log(minΦ(Mj)) = O(log n).

3.2 Pseudo-boolean Linear Functions, Notation

We call a function f : {0, 1}n → R a (pseudo-Boolean) linear function, if there
are real numbers a0, a1, . . . , an such that f(x) = a0 +

∑n
i=1 aixi. It is relatively

easy to see that, when discussing how such a function is optimized by the (1+1)
EA, we may always assume that a0 = 0 and that ai+1 ≥ ai > 0 for all i ∈
{1, . . . ,n− 1}.

In the following, we shall denote an x ∈ {0, 1}n by a binary string written
from right to left, that is, x = xn . . . x1 where xn is the most-significant bit and
x1 is the least-significant bit. The reason for indexing the bits in this way is that,
for the prominent example of the linear function binval(x) =

∑n
i=1 2i−1xi, the

binary string xn . . . x1, interpreted in the usual way, is the value of the function.
Note that it is important to remember this notation in the following, as we shall
often use the word “left” to refer to the most-significant bit (with the largest
index) and “right” to refer to the least-significant bit (with the smallest index).

4 Construction of the Drift Function

In this section, we show how to construct a feasible piecewise polynomially
bounded drift function Φ. As discussed above, a feasible drift function Φ cannot
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be defined universally for all pseudo-Boolean linear functions f and all muta-
tion probabilities p. Therefore, we have to define the drift function taking into
account both f and p = c/n. Recall that we assume c to be constant.

Let ε be an arbitrary small constant, needed to precisely formulate the inter-
mediate results. To define the drift function Φ, we will use a sufficiently large
constantK (depending on c and ε) and a sufficiently small constant γ (depending
on c, ε and K).

4.1 Splitting into Blocks

The difficulty in designing a feasible drift function lies in the fact that the
optimization of f via the EA depends heavily on the coefficients ai. If these coef-
ficients are steeply increasing, then the optimization behavior resembles the be-
havior of the optimization function binval defined by binval(x) =

∑n
i=1 2i−1xi.

For this function, the left-most bit that is flipped decides whether the new solu-
tion is accepted. On the other hand, if the coefficients are of comparable sizes,
then we see an optimization behavior resembling the behavior of the optimiza-
tion function onemax defined by onemax(x) =

∑n
i=1 xi. For this function, it

is instead the number of “good” bit-flips, relative to the number of “bad” flips
that decides whether the new solution is accepted. Of course, what is “steeply
increasing” and what constitutes “comparable sizes” depends on the mutation
probability. Also, f can be of a mixed type, having regions with steeply increas-
ing coefficients and regions with coefficients of comparable sizes.

To analyze such objective functions, we split the bit positions {1, . . . ,n} into
blocks. The idea is that, within such a block, one of the two behaviors is dom-
inant. The definition of blocks, naturally, has to be such that the interaction
between different block can be analyzed appropriately.

We first split the bit positions {1, . . . ,n} into mini-blocks in the following
manner. Start with j = 1. A mini-block starting at bit position j is constructed
as follows. If an/aj < n2 then {j, . . . ,n} is a single mini-block. Otherwise, let i
be the minimum value in {j + 1, . . . ,n} such that ai/aj ≥ n2. The set {j, . . . , i}
is a mini-block. If i = n, we are finished. Otherwise, set j = i and repeat to form
the next mini-block, starting at bit position j. Note that, in general, consecutive
mini-blocks overlap by one bit position.

The next thing that we do is merge consecutive pairs of mini-blocks into blocks.
To start out with, we just go through the mini-blocks from right to left, making
a block out of each pair of mini-blocks. Note that this is (intentionally) different
from just defining blocks analogous to mini-blocks with the n2 replaced by n4.

A block is said to be long if it contains at least γn bit positions and short
otherwise. Recall from the beginning of this section that γ is a small constant
depending on c, ε and K. It helps our analysis if any pair of long blocks has at
least three short blocks in between. So if two long blocks are separated by at
most two short blocks, then we call the union of these two long blocks and the
at most two short blocks in between a long block. We will use �B to denote the
leftmost bit position in block B and rB to denote the rightmost bit position in
block B. As long as B is not the left-most block, we have a�B/arB ≥ n4.
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4.2 Definition of Φ

We will define weights w1, . . . ,wn ∈ R such that Φ(x) =
∑n

i=1 wixi. We call the
wi weights to distinguish them from the coefficients a1, . . . , an of f . We define the
weights w1, . . . ,wn as follows, starting with w1 = 1. Suppose that bit-position i is
in block B (and that i = rB). If block B is a long block, or is immediately to the
left of a long block, then we define wi by wi = wrBai/arB . We call this the “copy
regime” since wi/wrB = ai/arB . Otherwise, we are in the “damped regime” and
we define wi by wi = wrB min(K(i−rB)c/n, ai/arB ). The reason that we define
the weights in this way will be apparent in Section 5.1. The main constraints are
that blocks had to be defined so that the fitness function increases sufficiently
from block to block. The same has to be true of the weights, however, it has to
remain piecewise linear. Also, the details of the damping ensure the necessary
geometric decay of the weights that allow the analysis to go through. The main
technical work in the analysis is showing that Φ is a feasible drift function. By
contrast, the proof of the following lemma is straightforward.

Lemma 2. Φ is piece-wise polynomial.

5 Feasible Drift

The main technical work of the paper is to show that Φ, as just defined, is a
feasible drift function for f . To do so, we use the following notation. The state
after t steps is a binary string x[t] = xn[t] . . . x1[t]. Recall from Section 3.2 that
we write bit-strings as xn, . . . ,x1 where xn is the leftmost bit. In the (t + 1)’st
step of the algorithm, the bits of a binary string y[t+1] = yn[t+1] . . . y1[t+1] are
chosen independently. The probability that yi[t+1] = 1 is p = c/n by definition of
the (1+1) EA. Then x′[t+1] is formed from x[t] by flipping the bits that are 1 in
string y[t+1]. That is, x′n[t+1] . . . x′1[t+1] = (xn[t]⊕yn[t+1]) . . . (x1[t]⊕y1[t+1]).
Let At+1 be the event that

∑
i aix

′
i[t + 1] ≤ ∑i aixi[t]. We say that the move

in step t+ 1 is “accepted” in this case. If At+1 occurs then x[t + 1] = x′[t+ 1].
Otherwise, x[t + 1] = x[t]. To show that Φ, defined by Φ(x) =

∑
i wixi for all

x ∈ {0, 1}n, is a feasible drift function, we show the following.

Lemma 3. For all x ∈ {0, 1}n \ {0},
E[Φ(x[t+ 1]) | x[t] = x] ≤ (1− 1

nce
−3c(1 − ε)

)
Φ(x).

Proof (sketch). Suppose that x[t] is not the all-zero string. For a bit position i
with xi[t] = 1, let Ii[t+ 1] be the event

yi[t+ 1] = 1 ∧ ∀j ∈ {i+ 1, . . . ,n} : yj[t+ 1] = 0 ∨ xj [t] = 0.

Ii[t + 1] is the event that i is the left-most ‘1’ to be considered for a flip in
step t+ 1. Note that, for any fixed x[t],

E[Φ(x[t]) − Φ(x[t + 1])] =
∑

i:xi[t]=1

Pr(Ii[t+ 1])E[Φ(x[t]) − Φ(x[t+ 1]) | Ii[t+ 1]]
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since the events Ii[t + 1] for 1 ≤ i ≤ n are disjoint and Φ(x[t]) = Φ(x[t + 1])
unless one of them occurs.

We will show that E[Φ(x[t])−Φ(x[t+1]) | Ii[t+1]] ≥ 0 for all i with xi[t] = 1.
so we will be able to use the lower bound Pr(Ii[t+ 1]) ≥ p(1− p)n to get

E[Φ(x[t])−Φ(x[t+1])] ≥ p(1−p)n
∑

i:xi[t]=1

E[Φ(x[t])−Φ(x[t+1]) | Ii[t+1]]. (1)

Let I ′�[t+ 1] be the event

∀j ∈ {�+ 1, . . . ,n} : yj[t+ 1] = 0 ∨ xj [t] = 1.

I ′�[t + 1] is the event that no ‘0’ to the left of bit � is considered for a flip in
step t+ 1. Note that Pr(I ′�[t+ 1]) ≥ (1− p)n and that this event is independent
of Ii[t+ 1] for any i.

Fix any ε > 0. We shall split the analysis into several cases in Section 5.1 and
show that, in each case,

E[Φ(x[t]) − Φ(x[t+ 1]) | Ii[t+ 1]] ≥ (1− p)2nwi(1− ε).

Thus, by (1),

E[Φ(x[t]) − Φ(x[t + 1])] ≥ p(1− p)n(1− p)2n(1− ε)Φ(x[t]),

so E[Φ(x[t + 1])] ≤ (1− p(1− p)3n(1− ε))Φ(x[t]).
Noting that (1−p)3n ≥ e−3c(1−ε) for n sufficiently large, this shows Lemma 3.

Note that since ε can be chosen arbitrarily small, a factor of (1− ε)2 ≤ (1− 2ε)
is as good as one of (1− ε). ��

5.1 The Case Analysis

Suppose that bit position i is contained in a block B, that block L is to the left
of B and that block R is to the right of block B. We study the expected drift
conditioned on Ii[t + 1], which is the event that bit-position i is the left-most
‘1’ to be considered for a flip in step t+ 1. If the mutation is accepted, then the
flip of bit position i turns a ‘1’ into a ‘0’, making the drift function go down.
What we have to prove is that the drift function is not likely to go up much,
due to other ‘0’ bits turning into ‘1’. It is easy to see that the ‘0’s to the left of
block L are irrelevant—the construction of the blocks ensures that the fitness
function increases sufficiently from block-to-block, so a mutation will not be
accepted if one of these bits is flipped. Similar, the ‘0’s to the right of block R
are irrelevant—the construction of the blocks and the definition of the weights
ensures that the weights in the drift function increase sufficiently from block-
to-block, so the contribution of these bits is small relative to the contribution
of bit i. What remains, then, is to show that the contribution to the drift from
‘0’s in blocks L, B and R is negligible compared to the contribution from bit i
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flipping from ‘1’ to ‘0’. This analysis is done in separate cases sketched below.
The details are omitted for reasons of space.

Case 1: None of blocks L, B and R are long. In this case, blocks L and B are
in the damped regime, and this ensures the sum of the weights in block L
and to its right are not too large, so the contribution of bit i is sufficient to
compensate for them.

Case 2: Block L is long, but bit position i is in the rightmost miniblock of
block B. This is similar to Case 1.

Case 3: Block R is long (so blocks L and B are not). In this case, blocks B
and R are in the copy regime. Using this fact, we can carefully analyze the
changes to the drift function due to bits in blocks B and R that would arise
as a result of an accepting move. The copy regime allows us to translate
knowledge about the fact that a move is accepted — which tells us about
the relative fitness-function coefficients in these two blocks — to facts about
the relative weights in these two blocks.

Case 4: Block L is long, and bit position i is in the leftmost miniblock of
block B. This is the most difficult part of the analysis, and requires com-
bining the copy-regime analysis in block L with the damped-regime analysis
in blocks B and R. The construction of the blocks, and the details of the
damping are tuned precisely to make it work.

Case 5: Block B is long. Once again, we can combine the copy-regime analysis
and the damped-regime analysis to derive the necessary inequalities on the
weights in blocks S, L and B that are added and subtracted to the drift
function due to an accepting move.

6 A Simple Lower Bound

The previous sections showed that the (1+1) EA finds the optimum of any linear
function in expected time O(n log n), regardless of the mutation probability p =
c/n, as long as c is a constant. The simple argument that each bit that is not ‘1’
in the initial solution has to be part of at least one mutation, shows that, with
high probability, O(n log n) iterations are needed.

Theorem 3. Let c be any constant. Let c̃ = max{1, c}. Let f be any linear
function. The probability that the (1+1) EA with mutation probability p = c/n
finds the optimum of f within (1/4c̃)(n− 1) ln(n) steps, is at most exp(−nΩ(1)).

7 Conclusion

We analyzed the optimization time of the (1+1) EA for optimizing a linear
function using an arbitrary mutation probability p = c/n, c constant. By defining
a potential function depending on the linear objective function and the mutation
probability p, we show that the expected optimization time is O(n logn), which
is optimal.
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Abstract. Extending previous analyses on function classes like linear

functions, we analyze how the simple (1+1) evolutionary algorithm opti-

mizes pseudo-Boolean functions that are strictly monotone. Contrary to

what one would expect, not all of these functions are easy to optimize.

The choice of the constant c in the mutation probability p(n) = c/n can

make a decisive difference.

We show that if c < 1, then the (1+1) EA finds the optimum of ev-

ery such function in Θ(n log n) iterations. For c = 1, we can still prove

an upper bound of O(n3/2). However, for c > 33, we present a strictly

monotone function such that the (1+1) EA with overwhelming prob-

ability does not find the optimum within 2Ω(n) iterations. This is the

first time that we observe that a constant factor change of the mutation

probability changes the run-time by more than constant factors.

1 Introduction

Rigorously understanding how randomized search heuristics solve optimization
problems and proving guarantees for their performance remains a challenging
task. The current state of the art is that we can analyze some heuristics for
simple problems. Nevertheless, this gave new insight, helped to get rid of wrong
beliefs, and turned correct beliefs into proven facts.

For example, it was long believed that a pseudo-Boolean function f :
{0, 1}n → R is easy to optimize if it is unimodal, that is, if each x ∈ {0, 1}n

that is not optimal has a Hamming neighbor y with f(y) > f(x) [1]. Recall that
y is called a Hamming neighbor of x if x and y differ in exactly one bit.

This belief was debunked in [2]. There the unimodal long k-path function [3]
was considered and it was proven that the simple (1+1) evolutionary algorithm
((1+1) EA) with high probability does not find the optimum within 2

√
n itera-

tions. This classical episode shows how important it is to support an intuitive
understanding of evolutionary algorithms with rigorous proofs.

It also shows that it is very difficult to identify problem classes that are
easy for a particular randomized search heuristic. This, however, is needed for a
successful application of such methods, because the no free lunch theorems [4]
tell us, in simple words, that no randomized search heuristic can be superior to
another if we do not restrict the problem class we are interested in.

R. Schaefer et al. (Eds.): PPSN XI, Part I, LNCS 6238, pp. 42–51, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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1.1 Previous Work

In the following, we restrict ourselves to classes of simple pseudo-Boolean func-
tions. We stress that the last ten years also produced a number of results on
combinatorial problems [5]. At the same time research on classical test functions
and function classes continued, spurred by the many still open problems.

We also restrict ourselves to one of the most simple randomized search heuris-
tics, the (1+1) EA. The first rigorous results on this heuristic were given by
Mühlenbein [1], who determined how long it takes to find the optimum of sim-
ple test functions like OneMax(x) :=

∑n
i=1 xi, counting the number of 1-bits.

Quite some time later, and with much more technical effort necessary, Droste,
Jansen and Wegener [6] extended the O(n logn) bound to all linear functions
f(x) :=

∑n
i=1 aixi. Since it was hard to believe that such a simple result should

have such a complicated proof, this work initiated a sequence of follow-up re-
sults in particular introducing drift analysis to the community [7,8] or refining
it for our purposes [9,10,11]. However, not all promising looking function classes
are easy to optimize. As laid out in the first paragraphs of this paper, already
unimodal functions are difficult.

Almost all results described above were proven for the standard mutation
probability 1/n. It is easy to see from their proofs (or, in the case of linear
functions, cf. [12]), that all results remain true for p(n) = c/n, where c can be
an arbitrary constant.

We should add that the question how to determine the right mutation prob-
ability is also far from being settled. Most theory results for simplicity take the
value p(n) = 1/n, but it is known that this is not always optimal [13]. In prac-
tical applications, similarly 1/n is the most recommended static choice for the
mutation probability [14,15] in spite of known limitations of this choice [16].

1.2 Our Work

In this work, we regard the class of strictly monotone functions. A pseudo-
Boolean function is called strictly monotone (or simply monotone in the follow-
ing) if any mutation flipping at least one 0-bit into a 1-bit and no 1-bit into
a 0-bit strictly increases the function value. Hence much stronger than for uni-
modal functions, we not only require that each non-optimal x has a Hamming
neighbor with better f -value, but we even ask that this holds for all Hamming
neighbors that have an additional 1-bit.

Obviously, the class of monotone functions includes linear functions with all
bit weights positive. On the other hand, each monotone function is unimodal.
Contrary to the long k-path function there is always a short path of at most n
search points with increasing f -value connecting a search point to the optimum.

It is easy to see that monotone functions are just the ones where a simple
coupon collector argument shows that random local search finds the optimum
in time O(n log n). Surprisingly, we find that monotone functions are not easy
to optimize for the (1+1) EA in general. Secondly, our results show that for this
class of functions, the mutation probability p(n) = c/n, c a constant, can make
a crucial difference.
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More precisely, we show that for c < 1 the (1+1) EA with mutation probabil-
ity c/n finds the optimum of any monotone function in time Θ(n log n), which
is best possible given previous results on linear functions. For c = 1, the drift
argument breaks down and we have resort to an upper bound of O(n3/2) based
on a related model by Jansen [17]. We currently do not know what is the full
truth. As lower bound, we only have the general lower bound Ω(n logn) for all
mutation-based evolutionary algorithms.

If c is sufficiently large, an unexpected change of regime happens. For c > 33,
we show that there are monotone functions such that with overwhelming prob-
ability, the (1+1) EA does not find the optimum in exponential time. The con-
struction of such functions heavily uses probabilistic methods. To the best of our
knowledge, this is the first time that problem instances are constructed this way
in the theory of evolutionary computation.

2 Preliminaries

We consider the maximization of a pseudo-Boolean function f : {0, 1}n → R by
means of a simple evolutionary algorithm, the (1+1) EA. The results can easily
be adapted for minimization. In this work, n always denotes the number of bits
in the representation.

The (1+1) EA (described below) maintains a population of size 1. In each
generation it creates a single offspring by independently flipping each bit in the
current search point with a fixed mutation probability p(n). The new search
point replaces the old one in case its f -value is not worse.

(1+1) EA with mutation probability p(n)
1: Initializiation: Choose x ∈ {0, 1}n uniformly at random.
2: repeat forever
3: Create y ∈ {0, 1}n by copying x.
4: Mutation: Flip each bit in y independently with probability p(n).
5: Selection: if f(y) ≥ f(x) then x := y.

In our analyses we denote by mut(x) the bit string that results from a mutation
of x. We denote as x+ the search point that results from a mutation of x and
a subsequent selection. Formally, y = mut(x) and x+ = y if f(y) ≥ f(x) and
x+ = x otherwise.

For x = x1 · · ·xn let Z(x) describe the positions of all 0-bits in x, Z(x) :=
{1 ≤ i ≤ n | xi = 0}. By |x|0 = |Z(x)| we denote the number of 0-bits in x and by
|x|1 = n− |x|0 we denote the number of 1-bits. For k ∈ N let [k] := {1, 2, . . . , k}.
For a set I = {i1, i2, . . . , i�} ⊆ [n] we write x|I = xi1xi2 · · ·xi�

for the sub-string
of x with the bits selected by I. To simplify notation we assume that any time
we consider some r ∈ R+

0 but in fact need some r′ ∈ N0 we assume that r is
silently replaced by �r� or �r� as appropriate.

We are interested in the optimization time, defined as the number of mutations
until a global optimum is found. For the (1+1) EA this is an accurate measure
of the actual run time. For bounds on the optimization time we use common
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asymptotic notation. A run time bound is called exponential if it is 2Ω(n). We also
say that an event A occurs with overwhelming probability (w. o. p.) if 1−Pr(A) =
2−Ω(n).

A function f is called linear if it can be written as f(x) :=
∑n

i=1 aixi

for weights a1, . . . , an ∈ R. The most simple linear function is the function
OneMax(x) :=

∑n
i=1 xi = |x|1. Another intensively studied linear function is

BinVal(x) :=
∑n

i=1 2n−ixi. As 2n−i >
∑n

j=i+1 2n−j , the bit value of some bit i
dominates the effect of all bits i+ 1, . . . ,n on the function value. Both will later
be needed in our construction.

For two search points x, y ∈ {0, 1}n, we write x ≤ y if xi ≤ yi holds for
all 1 ≤ i ≤ n. We write x < y if x ≤ y and x = y hold. We call f a strictly
monotone function (usually called simply monotone in the following) if for all
x, y ∈ {0, 1}n with x < y it holds that f(x) < f(y). Observe that the above
condition is equivalent to f(x) < f(y) for all x and y such that x and y only
differ in exactly one bit and this bit has value 1 in y. In other words, every
mutation that only flips bits with value 0 strictly increases the function value.
Clearly, the all-ones bit string 1n is the unique global optimum for a monotone
function.

For the (1+1) EA, the difficulty of monotone functions strongly depends on
the mutation probability p(n). We are interested in mutation probabilities p(n) =
c/n for some constant c ∈ R+. For constants c < 1 on average in a single mutation
less than one bit flips. If this is a 1-bit we have f(x) > f(mut(x)) and x = x+

holds. Otherwise, f(x+) > f(x) holds and we accept this move. This way the
number of 0-bits is quickly reduced to 0 and the unique global optimum is found.
Using drift analysis this reasoning can easily be made precise. We state the result
here and omit the proof due to space restrictions.

Theorem 1. The expected optimization time of the (1+1) EA with mutation
probability p(n) = c/n, 0 < c < 1 constant, is Θ(n log n) for every monotone
function.

The proof of Theorem 1 breaks down for c = 1. In this case the drift in the
number of 1-bits can be bounded pessimistically by a model due to Jansen [17]
where we consider a random process that mutates x to y with mutation probabil-
ity p(n) = 1/n and replaces x by y if either x ≤ y holds or we have neither x ≤ y
nor y ≤ x but |y|1 < |x|1 holds. This worst case model yields an upper bound
of O(n3/2) for the expected optimization time of the (1+1) EA with mutation
probability p(n) = 1/n on monotone functions.

Theorem 2. The expected optimization time of the (1+1) EA with mutation
probability p(n) = 1/n is O(n3/2) for every monotone function.

Our main result is that using mutation probability p(n) = c/n where c is a
sufficiently large constant, optimization of monotone functions can become very
difficult for the (1+1) EA. This is the first result where increasing the mutation
probability by a constant factor increases the optimization time from polynomial
to exponential with overwhelming probability.
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Theorem 3. There exists a monotone function f : {0, 1}n → N such that the
(1+1) EA with mutation probability p(n) = c/n, c ≥ 33 constant, does not
optimize f within 2Ω(n) mutations with overwhelming probability.

The formal proof of this result is somewhat technical and lengthy. Therefore, in
this extended abstract, we present how to construct such a monotone function
f in the following section. In Section 4, we describe why this function is difficult
to optimize. Complete proofs are available from the authors by request.

3 A Difficult to Optimize Monotone Function

In this section, we describe a monotone function that is difficult to optimize via
a (1+1) EA with mutation probability p(n) = c/n, if c > 33 is constant.

The main idea is the construction of a kind of long path function (compare
the work by Horn, Goldberg, and Deb [3]). We also have an exponentially long
path such that shortcuts can only be taken if a large number of bits flip simul-
taneously, a very unlikely event. The construction is complicated by the fact
that the function needs to be monotone. Hence we cannot forbid leaving the
path by giving the boundary of the path an unfavorable fitness. We solve this
problem, roughly speaking, by implementing the path on a level of bit strings
having similar numbers of 1-bits. Monotonicity simply forbids leaving the level
to strings having fewer 1-bits. The crucial part of our construction is setting up
the function in such a way that, in spite of monotonicity, not too many 1-bits
are collected.

For x ∈ {0, 1}n let B ⊆ [n] be a subset of all indices [n]. The bits xi with i ∈ B
are referred to as window. The bits xi with i /∈ B are outside the window. Inside
the window the function value is given by BinVal. The weights for BinVal

are ordered differently for each window in order to avoid correlation between
windows. The window is placed such that there is only a small number of 0-bits
outside the window. Reducing the number of 0-bits outside causes the window to
be moved. This is a likely event that happens frequently. However, we manage
to construct an exponentially long sequence of windows with the additional
property that in order to come from one window to one with large distance in
this sequence a large number of bits needs to be flipped simultaneously. Since this
is highly unlikely, it is very likely that the sequence of windows is followed. This
takes an exponential number of steps with overwhelming probability. Droste,
Jansen, and Wegener [2] embed the long path into a unimodal function in a way
that the (1+1) EA reaches the beginning of the path with probability close to 1.
We adopt this technique and extend it to our monotone function.

The following Lemma 1 defines the sequence of windows of our function by
defining the index sets Bi. The property that windows with large distance have
large Hamming distance is formally stated as |i − j| ≥ � ⇒ |Bi ∩ Bj | ≤ γ� for
� = Θ(n) and some constant γ > 0.

Lemma 1. Let β, γ ∈ R be constants with 0 < β and ρ := β/(1 − 2β) <
γ < 1. Let n ∈ N and L := �exp((γ − ρ)2(1 − 2β)n/6)�. Let � := βn and
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L′ := L− �+ 1. Then there are b1, b2, . . . , bL ∈ [n] such that the following holds.
Let Bi := {bi, bi+1, . . . , bi+�−1} for all i ∈ [L′]. Then

(i) |Bi| = � for all i ∈ [L′],
(ii) |Bi ∩Bj | ≤ γ� for all i, j ∈ [L′] such that |i− j| ≥ �.

Proof. The proof invokes the probabilistic method [18], that is, we describe a
way to randomly choose the bi that ensures that properties (i) and (ii) hold with
positive probability. This necessarily implies the existence of such a sequence.

Let the b1, b2, . . . , bL be chosen uniformly at random subject to condition (i).
More precisely, let b1 ∈ [n] be chosen uniformly at random. If b1, . . . , bi−1 are
already chosen, then choose bi from [n] \ {bmax{1,i−�}, . . . , bi−1} uniformly at
random.

Let i, j ∈ [L′] with i < j and |i− j| ≥ �. By definition, the sets Bi and Bj do
not share an index. Fix any outcome of Bi. For all k ∈ {0, . . . , �−1} we have that,
conditional on any outcomes of all other bs, the probability that bj+k ∈ Bi is at
most |Bi|/(n−2�) = β/(1−2β). Consequently, the random variable C = |Bi∩Bj |
is dominated by a random variable X that is the sum of � independent indicator
random variables that are one with probability ρ = β/(1− 2β). Hence a simple
Chernoff bound (cf. e. g. [19]) yields

Pr(C > γ�) ≤ Pr(X > γ�) = Pr(X > (1 + γ−ρ
ρ ) · ρ�) ≤ exp(−(γ−ρ

ρ )2ρ�/3).

Since there are less than L2 choices of i, j ∈ [L′], a simple union bound yields

Pr(∃i, j ∈ [L′] : (|i− j| ≥ �)∧ (|Bi ∩Bj | > γ�)) < L2 exp(−(γ−ρ
ρ )2ρ�/3) ≤ 1.

The following definition introduces the difficult monotone function we consider.
Note that it assumes the sequence of windows Bi to be given. For x ∈ {0, 1}n

some i ∈ [L′] is a potential position in the sequence of windows if the number of
0-bits outside the window Bi is limited by αn, α > 0 some constant. We select
the largest potential position i as actual position and have the function value
for x depend mostly on this position. If no potential position i exists, we have
not yet found the path of windows and lead the (1+1) EA towards it. If i = L′,
i. e., the end of the path is reached, the (1+1) EA is lead towards the unique
global optimum via OneMax.

Definition 1. Let β, γ, �, L, L′, the bi and Bi be as in Lemma 1. Let α ∈ R
with 0 < α < β. For x ∈ {0, 1}n let Bx := {i ∈ [L′] | |{j ∈ [n] | xj =
0} \ Bi| ≤ αn}. Let i∗x := maxBx, if Bx is non-empty. For i ∈ [L′] let π(i)

be a permutation of Bi. Denote by Π = (π(1), . . . ,π(L′)) the sequence of these
permutations. We use the short-hand π(i)(x) to denote the vector obtained from
permuting the components of (xbi , . . . ,xbi+�−1) according to π(i). Consequently,
π(i)(x) = (xπ(i)(bi), . . . ,xπ(i)(bi+�−1)).

We define fΠ : {0, 1}n → N0 via

fΠ(x) :=

⎧⎪⎨⎪⎩
∣∣x|[n]\B1

∣∣
1
· 2n + BinVal(π

(|x|[n]\B1 |1)
(x)), if Bx = ∅,

i∗x · 22n + BinVal(π(n+i∗x)(x)), if Bx 	= ∅ and n + i∗x < L′,

L · 23n + |x|1 , otherwise.
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We state one observation concerning the function fΠ that is important in the
following. It states that as long as the end of the path of windows is not found
the number of 0-bits outside is not only bounded by αn but equals αn. This
property will be used later on to show that the window is moved frequently.

Lemma 2. Let fΠ : {0, 1}n → N0 be as in Definition 1. Let x ∈ {0, 1}n with
Bx = ∅ and i∗x = maxBx. If n + i∗x < L′, then

∣∣Z(x) \Bi∗x

∣∣ = αn.

Proof. By assumption we have n + i∗x < L′. We consider Bn+i∗x+1 and see that
the set coincides with Bn+i∗x in all but two elements: we have Bn+i∗x \Bn+i∗x+1 =
{bn+i∗x} and Bi∗x+1 \Bi∗x = {bn+i∗x+�}. Consequently, |Z(x) \Bn+i∗x | and |Z(x) \
Bn+i∗x+1| differ by at most one. Thus, |Z(x) \ Bn+i∗x | < αn implies |Z(x) \
Bn+i∗x+1| ≤ αn and we can replace i∗x by i∗x + 1. This contradicts i∗x = maxBx.
We have |Z(x) \ Bn+i∗x | ≤ αn by definition and thus |Z(x) \ Bn+i∗x | = αn
follows.

Our first main claim is that fΠ is in fact monotone. This is not difficult, but
might, due to the complicated definition of fΠ , not be obvious.

Lemma 3. For all Π as above, fΠ is monotone.

Proof. Let f := fΠ . Let x ∈ {0, 1}n and j ∈ [n] such that xj = 0. Let y ∈ {0, 1}n

be such that yk = xk for all k ∈ [n] \ {j} and yj = 1− xj . That is, y is obtained
from x by flipping the jth bit (which is zero in x) to one. To prove the lemma,
it suffices to show f(x) < f(y).

Let first Bx = ∅. If By = ∅ we have f(x) < n · 2n + 2n and f(y) ≥ 22n so
f(x) < f(y) follows. If By = ∅ we have either

∣∣x|[n]\B1

∣∣
1
<
∣∣y|[n]\B1

∣∣
1

(in case
j /∈ B1) or BinVal(π(i)(x)) < BinVal(π(i)(y)) (in case j ∈ B1). In both cases,
f(x) < f(y) holds.

Now assume Bx = ∅ and n + i∗x < L′. By definition Bx ⊆ By, hence i∗y ≥ i∗x.
If i∗y = i∗x, then j ∈ Bi∗x and f(y) > f(x) follows from BinVal(π(n+i∗y)(y)) =
BinVal(π(n+i∗x)(y)) > BinVal(π(n+i∗x)(x)). If i∗y > i∗x, then f(y) > f(x). In all
other cases, f(x) = L23n + |x|1 and f(y) = L23n + |y|1, hence f(y) > f(x).

4 Proof of the Lower Bound

Theorem 4. Consider the (1+1) EA with mutation probability c/n for c ≥ 33
on the function f := fΠ from Definition 1 where Π is chosen uniformly at ran-
dom and the parameters are chosen according to β := 10/131, γ := 10/111, and
α := 1/(1000c). There is a constant κ > 0 such that with probability 1− 2−Ω(n)

the (1+1) EA needs at least 2κn generations to optimize f .

This result above shows that if f is chosen randomly (according to the construc-
tion described), then the (1+1) EA w. o. p. needs an exponential time to find the
optimum. Clearly, this implies that there exists a particular function f , that is,
a choice of Π , such that the EA faces these difficulties. This is Theorem 3.
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The proof for Theorem 4 is long and technical. Therefore, we only discuss the
main proof ideas here. A complete proof is available by request.

Both after a typical initialization, when Bx = ∅, and afterwards, when Bx = ∅
and n+i∗x < L′, we have the following situation. There is a window of bits (Bi∗x if
i∗x is defined and B1 otherwise) such that the fitness increases with BinVal as a
function on the bits inside the window. Moreover, the fitness is always increased
in case the mutation decreases the number of 0-bits outside the window. If Bx = ∅
this is due to the term

∣∣x|[n]\B1

∣∣
1
· 2n in the fitness function and otherwise it is

because the current i∗x-value has increased. The gain in fitness is so large that it
dominates any change of the bits in the window.

We claim that with this construction it is very likely that the current window
always contains at least βn/11 0-bits. This is proven by showing that in case
the number of 0-bits in the window is in the interval [βn/11,βn/10] then there
is a tendency (“drift”) to increase the number of 0-bits again. Applying a drift
theorem by Oliveto and Witt [20] yields that even in an exponential number of
generations the probability that the number of 0-bits in the window decreases
below βn/11 is exponentially small. We first elaborate on why this drift holds
and then explain how the lower bound of βn/11 0-bits implies the claim.

If a mutation decreases the number of 0-bits outside the window, the bits
inside the window are subject to random, unbiased mutations. Hence, if the
number of 0-bits is at most βn/10 the expected number of bits flipping from
1 to 0 is larger than the expected number of bits flipping from 0 to 1. If the
mutation probability is large enough, this makes up for the 0-bits lost outside
the window and it leads to a net gain in 0-bits in expectation, with regard to
the whole bit string. Note that the window is moved during such a mutation. As
by Lemma 2 the number of 0-bits outside the window is fixed to αn, we have a
net gain in 0-bits for the window, regardless of its new position.

In case the number of 0-bits outside the window remains put, acceptance
depends on a BinVal instance on the bits inside the window. For BinVal ac-
cepting the result of a mutation is completely determined by the flipping bit
with the largest weight. In an accepted step, this bit must have flipped from 0 to
1. All bits with smaller weights have no impact on acceptance and therefore are
subject to random, unbiased mutations. If, among all bits with smaller weights,
there is a sufficiently small rate of 0-bits, more bits will flip from 1 to 0 than
from 0 to 1. In this case, we again obtain a net increase in the number of 0-bits
in the window, in expectation. Here we also require a large mutation probability
since every increase of BinVal implies that one 0-bit has been lost and a surplus
of flipping 1-bits has to make up for this loss. This holds in particular since the
window only contains βn bits and the surplus’ absolute value must still be large.

For a fixed BinVal instance the bits tend to develop correlations between
bit values and weights over time; bits with large weights are more likely to
become 1 than bits with small weights. This development is disadvantageous
since the above argument relies on many 1-bits with small weights. In order
to break up these correlations we use random instances of BinVal wherever
possible. These random instances change quickly. If Bx = ∅ and, by Lemma 2,
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also if n+i∗x < L′ we have at least αn 0-bits outside the current window and every
mutation that flips exactly one of these bits leads to a new BinVal instance.
Since this happens with probability Ω(1), this frequently prevents the algorithm
from gathering 1-bits at bits with large weights. Pessimistically dealing with
bits that have been touched by mutation while optimizing the same BinVal

instance, a positive expected increase in the number of 0-bits can be shown.
How does the lower bound of βn/11 0-bits inside the window imply Theo-

rem 4? With overwhelming probability we start with Bx = ∅ and at least βn/10
0-bits in the window B1. We maintain at least βn/11 0-bits in B1, while the
algorithm is encouraged to turn the 0-bits outside of B1 to 1 quickly. Once the
number of 0-bits outside of B1 has decreased to or below αn, the path has been
reached. The 0-bits in B1 thereby ensure that the initial i∗x-value is at most βn.
The reason is that every two sets Bi,Bj with |i− j| ≥ � only intersect in at most
γβn bits, so βn/11 0-bits in Bi imply at least βn/11− γβn 0-bits outside of Bj .
For j to become the new window, however, at most αn 0-bits outside of Bj are
allowed. By choice of α, β, and γ, moving from B1 to Bj requires a linear number
of 0-bits in B1 to flip to 1 if j > βn. The described mutation has probability
n−Ω(n). The last argument also shows that the probability of increasing i∗x by
more than βn in one generation is n−Ω(n). Hence, with overwhelming probability
in each generation the (1+1) EA only makes progress at most βn on the path.
As the path has exponential length, the claimed lower bound follows.

5 Conclusions

In this work, we analyzed how the (1+1) EA optimizes monotone functions. We
showed that the optimum of any monotone function is found efficiently if the
mutation probability is at most 1/n. Surprisingly, once the mutation probability
exceeds 33/n, the situation drastically changes. In this case, there are monotone
functions that with high probability are not optimized within exponential time.

This results indicates that, to a greater extent than expected, care has to be
taken when choosing the mutation probability, even if restricting oneself to mu-
tation probabilities c∗/n with a constant c∗. Contrary to previous observations,
e. g., for linear functions, it may well happen that constant factor changes in the
mutation probability lead to more than constant factor changes in the efficiency.

Besides generally suggesting more research on the right mutation probability,
this work leaves two particular problems open. (i) For the mutation probability
1/n, give a sharp upper bound for the optimization time of monotone functions
(this order of magnitude is between Ω(n logn) and O(n3/2)). (ii) Determine the
largest constant c∗ such that the expected optimization time of the (1+1) EA
with mutation probability p(n) = c∗/n is nO(1) on every monotone function.
Currently, we only know that 1 < c∗ < 33 holds.
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Abstract. Evolution Strategies (ESs) are population-based methods well suited
for parallelization. In this paper, we study the convergence of the (μ/μw , λ)-ES,
an ES with weighted recombination, and derive its optimal convergence rate and
optimal μ especially for large population sizes. First, we theoretically prove the
log-linear convergence of the algorithm using a scale-invariant adaptation rule for
the step-size and minimizing spherical objective functions and identify its con-
vergence rate as the expectation of an underlying random variable. Then, using
Monte-Carlo computations of the convergence rate in the case of equal weights,
we derive optimal values for μ that we compare with previously proposed rules.
Our numerical computations show also a dependency of the optimal convergence
rate in ln(λ) in agreement with previous theoretical results.

1 Introduction

Evolution Strategies (ESs) are robust stochastic search methods [2,3] for solving con-
tinuous optimization problems where the goal is to minimize1 a real valued objective
function f defined on an open subset of Rd. At each iteration of an ES, new solu-
tions are in general generated by adding Gaussian perturbations (mutations) to some
(optionally recombined) current ones. These Gaussian mutations are parameterized by
the step-size giving the general scale of the search, and the covariance matrix giving
the principal directions of the Gaussian distribution. In state-of-the art ESs, these pa-
rameters are adapted at each iteration [1,2,3,4]. We focus on isotropic ESs where the
step-size is adapted and the covariance matrix is kept equal to the identity matrix Id and
therefore the search distribution is spherical. Adaptation in ESs allows them to have a
log-linear behavior (convergence or divergence) when minimizing spherical objective
functions [10,13,5,7]. Log-linear convergence (resp. divergence) means that there ex-
ists a constant value c < 0 called convergence rate (resp. c > 0) such that the distance
to the optimum, dn, at an iteration n satisfies limn

1
n ln(dn) = c . Spherical objective

functions are defined as
f(x) = g(‖x‖), (1)

1 Without loss of generality, the minimization of a real value function f is equivalent to the
maximization of −f .

R. Schaefer et al. (Eds.): PPSN XI, Part I, LNCS 6238, pp. 52–62, 2010.
© Springer-Verlag Berlin Heidelberg 2010
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where g : [0,∞[�→ R is a strictly increasing function, x ∈ Rd and ‖.‖ denotes the
Euclidean norm on Rd. Log-linear behavior holds also when minimizng spherical func-
tions perturbed by noise [11].

In this paper, we investigate ESs with weighted recombination, denoted (μ/μw, λ)-
ES, and used in the state-of-the-art ES, the Covariance Matrix Adaptation-ES (CMA-
ES) [4]. The (μ/μw, λ)-ES is an ES which evolves a single solution. Let Xn be the
solution (the parent) at iteration n, λ new solutions Yi

n (offspring) are then gener-
ated using independent Gaussian samplings of mean Xn. Then, the offspring are eval-
uated, the μ best offspring (Yi:λ

n )1≤i≤μ are selected and the new solution Xn+1 is
obtained by recombining these selected offspring using recombination weights denoted(
wi
)
1≤i≤μ

, i.e., Xn+1 =
∑μ

i=1 w
iYi:λ

n
2. We will specifically study the (μ/μw, λ)-

ES with large (offspring) population size λ compared to the search space dimension d,
i.e., λ � d. This is motivated by the increasing possibilities of parallelization with the
raise of the number of parallel machines, supercomputers and grids. ESs are population-
based methods and then are well suited for parallelization which consists in distribut-
ing the number of evaluations λ on the processes available. The performance of the
(μ/μw, λ)-ES as a function of λ has been theoretically investigated [14,16]. Under the
approximation d → +∞, the study in [14] investigated the (μ/μw, λ)-ES minimizing
any spherical function and using an artificial step-size adaptation rule termed scale-
invariant which sets the step-size at each iteration proportionally to the distance of the
current solution to the optimum. The progress rate ϕ which measures the one-step ex-

pected progress to the optimum verifies ϕ = O
(
μ ln

(
λ
μ

))
[14]. This suggests that,

if μ is chosen proportional to λ, the progress rate of the (μ/μw, λ)-ES can be linear in
μ and in λ. The study in [16] is based on a theoretical computations of lower bounds
for the convergence ratio which measures the convergence rate in probability of wide
classes of ESs. It shows that the convergence ratio of the (μ/μw, λ)-ES varies at best
linearly with ln(λ) for sufficiently large λ when minimizing any spherical function [16].
This suggests that the bound found in [14] is not tight for finite dimensions.

A natural question arising when using recombination is how to choose the number
of offspring μ to be recombined. Studies based on computations of the progress rate
when the search space dimension goes to infinity suggest to use μ = �λ

4 � [14] or
μ = �λ

2 � [6]3 for two different choices of the (positive) weights
(
wi
)
1≤i≤μ

. CMA-ES

which has been designed to work well on small population sizes uses μ = �λ
2 � as a

default parameter. However, when using a large population size λ, the convergence rate
of some real-world algorithms tested in [15,8] using the rules μ = �λ

4 � or μ = �λ
2 � as

recommended in [14,6] is worse than the theoretical prediction of [16]. This is due to
the fact that the rules used in these tests for choosing μ, are recommended by the studies
performed under the approximation (d → +∞) [14,6] and thus under the assumption
λ� d. For some values of λ and d such that λ � d, Beyer [17] computed, using some
approximations permitted by the assumption (d → +∞), optimal choices for μ when
minimizing spherical functions. However, no explicit rule for the choice of μ has been

2 If μ = 1, only the best offspring is taken and then the (μ/μw , λ)-ES is simply the (1, λ)-ES.
3 The rule proposed in [6] where negative weights are allowed is rather μ = λ, but the study

implies that if the weights can be only positive the rule becomes μ = 
λ
2
�.
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proposed when λ � d. Performing experiments with λ � d on a (μ/μw, λ)-ES using
equal weights, the so-called self-adaptation rule for the step-size and two variants for the
covariance matrix adaptation, Teytaud [9] proposed to choose μ equal to min{d, �λ

4 �}.
Since it is in general difficult to appraise whether the effect observed when changing

the setting of one parameter on a real algorithm is coming from the fact that the setting
of an other parameter may subsequently becomes sub-optimal, we want here to identify
independently of any real step-size or covariance matrix update rule the optimal set-
ting for μ especially for lagre λ. This optimal setting can be used to identify a rule for
choosing best optimal values μ in real-world algorithms like CMA-ES. We want also
to verify whether an optimal choice for μ allows to have a dependency of the conver-
gence rate in ln(λ) and thus reach the lower bounds predicted by [16]. In order to do so,
we perform in this paper a theoretical and numerical investigation of the convergence
and the optimal choice for μ relative to the isotropic (μ/μw, λ)-ES. We focus on large
population sizes. The objective functions investigated are the spherical functions allow-
ing ESs which do not use recombination to reach optimal convergence rates [5,7]. In
Section 2, we present the mathematical formulation of the algorithm. In Section 3, we
identify the optimal step-size adaptation rule of the algorithm when minimizing spher-
ical functions. In Section 4, we theoretically prove the log-linear convergence of the
algorithm using the scale-invariant adaptation rule and identify its convergence rate. In
Section 5, using Monte-Carlo computations of the convergence rate, optimal μ values
and optimal convergence rates are derived for some dimensions and in the specific case
of equal weights (wi)1≤i≤μ. A new rule for choosing μ is proposed based on our re-
sults. Throughout the paper, we explain only the basic ideas of the proofs because of
space limitation. For complete proofs, we refer to [12].

2 Mathematical Formulation of the Isotropic (μ/μw, λ)
Evolution Strategy Minimizing Spherical Functions

Throughout the remainder of this paper, we suppose that μ and λ are two positive inte-
gers such that 1 ≤ μ ≤ λ, and that the recombination weights (wi)1≤i≤μ are positive
constants summing to one, i.e.,

∑μ
i=1 w

i = 1. In this section we will introduce the
mathematical formulation of the isotropic (μ/μw, λ)-ES for minimizing a spherical
function (1). Let X0 ∈ Rd be the first solution randomly chosen using a law absolutely
continuous with respect to the Lebesgue measure. Let σ0 be a strictly positive vari-
able (possibly) randomly chosen. Let (Ni

n)i∈[1,λ],n∈Z+ , be a sequence of random vec-
tors defined on a probability space (Ω,A,P ), independent and identically distributed
(i.i.d.) with common law the isotropic multivariate normal distribution on Rd with mean
(0, . . . , 0) ∈ Rd and covariance matrix identity Id, which we will denoteN (0, Id). We
assume that the sequence (Ni

n)i∈[1,λ],n∈Z+ is independent of X0. Let σn be the step-
size mutation at iteration n such that for all (i,n) ∈ [1, λ] × Z+, σn and Ni

n are
independent. An offspring Yi

n where i = 1, . . . , λ writes as Yi
n := Xn + σnNi

n, and
its objective function value is g(‖Yi

n‖) in our case of minimization of spherical func-
tions. Let Ni:λ

n (Xn,σn) (1 ≤ i ≤ μ) denotes the mutation vector relative to the ith

best offspring according to its fitness value. As the function g is increasing, the vectors
Ni:λ

n (Xn,σn) (where, for all i in {1, . . . , μ}, the indices i :λ are in {1, . . . , λ}) verify:
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∥∥Xn + σnN1:λ
n (Xn,σn)

∥∥ ≤ . . . ≤ ∥∥Xn + σnNμ:λ
n (Xn,σn)

∥∥ and∥∥Xn + σnNμ:λ
n (Xn,σn)

∥∥ ≤ ∥∥Xn + σnN j
n

∥∥∀j ∈ {1, . . . , λ}\{1 :λ, . . . , μ :λ} .
(2)

Using the fact that
∑μ

i=1 w
i = 1, the new parent Xn+1 =

∑μ
i=1 w

iYi:λ
n can be rewrit-

ten as:

Xn+1 = Xn + σn

μ∑
i=1

wiNi:λ
n (Xn,σn) . (3)

In the specific case where the scale-invariant rule is used for the adaptation of (σn)n∈Z+ ,
i.e., σn = σ‖Xn‖ (with σ > 0), the previous equation becomes:

Xn+1 = Xn + σ‖Xn‖
μ∑

i=1

wiNi:λ
n (Xn,σ‖Xn‖) . (4)

Finally, σn is updated, i.e., σn+1 is computed independently of Ni
n+1 for all i ∈ [1, λ].

Throughout the remainder of this paper, we will denote in a general context where u ∈
Rd, s ∈ R and (Ni

n)i∈[1,λ],n∈Z+ is a sequence of random vectors (i.i.d.) with common
law N (0, Id) and such that for all (i,n) ∈ [1, λ] × Z+, Ni

n is independent of u and
s, Ni:λ

n (u, s) the random vector which verifies (2) where Xn and σn are respectively
replaced by u and s. For n = 0 and i ∈ {1, . . . , μ}, the notation Ni:λ

0 (u, s) will be
replaced by the notation Ni:λ(u, s).

3 Optimal Step-Size Adaptation Rule When Minimizing Spherical
Functions

The (log-linear) convergence rate of the isotropic scale-invariant (μ/μw, λ)-ES mini-
mizing any spherical function and satisfying the recurrence relation (4) is, as will be
shown in Section 4, the function V that we will introduce in the following definition.

Definition 1. Let e1 denotes the unit vector (1, 0, . . . , 0) ∈ Rd. For σ ≥ 0, let Z(σ) be
the random variable defined as Z(σ) :=

∥∥e1 + σ
∑μ

i=1 w
iNi:λ(e1,σ)

∥∥ where the ran-
dom variables Ni:λ(e1,σ) are obtained similarly to (2) but with n = 0 and (Xn,σn)
replaced by (e1,σ). We introduce the function V as the function mapping [0, +∞[ into
R as follows:

V(σ) := E [ln Z(σ)] = E

[
ln

∥∥∥∥∥e1 + σ

μ∑
i=1

wiNi:λ(e1,σ)

∥∥∥∥∥
]
. (5)

Fig. 1 (left) represents numerical computations of the function V in some specific set-
tings. In the following proposition, we show that V is well defined and we study its
properties. Note that in the following, the notation V will be sometimes replaced by Vμ

when we need to stress the dependence of V on μ.
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Proposition 1. The function V introduced in (5) has the following properties:

(i) V is well defined for d ≥ 1, and continuous for d ≥ 2, on [0, +∞[.
(ii) For d ≥ 2, limσ→+∞ V(σ) = +∞.

(iii) If μ ≤ λ
2 , for d ≥ 2, ∃ σ̄ > 0 such that V(σ̄) < 0.

(iv) If μ ≤ λ
2 , for d ≥ 2, ∃ σopt > 0 such that inf{σ≥0} V(σ) = V(σopt) < 0.

(v) For d ≥ 2 and λ ≥ 2, if μ ≤ λ/2, ∃ (σopt, μopt) such that Vμopt(σopt) =
inf{σ≥0,μ≤λ/2} Vμ(σ) < 0.

Summary of the proof A basic step in the proof of (i) and (ii) is to write V as the sum of
V+(σ) := E

[
ln+ Z(σ)

]
and V−(σ) := E

[
ln− Z(σ)

]
. Then, for (i), integrands in these

quantities are upper bounded by quantities which do not depend on σ and the result
follows by the Lebesgue dominated convergence theorem for continuity. For (ii), we
show that V(σ) is lower bounded by an expectation of a given random variable which
depends on σ. We show using the Monotone convergence theorem that this lower bound
converges to infinity when σ goes to infinity and then the result follows. For proving
(iii), we prove before, using the concept of uniform integrability of a family of random

variables that d V
(

σ∗
d

)
(σ∗ > 0 fixed) converges to a certain limit depending on σ∗

when d goes to +∞. Using the fact that this limit can be negative for a given σ∗ we
prove our claim. (iv) is proven using (i), (ii) and (iii) and the intermediate value theorem.
(v) follows easily from (iv).

An important point that we can see from this proposition is that, given λ ≥ 2 and
d ≥ 2, and under the condition μ ≤ λ/2, μ and σ can be chosen such that the relative
convergence rate V is optimal (v). We conducted numerical computations of V in the
case where d = 10, λ = 10 and equal weights (wi)1≤i≤μ . The cases with μ = 1, 2 and
5 are represented in Fig. 1 (left). It can be seen that the curves are in conformity with (i),
(iii), (iv) and (v) of Proposition 1. In particular, for each μ, there exists a σopt realizing
the minimum of V and we can see that the optimal μ (among the represented μ values
1,2 and 5) is 2. In the following theorem, we will see that the optimal value of V is
also the optimal convergence rate in expectation that can be reached by the (μ/μw, λ)-
ES minimizing a spherical function and using any step-size adaptation rule (σn)n≥0,

or more precisely, the smallest value of 1
nE
[
ln ‖Xn‖

‖X0‖
]

that can be reached by the se-

quence (Xn)n≥0 satisfying the recurrence relation (3). This optimal value corresponds

also to the smallest value of 1
nE
[
ln ‖Xn‖

‖X0‖
]

that can be reached by the isotropic scale-

invariant (μ/μw, λ)-ES minimizing a spherical function, i.e., where (Xn)n≥0 satisfies
the recurrence relation (4) with σ = σopt.

Theorem 1. Let (Xn)n≥0 be the sequence of random vectors satisfying the recurrence
relation (3) and relative to the (μ/μw, λ)-ES minimizing any spherical function (1).
Then, for λ ≥ 2 and d ≥ 2, we have

1
n
E

[
ln
‖Xn‖
‖X0‖

]
≥ V(σopt) , (6)



Log-Linear Convergence of the Scale-Invariant (μ/μw , λ)-ES and Optimal μ 57

0 1 2 3 4 5 6 7
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

σ*

N
or

m
al

iz
ed

 c
on

ve
rg

en
ce

 ra
te

Dimension 10, λ=10

μ=1
μ=2
μ=5

10
2

10
3

10
4

10
5

−30

−25

−20

−15

−10

−5

0
Dimension 30

λ

N
or

m
al

iz
ed

 c
on

ve
rg

en
ce

 ra
te

μ
opt

μ=1
μ=min{d,⎣λ/4⎦}
μ=⎣λ/4⎦
μ=⎣λ/2⎦

Fig. 1. Left: Plots of the normalized convergence rate d × Vμ(σ∗
d

) where Vμ (= V) is defined
in (5) as a function of σ∗ > 0 with d = 10, λ = 10, wi = 1

μ
, ∀ i = 1, . . . , μ and μ ∈ {1, 2, 5}.

The plots were obtained doing Monte-Carlo estimations of V using 106 samples. Right: Optimal

convergence rate (d × Vμ(
σ∗
opt
d

)) associated to different choices of μ as a function of λ for
dimension 30 and μopt realizing the minimum of (σ∗, μ) → Vμ(σ∗

d
).

where σopt is given in Proposition 1 as σopt = argmin{σ>0}V(σ) and V(σopt) corre-

sponds to 1
nE
[
ln
(

‖Xn‖
‖X0‖

)]
for a (μ/μw, λ)-ES using the specific scale-invariant adap-

tation rule with σn = σopt‖Xn‖ and minimizing any spherical function (1).

Summary of the proof. The first step for proving the theorem is to remark that:

E

[
ln
‖Xk+1‖
‖Xk‖

]
= E

[
E

[
ln

∥∥∥∥∥ Xk

‖Xk‖ +
σk

‖Xk‖
μ∑

i=1

wiNi:λ
k

(
Xk

‖Xk‖ ,
σk

‖Xk‖
)∥∥∥∥∥ | (Xk,σk)

]]
.

By the isotropy of the norm function and of the multivariate normal distribution, the

term Xk

‖Xk‖ in the previous equation can be replaced by e1. Then E
[
ln ‖Xk+1‖

‖Xk‖
]

=

E
[
V
(

σk

‖Xk‖
)]

where E
[
V
(

σk

‖Xk‖
)]

is, by Proposition 1, lower bounded by V(σopt).
The result follows from summing such inequalities from k = 0 to k = n− 1.

This theorem states that the artificial scale-invariant adaptation rule with the specific
setting σn = σopt‖Xn‖ is the rule which allows to obtain the best convergence rate of
the (μ/μw, λ)-ES when minimizing spherical functions. The relative convergence rate
is then a tight lower bound that can be reached in this context. Then, for our study on
minimization of spherical functions, we will use the (μ/μw, λ)-ES with the artificial
scale-invariant adaptation rule, i.e., with σn = σ‖Xn‖ where σ is a strictly positive
constant. In the specific case where σ equals σopt, the convergence rate is optimal.
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4 Log-Linear Behavior of the Scale-Invariant (μ/μw, λ)-ES
Minimizing Spherical Functions

Log-linear convergence of ESs can be in general shown using the application of differ-
ent Law of Large Numbers (LLN) such as LLN for independent or orthogonal random
variables or LLN for Markov chains. Log-linear behavior has been shown for ESs which
do not use recombination [10,5,13,7]. The key idea of the proof is stated in the following
proposition.

Proposition 2. Let σ ≥ 0 and let (Xn)n be the sequence of random vectors satisfying
the recurrence relation (4). We introduce the sequence of random variables (Zn)n∈Z+

by Zn :=
∥∥∥ Xn

‖Xn‖ + σ
∑μ

i=1 w
iNi:λ

n

(
Xn

‖Xn‖ ,σ
)∥∥∥ where Ni:λ

n

(
Xn

‖Xn‖ ,σ
)

are obtained

similarly to (2) but with replacing (Xn,σn) by
(

Xn

‖Xn‖ ,σ
)

. Then for n ≥ 0, we have

1
n

ln
‖Xn‖
‖X0‖ =

1
n

n−1∑
k=0

ln Zk a.s. (7)

Using the isotropy of the norm function and of the multivariate normal distribution, the
terms ln Zk appearing in the right hand side of the previous equation are independent
identically distributed with a common expectation V(σ) which we have proved to be
finite in Proposition 1. The following theorem is then obtained by the application of the
LLN for independent identically distributed random variables with a finite expectation
to the right hand side of the previous equation.

Theorem 2 (Log-linear Behavior of the Scale-invariant (μ/μw, λ)-ES). The scale-
invariant (μ/μw, λ)-ES defined in (4) and minimizing any spherical function (1) con-
verges (or diverges) log-linearly in the sense that for σ > 0 the sequence (Xn)n of
random vectors given by the recurrence relation (4) verifies

lim
n→+∞

1
n

ln ‖Xn‖ = V(σ) (8)

almost surely, where V refers to the quantity defined in (5).

Theorem 2 establishes that, provided that V is non zero, the convergence of the scale-
invariant (μ/μ, λ)-ES minimizing any spherical objective function given in (1) is log-
linear. This theorem also provides the convergence (or divergence) rate V(σ) of the
sequence (ln (‖Xn‖))n: If V(σ) < 0, the distance to the optimum, (‖Xn‖)n≥0, con-
verges log-linearly to zero and if V(σ) > 0, the algorithm diverges log-linearly. From
Proposition 1, we know that, for all d ≥ 2, for all λ ≥ 2 and all μ ≥ 1 with the con-
dition μ ≤ λ/2, there exists σ > 0 such that V(σ) < 0 and therefore the algorithm
converges. Moreover, by the same proposition, we know that for any d, λ ≥ 2 there is
an optimal choice of (σ, μ) such that the optimal convergence rate is reached.

A practical interest of this result is that if someone chooses the optimal value of μ
and is able to tune the adaptation rule of his algorithm such that the quantity σn

‖Xn‖
is (after an adaptation time) stable around the optimal value for σ, a convergence rate
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close to the optimal convergence rate can be obtained at least for spherical functions.
This can be useful especially for choosing μ when the population size λ is large.

The goal is then to compute those optimal values (i.e., μopt and σopt) depending on
λ and d. Fortunately, another important point of Theorem 2 is that the convergence rate
is expressed in terms of the expectation of a given random variable (see Definition 1).
Therefore, the convergence rate V can be numerically computed using Monte-Carlo
simulations. Numerical computations allowing to derive optimal convergence rate val-
ues and relative optimal values of μ will be investigated in the following section.

5 Numerical Experiments

In this section, we numerically compute, for a fixed dimension and λ, values of μ
leading to optimal convergence rates. We compare the convergence rate associated
to those optimal μ with the ones obtained with previous choices of μ (proportional
to �λ/2�, . . .). We also investigate how the optimal convergence rate depends on the
population size λ in particular for λ � d. The context of our numerical study is
the specific (μ/μw, λ)-ES with intermediate recombination, i.e., with equal weights
wi = 1

μ , (i = 1, . . . , μ) which is simply denoted (μ/μ, λ)-ES.
Since V is expressed in terms of expectation of a random variable, we can perform a

Monte-Carlo simulation of the normalized convergence rate d×Vμ

(
σ∗
d

)
where σ∗ >

0 is called normalized step-size. The values computed are then relative to the scale-
invariant (μ/μ, λ)-ES with σn = σ∗

d ‖Xn‖ and minimizing a spherical function. Our

experimental procedure relies on finding the minimal value of (σ∗, μ) �→ d×Vμ

(
σ∗
d

)
for μ in a range μrange and for values of σ∗ taken in a range σrange. The minimal

value, denoted d×Vμopt

(
σ∗

opt

d

)
, is the normalized optimal convergence rate. However,

we will also call ‘normalized optimal convergence rate’ the minimal value of σ∗ �→
d × Vμ

(
σ∗
d

)
for μ fixed which we denote d × Vμ

(
σ∗

opt

d

)
. The difference should be

clear within the context.
As a first experiment, we took μrange = {2k; k ∈ Z+and 2k ≤ λ

2 } and σrange =
ln(μ + 1) ∗ ln(λ) ∗ [0 : 0.1 : 3]. We experimented discrete values of λ from λ = 5 to
λ = 105 with a number of Monte-Carlo samplings decreasing as a function of λ from
104 to 500. These first computations show that for the values of λ and d tested, the
approximation

min
{σ∗∈σrange}

d×Vμ

(
σ∗

d

)
� a(λ, d) ln2(μ) + b(λ, d) ln(μ) + c(λ, d) (9)

is reliable (for μ > 1) and we determined numerically the coefficients a(λ, d), b(λ, d)
and c(λ, d). Using these quadratic approximations, we performed a second serie of
tests where the values of μ were taken around the optimal value of the polynomial
approximation, σrange = m ∗ ln(μ + 1) ∗ ln(λ) ∗ [0 : 0.1 : 3] (with m ≤ 2

3 ) and using
more Monte-Carlo samplings.

In Fig. 2 (left), we plotted the normalized optimal convergence rate values and the
normalized optimal convergence rates relative to the rule μ = min{�λ

4 �, d} from [9] as
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Fig. 2. Left: Plots of the normalized optimal convergence rate d×Vμopt

(
σ∗

opt

d

)
where Vμ(= V)

is defined in (5) and normalized optimal convergence rate (d × Vμ(
σ∗
opt
d

)) relative to the rule
μ = min{
λ

4
�, d} , as a function of λ (log-scale for λ) for dimensions 2, 10, 30 and 100 (from

top to bottom). Right: Plots of the values μth (solid lines with markers) giving the optimal μ
relative to the quadratic approximation (9) together with extremity of range of μ values (shown
with markers) giving convergence rates up to a precision of 0.2 from the optimal numerical value.
The dimensions represented are 2, 10, 30 and 100 (from bottom to top).

a function of λ and for different dimensions. It can be seen that the optimal convergence
rate is, for λ sufficiently large, linear as a function of ln(λ). This result is in agreement
with the results in [16]. This figure shows also that the rule μ = min{�λ

4 �, d} provides
convergence rates very close to optimal ones. The curves in Fig. 2 (left) are smooth.
However, to obtain the exact optimal values of μ (denoted μopt), we would need a very
large number of Monte-Carlo samplings and (in parallel) a very small discretisation in
σ∗ that is not affordable. Therefore, we plotted in Fig. 2 (right), the ranges of μ values
giving the optimal convergence rate up to a precision of 0.2, as a function of λ and for
dimensions d = 2, 10, 30 and 100. Those ranges are called 0.2-confidence intervals in
μ in the sequel. In the same graph, we plotted values of μ computed as the argmin of the
polynomial approximation (9) that we denote μth. It can be seen that μth values are in
the 0.2-confidence interval in μ. However, the values μ = min{�λ

4 �, d} for λ = 104 and
d ∈ {10, 30, 100}, are not in the 0.2-confidence interval in μ. In Figure 1, we compare,
for d = 30, optimal convergence rates for different choices of μ, namely μ = 1, �λ

4 �
([14]), �λ

2 � ([6]), min{�λ
4 �, d} ([9]) and the optimal rule (i.e., μopt values). We observe

that for μ equal �λ
4 � and �λ

2 �, the convergence rate does not scale linearly in ln(λ) and
is thus sub-optimal. For μ = 1 and min{�λ

4 �, d}, the scaling is linear in ln(λ) and close
to the optimal convergence rate for μ = min{�λ

4 �, d}.
Fig. 2 (right) suggests also that the values of μth vary as a function of ln(λ). Fur-

ther investigations show that for λ large ln(μth) = α(d) ln2(ln(λ)) + β(d) where
α(d),β(d) > 0 are some constants that have to be tuned for each dimension (see [12]).

6 Conclusion

In this paper, we have developed a complementary theoretical/numerical approach in
order to investigate the isotropic (μ/μw, λ)-ES minimizing spherical functions. First,
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we have shown the log-linear convergence of this algorithm (provided good choice of
parameters) with a scale-invariant adaptation rule for the step-size and we have ex-
pressed the convergence rate as the expectation of a given random variable. Second,
thanks to the expression of the convergence rate, we have numerically computed, using
Monte-Carlo simulations, optimal values for the choice of μ and σn

dn
and their relative

optimal convergence rates. We have investigated in particular large values of λ. Our re-
sults suggest that the optimal μ is monotonously increasing in λ as opposed to the rule
μ = min{�λ

4 �, d} proposed in [9] but that however this latter rule gives a convergence
rate close to the optimal one. We have confirmed as well that for the rules μ = �λ

4 � and
�λ

2 �, the convergence rate does not scale linearly in ln(λ) and is thus sub-optimal.

Acknowledgments. The authors would like to thank Nikolaus Hansen for his advises on
how to approach the problem tackled in the paper. This work received support by the
French national research agency (ANR) within the COSINUS project ANR-08-COSI-
007-12.

References

1. Schumer, M., Steiglitz, K.: Adaptive step size random search. IEEE Transactions on Auto-
matic Control 13, 270–276 (1968)

2. Rechenberg, I.: Evolutionstrategie: Optimierung Technisher Systeme nach Prinzipien des
Biologischen Evolution. Fromman-Hozlboog Verlag, Stuttgart (1973)

3. Schwefel, H.-P.: Collective phenomena in evolutionary systems. In: Checkland, P., Kiss, I.
(eds.) Problems of Constancy and Change-The Complementarity of Systems Approaches to
Complexity, Proc. of 31st Annual Meeting Int’l Soc. for General System Research, Budapest,
vol. 2, pp. 1025–1033 (1987)

4. Hansen, N., Ostermeier, A.: Completely derandomized self-adaptation in evolution strate-
gies. Evolutionary Computation 9(2), 159–195 (2001)

5. Auger, A., Hansen, N.: Reconsidering the progress rate theory for evolution strategies in
finite dimensions. In: ACM Press (ed.) Proceedings of the Genetic and Evolutionary Com-
putation Conference (GECCO 2006), pp. 445–452 (2006)

6. Arnold, D.V.: Optimal weighted recombination. In: Foundations of Genetic Algorithms,
vol. 8, pp. 215–237. Springer, Heidelberg (2005)

7. Jebalia, M., Auger, A., Liardet, P.: Log-linear convergence and optimal bounds for the (1+1)-
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Abstract. This paper introduces a new view on fitness evaluation when

searching for robust optima. It proposes to compare solutions in (succes-

sive) populations with respect to how they rank in robustness instead of

aiming for accurate robustness estimates. This can be done by focusing

on the non-overlapping parts of the regions of uncertainty of each pair of

candidate solutions. An initial step toward a scheme implementing this

view is made with the analysis and experiments on a simple scenario

comparing two solutions on uniform input noise.

1 Introduction

Robust design optimization has received increasing attention in the evolutionary
computation community ([7,4]) and one major issue is to search for solutions to
optimization problems f(x) → min, x ∈ RN which are robust to disturbances
in the input variables. A common approach is to restate such problems as opti-
mization of the expected objective function value given the distribution of the
perturbations: feff =

∫∞
−∞ f(x + δ)pdf(δ)dδ, where δ denotes the perturbation

of the input variables and pdf(δ) denotes its probability density function. The
resulting function computes the so-called effective fitness and can be approxi-
mated by f̂eff (x) = 1

m

∑m
i=1 f(x + δi). However, this introduces noise due to

approximation errors that eventually harms the precision of (evolutionary) op-
timization algorithms [2]. Moreover, increasing m only reduces the noise, but it
does not eliminate it.

Previous work regarding the aim to find robust optima focused on finding the
appropriate sampling schemes ([11,10,12,6]), reducing the number of function
evaluations by means of smart sampling schemes ([5,6]), and using surrogate
models to partially replace expensive function evaluations by cheaper ones (e.g.
[8]). Also, correcting for noise and automatically increasing the population size
(which has implicit resampling effects) has been considered [3].

Two interesting results were discussed in [6] and [8]. In [6] it was proposed to
use the same perturbations for the evaluation of all solutions in a population.
This leads to a reduction of errors in the comparisons, which is beneficial for the
final quality of solutions. Another approach to reduce errors in comparisons was
proposed in [8]: For each candidate solution a metamodel is trained and, for a

R. Schaefer et al. (Eds.): PPSN XI, Part I, LNCS 6238, pp. 63–72, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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Fig. 1. Overlap sketch

given solution the ensemble of all metamodels is used in order to approximate its
effective fitness. In both studies, the schemes in which all population points are
considered for the evaluation of each candidate solution outperform the schemes
that consider independent robustness approximations.

An important observation is that sampling regions of different candidate so-
lutions in (successive) populations are often overlapping, particularly in later
stages of the optimization where the population focuses on a single region of the
search space. Hence, the evaluations made in overlapping regions can be used
at the same time for evaluating the robustness of different candidate solutions.
Moreover, in some cases, it is even possible to discard a large part of the sampling
space when comparing solutions. For example, in Figure 1, where solutions x and
x′ are compared given a uniform distribution of the input noise, it suffices to
sample the non-intersecting regions, because the contribution of the intersecting
region to the effective fitness is the same for both solutions.

Instead of trying to acquire a robustness estimate for each candidate solution
separately, this paper proposes to compare solutions in (successive) populations
with respect to how they relate in robustness. The overlap of the regions of
uncertainty will play a key role in this. This paper considers the simple case
of Figure 1 with the intent to investigate if, and how, overlap can be exploited
when searching for robust solutions.

This paper is structured as follows: Section 2 discusses the effect of overlap
on the comparison of two solutions. Section 3 relates the distance between two
solutions to the overlap area. Section 4 proposes two sampling schemes that
avoid the overlap region. Section 5 presents a symmetry property that can be
exploited. Section 6 presents a demonstration of how to adopt the ideas presented
in this paper. Section 7 closes with conclusions and an outlook.

2 Comparing Two Solutions with Uniform Noise

This paper will focus on the special case of comparing two candidate solutions
x and x′ on their effective fitness based on a uniform perturbation δ ∼ U(−l, l).
By normalizing the search space we can transform the sampling intervals of the
independent input variables such that they have the same width l.

Consider the scenario depicted in Figure 2. Two solutions (the two black
points) around which square regions are drawn indicating the regions of
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Fig. 2. A 2D sketch of the overlap of the regions Lx and Lx′

uncertainty Lx and Lx′ . In the case of uniform noise, the intersection region
A of Lx and Lx′ has the same contribution to the effective fitness for both
solutions. I.e.,

feff x
=
∫
x̃∈Lx\A

f(x̃) px(x̃) dx̃ +
∫
x̃∈A

f(x̃) px(x̃) dx̃, (1)

feff x′ =
∫
x̃∈Lx′\A

f(x̃) px′(x̃) dx̃ +
∫
x̃∈A

f(x̃) px′(x̃) dx̃, (2)

feff x
− feff x′ =

∫
x̃∈Lx\A

f(x̃) px(x̃) dx̃−
∫
x̃∈Lx′\A

f(x̃) px′(x̃) dx̃, (3)

where px(x̃) ∼ pdf(x + δ) and px′(x̃) ∼ pdf(x′ + δ). Hence, for absolute com-
parisons, the region A offers no relevant information. Moreover, when x and x′

are located close to each other, A will be large compared to Lx\A and Lx′\A
and for an evaluation method based on sampling in Lx and Lx′ , the probability
of sampling within Lx\A and Lx′\A will be small. Given the surface area (or
volume in higher dimensions) of A, the probability that one uniformly drawn
random sample in Lx hits Lx\A is

P (sample not in A | sample in Lx) = 1− A

Lx
= 1− A

2N lN
. (4)

For a pure Monte-Carlo sampling scheme, this leads to the following expected
number of samples needed to obtain one sample in Lx that is not in A:

E(X) =
∞∑

n=1

P (X = n)n =
1

1− A
Lx

=
2N lN

2N lN −A
. (5)

Here X is the discrete random variable for the number of samples until the first
sample in Lx\A is obtained. Obviously, the same holds for Lx′ , and, provided
that there is an overlap in the regions of uncertainty, A can be computed as:

A =
N∏

i=1

2l− |xi − x′i|. (6)
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3 Relating Distance to Overlap

A crucial question when designing adaptive optimization algorithms is how the
distance between two points is related to the size of the intersection region. In
2D, the following expression can be derived for A, given that x and x′ lie at a
distance r from each other, making an angle α w.r.t. the x-axis:

A =

{
(2l − rx) · (2l− ry) , if rx ≤ 2l ∧ ry ≤ 2l
0 , otherwise

. (7)

Here, rx = |r cosα| and ry = |r sinα|. From this, and assuming a periodicity of
π for α (i.e., α ∈ [0,π]), an expression can be derived for the expected number
of samples in Lx, m, needed in order to hit the area Lx\A at least c times:

m =

{
4cl2/

(
2lr (cosα+ sinα)− r2 cosα sinα

)
, if rx ≤ 2l ∧ ry ≤ 2l

c , otherwise
. (8)

By expressing r in terms of l, substituting r = kl, this can be simplified to:

m =

{
4c/
(
2k (cosα+ sinα)− k2 cosα sinα

)
, k cosα ≤ 2 ∧ k sinα ≤ 2

c , otherwise
.(9)

The derivation above is still dependent on the angle α between x and x′. It would
be desirable to have an approximation independent of α. This yields a general
approximation for the required number of samples m needed for two individuals
at a distance r (still using r = lk, i.e., k = r

l ) to have at least c samples in the
regions Lx and Lx′ respectively. For this, we look at the upper bound of A w.r.t.
α and note that for A to be maximized, α = 0 or α = π

4 :

A =

{
max{4l2 − 2kl2, 4l2 − 2

√
2kl2 + 1

2k
2l2} , if k ≤ 2

√
2

0 , otherwise

=

⎧⎪⎨⎪⎩
4l2 − 2

√
2kl2 + 1

2k
2l2 , if k ≤ 4

(√
2− 1

)
4l2 − 2kl2 , if 4

(√
2− 1

)
< k ≤ 2

√
2

0 , otherwise
. (10)

This upper bound of A can be used to approximate (the upper bound of) m:

m =

⎧⎪⎨⎪⎩
8c/
(
4
√

2k − k2
)

, if k ≤ 4
(√

2− 1
)

2c/k , if 4
(√

2− 1
)
< k ≤ 2

√
2

0 , otherwise
. (11)

For general ND cases we assume that, similar to the 2D case, A is maximized
in the cases equivalent to the 2D cases of α = 0 and α = π

4 . Following this, and
again using the substitution r = kl, we obtain:

A =

⎧⎨⎩2N lN max
{(

1− 1
2k
)
,
(
1− 1

2
√

N
k
)N
}

, if k ≤ 2
√
N

0 , otherwise
, (12)
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Fig. 3. m versus k for N = 100, 101, . . . , 106 with a zoom on the interval [1 1
2
, 2 1

2
]

which we can use to obtain an expression for the expected number of samples in
Lx needed to hit Lx\A at least c times:

m =

⎧⎨⎩cmax
{

2
k , 1/

(
1−
(
1− 1

2
√

N
k
)N
)}

, if k ≤ 2
√
N

c , otherwise
. (13)

It is clear that when using normal sampling approaches, many samples are prac-
tically wasted when the distance between two solutions becomes small. Figure 3
shows the number of required samples m needed to hit Lx\A at least once versus
k for N = 100, 101, . . . , 106. Interestingly, the plots are not much different for
all values of N . For k � 1.7 the term 2

k becomes the determining factor and the
other term leads to m ≈ 1, even for N = 106. Hence, the following rule-of-thumb
can be used to indicate the growth of m relative to k:

m =

{
2c
k , if k ≤ 1.7
c , otherwise

. (14)

4 Two Sampling Schemes

A straightforward rejection-based sampling procedure that uniformly samples in
Lx\A is described by the algorithm of Figure 4. It maintains a set of samples
X for the design point x, given Lx and Lx′ (i.e., assuming the existence of the
other point x′), and continuously takes samples in the region Lx until it has
found m samples that are not in Lx′ .

We can use (13) to obtain an estimate for the expected number of iterations of
the algorithm of Figure 4 relative to the distance r between the points x and x′.
For optimization approaches such as the (1+1)-ES, this running time is directly
coupled to the stepsize σ, because E[r] =

√
Nσ. Hence, using such a sampling

scheme becomes infeasible once the stepsize becomes very small.
Also a different sampling scheme can be considered, shown in Figure 5, that

targets the region Lx\A directly. For this, the region Lx is partitioned into 2N

regions as depicted in the right picture of Figure 5. Each regionAa is identified by
means of a vector a ∈ {0, 1}, where ai = 0 identifies the non-overlapping interval
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input: Lx = [x − l,x + l], Lx′ = [x′ − l,x′ + l]

1: X ← ∅
2: while |X| < m do
3: xs ∼ U(Lx)

4: if x /∈ Lx′ then
5: X ← X

⋃{xs}
6: end if
7: end while
8: return X

Fig. 4. Rejection-based uniform sampling in Lx\Lx′

in dimension i, and ai = 1 identifies the overlapping interval in dimension i.
Using this definition, the volume of Aa is computed as:

Aa =
N∏

i=1

(2lai + (1 − 2ai) · |xi − x′i|) , a ∈ {0, 1}N , (15)

which can be used to determine the sampling probability for each region as:

P (Aa) =
Aa

Lx −A1
,a ∈ {0, 1}N\{1}N . (16)

Note that A1 is the region of full overlap, i.e., A. The algorithm of Figure 5
uses this partitioning to directly sample uniformly in the region Lx\A. For each
sample it will first select a box Aa using the probabilities (16) and then take
a sample xs uniformly from that box. This scheme has a complexity of O(2N )
(i.e., proportional to the number of boxes Aa) making it only practical for search
spaces of smaller dimension sizes (N � 10). However, it is not dependent on the
distance between x and x′ and has a constant expected running time over an
optimization loop of e.g. a (1 + 1)-ES.

input: Lx = [x − l,x + l], Lx′ = [x′ − l,x′ + l]

1: X ← ∅
2: for i = 1 to m do
3: select Aa, a ∈ {0, 1}N\{1}N with probability

P (Aa) = Aa\(Lx − A)

4: xs ∼ U(Aa)

5: X ← X
⋃{xs}

6: end for
7: return X

Fig. 5. Partitioning the non-overlap regions for uniform sampling in Lx\Lx′
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5 Exploiting Symmetry

Besides the fact that we can either avoid the region A in case of uniform noise,
or at least reuse the samples for the evaluation of x and x′ in case of other noise
distributions, there is also a symmetry in the regions Lx\A and Lx′\A. Given a
perturbation xd ∼ U(−l, l) we note that:

x + xd ∈ Lx\A⇔ x′ − xd ∈ Lx′\A. (17)

Hence, when using the sampling algorithms of Figure 4 and 5, it is only required
to run them once for every pair x and x′, because we can deduce a set X′ from
X. Moreover, as shown in [6], it is advantageous to use the same perturbations
for each individual in a population, which is possibly due to the absence of
an inherent bias toward selecting the solution with the smallest perturbation
distances (this effect is described in [3]).

6 A Simple Demonstration for the (1 + 1)-ES

To demonstrate how the previous considerations could be integrated into prac-
tical optimization schemes, as an example we study a (1 + 1)-ES with the 1/5th
success rule for stepsize adaptation [9] and implement two versions which in-
corporate a robustness evaluation scheme, shown in Figure 6. The (1 + 1)-ES,
being a simple algorithm useful for theoretical purposes only, lends itself well for
incorporation of a comparison scheme that follows the previous considerations.

The first scheme (left) is a benchmark scheme which uses the straightforward
Monte-Carlo approach. In each iteration a set Xd of m perturbations is drawn
from [−l, l]. The set Xd is used to generate the sets Xo and Xp which are
the perturbations of the parent and the offspring used to obtain the robustness
approximations (note that the parent is re-evaluated every generation).

The second scheme (right) takes for the offspring a set of m samples from
Lxo\A, and uses the perturbations of Xo to generate Xp by exploiting the sym-
metry (discussed in Section 5). The sets Xo and Xp, which now contain only
samples in Lxo\A and Lxp\A respectively, are used to compare the parent and
the offspring (note that we avoid the use of f̂eff , as we no longer approximate
the effective fitness, but rather compare the parent and the offspring).

It should be noted that Latin Hypercube Sampling yields better results than
Monte-Carlo sampling [6]. Although both schemes could be adapted for this,
Monte-Carlo sampling is used here for the sake of the simplicity of the example.
Also, a note of caution is in order regarding the performance of the (1 + 1)-ES
on noisy fitness functions. As noted in [1] and [2], the (1+1)-ES can stagnate or
even show divergent behavior when the noise level is sufficiently high. As both
schemes are still based on sampling, noise is inevitable. Moreover, as shown in
Section 3, for the normal sampling approach, the signal-to-noise ratio is related
to the stepsize and it can be expected that this method will stagnate at a certain
point in time. The question is: (when) will the overlap avoiding scheme stagnate?
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1: initialize: t ← 0, xp ← x(init), σ ←
σ(init), s ← 0, n ← N , c ← 0.851/5n

2: while not terminate do
3: zo ∼ N (0, I)
4: xo ← xp + σzo

5: Xd ← m samples from [−l, l]
6: Xo ← ⋃

xs∈Xd
{xo + xs}

7: Xp ← ⋃
xs∈Xd

{xp + xs}
8: f̂eff o

← 1
m

∑
xs∈Xo

f(xs)

9: f̂eff p
← 1

m

∑
xs∈Xp

f(xs)

10: if f̂eff o
≤ f̂eff p

then

11: xp ← xo

12: s ← s + 1

13: end if
14: if (t mod n == 0) then
15: ps ← s/n

16: σ ←

⎧⎪⎨⎪⎩
σ/c , ps < 1/5

σ · c , ps > 1/5

σ , ps = 1/5
17: s ← 0

18: end if
19: t ← t + 1

20: end while

1: initialize: t ← 0, xp ← x(init), σ ←
σ(init), s ← 0, n ← 5, c ← 0.851/5n

2: while not terminate do
3: zo ∼ N (0, I)
4: xo ← xp + σzo

5: Xo ← m samples from Lxo\A
6: Xd ← ⋃

xs∈Xo
{xs − xo}

7: Xp ← ⋃
xs∈Xd

{xp − xd}
8: f̂o ← 1

m

∑
xs∈Xo

f(xs)

9: f̂p ← 1
m

∑
xs∈Xp

f(xs)

10: if f̂o ≤ f̂p then
11: xp ← xo

12: s ← s + 1

13: end if
14: if (t mod n == 0) then
15: ps ← s/n

16: σ ←

⎧⎪⎨⎪⎩
σ/c , ps < 1/5

σ · c , ps > 1/5

σ , ps = 1/5
17: s ← 0

18: end if
19: t ← t + 1

20: end while

Fig. 6. Two (1 + 1)-ES schemes for finding robust optima using normal sampling in

Lxo and Lxp (left) and sampling focused on Lxo\A and Lxp\A (right)

The experiments are performed on the sphere problem f(x) =
∑N

i=1(xi +δi)2,
like in [3]. The settings are: N = 10 (i.e., 10D), x ∈ [−10, 10]N , and δ ∼
U(−1,1). A high evaluation budget of 2 × 106 is used and both algorithms use
m = 2N . As the algorithmic setting is only a demonstration of the use of the
concept introduced in this paper, we will only show the results of one run. Figure
7 shows the results.

Whereas the approach implementing the normal sampling stagnates after ca.
5 · 105 evaluations, there is no sign of stagnation for the approach implementing
the focused sampling. Hence, although it still uses m = 20 samples for each
evaluation, the focused sampling approach remains making progress. Supported
also by the stepsize plots, these empirical results suggest linear convergence.

The error plots show the frequency of false negatives and false positives versus
the number of generations (these frequencies are computed over a window of 1000
generations). For both approaches, the error frequencies stay at the same levels
at a certain point in time. For the normal sampling approach, this can be related
to the stagnation of the stepsize (i.e., the error rate is coupled to the noise ratio,
which is directly coupled to the stepsize). However, for the focused resampling
approach the error rates stay at the same levels even with the stepsize decreasing.
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Fig. 7. Left column: distance to the optimum and ordering error frequency of the

normal sampling approach. Middle column: distance to the optimum and ordering

error frequency of the focused sampling approach. Top right: the required number of

samples and an upper bound estimator for the required number of samples of the

focused sampling run. Bottom right: the stepsize development for both approaches.

Finally, we show for the focused sampling method the number of samples
that were required in order to obtain m samples in Lx\A. Note that the im-
plementation used for these experiments uses the simple rejection method of
the algorithm of Figure 4. The thick solid line shows for every generation the
expected upper bound of the number of samples, computed using the simple
rule-of-thumb of (14), with r = σ

√
N . This plot shows how this rule-of-thumb

accurately determines the upper bound for the required number of samples, but
also that in many cases fewer samples suffice.

7 Conclusions and Outlook

This paper has introduced a new view on robustness evaluation where the focus
is not on trying to obtain accurate robustness estimates for individual candidate
solutions, but rather to compare the solutions of (successive) populations with
respect to robustness. It has shown how the distance between two solutions
relates to the amount of redundant sampling when dealing with uniform input
noise. Also, two sampling schemes have been introduced that target the regions
where there is no overlap between and a proof of concept was given.

The experiments on the (1+1)-ES show how the proposed idea can successfully
be integrated in common optimization algorithms. A topic for future research is
to also include this concept in population based schemes that work with sets of
candidate solutions rather than two. An implementation for tournament selection
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can easily be derived, but for (μ +, λ)-selection, more sophisticated schemes
are required. For (μ +, λ)-schemes, samples of overlapping regions can at least
be reused when evaluating candidate solutions, but specifically targeting non-
overlapping regions will become computationally more expensive.

Another question is to what extent this sampling strategy can be adopted in
cases of other input noise distributions. In these cases, it might not be possible
or desirable to reject the region of overlap. It is a topic for further study to
compare how the overlapping and non-overlapping regions relate to each other
when determining the relative fitness differences between candidate solutions.
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Abstract. We present methods to answer two basic questions that arise when
benchmarking optimization algorithms. The first one is: which algorithm is the
‘best’ one? and the second one: which algorithm should I use for my real world
problem? Both are connected and neither is easy to answer. We present methods
which can be used to analyse the raw data of a benchmark experiment and derive
some insight regarding the answers to these questions. We employ the presented
methods to analyse the BBOB’09 benchmark results and present some initial
findings.

Keywords: evolutionary optimization, benchmarking, BBOB test set, multidi-
mensional scaling, consensus ranking.

1 Introduction

The last years have seen several competitions for optimization algorithms at evolu-
tionary computation (EC) conferences, possibly starting with the CEC’05 [11], and
currently most notably continued with the black-box optimization algorithm bench-
marking (BBOB) competitions at GECCO 2009 and 2010 [2]. However, this bears two
main questions: a) Given a number of comparison results on different functions, what is
the ‘best’ algorithm? and b) How can we transfer benchmarking results onto real-world
situations?

To answer the first question, we turn to existing benchmarking theory, and especially
to consensus ranking procedures. Answering the second question is surely harder. While
it is relatively easy to control the settings of a benchmark experiment and to enforce ev-
ery problem property we can possibly imagine, not much is usually known about a
real-world problem we may have to deal with. The only possible solution for achieving
a good algorithm-problem matching may be to extract meaningful high-level empirical
properties and approach the matching from two sides: a) find out which algorithms per-
form especially well on certain property combinations and b), develop ways to cheaply
and automatically extract problem properties from a concrete problem instance. The
latter may be termed Exploratory Landscape Analysis (ELA) and is our long-term ob-
jective which is not explicitly attempted in this work. However, in order to achieve any
progress in this directions, we need a good set of properties and to resolve the first issue
of detecting and evaluating algorithm-property dependencies.

R. Schaefer et al. (Eds.): PPSN XI, Part I, LNCS 6238, pp. 73–82, 2010.
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Define
problem domain

Choose q
quality indicators

Choose t test functions

Choose k algorithms

Rank algorithms

Analyze resultsFind consensus Deploy algorithm

Fig. 1. Flow chart describing the steps involved in a benchmark experiment

After introducing benchmarking theory in Sec. 2 we will focus on the BBOB’09
test in Sec. 3 which is grouped into 5 categories using predefined properties. We will
analyse if the measured performance of the benchmarked algorithms is in line with
this grouping and will include additional properties into the analysis. Furthermore, we
will explicitly make the distinction of low (2 and 3) and high (5-20) dimensions1 and
analyse how similar or different the algorithms behave with respect to these groups.
Conclusions are given in Sec. 4.

2 Benchmarking Theory

The outcome of benchmarking experiments and competitions strongly depends on cho-
sen performance measures and ranking procedures ([7],[8]). The general setup of a
benchmark experiment is shown in Fig. 1.

Initially a problem domain needs to be defined. This step is crucial since it restricts
the domain to which any conclusions made in later steps can possibly generalize. Next,
t test functions with a known global optimum value or a known bound that should be
achieved are chosen. Finding good test functions is a hard problem since they should be
distributed in a ‘uniform’ fashion in the space of all possible functions from the problem
domain. To judge the performance of an optimization result, q (ideally independent)
quality indicators are chosen. Finally, a set of candidate optimization procedures needs
to be determined.

The next step is to determine the number of independent runs of each of the k algo-
rithms on the t test functions with respect to the trade-off between speed and accuracy.
In practice 10 to 25 repetitions are a good rule of thumb. The result of this are t× q× k
quality indicator estimates. Using these, individual rankings of the algorithm for each
quality indicator and test function will be constructed.

2.1 Individual Ranking

Benchmarking theory is mainly based on the theoretical framework of relations and
orders [4] from which a formal definition of a ranking of a set of items can be derived

1 The BBOB’09 data for 40 dimensions is not complete and therefore discarded.
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[8]. We will use #, where a # b reads as ”a better than or equal to b”, to denote this
ranking and the underlying relation.

Initially, without loss of generality, we will consider the case of a fixed test function f
and quality criterion I to be maximized. If we only had two algorithms, a1 and a2, then
we could define # by saying a1 # a2 (a1 is better than or equal to a2) if I(a1(f)) ≥
I(a2(f)). Generalizing this result to a higher number of algorithms is straight forward.
We use the order induced by I on the algorithms as our ranking. The main disadvantage
of our simple definition of # is that we must estimate the value of a quality criterion
from several runs of the optimization algorithm. This means that I(a, f) is a random
variable whose distribution is unknown. One way to deal with this is to use classical
statistical hypothesis tests to define#. Details of this procedure are given in [7] and [8].
The main obstacle is that we need # to be transitive and antisymmetric in order for it
to define a meaningful ordering.

2.2 Consensus Ranking

In case the best algorithm out of a given set should be determined the problem of build-
ing a consensus of a number of individual rankings of the considered algorithm arises.
Ideally, a consensus should be non-dictatorial, universal, Pareto efficient and fulfill the
Independence of irrelevant alternatives (IIA) criterion as well as the majority criterion
(see [7] or [8] for formal definitions). Unfortunately, all criteria cannot be met simulta-
neously. Thus, consensus approaches yield different results with respect to the criteria
chosen to be fulfilled.

Generally, we can differentiate between positional and optimization based methods.
It can be shown that the Borda count method [1], as one of the oldest consensus meth-
ods, is optimal under all positional consensus methods [9]. An algorithm is assigned
one point for each algorithm that it weakly dominates, i.e. the algorithms that are not
better than the algorithm considered. The Borda score results by taking the sum of these
values. Optimization based methods transform the consensus ranking task into an opti-
mization problem based on a suitable distance measure between the individual rankings.
The consensus ranking comes out as the ranking which minimizes the median or mean
distance to all individual rankings (SD approach, [6]). Advantages and drawbacks of
the introduced consensus methods are summarized in [10].

3 Benchmarking Results for the BBOB09-Testset

3.1 Suggested Problem Properties

The BBOB’09 test set is built according to problem properties, a) separable problems,
b) low or moderate conditioned problems, c) high conditioned and unimodal problems,
d) multi-modal problems with adequate global structure, and e) multi-modal problems
with weak global structure. We suggest to add more properties applied to the BBOB’09
test set in Table 1. It gets evident that some property values are sparsely populated, e.g.
only one test function has plateaus.
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Multi-modality refers to the number of local optima of a problem. In practical applications,
many problems are not unimodal (convex) as favoured by most classical optimization algo-
rithms.

Global structure is what remains after deleting all non-optimal points. For Rastrigins problem,
we obtain a perforated parabola which is unimodal. Problems without global basin structure
are more difficult because one virtually needs to look in every corner.

Separability means a problem may be partitioned into subproblems which are then of lower di-
mensionality and should be considerably easier to solve. However, for an unknown problem,
information about its separability may be scarce.

Variable scaling can make a problem behave differently in each dimension. It can be essential
to perform small steps in some dimensions, and large ones in others, which is due to the
non-spherical form of basins of attraction. Note that scaling may differ between different
basins of attraction.

Search space homogeneity refers to a search space without phase transitions. Its overall appear-
ance is similar in different search space areas. Most benchmark problems are of this type.

Basin size homogeneity means the size relation (largest to smallest) of all basins of attraction
(e.g. [12] postulated that size differences influence problem hardness).

Global to local optima contrast refers to the difference between global and local peaks in com-
parison to the average fitness level of a problem. It thus determines if very good peaks are
easily recognized as such.

Plateaus can make the life of optimization algorithms a lot harder as they do not provide any
information about good directions to turn to. However, in the BBOB’09 test set, this property
is largely unused.

3.2 Algorithm Analysis

Initially, a ranking for each test function / dimension combination is calculated using
the expected running time (ERT, [2]) which is shown in Fig. 2 and 3. It is evident that
there is a change in the general performance of the algorithms going from three to five
dimensions. Especially in the parallel coordinate plot we recognize a deterioration of
performance for some algorithms as the dimension rises.

Looking at the distribution of these ranks separately for the two and three as well as
the 5 to 20 dimensional functions as shown in Fig. 4, we see two very different consen-
sus rankings of the algorithms. The order of the algorithms was chosen by decreasing
mean rank, this coincides with the Borda consensus for the two dimension groups. In
lower dimensions the Nelder-Mead type algorithms perform best while only ranking in
the middle for higher dimensional problems. The same behaviour can be observed for
some other classical algorithms such as the Rosenbrock procedure. On the other hand,
BFGS performs better for higher dimensional problems. Here, the effort invested for
estimating the gradient obviously pay off. Generally, the order of the algorithms gets
more stable for higher dimensions, so that the differences between dimensions 5/10/20
are much smaller than the ones between 2/3/5 (see Fig. 2). We therefore do not present
a consensus ranking over all dimensions.

3.3 Function-Set Analysis

We have seen that the algorithms perform quite differently in different dimensions. Can
we expect similar behaviour for different classes of functions from the test function set?
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Table 1. Classification of the noiseless functions based on their properties (multi-modality, global
structure, separability, variable scaling, homogeneity, basin-sizes, global-local contrast, plateaus).
Predefined groups are separated by horizontal lines.

Function multim. gl.-struc. separ. scaling homog. basins gl.-loc. plat.

1: Sphere none none high none high none none none
2: Ellipsoidal separable none none high high high none none none
3: Rastrigin separable high strong none low high low low none
4: Büche-Rastrigin high strong high low high med. low none
5: Linear Slope none none high none high none none none

6: Attractive Sector none none high low med. none none none
7: Step Ellipsoidal none none high low high none none small
8: Rosenbrock low none none none med. low low none
9: Rosenbrock rotated low none none none med. low low none

10: Ellipsoidal high conditioned none none none high high none none none
11: Discus none none none high high none none none
12: Bent Cigar none none none high high none none none
13: Sharp Ridge none none none low med. none none none
14: Different Powers none none none low med. none none none

15: Rastrigin multimodal high strong none low high low low none
16: Weierstrass high med. none med. high med. low none
17: Schaffer F7 high med. none low med. med. high none
18: Schaffer F7 moderately ill-cond. high med. none high med. med. high none
19: Griewank-Rosenbrock high strong none none high low low none

20: Schwefel med. deceptive none none high low low none
21: Gallagher 101 Peaks med. none none med. high med. low none
22: Gallagher 21 Peaks low none none med. high med. med. none
23: Katsuura high none none none high low low none
24: Lunacek bi-Rastrigin high weak none low high low low none

And more importantly, can we use any insight gained from the benchmark experiment
to choose a good algorithm for a real world optimization problem? For this, we will
use the distance measure SD introduced for the SD/L consensus method to calculate
the distances between the 144 rankings as a way to quantify how similar the algorithms
performed. We focus our analysis on the 5 to 20 dimensional functions, as they are more
challenging than the low dimensional ones. Additionally, algorithm ranks are much
more consistent on these functions, which should simplify the analysis.

Ideally, we would like to identify groups from this reduced function set that lead
to similar algorithm rankings. We then could reduce the size of the function set by
only including one prototype from each group. In addition, new functions similar to
functions in this group would probably result in similar algorithm performance. We
could therefore try to guess a good algorithm from the function group the new problem
belongs to.

Two approaches are used to retrieve groups or clusters from the distance matrix.
First, we project the high-dimensional data onto a lower dimensional space by means of
multidimensional scaling (MDS, [3]) in order to visualize the relationship between ob-
servations. The MDS embeds the observations into the lower dimensional space while
attempting to retain the distance between data points. Thus, the starting point for any
MDS algorithm is a distance matrix2 over all observations of a dataset. Starting from

2 Usually this is a similarity matrix, but it is trivial to compute one out of the other.
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Fig. 2. Benchplot for each dimension by function. The color indicates the algorithm and the po-
sition of its rank in the ranking. For higher dimensions, a clear structure emerges because many
algorithms are not able to reliably solve such problems with the given number of FEs. The black
lines separate the 5 function groups as defined by the BBOB’09 organizers.

this matrix, a geometrical representation of the relationship is created while preserving
the input distances or distance as accurately as possible. This is formalized as the opti-
mization problem of minimizing a loss function over the difference between the input
and output distance matrix. Next, the clustering algorithm PAM [5] is employed to find
clusters in the data, based on the distance matrix. For this dataset 2 clusters were de-
termined to be optimal, yielding an average silhouette width of ≈ 0.44. These clusters
were then correlated with the identified function properties (see Table 1). Note that this
silhouette width value is not exceptionally high, meaning that the clustering is not seen
as very good (that would be the case for values near 1).

The two dimensional MDS of the distance matrix in Fig. 5 shows that a test function
will generally lead to similar performance (close proximity) regardless of the dimen-
sion. The first MDS component seems to be adequate to describe the clustering. Obser-
vations with a value smaller than−50 are assigned to cluster one, the rest to cluster two.
This however does not indicate how the clustering relates to the properties of the test
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Fig. 3. Parallel coordinate plot for each function, showing the rank of each algorithm as the num-
ber of dimensions rise. Some algorithms dramatically loose ground as the number of dimensions
rises (diagonal lines in upper right direction).

functions. Therefore, we look at the cross tabulation of the cluster against the function
properties. To determine if there is any correlation between the property and the clus-
tering, a Fisher Test was performed for the null hypothesis that the two are independent.
For the four properties shown in Table 2 this hypothesis was rejected at the 1% level.

To further model the unknown decision boundary of the clustering with respect to the
function properties, a classification tree (Fig. 6) was constructed using the four prop-
erties identified by the cross tabulation as having a relationship with the clustering.
It comes as no surprise that the first split separates the highly multi-modal problems
from all others. The matched 9 problems (27 observations in 5/10/20 dimensions) obvi-
ously require a specific type of algorithm, whether no, low, and medium multi-modality
go together. Interestingly, the second split considers low variable scaling as a separate
function group. Possibly, this reflects that some algorithms have basic means to adapt
to rescaled variables where others do not possess such means. The third split between
none and deceptive (Schwefel function) global structure is not that surprising. Global
structure needs multi-modality, and after removing highly multi-modal functions, the
Schwefel function is the only one that possesses a global structure (according to our
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Fig. 4. Boxplot of the ranks for each algorithm in {2,3} (top) and {5,10,20} dimensions (bottom).
The algorithms are ordered by mean rank which is marked by a red dot. This corresponds to the
Borda ranking method. In low dimensions, the classical Nelder-Mead algorithm performs quite
well.

Table 2. Cross tabulation of Multi-modality (a), Global Structure (b), Variable Scaling (c),
Global / Local contrast (d) against the clusters found via PAM

(a)

1 2

none 14 16
low 9 0
medium 3 3
high 0 27

(b)

1 2

none 26 19
weak 0 3
medium 0 9
strong 0 12
deceptive 0 3

(c)

1 2

none 12 9
low 1 26
medium 6 3
high 7 8

(d)

1 2

none 14 16
low 9 24
medium 3 0
high 0 6

classification). It could be interesting to add more functions with low multi-modality
but some global structure to the set. Basically, we obtain four different classes of func-
tions with respect to algorithm performance.



Benchmarking Evolutionary Algorithms: Towards Exploratory Landscape Analysis 81

1

2

−100

0

100

200

300

●

●

●

●

●

●●
●

●

●●

●
●

●

●●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●
●

●
●

● ●
●● ●

●

●

●

●

●

●●

●
●●
●

●
●

●

●

●
●

●

●

●

●
●●

●●1
1

1

2
2

2

3

3

3

4

4
4

55
5

6
6

6

7 77
8

8 8
9

99

10 1010
11

11
11

12 12
12

13 131314 14
14

15

15

15

16

1616

17
1717 181818

19

19

1920

20

20
21

21

21

22

22

22

23

23
2324

2424

−300 −200 −100 0 100 200

Cluster

● 1

● 2

Fig. 5. MDS of the distance matrix obtained from the 5 to 20 dimensional test problems. Color
denotes assigned clusters, numbers refer to function numbers. The 5, 10 and 20 dimensional
instances of a test function tend to lie in close proximity.

multimodality
p < 0.001

1

high {none, low, medium}

n = 27
y = (0, 1)

2
variable scaling

p = 0.002

3

{none, medium, high} low

global structure
p = 0.012

4

none deceptive

n = 30
y = (0.833, 0.167)

5
n = 3

y = (0, 1)

6

n = 12
y = (0.083, 0.917)

7

Fig. 6. Decision tree modeling the cluster boundary for the 5 to 20 dimensional function set. The
vector y reflects the proportion of observations in each cluster class.

4 Conclusions and Outlook

In this article, we have shown how a combination of benchmarking methods and clas-
sical statistical exploratory data analysis can be used to gain insight into the true per-
formance of a set of algorithms under test. Furthermore, we demonstrated how the
structure of the function set can be explored. This leads us to define different groups or
clusters of functions for which the ranking of the algorithms was essentially the same or
very similar. To describe these groups we used decision trees for modeling the unknown
cluster boundary. In the future, we would like to extend this work by including addi-
tional, measured features, and using the generated decision trees to develop heuristics
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for supporting practitioners in the choice of an optimization procedure that works well
for their problem type.
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Abstract. Uniform crossover for binary strings has a natural geometric

interpretation that allows us to generalize it rigorously to any search

space endowed with a notion of distance and any representation [6].

In this paper, we present an analogous characterization for one-point

crossover and explicitly derive formally specific one-point crossovers for

a number of well-known representations.

1 Introduction

Geometric crossover [6] is a representation-independent formalization of crossover
which requires the offspring to be in the metric segment between parents for
some distance. This formalization encompasses many recombination operators
across representations [5]. The geometric framework sees recombination oper-
ators acting on representations as dual and equivalent to suitably formalized
versions of combination operators acting on the neighborhood structure (e.g.,
path-relinking). Early studies on the relation between crossover and path-
relinking in the space of permutations linked with a notion of distance were
pioneered by Reeves [7]. The geometric interpretation of crossover operators is
interesting as it clarifies what distance/search space is associated with them and
how the search operator can be seen as navigating the search space (i.e., sam-
pling offspring in the space-specific segment between parents). This, in turns,
clarifies what the fitness landscape induced by a certain crossover operator is,
and how the search of this operator relates to the “geographic” structure of
the fitness landscape. Ultimately, this characterization may form the basis for a
unified, representation-independent theory of evolutionary algorithms [5].

The definition of geometric crossover is rather coarse as it does not consider
the actual probability of a particular offspring of being sampled. More finely
grained subclasses of geometric crossover can be defined by specifying a proba-
bility distribution of the offspring over the segment. Perhaps, the most natural
among such subclasses is the uniform geometric crossover, in which offspring are
drawn from a uniform distribution over the metric segment between parents.
In previous work [6], we have shown that all mask-based crossovers for binary
strings are geometric crossovers and that, in particular, uniform crossover [8] is
a uniform geometric crossover, as the offspring strings are drawn from a uniform
distribution over the metric segment between parent strings under Hamming
distance. This equivalence allows us to generalize naturally uniform crossover
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for binary strings to any representation by making use of the definition of uni-
form geometric crossover and replacing the Hamming distance with another
distance defined on the target representation. For example, the uniform geo-
metric crossover for the swap distance between permutations (i.e., the minimum
number of swaps needed to transform a permutation in the other) requires the
offspring permutations to be drawn uniformly from the metric segment between
parent permutations. This is a formal specification of a recombination opera-
tor on permutations rather than the actual operator. To turn this specification
into a procedural definition that tells how to manipulate parent permutations
to obtain offspring permutations, one can rely on the observation that picking
offspring in the segment between two parent permutations is equivalent to gen-
erating partially sorted permutations on a minimal sorting trajectories obtained
while sorting one parent permutation into the other parent permutation using
swaps. Therefore, this operator can be implemented by adapting a traditional
sorting algorithm [5]. Importantly, the uniform crossover for binary strings and
the recombination for permutations above are fundamentally the same recom-
bination operator instantiated to two different spaces as both share exactly the
same geometric definition, that of uniform geometric crossover.

One-point crossover for binary strings [2] selects a common crossover point
uniformly at random on the length of the parent strings and produces two off-
spring by swapping the tails of the parent strings after the crossover point.
Whereas it was possible to generalize uniform crossover across representations
due essentially to its highly symmetric definition, the situation seems different
for one-point crossover as cutting and swapping tails is an operation which relies
much on the special characteristic of binary strings of being a vector. In this
paper, we show that also one-point crossover has a simple characterization in
geometric terms which allows us to generalize it rigorously to any representation.
We then specify it for a number of well-known representations.

2 Generalization of One-Point Crossover

In the following, we generalize a version of one-point crossover for binary strings
that returns only one offspring, in which the head comes from the first parent
and the tail comes from the second parent. To do this, we first show how shortest
paths between two binary strings in the Hamming space can be constructed (see
figure 1). The sequence s of binary strings s0, s1, ..., s5 is generated from parent a
and b using the bit ordering p which specifies when to exchange the bits between
parents. Note that, in the sequence s, the strings s1, s2 and s3 coincide. The
bottom part of the figure reports the sequence s′ obtained form s after removing
repetitions.

Theorem 1. Every bit ordering generates a shortest path between a and b in
the Hamming space. All shortest paths can be generated by using all possible bit
orderings and there are HD(a, b)! distinct shortest paths between a and b.

Proof. We have a few remarks that will lead to prove this theorem. First, the
sequence s′ forms a path in the Hamming space as two consecutive strings in
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p: 1 3 5 2 4
a: 1 1 1 1 1
b: 0 1 0 1 0

s0: 1 1 1 1 1
s1: 0 1 1 1 1
s2: 0 1 1 1 1
s3: 0 1 1 1 1
s4: 0 1 1 1 0
s5: 0 1 0 1 0

sequence without repetitions:

1 1 1 1 1
0 1 1 1 1
0 1 1 1 0
0 1 0 1 0

Fig. 1. Example of shortest path generation

the sequence differ in exactly one bit. This is a shortest path as its length equals
the Hamming distance between a and b. This holds for any choice of the parent
strings and bit ordering. Second, the fact that in the sequence s there are subse-
quences of repeated elements has its origin in the fact that at some positions the
strings a and b do not differ. When the contents at those positions are exchanged
the newly generated string equals the previous string in the sequence. So, if we
restrict the bit ordering that generates the sequence to those positions in which
a and b differ, we can generate the sequence s′ directly without repetitions. By
definition, the number of positions in which a and b differ is HD(a, b), so the
reduced bit ordering p′ needs to be an order of HD(a, b) elements. Third, dis-
tinct reduced bit orderings produce distinct sequences. Forth, all bit orderings
defines all ways of how to apply sequentially all the differences between a and
b to a to be turned into b. Hence, all reduced bit orderings, that is, all orders
of application of these differences, account for all shortest paths between a and
b. So we have HD(a, b)! distinct shortest paths between a and b, that is the
number of possible reduced orders on a and b.

Corollary 1. All possible offspring of one-point crossover for binary strings are
on a single geodesic (shortest path) in the Hamming space between parents.

Proof. All the offspring generated by one-point crossover can be generated from
the left to the right by exchanging one by one the contents of the two parents at
each position. This is the same sequence obtained by applying the bit ordering
(1 . . . n) to the two parents where n is the length of the parents.

The corollary makes precise and proves an idea of Whitley [9] who noticed earlier
that the offspring of one-point crossover forms paths in the Hamming space
between parents. Since the notion of geodesic is well-defined in every metric
space, the previous theorem allows us to generalize one-point crossover to any
metric space, as follows.



86 A. Moraglio

Definition 1. (One-point geometric crossover) In one-point geometric crossover
all offspring are on a single geodesic between parents under some distance.

Notice that in general there may be more than one geodesic between two points
(parents). The definition leaves deliberately the geodesic unspecified, but it
requires that all offspring are on it. The reason we do not specify a specific
geodesic is that since they are all indistinguishable from a distance viewpoint,
we cannot specify anyone in particular using only the distance. Only using extra-
information based on the underlying representation, we can refer to one geodesic
in particular.

This necessary indetermination in the definition of one-point geometric
crossover makes it an “over-generalization” of the one-point crossover for binary
strings, as explained as follows. There are three distinct types of indetermina-
tion in this definition: (i) the specific geodesic is not specified, (ii) the specific
probability distribution of the offspring on the geodesic is not specified and, (iii)
the specific distance is not specified. Therefore, even when both the probability
distribution of the offspring is fixed (e.g., uniform probability on the geodesic)
and the operator is instantiated to a specific search space (i.e., the distance is
fixed), the indetermination about the specific geodesic makes the one-point op-
erator non-uniquely determined. This is unlike the case of uniform geometric
crossover which is unique with respect to its underlying metric space, as the
segment between two points, unlike a geodesic, is uniquely determined by these
points.

As a consequence of this indetermination, when the geometric one-point
crossover is instantiated to the space of binary strings under Hamming distance,
it gives rise to a family of crossover operators, one operator for each geodesic
between parents, rather than only to the original one-point crossover, which
corresponds to a specific geodesic. This family of operators is completely charac-
terized by generating offspring on shortest paths using any possible bit ordering.
Every crossover of this family corresponds to a bit ordering, and the strings re-
turned by the application of this ordering to the parent strings correspond to
the offspring set of that specific crossover operator (for those parent strings).

When a space allows for a family of one-point geometric crossovers, rather
than a single one, they are all indistinguishable from a distance viewpoint. So all
are the “right” one-point geometric crossover for the specific space. We will see
that in some spaces one member of this family may be preferable to others for
reasons linked with the specific character of the underlying representation.

3 Euclidean and Manhattan Spaces

Since in the Euclidean space (endowed with Euclidean distance) a segment com-
prises a single geodesic, in this space there is only one possible specification of
one-point geometric crossover. Both uniform one-point geometric crossover, in
which offspring are drawn uniformly at random on a geodesic, and uniform geo-
metric crossover when specified for the Euclidean space pick points uniformly at
random on the only geodesic. So they are equivalent.
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In the 2-D Manhattan space (endowed with Manhattan distance), a segment
is a rectangle and its endpoints are two diagonally opposite corners. In higher
dimensions, a segment is a hyper-rectangle. For this specific space, uniform geo-
metric crossover picks uniformly offspring in the hyper-rectangle. In this space,
a segment comprises infinitely many geodesics linking two points. The geodesics
between two points are all monotonic curves joining the two points. So in the
Manhattan space there are infinitely many one-point crossovers, one for each
monotonic curve connecting the two parents.

4 Permutations

In previous work [5], we have shown that PMX, Cycle Crossover, Merge Crossover
and others are geometric crossovers. In the introduction, we mentioned that
geometric crossovers for permutations are naturally associated with sorting al-
gorithms, giving rise to sorting crossovers [5]. In the following, we consider two
different perspectives on one-point geometric crossover for permutations: sorting
crossovers and cut-and-fill crossovers.

Let us consider sorting crossovers. Given two permutations, and a move on
permutation, e.g., swap of two elements, deterministic sorting algorithms sort the
elements of one permutation into the order of the elements of the other permuta-
tion always on the same minimal sorting trajectory out of all the possible mini-
mal sorting trajectories. A minimal sorting trajectory corresponds to a geodesic,
i.e., a shortest path, on the metric space induced by the sorting move (e.g., the
swap move induces a space on permutations endowed with the swap distance).
So, the associated deterministic sorting crossovers pick offspring always on the
same geodesic between two parents. Hence, deterministic sorting crossovers are
one-point geometric crossovers. In randomized sorting algorithms, the sorting
trajectory is still minimal but non-deterministic. The sorting crossovers based
on randomized sorting algorithms, although being geometric crossovers, are not
one-point geometric (under the space induced by the sorting move)1 because for
two given permutations (parents), different applications of the sorting crossover
may return partially ordered permutations (offspring) belonging to different sort-
ing trajectories (geodesics).

Let us now consider cut-and-fill crossovers [1], which are intuitive extensions
of one-point crossover for permutations, as follows. If the one-point crossover for
binary strings is applied directly on permutations, the offspring so obtained are
not permutations. So, this operator cannot be applied as it is but it can be easily
adapted: the first parent is cut at a crossover point and the part before the cutting
point is passed to the offspring as in the traditional one-point crossover; the
second part is then filled in using the order in the second parent avoiding elements
already present in the offspring before the crossover point. We call this crossover
1 Proving that a recombination operator is not a one-point geometric crossover requires

showing it for any choice of the underlying distance, and not only for a specific

distance. See Moraglio’s PhD thesis [5] for how to prove this type of general negative

results.



88 A. Moraglio

insertion cut-and-fill crossover. Figure 2 (left) shows an example of this crossover.
P1 and P2 are the parent permutations and O is the offspring permutation. The
vertical bar in P1 indicates the crossover point, and the dashes indicate elements
of parent P2 whose relative order is preserved in the offspring O. The insertion
cut-and-fill crossover is one-point geometric because it is equivalent to a sorting
crossover based on the insertion move: it is like sorting parent P2 into parent P1
using the insertion sort algorithm and stopping it when all the elements before
the crossover point are sorted.

P1: a b c|d e f
_ _ _

P2: c d b f e a

O: a b c d f e

P1: a b c|d e f

P2: c d b f e a
_ _
a d b f e c

_ _
a b d f e c

_ _
O: a b c f e d

Fig. 2. Insertion cut-and-fill crossover (left) and swap cut-and-fill crossover (right)

The connection between cut-and-fill crossover and sorting crossover suggests
that more types of cut-and-fill crossovers can be defined depending on the type
of move used as base of the sorting. So we can define a swap cut-and-fill crossover
that sorts parent P2 into parent P1 using selection sort (swap-based minimal
sort algorithm) and stopping it when the elements before the crossover point
are sorted. Since swap cut-and-fill crossover is based on a deterministic sorting
algorithm, it is a one-point geometric crossover. Figure 2 (right) gives an example
of swap cut-and-fill crossover. Using the same parents and the same crossover
point as for the insertion cut-and-fill crossover we obtain a different offspring (the
dashes indicate the elements of parent P2 that have been swapped to match the
order of parent P1). If, as a base of the cut-and-fill crossover, we use the adjacent
swap move that is associated with the bubble sort algorithm, we obtain again the
insertion cut-and-fill crossover. This happens because, apart from the number
of moves required (an insertion is equivalent to a sequence of adjacent swaps),
after ordering the elements of parent P2 into the order of parent P1 up to the
crossover point the order of the remaining elements is the same as when using
insertions or adjacent swaps.

5 Genetic Programming Trees

For GP trees, there are two recombination operators that can be thought as
extensions of one-point crossover for binary strings to GP trees: Koza’s sub-
tree swap crossover [3] and one-point homologous crossover [4]. Koza’s subtree
swap crossover is not a geometric crossover [5]. So it is not a one-point geomet-
ric crossover either because this is a subclass of geometric crossover. Homolo-
gous one-point crossover aligns parent trees at the root and then cut-and-swap



One-Point Geometric Crossover 89

subtrees at the same position in the two parents. The family of homologous
crossovers for GP trees [4] are geometric crossovers under Structural Hamming
distance [5], so also one-point homologous crossover is. However, one-point ho-
mologous crossover is not a one-point geometric crossover [5]. After these two
negative results, one may wonder how one-point geometric crossovers for GP
trees look like. In the following we first present a theorem that helps detect-
ing whether a crossover operator is a one-point geometric crossover. Then we
consider a family of crossovers for GP trees that are a subclass of mask-based
homologous crossover. Since all mask-based homologous crossovers for GP trees
are geometric also this family of crossovers is geometric. Then we show that all
these crossovers are one-point geometric.

Theorem 2. The points o1, o2, . . . , on ∈ [a, b]d belong to a single geodesic g
linking a and b in the metric space d iff they can be ordered as ō1, ō2, . . . , ōn such
that d(a, ō1) + d(ō1, ō2) + . . .+ d(ōn−1, ōn) + d(ōn, b) = d(a, b).

Proof. If such an order exists the length of the path g connecting a and b passing
thought o1, o2, . . . , on is d(a, b). So g is a shortest path linking a and b. If such an
order does not exist, for each order of ō1, ō2, . . . , ōn we have d(a, ō1)+d(ō1, ō2)+
. . .+ d(ōn−1, ōn)+ d(ōn, b) > d(a, b) for the triangular inequality. Then the path
g connecting a and b passing thought o1, o2, . . . , on is larger than d(a, b). So g is
not a shortest path linking a and b. Since o1, o2, . . . , on ∈ [a, b]d, for each point
there exists a geodesic linking a and b passing for that point. Therefore since
there is no geodesic between a and b passing through all points o1, o2, . . . , on

they must belong to distinct geodesics.

Definition 2. (Ordered homologous crossover family) Let us define a total order
on the nodes of the common region of two parent trees. The order is a (determin-
istic) function of the two parents. The offspring that the two parents can produce
are those obtained, exchanging in the parents the node at position 1 in the order,
plus those obtained by exchanging simultaneously the nodes at positions 1 and
2, plus those obtained by exchanging simultaneously nodes at positions 1, 2 and
3 and so on.

For example, we can define a total order on the common region by numbering its
nodes starting from the root and then visiting and numbering successive nodes
of the common region using a breath-first strategy. Then generating uniformly a
random number k between 1 and the number of nodes in the common region and
exchanging in the two parents all nodes up to k. We term this crossover breath-
first homologous geometric crossover. One could change the numbering strategy
with a depth-first or bottom-up or any other strategy that visits all nodes of a
tree in a systematic and deterministic way and obtain new geometric crossover
belonging to the ordered homologous crossover family. Figure 5 illustrates the
breath-first ordered homologous crossover. The crossover mask tells for each
position of the common region from which of the parents to take the node or
subtree to pass to the offspring. The crossover mask on the bottom left is valid
because the nodes from 1 to 5 marked with ’X’ will be passed to the offspring from
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Fig. 3. Breath-first ordered homologous crossover for GP trees: (top) two parent trees

P1 and P2; (center left) their associated hyperschema H(P1,P2) with nodes numbered

in breath-first order; (center right) all the potential offspring applying homologous

crossover to parents P1 and P2 (the part in bold means alternative content of the

tree; in this case there are 5 independent binary alternatives, resulting in 32 possible

offspring); (bottom left) a valid crossover mask for the breath-first ordered homologous

crossover, and (bottom right) an invalid one

parent 1; the node from 6 to 10 marked with ’Y’ will be passed to the offspring
from parent 2. The crossover mask on the right is invalid for the breath-first
ordered homologous crossover because the numbering of the nodes passed to
the offspring from parent 1 (marked with ’X’) is not an uninterrupted sequence
(since X-marked nodes are: 1, 2, 4, 7 and 8).

Theorem 3. Ordered homologous crossovers are one-point geometric crossovers.

Proof. We prove it by showing that the offspring o1, o2, . . . , on generated respec-
tively by exchanging nodes at position 1, and at positions 1 and 2, and at posi-
tions 1, 2 and 3 and so on respect the condition of theorem 2 to be on a geodesic.
It is easy to see that the sequence of offspring is a cumulative sequence of indepen-
dent syntactic differences. Since the metric SHD is a weighted Hamming distance
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it is an additive distance on the contribution of independent syntactic differences.
So we have d(a, b) = d(a, o1)+d(o1, b) and d(a, b) = d(a, o1)+d(o1, o2)+d(o2, b)
and d(a, b) = d(a, o1) + d(o1, o2) + d(o2, o3) + d(o3, b) and so on. So we have
d(a, o1) + d(o1, o2) + . . .+ d(on−1, on) + d(on, b) = d(a, b).

The application of one-point geometric crossover to GP trees is instructive be-
cause it shows that operators that would have been intuitively understood as
reasonable extensions of one-point geometric crossover for binary strings to GP
trees, in fact, are not one-point geometric crossovers. This point deserves some
attention. In intuitive terms, one-point geometric crossover generalizes the aspect
of traditional one-point crossover for binary strings that the offspring must form
a chain of gradual syntactic changes leading from one parent to the other parent.
In particular, the aspect of the traditional one-point crossover that adjacent syn-
tactic elements (adjacent loci in the string) are more likely to be passed together
to the offspring is not captured by the generalization. This is essentially because
this property is very specific of the binary string representation and cannot be
defined in general geometric terms. One might enforce the adjacency property
choosing a specific one-point geometric crossover out of the many possible for
the representation at hand, if some notion of adjacency can be defined for the
specific representation. For example, the breath-first order crossover introduced
above has a property of syntactic adjacency as it can be understood as slicing
the tree incrementally starting from the root (see also figure 5). Although this
property makes this operator more in the spirit of one-point for binary strings,
it is not more one-point geometric than any other operator belonging to the or-
dered homologous crossover family that does not have such a syntactic adjacency
property.

6 Variable-Length Sequences

In previous work [5], we have introduced a class of alignment-based homologous
operators for variable-length sequences in which parent sequences are aligned
optimally on their contents before exchanging genetic material using a crossover
mask on the alignment. This is a closer model of biological recombination at
molecular level than traditional crossovers for binary strings. Then, we proved
that this class of operators are geometric crossovers under edit distance for se-
quences. One-point homologous crossover for sequences is an operator belonging
to the class of alignment-based homologous operators in which the crossover
masks on the alignment are the traditional one-point mask of the one-point
crossover for binary strings. The following result shows that one-point homolo-
gous crossover for sequences is a one-point geometric crossover.

Theorem 4. One-point alignment-based homologous crossover is one-point ge-
ometric crossover under edit distance.

Proof. An optimal edit transcript T contains a smallest set E of edit moves to
transform parent u in parent v. A mask m selects a subset of edit moves Em ⊆ E
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from the transcript T to apply to u and produces the offspring z. z is on a shortest
path for the geometricity of homologous crossover. Any homologous crossover
operator for which all offspring are generated employing a set of masks mi that
forms a total order (when understood as vectors) generates offspring on a single
shortest path between parents. This is because: (i) the sets of edit moves Emi

corresponding to the masks mi can be totally ordered under inclusion; (ii) the
contribution of each edit move to the distance between parents is independent
and additive; (iii) hence, when considered in this order, Emi generate a sequence
of offspring zi on a single shortest path between parents that incrementally leads
from u to v. One-point alignment-based homologous crossover uses crossover
masks that form a total order: (00...0) < (10...0) < (11...0) < ... < (11...1).
So all its offspring are on a single shortest path between parents. Hence it is
one-point geometric.

7 Sets

In previous work [5], we have seen that there is a duality between the geometric
crossover under Hamming distance for binary strings and the geometric crossover
under ins/del edit distance for sets. In fact, these two crossovers, although be-
ing based on two different solution representations, are associated to isomorphic
metric spaces (via the set indicator function), hence they are completely equiv-
alent. Using the duality, in the following we will show the equivalent for sets of
the one-point crossover for binary strings. Let us consider two binary strings of
length 5, p1 = 11000 and p2 = 01110. Let U = {a, b, c, d, e} be the universal set.
The corresponding sets of p1 and p2 are s1 = {a, b} and s2 = {b, c, d}. After re-
moving repetitions, the geodesic path of the traditional one-point crossover (i.e.,
with bit ordering 12345) applied to parents p1 and p2 is 11000, 01000, 01100,
01110. The corresponding sequence of offspring sets is {a, b}, {b}, {b, c}, {b, c, d}.
Notice that this sequence gradually transforms s1 into s2 a move at a time using
the ins/del edit move. This is the interpretation of one-point crossover for sets.

8 Conclusions

One-point geometric crossover clarifies and makes rigorous the notion of one-
point crossover across representations and formalizes the intuition behind it. It
can be used to generate new one-point crossovers for new representations in a
formal way without involving ad-hoc adaptations of the original concept. We
have derived specific one-point crossovers for a number of well-known repre-
sentations. Some of the derived operators correspond to pre-existing operators,
others are new operators. Few pre-existing operators, which were conceived as
analogues of the traditional one-point crossover for other representations, are not
one-point geometric crossovers. In future work, we will derive properties common
to all one-point crossovers, test the new operators experimentally and extend the
geometric framework with the generalization of multi-point crossover.
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Abstract. In this paper we extend a previously proposed randomized landscape
generator in combination with a comparative experimental methodology to study
the behaviour of continuous metaheuristic optimization algorithms. In particular,
we generate landscapes with parameterised, linear ridge structure and perform
pairwise comparisons of algorithms to gain insight into what kind of problems
are easy and difficult for one algorithm instance relative to another. We apply
this methodology to investigate the specific issue of explicit dependency mod-
elling in simple continuous Estimation of Distribution Algorithms. Experimental
results reveal specific examples of landscapes (with certain identifiable features)
where dependency modelling is useful, harmful or has little impact on average
algorithm performance. The results are related to some previous intuition about
the behaviour of these algorithms, but at the same time lead to new insights into
the relationship between dependency modelling in EDAs and the structure of the
problem landscape. The overall methodology is quite general and could be used
to examine specific features of other algorithms.

1 Introduction

An important research direction in evolutionary and metaheuristic optimization is to
improve our understanding of the relationship between algorithms and the optimization
problems that they are applied to. In a general sense, an algorithm can be expected
to perform well if the assumptions that it makes, either explicit or implicit, are well-
matched to the properties of the search landscape or solution space of a given problem
or set of problems.

While it is possible to carry out theoretical investigations of performance and be-
haviour (e.g. by assuming that the problem has a known analytical form), it is also useful
to take a systematic and rigorous approach to the experimental analysis of algorithms.
To this end, randomised problem or landscape generators have some favourable prop-
erties which can be used to gain insights into the behaviour of metaheuristic optimizers
with respect to some underlying properties of the problem instances generated [1].

In this paper we extend a previously proposed randomised landscape generator in
combination with a methodology inspired by [2]. We do pairwise performance com-
parisons of algorithms on 2D test problems with linear ridge structure to gain insight
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into problem difficulty for different algorithm instances. We then use this approach
to investigate the specific issue of explicit dependency modelling in the Estimation of
Multivariate Normal Algorithm (EMNA) compared to the Univariate Marginal Distri-
bution Algorithm (UMDAc) which does not model variable dependencies. The overall
methodology is quite general and can be used to examine experimentally the specific
features of other algorithms.

An outline of the paper is as follows. Sec. 2 gives an overview of the previous work
that provides a basis for the methodology in this paper. The extension of the landscape
generator to incorporate linear ridge structure and some illustrative experiments are
presented in Sec. 3. In Sec. 4 the extended generator and methodology are used to
study the relationship between dependencies in problem variables and the modelling in
UMDAc and EMNA. Sec. 5 concludes the paper.

2 Using a Landscape Generator to Actively Study the Relationship
between Problems and Algorithms

Experimental research in metaheuristics is receiving increasing attention in the litera-
ture as a means of evaluating and comparing the performance of newly proposed and
existing algorithms. This includes the development of large-scale competitions and as-
sociated sets of benchmark test problems (e.g at recent Genetic and Evolutionary Com-
putation Conferences (GECCO) and Congress on Evolutionary Computation (CEC)).
Several different types of test problems have been used for the evaluation of algorithms,
including constructed analytical functions, real-world problem instances or simplified
versions of real-world problems and problem/landscape generators [3, 4, 5]. Different
problem types have their own characteristics, however it is usually the case that comple-
mentary insights into algorithm behaviour result from conducting larger experimental
studies using a variety of different problem types.

Max-Set of Gaussians (MSG) [3] is a randomised landscape generator that specifies
test problems as a weighted sum of Gaussian functions. By specifying the number of
Gaussians and the mean and covariance parameters for each component, a variety of
test landscape instances can be generated. The topological properties of the landscapes
are intuitively related to (and vary smoothly with) the parameters of the generator.

Langdon and Poli use Genetic Programming (GP) to evolve landscapes for the eval-
uation and comparison of metaheuristics [2]. Individuals in the GP are candidate land-
scapes, represented and evolved as 2D polynomial functions. The fitness function for
the GP is the performance difference between two specified algorithms that are run
on a landscape. Consequently, landscapes found by the GP are optimization problems
where one of the algorithms significantly outperforms the other. The results show that
considerable new insights can be gained into the behaviour of the algorithms tested
and their parameter settings. The methodology is generally applicable to compare other
metaheuristic optimization algorithms.

An interesting possibility is to combine the advantages of a randomised landscape
generator with an active search for landscapes that maximise performance difference
between algorithms. This approach allows greater control over the types of landscapes
generated through the parameterisation of the MSG generator, compared to using a
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GP to evolve arbitrary polynomial functions. Experiments can be conducted while sys-
tematically and incrementally varying the landscape parameters. If a parameterisation
is found that produces significant performance difference between two algorithms, a
large number of problem instances can be generated with known topological features
for analysis and further experimentation.

3 Extending the Landscape Generator to Incorporate Ridge
Structure

In this paper we consider 2D continuous optimization problems:

max
f

f(x); x = (x1,x2) ∈ IR2; f : IR2 → IR

A symmetric boundary constraint is implemented such that x ∈ [−1, 1]2 by rejecting
any search points generated by an algorithm that lie outside the feasible region.

3.1 Constructing Linear Ridges in Randomized Landscapes

Many real world optimization problems are defined over variables with significant
dependency relationships. This suggests objective fitness function landscapes with cor-
relation structure or ridges in their contours. In [3] parameterisations of the MSG gen-
erator are described that generate localised dependencies, with peaks either uniformly
distributed around the space or in a “big valley” structure. However, these rarely lead
to global dependency structure and cannot be controlled directly from the generator pa-
rameters. We propose an extension to the MSG generator that incorporates linear ridge
structure as follows. In two dimensions, a line through the search space is given by

ax1 + bx2 + c = 0 (1)

Our aim is to generate linear ridges positioned randomly in the search space, with a
random angle to the coordinate axes. A ridge can be formed by positioning a number
of Gaussian components such that their means are distributed along a line. This can be
done by generating two points along the bounds of the search space, where each point
is along a different boundary. The two points are then used to solve Eqn. 1 for a, b and
c. Then, the mean points of the n Gaussians are determined by generating values of x1

from U [−1, 1] and using Eqn. 1 to find the respective values of x2.
The orientation (rotation angle) of each Gaussian component on the ridge is deter-

mined via its covariance structure. Firstly, an orientation angle is randomly generated.
This would impose a homogeneous structure on the ridge with every local peak at the
same orientation (between completely aligned with, or orthogonal to the linear ridge).
To add further variety, the orientation of each component is subsequently adjusted by
a small amount of noise. Examples of ridge landscapes resulting from this method are
shown in Fig. 1.
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Fig. 1. Example ridge-structured landscape instances from the extended MSG generator

3.2 Illustrative Experiments

To examine the effect of ridge structure on algorithm performance, we compared the
Direct algorithm [6], UMDAc (see Sec. 4) and an implementation of Simulated An-
nealing on random (i.e. with component mean values uniformly distributed in the fea-
sible search space), big valley and ridge structured landscapes over a varying number
of components. For each value, we ran these algorithms on 30 problem instances, with
30 random restarts per instance. Fig. 2(a) shows the average performance difference
between Direct and UMDAc over restarts for all problem instances. We see that Direct
and UMDAc perform quite similarly on big valley, but quite differently on random land-
scapes. On ridge landscapes, the difference is somewhere in between. Performance is
also not strongly related to the number of Gaussian components, except perhaps when
the number of components equals 1. In this case, the difference is consistently very
small for big valley landscapes, since the global peak will be biased towards the centre
of the search space. This is not true for random and ridge landscapes.

Fig. 2(b) shows the performance difference between Direct and Simulated Anneal-
ing. There is some concentration of points close to zero performance difference, that is,
trials where the two algorithms performed almost identically (e.g. both found the global
optimum). However, a larger fraction of the results is distributed around a performance
difference value of approximately 0.6. Not surprisingly, this is strongly related to the
structure of the generated landscapes. The generator includes specification of a thresh-
old between the maximum height of local optima (for these results 0.5) and the height
of the global optimum (1.0). This threshold will appear in the results of many different
algorithms for these landscapes, as most algorithms tend to converge to either the global
or a local optimum.

4 Comparing EMNA and UMDAc in Terms of Landscape
Dependency Structure

EDAs are a class of metaheuristic optimization algorithms that build and use a prob-
abilistic model to direct the search process [7, 8]. For continuous problems, the most
commonly used model is a Gaussian or Normal distribution with specified covariance
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Fig. 2. Performance comparison results with varying numbers of components in the landscapes
generated. Top: random landscapes; Middle: ridge landscapes; Bottom: “big valley” landscapes.

structure. The continuous Univariate Marginal Distribution Algorithm (UMDAc) uses
a diagonal covariance matrix, corresponding to a factorised product of univariate Nor-
mal distributions. The Estimation of Multivariate Normal (EMNA) algorithm uses a full
covariance matrix corresponding to an unrestricted multivariate Normal distribution [7].

One of the major issues that has been explored across EDA research, and has mo-
tivated the work in Sec. 3 has been the incorporation of dependency modelling in the
probabilistic model of the algorithms. The general assumption is that many real world
optimization problems are defined over variables that have unknown dependency rela-
tionships between them. Therefore, a model that has the ability to capture and exploit
dependencies between problem variables can be expected to provide good performance
on such problems. This argument has been experimentally verified several times in the
context of developing new algorithms for both continuous and binary problems. If such
a model works well for a given optimization problem, it suggests that there are features
present in the fitness landscape that the model is able to fit well, but there are few re-
ported studies that specifically analyse the relationship between landscape properties
and dependency modelling in EDAs.

4.1 Experimental Results on Ridge Landscapes

In this Section we use the landscape generator described above to evaluate and compare
the performance of UMDAc and EMNA. Our assumption is that linear ridges on the
landscape result from a very simple and direct dependency relationship between x1 and
x2. A set of experiments was carried out as follows. The rotation angle of components
in the landscapes (see Sec. 3) was varied between 0 and 45 degrees with increments of
1 degree with random noise of ± 5 degrees. At each angle, 30 randomised landscapes
were generated and 30 trials of each algorithm were conducted on each landscape. Each
algorithm used a population size of 50, selection threshold of 0.8 and was run for 50
generations.

Fig. 3 shows the mean fitness difference between UMDAc and EMNA in terms
of best fitness values found on each landscape instance. Counter to our assumption
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Fig. 3. Fitness difference between UMDAc and EMNA with varying rotation angle between
the ridge and the coordinate axes in the generated landscapes. Fitness difference overall is not
correlated with the angle of the ridge. Points tend to be distributed with fitness difference above
0, indicating that UMDAc actually outperforms EMNA on average across these landscapes.
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Fig. 4. Example landscape instances where UMDAc outperforms EMNA

and intuition, the results show no obvious trend between the angle of rotation and
the fitness difference of the two algorithms. More surprisingly, UMDAc tends to out-
perform EMNA regardless of the rotation angle of the ridge, with fitness differences
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concentrated between 0 and 0.1 and skewed in favour of UMDAc (positive values).
Our expectation was that the full covariance model of EMNA would be more capable
of capturing the dependencies within the ridge-structured landscapes.

One benefit of using a landscape generator is that it is possible to analyse results
on specific landscape instances. Each data point in Fig. 3 represents a performance
difference between the two algorithms averaged over 30 trials. To further investigate
the above results, we selected three samples of the landscape instances from Fig. 3
corresponding to the maximum, minimum and approximately zero fitness differences.
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Fig. 5. Example landscape instances where EMNA outperforms UMDAc

Fig. 4 shows 9 example landscape instances where UMDAc significantly outper-
forms EMNA. Ridges in these landscapes tend to be axis aligned, but exhibit significant
variation in height along the top of the ridge. Global peaks are relatively narrow com-
pared to other peaks in the landscape and are strongly positioned toward the boundaries
of the search space.

In contrast, Fig. 5 shows landscape instances where EMNA significantly outperforms
UMDAc. Ridges in these landscapes are more diagonal than those in Fig. 4, reflecting
stronger correlation between x1 and x2. The global peaks in Fig. 5 tend to be highly
elliptical, as well as being narrow and located near the boundary of the search space.

Fig. 6 shows landscape instances where the performance of EMNA and UMDAc is
almost identical. Global peaks within these landscape are much more regular than those
in Figs. 4 and 5 in the sense that they have wider variance, are less elliptical and are
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Fig. 6. Example landscape instances where UMDAc and EMNA perform almost equally

positioned closer to the centre of the search space. Most of the landscapes in Fig. 6 have
ridges that are closely aligned to the coordinate axes.

It is clear from Figs. 4-6 that the performance difference between the algorithms
is strongly influenced by identifiable features of the landscape. The main topological
features that we have observed above are the regularity, position and orientation of the
ridge as well as the position and orientation of the global peak relative to the ridge
and how elliptical it is. It seems likely that a number of factors are responsible for
the performance differences observed in the above experiments. The summary of all
results in Fig. 3 focus on a single factor (i.e. orientation) in isolation, but no trend is
observed because of the variability in the generated landscape instances contributed by
other factors. When these factors are identified and controlled or constrained, clearer
performance difference trends may be seen. From Fig. 5, when EMNA outperforms
UMDAc, the landscape does tend to have a diagonal ridge in agreement with our initial
assumption. But this is in combination with a global peak that is relatively small, located
close to the search space boundary and is highly elliptical in a direction orthogonal to
the ridge itself. In contrast, the landscapes where UMDAc outperforms EMNA (Fig. 4)
also tend to have a small global peak located close to the boundary, but the ridges are
closely axis-aligned. Furthermore, the global peak is less elliptical, and the ridge itself
is often closer to the boundary.
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4.2 Discussion and Related Work

The results above can be related to what is already known about the behaviour of
UMDAc and EMNA. It has been shown that the modelling in EMNA does not lead
to efficient progress on a linear correlated slope function: the variance of the model
extends orthogonally to the direction of increasing fitness (i.e. in the worst possible
direction) [9, 10]. This is equally true of UMDAc if the contours of the slope are
axis-aligned, but since the UMDAc model cannot completely capture a linear depen-
dence, it should outperform EMNA on a correlated slope. Our general observation
that UMDAc tends to outperform EMNA on ridge landscapes (Fig. 3) supports this
reasoning.

For univariate or factorisable problems (i.e. uncorrelated variables), UMDAc is also
known to converge prematurely on any monotonic or flat function [11, 12, 13, 14] while
convergence is fast on a unimodal function when the model is ”close enough” to the
optimum. In the landscapes generated above, a ridge on the search space boundary is
globally similar to a monotonic slope (in the direction orthogonal to the ridge), while a
ridge through the centre of the search space is more like a unimodal function along most
directions through the search space. In the above experiments we have observed the
tendency of both algorithms to become stuck on the side of a ridge close to the boundary
(such as Fig. 1(b)). However, in practice the behaviour of the algorithms is affected by
the interaction of several different factors: ridge location and rotation, global peak size,
orientation (with respect to the ridge direction) and eccentricity (see the discussion
above). Additional experiments are required to study the interactions of these factors
relative to algorithm performance.

5 Conclusions

This paper proposes a general experimental methodology, combining a randomised
landscape generator with an active search for problems that differentiate between al-
gorithms. More specifically, an existing generator was extended to incorporate global
ridge dependency structure. This was used to investigate the relationship between prob-
lem variables and dependency modelling in simple continuous EDAs. The results give
insight into the relationship between algorithm performance and landscape structure.
They also indicate that, even for parameterised benchmark functions, the experimen-
tal behaviour of metaheuristics is a highly complex function of the properties of the
problem landscape.

Although the methodology presented is general, the experiments described above
were limited to 2D problems and the algorithmic parameter settings used. Examining
higher-dimensional problems and integrating the variation of algorithm parameters are
avenues for future work. A longer-term goal of this type of exploratory work is to be
able to more precisely categorise or quantify the relationship between landscape struc-
ture and algorithm behaviour.
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Abstract. This paper extends a recently proposed model for combinatorial
landscapes: Local Optima Networks (LON), to incorporate a first-improvement
(greedy-ascent) hill-climbing algorithm, instead of a best-improvement (steepest-
ascent) one, for the definition and extraction of the basins of attraction of the
landscape optima. A statistical analysis comparing best and first improvement
network models for a set of NK landscapes, is presented and discussed. Our re-
sults suggest structural differences between the two models with respect to both
the network connectivity, and the nature of the basins of attraction. The impact
of these differences in the behavior of search heuristics based on first and best
improvement local search is thoroughly discussed.

1 Introduction

The performance of heuristic search algorithms crucially depends on the structural as-
pects of the spaces being searched. An improved understanding of this dependency, can
facilitate the design and further successful application of these methods to solve hard
computational search problems. Local optima networks (LON) have been recently in-
troduced as a novel model of combinatorial landscapes [6,7,8]. This model allows the
use of complex network analysis techniques [5] in connection with the study of fitness
landscapes and problem difficulty in combinatorial optimisation. The model, inspired
by work in the physical sciences on energy surfaces [3], is based on the idea of com-
pressing the information given by the whole problem configuration space into a smaller
mathematical object which is the graph having as vertices the optima configurations of
the problem and as edges the possible weighted transitions between these optima (see
Figure 1). This characterization of landscapes as networks has brought new insights
into the global structure of the landscapes studied, particularly into the distribution of
their local optima. Moreover, some network features have been found to correlate and
suggest explanations for search difficulty on the studied domains. The study of local
optima networks has also revealed new properties of the basins of attraction.

The current methodology for extracting LONs requires the exhaustive exploration
of the search space, and the use of a best-improvement (steepest-ascent) local search
algorithm from each configuration. In this paper, we are interested in exploring how the
network structure and features of a given landscape will change, if a first-improvement
(greedy-ascent) local search algorithm is used instead for extracting the basins and tran-
sition probabilities. This is apparently simple but, in reality, requires a careful redefi-
nition of the concept of a basin of attraction. The new notions will be presented in the
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Fig. 1. Visualisation of the weighted local optima network of a small NK landscape (N = 6,
K = 2). The nodes correspond to the local optima basins (with the diameter indicating the size
of basins, and the label “fit”, the fitness of the local optima). The edges depict the transition
probabilities between basins as defined in the text.

next section. Following previous work [7,8], we use the well-known family of NK
landscapes [4] as an example, as it allows the exploration of landscapes of tunable
ruggedness and search difficulty.

The article is structured as follows. Section 2, includes the relevant definitions and
algorithms for extracting the LONs. Section 3 describes the experimental design, and
reports the analysis of the extracted networks, including a study of both their basic
features and connectivity, and the nature of the basins of attraction of the local optima.
Finally, section 4 discusses our main findings and suggest directions for future work.

2 Definitions and Algorithms

A Fitness landscape is a triplet (S,V, f) where S is a set of potential solutions i.e. a
search space, V : S −→ 2S , a neighborhood structure, is a function that assigns to
every s ∈ S a set of neighbors V (s), and f : S −→ R is a fitness function that can be
pictured as the height of the corresponding solutions. In our study, the search space is
composed by binary strings of length N , therefore its size is 2N . The neighborhood is
defined by the minimum possible move on a binary search space, that is, the 1-move or
bit-flip operation. In consequence, for any given string s of length N , the neighborhood
size is |V (s)| = N . The HillClimbing algorithm to determine the local optima and
therefore define the basins of attraction, is given in Algorithm 1. It defines a mapping
from the search space S to the set of locally optimal solutions S∗.

First-improvement differs from best-improvement local search, in the way of select-
ing the next neighbor in the search process, which is related with the so-called pivot-
rule. In best-improvement, the entire neighborhood is explored and the best solution is
returned, whereas in first-improvement, a solution is selected uniformly at random from
the neighborhood (see Algorithm 1).
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Algorithm 1. Best-improvement (left) and first-improvement (right) algorithms.

Choose initial solution s ∈ S
repeat

choose s
′ ∈ V (s), such that f(s

′
) =

maxx∈V (s)f(x)

if f(s) < f(s
′
) then

s ← s
′

end if
until s is a Local optimum

Choose initial solution s ∈ S
repeat

choose s
′ ∈ V (s) using a predefined ran-

dom ordering

if f(s) < f(s
′
) then

s ← s
′

end if
until s is a Local optimum

First, let us define the standard notion of a local optimum.

Local optimum (LO). A local optimum, which is taken to be a maximum here, is a
solution s∗ such that ∀s ∈ V (s), f(s) ≤ f(s∗).

Let us denote by h, the stochastic operator that associates to each solution s, the solu-
tion obtained after applying one of the hill-climbing algorithms (see Algorithms 1) for
a sufficiently large number of iterations to converge to a LO. The size of the landscape
is finite, so we can denote by LO1, LO2, LO3 . . . ,LOp, the local optima. These LOs
are the vertices of the local optima network.

Now, we introduce the concept of basin of attraction to define the edges and weights
of our network model. Note that for each solution s, there is a probability that h(s) =
LOi. We denote pi(s) the probability P (h(s) = LOi). We have that for:

Best-improvement: for a given solution s, there is a (single) local optimum, and thus
an i, such that pi(s) = 1 and ∀j = i, pj(s) = 0.

First-improvement: for a given solution s, it is possible to have several local optima,
and thus several i1, i2, . . . , im, such that pi1(s) > 0, pi2(s) > 0, . . . , pim(s) > 0.

For both models, we have, for each solution s ∈ S,
∑n

i=1 pi(s) = 1.
Following the definition of the LON model in neutral fitness landscapes [8], we have

that:

Basin of attraction. The basin of attraction of the local optimum i is the set bi = {s ∈
S | pi(s) > 0}. This definition is consistent with our previous definition [7] for the
best-improvement case.

The size of the basins of attraction can now be defined as follows:

Size of a basin of attraction. The size of the basin of attraction of a local optimum i is∑
s∈S pi(s).

Edge weight. We first reproduce the definition of edge weights for the non-neutral
landscape, and best-improvement hill-climbing [7]: For each solutions s and s

′
, let

p(s → s
′
) denote the probability that s

′
is a neighbor of s, i.e. s

′ ∈ V (s). Therefore,
we define below: p(s → bj), the probability that a configuration s ∈ S has a neighbor
in a basin bj , and p(bi → bj), the total probability of going from basin bi to basin bj ,
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which is as the average over all s ∈ bi of the transition probabilities to solutions s
′ ∈ bj

(where �bi is the size of the basin bi):

p(s→ bj) =
∑

s′∈bj

p(s→ s
′
), p(bi → bj) =

1
�bi

∑
s∈bi

p(s→ bj)

For first and best improvement hill-climbing, we have defined the probability pi(s) that
a solution s belongs to a basin i. We can, therefore, modify the previous definitions to
consider both types of network models:

p(s→ bj) =
∑

s′∈bj

p(s→ s
′
)pj(s

′
), p(bi → bj) =

1
�bi

∑
s∈bi

pi(s)p(s→ bj)

In the best-improvement, we have pk(s) = 1 for all the configurations in the basin bk.
Therefore, the definition of weights for the best-improvement case is consistent with
the previous definition. Now, we are in a position to define the weighted local optima
network:

Local optima network. The weighted local optima network Gw = (N,E) is the graph
where the nodes are the local optima, and there is an edge eij ∈ E, with weight wij =
p(bi → bj), between two nodes i and j if p(bi → bj) > 0.

According to our definition of edge weights, wij = p(bi → bj) may be different than
wji = p(bj → bi). Thus, two weights are needed in general, and we have an oriented
transition graph.

3 Analysis of the Local Optima Networks

The NK family of landscapes [4] is a problem-independent model for constructing
multimodal landscapes that can gradually be tuned from smooth to rugged. In the
model, N refers to the number of (binary) genes in the genotype (i.e. the string length)
and K to the number of genes that influence a particular gene. By increasing the value
ofK from 0 toN−1,NK landscapes can be tuned from smooth to rugged. TheK vari-
ables that form the context of the fitness contribution of gene si can be chosen according
to different models. The two most widely studied models are the random neighborhood
model, where the K variables are chosen randomly according to a uniform distribu-
tion among the n − 1 variables other than si, and the adjacent neighborhood model,
in which the K variables that are closest to si in a total ordering s1, s2, . . . , sn (using
periodic boundaries). No significant differences between the two models were found in
[4] in terms of the landscape global properties, such as mean number of local optima
or autocorrelation length. Similarly, our preliminary studies on the characteristics of
the NK landscape optima networks, did not show noticeable differences between the
two neighborhood models. Therefore, we conducted our full study on the more general
random model.

In order to minimize the influence of the random creation of landscapes, we consid-
ered 30 different and independent landscapes for each combination of N and K param-
eter values. In all cases, the measures reported, are the average of these 30 landscapes.
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The study considered landscapes withN ∈ {14, 16} andK ∈ {2, 4, . . . ,N−1}, which
are the largest possible parameter combinations that allow the exhaustive extraction of
local optima networks. Both best-improvement and first-improvement local optima net-
works (b-LON and f-LON, respectively) were extracted and analyzed.

3.1 Network Features and Connectivity

This section reports the most commonly used features to characterise complex net-
works, in both the f-LON and b-LON models.

Table 1. NK landscapes network properties. Values are averages over 30 random instances,
standard deviations are shown as subscripts. nv and ne represent the number of vertexes and
edges, C̄w, the mean weighted clustering coefficient. Ȳ represent the mean disparity coefficient,
d̄ the mean path length, and d̄best the mean path length to the global optimum (see text for
definitions).

K n̄v n̄e/n̄2
v C̄w Ȳ d̄ d̄best

N = 14

both b-LON f-LON b-LON b-LON f-LON b-LON f-LON b-LON f-LON
2 146 0.89 1.00 0.980.015 0.3670.0934 0.1720.0977 76194 2818 136 106

4 7010 0.64 1.00 0.920.013 0.1480.0101 0.0480.0079 896 867 268 2311

6 18415 0.37 1.00 0.790.014 0.0930.0031 0.0250.0017 1193 1406 449 4916

8 35022 0.21 1.00 0.660.015 0.0700.0020 0.0170.0008 1332 1834 6710 9520

10 58522 0.12 1.00 0.540.009 0.0580.0010 0.0140.0004 1391 2183 8411 14126

12 89622 0.07 1.00 0.460.004 0.0520.0006 0.0130.0002 1401 2472 10211 19642

13 1, 08520 0.06 1.00 0.420.004 0.0500.0006 0.0130.0002 1391 2591 1049 21838

N = 16

both b-LON f-LON b-LON b-LON f-LON b-LON f-LON b-LON f-LON
2 3315 0.81 1.00 0.960.024 0.3260.0579 0.1100.0590 5614 3911 165 125

4 17833 0.60 1.00 0.920.017 0.1370.0111 0.0330.0064 1268 12713 359 3213

6 46029 0.32 1.00 0.790.015 0.0840.0028 0.0160.0014 1703 2158 6015 7023

8 89033 0.17 1.00 0.650.010 0.0620.0011 0.0110.0004 1942 2825 8313 11826

10 1, 47034 0.09 1.00 0.530.007 0.0500.0006 0.0090.0002 2061 3403 11215 18330

12 2, 25432 0.05 1.00 0.440.003 0.0430.0003 0.0080.0001 2071 3802 14316 27148

14 3, 26429 0.03 1.00 0.380.002 0.0400.0003 0.0080.0001 2031 4111 15813 35151

15 3, 86833 0.02 1.00 0.350.002 0.0390.0004 0.0080.0000 2001 4231 16213 39187

Number of nodes and edges: The 2nd column of Table 1, reports the number of nodes
(local optima),nv, for all the studied landscapes. The b-LONs and f-LONs have the
same local optima, since both local search algorithms, although using a different pivot-
rule, are based on the bit-flip neighborhood. The networks, however, have a different
number of edges, as can be appreciated in the 3rd and 4th columns of Table 1, which
report the number of edges normalized by the square of the number of nodes. Clearly,
the number of edges is much larger for the f-LONs. This number is always the square of
the number of nodes, which indicates that the f-LONs are complete graphs. It is worth
noticing, however, that many of the edges have very low weights (see Figure 2). For the
b-LON model, the number of edges decrease steadily with increasing values of K .
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Clustering coefficient or transitivity: The clustering coefficient of a network is the
average probability that that two neighbors of a given node are also neighbors of each
other. In the language of social networks, the friend of your friend is likely also to be
your friend. The standard clustering coefficient [5] does not consider weighted edges.
We thus used the weighted clustering measure proposed by [1]. The 5th column of table
1 lists the average coefficients of the b-LONs for all N and K . It is apparent that the
clustering coefficients decrease regularly with increasingK , which indicates that either
there are less transitions between neighboring basins for high K , and/or the transitions
are less likely to occur. On the other hand, the f-LONs correspond to complete networks;
the calculation of the clustering coefficients revealed that ∀i, cw(i) = 1.0 (not shown
in the Table). Therefore, the f-LON is densely connected for all values of K .

Disparity: The disparity measure proposed in [1], Y (i), gauges the heterogeneity of
the contributions of the edges of node i to the total weight. Columns 6th and 7th in
Table 1 depict the disparity coefficients, for both network models, respectively. The
heterogeneity decreases with increasing values of K . This reflects that with high values
of K , the transitions to other basins tend to become equally likely, an indication of a
more random structure (and thus a difficult search). It can also be seen that the weights
for the f-LON model are less heterogenous (more uniform) than for the b-LON one.

Shortest path length: Another standard metric to characterize the structure of networks
is the shortest path length (number of link hobs) between two nodes on the network. In
order to compute this measure on the optima network of a given landscape, we consid-
ered the expected number of bit-flip mutations to pass from one basin to the other. This
expected number can be computed by considering the inverse of the transition proba-
bilities between basins. More formally, the distance between two nodes is defined by
dij = 1/wij where wij = p(bi → bj). Now, we can define the length of a path be-
tween two nodes as being the sum of these distances along the edges that connect the
respective basins. Columns 9th and 7th in Table 1 report this measure on the two net-
work models. In both cases, the shortest path increases with K , however, for the b-LON
the growth stagnates for larger K values. The paths are considerably longer for the f-
LON, with the exception of the lowest values of K . Some paths are more relevant from
the point of view of a stochastic local search algorithm following a trajectory over the
maxima network. Therefore, columns 10th and 11th in Table 1, report the shortest path
length to the global optimum from all the other optima in the landscape. The trend is
clear, the path lengths to the optimum increase steadily with increasingK , and similarly,
the first-improvement network shows longer paths. This suggest that a larger number of
hops will be needed to find the global optimum when a first-improvement local search
is used. We must consider, however, that the number of evaluations needed to explore a
basin, would be N times lower for first-improvement than for best-improvement.

Outgoing weight distribution: The standard topological characterization of
(unweighed) networks is obtained by its degree distribution. The degree of a node is
defined as its number of neighbours, and the degree distribution of a network is the
distribution over the frequencies of different degrees over all nodes in the network. For
weighted networks, a characterization of weights is obtained by the connectivity and
weight distributions pin(w) and pout(w) that any given edge has incoming or outgoing
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weight w. In our study, for each node i, the sum of outgoing edge weights is equal to 1
as they represent transition probabilities. So, an important measure is the weight wii of
self-connecting edges (remaining in the same node). We have the relation:wii +si = 1.

Figure 2, reports the outgoing weight distributions pout(w) (in log-scale on x-axis) of
both the f-LON and b-LON networks on a selected landscape withK = 6, andN = 16.
One can see that the weights, i.e. the transition probabilities to neighboring basins are
small. The distributions are far from uniform or Poissonian, they are not close to power-
laws either. We couldn’t find a simple fit to the curves such as stretched exponentials or
exponentially truncated power laws. It can be seen that the distributions differ for the
first and best LON models. There is a larger number of edges with low weights for the f-
LONs than for the b-LONs. Thus, even though the f-LONs are more densely connected
(indeed they are complete graphs) many of the edges have very low weights. For both
networks models, we found that the wii weights (i.e. the probabilities of remaining in
the same basin after a bit-flip mutation) are much higher when compared to those wij

with j = i. The wii are much lower for the first than for the best LON. In particular,
in the studied b-LON, for K = 2, around 50% of the random bit-flip mutations will
produce a solution within the same basin of attraction, whereas this figure is of less
than 20% in the f-LON. Indeed, in this case, for K greater than 4, the probabilities of
remaining in the same basin fall below 10%, which suggests that escaping from local
optima would be easier for a first-improvement local searcher.

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

 0.08

 0.09

 0.1

 0.0001  0.001  0.01  0.1  1

P
(W

ij=
w

)

w

first
best

Fig. 2. Probability distribution of the network weights wij for outgoing edges with j 	= i (in
logscale on x-axis) for N = 16, K = 6. Averages on 30 independent landscapes.

3.2 Basins of Attraction Features

The previous section studied and compared the basic network features and connectivity
of the first and best LONs. The exhaustive extraction of the networks, also produced
detailed information of the corresponding basins of attraction. Therefore, this section
discusses the most relevant of the basin’s features.

Size of the global optimum basin: When exploring the average size of the
global optimum basin of the f-LONs, we found that they decrease exponentially with
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increasing ruggedness (K values). This is consistent with the results for the b-LON
on these landscapes [7]. Moreover, the basins sizes for both networks are similar, with
those of f-LON being slightly smaller. This may suggest that for the the same number
of runs, the success rate of a first-improvement heuristic would be lower. One needs to
consider, however, that the number of evaluations per run is smaller in this case.

Basin sizes of the two network models: A comparative study of the basin sizes of the
two network models revealed that they are highly correlated. Only the smallest basins
of the f-LON model are larger in size when compared to the corresponding smallest
basins in the b-LON model.

Basin size and fitness of local optima: Fig. 3 reports the correlation coefficients ρ
between the networks’ basin sizes and their fitness, for both the first and best LONs,
and landscapes with N = 16 and all the K values. It can be observed that there is a
strong correlation between fitness and basin sizes for both types of networks. Indeed,
for K ≤ 10, the correlation is over ρ > 0.8. For rugged landscapes, K > 8, the f-LON
shows reduced and decreasing coefficients as compared to the b-LON.
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Fig. 3. Average of the correlation coefficient between the fitness of local optima and their corre-
sponding basin sizes on 30 independent landscapes for both f-LON and b-LON (N = 16, and all
the K values)

Number of basins per solution on the f-LONs: According to the definition of basins
(see section 2), for the f-LON, a given solution may belong to a set of basins. Fig. 4 (a)
shows the average number of basins to which a solution belongs (i.e. �{i | pi(s) > 0}).
It can be observed that for N = 16 and K = 4, a solution belongs to nearly 70% of the
total number of basins, whereas for K = 14, a solution belongs to less than 30% of the
total number of basins. On average, a solution belongs to less basins for high K than
for low K . An exploration of the average number of basin per solution, according to the
solution fitness value (Fig. 4 (b), for N = 16) reveals a striking difference. While low
fitness solutions belong to nearly all basins, high fitness solutions belong to at most one
basin. The figure suggest the presence of a phase transition, in which the threshold of
the transition is lower for high K than for low K . This suggests that the structure of the
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Fig. 4. (a) Average number of basins to which a solution belongs. (b) For N = 16 and 3 selected
values of K, the number of basins per solution according to the solution fitness value. Averages
on 30 independent landscapes.

f-LON network for solutions with high fitness, resembles that of the b-LON, whereas
the topology is different with respect to solutions with low fitness.

4 Discussion

We have extended the recently proposed Local Optima Network (LON) model to ana-
lyze the structural differences between first and best improvement local search, in terms
of the local optima network connectivity and the nature of the corresponding basins of
attraction. The results of the analysis, on a set of NK landscapes can be summarized
as follows. The impact of landscape ruggedness (K value) on the network features is
similar for both models. First-improvement induces a densely connected network (in-
deed a complete network), while this is not the case on the best-improvement model.
However, many of the edges in the f-LON networks have very low weights. In par-
ticular, the self-connections (i.e. the probabilities of remaining in the same basin after
a bit-flip mutation), are much smaller in the f-LON than in the b-LON model, which
suggests that escaping from local optima would be easier for a first-improvement lo-
cal searcher. The path lengths between local optima, and between any optima and the
global optimum, are generally larger in f-LON than in b-LON networks. We must con-
sider, however, that the number of evaluations needed to explore a basin, would be N
times lower for first-improvement than for best-improvement. We, therefore, suggest
that first-improvement is a better heuristic for exploring NK landscapes. Our prelimi-
nary empirical results support this insight, a detailed account of them will be presented
elsewhere due to space restrictions. Most of our work on the local optima model has
been based on binary spaces andNK landscapes. However, we have recently started the
exploration of permutation search spaces, specifically the Quadratic Assignment Prob-
lem (QAP) [2], which opens up the possibility of analyzing other permutation based
problems such as the traveling salesman and the permutation flow shop problems. Our
current definition of transition probabilities, although very informative, produces highly
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connected networks, which are not easy to study. Therefore, we are currently consid-
ering alternative definitions and threshold values for the connectivity. Finally, although
the local optima network model is still under development, we argue that it offers an
alternative view of combinatorial fitness landscapes, which can potentially contribute
to both our understanding of problem difficulty, and the design of effective heuristic
search algorithms.
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Abstract. In this paper we analyze the impact of mutation schemes

using many difference vectors in Differential Evolution (DE) algorithm.

We show that for an infinite (sufficiently large) number of difference

vectors, distribution of their sum weakly converges to a normal distribu-

tion. This facilitates theoretical analysis of DE and leads to introduction

of a mutation scheme generalizing differential mutation using multiple

difference vectors. The novel scheme uses Gaussian mutation with co-

variance matrix proportional to the covariance matrix of the current

population instead of calculating difference vectors directly. Such modi-

fication, called DE/rand/∞, and its hybridization with DE/best/1 were

tested on the CEC 2005 benchmark and performed comparable or better

than DE/rand/1. Both modified mutation schemes may be easily in-

corporated into other DE variants. In this paper we provide theoretical

analysis, discussion of obtained mutation distributions, and experimental

results.

Keywords: differential evolution, differential mutation, covariance

matrix, mutation distribution.

1 Introduction

Differential Evolution (DE) is a simple yet powerful algorithm performing un-
constrained global minimization in continuous spaces. It differs from other evo-
lutionary algorithms in the sense that distance and direction information from
the current population is used to guide the search process via differential muta-
tion [2]. An outline of the basic DE algorithm is given as Algorithm 1. With P t

i

we denote the i-th individual from the population P t in iteration t. A detailed
description of recent advances in DE and a comparative study of state-of-the-art
DE variants can be found in [5].

Price and Storn [2,6] proposed a few variants of DE algorithm, denoted as
DE/X/Y/Z, where X stands for differential mutation method, Y denotes the
number of difference vectors, and Z indicates crossover method. In this contribu-
tion we concentrate on two basic and most popular variants [8], DE/rand/1/bin
and DE/best/1/bin, where ’bin’ stands for binomial crossover.
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Algorithm 1. Differential Evolution
Initialize parameters: Cr, F , and Np

Initialize population P 0, t ← 0

while stop condition not met do
for all i ∈ {1, 2, ..., Np} do

ui ← mutation(F ; i, P t)

oi ← crossover(CR; P t
i , ui)

if f(oi) ≤ f(P t
i ) then

P t+1
i ← oi

else
P t+1

i ← P t
i

end if
end for
t ← t + 1

end while
Return arg minif(P t

i )

Creating a mutant ui, which will be later recombined with target vector P t
i

is a two-step process. First, a donor vector P t
i1

is selected. In DE/rand/1 it is
chosen with uniform distribution in P t, while in DE/best/1 scheme it is set to
the best point in P t. Next, two other vectors P t

i2
and P t

i3
are drawn with uni-

form distribution from the current population. Indices i1, i2 and i3 are required
to be pairwise distinct and different from population index i. This restriction
protects from creating zero-length difference vectors, which could be harmful for
population diversity. Mutant ui is defined as

ui ← P t
i1 + F · (P t

i2 − P t
i3), (1)

where scaling factor F is a parameter usually set to 0.4 ≤ F < 1, see [2,6,8].
Among various variants of DE, there are some that use two difference vectors

to define mutant, ui ← P t
i +F (P t

i1
−P t

i2
)+F (P t

i3
−P t

i4
), see [2,5,6]. Encouraged

by reports about beneficial influence of multiparent recombination in classical
evolutionary algorithms [1], in this paper we analyze multiple difference vector
DE and generalize it to the case of infinite number of parents. In the following
sections we provide theoretical analysis, discussion of obtained mutation distri-
butions, and experimental results.

2 Differential Mutation Distribution

Choosing a random point from population P t may be interpreted as a realization
of a random variable XP t depicting uniform random distribution within the
population P t. Consider a random variable V i,i1

P t corresponding to possible values
of difference vectors for population P t, target vector P t

i and donor vector P t
i1

. It
may be expressed as a product of a scaling factor F and two randomly chosen
points distinct from target vector, donor vector and each other

V i,i1
P t = F ·

(
XP t\{P t

i ,P t
i1

} −XP t\{P t
i ,P t

i1
,P t

i2
}
)
.
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For each P t, i, and i1, distributions of V i,i1
P t have zero mean and are symmetric

about the origin, as for each difference vector F · (P t
i2
− P t

i3
) an opposite vector

F · (P t
i3 − P t

i2) exists. Except for very small populations, random variables V i,i1
P t

and V j,j1
P t have very simillar distributions and can be jointly approximated by a

random variable VP t ,

V i,j
P t ≈ VP t = F · (XP t −XP t) . (2)

This reflects the case, in which indices i, i1, i2 and i3 are not required to be
pairwise distinct. Consequently, covariance matrix cov

(
V i,i1

P t

)
of any random

variable V i,i1
P t can be approximated by

cov(V i,j
P t ) ≈ cov(VP t) = 2F 2 · cov(XP t). (3)

3 Multivector Differential Mutation

Differential mutation using k difference vectors can be expressed as

ui = P t
i1 + v′ where v′ ∼ V ′i,i1

P t =
k∑

j=1

vj , and vj ∼ V i,i1
P t . (4)

Direct application of this formula causes, however, some inconvenience. Muta-
tion range, measured by the covariance matrix cov(V ′i,i1

P t ) of difference vector
distribution, increases along with the number of difference vectors

cov(V ′i,i1
P t ) = k cov(V i,i1

P t
i

).

To compensate for that, scheme (4) can be redefined, so that covariance matrices
were equal. In this way, mutation range is equivalent to DE variants with one
difference vector.

ui = P t
i1 +

1√
k
v′ where v′ ∼ V ′i,i1

P t =
k∑

j=1

vj , and vj ∼ V i,i1
P t (5)

An offspring vector ui is therefore created by adding a scaled sum of k vec-
tors derived independently from identical distribution V i,i1

P t to the donor vector
P t

i1 . For k → ∞ one can apply the Central Limit Theorem to formula (5) and
conclude, that

1√
k
v′ =

1√
k

k∑
i=1

vi
D−→ N (0, cov(V i,i1

P t )).

This means, that for sufficiently large k, the empirical cumulative distribution
function (cdf) of 1√

k
v′ tends to the cdf of a multivariate normal distribution

N (0, cov(V i,i1
P t )). Hence, for large k, mutation using k difference vectors (5) is

equivalent to adding a normally distributed random variable with zero mean
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and covariance matrix cov(V i,i1
P t ). This is an important observation, as it simpli-

fies formulas describing difference vector distribution and facilitates theoretical
analysis of DE. Furthermore, this result leads to the definition of a generalized
multivector mutation scheme

ui ← P t
i1 + v∞, where v∞ ∼ N

(
0, cov

(
V i,i1

P t

))
. (6)

However, direct application of formula (6) would require computing difference
vector distributions V i,i1

P t and their covariance matrices for each pair of target and
donor vector, which would be very time-consuming. To address these problems,
we used approximate relation (3) obtaining

ui ← P t
i1 +

√
2F · v∞, where v∞ ∼ N (0, cov(XP t)) . (7)

In formula (7), covariance matrix of the current population distribution is com-
puted only once per iteration. Moreover, the distribution of v∞ is continuous
and the mutation range can be tuned with scaling factor F . Since convergence
in distributions happens for k → ∞, we called the above mutation scheme
DE/rand/∞. Proportional dependence between covariance matrix of the cur-
rent population and the covariance matrix used in (7) exploits contour fitting
[6] properties of DE.

4 Discussion

The idea of sampling mutants from a random distribution dependent on the cur-
rent population is widely used in Estimation of Distribution Algorithms [4]. It is
also present in Evolution Strategies, where points undergo a Gaussian mutation
[2]. Moreover, DE with multiple difference vectors or mutation scheme defined
by formula (7), implicitly adapts mutation covariance matrix, which resembles
some solutions used explicitly in a state of the art CMA-ES algorithm [3].

To illustrate differences between DE/rand/1 and DE/rand/∞ we define a
two-dimensional fitness function f , which is a weighted sum of three Gaussian
peaks with means M1 = [−1, 7]T , M2 = [−9,−2]T , M3 = [5,−6]T , covariance
matrices C1 = [5, 2; 2, 1], C2 = [1,−1;−1, 4], C3 = [5,−2;−2, 1] and weights
w1 = 2, w2 = 1, w3 = 2

f(x) =
3∑

i=1

wi
1

2π det(Ci)1/2
exp
(
−1

2
(x−Mi)TC−1

i (x −Mi)
)

DE is invariant with respect to order preserving transformations, i.e. it takes into
account the order between points rather than their fitness values. Consequently,
to give better impression of the fitness function shape, contour lines in Fig. 1,
and 2 are not equally spaced, but are more densely distributed at low values.

Figure 1 presents population located on three competing optima in the search
space and appropriate distributions of difference vectors for DE/rand/1, DE/
rand/2 and DE/rand/∞. To enhance visual analysis of the density of differ-
ence vectors, the number of different points plotted in each figure is equal to
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Fig. 1. Difference vector distributions for population located on competing optima (a),

and mutation methods: (b) – DE/rand/1, (c) – DE/rand/2, (d) – DE/rand/∞
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Fig. 2. Trace of points generated in a single run of algorithms (a) – DE/rand/1/bin,

(b) – DE/rand/∞/bin
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Np(Np − 1), which is the number of all possible pairings of points with different
indices and equals the number of difference vectors in DE/rand/1 scheme. In
case of DE/rand/2 and DE/rand/∞, plotted points were randomly chosen. In
case of DE/rand/1, Fig. 1b, distribution concentrates nearby the origin and in
a few separate groups depicting the difference vectors between points located
in distinct competing optima. For DE/rand/2, Fig. 1c, such groups are blurred,
and the spread of the difference vectors is wider. Mutation scheme DE/rand/∞,
Fig. 1d, explores the whole area between competing optima rather than only
separated groups of points. This property is clearly visible in Fig. 2, where a set
of all points sampled by DE/rand/1/bin and DE/rand/∞/bin is plotted for a
single run of appropriate algorithm. In Fig. 2a one can notice groups of points
sampled away from optima, which are a side effect of presence of competing
optima. In Fig. 2b instead of those groups, narrow Gaussian shapes appear. The
’crosses’ nearby the optima are a consequence of binomial crossover.

Large range of the DE/rand/∞mutation is beneficial, as far as global search is
concerned, but decreases exploitation properties – in Fig. 1d much less points are
located nearby the origin than in Fig. 1b showing difference vector distribution
for DE/rand/1. This may affect the precision of locating a optimum. To deal
with this problem we decided to introduce a modified mutation scheme called
hybrid DE/rand/∞. For each target point we draw a random number from
the uniform distribution in (0, 1). If it is lower than a certain parameter cb,
we perform DE/rand/∞ mutation, otherwise DE/best/1 mutation. We used
cb = 0.8, as our preliminary study showed it provides good balance between
exploration and exploitation. An outline of Hybrid DE/rand/∞ mutation is
depicted as Algorithm 2. The choice of DE/best/1 seems natural for DE and
yields good results. However, DE/rand/∞ may be also hybridized with other
exploitative mutation operators or even local search methods.

Algorithm 2. Hybrid DE/rand/∞ mutation
if rand() < cb then

/** DE/rand/∞ mutation **/

ui ← P t
i1 +

√
2F · vi where vi ∼ N (0, cov(P t))

else
/** DE/best/1 mutation **/

Choose randomly indices i2 and i3, such that i, i2 and i3 be pairwise distinct

ui ← arg minif(P t
i ) + F · (P t

i2 − P t
i3)

end if

5 Experimental Study

To compare performance of the proposed mutation schemes we decided to use
CEC 2005 benchmark, see [9]. It contains 25 problem definitions (functions) and
appropriate evaluation criteria. Functions F1-F5 are unimodal, F6-F12 are basic
multimodal, and F13-F25 are multimodal composition functions composed from
the functions F1-F12. In case of F7 and F25 no bounds are assumed, and only the
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Table 1. Comparison of error values obtained by DE/rand/1/bin and the two proposed

algorithms, DE/rand/∞/bin and Hybrid DE/rand/∞/bin, using Wilcoxon rank sum

test for ten-dimensional and thirty-dimensional CEC 2005 functions

Ten-dimensional functions

F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11 F12 F13

DE/rand/∞/bin · · + + + + − · − − − · −
Hybrid DE/rand/∞/bin · · + + + + · + − · − + ·

F14 F15 F16 F17 F18 F19 F20 F21 F22 F23 F24 F25

DE/rand/∞/bin · − − − · · · · · + · ·
Hybrid DE/rand/∞/bin + − · · · · · + · + · ·

Thirty-dimensional functions

F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11 F12 F13

DE/rand/∞/bin + + + + + + + · − · · · −
Hybrid DE/rand/∞/bin + + + + + + + · − · · · −

F14 F15 F16 F17 F18 F19 F20 F21 F22 F23 F24 F25

DE/rand/∞/bin · · − · − − − · · · + +

Hybrid DE/rand/∞/bin · · · · · · · · · · + +

initialization area is indicated. In some cases the global minimum is located on
bounds. A detailed description of function characteristics end evaluation criteria
can be found in [9].

For each fitness function under investigation, we performed 25 independent
runs of DE/rand/1/bin, DE/rand/∞/bin and Hybrid DE/rand/∞/bin, each
time setting the same initial population for all variants. The maximal number of
function evaluations was set to 105 for ten-dimensional functions and to 3·105 for
thirty-dimensional ones, [9]. After each run, we calculated the difference between
function values in the best solution and in the global minimum, obtaining a
population of 25 error values. To save space, in tables 2 and 3 we present only
the final statistics of the error values for ten- and thirty-dimensional functions:
median and interquartile range (IQR), as well as mean and standard deviation.

For all investigated DE variants we set the same parameter values (scaling fac-
tor F = 0.9, crossover rate Cr = 0.9, population size Np = 30) following the
tuning chosen for DE/rand/1/bin during CEC 2005 competition [7]. Therefore,
DE/rand/∞/bin algorithm was run with potentially suboptimal settings. We also
applied reflection as a method to handle boundary constraints, and for DE/rand/
1/bin method we obtained results which are consistent with those reported in [7].

To compare results for the tested mutation versions we used a two-sided
Wilcoxon rank sum test for equal medians at significance level 0.05. Results
of the test are reported in Tab. 1. In each cell, we put ’+’ whenever one of the
introduced algorithms had significantly lower median than DE/rand/1/bin, ’−’
when it had greater median, and ’·’ when there was no statistically significant
difference.
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Results presented in the Tab. 1-3 indicate that DE/rand/∞ speeds up the
DE algorithm on unimodal and simple multimodal functions, while it may have
disadvantageous impact on some multimodal functions. Addition of an exploita-
tive factor, as in the Hybrid DE/rand/∞, improves the overall performance and
leads to comparable or better solutions than DE/rand/1.

6 Conclusions and Outlook

We showed that the difference vector distribution for the differential mutation
using multiple difference vectors tends to a normal one, whose covariance matrix
is proportional to the covariance matrix of the current population. This result
is a generalization of DE/rand/k mutation schemes for large k and facilitates
theoretical analysis of DE simplifying complicated formulas depicting differential
mutation. Direct application of theoretical results led to the definition of a mu-
tation scheme, which has continuous distribution of difference vectors, although
the population size is finite. Hybridization of this operator with DE/best/1 yields
an algorithm performing equally as good or better than DE/rand/1 on a wide
range of functions. DE/rand/∞ mutation is easy to implement, and may be
incorporated into various DE variants presumably improving their performance.
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General Lower Bounds for the Running Time
of Evolutionary Algorithms
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Abstract. We present a new method for proving lower bounds in evolu-

tionary computation based on fitness-level arguments and an additional

condition on transition probabilities between fitness levels. The method

yields exact or near-exact lower bounds for LO, OneMax, and all func-

tions with a unique optimum. All lower bounds hold for every evolution-

ary algorithm that only uses standard mutation as variation operator.

1 Introduction

Rigorous running time analysis has emerged as an important and active area in
evolutionary computation. Results obtained by mathematical arguments help to
judge the performance of evolutionary algorithms (EAs) on interesting problems
and they can be used to compare different algorithms in a rigorous way. Running
time analyses have been performed for many pseudo-Boolean functions [1] as well
as for many problems from combinatorial optimization [2].

We contribute to this development with a new method for proving lower
bounds for the running time of stochastic search algorithms. This method is
applied to a very broad class of evolutionary algorithms for pseudo-Boolean
optimization. The resulting bounds are not only tight in an asymptotic sense.
They contain best possible leading constants when compared to upper bounds for
the well-known (1+1) EA (see page 126 for a definition). We also make an effort
towards stating bounds with precise constants for all involved terms, without
resorting to asymptotic notation.

2 Previous Work

There is a long history of results on pseudo-Boolean optimization, including
lower bounds. Already Droste, Jansen, and Wegener [3] presented a lower bound
of Ω(n logn) for the (1+1) EA on every n-bit pseudo-Boolean function with
unique global optimum. The constant factor preceding the n logn-term is 1/2 ·
(1 − e−1/2) ≈ 0.196. Wegener [1] mentions a lower bound (1 − ε) · n lnn − cn
where ε > 0 is an arbitrarily small constant and the constant c > 0 depends
on ε. Doerr, Fouz, and Witt [4] presented a lower bound (1− o(1))en lnn for the
(1+1) EA on the function OneMax(x) :=

∑n
i=1 xi. This result was extended by

Doerr, Johannsen, and Winzen [5]. They proved that the same bound holds for
the (1+1) EA on every function with a unique global optimum.

R. Schaefer et al. (Eds.): PPSN XI, Part I, LNCS 6238, pp. 124–133, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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The function LeadingOnes, shortly LO(x) :=
∑n

i=1

∏i
j=1 xi, is another popu-

lar test function that counts the number of leading ones in the bit string. Droste,
Jansen, and Wegener [3] showed that the running time of the (1+1) EA on LO
is at least c1n2 with probability 1− 2−Ω(n), for some constant c1 > 0.

Black-box complexity of search algorithms as introduced by Droste, Jansen,
and Wegener [6] is another method for proving lower bounds. These bounds hold
for all algorithms in a black-box setting where only the class of functions to be
optimized is known, but the precise instance is hidden from the algorithm. Their
results imply that every black-box algorithm needs at least Ω(n/logn) function
evaluations to optimize OneMax and LO (or, to be more precise, straightforward
generalizations to function classes). Very recently Lehre and Witt [7] presented
a more restricted black-box model. If only unary operators are used that are
unbiased w. r. t. bit values and bit positions, every black-box algorithm needs
Ω(n logn) function evaluations for every function with a unique global optimum.

Recently, drift analysis has received a lot of attention [8,9,10]. Assume a non-
negative potential function such that the optimum is reached only if the potential
is 0. If the expected decrease (“drift”) of the potential in one generation is
bounded from below, an upper bound on the expected optimization time follows.
Conversely, an upper bound on the drift implies lower bounds on the expected
optimization time. If there is a drift pointing away from the optimum on a part
of the potential’s domain then exponential lower bounds can be shown [8].

In this work we show that also a more direct approach is sufficient for proving
good lower bounds. We introduce the new lower-bound method in Section 4,
followed by applications for LO in Section 5 and OneMax in Section 6. Section 7
transfers the last result to all functions with a unique optimum.

3 Preliminaries

The presentation in this work is for maximization problems, but it can be eas-
ily adapted for minimization. The technique for proving lower bounds will be
applied to a very general class of evolutionary algorithms. It contains all EAs
that generate μ ∈ � individuals uniformly at random and afterwards only use
standard mutations to generate offspring (see Algorithm 1). The optimization
time is given by the time index t that counts the number of function evaluations.

The parent selection mechanism is very general as any mechanism based
on the time index t and fitness values of previous search points may be used.

Algorithm 1. Scheme of a mutation-based EA
1: create μ individuals x1, . . . , xμ ∈ {0, 1}n uniformly at random.

2: let t := μ.

3: loop
4: select a parent x ∈ {x1, . . . , xt} according to t and f(x1), . . . , f(xt).

5: create xt+1 by copying x and flipping each bit independently with prob. 1/n.

6: let t := t + 1.

7: end loop
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Any mechanism for managing a population fits in this framework. This includes
parent populations and offspring populations with arbitrary selection strategies
and even parallel evolutionary algorithms with spatial structures and migration.

The (1+1) EA is a well-known special case with population size μ = 1. It
maintains a single individual x and in every iteration it creates x′ by standard
mutation of x and replaces x by x′ if f(x′) ≥ f(x) (for maximization problems).
We denote by (1+1) EAμ a generalization of the (1+1) EA that is initialized
with a best individual out of μ individuals generated uniformly at random.

We review the fitness-level method, also known as the method of f -based par-
titions [1]. It yields upper bounds for EAs whose best fitness value in the pop-
ulation never decreases. We call these algorithms elitist EAs. The optimization
time is the number of function evaluations until a global optimum is found.

Theorem 1 (Fitness-level method for proving upper bounds). For two
sets A,B ⊆ {0, 1}n and fitness function f let A <f B if f(a) < f(b) for all
a ∈ A and all b ∈ B. Consider a partition of the search space into non-empty
sets A1, . . . ,Am such that A1 <f A2 <f · · · <f Am and Am only contains global
optima. For a mutation-based EA A we say that A is in Ai or on level i if the
best individual created so far is in Ai. Consider some elitist EA A and let si be
a lower bound on the probability of creating a new offspring in Ai+1 ∪ · · · ∪Am,
provided A is in Ai. Then the expected optimization time of A on f (without the
cost of initialization) is bounded by

m−1∑
i=1

P (A starts in Ai)
m−1∑
j=i

1
si
≤

m−1∑
i=1

1
si
.

The canonical partition is the one in which Ai contains exactly all search points
with fitness i. It is known that for LO the method applied to the canonical
partition yields an upper bound of

∑n−1
i=0 en = en2 for the (1+1) EA since the

probability of finding an improvement is lower bounded by the probability of
flipping the first bit with value 0. This probability is at least 1/n ·(1−1/n)n−1 ≥
1/(en). For OneMax we get an upper bound of

∑n−1
i=0 en/(n−i) = en

∑n
i=1 1/i ≤

en lnn+O(n) for the (1+1) EA since on level i there are n− i 1-bit mutations
that flip a 0-bit to 1 and hence improve the fitness.

4 Lower Bounds with Fitness-Levels

The best lower bounds with fitness-level arguments known so far were presented
by Wegener in [1], assuming fitness levels A1, . . . ,Am for some fitness function f :

Lemma 1. Let ui be an upper bound on the probability of an EA A creating a
new offspring in Ai+1 ∪ · · · ∪ Am, provided A is in Ai (where “A is in Ai” is
defined as in Theorem 1). Then the expected optimization time of A on f is at
least

m−1∑
i=1

P (A starts in Ai)
1
ui
.
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The resulting lower bounds are very weak since we only look at the time it takes
to leave the initial fitness level and then pessimistically assume that the optimum
is found.

Making an additional assumption about the transition probabilities between
fitness levels allows for much better lower bounds. In the following theorem γi,j

reflects the conditional probability of jumping from level i to level j, given that
the algorithm leaves level i.

Theorem 2. Consider a partition of the search space into non-empty sets
A1, . . . ,Am such that only Am contains global optima. For a mutation-based
EA A we again say that A is in Ai or on level i if the best individual created so
far is in Ai. Let the probability of traversing from level i to level j in one step
be at most ui · γi,j and

∑m
j=i+1 γi,j = 1. Assume that for all j > i and some

0 < χ ≤ 1 it holds

γi,j ≥ χ

m∑
k=j

γi,k. (1)

Then the expected optimization time of A on f is at least

m−1∑
i=1

P (A starts in Ai) ·
⎛⎝ 1
ui

+ χ

m−1∑
j=i+1

1
uj

⎞⎠ (2)

≥
m−1∑
i=1

P (A starts in Ai) · χ
m−1∑
j=i

1
uj
. (3)

If the same fitness levels are used and si = ui for all levels then (3) matches the
upper bound from Theorem 1 up to a factor of χ.

Proof of Theorem 2. The second bound immediately follows from the first one
since 0 ≤ χ ≤ 1. Let Ei be the minimum expected remaining optimization
time, where the minimum is taken for all possible histories x1, . . . ,xt of previous
search points with x1, . . . ,xt ∈ A1 ∪ · · · ∪ Ai. By definition E1 ≥ E2 ≥ · · · ≥
Em = 0 as the conditions on the histories are subsequently relaxed. By the law
of total expectation the unconditional expected optimization time is at least∑m−1

i=1 P (A starts in Ai) ·Ei, hence we only need to bound Ei. The probability
of leaving level i is at most ui and the waiting time for this event is at least 1/ui.
In case level i is left, the remaining time depends on the new level. We have

Ei ≥ 1
ui

+
m−1∑

j=i+1

γi,j ·Ej .

Assume for an induction that for all j > i it holds Ej ≥ 1
uj

+χ
∑m−1

k=j+1
1

uk
. Then

Ei is at least

1
ui

+
m−1∑

j=i+1

γi,j ·
⎛⎝ 1
uj

+ χ
m−1∑

k=j+1

1
uk

⎞⎠ =
1
ui

+
m−1∑

j=i+1

1
uj

(
γi,j + χ

j−1∑
k=i+1

γi,k

)
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where the equality holds since on the left-hand side every term 1/uk in the inner
sum appears for all summands i + 1, . . . , j − 1 in the outer sum, weighted by
γi,kχ. Using the preconditions on the γ-values, the last term equals

1
ui

+ χ

m−1∑
j=i+1

1
uj

⎛⎝γi,j

χ
+ 1−

m∑
k=j

γi,k

⎞⎠ ≥ 1
ui

+ χ

m−1∑
j=i+1

1
uj
.

Note that in order to apply the theorem, we only have to find an upper bound
ui ·γi,j on the probability of jumping from level i to level j. In particular, we can
allow ourselves some slack in the definition of ui, which can make it much easier
to prove the desired condition. Also note that the theorem does not require the
sets Ai to form fitness levels. The only requirement is that all global optima are
contained in Am. Furthermore, “global optima” can be replaced by any other
optimization goal such as finding high-fitness individuals.

5 A Lower Bound for LeadingOnes

Our first application is for LO as here the γ-values can be estimated in a very
natural way.

Theorem 3. Let Xμ be a random variable that describes the maximum LO-
value among μ individuals created independently and uniformly at random. For
every n ≥ 2 the expected optimization time of every mutation-based EA on LO
is at least

n−1∑
i=0

P (Xμ = i) · n
⎛⎝(1− 1

n

)−i

+
1
2

n−1∑
j=i+1

(
1− 1

n

)−j
⎞⎠ (4)

≥ e− 1
2

· n2 − 4n logn. (5)

Proof. Consider the canonical partition and assume that the algorithm is on
level i < n. This implies that in the best individual created so far the first
i + 1 bits are predetermined. In addition, in all individuals created so far the
bits at positions i + 2, . . . ,n have not contributed to the fitness yet. These bits
have been initialized uniformly at random and they have been subjected to
random mutations. It is easy to see that this again results in uniform random
bits. More precisely, the probability that a specific bit j with j ≥ i + 2 in a
specific individual has a specific bit value 0 or 1 is exactly 1/2 (see the proof of
Theorem 17 in Droste, Jansen, and Wegener [3]).

Consider an individual x that has been selected as parent among the created
individuals. Let LO(x) = j ≤ i. We bound the probability of creating an offspring
with k leading ones for some i + 1 ≤ k ≤ n. One necessary condition is that
the first j leading ones do not flip, which happens with probability (1 − 1/n)j.
The bit at position j + 1 is 0, hence it must be flipped. All bits at positions
j + 2, . . . , i + 1 must obtain the value 1 in the offspring. This probability is
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determined by the number of ones among these bits. But clearly (1− 1/n)i−j is
a lower bound on this probability since this reflects the best-case scenario that
all these bits are 1 in the parent. (Since n ≥ 2 the probability of flipping a bit is
not larger than the probability of not flipping it.) The last necessary condition is
to create exactly k−1− i ones among at positions i+2, . . . ,n. By the preceding
arguments on the “randomness” of these bits, the probability of creating exactly
k − 1 − i ones is 2−k+i := γi,k if k < n and 2−k+i+1 := γi,k if k = n. Putting
everything together, we have that

(
1− 1

n

)i · 1
n · γi,k is an upper bound on the

probability of jumping to level k.
Checking the condition on the γ-values,

∑n
k=i+1 γi,k =

∑n−1
k=i+1 2−k+i+2−n+i+1

= 1 and for all i < j ≤ n condition (1) holds since

n∑
k=j

γi,k =
n−1∑
k=j

2−k−i−1 + 2−n−i = 2−j+i+1 = 2γi,j.

Setting χ = 1/2, the preconditions for Theorem 2 are fulfilled. Using ui :=
(1− 1/n)i · 1/n, this proves the bound

n−1∑
i=0

P (Xμ = i) ·
⎛⎝n ·(1− 1

n

)−i

+
1
2

n−1∑
j=i+1

n ·
(

1− 1
n

)−j
⎞⎠

and hence (4). Due to the lack of space we only sketch how to derive the second
bound (5). We assume n ≥ 21 as otherwise the claimed bound is negative.
If μ ≥ en2 the lower bound follows from the initialization. Otherwise, with
probability at least 1−1/n the algorithm starts on a fitness level at most 4 logn.
Estimating the summand for i = 4 logn and multiplying by 1 − 1/n yields the
claimed bound. The calculations show that the leading constant (e−1)/2 is best
possible.

Note that a term −Θ(n logn) is, in general, necessary since with, say, μ = n an
EA will start with an average of Θ(log n) leading ones in the best search point.

For the (1+1) EAμ uiγi,j is the exact probability of jumping from fitness
level i to level j > i. Also recall that all conditions (1) on the γi,j-values hold
with equality. Going through the proof of Theorem 2 again, we find that in
this special setting all estimations are, in fact, equalities. This shows that the
first lower bound on LO is exact for the (1+1) EAμ. This proves that among
all mutation-based EAs the (1+1) EAμ is an optimal algorithm for the function
LO. For μ = 1 we get the following.

Corollary 1. The expected optimization time of the (1+1) EA on LO is exactly

n−1∑
i=0

2−i−1 · n
⎛⎝(1− 1

n

)−i

+
1
2

n−1∑
j=i+1

(
1− 1

n

)−j
⎞⎠ =

(
n

n−1

)n−1

+ 1
n − 1

2
· n2.
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The factor preceding n2 converges to (e − 1)/2 from below. To the author’s
knowledge this is the first time the leading constant for the (1+1) EA on LO
has been stated explicitly. This result also shows that additional information
about transition probabilities between fitness levels is also useful for proving
better upper bounds.

6 A Lower Bound for OneMax

Theorem 4. The expected optimization time of every mutation-based EA on
OneMax is at least en lnn− 2n log logn− 16n.

Proof. Assume that n ≥ 34 as otherwise the claim is trivial. If μ ≥ 2en lnn then
the probability that the first 2en lnn search points generated during initialization
find the optimum is at most 2en lnn · 2−n ≤ 1/2, which establishes the lower
bound en lnn. In the following we assume μ ≤ 2en lnn. Let � = �n− n/logn�.
Consider the following partition A�, . . . ,An. Let Ai = {x | |x|1 = i} for i > � and
A� contain all remaining search points. With probability at least 1− 2en logn ·∑log n

i=0

(
n
i

)
2−n ≥ 1 − 1/(logn) for n ≥ 34 the initial population only contains

individuals on the first fitness level. Consider a situation where the algorithm
is on fitness level i, i. e., the best-so-far search point has had up to i ones. The
probability of reaching any specific higher fitness level j > i is maximal if an
individual with i ones is selected as parent. (See Lemma 11 in [5] for a formal
proof.)
For j > i let pi,j be the probability of the event that mutating an individual
with i ones results in an offspring that contains j ones. A necessary condition
for this event is that in this mutation either j − i 0-bits flip to 1 and no 1-bit
flips to 0 or that at least j − i+ 1 0-bits flip to 1. This yields

pi,j ≤
(
n− i

j − i

)
· 1
nj−i

·
(

1− 1
n

)n−j+i

+
(

n− i

j − i+ 1

)
· 1
nj−i+1

≤
(
n− i

n

)j−i

·
((

1− 1
n

)n−j+i

+
n− i

n

)
.

For i ≥ � define

u′i :=
n− i

n
·
((

1− 1
n

)n−1

+
n− i

n

)
and γ′i,j :=

(
n− i

n− 1

)j−i−1

where the prime indicates that these will not be the final variables used in the
application of Theorem 2. Observe that

u′iγ
′
i,j =

n− i

n
·
((

1− 1
n

)n−1

+
n− i

n

)
·
(
n− i

n
· n

n− 1

)j−i−1

=
(
n− i

n

)j−i

·
((

1− 1
n

)n−j+i

+
n− i

n
·
(

n

n− 1

)j−i−1
)
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≥
(
n− i

n

)j−i

·
((

1− 1
n

)n−j+i

+
n− i

n

)
≥ pi,j .

Since Theorem 4 requires the γi,j-variables to sum up to 1, we consider the

following normalized variables: ui := u′i ·
∑n

j=i+1 γ
′
i,j and γi,j := γ′

i,j∑
n
j=i+1 γ′

i,j
. As

uiγi,j = u′iγ
′
i,j ≥ pi,j , the conditions on the transition probabilities are fulfilled.

The condition γi,j ≥ χ
∑n

k=j γi,j is equivalent to γ′i,j ≥ χ
∑n

k=j γ
′
i,j and

n∑
k=j

γ′i,k =
n∑

k=j

(
n− i

n− 1

)k−i−1

≤
(
n− i

n− 1

)j−i−1 ∞∑
k=0

(
n− i

n− 1

)k

= γ′i,j ·
n− 1
i− 1

.

Using i ≥ n− n/logn, we have

i− 1
n− 1

≥ n− n/logn− 1
n− 1

= 1− n/ logn− 1
n− 1

≥ 1− 2
logn

.

Hence, choosing χ := 1− 2/logn we obtain
∑n

k=j γ
′
i,k ≤ γ′i,j · (n− 1)/(i− 1) ≤

γ′i,j/χ as required. Now that all conditions are verified, we proceed by estimating
the variables ui. Bounding the sum of the γ′i,j -values as before,

n∑
j=i+1

γ′i,j ≤
∞∑

j=0

(
n− i

n− 1

)j

≤ n− 1
i− 1

≤ 1
1− 2

log n

.

Hence

ui ≤ n− i

n
·
((

1− 1
n

)n−1

+
n− i

n

)
· 1
1− 2

log n

≤ n− i

en
·
(

1 +
1

n− 1
+
e(n− i)

n

)
· 1
1− 2

log n

≤ n− i

en
·
(

1 +
3

logn

)
· 1
1− 2

log n

≤ n− i

en
· 1
1− 3

log n

· 1
1− 2

log n

≤ n− i

en
· 1
1− 5

log n

.

Applying Theorem 2 and recalling that the algorithm is initialized on the first
fitness level with probability at least 1− 1

log n yields the upper bound(
1− 1

logn

)(
1− 2

logn

) n−1∑
i=�

en

n− i

(
1− 5

logn

)
≥
(

1− 8
logn

)
en

	n−�
∑
i=1

1
i
.

Since
∑	r


i=1 1/i ≥ ln r for any r ∈ �+, the bound is at least(
1− 8

logn

)
en ln(n/logn) =

(
1− 8

logn

)
en(ln(n)− ln(logn))

≥ en lnn− en ln(log n)− 8en · ln(n)
log n

> en lnn− 2n log logn− 16n.
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We remark that the lower bound does not hold for all mutation operators. The
biased mutation operator in [11] leads to a bound Θ(n) for the (1+1) EA on
OneMax.

7 Generalization to All Functions with Unique Optimum

Using arguments by Doerr, Johannsen, and Winzen [5], we now transfer the
lower bound for OneMax to all functions with a unique global optimum. This
yields a more precise result than the Ω(n logn) bound by Lehre and Witt [7].

In [5] the authors proved that the expected optimization time of the (1+1) EA
on OneMax is not larger than the expected optimization time of the (1+1) EA on
any other function with unique global optimum. Their proof extends to arbitrary
mutation-based EAs. As space is limited, we only sketch the proof of the following
theorem.

Theorem 5. The expected number of function evaluations for every mutation-
based EA A on every function f with a unique global optimum is at least en lnn−
2n log logn− 16n.

Sketch of Proof. Observe that all mutation-based EAs are invariant under trans-
formations that consistently invert bit values for specific bits. Hence, we assume
w. l. o. g. that 1n is the global optimum of f . Let Ef

A denote the expected opti-
mization time of A on f and assume that A has already created search points
x1, . . . ,xt. Let Ef

A(i) be the minimum expected optimization time for A on f
given that x1, . . . ,xt ∈ A0 ∪ · · · ∪ Ai with A0, . . . ,An the canonical partition
for OneMax. Observe that by definition, since the conditions are subsequently
restricted, Ef

A(n) ≤ Ef
A(n − 1) ≤ · · · ≤ Ef

A(0). Further define a more specific
and slightly modified quantity for the (1+1) EAμ: let ẼOneMax

(1+1) EAμ
(i) be defined

like EOneMax
(1+1) EAμ

(i), but with the additional condition that the history x1, . . . ,xt

contains at least one search point in Ai. Since we have only added a constraint,
ẼOneMax

(1+1) EAμ
(i) ≥ EOneMax

(1+1) EAμ
(i).

Following Doerr, Johannsen, and Winzen [5], an inductive proof shows that for all
i it holds Ef

A(i) ≥ ẼOneMax
(1+1) EAμ

(i). Clearly Ef
A(n) ≥ ẼOneMax

(1+1) EAμ
(n) = 0. Assume

Ef
A(j) ≥ ẼOneMax

(1+1) EAμ
(j) for all j > i. Depending on the outcome of the next

offspring creation, Ef
A(i) can be expressed by transition probabilities to higher

fitness levels k > i and Ef
A(k) as a lower bound on the conditional expected

remaining time. By induction Ef
A(k) ≥ ẼOneMax

(1+1) EAμ
(k). Moreover, the best case

for the transition probabilities is attained when a parent with i ones is mutated.
This gives a lower bound for Ef

A(i) which exactly describes the expected running
time of the (1+1) EAμ on level i, hence Ef

A(i) ≥ ẼOneMax
(1+1) EAμ

(i) ≥ EOneMax
(1+1) EAμ

(i).
As A and (1+1) EAμ are initialized in the same way, they share the same

distribution for the initial fitness level. We conclude Ef
A ≥ EOneMax

(1+1) EAμ
and the

bound follows from Theorem 4 applied to (1+1) EAμ.
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As a side result, the proof has also shown that the (1+1) EAμ is an optimal
algorithm for OneMax.

8 Conclusions

Using an adaptation of the fitness-level method, we have presented general
lower bounds for the running time of mutation-based evolutionary algorithms
in pseudo-Boolean optimization. The bounds for LO and OneMax are exact or
exact up to lower-order terms when compared to upper bounds for the (1+1) EA.
This is a rare occasion of results that are both very general and very precise at
the same time. In addition, we have proven that among all mutation-based EAs
the (1+1) EAμ (for proper μ) is an optimal algorithm for LO and OneMax, with
respect to the number of function evaluations.

The method itself is not restricted to the investigated setting. It is ready to
be applied to other search spaces and further stochastic search algorithms.
Acknowledgment. The author was supported by a postdoctoral fellowship
from the German Academic Exchange Service.
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Abstract. There has been a long debate on the “most important” op-

erator when applying genetic algorithms. This is very closely related to

the favorite binary encoding, namely standard binary or Gray. Rather

than confronting both approaches, this article is motivated by the search

for an encoding that supports both mutation and recombination. For

this purpose an encoding scheme is proposed and evaluated both using

metrics and experiments.

1 Motivation

There exists a long rather dogmatic debate on how genetic algorithms really
work and whether mutation or crossover is the most important operator [9,12].
As a consequence the idea is appealing to “re-design” the standard genetic al-
gorithm by integrating the different contradicting views. In this contribution we
re-consider the different coding schemes in use and propose a new one.

On the one hand, there is the traditional view: Crossover is the primary op-
erator and the schema processing enables a distributed knowledge within the
population combined with a pseudo-parallel search [10]. The standard binary
code supports the schema processing ideally, cf. [14] and others.

On the other hand, there is a lot of evidence that the mutation can be more
than a mere background operator [12,8]. Following this philosophy, the Gray code
becomes interesting since it removes Hamming cliffs [1] and induces fewer local
minima [17]. The Gray code embeds the phenotypical neighborhood into the bit
flipping neighborhood which means that neighboring values have a Hamming
distance of 1. However, the Gray code interferes with the crossover operator [2].

In this contribution we try to find an encoding scheme that supports both
mutation and crossover. For comparison and evaluation, we restrict ourselves to
6-bit encodings and a small set of rather simple test functions.

2 State of the Art Concerning Binary Encodings

Rothlauf [14] has examined all possible 3-bit encodings for selecto-recombina-
tive GAs, i.e. without mutation. Using an integer one-max problem he showed
the standard binary code to be superior to the Gray code. However he also
demonstrates that there are even better encodings.

R. Schaefer et al. (Eds.): PPSN XI, Part I, LNCS 6238, pp. 134–143, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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Another important fundamental comparison was undertaken by Chakraborty
and Janikow [3] who used a Markov chain analysis for all possible 3-bit problems.
They classified the problems according to the number of local optima (within the
phenotype as well as induced by the encoding). Although the standard binary
code proves to be better on a small number of problems, there is a class of
problems where Gray code is superior. However, the induced number of optima
appears to be no reliable criterion.

There are several approaches and ideas to boost the coding. First, Caruana et.
al. [2] argued that multiple representations for the different operators might be
favorable. As a consequence, when mutating, the individual could be transfered
into the Gray code, be bit-flipped, and be transfered back. Multiple represen-
tations are also used by Rana and Whitley [13]. Here the algorithm is able to
switch between different Gray codes. This concept should reduce premature con-
vergence in local optima and does not aim at better schema processing.

A completely new coding scheme, named E-code, was proposed by Eaton
and Collins [7,4]. They assigned the phenotypic values in increasing order to
the genotypes with increasing number of ones. This is shown in Figure 1. The
authors argued that the E-code minimizes the disruptive effects of the mutation
operator on schemata with high fitness and circumstantiate this with an analysis
using Toeplitz matrices and an empirical investigation. However, a visualization
of the neighborhood relationship for a 1-bit mutation shows that E-code (in
Figure 2) does not embed the phenotypic neighbors into the genotype as can
be seen in the missing marks next to the principal diagonal. For comparison
the neighborhood of the other coding schemes are shown: Gray code (Figure 3)
embeds the phenotypic neighborhood ideally and Figure 4 reveals the Hamming
cliffs induced by the standard binary code clearly.

In a preliminary work [16] all 4-bit codes have been investigated whether they
embed the phenotype structure and show good schema behavior. It is shown
that there are Gray-like codings that combine good performance for mutation
and crossover—without giving insight in how the codes work structurally.

3 Requirements for a “Good” Binary Encoding

Informally, the requirements are fairly clear: both mutation and crossover should
be able to produce good individuals. However, we need precise metrics to assess
the coding schemes. Since there are 2�! codings for �-bit numbers, we do not want
to rate the codings empirically. Rather we propose a set of analytical metrics
that are used for the selection of interesting codings in the first instance.

Concerning the support for the mutation, we use the relative Toeplitz matrix

Tij = ‖deuklid(i, j)− dham(i, j)‖
like in [11,4]. However, for assessing the embedment of phenotypic neighbors we
put in our metric more emphasis on the closely related values:

PhenoEmbed =
∑
i<j

Tij

deuklid(i, j)
.
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The smaller the value is, the better the neighborhood is embedded. Additionally,
we will also look at the L1, L2, and L3 norms defined as

L(x)Norm = x

√∑
i<j

(Tij)x

which delivers insight into how many points are remapped by the coding [11,4].
Concerning the support for the recombination, we are interested in the prop-

erty of high quality schema to lead the search towards the optimum. Let x̃ be
the optimum and H a schema with the optimum in the class of described indi-
viduals (x̃ ∈ I(H)). Then HH is the set of all schemata with the same defining
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positions as H . This set contains all competing schemata of H , too. We require
that for certain schemata the average fitness of H is better than the fitness of
each schema H ′ ∈ HH \ {H}. In our investigation the interesting schemata are

Schemata =
⋃

k∈{1,2,3}
Schematak

where Schematak denotes all optimum schemata with order k and defining length
k − 1. Then, the support of an encoding for schemata is measured by

SchemaSuppf = ‖{H ′ | H ∈ Schemata ∧H ′ ∈ HH ∧ f̄H′ ≥ F̄H}‖
in case of a maximization problem f . The smaller the value SchemaSuppf is,
the better the coding is supposed to support the crossover operator. Similar
inspections have been made in many articles on deceptiveness [5,6] and related
work [14].

We consider the following three fitness functions within the schema analysis
(x ∈ {0, . . . , 63}):

f1(x) = x f2(x) = 63− 2 · |x− 32| f3(x) =
{

63− |x− 48|, if x ≤ 48
59− 4 · (x− 49), if x > 49

4 Constructing a New Coding

Complete examinations of all codings have been executed for three [14] and four
[16] bits, so far. However, the encoded range and granularity appear to be too
small even in the case of 4-bit encodings—certain effects do not show, like the
benefit of mutations jumping a far distance in the phenotypic space. Therefore,
in this contribution 6-bit encodings are examined—with the drawback that we
cannot consider all codings.

First, we develop a concept how the genotypes could be assigned to the pheno-
typic values in a sensible way. The presented general idea leaves certain degrees
of freedom on the details of construction. Therefore, second, a subset of the
possible codings are examined.

The code is based on the following cornerstones: A good portion of the neigh-
boring pairs of values in the phenotype should be neighbors by mutating one bit
too. Moreover, we want to base the code on the E-code with increasing num-
bers of ones. Both cornerstones contradict each other because the distance of
neighboring values is usually two within the E-code.

As a consequence, we switch between the genotypes containing k and (k+ 1)
ones in such a way that always one-bit changes, e.g. if 001100 and 101000 are
assigned to phenotypes m and (m + 2) then phenotype (m + 1) has genotype
101100. Figure 5 shows how the numbers are assigned to the genotypes of the
different partitions (concerning the number of ones). However, in the middle of
the value range, few two-bit changes are necessary (in the center of the 3-ones
partition). Because of the alternating number of ones we refer to this class of
codings as zigzag codes.
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Fig. 6. All zigzag codes concerning the

two analytical metrics

In the E-code the genotypes are assigned in increasing order within the parti-
tion of equal ones. We restrict our examined codes to an increasing order within
the same partition too. We have computed all remaining possible 94614 zigzag
codes that are evaluated analytically in the next section using the given metrics.

5 Analytical Results

For 6-bit integers, the metrics have been computed for the standard binary
encoding, Gray code, E-code, and all zigzag codes introduced in the previous
section. The latter results are displayed in Figure 6. We have picked three zigzag
codes for further evaluation: the one with the best value for schema support
(zigzag1), the one with the best value for phenotypic embedment (zigzag2), and
a member from the Pareto front that appears to be a good compromise (zigzag3).
The exact results for these encodings are displayed in Table 1. As can be seen
clearly, all zigzag codes in Figure 6 exhibit a better phenotypic embedment than
the other codings. In addition zigzag1 shows also schema support better than
the standard binary coding.

The neighborhood of zigzag1 is shown in Figure 7, the neighborhood of zigzag3
in Figure 8 (zigzag2 is very similar to zigzag3). Clearly the embedding of
neighboring phenotypes can be seen as well as the two-bit differences around

Table 1. Results for the analyzed coding schemes

SchemaSupp Toeplitz matrices

coding f1 f2 f3 PhenoEmbed L1 L2 L3 entries 	= 0

std.bin. 0 0 6 1570.96 37734.0 1062.07 343.50 1942

Gray 38 0 27 1488.45 37536.0 1062.07 344.97 1861

E-code 0 25 8 1597.77 37858.0 1063.92 343.60 1950

zigzag1 0 0 5 1448.58 37552.0 1065.07 344.62 1792

zigzag2 0 9 6 1439.77 37550.0 1065.52 344.58 1781

zigzag3 0 3 6 1441.45 37550.0 1065.50 344.60 1782
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phenotypes 31 and 32. The overall structure seems to be more scattered but
show similarities to both gray code and standard binary code. Certain peculiar-
ities like the appendices at the diagonal for phenotypes 12 and 51 are common
to all zigzag codes – caused by codes with 1, 2, and 3 ones codes in a row (resp.
4/5/6 ones).

If we follow the arguments in [11], we can derive from the L(k) norms that the
remapping of points has similar properties compared to the Gray code. However,
the number of remapped points (entries = 0) is even smaller. As a consequence
the changes introduced by the zigzag codes are bigger.

6 Experimental Comparison of the Encoding Schemes

In this section, we investigate empirically whether the zigzag codes combine the
properties of standard binary and Gray code during the optimization.

We use a genetic algorithm with bit-flipping mutation (with per-bit proba-
bility pM = 1

� where � is the length of the genome), uniform crossover (with

Table 2. Experiments for selecto-recombinative GAs (crossover only): solved dimen-

sions of best solution of each experiment (averaged over 50 experiments). For F4 and

F5, 10 dimensions instead of 20 dimensions are used.

F1 F2 F3 F4 F5 F6

stdbin 13.3±2.4 4.7±2.3 4.4±1.7 2.6±1.4 3.3±1.5 13.2±2.1

Gray 7.9±2.0 9.5±2.8 2.7±1.5 4.6±1.5 4.6±1.6 8.2±2.3

e-code 17.9±1.4 2.1±1.5 1.9±1.5 0.7±0.8 1.3±1.2 17.7±1.6

zigzag1 15.4±2.4 5.2±2.2 3.6±1.9 2.7±1.4 1.9±1.3 15.7±2.0

zigzag2 16.1±2.5 2.6±1.5 4.1±2.0 1.3±1.0 2.1±1.4 16.7±1.8

zigzag3 16.0±1.9 2.5±1.3 2.9±1.5 1.3±1.0 2.2±1.3 16.9±2.0
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crossover rate pX = 0.7) because it emphasises short schemata, populations size
100, and tournament selection (best of 3). To investigate the role of the different
operators, we run additional experiments with pM = 0 respective pX = 0. We
iterate each experiment 50 times and average the results. Optimization stops
after 20000 generations or when reaching the optimum.

In this examination we use separable functions only since we want to eval-
uate the quality of codings. Each search space dimension encodes the values
{0, . . . , 63}. The functions have the form Fk(x1, . . . ,xn) =

∑n
i=1 fk(xi). Besides

the already introduced functions f1, f2, and f3 we consider a sphere-like maxi-
mization problem with optimum at (32, . . . , 32) (called f4) and with a randomly
assigned optimum rndi ∈ {0, . . . , 63} for each dimension i and each optimization
run (called f5). Furthermore, we use a multi-modal function f6 by disturbing f1.

f4(x) = 642 − (x − 32)2 f5(x) = 642 − (x− rnd)2 f6(x) = �x+ 2 · sin(x)�
F1, F2, F3, and F6 are used with n = 20; F4 and F5 with n = 10.

Table 2 shows the results for the GAs using crossover only. The standard
binary encoding outperforms Gray code clearly for F1, F3, and F6. The Gray

Table 3. Experiments for mutation-only GAs: success rate (succ.), average number

of generations needed to solve the problem (gen.), and average number of dimensions

solved in the best solution of each experiment (solv.; note: 10 instead of 20 dimensions

for F4 and F5)

F1 F2

succ. gen. solv. succ. gen. solv.

stdbin 1.0 232.1±48.2 20.0±0.0 0.0 — 10.2±1.6

Gray 1.0 308.9±67.4 20.0±0.0 1.0 257.6±37.5 20.0±0.0

e-code 1.0 214.8±61.1 20.0±0.0 0.0 — 8.7±2.1

zigzag1 1.0 282.3±69.3 20.0±0.0 0.56 10278.1±5092.9 17.7±2.9

zigzag2 1.0 273.5±61.0 20.0±0.0 0.02 12756.0±0.0 14.7±1.9

zigzag3 1.0 281.3±81.6 20.0±0.0 0.1 14492.4±3518.0 15.5±2.1

F3 F4

succ. gen. solv. succ. gen. solv.

stdbin 0.0 — 6.3±2.4 0.0 — 5.4±1.3

Gray 1.0 342.4±59.0 20.0±0.0 1.0 105.9±19.6 10.0±0.0

e-code 0.0 — 8.0±1.7 0.02 7408.0±0.0 3.4±2.0

zigzag1 1.0 503.9±90.5 20.0±0.0 1.0 4380.7±4476.0 10.0±0.0

zigzag2 1.0 544.1±104.9 20.0±0.0 0.94 8127.7±4704.7 9.8±0.7

zigzag3 1.0 539.8±105.8 20.0±0.0 0.96 8006.7±4319.8 9.9±0.5

F5 F6

succ. gen. solv. succ. gen. solv.

stdbin 0.42 6383.3±5160.8 8.9±1.1 1.0 223.8±48.6 20.0±0.0

Gray 1.0 103.4±17.1 10.0±0.0 1.0 175.9±28.8 20.0±0.0

e-code 0.56 9873.5±5483.9 7.9±2.5 1.0 175.9±28.8 20.0±0.0

zigzag1 1.0 340.0±531.6 10.0±0.0 1.0 330.2±133.9 20.0±0.0

zigzag2 1.0 495.7±969.3 10.0±0.0 1.0 336.0±109.1 20.0±0.0

zigzag3 1.0 932.9±2861.1 10.0±0.0 1.0 311.4±107.0 20.0±0.0
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Table 4. Experiments for GAs (with crossover and mutation): success rate (succ.),

average number of generations needed to solve the problem (gen.), and average number

of dimensions solved in the best solution of each experiment (solv.; note: 10 instead of

20 dimensions for F4 and F5).

F1 F2

succ. gen. solv. succ. gen. solv.

stdbin 1.0 71.3±9.9 20.0±0.0 0.0 — 10.9±2.2

Gray 1.0 124.6±18.2 20.0±0.0 1.0 86.1±11.9 20.0±0.0

e-code 1.0 44.6±8.1 20.0±0.0 0.0 — 10.0±2.6

zigzag1 1.0 65.9±14.6 20.0±0.0 0.02 5029.0±0.0 15.3±2.2

zigzag2 1.0 62.6±14.6 20.0±0.0 0.0 — 10.7±2.1

zigzag3 1.0 62.5±14.5 20.0±0.0 0.0 — 10.7±2.1

stdbin+Gray 1.0 141.6±42.0 20.0±0.0 1.0 1646.7±913.2 20.0±0.0

F3 F4

succ. gen. solv. succ. gen. solv.

stdbin 0.0 — 5.5±2.4 0.0 — 5.4±1.5

Gray 1.0 159.4±23.2 20.0±0.0 1.0 61.6±10.3 10.0±0.0

e-code 0.0 — 8.2±1.9 0.0 — 3.0±1.7

zigzag1 1.0 369.0±83.0 20.0±0.0 0.46 7121.9±6601.5 8.3±1.8

zigzag2 1.0 412.3±69.3 20.0±0.0 0.04 13725.0±5760.0 5.1±1.7

zigzag3 1.0 403.9±72.0 20.0±0.0 0.02 1877.0±0.0 4.5±1.7

stdbin+Gray 0.0 — 6.9±1.3 1.0 681.6±594.9 10.0±0.0

F5 F6

succ. gen. solv. succ. gen. solv.

stdbin 0.18 3196.7±4972.6 7.9±1.6 1.0 61.4±10.0 20.0±0.0

Gray 1.0 56.0±10.1 10.0±0.0 1.0 416.8±203.9 20.0±0.0

e-code 0.0 — 2.6±1.6 1.0 36.0±3.7 20.0±0.0

zigzag1 0.98 1396.6±2899.1 9.9±0.1 1.0 58.3±25.7 20.0±0.0

zigzag2 0.88 1076.0±2024.0 9.8±0.7 1.0 66.9±42.7 20.0±0.0

zigzag3 0.92 1647.1±2721.1 9.9±0.5 1.0 54.8±26.9 20.0±0.0

stdbin+Gray 1.0 98.2±65.4 10.0±0.0 1.0 213.2±76.6 20.0±0.0

code shows a peculiar advantage when the optimum is placed in the middle (F2

and F4). The zigzag codes improve the crossover for F1 and F6 but are still
beaten by the e-code. For F4 and F5 the zigzag results are inferior.

Table 3 shows the results for mutation-only GAs. Here, the standard binary
code is only able to outperform the Gray code for F1. As expected, the zigzag
codes (esp. zigzag1) are able to solve all problems. However, the zigzag codes are
not as good performing as the best other coding scheme. Again, the Gray code is
superior onF2—one reason are the two diagonal lines (in Figure 3) leading towards
the optimum in the center which reduces the probability of a fitness loss.

Table 4 shows the results for the experiments with the GA using both crossover
and mutation. The standard binary encoding is not able to solve F2, F3, and
F4 in any experiment. Altogether, the Gray code appears to be the best choice.
However, in case of the multi-modal F6 Gray code needs substantially longer than
the standard binary encoding. Again zigzag1 appears to be a good compromise:
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Table 5. For all codings: mapping of the phenotypic values to the genotype (in standard

binary coded form)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
std.bin. 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
Gray 0 1 3 2 6 7 5 4 12 13 15 14 10 11 9 8 24 25 27 26 30 31 29 28 20 21 23 22 18 19 17 16
E-code 0 1 2 4 8 16 32 3 5 6 9 10 12 17 18 20 24 33 34 36 40 48 7 11 13 14 19 21 22 25 26 28
zigzag1 0 1 3 2 6 4 12 8 24 16 48 32 36 52 20 22 18 50 34 35 33 37 5 21 17 25 9 11 10 42 40 44
zigzag2 0 1 3 2 6 4 12 8 24 16 48 32 33 37 5 13 9 41 40 42 10 26 18 50 34 38 36 52 20 21 17 25
zigzag3 0 1 3 2 6 4 12 8 24 16 48 32 36 44 40 41 33 37 5 21 20 22 18 19 17 25 9 11 10 42 34 38

32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63
std.bin. 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63
Gray 48 49 51 50 54 55 53 52 60 61 63 62 58 59 57 56 40 41 43 42 46 47 45 44 36 37 39 38 34 35 33 32
E-code 35 37 38 41 42 44 49 50 52 56 15 23 27 29 30 39 43 45 46 51 53 54 57 58 60 31 47 55 59 61 62 63
zigzag1 41 53 49 57 56 58 26 27 19 23 7 39 38 46 14 15 13 29 28 60 61 45 47 43 59 51 55 54 62 30 31 63
zigzag2 19 43 11 15 14 46 44 60 56 57 49 51 35 39 7 23 22 30 28 29 31 27 59 58 62 54 55 53 61 45 47 63
zigzag3 50 53 52 60 28 29 13 15 7 39 35 51 49 57 56 58 26 30 14 46 62 54 55 23 31 27 59 43 47 45 61 63

yielding better results than standard binary code and, in the case of F1 and F6,
even better than Gray code. In addition, we have tested a hybrid approach [2]
where, for each mutation, the standard binary genotype is transformed to Gray
code, mutated, and transformed back—with convincing results (except F3 where
the two encodings interfere with each other).

7 Conclusion

The idea of the zigzag codes leads to coding schemes that are very stable across
all problems and used operators, although there was no synergy creating a su-
perior encoding. Nevertheless, the results show that it is possible to combine the
strengths of the different operators—especially against the background that this
research was not exhaustive but rather concept-driven.

Nevertheless, zigzag codes have severe disadvantages. The codings do not scale
with increasing number of bits [15] and there is no decoding algorithm available
(except using table entries). Future research could focus on either full scalabil-
ity or on building an “intelligent” (adaptive or developmental) representation
from 6-bit blocks. Also the restriction on smooth fitness functions should be
questioned.

The used metrics appear to be a proper means to assess the suitability of a
coding scheme a-priori although there are certain effects between neighborhood
of the coding and fitness functions (e.g. Gray code and F2) that cannot be
predicted.
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Abstract. Recombination (also called crossover) operators are widely used in
EAs to generate offspring solutions. Although the usefulness of recombination
has been well recognized, theoretical analysis on recombination operators re-
mains a hard problem due to the irregularity of the operators and their compli-
cated interactions to mutation operators. In this paper, as a step towards analyzing
recombination operators theoretically, we present a general approach which al-
lows to compare the runtime of an EA turning the recombination on and off, and
thus helps to understand when a recombination operator works. The key of our
approach is the Markov Chain Switching Theorem which compares two Markov
chains for the first hit of the target. As an illustration, we analyze some recom-
bination operators in evolutionary search on the LeadingOnes problem using the
proposed approach. The analysis identifies some insight on the choice of recom-
bination operators, which is then verified in experiments.

1 Introduction

Evolutionary algorithms (EAs) run a circle of reproducing offspring solutions from the
current population, and then selecting to weed out bad solutions [1]. The most pop-
ular reproduction operators are mutation and recombination (also called crossover).
Contrary to mutation operators that are defined on individual solutions, recombination
operators are defined on a population of solutions, that is, they generate offspring solu-
tions by mixing up a set of (usually two) solutions. Recombination operators were born
together with the first genetic algorithm. They are a special characteristic of EAs, which
makes EAs significantly differ from classical optimization techniques such as branch-
and-bound strategy [17], as well as other heuristic search methods such as simulated
annealing [17].

When EAs are used to tackle optimization problems, the runtime is among the cen-
tral concerns. Due to recent advances in theoretical analysis of EAs, e.g. [2,9,10,20,3],
a landscape of computational complexity of EAs is emerging. However, most of the
previous studies focus on EAs using mutation only.

There are some recent studies on recombination operators [14,18,11,12,13,15,4,5].
Lin and Yao [14] assumed that a ‘step size’ is critical for recombination operators. They
compared the step sizes of four recombination operators, and empirically studied an EA
with these recombination operators yet without mutation operator on several problems.
Spears [18] studied the construction and destruction probabilities and equilibrium of
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recombination using the schema theory, and concluded that the recombination opera-
tors are beneficial when there are few local optima. Several recent studies proved some
effects of recombination operators. On the positive side, Jansen and Wegener [11,12]
proved that, on the Real Royal Road problem, a recombination operator reduces the
runtime of an EA from exponential to polynomial; Lehre and Yao [13] proved that, on
the TwoPath problem of computing unique input-output sequences, a recombination op-
erator reduces the runtime exponentially; Doerr et al. [4,5] proved that, on the all pairs
shortest path problem, a recombination operator reduces the runtime. On the negative
side, Richter et al. [15] constructed a problem called Ignoble Trails on which the EA
using mutation only requires polynomial runtime, yet the EA using mutation with re-
combination requires exponential runtime. These studies disclosed some properties of
recombination operators from different aspects, however, there is no general approach
for theoretically analyzing recombination operators.

Usually, a recombination operator is used together with a mutation operator in EA,
and a nontrivial population (more than one solution) is maintained with a selection op-
erator. Thus, the analysis of recombination operators needs to consider the interactions
between mutation and recombination operators, the effect of population size, and the
effect of the selection pressure. So, it is not surprising that theoretical analysis on re-
combination operators is more difficult than that on mutation operators.

In this paper, as a step towards theoretical analysis of recombination operators, we
try to tackle the interaction between mutation and recombination operators. We present
the Markov Chain Switching Theorem for the comparison of two Markov chains on
their first hit of the target. This theorem allows to compare the one-step behaviors of
two EAs, thus can be used to compare the average runtime of an EA turning on and
off the recombination operator. This theorem provides a general tool towards the un-
derstanding of the behaviors of recombination operators. As an illustration, we theoret-
ically analyze four strategies using two different recombination operators in an EA on
the LeadingOnes problem using the tool. The LeadingOnes problem is a well-studied
problem for EAs using mutation only [16], yet the effect of recombination operators
on the problem remains untouched. Our analysis identifies helpful and unhelpful re-
combination strategies from the candidates, which are then verified in experiments. It
is interesting to find from the analysis that similar recombination operators can have
opposite effects.

The rest of this paper is organized as follows. Section 2 introduces preliminaries,
Section 3 presents the main theorem, Section 4 shows the case study on the Leadin-
gOnes problem, and Section 5 concludes.

2 Preliminaries

We model EAs as Markov chains [9,20]. A population of an EA can be mapped to a state
of a Markov chain. Formally, let X denote the population space containing all possible
populations of an EA. A Markov chain {ξt}+∞

t=0 modeling the EA can be constructed
by taking X as the state space, i.e., ξt ∈ X . Let X ∗ ⊆ X denote the set of all optimal
populations containing at least one optimal solution. The process of an EA seeking X ∗

can be analyzed by studying the corresponding Markov chain.
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Given a Markov chain {ξt}+∞
t=0 (ξt ∈ X ) and a target subspace X ∗ ⊂ X , {ξt}+∞

t=0 is
said to be an absorbing Markov chain if ∀t ≥ 0 : P (ξt+1 /∈ X ∗ | ξt ∈ X ∗) = 0, and
{ξt}+∞

t=0 is said to be a homogeneous Markov chain if ∀t ≥ 0∀x, y ∈ X : P (ξt+1 =
x | ξt = y) = P (ξ1 = x | ξ0 = y). All practical EAs track the best-so-far solutions
during the evolution process. These EAs can be modeled as absorbing Markov chains.
EAs without time-variant operators can be modeled as homogeneous Markov chains.

Starting from time step t̃ when ξt̃ = x, let τt̃ be a random variable denoting the
hitting events:

τt̃ = 0 : ξt̃ ∈ X ∗,
τt̃ = 1 : ξt̃+1 ∈ X ∗ ∧ ξi /∈ X ∗ (i = t̃) ,
τt̃ = 2 : ξt̃+2 ∈ X ∗ ∧ ξi /∈ X ∗ (i = t̃, t̃+ 1) ,
. . . .

The mathematical expectation of τt̃, E[[τt̃ | ξt̃ = x]] =
∑+∞

i=0 i ·P (τt̃ = i), is called the
conditional first hitting time (CFHT) of the Markov chain from t̃ and ξt̃ = x. If ξt̃ is
drawn from a distribution π of states, the expectation of the CFHT over ξt̃,

E[[τt̃ | ξt̃ ∼ π]] = Ex∼π[[τt̃ | ξt̃ = x]] =
∑

x∈X π(x)E[[τt̃ | ξt̃ = x]],

is called the distribution-conditional first hitting time (DCFHT) of the Markov chain
from t̃ and ξt̃ ∼ π. The DCFHT of the chain from t = 0 and uniform distribution πu,

E[[τ ]] = E[[τ0 | ξ0 ∼ πu]] = Ex∼πu [[τ0 | ξ0 = x]] =
∑

x∈X
1
|X |E[[τ0 | ξ0 = x]],

is called the expected first hitting time (EFHT) of the Markov chain [9,10,20], which
implies the average runtime of EAs.

About the CFHT, we will use the following two lemmas [8].

Lemma 1. Given an absorbing Markov chain {ξt}+∞
t=0 (ξt ∈ X ) and a target subspace

X ∗ ⊂ X , we have, for CFHT,

∀x /∈ X ∗ : E[[τt | ξt = x]] = 1 +
∑
y∈X

P (ξt+1 = y | ξt = x)E[[τt+1 | ξt+1 = y]],

and for DCFHT,

E[[τt | ξt ∼ πt]] = Ex∼πt [[τt | ξt = x]] = 1− πt(X ∗) + E[[τt+1 | ξt+1 ∼ πt+1]],

where πt+1(x) =
∑

y∈X πt(y)P (ξt+1 = x | ξt = y).

Lemma 2. Given an absorbing homogeneous Markov chain {ξt}+∞
t=0 (ξt ∈ X ) and a

target subspace X ∗ ⊂ X , it holds ∀t1, t2 : E[[τt1 | ξt1 = x]] = E[[τt2 | ξt2 = x]].

3 Markov Chain Switching Theorem

We focus on tackling the interaction between mutation and recombination operators.
Considering that there are many studies devoted to the estimate of EFHT of EAs using
mutation only [2,7,9,20], we propose to analyze recombination operators by studying
an EA that turns the recombination operator on and off. For this purpose, we present
the following Markov Chain Switching Theorem.
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Theorem 1 (Markov Chain Switching Theorem). Given two absorbing homogeneous
Markov chains {ξt}+∞

t=0 and {ξ′t}+∞
t=0 . Let τ and τ ′ denote the hitting events of ξt and

ξ′t, respectively. Let πt denote the distribution of ξt on states. If it satisfies

∀t :
∑

x,y∈X πt(x)P (ξt+1 = y | ξt = x)E[[τ ′t+1 | ξ′t+1 = y]] (1)

≤ (≥)
∑

x,y∈X πt(x)P (ξ′t+1 = y | ξ′t = x)E[[τ ′t+1 | ξ′t+1 = y]] ,

and both E[[τ ]] and E[[τ ′]] are finite, it holds that E[[τ ]] ≤ (≥)E[[τ ′]].

Before the proof, it is helpful to briefly explain the significance of the theorem. Let
ξt corresponds to an EA that turns its recombination operator on, and ξ′t be the oppo-
site. In Eq. 1, only the CFHT of the EA turning recombination off, i.e., E[[τ ′t+1|ξ′t+1]],
is required to be calculated, whilst there is no such term as E[[τt+1|ξt+1]]. Therefore,
Theorem 1 enables us to analyze the effect of recombination operator by comparing the
one-step transition probabilities, i.e., P (ξt+1 = y | ξt = x) and P (ξ′t+1 = y | ξ′t = x),
avoiding complicated calculations on the CFHT of the EA turning recombination on.
Note that, besides recombination, Theorem 1 can also be applied to analyze many other
kinds of operators.

Proof. Here, we prove the “≤” case, while the “≥” case can be proved similarly. De-
note the operator used in the EA modeled by ξ as op, and that used in the EA modeled
by ξ′ as op′, respectively. Let Markov chain {ξk

t }+∞
t=0 corresponds to the EA using op at

time steps {0, 1, · · · , k− 1} and using op′ otherwise. Thus, for any k and any time step
t ≥ k, we have

∀x ∈ X : E[[τk
t | ξk

t = x]] = E[[τ ′t | ξ′t = x]], (2)

since the two chains use the same operator after the time step k−1. To prove the inequal-
ity E[[τ ]] ≤ E[[τ ′]], we prove its DCFHT version E[[τ0 | ξ0 ∼ π0]] ≤ E[[τ ′0 | ξ′0 ∼ π′

0]]
by induction on the number of time steps, where op is applied instead of op′. Note that
π0 = π′

0 for the random generation of solutions.

(a) Initialization. We prove by Eq. 1 that E[[τ1
0 | ξ10 ∼ π0]] ≤ E[[τ ′0 | ξ′0 ∼ π′

0]] as fol-
lows. Since op is applied only at t = 0, we have

E[[τ1
0 | ξ10 ∼ π0]] =

∑
x∈X π0(x)E[[τ1

0 | ξ10 = x]]

= 1− π0(X ∗) +
∑

x,y∈X π0(x)P (ξ11 = y | ξ10 = x)E[[τ1
1 | ξ11 = y]]

= 1− π0(X ∗) +
∑

x,y∈X π0(x)P (ξ11 = y | ξ10 = x)E[[τ ′1 | ξ′1 = y]]

≤ 1− π′
0(X ∗) +

∑
x,y∈X π′

0(x)P (ξ′1 = y | ξ′0 = x)E[[τ ′1 | ξ′1 = y]]

= E[[τ ′0 | ξ′0 ∼ π′
0]] ,

where the first, second and last equations are obtained by Lemma 1, the third equation
is obtained Eq. 2, and the followed inequality is obtained by Eq. 1 and by π0 = π′

0.



148 Y. Yu, C. Qian, and Z.-H. Zhou

(b) Inductive Hypothesis. Assume that at the induction step K > 0, ∀k ≤ K − 1 :
E[[τk

0 | ξk
0 ∼ π0]] ≤ E[[τ ′0 | ξ′0 ∼ π′

0]]. Then, at the time step t = K , we have

E[[τK
K−1 | ξK

K−1 ∼ πK−1]]

= 1− πK−1(X ∗) +
∑

x,y∈X
πK−1(x)P (ξK

K = y|ξK
K−1 = x)E[[τK

K |ξK
K = y]]

= 1− πK−1(X ∗) +
∑

x,y∈X
πK−1(x)P (ξK

K = y|ξK
K−1 = x)E[[τ ′K |ξ′K = y]]

≤ 1− πK−1(X ∗) +
∑

x,y∈X
πK−1(x)P (ξ′K = y|ξ′K−1 = x)E[[τ ′K |ξ′K = y]]

=
∑

x∈X πK−1(x)E[[τ ′K−1 | ξ′K−1 = x]]

=
∑

x∈X πK−1(x)E[[τK−1
K−1 | ξK−1

K−1 = x]]

= E[[τK−1
K−1 | ξK−1

K−1 ∼ πK−1]] ,

where the first and the third equations are obtained by Lemma 1, the second and the
fourth equations are obtained by Eq. 2, and the inequality is obtained by Eq. 1. Thus,
by the induction hypothesis, we get

E[[τK
0 | ξK

0 ∼ π0]] = K − 1−
∑K−2

t=0
πt(X ∗) + E[[τK

K−1 | ξK
K−1 ∼ πK−1]]

≤ K − 1−
∑K−2

t=0
πt(X ∗) + E[[τK−1

K−1 | ξK−1
K−1 ∼ πK−1]]

= E[[τK−1
0 | ξK−1

0 ∼ π0]] ≤ E[[τ ′0 | ξ′0 ∼ π′
0]] .

(c) Conclusion. From (a) and (b), it holds that E[[τ∞0 | ξ∞0 ∼ π0]] ≤ E[[τ ′0 | ξ′0 ∼ π′
0]] ,

i.e., E[[τ∞]] ≤ E[[τ ′]]. Finally, since E[[τ ]] is finite, we have E[[τ ]] = E[[τ∞]], and thus
E[[τ ]] ≤ E[[τ ′]]. �

4 Analysis of LeadingOnes Problem

4.1 The Evolutionary Algorithm

We study the (2:2)-EA as in Definition 1, which is generalized with the minimum dif-
ference from the (1+1)-EA [6] for enabling recombination. The (2:2)-EA uses the pop-
ulation size two and a direct offspring selection (i.e., selecting between a parent and its
direct offspring, so denoted as ‘2:2’ instead of ‘2+2’). This helps to isolate the influ-
ences of population size and selection pressure that are beyond the scope of this paper.
Note that as used in [19,15], though the population size of two is small, it is sufficient
for showing the effect of recombination operators.

Definition 1 ((2:2)-EA). Encode each solution by a string with n binary bits, and let
every population, denoted by variable ξ, contain 2 solutions. The (2:2)-EA consists of
the following steps:
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1. (Initialization) Let t← 0.
ξ0 := randomly generated population.

2. Let (s1, s2) := ξt.
3. (Reproduction) If UseRecombination is true,

(sR
1 , sR

2 ) := M&R(s1, s2)
4. Else, (sR

1 , sR
2 ) := Mutation(s1, s2)

5. (Selection) ξt+1 :=
(

arg max
s∈{s1,sR

1 }
f(s), arg max

s′∈{s2,sR
2 }
f(s′)

)
.

6. (Stop Criterion) Terminates if the optima is reached.
7. (Loop) Let t← t+ 1, goto step 2.
Mutation : X → X is a mutation operator, M&R : X × X → X × X is the strat-
egy of combining mutation and recombination operators, and UseRecombination is
a switching parameter. Note that, when a parent has the same fitness as its offspring in
selection, the parent is selected.

We describe several operators below. Note that, when using recombination operators,
two parents generate two offsprings by exchanging some bits. To apply the direct off-
spring selection, we need identify which of the two generated solutions is the direct
offspring of a parent. This is realized by considering which of the two generated so-
lutions is closer to the parent, i.e., with smaller Hamming distance (ties are broken
randomly).

– One-bit mutation. For each solution, randomly choose one of the n bits and flip
(0 to 1 or inverse) the chosen bit.

– First-bit recombination. For the two current solutions, scan the solutions from left
to right, and exchange the first different bits.

– One-bit recombination. For the two current solutions, randomly choose one of the
n positions and exchange the bits on that position.

4.2 Analysis

The LeadingOnes problem is given in Definition 2. Denote s(j) be the j-th bit of so-
lution s counting from left to right (thus s(1) is the left-most bit). We define LO(s) =
{max i; s.t.∀j ≤ i, s(j) = 1} and δ(s1, s2) = ‖s1‖ − ‖s2‖, where ‖ · ‖ denotes the
1-norm, i.e., the number of one bits.

Definition 2 (LeadingOnes Problem). LeadingOnes Problem of size n is to find an n
bits binary string s∗ such that s∗ = argmaxs∈{0,1}n LO(s).

It is easy to find out that the optimal solution of the LeadingOnes problem is s∗ =
(1, 1, · · · , 1), which has n leading one bits, i.e., LO(s∗) = n; also note that LO((0, 1,
· · · , 1)) = 0 since the leading bit is zero. This problem is one of the most widely
studied problems for EAs using mutation operators [16], however, previous analysis on
this problem did not touch recombination operators.

In the following, we analyze (2:2)-EA on LeadingOnes problem with Mutation im-
plemented by one-bit mutation and M&R implemented by four strategies described
below. The function LO is used as the fitness function in (2:2)-EA. For the two so-
lutions (s1, s2) in the current population such that δ(s1, s2) ≥ 0, we simply denote
LO1 = LO(s1), LO2 = LO(s2), and δ = δ(s1, s2).
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– M&R1a. Use the first-bit recombination if either LO1 < LO2 holds or both δ = 0
and LO1 = LO2 hold; otherwise use the one-bit mutation.

– M&R1b. Use the first-bit recombination if both LO1 > LO2 and 0 < δ ≤ 2 hold;
otherwise use the one-bit mutation.

– M&R1. Use the first-bit recombination if either M&R1a or M&R1b holds; other-
wise use the one-bit mutation.

– M&R2. Use the one-bit recombination if both LO1 < LO2 and s1(LO2 + 1) = 0
hold, or both LO1 > LO2 and s2(LO1 + 1) = 0 hold; otherwise use the one-bit
mutation.

Our analysis below shows that M&R1a and M&R1b are both superior to one-bit muta-
tion (Propositions 2 and 3), and the combination of the two strategies, M&R1, is also
superior to one-bit mutation (Proposition 4). However, M&R2 is inferior to one-bit mu-
tation (Proposition 5).

In the following, unless stated, we let {ξt}+∞
t=0 correspond to the (2:2)-EA using

M&R, and let {ξ′t}+∞
t=0 correspond to the (2:2)-EA using Mutation. Thus, E[[τ ]] and

E[[τ ′]] denote the EFHT of (2:2)-EA using M&R and Mutation, respectively. We de-
note E(i, j) as the CFHT E[[τ ′t |ξ′t = {s1, s2}]] of EA using one-bit mutation, given that
‖s1‖ = n − i and ‖s2‖ = n − j. We present proof sketches below due to space limit,
and full proof will be provided in a longer version.

Proposition 1. The CFHT of {ξ′t}+∞
t=0 satisfies that

∀i ≥ 1, δ ≥ 0 : n
2 < E(i, i+ δ)− E(i− 1, i+ δ) ≤ n− 3n−1

2δ+3 ,
and ∀i ≥ 1, δ ≥ 1 : n

2δ+2 ≤ E(i, i+ δ)− E(i, i+ δ − 1) < n
2 .

Proof. It is easy to prove the proposition by induction on i+ i+ δ. �

Proposition 2. Given M&R in (2:2)-EA being implemented by M&R1a, when n ≥ 2,
we have E[[τ ]] ≤ E[[τ ′]].

Proof. For any population x = {s1, s2} such that ‖s1‖ = n − i and ‖s2‖ = n − i−
δ(δ ≥ 0):
a) in the case δ = 0 ∧ LO1 = LO2 or LO1 < LO2, the first-bit recombination and
the selection reproduce two solutions {s′1, s′2} such that ‖s′1‖ = n− i + 1 and ‖s′2‖ =
n− i− δ. We have, using Proposition 1,∑

y∈X P (ξt+1 = y | ξt = x)E[[τ ′t+1 | ξ′t+1 = y]]

= E(i− 1, i+ δ) < E(i, i+ δ)− n

2
≤ E(i, i + δ)− 1.

b) Otherwise, it uses the one-bit mutation, which yields∑
y∈X P (ξt+1 = y | ξt = x)E[[τ ′t+1 | ξ′t+1 = y]]

=
∑

y∈X P (ξ′t+1 = y | ξ′t = x)E[[τ ′t+1 | ξ′t+1 = y]] = E(i, i+ δ)− 1.

Thus, for any population x, it holds that∑
y∈X P (ξt+1 = y | ξt = x)E[[τ ′t+1 | ξ′t+1 = y]]



Towards Analyzing Recombination Operators in Evolutionary Search 151

≤ E(i, i+ δ)− 1 =
∑

y∈X P (ξ′t+1 = y | ξ′t = x)E[[τ ′t+1 | ξ′t+1 = y]].

By Theorem 1, we immediately have E[[τ ]] ≤ E[[τ ′]]. �
Remarks. We can observe from the proof of Proposition 2 that how the analysis has be
simplified by Theorem 1. By Theorem 1, we need to bound∑

y∈X P (ξt+1 = y | ξt = x)E[[τ ′t+1 | ξ′t+1 = y]] ,

where P (ξt+1 = y | ξt = x) is the one-step behavior of the EA using M&R, and
E[[τ ′t+1 | ξ′t+1 = y]] is the CFHT of the EA using Mutation from y. In the proposition,
the expression is calculated to be E(i − 1, i + δ). By the analysis of the EA using
Mutation in Proposition 1, we then bound that E(i− 1, i+ δ) ≤ E(i, i+ δ)− 1, while

E(i, i+ δ)− 1 =
∑

y∈X P (ξ′t+1 = y | ξ′t = x)E[[τ ′t+1 | ξ′t+1 = y]] .

Thus the condition of Theorem 1 is satisfied.

Proposition 3. Given M&R in (2:2)-EA being implemented by M&R1b, when n ≥ 16,
we have E[[τ ]] ≤ E[[τ ′]].

Proof. For any population x = {s1, s2} such that ‖s1‖ = n − i and ‖s2‖ = n −
i − δ(δ ≥ 0). Note that in the case 0 < δ ≤ 2 ∧ LO1 > LO2 it uses the first-bit
recombination. We have∑

y∈X P (ξt+1 = y | ξt = x)E[[τ ′t+1 | ξ′t+1 = y]]

= E(i, i+ δ − 1) ≤ E(i, i+ δ)− n

2δ+2
≤ E(i, i+ δ)− 1 .

The remaining of the proof is the same as in Proposition 2. �
Since we only need to deal with the one-step transition probability, we get Proposition 4
directly.

Proposition 4. Given M&R in (2:2)-EA being implemented by M&R1, when n ≥ 16,
we have E[[τ ]] ≤ E[[τ ′]].

Proposition 5. Given M&R in (2:2)-EA being implemented by M&R2, when n ≥ 2, we
have E[[τ ]] ≥ E[[τ ′]].

Proof. For any population x = {s1, s2} such that ‖s1‖ = n − i and ‖s2‖ = n − i−
δ(δ ≥ 0). Note that in the case LO1 < LO2 ∧ s1(LO2 + 1) = 0, it uses the one-bit
recombination. So we have∑

y∈X P (ξt+1 = y | ξt = x)E[[τ ′t+1 | ξ′t+1 = y]]

=
(
E(i− 1, i+ δ) + (n− 1)E(i, i+ δ)

)
/n

≥ E(i, i+ δ)− 1
n

(n− 3n− 1
2δ+3

)

= E(i, i+ δ)− 1 +
3− 1/n

2δ+3
≥ E(i, i+ δ)− 1 .
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Fig. 1. Estimated EFHT with problem size [2, 100]

While in the case LO1 > LO2 ∧ s2(LO1 + 1) = 0, it also uses the one-bit recombina-
tion. We have∑

y∈X P (ξt+1 = y | ξt = x)E[[τ ′t+1 | ξ′t+1 = y]]

=
(
E(i, i+ δ − 1) + (n− 1)E(i, i+ δ)

)
/n

≥ E(i, i+ δ)− 5 + 1/n

8
> E(i, i+ δ)− 1 .

The remaining of the proof is similar to that in Proposition 2. �
To verify the theoretical results, we run the (2:2)-EA on the LeadingOnes problem
with problem size ranging up to 100. On each size, we repeat independent runs of
each implementation of the EA for 1,000 times, and then average the runtimes as an
estimate of the EFHT. The results are plotted in Figure 1. It can be observed that the
runtime of both M&R1a and M&R1b is smaller than that using one-bit mutation, and
the two strategies have similar runtime such that their curves overlap largely. It is also
observable that M&R1, which combines M&R1a and M&R1b, is more efficient than
one-bit mutation, as well as M&R1a and M&R1b. Meanwhile, M&R2 is worse than
one-bit mutation. These observations verify our analysis results in Propositions 2-5.

5 Conclusion

It is difficult to analyze recombination operators theoretically in terms of runtime,
since they operate on population and interact with mutation operators. In this paper,
we present a general approach which allows to compare the runtime of an EA turning
the recombination on and off. The key is the Markov Chain Switching Theorem which
compares two Markov chains for the first hit of the target.

For the simplicity of analysis, in this paper we only present a case study of a simple
EA on the LeadingOnes problem to show how the proposed approach can be helpful.
We will present the analysis on the OneMax problem in a longer version. For more
realistic EAs that use uniform mutation and uniform recombination, since one-step of
operation could generate many different solutions, compact analysis using our approach
is an interesting future work.
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Abstract. This paper investigates the relation between the covariance

matrix adaptation evolution strategy and the natural evolution strategy,

the latter of which is recently proposed and is formulated as a natural

gradient based method on the expected fitness under the mutation dis-

tribution. To enable to compare these algorithms, we derive the explicit

form of the natural gradient of the expected fitness and transform it into

the forms corresponding to the mean vector and the covariance matrix of

the mutation distribution. We show that the natural evolution strategy

can be viewed as a variant of covariance matrix adaptation evolution

strategies using Cholesky update and also that the covariance matrix

adaptation evolution strategy can be formulated as a variant of natural

evolution strategies.

1 Introduction

Recently in the field of continuous function optimization, natural evolution
strategies (NESs) have been proposed by Wierstra et al. [1] and developed by
Sun et al. [2]. The NES utilizes the Gaussian mutation to generate new search
points and adjusts the parameter of the mutation at each generation in order
to improve the expected fitness under the mutation distribution. For the ad-
justment, the NES makes use of the natural gradient [3] of the expected fitness
with respect to the parameter of the mutation distribution, which is referred to
as a natural evolution gradient. Sun et al. [2] reported that the performance of
the NES is competitive to that of the covariance matrix adaptation evolution
strategy (CMA-ES, e.g. [4,5]) on standard benchmarks.

Now an interesting question arises as to why they perform similarly despite
their apparently different update rules for the parameters of the mutation distri-
bution. Investigating the relation between the NES and the CMA-ES is beneficial
to understand the algorithms. Comparing the NES with the CMA-ES, which is
more intuitively understandable in terms of the update rules of the parame-
ters of the mutation distribution, helps to understand how the NES adjusts the
parameter of the mutation distribution. Describing the CMA-ES in the frame-
work of the NES, which seems theoretically more tractable, allows deriving the
convergence theory.

R. Schaefer et al. (Eds.): PPSN XI, Part I, LNCS 6238, pp. 154–163, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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We investigate the relation between the NES and the CMA-ES. The rest of
the paper is organized as follows. In section 2, we explain the concepts of the
evolution gradient – the gradient of the expected fitness – and of the natural
evolution gradient. In section 3, we elucidate the connection between the NES
and the CMA-ES by deriving the explicit form of the natural evolution gradient,
which is computed in [2] with an iterative computation of the inversion of the
Fisher information matrix (FIM) of the mutation distribution. In section 4, we
show that the CMA-ES employing global weighted recombination and rank-μ
update without step-size adaptation can be formulated as a variant of natural
evolution gradient based methods. Finally in section 5, we discuss the results
and conclude this paper.

2 Formulation

The objective of minimization is to find the point x at which an objective func-
tion f : Rd → R has the minimal value. Both the NES and the CMA-ES search
the optimal point via Gaussian mutation. Their algorithms repeat two steps at
each generation: mutation step and update step. At the mutation step, their
algorithms generate new points from a Gaussian distribution with mean m and
covariance matrix C. At the update step, their parameters θ = 〈m,C〉 are up-
dated to promote promising mutation by using the sample points. The update
of θ in the NES, as we mention in the following subsections, is based on the
gradient of the expected fitness under the mutation distribution, while that in
the CMA-ES is related to the maximum likelihood estimation of the Gaussian
distribution.

2.1 Evolution Gradient

The NES adjusts θ to optimize the expected fitness J(θ) = E[f(x) | θ] of the
next generation under the mutation distribution π(x | θ) by using the natural
evolution gradient – the natural gradient of J(θ). Preparatory to introducing
the notion of the natural evolution gradient, we introduce the concept of the
evolution gradient.

One of the most straightforward approaches to adjusting θ relies on the gra-
dient ∇θJ(θ) of J(θ). Let

π(x | θ) =
1

(2π)d/2 det(C)1/2
exp
(
−1

2
(x−m)TC−1(x−m)

)
(1)

denote the probability density of the Gaussian distribution given parameter θ =
〈m,C〉. The expected fitness under the mutation distribution π(x | θ) is

J(θ) =
∫
f(x)π(x | θ)dx . (2)

Using the log-likelihood trick, we can express the gradient ∇θJ(θ) with respect
to θ as

∇θJ(θ) = ∇θ

∫
f(x)π(x | θ)dx =

∫
π(x | θ)f(x)∇θ lnπ(x | θ)dx . (3)
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This is referred to as an evolution gradient. If the gradient∇θJ(θt) at the current
location θt is given, one can update θt+1 by shifting θt in the direction of the
negative gradient, −∇θJ(θt), as θt+1 = θt − η · ∇θJ(θt).

However, since the objective function is unknown, so is the evolution gradient.
We alternatively utilize the Monte-Carlo approximation:

∇θJ(θ) ≈
λ∑

i=1

f(xi)
λ

∇θ lnπ(xi | θ) , (4)

where xi are samples generated from π(x | θ). To eliminate premature con-
vergence attributed to disturbance of the estimation of evolution gradients and
explicit the invariant property against order-preserving transformation, a rank-
ing based fitness shaping is introduced in [1,2]:

(f(x1)/λ, . . . , f(xλ)/λ) → (−wR1 , . . . ,−wRλ
), w1 ≥ · · · ≥ wλ . (5)

Here the index Ri denotes the rank of xi among x1, . . . ,xλ with respect to
f -values. That is, f(xi) is the Rith smallest among f(x1), . . . , f(xλ).

2.2 Natural Evolution Gradient

The natural gradient [3] has a background in information geometry, which stud-
ies the Riemannian geometric structure of the manifold of probability distri-
butions. A result in information geometry states that the Fisher information
matrix (FIM) defines a Riemannian metric tensor on the space of probability
distributions [6] and that the direction of the steepest descent on a Riemannian
manifold is given by the natural gradient, which is given by the conventional
gradient premultiplied by the inverse matrix of the Riemannian metric tensor
[3]. Thus, the natural gradient can be computed from the gradient and the FIM,
and the natural gradient descent tends to converge faster than conventional one.
Furthermore, the natural gradient descent is a variable metric method, which
provides uniform convergence properties. In the field of machine learning, natu-
ral gradient learning has been used as an efficient method that can prevent from
being stuck on plateaus [7].

The NES utilizes the natural evolution gradient – the natural gradient of the
expected fitness – in lieu of the conventional one. If the FIM is invertible, the
natural evolution gradient ∇̃θJ(θ) = F−1(θ)∇θJ(θ) is given by the evolution
gradient premultiplied by the inverse matrix of the FIM F(θ). It is well-known
that the FIM for a Gaussian distribution takes an explicit form. The (i, j)
element of the FIM F(θ) of the Gaussian distribution N (m(θ),C(θ)) is

Fi,j =
∂mT

∂θi
C−1 ∂m

∂θj
+

1
2
tr
(
C−1 ∂C

∂θi
C−1 ∂C

∂θj

)
. (6)

We approximate the natural evolution gradient by replacing the exact gradient
with its estimation, namely,

∇̃θJ(θ) ≈ δθ = −
λ∑

i=1

wRiF
−1(θ)∇θ lnπ(xi | θ) . (7)
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Consequently, the NES framework repeats the estimation of the natural evolution
gradient δθt by using the samples xt

i ∼ π(· | θt) generated at tth generation and
the adjustment of the parameter by θt+1 = θt − ηδθt. It can be considered
that the NES transforms the minimization of f(x) into the minimization of the
expected fitness J(θ) under the mutation distribution π(x | θ) and minimizes
J(θ) by using the estimation of the natural gradient of J(θ).

3 NES as a Variant of CMA-ESs

Let A represent the Cholesky decomposition of the covariance matrix C, or more
rigorously, let A be the unique lower triangular matrix such that C = AAT.
Let θ be a [d(d+ 3)/2]-dimensional column vector consisting of the elements of
m and the lower left elements of A, more precisely,

θ =
[
mT vech(A)T

]T
. (8)

Here vech(A) = [ (A1:d,1)
T (A2:d,2)

T ... (Ad:d,d)T ]T is a rearranging operator, where
Ak:d,k is the sub-matrix in A at row k to d and column k (see e.g. [8]). In [1,2],
the mutation distribution is parameterized by (8). Sun et al. [2] proved in the
case of the parameterization (8) that the exact FIM of π(x | θ) becomes a block-
diagonal matrix diag(F0, . . . ,Fd) whose first block F0 is identical to C−1 and
k + 1th (1 ≤ k ≤ d) block Fk is given by

Fk = a−2
k,kukuT

k + (C−1)k:d,k:d , (9)

where a−1
i,i is the reciprocal of the ith diagonal element of A, or identically, the

ith diagonal element of A−1, and uk is a [d− k + 1]-dimensional column vector
whose first element is one and all the other elements are zero. The required
matrix inversion can be performed efficiently since F−1 = diag(F−1

0 , . . . ,F−1
d ).

Moreover, the inverse of each block and the natural evolution gradient can be
computed efficiently by an iterative method proposed in [2].

Although an efficient procedure is vital in implementing it on a computer, it
makes it difficult to capture the mechanism of the update of θ. To analyze how
the NES adjusts the parameter θ and to compare the NES with the CMA-ES,
we derive the analytical inverse matrix of the FIM and extract the explicit form
of the natural evolution gradient update rule.

3.1 Inverse of the Fisher Information Matrix

First, we derive the inverse matrix of each diagonal block of the FIM. Obviously,
F−1

0 = C. Let vk denote a d-dimensional column vector whose kth element is
one and all the other elements are zero, and I be the [d − k + 1]-dimensional
identity matrix. Then, the inverse matrix of k + 1th diagonal block Fk of the
FIM can be written as

Ek =
[
0 I
]
A
([0 0

0 I

]
− 1

2
vkvT

k

)
AT

[
0
I

]
. (10)
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To see this, it suffices to show the product of Ek and Fk becomes Id+1−k. Now,
rewriting Fk in the form

Fk =
[
0 I
] (

A−TA−1 + a−2
k,kvkvT

k

) [0
I

]
(11)

and postmultiplying Fk by Ek we have FkEk = I1. Therefore, F−1
k = Ek.

3.2 Explicit Form of the Natural Evolution Gradient

The estimation δθ of the natural evolution gradient is given as a linear combi-
nation of the natural gradient of the log-likelihood for all samples. The partial
derivative of the log-likelihood is

∂

∂θk
lnπ(x | θ) =

{
vT

k C−1(x −m) if 1 ≤ k ≤ d,
vT

mk
Rvnk

otherwise, (12)

where mk and nk are the row and column indices of A corresponding to the kth
element of θ, such that 1 ≤ nk ≤ mk ≤ d and mk +

∑nk−1
i=1 d+1− i = k−d, and

R = C−1(x−m)(x−m)TA−T − diag(a−1
1,1, . . . , a

−1
d,d) . (13)

The natural gradient of the log-likelihood is obtained by premultiplying the
gradient by the inverse of the FIM, which results in[

(x−m)TC−1F−T
0 (R1:d,1)TF−T

1 (R2:d,2)TF−T
2 . . . (Rd:d,d)TF−T

d

]T
. (14)

Since F−1
0 = C, F−1

0 C−1(x−m) = (x−m). For 1 ≤ k ≤ d, Rk:d,k =
[
0 I
]
Rvk

and
F−1

k (Rk:d,k) =
[
0 I
]
A
(
tril(S)− 1

2
diag(s1, . . . , sd)− 1

2
I
)
vk , (15)

where S = A−1(x−m)(x−m)TA−T, sk is the kth diagonal element of S, and
tril(S) denotes the lower triangular matrix whose (i, j) element is identical to
the (i, j) element of S if i ≥ j, zero otherwise2.

Letting the estimated natural evolution gradient δθ be expressed in the block
form δθ = − [δT0 δT1 . . . δTd

]T, then δ0 =
∑λ

i=1 wRi(xi −m) and

δk =
[
0 I
]
A
(
tril(Y)− 1

2
diag(y1, . . . , yd)−

∑λ
i=1 wi

2
I
)
vk (16)

for 1 ≤ k ≤ d. Here Y =
∑λ

i=1 wRiA
−1(xi−m)(xi−m)TA−T and yi is the ith

diagonal element of Y.
1 Since A is lower triangular, A−1[ 0 0

0 I ]A[ 0I ] = A[ 0 0
0 I ]A−1[ 0I ] = [ 0I ] and vT

k A[ 0 0
0 I ] =

ak,kv
T
k , and then the product FkEk reduces to FkEk = I + a−1

k,kukv
T
k AT[ 0I ] −

1
2
a−1

k,kukv
−T
k AT[ 0I ] − 1

2
a−1

k,kukv
−T
k AT[ 0I ] = I.

2 According to A−1[ 0 0
0 I ]A[ 0I ] = A[ 0 0

0 I ]A−1[ 0I ] = [ 0I ], vT
k A[ 0 0

0 I ] = ak,kv
T
k ,

diag(a−1
1,1, . . . , a

−1
d,d)vk = a−1

k,kvk and vT
k AT[ 0 0

0 I ]A−T = vT
k , the product of F−1

k

and Rk:d,k is reduces to F−1
k (Rk:d,k) = [ 0 I ]A([ 0 0

0 I ]S − 1
2
vT

k S − I + 1
2
I)vk =

[ 0 I ]A(tril(S) − 1
2
diag(s1, . . . , sd) − 1

2
I)vk.
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3.3 Parameter Update Rules

We consider the update rules for m and A corresponding to θt+1 = θt − η · δθt.
Let Yt =

∑λ
i=1 wRiA

−1(xt
i −m)(xt

i −m)TA−T, δmt = δ0 and δAt be a [d ×
d]-dimensional lower triangular matrix whose (i, j) element is identical to the
i + 1 − jth element of δj for i ≤ j, zero for i > j. Then analogous update rules
for mt+1 = m(θt+1) and At+1 = A(θt+1) can be written as mt+1 = mt +η ·δmt

and At+1 = At + η · δAt, namely,

mt+1 = mt + η
λ∑

i=1

wRi(x
t
j −mt) (17)

At+1 = At + ηAt
(
tril(Yt)− 1

2
diag(yt

1, . . . , y
t
d)−

∑λ
i=1 wRi

2
I
)
. (18)

Suppose that wi sum to one. The covariance matrix Ct+1 = At+1(At+1)T is

Ct+1 = At
(
η · tril(Yt)− η

2
diag(yt

1, . . . , y
t
d) +

2− η

2
I
)

·
(
η · tril(Yt)− η

2
diag(yt

1, . . . , y
t
d) +

2− η

2
I
)T

(At)T . (19)

Here, since Yt is symmetric, tril(Yt) + tril(Yt)T− diag(yt
1, . . . , y

t
d) = Yt, which

reduces the last equality to

Ct+1 = (
2− η

2
)2Ct + η

2 − η

2
AtYt(At)T + η2At

·
(
tril(Yt)− 1

2
diag(yt

1, . . . , y
t
d)
)(

tril(Yt)− 1
2
diag(yt

1, . . . , y
t
d)
)T

(At)T. (20)

Notice AtY(At)T =
∑λ

i=1 wRi(xt
i −m)(xt

i −m)T. This equality (20) and the
update rule (17) together are similar to the update rules for the mean vector
and the covariance matrix used in the CMA-ES combining global weighted re-
combination and rank-μ update except for the third summand of (20) and the
learning rate. Since the NES directly updates the Cholesky decomposition A of
the covariance matrix C and equality (20) is related to rank-μ update, update
rule (18) can be considered as a variant of the Cholesky update in [10].

From this explicit form of the NES, we can clearly see the difference between
the NES and the CMA-ES. One different point is the third term of equality (20)
due to the Cholesky update rule (18). Another point is in the learning late. The
third point is the existence of step-size adaptation. We leave it to future work to
study how these differences affect the performance of their optimization process.

In addition to enable us to compare the NES with the CMA-ES, the explicit
forms (17) and (18) of the parameter update of the NES can reduce the time
complexity of a single iteration of the NES from O(λd3) to O(λd2 + d3)3. This
is because we can compute the estimated natural evolution gradient without
computing the FIM and its inverse, as well as natural actor-critic reinforcement
learning [11].
3 This is only a reduction if λ and d increase at the same time.
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4 CMA-ES as a Variant of NESs

The result in the previous section says that the NES can be viewed as a vari-
ant of CMA-ESs using Cholesky update when using the parameterization (8).
The original NES parameterizes the mutation distribution as (8) to ensure the
positivity and symmetry of the covariance matrix. An interesting question is
whether there is a parameterization such that more standard CMA-ES which
update the covariance matrix rather than the Cholesky factor of it is formulated
as a variant of NESs. In this section, we answer the question in the affirmative.

Let
θ =

[
mT vec(C)T

]T (21)

be a d(d + 1)-dimensional column vector consisting of all the elements of the
mean vector m and the covariance matrix C, where vec(·) denotes a rearrang-
ing operator from a matrix to a column vector such that vec(

[
a1 a2 . . . ad

]
) =[

aT
1 aT

2 . . . aT
d

]T (see e.g. [8]). Let us consider the natural evolution gradient
learning when using this parameterization.

Suppose that C is positive-definite and symmetric. The gradient of the log-
likelihood of π(x | θ) is

∇θ lnπ(x | θ) =
[

C−1(x −m)
1
2vec(C−1(x−m)(x−m)TC−1 −C−1)

]
. (22)

From (6), we have that the FIM of π(x | θ) and its inverse matrix are,
respectively,

F(θ) =
[
C−1 0
0 1

2C
−1 ⊗C−1

]
and F−1(θ) =

[
C 0
0 2C⊗C

]
, (23)

where ⊗ is the Kronecker product. Therefore, the natural gradient of the log-
likelihood of π(x | θ) is

F−1(θ)∇θ lnπ(x | θ) =
[

(x−m)
vec((x−m)(x−m)T −C)

]
. (24)

Since the natural evolution gradient δθ estimated from the samples xi in the same
way as (7) is a linear combination of the natural gradient of the log-likelihood,
the natural evolution gradient can be estimated by

δθ =

[
−∑λ

i=1 wRi(xi −m)
−vec(

∑λ
i=1 wRi(xi −m)(xi −m)T −∑λ

i=1 wiC)

]
. (25)

Therefore, in the case of the parameterization (21), if C(θt) is symmetric and
nonsingular, the natural evolution gradient update produces the next parameter
θt+1 = θt − ηδθt by

θt+1 =

[
(1− η

∑λ
i=1 wRi)m

t + η
∑λ

i=1 wRix
t
i

vec((1 − η
∑λ

i=1 wRi)C
t + η

∑λ
i=1 wRi(x

t
i −mt)(xt

i −mt)T)

]
. (26)
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Suppose
∑λ

i=1 wi = 1, wi ≥ 0 for all i and 0 ≤ η < 1. Starting with an initial
parameter θ0 for which C(θ0) is positive definite and symmetric, the covariance
matrix C(θt) with this update rule is positive definite and symmetric for each
t and the supposition that C is nonsingular and symmetric always holds. By
letting mt+1 = m(θt+1) and Ct+1 = C(θt+1), we have

mt+1 = (1− η)mt + η

λ∑
i=1

wRix
t
i and (27)

Ct+1 = (1− η)Ct + η

λ∑
i=1

wRi(x
t
i −mt)(xt

i −mt)T . (28)

These update rules are the same as the CMA-ES combining global weighted
recombination and rank-μ update except that mt update and Ct update take
a common learning rate η. Consequently, the CMA-ES can be considered as a
variant of NESs using the parameterization (21) instead of (8), i.e., the CMA-ES
implicitly utilizes the natural evolution gradient without the calculation of the
FIM and its inverse matrix.

There are some remarks on the result:

1. In terms of natural gradient, the result justifies the form of the update rules
in the CMA-ES, i.e., using mt rather than mt+1 in (28) and using the same
weights in the update of the covariance matrix as in that of the mean vector.
2. The differences (Ct+1 − Ct)/η in (20) and in (28) agree in the case η → 0.
This is because they represent the natural gradient and the natural gradient is
independent of the choice of the parameterization. However, since a finite step
(η > 0) in the natural gradient direction depends on the parameterization, the
update rules do not agree for η > 0.
3. Since two partial derivatives ∂

∂θk

∫
f(x)π(x | θ)dx and ∂

∂θk

∫
(f(x) − bk)π(x |

θ)dx agree for any bk,
∑λ

i=1(f(xi)/λI − diag(b1, . . . , bd))∇θ lnπ(xi | θ) is an
unbiased estimator of the gradient as well as (4). When bi = 0 for 1 ≤ i ≤ d,
bi = 1/λ for d + 1 ≤ i ≤ d + d2, and ranking-based fitness shaping (5) is used,
the resulting update rule for C changes from (28) and, if C is positive-definite,
the new one is Ct+1 = Ct + η

∑λ
i=1(wRi − 1/λ)(xt

i −mt)(xt
i −mt)T. This is

similar to Active-CMA [12] without rank-one update.
4. Fitness shaping is fundamental. If it is not used and the function values
nearly vanish (|f(xi)| � 1), the natural gradient does and the parameter is not
updated. An affine type fitness shaping f(x) → a · f(x) + b does not affect the
direction but does the length of the natural gradient. For example, a fitness
shaping f(xi)/

∑λ
j=1 f(xi) does not affect the direction of the natural gradient,

but it normalizes the length in terms of the sum of the weights and shares the
property with (5) that their values sum to one. However, in general, ranking-
based fitness shaping (5) influences both the length and the direction of the
natural gradient. In addition, so does the different learning rates (step size) for
the mean vector and the covariance matrix in the CMA-ES. They might be
important future works for further theoretical foundation of the CMA-ES.
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5 Conclusion

These results state that the CMA-ES with global weighted recombination and
rank-μ update can be formulated as the NES using the parameterization (21)
and that their update rules corresponding to the mean and the covariance matrix
of the mutation distribution are similar. The difference between the NES and the
CMA-ES is essentially only in the parametrization of the mutation distribution.
This is in agreement with the similar performances of them reported in [2].

The results also say that the CMA-ES can be formulated as a natural gra-
dient learning which adjusts the parameter θ to minimize the average fitness
J(θ) under the mutation distribution π(· | θ). The theoretical foundation is im-
portant and profitable to justify, to understand the behavior of the CMA-ES,
especially to analyse its convergence behavior, because the research dealing with
the convergence properties of stochastic gradient learning (e.g. [13,14]) may help
to investigate the convergence behavior of the CMA-ES. Besides, this makes it
easier to compare the CMA-ES with gradient based methods. We may be able
to draw inspiration from such comparison about when and how evolutionary
algorithms perform better than gradient based methods on rugged functions.

Future work would focus on studying how the differences between the NES
and the CMA-ES affect the performances of their algorithms. In particular, it is
interesting how we can treat the concept of step-size adaptation in the frame-
work. This might lead to further understanding of the CMA-ES and could pos-
sibly help to construct the convergence theory of the CMA-ES. Another future
work could be to incorporate ideas used in gradient based online learning into
the covariance matrix adaptation. For example, the concepts of optimal baseline
and importance sampling are integrated in the natural evolution strategies as
optimal fitness baseline and importance mixing [2]. Furthermore, it is possibly
useful to introduce learning rate adaptation [3] and to combine other gradient
methods such as natural conjugate gradient methods used in several learning
problems [15,16,17].
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Abstract. The property that neighbouring genotypes tend to map to

neighbouring phenotypes, i.e. locality, is an important criterion in the

study of problem difficulty. Locality is problematic in tree-based genetic

programming (GP), since typically there is no explicit phenotype. Here,

we define multiple phenotypes for the artificial ant problem, and use

them to describe a novel fine-grained view of GP locality. This allows

us to identify the mapping from an ant’s behavioural phenotype to its

concrete path as being inherently non-local, and show that therefore

alternative genetic encodings and operators cannot make the problem

easy. We relate this to the results of evolutionary runs.

Keywords: Genetic programming, phenotype, locality, problem

difficulty, artificial ant.

1 Introduction

In evolutionary computation (EC), the genotype is the data structure, belonging
to an individual, upon which the genetic operators work. It is mapped by some
process to a phenotype, which in some sense represents the developed individual.
Typically it is the phenotype which is evaluated for fitness, for example.

Some genetic programming (GP) variants have distinct genotypes and pheno-
types, for example Cartesian GP [1], linear GP [2], grammatical evolution (GE)
[3], and others. The case of standard, tree-structured GP is different. Depend-
ing on one’s viewpoint, one might say that the genetic operators work directly
on the phenotype, that the genotype-phenotype mapping is the identity map,
or simply that no phenotype exists. Some methods of studying and comparing
representations, common and useful in other areas of EC, turn out to be inap-
plicable to standard GP for this reason. One example is locality, an important
measure of the behaviour of the genotype-phenotype mapping commonly used
as an indicator of problem difficulty [4]. Some authors resort to measuring the
locality of the genotype-fitness mapping as a substitute [5,6,7], but this does not
tell the whole story. In particular, identifying a badly-behaved genotype-fitness
mapping does not give us any clue about whether and how the mapping might
be improved. Using phenotypes (e.g. [4]) can help to identify the components
of the algorithm (e.g. a particular aspect of the encoding) responsible for the

R. Schaefer et al. (Eds.): PPSN XI, Part I, LNCS 6238, pp. 164–173, 2010.
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overall bad behaviour, or to conclude that no improvement is possible. In GP,
it is possible to see program semantics or behaviour as a phenotype [8,9,10,11],
and this is the approach taken here. GP locality has not been previously studied
using such a definition of phenotypes.

Although the relatively poor performance of various GP techniques on the ar-
tificial ant benchmark cannot be regarded as an open problem [5], the study of
locality can still teach us something new. The aims of this paper are thus to pro-
pose a fine-grained view of locality using two abstract, operator- and encoding-
independent definitions of ant phenotypes; to use this model to study locality;
and to relate the results with GP performance. Our methods may be applicable
in a general way to other problems also.

The next section analyses previous work on locality and problem difficulty.
In Sect. 3 we explain our view of locality, which allows for multiple phenotypes,
and we give two distinct definitions for ant phenotypes. One of these is based on
binary decision diagrams (BDDs), and an introduction to this topic is presented
in Sect. 3.1. We present experiments on locality and evolutionary runs, and
results, in Sect. 4; our conclusions are in Sect. 5.

2 Previous Work

Many authors have used landscape-oriented problem difficulty measures to try
to predict search performance in EC. Examples include landscape correlation
measures [12], epistasis [13], proportion of optima per program size [5], fitness-
distance correlation (FDC) [14], FDC extensions including fitness clouds and
negative slope coefficient [15,16], and locality and distance distortion [4].

In many of these cases, a proposed measure of difficulty (e.g. [14]) is followed
by a counter-example (e.g. [17]): a problem which is easy to solve but is predicted
to be difficult, or vice versa. In some cases the measure is then repaired or im-
proved in some way (e.g. [16]), to be followed by new counter-examples (e.g. [18]).
In addition to false predictions, there are problems of practicality. Jansen [19]
summarised the situation for several such measures and demonstrated the key
problems, including the requirement for very large sample sizes, unreliability of
measures and counter-examples.

Despite this, research continues into methods of classifying problem difficulty,
often with the aim of showing that one encoding or operator should be expected
to improve performance relative to another. Here, we take the attitude that al-
though no measure can predict performance perfectly, there are known results
which can be explained in terms of problem difficulty, for example the poor per-
formance of mutation-only GE relative to GP [20]. Such explanations contribute
to an overall understanding of what makes EC work.

We concentrate on just one type of problem difficulty measure, locality, which
in the general sense means the preservation of neighbourhood by a mapping.
Rothlauf defines locality over the GA genotype-phenotype mapping and uses it
to shed new light on several problems [4]. Although Rothlauf gives a numerical
definition for the average locality of an encoding/mutation operator combination
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[4] (p. 77), we will not use it in this paper since our aim is not to compare the
locality of different encodings or operators. Instead, we will examine the distri-
bution of distances between neighbours after mapping from one space to another.
That is, we will study locality by taking pairs of neighbours, mapping each to a
new space (i.e. genotypes to phenotypes, genotypes to fitness, or phenotypes to
fitness), and looking at the distance between them in the new space.

3 A Fine-Grained View of Locality

In the abstract sense, locality refers to the preservation of neighbourhood by any
mapping, not just the genotype-phenotype mapping common in many forms of
EC. Therefore, when researchers (motivated by the absence of explicit pheno-
types) study the preservation of neighbourhood by the genotype-fitness mapping
in GP [5,6,7], this should be regarded as study of locality also. By defining ex-
plicit phenotypes in this paper, we aim to separate the genotype-fitness mapping
into its component parts and study them separately.

g fp
0

pn-1...

Fig. 1. Genotype g, phenotypes pi, and fitness f . Arrows represent causality: for ex-

ample, the calculation of p0 depends on g, but g cannot be calculated from f .

Although it is common to think of each individual as having a single pheno-
type, a more general definition is possible: any data structure which is calculated
from the genome and which contributes to the calculation of fitness may be seen
as part of the “extended phenotype” [21]. The most general case is shown in
Fig. 1. Each component of the mapping can, ideally, be studied separately.

In this study we focus on the artificial ant problem domain. Here, the problem
is to find a program that can navigate a path of food laid out in cells on a grid [22]
(pp. 147–155). The terminal set is {move, right, left}: these actions move
the ant forward one square, and turn 90◦ to the right or left, respectively. Each
consumes one time unit. The function set is {iffoodahead, prog2, prog3}.
The first is a conditional: it executes its first argument if the ant perceives food
directly ahead, and the second otherwise. The two remaining functions execute
their two or three arguments in sequence. The most common grid layout is the
Santa Fe ant trail, consisting of 89 food cells in a 32x32 grid, with the path
characterised by twists and gaps. 600 time-steps are allowed.

The remainder of this section presents two definitions of ant phenotypes.
Section 3.1 describes p0, a phenotype based on binary decision diagrams, which
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represents the ant’s behaviour in an encoding-independent way. Section 3.2 de-
scribes p1, a cell-sequence phenotype, which represents the ant’s path concretely.
This leads to the overall model g → p0 → p1 → f .

3.1 Binary Decision Diagram Phenotypes

One definition for ant phenotypes is suggested by [8,9]: an ant’s behaviour is
represented in an abstract form, inspired by the idea of stateful binary decision
diagrams (BDDs) [23]. BDDs are a formalism for representing boolean functions.
Any Boolean function composed of variables X0, X1, etc. and functions AND,
OR, and NOT, for example, can be alternatively represented using a BDD.

Initially, a BDD may be thought of as a tree. At the root lives X0, and it has
two children each corresponding to X1. At layer n live 2n nodes corresponding to
variable Xn. At the very bottom layer live nodes labelled 0 and 1. The essential
idea is similar to that of a finite state machine. To evaluate a BDD, one traverses
from the root, at each node choosing which of its two outgoing edges (labelled
“high” and “low”) to follow, depending on the value of the node’s corresponding
variable. The connectivity (i.e. the edges) ensures that the node one reaches
at the end (0 or 1) is the value of the boolean function for the given variable
values. In practice, it is common to use reduced BDDs, in which redundancies
are eliminated: the BDD then no longer has a tree structure, since two divergent
paths may re-join at a lower level.

Our definition of BDD-based ant phenotypes is similar but not identical to
that of Beadle and Johnson [8,9]. The ant’s behaviour is represented as a type of
BDD: each node contains a sequence of zero or more action commands (left, right,
and move), and each branch represents an if-statement. Branches rejoin after
execution of an if-statement. In the ant problem there is only one “variable”, the
result of the iffoodahead predicate. This variable is stateful : it varies during an
ant’s run, so it is necessary to use multiple layers of nodes to represent behaviour.
Since the ant’s behaviour depends on the order in which it perceives cells, it is not
possible to re-order the BDD (as for BDDs in other contexts) without altering
behaviour. The mapping from genotype to BDD-phenotype is thus unambiguous.
The algorithm for performing the mapping is omitted due to space constraints:
code is available at http://skynet.ie/~jmmcd/representations.html. BDD-
phenotypes are illustrated in Fig. 2.

We can equivalently write our BDD-phenotypes as strings. L, R, and M rep-
resent left, right, and move commands. A branch, conditional on the presence
of food, is represented by an <X,Y> construct, where X and Y represent the two
branches. We invert the standard BDD convention that the negative branch is
written first, since in GP trees the positive branch of an if-statement is written
first. The convention is arbitrary and the only effect of changing it is to make
the BDDs easier to read.

Note that conversion from genotype to phenotype is not a simple matter of
altering symbols. The sequencing implied by the prog2 and prog3 functions is
abstracted away, and this allows some distinct genotypes to map to identical

http://skynet.ie/~jmmcd/representations.html
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phenotypes. Several types of simplification are also required to obtain an ab-
stract, canonical representation of ant behaviour:

– When one if-statement is nested directly inside another, one or other branch
of the inner one will never be executed. That is, we can replace <<X,Y>W,Z>
with <XW,Z>, and we can replace <X,<Y,Z>W> with <X,ZW> (here W, X, Y and
Z are arbitrary sequences of actions).

– When the two branches of an if-statement end with the same action, it can
be brought outside the branch. That is, we can replace <XY,ZY>with <X,Z>Y.

– As a result of the above simplifications, it may happen that an if-statement
has two empty branches: <,> can be removed.

M L

(a)

M L

MR

L R

(b)

M LL

MR

M R

(c)

M LL

R

M R

(d)

Fig. 2. BDD phenotypes. The positive and negative branches of an if-statement

are drawn with solid and dashed lines respectively. Edges from non-branching

nodes are drawn with solid lines. In (a) a simple example: the geno-

type is (iffoodahead move left) and the phenotype <M,L>. In (b) the geno-

type is (prog3 (iffoodahead move (prog2 left (iffoodahead left (iffoodahead

move right)))) move right). This translates to the phenotype <M,L<L,<M,R>>>MR.

After removal of a redundant branch, we get <M,L<L,R>>MR, as shown. Phenotypic

neighbours can have divergent fitness values: individual (c) has fitness 89, but its neigh-

bour (d), created by a single phenotypic mutation, has fitness 1.

This representation can be run inside a suitable interpreter, and it will give
the same ant path and fitness as the original GP genotype. Crucially, this rep-
resentation is sufficiently abstract that it could also be used as a phenotype for
several other types of GP in which the ant problem might be run, including
GE, Cartesian GP, evolutionary programming (i.e. a finite state machine encod-
ing), and others. The BDD phenotype representation also admits a (non-unique)
backward mapping to genotype, not used in this paper.

We will measure distance between BDD-phenotypes using two string distance
measures. Normalised compression distance has been previously used in diver-
sity analysis [24]; string edit distance is well-known; both are general-purpose
measures. This choice is made because no single distance measure of which we
are aware is naturally suited for distances between BDD-phenotypes. Each mea-
sure gives at best an approximation to the “true” distance between a pair of
phenotypes. However, improved measures must be left for future work.
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We define BDD-phenotypic neighbourhood via “minimal edits” or mutations
on phenotypes, which consist of insertion, deletion, or editing of any of the action
commands L, R and M. Fig. 4 shows that phenotypic neighbours thus defined
can have divergent fitness values. Our reasoning in considering only insertion,
deletion and editing of the action commands is that non-minimal, structure-
altering phenotypic edits will also lead a fortiori to divergent fitness values.

Examples of phenotypes and canonicalisation are shown in Fig. 2. We can
illustrate the non-locality of the phenotype-fitness mapping: Fig. 2(c) shows the
phenotype of an individual which solves the Santa Fe problem, i.e. has fitness
89, and Fig. 2(d) an individual created by a single phenotypic mutation which
has fitness 1. The large change in fitness occurs because behaviour at each step
depends on position and orientation after previous steps, and is repeated multiple
times. Small changes in behaviour are thus multiplied.

3.2 Cell-Sequence Phenotypes

Another definition for an ant’s phenotype is the time-indexed sequence of cells it
visits, as illustrated in Fig. 3. This leads immediately to a natural definition of
phenotypic distance: d(a, b) =

∑T
t=0 dc(at, bt), where at and bt are the position

of ants a and b at time t, T is the maximum time, and dc is a distance metric
between cell positions, such as the toroidal taxi-driver’s distance. The position
of the food pellets mediates the behaviour of the ant but is not used in the
calculation of these metrics. Note that a small change in cell phenotype will nec-
essarily induce only a small change in fitness. The mapping from cell phenotype
to fitness is, in other words, highly local by definition.

0

1 2 3 4 5 6

7 0

1 2 3 4 5

6

7

Fig. 3. Two ants’ cell-sequence phenotypes. An integer t in a cell indicates that the ant

was in that cell at time t. The food pellets are not shown. The distance d between these

two ants is calculated as the sum of toroidal taxi-driver distances between corresponding

points in the paths. Where the ants coincide (as for t < 5) the distance is 0. For t = 5

the distance is 1, for t = 6 it is 2, and for t = 7 it is 3 (take a shortcut through the

bottom, emerging at the top), so the total distance is 0+0+0+0+0+1+2+3 = 6.

4 Experiments and Results

Here we report the results of two experiments. The central hypothesis is that
poor results in evolutionary runs can be explained in terms of locality measures.
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We consider locality first, sampling individuals, mutating them using several
methods, and measuring distances between pairs in several spaces. In every case,
1000 individuals were randomly generated, and a single mutation of the type
shown (one-point, subtree, or phenotypic) was performed on each, yielding 1000
pairs of genotypic (respectively phenotypic) neighbours. The distance between
pairs in the genotypic (respectively phenotypic, fitness) space was then recorded.
Note that one-point mutation changes a single node per individual. Subtree
mutation is a standard operator. Phenotypic mutation works as in Sect. 3.1.

Figs. 4(a) and 4(b) use two measures of genotypic distance (tree-edit dis-
tance and structural distance [25]) to show that different operators give different
genotypic step-sizes. Fig. 4(c) shows that genotypic neighbours map to similar
phenotypes when neighbourhood is defined by one-point mutation, but often do
not when it is defined by subtree mutation. Fig. 4(e) (left and centre) shows
that genotypic neighbours can have highly divergent fitness values, when geno-
typic neighbourhood is defined by either mutation operator. Finally, 4(e) (right)
shows that BDD-phenotypic neighbours can have highly divergent fitness values
also.
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(c) g → p0 (string-edit)
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(d) g → p0 (NCD)
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(e) g → f , g → f , p0 → f

Fig. 4. Different operators have different step-sizes ((a) and (b)). The genotype-to-

BDD-phenotype mapping ((c) and (d)) can therefore be well- or badly-behaved, de-

pending on the operator used to define neighbourhood. The genotype-to-fitness map-

ping ((e), left and centre) is badly-behaved for both. The BDD-phenotype-to-fitness

mapping ((e), right) is badly-behaved.

The definition of non-trivial phenotypes allows us a fine-grained view of map-
ping behaviour. Recall that our model of the mapping is g → p0 → p1 → f , where
p0 is the BDD-phenotype and p1 is the cell-sequence. We already know that the
overall map g → f is badly-behaved (confirmed by Fig. 4(e), left and centre): we
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can now seek to explain which of its components are responsible. The p1 → f
mapping has high locality by definition (see Sect. 3.2) and so is not to blame.
However, p0 → f has been shown to be badly-behaved (see Fig. 4(e), right, and
recall Fig. 2(d)). Taking these results together shows that it is p0 → p1, the
mapping from the ant’s abstract behaviour to its cell-sequence, which is badly
behaved and at least partly responsible for the behaviour of the overall g → f
mapping. Note, however, that subtree mutation can also cause bad behaviour in
the g → p0 mapping (see Fig. 4(c)).

Table 1. Artificial Ant performance measured over 100 runs. Higher is better.

Algorithm/Setup Mean Best Fitness Std. Dev. Hits

GP: no xover; subtree mut 60.54 9.98 6/100

GP: no xover; onepoint mut 51.24 7.22 0/100

GP: 9010 xover; subtree mut 61.27 10.10 5/100

GP: 9010 xover; onepoint mut 50.97 7.92 0/100

Random search: 60.86 13.93 1/100

In Table 1 we show the results of evolutionary runs using standard GP. The
aim is to confirm that GP techniques perform poorly on the ant problem. 100
runs were performed with each setup, with population 500 and 50 generations.
Typical parameters were used: 90/10 crossover probability 0.7, mutation proba-
bility 0.01 (but 1.0 for mutation-only GP), and maximum tree depth 7. A random
search (implemented as a GP run of population 25,000 and 1 generation, with
ramped half-and-half initialisation) is also reported for comparison. The only
“knowledge” input to the random search was to avoid tree depths less than 4.

An ANOVA and pairwise t-tests were performed on the 100 best fitness val-
ues from each setup. Three set-ups (subtree mutation, crossover/subtree, and
random search) each performed significantly better than the other two (one-
point and crossover/one-point) (p < 0.01, Bonferroni correction for 10 pairwise
t-tests). But the overall result is that GP performs poorly. There is little novelty
in this: it reinforces the conclusion (in 1998) of Langdon and Poli [5], that the
ant problem is difficult for many representations. Other representations including
Cartesian GP and GE have since produced largely similar results [1,3].

It is noteworthy that subtree mutation does well relative to one-point, despite
being more “randomising”. It tends to take larger jumps in the search space.
When a search space is badly-behaved, as here, highly local methods such as
minimum-change operators lose any advantage they would have on smooth, well-
behaved spaces. For difficult problems, then, random search tends to perform
surprisingly well compared to more sophisticated algorithms.

5 Conclusions

We have proposed a fine-grained model of locality in the ant problem, in which
the overall genotype-to-fitness map is broken up into three components with two



172 J. McDermott, E. Galván-Lopéz, and M. O’Neill

intermediate phenotypes which have not been previously used in the study of
locality. This new model allows us to identify the component—the map from the
ant’s abstract behaviour to its concrete path—responsible for the overall map’s
bad behaviour. We have performed various evolutionary runs and as expected
we have added to Langdon and Poli’s list of poor results [5] on this problem.

Our core conclusion is an attempt to explain these poor results: in the ant
problem, the mapping from BDD-phenotypes to fitness is inherently badly-
behaved. Since these BDD-phenotypes can function as encoding-independent
behavioural phenotypes for many GP approaches to the problem, this result
goes some way to explaining their universally poor performance. Thus, poor
performance is not due to inadequate representations.

Although we have studied only the ant problem, the fine-grained model of
locality proposed here may allow new insights into other problems also. Our
definitions of phenotypes will not be directly usable in other problems, but pos-
sibilities are suggested by Beadle and Johnson’s BDDs [8,9] and other semantic
approaches. Other methods of characterising mapping behaviour, such as corre-
lation analysis, might also benefit from similar fine-grained models.
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Montréal, Canada, pp. 113–120. ACM, New York (2009)

25. Tomassini, M., Vanneschi, L., Collard, P., Clergue, M.: A study of fitness distance

correlation as a difficulty measure in genetic programming. Evolutionary Compu-

tation 13(2), 213–239 (2005)



Drift Analysis with Tail Bounds

Benjamin Doerr1 and Leslie Ann Goldberg2

1 Max-Planck-Institut für Informatik, 66123 Saarbrücken, Germany
2 Department of Computer Science, University of Liverpool, Ashton Bldg, Liverpool

L69 3BX, UK

Abstract. We give a simple and short alternative proof of the multi-

plicative drift theorem published recently (Doerr, Johannsen, Winzen

(GECCO 2010)). It completely avoids the use of drift theorems previ-

ously used in the theory of evolutionary computation. By this, its proof

is fully self-contained.

The new theorem yields exactly the same bounds for expected run-

times as the previous theorem. In addition, it also gives good bounds

on the deviations from the mean. This shows, for the first time, that the

classical O(n log n) run-time bound for the (1+1) evolutionary algorithm

for optimizing linear functions holds with high probability (and not just

in expectation). Similar improvements are obtained for other classical

problems in the evolutionary algorithms literature, for example comput-

ing minimum spanning trees, finding single-source shortest paths, and

finding Eulerian cycles.

1 Introduction

Drift analysis was introduced to the theory of evolutionary algorithms by He
and Yao [18,19]. It soon became one of the strongest tools both for proving
run-time guarantees for many evolutionary algorithms and for giving evidence
that some algorithms cannot solve certain problems. See, e.g., [13,14,17,24,22]
for some notable subsequent uses of this method.

While it has many successful applications, drift analysis is nevertheless a tool
that is not liked by many researchers in evolutionary algorithms. We see three
main reasons for this. (i) The drift theorem employed is considered a deep math-
ematical tool, and its proof [16] is not easy to understand. (ii) When used to
prove upper bounds on the run-time of evolutionary algorithms, drift analysis
only yields bounds for the expected run-time. Hence, even for simple test prob-
lems like the linear functions one, we do not even know if the run-time bound
of O(n logn) also holds with probability 1 − o(1). (iii) To successfully employ
drift analysis, one has to find a suitable potential function. This is often difficult.
After having found one, proving that it satisfies the drift condition often involves
tedious calculations.

In [8,7], some progress concerning the third point was made. By giving a
multiplicative drift theorem, more natural proofs for many problems were ob-
tained. Since the multiplicative drift theorem was derived from the classical one,
naturally no progress concerning the difficulties (i) and (ii) was made.

R. Schaefer et al. (Eds.): PPSN XI, Part I, LNCS 6238, pp. 174–183, 2010.
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In this work, we solve the remaining two problems in an elegant way. We
give a simple and short proof for the multiplicative drift theorem. It is fully
self-contained up to using Markov’s inequality. It yields the same bounds for
expected run-times as the work of [8,7], which again yielded at least as good
bounds for many classical problems as did earlier work.

However, by not implicitly relying on classical additive drift theorems, our
proof also solves the second issue of obtaining bounds that hold with high prob-
ability. This in particular shows that the classical (1+1) evolutionary algorithm
optimizes an arbitrary linear function in time O(n log n) with high probability
(that is, with probability 1− n−c, where c can be any constant). If we care for
the implicit constants, then building on Jägersküpper’s analysis we obtain that
an upper bound of 1.39en ln(n)(1 + o(1)) is attained with probability 1− o(1).

Similarly, we obtain that the known bounds on the expected run-time hold
with high probability also for the problems of computing minimum spanning
trees and minimum weight bases in matroids, single-source shortest paths (with
a single-criterion fitness function), and Eulerian cycles.

This paper is organized as follows. In the following section, after introducing
some elementary notation, we state and prove a simple drift theorem that is
suited to prove bounds for optimization times of evolutionary algorithms that
hold with high probability. In the subsequent four sections, we apply this theorem
to different classical problems.

2 Drift Analysis

In this section, we briefly describe drift analysis to the extent needed for our
purposes. For a more general background, we refer to the papers cited above.

2.1 The (1+1) Evolutionary Algorithm

Let n ∈ N. Let Ωn be a search space and fn : Ωn → R be an objective function
defined on Ωn. We refer to n as the problem size. Without loss of generality, we
may assume (and shall always in this paper) that f is to be minimized.

If there is little risk of confusion, we usually omit the subscript n and simply
write Ω and f . Let Ωopt ⊆ Ω denote the set of optimal search points, that is,
those which have a minimal f -value.

The randomized search heuristic we regard in this work is the well-known
(1+1) EA. It starts with an initial solution x chosen uniformly at random from
the search space Ωn. In each iteration, from its existing solution x it generates
a new solution x′ by mutation. If Ωn = {0, 1}n is the set of bit strings of length
n, then mutation typically consists of flipping each bit of x with some proba-
bility p, often p = 1/n, independently. In other words, for each i ∈ {1, . . . ,n}
independently, we have Pr(x′i = 1− xi) = p and Pr(x′i = xi) = 1− p.

In the subsequent selection step, if f(x′) ≤ f(x), the EA accepts x′ as solution,
meaning that the next iteration starts with xnew := x′. Otherwise, the next
iteration starts with xnew := x unchanged. Since we are interested in analyzing
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how many iterations are necessary until an optimal solution is found, we do not
specify a termination criterion here.

Algorithm 1. (1+1) EA with mutation probability p

1: Initialization: Choose x ∈ {0, 1}n uniformly at random.

2: repeat forever
3: Create x′ ∈ {0, 1}n by copying x.

4: Mutation: Flip each bit in x′ independently with probability p.

5: Selection: if f(x′) ≤ f(x) then x := x′.

We should stress that the (1+1) EA typically is not used to actually solve
difficult optimization problems. Here, one would rather choose more complex
search heuristics. However, understanding the optimization behavior of the (1+1)
EA often helps in predicting the one of more complicated EAs (which mostly
are too complex to admit a rigorous theoretical investigation).

2.2 A Simple Drift Theorem with Tail Bounds

Definition 1. Let ν : N → R be monotonically increasing. We call Φ : Ωn → R
a feasible ν-drift function for fn and a given (1+1) EA, if the following condi-
tions are satisfied.

1. Φ(x) = 0 for all x ∈ Ωopt;
2. Φ(x) ≥ 1 for all x ∈ Ωn \Ωopt;
3. there is a constant δ > 0 (independent of n) such that for all x ∈ Ωn \Ωopt,

E(Φ(xnew)) ≤
(

1− δ

ν(n)

)
Φ(x),

where as above we denote by xnew the solution resulting from executing a
single iteration (consisting of mutation and selection) with initial solution x.

As a semi-trivial example, note that if f is a linear function with coefficients
at least one, then f itself is a feasible n-drift function for f and all mutation
probabilities p = c/n, c constant. However, this often is not a very useful drift
function.

When feasible drift functions exist, they allow an elegant analysis yielding
upper bounds for the optimization time of EAs. The optimization time of a
randomized search heuristic is usually defined to be the number of evaluations
of the objective function f performed until the optimum is found. In case of the
(1+1) EA, this is (apart from an additive deviation of one) equal to the number
of mutation-selection iterations.

The following well-known theorem shows how the optimization time can be
bounded using a drift function. Similar arguments appear in the context of cou-
pling proofs. See, for example, [11, Section 5]. Much more is known about drift
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analysis. See, for example [16]. For a first use of drift analysis in the analysis
of evolutionary algorithms, see [18]. For the first explicit use of a multiplicative
version of drift in evolutionary computation, see [8].

Note that Theorem 1 gives a probability tail bound in addition to an upper
bound on the expected optimization time. Also the tail bound is not new, but it
seems to be unknown in the evolutionary algorithms literature. It can be applied
to improve several previous results (cf. the following sections).

Theorem 1. Let Φ : Ωn → R. Denote by Φmax := max{Φ(x) | x ∈ Ωn} the
maximum value of Φ. If Φ is a feasible ν-drift function (with implicit constant δ)
for fn and a given (1+1) EA, then the expected optimization time is at most

ν(n)
δ

(1 + lnΦmax).

Also, for any c > 0 (possibly depending on n), we have that the optimization
time exceeds ν(n)

δ (lnΦmax + c lnn) with probability at most n−c.

For the proof, we need the following well-known and elementary fact, which can,
e.g., be found in [15, Problem 13(a) Section 3.11]. For completeness, we shall
repeat the elementary proof, which is a simple re-ordering argument.

Lemma 1. Let X be a random variable taking values in the non-negative inte-
gers. Then E(X) =

∑∞
i=1 Pr(X ≥ i).

Proof. E(X) =
∑∞

i=1 iPr(X = i) =
∑∞

i=1

∑i
j=1 Pr(X = i) =∑∞

j=1

∑∞
i=j Pr(X = i) =

∑∞
j=1 Pr(X ≥ j). ��

Proof (of Theorem 1). Fix an arbitrary initial solution x0 ∈ Ω for the (1+1) EA
and consider a run started with this initial solution. Denote by Φt the value of
Φ(x) after t selection-mutation steps. Denote by Topt,x0 the first time when the
current solution x is optimal.

From the fact that Φ is a feasible ν-drift function, we have E(Φt) ≤
(1− δ/ν(n))t

Φ0 ≤ (1− δ/ν(n))t
Φmax ≤ exp(−tδ/ν(n))Φmax, where in the

last estimate we used the well-known inequality 1 + z ≤ ez valid for all
z ∈ R. By Lemma 1, the expected optimization time E(Topt,x0) can be writ-
ten as E(Topt,x0) =

∑
t≥0 Pr(Φt > 0), which is at most T +

∑
t≥T Pr(Φt > 0) ≤

T +
∑

t≥T E(Φt) for any T . Here, Markov’s inequality was used to show that
Pr(Φt > 0) = Pr(Φt ≥ 1) ≤ E(Φt) holds for all t. Let T = �ln(Φmax)ν(n)/δ� =
ln(Φmax)ν(n)/δ + ε for some 0 ≤ ε < 1. By our estimate above, we obtain

E(Topt,x0) ≤T + (1− δ/ν(n))TΦmax

∑∞
i=0

(1 − δ/ν(n))i

≤ ln(Φmax)ν(n)/δ + ε

+ (1− δ/ν(n))ε exp(−(δ/ν(n)) ln(Φmax)ν(n)/δ)Φmax ν(n)/δ
= ln(Φmax)ν(n)/δ + ε+ (1− δ/ν(n))εν(n)/δ
≤ ln(Φmax)ν(n)/δ + ν(n)/δ.
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The last estimate is valid for all ε ∈ [0, 1]. This is easiest seen by checking it for
ε = 0 and ε = 1 and noting that the term is convex in ε.

Similarly, we compute for any c and Tc := �(ν(n)/δ)(ln(Φmax)+ c ln(n))� that

Pr(Topt,x0 > Tc) = Pr(ΦTc > 0) ≤ E(ΦTc) ≤ exp(−Tcδ/ν(n))Φmax ≤ n−c.

��
The proof above uses the argument E(Φt) ≤ (1−δ/ν(n))tΦmax as in the so-called
methods of expected weight decrease [23]. Then, however, a general argument
is employed to derive from the information on E(Φt), t ≥ 0, a useful bound on
the random variable min{t | Φt < 1}. Note that a statement like E(min{t | Φt <
1}) = min{t | E(Φt) < 1} usually is not true.

3 Linear Functions

As laid out in the introduction, determining the run-time of the (1+1) EA on
linear functions is a classical test problem in the theory of evolutionary compu-
tation. It led to the introduction of drift analysis to this field. In this section, we
show that all previous results on this problem, which all only give a bound on
the expected run-time, also hold with high probability.

Let us sketch the state of the art for this problem. Recall that we regard
the minimization problem (which is, of course, equivalent to the maximization
version). For a unified presentation, let for each constant c ∈ [1, 2] and x ∈
{0, 1}n, dc(x) :=

∑	n/2

i=1 xi + c

∑n
i=	n/2
+1 xi.

The first proof of the O(n log n) bound for the expected run-time was given
in [10]. It shows what we would now phrase as follows. Let Φ(x) := d2(x). If
Φ(x) > 0, then E(Φ(xnew)) ≤ (1− ε)Φ(x)/n for some constant ε > 0. From this,
without drift analysis present in the field, the authors still manage to derive the
O(n log n) bound for the expected optimization time.

To use an additive drift theorem, He and Yao [19] showed that for V (x) :=
n ln(1 + dc(x)), where c can be any constant in [1, 2] \ {1}, the following is true.
If x is not yet the optimum, then E(V (xnew)) ≤ V (x) − ε for some constant ε.
This leads to the same O(n log n) upper bound for the expected optimization
time, but with a more insightful proof. An alternative proof of this result via
multiplicative drift was given in [8]. There, it was shown that for Φ(x) = d5/4(x),
E(Φ(xnew)) ≤ ((1 − ε′)/n)Φ(x) holds (for a suitable constant ε′).

Using a clever averaging argument, Jägersküpper showed the following. Let
x0,x1, . . . , denote the sequence of search points forming the one-point popula-
tion after each iteration. Then E(d1(xt+1)) ≤ 0.736 d1(xt)/n. Via an additive
drift theorem, this was used to prove an upper bound on the expected opti-
mization time of 2.02en ln(n)(1 + o(1)). Via the multiplicative drift theorem,
Jägersküpper’s estimate immediately yields an upper bound for the expected
optimization time of 1.39en ln(n)(1 + o(1)), cf. [7].

All results above hold for the standard (1+1) EA with mutation probability
p = 1/n. Recently, the authors of this paper [3] showed that also for all other
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mutation probabilities p = c/n, c a constant, for each linear function f there is
a drift function Φ and a constant ε > 0 such that for all x, E(Φ(xnew)) ≤ (1 −
ε)Φ(x). Hence again, the expected optimization time is bounded by O(n log n).

Note that for all these O(n log n) results, we may as well apply Theorem 1
and thus have the corresponding bound with high probability. This was not
known before, even for the classical O(n logn) bound for mutation probability
1/n. For the result with leading constant made explicit, we obtain the bound of
1.39en ln(n)(1 + o(1)) with probability 1− o(1).

4 Minimum Spanning Trees and Minimum Weight Bases
in Matroids

Neumann and Wegener [23] show that the (1+1) EA finds a minimum span-
ning tree in an integer-weighted undirected graph G = (V,E) in expected time
O(|E|2 log |E|).

Their key argument can be phrased in the language of drift analysis. A solution
of this problem is described by a bit string of length m := |E|, stating which
edges form the tree. For such a bit string, let f(x) denote the sum of the edge
weights of those edges that are in the solutions. Let fopt denote the weight of
an optimal solution. Let Φ(x) := f(x) − fopt. What Neumann and Wegener
show in their analysis is that for all solutions x that already form a tree, we
have E(f(xnew))− fopt ≤ (1− 1/m2)(f(x)− fopt). Here, xnew as above denotes
the outcome of one mutation-selection step performed with the indiviual x. By
construction of the algorithm, this is always a spanning tree provided x was.

This shows that Φ is a feasible m2-drift function (when restricted to solutions
forming a spanning tree). Since it is easy to see from [23] that the EA finds
some spanning tree (not necessarily a minimum one) with high probability in
time O(m logm), Theorem 1 now asserts that, with probability 1−m−c, the EA
finds a minimum spanning tree in O(m2 log(nwmax)) iterations, where as usual
n := |V | denotes the number of vertices of the graph.

Theorem 2. The (1+1) EA for the minimum spanning tree problem investi-
gated in [23] has an optimization time of O(m2 log(nwmax)) with probability
1−m−c, where c can be any constant.

Very similar, and therefore with no further details given, one can extend the
bound [25] of O(m2 log(mwmax)) for the expected optimization time of the (1+1)
EA searching for a minimum weight basis in a weighted matroid of cardinality
m to a bound holding with probability 1−m−c.

Theorem 3. The (1+1) EA for the minimum weight basis problem in weighted
matroids investigated in [25] has an optimization time of O(m2 log(mwmax))
with probability 1−m−c, where m is the size of the matroid, wmax the maximum
weight and c can be any constant.
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5 Shortest Paths

Let G = (V,E) be a directed graph, w : E → Z>0 a positive integral weight
function and s ∈ V be a distinguished vertex called source. The single-source
shortest path problem is to compute a shortest path tree for s, that is, a directed
tree rooted as s such that the unique path from s to any other vertex of G is a
shortest path from s to that vertex in G. Note that this is the classical shortest
path problem because for general graphs there is no algorithm known for only
computing a shortest path from s to one given vertex that is better than solving
this single-source all destinations problem.

This problem is particularly interesting for the theory of evolutionary com-
putation community because two different fitness functions are a natural choice.
The single-criterion one is to simply add the distances of all vertices from s in
the current solution. The multi-criteria one is to regard the vector formed from
these distances, and accept a new solution only if it is better in all components
of this vector, that is, only if all vertices are at least as close to s in the new
solutions as in the old one.

The multi-criteria formulation is easier to analyze. Scharnow, Tinnefeld and
Wegener [26] show that the optimization time of the (1+1) EA (with a natural
representation, which we do not describe here) is of order n3 in expectation. If we
denote by � the minimum height of a shortest path tree, then this was improved
to a bound of O(n2 max{log(n), �}) in [4], which in addition holds with high
probability.

For the single-criterion formulation, no reasonable results can be obtained if
non-connected vertices contribute ∞ to the fitness. If, what makes more sense
from the view-point of implementation, non-connected vertices ‘only’ contribute
a large penalty term, say nwmax, then Baswana et al. [1] showed an expected run-
time of O(n3 log(nwmax)). By using a slightly different mutation operator, this
was improved to O(nm log(nwmax)) by Doerr and Johannsen [6]. Both proofs
rely on a drift argument. In [1], a gap function was defined, which in our language
simply is a feasible n3-drift function. In [6], it was shown that the difference to
the optimum fitness is a feasible nm-drift function. Since n2wmax in all cases in
an upper bound for the value of either of these drift functions, Theorem 1 yields
the following.

Theorem 4. With probability 1−n−c, the EA given in [1] finds a shortest path
tree in time O(n3 log(nwmax)). With probability 1 − n−c, the EA given in [6]
finds a shortest path tree in time O(nm log(nwmax)).

6 Eulerian Cycles

Let G = (V,E) be an undirected graph. A Eulerian cycle in G is a cyclic walk
(described via the sequence of edges it traverses) that contains each edge exactly
once. It is well-known that G contains a Eulerian cycle if and only if each vertex
has even degree, that is, it is incident with an even number of edges [12]. It is
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less trivial to actually compute a Eulerian cycle in such a graph. Hierholzer [20]
describes an algorithm with run-time O(mn).

For the theory of evolutionary computation, the Eulerian cycle problem is
interesting because it can serve as a test problem suitable to analyse what are
good representations for the individuals (which are permutations of the edges
set) and what are good mutation operators to build upon them. This resulted
in a series of papers [21,2,9,5] on this problem. All of them show bounds on the
expected run-time of different implementations of the (1+1) EA for the Eulerian
cycle problem.

The currently fastest solution was given in [5]. It represents the sought-after
Eulerian cycle via a perfect matching in the adjacency lists of each vertex. If
neighbors x, y of a vertex v form such a matching edge, this indicates that the
edges {x, v} and {v, y} are adjacent in the Eulerian cycle. Clearly, an arbitrary
matching in each adjacency list does not necessarily encode a Eulerian cycle, but
only a partition of the edges of G into edge-disjoint cycles (cycle cover).

An elementary mutation for this representation chooses a vertex-edge inci-
dence uniformly at random, e.g., by choosing uniformly at random an edge
e ∈ E and then a vertex v from e). Denote by x the other vertex of e. The
elementary mutation now chooses a second vertex y from the adjacency list of v,
makes {x, y} a matching edge, and (if needed), makes the two former partners
of x and y a matching edge as well. In other words, it adds an edge uniformly
at random to the matching of v’s adjacency list and repairs this by forming a
perfect matching again in the obvious way.

A full mutation step consists of performing S+ 1 such elementary mutations,
where S is chosen according to a Poisson distribution with parameter λ = 1.

For this (1+1) EA, an expected optimization time of O(m logm) was shown
in [5]. A key argument in the proof is that if the current solution is a cycle cover
consisting of k cycles, then a single application of the mutation operator with
probability at least (k − 1)/(2m) unites two cycles to one.

From this, we easily deduce that the bound of [5] also holds with high prob-
ability. To this aim, let Φ(x) denote the number of cycles in the cycle cover
represented by the individual x, minus one. Hence Φ(x) = 0 is equivalent to
having only one cycle, which then is a Eulerian cycle. Clearly, Φ(x) ≤ m for all
x. The key arguments described in the previous paragraph shows that Φ is an
m-drift function. Hence the EA has an optimization time of O(m logm) with
high probability.

7 Conclusion

By reproving a classical drift theorem, we obtain that the classical O(n log n)
bound for expected optimization time of the (1+1) EA on linear functions also
holds with high probability. The same argument allows us to extend a num-
ber of other classical bounds stemming from drift or “expected multiplicative
weight decrease” arguments to also hold with high probability, instead of only
in expectation. We expect that this version of the drift theorem will see more
applications in the theory of evolutionary algorithms.
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Abstract. The all-pairs shortest path problem is the first non-artificial

problem for which it was shown that adding crossover can significantly

speed up a mutation-only evolutionary algorithm. Recently, the analysis

of this algorithm was refined and it was shown to have an expected

optimization time of Θ(n3.25(log n)0.25).

In this work, we study two variants of the algorithm. These are based

on two central concepts in recombination, repair mechanisms and parent
selection. We show that repairing infeasible offspring leads to an im-

proved expected optimization time of O(n3.2(log n)0.2). Furthermore, we

prove that choosing parents that guarantee feasible offspring results in

an optimization time of O(n3 log n).

1 Introduction

One of the important issues when designing successful evolutionary algorithms is
to choose a suitable representation of possible solutions together with good vari-
ation operators. Different representations and variation operators have been dis-
cussed for awide range of combinatorial optimizationproblems (see e.g. [18,11,19]).
Often, variation operators (such as crossover or mutation) are designed to produce
feasible offsprings. Formutation this is easy to achieve, as a mutation operator usu-
ally only applies a small number of local changes to a given feasible solution.

However, the design of crossover operators, producing from two feasible solu-
tions a new feasible one, is usually more complicated (see e. g. [14] for different
crossover operators for the traveling salesman problem). Whenever a crossover
operator produces an infeasible solution, one option is to discard it. However,
this typically does not lead to efficient methods, as time is wasted on produc-
ing infeasible solutions and evaluating them. To deal with this situation, one
can use repair mechanisms, which produce from an infeasible solution a feasi-
ble one based on properties of both parents [22]. Another way of dealing with
the problem of infeasible solutions is to use specific selection methods and/or
more problem specific crossover operators that are likely to produce promising
solutions [2,15].

R. Schaefer et al. (Eds.): PPSN XI, Part I, LNCS 6238, pp. 184–193, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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The goal of this paper is to point out the effect of repair mechanisms and
parent selection for crossover on the runtime of evolutionary algorithms in com-
binatorial optimization. Analyzing the runtime behavior of evolutionary algo-
rithms has become a major part in their theoretical analysis. Based on results
for different kinds of pseudo-Boolean functions [6,10], results have been obtained
for different kinds of combinatorial optimization problems. Starting with some
results for classical combinatorial optimization problems that are solvable in
polynomial time such as the computation of minimum spanning trees [17] or
maximum matchings [8], different results have been obtained for NP-hard prob-
lems [16,7,12,23]. One cannot expect to beat the best known algorithms if the
problem under consideration can be solved in polynomial time. With such studies
we want to gain new insights on how evolutionary algorithms behave on natural
optimization problems and give insights into the important modules that make
such algorithms successful.

We carry out theoretical studies on evolutionary algorithms for the computa-
tion of shortest paths. Computing shortest paths is one of the basic problems in
computer science and has already been considered in various theoretical stud-
ies of evolutionary algorithms. There are different results for the single-source
shortest path (SSSP) problem [1,21,3].

We investigate the all-pairs shortest path (APSP) problem which is a gen-
eralization of the SSSP problem. Given a strongly connected directed graph
G = (V,E) with |V | = n and |E| = m and a weight function w : E → R that
assigns weights to the edges. We distinguish between the weight of a path (the
sum of the weight of all its edges) and its length (the number of edges in the
path). The task is to compute from each vertex v ∈ V a weight-shortest path
to every other vertex u ∈ V \ {v}. Throughout this paper, we assume that G
does not contain cycles of negative weight. The APSP problem can be solved
by the Floyd-Warshall algorithm; using appropriate data structures, APSP can
be computed in time O(nm + n2 logn) (see, e. g. [13]). Our aim is to study
how general purpose algorithms can deal with the APSP problem. In particu-
lar, we want to examine the usefulness of crossover operators in evolutionary
computation.

We take the APSP problem as a prominent example to show in a rigorous
way how different crossover operators influence the runtime of evolutionary algo-
rithms. Recently, it has been shown that the use of crossover operators provably
leads to better evolutionary algorithms than evolutionary algorithms that are
just based on mutation [4,5]: The runtime for the mutation-and-crossover ap-
proach is Θ(n3.25(log n)0.25), which is better than the expected optimization
time of Θ(n4) of the algorithm just using mutation. In addition, [9] studied the
runtime behavior of ant colony optimization for this problem and proved an up-
per bound of O(n3(logn)3). However, we will see that the evolutionary approach
examined in this paper solves the APSP problem in expected optimization time
O(n3 logn).

In the next section, Section 2, we introduce the algorithms that are subject
to our analyses. In Section 3, we show how repair mechanisms can speed up the
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1 P = {Pu,v = (u, v) | (u, v) ∈ E};
2 while true do
3 Choose r ∈ [0, 1] uniformly at random;

4 if r ≤ pc then
5 choose two individuals Px,y and Px′,y′ from P u. a. r.; perform crossover

on Px,y and Px′,y′ to obtain an individual P ′
s,t ;

6 else
7 choose one individual Px,y uniformly at random from P and mutate

Px,y to obtain an individual P ′
s,t;

8 if P ′
s,t is a path from s to t then

9 if there is no individual Ps,t ∈ P then P = P ∪ {P ′
s,t};

10 else if w(P ′
s,t) ≤ w(Ps,t) then P = (P ∪ {P ′

s,t}) \ {Ps,t};
Algorithm 1: Steady State GAAPSP

optimization process to O(n3.2(log n)0.2). In Section 4, we analyze a crossover
selecting two matching individuals, and show that this leads to an optimization
time of O(n3 logn).

In order to meet space constraints, some proofs had to be left out.

2 Algorithms

For the APSP problem we examine the population-based approach introduced
in [4], where each individual in the population is a path. Our goal is to evolve an
initial population consisting of a set of paths into a population which contains,
for each pair of vertices (u, v) with u = v, a shortest path from u to v.

We investigate two evolutionary algorithms for the APSP problem that differ
on how they apply crossover. The algorithms start with a population P :=
{Pu,v = (u, v)|(u, v) ∈ E} of size |E|, containing all paths corresponding to the
edges of the given graph G. The variation operators produce in each iteration
one single offspring.

Our algorithm, called Steady State GAAPSP (see Algorithm 1), decides in
each iteration whether the offspring is produced by crossover or mutation. With
probability pc a crossover operator is applied to two randomly chosen individuals
of P or otherwise (with probability 1 − pc) mutation is used to produce the
offspring. To make sure that both operators, mutation and crossover, are used
we require pc ∈ {0, 1}. For all investigations in this paper, we assume that pc is
chosen as an arbitrary constant, i. e. pc ∈ ]0, 1[.

The mutation operator takes an individual Px,y from the population and
applies sequentially S+1 local operations. Here, S is a parameter that is chosen
according to the Poisson distribution with parameter λ = 1. In a local operation,
the current path is either lengthened or shortened by a single edge. Assume that
the current individual represents a path Px,y = (x = v0, v1, . . . v�−1, y = v�)
from x to y consisting of � edges, and denote by E−(v) and E+(v) the set of
incoming and outgoing edges of a vertex v in G, respectively. Then an edge
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e = (u, v) ∈ E−(x) ∪E+(y)∪ {(x, v1), (v�−1, y)} is chosen uniformly at random.
If e ∈ {(x, v1), (v�−1, y)}, the edge is removed. This means that either the first
edge or the last edge in the path is removed leading to an individual P ′

v1,y or
P ′

x,v�−1
consisting of �−1 edges. If e ∈ (E−(x)∪E+(y))\ {(x, v1), (v�−1, y)}, the

edge is added and the path is lengthened. Here, a new individual P ′
u,y or P ′

x,v

is produced that contains � + 1 edges. Note that a local operation applied to a
valid path always leads to a new valid solution which implies that the mutation
operator only constructs solutions which are paths.

Crossover takes two individuals and combines them into a valid path if the end
vertex of Px,y and the start vertex of Px′,y′ match. Choosing both individuals
uniformly at random from P , as it was done in [4,5], often does not lead to
a recombined offspring that represents a path in the given graph. In the next
section, we discuss how repair mechanisms can lead to more efficient evolutionary
algorithms. Later on, we discuss how selection methods that select promising
pairs of individuals for crossover lead to evolutionary algorithms that are almost
as fast as classical algorithms for the APSP problem.

The selection operator only accepts individuals that are paths in the graph.
In addition, it ensures diversity with respect to the different pairs of vertices.
For this reason, each individual Pu,v is indexed by the start vertex u and the
end vertex v. In the selection step an offspring is only compared to an individual
of the current population that has the same start and end vertex. It is ensured
that, for each pair of vertices (u, v) with u = v, at most one individual Pu,v

is contained in the population. This implies that the population size of our
algorithms is always at most n(n− 1).

For our theoretical investigations, we measure the optimization time of the
algorithm by the number of fitness evaluations until an optimal population has
been reached for the first time. A population is optimal if it represents, for each
pair of vertices, a shortest path.

Finally, the term w. h. p. (with high probability) denotes a result that holds
with probability at least (1−O(n−c)) for some c > 0 independent of n.

3 Crossover with Repair

In this section, we present a simple way to increase the success probability of
the crossover operator used in previous work. This result, as we shall prove
rigorously, is an improved optimization time of O

(
n3.2(logn)0.2

)
.

The main reason why previous crossover operators for the APSP problem have
a relatively small success probability is the fact that very often the two parent
individuals simply do not fit together. That is, the end-point of the first is not
equal to the starting point of the second path. Since this is a rather obvious way
of failing, one might think of simple solutions.

One natural way is the following. If end-point of first and starting point of
second path are different, we try to bridge this gap by the (if existent, unique)
path from one point to the other which is contained in our population. If the
population does not contain such a bridging path, then the crossover operator
still fails. This is what we shall call crossover with repair.
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Definition 1 (Crossover with repair). Let ⊗r denote the crossover operator
with repair as follows (compare Figure 1).

Input: Px,y = (x, . . . , y) and Px′,y′ = (x′, . . . , y′) taken u. a. r. from P
1 if y = x′ then
2 P ′

s,t = (s = x, . . . , y = x′, . . . , t = y′) merging Px,y and Px′,y′ at vertex
y ;

3 else
4 if there is a path Py,x′ from y to x′ in P then
5 P ′

s,t = (s = x, . . . , y, . . . ,x′, . . . , t = y′) merging Px,y, Py,x′ and
Px′,y′ at their common endpoints;

6 else
7 ⊗r fails and returns a dummy individual with fitness worse than

all other possible individuals;

The individual Py,x′ from Line 4 is called repair-path.

Note that this operation is inserted in Line 5 of Algorithm 1.
Assuming that all individuals used in the operation have a length of at most k,

the application of the ⊗r-operator produces a new individual of size at most 3k.
If all individuals considered for the operation are shortest paths (w. r. t. to their
weight) then it is possible to produce shortest paths (w. r. t. to their weight)
of length up to 3k due to the optimal substructure property of shortest paths.
However, later on we will merely consider the case that if all optimal individuals
of length k are present in the population the new individual will have a length
of 3

2k.

y �= x′ : Px,y ⊗r Px′,y′

y = x′ : Px,y ⊗r Px′,y′
y y′x

y′x′
yx

Py,x′

Fig. 1. Effect of the repair crossover applied to two paths Px,y and Px′,y′ .

To analyze our crossover operator, we use the gap concept introduced in [5].
The key observation is that it suffices that crossover finds a path that sufficiently
well approximates a sought-after path, because mutation is fast enough to fill
the gaps.

. . . v. . .u
ui uj

�− ji

Fig. 2. Approximating path Pui,uj with a gap of g := i + � − j
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Definition 2 (Gap). Consider a path Pu,v = (u = u0,u1, . . . ,u� = v) and
an arbitrary sub-path Pui,uj = (ui,ui+1, . . . ,uj) with 0 ≤ i ≤ j ≤ �, compare
Figure 2. We call the integral value g := i + � − j the gap of the path Pui,uj

(w. r. t. P ). We also call Pui,uj an approximating path of Pu,v. If Pu,v is a
shortest path between vertex u and v, we call Pui,uj an approximating shortest
path.

For a simplification of the proofs we make use of the following definition which
takes into account all pairs of vertices for which there is a shortest path contain-
ing at most k edges.

Definition 3. Let G = (V,E) be a graph and let k ∈ R. We let V 2
k be the set of

all (u, v) ∈ V 2 with u = v such that there exists a shortest path Pu,v from u to
v consisting of at most k edges.

Note that we allow for a fractional k in order get rid of some delicate case
distinctions later on.

The main statement of this section is captured by the following theorem. It
shows that the use of the introduced repair mechanism leads provably to a better
optimization time.

Theorem 1. The Steady State GAAPSP with any constant rate 0 < pc < 1 using
crossover with repair (Definition 1) has an optimization time of O

(
n3.2(log n)0.2

)
with high probability.

For the proof of the theorem we need to analyze the success probability of the ⊗r-
operator, analyze the success probability of the mutation operator and describe
the interplay between mutation and crossover.

We start by investigating the success probability for the crossover operator
with repair. Using the crossover operator with repair gives us an additional factor
of k for the success probability compared to the corresponding results in [5]. This
is made precise in the following lemma.

Lemma 1 (Analysis of Crossover). Let k > 1 and let P be an arbitrary but
fixed population. Assume that P contains for each pair (u, v) ∈ V 2

k a shortest
path connecting them. Let � := 3

2k and g ≤ k
4 . Then the following holds.

(1) A single step of the ⊗r-operator generates a shortest path from u to v with
(u, v) ∈ V 2

� \V 2
k with probability Ω

(
k2

n4

)
.

(2) Consider a gap g, then a single step of the ⊗r-operator generates an ap-
proximating shortest path from u to v with (u, v) ∈ V 2

� \V 2
k with probability

Ω
(

k2g2

n4

)
.

For the progress made by mutation, we use the following result given in [5].

Lemma 2 (Analysis of Mutation). Let � > 0 and P be an arbitrary but
fixed population. Assume that there is a shortest path for every (u, v) ∈ V 2

� in P
and the Steady State GAAPSP is allowed to use only mutations an no crossover-
operations. Then the following holds.
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(1) The success probability to get an arbitrary but fixed shortest path in V 2
�+1 \V 2

�

is Ω
(
n−3
)
. Hence the expected waiting time for generating such a path is

O
(
n3
)
.

(2) Let λ > 0 and c > 0 with cλ ≥ 24 lnn. The Steady State GAAPSP finds
all shortest paths (u, v) ∈ V 2

�+c with probability at least n2− cλ
8 ln n in O

(
cλn3

)
iterations.

Combining the analysis of the mutation operator and the crossover operator with
repair, we obtain the following key lemma. It nicely shows the interplay between
the two operators from the point on when we have shortest paths connecting all
pairs in V 2

k for k = Ω
(
(n logn)0.2

)
.

Lemma 3. Assume that the Steady State GAAPSP uses mutation as well as the
⊗r-operator with constant probability. Let k ≥ (n logn)0.2 and Δ := (n log n)0.2

k .
Assume that there is a shortest path in the population for each pair (u, v) ∈ V 2

k .
Let � := 3

2k.

(1) For all pairs (u, v) ∈ V 2
� \V 2

k an approximating shortest path (ui,uj) with
gap at most g ≤ (n logn)0.2Δ is found in t = O

(
n3(n logn)0.2Δ

)
iterations

with high probability.
(2) Assume that for each pair (u, v) ∈ V 2

� \V 2
k there is an approximating shortest

path (ui,uj) with a gap of at most g ≤ (n logn)0.2Δ. Then the algorithm
finds all shortest paths with end-vertices in V 2

� in t = O
(
n3(n logn)0.2Δ

)
iterations with high probability.

(3) Let k = (n logn)0.2(1.5)i for some i ∈ N0. Then with high probability,
O
(
(1.5)−in3.2(logn)0.2

)
iterations suffice to have all shortest paths of up

to 1.5k edges in the population (where the hidden constant in the time does
not depend on i).

Now we are in the position to prove our main theorem.

Proof (of Theorem 1). Both the crossover and the mutation operator have con-
stant probability to be applied in an iteration, and neither can decrease the
fitness of an individual. Hence we may occasionally only regard the effect of
one of the two. Applying Lemma 2 with cλ := (n logn)0.2, we see that after
O
(
n3 · (n logn)0.2

)
iterations, with high probability all shortest paths having up

to � = (n logn)0.2 edges are in the population.
We now repeatedly apply Lemma 3(3). In time O

(
n3.2 log1.5 n(1.5)−i

)
, with

high probability we construct all shortest paths connecting vertices in V 2
(1.5)i+1�

out of a population containing all shortest paths for vertices in V 2
(1.5)i�. Hence

the run-times form a geometric series and the less than log1.5 n such stages
needed to find all shortest paths still take time O

(
n3.2(log n)0.2

)
. Since each

stage works fine with high probability, our algorithm finds all shortest paths
with high probability as well.

The previous proof shows that the proposed repair mechanism leads provably
to a better optimization time. In the next section, we will examine how selec-
tion for reproduction can influence the runtime of crossover-based evolutionary
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algorithms. We will see that this even leads to bounds on the optimization time
that are close to the ones of problem-specific algorithms.

4 Feasible Parent Selection

The previous section has shown that a simple repair mechanism leads to an
optimization time of O

(
n3.2(log n)0.2

)
, which is already an improvement over

the optimization time of O
(
n3.25(log n)0.25

)
for the Steady State GAAPSP in [5].

Nevertheless, the crossover operator may still produce solutions that do not
constitute paths. This is the case if the start vertex of the second individual
does not match the end vertex of the first individual and there is no individual
in P for repair.

In the following, we want to make sure that the crossover operator constructs
feasible solutions, i. e. individuals that represent paths. This is done by restricting
the parent selection for crossover to individuals that match with respect to their
endpoints. We choose the two individuals for crossover in Line 5 of the Steady
State GAAPSP (Algorithm 1) using the feasible parent selection procedure given
in Algorithm 2.

1 Choose Px,y ∈ P uniformly at random.

2 Choose Px′,y′ ∈ {Pu,v | Pu,v ∈ P ∧ u = y ∧ v 	= x} uniformly at random.

Algorithm 2: Feasible Parent Selection

It chooses the first individual Px,y uniformly at random from the population P
and the second individual Px′,y′ uniformly at random among all individuals in P
whose start vertex equals the end vertex y of Px,y but whose end vertex does not
equal the start vertex of Px,y. Afterwards, in Line 5, crossover is performed by
concatenation. Note that, due to the selection of the two individuals, a path from
x to y′ is constructed, which implies that the crossover operator only constructs
feasible solutions.

This selection operator for the two parents reduces the optimization time even
further. The following theorem shows, that the optimization time of Steady State
GAAPSP comes close to the best known upper bound on the runtime of problem
specific algorithms if Algorithm 3 is used to select the individuals for crossover.

Theorem 2. The Steady State GAAPSP with any constant rate 0 < pc < 1 using
feasible parent selection (Algorithm 3) has an optimization time of O

(
n3 logn

)
with high probability.

Our proof of this theorem uses an analysis similar to that of Theorem 1, but
without considering gaps.
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5 Conclusions

We have shown how the use of repair mechanism or appropriate selection strate-
gies can speed up crossover-based evolutionary algorithms in the special case of
the all-pairs shortest path problem. Understanding the usefulness of crossover
in evolutionary computation in a rigorous way for other problems remains a
challenging task for future research.
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Abstract. Differential Evolution is a popular powerful optimization al-

gorithm for continuous problems. Part of its efficiency comes from the

availability of several mutation strategies that can (and must) be chosen

in a problem-dependent way. However, such flexibility also makes DE

difficult to be automatically used in a new context. F-AUC-Bandit is

a comparison-based Adaptive Operator Selection method that has been

proposed in the GA framework. It is used here for the on-line control of

DE mutation strategy, thus preserving DE invariance w.r.t. monotonous

transformations of the objective function. The approach is comparatively

assessed on the BBOB test suite, demonstrating significant improvement

on baseline and other Adaptive Strategy Selection approaches, while pre-

senting a very low sensitivity to hyper-parameter setting.

1 Introduction

Differential Evolution (DE) uses the weighted difference between two or more
parent solutions to generate offspring [19]. DE has been successfully applied
to many real-world applications[17] thanks to its simplicity and high flexibility.
This flexibility is mostly provided by the number of different mutation strategies
that can be used for the offspring generation. However, this flexibility is also a
limitation to its wide dissemination, as the user needs to choose the mutation
strategy for every new problem — and the efficiency of the algorithm is highly
sensitive to this choice.

Such choice is usually done by following the user’s intuition, or by using an off-
line tuning procedure aimed at identifying the best strategy for the problem at
hand. Besides being computationally expensive, off-line tuning however generally
delivers sub-optimal performances, as the appropriate strategy depends on the
stage of the optimization process: exploration-like strategies should be more
frequently used in the early stages while priority should be given to exploitation
when approaching the optimum.

For this reason, the present paper focuses on on-line tuning, aimed at selecting
the strategy for the next offspring generation on the basis of the current results
of the strategies (i.e., the quality of the recent offspring they generated). Such
on-line selection, referred to as Adaptive Strategy Selection (AdapSS ), is similar
in spirit to Adaptive Operator Selection (AOS ) in the GA framework. A brief
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review of some AdapSS/AOS techniques is presented in Section 2, focusing on
the ones used in the experiments and compared to the proposed approach.

Another important feature of DE (and many other bio-inspired algorithms) is
that it is comparison-based, and thus invariant to monotonous transformations
of the fitness function. Such invariance property significantly increases the ro-
bustness of the approach; in particular it implies that no fitness scaling is ever
required when dealing with a new application. Unfortunately, this invariance
is generally lost when adding mechanisms like AOS. Fitness-based Area-Under-
Curve - Bandit (F-AUC-Bandit) is a recently introduced AOS that only uses
the ranks of the most recent offspring to assess the strategy credit, combining
an Area Under the ROC Curve (AUC ) measure [3] and a Multi-Armed Bandit
algorithm [9]. It is here ported to the AdapSS context, preserving the invariance
properties of DE, while implementing on-line operator choice. For the sake of
completeness, F-AUC-Bandit is briefly described in Section 3.

The F-AUC-Bandit AdapSS approach is experimentally validated on the
BBOB-2010 noiseless benchmarking suite [11]. Extensive comparative results
are reported in Section 4, considering baseline strategies (uni-strategies and ran-
dom selection) as well as three adaptive schemes: Adaptive Pursuit (AP) [20] and
Dynamic Multi-Armed Bandit (DMAB) [4], both being here assessed for the first
time in the continuous domain, and PM-AdapSS-DE, another technique recently
proposed and analyzed in the context of Adaptive Strategy Selection within DE
[10]. Finally, Section 5 concludes the paper, summarizing the presented results
and pointing out possible directions for future work.

2 Adaptive Strategy Selection

Adaptive Strategy Selection performs on-line selection of the mutation strategy
for the generation of each new offspring, based on the recent known perfor-
mance of each of the available strategies. The AdapSS paradigm requires two
ingredients: the Credit Assignment scheme assesses the performance of a given
strategy, translating the fitness of the newly generated offspring into a numerical
credit; the Strategy Selection method rules how to choose a given strategy among
all available ones, based on their (continuously updated) credit. This paradigm
closely parallels that of Adaptive Operator Selection in the Genetic Algorithms
community [20,4]. A brief review of some approaches previously proposed on
both communities is presented in this section, without aiming at exhaustivity.

2.1 Credit Assignment

Different approaches for Credit Assignment have been proposed, differing mainly
on three aspects: (i) how the impact of the strategy application should be mea-
sured; (ii) how to assign credit based on these impact assessments; and finally,
(iii) to which strategy the credit should be assigned to.

The most common impact measure of a strategy application is the fitness
improvement brought by the newly generated offspring, when compared to its
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parent [7], to the current median [14] or to the best individual [5] in the pop-
ulation. In [10], a relative fitness improvement is used, taking into account the
difference of the fitness of the offspring with that of its parent, and normalizing
it by the ratio between its fitness and the best one in the current population.

These rewards are then transformed into a credit to be assigned to the strat-
egy, thus updating its empirical quality estimate. This quality estimate is in turn
used by the Strategy Selection for the selection of the next strategy. Such credit
might be the instantaneous reward, i.e., received after the last application; the
average of the rewards received over a few recent applications; or the extreme (or
maximum) reward recently received by the strategy [6]. The number of recent
applications considered for the latter two is usually a user-defined parameter,
referred to as W (size of the sliding window) in the following.

Finally, some authors [5,14] have proposed to assign credit to the strategies
that were used to generate the ancestors of the current individual, by means of
a bucket brigade scheme. However, most works, including the present one, only
assign the reward to the strategy used to generate the newborn offspring.

2.2 Strategy Selection

The Strategy Selection schemes select the next strategy between the available
ones based on their known empirical quality, which is updated by the Credit
Assignment mechanism after each application. The main difference between the
proposed methods lies in how they use such empirical estimates to select the
strategy to be applied. Two types of schemes are distinguished.

The probability-based methods Probability Matching (PM ) and Adaptive Pur-
suit (AP) [20] calculate an application probability for each strategy, and use
roulette wheel to select the next strategy. Both methods set a lower bound on the
probabilities to preserve some exploration. PM sets each probability proportion-
ally to the empirical quality of the strategy; AP implements a winner-takes-all
scheme, quickly increasing the probability of the current best strategy.

The bandit-based methods Multi-Armed Bandit (MAB) and Dynamic MAB
(DMAB) [4,7] deterministically choose the strategy to be applied based on (a
variant of) the Upper Confidence Bound (UCB) algorithm [1]:

Select arg max
i

(
q̂i,t + C

√
2 log

∑
k nk,t

ni,t

)
(1)

where q̂i,t denotes the empirical quality of the i-th option (exploitation term), ni,t

the number of times it has been selected so far (the right term corresponding
to the exploration term), and C is a user-defined constant (hyper-parameter)
controlling the balance between Exploration and Exploitation.

Bandit algorithms have been proven to optimally solve the Exploration vs.
Exploitation (EvE) dilemma, albeit in a stationary context. While an AdapSS
method indeed faces an EvE dilemma (the algorithm should exploit as much as
possible the current best mutation strategy, while maintaining some exploration
of the other strategies in case one of them becomes more efficient at a later stage
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of the optimization), it is a dynamic one: the performances of the strategies
vary as the search advances. In order to better cope with these dynamics, the
DMAB proposes the restart of the MAB process whenever a change in the reward
distribution is detected by means of the Page-Hinkley statistical test [16].

3 Comparison-Based Adaptive Strategy Selection:
Fitness-Based AUC Bandit

Although alleviating the user from the need of selecting which strategies should
be applied to the problem at hand, and doing so in an on-line manner, each of
the presented Strategy Selection methods involves some hyper-parameters that
need to be tuned as well. Furthermore, the common use of fitness improvements
as reward makes these hyper-parameters highly problem-dependent, as the range
of fitness values varies widely from one problem to another – as well as in the
course of an optimization run. A natural way to improve the Strategy Selection
robustness w.r.t. fitness scaling is to preserve the comparison-based invariance
property, that DE shares with many other bio-inspired optimization algorithms
(ES, tournament-based GAs, PSO). For this reason, the paper focuses on the
Fitness-based Area-Under-Curve - Bandit (F-AUC-Bandit), a fully comparison-
based AdapSS recently proposed in the context of GAs [9].

The Area Under the ROC Curve (AUC ) is a criterion originally used in Signal
Processing and later adopted in Machine Learning to compare binary classifiers,
with the property of being robust with respect to class imbalance [3]. The Re-
ceiving Operator Curve (ROC ) depicts how the true positive rate varies with the
false positive rate. This indicator is adapted to the comparison-based assessment
of strategies/operators as follows. Let us consider the list of the offspring gener-
ated in a given time window, and let the list be ranked after the offspring fitness.
The Receiving Operator Curve associated to a given strategy s is drawn by scan-
ning the ordered list, starting from the origin: a vertical segment is drawn when
the current offspring has been generated by s, a horizontal segment is drawn
otherwise, and a diagonal one is drawn in case of ties (Fig. 1, reproduced from
[9]). The credit associated to strategy s finally is the area under this curve.

While all rank positions have same weight in the above AUC calculation (as
in Fig. 1 for the sake of clarity), i.e., all horizontal and vertical segments have
same length, it makes sense to give more weight to the top ranked offspring.
Algorithmically, a decay factor D is used as follows. Let W denote the size of
the time window storing the list of recently generated offspring, let r be a rank
position, the length of the current fragment (its weight in the AUC calculation)
is set to Dr(W − r), with D ∈ ]0, 1]. The smaller D, the faster the decay, i.e.,
the more skewed the credit assignment is.

This Credit Assignment scheme is coupled with a bandit-based Strategy Se-
lection using Equation (1), where q̂i,t is the AUC credit and ni,t is the number
of times the i-th strategy has been applied in the current window. Note that, in
the original MAB algorithm for AdapSS [4], q̂ is defined as the average over all
recent credits assigned to the given strategy. However, the AUC indicator also
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Fig. 1. Computing the AUC reward (reproduced from [9]) associated to strategy 1.

Only two operators are considered; the list of the generated offspring is sorted by

fitness value; replacing each offspring by the index of the generating strategy gives (1

2 1 1 2 2 [2 2 1] 1 2 2 1), where [2 2 1] stands for three offspring with same fitness

values, resulting in the diagonal line between points (3 3) and (5 4).

provides an empirical statistics over the last W offspring, reflecting the up-to-
date performance of the given strategy w.r.t. the others.; it is thus directly used
as the exploitation term in the MAB formula.

4 Experimental Results

This section reports on the evaluation of the F-AUC-Bandit approach coupled
with standard DE, comparatively to single-strategies and other AdapSS schemes.

4.1 Experimental Setting

The goal of the experiments is to assess the comparative performances of the
AdapSS schemes when coupled with standard Differential Evolution [19], the
only difference regarding the strategy selection. DE is governed by three param-
eters NP , F and CR, respectively denoting the population size, the mutation
scaling factor and the crossover rate. It must be emphasized that our goal is
not to compete with state-of-the-art continuous optimizers; for this reason, no
specific effort was put on tuning the DE parameters depending on the problem
at hand. Population size NP is set to 10 × d, where d denotes the dimension
of the search space; mutation scaling factor F is set to .5; crossover rate CR is
set to 1, enforcing DE invariance w.r.t. rotation and stressing the impact of the
mutation strategy. Along the same lines, four mutation strategies were chosen,
retaining the same as in [10] for the sake of comparative evaluation:

1. “rand/1”: vi = xr1 + F · (xr2 − xr3

)
2. “rand/2”: vi = xr1 + F · (xr2 − xr3

)
+ F · (xr4 − xr5

)
3. “rand-to-best/2”: vi = xr1 +F ·(xbest−xr1

)
+F ·(xr2−xr3

)
+F ·(xr4−xr5

)
4. “current-to-rand/1”: vi = xi + F · (xr1 − xi

)
+ F · (xr2 − xr3

)
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where xi is the current (or target) individual, xbest is the current best one, and
xr1 ,xr2 ,xr3 ,xr4 and xr5 are individuals uniformly drawn in the population.

A first range of experiments considers DE using a single mutation strategy,
and a uniform selection of the mutation strategy. A second range of experiments
considers the adaptive schemes introduced in section 2. The PM-AdapSS-DE [10]
uses the Probability Matching (PM ) method coupled with the average relative
fitness improvement gathered during the current generation. Adaptive Pursuit
(AP) [20] and Dynamic MAB (DMAB) [4] use as credit assignment the extreme
fitness value over a window of size W , as it was found to be the best one in
earlier extensive experiments (albeit in a different context) [6,7].

For the sake of a fair empirical comparison, the parameters of the adaptive
schemes, referred to as hyper-parameters, have been tuned using a racing tech-
nique; due to space limitations, the reader is referred to [10,20,4] for a detailed
description of the hyper-parameters mentioned in the following.

The comparative validation thus shows the peak performance of each scheme,
where the best hyper-parameter configuration has been determined by means
of1 F-Race [2]. The hyper-parameter tuning considers the performance of each
hyper-parameter over all functions for a given dimension within the benchmark
suite; the first elimination round happens after one run over all functions, and
it goes on until achieving 10 runs or pruning all configurations but one.

Following this methodology, the hyper-parameters of F-AUC-Bandit are var-
ied as follows. The scaling factor C is varied in {{1, 5}.10{−2≤i≤1}, 100}; the
window size W in {50, 100, 500}; the decay factor D is set to .5, giving much
more weight to the top-ranked rewards (although in a smoother way than the
extreme value based reward mechanism [6]). The best configuration determined
by the racing procedure over the benchmark suite, which will be used in all
reported results, is: C = .5, D = .5, W = 50.

Along the same lines, the hyper-parameters of PM-AdapSS-DE are varied as
follows: minimal probability pmin ∈ {0, .05, .1, .2}, adaptation rate α ∈ {.1, .3, .6,
.9}. Same values are tried for AP, with the additional learning rate β var-
ied in {.1, .3, .6, .9}. The DMAB hyper-parameters are varied as follows: scal-
ing factor C ∈ {{1, 5}.10{−2≤i≤1}, 100}, and change-detection threshold γ ∈
{Range(C), 1000}. The window size W , involved in AP and DMAB is varied in
{50, 100, 500}. Ultimately, the best PM-AdapSS-DE configuration is pmin = 0
and α = .6; the best AP configuration is pmin = .2, α = .3, β = .3, W = 100;
the best DMAB configuration is C = 100, γ = .1, and W = 50.

Experiments are conducted using the BBOB-2010 noiseless testbed [12], in-
cluding 24 single-objective functions from 5 different classes. They are performed
following the default guidelines, 15 trials per function [11], with the maximum
number of function evaluations being fixed at 105 × d. The BBOB-2010 exper-
imental set-up uses as performance measurement the Expected Running Time
(ERT), defined as follows: given a target function value, ERT is the empirical

1 F-Race is an off-line tuning method, running all candidate configurations and stop-

ping them as soon as it is shown to be statistically worse than the current best one

at a given confidence level (95% in this case).
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Fig. 2. Empirical cumulative distribution function of the speed-up ratios in dimension

d = 20 for the F-AUC-Bandit compared with the base techniques (left) and with the

uniform and adaptive ones (right). The speed-up ratios are the pairwise ratios of the

number of function evaluations for F-AUC-Bandit to surpass the target function value

10−8 over the one of the baseline techniques over all trials of one functions. Pairs where

both trials failed are disregarded, pairs where one trial failed are visible in the limits

being > 0 or < 1 (for this reason, the lines for DE4 are not visible, as they coincide

with the axes). The legends also indicate the number of functions that were solved in

at least one trial (F-AUC-Bandit first).

expected number of function evaluations for attaining a fitness value below the
target, i.e., the ratio of the number of function evaluations for reaching the target
value over successful trials, plus the maximum number of evaluations for unsuc-
cessful trials, divided by the number of successful trials. Only the results over
the separable, moderate and ill-conditioned function classes are reported here, for
none of the considered schemes was able to perform well on the multi-modal and
weak-structure ones with the given budget. Due to space constraints, the pre-
sented results are restricted to dimension d = 20, referring the reader to [8] for a
comprehensive presentation including dimension 5, all function classes, and ex-
haustive pair-wise statistical comparisons between F-AUC-Bandit and the other
schemes. The results are summarized in Fig. 2, being complemented by Table 1.

4.2 Comparative Results

F-AUC-Bandit is firstly compared with non-adaptive schemes referred to as
DE1..DE4, and Uniform-DE, respectively using the single mutation strategy
1..4, and a uniformly selected mutation strategy. DE4 shows unable to solve any
of the functions in dimension d = 20, and it is thus discarded in the following (al-
though being occasionally used by the adaptive schemes). All other non-adaptive
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Table 1. Median ERT speed-up in dimension d = 20 (inter-quartile range in brackets)

for a given budget of FEvals. For a given test function, the ERT speed-up is computed as

the ratio of the ERT of the algorithm considered (row) over the ERT of F-AUC-Bandit
(median and inter-quartile range given in first row) for the smallest function value

attained by it after a budget of 10, 103, 105 times the dimension function evaluations

or 10−8 if it was smaller. The best three values are in bold. The probability of success

for reaching the precision 10−8 is given in the rightmost column.

(a) Base Techniques

F budg. 200 20,000 2M ps

FAUC 43(71) 16e3(14e3) 51e3(42e4) .6
DE1 1 (.84) 3.3 (.97) 3.2 (2.1) .6
DE2 1 (4.3) 20 (6.2) 21 (∞) .6
DE3 .86 (.14) 1.7 (.56) 1.9 (2.6) .6

se
p
a
ra

b
le

DE4 1 (.39) ∞ ∞ 0

FAUC 110 (16) 16e3 (6e3) 12e4 (5e4) 1
DE1 1.7 (1.1) 3.5 (.58) 4 (1.1) .98
DE2 3.9 (3.8) 28 (3.4) 22 (∞) .75
DE3 .92 (.48) 1.9 (.31) 1.5 (.92) 1

m
o
d
e
ra

te

DE4 1.1 (.79) 1442 (1e3) ∞ 0

FAUC 67 (125) 19e3 (314) 52e3 (52e3) 1
DE1 .87 (.55) 3.2 (.2) 3.2 (.23) 1
DE2 1.2 (2.7) 20 (1.9) 20 (3.4) 1
DE3 .89 (.61) 1.9 (.15) 1.8 (.35) 1

il
l-
c
o
n
d
it

.

DE4 .69 (.53) ∞ ∞ 0

(b) Uniform & Adaptive Techniques

budg. 200 20,000 2M ps

FAUC 43(71) 16e3(14e3) 51e3(42e4) .6
UNIF 1 (.28) 1.6 (.16) 1.6 (.63) .6
PM 1 (.42) 1.1 (.25) 1.1 (.88) .6
AP .82 (.53) 1.9 (.22) 1.9 (.5) .6

DMAB 1 (.42) 7.7 (6 .8) 3.5 (∞) .6

FAUC 110 (16) 16e3 (6e3) 12e4 (5e4) 1
UNIF .89 (.35) 1.7 (.23) 1.5 (.12) 1
PM 1.1 (1.1) 1.1 (.06) 1.3 (.49) 1
AP 1.1 (.45) 1.9 (.21) 1.6 (.22) 1

DMAB 1.1 (5.6) 10 (7) 3.1 (.76) 1

FAUC 67 (125) 19e3 (314) 52e3 (52e3) 1
UNIF .86 (.54) 1.7 (.08) 1.7 (.24) 1
PM 1 (.44) 1.1 (.03) 1.1 (.11) 1
AP 9 (64) 1.9 (.14) 1.9 (.32) 1

DMAB 1.3 (2) 6.1 (8) 3.9 (2.6) .99

schemes achieve the target value on all trials for the ill-conditioned functions,
and on 60% of the trials for the separable ones, failing on the multi-modal ones.
For the moderate functions, both F-AUC-Bandit and DE3 are able to achieve
100% of success, while DE1 and DE2 respectively get 98% and 75% success.

Compared with DE1, F-AUC-Bandit shows to be around 3 times faster on
the 3 analyzed function classes. DE2 is around 20 times slower than F-AUC-
Bandit on around 65%, 50% and 80% of the trials, respectively, for the separable,
moderate and ill-conditioned function classes. DE3 is the best one out of the
single strategies, performing 10 times faster than DE2; overall, it is around 2
times slower than F-AUC-Bandit.

F-AUC-Bandit shows to be around 1.5 times faster than Uniform-DE in
around 80% of the trials; the difference is statistically significant for most func-
tions (referring the reader to the pair-wise statistical comparisons presented in
[8]). This difference seems to be moderate, relatively to the price to pay for
an adaptive scheme. It might thus be observed that the uniform strategy con-
siders here a small number of strategies, most of which perform well: DE1 and
DE3 perform quite well; although much slower, DE2 still reaches the target; the
only inefficient strategy is DE4. In the general case however, the performance
of the strategies is unknown; the performance of the above strategies was as-
sessed through extensive experiments. The use of an Adaptive Strategy Selection
scheme is thus relevant in the general case.

The last series of experiments deals with the previously proposed AdapSS
schemes, PM-AdapSS-DE [10], AP [20] and DMAB [4], the two latter schemes
being fed by extreme rewards [6]. Compared with AP, F-AUC-Bandit is around
1.5 times faster on around 90% of the trials on the three function classes. It
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also shows to be around 3 times faster than DMAB on half of the trials, being
at least around 1.5 times faster on all trials. PM-AdapSS-DE shows to be the
best out of the three other adaptive schemes, which is attributed to the use of a
relative instead of a raw reward. F-AUC-Bandit is around 1.5 times faster than
PM-AdapSS-DE on around 25% of the trials on the separable, and 40% for the
moderate functions, with an even smaller performance gain on the ill-conditioned
ones, although still being faster on around 75% of the functions.

This performance improvement of the F-AUC-Bandit w.r.t. the others is at-
tributed mostly to: (i) the use of a comparison-based Credit Assignment, which
is robust to all the very different situations tackled within this benchmark suite,
while efficiently following the changes in the qualities of the strategies (the re-
duction of the AUC for one operator, by definition, results in the augmentation
of the AUC for one of the others); and to (ii) the use of a bandit-based Strategy
Selection, which has already shown to be very efficient in the GA context [6,7].

5 Conclusion and Perspectives

F-AUC-Bandit, an Adaptive Operator Selection scheme that has been recently
proposed within the GA framework [9], is fully comparison-based. Thus, when
used within a comparison-based algorithm, the invariance w.r.t monotonous
transformations of the fitness is preserved. F-AUC-Bandit has been used here
to select between mutation strategies within a Differential Evolution (DE) algo-
rithm. Such combination has been assessed on a set of single-objective continuous
problems, defined in the BBOB-2010 [11] noiseless benchmark: F-AUC-Bandit+
DE was empirically compared with naive DE schemes, as well as with 3 other
adaptive schemes from the literature, PM-AdapSS-DE [10], AP [20], and DMAB
[4]. In terms of expected running time to achieve a given function target value,
F-AUC-Bandit+DE was found to outperform the other techniques.

Furthermore, F-AUC-Bandit was found to be very robust w.r.t. the tuning of
its hyper-parameter – the same setting was found by the racing procedure for
all dimensions and all function classes. However, the robustness of such tuning
needs to be further assessed, as was done in the GA framework [9].

Nevertheless, the main goal of this work has been reached – validate the F-
AUC-Bandit approach in a different context than the one it had been designed for
originally. However, though much improved over the results of all naive strategies
used within DE, the best results of the F-AUC-Bandit +DE algorithm remains
below those of state-of-the-art optimizers [13]. But the DE algorithms to which
F-AUC-Bandit has been applied here only use the basic DE techniques, and sev-
eral improvements have been recently proposed, e.g., adding adaptive parameter
control for F and CR [18] . The applicability of F-AUC-Bandit in DE framework
opens the path for fruitful research using the numerous recent DE variants.

Another further work is to address the multi-modality issue: all tested algo-
rithms fail on multi-modal functions (40% of the separable class – see Table 1).
On-going work is concerned with preserving the comparison-based property in
the framework of the rewards proposed in [15] to tackle multi-modality.
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Abstract. Evolutionary algorithms have been shown to be very success-

ful for a wide range of NP-hard combinatorial optimization problems. We

investigate the NP-hard problem of computing a spanning tree that has

a maximal number of leaves by evolutionary algorithms in the context of

fixed parameter tractability (FPT) where the maximum number of leaves

is the parameter under consideration. Our results show that simple evo-

lutionary algorithms working with an edge-set encoding are confronted

with local optima whose size of the inferior neighborhood grows with the

value of an optimal solution. Investigating two common mutation oper-

ators, we show that an operator related to spanning tree problems leads

to an FPT running time in contrast to a general mutation operator that

does not have this property.

1 Introduction

Evolutionary Algorithms (EAs) are a large class of stochastic search algorithms
that are widely used to solve combinatorial optimization problems. They have
found many applications for different kinds of NP-hard spanning tree problems
(see e. g. [10,5]). Our aim is to contribute to the theoretical understanding of evo-
lutionary algorithms for such kind of problems. Rigorous runtime analyses have
been widely used to provide theoretical insights into the optimization process
of evolutionary algorithms and we follow this line of research throughout this
paper. The first runtime analyses of EAs were performed on artificially created
pseudo-Boolean functions to understand what characteristics of a problem make
its optimisation easy or hard for an EA (see e. g. [2]). These first efforts led to
the development of a range of mathematical techniques used for the analyses.
Building up on these results it has been possible to analyse the performance of
EAs on classical combinatorial optimisation problems (see [9] for an overview).

Recently, the notion of fixed parameter tractability has been introduced into
the theoretical analysis of evolutionary algorithms [6]. A parameterized analysis
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allows a more detailed inspection on which instances of an NP-hard combina-
torial optimization problem are hard to solve. Such an analysis depends on a
parameter k which measures the difficulty of the problem under consideration.
In parameterized complexity, a problem with parameter k is fixed parameter
tractable (FPT) if there exists an algorithm that decides it in time O(f(k) · nc)
[1]. Hence, the runtime of the FPT algorithm is O(nc) for every fixed value of k.
For many real-world instances of NP-hard problems, the parameter k in ques-
tion is bounded, and not too large. Hence, these problem instances can solved by
FPT-algorithms in polynomial time, despite the general problem being NP-hard.
We point out that problems considered in parameterized complexity often have
straightforward O(nf ′(k)) time algorithms; however, while also polynomial for
every fixed k, the degree of the polynomial does depend on k. Fixed-parameter
evolutionary algorithms are evolutionary algorithms that compute an optimal
solution in expected time O(f(k) · nc). In [6], it has been shown that there are
fixed parameter evolutionary algorithms for the vertex cover problem.

We put forward the parameterized analysis of evolutionary algorithms and
investigate this kind of algorithms for the computation of a maximum leaf span-
ning tree. There are different approximation algorithms based on local search
for this problem that give a constant approximation ratio [8,7]. On the other
hand, it is known that the problem is APX-complete [4]. We consider exact op-
timization and investigate two evolutionary algorithms working with an edge-set
encoding [10] which is very popular when solving spanning tree problems. Our
algorithms differ from each other by the chosen mutation operator. The more
general mutation operator is motivated by standard bit-mutation and does not
necessarily create a tree whereas the second (more problem-specific) operator
makes sure that each created offspring is a tree. We present instances contain-
ing a local optima that is hard to leave if the value of an optimal solution is
large. Based on the structure of these instances, we prove lower bounds on the
expected optimization time for both algorithms which grow with the value of
an optimal solution. Later on, we show that the more problem specific mutation
operator leads to fixed parameter evolutionary algorithms for the maximum leaf
spanning tree problem, while the more general mutation operator does not have
this property according to our proven lower bounds.

After having motivated our work, we introduce the problem and algorithms
in Section 2. We present an instance with a local optimum and a large inferior
neighborhood in Section 3. In Section 4, we show that a suitable mutation op-
erator leads to fixed parameter evolutionary algorithms for the maximum leaf
spanning tree problem. Finally, we finish with some concluding remarks.

2 Problem and Algorithms

We investigate the following NP-hard spanning tree problem. Given an undi-
rected connected graph G = (V,E), the goal is to find a spanning tree T ∗ of G
such that the number of leaves is maximal.

We consider two simple evolutionary algorithms which differ by the choice of
the mutation operator. Both algorithms start with an arbitrary spanning tree T
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of G. We denote by m the number of edges in G, and �(T ) the number of leaves
of the spanning tree T . A new solution is only accepted if it is a spanning tree
whose number of leaves is at least as high as the number of leaves in the current
solution. The first algorithm can be described as follows.

Algorithm 1 (Generic (1+1) EA)
1. Choose a spanning tree of T uniformly at random.
2. Produce T ′ by swapping each edge of T independently with probability 1/m.
3. If T ′ is a tree and �(T ′) ≥ �(T ), set T := T ′.
4. Go to 2.

Swapping an edge in step 2. of Algorithm 1 means that if an edge is present in
T then it is not contained in T ′ with probability 1/m. On the other hand, if an
edge is not present in T then it is contained in T ′ with probability 1/m. An edge
does not change from T to T ′ with probability 1−1/m in each mutation step in-
dependently of the other edges. Note, that the mutation operator of Algorithm 1
does not necessarily create an offspring that is a tree. If the offspring is not a
tree then this individual is discarded as it represents an infeasible solution.

Often it is assumed that choosing a mutation operator that is more tailored to
the problem gives a significant speed up. The second algorithm uses a problem-
specific mutation operator that ensures valid solutions, i. e. spanning trees.

Algorithm 2 (Tree-Based (1+1) EA)
1. Choose an arbitrary spanning tree T of G.
2. Choose S according to a Poisson distribution with parameter λ = 1 and per-

form sequentially S random edge-exchange operations to obtain a spanning
tree T ′. A random exchange operation applied to a spanning tree T̃ chooses
an edge e ∈ E \ T̃ uniformly at random. The edge e is inserted and one
randomly chosen edge of the cycle in T̃ ∪ {e} is deleted.

3. If �(T ′) ≥ �(T ), set T := T ′.
4. Go to 2.

Our goal is to point out the differences between the two algorithms. To do this,
we compare the expected number of iterations that our algorithms need to com-
pute an optimal solution. The expected number of iterations needed to obtain an
optimal solution is called the expected optimization time, and is the commonly
used performance measure in the rigorous runtime analysis of evolutionary algo-
rithms. We will show that choosing the more problem-specific mutation operator
of Algorithm 2 makes the difference between a fixed-parameter evolutionary algo-
rithm and an evolutionary algorithm that does not compute an optimal solution
within expected FPT-time.

3 Local Optima and Lower Bounds

The aim of this section is to point out structures of the problem that make it hard
for our algorithms to achieve an improvement. We discuss the presence of local
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Fig. 1. Local optimum shown with dashed edges, global optimum with dotted edges,

shared edges are drawn solid

optima and present a graph that consists of a local optimum which has a large
distance (in terms of the number of edge exchanges) from the global optimum.
Using this observation, we show lower bounds on the expected optimization time
for the two algorithms under consideration.

Our graph called Gloc (see Figure 1) contains two components consisting of r
vertices each. In component i, 1 ≤ i ≤ 2, two vertices ui and vi are connected to
all the other vertices in that component. The vertex ui is connected to vertex x
which lies outside the component. Similarly vertex vi is connected to vertex y. In
addition, x and y share an edge. The graph is completed by attaching a path of
n−2r−2 vertices to the vertex x. A tree has to contain all the edges of the path
attached to x. For a given component, the maximal number of possible leaves
is at most r − 1. This can be obtained by attaching all nodes of the component
either to ui or vi.

The graph contains a local optimum Tlopt which consists of all edges attached
to the vertices vi, 1 ≤ i ≤ 2, the edge {x, y} and all path edges. The global
optimum Topt consists of all edges attached to the vertices ui, 1 ≤ i ≤ 2, the
edge {x, y} and all path edges. Compared to Tlopt, Topt has an extra leaf, namely
the vertex y. However, Tlopt and Topt differ by 4(r−1) edges which make it hard
for the algorithms under consideration to obtain Topt if Tlopt has been produced
before.

Our goal is to study the expected optimization time of the algorithms intro-
duced in the previous section in dependence of the number of leaves which, in
turn, depends on r. To do this, we first consider the number of different spanning
trees of Gloc in dependence of r.

Lemma 1. The number of spanning trees of Gloc is at most 24r.

Proof. A spanning tree has to contain all edges of the path attached to x. The
path attached to x consists of n−2r−2 edges. A spanning tree contains exactly
n′ = n− 1− (n− 2r − 2) = 2r + 1 non-path edges.



208 S. Kratsch et al.

We count the total number of non-path edges in Gloc. Consider a component
consisting of r edges. The number of edges within such a component is 2r − 3
as ui and vi are connected to all other vertices and share an edge. In addition
there are two edges connecting each component to the outer part. Hence, the
total number of edges connected to vertices of a single component is 2r − 1. In
addition, there is the edge connecting x and y.

Summing up, the graph consists of m′ = 2(2r − 1) + 1 = 4r − 1 non-path
edges. The number of different spanning trees is therefore at most(

m′

n′

)
=
(

4r − 1
2r + 1

)
≤ 24r.

��
Using the previous lemma, we show the following lower bound on the expected
optimization time of Generic (1+1) EA on Gloc.

Theorem 1. The expected optimization time of Generic (1+1) EA on Gloc is
lower bounded by

(
m
c

)2(r−2) where c is an appropriate constant.

Proof. The number of spanning trees of Gloc is at most 24r. Therefore, the initial
spanning tree is Tlopt with probability at least 2−4r. This spanning tree is a local
optimum with 2(r−1)+2 leaves. In order to obtain a different spanning tree with
at least as many leaves, r − 1 leaves have to be achieved in each component, or
at least r− 1 leaves have to be obtained in one component and y has to become
a leaf. Hence, in order to achieve an accepted solution that is different from Tlopt

all (r − 2) nodes of at least one component i have to be assigned to ui instead
of vi. This implies that at least 2(r− 2) edges for a fixed component have to be
swapped to escape from the local optimum. There are two components where
this can happen which implies that the probability for such a step is at most
2
(

1
m

)2(r−2). The expected waiting time for such a step is at least 1
2 · m2(r−2).

Altogether the expected optimization time is lower bounded by

2−4r · 1
2
·m2(r−2) ≥

(m
c

)2(r−2)

,

where c is an appropriate constant. ��
Using the previous ideas, we can also lower bound the expected optimization
time of Tree-Based (1+1) EA on Gloc.

Theorem 2. The expected optimization time of Tree-Based (1+1) EA on Gloc

is lower bounded by ( r−2
c )r−2 where c is an appropriate constant.

Proof. We follow the ideas of the previous theorem. With probability at least
2−4r, Tlopt is chosen as the initial spanning tree. In order to produce from Tlopt

the optimal solution Topt, (r − 2) exchange operations have to be carried out in
a single mutation step. According to the Poisson distribution with λ = 1, the
probability that this happens in the next step is

1
e(r − 2)!

≤ 1√
2π(r − 2)

er−3(r − 2)−(r−2) ≤ er−3(r − 2)−(r−2).
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Altogether the expected optimization time is lower bounded by

2−4r · e−r+3(r − 2)(r−2) ≥
(
r − 2
c

)r−2

,

where c is an appropriate constant. ��
To show that both algorithms need not only in expectation that many steps,
but also with a high probability the graph can be modified such that it consists
of more than two components attached to x and y. Then a typical run can be
investigated to show that at least two components end up in the local optimum.

4 FPT of Edge Exchanges

In this section we prove that Algorithm 2 is an FPT algorithm for the maxi-
mum leaf spanning tree problem with respect to the maximal number of leaves
k. Given that the maximal-leaf spanning tree has k leaves, in the following
lemma we derive upper bounds in dependence of k on the number of edges and
on the number of nodes of degree at least three that the graph may contain.
These bounds will allow us to prove the main result of this section presented in
Theorem 3.

The lemma is proven using an approach similar (but greatly simplified) to the
one used in [3]; our focus here is on giving a self-contained presentation sufficient
for obtaining the claimed expected runtime. Note also, that kernelization results,
such as [3], almost always require a modification of the problem instance while
we are interested in bounding the original instance.

Lemma 2. Any connected graph G on n nodes and with a maximum number
of k leaves in any spanning tree has at most n+5k2−7k edges and at most 10k−14
nodes of degree at least three.

Proof. Let G be a graph on n nodes and let T be a spanning tree of G with (the
maximum number of) k leaves. We let P0 denote the set of all leaves and all
nodes of degree at least three in T . (We denote the degree of node x within the
tree T by degT (x).) Furthermore, let P ⊇ P0 denote the set of all nodes that are
within distance of at most two of any node of P0 (distance and degree w.r.t. T ).
We let Q denote the set of remaining nodes.

In the following we show that all nodes of Q have degree two in G (clearly
they have degree at least two in G since they have degree two in T ). We assume
for contradiction that there is a node v ∈ Q which has degree at least three
in G. Therefore, v has a neighbor u in G to which it is not adjacent in T . We
distinguish two cases:

If u is at distance two from v (w.r.t. T ) then it is neither a leaf nor does it
have degree greater than two. Let w be the node that is adjacent to both u and v
in T . Observe that adding the edge {u, v} to T and removing {v,w} creates a
spanning tree with an additional leaf, namely w (note that the graph does not
disconnect since we remove an edge of a cycle). This contradicts our choice of T .
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If u is at distance greater than two from v (w.r.t. T ) then we observe the
following: Adding the edge {u, v} to T creates a cycle C = {. . . ,u, v,w,x, . . .}
on at least four nodes (else u would be too close to v). Since v ∈ Q both nodes w
and x (to which v is at distance at most two in T ) have degree two in T . Thus
adding the edge {u, v} to T and removing {w,x} would give two additional
leaves w and x while possibly losing the leaf u (again, removing an edge from a
cycle must give a connected graph). This contradicts our choice of T .

Thus all nodes in Q have degree two in G. We now bound the size of P . To
this end, we make the following observations: T has k leaves and thus it has at
most k− 2 nodes of degree at least three. Also, the number of leaves in any tree
is equal to 2 plus deg(v)− 2 for every node v of degree at least three, so∑

v:degT (v)≥3

(degT (v) − 2) = k − 2.

The number of elements in P0 are the k leaves, plus the at most k − 2 nodes of
degree at least 3. Let P1 be the set of nodes at distance 1 from P0, and P2 the set
of nodes at distance 2 from P0. The number of nodes in P1 that are connected
to a leaf node in P0 is at most k. The number of nodes in P1 that are connected
to a node of degree at least 3 in P0 is at most∑

v:degT (v)≥3

degT (v) =
∑

v:degT (v)≥3

(degT (v)− 2 + 2)

≤ 2(k − 2) +
∑

v:degT (v)≥3

(degT (v)− 2) ≤ 3k − 6.

In total, there are no more than 4k − 6 = k + (3k − 6) nodes in P1. Finally,
each node in P1 has degree two and is adjacent to at least one node of P0.
Furthermore, each node of P2 is adjacent to at least one node of P1. Therefore
|P2| ≤ |P1|. In total, there are no more than |P0|+ |P1|+ |P2| ≤ 10k− 14 nodes
in P . Clearly, 10k− 14 is also an upper bound on the number of nodes of degree
at least three in G since they cannot be contained in Q.

To bound the number of edges we observe that no node of G can have degree
greater than k: Starting a tree from a node of degree greater than k + 1 and
adding the remaining nodes to this tree would give a spanning tree with more
than k leaves. Thus we get the claimed upper bound on the number m of edges:

m ≤ 1
2
(k|P |+ 2|Q|) =

k

2
|P |+ |Q| ≤ 5k2 − 7k + n.

This completes the proof. ��
Now we are ready to prove the main result. Since a spanning tree always has n−1
edges, from Lemma 2 there are at most 5k2 edges to choose from at each step
and at most all of them need to be replaced to reach the optimal spanning tree.
The proof of the following theorem first shows that the probability of increasing
the number of leaves by one in the current (non-optimal) spanning tree only
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decreases with the fixed parameter k. The proof is concluded by showing that
the probability of exchanging all the 5k2 edges in one mutation step also depends
only on k leading to the claimed runtime.

Theorem 3. If the maximal number of leaf nodes in any spanning tree of G is
k, then Algorithm 2 finds an optimal solution in expected time O(215k2 log k).

Proof. Let n≥3 be the number of nodes with degree at least three. We call an edge
distinguished if it is incident on a node of degree at least 3, and non-distinguished
otherwise. By applying Lemma 2, the number of distinguished edges on any cycle
is at most 2n≥3 ≤ 20k− 28, since there are at most n≥3 nodes of degree at least
3 on the cycle, and each node is incident with at most two edges of the cycle.

We first bound the probability of reducing the distance to an optimal spanning
tree by 1. Let E∗ ⊆ E be the optimal spanning tree that is closest to the current
spanning tree, and let e be any edge in E∗ that is not yet in the current spanning
tree. By Lemma 2, the number of edges in the graph is m ≤ n + 5k2 − 7k. So
the probability that edge e is introduced in an edge exchange operation is at
least 1/(m − (n − 1)) ≥ 1/5k2. Introducing edge e creates a cycle. Consider
first the case when the cycle consists only of distinguished edges. The length of
such a cycle is no more than 20k − 28, and the probability of removing one of
the edges that is not in the optimal spanning tree is at least 1/20k. In the case
where the cycle contains non-distinguished edges, we claim that it suffices to
remove any non-distinguished edge e′ from the cycle. The claim obviously holds
when the chosen edge e′ is not in the optimal spanning tree, so assume that
edge e′ is in the optimal spanning tree. A bridge edge in a connected graph is
any edge e such that the subgraph on the edges E \ {e} is disconnected. Edge e′

connects two components T1 and T2 in E∗, and cannot be a bridge edge because
then the edge could not have been part of a cycle. Since edge e connects T1

and T2, the cycle must contain at least one other edge e′′ that connects T1 and
T2, and this edge is not part of the optimal spanning tree E∗. However, the
spanning tree (E∗ \ {e′}) ∪ {e′′} must also be optimal, because adding edge e′′

decreases the number of leaf nodes by at most 2, and removing edge e′ increases
the number of leaf nodes by exactly 2. Hence, adding edge e and removing edge
e′ reduces the distance to an optimal spanning tree by 1. Let � be the number
of non-distinguished edges on the cycle. No cycle contains more than 20k − 28
distinguished edges, so the probability of removing a non-distinguished edge is
at least �/(20k− 28 + �) ≥ 1/20k. The probability of reducing the distance to a
global optimum by 1 is therefore at least 1/(20k · 5k2).

The number of edges r that must be inserted in the spanning tree is no more
than m− (n−1) ≤ 5k2. The edges can be inserted in any order. The probability
that in Step 2 of the algorithm, we choose to do S = r operations is 1/er!. So,
the probability that in one step, we decide to do r edge exchange operations in
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any of the r! orders, and each of the edge exchanges decreases the Hamming
distance to an optimal spanning tree is at least

r! · 1
er!

·
(

1
5k2

· 1
20k

)r

≥ 1
e

(
1

100k3

)5k2

≥ 1
e

(
1

100

)5k2 (
1
k

)3·5k2

,

which implies that the expected number of steps to find an optimal spanning
tree is at most O(215k2 log k). ��

5 Conclusions

The parameterized complexity analysis of evolutionary algorithms is a promising
research direction that is likely to become an important part in the theoretical
analysis of evolutionary computation during the next years. An advantage in
comparison to classical worst-case considerations is that this kind of analysis
gives characterizations of what difficult instances for a specific algorithm look
like in relation to some parameter of the problem. Evolutionary algorithms have
produced very good results for different kind of NP-hard spanning tree problems.
In this paper, we have studied evolutionary algorithms for the NP-hard maxi-
mum leaf spanning tree problem in the context of parameterized complexity. In
our case the parameter is the size of the global optimum. Our investigations show
that there may be local optima where the size of an inferior neighborhood grows
with the number of leaves in optimal solutions. Investigations of two common
mutation operators point out that a more problem-specific operator makes the
difference between a fixed parameter evolutionary algorithm for the maximum
leaf problem and an algorithm that does not have this property.
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Abstract. This paper presents an archive maintenance scheme that can

be used within an evaluation scheme for finding robust optima when deal-

ing with expensive objective functions. This archive maintenance scheme

aims to select the additional sampling points such that locally well-spread

distributions of archive points will be generated. By doing so, the archive

will contain better predictive information about the robustness of candi-

date solutions. Experiments on 10D test problems show that this scheme

can be used for accurate local search for robust solutions.

1 Introduction

Given an objective function, f(x) → min, x ∈ RN for which it is required to
account for fluctuations in the input variables, a frequently used approach is to
determine the quality of a design vector x using the expected quality with respect
to those fluctuations. Commonly, it is assumed that the underlying distribution
of the fluctuations is known, which makes it possible to reformulate the objective
function as a robust or effective objective function: feff =

∫∞
−∞ f(x+δ)pdf(δ)dδ,

where δ denotes the variability in the input variables and pdf(δ) is the probability
density function of δ. However, for most problems it is impossible to find closed
form expressions for feff and approximation methods are needed.

Two straightforward robust evaluation schemes in the context of EA are the
SEM [10,9] and MEM [11] scheme that simply approximate the expected fit-
ness by means of Monte-Carlo integration: f̂eff (x) = 1

m

∑m
i=1 f(x + δi), with

δi ∼ pdf(δ). In the SEM scheme, a very crude approximation is obtained by
taking m = 1, whereas in the MEM scheme, m can be set arbitrarily. Equivalent
approaches were also proposed in [3] and [12]. Obviously, using such evaluation
schemes yields noisy fitness approximations which can lead to undesirable effects
in EA [1]. The advantage of using larger sample sizes is that the accuracy of the
approximations increases, but this is at the cost of requiring extra objective
function evaluations each generation. In effect, it introduces a trade-off between
aiming for a high approximation accuracy and limiting the number of samples.

The SEM and MEM scheme can be said to form the basis of all other ap-
proaches that aim to find robust optima, but they have a clear weak point: noise
is introduced in the form of approximation errors. Therefore, the main focus
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of other research on this topic is on dealing with the noise induced by the ro-
bustness approximations (e.g., [2]) or ways to obtain good (i.e., unbiased and
high precision) robustness approximations with as limited additional sampling
as possible (e.g., [3,4,8,7]).

When dealing with expensive objective function evaluations, using metamod-
els based on previously evaluated points is a good way to reduce function evalua-
tions (e.g., [7,8]). However, metamodeling techniques are usually complex to im-
plement and their construction sometimes becomes time expensive itself. More-
over, they still require an archive maintenance strategy that assures that the
archive actually allows for accurate metamodeling.

In [3], a simple archive based approach was proposed for finding robust optima
that does not require metamodeling. In this approach, the effective fitness of each
individual x is approximated as the weighted mean of its own fitness and the
fitness of previously evaluated neighboring points x′ using:

f̂eff (x) =
∑

x′ w(x′) · f(x′)∑
x′ w(x′)

, (1)

where w(x′) is a weight function for which it should hold that w(x′) ∝ pdf(δ).
Although computing the distances between each pair (x,x′) introduces an over-
head cost, in many cases it is fair to assume that the cost of evaluating one
candidate solution is larger than this extra overhead cost.

The results reported on this scheme were promising and better compared to
the other simple schemes that were considered. Moreover, this approach is a lot
simpler than the metamodeling approaches. This motivates to further investi-
gate whether this archive based approach can be improved to either become a
simple alternative to metamodeling or to provide a useful archive maintenance
method to assist metamodeling techniques. This paper will propose an archive
maintenance scheme for robustness evaluation which enforces the retrieval of
well-spread sets of points from the archive by including a resampling mechanism
that aims for high local predictive capabilities.

The structure of this paper is as follows: Section 2 introduces the general
concept of archive maintenance for finding robust solutions. Section 3 proposes
a novel archive maintenance approach incorporated into an evaluation scheme.
Section 4 presents some experimental results and Section 5 concludes with a
discussion of the results and an outlook.

2 Archive Based EA for Finding Robust Solutions

The algorithm outlined in Figure 1 shows a generic framework of an archive
based EA for finding robust optima. It is similar to a canonical EA, only a few
extra steps are included involving the evaluation of candidate solutions.

For each individual, the algorithm attempts to select an appropriate sample
set from the archive in order to obtain a robustness approximation according to
(1). Note that in the approach of [3] all archive points were used for approximat-
ing the effective fitness. If there is no representative sample set present in the
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1: initialize parent population and archive

2: while not terminate do
3: generate offspring from parents

4: for each offspring do
5: (optional: evaluate offspring and add to archive)

6: select archive points for robustness approximation

7: if not enough samples or no appropriate sample set available then
8: find appropriate additional sample points

9: evaluate additional sample points and add to archive

10: end if
11: compute robustness approximation using the selected samples

12: end for
13: select best offspring

14: (optional: clean up archive)

15: end while

Fig. 1. General framework of an archive based EA for finding robust solutions

archive, the algorithm should decide which additional samples should be taken.
Two optional steps are: 1) evaluate each individual first on the original objective
function before evaluating its robustness, and 2) apply a method to clean up the
archive and prevent it to grow out of bound.

Open issues are the selection of a set of samples from the archive and the
selection of additional samples. Also, a criterion is needed for deciding whether
additional samples are needed. Obviously, these issues are closely related.

3 A Novel Archive Based Approach

A major drawback of the approach presented in [3] is that the points in the
archive are by no means guaranteed to be well-spread over the region of possible
variation for each candidate solution. I.e., the archive points are selected by the
optimization algorithm, which yields a distribution of points that is dependent
on the way in which subsequent candidate solutions are selected. Especially in
focused searching strategies such as ES, this might lead to an archive that holds
limited information about the (local) objective function landscape.

In this paper, we propose to use a Latin Hypercube Sampling (LHS) [6] gen-
erated reference set for finding additional sample points for the evaluation of
each individual. The main idea is that the most ideal set of points that could
be taken from the archive would be a set of which the points are distributed in
such a way that they could also have been obtained by means of a space filling
experimental design. This is in line with the conclusions of [4] that LHS is the
best sampling method to use in a MEM approach.

The algorithm in Figure 2 describes the archive based selection method. It
takes as arguments a reference sample set Xref = {x(1)

r , . . . ,x(m)
r } of m samples,

which should be the LHS reference set for an individual for which a robustness
estimate is required, and the archive A = {(x(1)

a , f
(1)
a ), (x(2)

a , f
(2)
a ), . . .} which

contains design point / objective function value tuples.
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1: procedure reference set based archive selection(Xref, A)

2: Asel ← ∅
3: Xcand ← ∅
4: for each xr ∈ Xref do
5: (xa, fa) ← {(xa, fa) ∈ A | ∀(x′

a, f ′
a) ∈ A : d(xr,xa) ≤ d(xr,x

′
a)}

6: if (∀x′
r ∈ Xr | d(xr,xa) ≤ d(x′

r,xa)) then
7: Asel ← Asel

⋃{(xa, fa)}
8: else
9: Xcand ← Xcand

⋃{xr}
10: end if
11: end for
12: return (Asel,Xcand)

13: end procedure

Fig. 2. Reference set based archive selection

Fig. 3. An illustration of the LHS archive selection method

For each reference sample xr in Xref the algorithm searches for the closest
point in the archive. Then, for each of these selected archive points, it is checked
whether the reference points for which they are selected are also the closest
reference points. The archive points for which this is the case are then, together
with their objective function values, added to the set Asel of selected archive
points. For the archive points for which this is not the case one can conclude that
the region around its reference point is underrepresented in the archive (making
this reference point a good candidate for extra sampling). It is therefore added
to the set Xcand of candidate sample points. In case that all reference points
have been assigned archive points, then the reference point of the archive point
/ reference point pair that are located farthest apart from each other is selected
as candidate for extra sampling1. This will assure that the archive is always
updated in the region in which it needs the extra samples the most.

Figure 3 illustrates the proposed scheme: Step a) shows the archive points as
solid circles and the reference samples with the ⊗-symbol. The box represents
the region induced by the input noise. In step b) for each reference point, the
closest archive point is identified. Then, in step c) it is checked whether the
reference points are also the closest reference points of their selected archive

1 This step is not shown in the algorithmic description of Figure 2.
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1: P ← generate initial population()

2: A ← ∅
3: while not terminate do
4: O ← generate offspring(P)

5: for each x ∈ O do
6: Xref ← latin hypercube sampling(x,σε, m)

7: (S,Xcand) ← reference set based archive selection(Xref,A)

8: for a random xc ∈ Xcand do
9: fc ← evaluate(xc)

10: A ← A
⋃{(xc, fc)}

11: end for
12: f̂eff (x) ← (

∑
{xa,fa}∈A w(xa) · fa)/(

∑
{xa,fa}∈A w(xa))

13: end for
14: P ← select(O)

15: end while

Fig. 4. The new archive maintenance scheme incorporated into a general EA

points and in step d) the archive points for which this is the case are selected
as archive points (solid circles) and the reference points for which this is not the
case are selected as candidates for additional sampling (dashed circles).
The framework provided in Figure 1 combined with the archive selection scheme
of Figure 2 yields an evaluation scheme for finding robust optima that can be
integrated within any type of EA. Although there are still different ways to
implement this scheme, space limitations do not allow for an extensive discussion.

This paper adopts the scheme as presented in Figure 4: For each individual, a
reference set Xref of m samples is used to obtain a set of selected archive points
S = {(x(1)

s , f
(1)
s ), (x(2)

s , f
(2)
s ), . . .} and a set Xcand = {x(1)

c ,x(2)
c , . . .} of suggested

candidates for extra sampling. Then, in this variant, only one of the suggested
candidate points for extra sampling is evaluated and added to A. A robustness
approximation is thereafter generated by considering all archive points and using
the weighted function as in (1). Note that it is also possible to take only the set
S, however, we assume that by using the new resampling scheme, the archive is
locally (i.e., around the current design point) well-spread and can therefore take
all sample points. This should lead to more accurate robustness approximations
in later stages (not being limited to a fixed sample size).

4 Experiments

The proposed method, named ABRSS (Archive Based Reference Set Selection),
is incorporated into a standard EA, the CMA-ES [5], and compared against
other schemes also incorporated into the CMA-ES. These are: the SEM scheme,
three MEM instances (with m = 2, m = 5, and m = 10), and an instance of the
archive based scheme of [3] named PROX2. The experiments are performed on
four 10D test problems (Figure 5) which represent two main robustness cases: f1

2 This name was used as this method selects archive points based on a proximity rule.
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Fig. 5. The four test problems including 1D visualizations of the normal fitness func-

tions (solid) and the effective fitness functions (dashed)

and f2 are unimodal functions where the robust optimum is shifted with respect
to the original optimum, and f3 and f4 are multimodal functions in which a local
optimum becomes the robust optimum. As the main goal is to save on function
evaluations, a limited evaluation budget of 5000 function evaluations is consid-
ered. The results are averaged over 50 runs for each scheme. For significance
testing, a 95% confidence unpaired two-sided t-test was used.
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The ABRSS scheme uses a reference set sample size of m = 10. The MEM
schemes follow the suggestions of [4] by using LHS to obtain the sample sets.
Also, the same disturbances are used for all individuals of the population. The
PROX scheme uses the full archive for robustness approximation and does not
use a duplicate avoidance scheme. Default strategy parameter settings as found
in [5] are adopted for the CMA-ES.

4.1 Experimental Results

Figure 6 and Table 1 show the effective fitness of the best solution found after
1000 and 5000 evaluations respectively. Here, the effective fitness of the solutions
is approximated using Monte-Carlo integration with m = 1000.

The experiments show that the ABRSS scheme is significantly outperforming
all other schemes on the unimodal test functions f1 and f2; both in the early
stages after 1000 evaluations as well as after 5000. Hence, the ABRSS scheme is
both fast and accurate for a local optimization scheme. On these same functions,
the PROX method also shows a good convergence speed in the beginning and
good solution quality in the later stages, but, except on f1 after 1000 evaluations,
it is each time outperformed by at least one of the MEM approaches.

Fig. 6. Solution quality boxplots after 1000 (left) and 5000 (right) evaluations
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Table 1. Solution quality data after 1000 (left) and 5000 (right) evaluations

Quality after 1000 evaluations Quality after 5000 evaluations
Method Mean Stddev Median Rank Sum Rank Mean Stddev Median Rank Sum Rank

f1 SEM 0.529 0.144 0.549 3625 5 0.575 0.191 0.577 4180 5
MEM2 0.263 0.112 0.272 2155 3 0.705 0.162 0.756 4700 6
MEM5 0.498 0.248 0.436 3294 4 0.241 0.122 0.213 3114 4
MEM10 1.111 0.421 1.033 4834 6 0.098 0.030 0.082 1807 2
PROX 0.203 0.158 0.138 1689 2 0.135 0.120 0.083 2024 3
ABRSS 0.086 0.039 0.069 693 1 0.056 0.002 0.055 465 1

f2 SEM 0.348 0.052 0.361 3094 4 0.340 0.067 0.316 4648 6
MEM2 0.289 0.027 0.283 1768 2 0.288 0.044 0.282 3843 5
MEM5 0.365 0.040 0.363 3512 5 0.232 0.023 0.228 2099 2
MEM10 0.504 0.056 0.513 4920 6 0.237 0.023 0.228 2337 3
PROX 0.314 0.040 0.316 2377 3 0.249 0.038 0.238 2636 4
ABRSS 0.243 0.025 0.239 619 1 0.208 0.019 0.201 727 1

f3 SEM 0.481 0.055 0.475 2214 3 0.457 0.051 0.459 3084 5
MEM2 0.437 0.042 0.442 1252 1 0.431 0.042 0.439 2350 3
MEM5 0.543 0.054 0.540 3389 5 0.435 0.048 0.433 2071 2
MEM10 0.668 0.062 0.661 4822 6 0.432 0.048 0.432 2062 1
PROX 0.537 0.071 0.533 3192 4 0.510 0.057 0.507 4150 6
ABRSS 0.446 0.046 0.442 1421 2 0.438 0.044 0.436 2573 4

f4 SEM -0.474 0.066 -0.480 2834 4 -0.566 0.047 -0.574 3178 4
MEM2 -0.539 0.062 -0.564 1405 1 -0.605 0.023 -0.606 1804 2
MEM5 -0.449 0.041 -0.448 3434 5 -0.614 0.022 -0.613 1393 1
MEM10 -0.389 0.033 -0.396 4607 6 -0.578 0.050 -0.592 2701 3
PROX -0.523 0.047 -0.535 1772 2 -0.549 0.031 -0.548 4030 6
ABRSS -0.504 0.067 -0.509 2238 3 -0.572 0.035 -0.571 3184 5

Interestingly, on the multimodal cases f3 and f4, the results show a different
picture, and the solution quality after 5000 evaluations of the ABRSS approach
ranks 4th and 5th respectively. On f2 the ABRSS and MEM2 show similar results
and both are outperforming the other schemes, but after 5000 evaluations, the
MEM2, MEM5, MEM10 and ABRSS scheme show practically no difference in
performance. For f4, the ABRSS is still relatively fast in the early stage, but
outperformed by the MEM2 and PROX scheme. However, after 5000 function
evaluations, the MEM2 and MEM5 scheme produce clearly better results. From
this we can conclude that the ABRSS can be used for fast local optimization,
but the sample variations of the MEM2 and MEM5 approach can induce an
explorative behavior, favoring more robust peaks on the long run.

4.2 Notes on the Archive Quality

To get an insight in the development of the archive, we consider its growth on
a 2D version of test problem f1. Figure 7 shows, for a run of both the ABRSS
scheme and the PROX scheme, the archive after 100, 200, and 300 generations.
The small plots inside each plot are magnified versions on the interval [0, 2]2 (i.e.,
the interval around the optimum). The asset of the archive maintenance scheme
can be seen clearly: whereas the PROX method zooms in on a narrow region,
the ABRSS scheme considers the whole region of uncertainty around the point
on which it zooms in, yielding a locally well-spread set of archive points (and
in effect generating more accurate fitness approximations). Although in higher
dimensions it will take more time to build up a well-spread archive, the ABRSS
scheme, in contrast to the PROX scheme, has the potential to do so.
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Fig. 7. Archive after 100, 200, and 300 generations of the ABRSS scheme (top row)

and PROX scheme (bottom row) on a 2D version of test problem f1. The zoomed view

shows the interval [0, 2]2

5 Conclusion and Outlook

This paper has presented an archive maintenance scheme that can be used within
an evaluation scheme for finding robust optima. It extends the scheme presented
in [3] by actively enforcing locally well-spread distributions of archive points.
The experiments show that this way of archive maintenance can indeed improve
the quality of the robust search algorithm. On unimodal landscapes, the ABRSS
scheme has shown to yield a fast and accurate search algorithm, outperform-
ing the MEM schemes both in speed and final solution quality. On multimodal
landscapes, where each optimum has a different robustness, the ABRSS method
seems to lose much power. Hence, it yields a local optimizer that zooms in on
one optimum rather than considering multiple robust peaks. A logical topic for
future research would be to investigate whether niching approaches could be
incorporated to improve this scheme (i.e., apply this scheme multiple times on
different peaks and a-posteriori select the most robust peak).

The archive maintenance scheme can also be applied in metamodeling ap-
proaches because it enforces well-spread local distributions of archive points
that are also beneficial for metamodeling. It will remain open for future research
to compare the ABRSS scheme to metamodeling schemes and to study its use
within metamodeling schemes.
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Abstract. In Lässig and Sudholt (GECCO 2010) the first running time

analysis of a non-trivial parallel evolutionary algorithm was presented.

It was demonstrated for a constructed function that an island model

with migration can drastically outperform both panmictic EAs as well as

parallel EAs without migration. This work provides additional empirical

results that increase our understanding of why and when migration is

essential for this function. We provide empirical evidence complementing

the theoretical results, investigate the robustness with respect to the

choice of the migration interval and compare various migration topologies

using statistical tests.

1 Introduction

Evolutionary Algorithms (EAs) are successful strategies for hard optimization
problems for which no efficient methods are known. For large-scale applications it
is common to use parallel implementations, which have shown to be a successful
strategy to speed up the computation in many cases [1,2]. Especially due to
current multi-core architectures parallel EAs are highly relevant [3,4].

Despite many wide-spread applications, empirical investigations [5], and a
long history of parallel EAs, the theory of these algorithms is not well developed
and more fundamental research is needed [5].

Rigorous running time analysis allows to assess the performance of a given
algorithm on a given problem or problem class. In Lässig and Sudholt [6] the
first running time analysis of a non-trivial parallel evolutionary algorithm was
presented. The purpose of this work was to establish an example where, for the
first time, parallelization and migration could be proved to outperform panmictic
populations and island models without migration. For this artificial problem,
called LOLZ, it was proved that with overwhelming probability

– panmictic populations need exponential time to find a global optimum,
– separate subpopulations need exponential time to find a global optimum,
– a simple island model with properly configured migration needs only poly-

nomial time to find a global optimum.

� The authors were supported by postdoctoral fellowships from the German Academic

Exchange Service.
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These results demonstrated the effectiveness of parallelization and migration
from a rigorous theoretical perspective. In this work we take a more empirical
view and address several questions that have been left open in [6]. The result for
the island model holds for all migration topologies that fulfill a certain expan-
sion property. It is not clear which of the commonly used migration topologies
performs best for the problem LOLZ. Also the theoretical result required a very
specific choice of the migration interval (i. e., the time between two migrations).
Therefore, we consider the robustness of the island model for a broad range of
values for the migration interval. Our investigations lead to additional insights
in which settings parallelization leads to a drastic speed-up.

In Section 2 the algorithms, the function LOLZ and the theorems from [6] are
reviewed. Section 3 then experimentally reproduces the theoretical results. In
Section 4 the success rate of different migration intervals is investigated for dif-
ferent migration topologies and in Section 5 these investigations are statistically
validated. Section 6 concludes our study.

2 Preliminaries and Previous Work

As our experiments will be heavily based on previous work [6] we first review
these results. The (μ+1) EA is a panmictic steady-state algorithm that in each
generation selects a parent uniformly at random and generates an offspring by
mutation. The offspring replaces one of the worst individuals in the population,
unless it is inferior to all individuals in the population.

Algorithm 1. Panmictic (μ+1) EA
Let t := 0 and initialize P0 with μ individuals chosen uniformly at random.

repeat
Choose x ∈ Pt uniformly at random.

Create y by flipping each bit in x independently with probability 1/n.

Choose z ∈ Pt with worst fitness uniformly at random.

if f(y) ≥ f(z) then Pt+1 = Pt \ {z} ∪ {y} else Pt+1 = Pt.

Let t = t + 1.

To describe the island model let P = P 1 ∪̇ P 2 ∪̇ . . . ∪̇ P k be a partition of the
whole population in multiple subpopulations or islands. A migration topology,
given by a directed graph with vertices representing islands, describes the neigh-
borhood structure for the islands. Algorithm 2 represents a parallel EA, where
k subpopulations P i, i = 1, 2, . . . , k evolve independently as in the (μ+1) EA
from Algorithm 1, except for special migration steps. Every τ steps migrants
from one island, in this case copies of the island’s best individual, are sent to all
islands that are connected in the migration topology via a directed edge. The
incoming migrants are included into the island using the same selection as in the
panmictic (μ+1) EA: for each subpopulation, the received individual of highest
fitness replaces a worst individual on the island, unless being inferior to it.
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Algorithm 2. Parallel EA with migration
Let t := 0 and for all 1 ≤ i ≤ k initialize P i

0 uniformly at random.

repeat
For all 1 ≤ i ≤ k do in parallel

if t mod τ = 0 and t > 0 then
Send an individual with maximum fitness in P i to all neighbored pop.

Choose yi with maximum fitness among all incoming migrants.

else
Choose xi ∈ P i

t uniformly at random.

Create yi by flipping each bit in xi independently with probability 1/n.

Choose zi ∈ Pt with worst fitness uniformly at random.

if f(yi) ≥ f(zi) then P i
t+1 = P i

t \ {zi} ∪ {yi} else P i
t+1 = P i

t .

Let t = t + 1.

The value τ is called migration interval. The special case of τ = ∞, i. e., no
migration, is called the parallel EA with independent subpopulations. If τ < ∞
and all subpopulations have size 1, this is called the parallel (1+1) EA with
migration or shortly island model.

In [6] the authors introduced the following function.

Definition 1. For a bit string x = x1 . . . xn let LO(x) =
∑n

i=1

∏i
j=1 xi describe

the number of leading ones and LZ(x) =
∑n

i=1

∏i
j=1(1−xi) describe the number

of leading zeros. Let z, b, � ∈ � such that b� ≤ n and z < �. For a bit string
x = x1 . . . xn we abbreviate x(i−1)�+1 . . . xi� by x(i) and let

LOLZn,z,b,�(x) =
b∑

i=1

(i−1)�∏
j=1

xj ·
[
LO(x(i)) + min

(
z, LZ(x(i))

)]
.

The function is constructed in such a way that an evolutionary algorithm can
fix bits from left to right. The bit string is divided into b blocks of length �
each. In the first block the algorithm can either collect leading ones or leading
zeros. Both decisions lead to an equal gain in fitness for each leading bit. After
a threshold of z fixed leading bits has been reached, only leading ones can lead
to a larger fitness. Solutions where leading zeros have been gathered represent
local optima that are by a Hamming distance of at least z away from all better
search points. If z is large enough, it becomes nearly impossible to escape from
this local optimum. In case the algorithm has collected leading ones and the first
block only consists of ones, the fitness depends on the leading bits in the second
block in the same way. Only if the algorithm manages to decide for leading ones
in all blocks, a global optimum is reached.

In a panmictic population, the whole population tends to move towards one
specific type of prefix. Hence, for each block there is a probability of about
1/2 that the whole population starts gathering leading zeros in the block, thus
getting stuck in a local optimum that is hard to overcome. The probability of
always making the correct decision is close to 2−b, so it decreases exponentially
with the number of blocks. The precise result from [6] reads as follows.
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Theorem 1. Consider the panmictic (μ+1) EA with μ ≤ cn/(logn) for an
arbitrary constant c > 0 on LOLZn,z,b,� with z = ω(log b), b� ≤ n, and z < �.
With probability at least 1 − exp(−Ω(z)) − 2−b the (μ+1) EA does not find a
global optimum within nz/3 generations.

Independent subpopulations without communication also tend to get stuck as
even multiple independent populations cannot make up for the very small success
probability of 2−b if b is not too small.

Theorem 2. Consider the parallel EA with s ∈ � independent subpopulations
of size μ ≤ cn/(logn) each, c > 0 an arbitrary constant, on LOLZn,z,b,� with
z = ω(log b), b� ≤ n, and z < �. With probability at least 1−s exp(−Ω(z))−s2−b

the (μ+1) EA does not find a global optimum within nz/3 generations.

In sharp contrast to these results, an island model with a well-chosen migration
interval and a suitable migration topology was shown to be successful. First, the
islands make independent decisions whether to gather leading ones or leading
zeros. After some time, the islands that have chosen leading zeros will get stuck
and the other islands will exhibit a larger fitness. If a migration happens at this
point, the islands that have made the right decision are able to take over islands
that are stuck in worse local optima. This way, information about the “good”
decision can be spread throughout the islands, so that islands that are stuck in
local optima can be re-activated to participate in the search on new blocks. A
requirement for this spread of information is that the topology shows a certain
degree of expansion. A topology with vertex set V is called well-expanding if for
every subset V ′ ⊆ V of size at most |V ′| ≤ |V |ε the total number of vertices
reachable from any vertex in V ′ by a directed edge is at least (2+ε)|V ′| for some
constant ε > 0. The hypercube and more dense graphs are well-expanding.

In the following result, the migration counter t in Algorithm 2 is initialized
with a value of τ/2 instead of 0. This restricts the migrations to take place
roughly in the middle of each block.

Theorem 3. Consider the parallel (1+1) EA with migration on a well-expand-
ing migration topology with τ = n5/3 and μ subpopulations for μ ≤ poly(n) and
μ ≥ nΩ(1). Let the function LOLZn,z,b,� be parametrized according to � = 2τ/n =
2n2/3, z = �/4 = n2/3/2, and b ≤ n1/6/16. If the migration counter starts at
τ/2 = n5/3/2 then with probability 1−exp(−Ω(nε)) for some ε > 0 the algorithm
finds a global optimum within O(b�n) = O(n2) generations.

Note that the number of blocks b is very small, unless the problem dimension n is
very large. The reason for this restriction is that we require migrations to happen
roughly in the middle of each block, for all blocks. This can only be guaranteed
if the number of blocks is rather small as the variances for all blocks accumulate
quickly. If migration happens too early, before the threshold of z fixed leading
bits has been reached, the fitness function does not give information whether
gathering leading ones or leading zeros is the better choice. Migration might
thus propagate the “wrong” type of individuals to other islands. If migration
happens at the end of a block, individuals stemming from the same island tend
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to have correlated bit values for the next block. Hence, they all tend to make
the same decision in the next block. If migration happens earlier, this gives all
islands enough time to develop near-independent bit values for bits in the next
block. This leads to a diversity that is essential for optimizing LOLZ.

We also remark that in [6] an extension of Theorem 3 to sparse topologies is
presented. There, several blocks have to be merged, resulting in an even smaller
number of blocks. As the number of blocks would lead to a trivial function for
realistic problem dimensions, we decide to use a larger number of blocks in our
experimental investigations. This makes LOLZ a more challenging benchmark
function for all three algorithms. This also motivates the investigation of different
values for the migration interval τ , since it is not clear which τ -value is optimal
when faced with a much larger number of blocks.

3 Experimental Reproduction of the Theoretical Results

We first empirically reproduce the theoretical results from [6]. Our basic exper-
imental setup is the optimization of LOLZn,z,b,� for dimension n = 1,000 and
z = 10. As argued before, instead of sticking to the block structure given in
Theorem 3 we use b = 10 blocks of length � = 100 each. This means that the
whole bit string is used for a fitness evaluation—note that this condition is nei-
ther required in the definition of LOLZ nor in Theorem 3. The population size
for the panmictic (μ+1) EA was chosen as μ = 32. All parallel EAs use μ = 32
islands with subpopulations of size 1, each.

For the island model we considered four common topologies: a ring, a torus
(i. e. a two-dimensional grid with edges wrapping around on all sides) with side
lengths 4 × 8, a hypercube, and the complete graph Kμ. All edges are bidirec-
tional. The migration interval was fixed to τ = 50,000, which meets the condition
� = 2τ/n from Theorem 3. In accordance with Theorem 3 we initialize the migra-
tion counter such that the first migration takes place in generation τ/2 = 25,000.

All algorithms were stopped when either the global optimum had been found
or each individual had at least z leading zeros in the block currently to be
optimized, which means that at least z bits would have to be flipped in one
mutation to get out of this local optimum. This event has a negligibly small
probability of less than n−z = 10−30. The expected time until a local optimum
is left is at least 1030, so it makes sense to stop beforehand.

In our first experiments we simulate 1,000 runs for each algorithm and record
the success rate, i. e., the fraction of runs that were stopped in a global optimum.
We also record the mean number of generations until an algorithm has been
stopped as well as the mean best fitness value in the final population. The latter
corresponds to the mean number of leading bits that have been fixed in the best
individual. The results are shown in Table 1.

For the panmictic (μ+1) EA no run was successful. The mean final fitness
value was 114, hence, on average, the algorithm got stuck already in the second
block, after only 92,367 generations. Independent subpopulations led to a higher
success rate of 0.038 and the algorithm stopped with a higher mean best final
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Table 1. Success rate, mean best fitness value after stopping and mean number of

generations until runs were stopped for the considered algorithms

Algorithm success rate final fitness # generations

Panmictic (μ+1) EA 0.0 114 92,367

Independent subpopulations 0.038 550 377,472

Island model on ring 0.995 999 709,704

Island model on torus 1.0 1000 655,858

Island model on hypercube 0.651 907 647,339

Island model on Kμ 0.327 651 344,759

fitness of 550. Note that the performance of the parallel EA with independent
subpopulations is determined by the best out of μ = 32 independent runs of a
(1+1) EA. Here independent runs clearly outperform a panmictic population.

The island model performed far better than the two previous algorithms for
all topologies. Surprisingly, the most sparse topologies, the ring and the torus,
performed best. With a torus every run was successful and so was almost every
run on the ring. For the hypercube the success rate decreased to 0.651 and for
the complete graph Kμ it was even only 0.327.

In order to get a more detailed impression of the dynamics within a run,
we repeated 100 runs for each algorithm and observed the number of “good”
individuals over time. An individual is called good [6] if it has leading ones in
its current block (i. e., the first block not completely filled with 1-bits). Note
that goodness may change when a new block is reached. Unless we have to deal
with correlated bit values, the probability of a good individual being good in
the next block is 1/2. Figure 1 shows the number of good individuals over time,
averaged over 100 runs for all algorithms. For runs that were stopped with a
global optimum, the number of good individuals in the final generation was
used to compute the average. We stopped recording once all runs were stopped.

The number of good individuals decreases quickly for the panmictic (μ+1) EA
as well as independent subpopulations. For all island models during migration the
number of good individuals increases as good individuals take over neighbored
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Fig. 1. Average number of good individuals in 100 runs for the panmictic (μ+1) EA,

separate subpopulations, and the island model with τ = 50,000
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islands without good individuals. This effect is particularly pronounced for the
torus, while the fluctuations are smallest for the hypercube. The number of good
individuals is, in general, higher for the torus than for the hypercube, with the
ring and Kμ in between.

4 Comparison of Topologies and Migration Intervals

The reason why dense topologies performed worse than expected from our the-
oretical results might lie in the different parameter settings concerning block
lengths and the number of blocks. Theorem 3 requires few blocks, a rather small
block length �, and a very delicate balance between the block length � and the
migration interval τ , expressed by τ = �n/2. In this setting migration is guaran-
teed to happen roughly in the middle of each block. With our larger value for b
this cannot be guaranteed for two reasons. First, the variances for all blocks ac-
cumulate and the total variance becomes too high for large b. The other reason
is that once i leading bits are fixed, the optimization is slowed down by a factor
of (1− 1/n)−i as only steps not flipping any of the leading bits can increase the
fitness and the expected waiting time for such a step is (1− 1/n)−i. This factor
can range from 1 for i = 0 to about e = 2.718 . . . for i = n as, unlike Theorem 3,
we make use of the whole bit string. It is therefore not clear whether τ = �n/2
is the best migration interval or whether slightly larger values are more helpful
for optimizing LOLZ.

In a series of computationally expensive experiments we recorded the success
rate in 100 runs for a broad range of migration intervals, increasing τ in steps
of 500 from 500 to 700,000 (CPU time: 319.6h ring, 351.7h torus, 298.3h hyper-
cube, 295.2h Kμ on dual-core Opteron 270 processors with 2.0 GHz, 8GB RAM
DDR 400). All other parameters were chosen as in Section 3; in particular, the
migration counter was always started at 25,000. The result is shown in Figure 2.

For all topologies the success rate is relatively high for values of τ around
τ = 50,000 (albeit it is not maximal for Kμ). For larger migration intervals
τ ≥ 250,000 the success rate starts to decrease continuously. This can be ex-
plained with the fact that between two migrations the number of good individ-
uals decreases roughly by factors of 1/2 with each new block.

Sparse topologies like ring and torus seem to be robust w. r. t. the migration
interval as for τ ≤ 100,000 the success rates are close to 1. The curve for Kμ

is particularly interesting due to its fluctuations. These fluctuations appear to
be random at first sight, but due to the large number of 100 runs and strong
correlations between neighbored τ -values the empirical data is, in fact, reliable.

For large migration intervals the success rate for all algorithms is best for Kμ.
If a migration takes place (roughly in the middle of the current block) all islands
are taken over by good individuals. In contrast, sparser topologies do not utilize
the rare migration events that efficiently.

For Kμ we would have expected that the best τ , i. e., the τ -value with the
largest success rate is around τ = 50,000. Figure 2(d) shows that this is not
the case—values around multiples of 50,000 and especially 250,000 seem to be
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Fig. 2. Success rates, moving averages for 20 data points, and final fitness values for

different topologies and migration intervals. The number of runs was 100 for each

setting. The final fitness was normalized with a factor 0.001 to fit the interval [0, 1].

better. This makes sense as with τ = k · 50,000, k ∈ �, migration tends to
take place in the middle of every k-th block. The reason why large migration
intervals are good for Kμ might be that the number of good individuals is very
high after each migration. The risk that all these individuals get stuck in one or
a few blocks is hence very low, even if no migration takes place in the meantime.
If only one individual manages to remain good, the next migration can turn all
individuals into good individuals again.

On the other hand, low migration intervals are a disadvantage for Kμ. Each
migration has some risk for dense topologies because if it is conducted at the
wrong place, all individuals can get stuck immediately. The reason is that if
the best individual during such a migration step has leading zeros in its current
block—which should be the case with probability about 1/2 unless the threshold
of z fixed leading bits has been reached—then the complete population is domi-
nated by individuals of this kind afterwards and the progress of the optimization
stops. Hence, up to some point, the success rate is increasing, if the number of
these risky migrations is reduced.

5 Statistical Validation

In this section we are aiming at ranking the different migration topologies for
different ranges of the migration interval. This is done using statistical tests for
success rates. As the underlying probability distributions are binomial distribu-
tions, we use t-tests for the comparison of two such distributions as described
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Fig. 3. Plot of the p-values of two-sided t-tests comparing success rates of two algo-

rithms. Values below 0.01 indicate that the underlying success probabilities are different

on a significance level of 0.01. These values are marked with bars outside the p-scale.

A bar at the bottom indicates that the first algorithm has a higher success probability

than the second (judging from which success rate was higher); a bar at the top indicates

the opposite.

in [7]. Separate tests are made for each choice of the migration interval and
for each pair of migration topologies. Figure 3 shows the resulting p-values of
two-sided tests. Low p-values indicate that the two algorithms have different
underlying success probabilities. In case p is large no conclusion can be made.

For very large migration intervals τ > 450,000 all topologies show a similar
behavior as migration hardly ever happens. For almost all other values the torus
is significantly better than the hypercube. The same holds for the ring up to
τ = 200,000. Except for very small values τ ≤ 4,000 where the ring is better,
the torus is better than the ring if τ is roughly in between 100,000 and 300,000.

Comparing Kμ to all other topologies, the ring works better for small migra-
tion intervals τ up to about 130,000 generations. For about 220,000 to 450,000
generations the opposite is the case. The torus shows a similar behavior, but the
torus outperforms Kμ for a larger range of small τ -values, and for larger values
Kμ is not always better than the torus. The performance of the hypercube (com-
pared to Kμ) is similar, but slightly worse—this is consistent with the previous
comparisons of ring, torus, and hypercube.

We conclude that the ring is the best choice for very small migration intervals
τ ≤ 4,000. In this range migration tends to be harmful as in situations where less
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than z leading bits have been fixed, the “wrong” decision might be communicated
to neighbored islands. Here the most sparse topology performs best. Contrarily,
for large migration intervals, roughly τ ≥ 200,000, the most expanding topology
Kμ performs best as here a good decision can spread to many islands that are
stuck in local optima. The torus seems to be the best compromise for τ -values in
between. The hypercube was never found to be the best topology in our setting.

6 Conclusion

Complementing theoretical results [6] on the function LOLZ where migration
was proven to be essential, our empirical results show that island models with
migration every 50,000 generations clearly perform better than panmictic popu-
lations and independent subpopulations without migration on LOLZ, in terms of
success rates and final fitness values. Sparse migration topologies lead to a better
performance than dense topologies. This result is remarkable since Theorem 3
only makes a statement about dense topologies. Our empirical results suggest
that a similar or even a stronger statement might hold for sparse topologies.

An extensive study of different migration intervals, along with statistical tests,
revealed that sparse migration topologies are better for small migration intervals,
while dense topologies are better for larger migration intervals.
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Abstract. We present new methods for the running time analysis of

parallel evolutionary algorithms with spatially structured populations.

These methods are applied to estimate the speed-up gained by paral-

lelization in pseudo-Boolean optimization. The possible speed-up

increases with the density of the topology. Surprisingly, even sparse

topologies like ring graphs lead to a significant speed-up for many func-

tions while not increasing the total number of function evaluations. We

also give practical hints towards choosing the minimum number of pro-

cessors that gives an optimal speed-up.

Keywords: Parallel evolutionary algorithms, runtime analysis, island

model, spatial structures.

1 Introduction

Parallel evolutionary algorithms (EAs) form a popular class of heuristics with
many applications to difficult problems [1,2]. Due to the increasing number of
CPU cores, exploiting possible speed-ups by parallel computations is nowadays
more important than ever. Despite the long history [3] and very active research
in this area [4], the theoretical foundation of parallel EAs is still in its infancy.
One way of gaining insight into the capabilities and limitations of parallel EAs
is by means of rigorous running time analysis [5]. By asymptotic bounds on
the running time we can compare different implementations of parallel EAs and
assess the speed-up gained by parallelization in a rigorous manner.

In [6] the authors presented the first running time analysis of a parallel evo-
lutionary algorithm with a non-trivial migration topology. It was demonstrated
for a constructed problem that migration is essential in the following way. A
suitably parametrized island model with migration has a polynomial running
time while the same model without migration as well as comparable panmictic
populations need exponential time, with overwhelming probability.

In this work we take a broader view and consider the speed-up gained by par-
allelization for various common pseudo-Boolean functions and function classes
of varying difficulty. A general method is presented that can be used to prove
upper bounds on the running time of parallel EAs. This method is then tai-
lored towards different spatial structures often used in fine-grained or cellular
evolutionary algorithms: ring graphs, torus graphs, and the complete graph. We
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also show how running time bounds for parallel EAs can be derived from up-
per bounds for panmictic EAs by the fitness-level method in an automated way.
Table 1 summarizes the resulting running time bounds for the considered algo-
rithms and problem classes, where p(1+1) EA is an abbreviation for the parallel
(1+1) EA (Algorithm 1) with crossover probability pc = 1−Ω(1).

Table 1. Asymptotic bounds for expected parallel running times E (T par) and expected

sequential running times E (T seq). Optimal population sizes μ were chosen in cases

where the bound on E (T seq) does not contain μ. For unimodal functions d denotes the

number of different function values. See [7] for bounds for the (1+1) EA. The bounds

in the last three columns are proven in this work.

(1+1) EA p(1+1) EA Ring p(1+1) EA Grid p(1+1) EA Kμ

OneMax E (T par) Θ(n log n) O(n) O(n) O(n +
n log n

μ
)

if μ ≥ log n if μ ≥ log n = O(n) if μ ≥ log n
E (T seq) Θ(n log n) O(n log n) O(n log n) O(nμ + n log n)

LO E (T par) Θ(n2) O(n3/2) O(n4/3) O(n + n2

μ
) = O(n)

if μ ≥ (en)1/2 if μ ≥ (en)2/3 if μ ≥ Ω(n)

E (T seq) Θ(n2) O(n2) O(n2) O(nμ + n2)

unimodal E (T par) O(dn) O(dn1/2) O(dn1/3) O(d + dn
μ

) = O(d)

if μ ≥ (en)1/2 if μ ≥ (en)2/3 if μ ≥ Ω(n)

E (T seq) O(dn) O(dn) O(dn) O(dμ + dn)

Jumpk E (T par) Θ(nk) O(nk/2) O(nk/3 + n) O(n + nk

μ
) = O(n)

k ≥ 2 if μ ≥ (enk)1/2 if μ ≥ (enk)2/3 if μ ≥ Ω(nk−1)

E (T seq) Θ(nk) O(nk) O(nk) O(nμ + nk)

2 Preliminaries

We consider the maximization of a pseudo-Boolean function f : {0, 1}n → �. It is
easy to adapt the method for minimization. The number of bits is always denoted
by n. The following well known example functions have been chosen because they
exhibit different probabilities for finding improvements in a typical run of an EA.
For a search point x ∈ {0, 1}n write x = x1 . . . xn, then OneMax(x) :=

∑n
i=1 xi

counts the number of ones in x and LO(x) :=
∑n

i=1

∏i
j=1 xi counts the number

of leading ones in x. A function is called unimodal if every non-optimal search
point has a Hamming neighbor (i. e., a point with Hamming distance 1 to it) with
strictly larger fitness. Observe that LO is unimodal and for LO every non-optimal
point has exactly one Hamming neighbor with a better fitness. For 1 ≤ k ≤ n

Jumpk :=

{
k +

∑n
i=1 xi, if

∑n
i=1 xi ≤ n− k or x = 1n,∑n

i=1(1− xi) otherwise.

This function has been introduced by Droste, Jansen, and Wegener [7] as a func-
tion with tunable difficulty as evolutionary algorithms typically have to perform
a jump to overcome a gap by flipping k specific bits.
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We are interested in the following performance measures. First we define the
parallel optimization time T par as the number of generations until the first global
optimum is evaluated. The sequential optimization time T seq is defined as the
number of function evaluations until the first global optimum is evaluated. In
both measures we allow ourselves to neglect the cost of the initialization as this
only adds a fixed term to the running times.

Our method for proving upper bounds is related to the fitness-level method
[5,7]. The idea is to partition the search space into sets A1, . . . ,Am called fitness
levels that are ordered w. r. t. fitness values. We say that an algorithm is in
Ai or on level i if the current best individual in the population is in Ai. An
evolutionary algorithm where the best fitness value in the population can never
decrease (called an elitist EA) can only improve the current fitness level. If one
can derive lower bounds on the probability of leaving a specific fitness level
towards higher levels, this yields an upper bound on the expected running time.

Theorem 1 (Fitness-level method). For two sets A,B ⊆ {0, 1}n and a fit-
ness function f let A <f B if f(a) < f(b) for all a ∈ A and all b ∈ B. Partition
the search space into non-empty sets A1,A2, . . . ,Am such that A1 <f A2 <f

· · · <f Am and Am only contains global optima. For an elitist EA let si be a
lower bound on the probability of creating a new offspring in Ai+1 ∪ · · · ∪ Am,
provided the population contains a search point in Ai. Then the expected number
of iterations of the algorithm to find the optimum is bounded by

m−1∑
i=1

1
si

.

Note that the method can also be applied to other elitist optimization methods.
In the following we apply the fitness-level method to parallel EAs. For the con-

sidered EAs we assume that there is a topology, given by a directed graph. Islands
represent vertices of the topology and directed edges indicate neighborhoods be-
tween the islands. Unless mentioned otherwise we assume that in the migration
topology edges can be used in both directions. Our methods for proving upper
bounds require that the islands run elitist evolutionary algorithms. All islands
create new offspring independently by mutation and/or recombination among

Algorithm 1. Parallel (1+1) EA with crossover
For all 1 ≤ i ≤ k choose xi ∈ {0, 1}n uniformly at random.

repeat
For all 1 ≤ i ≤ k do in parallel

Create yi by flipping each bit in xi with probability 1/n.

if f(yi) ≥ f(xi) then xi := yi.

Send copies of xi as migrants to all neighbored islands.

Choose zi with maximum fitness among all incoming migrants.

With probability pc replace zi by a crossover of zi and xi.

if f(zi) ≥ f(xi) then xi := zi.
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individuals in the island. Additional recombinations might be performed during
migration, with parents from different islands, but the focus of our method is on
variations that happen within single islands. In our applications we use a sim-
ple (1+1) EA for all islands. In order to include common principles in cellular
EAs [2], we generalize the (1+1) EA by allowing (arbitrary) crossover operations
during migration, each one happening with a fixed crossover probability pc (see
Algorithm 1).

3 Proving Upper Bounds for Parallel EAs

Now we describe how to prove upper bounds on the running time of parallel
EAs. In contrast to panmictic EAs, in an island model several islands might
participate in the search for improvements from the current-best fitness level.
The number of islands may vary over time according to the spread of information.

The following theorem transfers upper bounds for panmictic EAs derived by
the fitness-level method into upper bounds for parallel EAs in a systematic way.
This means that the method is not only applicable to present analyses of EAs
that use the fitness-level method. It can also be used to transfer any future
analyses of panmictic EAs to parallel EAs.

Theorem 2 (Fitness-level method for parallel EAs). Consider a partition
of the search space into fitness levels A1 <f A2 <f · · · <f Am such that Am only
contains global optima. Let si be (a lower bound on) the probability that a fixed
island running an elitist EA creates a new offspring in Ai+1∪· · ·∪Am, provided
the island contains a search point in Ai. Let μt for t ∈ � denote (a lower bound
on) the number of islands that have discovered an individual in Ai ∪ · · · ∪Am in
the t-th generation after the first island has found such an individual. Then the
expected parallel running time of the parallel EA on f is bounded by

E (T par) ≤
m−1∑
i=1

∞∑
t=0

(1− si)
∑ t

j=1 μj .

Proof. Let Ti denote the random time until the first island finds an individual on
a fitness level i+ 1, . . . ,m, starting with at least one individual on fitness level i
in the whole population. The expected parallel running time can be written as

E(T par) =
m−1∑
i=1

E (Ti) =
m−1∑
i=1

∞∑
t=1

Prob (Ti ≥ t) =
m−1∑
i=1

∞∑
t=0

Prob (Ti ≥ t+ 1) .

A necessary condition for Ti ≥ t + 1 is that during all t generations after the
first individual has reached fitness level i all islands are unsuccessful in finding
an improvement. In the j-th of these generations there are at least μj islands,
each being successful with probability at least si. Using that the islands create
new offspring independently, the probability of all islands being unsuccessful is
at most (1− si)μj . Thus,
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m−1∑
i=1

∞∑
t=0

Prob (Ti ≥ t+ 1) ≤
m−1∑
i=1

∞∑
t=0

t∏
j=1

(1− si)μj =
m−1∑
i=1

∞∑
t=0

(1− si)
∑ t

j=1 μj .

The upper bound from Theorem 2 is very general as it does not restrict the
communication among the islands in any way. These aspects are hidden in the
definition of the variables μt. When looking at one particular fitness level, say
level i, we also speak of islands being informed if and only if they contain an
individual on level i. The variable μt then gives the number of informed islands
t generations after the first island has been informed.

The spread of information obviously depends on the migration topology, the
migration interval, and the selection strategies used to choose migrants that are
sent and how migrants are included in the population. The basic method works
for all choices of these design aspects. We elaborate on these aspects and then
move on to more specific scenarios where we can obtain more concrete results.

With a migration interval of τ > 1 the μt-value remains fixed for periods
of τ generations. For appropriate t then μt = μt+1 = · · · = μt+τ−1. As the
μt-values are non-decreasing with t, the sum of μ-values is at least

∑t
j=1 μj ≥

τ
∑t/τ

j=1 μ(j−1)τ+1. This implies the following simplified upper bound.

Corollary 1. For a parallel EA with migration interval τ the bound from The-
orem 2 simplifies to

E (T par) ≤
m−1∑
i=1

∞∑
t=0

(1 − si)τ
∑ t/τ

j=1 μ(j−1)τ+1 .

The values μ(j−1)τ can be estimated like the values μj in a setting with τ = 1.
In order to keep the presentation simple, in the following applications we only
consider the case that τ = 1, i. e., migration happens in every generation. This re-
flects common principles used in fine-grained or cellular evolutionary algorithms.
The following considerations can always be combined with the above arguments
to handle migration intervals larger than 1.

Communication between islands might also be probabilistic. Migration can be
implemented with stochastic components determining when to migrate, where
to send individuals and which individuals to send. Also crossover for incoming
migrants can be disruptive. In the light of these effects the numbers μt of in-
formed islands are random variables. We state the following upper bounds with
respect to a value p+ that represents a lower bound on the probability that in
one generation a specific informed island informs a specific neighbored island.

4 Parallel EAs with Ring Structures

We first consider parallel EAs with sparse topologies. Often ring graphs are
used as topologies [2]. Rings can either be unidirectional, in which case there is
exactly one directed cycle, or bidirectional, when all edges are undirected. Before
proving a method for obtaining general upper bounds on ring graphs, we show
the following simple lemma.
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Lemma 1. For all 0 ≤ xy ≤ 1 it holds (1− x)y ≤ 1− xy/2.

Proof. Combining 1− x ≤ e−x for all x ∈ � and e−x ≤ 1 − x/2 for 0 ≤ x ≤ 1,
we get (1 − x)y ≤ e−xy ≤ 1− xy/2.

Theorem 3. Let p+ be (a lower bound on) the probability that a specific island
on fitness level i informs a specific neighbor in the topology in one generation.
The expected parallel running time of the parallel EA on f with an infinite uni-
directional or bidirectional ring is bounded by

m−1∑
i=1

3
(p+si)1/2

.

The same holds for finite rings of size at least μ ≥ max{(p+/si)1/2}.
Proof. For the current best fitness level let ξ (k) denote the random number of
generations until at least k islands are informed. For the unidirectional ring we
have E (ξ (k)) ≤ k/p+ since a new island is informed with probability at least
p+. In fact, this argument holds for all strongly connected topologies and in
particular for the bidirectional ring. Setting k := (p+/si)1/2, after an expected
number of k/p+ = (p+si)−1/2 generations we always have k informed islands.
Estimating the remaining expected time for improvements (counting from time
ξ(k) on) as in Theorem 2, we have μt ≥ (p+/si)1/2. Along with Lemma 1,

E (T par) ≤
m−1∑
i=1

1
(p+si)1/2

+
∞∑

t=0

(1− si)t·(p+/si)
1/2

≤
m−1∑
i=1

1
(p+si)1/2

+
∞∑

t=0

(
1− (p+si)1/2

2

)t

=
m−1∑
i=1

3
(p+si)1/2

.

As remarked in the proof, the bound from Theorem 3 holds for arbitrary strongly
connected topologies as the unidirectional ring is a worst case for the μt-values.
Compared to a single island, if p+ = Ω(1) in a ring the expected waiting time
for every fitness level can be replaced by its square root. We make this precise
for concrete functions in the following theorem.

Theorem 4. The following holds for the parallel (1+1) EA with pc ≤ 1−Ω(1)
on a unidirectional or bidirectional ring:

– E (T par) = O(n) for OneMax if μ ≥ √en,
– E (T par) = O(d

√
n) for every unimodal function with d function values if

μ ≥ √en,
– E (T par) = O(n + nk/2) for Jumpk if μ ≥

√
enk.

Proof. An informed island informs a neighbored island in case no crossover is
performed, hence p+ ≥ 1 − pc. Let c := 3/(1 − pc)1/2 = O(1). For OneMax
we choose the canonical partition Ai := {x | OneMax(x) = i}. The probability
of increasing the current fitness from fitness level i is at least si ≥ (n − i) ·
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1/(en) since there are n − i Hamming neighbors of larger fitness and a specific
Hamming neighbor is created with probability at least 1/n · (1 − 1/n)n−1 ≥
1/(en). Theorem 3 gives an upper bound of

c
n−1∑
i=0

√
en

n− i
= c
√
en

n∑
i=1

1√
i
≤ c
√
en

∫ n

0

1√
i

di ≤ 2c
√
en · √n = O(n).

For unimodal functions we choose a partition A1, . . . ,Ad where Ai contains all
search points with the i-th smallest function value. The probability of improving
the fitness from level i is at least si ≥ 1/(en) because there is at least one search
point in the next fitness level which is at Hamming distance one. Theorem 3
gives an upper bound of

c

d−1∑
i=1

√
en ≤ cd

√
en.

For Jumpk functions and i < n− k the fitness levels Ai are chosen equivalently
to OneMax, but to reach the highest level An−k+1 a specific bit string with
Hamming distance k has to be created, which has probability at least

sn−k ≥
(

1
n

)k

·
(

1− 1
n

)n−k

≥
(

1
n

)k

·
(

1− 1
n

)n−1

≥ 1
enk

.

Hence, Theorem 3 gives an upper bound of

c

n−k−1∑
i=1

√
en

n− i
+ c
√
enk ≤ 2c

√
en · √n + c

√
enk.

With a slightly different calculation for the highest n/logn fitness levels we can
also show that for OneMax the requirement on the ring size can be relaxed
towards μ ≥ log n while maintaining an expected parallel optimization time of
O(n). This results in an optimal sequential running time. The basic idea is to wait
until logn islands are informed and then estimating the remaining expected time
with an increased success probability of at least si(logn)/2. Details are omitted
due to space constraints.

Theorem 5. Under the conditions of Theorem 4, on OneMax with a relaxed
condition μ ≥ logn on the ring size still E (T par) = O(n).

5 Parallel EAs with Two-Dimensional Grids and Tori

For two-dimensional grids and tori we adapt Theorem 2 in a similar manner. We
also consider applications of the resulting theorem similar to the applications for
ring graphs.
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Theorem 6. Let p+ be defined as in Theorem 3. The expected parallel running
time of the parallel EA on f with an infinite two-dimensional grid is bounded by

m−1∑
i=1

10

p
2/3
+ s

1/3
i

.

The same holds for a finite torus of size at least μ ≥ max{(p+/si)2/3}.
Proof. For the current best fitness level let ξ (k) denote the random time until
at least k islands are informed. Using standard techniques, it is not hard to show
that for an infinite grid or a two-dimensional torus of size μ ≥ k the expected
time until k islands are informed is bounded by 8/p+ ·

√
k.

Setting k := (p+/si)2/3, after an expected number of 8/p+ ·
√
k = 8p−2/3

+ ·
s
−1/3
i generations we always have k informed islands. Estimating the remaining

expected time for improvements as in Theorem 2 and using Lemma 1,

E (T par) ≤
m−1∑
i=1

8

p
2/3
+ s

1/3
i

+
∞∑

t=0

(1− si)t·(p+/si)
2/3

≤
m−1∑
i=1

8

p
2/3
+ s

1/3
i

+
∞∑

t=0

(
1− p

2/3
+ s

1/3
i

2

)t

=
m−1∑
i=1

10

p
2/3
+ s

1/3
i

.

Compared to a single island, in a torus the expected waiting time for every fitness
level can be replaced by its third root. This leads to improved upper bounds for
unimodal functions and Jumpk.

Theorem 7. The following holds for the parallel (1+1) EA with pc ≤ 1−Ω(1)
on an infinite grid or a torus with μ vertices:

– E (T par) = O(n) for OneMax if μ ≥ 3
√
en,

– E (T par) = O(dn1/3) for every unimodal function with d function values if
μ ≥ (en)1/3,

– E (T par) = O(n + nk/3) for Jumpk if μ ≥ e1/3nk/3.

The proof follows immediately from Theorem 6 by taking over the fitness levels
and the si-values from Theorem 4. Details are omitted due to space restrictions.

6 Parallel EAs with Complete Topologies

Finally, we consider the densest topology, the complete graph Kμ, as migration
structure. Whenever one island finds a new fitness level i then each island will
be on fitness level i in the next generation with probability at least p+ (or on a
higher fitness level in case different islands find different improvements).

Theorem 8. Let p+ be defined as in Theorem 3. The expected parallel optimiza-
tion time of a parallel EA on f with a complete topology is

E(T par) ≤ 4m
p+

+
4
μ

m−1∑
i=1

1
si

.
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Proof. We estimate the expected time until at least μ/2 islands are informed
after an improvement. If more than μ/2 islands are uninformed, the expected
number of islands that become informed in one generation is at least p+μ/2.
By standard drift analysis arguments [8] the desired expectation is bounded by
2/p+. We apply results from Theorem 2 to estimate the expected remaining
optimization time:

∞∑
t=0

(1 − si)μt/2 =
∞∑

t=0

(
(1− si)μ/2

)t

=
1

1− (1 − si)μ/2
.

Now we consider two cases. If si ·μ/2 ≤ 1 by Lemma 1 we have 1− (1− si)μ/2 ≥
1 − (1− siμ

4

)
= siμ

4 . Otherwise, if si · μ/2 > 1 we have 1 − (1 − si)μ/2 ≥
1− e−siμ/2 ≥ 1− 1

e . Thus,

m−1∑
i=1

1
1− (1 − si)μ/2

≤
m−1∑
i=1

max
{

1
1− 1/e

,
4

μ · si

}
≤ m · e

e− 1
+

4
μ

m−1∑
i=1

1
si

.

Adding the expected waiting times until μ/2 islands are informed and observing
e/(e− 1) + 2/p+ ≤ 4/p+ yields the claimed bound.

The topology leads to a maximal spread of information. In comparison to the
previous sections, we obtain the best upper bounds for the considered function
classes.

Theorem 9. Let μ ∈ �. The following holds for the expected parallel optimiza-
tion time of the parallel (1+1) EA with topology Kμ:

– E (T par) = O(n + (n logn)/μ) for OneMax, which is O(n) if μ ≥ logn,
– E (T par) = O(d+ nd/μ) for every unimodal function with d function values,

which is O(d) if μ ≥ n,
– E (T par) = O(n + (n logn+ nk)/μ) for Jumpk, which is O(n) if μ ≥ nk−1.

Proof. Let c := 4/(1−pc) = O(1). We take over the fitness levels from Theorem 4.
By Theorem 8,

E(T par) ≤ cn+
4
μ

n−1∑
i=0

en

n− i
= cn+

4en
μ

n∑
i=1

1
i

= O(n + n(logn)/μ)

using that the n-th harmonic number is O(log n). For unimodal functions

E(T par) ≤ cd+
4
μ

d−1∑
i=1

en = cd+
4den

μ
= O(d+ nd/μ) .

For Jumpk we have for E(T par) the upper bound

cn+
4

μ

(
n−k−1∑

i=1

en

n − i
+ enk

)
≤ cn+

4en

μ
(log n+nk−1

) = O

(
n + n

log n + nk−1

μ

)
.
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7 Conclusions

We have provided a new method for the running time analysis of parallel evolu-
tionary algorithms, including applications to a set of well-known and illustrative
example functions. Our method provides a way of automatically transforming
running time bounds obtained for panmictic EAs via the fitness-level method
to parallel EAs. Besides a general theorem, we have provided methods tailored
towards specific topologies: complete graphs, rings, and torus graphs. Our tech-
niques are now ready to be applied to further algorithms and problems.

The applications revealed insights which are remarkable in their own right (see
Table 1). Compared to upper bounds for a single panmictic island by the fitness-
level method, for ring graphs the expected waiting time for an improvement can
be replaced by its square root in the parallel optimization time. This leads to
speed-up of order logn for OneMax and of order

√
n for unimodal functions like

LO. On Jumpk the speed-up is even of order nk/2. A similar effect is observed
for torus graphs where the expected waiting time can be replaced by its third
root, i. e., the speed-ups are even stronger here. For the complete graph parallel
EAs can decrease the parallel running time also on LO and Jumpk to O(n). In
all these results the population size can be chosen in such a way that the total
number of function evaluations does not increase, in an asymptotic sense. The
“optimal” population sizes have been stated explicitly, therefore giving hints on
how to parametrize parallel EAs.
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Negative Drift in Populations

Per Kristian Lehre

Technical University of Denmark, 2800 Lyngby, Denmark

Abstract. An important step in gaining a better understanding of the

stochastic dynamics of evolving populations, is the development of appro-

priate analytical tools. We present a new drift theorem for populations

that allows properties of their long-term behaviour, e.g. the runtime of

evolutionary algorithms, to be derived from simple conditions on the one-

step behaviour of their variation operators and selection mechanisms.

1 Introduction

Drift analysis is one of the primary mathematical techniques used to estimate the
runtime of evolutionary algorithms (EAs) and other randomised search heuris-
tics. Based on Hajek [4], drift analysis was introduced to evolutionary compu-
tation by He and Yao [5]. The dynamics of the EA on a fitness function is
aggregated into a real-valued stochastic process X0,X1, . . . , by mapping each
element of the state space Ω of the EA to a real value using a potential function
g : Ω → R. If the potential function is appropriately defined, drift theorems
allow properties about the long-term behaviour of the EA to be deduced from
conditions on the mean one-step drift of the process, defined as E [Δt], where
Δt := Xt+1 − Xt. While this approach has proven effective to analyse search
heuristics that maintain only a single search point, e.g. simulated annealing
[10], and the (1+1) EA [2], there are few applications of drift analysis on search
heuristics that maintain several search points, e.g. population-based EAs. Even
for simple fitness functions, highly non-trivial potential functions seem necessary
to aggregate the state of the population [9]. Other approaches may be needed
to analyse population-based search heuristics in more complex scenarios.

We introduce a new drift theorem particularly aimed at analysing population-
based search heuristics. An essential feature of the theorem is that the effects of
the variation operator and the effects of the selection mechanism are decoupled
in the conditions of the theorem, thus alleviating the state aggregation problem.
The result applies to any population-based process of the type described in Algo-
rithm 1 below. The algorithm keeps a vector Pt≥0 ∈ Ωλ of λ search points. The
vector will be referred to as a population, and its elements as individuals. Given a
population Pt, the next population Pt+1 is generated by sampling and perturb-
ing, according to the variation operator pmut, λ individuals in Pt. An iteration
of the of outer loop is called a generation. Variation operators are represented
as transition matrices pmut : Ω × Ω → [0, 1], where pmut(x, y) represents the
probability of perturbing an individual x into an individual y. For a given tran-
sition matrix pmut, we associate a Markov process Xt≥0, where for all t > 0, the

R. Schaefer et al. (Eds.): PPSN XI, Part I, LNCS 6238, pp. 244–253, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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1 Population Selection-Variation Algorithm
Require: Finite state space Ω, transition matrix pmut, and P0 ∈ Ωλ.

1: for t = 0, 1, 2, . . . until termination condition do
2: for i = 1 to λ do
3: Choose a parent index It(i) ∈ {1, . . . , λ}, and set x := Pt(It(i)).
4: Sample x′ according to pmut(x), and set Pt+1(i) := x′.
5: end for
6: end for

state transition probability is given by Pr [Xt+1 = x′ | Xt = x] := pmut(x,x′),
i. e. Xt≥0 corresponds to a random walk of a single individual in Ω according
the variation operator. The selection of individuals are specified by the vector
It ∈ {1, 2, . . . , λ}λ of indices, where the i-th element It(i) represents the “par-
ent” of the i-th individual. The selection mechanism is unspecified, but will
typically depend on an objective function on Ω. The sequence of index vectors
It≥0 is associated with a stochastic process Rt≥0 on {0, 1, . . . , λ}λ, defined as
Rt(i) :=

∑λ
j=1[It(j) = i] for all i, 1 ≤ i ≤ λ. The i-th element Rt(i) represents

the number of times the individual with index i was selected during generation
t. The expectation E [Rt(i)] is called the reproductive rate of the i-th individual
in generation t.

2 Negative Drift Theorem for Populations

Theorem 1. Given Alg. 1 with positive transition matrix pmut over a finite
state space Ω, and a function g : Ω → N+. Pick two positive integers a(n) and
b(n) such that d(n) := b(n) − a(n) ≥ 0. Let T (n) denote the earliest point in
time t ≥ 0 such that g(Pt(j)) ≤ a(n) holds for some j, 1 ≤ j ≤ λ. If there are
D(n) ≥ 1, and κ(n) > 0, and constants δ, δ2, δ3 > 0,α0 ≥ 1, such that for all
t ≥ 0 and integers i, j, k, and l where a(n) ≤ i ≤ b(n) and 1 ≤ l+k ≤ j, it holds

1. E [Rt(i) | a(n) < g(Pt(i)) < b(n)] ≤ α0 for all i, 1 ≤ i ≤ λ,

2. E
[
e−κ(n)Δt(i) | a(n) < g(Xt) < b(n)

]
< 1/(α0(1 + δ))

3. E
[
e−κ(n)(g(Xt+1)−b(n)) | g(Xt) ≥ b(n)

]
< D(n)

4. Pr [Δt(i) = −l ∧Δt+1(i− l) = −k] ≤ eκ(n)d(n)(1−δ2)Pr [Δt(i) = −l− k]
5. Pr [Δt(i) = −j] ≤ Pr [Δt(i− k) = −l] · δ3

where

– Rt(i) :=
∑λ

j=1[It(j) = i],
– Xt≥0 is the Markov process on Ω associated with pmut, and
– Δt(i) := (g(Xt+1)− g(Xt) | g(Xt) = i),

then for all time bounds L(n) > 0,

Pr [T (n) ≤ L(n) | g(P0) ≥ b(n)] = O
(
λL(n)2D(n)d(n)e−κ(n)d(n)δ2

)
.
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The result can be described informally as follows. The theorem assumes a poten-
tial function g over a search space Ω, and a goal potential a(n) ≥ 0. Any search
point x ∈ Ω with potential g(x) ≤ a(n) will be called a solution. If the algorithm
satisfies the five conditions, then the theorem provides an upper bound on the
probability that a solution has been found within a chosen number L(n) of gen-
erations. The conditions are w.r.t. the reproductive rate α0 and the random walk
Xt. The first two conditions mean that if the potential of the random walk is
close to a(n), then the random walk should have a negative drift towards higher
potential values. The requirement on the negative drift is proportional to the
reproductive rate. The larger the reproductive rate, the larger negative drift is
required for the theorem to hold. The third condition is a milder requirement
on the negative drift when the random walk is far from the goal potential. The
fourth condition limits the advantage of reducing the potential by a given value
during two, instead of one step. The last condition states that the probability
of reducing the potential by much, should not be much larger than reducing the
potential a little. Note that the drift conditions 2-5 are w.r.t. a random walk of
a single individual, and not w.r.t. the population. Hence, these conditions can
be verified independently of the selection mechanism and fitness function. For
economy of use, it is therefore helpful to derive special versions of the theorem
for specific settings of Ω, pmut and g, as will be illustrated in Section 3.

We now explain the proof idea. We focus on the event that an individual x
reaches a g-value below b(n), and aim to show that within L(n) generations, all
of its ancestors either become extinct, or have drifted back to g-values above
b(n). The ancestors will be modelled as a non-selective family tree, a concept
introduced in Lehre and Yao [7]. The nodes in the family tree correspond to the
ancestors of x, where node x is the root node. A path in the family tree is called
a lineage. We will prune the tree, and only consider the part of the tree that cor-
responds to individuals with g-values below b(n), i. e. any subtree that is rooted
in an individual with g-value above b(n) is removed. The number of times an
individual with index i is selected, is given by the random variable Ri(t). Differ-
ent individuals have different offspring distributions. To simplify the analysis, we
consider the family tree as if it had been subject to a modified selection process.
Here, the number of times each individual is selected is distributed according to
Ri∗(t), where i∗ is the index of the individual with highest reproductive rate.
Thus, each individual will be selected as often as it would have been, had it
been the individual with highest reproductive rate. Assuming condition 1, each
member of the family tree will on average be selected α0 times. A consequence
of modifying the selection process is that the family tree grows quicker than the
real family tree. And as there is no selective differences, each lineage corresponds
to a random walk.

The proof consist of two parts. The first part provides an upper bound on
the number of different lineages in the family tree. The second part provides an
upper bound on the probability that a given lineage of length L(n) will reach a
solution. The final result is obtained by combining these two parts using a union
bound. We start with the second part, and apply Hajek’s drift theorem [4].
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Theorem 2 (Hajek [4]). Let X0,X1, . . . be the random variables describing a
Markov process over the state space Ω, and g : Ω → R+

0 a function that assigns
to each state a non-negative real number. Pick two real numbers a(n) and b(n)
which depend on a parameter n such that 0 ≤ a(n) < b(n) holds. Let the random
variable T (n) denote the earliest point in time t ≥ 0 that satisfies g(Xt) ≤ a(n).
If there are κ(n) > 0 and p(n) > 0 such that for all t ≥ 0, the condition

E
[
e−κ(n)(g(Xt+1)−g(Xt)) | a(n) < g(Xt) < b(n)

]
≤ 1− 1/p(n)

holds, then for all time bounds L(n) ≥ 0

Pr [T (n) ≤ L(n) | g(X0) ≥ b(n)] ≤ eκ(n)(a(n)−b(n)) · L(n) ·D(n) · p(n),

where D(n) := max
{
1,E

[
e−κ(g(Xt+1)−b(n)) | b(n) ≤ g(Xt)

]}
.

This theorem will be applied later in the proof of Theorem 1. However, note that
if the conditions in Theorem 1 hold, then the conditions in Theorem 2 hold for
the Markov process associated with the transition matrix pmut.

Knowing that a single lineage will not find the optimum within polynomial
time, we now estimate the number of different lineages in the family tree. The
number of lineages is trivially bounded by the number of family tree members,
which can be analysed using multi-type branching processes.

Definition 1 (Multi-Type Branching Process [3]). A multi-type branching
process with d types is a Markov process Z0,Z1,Z2, ... which for all t ≥ 0, is given
by Zt+1 :=

∑d
j=1

∑Ztj

i=1 ξ
(j)
i , where for all j, ξ(j)i ∈ Nd

0 are i.i.d. random vectors

having expectation E
[
ξ(j)
]

=: (mj1,mj2, ...,mjd)
T. The associated matrix M :=

(mhj)d×d is called the mean matrix of the process.

A multi-type branching process can be thought of as a population of individuals
of d types. The vector component Ztj represents the number of individuals of
type j in generation t. An individual survives one generation, during which it
may produce some offspring. The offspring produced by an individual depends on
its type j, and is given by an independent random vector ξ(j), where the vector
component ξ(j)i is the number of offspring of type i. Each entry mhj in the mean
matrix represents the expected number of offspring a type h-individual will have
of type j-individuals. The expectation of a multi-type branching process can be
calculated from its mean matrix by E [Zt]

T = E [E [Zt | Zt−1]]
T = E [Zt−1]

TM =
· · · = E [Z0]

T
M t. Matrix powers M t of irreducible matrices can be determined

using the Perron-Frobenius theorem, where irreducibility is defined as follows.

Definition 2 (Irreducible matrix [11]). A d × d non-negative matrix M is
irreducible if for every pair i, j of its index set, there exists a positive integer t
such that m(t)

ij > 0, where m(t)
ij are the elements of the t-th matrix power M t.

Note that positive matrices are irreducible. The following statement of the
Perron-Frobenius theorem is taken from [3].
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Theorem 3 (Perron-Frobenius). If M is an irreducible matrix with non-
negative elements, then it has a unique positive eigenvalue ρ, called the Perron
root of M , that is greater in absolute value than any other eigenvalue. All el-
ements of the left and right eigenvectors u = (u1, ...,ud)

T and v = (v1, ..., vd)
T

that correspond to ρ can be chosen positive and such that
∑d

k=1 uk = 1 and∑d
k=1 ukvk = 1. Also, Mn = ρnA + Bn, where A = (viuj)d

i,j=1 and B are ma-
trices where AB = BA = 0, and there are constants ρ1 ∈ (0, ρ) and C > 0 such
that none of the elements of the matrix Bn exceeds Cρn

1 .

Hence, the asymptotics of the matrix power M t depends primarily on the Perron
root. This can be used to bound the expected number of descendants from a
single individual of type h.

Lemma 1. Let Z0,Z1, ... be a multi-type branching process with irreducible mean
matrix M = (mij)d×d and Perron root ρ < 1 with corresponding right eigenvector
v. The number of descendants Lt of the initial individual after t > 0 generations
satisfies E [Lt | Z0 = eh] ≤ ρ

1−ρ · vh

v∗ , where eh, 1 ≤ h ≤ d, denote the standard
basis vectors, and v∗ := min1≤i≤d vi.

Proof. The proof follows [3, p. 122]. By Theorem 3, matrix M has a unique
largest eigenvalue ρ, and all the elements of the corresponding right eigen-
vector v are positive, implying v∗ > 0. By using that vj ≥ v∗ for all j, we
get E [Lt | Z0 = eh] ≤ 1

v∗
∑t

r=1

∑d
j=1 E [Zrjvj | Z0 = eh]. As seen above, the

expectation on the right hand side can be expressed as E [Zr | Z0 = eh]T =
E [Z0 | Z0 = eh]TM r. Additionally, by taking into account the starting condi-
tions, Z0h = 1 and Z0j = 0, for all indices j = h, this simplifies further to
1
v∗
∑t

r=1

∑d
j=1

∑d
i=1 E

[
Z0ivjm

(r)
ij | Z0 = eh

]
= 1

v∗
∑t

r=1

∑d
j=1 vjm

(r)
hj . Finally,

by iterating M rv = M r−1(Mv) = ρM r−1v, which on coordinate form gives∑d
j=1 vjm

(r)
hj = ρrvh, one obtains the final bound vh

v∗
∑t

r=1 ρ
r ≤ ρ

1−ρ · vh

v∗ . ��

We formalise the non-selective family tree as a multi-type branching process.
Each family tree member corresponds to an individual in the branching process.
We have d(n) := b(n) − a(n) types, and the type of an individual x is given by
g(x) − a(n). Each family tree member is selected in expectation α0 times per
generation, so an individual of type i, will in expectation have α0pij offspring of
type j, where pij is the probability that the the variation operator produces an
offspring of type j from an individual of type i.

Definition 3 (Mean Matrix of EA). Given Algorithm 1 with reproductive
rate α0, and two integers 0 ≤ a(n) < b(n), d(n) := b(n) − a(n). The associated
d(n) × d(n) mean matrix is defined as mij := α0(pij + 1/d(n)2) if j > i, and
mij := α0pij if j ≤ i, where pij := Pr [Δt(i+ a(n)) = j − i].

The extra term α0/d(n)2 in the mean matrix is added for technical reasons, and
will lead to overestimation of the survival probability. If the Markov chain pmut

limited to the set of states x in Ω where g(x) ≤ b(n), is irreducible, then the
mean matrix is irreducible. To apply Lemma 1, we consider next the Perron root
and the associated eigenvector.
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Lemma 2. If Algorithm 1 satisfies the conditions in Theorem 1, then the asso-
ciated mean matrix M has Perron root ρ(M) ≤ 1/(1 + δ) for a constant δ > 0.

Proof. The Frobenius bound for the Perron root of a matrix M states that
ρ(M) ≤ maxi

∑
j mij [6]. However, when applied directly to our matrix, this

bound is insufficient for our purposes. Instead, we can consider the transforma-
tion SMS−1, for the invertible matrix S := diag(eκ, e2κ, ..., ed(n)κ). Note that
det(SAS−1) = det(S) for any d(n) × d(n) matrix A. So if ρ is an eigenvalue of
M , then 0 = det(M − ρI) = det(S(M − ρI)S−1) = det(SMS−1 − ρI), and ρ
must also be an eigenvalue of SMS−1. It follows that ρ(M) = ρ(SMS−1). By
using the Frobenius bound along the rows of matrix SMS−1, which has elements
(SMS−1)ij = mije

−κ(j−i), we can bound ρ(M) for large d(n) by

ρ(SMS−1) ≤ max
1≤i≤d(n)

α0

d(n)∑
j=1

pije
−κ(j−i) +

d(n)∑
j=i+1

α0

eκ(j−i)d(n)2

≤ max
1≤i≤d(n)

α0

∞∑
j=−∞

Pr [Δt(i+ a(n)) = j − i] e−κ(j−i) +
α0

d(n)

= max
1≤i≤d(n)

α0E
[
e−κΔt(i+a(n))

]
+

α0

d(n)
≤ 1

1 + δ/2
.

��
Lemma 3. Let M be the mean matrix associated with Algorithm 1, v the right
eigenvector corresponding to the Perron root of M , and v∗ := mini vi the minimal
component of this eigenvector. If the conditions of Theorem 1 are satisfied, then
it holds for all indices h, 1 ≤ h ≤ d(n), that pd(n)h

vh

v∗ ≤ δ3e
κd(n)(1−δ2).

Proof. Minc’s bound for the principal ratio of positive matrices [8] can be gener-
alised as follows, vh

v∗ = maxk
vh

vk
= maxk

ρvh

ρvk
= maxk

∑
j mhjvj∑
j mkjvj

≤ maxk,j
mhj

mkj
.

It now suffices to bound the ratio pd(n)hmhj/mkj for all values of h, j and
k. In the case where k ≤ j, we have pd(n)hmhj/mkj ≤ mhjd(n)2 ≤ 2d(n)2.
In the case where h ≤ j < k, condition 5 implies that pd(n)h ≤ δ3pkj , so
pd(n)hmhj/mkj ≤ mhjδ3 ≤ 2δ3. Finally, when j < k and j < h, condition 4
and 5 imply that

pd(n)hmhj

mkj
=
pd(n)hphj

pkj
≤ δ3pd(n)hphj

pd(n)j
≤ δ3e

κ(n)d(n)(1−δ2) ��

Proof (of Theorem 1). Consider the event that an individual x with g-value
higher than b(n) obtains an offspring with g-value less than b(n). We model
the non-selective family tree corresponding to individual x pruned to g-values
in the interval b(n) to a(n), as a multi-type branching process with d(n) types
and mean matrix given by Definition 3. Any search point with g-value less than
a(n) is called a solution. To bound the probability q that a given lineage of
length at most L(n) reaches a solution, we apply Theorem 2 with the param-
eter p(n) := α0(1 + δ)/(α0(1 + δ) − 1), yielding q = O(L(n)D(n)e−κ(n)d(n)). If
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there are k lineages in the family tree, then by union bound, the probability
that any lineage reaches a solution is less than kq. The number of lineages is
less than the number L of family tree members. Hence, the probability that
the family tree contains a solution is less than

∑∞
k=1 Pr [L = k]kq = qE [L] ≤

q
∑d(n)

h=1 pd(n)hE [L | Z0 = eh] . By applying Lemmas 1, 2, and 3, this is no more
than q

∑d(n)
h=1

ρ
1−ρ

pd(n)hvh

v∗ = O(qd(n)eκ(n)d(n)(1−δ2)). Finally, by noting that there
can be no more than λL(n) such family trees within L(n) generations, the prob-
ability that any individual within the first L(n) generations is a solution, is by
union bound O(λL(n)2D(n)d(n)e−κ(n)d(n)δ2). ��

3 Applications to Evolutionary Algorithms

We now derive a simplified variant of Theorem 1 tailored to runtime analysis
of EAs on Pseudo-boolean functions. We consider bitwise mutation pbit(x, y) =
(χ

n )H(x,y)(1− χ
n )n−H(x,y), where H denotes Hamming-distance, and the constant

parameter χ > 0 determines the mutation rate. The potential function g is
defined as the Hamming distance to some search point x∗ ∈ {0, 1}n.

Theorem 4. Given Algorithm 1 on Ω = {0, 1}n with transition matrix pbit,
mutation rate χ, and population size λ = poly(n). Let a(n) and b(n) be positive
integers s.t. b(n) ≤ n/χ and d(n) := b(n)− a(n) = ω(lnn). For an x∗ ∈ {0, 1}n,
let T (n) be the smallest t ≥ 0, s.t. H(Pt(j),x∗) ≤ a(n) for some j, 1 ≤ j ≤ λ.
Let Rt(i) :=

∑λ
j=1[It(j) = i]. If there are constants α0 ≥ 1 and δ > 0 s.t.

1. E [Rt(i) | a(n) < H(Pt(i),x∗) < b(n)] ≤ α0, for all i, 1 ≤ i ≤ λ,

2. ψ := ln(α0)/χ+ δ < 1, and

3.
b(n)
n

< min
{

1
5

,
1
2
− 1

2

√
ψ(2− ψ)

}
,

then there exists a constant c > 0 such that Pr
[
T (n) ≤ ecd(n)

] ≤ e−Ω(d(n)).

Proof. We apply Theorem 1 over the interval [a(n), b(n)], where the distance
function is defined as g(x) := H(x,x∗). W.l.o.g., we assume that x∗ = 1n. The
first condition holds immediately. For the second and third conditions, note that
E
[
e−κΔt(i)

]
= MΔt(i)(−κ), where MΔt(i) is the moment-generating function

(m.g.f.) for the drift Δt(i) := (g(Xt+1) − g(Xt) | g(Xt) = i). The drift can
be expressed as the sum of two, independent random variables Δt(i) = Δ+

t (i)−
Δ−

t (i), whereΔ+
t (i) is the number of 1-bits that are flipped into 0-bits, andΔ−

t (i)
is the number of 0-bits that are flipped into 1-bits. These variables are binomially
distributed. A binomially distributed random variable X with parameters n and
p has m.g.f. MX(t) = (1− p+ pet)n. Setting κ = ln(2 + ε+ δ2), where ε and δ2
are constants that will be determined later, the positive drift component is

MΔ+
t (i)(−κ) =

(
1− χ

n
+

χ

n(2 + ε+ δ2)

)n−i

≤ exp

(
− (1− i

n )(1 + ε + δ2)χ
(2 + ε+ δ2)

)
,
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and the negative drift component is

MΔ−
t (i)(κ) =

(
1− χ

n
+
χ(2 + ε+ δ2)

n

)i

≤ exp
(
i(1 + ε+ δ2)χ

n

)
.

The random variablesΔ+
t (i) and Δ−

t (i) are independent, so the m.g.f. of the drift
is given by the product MΔt(i)(t) = MΔ+

t (i)(t)MΔ−
t (i)(−t). Hence, by taking into

account that i < b(n), we get

MΔt(i)(t) ≤ exp
(

(1 + ε+ δ2)χ
2 + ε+ δ2

(
b(n)(3 + ε+ δ2)

n
− 1
))

.

This bound holds for all ε > 0. We would like to maximise b(n) with respect to
ε, subject to condition 2 of Theorem 1, i. e. for the constant δ′ := eδχ − 1, we
would like to maximise the right hand side of the inequality

b(n) ≤ n

3 + ε+ δ2

(
1− (2 + ε+ δ2) ln(α0(1 + δ′))

(1 + ε+ δ2)χ

)
.

We choose ε =
√

ψ(2−ψ)+(2+δ2)ψ−1−δ2

1−ψ . By adjusting parameter δ, one can ensure
that 1/5 < ψ < 1, and hence that ε > 0 for an appropriate choice of δ2. This
choice of ε gives b(n)

n < min{ 1
5 , 1

2 − 1
2

√
ψ(2− ψ)}. The second condition of

Theorem 1 is therefore satisfied for the parameter δ′. For the third condition,
it is sufficient to use the upper bound E

[
e−κ(n)(g(Xt+1)−b(n)) | g(Xt) > b(n)

] ≤
E
[
e−κΔt(i) | g(Xt) > b(n)

]
and observe that the upper bound on the m.g.f. of

the drift is bounded from above by a constant D(n) = O(1) for all i. For the
fourth condition, it holds for all h, j, k where 1 ≤ k < j < h ≤ d(n) that the
ratio phjpjk/phk is no more than(

h+a(n)
h−j

) (
χ
n

)h−j (j+a(n)
j−k

) (
χ
n

)j−k(
h+a(n)

h−k

) (
χ
n

)h−k (
1− χ

n

)n−h+k
≤ eχ

(
h− k

h− j

)
≤ eχ2h−k ≤ eκ(n)(1−δ′

2)d(n),

where the final inequality holds for some constant δ′2 because h− k ≤ d(n), and
κ(n) > ln 2. Thus the fourth condition is satisfied. Finally, for the fifth condition,
it holds for all integers i, j, k and l where 1 ≤ l ≤ k ≤ j < i ≤ d(n) that

pil

pjk
≤

(
i+a(n)

i−l

) (
χ
n

)i−l(
j+a(n)

j−k

) (
χ
n

)j−k (1− χ
n

)n−(j−k)
≤
(
i+a(n)

i−j

)(
j+a(n)

j−k

)(
k+a(n)

k−l

) (
χ
n

)i−l(
j+a(n)

j−k

) (
χ
n

)j−k
e−χ

=
(
i+ a(n)
i− j

)(χ
n

)i−j
(
k + a(n)
k − l

)(χ
n

)k−l

eχ ≤ eχ

where the last inequality holds because
(
m
k

)
(χ

n )k ≤ (mχ
n )k ≤ 1 for any m ≤ n/χ

and k ≤ m. Because of the conditions d(n) = ω(lnn) and λ = poly(n), we have
λD(n)d(n) ≤ ec′d(n) for any constant c′ > 0, when n is sufficiently large. By
setting L(n) = ecd(n) and choosing c and c′ sufficiently small, the theorem now
follows from Theorem 1. ��
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Table 1. Parameter settings where non-elitist EAs with bit-wise mutation rate χ/n
are ineffective (cf. Corollary 1)

Selection mechanism Parameter settings

Linear ranking selection η < eχ

k-tournament selection k < eχ

(μ,λ)-selection λ < μeχ

Any in cellular EAs Δ(G) < eχ

Finally, we give some example applications. We first consider Jumpm, which
for any m, 1 ≤ m < n, is defined as Jumpm(x) = |x|1 if |x|1 < n − m or
|x|1 = n, and Jumpm(x) = 0 otherwise, where |x|1 :=

∑n
i=1 xi. Jumpm has

a local optimum separated from the global optimum by a gap of size m. The
EA must either jump the gap, or make a random walk in the gap. We consider
tournament selection, but the theorem can easily be generalised to other selection
mechanisms.

Theorem 5. For any m < n(1 − ε)/5, 0 < ε < 1, with m = ω(lnn), the proba-
bility that a non-elitist EA using k-tournament selection, k ≥ 1, population size
λ = poly(n), and bitwise mutation rate χ/n ≤ 1/m, optimises Jumpm within
ecm generations is e−Ω(m), for some constant c > 0.

Proof. We apply Theorem 4, with the parameters a(n) = 0, b(n) = m,α0 = 1,
and optimum x∗ = 1n. Individuals with no more than m 0-bits, which we call
gap-individuals, never win tournaments containing individuals with less than
m 0-bits. Optimistically assuming that all individuals are gap-individuals, the
individuals are selected uniformly at random. Hence, the first condition holds. We
have ψ = δ, so the second condition holds for any δ, 0 < δ < 1. By assumption,
n/5 > m, and choosing δ sufficiently small also gives (n/2)(1−√ψ(2− ψ)) > m,
so the third condition also holds. ��
The function Needle(x) :=

∏n
i=1 xi can be analysed analogously to Jumpm.

Theorem 6. The probability that a non-elitist EA using k-tournament selec-
tion, k ≥ 1, population size λ = poly(n), and bitwise mutation, optimises
Needle within ecn generations is e−Ω(n), for some constant c > 0.

We now consider scenarios where the selective pressure is too low.

Corollary 1. The probability that a non-elitist EA with population size λ =
poly(n), bitwise mutation rate χ/n, and maximal reproductive rate bounded by
α0 < eχ − δ, for a constant δ > 0, optimises any function with a polynomial
number of optima within ecn generations is e−Ω(n), for some constant c > 0.

Proof. By Theorem 4, choosing a(n) = 0 and b(n) = c′n, c′ > 0 sufficiently
small, a given optimum is found in ecn generations with probability e−Ω(n). By
union bound, the probability that any of r = poly(n) optima is found within ecn

generations is re−Ω(n) = e−Ω(n). ��
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A larger reproductive rate than eχ is therefore necessary for a non-elitist EA
to be effective. Table 1 summarises parameter settings in some common selection
mechanisms that render non-selective EAs ineffective. The parameter η ∈ [1, 2] in
linear ranking selection is directly related to the reproductive rate by α0 = η. In
k-tournament selection, and in (μ,λ)-selection, the reproductive rate is bounded
by α0 ≤ k, respectively α0 < λ/μ. The reproductive rate in cellular EAs [1] is
bounded by α0 ≤ Δ(G), i. e. the degree of the neighbourhood graph G. E.g.,
non-elitist cEAs with χ = 1 on the ring graph are ineffective.

4 Conclusion

A new drift theorem for analysis of non-elitist populations has been introduced.
The conditions of the theorem decouple the effects of the selection mechanism
and the variation operator — they are w.r.t. a random walk of a single individual,
and not the population as a whole — thus simplifying the analysis of EAs greatly.
The proof of the theorem combines results about multi-type branching processes
with drift analysis. A special case of the theorem for Pseudo-boolean functions
is derived, and applied on several selection mechanisms and example functions.

Acknowledgements. This work was supported by Deutsche Forschungsge-
meinschaft (DFG) grant no. WI 3552/1-1, and EPSRC grant no. EP/D052785/1.

References
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Abstract. It is usually considered that evolutionary algorithms are

highly parallel. In fact, the theoretical speed-ups for parallel optimiza-

tion are far better than empirical results; this suggests that evolutionary

algorithms, for large numbers of processors, are not so efficient. In this

paper, we show that in many cases automatic parallelization provably

provides better results than the standard parallelization consisting of

simply increasing the population size λ. A corollary of these results is

that logarithmic bounds on the speed-up (as a function of the number

of computing units) are tight within constant factors. Importantly, we

propose a simple modification, termed log(λ)-correction, which strongly

improves several important algorithms when λ is large.

1 Introduction

Evolutionary algorithms (EAs) are well known robust and simple optimization
algorithms. It is usually said that EAs are highly parallel, because they are popu-
lation based [5]. In this paper we study the case for which we have a large number
of processors, and we note that the theoretical bounds are far better than the
empirical results for the current version of the algorithms in continuous domains.
In Section 2 we summarize the state of the art for complexity lower bounds in EA
and parallel EAs, especially for the continuous case. Section 3 shows how an op-
timal speed-up for parallel EAs can be reached; this is an automatic construction
of a parallel algorithm with asymptotically optimal speed-up. Section 4 shows
that this optimal speed-up is not reached by several well known algorithms. Sec-
tion 5 shows experimentally the efficiency of parallel algorithms derived from our
theoretical analysis; a similar modification, termed log(λ)-correction, is applied
to several classical algorithms. Section 6 concludes. Due to length constraints, all
proofs have been reported to http://www.lri.fr/~teytaud/ppsn10long.pdf

2 Complexity Bounds for Evolutionary Algorithms

We consider optimization in a domain S, subset of a normed vector space (S
might be a non-empty subset of Rd, or bistrings, the theoretical analysis below
does not require anything more). For ε > 0, we define N(ε) to be the maximum
integer n such that there exist n distinct points x1, . . . ,xn ∈ S with ‖xi−xj‖ � 2ε

R. Schaefer et al. (Eds.): PPSN XI, Part I, LNCS 6238, pp. 254–263, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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for all i = j. In particular, N(ε) = |S| when ε is small enough in the case of a
finite domain S, and logN(ε) ∼ N log(1/ε) when ε → 0 if the domain S ⊂ RN

is bounded with non-empty interior. For a domain included in RN , we then
consider the convergence ratio CR = log N(ε)

Nn
ε, 1

2

, where:

– nε, 12
is the number of evaluations necessary for ensuring, with probability

at least 1
2 , a distance ||x̂ − x∗|| at most ε between the approximation x̂ of

the optimum and the optimum x∗. The choice of the 1
2 is arbitrary; other

constants lead to similar results.
– N is the dimension of the search space.

A faster algorithm means CR larger. Convergence rate is usually defined as
exp(−CR). Following [13] we prefer the convergence ratio as it is more convenient
for expressing speed-ups; the speed-up between two algorithms is just the ratio
between their convergence ratios, and the number of iterations for reaching a
given precision is proportional to the inverse of the convergence ratio. Table 1
summarizes known bounds on the convergence ratio, and distinguishes:

– (μ, λ)-ES and (μ+λ)-ES, respectively non-elitist and elitist Evolution Strate-
gies; in the former case, the μ best points among λ generated points are
selected, whereas in the latter case the μ best points among the union of (i)
the λ generated points, and (ii) the previous population, are selected.

– full ranking (FR) evolution strategies and selection-based (SB) evolution
strategies; in the former case, the optimization algorithm is informed of the
complete ranking of the μ selected points, whereas in the latter case the opti-
mization algorithm is only informed of which μ points are the best ones. For
example, (μ/μ, λ)-ES, i.e. the new parent is simply the average of the μ best
points (intermediate recombination), are selection-based, whereas weighted
recombination is full ranking. For μ = 1, there’s no difference between FR
and SB.

These concepts will be formalized below (Eq. 1-4) and we will study the optimal
speed-ups, i.e. the convergence ratio as a function of λ.

3 Automatic Speculative Parallelization

A solution (in some cases) for automatic parallelization of an algorithm consists
in developing the tree of possible futures, to compute separately all branches,
and then to discard bad (non chosen) branches. This is a form of speculative
parallelization [4]. We here show that this simple approach can be applied to
EAs. We have to introduce a somehow tedious formalization; this is necessary
for the mathematical formalization of our proofs. As already pointed out in [14],
most EAs can be rewritten as follows:

(xO1,O2
nλ+1 , . . . ,xO1,O2

(n+1)λ) = O1(θ, In) (generation) (1)

∀i ∈ [[nλ + 1, (n+ 1)λ]], yi = f(xO1,O2
i ) (fitness) (2)

gO1,O2
n = g(ynλ+1, . . . , y(n+1)λ) (selection) (3)

In+1 = O2(In, θ, gO1,O2
n ), (update) (4)
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Table 1. Upper bound on the convergence ratio; also some lower bounds on the con-

vergence ratio for λ = 2N for the sphere function, in the last row - these lower bounds

from [13] show that a linear speed-up can be achieved w.r.t. λ constant for λ = 2N
(compare with the first row). The first row is the general case [14]; it holds in all cases,

and is sometimes better than other rows (when λ is small). The second row is when the

level sets of fitness functions have VC-dimension V in RN . The third row is just the

application of the second row to the case of convex quadratic functions (V = Θ(N2)).

The fourth row is the special case of the sphere function [13]. The tightness of the

log(λ) dependency will be shown in this paper.

Framework SB- SB- FR- FR-
(μ, λ) (μ + λ) (μ, λ) (μ + λ)
-ES -ES -ES -ES

General case 1
N

(
λ − 1

2 log(2πλ)
) 1

N

(
log
(λ

μ

)) 1
N

(
λ − 1

2 log(2πλ)
) 1

N

(
log
(λ

μ

))
× log(μ!) × log(μ!)

VC-dimension V V
N log(λ) V

N log(λ + μ) V
N (4μ + log(λ)) V

N (4μ + log(λ))
Quadratic case O (N log(λ)) O (N log(λ + μ)) O (N(μ + log(λ))) O (N (μ + log(λ)))
Sphere function (1 + 1

N ) log(λ) (1 + 1
N ) log(μ + λ) 2 log(λ) O(μ + log(λ))

Sphere function
with λ = 2N Ω(1) Ω(1)

for some fixed O1,O2, I0, some random variable θ, and g with values in a set of
cardinality K, where:

– I0 is the initial state and In is the internal state at iteration n;
– θ is the random seed;
– gO1,O2 is the information used by the algorithm, typically in our case the

indices of the selected points (and possibly their ranking in the FR case);
– xO1,O2

k is the kth visited point and yk is its fitness value (yk should, theoret-
ically, be indexed with O1,O2 as well);

– (O1,O2) is the optimization algorithm, with:

• O1 is the function generating the new population (as a function of the
random seed and of the internal state);

• O2 is the function updating the internal state as a function of the random
seed and of the extracted information g.

(note that gO1,O2
n and xO1,O2

n both depend on θ and f ; we drop the indices
for the sake of clarity.) We will term such an optimization algorithm a
λ-optimization algorithm; this means that λ fitness values are computed
at each iteration. The optimization algorithm is defined by O1,O2, I0, θ; in
cases of interest (below) we will use the same θ and the same I0 for all
algorithms and therefore only keep the dependency in O1 and O2 in notations.
In EAs, gn has values in a discrete domain; typically, either gn has values
in the set of the finitely many possible ranking of the individuals; or gn

has values in the finite set of possible vectors of ranked indices of selected
individuals. gn is in both cases the only information that the algorithm
extracts from the fitness function. In the FR case and μ = λ, for example gn is
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(sign(ynλ+i − ynλ+j)(i,j)∈[[1,λ]]2) where sign(t) = 1 for t ≥ 0 and sign(t) = −1
otherwise. In the SB case for (μ, λ)-ES, the formulation is a bit more tedious:

gn = {I = {i1, . . . , iμ} ⊂ [[1, λ]]μ;Card I = μ and

k ∈ I ∧ k′ ∈ [[1, λ]] \ I ⇒ ynλ+k ≤ ynλ+k′}.
An important property is that the set of possible values for gn has cardinality
K <∞; K can be bounded as follows:

– (μ, λ)-ES (evolution strategies) with equal weights; then K ≤ λ!/(μ!(λ−μ)!);
– (μ, λ)-ES with weights depending on the rank; then K ≤ λ!/(λ− μ)!;
– (1 + λ)-ES; then K ≤ λ + 1;
– (1, λ)-ES; then K ≤ λ.

K will be termed the branching factor of the algorithm. The branching factor,
and bounds in Table 1 on the branching factor, have been used in [13] for proving
results shown in Table 1; we will use it here for proving lower bounds on the
parallelization of EAs; the lower the branching factor, the better the speed-up.
We will say that a λ′-optimization algorithm O′

1,O
′
2 simulates a λ-optimization

algorithm O1,O2 with speed-up D if and only if

∀θ, ∀n ≥ 0, ∀i ∈ [[1, λ]],xO′
1,O′

2
nλ′+i = xO1,O2

nDλ+i. (5)

θ is the random seed; it is removed of indices for short as discussed above,
rigorously all the x’s depend on it. We now show how we can automatically
build O′, which is equivalent to O, but with λ′ > λ evaluations at the same time
and a known speed-up.

Theorem 1. (Automatic parallelization of EAs and tightness of the log(λ)
speed-up.) Consider a λ-optimization algorithm (O1,O2) as in Eqs 1-4 with
branching factor K, and consider λ′ such that for some D ≥ 1:

λ
KD − 1
K − 1

= λ′. (6)

Then, there is a λ′-optimization algorithm which simulates (O1,O2) with speed-
up D.

Remark. The speed-up is therefore D = log(1+ λ′
λ (K−1))

log(K) .

4 Real World Algorithms Don’t All Reach the Optimal
Speed-Up

In this section we show that the one-fifth rule, the self-adaptation and the cu-
mulative step-size adaptation all do not reach the optimal speed-up (the optimal
speed-up is log(λ) for λ →∞, see Table 1 and [13]) when using the natural par-
allelization consisting in increasing λ to the number of processors and evaluating
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one individual per core. More precisely, these classical algorithms have bounded
speed-up as a function of λ (i.e. speed-up O(1) as λ→∞). In all sections below,
we consider optimization in the continuous domain, with Gaussian mutations
and define η∗ = σn+1/σn (η∗ depends on n, but we will consider a fixed value of
n here and therefore we will drop this dependency in the notation η∗).

The main important point is that the convergence rate is lower bounded by
η∗; formally, CR ≤ E− log(η∗). Roughly speaking, it is not possible to decrease
the distance to the optimum by z at each iteration (on average, logarithmically),
if you don’t divide the step-size by z, on average. Therefore, it will be sufficient,
in the sequel, to lower-bound η∗ for various classical step-size adaptation rules,
independently of λ, in order to show that the step-wise adaptation does not
provide an optimal convergence rate as λ → ∞ (an optimal convergence rate
should be η∗ = O(1/ log(λ))). More precisely, as η∗ is a random variable, we
have to show that the expected logarithm of η∗, i.e. E log η∗ = E log(σn+1/σn)
is lower bounded by a constant > −∞. The following sections (4.1, 4.2, 4.3) use
this fact for showing the poor efficiency of the usual algorithm for λ→∞.

4.1 One-Fifth Rule

The one-fifth rule [8] is the oldest and most well known algorithm for adapting
the step-size. The one-fifth rule can be applied in different manners to (μ/μ, λ)
algorithms. Consider p̂ equal to the ratio between (i) the number of generated
individuals with fitness better than the center of the Gaussian generating the
offspring (ii) the number of generated individuals; 0 ≤ p̂ ≤ 1. A first possible
implementation of the one-fifth rule is

p̂ ≤ 1/5⇒ η∗ = K1 ∈]0, 1[ and p̂ > 1/5⇒ η∗ = K2 > 1 (7)

and a second version is η∗ = K
(p̂−1/5)
3 for some K3 > 1. (8)

Proposition 1. The one-fifth rule, implemented as in Eq. 7 or in Eq. 8, has the
property that for each iteration n, there is C > −∞ such that E log(σn+1

σn
) > C.

Therefore, we have shown that with the one-fifth rule, the convergence ratio (and
therefore the convergence rate) is O(1) (as λ→∞; convergence rates and ratios
are defined in Section 2).

4.2 Self-adaptation (SA)

The proof of the limited speed-up for SA requires the following lemma.

Lemma. The expected logarithm of the average (arithmetic or geometric aver-
age) of the μ smallest of λ independent standard log-normal random variables,
with μ/λ → k > 0 and μ > 0, is lower bounded by some constant > −∞. More
formally, if N(1), . . . ,N(λ) are sorted standard independent Gaussian variables,
and L(i) is exp(N(i)), then

inf
λ>0

E log
1
μ

μ∑
i=1

exp(N(i)) > −∞ and inf
λ>0

E
1
μ

μ∑
i=1

N(i) > −∞.
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Proposition 2. Consider a SA algorithm in which σn+1 is the average (geomet-
ric or arithmetic average) of σn×L1,σn×L2, . . . ,σn×Lλ, for L1, . . . ,Lλ as in
the lemma above. Then, there exists some C > −∞ such that E log(σn+1

σn
) > C.

Remark. Rescaling the Ni by any constant (equivalently, Li = exp(kNi) for
some k > 0) does not change the result.

4.3 Cumulative Step-Size Adaptation

It has been experimentally shown in [3] that CMA has a poor speed-up as a func-
tion of λ. Empirically, the Estimate of Multivariate Normal Algorithm (EMNA)
[7] has a much better behavior, but the speed-up curve becomes constant as a
function of λ, instead of logarithmic, for λ large [10]. We here show formally
that Cumulative Step-size Adaptation (CSA) does not reach optimal speed-up
log(λ). We (classically) formalize an iteration of CSA in dimension N as follows:

wi ≥ 0,

μ∑
i=1

wi = 1 (9)

μeff =
1∑μ

i=1(w
2
i )

(10)

χN > 0 , ||pc|| ≥ 0 (11)

dσ = 1 + 2max(0,

√
μeff − 1

N + 1
− 1) (12)

cσ =
μeff + 2

N + μeff + 3
(13)

σn+1 = σn exp

(( ||pc||
χN

− 1

)
· cσ

dσ

)
.

(||.|| does not have to be a norm, we just need Eq. 11). These assumptions, to the
best of our knowledge, hold in all current implementations of CSA. We then
show the following

Proposition 3. For any dimension N , there exists C > 0 such that, for any
λ, η∗n = σn+1

σn
≥ C.

This proposition shows that η∗ ≥ exp(−1); this implies that CR ≤ 1, i.e. for
cumulative step-size adaptation the speed-up is O(1) for λ →∞.

5 Experimental Speed-Up

Theorem 1 proves that this automatic parallelization reaches log(λ), which is
asymptotically optimal within a constant factor, but there are algorithms for
which automatic parallelization works only for λ very large, in particular when
the full ranking of selected individuals is used (because in this case the branch-
ing factor K is much bigger). Therefore, in this section, we will provide other
tricks than the automatic parallelization for ensuring the suitable log(λ) prop-
erty. In all cases below, we keep a parallelization based on the simple principle
of one individual per processor, but we modify either the selection ratio or the
step-size adaptation rule, so that this principle leads to much better speed-ups.
If the speed-up is bounded, then σ is divided by, at most, a fixed constant,
independently of λ. If we want to reach the “log(λ)” speed-up, then we must
decrease log(λ) by Θ(log(λ)); i.e. divide σ by an exponent of λ. We will here
apply σ ← σ/ max(1, (ζλ)1/N ) for some value of ζ. We consider, CMSA, EMNA



260 F. Teytaud and O. Teytaud

and CMA-ES. CMA-ES is interesting; as it is a FR-(μ, λ)-ES, and therefore has
a big branching factor K = λ!/(λ−μ)!, and therefore the automatic paralleliza-
tion becomes efficient only for huge numbers of processors - we will show below
simple tricks empirically solving this trouble.

5.1 The log(λ) Correction for CMSA

CMSA is the algorithm for which implementing the log(λ) correction is the
easiest: we just have to modify the selection ratio μ/λ. We give experimental
results in Fig. 1, and a more detailed presentation and analysis of this correction
can be found in [9].

5.2 The log(λ) Correction for EMNA

We present results of the isotropic EMNA (the step-size is the same in all direc-
tions), on the sphere function. The presented numbers are the mean progress of
the log of the distance to the optimum, multiplied by the dimension1, estimated
with the following experimental conditions:

(1) Column “baseline”: the standard EMNA algorithm from [7], with μ = λ/4;
(2) Column “+QR”: EMNA, plus the quasi-random mutations as defined in [12];
(3) Column “+log(λ)”: the same as “+QR”, except that we add the log(λ) cor-
rection, i.e. we modify σ according to formula σ ← σ/ max(1, (0.15λ)1/N) (which
ensures that log(σ) decreases by ˜log(λ) as requested above);
(4) Column “+weighting”: the same as “+log(λ)”, except that we apply the
reweighting as in [11] (this reweighting is based on the density of the Gaussian
used for the offspring; variants of reweighting based on the ranks can be found in
[1,2]).

In all cases the initial step-size is σ = 1 and the initial point is randomly drawn on
the unit sphere with radius

√
N with N the dimension. The 3 following columns

provide the p-value of the comparison between a column and the previous column;
the significance is very high. Then, the last column presents the normalized con-
vergence rate of the algorithm with QR and reweighting, but without the log(λ)-
correction; with this column, we can check that the improvement is due to the
log(λ) correction and not to the combination QR+reweighting. This is detailed
in Figure 1 (left), with result in Table 2. Interestingly, the log(λ) correction is not
efficient if we do not apply the reweighting trick from [11]. This is somewhat natu-
ral, as the log(λ) correction strongly increases the risk of premature convergence,
which is reduced by the reweighting.

1 It is known that the log-distance to the optimum decreases linearly with the dimen-

sion; therefore we multiply the results by the dimension in order to have homogeneous

results for various dimensions. Following the theoretical analysis in [13], we expect

an improvement as the dimension increases, which is confirmed experimentally here.
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Initialize σ ∈ R, y ∈ R
N .

while Halting criterion not fulfilled do
for l = 1..λ do

zl = σNl(0, Id)
yl = y + zl

fl = f(yl)
end for
if ”Reweighting” version then

Let w(i) = 1/density(xi)
// with density the proba. density
// used for generating the offspring.

else
Let w(i) = 1

end if
Sort the indices by increasing fitness:
f(1) < f(2) < · · · < f(λ).

zavg = 1∑μ
i

w(i)

μ∑
i=1

w(i)z(i)

σ =

√√√√√√
μ∑

i=1

w(i)||z(i) − zavg ||2
∑μ

i=1 w(i)×N

if log(λ) version then

σ = σ/ max(1, (0.15λ)1/N ).
end if
y = y + zavg

end while
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Speed−up of CMSA algorithm, Sphere function, d=3

Lambda

lo
g|

|x
||*

d/
n

mu=lambda/4
mu=d
mu=lambda/4
mu=d
mu=lambda/4
mu=d
mu=lambda/4
mu=d

λ CMA CMA with log(λ)-correction
Dimension 2

8 × N -0.100±0.001 -0.177±0.001

8 × N2 -0.0741±0.0009 -0.134±0.001
Dimension 10

8 × N -0.0338±6e-05 -0.0389±0.0001

8 × N2 -0.00971±6e-05 -0.0174±0.0001
Dimension 30

8 × N -0.0107±1e-05 -0.0118±2e-05

8 × N2 -0.00188±1e-05 -0.00370±1.e-05

Fig. 1. Left: The EMNA algorithm with weighted averages. Nl is a Gaussian random

variable, or a Gaussian quasi-random variable for “QR” versions (see text). Right, top:
Example of the limited speed-up of real-world algorithms, and the strong improvement

provided by a simple correction. n is the number of iterations; the algorithms run until

fitness value 10−10 is reached, x is the best point so far. This experiment is done in di-

mension 3, and we plot the log-distance to the optimum normalized by the dimension

and the number of generations of the algorithm (the lower the result, the better). The

usual initialization
μ
λ

= 1
4

is outperformed, by far, by min(d, 
λ/4�)/λ. Right, bottom:
Comparison between CMA and CMA with log(λ)-correction in various dimensions. The

maximum number of function evaluations is 400 (in dimension 2), 10 000 (in dimen-

sion 10) and 90 000 (in dimension 30), and the constant ζ involved in the λ correction

(Eq. 14) 0.41/2 in dimension 2, 1 in dimension 10, 1.31/30 in dimension 30. In all cases the

λ-correction provides an improvement. Whereas in the case of EMNA we could use the

same constant in all cases and the results were very stable as a function of the constant,

with CMA we had to modify the constant ζ as a function of the dimension in order to

get good results.

5.3 The log(λ) Correction for CMA-ES

We propose to add the following line in CMA, after the computation of σ:

σ = σ/ max(1, (ζλ)1/N ). (14)

This formula avoids the bad behavior pointed out in Proposition 3 and experimen-
tally strongly improves the results. We consider f as the best fitness found by the
algorithm after a fixed number of evaluations. We report the mean of N ·log(f)

#evaluations
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Table 2. Convergence rates of EMNA. We see that (i) QR works very well (ii) reweight-

ing does not always improve the results (it has been published as a tool against prema-

ture convergence and not as a tool for fastening EMNA) (iii) the log(λ) correction greatly

improves the results, but only if reweighting is applied; this is somewhat natural, as,

without reweighting, the log(λ) correction increases the risk of premature convergence.

Dimension, Baseline +QR +log(λ) +weight P-value for QR+weight
lambda +QR + log(λ) +weight but no log(λ)

2,20 -1.61 -1.91 -0.66 -2.43 0.00 1 0 -2.02
2,60 -2.04 -2.13 -0.27 -3.95 0.00 1 0 -2.17
2,200 -2.17 -2.27 -0.17 -5.31 6e-16 1 0 -2.16
2,600 -2.22 -2.27 -0.14 -6.44 4e-15 1 0 -2.27
2,2000 -2.22 -2.38 -0.13 -7.68 0 1 0 -2.32
2,6000 -2.33 -2.51 -0.13 -8.85 0 1 0 -2.38
3,30 -2.09 -2.49 -0.69 -1.67 0.00 1 0
3,300 -2.53 -2.59 -0.21 -6.02 0.00 1 0
3,3000 -2.65 -2.87 -0.16 -8.52 0 1 0
3,9000 -2.77 -2.94 -0.15 -9.63 3e-16 1 0
5,50 -2.72 -2.96 -0.54 -3.28 1e-12 1 0 -2.72
5,500 -3.08 -3.26 -0.31 -6.97 2e-14 1 0 -3.00
5,5000 -3.35 -3.63 -0.22 -9.56 0 1 0 -3.32
5,15000 -3.53 -3.74 -0.20 -10.84 1e-15 1 0 -3.53
20,200 -5.56 -5.89 -2.52 -2.24 1e-09 1 0.74 -3.30
20,2000 -6.81 -7.17 -1.44 -11.27 1e-13 1 0 -6.29
20,60000 -7.93 -8.09 -0.87 -16.17 1e-08 1 0 -7.96
40,400 -8.36 -8.83 -5.35 -1.31 3e-09 1 1
40,1200 -9.27 -9.54 -4.33 -2.94 8e-05 1 0.97
40,4000 -10.00 -10.15 -3.47 -8.25 3e-05 1 0
40,12000 -10.38 -10.48 -2.88 -16.30 0.01 1 0

and the mean of log(f) in Fig. 1. The number of function evaluations is 100N2.
Following [3], we experiment two size of population, λ = 8N and λ = 8N2. If the
dimension is small (2) we almost have a speed-up of 2 independently of the size
of the population. However, if the dimension becomes larger (10 or 30) we have
a good speed-up only if the size of the population is large (λ = 8N2). The re-
sults are good, but not very good, and CMA with this correction is still far from
the efficiency of CMSA or EMNA for large population size; we guess however that
improvements of our formula above are possible, and also we guess that modifying
the rule for computing the new parent should be adapted for λ large.

6 Conclusion

The new results in this paper are as follows. First, we have shown in Section 3
that theoretical bounds in [13] are tight for their dependencies in λ. In particular,
well parameterized algorithms should have a speed-upΘ(log(λ)). Second, we have
shown in Section 4 that many current algorithms do not match this tight depen-
dency. Propositions 1, 2 and 3 show that the speed-up isO(1) for the one-fifth rule,
the self-adaptation, and cumulative self-adaptation respectively. The tightness is
shown by an explicit construction of a parallel version of EA, which can readily
be applied also for direct search methods [6] as well; thanks to this explicit con-
struction, we provide an automatic parallelization with, provably, asymptotically
better results. Related experimental results are shown in Section 5. They show
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that parallel algorithms derived from our analysis are faster and in some cases by
far than algorithms based on simply increasing λ; moreover the new version is not
more difficult to implement.
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G., Uyar, A.Ş., Yang, S. (eds.) EvoWorkshops 2008. LNCS, vol. 4974, pp. 545–554.

Springer, Heidelberg (2008)

3. Beyer, H.-G., Sendhoff, B.: Covariance matrix adaptation revisited - the CMSA evo-

lution strategy. In: Rudolph, G., Jansen, T., Lucas, S., Poloni, C., Beume, N. (eds.)

PPSN 2008. LNCS, vol. 5199, pp. 123–132. Springer, Heidelberg (2008)

4. Calder, B., Reinman, G.: A comparative survey of load speculation architectures.

J. Instruction-Level Parallelism 2 (2000)
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Abstract. We introduce the Linkage Tree Genetic Algorithm (LTGA),
a competent genetic algorithm that learns the linkage between the prob-

lem variables. The LTGA builds each generation a linkage tree using a

hierarchical clustering algorithm. To generate new offspring solutions, the

LTGA selects two parent solutions and traverses the linkage tree starting

from the root. At each branching point, the parent pair is recombined

using a crossover mask defined by the clustering at that particular tree

node. The parent pair competes with the offspring pair, and the LTGA

continues traversing the linkage tree with the pair that has the most

fit solution. Once the entire tree is traversed, the best solution of the

current pair is copied to the next generation. In this paper we use the

normalized variation of information metric as distance measure for the

clustering process. Experimental results for fully deceptive functions and

nearest neighbor NK-landscape problems with tunable overlap show that

the LTGA can solve these hard functions efficiently without knowing the

actual position of the linked variables on the problem representation.

1 Introduction

In general, the search bias of recombination operators can be beneficial to the
search efficiency in the following two cases:

1. Different partial structures of two good solutions can be juxtaposed by
crossover to form a new good solution.

2. Common partial structures shared by two good solutions are shielded from
crossover disruption, and the new solution inherits the common partial struc-
tures, while it randomly samples the subspace where the parents disagree.

In this paper we focus on the first case. In a standard genetic algorithm this case
can only work if the partial structures are not disrupted too often by recombi-
nation. This can be achieved by designing the solution representation and/or
the crossover operator in an appropriate way. However, if there is not enough
domain knowledge to design a suitable representation and/or crossover operator,
we have to induce this knowledge from a population of solutions. Learning what
variables form important partial solutions - and therefore should be protected
from disruption by crossover - is called linkage learning. During the past decade a
number of linkage learning evolutionary algorithms have been proposed [1][4][9].
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In this paper we introduce an alternative linkage learning GA called the Link-
age Tree Genetic Algorithm (LTGA). The LTGA builds each generation a linkage
tree using a hierarchical clustering algorithm. To generate new offspring it tra-
verses the linkage tree and uses the clustering specified at each tree node as
a crossover mask. The next section explains how the LTGA works. Section 3
discusses the distance measure we use to learn the linkage between variables
and groups of variables. We also compare the LTGA to related linkage learn-
ing GAs. Section 4 shows experimental results of the LTGA on deceptive trap
functions and nearest neighbor NK-landscape problems with tunable overlap.
Finally, Section 5 concludes the paper.

2 Linkage Tree Genetic Algorithm

2.1 Linkage Tree

Linkage learning evolutionary algorithms aim to identify which variables should
be treated as a dependent set of variables during the exploration phase. In this
paper we learn linkage between variables - and groups of variables - by building
a hierarchical cluster using a proximity distance that measures how correlated
the variables or groups of variables are in the current population.

Definition 1. The Linkage Tree of a population of solutions is the hierarchical
cluster tree of the problem variables using an agglomerative hierarchical clus-
tering algorithm with a distance measure D. The distance measure D(X1,X2)
measures the degree of dependency between two sets of variables X1 and X2.

Algorithm. Hierarchical Clustering

1. Compute the proximity matrix using metric D.
2. Assign each variable to a single cluster.
3. Repeat until one cluster left:
4. Join two nearest clusters ci and cj into cij.
5. Remove ci and cj from the proximity matrix.
6. Compute distance between cij and all clusters.
7. Add cluster cij to the proximity matrix.

An agglomerative hierarchical clustering algorithm proceeds bottom-up. First,
each problem variable is assigned to a single cluster. Then, the clustering algo-
rithm recursively joins the closest clusters until only one cluster is left. For a
problem of length � the linkage tree has � leaf nodes (the clusters having a single
problem variable) and � − 1 internal nodes. Each (internal or leaf) node of the
linkage tree divides the set of problem variables into two mutually exclusive sub-
sets. One subset is the cluster of variables at that node, while the other subset is
the complementary set of problem variables. The LTGA uses this division of the
problem variables as a crossover mask. The variables specified in the cluster of a
specific node are swapped between two parent solutions to generate an offspring
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pair. For instance, assume LTGA crosses the parent pair (00001111, 00110011)
at the internal node of the linkage tree with cluster (x0,x1,x4,x5). The val-
ues at position 0, 1, 4 and 5 are swapped which results into the offspring pair
(00000011, 00111111). The LTGA evaluates the fitness of the offspring and holds
a competition between the parent pair and the offspring pair. If one of the chil-
dren is better than both parents the offspring pair replaces the parent pair, and
LTGA continues to traverse the linkage tree with the new pair. If none of the
two children is better than both parents, LTGA continues its tree traversal with
the parent pair. When the tree is completely traversed, the best solution of the
current pair is copied to the next generation. To increase the efficiency, LTGA
always checks whether the offspring solutions are actually different from their
parents, if not no call to the fitness function is done, and the algorithm simply
proceeds with its tree traversal.

The order in which the tree is traversed, is the opposite order of the merging
of the clusters by the hierarchical clustering algorithm. Therefore, LTGA first
crosses the clusters which are the least dependent on each other - this is, they are
least linked. The clustering algorithm initially pushes all single variable clusters
on a stack. Then, it iteratively joins the two closest clusters and pushes the joint
cluster on the stack. When all clusters are merged the stack will consist of 2�−1
clusters, � of them being single variable clusters. During tree traversal, LTGA
simply pops the clusters of the stack and uses them as crossover mask. Note that
half of the crossovers are actually single bit flips, so LTGA is also performing
a bitwise search. Of course this is redundant in applications where the LTGA
is combined with another local search algorithm, in this case the single variable
clusters are not pushed on the stack, effectively reducing the number of crossover
masks by half.

Algorithm. Linkage Tree Genetic Algorithm (LTGA)

1. Create initial population of size N.
2. Repeat until stop criteria met:
3. Build the linkage tree.
4. Do for N solution pairs:
5. Traverse one step in the linkage tree.
6. Set crossover mask to the current clustering.
7. Cross solution pair using the crossover mask.
8. When one offspring is better than both parents:
9. Replace parent pair with the offspring pair.

10. If tree fully traversed:
11. Copy best solution to next population.
12. Else, go to step 5.

3 Hierarchical Clustering Using Mutual Information

The hierarchical clustering algorithm requires a distance measure that measures
the amount of linkage between two clusters of variables. In [7] a hierarchical
clustering algorithm is outlined that uses a mutual information based distance
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measure. In this paper we will use the same distance measure to build the link-
age tree of a population of solutions. Assume Xk is a discrete, random vari-
able with probability mass function p(Xk). The entropy H is then defined as
H(Xk) = −∑i pi(Xk) log pi(Xk). The mutual information I between a set of
random variables is defined as I(X1, . . . ,X�) =

∑�
k=1 H(Xk) −H(X1, . . . ,X�).

Mutual information is particularly interesting for use in a hierarchical clustering
algorithm due to its grouping property. The grouping property states that the
mutual information between three clusters of random variables C1,C2 and C3

is equal to the sum of the mutual information between two clusters C1 and C2,
plus the mutual information between the union of the two clusters C1 ∪C2 and
C3: I(C1,C2,C3) = I(C1,C2) + I((C1 ∪C2),C3). It is important to realize that
the mutual-information I is a similarity measure between objects but is not a
distance measure. Hierarchical clustering requires a distance measure between
clusters to build the cluster decomposition. A distance measure based on mu-
tual information is the variation of information d(X1,X2) which is the difference
between the joint entropy H(X1,X2) and the mutual information I(X1,X2):

d(X1,X2) = H(X1,X2)− I(X1,X2) = H(X1|X2) +H(X1|X2).

In hierarchical clustering we are comparing clusters of different sizes so it is
preferable to normalize the distance measure d(X1,X2) by dividing it by the
total information as represented by the entropy H :

D(X1,X2) =
d(X1,X2)
H(X1,X2)

= 2− H(X1) +H(X2)
H(X1,X2)

.

Interestingly, D is a metric with 0 ≤ D(X1,X2) ≤ 1. In the experiments in Sec-
tion 4 we will use this metric as distance measure for the hierarchical clustering.

3.1 Related Work

The LTGA is related to the ClusterMI [3] and to the Dependency Structure Ma-
trix Genetic Algorithm (DSMGA) [13]. The DSMGA uses a (non-hierarchical)
clustering algorithm to learn the linkage between the variables. DSMGA ap-
plies a bitwise hillclimbing search algorithm and a Minimum Description Length
(MDL) measure to find a clustering that accurately models the building-block
structure of the problem. This model is used to perform building-block wise
crossover. The ClusterMI computes a hierarchical clustering using the mutual
information between all the problem variables. To compute the distance between
2 clusters of variables ClusterMI computes the mean of the mutual information
between the variables of each cluster. However, as mentioned above, mutual in-
formation is a similarity measure, not a distance measure, and it is not clear
what it actually means to take the average mutual information as the distance
measure for the hierarchical clustering algorithm. Obviously, taking the average
mutual information between variables as a measure between clusters is much
more efficient than computing an actual distance between clusters. Perhaps it
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might be a good compromise to use the average linkage distance D between
variables as an approximation of the distance measure between clusters.

The main difference between ClusterMI and DSMGA on the one hand, and
the LTGA on the other, is that the former two are Estimation of Distribution
Algorithms (EDAs) whose aim is to learn a probabilistic model of the current
population. Therefore, they try to learn the exact partitioning model that di-
rectly represents the building-block structure of the fitness function. Both the
ClusterMI and the DSMGA use a MDL measure as originally proposed in the
Extended Compact Genetic Algorithm (ECGA) [5] to induce this particular clus-
tering. Learning a single partitioning however makes these algorithms vulnerable
to modeling errors. This vulnerability expresses itself by the rather large minimal
population sizes required for entropy-based model building in discrete estima-
tion of distribution algorithms [14]. The LTGA is more robust in that sense. It
builds a complete linkage tree and recombines parent solutions at different levels
of dependencies - or linkage - between variable clusters. LTGA does not generate
new solutions by sampling from a probability distribution. Instead, it repeatedly
recombines a parent pair in search of a better offspring. This extensive explo-
ration of the parent pair is guided by the structure of the fitness landscape, as
expressed by the induced linkage tree.

The LTGA can actually be looked upon as a hybrid between standard genetic
algorithms and estimation of distribution algorithms. By building a probabilis-
tic model EDAs capture the global structure of the fitness landscape. Single
good solutions however might contain certain detailed information that is not
(well) captured in the global probability model. A GA using crossover or muta-
tion might be better suited to preserve the intricate details of a good solution.
Through the extensive recombination and mutation - combined with the family
elitism - the LTGA inherits the exploration and exploitation capabilities of GAs,
while the guidance by the linkage tree makes it respect the global structure of
the fitness landscape as done by EDAs.

Finally, recent work on network crossover appears to share some interesting
similarities with the linkage tree crossover [6] [11]. In future work we plan to
compare these methods.

4 Experimental Results

4.1 Deceptive Trap functions

We have tested the LTGA on the deceptive mk-trap function DTF [2]. DTF is
a binary, additively decomposable function composed of m trap functions DTi,
each defined on a separate group of k bits (the total problem length is � = mk):
DTF (x1 . . . x�) =

∑m−1
i=0 DTi(xik ...xik+k−1) with xi ∈ {0, 1}. Call u the number

of bits in such a group that are equal to 1:

DTi(xik...xik+k−1) =
{

k, if u = k
k − 1− u, otherwise.
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Clearly, the global optimal solution is the string of all 1-bits. The number of
local optima is 2m − 1, and a hillclimbing algorithm quickly becomes trapped
in one of these local optima. Furthermore, all schemata of order less than k are
deceiving. This means that the schema fitness of the schemata containing the
local optima - consisting of bits 0 - are better than the competing schemata that
contains the optimal bits 1. Any standard GA that uses a disruptive crossover
operator - like uniform crossover - in combination with a moderate selection
pressure, will quickly converge to the deceptive local optima. When the individ-
ual trap functions are tightly linked - this is, they are represented in the string
as consecutive blocks - a GA using a position biased crossover like 1- or 2-point
crossover will quickly find the global optimum. However, when the trap functions
are randomly scattered over the string, no position biased crossover can mix the
different optimal substrings to form the global optimum. In order to find the
global optimum, a standard GA will have to apply a crossover operator that is
not position biased, like uniform crossover, however, to balance the high disrup-
tion rate of uniform crossover the GA will have to increase the selection pressure
dramatically. Unfortunately, with such a high selection pressure the population
size also needs to increase dramatically in order to prevent premature conver-
gence. As a result, the number of function evaluations needed to find the optimal
solution by the standard GA scales exponentially in the problem length - this
is, the number of trap functions DTi for any fixed length k [4][12].

In the first experiment, we test the LTGA on deceptive functions with
deception length k = 5. The number of mk-trap functions varies from 5 to
20 with increments of 5, the problem length thus varies from 25 to 100 with
increments of 25. We fix the population size at N = 128 which is enough to find
the optimal solution in at least 24 out of 25 independent runs. In this experiment
the initial population is a population of random local optimal strings, obtained
by running a bitwise hillclimbing algorithm. During the LTGA search no local
search is applied anymore. Table 1 shows the first hitting time, this is the number
of function evaluations needed to find the global optimum for the first time. We
also show the growth ratio of the median number of function evaluations, and
the growth ratio of the CPU runtime. The ratio are relative to the value of the
smallest problem length (� = 25). A least squares fit indicates that the growth
ratio of the number of functions evaluations is of order Θ(� log �), while the
growth ratio of the CPU runtime is of order Θ(�2.9 log �).

Table 1. The 1st, 2nd, and 3rd quartile of the number of functions evaluations needed

to hit the global optimum for the first time. The population size P = 128. The last two

columns show the growth ratio of the number of evaluations and the CPU runtime.

Length Blocks Evals Q1 Evals Q2 Evals Q3 Evals Ratio Runtime Ratio

25 5 13095 15069 16253 1 1

50 10 38073 43933 45074 2.9 4

75 15 65889 70397 73615 4.7 10

100 20 96367 97818 102146 6.5 25
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Fig. 1. The minimal population size needed for k = 4 problems with increasing problem

length. The fitted curve is of order Θ(m0.14 ln m).

In the second experiment, we investigate how the minimal population size
scales with the problem length. The deception length is fixed at k = 4, the
problem length varies from � = 32 to � = 512 each time doubling the string
length, which corresponds to the number of blocks m = 8, 16, 32, 64, 128. In order
to be able to compare the LTGA’s scaling behavior with that of the ECGA and
the ClusterMI algorithms in Figure 1 of [3], we count a run successful when at
least 29 out of 30 runs have at least m− 1 trap functions correct. There is also
no local search involved, so the LTGA is run on a random initial population.
Figure 1 shows the results and a least-squares fit of P = 8 m0.14 lnm. LTGA’s
scaling behavior is thus Θ(m0.14 lnm), while the ECGA and the ClusterMI have
a scaling behavior of Θ(m1.1 lnm). For instance for � = 256 or m = 64 the
minimal population size is P = 60 for LTGA, while it is well above P > 10000
for ECGA and ClusterMI. Of course, that does not mean that LTGA requires
less functions evaluations. To generate a single solution for the next population,
LTGA traverses the entire linkage tree and evaluates a new offspring couple at
each internal node where the offspring is different from the parents. Actually, in
this experiment the overall number of function evaluations are similar for LTGA,
ECGA, DSMGA, and ClusterMI.

4.2 Nearest Neighbor NK-Landscape with Tunable Overlap

In the previous section we investigated the ability of the LTGA to learn what
problem variables should be linked together. Deceptive trap functions are ideal
benchmark functions to test this. In this section we want to investigate how the
LTGA deals with problems having overlap between the different subproblems.
Therefore, we look at the performance on NK-landscape problems with near-
est neighbor interactions and tunable overlap (nn-NK) [8][10]. A big advantage
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of nn-NK problems above the more general NK problems is that we can com-
pute the global optimal solution with dynamic programming when using the
knowledge of the position of the subproblems [8]. The LTGA of course does
not have access to this positional information, its task is to learn the linkage
from the current population of solutions. The nn-NK are interesting as bench-
mark functions because we can tune the amount of overlap between the sub-
problems and see whether the LTGA is still successful in finding the global
optimum. Formally, a nn-NK function is defined by its length (�), the size of
the subproblems (k), the amount of overlap between the subproblems (o), and
the number of subproblems (m). The first subproblem is defined at the first
k string positions. The second subproblem is defined at the last o positions of
the first subproblem and the next (k − o) positions. All remaining subproblems
are defined in a similar way. As an example, a nn-NK problem with � = 65,
k = 5, 0 = 3, and m = 31 has the following positions of the subproblems:
(0 1 2 3 4)(2 3 4 5 6)(4 5 6 7 8) . . . (56 57 58 59 60)(58 59 60 61 62)(60 61 62 63 64).
The relationship between the problem variables is � = k + (m− 1)(k − o).

Table 2. Results for fixed length (� = 65) nn-NK problem with varying overlap

Overlap Blocks PopSize Evals Q1 Evals Q2 Evals Q3 Runtime Ratio

1 16 180 123394 141147 165765 1

2 21 230 191619 224935 243720 1.5

3 31 240 217810 249200 265669 2

4 61 240 179407 220736 235499 2

Table 3. Results for fixed overlap (o = 4) nn-NK problem with varying length

Length Blocks PopSize Evals Q1 Evals Q2 Evals Q3 Evals Ratio Runtime Ratio

20 16 70 1719 4154 5613 1 1

40 36 140 38400 54021 76181 13 15

60 56 220 158549 182514 210568 44 100

80 76 380 393156 478951 540138 115 350

100 96 600 936167 1013846 1120435 244 1000

Table 2 and 3 show the number of function evaluations of the first hit-
ting time and the growth ratio. Table 2 fixes the problem length � = 65 and
varies the overlap o ∈ {1, 2, 3, 4}, or equivalently the number of blocks m ∈
{16, 21, 31, 61}. Table 3 fixes the overlap o = 4 and varies the problem length � ∈
{20, 40, 60, 80, 100}, or equivalently the number of blocks m ∈ {16, 36, 56, 76, 96}.
Both tables show the minimal population size required to find the global opti-
mum in at least 24 out of 25 independent runs. To determine this value we
start with a population that is sufficiently large to reliably find the global op-
timum. Next we iteratively decrease the population size time by 10, until we
encounter the first size where the LTGA no longer finds the global optimum at
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least 24 out of 25 runs. For each independent run a different random nn-NK
problem is generated. We also run a bitwise hillclimber to each random initial
solution. The LTGA thus learns its first linkage tree from a population of local
optima. Thereafter, the hillclimber is not applied anymore.

In Table 2 it can be seen that for a fixed length problem the population size,
the number of function evaluations, and the CPU runtime, hardly varies as a
function of the overlap (especially for the overlap values o =∈ {2, 3, 4}). Table
3 shows how the population size, the number of function evaluations, and the
growth ratio of the number of function evaluations and the CPU runtime varies
with increasing problem length (or increasing block number). A least squares fit
indicates a scaling behavior of Θ = (�1.5 ln �) for the minimal population size,
Θ = (�3.1 ln �) for the median number of function evaluations, and Θ = (�4.4 ln �)
for the corresponding CPU runtime.

To investigate the use of learning the linkage tree we have also run the LTGA
without measuring the distance between clusters. So whenever the distance mea-
sure D is called to compute a value, we simply return a random number in [0...1].
This basically replaces our linkage guided crossover by uniform random crossover
masks. Almost none of these runs ever found the global optimum which shows
that learning the linkage in a hierarchical tree is beneficial even for problems
with overlapping building blocks.

5 Conclusion

We have introduced the Linkage Tree Genetic Algorithm (LTGA). A linkage
tree is the tree obtained by a hierarchical clustering procedure using a distance
measure that represents the linkage between the problems variables or between
clusters of problem variables. Each generation, the LTGA builds a new linkage
tree from the current population. To generate new offspring solutions, the LTGA
chooses two parent solutions and traverses the entire linkage tree starting from
the root. At each tree node the LTGA recombines the two parent solutions
according to the crossover mask specified by the clustering at that particular
node. Whenever one of the two offspring has a better fitness score than both
parents, the offspring pair replaces the parent pair, and the LTGA continues
its traversal of the tree, now crossing the offspring pair. If none of the offspring
improves on both its parents, LTGA simply continues with the parent pair.
When the entire linkage tree has been visited, the best solution from the current
pair is copied to the population of the next generation.

In this paper we have used as distance measure the normalized variation of
information metric. This metric is based on mutual information between items
and cluster of items, and exploits the grouping property of mutual information
to build a hierarchical or nested set of clusters. Experimental results for fully
deceptive functions and nearest neighbor NK-landscape problems with tunable
overlap show that the LTGA can solve these hard functions efficiently without
knowing the actual position of the linked variables on the problem representation.
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Abstract. In this paper, we use the exact model (or dynamical system

approach) to describe the standard evolutionary algorithm (EA) as a

discrete dynamical system for dynamic optimization problems (DOPs).

Based on this dynamical system model, we analyse the properties of the

XOR DOP Generator, which has been widely used by researchers to cre-

ate DOPs from any binary encoded problem. DOPs generated by this

generator are described as DOPs with permutation, where the fitness

vector is changed according to a permutation matrix. Some properties

of DOPs with permutation are analyzed, which allows explaining some

behaviors observed in experimental results. The analysis of the proper-

ties of problems created by the XOR DOP Generator is important to

understand the results obtained in experiments with this generator and

to analyze the similarity of such problems to real world DOPs.

1 Introduction

The study of evolutionary algorithms (EAs) for dynamic optimization problems
(DOPs) has attracted a rapidly growing interest in recent years due to its im-
portance to real world applications of EAs, where, often, new solutions should
be found in short time after a change in the problem [2]. Most researches on
EAs for DOPs focus on experimental investigation, and very few investigate the
theory behind DOPs [8,9,7,1,3,6]. In [7], the standard genetic algorithm (GA)
with mutation and selection is investigated in DOPs with regular changes (see
Section 3) based on the dynamical system approach (or exact model) of the GA
[11]. Despite demanding a large number of equations to track all possible solu-
tions represented by the individuals of the GA, the use of the exact model is
attractive as it allows a complete description of the population dynamics [5].

In this paper, we use the dynamical system approach to analyze the XOR
DOP Generator [12,14]. In the XOR DOP Generator, DOPs are created from any
binary encoded stationary problem, which allows comparing different algorithms
in environments with different properties. This paper investigates the properties
of the problems generated by the XOR DOP Generator, which is relevant in
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order to understand the results obtained in the experiments with this generator
and to analyze the similarity of such problems to real world problems.

2 Exact Model of the GA in Stationary Environments

In the exact model proposed by Vose [11], the standard GA is described as a
discrete dynamical system [5]. In a GA with binary codification, an individual
of a population codifies a possible solution x ∈ {0, 1}l. In the exact model, all
possible solutions are represented in an n-dimensional discrete space χ, where
each possible solution is enumerated as {0, 1, . . . ,n− 1} and n = 2l. A popula-
tion is then defined by an n-dimensional vector p, where each element defines
the proportion of each possible solution in the population with size N . As the
sum of the elements of p is equal to 1, population vectors can be described as
members of a simplex Λ. This way, the population evolution can be described
as a trajectory in the simplex and population vectors can be used to describe
the probability distribution of the individuals in the search space. Thus, a gen-
erational operator G : Λ → Λ can be defined. The vector G(p) describes the
expected next population [11], i.e., the average over all possible populations of
the next generation with variance inversely proportional to the population size
N . In the limit N → ∞ (infinite population), the variance goes to zero, and
the evolution in the stationary case is deterministically described by the trajec-
tory p, G(p), G2(p), . . .. In this way, in generation t for the stationary case, the
expected population vector for the infinite population model is given by:

pt = Gt(p0), (1)

where p0 is the initial population vector. When fitness proportional selection
and flip mutation are employed, the generational operator can be written as:

G(p) =
UF p
fTp

, (2)

where F = diag(f) is a diagonal matrix generated from the fitness vector f and
U is the mutation matrix. The analysis of Eq. (2) can provide insights in un-
derstanding the behavior of the GA. The fixed points of G, i.e., points where
G(p) = p, are given by the eigenvectors of UF . For each eigenvector p, an eigen-
value fTp, corresponding to the average fitness of p, can be computed. As UF
has only positive values, there is only one eigenvector in Λ, corresponding to the
eigenvalue with the largest absolute value [5]. Then, all trajectories in Λ converge
to this fixed point, i.e. the system is asymptotically stable [11]. The remaining
eigenvectors are not properly fixed points, as, for example, they can lie outside
the simplex. However, they play an important role in the evolutionary process as
they can change the trajectory in the simplex and can create metastable states
that can trap finite populations for several generations [4].



276 R. Tinós and S. Yang

3 Dynamic Optimization Problems

A DOP is an optimization problem where at least one change occurs during
the evolutionary process. When a change occurs, the generational operator G
is altered and at least one possible trajectory realized by the population in the
simplex Λ is affected. It can be observed that not all modifications in the gener-
ational operator can be described as a change. Another important observation
is that a change does not necessarily imply a modification in the population or
in its current trajectory. For example, if the change does not modify the current
trajectory of the population to the fixed point, no effect will be observed in the
evolutionary process. The same occurs if the population has converged to the
fixed point and this one is not modified by the change.

As the generation operator is modified after a change, Eq. (1) is not valid
anymore for every generation t in a DOP. If we consider that changes occur only
between the application of two consecutive generational operators, the following
equation is valid for the infinite population case:

pt = Gt(pt−1), (3)

where Gt is the generational operator in generation t ≥ 1.
A series of generational operations between two consecutive changes is called

here a change cycle. The first change cycle begins in the first generation of the
evolutionary process and ends one generation before the first change, while the
last change cycle begins in the generation after the last change and ends until
the last generation of the evolutionary process.

The change cycle duration de is the number of consecutive generations in
change cycle e. If change cycle e begins at generation te, then

Gte = Gte+1 = Gte+2 = . . . = Gte+de−1, (4)

where de > 0. In abuse of notation, we define now Ge as the generational operator
in change cycle e. In this way, for the infinite population case, the population in
generation t is now given by:

pt = G(t−∑ e−1
i=1 di)

e Gde−1
e−1 . . .Gd3

3 Gd2
2 Gd1

1 (p0), (5)

where e > 0. It can be observed that a DOP can be viewed as a sequence of
stationary processes, where the initial population in the i-th change cycle is the
last population generated in the change cycle i− 1. The minimum value of di is
one generation, which is the case where the generational operator is modified just
one generation after the prior change, while the maximum value of di is equal
to the index of the current generation, which is the case where the problem is
stationary (until the current generation) and Eq. (5) reproduces Eq. (1).

In this paper, we are interested in a class of dynamic problems defined here
as DOPs with permutation, which is defined below.

Definition 1. A DOP with permutation is a DOP where the fitness land-
scape in change cycle e − 1 is modified according to a permutation matrix, i.e.,
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fe = σke fe−1, where σke is a permutation matrix mapping the element at position
i of the vector fe−1 to the element at position i ⊕ ke of the vector fe, where ⊕
is the bitwise exclusive-or (XOR), or addition modulo 2, operator. The vector
i ∈ {0, 1}l indicates the position of the element in the fitness vector. The vector
ke ∈ {0, 1}l controls the permutation of the elements of the fitness vector.

In a DOP with permutation, the fitness values are preserved in the search space,
i.e., they are only resorted. In [7], DOPs with regular changes, which are a special
subset of DOPs with permutation (Definition 1) where the transitional rule is
deterministic and belongs to a permutation group where σke+t = (σke)t for t ≥ 0,
are defined. As a consequense, in DOPs with regular changes, the fixed points
can be computed and the asymptotic states can be then analyzed [7].

4 The XOR DOP Generator

The XOR DOP Generator [14] can generate DOPs from any binary encoded
problem. In the XOR DOP Generator, given a stationary problem with fitness
function f(xt) and the solution xt ∈ {0, 1}l, the fitness function fe(xt) of an
environment, which is periodically changed every τ generations, is computed by:

fe(xt) = f
(
xt ⊕me

)
, (6)

where t is the generation index, e = �t/τ� is the change cycle index, and me is
a binary mask for change cycle e, which is incrementally generated by:

me = me−1 ⊕ re, (7)

where re is a binary template randomly created for change cycle e containing
�ρ × l� ones, and {ρ ∈ R | 0.0 ≤ ρ ≤ 1.0} controls the degree of change for the
DOP. If ρ = 0.0, the problem stays stationary, while if ρ = 1.0, the extreme
fitness landscape change in the sense of Hamming distance occurs. For the first
change cycle, m1 is equal to the zero vector.

The main characteristic of the XOR DOP Generator is that each individual
of the current population is moved to a new location in the fitness landscape
before being evaluated [10]. Instead of evaluating the fitness of the individual at
xt, the fitness is evaluated at xt ⊕me. It can be observed that the XOR DOP
Generator produces DOPs with changes in the fitness landscape. Based on the
XOR DOP Generator properties, the following theorem is proposed.

Theorem 1. The XOR DOP Generator produces DOPs with permutation.

Proof : It can be observed that only the fitness vector is modified by Eq. (6).
The fitness vector in change cycle e > 1 for a DOP generated by the XOR DOP
Generator from a stationary problem with fitness function f(xt) is given by:

fe =

⎡⎢⎢⎢⎣
fe(0)
fe(1)

...
fe(n−1)

⎤⎥⎥⎥⎦ =

⎡⎢⎢⎢⎣
f(x(0) ⊕me)
f(x(1) ⊕me)

...
f(x(n−1) ⊕me)

⎤⎥⎥⎥⎦ =

⎡⎢⎢⎢⎣
f(x(0) ⊕me−1 ⊕ re)
f(x(1) ⊕me−1 ⊕ re)

...
f(x(n−1) ⊕me−1 ⊕ re)

⎤⎥⎥⎥⎦ , (8)
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where x(i) is the i-th possible solution in the n-dimensional discrete space χ and
fe(i) is its respective fitness.

Defining the i-th solution in change cycle e − 1 as xe−1(i) = x(i) ⊕ me−1,
Eq. (8) can be written as:

fe =

⎡⎢⎢⎢⎣
f(xe−1(0) ⊕ re)
f(xe−1(1) ⊕ re)

...
f(xe−1(n−1) ⊕ re)

⎤⎥⎥⎥⎦ = σre

⎡⎢⎢⎢⎣
fe−1(0)

fe−1(1)

...
fe−1(n−1)

⎤⎥⎥⎥⎦ = σre fe−1, (9)

where σre is a permutation matrix mapping the element at position j of the vector
fe−1 to the element at position j ⊕ re of the vector fe. Equation (9) indicates
that the fitness of the i-th solution in change cycle e is equal to the fitness of
the i-th solution in change cycle e− 1 moved according to the permutation re.
That is, the XOR DOP Generator produces DOPs with permutation. �
One can still observe that the XOR DOP Generator produces stationary en-
vironments for ρ = 0.0 and DOPs with regular changes for ρ = 1.0. In the
latter case, the DOP switches between two environments. For 0.0 < ρ < 1.0, the
changes are not regular because the template re is randomly generated, and, as
a consequence, the metastable points for the stationary environments generated
for each template re are generally different.

As the DOP is viewed as a sequence of stationary environments, the analysis
of how the fixed points and metastable states for each stationary environment
are related can provide insights in understanding GA’s behavior on the DOP
generated by the XOR DOP Generator. Here, the state of the DOP in a change
cycle corresponding to the fixed point in the respective stationary environment is
called main metastable state. It is important to observe that the main metastable
states are not fixed points of the DOP, as the problem changes and the population
generally does not converge to a fixed point. However, the metastable states
control the trajectory of the population during each change cycle.

In a DOP with permutation, the points of the search space in change cycle
e > 1 are obtained by the permutation, according to σke , of the points of the
search space in change cycle e− 1. As a consequense, the i-th eigenvector pe(i)

of UeFe in change cycle e can be obtained by the permutation, according to σke ,
of the respective eigenvector for the environment in change cycle e− 1, i.e.,

pe(i) = σkepe−1(i). (10)

Besides, the eigenvalues of UeFe for two environments defined by change cycles
e−1 and e are equal. As the metastable states of Ge are given by the eigenvectors
of UeFe, the metastable states of Ge and Ge−1 in a DOP with permutation are
related by the permutation matrix σke (or σre for environments created by the
XOR DOP Generator). Besides, the average fitness (eigenvalue) at the main
metastable remains the same.

Theorem 2. Consider the standard GA with mutation and fitness proportional
selection is applied in: i) a DOP with permutation (Definition 1), where the
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duration and permutation matrix of change cycle e are, respectively, de and σke ;
ii) in a stationary environment where the population is permuted according to
the permutation matrix σke after every cycle e = 1, 2, . . . with duration de. If both
evolutionary processes have the same initial population and parameters, and the
fitness function in the first change cycle for the first process is equal to the fitness
function in the second process, then the evolution of the population in the two
processes is identical, i.e., the two evolutionary processes are equivalent.

Proof: According to Eqs. (3) and (2), the population for the infinite population
case in generation t > 1 for a DOP with fitness landscape changes is given by:

pt =
UFe pt−1

fT
e pt−1

. (11)

For a change cycle e > 1 in a DOP with permutation (Definition 1), fe = σke fe−1,
and, as a consequense, Fe = σkeFe−1σke . Then, we can write Eq. 11 as:

pt =
UσkeFe−1σke pt−1

fT
e−1σkept−1

. (12)

Defining qt = σkept and considering that U and σke commute, then:

qt =
UFe−1 qt−1

fT
e−1qt−1

. (13)

It can be observed that Eqs. (11) and (13) are similar. If, after the change e,
we transform the final population at the last generation of change cycle e −
1 according to qt = σkept, then, we can use Eq. (13) with the same fitness
landscape of change cycle e− 1 to reproduce the dynamics of the population in
the infinite population case for change cycle e. �
As a consequence of Theorem 2, the XOR DOP Generator can be simplified.
Instead of computing the fitness of each individual xt of the population at the
position xt⊕me in every generation, each individual of the initial population in
change cycle e is moved to xt = xt ⊕ re, i.e., the population is moved only one
time, and the fitness is computed as f(xt), like in the stationary environment.
In this way, the complexity of the procedure is reduced from O(lNde) to O(lN).

5 Experimental Study

In this section, we present simulations for the evolution of the standard GA with
mutation and fitness proportional selection in a DOP created by the XOR DOP
Generator from a deceptive fitness function defined by:

f(x) =

{
l, if u(x) = l

(l − 1)− u(x), otherwise,
(14)

where u(x) is the unitation function of a binary vector x of length l. This function
has one global optimum and one local optimum. In the simulations presented
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Fig. 1. Mean fitness of the population (left) and distance to the current first (solid) and

second metastable states (dotted) for five change cycles with τ = 60 and ρ = 0.875

in this section, l = 8, the mutation rate is 0.01, and the initial population (p0)
is uniformly distributed. For all simulations, Eq. 11 is employed to generate the
population vector p(t), i.e., the exact model with infinite population is employed
in the simulations in order to generate the expected next population during
the evolutionary process. In the simulations, the problem changes, according to
fe = σre fe−1, every τ generations with change degree ρ. Twenty values of τ (from
τ = 3 to τ = 60 with a step size 3) and seven values of ρ (from ρ = 0.125 to
ρ = 0.875 with a step size 0.125) are considered. In this way, 140 simulations were
executed, one for each pair of τ and ρ. Each evolutionary process is simulated
for 30 change cycles of the infinite population model.

Figure 1 shows a simulation with ρ = 0.875 and τ = 60, where the mean fitness
of the population during the evolution and the Euclidean distance between the
population in the current generation and the two eigenvectors with the largest
eigenvalues are presented. The first eigenvector corresponds to the current main
metastable state (where the number of individuals of the population at the global
optimum is larger than the number of individuals at any other place), while the
second eigenvector is the metastable state with the second largest eigenvalue
(where the number of individuals of the population at the local optimum is
larger than the individuals at any other place). It can be observed that, in some
change cycles, the population goes to the neighborhood of the second metastable
state and, after some generations, goes to the main metastable state. When
Eq. (13) is used, i.e., evolution in a stationary environment where the population
is permuted according to the permutation matrix σke after every cycle e with
duration de = 60, the same graphics presented in Fig. 1 are obtained if the
same parameters are employed (those graphics are not shown here), as stated
by Theorem 2.

Figure 2 presents the results for all simulations. The first graph shows the
value of fopt− f(pe) averaged over all change cycles e, where fopt is the current
mean value of fitness in the main metastable state and f(pe) is the mean fitness
of the population pe in the end of change cycle e. The second graph presents
the respective mean distance between the current main metastable state and the
state pe in the end of change cycle e. From Fig. 2, some observations can be
made. When τ is close to 60 generations, i.e., in slow changing environments, the
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Fig. 2. Fitness error (left) and distance to the current main mestastable (right) in the

simulations for different τ and ρ. The values are relative to the average (over 30 change

cycles) obtained by the population vector in the generation before the change

population always reaches the main metastable state after changes with small
degree of change ρ. When τ is large, there is enough time for the population
to go from the neighborhood of the main metastable state (where most of the
population is at the global optimum) in change cycle e−1 to the neighborhood of
the main metastable state in change cycle e. As a consequence, the fitness error
in the end of each change cycle is zero when τ is large and ρ is small (see Fig. 1).
In the XOR DOP Generator, the parameter ρ controls the degree of change. As
ρ controls the percentage of changed bits from template re−1 to template re,
the hamming distance between re−1 and re is h(re, re−1) = �ρ× l�. In this way,
larger ρ imply larger hamming distance between the optima in two consecutive
change cycles and in longer trajectories of the population in the simplex, and,
thus, more time to reach the neighborhood of the main metastable point.

However, it can be observed that a higher degree of modification in the fitness
landscape (larger ρ) does not necessarily imply a worse performance of the GA in
the DOP for medium and small τ . One can observe that for medium and small τ ,
the simulations with ρ = 0.375 presented worse performance than those for larger
ρ. This behavior can be found in experiments with the XOR DOP Generator
for different algorithms (for example, see [13]). The performance of the GA is
related to trajectories of the population in the simplex, and the trajectories
are related to the fitness vector and the transformation operators. In a medium
velocity or fast changing environment, generally, when the population reaches the
neighborhood of the main metastable point in change cycle e−2, the population
after the change is closer to the second metastable state in the next change cycle
when ρ is large. In this case, the population does not have enough time to be
closer to the new main metastable state neighborhood in change cycle e−1 than
to the old main metastable neighborhood. However, when the problem changes
again, the population is close to the neighborhood of the main metastable state
in change cycle e for ρ close to 1. The mean Hamming distance of template re

between two change cycles, which is given by h̄(re, re−2) = 2l(ρ− ρ2), explains
the behavior of the GA in this case. It can be observed that the mean fitness
generally alternates between two different values for larger ρ and medium or
small τ (see, for example, Fig. 1). One can observe that the values of distance
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in Fig. 2 are higher for ρ close to one than for ρ close to zero, as in part of
the change cycles, the population remains in the neighborhood of the second
metastable state for larger ρ.

Two observations can be made for the previous analysis. First, a higher degree
of modification (ρ) in the templates re does not necessarily imply a worse per-
formance of the GA. This result has been observed in several experiments with
the XOR DOP Generator (for example, see [13]). The performance of the GA is
related to the trajectories of the population in the simplex, which makes more
complex the analysis of the performance of the algorithms. Second, the metrics
used to compare the algorithms in DOPs cannot be adequate for some problems.
For example, in the problem investigated here, an algorithm that keeps the pop-
ulation close to the second metastable neighborhood for a high degree of change
in a fast changing environment can have higher mean fitness than an algorithm
that allows the population escaping from the local optima, but does not have
enough time to reach the main metastable state neighborhood.

6 Conclusion and Future Work

In this paper, DOPs are defined based on the dynamical system (or exact model)
[11] and the class of DOPs with permutation is defined. Such definition, and oth-
ers that can be defined based on the same approach, can be useful to classify real
world DOPs and, hence, allow a systematic analysis of such problems based on
the properties of each class. Here, the XOR DOP Generator, which allows cre-
ating DOPs from any binary encoded stationary problem, is analyzed based on
the dynamical system approach and the definition presented in Section 3. In this
paper, the optimization process of the GA on the DOP is viewed as a sequence
of evolutionary processes, each one described as a stationary optimization prob-
lem, where the initial population in a change cycle with duration de ≥ 1 is given
by the last population in the previous change cycle. In the problems generated
by the XOR DOP Generator, the duration of all change cycles is equal and the
fitness vector of the problem in change cycle e > 1 is related to the fitness vector
in change cycle e− 1 by a random template re. Thus, a problem created by the
XOR DOP Generator is identified as a DOP with permutation (Definition 1),
where the fitness vector changes according to fe = σre fe−1.

When the standard GA with proportional fitness selection and mutation is
applied to a DOP with permutation, the eigenvectors of the fixed point equation
between two consecutive change cycles are related by the permutation matrix σke

(or σre in DOPs created by the XOR DOP Generator). This way, the metastable
points in change cycle e can be obtained by the permutation (according to σke)
of the same points in change cycle e− 1, and the evolution in a DOP with per-
mutation is equivalent to that in a stationary environment where the population
is permuted by the permutation matrix σke after each cycle e = 1, 2, . . . with
duration de. Hence, the XOR DOP Generator can be simplified by moving the
initial population of a change cycle instead of computing the fitness function of
each individual in each generation in a new position. In this paper, the influence



An Analysis of the XOR DOP Generator Based on the Dynamical System 283

of the parameter ρ in the XOR DOP Generator is also analyzed, and the results
obtained in experiments related in the literature, where the worst performance
for some algorithms are obtained for medium ρ, is explained.

It can be observed that algorithms exploring the properties described on the
analysis of the XOR DOP Generator can be proposed. However, it is not clear
if such algorithms are useful in real world DOPs. To answer this question, the
real world DOPs identified as permutation DOPs should be described, which
should allow the use of the XOR DOP Generator to reproduce such problems.
In this way, a very relevant future investigation is to analyze real world DOPs,
to classify them according to their properties, and to develop DOPs generators
based on the identified class of DOPs. Another relevant future work is to ana-
lyze algorithms proposed for DOPs, e.g., GA with hypermutation and GA with
random immigrants, according to the dynamical system approach.
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Abstract. It has been proposed that degeneracy plays a fundamental role in bio-
logical evolution by facilitating robustness and adaptation within heterogeneous
and time-variant environments. Degeneracy occurs whenever structurally distinct
agents display similar functions within some contexts but unique functions in
others. In order to test the broader applicability of this hypothesis, especially to
the field of evolutionary dynamic optimisation, we evolve multi-agent systems
(MAS) in time-variant environments and investigate how degeneracy amongst
agents influences the system’s robustness and evolvability. We find that degen-
eracy freely emerges within our framework, leading to MAS architectures that
are robust towards a set of similar environments and quickly adaptable to large
environmental changes. Detailed supplementary experiments, aimed particularly
at the scaling behaviour of these results, demonstrate a broad range of validity for
our findings and suggest that important general distinctions may exist between
evolution in degenerate and non-degenerate agent-based systems.

1 Introduction

The field of evolutionary dynamic optimisation (e.g., [3,8]) is concerned with the ap-
plication of evolutionary algorithms (EA) to dynamic optimisation problems (DOP).
In DOP, conditions vary frequently, and optimisation methods need to adapt their pro-
posed solutions to time-dependent contexts (tracking of the optimum). EA are believed
to be excellent candidates to tackle this particular class of problems, partially because
of their correspondence with natural systems – the archetypal systems exposed to in-
herently dynamic environments.

Here we examine the properties that are believed to facilitate the positive relationship
between mutational robustness and evolvability that takes place in natural evolution. In
computational intelligence, these issues relate directly to concepts of fitness landscape
neutrality and the search for high-quality solutions. Fitness landscapes are used exten-
sively in the field of combinatorial optimisation to describe the structural properties of
the problem to be optimised. The fitness landscape results directly from the choice of
representation as well as the choice of search operators. Subsequently, different repre-
sentations lead to different fitness landscapes and hence to problems of different diffi-
culty (see [9] for an overview). Much research has focused on developing and analysing
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different problem representations. Inspired by earlier developments in theoretical biol-
ogy, neutrality – the concept of mutations that do not affect system fitness – has been
integrated into problem representations using various approaches such as polyploidy
(see [1,18,10,7,6]). However, there are theoretical reasons as well as some experimen-
tal evidence to suggest that only particular representations of neutrality will support the
discovery of novel adaptations. Edelman and Gally have proposed that degeneracy, a
common source of stability against genetic mutations and environmental changes, cre-
ates particular types of neutrality that increase access to distinct heritable phenotypes
and support a system’s propensity to adapt [5]. Before describing Edelman and Gally’s
hypothesis on the mechanics of evolution, we first define some biological concepts –
evolvability, robustness, redundancy and degeneracy – with special emphasis on their
meaning to optimisation.

Evolvability in biology is concerned with the inheritance of new and selectively ben-
eficial phenotypes. It requires 1) phenotypic variety (PV), i.e. an ability to generate
distinct heritable phenotypes, and 2) that some of this phenotypic novelty can be trans-
formed into positive adaptations [16,17,14]. Similarly, evolvability in optimisation de-
scribes an algorithm’s ability to sample solutions of increasing quality.

Robustness has several meanings in optimisation that mostly relate to the mainte-
nance of adequate fitness values. In robust optimisation, robustness refers to the insen-
sitivity of a solution’s fitness to minor alterations of its decision variables. In dynamic
optimisation, robustness is often defined as the insensitivity of a solution’s fitness to
perturbations in the objective function’s parameters over time.

In biology, redundancy and degeneracy often contribute to the robustness of traits
[5]. Redundancy means ‘redundancy of parts’ and refers to identical components (e.g.
proteins, people, vehicles, mechanical tools) with identical functionality (see Fig. 1b).
Redundant components can often substitute for one another and thus contribute towards
a ‘fail-safe’ system. In contrast, degeneracy arises when similarities in the functions of
components are only observed for certain conditions. In particular, while diverse com-
ponents sometimes can be observed performing similar functions (many-to-one map-
ping), components are also functionally versatile (one-to-many mapping) with the ac-
tual function performed at a given time being dependent on the context. For degeneracy
to arise, a component must have multiple context-induced functions of which some (but
not all) are also observed in another component type.

In a landmark paper [5], Edelman and Gally present numerous examples where de-
generacy contributes to the stability of biological traits. They hypothesize that degener-
acy may also fundamentally underpin evolvability by supporting the generation of PV.
In particular, degenerate components stabilize conditions where they are functionally
compensatory, however they also retain unique structural characteristics that lead to a
multiplicity of distinct functional responses outside of those conditions. These differ-
ential responses can occasionally have distinct phenotypic consequences [16] that may
emerge as selectively relevant adaptations when presented with the right environment,
cf [5,16,14,15]. Edelman and Gally’s hypothesis describes degeneracy as a mechanistic
facilitator of both robustness and adaptation that, in principle, could be applied outside
biological contexts [16]. As described in [5,17], degeneracy is ubiquitous throughout
natural systems that undergo parallel problem-solving. Yet until recently, it has not
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informed the design and development of nature-inspired algorithms. Here we present
evidence that degeneracy may provide a new (representational) approach to improve
evolvability throughout EA execution in both static and dynamic environments. This
approach could be applicable for many problems that are naturally modeled by systems
with autonomous and functionally versatile agents that must survive within a heteroge-
neous environment.

2 The Role of Degeneracy in Evolution

When considering discrete local changes (mutations) in the decision variables of a
single solution, the number of distinct accessible solutions is trivially constrained by
the dimensionality of the solution space. Under these conditions, any increase in fit-
ness neutrality – i.e. mutational robustness – will reduce PV. While more explorative/
disruptive variation operators can increase PV, nature almost always takes a different
approach. In gene regulatory networks and other biological systems, mutational robust-
ness often creates a neutral network that improves access to PV over long periods of
time, e.g. by drifting over neutral regions in a fitness landscape [4]. With PV being a
prerequisite of evolutionary adaptability, a strong case has been made that this positive
correlation of mutational robustness and PV is important to the evolvability of biologi-
cal systems [4,16,14].

Inspired by these developments, some computational intelligence studies have inves-
tigated whether increasing neutrality (e.g. designing a many-to-one mapping between
genotypes and phenotypes) influences the evolvability of a search process [1,18,10,7,6].
A common approach is to introduce genetic redundancy so that more than one copy of a
gene performs the same function [1,18]. Although some researchers have indicated that
redundant forms of neutrality improve evolvability, others have questioned the utility of
fitness landscape neutrality generated through redundant encodings [7,15,16].

In the next section we describe, in detail, the computational study used to evalu-
ate Edelman and Gally’s hypothesis, including the details for the experimental setup.
The proposed model provides the basis for simulating the evolution of a population of
multi-agent systems (MAS) and depends on a minimal set of parameters that provide
sufficient degrees of freedom to study the system properties – redundancy, degeneracy,
robustness and evolvability – that we are interested in. The model (including the fitness
function) is formally the same as the one developed in [15]. The study in [15] inves-
tigated degeneracy’s relationship to genetic neutrality and evolvability and found that
degenerate forms of genetic neutrality increase PV while neutrality from redundancy
does not. In [16] we expanded on these results and found evidence that neither muta-
tional robustness nor the size of the neutral network in a fitness landscape guarantees
high PV, unless degenerate neutrality is present.

The studies in [15,16] investigated PV only within the local vicinity of a static neutral
network. While this allowed for comparisons with recent biologically-inspired models
(e.g. [4]), it was not within their scope to assign a selective relevance to heritable pheno-
typic variations. Thus, while previous studies were promising for Edelman and Gally’s
hypothesis, there has yet to be direct evidence that PV facilitated by degeneracy leads to
higher rates of adaptive improvement. In the following we outline a set of experimental
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conditions that allow us, for the first time, to evaluate Edelman and Gally’s claim that
degeneracy facilitates evolvability (and not just PV).

3 Computational Study and Experimental Setup

Each MAS M = (a1, . . . , an) consists of n = 30 agents and each agent is able to
perform two types of tasks ai = (ai1, ai2) where 0 < ai1 < ai2 ≤ m. We have chosen
a value of m = 20. This simple model is sufficient to allow for measurable degrees of
redundancy and degeneracy: Any two agents ai and aj , i = j, are considered unique
with respect to one another if ∀aik ∈ ai ⇒ aik /∈ aj . Redundancy with respect to two
agents, on the other hand, is defined as ∀aik ∈ ai ⇒ aik ∈ aj . If a pair of agents is
neither unique nor redundant, it is considered degenerate. A system-wide measure of
degeneracy (redundancy) ofM then corresponds to the fraction of all unique pair-wise
comparisons of all agent pairings that are degenerate (redundant).

Each agent may devote its resources (e.g., time or energy) to the two tasks it is able
to carry out. For instance, if agent ai is able to carry out tasks 1 and 2, it could devote
30% of its resources to task 1 and 70% to task 2. We subsequently define a global
resource allocation vector R = (r1, . . . , rn), where each resource allocation ri is a
pair (ri1, ri2) with 0 ≤ rij ≤ 1 and ri1 + ri2 = 1; the number rij denotes the fraction
of resources that agent ai devotes to its task aij .

The available resources may be allocated dynamically using a local decision-making
process without global control. In order to do so efficiently, we discretise the continuous
range of each element rij into 11 segments {0, 1

10 , . . . , 1}. For each iteration of this
procedure, we consider every element ri (without replacement) and perform a local
search that systematically increases or decreases the value ri1 by 1

10 , doing the opposite
for ri2 (such that ri1+ri2 = 1). We do this as long as the fitness of the MAS (see below)
improves (or the bounds of rij have been reached). This step is repeated until no further
improvements may be made across all elements ofR.

Each MAS is exposed to s = 10 distinct scenarios at any one time: each scenario
si specifies a set of demands for each of the m task types, si = (si1, . . . , sim) where
0 ≤ sij ≤ n. We also impose that the sum of all demands equals the size of the MAS:∑n

j=1 sij = n. In order to generate the s scenarios, a seed scenario s0 is generated
randomly and the remaining s− 1 scenarios are then generated by means of a random
walk of length 10 (volatility) that always starts from s0. For each step of the random
walk, a pair of task-types is chosen uniformly at random and the demand for one of
the chosen task-types is increased by a value of 1, the other is decreased by a value
of 1 (subject to staying within bounds; if this operation should be unsuccessful, a new
pairing of task-types would be chosen). It follows that the total demand of the scenario
remains constant but its distribution changes. The set of environments changes every
200 generations (of the genetic algorithm; see below) either moderately or drastically.
For moderate changes, the seed for the new set of scenarios is randomly selected from
the previous set (excluding the original s0). For drastic changes, on the other hand,
a new seed scenario is generated uniformly at random. The remaining scenarios are
generated as before.
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The distribution of resources within a MAS (as described above) occurs as a direct
response to the environmental conditions (i.e., demands) experienced by the system.
We denote the output of a MAS by the vector O = (o1, . . . , on) where oi is the sum
of resources dedicated to task-type i: oi =

∑n
j=1

∑2
k=1 rjk · [ajk = i] where [·] re-

turns 1 if the containing statement is true. The fitness of a MAS under environment
si is then the difference between its output O and the demand imposed by the en-
vironment si: F (M, si) =

∑m
j=1 max{0, sij − oj}2 where oj ∈ O approximates

an optimal allocation of resources under si given the capabilities of M. The robust-
ness of the MAS is subsequently defined as the average fitness across all scenarios,
R(M, {s1, . . . , ss}) = 1

s

∑s
j=1 F (M, sj). This measure was chosen for simplicity,

although we found that robustness measurements that incorporated fitness thresholds
did not appear to alter our basic findings.

The vector O is obtained on-the-fly with respect to each si encountered. However,
the optimality of the resource allocation is strictly dependent on the task-types con-
tained within the MAS. We thus use a genetic algorithm (GA) based on deterministic
crowding to evolve a population of MAS (i.e., M) towards a specific set of scenarios.
Prior to the algorithm’s execution, m

2 unique agent-types (i.e., pairing of task-types) are
constructed from the m = 20 task-types and stored in a set T . The initial population
P , of size N = 20, is then created by sampling (with replacement) from T to obtain a
MAS that consist exclusively of pairwise unique or redundant agent-types.

During evolution, two parents are randomly selected from the population (without
replacement) and subjected to uniform crossover (element-wise probability of 0.5) with
probability 1. Each resulting offspring has exactly one element (agent-type) mutated
and then replaces the genotypically more similar parent if its fitness is at least as good.
Mutation changes the functional capabilities of a single agent and thereby determines
whether degeneracy may arise during evolution. The mutation operator has been de-
signed with the following considerations in mind: (a) the search space is to be of the
same size in all experiments; (b) in some experiments both redundancy and degeneracy
can be selected for during the evolutionary process.

Each position in M is occupied by a specific agent-type and the mutation operator
replaces exactly one such agent-type with a new one. The agent-types available at each
position are determined a priori and remain constant throughout the execution of the
algorithm. In the fully restricted case (no degeneracy), the options at each position are
given by the set T (which was also used to initialise the population). It follows that a
purely redundant MAS remains redundant after mutation. For experiments in which the
MAS can evolve degenerate architectures, each position i has a unique set of options T ′

i

which closely resembles the set T but allows for a partial overlap in functions: Each T ′
i

contains the same task-types as T but half its members (chosen randomly) have exactly
one element per task-type pairing altered randomly. The mutation operator is illustrated
in Fig. 1b: agents from both system classes have access to the same number of task type
pairings (mutation options are shown as faded task type pairings), hence the search
space sizes are identical. In the redundant case, mutation options are defined in order to
prevent degeneracy. In the degenerate case, it is evident that the agents’ capabilities may
be unique, redundant, or may partially overlap due to slightly altered task type pairings
for each agent.



The Role of Degenerate Robustness in the Evolvability of Multi-agent Systems 289

4 Experimental Results

In our experiments, a MAS architecture (i.e. the specification of agent task capabilities)
evolves to maximise robustness within a set of environmental scenarios. To evaluate
Edelman and Gally’s hypothesis, we place different restrictions on the architectural
properties that can evolve in a MAS (see mutation operator in Section 3), preventing
degeneracy from arising in some cases. We then evaluate if degeneracy improves adap-
tation properties during static and dynamic environmental conditions.

4.1 Robustness, Evolvability in Static (Heterogeneous) Environments

In Fig. 1a, for the 200 generations before the environment changes we see that, when
degeneracy is allowed to emerge, the MAS evolves higher robustness towards the set
of environmental scenarios. This finding is not intuitively expected considering that:
systems are the same size (and solution spaces are constrained to identical sizes), MAS
are presented with the same scenarios, agents have access to the same task types and,
within a noiseless environment, all MAS evolve within a unimodal fitness landscape that
contains the same optimal fitness value. In our view, there are two factors that primarily
contribute to these observed differences in evolved robustness: 1) evolvability within
the static noisy environment (discussed below) and 2) differences in the robustness
potential of a system (discussed in the networked buffering hypothesis in [17]).

Conceptually, evolvability is about discovering heritable phenotypic improvements.
In Fig. 1d, we record the probability distribution for the time it takes the MAS pop-
ulation to find a better solution. As can be seen, degenerate architectures are finding
adaptive improvements more quickly. An analysis of improvement size vs fitness finds
this relationship is similar for the two types of MAS, thus suggesting the faster adapta-
tion rate is largely responsible for the divergence in fitness from generation 0 to 200.

4.2 Evolvability in Dynamic Environments

In a dynamic environment, evolvability is no longer merely about a propensity for dis-
covering improvements but is also about sustaining high fitness throughout and after
the environment changes. As can be seen from Fig. 1a and c, in both redundant and
degenerate MAS, robustness drops every 200 generations when environmental change
is imposed. This drop reflects declines in fitness across the population. However, we
can make the following noteworthy observations.

When evolution of degeneracy is enabled, MAS populations can adapt better to
change than MAS with purely redundant architectures. Except for the decline of fit-
ness at generation 200, all subsequent drops (at generations 400, 600, etc.) are smaller
in the ‘degen’ experiments than in the ’redun’ experiments, irrespective of whether the
scenario changes are moderate or drastic. With every change in the set of scenarios,
MAS that cannot evolve degenerate architectures appear to drop in performance by
similar amounts. The only exception is the first adaptation after a change of environ-
mental conditions (i.e. the time period from generation 201 to 400) where there is some
overall improvement when the environmental change is moderate (Fig. 1a), and some
overall deterioration when the change is drastic (Fig. 1c). MAS that can evolve degen-
eracy, on the other hand, have some capacity to adapt to the nature of change. From
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(a) (b)

(c) (d)

Fig. 1. Figure 1 (a): When degeneracy is/is not permitted in the MAS architecture, we label these
as ‘degen’/‘redun’. The main graph plots robustness evolved over time with smaller graphs of
collective mean fitness (top-left) and degeneracy (for the MAS where it is allowed to emerge,
top-right). Environmental changes (every 200 gen.) are moderate (see Experimental Setup). (b):
Degenerate and redundant MAS. Agents (depicted as pairs of connected nodes) can perform 2
different task types. Each MAS (top: redundant; bottom: degenerate) consists of 4 agents and the
faded pairings indicate the predetermined set of options the mutation operator may choose from.
(c): MAS evolve in conditions where environmental changes are dramatic. (d): histogram for the
number of offspring sampled before an improvement is found (stability time length). Conditions
are the same as (a) except environmental changes occur every 400 generations.

environmental change to environmental change, the drop in fitness/robustness becomes
smaller.

When plotting the collective mean fitness (i.e. the area under the fitness/robustness
curve between two consecutive environmental changes [8]), we do not only observe
this adaptation in experiments with moderately changing environments (top-left graph
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in Fig. 1a) but we also see overall adaptation levels improve over time even when the
environmental changes are drastically different (top-left graph in Fig 1c). Comparing
this with the amount of degeneracy integrated within the MAS architecture (top-right
graphs in Fig. 1a and c), we see that the collective mean fitness improves as degeneracy
is integrated into the system. Furthermore, the degeneracy-enabled capacity to adapt
is better when changes in the environment are moderate or correlated; a proposed pre-
condition for continuous adaptation in DOP (see [2]). It is admittedly difficult however
to directly evaluate changes in the rate of adaptation (e.g. as we did for a static envi-
ronment in Fig. 1d) in the dynamic case because fitness differences at the beginning of
each epoch act to confound such an analysis. We note however that in somewhat similar
MAS models, experimental conditions were established that can more clearly demon-
strate an acceleration in adaptation rates during degenerate MAS evolution within a
dynamic environment [12].

When we make the scale of our model larger (i.e. by increasing MAS size, T , and
random walk size by the same proportion), the differences between degenerate and
redundant MAS in robustness, evolvability and collective mean fitness become accen-
tuated. Future studies guided by selected MAS application domains will aim to further
investigate the generality and limitations of these findings by considering: restrictions in
functional capability combinations in each agent, different classes of environment cor-
relation, the speed of agent behavior modification, costs in agent behavior modification,
and agent-agent functional interdependencies.

5 Discussion and Conclusions

In this paper, we investigated the potential for designing dynamic optimisation problem
(DOP) representations that are robust to environmental conditions experienced during
a solution’s lifecycle and, at the same time, have the capacity to adapt to changing envi-
ronments. Our investigation was motivated by a hypothesis formulated in the context of
biological evolution – namely that degeneracy facilitates robustness and adaptation in
time-variant environments. In simulation experiments we evolved populations of multi-
agent systems (MAS) and compared the robustness and adaptation potentials of sys-
tems that could evolve degenerate architectures with those that could evolve redundant
structures only. We found evidence that incorporating degeneracy into a problem’s rep-
resentation can improve robustness and adaptiveness of dynamic optimisation in ways
that are not seen in purely redundant problem representations.

While our investigation was quite abstract, we can identify several features that make
degeneracy suitable for dynamic optimisation. First, degenerate systems appear to ex-
hibit a greater propensity to adapt. While we have not reported an analysis of fitness
landscape neutrality here, previous studies on the ensemble properties of similar mod-
els have shown degeneracy creates neutral regions in fitness landscapes with high access
to phenotypic variety [15,16]. In light of these earlier studies, the results presented here
demonstrate that the discovery of adaptations in static neutral landscapes created by
degeneracy can be surprisingly rapid. Theoretical arguments have suggested that long
periods of time may be needed to discover a single adaptive phenotype from a neutral
network [11], however the rapid adaptation in Fig. 1a,d suggests that little neutrality is



292 J.M. Whitacre et al.

ever traversed in these experiments before an improvement is discovered. As believed
to also take place in biology, this fast pace of adaptation likely reflects the existence of
many alternative paths to adaptive change within neutral networks created by degen-
eracy. This means that little of the neutral network needs to be searched before new
improvements are found, thus fitness barriers are not being replaced with large “en-
tropic barriers” during evolution, cf [11]. While optimal solutions are not guaranteed,
the propensity to adapt in evolved degenerate systems appears to allow such a strategy
to quickly find highly fit and highly robust solutions – as needed when tackling DOP.

A second desirable feature of degenerate systems is their enhanced capacity to deal
with novel conditions. Compared with redundant architectures, degenerate systems have
a greater potential to evolve innovative solution responses that account for small vari-
ations in environmental conditions. In a supplemental analysis of these systems we
have found this robustness potential can extend to moderate degrees of environmental
novelty, thus helping to explain the differences between system classes immediately af-
ter a change in the environment (Fig. 1a,c). However, a further reason that degenerate
MAS exhibited highly effective responses to immediate environmental change was the
emergence of population properties known in evolutionary biology as cryptic genetic
variation (CGV).

Many EA-based dynamic optimisation techniques aim to artificially control popula-
tion convergence based on a general understanding that low genetic diversity limits a
population’s adaptability when it encounters a changed fitness landscape. The result-
ing genetic and phenotypic properties of EA populations differ significantly however
from that observed in natural populations. Genetic diversity within natural populations
is maintained in a static environment by being phenotypically and selectively hidden.
Trait differences across the population are mostly exposed only after an environment
changes; a phenomena known as cryptic genetic variation (CGV). The present study
focuses on how Edelman and Gally’s hypothesis is relevant when applying neutral evo-
lution theories to the topic of evolvable problem representations. However in [13] we
also analyze the population properties from these experiments and report evidence that
degeneracy generates hide and release mechanisms for genetic diversity that are analo-
gous to the natural CGV phenomena just described. This evidence of CGV is presented
as a separate supplemental report in [13] due to space limitations as well as its distinc-
tive theoretical relevance.
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Abstract. In this paper we investigate the profitability of evolved tech-

nical trading rules when controlling for data-mining bias. For the first

time in the evolutionary computation literature, a comprehensive test for

a rule’s statistical significance using Hansen’s Superior Predictive Ability

is explicitly taken into account in the fitness function, and multi-objective

evolutionary optimisation is employed to drive the search towards indi-

vidual rules with better generalisation abilities. Empirical results on a

spot foreign-exchange market index suggest that increased out-of-sample

performance can be obtained after accounting for data-mining bias effects

in a multi-objective fitness function, as compared to a single-criterion fit-

ness measure that considers solely the average return.

1 Introduction

The goal of objective technical analysis is the discovery of rules that will be
profitable in the future. The research method is back-testing, which produces an
observable measure of performance. On the basis of this test statistic an inference
is made about a population parameter, the rule’s expected performance out of
sample. In evolutionary rule data-mining, many rules are back-tested in each
generation, and the selection of rules that form the basis of the subsequent
rules to-be-sampled is stochastically based on their observed performance. This
refinement cycle eventually results in a rule with the best performance being
designated as the output of the run. That is to say, this form of data mining
involves a performance competition that leads to a winning rule being picked.
The problem is that the winning rule’s observed performance that allowed it to
be picked over all other rules systematically overstates how well the rule is likely
to perform in the future. This systematic error is the data-mining bias.

Out-of-sample rule performance deterioration is a well-known problem [1,2].
A dominant explanation of the out-of-sample performance break-down is data-
mining bias. This has two constituents: (1) randomness, which is a relatively large
component of observed performance. It is reasoned that a portion of a rule’s back-
tested performance was merely luck - a coincidental correspondence between
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the rule’s signals and the market’s non-recurring noise. Because this random
component is a non-recurring phenomenon that will manifest differently in each
sample of data, the rule’s expected performance always falls below observed
performance on the training data. (2) the logic of data mining, in which the
best-performing rule is selected after a repertoire of candidate rules have been
evaluated (the observed average return of the best-performing rule is a positively-
biased statistic [1]).

Previous research on the induction of data-driven models by means of evolu-
tionary computation accounted for the problem of data-mining bias using out-of-
sample testing [3,4], methods to restrict the model complexity [5], and ensemble
learning [6]. The most prevalent of these, out-of-sample testing, is based on
the valid notion that the performance of a data-mined rule, on out-of-sample
data, provides an unbiased estimate of the rule’s expected performance. How-
ever, out-of-sample testing suffers from several deficiencies. First and foremost,
the unused status of the data reserved for out-of-sample testing has a short life-
span. Once it has been used, it is no longer able to provide unbiased estimates of
rule performance. Secondly, it eliminates certain portions of the data from min-
ing operations, thus, it reduces the amount of data available to detect patterns.
When noise is high and information is low, the bigger the amount of training
data the better the chance of mining something useful. Third, the decision about
how to apportion the data between in- and out-of-sample subsets is arbitrary,
and hence lacks desired objectivity.

In this paper we propose a new approach to account for the data-mining bias
inherent in an iterative modelling technique, such as grammar-based Genetic
Programming (GP) [7], where a single dataset is used more than once in the
model construction process. Our approach is based on multi-objective evolu-
tionary learning of technical trading rules, where the optimisation criterion is
a weighted amalgamation of the rule’s observed daily return and the statistical
significance (p-value) of this test statistic. This permits data-mining bias to be
undertaken with some degree of confidence, and incorporated in the objective
function that drives the evolutionary search. Our expectation is that such a fit-
ness measure will create an evolutionary pressure towards parts of the search
space that contain individuals with true predictive abilities, and thus lead to
better generalisation to unseen data. The rest of the paper is organised as fol-
lows. First we introduce two dominant methods for testing the null hypothesis
that the best rule encountered during data mining has no predictive superiority
over a benchmark model devoid of predictive power. The grammar-based GP
system is then described, giving details of the grammar employed, the techni-
cal indicators serving as the building blocks for constructing trading rules, the
evolutionary algorithm, the trading methodology, and the multi-objective fitness
function. The description of the experimental approach comes next, followed by
an analysis of the experimental results. Finally, a concluding section summarises
our findings, and sketches future directions of this research.
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2 Data-Mining-Adjusted Statistical Hypothesis Tests

In the context of evaluating the data mining of technical analysis rules, it is
conceivable that by repeatedly examining different trading rules against the same
dataset, some rules would appear to be profitable simply due to chance (data
mining/data snooping bias). White’s (2000) Reality Check (WRC) test [8] and
Hansen’s (2005) Superior Predictive Ability (SPA) test [9] provide comprehensive
tests across all trading rules considered, and directly quantify the effect of data-
mining bias by testing the null hypothesis that the performance of the best
trading rule is no better than the performance of the benchmark set to a trading
model totally devoid of predictive power according to a performance statistic (i.e.
observed average return in a back-test). The best rule is identified by applying
the performance measure to the full universe of trading rules, and a desired p-
value is obtained by comparing the best rule’s sample statistic to approximations
of the sampling distribution of the test statistic. In both methods bootstrapping
is used to approximate the sampling distribution of the test statistic.

Given M models (trading rules), let ϕk,t (k = 1, 2, . . . ,M and t = 1, 2, . . . ,N)
denote their performance measures relative to the benchmark model over time
t. The null hypothesis is that there does not exist a superior rule in the universe
of M rules (joint test).

H0 :
max

k = 1, . . . , M
ϕk ≤ 0. (1)

Rejecting H0 implies that there exist at least one rule that outperforms the
benchmark. Setting the performance measure to the rule’s mean return obtained
by back-testing it in a historical sample of data, the benchmark becomes a rule
that has an expected return of zero or less, thus, ϕk = E(fk), where fk is the
return of the k-th trading rule. It is then natural to base the test statistic of
hypothesis test to the maximum of the normalised average of fk,t:

V n =
max

k = 1, . . . , M

√
nf̄k (2)

where f̄k = 1
n

∑n
t=1 fk.t, with fk,t the t-th observation of fk.

White suggested using the stationary bootstrap method [10] to approximate
the p-values of V n. In general, a bootstrap method derives the sampling distribu-
tion of a test statistic by resampling with replacement from an original sample.
The reason that White decided to use a block-bootstrap method is to main-
tain some of the statistical properties of the bootstrapped time-series such as
heteroskedasticity [8]. To describe the bootstrap algorithm, let Xn be a strictly
stationary time-series. Suppose μ is a parameter of the whole joint distribu-
tion of the sequence (i.e mean). Given data X1, . . . ,XN the goal is to make
inferences about μ. Suppose Bi,b = {Xi,Xi+1, . . . Xi+b−1} be a block of b obser-
vations starting from Xi. In the case where j > N , Xj is defined to be Xi, where
i = (j mod N) and X0 = XN . Let p be a fixed number in {0, . . . , 1}. indepen-
dent of X1, . . . ,XN , let L1,L2, . . . be a sequence of independent and identically
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distributed random variables having the geometric distribution, so that the prob-
ability of the event Li = m is (1− p)(m−1)p for m = 1, 2, . . .. independent of Xi

and the Li, let I1, I2, . . . be a sequence of independent and identically distributed
variables which have the discrete uniform distribution on {1, . . . ,N}. A pseudo-
time-series X∗

1 , . . . ,X∗
N is generated in the following way: Sample a sequence

of blocks of random length by the prescription BI1,L1 ,BI2,L2 , . . . . The first L1

observations in the pseudo-time-series X∗
1 , . . . ,X∗

N are determined by the first
block BI1,L1 of observations XI1 , . . . ,XI1+L1−1, the next L2 observations are the
observations in the second sampled block BI2,L2 , namely XI2 , . . . ,XI2+L2−1.
This process is stopped once N observations in the pseudo-time-series have been
generated.

Now, back to White’s Reality Check, let f∗
k (b) denote the b-th bootstrapped

sample of fk and f̄∗
k (b) = 1

n

∑n
t=1 f

∗
k.t(b) its sample average. A bootstrapped

sampling distribution V
∗
n is obtained with the realisations:

V
∗
n(b) =

max

k = 1, . . . , M

√
n(f̄∗

k (b) − f̄k), b = 1, . . . , B. (3)

The WRC p-value is obtained by comparing Vn the quantiles of the sampling
distribution of V

∗
n. The null hypothesis is rejected whenever p-value is less than

a given significance level.
Hansen pointed out two potential inefficiencies with White’s Reality Check.

First, the average returns f̄k are not standardised. Second, despite that H0 is
composite, the sampling distribution of WRC is based on the “least favourable
configuration” (the configuration that is least favourable to the alternative), that
is all of the back-tested rules have expected returns of zero. Therefore, the WRD
test may lose power dramatically when poor rules with very negative E(fk) are
included in the test. The proposed SPA test is based on studentised returns:

V n = max

(
max

k = 1, . . . , M

√
nf̄k

σk
, 0

)
(4)

where σk is a consistent estimator of the standard deviation of
√
nf̄k.

To avoid using the least favourable configuration and increase the power of
the test, Hansen suggested a different way to bootstrap the distribution of V n.
For the k-th rule, let Z̄∗

n(b) denote the sample average of the b-th bootstrapped
sample of the centered returns:

Z∗
k,t(b) = f∗

k,t(b) − f̄k1{f̄k≥−Ak} (5)

where 1(G) denotes the indicator function of the event G, and Ak = − σk

4n1/4 . The
p-value is obtained by the bootstrapped sampling distribution whose realisations
are:

V
∗
n(b) = max

(
max

k = 1, . . . , M

√
nZ̄∗

k (b)

σk
, 0

)
, b = 1, . . . , B. (6)
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3 Grammar-Based Genetic Programming for Rule
Induction

We employ a grammar-based GP system to evolve technical trading rules. The
method used is outlined in the following sections.

3.1 Grammar

A context-free grammar is employed to type the language used for program
representation. It is presented below:

<prog> ::= <if>

<if> ::= <predicate> <expr> <expr>

<expr> ::= <if> | <signal>

<signal> ::= golong | goshort

<predicate> ::= <ti> <op> <constant> | <ti> <op> <ti>

<op> ::= < | >

<ti> ::= MACD | RSI | SM | ADX

<constant> ::= -0.5 | -0.49 | ... | 0.49 | 0.5 | 1.0 | 2.0 ... | 100.0

Using the grammar above, a technical trading rule is represented as a disjunction
of conjunctions of constraints on the values of technical indicators, taking the
classical form of oblique decision tree learning for approximating discrete-valued
target functions, however, here we also allow comparisons between technical
indicators. The space of technical trading rules is formed using the following
indicators: Relative Strength Index (RSI), Moving Average Convergence
Divergence (MACD), Stochastics Momentum (SM), Average Directional
Movement Index (ADX) [11]. MACD will usually oscillate around zero with
unknown upper and lower bounds, whereas RSI, SM, and ADX oscillate in the
range of {0, . . . , 100}. The constants that form part of the predicates that test
a real-valued technical indicator against some value come from the union of
two sets, {−0.5,−0.49, . . . , 0.49, 0.5} and {1.0, . . . 100.0}. The reason of choice
of this representation is to enhance human understandability of the conditions
that trigger certain trading signals, and treat the outcome of the evolutionary
process as a decision-support system rather than merely as a black-box method
for trading.

3.2 Trading Methodology

Each evolved rule outputs two values, 1 and -1, interpreted a long and short
position respectively. The average return of a rule is generated as follows. Let
rt be the daily return of the index at time t, calculated using (vt − vt−1)/vt−1,
where vt and vt−1 are the values of the time-series at time t and t−1 respectively.
Also, let st−1 be the trading signal generated by the rule at time t − 1. Then
dt = st−1rt is the realised return at time t. Using a back-test period, an average
of dt can be induced. We are not considering trading, slippage or interest costs.
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3.3 Evolutionary Algorithm

For our evolutionary algorithm, we used a panmictic, generational, elitist genetic
algorithm. The algorithm uses tournament selection with a tournament size of 7.
Evolution proceeds for 50 generations, and the population size is set to 1, 000 in-
dividuals. Ramped-half-and-half tree creation with a maximum depth of 5 is used
to perform a random sampling of rules during run initialisation. Throughout evo-
lution, expression-trees are allowed to grow up to depth of 10. The evolutionary
search employs a mutation-based variation scheme, where subtree mutation is
combined with point-mutation; a probability governing the application of each,
set to 0.6 in favour of subtree mutation. Neither recombination, nor reproduction
were used.

3.4 Fitness Function

In the case of a single-objective fitness function, this takes the form of average
daily return generated by the rule’s trading signals over a back-test period speci-
fied by the training set. On the other hand, the multi-objective fitness function is
defined as a weighted sum of average daily return and the p-value of this statistic
that is generated from SPA test. For the weighting scheme to be effective the
two objectives need to be similarly scaled. In the case of p-value, this is natu-
rally defined within the {0, . . . , 1} interval. We employed a simple normalisation
technique to make the average daily return of each individual in a population
fall into the same {0, . . . , 1} interval, by taking into account the minimum and
maximum average daily returns produced by individuals in each population.

3.5 Adapting the Data-Mining Bias Tests to a Population of Rules

SPA tests a composite null hypothesis whose test statistic is defined as the
maximum standardised mean of N means, where N is the number of rules in our
universe. It is therefore analogous to treat each evolving population as a universe
of N individual rules. Under this formulation the following sequence of steps are
involved in calculating the p-values:

1. Calculate the standardised mean daily return for each rule in a population
on de-trended daily returns of a back-test period (note - this is not to be
confused with de-trending of the time-series of an index). De-trended daily
returns have an average daily return of zero, thus the expected return of a
rule with no predictive power will be zero if its returns are computed from
de-trended data. De-trending is a simple operation, where the average daily
return over a period is subtracted from each daily return. Sort the population
in descending order based on standardised mean daily return.

2. Using the the bootstrap method described in Section 2 create a bootstrapped
sample of trading dates (days).

3. Using the dates obtained in the bootstrapped sample, a pseudo-track record
based on the actual daily returns associated with these dates is created for
each rule in the population.
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4. For every rule in the population, each daily return in the pseudo-track record
is adjusted according to Equation 5 (Section 2). The adjusted pseudo-track
record of returns is then averaged and standardised.

5. The larger of these standardised values and zero is designated as the first
value to form the sampling distribution of the test statistic of Equation 4
(Section 2).

6. Steps 2 to 5 are repeated many times (i.e B times). In this way, the sampling
distribution of the test statistic is approximated from these B values.

7. The p-value of the first rule (in the sorted list of rules of step 1) is calculated
as a fraction of B values that exceed the standardised mean daily return of
the tested rule.

8. Remove the tested rule from the sorted list, and repeat steps 2 to 7 using
the remaining rules.

4 Experimental Approach

This empirical study aims to reveal whether there is an advantage accruing
from using the statistical significance of average daily returns acquired in a
back-test as an additional objective, in order to drive the evolutionary search
towards better-generalising technical trading rules (out-of-sample testing). For
this, we are considering an exhaustive set of combinations (with a step of 0.1)
for coefficients that weight the average daily return and the p-value in the multi-
objective fitness function, in order to manually set the trade-off between the
two. An obvious benchmark to compare against our methodology is the single-
objective evolution of technical rules, using solely the average daily return as the
fitness function.

This study uses daily closing foreign exchange rate of USD/GBP for the pe-
riod of 01/01/1990 to 31/03/2010. The first 4, 000 trading days are used as the
training-set, whereas the remaining 1, 229 as the test-set. The parameters of the
technical indicators are set as follows: n = 21 for RSI; n = 28, r = 30, s = 2 for
SM; n = 14 for ADX. For the stationary bootstrap procedure we set the number
of bootstrapped samples to 2, 000, and the probability of success in each trial to
0.9 in order to generate the probability mass function of the geometric distri-
bution. We perform 50 independent runs for each experimental setup allowing
either for a multi-objective fitness function (with variable weighting coefficients),
or a single-objective fitness function.

5 Results

A summary of the experimental results is depicted in Table 1. A statistically
significant difference (unpaired t-test, p < 0.05, degrees of freedom df = 98) is
found between the average daily return of single-objective fitness function and
multi-objective one (weighting coefficients of 0.2, 0.8) during out-of-sample back-
testing, suggesting a better generalisation ability of the trading rules that were
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encouraged to take account of the data-mining bias during the induction pro-
cess. Results on the out-of-sample data also show that the best evolved technical
rule, using the multi-criterion fitness, outperforms its single-objective-evolution
counterpart, obtaining an annualised return of 13.75% (average daily return of
0.055) as opposed to 8% (average daily return of 0.032 ). In addition, it is inter-
esting to note that most combinations of coefficients for weighting the impact of
different objectives yielded similar generalisation performance, suggesting that
the (0.2, 0.8) interplay in favour of the p-value creates the tradeoff required to
drive the evolutionary search towards the discovery of better-generalising trad-
ing rules. Nevertheless, optimising in favour of the p-value evidently leads to
inferior in-sample performance; a statistically significance difference (unpaired
t-test, p < 0.0001, df = 98) is found in the average daily return between single-
and multi-objective fitness functions (0.2, 0.8) for the training period. This is
intuitive, indicative of the closer fit to the training data that is obtained by a
model that is evolved unconstrained for sole profitability maximisation.

Table 1. Performance summary. Average daily return has been abbreviated to AR.

Means are based on best-of-run individuals from 50 evolutionary runs. The case where

the weighting coefficients for AR and p-value are set to 1.0 and 0.0 respectively refers

to the single-objective fitness function. Std. deviation in parentheses for mean. Best

out-of-sample performance indicated in bold.

AR coeff. p-value coeff. Mean Train AR Min Test AR Mean Test AR Max Test AR

1.0 0.0 0.037 (0.002) −0.027 0.007 (0.013) 0.032
0.9 0.1 0.038 (0.003) −0.014 0.008 (0.014) 0.042
0.8 0.2 0.037 (0.003) −0.021 0.009 (0.015) 0.041
0.7 0.3 0.038 (0.003) −0.015 0.006 (0.013) 0.030
0.6 0.4 0.037 (0.002) −0.012 0.007 (0.014) 0.045
0.5 0.5 0.037 (0.003) −0.014 0.007 (0.012) 0.026
0.4 0.6 0.037 (0.003) −0.015 0.007 (0.015) 0.040
0.3 0.7 0.038 (0.003) −0.022 0.006 (0.014) 0.031
0.2 0.8 0.033 (0.002) −0.020 0.014 (0.018) 0.055
0.1 0.9 0.038 (0.003) −0.013 0.007 (0.013) 0.028

The graphs depicted in Figure 1 show the evolution of best-of-generation av-
erage daily return for the cases of single- and multi-objective (0.2, 0.8) fitness
functions, for both in- and out-of-sample data-sets. Figures 1(a), 1(b) show that
single-objective evolution learns faster, and the trading rules fit more closely to
the training data, achieving bigger daily returns compared to the multi-objective
case. Figure 1(c) illustrates the learning curve for the out-of-sample data, depict-
ing an inherent difficulty in the generalisation ability of the best-of-generation
trading rule; a phenomenon that has been widely documented in previous stud-
ies. An interesting result is depicted in Figure 1(d), where a good generalisation
to unseen data is observed by relatively random rules in the initial generations,
and then followed by a rapid decrease in performance up to approx. generation 7,
before learning starts again. This learning behaviour is explained by the nature
of the time-series in the training and testing data-sets, which allows relatively
random rules to better model the time-series fluctuations in the testing-set. How-
ever, as learning is dictated on the information provided by the training-set, the
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Fig. 1. Evolution of best-of-generation average daily return. (a) and (b) show in-sample

evolution using sets of weighting coefficients represented by the tuples (1.0, 0.0) and

(0.2, 0.8) respectively; (c) and (d) show the out-of-sample evolution for the same weight-

ing coefficient setups. Each graph presents 50 evolutionary runs; average in bold.

adaptive expression-tree structures are gradually fitting to in-sample data, drift-
ing away from the genotypes that exhibited an initial out-of-sample superiority.

6 Conclusion

Multiple studies on the evolutionary search for profitable technical trading rules
have been conducted in the past, suggesting that this form of rule induction
technique does have merit. However, the effects of data-mining bias in the gen-
eralisation ability of the trading rules have not been accounted for. We pro-
posed a method to encourage the evolution of technical rules with statistically
significant returns during a back-testing training period, in an expectation to
increase their out-of-sample performance. This relies on a multi-criterion fit-
ness function that in addition to a measure of profitability, takes into account
Hansen’s Superior Predictive Ability test, which can directly quantify the ef-
fect of data-mining bias, by testing the performance of the best mined rule in
the context of the full universe of technical trading rules. Initial experiments,
using an index from a foreign-exchange market, are encouraging, resulting in
human-understandable trading rules with better generalisation to unseen data
after accounting for data-mining bias. Future work includes the application of
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this methodology to a wider range of market indices in order to corroborate its
breadth of efficiency, and the employmdent of Pareto-based evolutionary opti-
misation. The grammar employed in our experiments was deliberately kept as
simple as possible in an attempt to minimise exogenous factors affecting per-
formance, in order to objectively assess the potential of the newly introduced
method. Subsequent versions will rely on dynamically setting the constraints on
technical indicators, as well as a richer repertoire of such primitive constructs.
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Abstract. System administrators have to analyze a number of system

parameters to identify performance bottlenecks in a system. The major

contribution of this paper is a utility – EvoPerf – which has the ability

to autonomously monitor different system-wide parameters, requiring no

user intervention, to accurately identify performance based anomalies (or

bottlenecks). EvoPerf uses Windows Perfmon utility to collect a number

of performance counters from the kernel of Windows OS. Subsequently,

we show that artificial intelligence based techniques – using performance

counters – can be used successfully to design an accurate and efficient

performance monitoring utility. We evaluate feasibility of six classifiers

– UCS, GAssist-ADI, GAssist-Int, NN-MLP, NN-RBF and J48 – and

conclude that all classifiers provide more than 99% classification accuracy

with less than 1% false positives. However, the processing overhead of J48

and neural networks based classifiers is significantly smaller compared

with evolutionary classifiers.

1 Introduction

The pervasive penetration of Internet and associated next generation intelligent
networks has resulted in great demand for e-commerce, gaming and e-health
applications that must provide ubiquitous and instant access to its potential
customers in a reliable and efficient manner. Currently, in most of the cases,
system administrators themselves analyze and correlate a number of parameters
– CPU usage, memory usage, network utilization etc. – to identify bottlenecks
in a computer system [8]. A performance bottleneck can seriously compromise
or undermine the functionality of a given business: unavailability of service due
to a denial of service attack or crashing of a server process on account of low
memory.

System administrators need diagnostic tools that can automatically identify
bottlenecks on different server machines; as a result, they can efficiently invoke
countermeasure strategies to gradually remove the bottleneck in the system.
Therefore, in this paper, we propose a tool that can automatically monitor the

R. Schaefer et al. (Eds.): PPSN XI, Part I, LNCS 6238, pp. 304–313, 2010.
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Fig. 1. Architecture of EvoPerf

system-wide performance of a computer and raise an alarm if the system is ex-
periencing a bottleneck.1 Our monitoring system consists of three sub-modules:
(1) object monitor, (2) feature selector, and (3) classifier. An object monitor
uses Windows Perfmon utility to collect a number of performance counters from
the kernel of Windows OS. The task of feature selector is to use feature selec-
tion techniques to reduce the dimensionality of input space. Finally, the reduced
features’ set is given as an input to a number of classifiers that raise the final
alarm.

2 Related Work

Monitoring the performance of a system in an automatic fashion is an active area
of research. In [8], SysProf is presented that can monitor performance param-
eters of network applications at different granularity of time period. Moreover
SysProf, also requires active user feedback to tune its different parameters and
identify network related bottlenecks. Other tools for example Paradyn [11] exist
but it only analyzes the performance of application level programs. In compari-
son, our system is capable of identifying bottlenecks in a relatively large number
of memory and network performance counters.

In [4] S. Duan et al have presented a comparative study in which machine
learning techniques (clustering, classification and regression trees and Bayesian
networks) are empirically compared for identification of different system states,
states comparison and short-listing the attributes for system failures. The au-
thors propose some important challenges in the identification of system failure
when performing classification: use of high dimensional dataset without compro-
mising accuracy is one of the main issues. Our proposed scheme is composed of
a step-wise identification methodology which efficiently eradicates all the three
problems. We resolve high dimensionality of our dataset by monitoring and clas-
sifying performance parameters of the system independently.

1 It is important to note that we collect the logs of selected performance parame-

ters because maintaining logs of each process significantly increases the processing

overhead of the logging process.
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3 EvoPerf: Architecture and Functionality

We present the architecture of our EvoPerf utility in Figure 1 that consists of
three sub-modules: (1) object monitor, (2) feature extractor, and (3) classifier.
We now describe the functionality of each module.

3.1 Object Monitor

As mentioned before, this module captures logs of different objects of the operat-
ing system. Each object, provides one or more counters that represent a particu-
lar performance indicator of a given computer system. The values of the counters
are updated after periodic intervals. One can select any object monitor and
log its associated counters with the help of Perfmon utility. In EvoPerf, we use
two types of objects: (1) Memory and paging, and (2) Network.

Memory and Paging. The memory and paging objects depict the behavior of
physical and virtual memory of a computer system. We know that physical mem-
ory is fast random access memory (RAM) on a computer; while virtual memory
consists of RAM and secondary storage on the hard disk. A number of counters
in the paging object monitor the information transfer – in the unit of fixed size
memory chunks (pages) – between RAM and virtual memory. Thrashing is a
special scenario in which a processor spends all its time in moving pages from
the main memory to the virtual memory and vice versa. In this scenario, the
response of a system might become significantly degraded that might eventually
result in a denial of service [2]. We used 33 counters associated with the memory
and paging objects. Some of these counters are described in Table 1. Just to
substantiate the thesis that counters of memory objects can be used to monitor
performance, we show a time series plot of three counters: CacheFaults/sec, De-
mandZeroFaults/sec and PagesInput/sec, in Figure 2(a) and it is obvious that
the value of these counters are perturbed during the bottleneck period in between
instance number 2810 and 2850.
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Table 1. Memory Counters

Pool.Nonpaged.Allocs: is the number of calls to allocate space in the nonpaged pool.
Pool.Paged.Allocs: is the number of calls to allocate space in the paged pool.
Pages.Input/sec: is the rate at which pages are read from disk to resolve hard page faults.
Pages/sec: is the rate at which pages are read from or written to disk to resolve

hard page faults.
Committed.Bytes: is the amount of committed virtual memory, in bytes.
Committed.Bytes.In.Use: is the ratio of Committed Bytes to the Commit Limit.
Cache.Faults/sec: is the rate at which faults occur when a page sought in the file system cache

is not found.
Page.Reads/sec: is the rate at which the disk was read to resolve hard page faults.
System Cache Resident Bytes: gives the size of pageable operating system code present in the cache of file system.
System Code Resident Bytes: the size of operating system code in memory available to be written to physical disk.
System Driver Resident Bytes: gives the size of the pageable physical memory being used by device drivers.
Pool Paged Resident Bytes: is the sampled size of paged pool in bytes. Paged pool describes the area of physical

memory under use of operating system for writing available objects to the disk.
pagefile.sys The amount of the Page File instance in use in percent
System.Driver.Total.Bytes bytes of the pageable virtual memory currently being used by device drivers.
Free.System.Page.Table.Entries is the number of page table entries not currently in used by the system.
Cache.Bytes.Peak gives the maximum number of bytes used by the file system cache since

the last system restart.
Pool.Nonpaged.Bytes is the size, in bytes, of the nonpaged pool.
Cache.Bytes is the sum of the System Cache Resident Bytes, System Driver Resident Bytes

System Code Resident Bytes and Pool Paged Resident Bytes counters.
Available.MBytes is the physical memory available to processes running on the computer, in Megabytes
Available.Bytes is the physical memory, in bytes, available to processes running on the computer.
Available.KBytes is the physical memory available to processes running on the computer, in Kilobytes

Network. Network activity is a key element in identifying bottlenecks in com-
puters that are connected on the network. A computer system typically consists
of multiple wired and wireless interfaces. The counters of network interface ob-
ject mostly consist of volumetric traffic statistics and connection errors. The
majority of network activity consists of TCP or UDP traffic (in case of TCP/IP
network); therefore, we log counters of TCP and UDP objects together with
the network interface objects[2]. TCP activity mostly results because of internet
browsing. We use 48 counters which are associated with the network interface,
TCP and UDP objects. The description of selected Network counters is in Table
2. Figure 2(b) shows the plots of three important network counters – BytesTo-
tal/sec, BytesReceived/sec and BytesSent/sec. We can see the values of these
counters change significantly from instance number 2820 to 2840 – an interval in
which the bottleneck was created. We can see that bottleneck activity occur at
the same instances in both memory and network objects. This is because heavy
network activity has a direct effect on the memory of the system, so a bottleneck
at the network interface causes a bottleneck on the memory.

3.2 Feature Extractor

One can appreciate the fact that our initial list of features’ set consists of 33
memory and 48 network counters. It means that we need to keep track of 81
counters in our system which will not only increase the logging overhead but
also increase the dimensionality space of our feature set. Therefore, it becomes
relevant to use well know feature selection techniques to reduce the number of
counters in our features’ set.

We utilize two well known schemes for feature selection: (1) information gain
[19], and (2) chi-square method [20]. We provide our raw features’ set – obtained
from the object module – to these feature ranking schemes. Both schemes rank
features separately on the basis of a feature’s ability or role in enhancing the
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Table 2. Network Counters

TCP Segments Sent/sec: gives the rate at which TCP segments are sent.
TCP Segments Received/sec: gives the rate at which TCP segments are received, this includes segments

received in error.
Packets Received/sec: gives the rate at which packets are received on the network interface.
Packets Received Unicast/sec: gives the rate of (subnet) unicast packet delivery to a higher-layer protocol.
Bytes Total/sec: gives the rate of sending/receiving bytes over the network adapter.
Bytes Received/sec: is the rate at which bytes are received over each network adapter.
Packets/sec: is the rate at which packets are sent and received on the network interface.
TCP Segments/sec: is the rate at which TCP segments are sent or received using the TCP protocol.
OutputQueueLength is the length of the output packet queue (in packets).
TCPConnectionsEstablished gives the number of TCP connections whose current states are either

ESTABLISHED or CLOSE-WAIT.
TCPConnections.Active is the number of TCP connection transition from the CLOSED state to the

SYN-SENT state.
TCPConnections.Reset is the number of direct TCP connection transition to the CLOSED state.
TCPConnections.Passive is the number of direct TCP connection transition to the SYN-RCVD state

from the LISTEN state.
Packets.Outbound.Errors is the number of outbound packets that were not transmitted because of errors.
UDPDatagrams.Received.Errors is the number of received UDP datagrams that were not delivered due to reasons

excluding failure of application at the destination port.
TCPConnection.Failures is the number of times TCP connections have made a direct transition to

the CLOSED state from the SYN-SENT state or the SYN-RCVD state, plus the
number of times TCP connections have made a direct transition to the LISTEN
state from the SYN-RCVD state.

Bytes.Sent/sec is the rate at which bytes are sent over each each network adapter.
Packets.Sent.Unicast/sec is the rate at which packets are requested to be transmitted to subnet-unicast

addresses by higher-level protocols.
Packets.Sent/sec is the rate at which packets are sent on the network interface.

Table 3. Feature Selection

Objects Memory Network
Threshold IG 0.089 0.067
Feature IG 15 25

Threshold CS 5374.5 4823.9
Feature CS 15 25

classification accuracy. After applying both schemes, the number of features –
indicated in Table 3 – reduces from 81 to 40 (15 for memory and 25 for network).
We have selected only those top ranked features which are common in both
schemes. We now provide a brief description of each scheme to make the paper
self contained.

Information Gain. Information gain is an entropy based information theoretic
measure. A feature with higher information gain will have higher classification
power and vice versa. For a given attribute X and a class attribute Y , the
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uncertainty is given by their respective entropies H(X) and H(Y ). Then the
information gain of X with respect to Y is given by I(Y ;X), where

I(Y ;X) = H(Y )−H(Y |X)

Table 3 shows the threshold values of information gain for memory and network
objects. Figure 3(a) shows the normal probability distribution plot of information
gain of all features [19].

Chi-Squared Statistics. The χ2 method performs its feature selection by the
use of chi-squared statistics of each feature with respect to its class. Initially χ2

value of all features is calculated. The χ2 is calculated as:

χ2 =
n∑

i=1

k∑
j=1

(Oij − Eij)
Eij

(1)

where n is the number of intervals, k is the number of classes, O is the number of
samples and E is the expected frequency. Table 3 shows the threshold χ2 values.
The features with χ2 values greater then the threshold are eventually selected.
Figure 3(b) plots the normal probability distribution of Chi-Square method of
all features.

A closer look at Figure 3(a) and Figure 3(b) reveals that the memory and
network objects follow approximately the same distribution pattern with minor
differences. Therefore, a correlation of the top ranked features only, removes any
discrepancy in the selected features’ set. This analysis shows that Available
Bytes – a counter of memory object – is an important feature even though it is
a middle ranking feature. The reason is that a reduction in the available memory
counter depicts a serious bottleneck because it could lead to an eventual denial
of service. So the integrity of the selected feature set is an important issue [20].

3.3 Classifier

We have selected a number of well known classifiers in order to evaluate their
feasibility for our EvoPerf. The choice of six classifiers is as following:(1) UCS is a
state-of-the-art Michigan-style classifier [13], (2) two state-of-the-art Pittsburgh-
style classifiers – GAssist-ADI [16] and GAssist-Intervalar [15], (3) two state-of-
the-art neural network based classifiers – MLP [21] and RBF [22] and (4) a
decision tree J48 [23]. The purpose of using classifiers from diverse learning
paradigms is to select a classifier that provides the best accuracy with mini-
mum processing overheads. (Remember in our case real time deployment of the
system is very important.) We have used implementations of evolutionary clas-
sifiers – UCS [13], GAssist-Int [15], GAssist-ADI [16]– provided in toolkit KEEL
[12]; while for neural networks – RBF and MLP – we have used WEKA [5]. We
have used implementation of J48 in WEKA. We empirically determined the best
configurations for different parameters of each classifier.2

2 Parameters values of RBF: clustering seed = 1, minStdDev = 0.1, numClusters =

2, ridge = 1.0E-8.
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4 Experiments

We have collected the performance logs on a computer system in our networks
lab. The hardware specifications of the system are: Intel(R) Core2Duo 1.8 GHz
CPU, 2GB of RAM and 160GB of physical drive. We utilized Windows Perfmon
utility for monitoring performance counters. We have collected two sets of perfor-
mance counter logs: normal and artificially created bottleneck. We have selected
a sampling rate of 12 samples per minute. We have monitored a user’s activity
on the system for more than 15 hours over a period of 3 days to get a better
idea about the normal usage behavior. Later, we have created a number of per-
formance bottlenecks by maximizing network and memory usage of the system
for a period of 15 minutes. The results of our experiments show that the six
classifiers – UCS, GAssist-ADI, GAssist-Int, NN-MLP, NN-RBF and J48 – pro-
vide approximately the same accuracy. However, Neural Networks (NN) based
classifiers have significantly smaller processing overhead, but when compared to
machine learning algorithms, J48 outperforms the rest of the classifiers. This
makes machine learning algorithms suitable for real world deployment.

We now report the results of our experiments. We follow a 10-fold cross vali-
dation strategy in all experiments. The dataset of each object is divided into 10
folds, 9 folds are used for training and the rest is used for testing. The process
is reported for all folds and we report an average value of all folds.

Table 4. Results of Experiments on Raw Features’ Set

Features UCS Gassist-Int Gassist-ADI RBF MLP J48 Average

Memory 33

Acc 0.994 0.999 0.999 0.999 0.999 0.995

0.998
TP 140 194 195 195 195 195
TN 10805 10811 10812 10812 10812 10812
FP 56 2 1 1 1 1
FN 7 1 0 0 0 0

Network 48

Acc 0.999 1 1 1 0.997 1

0.999
TP 272 288 288 288 160 288
TN 10813 10813 10813 10813 10796 10813
FP 16 0 0 0 17 0
FN 0 0 0 0 16 0

The results are tabulated in Table 4. It is obvious from the results of our eval-
uation that all classifiers provide approximately the same accuracy. Therefore,
we now need to focus on our next objective: to reduce the processing overhead
of the classifiers. Towards this end, we evaluate the impact of feature selection
module.

5 Results and Discussions

In this section, we discuss the results obtained once we apply features’ selection
techniques (see Table 5). Once we compare the results reported in Table 4 with
those of Table 5, it is clear that the accuracy of the classifiers remain (almost)
unaffected even with a reduced features’ set. Now we analyze the impact of
features’ reduction on training and testing times of different classifiers.
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Table 5. Results of Experiments with Selected Features’ Set

Features UCS GAssist-Int GAssist-ADI MLP RBF J48 Average

Memory 15

Acc 0.998 0.999 0.999 0.999 0.999 0.995

0.998
TP 183 192 195 195 195 195
TN 10811 10812 10811 10812 10811 10812
FP 1 0 1 1 1 1
FN 13 4 1 0 1 0

Network 25

Acc 0.993 1 1 0.997 1 1

0.998
TP 207 288 288 288 288 288
TN 10813 10813 10813 10813 10813 10813
FP 0 0 0 0 0 0
FN 81 0 0 0 0 0

5.1 Timing Analysis

We run two sets of experiments: (1) measure training and testing times once
classifiers are using raw features’ set, and (2) repeat the same experiments as
in (1) but with reduced features’ set. The obtained results for the first case are
tabulated in Table 6. It is obvious from the table that J48 has the smallest
training times while other classifiers take significantly large amount of time –
GAssist-ADI is the worst – making them infeasible for realtime deployment on
a computer system. Similarly J48 takes almost the same time for testing as the
neural networks based classifiers.

Table 6. Testing and Training times (seconds) of classifiers using all features

Parameter Memory Network
Training Time Testing Time Training Time Testing Time

UCS 608.1766 31.0547 523.4749 42.2907
GAssist-ADI 2307.7 114.34 2187.12 81.6
GAssist-Int 2254.98 107 2096.54 78
NN-MLP 977.47 0.16 860.35 0.13
NN-RBF 6.33 0.04 6.35 0.08

J48 1.52 0.07 1.47 0.1

Table 7. Testing and Training times (seconds) of classifiers using selected features

Parameter Memory Network
Training Time Testing Time Training Time Testing Time

UCS 261.9124 15.2766 236.2954 14.7342
GAssist-ADI 1199.85 62.4 1018 27.4
GAssist-Int 1050.6 53.5 996.52 24
NN-MLP 137.95 0.02 113.21 0.02
NN-RBF 4.51 0.03 2.2 0.03

J48 0.57 0.04 0.66 0.04

Table 7 shows the training and testing times of different classifiers once we
have reduced our features’ set. The results prove our thesis: the training and
testing times of all classifiers are reduced more than 50% due to features’ se-
lection. Again, J48 is having the smallest training and testing time without
compromising on the detection accuracy.
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6 Conclusions

The major contribution of the paper is an online real time autonomous perfor-
mance monitoring system that has the capability to detect bottlenecks without
user intervention. In a large network of interconnected systems, the proposed
system can significantly reduce the workload of a system administrator by re-
lieving him of man-in-the-loop analysis; as a result, he can focus his attention
on countermeasure strategies. Our research shows that using performance coun-
ters of memory and network objects, classifiers can identify bottlenecks with a
high accuracy. Our future work involves using other objects and analyzing the
robustness of the system to evasion strategies.
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Abstract. Classification of audio recordings is often based on audio-signal fea-
tures. The number of available variables is usually very large. For successful
categorization in e.g. genres, substyles or personal preferences small, but very
predictive feature sets are sought. A further challenge is to solve this feature se-
lection problem at least approximately with short run lengths to reduce the high
computational load. We pursue this goal by applying asymmetric mutation op-
erators in simple evolutionary strategies, which are further enhanced by mixing
in greedy search operators. The resulting algorithm is reliably better than any
of these approaches alone and in most cases clearly better than a deterministic
greedy strategy.

Keywords: Evolutionary Strategies, Asymmetric Mutation, Feature Selection,
Music Information Retrieval, Machine Learning.

1 Introduction: Motivation and Music Classification as
Optimization Problem

Personal digital music collections have been growing rapidly during the recent years.
Approaches for smart navigation through large audio libraries or recommendation tech-
niques provide obviously needed remedies for music management. Supervised audio
classification methods build models from labeled music examples and extracted
features.

A large number of parameters have an impact on the classification results, e.g. for
feature extraction, different feature source time frames can be selected. Larger frames
allow more precise frequency resolution; however, if they are too large, several notes
can be mixed and it will be harder to learn anything at all from the spectrum distri-
bution. Feature processing optimization may select the optimal feature set or choose
different preprocessing methods. On the other hand, hyperparameters or model classes
of classification methods can be optimized over for achieving better performance.

Because of the nonlinear interactions between different parameters, search for op-
timal or sufficient solutions can profit from heuristics. Continuing our previous work
[15], [16], we concentrate here on the experiments for feature selection by evolutionary
strategies (ES). Since very different optimal feature sets may exist for different music
categories (as shown e.g. in [11]), the search for the best features must be done for each
category separately. Several facts motivate the additional search for rather small feature
sets: Firstly, the storage of more features requires large indexing disc space. Secondly,
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the algorithms for extraction, processing and classification need more computing time.
Moreover, classification models built from larger feature sets increase the danger to
overfit the currently used song sets, leading to a much weaker performance in general.
Introducing a bias towards less features can be seen as a regularization method to pro-
duce more stable solutions. Also, smaller sets provide a better possibility to interpret
the less complex classification model.

A simple (1+1)-ES [1] already obtains a good result, however it often selects rela-
tively large feature sets, and is sometimes beaten by a simple greedy strategy. Obvi-
ously, we have a two-criteria problem which could be approached by a multi-criterial
evolutionary algorithm (EA). We abstain from doing so because the reasonably avail-
able amount of function evaluations is very low (in the order of a few hundred). In this
work, we suggest to encode the need for small datasets directly into the mutation op-
erator via asymmetric mutation. Moreover, we show that importing parts of the greedy
strategy into the ES further improves performance, leading to a reliable and well per-
forming method that by design choses only small feature sets.

2 Music Genre Classification and Feature Selection

2.1 Genre Classification

In music classification, generally a set of raw features are extracted from segments of
a song, which describe different characteristics like timbre, harmony, melody, rhythm
or time and structural properties (for details see [16]). Using these covariates and some
given labels, which specify the genre of the song, a model is built by using one of
the many classification algorithms from machine learning. Models are evaluated by
applying them to new data, which were not used during training and are assumed to be
i.i.d. drawn from the same data generating process, and their predictions are measured
by applying an appropriate loss function. Often this is zero-one loss for classification,
but due to the segmentation of songs into multiple parts we use a mean squared error
on song level

E2 =
1
L

L∑
i=1

(ŝi − si)
2
. (1)

Here, L is the number of songs and the si are their true labels. As we only consider
binary categories, these will always be from {0, 1}.

ŝi =
1
P

P∑
j=1

ĝ(xij) (2)

is a “voting score”, obtained by applying the fitted learning machine ĝ to all partitions
of a song and averaging the predictions. The xij are the feature vectors corresponding
to the P partitions of song si.

It is usually unknown which learning algorithm performs best for a task at hand,
therefore extensive model selection (e.g. by cross-validation) among the different classes
of inducers has to be performed. As we want to focus on the feature selection algorithms
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and maintain comparability to our previous work, we will only consider decision trees
though. Further, the CART methodology [3] is very fast, does not require tuning of
many hyperparameters, and performs well in comparison to many other data mining
methods.

2.2 Feature Selection

There are at least two (somewhat contradictory) viewpoints of feature selection in ma-
chine learning: On the one hand, it is well known that in the setting of many noisy,
highly correlated and possibly irrelevant covariates the predictive power of a model fit-
ted on the whole feature set will be suboptimal [4]. Thus, feature selection might be
employed mainly as a method to improve generalization performance. On the other
hand, one could select variables to construct smaller, and therefore more interpretable
models, if one is mainly interested in understanding the data. In this case one might
even accept a substantial loss in predictive performance to achieve a smaller model. We
will follow the former perspective here.

One of the most popular class of feature selection algorithms - because of their gen-
eral applicability and strength to build very predictive models - are wrappers [7]. These
algorithms internally use a learning algorithm as a black-box and search for an optimal
set of input features w.r.t. the learner by repeatedly adjusting the variable set, fitting a
model and evaluating it. This basically reduces the feature selection problem to a dis-
crete, binary optimization problem, with a possibly noisy target function, as the target
value can vary because of either the stochastic nature of the resampled training and
test sets or because of a stochastic model fitting scheme. For an overview of competing
feature selection techniques,like filters and embedded methods, see [4].

2.3 Categories and Feature Sets

For the following music classification experiments we created an mp3 database with
120 commercial albums, whose songs are labeled as Classic, Pop/Rock, Rap, Elec-
tronic, R&B, ClubDance and Heavy Metal by AllMusicGuide1. The relations between
songs and categories were manually created by the AMG music experts. As demon-
strated in [11], different features might be relevant to identify each category, so we
transformed the multi-class problem into seven binary ones by “one-vs-rest”.

For the training of classification models we employ two audio feature sets: An older
one with 198 features (most of them described in [14]) and a newer one consisting
of 572, which were extended by MIR Toolbox functions (see [8]) like tonal centroids,
fluctuation patterns, etc. It is possible to incorporate other feature groups (playlists and
tags from the web community, metadata etc.), however they are not always available or
can be erroneous - only audio signal based features guarantee their availability for the
automatic extraction for each music piece from any personal music collection.

In contrast to the experiments in [16], the dimensions of the multidimensional fea-
tures, like twelve chroma vector values, are treated as independent variables, so that
it is e.g. possible to use only the first and third chroma characteristics, discarding all

1 www.allmusic.com, visited in April 2010.
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others. This allows more flexible feature selection while increasing the complexity of
the optimization problem.

3 Search Strategies

For large feature spaces the wrapper approach is computationally expensive and its
performance obviously depends on the efficiency of the used search algorithm. It should
be mentioned though, that more complex search methods as well as very long runs
or even exhaustive searches do not necessarily equal superior results in generalization
performance, as overfitting might occur on this level as it possibly does on the lower
level of model fitting itself [9].

As we are mainly interested in the properties of the optimization techniques itself,
we don’t employ a more appropriate, but even more time-consuming setup like nested
cross-validation. Instead use 20 songs in the training set (each with roughly 100 seg-
ments) as prototypes for the categories to be learned, and a rather large optimization
set of 120 songs for feature set evaluation to avoid overfitting through extensive search.
We also regularize the search by only allowing a rather low number of 500 function
evaluations [10].

3.1 Monte Carlo Search (MC / Random)

As a baseline comparison we use a random search which simply draws bit vectors from
a binomial distribution, evaluates the corresponding feature sets w.r.t. the optimization
set and selects the one with the minimal E2. Therefore, feature fi occurs with proba-
bility 0.5 in every random feature set and on average the random feature sets are half as
large as the full set.

3.2 Greedy Forward Search with Correlation Heuristic (GFS)

Because the commonly used sequential forward selection cannot be used due to the
restricted number of function evaluations, we construct a variant which rapidly moves
through the variables in a greedy, heuristically guided order: On the training set we
rank the features by considering the absolute empirical correlation |ρ(fi, y)| between
the feature vector fi and the binary label vector y of the song segments. Now, starting
from the empty set, we successively try to add variables to the current set in the order
of their ranking. If a variable improves the performance on the optimization set, it is
accepted, otherwise not and the following variable in the ranking is tried.

This technique is sometimes called Rank-Search and variants of it are proposed in
[5,12].

3.3 Evolutionary Strategy with Local Operators (ES-LO)

We consider the (1+1)-ES with local, hybrid operators to select more uncorrelated fea-
ture sets as introduced in [16]. To obtain smaller feature sets, we enhance it by an
asymmetric mutation operator as in [6], using different mutation probabilities for set
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and unset bits. Let the current feature set be a binary vector m with length N . The
mutation is a bit flip for the ith feature with probability

pm(i) =
γ

N
|mi − p01| (3)

γ impacts the general mutation probability and can be interpreted as a step size. p01

controls the balance between the number of 1- and 0-entries in the bit feature vector
[6]. If e.g. only five percent of ones are desired, p01 is set to 0.05. It can be seen as
a probability to switch a bit on, if it is currently not in the solution, and 1 − p01 as a
probability to switch it off, if it is.

After the successful mutations we apply a neighborhood search. Here the mean em-
pirical correlation between a feature vector f and the M features currently in the set is
calculated:

R(f) =
1
M

M∑
j=1

|ρ(f , fj)| . (4)

Briefly speaking, the local search operator LO+ adds a new feature with the smallest
R(f), trying to extend the feature set with another covariate which is least correlated
to the current. LO− removes the feature with the highest R(f), removing the covariate
with the highest correlation with the current features.

3.4 Evolutionary Strategy (ES)

This is the same search algorithm as the previous ES-LO, simply without the local oper-
ators. We consider this algorithm in order to analyze whether the previously mentioned
local operators really improve the efficiency of the search.

3.5 Evolutionary Strategy with Success Rule Adaptation (ES-SRA)

One of the early attempts to adapt the mutation strength of an ES was the 1/5 success
rule, with increasing mutation strength for more than 1/5 successes, and decreasing mu-
tation strength for less than 1/5 successes [18]. However, this method was envisioned
for real-valued search spaces and as Schwefel has shown at the same time, does not
work reliably for discretized search spaces [13]. The reason for this failure is that the
problem must provide maximal success rates for minimal steps, which is not generally
the case already for integer variables, let alone for bit vectors. We assume that it is also
not the case for our problem and thus use a different rule that increases the mutation
probability pm(i) by a factor of 1.2 if less than 1/10 successes are recorded and de-
crease it by the same factor if more than 3/10 successes are recorded. As the number
of function evaluations for one run is very limited, we employ a small window size of
10 for measuring success rates. This method may be interpreted as ‘controlled restart’
to get out of an area where Hamming-1 distance steps are very rarely successful. In-
terestingly, our scheme has a predecessor in [19], where for minimal success rates the
mutation strength is doubled.
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3.6 Evolutionary Strategy with Greedy Heuristic (ES-GH)

This is the same search algorithm as the plain ES, but with a modified mutation operator.
As section 4 will show, GFS performs very well on some data sets. Therefore we try to
encode its greedy heuristic into the mutation operator of the ES:

pm(i) =
γ

N
|mi − p01| · |mi − |ρ(fi,y)|| (5)

The second factor in pm(i) forms a correlation-based probability to switch bits on with
higher probability, which are highly correlated with the target, and to switch bits off
which are not. We simply multiply the two probabilities from the mutation operator of
the normal ES and the correlation-based heuristic to form a combined probability and
incorporate both advantages. Section 4 also shows, that SRA is essential for the success
of the optimization, therefore we use it here as well to adapt the step size γ.

4 Experimental Assessment of Search Strategies

We are most interested in assessing the performance of the local operators (LO), the
success-rule adaptation (SRA) and the greedy-heuristic (GH) enhanced ES variants
against the simple Monte Carlo search and the Greedy Forward Search (GFS). This
is tested in two steps, first LO and SRA, and the most successful variant is then tried
with and without GH enhancement. Possible parameter variations and representation
issues are either used throughout the following experiments (asymmetry of mutations)
or dealt with in the pre-experimental planning phase (mutation strength and base feature
set). The overall goal of our experiments is to compose the best achievable ES variant
and test if it is reliably better than MC and GFS.

For our experiments we used the statistical programming language R [17] and the
package mlr [2], which allows to select from a wide range of machine learning, variable
selection and hyperparameter tuning methods.

Experiment: Do local operators and/or success rule adaptation of mutation strenghts
improve ES performance?

Pre-experimental planning. First experimentation showed that for ES, ES-LO and ES-
SRA the mutation probability parameter γ can be set to 16 for the old and new feature
sets. Comparing the MSE values attained for these two representations leads to the
conclusion that the new, larger feature sets most often allow finding better classifiers. In
the following, we therefore fix γ at 16 and employ only the new feature sets. Moreover,
the run lengths are fixed to 500 function evaluations as a good compromise between
achievable performance and consumed real time (around 2h for one run on a modern
PC). For the same reason, we perform only 5 repeats.

Task. A method is recognized as better than another, if its average final MSE is better
in at least 4 of the 7 categories.

Setup. We test 3 ES variants against each other, ES-NLO-SRA (ES without local op-
erators but with success rule adaptation), ES-LO-NSRA (ES-LO without SRA) and
ES-LO-SRA (both switched on), each time with asymmetric bit flip probability set to
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Fig. 1. Comparison of different ES variants. Curves are averaged over 5 runs.

p01 ∈ {0.05; 0.10; 0.50}. All runs are done over all 7 categories. Note that p01 = 0.5
means symmetric mutation.

Results/Visualization. The average performance of all variants is plotted in fig. 1 for
3 of the 7 categories2. The best recorded variant of our comparison is ES-NLO-SRA-
16-05 (no local operators, success rule adaptation, p01 = 0.05, by winning 4 categories
and being placed second, otherwise.

Observations. In general (over all categories), we can state that the local operators do
not increase performance but sometimes decrease it. However, the success rule adapta-
tion is obviously necessary to reach good MSE values. Concerning the mutation prob-
abilities, the results get the better, the stronger the deviation from symmetry is.

Discussion. It is no surprise that the asymmetric mutation improves performance as
sparsely selecting alternative algorithms (e.g. greedy feature selection) also cope well
with the treated problems, meaning that there must be good small feature sets.

The failure of the local operators can be explained by considering the extreme case of
completely irrelevant, random features. This will neither be removed by LO−, as they
are completely uncorrelated to all features currently in the set, and they will constantly
be proposed to be added by LO+ for exactly the same reason. We also verified this
undesirable effect on synthetic data sets, were the truly relevant features are known.

However, it is more difficult to explain why the success rate adaptation does so well.
We therefore visualize the current feature set and its Hamming-1 distance throughout
a typical run of ES-NLO-SRA-16-05 in fig. 2. It gets clear that in higher generations,
most 1-bit flips are neutral, and there are only very few 1-bit mutations left that lead to
an improvement. In such situations, it makes sense to increase the mutation probability
to flip several bits at once.

Experiment: Is a greedy-heuristic enhanced ES reliably better than GFS/MC?

Pre-experimental planning. In initial tests, we try several ES-GH parameterizations
and set the p01 again to 0.05 and γ = 32 as the flip probabilities are reduced by the
multiplication in (5).

2 Complete results and plots are available as supplementary material from
http://www.statistik.uni-dortmund.de/˜bischl/ppsn2010_suppl

http://www.statistik.uni-dortmund.de/~bischl/ppsn2010_suppl
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Task. As before, an algorithm is termed better than another one if it is better on average
in at least 4 categories.

Setup. We run the best method of experiment 1 (ES-NLO-SRA-16-05) against the full
featured classifier, random search, greedy forward search and ES-GH (with SRA), again
over all 7 categories.

Results/Visualization. Figure 3 reports the (averaged where applicable) performance
of all algorithms on 3 of 7 categories.

Observations. The greedy-enhanced ES-GH performs consistently better than ES-NLO-
SRA-16-05, and is able to achieve better MSE values than GFS in 5 of 7 cases. MC and
the full featured classifier are much worse in all cases. Over all categories, the ES-GH
seems to be much more robust than GFS which sometimes fails dramatically. Even for
the 2 lost categories, ES-GH achieves acceptable results.

Discussion. Importing a greedy mechanism into the previously best ES variant obvi-
ously leads to the envisioned effect: We can combine the best of both methods by ob-
taining a reliable algorithm that always performs well and is in most cases better than
all others we tried.
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Fig. 2. Analysis of Hamming-1-neighborhood for a run of ES-NLO-SRA-16-05, logged at differ-
ent numbers of function evaluation during the run. The left pattern shows the variables currently
in the feature set, a black square means the bit is switched on. The middle plot is produced by flip-
ping each bit separately and measuring the difference in MSE to the current solution. A positive
value means improvement. A color gradient from white to red is used for improvement, and from
white to blue if flipping the bit worsens the solution. The right plot simply shows a histogram of
the differences in MSE from the middle plot, capped at 25.
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Fig. 3. Comparison of best ES variant of experiment 1 with baseline methods and improved ES.
Curves are averaged over 5 runs.

5 Conclusions and Outlook

In this work we continued the design of ES for feature selection in music classification.
We have seen that enforcing sparse selection of features by means of an asymmetric
mutation operator produces competitive results after the optimization. This leads to
a reduced number of features which must be computed and stored and improves the
generalization performance.

We also demonstrate by experiment, that previously proposed local operators do not
lead to a better algorithm, but instead might deteriorate the performance, and we also
provide theoretical aspects to explain this result. A rather simple greedy Rank-Search is
presented, which sometimes achieves quite impressive performance results by selecting
extremely small feature sets. But this is not a reliable behavior across all data sets, so
we show how to combine both advantages of the ES-LO with success rate adaptation
and the GFS into a reliably well performing method.

It seems quite clear, that the full potential to include heuristics for feature selection
into the stochastic optimization is yet to be explored. If one can allow for only a low or
moderate number of function evaluations, guiding the search into the relevant areas of
the search space quickly - even by crude measures - will be crucial for success.
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Abstract. In the paper we propose a new evolutionary algorithm for

induction of univariate regression trees that associate leaves with sim-

ple linear regression models. In contrast to typical top-down approaches

it globally searches for the best tree structure, tests in internal nodes

and models in leaves. The population of initial trees is created with

diverse top-down methods on randomly chosen subsamples of the train-

ing data. Specialized genetic operators allow the algorithm to efficiently

evolve regression trees. Akaike’s information criterion (AIC) as the fit-

ness function helps to mitigate the overfitting problem. The preliminary

experimental validation is promising as the resulting trees can be signifi-

cantly less complex with at least comparable performance to the classical

top-down counterparts.

Keywords: Model trees, evolutionary algorithms, regression trees, AIC,

simple linear regression.

1 Introduction

Data mining [7] is a process of extracting useful information, relationships and
hidden patterns in large databases. One of data mining techniques is predic-
tive modeling also known as supervised prediction or supervised learning. The
most common predictive task in data mining applications besides classification
is regression. Regression and model trees are now popular alternatives to classi-
cal statistical techniques like standard regression or logistic regression [10]. The
tree-based approaches are gaining in popularity because of their ease of applica-
tion, fast operation and effectiveness. Additionally, the hierarchical tree structure
closely resembles a human way of decision making which makes regression trees
natural and easy to understand even for inexperienced analysts.

Recently many regression and model tree systems have been proposed. One
of the first solutions was presented in the seminal book describing the CART
system [4]. CART algorithm finds a split that minimizes the sum of squared
residuals of the model when predicting and builds a piecewise constant model
with each terminal node fitted by the training sample mean. In the next years
multiple authors improve upon the accuracy of regression trees by replacing the

R. Schaefer et al. (Eds.): PPSN XI, Part I, LNCS 6238, pp. 324–333, 2010.
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single predicted values in the leaves by more advanced models (e.g. linear). M5
[20], SECRET [6], SMOTI [15] or RT [21] are some of the model tree algorithms
that have been proposed.

All aforementioned systems induce regression and model trees in a top-down
approach. Starting from the root node they search for the locally optimal split
(test) according to the given optimality measure and then the training data is
redirected to newly created nodes. This procedure is recursively repeated until
the stopping criteria are met. Finally, the post-pruning is applied to improve the
generalization power of the predictive model. Such a greedy technique is fast and
generally efficient in many practical problem, but obviously does not guarantee
the globally optimal solution. It can be expected that a more global induction
could be more adequate in certain situations.

In this paper we want to investigate a global approach to model tree induction
based on a specialized evolutionary algorithm. Our work covers the induction
of univariate regression tree with simple linear models in leaves. The proposed
solution may be applied to the problems that are primarily concerned with the
regression of an outcome onto a single predictor. As an example the original
genetic epidemiology problem required only consideration of simple linear re-
gression models like [19] to locate genes associated with a quantitative trait
of interests. There are other systems that associate leaves with simple linear
regression like the one described by Alexander and Grimshaw [1] called Treed
Regression.

Previously performed research showed that evolutionary inducers are capable
to efficiently induce various types of classification trees: univariate [11], oblique
[12] and mixed [13]. In our last paper we applied a similar approach to obtain
accurate and compact regression trees [14]. In this work we would like to extend
standard regression trees by replacing single predicted values (means) in leaves
by simple linear models. Additionally, the search for an optimal structure was
modified and now is driven by the Akaike’s information criterion (AIC) [2].

The rest of the paper is organized as follows. In the next section a new evo-
lutionary algorithm for global induction of univariate model trees is described.
Experimental validation of the proposed approach on artificial and real-life data
is presented in section 3. In the last section, the paper is concluded and possible
future works are sketched.

2 Evolutionary Induction of Model Trees

In the proposed approach the general structure of the system follows a typical
framework of evolutionary algorithms [16] with an unstructured population and
a generational selection.

2.1 Representation

Model trees are represented in their actual form as classical univariate trees.
Each test in a non-terminal node concerns only one attribute (nominal or con-
tinuous valued). Additionally, in every node information about learning vectors
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associated with the node is stored. This enables the algorithm to perform more
efficiently local structure and tests modifications during applications of genetic
operators.

In a case of a continuous-valued feature typical inequality tests are applied.
As potential splits only precalculated candidate thresholds are considered. A
candidate threshold for the given attribute is defined as a midpoint between such
a successive pair of examples in the sequence sorted by the increasing value of the
attribute, in which the examples are characterized by different predicted values.
Such a solution significantly limits the number of possible splits and focuses the
search process. For a nominal attribute at least one value is associated with each
branch. It means that an inner disjunction is built into the induction algorithm.

A simple linear model is calculated at each terminal node of the model tree
using standard regression technique [17]. A dependent variable Y is modeled as
a linear function of single variable X:

Y = β0 + β1 ∗X (1)

where X is one of the independent variables, β0 is the intercept and β1 is the
slope of the regression line that minimizes the sum of squared residuals of the
model.

2.2 Initialization

Like in M5 approach [20] we first learn a standard regression tree (with con-
stants in the leaves) and only afterwards we turn it into a model tree. Initial
individuals are created by applying the classical top-down algorithm to ran-
domly chosen subsamples of the original training data (10% of data, but not
more than 500 examples). Additionally, for every initial tree one of three test
search strategies in non-terminal nodes is applied. Two strategies come from the
very well-known regression tree systems i.e. CART [4] and M5 [20] and they are
based on Least Squares or Least Absolute Deviation. The last strategy is called
dipolar, where a pair of feature vectors (dipole) is selected and then a test is con-
structed which splits this dipole. Selection of the dipole is randomized but longer
(with bigger difference between dependent variable values) dipoles are preferred
and mechanism similar to the ranking linear selection [16] is applied. The recur-
sive partitioning is finished when all training objects in a node are characterized
by the same predicted value (or it vary only slightly [20]), the number of objects
in a node is lower than the predefined value (default value: 5) or the maximum
tree depth is reached (default value: 10).

One of two search strategies of predicted variable used in linear model at
leaves is applied. First one calculates simple linear regression model for each
attribute and applies the one that minimizes the sum of squared residuals of the
linear regression model. In second strategy the simple linear model is built from
training objects in this leaf on the randomly chosen independent variable.
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2.3 Termination Condition

When the fitness of the best individual in the population does not improve
during the fixed number of generations (default value is equal 1000) the evolution
terminates. Additionally maximum number of generations is specified, which
allows limiting the computation time in case of a slow convergence (default
value: 5000).

2.4 Genetic Operators

In our previous paper [14] we have presented two specialized genetic operators
corresponding to the classical mutation and cross-over. We have extended them
due to simple linear model in leaves.

Application of both operators can result in changes of the tree structure, tests
in non-terminal and models in terminal nodes. After applying any operator it is
usually necessary to relocate learning vectors between parts of the tree rooted in
the altered node. This can cause that certain parts of the tree does not contain
any learning vectors and has to be pruned.

Mutation operator. A mutation-like operator is applied with a given prob-
ability to a tree (default value is 0.8) and it guarantees that at least one node
of the selected individual is mutated. Firstly, the type of the node (leaf or in-
ternal node) is randomly chosen with equal probability and if a mutation of a
node of this type is not possible, the other node type is chosen. A ranked list of
nodes of the selected type is created and a mechanism analogous to ranking lin-
ear selection is applied to decide which node will be affected. While concerning
internal nodes, the location (the level) of the node in the tree and the quality
of the subtree starting in the considered node are taken into account. It is ev-
ident that modification of the test in the root node affects whole tree and has
a great impact, whereas mutation of an internal node in lower parts of the tree
has only a local impact. In the proposed method, nodes on higher levels of the
tree are mutated with lower probability and among nodes on the same level the
absolute error calculated on the learning vectors located in the subtree is used
to sort them. As for leaves, only absolute error is used to put them in order, but
homogenous leaves are not included. As a result, leaves which are worse in terms
of accuracy are mutated with higher probability.

Modifications performed by mutation operator depend on the node type (i.e.
if the considered node is a leaf node or an internal node). For a non-terminal
node a few possibilities exist:

– A completely new test can be found by means of the dipolar method used
for the initialization;

– The existing test can be altered by shifting the splitting threshold (continuous-
valued feature) or re-grouping feature values (nominal features);

– A test can be replaced by another test or tests can be interchanged;
– One sub-tree can be replaced by another sub-tree from the same node;
– A node can be transformed (pruned) into a leaf.
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After performed mutation in internal nodes the models in corresponding leaves
are not recalculated for performance reasons. However, adequate linear models
can be found while performing the leaves mutations. Modifying a leaf makes
sense only if it contains objects with different dependent variable values. For a
terminal node two possibilities exists:

– The leaf is transformed into an internal node and a new test is chosen in the
aforementioned way;

– Simple linear model is replaced by other one that is calculated on different
predictor variable.

Cross-over operator. In the proposed solution there are three variants of
recombination. All of them start with selecting of cross-over positions in two
affected individuals. One node is chosen randomly in each of two trees. In the
most straightforward variant, the subtrees starting in the selected nodes are
exchanged. This corresponds to the classical cross-over from genetic program-
ming. In the second variant, which can be applied only when non-internal nodes
are randomly chosen and the numbers of outcomes are equal, only tests asso-
ciated with the nodes are exchanged. The third variant is also applicable only
when non-internal nodes are drawn and the numbers of descendants are equal.
Branches which start from the selected nodes are exchanged in random order.

2.5 Selection

As a selection mechanism the ranking linear selection is applied. Additionally,
the individual with the highest value of the fitness function in the iteration is
copied to the next population (elitist strategy).

2.6 Fitness Function

A fitness function drives the evolutionary search process and is very important
and sensitive component of the algorithm. When concerning any prediction task
it is well-known that the direct minimization of the prediction error measured
on the learning set leads to an overfitting problem. In a typical top-down induc-
tion of decision trees, the over-specialization problem is partially mitigated by
defining a stopping condition and by applying a post-pruning. In our previous
work [14] the search for an optimal structure was embedded into the evolution-
ary algorithm by incorporating a complexity term into the fitness. This term
worked as a penalty for increasing the tree size, however, there were no optimal
value of it for all possible datasets.

In presented approach, we decided to use Akaike’s information criterion (AIC)
[2] as the fitness in the search for an optimal structure. This measure of the
goodness of fit of an estimated statistical model works as a penalty for increasing
the tree size.
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The fitness function is minimized and for binary regression tree models has
the following form:

FitnessAIC(T ) = −2 ∗ ln(L(T )) + 2 ∗ k(T ) (2)

where L(T ) is the maximum of the likelihood function of the tree T and k(T )
is the number of model parameters in the tree. Log(likelihood) function L(T ) is
typical for regression models [9] and can be expressed as

ln(L(T )) = −0.5n ∗ [ln(2π) + ln(SSe(T )/n) + 1] (3)

where SSe(T ) is the sum of squared residuals of the tree T and n is the number
of observations. The term, 2 ∗ k(T ) can also be viewed as a penalty for over-
parametrization. In our approach we set k(T ) = Q(T ) + 1 in AIC criterion
where Q(T ) is equal a number of terminal nodes in model tree T . Then, the
fitness function is:

FitnessAIC(T ) = n(ln(2π) + ln(SSe(T )/n(T )) + 1) + 2(Q(T ) + 1) (4)

In [10] authors suggested that the effective number of parameters estimated is
actually much higher than Q(T ) + 1 due to the split rule selections that were
made during the T tree construction process. However, higher k(T ) value in AIC
criterion leads to the smaller trees with less predictive accuracy. Further research
to determine the appropriate value of complexity penalty term in the AIC crite-
rion for proposed solution is required and other commonly used measures such as
Bayesian information criterion (BIC) [18] or structural risk minimization (SRM)
[5] should be considered.

3 Experimental Validation

Validation of the global approach to induction of model trees (denoted in tables
as GMT) was performed on synthetical and real-life datasets. Obtained results
are compared with two model trees and two regression trees. For the purpose of
comparison, we have implemented the top-down regression model with simple
linear regression in each leaf alike to Treed Regression [1] algorithm (denoted as
TR). However, for better performance we have improved pruning to the AIC
cost-complexity pruning proposed in [22]. We also present the results for more
advanced model tree M5 [20] proposed by Quinlan.

For real-life datasets results obtained by the classical top-down inducer REP-
Tree, which is publicly available in the Weka system [8], are also presented. REP-
Tree builds a regression tree using variance and prunes it using reduced-error
pruning (with backfitting). Finally, we enclose the results of global induction of
regression tree approach (denoted as GRT) from our previous work [14].

Each system run with default values of parameters. All results presented in
the table correspond to averages of 10 runs and were obtained by using test sets
(when available) or by 10-fold cross-validation. The average number of nodes is
given as a complexity measure of regression and model trees.
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Fig. 1. Examples of artificial datasets (armchair2 - left, ski jump - right)

Synthetical datasets. First group of experiments was performed on two simple
artificially generated datasets with analytically defined decision borders. Both
datasets contain a dependent feature that is linearly dependent with one of two
independent features. One thousand observations for each dataset were divided
into a training set (33.3% of observations) and testing set (66.7%).

Illustrated in figure 1 armchair2 function is defined as:

g(x, y) =

⎧⎪⎪⎨⎪⎪⎩
x+ 1 x ∈ [0, 1]
−x− 6 x ∈ [4, 5]
−0.5y + 1.5 x ∈ [1, 4], y ∈ [0, 3]
3y − 9 x ∈ [1, 4], y ∈ [3, 5]

(5)

and the ski jump function:

g(x, y) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−x+ 1 x ∈ [0, 1], y ∈ [0, 1]
−2x+ 2 x ∈ [0, 1], y ∈ [1, 2]
−3x+ 3 x ∈ [0, 1], y ∈ [2, 3]
−4y + 4 x ∈ [1, 2], y ∈ [0, 1]
2y − 2 x ∈ [1, 2], y ∈ [1, 2]
3y − 4 x ∈ [1, 2], y ∈ [2, 3]
x− 2 x ∈ [2, 3], y ∈ [0, 1]
2x− 4 x ∈ [2, 3], y ∈ [1, 2]
3x− 6 x ∈ [2, 3], y ∈ [2, 3]

(6)

Table 1. Results obtained on the synthetical datasets armchair2 and ski jump. Root

mean squared error (RMSE) is given as the error measure and number of nodes as the

tree size.

GMT M5 TR
Dataset RMSE Tree size RMSE Tree size RMSE Tree size

armchair2 0.12 6.5 0.37 11.0 0.35 24.0

ski jump 0.30 10.9 0.61 26.0 0.54 25.0
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Fig. 2. Examples of model trees for armchair2 (GMT - left, TR - right) from the

experiment

Table 1 presents obtained results only for model trees as the regression trees on
those synthetic datasets are not competitive due to the training sample mean in
terminal nodes.

It should be noticed that in both cases trees obtained by GMT have optimal
or almost optimal structure and gain very small error. For the top-down inducers
both problems were too difficult. M5 and TR generated overgrown trees and as
a result the testing error is higher. Additionally, the reason why M5 model tree
performed lower than TR is that the M5 tried to use both independent features
in linear model at leaves.

The advantage of the global approach can be observed in the in figure 2 where
the optimal model trees for GMT and TR on the first dataset armchair2 are
illustrated. We can see that the first split which minimizes the sum of squared
residuals (y < 3) is not optimal as it leads to overgrown tree.

Real-life datasets. In the second series of experiments, several datasets taken
from UCI Machine Learning Repository [3] or provided by L. Torgo on his web-
site are analyzed to assess the performance of the proposed system in solving
real-life problems. Table 2 presents characteristics of investigated datasets and
obtained results. More complex model trees like M5 or SMOTI were not in-
cluded in these experiments as in this paper we are focussing on comparing the
improvement of global induction for regression trees and model trees that as-
sociate leaves with simple linear regression. We plan to extend evolving model
trees with multivariate linear regression so it will be possible to compare with
more advanced modeling trees.

It can be observed that the prediction accuracy of model trees that associate
leaves with simple linear regression models is comparable to regression trees
that have training sample mean in terminal nodes. It is not surprising that size
of the trees are smaller in favor to model trees however, it should be noticed
that globally induced trees are less complex. Proposed solution GMT performed
better on 8 out of 10 datasets comparing to TR and 9 out of 10 comparing
to REPTree in term of accuracy. Tree size for GMT was lower on almost all
datasets.
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Table 2. Characteristics of the real-life datasets (number of objects/number of numeric

features/number of nominal features) and obtained results. Root mean squared error

(RMSE) is given as the error measure and number of nodes as the tree size.

GMT TR GRT REPTree
Dataset Properties RMSE size RMSE size RMSE size RMSE size

Abalone 4177/7/1 2.297 7.7 2.636 10.9 2.314 51.8 2.358 201

Auto-Mpg 392/4/3 3.434 9.9 3.670 73.5 3.572 45.4 3.646 94

Auto-Price 159/17/10 2507.6 3.7 2433.9 9.9 2618.9 13.8 2760.5 32

Delta Ailerons 7129/6/0 0.000178 11.1 0.000185 7.2 0.000179 82.6 0.000175 291

Delta Elevators 9517/6/0 0.00150 9.3 0.00157 16.2 0.00148 78.3 0.00150 319

Housing 506/14/0 4.322 9.1 4.495 11.8 4.126 32.3 4.84 41

Machine CPU 209/7/0 67.53 3.8 78.18 11.3 63.99 14.8 92.34 15

Pyrimidines 74/28/0 0.1090 4.52 0.0987 5.8 0.1011 10.7 0.1355 1.0

Triazines 186/61/0 0.1405 4.7 0.1564 3.9 0.1387 13.7 0.1517 7.0

Wisconsin Cancer 194/32/0 34.33 3.1 35.13 1.9 39.22 16.3 35.88 9.0

4 Conclusion

In the paper a new global approach to model tree learning is presented. In con-
trast to classical top-down inducers, where locally optimal tests are sequentially
chosen, both the tree structure, tests in internal nodes and models in leaves are
searched in the same time by specialized evolutionary algorithm. This way the
inducer is able to avoid local optima and to generate better predictive model.
Even preliminary experimental results show that the globally evolved regression
models could be competitive compared to the top-down based counterparts, es-
pecially in term of tree size.

The presented approach is constantly improved and currently we are working
on introducing oblique tests in the non-terminal nodes. On the other hand,
we plan to extend the knowledge representation by evolving model trees with
multivariate linear regression. However, the proposed solution may be applied
to the problems that are primarily concerned with the regression of an outcome
onto a single predictor.
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Abstract. This paper is concerned with designing self-driven fitness

functions for Embedded Evolutionary Robotics. The proposed approach

considers the entropy of the sensori-motor stream generated by the robot

controller. This entropy is computed using unsupervised learning; its

maximization, achieved by an on-board evolutionary algorithm, imple-

ments a “curiosity instinct”, favouring controllers visiting many diverse

sensori-motor states (sms). Further, the set of sms discovered by an in-

dividual can be transmitted to its offspring, making a cultural evolution

mode possible. Cumulative entropy (computed from ancestors and cur-

rent individual visits to the sms) defines another self-driven fitness; its

optimization implements a “discovery instinct”, as it favours controllers

visiting new or rare sensori-motor states. Empirical results on the bench-

mark problems proposed by Lehman and Stanley (2008) comparatively

demonstrate the merits of the approach.

1 Introduction

Evolutionary Robotics (ER) aims at designing robust autonomous robots, and
in particular robust robot controllers [15]. The success of ER critically depends
on the optimization objective (or fitness function) [14]. For the sake of com-
putational and experimental convenience, the ER literature mostly considers
simulation-based approaches, where the controller fitness is computed by sim-
ulating the robot behaviour. The price to pay for this convenience is that the
controller behaviour suffers from the so-called reality gap, i.e. its performance
might dramatically decrease when ported on-board [12]. While Embedded Evo-
lutionary Robotics [2] sidesteps the reality gap as evolutionary computation is
achieved on-board, the challenge is to design some fitness either based on en-
vironmental cues (e.g. about the target location), or not requiring any ground
truth at all, i.e., self-driven fitness.

Developmental Robotics [16] also aims at principled ways of building intelli-
gent agents. The vision, strongly inspired from Brooks’ [3], states that (i) the
world is its best model and the robot representations must be grounded in its
physical perceptions; (ii) robots must be “autonomous, self-sufficient, embodied,
and situated” (Complete Agent principle). The search for self-driven objectives,

� Funded by EU FP7, FET IP SYMBRION No. 216342, http://symbrion.eu/

R. Schaefer et al. (Eds.): PPSN XI, Part I, LNCS 6238, pp. 334–343, 2010.
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leading the robot to explore its world and gradually learn new skills, thus is at
the core of Developmental Robotics [1].

The present work, at the crossroad of Developmental and Embedded ER,
focuses on self-driven fitness functions. An original approach, amenable to on-
board evolutionary optimization and rooted in Information Theory, is presented
as an Intrinsic Motivation Systems [1]. This approach defines a “curiosity” in-
stinct, which enforces the exploration by the robot of its environment. Both
approaches exploit the robotic log recording for each time step the sensor and
motor values, or Sensori-Motor Stream (SMS). The difference is twofold. On the
one hand, the presented approach relies on (computationally frugal) unsuper-
vised learning [6] whereas [1] uses supervised ML to build a forward model. On
the other hand, it defines a representation of the robot world: a set of sensori-
motor states (sms), built from the SMS, supports the computation of the SMS
entropy; the higher the entropy, the richer and the more diversified the world
seen by the current controller. Maximizing the SMS entropy thus defines an
efficient, self-driven, “curiosity instinct” enforcing the exploration of the world.

The second contribution of the paper is another self-driven fitness function
dubbed “discovery instinct”. It exploits the fact that sensori-motor states (sms)
can be transmitted from parents to offspring, thus enabling some cultural evolu-
tion mode [5,8]. Formally, the discovery fitness computes the cumulative entropy
defined from the visits of all robots to all sms, until the current individual; it thus
rewards individuals that discover sensori-motor states which have not yet been
visited (or rarely visited) by its ancestors. Discovery fitness might be thought of
as a fitness sharing mechanism, except for the fact that it rewards individuals
which differ from their ancestors, as opposed to, their peers.

The merits of the two self-driven fitness functions, implemented within an em-
bedded (1+1)-Evolution Strategy [2], are comparatively assessed on the bench-
mark problems defined by Lehman and Stanley [11], in terms of their patrolling
activity (visiting the various places of the arena, and visiting the chambers far-
thest apart from the starting point). The main limitation of the approach is to
require a stimulating interaction between the environment and the robot sen-
sors, conducive to diversified sensory experiences: if located in the middle of
nowhere, or endowed with too poor sensors, the robot can only experience a few
sensori-motor states and entropy provides no incentive for exploration.

The paper is organized as follows. Related work is briefly reviewed and dis-
cussed in section 2. An overview of the curiosity and discovery fitnesses is pre-
sented in section 3 and section 4 reports on the experimental results. The paper
concludes with a discussion and some perspectives for further research.

2 Related Work

The state of the art in ER and fitness design can be structured in different
ways [17,14], depending on the designer’s criteria. The perspective presented in
[14] focuses on the amount of human effort and prior knowledge required to
overcome bootstrap problems. Such problems can be illustrated from the hard
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Fig. 1. From (Lehman & Stanley, 08): medium (left) and hard (right) arenas. Starting

in the upper left corner, the goal is to reach the farthest apart region.

and medium arenas due to [11] (Fig. 1), where the goal is to reach the chamber
farthest apart from the starting point without any ground truth being available;
note that providing the robot with its bird eye’s distance to the target location
will get it trapped in many local optima.

Among the various heuristics investigated to address the bootstrap problem
is the staged fitness approach pioneered by [9] (e.g. learning to walk before
learning to run). Among the early and still widely used1 approaches to bootstrap
avoidance are fitness-sharing and diversity enforcing [11,7].

Diversity enforcing heuristics in ER mostly rely on the genotypic [10] or phe-
notypic [7,11] distances between the robot controllers. Some genotypic distances
have been defined on structured controller spaces such as neural nets [10]. Pheno-
typic distances usually rely on prior knowledge. For instance Lehman and Stan-
ley associate to a controller the end point of the robot trajectory; the novelty
of a controller w.r.t. the population is then assessed from the average distance
of its end point to that of its k-nearest neighbours [11]. A general phenotypic
distance between robot trajectories has been proposed by Gomez, relying on the
compression-based distance inspired from Kolmogorov complexity [7]. Setting
the fitness function to the controller phenotypic diversity leads evolution to con-
struct a fair sample of the robot behavioural space. In this sample, the designer
eventually selects the individual best fitting the task at hand, which report-
edly gives satisfying solutions. Another way of enforcing diversity is based on
multi-objective evolutionary optimization, considering diversity as an additional
objective besides the actual robotic objective [13].

Another influential line of research is Embodied Statistical Learning (ESL)
[16], aimed at a principled way of addressing the reality gap issue through per-
ceptual and behavioural learning. While perceptual learning is concerned with
building a grounded representation of the environment and the robot itself,
behavioural learning aims at achieving the target tasks. Regarding perceptual
learning, ESL advocates the use of the ”information self-structuring“ principle,
stating that the robot should take advantage of statistical regularities induced

1 Other possibilities, outside the scope of this paper, are to inject competent individ-

uals in the initial population, or to use co-evolution.
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by its interactions with the world, and mentions ”adaptive compression“ as a
possible approach [4].

3 Information Theory-Based Robotic Instincts

This section presents two self-driven fitness functions, referred to as Curiosity
and Discovery instincts, simultaneously enforcing the exploration of the envi-
ronment and the behavioural diversity of the controllers. These functions, also
rooted in the information self-structuring principle, are based on unsupervised
statistical learning.

3.1 Unsupervised Learning from the Sensori-Motor Stream

Some information the robot gets for free lies in its sensor and motor values. Let
the sequence of sensori-motor value vectors along time, referred to as Sensori-
Motor Stream (SMS), be denoted X = {xt;xt ∈ IRd, t = 1, . . . ,T }, where vector
xt stores the d values of the sensors plus motors at time t, and T is the number of
time steps of the robot lifetime. The SMS X of course depends on the controller
of the robot when it is gathered. Our claim is that interesting controllers result
in a high sensori-motor diversity (subject to requirements discussed in section
3.3). After Information Theory principles, it thus comes naturally to assess the
controller from the entropy of the SMS. Noting (ci)i=1,...,p the p states (sensori-
motor vectors) visited by the robot and ni the number of times ci has been
visited, it comes:

F(X ) = −
p∑

i=1

ni∑p
j=1 nj

log
ni∑p

j=1 nj
(1)

Sensori-motor states should however achieve some abstraction or generalization
relatively to the sensori-motor vectors. Otherwise, since xt is a real-valued vec-
tor in a possibly high dimension space, for most visited states ni = 1 and most
trajectories over T time steps get the same trivial fitness value log(T ). Unsuper-
vised learning (clustering), is applied to the robotic log to form clusters using
Euclidean distance. While many clustering algorithms have been designed in the
literature, only the simple, computationally linear k-means and ε-means will be
considered in the rest of this paper (Fig. 2, left); the interested reader is re-
ferred to [6] for a more comprehensive introduction. The k-means algorithm is
parametrized from the number k of clusters while ε-means is parametrized from
the maximal radius ε of each cluster.

3.2 Curiosity and Discovery Instincts

Let X be a controller. The rest of the paper does not depend on the actual repre-
sentation of X (its genotype), and only considers its phenotype X = {x1 . . . xT },
defined as its SMS in the environment. Stream X is processed using k-means or
ε-means (Fig. 2), yielding the set of p sensori-motor states ci together with their
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k-means Algorithm
C = c1 . . . ck random training points

repeat

for t = 1. . . T,

i(t) = argminj=1...k{d(xt, cj)}
for i = 1 . . . k

ci =

∑
t/i(t)=i xt∑
t/i(t)=i 1

until C does not change

ε-means Algorithm
C = ∅
for t = 1..T

i(t) = argmincj∈C{d(xt, cj)}
if (d(xt, ci) > ε) C ← C⋃(xt, 1)
else ni + +

Fig. 2. k-means and ε-means clustering algorithms.

number ni of occurrences in the stream. The curiosity fitness Fc is defined as the
entropy of the trajectory (Eq. (1)). An individual gets a high curiosity fitness if
it equally shares its time among the visited sms (k-means clustering, p = k), or it
visits many sms (ε-means clustering). The maximization of the curiosity fitness
is achieved using a (1 + 1)-Evolution Strategy with random restart (Section 4).

As will be discussed in Section 3.3, the number p of sensori-motor states must
be kept below a few hundreds for the sake of efficiency. This makes it feasible to
store the corresponding set of sms on-board, and to transmit it from the parent
to the offspring. Another self-driven fitness function dubbed “discovery instinct”
can thus be defined. Informally, the idea is that the offspring will be rewarded
for visiting sensori-motor states which have not been visited (or rarely visited)
by its ancestors.

Formally, the discovery fitness Fd is defined along the same equation as the
curiosity fitness. The only difference is that the ε-means algorithm uses the set
of sms ci visited by ancestors, where ni stands for the total number of visits
paid to state ci along the generations, to initialize C; C is updated from the cur-
rent trajectory, incrementing the counters of visited states and possibly adding
new sensori-motor states discovered by the current individual. Ultimately, the
discovery fitness Fd is computed from the entropy of C (Eq. (1)).

The discovery fitness thus implements a dynamic evolution schedule: the worth
of any given behaviour depends on its novelty, pushing evolution toward the col-
lective exploration of the sensori-motor space. Typically, an individual controller
will get a good discovery fitness iff it discovers new sms, or if it visits sufficiently
many rare sms, where novelty and rarity are measured from the current robot-
kind experience. As already noted, discovery can thus be viewed in terms of
fitness sharing, as the worth of visiting a sensori-motor state depends on how
many individuals visited it. The difference compared with standard fitness shar-
ing is that sharing usually takes place among all individuals in a same generation,
whereas discovery considers all generations up to the current one2.

2 Discovery fitness can thus also be thought of in terms of Cultural Evolution. How-

ever, the knowledge gained in the previous generations only modifies the individual

assessment in the proposed scheme, contrasting with modifying the individual be-

haviour in standard Cultural Evolution (see e.g. [5,8]).
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3.3 Discussion

The main limitation of the proposed approach is as follows. The entropy of the
robot trajectory depends on the richness of both the environment and the robot
sensors. If the robot is in the middle of an empty area, there is nothing to be
curious about and nothing to be discovered; whatever its sensors, the robot will
experiment a single state: nothing in sight3. Likewise, if the robot is endowed
with a single boolean touch sensor, whatever the richness of the environment
the robot can only experience two states: I can touch something, or I can’t. The
presented entropy-based approach thus only makes sense if the environment
mediated by the robot sensors offers sufficient stimulation.

Another critical aspect is the calibration of the clustering algorithm (param-
eters k or ε, Fig. 2). At one extreme (too fine-grained) all sensori-motor vectors
belong to different clusters; at the other extreme (too coarse), all belong to the
same cluster; in both cases, the entropy is trivial and does not provide any in-
dication to evolution. Along the same lines, rich robotic sensors (e.g. a camera)
could hinder the approach due to the curse of dimensionality, and the fact that
Euclidean distance in IRD is not much informative for high D values. A prelimi-
nary dimensionality reduction step, mapping IRD onto IRd, d << D, would thus
be required, and could be obtained by careful sensor fusion. It must however be
noted that, provided that the dimensionality reduction can be done online, its
calibration (e.g. using Principal Component Analysis or non-linear approaches)
can be optimized off-line; the approach thus remains tractable in the context of
embedded evolution.

The Curiosity fitness can possibly reward some degenerate behaviours, like
dancing in front of a wall or in a corner; more generally, a periodic trajectory
in a stimulating environment would get a high Curiosity fitness. The Discovery
fitness is less prone to degenerate behaviours since it essentially rewards new
behaviours.

Conditionally to a stimulating environment and a reasonably calibrated clus-
tering algorithm (in practice, a few hundred sensori-motor states), the Curiosity
and Discovery fitnesses display interesting properties. First of all, they meet
the on-board evolution requirements (bounded computational and memory re-
sources, no ground truth required). Secondly, they are robust w.r.t sensor and
motor noises; introducing outliers in the SMS would result in creating sms that
are very rarely visited, with little impact on the entropy. Thirdly, these fitnesses
penalize inaction and favour the exploration of the sensori-motor space (not
moving leads the robot to experience a single sensori-motor state).

4 Experimental Validation

The main two questions investigated in this section are (i) whether the curiosity
and discovery fitnesses are actually compatible with on-board evolution, over-
coming the reality gap issue; and (ii) whether they are conducive to the discovery

3 The implicit assumption done in the paper being that the controller is deterministic.
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of “interesting” behaviours, measured from the exploration of sufficiently com-
plex arenas. Other questions of interest, regarding the sensitivity of the approach
w.r.t. the clustering parameters, will not be addressed here due to space limita-
tions: only the ε-clustering, with ε = .2 for Curiosity and ε = .4 for Discovery,
will be presented below.

The experimental setting is based on the home-made Roborobo 2D simulator,
simulating a Cortex-M3 with eight infra-red sensors and two motors: Following
[2], the robot supports an on-board (1+1)-Evolution Strategy using the 1/5th

rule, with restart after 30 fitness evaluations with no improvement; each run
stops after 2,000 fitness evaluations. The controller space is that of multi-layer
perceptrons with 8 inputs, 2 outputs, and 10 hidden neurons. The 112 weights
are initially randomly drawn following a normal distribution with mean 0 and
variance 0.1. The isotropic Gaussian mutation has an initial step-size of 0.2. In
both settings, the sensori-motor stream is clustered online using ε-means, with C
initialized to the empty set for Curiosity, and, for Discovery, to the inherited set,
easily stored on the Cortex board. The entropy of C is computed after T = 2000
time steps.

The robot environment is set to one of the arenas defined in [11] (Fig. 1).
The performances of Curiosity and Discovery fitnesses are compared, with same
experimental setting, to both the baseline fitness for displacement with obstacle
avoidance originally proposed by Floreano and Mondada (and described, with
references, in [15]) (legend Displacement), and the Novelty fitness proposed by
Lehman and Stanley [11] (see Section 2, legend Novelty). The performance indi-
cators measure the patrolling ability, that is the percentage of p(�) of squares in
the arena that have been visited at least � times. Another performance indicator
is whether the robot can explore the chambers farthest apart (avoiding obsta-
cles) from the starting point. All robots start from the same point, in order to
reliably assess the robustness of the algorithm w.r.t. the distance to the starting
point. All results are averaged over 11 independent runs.

Table 1. Patrolling performances for 2000 time steps: average (std. dev.) over 11 runs

Medium Arena Hard Arena

2 visits 5 visits 10 visits 2 visits 5 visits 10 visits

100 best individuals in 2000 generations run

Curiosity 35.78(9.04) 22.01(7.39) 13.0(4.47) 50.18(6.7) 30.31(5.79) 14.79(3.16)

Discovery 21.99(9.24) 12.82(5.85) 8.12(3.15) 16.28(6.27) 10.11(3.19) 7.26(1.83)

Displacement 25.78(1.77) 22.3(1.96) 18.12(1.86) 44.9(10.51) 28.22(6.2) 18.99(3.79)

Novelty 53.99(2.75) 36.32(2.26) 21.03(1.61) 55.35(4.66) 35.87(3.35) 19.78(2.0)

All individuals in 2000 generations run

Curiosity 69.67(2.62) 61.56(2.87) 54.95(3.36) 78.29(5.12) 68.32(5.58) 58.09(4.47)

Discovery 62.08(3.47) 53.0(4.59) 45.54(5.81) 65.23(4.98) 52.4(5.59) 42.27(4.97)

Displacement 72.36(2.23) 61.06(3.59) 50.92(1.8) 78.48(3.93) 64.98(5.24) 52.63(3.68)

Novelty 64.82(1.81) 55.68(1.76) 49.23(1.67) 66.37(5.08) 55.31(4.53) 47.24(3.75)
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The average patrolling abilities for both arenas and the 4 algorithms are re-
ported in Table 1: for the 100 best individuals that were evolved during the 11
runs (top), and all the individuals that appeared during those runs (bottom),
Table 1 gives the percentage of the arena that has been visited at least 2, 5 or
10 times. Fig. 3 displays a typical case: the points that have been visited at least
10 times in the Hard arena setting (the Medium arena shows similar trends).

When considering the 100 best individuals that appeared during the 11 runs,
Novelty is clearly outperforming the other approaches in terms of patrolling the
Medium arena, while Curiosity (and, to a lesser extend, Displacement) catch up
in the co-called Hard arena. Indeed, and almost paradoxically, the Hard arena
offers in fact a high sensor diversity, exhibiting zones that look rather different,
while the Medium arena somehow repeats the same motif several times, gener-
ating less diverse sensor input combinations. Furthermore, looking at the plots
of Fig. 3, the Novelty runs tends to also explore the interior regions of the maze,
while the Curiosity runs stay along the walls: the empty zones always generates
the same sensor values, and hence cannot contribute to increase the entropy.
However, as can be seen on Fig. 3, and is confirmed by looking at the maximum
distance from the starting position reached by the individuals of different gener-
ations (results not shown here), far chambers from the starting points are more
densely visited by the Curiosity runs than by the Novelty ones (the first wall
from bottom up is more clearly marked in the Curiosity plot).
Finally, the Discovery fitness performs poorly when considering the 100 best in-
dividuals. Indeed, those individuals essentially correspond to the 100 last individ-
uals, visiting sensori-motor states which have not been visited by the ancestors,
hence basically exploring only the corners of the arena.

When considering all individuals ever produced by evolution during the 11
runs (bottoms half of Table 1 and bottom row of Fig. 3), the picture changes
dramatically. The best performing fitness now is Curiosity, and again this is even
clearer on the Hard arena. The Displacement fitness now also reaches better
performances than Novelty, again more clearly on the Hard arena. Finally, the
performance of Discovery is almost as good as the other ones, and the plot of the
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or the whole population (bottom) over the 11 runs



342 P. Delarboulas, M. Schoenauer, and M. Sebag

10-times visits is even denser toward the far end of the arena with respect to the
starting point, i.e., close to the bottom wall: because of the inherited information
from parents to offspring, Discovery should indeed only be assessed by looking
at complete lineages.

The success of Curiosity compared to Novelty is somewhat unexpected, as
Novelty actually relies on a significant amount of prior knowledge, requiring for
instance the robot to always know its position, and, from the archive, where all
other robots ended up their trajectories. On the opposite, the Curiosity fitness
is built up from scratch by each robot – or by the lineage of robot in the case of
the Discovery fitness.

5 Discussion and Perspectives

The paper pioneers the use of statistical unsupervised learning to define self-
driven fitness functions for on-board ER. Information Theory is then used to
push the robot toward unknown parts of the sensori-motor space, hopefully
leading to interesting behaviors in the physical space.

The priority here is to enable the robot to merely discover its sensori-motor
space, as opposed to maximize the predictive information in the sensori-motor
loop (as in [18] and references therein). The rationale for this priority is twofold.
Firstly, the presented approach is extremely frugal computationally speaking,
compared to e.g. [18], as the target application here concerns swarm robotics.
Secondly, recent trends in Machine Learning suggest that changing the repre-
sentation of the problem domain, as done through unsupervised learning, can
dramatically facilitate further supervised learning tasks.

Compared to the standard Evolutionary Robotics framework pioneered by
Floreano and Mondada, the robot is rewarded here for what it gets (a rich
sensori-motor experience) and not for what it does (going fast and circling in-
frequently). As mentioned earlier on, such a fitness function is only efficient
in “interesting environments”; under-stimulation results in a evolutionary boot-
strap problem. Interestingly, over-stimulation is also detrimental to the efficiency
of the curiosity and discovery instincts.

Compared to the Novelty approach by Lehman and Stanley [11], no external
information is needed here to assess the novelty of a behaviour. Furthermore,
almost independently of the context, and the goal (though Novelty search can
be totally goal-less, it can also be constrained toward a loosely defined goal),
the computational cost of the proposed approaches remains tractable, as only
sensori-motor states need to be stored.

Compared to Embodied Statistical Learning and Intrinsic Motivation [1], be-
side being computationally light learning algorithms amenable to on-board evo-
lution, the proposed approaches rely on the discovery of sensori-motor states,
amenable to the direct inspection of the designer. Typically, relating visited
sms to some instants of the trajectory would lead to interpreting them, thus
allowing the designer to enforce some preferences, e.g., a safety policy in critical
situations.
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Further study will of course concern experiments in richer behavioral spaces,
and also the collective and dynamic adjustment of the clustering granularity ε,
depending on the current context. Another perspective is related to coupling self-
driven fitnesses with interactive optimization, asking the designer’s preferences
among the available behaviours.

References

1. Baranes, A., Oudeyer, P.-Y.: R-IAC: Robust intrinsically motivated exploration

and active learning. IEEE Transactions on Autonomous Mental Development 1(3),

155–169 (2009)

2. Bredeche, N., Haasdijk, E., Eiben, A.E.: On-line, on-board evolution of robot con-

trollers. In: Collet, P., Legrand, P. (eds.) EA 2009. LNCS, vol. 5975, pp. 110–121.

Springer, Heidelberg (2009)

3. Brooks, R.A.: Intelligence without reason. In: IJCAI 1991, pp. 569–595. Morgan

Kaufmann, San Francisco (1991)

4. Burfoot, D., Lungarella, M., Kuniyoshi, Y.: Toward a theory of embodied statistical

learning. In: Asada, M., Hallam, J.C.T., Meyer, J.-A., Tani, J. (eds.) SAB 2008.

LNCS (LNAI), vol. 5040, pp. 270–279. Springer, Heidelberg (2008)

5. Curran, D., O’Riordan, C.: Cultural learning in a dynamic environment: an analysis

of both fitness and diversity in populations of neural network agents. Journal of

Artificial Societies and Social Simulation 10(4), 3 (2007)

6. Duda, R.O., Hart, P.E., Stork, D.G.: Pattern Classification. John Wiley & Sons,

Chichester (2001)

7. Gomez, F.J.: Sustaining diversity using behavioral information distance. In:

GECCO 2009, pp. 113–120. ACM, New York (2009)

8. Haasdijk, E., Vogt, P., Eiben, A.E.: Social learning in population-based adaptive

systems. In: CEC 2008, pp. 1386–1392. IEEE Press, Los Alamitos (2008)

9. Harvey, I., Husbands, P., Cliff, D.: Artificial evolution; real vision. In: SAB 1994,

pp. 392–401. MIT Press, Cambridge (1994)

10. Miikkulainen, R., Stanley, K.O., Bryant, B.D.: Evolving adaptive neural networks

with and without adaptive synapses. Evolutionary Computation 4, 2557–2564 (2003)

11. Lehman, J., Stanley, K.O.: Exploiting Open-endedness to solve problems through

the search for novelty. In: AILife 2008. MIT Press, Cambridge (2008)

12. Lipson, H., Bongard, J.C., Zykov, V., Malone, E.: Evolutionary robotics for legged

machines: From simulation to physical reality. In: IAS, pp. 11–18. IOS Press, Am-

sterdam (2006)

13. Mouret, J.-B., Doncieux, S.: Using behavioral exploration objectives to solve de-

ceptive problems in neuro-evolution. In: GECCO, pp. 627–634. ACM, New York

(2009)

14. Nelson, A.L., Barlow, G.J., Doitsidis, L.: Fitness functions in evolutionary robotics:

A survey and analysis. Robot. Auton. Syst. 57(4), 345–370 (2009)

15. Nolfi, S., Floreano, D.: Evolutionary Robotics. MIT Press, Cambridge (2000)

16. Pfeifer, R., Iida, F., Bongard, J.: New robotics: Design principles for intelligent

systems. Artificial Life 11(1-2), 99–120 (2005)

17. Watson, R.A., Ficici, S.G., Pollack, J.B.: Embodied evolution: Distributing an

evolutionary algorithm in a population of robots. Robotics and Autonomous Sys-

tems 39(1), 1–18 (2002)

18. Zahedi, K., Ay, N., Der., R.: Higher coordination with less control. A result of

information maximisation in the sensori-motor loop. Adaptive Behavior (to appear)



A Novel Similarity-Based Crossover
for Artificial Neural Network Evolution

Mauro Dragoni, Antonia Azzini, and Andrea G.B. Tettamanzi
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Abstract. This work presents an evolutionary approach for the opti-

mization of neural networks design, based on the joint evolution of the

topology and the connection weights, providing a novel similarity-based

crossover that aims to overcome one of the major problems of this oper-

ator, known as the permutation problem.

The approach has been implemented and applied to two benchmark

classification problems in machine learning, and the experimental results,

compared to those obtained by other works in the literature, show how it

can produce compact neural networks with a satisfactory generalization

capability.

1 Introduction

Evolutionary Computation (EC) is the universally accepted term to describe
the field of study on computational systems that draw their inspiration from
the processes of natural evolution and adaptation. Their advantages over con-
ventional methods [4], like their conceptual and computational simplicity and
their applicability to broad classes of problems or self-optimization, make them
very suitable for problems with dynamically changing environment and multi-
objective optimization requirements.

Evolutionary algorithms have been applied to different problems, including ar-
tificial neural network (ANN) design, the so-called Evolutionary Artificial Neural
Networks (EANNs) [17]. The success of an ANN application usually requires a
high number of experiments. Moreover, several parameters of an ANN can af-
fect, during the design, how easy a solution is to find. Among them, particular
attention has been given to those related to the architecture design of the neural
network. They correspond to a well-known topic of interest in the literature,
since an inadequate network could be unable to learn or will overfit the training
data [7]. In this area, the optimization of artificial neural networks (ANNs) with
evolutionary algorithms (EAs) has come of age and is now a well-established dis-
cipline. EAs are able to overcome an important limitation of traditional neural
network learning, namely that they are able to get out from local minima if they
get trapped there.

Among the genetic operators that can be applied during the evolutionary
process, some authors regard crossover as inefficient, due to the so-called permu-
tation (or competing convention) problem [9]. This problem occurs because the
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same network can be genetically represented by many and different encodings.
This problem is also indicated as a many-to-one mapping from the representation
of the solutions (the genotype) to the actual ANNs (the phenotype) [17].

Nevertheless, there are many successful applications of EANNs using crossover:
Hancock, for example, conducted studies on structural optimization [9], Garcia-
Pedrajas and colleagues have recently investigated a combination of structure
and weight evolution [6], and it is worth emphasizing that none of them has
found any significant detrimental effects attributable to the permutation prob-
lem. Accordingly, there is a need to re-evaluate the traditional theoretical claims
with regard to this problem.

In this paper, a novel similarity-based crossover operator is presented, as a
new feature of a previous neuro-genetic approach for neural network design [2],
based on the conjunction of topology and connection weight optimization.

The paper is organized as follows: Section 2 introduces the features and the
main critical aspects of the crossover. The particular neuro-genetic approach
considered for demonstrating the proposed crossover operator is then briefly
summarized in Section 3, while a more detailed description of the crossover
implemented in this work is explained in Section 4. All the experiments are then
presented, compared, and discussed in Section 5. Section 6 reports some final
remarks.

2 Evolution of Artificial Neural Network Designs

Among the many applications presented in the literature in the area of EANNs,
different approaches show interesting combinations of network architecture and
weight optimization, carried out simultaneously.

In fact, the choice of an ANN structure has a considerable impact on the
processing power and learning capability of the classifier. In ANN evolution,
when the recombination process is considered, the crossover operator exchanges
the architectures of individuals in the population, identified as parents, in or-
der to search better solutions. In this sense, the permutation problem holds that
crossover can be seriously disruptive when applied, for examples, to ANNs whose
genotypes are incompatible even though their phenotypes might be indistinguish-
able by the fitness function. One example of the well-known convergence problem
is indicated in the literature and it has been cited as a reason for using purely
mutation-based approaches [17].

The claim that a standard crossover application, in networks with the many-
to-one mapping problem, may produce unfit offsprings, has been identified in
the literature as a possible consequence of a disregard of the generally converged
nature of standard population-based search [5]. Therefore, the so-called conver-
gence argument [5] agrees with some critical aspects reported by some works with
respect to crossover, indicating that it is generally very difficult to apply since
it tends to destroy feature detectors found by the global evolutionary process
while searching for the best individual in the population of networks.

In contrast, it is important to notice that crossover is usually not harmful
in practice, because, for most of the generations of an evolutionary run, the
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population will converge into an area of the genotypic search space which it
continues to explore.

The convergence argument was supported by several works presented in the
literature. Some authors proposed new crossover operators and representations [8],
some others concentrated on the topology or weight evolution in order to apply
it, for example by evolving sub-populations of neurons in pre-established topolo-
gies, or by applying graph-matching techniques to non-fixed structures [5,10].
Particular attention was given to two empirical studies ([9], [7]) that concen-
trated their attention on the evolution of the single network unit involved in
the crossover operator, the hidden node. Indeed, their idea was to emphasize
the equivalence between hidden nodes of ANNs, in order to identify similarly
performing units prior to crossover, avoiding all the disruptive effects stated
above.

Following this idea, we extend one of the neuro-genetic approaches presented
in the literature [1,2], which implements a joint optimization of weights and net-
work structure, by defining a novel crossover operator. This operator allows re-
combination of individuals that have different topologies, but with hidden nodes
that are similarly performing in the cutting point of the hidden layer randomly
chosen (indicated in the approach as local similarity). The evolutionary process
does not consider only a part, but complete multilayer perceptrons (MLPs),
achieving satisfactory performances and generalization capabilities, as well as
reduced computational costs and networks sizes.

3 The Neuro-genetic Approach

The overall algorithm is based on the joint optimization of structure and weights,
here briefly summarized; a more complete and detailed description can be found
in the literature [2]. It uses the error back-propagation (BP) algorithm to decode
a genotype into a phenotype NN. Accordingly, it is the genotype which undergoes
the genetic operators and which reproduces itself, whereas the phenotype is used
only for calculating the genotype’s fitness. The rationale for this choice is that
the alternative of applying BP to the genotype as a kind of ‘intelligent’ mutation
operator, would boost exploitation while impairing exploration, thus making the
algorithm too prone to being trapped in local optima.

Training the network weights with the BP algorithm as a way to ‘grow’ a
mature individual (phenotype) from a sort of an initial ‘embryonic’ network,
encoded by the genotype, realizes what is called an indirect encoding. Thanks to
this encoding, individual ANNs are not constrained to a pre-established topol-
ogy. In this sense, the population is initialized with different hidden layer sizes
and different numbers of neurons for each individual according to two expo-
nential distributions, in order to maintain diversity among all of them in the
new population. Such dimensions are not bounded in advance, even though the
fitness function may penalize large networks. The number of neurons in each
hidden layer is constrained to be greater than or equal to the number of network
outputs, in order to avoid hourglass structures, whose performance tends to be
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poor. Indeed, a layer with fewer neurons than the outputs destroys information
which later cannot be recovered.

The evolutionary process adopts the convention that a lower fitness means
a better NN, mapping the objective function into an error minimization prob-
lem. Therefore, the fitness used for evaluating each individual in the population
is proportional to the mean square error and to the computational cost of the
considered network. This latter term induces a selective pressure favouring indi-
viduals with reduced-dimension topologies.

3.1 Evolutionary Process

The initial population is randomly created and the genetic operators are then
applied to each network until the termination conditions are not satisfied.

At each generation, the first half of the population corresponds to the best
�n/2� individuals selected by truncation from a population of size n, while the
second half of the population is replaced by the offsprings generated through
the crossover operator. Crossover is then applied to two individuals selected
from the best half of the population (parents), with a probability parameter
pcross, defined by the user together with all the other genetic parameters, and
maintained unchanged during the entire evolutionary process.

It is worth noting that the pcross parameter refers to a ‘desired’ crossover prob-
ability, set at the beginning of the evolutionary process. However, the ‘actual’
probability during a run will usually be lower, because the application of the
crossover operator is subject to the condition of similarity between the parents.

Elitism allows the survival of the best individual unchanged into the next gen-
eration and the solutions to get better over time. Then, the algorithm mutates
the weights and the topology of the offsprings, trains the resulting network, cal-
culates fitness on the test set, and finally saves the best individual and statistics
about the entire evolutionary process.

Weights mutation perturbs the weights of the neurons before performing any
structural mutation and applying BP to train the network. All the weights and
the corresponding biases are updated by using variance matrices and evolution-
ary strategies applied to the synapses of each NN, in order to allow a control
parameter, like mutation variance, to self-adapt rather than changing their values
by some deterministic algorithms. Finally, the topology mutation is implemented
with four types of mutation by considering neurons and layer addition and elimi-
nation. The addition and the elimination of a layer and the insertion of a neuron
are applied with three independent probabilities, indicated as p+

layer, p
−
layer and

p+
neuron, while the elimination of a neuron is carried out only if the contribution

of that neuron is negligible with respect to the overall network output.

4 Crossover Operator

We have discussed above some issues relevant to the use of a crossover operator
in an EANN context. In particular, two main drawbacks are emphasized [8], that
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correspond to the structural incompatibility between two individuals, due to the
different network topologies, and to the parametric incompatibility, that is re-
lated to the difference of the weight values associated to the network synapses.
The crossover operator proposed in this work aims at overcoming such draw-
backs, and it is carried out in four phases.

Phase 1 (Figure 1): two individuals are selected from the population and the
algorithm looks for a “local similarity” between the two individuals. We refer
to “local similarity” as a situation in which, in both individuals, there are two
consecutive layers (i and [i + 1]) with the same number of neurons. This is a
necessary condition for the application of our crossover operator because, this
way, we want to overcome the problem related to the structure incompatibility
between the individuals. If this condition is satisfied, layer [i+ 1] is selected for
the application of the crossover operator. The condition for the application of the
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operator is checked for all hidden layers; therefore, two compatible individuals
may be crossed more than once, i.e., at multiple crossover points.

Phase 2 (Figure 2): for each neuron of the selected layers, the algorithm com-
putes the corresponding contribution (i.e., output over the training set), which
strongly depends on its input connections. Then, in each individual, the neu-
rons of the selected layers are ranked by considering their contribution. Figure 2
shows an example of the possible contributions, together with the calculated
rank.

Phase 3 (Figure 3): we exploit the rank computed in the previous step to create
the associations between the neurons of the two individuals. For each instance
of the training set we compare the output of each neuron of the layer [i+ 1] on
Individual 1 with the output of the each neuron of the layer [i+1] of Individual 2
and we compute the overall difference between the neurons (Figure 3a). Starting
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from the neuron of Individual 1 that has the highest contribution, we associate
each neuron of Individual 1 with the neuron of Individual 2 that has the lowest
output difference (Figure 3b). When an association is created, the associated
neuron of Individual 2 becomes unavailable for the subsequent associations (in
the proposed example, neuron 15 is associated to neuron 26; therefore, neuron 26
might not be associated to any other neuron of Individual 1). Finally, the neurons
of the selected layer in Individual 2 are re-ranked by considering the associations
with the neurons of the selected layer in Individual 1 (Figure 3c).

Phase 4 : the last phase of the algorithm generates the offspring. A cut-point is
randomly selected between neuron 1 and neuron n (Figure 4), then the algorithm
swaps the weights of the neurons that are above the cut-point and it maintains
unchanged the others (Figure 5).

5 Experiments and Results

The approach has been applied to two real-world classification problems in the
medical domain, namely the Pima Indian diabetes problem and the heart dis-
ease problem. The datasets have been obtained from the UCI Machine Learning
Repository and, in this work, they have been partitioned into three sets, respec-
tively, a training set (50% of the data), used to train the network; a test set
(25% of the data), used to stop the training and avoid overfitting; a validation
set (25% of the data), used to test the generalization capabilities of a network.
Even if the literature reports some guidelines [14], it is important to stress that,
following the commonly accepted practice of machine learning, no standard rule
is given to the datasets nomenclature. The input attributes of both diabetes and
heart disease data have been rescaled, before being fed as inputs to the popu-
lation of ANNs, through a Gaussian distribution with zero mean and standard
deviation equal to 1.

All the experiments have been carried out by considering different settings for
the topology mutation parameters p+

layer,p
−
layer and p+

neuron, defined in the range
[0.0, 0.5], and for the crossover pcross ( the ‘desired’ probability, see
Section 3.1) in order to find out the optimal setting able to define the best
performance. For each different configuration, we performed 20 runs and the re-
sults obtained for the two problems are reported in Table 1, showing the averaged
and best accuracy, and the standard deviation. Due to space reasons we only
report the results obtained by applying some of the parameter configurations.

We investigated the neuro-genetic approach through two different directions,
that refer to the impacts of, respectively, the crossover operator and the different
mutation probabilities. The rationale of this choice is to investigate what happens
when diversity is injected into the population by the crossover operator, or when
it is injected by the mutation operator. Particular attention has been given to the
sensitivity of the crossover rate. Indeed, with the Pima dataset, when mutation
rates were set to low values, the proposed method was sensitive to a crossover
rate with high values, defined in the range [0.7, 1.0]. On the other hand, it was
possible to notice that, in the second part of the experiments on Pima, when the
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Table 1. Results obtained on the PIMA and HEART validation datasets

Settings PIMA HEART
Avg. Best Std. Avg. Best Std.

p+
layer p−

layer p+
neuron pcross Acc. Acc. Dev. Acc. Acc. Dev.

0.05 0.05 0.05 0.4 0.7992 0.8229 0.0096 0.8352 0.8529 0.0163
0.7 0.8059 0.8229 0.0111 0.8389 0.8823 0.0236
1.0 0.8002 0.8125 0.0106 0.8404 0.8676 0.0174

0.20 0.05 0.10 0.4 0.7989 0.8125 0.0092 0.8279 0.8529 0.0253
0.7 0.7968 0.8125 0.0122 0.8367 0.8823 0.0282
1.0 0.8010 0.8281 0.0155 0.8441 0.8676 0.0130

0.30 0.05 0.30 0.4 0.8057 0.8333 0.0125 0.8375 0.8823 0.0221
0.7 0.8033 0.8281 0.0150 0.8323 0.8676 0.0168
1.0 0.8002 0.8281 0.0198 0.8411 0.8970 0.0222

0.50 0.05 0.50 0.4 0.8039 0.8177 0.0131 0.8433 0.8823 0.0235
0.7 0.7986 0.8177 0.0116 0.8448 0.8970 0.0226
1.0 0.8013 0.8125 0.0121 0.8316 0.8970 0.0383

mutation probabilities of adding layers and neurons increased, better averaged so-
lutions were obtained with a lower crossover probability. In general, a probability
of applying crossover equal to 0.7 (i.e., 70%) gave the best average accuracy.

A slightly different situation holds for the Heart dataset, where all the mu-
tation settings had better results with high crossover probability. This indicates
that, at least in the case with low mutation, the effect of crossover might be to
help evolutionary search. Moreover, when we adopted a high mutation proba-
bility, the further diversity introduced by the crossover operator was helpful in
preventing the algorithm from converging to a locally optimal solution. In this
case, the best average accuracy was reached with high values for both muta-
tion and crossover parameters. The same considerations could also be valid for
the best accuracy. By observing the standard deviation, we can notice that the
joint evolution of network weights and topologies together with the use of the
crossover has considerably low variance values for the accuracy on the testing er-
ror, showing the robustness of the evolutionary process. A crucial observation is
that the computational load of the crossover operator is negligible with respect
to the one of fitness evaluation, since the data needed to perform the neuron
associations in the crossover are the same computed during fitness evaluation.
Computing the neuron associations thus comes almost for free, provided that
those data are stored.

Although a direct comparison with other related approaches is difficult because
the algorithms and methods of obtaining the generalization capabilities of the
models are different, it is interesting to compare the results of this neuro-genetic
approach with other works already presented in the literature, shown in Table 2.
The approaches marked with a star use a crossover operator for evolving ANNs,
while the others refer to different machine learning solutions in which the crossover
is not used for such classification problems. Our neuro-genetic approach obtains
higher accuracies than all the others listed in the table, except one, with satisfac-
tory results. The overall performances are also improved by the reduced computa-
tional costs of this approach, thanks to the capability of the algorithm of obtaining
neural networks with reduced sizes, up to two hidden layers and four hidden nodes
in each hidden layer. Even if in one case of the Heart disease problem, that refers
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to COVNET [6], the accuracy is slightly better than that of our approach, we are
able to obtain more compact networks, outperforming the average network size
with only three hidden nodes in one hidden layer, thus reducing the overall com-
putational cost. It is important to notice that in Table 2 a recent work that used
a combinatorial crossover for ANN design optimization [7] has not been consid-
ered for comparison, since it used a twofold dataset subdivision (i.e. train and test
sets only) instead of the usual three, in its experimental campaign. This makes its
reported results uncomparable to those shown in Table 2.

Table 2. Comparison among the accuracies of the proposed approach and other works

already presented in the literature

Model PIMA Accuracy Heart Accuracy

Our neuro-genetic approach* 0.8059 0.8448
Graph Matching Rec. (A. Mahmood et al [10])* 0.7542 0.7924

COVNET (N. Garcia-Pedrajas et al [6])* 0.8010 0.8574
aSEPA (P.P. Palmes [12])* 0.7400 0.8000

EPNet (X. Yao [17]) 0.7763 0.8323
acasper (N.K. Treadgold [16]) 0.7686 0.8079
acascor (N.K. Treadgold [16]) 0.7547 0.8011

BP (L. Prechelt [14]) 0.7563 –
LogDisc (D. Michie [11]) 0.7770 –

MPyramid (R. Parekh [13]) 0.7680 –
MTiling (R. Parekh [13]) 0.7710 –
MSM1 (K.P. Bennet [3]) – 0.8347
RBF GM (A. Roy [15]) – 0.8182

*) Approaches using a crossover operator.

6 Conclusion and Future Work

In this paper, we have presented a similarity-based crossover operator for the
evolution of artificial neural networks. This operator considers the similarity be-
tween the neuron outputs in order to choose which neurons may be swapped
between the networks. The experiments showed that the application of the
crossover operator to a well-tested neuro-genetic approach achieved promising
results, also compared to other already published approaches, demonstrating the
viability of such an operator. The overall accuracy then confirms satisfactory per-
formances with reduced computational costs, also thanks to the capability of the
algorithm to evolve small network topologies.

Increasing the population size could be a good way to further improve the
performance, but it requires much computational effort, that might impair the
attractiveness of the approach.
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Abstract. The game of Go has attracted much attention from the artificial in-
telligence community. A key feature of Go is that humans begin to learn on a
small board, and then incrementally learn advanced strategies on larger boards.
While some machine learning methods can also scale the board, they generally
only focus on a subset of the board at one time. Neuroevolution algorithms par-
ticularly struggle with scalable Go because they are often directly encoded (i.e. a
single gene maps to a single connection in the network). Thus this paper applies
an indirect encoding to the problem of scalable Go that can evolve a solution to
5× 5 Go and then extrapolate that solution to 7× 7 Go and continue evolution.
The scalable method is demonstrated to learn faster and ultimately discover better
strategies than the same method trained on 7×7 Go directly from the start.

1 Introduction

The game of Go has proven challenging for artificial intelligence because the branching
factor and state space in Go render traditional approaches intractable [1]. Go demands
new search techniques to reduce the branching factor, and abstract representations that
can consolidate the state space. One promising such approach is machine learning,
wherein techniques such as temporal difference learning or neuroevolution learn a value
function from an abstract representation [2, 3, 4].

Yet even with such innovations, experienced human Go players can still consistently
defeat the strongest of computer players without a handicap [5]. One notable difference
between human players and most machine learning-based approaches to Go is that the
human player begins to learn Go on a small board [6]. Humans can then extrapolate in-
formation learned on the smaller board to a larger board, thereby bootstrapping from it.
Such extrapolation is challenging for machine learning algorithms, which often cannot
transfer knowledge from one board size to another.

However, several notable exceptions exist that typically fall into one of two cate-
gories: (1) The first convert the Go board into a set of local features that are indepen-
dent of the board size [2]; (2) the second class of methods scan sections of the board
and remember notable positions and information [4, 3]. In both cases, the key is to view
a small section of the Go board at one time. As a result, it is potentially difficult to learn
tactics (e.g. ladders) that depend on a holistic view of the board.

In this paper, a new method of scaling is presented that breaks from the aforemen-
tioned techniques, yet can still scale the board to new sizes and continue learning.

R. Schaefer et al. (Eds.): PPSN XI, Part I, LNCS 6238, pp. 354–363, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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The method is based on Hypercube-based NeuroEvolution of Augmenting Topologies
(HyperNEAT), which evolves artificial neural networks (ANNs) that are aware of and
parametrized by the geometry of the board. As a result, these ANNs are able to make
holistic decisions based on seeing the entire Go board at once. HyperNEAT encodes
ANNs through an indirect representation that has the ability to scale the Go board to
new sizes without changing the representation and continue evolution. The result is that
candidates evolved on 5×5 Go and then scaled and evolved further at 7×7 Go outper-
form candidates evolved solely on 7×7 Go without scaling. Thus the main contribution
is to show that indirect encoding is a viable foundation for training scalable learners,
and offers the unique potential to represent holistic solutions at variable sizes.

2 Background

In Go, two players take turns placing stones on an n× n grid. The standard board size
is 19× 19; however, common board sizes also include 5× 5 and 9× 9. The objective
is to possess more stones on the board than the opponent at the end of the game. If a
player is able to form a complete border around a group of the opponent’s stones, the
surrounded stones are removed from the board. The player with the most stones at the
end is declared the winner. A complete description of Go can be found in [5] and [6].

Go is designed for play at several board sizes. However, few machine learning meth-
ods can modify the board size in the middle of training and continue learning. This
section discusses several exceptions and reviews the NEAT and HyperNEAT methods.

2.1 Reinforcement Learning and Scalable Go

Because the strategies for 19× 19 boards are very different than those for e.g. 9× 9,
players transitioning from small to large boards must continue to learn and refine their
strategy and tactics [6]. Ideally, machine learning algorithms should also learn to play
Go at varying board sizes without discarding tactics learned on smaller boards and
starting from scratch.

Reinforcement learning has been applied to scalable Go through several approaches
[3, 2, 4]. [2] introduce the idea of assigning a weight to each shape in a shape set.
The key idea is that all shapes learned on a smaller board are analogous on a larger one.
New shapes that exist only at the higher scale are introduced after scaling by initializing
them with a weight of 0. [7], [8], and [9] follow a similar approach.

In a different approach, [4] evolved a neural network that controls a robot eye that
has a small field of vision. The robot is able to move across the board and place pieces.
Because the field of vision for the robot is smaller than the size of the Go board, the
robot can learn local concepts independently of location. As a result, the roving eye can
learn to play Go at any resolution.

[3] introduced a neuroevolution-based action-value approximator for Go that
evolves a Multi-Dimensional Recurrent Neural Network (MDRNN) [10]. The MDRNN
performs swipes across the Go board. To perform a swipe, the same neural network is
evaluated at every position of the Go board. In this way, information is carried across the
board through the output values. MDRNNs are inherently scalable because the network
is only concerned with relative information.
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While these methods have learned effective Go players, each of them relies on inte-
grating a set of small, local views that are processed independently over time or space.
The danger is that less holistic heuristics that are significantly simpler become attractive
local optima. In general, an interesting question is whether it is possible to scale the Go
board to new resolutions while also processing the entire Go board without relying on
subsquares. HyperNEAT, reviewed next, creates such a capability.

2.2 Indirect Encodings and HyperNEAT

The first methods to evolve both network structure and connection weights encoded
networks directly, which means that a single gene in the genotype maps to a single
connection in the phenotype [11]. NeuroEvolution of Augmenting Topologies (NEAT)
is one such method [12]. In addition to evolving weights of connections, NEAT can
build structure and add complexity. NEAT is a leading neuroevolution approach that has
shown promise in board games and other challenging control and decision making tasks
[12, 13, 4]. While this approach is straightforward, it requires learning each connection
weight individually. Human engineering is one approach to overcoming this limitation.
For example, [14] applies ANNs to checkers by dividing the board into subsquares
and architecting the ANN to process them at different resolutions. However, ideally,
evolution would capture patterns and regularities on its own.

Indirect encodings give evolution the opportunity to explore patterns and regularities
by encoding the genotype as a description that maps indirectly to the phenotype [15, 16,
17, 18]. That way, the genotype can be much smaller than the phenotype, which results
in fewer variables to optimize for the evolutionary algorithm. Compositional pattern
producing networks (CPPNs) are one such indirect encoding that draws inspiration from
biology [19]. The idea behind CPPNs is that patterns such as those seen in nature can
be described at a high level as a composition of functions that are chosen to represent
several common motifs in patterns. The appeal of this encoding is that it allows patterns
with regularities such as symmetry (e.g. with Gaussians), repetition (e.g. with periodic
functions such as sine), and repetition with variation (e.g. by summing periodic and
aperiodic functions) to be represented as networks of simple functions, which means
that NEAT can evolve CPPNs just as it evolves ANNs.

Hypercube-based NEAT (HyperNEAT) is an algorithm that extends CPPNs, which
encode two-dimensional spatial patterns, to also represent connectivity patterns [15,
20, 21]. That way, NEAT can evolve CPPNs that encode ANNs with symmetries and
regularities that are computed directly from the geometry of the task inputs. The key
insight is that 2n-dimensional spatial patterns are isomorphic to connectivity patterns in
n dimensions, i.e. in which the coordinate of each endpoint is specified by n parameters.
To apply HyperNEAT to checkers, for example, the substrate (which is the name for the
set of ANN nodes and their geometry in HyperNEAT) input layer is arranged in two
dimensions to match the geometry of the checkers board (figure 1a). To compute the
weight of a connection, the CPPN encoding works by inputting the coordinates of its
endpoints (i.e. x1, y1, x2, and y2) and outputting the connection weight. All connections
are computed in this way, in effect painting a pattern across the network connectivity.

[21, 20] originally introduced the type of representation in figure 1a for applying
HyperNEAT to the game of Checkers. To distinguish the flow of information through
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(a) Checkers Evaluation Function (b) Go Action Selector

Fig. 1. Substrates for Board Games. Substrate (a) contains a two-dimensional input layer la-
belled A that corresponds to the geometry of a game board, an analogous two-dimensional hidden
layer B, and a single-node output layer C that returns a board evaluation. The two CPPNs to the
right of the board are depictions of the same CPPN being queried to determine the weights of
two different substrate connections. In this way, a four-input CPPN can specify the connection
weights of a two-layer network structure as a function of the positions, and hence the geometry,
of each node. An action selector substrate (utilized in this paper) with an output for every possible
move is shown in (b).

the policy network from the geometry of the game, a third dimension in the substrate
represents information flow from one layer to the next. Along this third dimension, the
two-dimensional input layer connects to an analogous two-dimensional hidden layer
so that the hidden layer can learn to process localized geometric features. The hidden
layer then connects to a single output node, whose role is to evaluate board positions.
The CPPN distinguishes the set of connections between the inputs and the hidden layer
from those between the hidden layer and the output node by querying the weights of
each set of connections from a separate output on the CPPN (note the two outputs
in the CPPN depiction in figure 1a). That way, the x and y positions of each node are
sufficient to identify the queried connection and the outputs differentiate one connection
layer from the next. Because the CPPN can effectively compute connection weights as
a function of the difference in positions of two nodes, it can easily map a repeating
concept across the whole board.

This approach allows HyperNEAT to discover geometric regularities on the board
by expressing connection weights as a function of geometry. For a full description of
HyperNEAT see [15] or [21].

3 Approach: HyperNEAT in Go

Because of the large branching factor in Go [1], board evaluation functions such as the
HyperNEAT approach to checkers discussed above may not be tractable in practice. In
the case of Go, there can be hundreds of boards to evaluate in a single move, even at the
lowest ply. Thus an appealing alternative would be an action selector that evaluates the
current state and suggests where to move, rather than a board evaluation function that
must view many boards in the future to decide on a move. The next section explores
this idea in more detail.
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3.1 Evolving an Action Selector

Because HyperNEAT can evolve high-dimensional structure as an indirect encoding,
it opens up the possibility to evolve an action selector. This type of ANN contains an
output for each possible action (figure 1b). In this case, an output exists for each square
on the Go board. By activating the substrate, HyperNEAT populates each output with
a value indicating the desirability of putting a piece in that position on the Go board.
Thus no forward search through the game tree is needed, thereby saving significant
computation. Once the substrate has been activated, the output with the highest activa-
tion is chosen and the corresponding square on the Go board undergoes a sanity check
that prevents the network from making invalid moves in the game. As a result of this
new architecture, the output, hidden, and input layers of the Go substrate all contain
n×n nodes, where n denotes the size of the board. Given a board size of 7×7, the sub-
strate thus contains 147 nodes and 4,802 connections. Indirect encoding can produce
the smooth patterns of weights necessary to begin evolution with so many connections
and still learn effectively. The next section explores the substrate extrapolation method
that allows solutions to scale in this paper.

3.2 Substrate Extrapolation

A major problem for traditional neuroevolution is that the number of evaluations to
solve a problem is related to the number of connections in the network being evolved
[12]. Training a network with ten million connections can require significantly more
evaluations than training one with one hundred. However, [15] showed that it is pos-
sible to query the same CPPN at varying substrate resolutions to create larger ANNs.
Thus a promising potential approach to expanding the action selector size is to learn
basic concepts on a small substrate, increase the substrate resolution, and then continue
learning more advanced concepts at the higher resolution. This approach is designed to
allow early, rapid learning of fundamental concepts.

There are two ways in HyperNEAT to scale a substrate input layer that represents
a geometric space. The first is to sample the inputs at a higher resolution. This form
of scaling, called continuous substrate extrapolation, preserves the geometric relation-
ships between locations on the input signal (figure 2a). The two images, while dif-
ferent resolutions, exist within the same geometric area. That is, a specific location
in the image does not change its meaning even if the resolution of the image changes.
Thus the scaling changes only the distance between two adjacent pixels. Because CPPN
inputs are by convention limited to a domain of [−1,1], the CPPN effectively normal-
izes the width and height of the image regardless of resolution, and can thereby ex-
trapolate the ANN to handle this form of scaling naturally. [15] demonstrated such
continuous substrate extrapolation with HyperNEAT in a simple visual recognition
domain.

While this method can be effective in visual tasks, some domains do not lend them-
selves to this form of scaling. For example, if the resolution of the Go board in figure 2b
is increased, the size of the domain itself increases, as opposed to in the prior example,
wherein it simply becomes more detailed. In such discrete substrate extrapolation, the
size of a meaningful unit of information does not change as the resolution increases. As
a result, a new method must be designed to handle this form of scaling.
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(a) Continuous Extrapolation (b) Discrete Extrapolation

Fig. 2. Continuous Versus Discrete Extrapolation. In continuous substrate extrapolation (a),
the bounds of the geometry do not change as the scale increases. In discrete extrapolation (b), the
relative area of a single square stays the same, but the overall geometry is expanded outward. In
this case, special care is needed to ensure that the network scales appropriately with the domain.

3.3 Discrete Substrate Extrapolation Implementation

The problem in discrete extrapolation is that the range of the input domain changes as
the scale increases. To address this phenomenon, it is necessary to first decide on the
maximum resolution of the system. In Go, this maximum resolution is 19×19, the size
of the largest tournament Go board. The next step is to calculate the distance between
two adjacent cells at this resolution. Because each input to the CPPN ranges from −1
to 1, the Go board must be rescaled to fit this new range. Thus the Go board position at
index 0 maps to −1 and the position at index 18 maps to 1, and the distance between
two adjacent cells in the Go board is therefore 2

18 . Interestingly, if the system is trained
first at a lower resolution, e.g. 5×5, the smaller domain can be situated in the very same
coordinate system (figure 2b). Increasing the resolution of each substrate layer during
evolution is then an effective method to allow holistic complexification.

4 Experiment

The experiment in this paper aims to determine the effects of scaling HyperNEAT sub-
strates on evolved Go action selectors. The player begins by playing ten games of Go
against a fixed policy on a 5× 5 board for 500 generations. The fixed policy player is
Liberty Player from the SimplePlayers package of Fuego [22], who “tries to capture and
escape with low liberty stones.” A liberty stone is surrounded on three of the four sides
with stones, and only has one empty adjacent space (i.e. one liberty). Liberty Player
can be applied to boards of any size. Because Liberty Player places stones adjacent to
stones with few liberties, it escapes captures and also quickly captures given the oppor-
tunity. When two or more potential moves are equally viable, Liberty Player picks one
at random. These factors make Liberty Player a nontrivial opponent that provides suffi-
cient challenge to demonstrate the utility of scaling. After training on a 5×5 Go board,
the domain switches to playing Go against the same policy on a 7× 7 board. Like the
evolved player, Liberty Player is an action selector, that is, it only evaluates the current
board and returns a location on which to place a stone.
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During evolution, each candidate plays ten games of Go against the Liberty Player.
After each game has ended, the candidate receives a reward based on the final score and
the size of the board.

fitness =

{
8b2 if the evolved player wins

max
(
0,s+ 2b2

)
if the evolved player loses,

(1)

where s denotes the final score and b denotes the size (i.e. length) of the board. This
fitness function guarantees that all individuals will receive a positive fitness (as Hyper-
NEAT requires), and that negative Go scores will still result in a positive reward. This
convention puts additional emphasis on winning and also avoids rewarding individuals
who win by a large margin in a single game, but lose the remaining games.

4.1 Experimental Parameters

Parameter settings in the experiment follow precedent in applying HyperNEAT to
checkers [20, 21]. The population size was 100 and each run lasted 500 generations.
The disjoint and excess node coefficients were both 2.0 and the weight difference coef-
ficient was 1.0. The compatibility threshold was 6.0 and the compatibility modifier was
0.3. The target number of species was eight and the drop-off age was 15. The survival
threshold within a species was 20%. Offspring had a 3% chance of adding a node and
a 5% chance of adding a link, and every link of a new offspring had an 80% chance of
being mutated. Available CPPN activation functions were sigmoid, Gaussian, sine, and
linear functions. Recurrent connections within the CPPN were not enabled. Signed ac-
tivation was used in the CPPN and substrate, resulting in a node output range of [−1,1].
By convention, a connection is not expressed if the magnitude of its weight is below a
minimal threshold of 0.2 [15]; otherwise, it is scaled proportionally to the CPPN output.
These parameters were found to be robust to variation in preliminary experimentation.

5 Results

To determine the effect of scaling, substrate extrapolation is compared to an unscaled
approach that plays only 7×7 Go. Although fitness drives evolution, fitness cannot be
a benchmark for scaling performance because it is derived from the Go score, which
varies with the size of the board. Therefore, the win rate is recorded during evolution
and determines the effective skill of the player for the purpose of comparing the scaled
to non-scaled methods.

Figure 3a compares the performance of the non-scaled 7× 7 method against the
scaled substrate, averaged over 25 runs. Note that the non-scaled results are shifted to
the right so that the reader can easily compare the effects of scaling to not scaling. The
scaling approach won significantly more games than the non-scaling approach in all
generations after 524 (i.e. 24 generations after scaling) (p < 0.05).

To give an idea how scaling works, figure 3b shows a single receptive field con-
necting to the center output from the hidden layer of a scalable substrate at the two
resolutions. Each grayscale box represents a link weight from a node in the hidden
layer at that location to the center node of the output layer. White triangles in the corner
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(a) Scaled versus non-scaled performance (b) Receptive field at 5×5 and 7×7 scales

Fig. 3. Scaling Comparison and Visualization. The average performance of the generation
champions over 25 runs of each variant is shown in (a). The performance is measured as the
number of games won out of a possible 10 against Liberty Player. The scaled method wins sig-
nificantly more than the non-scaled method in every generation beyond 524. A receptive field for
the center output node on the substrate is shown in (b). Note that when the substrate is scaled to
7×7, the pattern is extrapolated outwards.

of an box denote negative weights. The individual from which this receptive map was
extracted is from generation 500, at which the domain is scaled to 7×7. Note that the
pattern of weights is extrapolated outward as the substrate is scaled from 5×5 to 7×7.
To understand this result, recall that the substrate is scaled with the discrete substrate
extrapolation method. As a result, when the substrate is created at 5× 5, the CPPN is
queried with all possible combinations of the numbers− 2

3 ,− 1
3 ,−0, 1

3 , 2
3 as inputs x1, x2,

y1, y2. The choice of inputs to the CPPN explicitly defines the particular connection
weight that the CPPN will output. The substrate is scaled to 7× 7 by expanding the
inputs to include all possible combinations of the numbers −1, − 2

3 , − 1
3 , −0, 1

3 , 2
3 , 1.

This expansion adds the additional cells shown in 3b. This new pattern is thereby an
effective bootstrap for learning more advanced concepts at the higher scale.

6 Discussion and Future Work

The key contribution of this paper is to show that indirect encoding makes possible a
new kind of holistic, scalable Go player. Interestingly, an evaluation at 7× 7 takes ten
times longer than the same evaluation at 5× 5 because the network size is larger and
the games take more turns to complete. A method that can learn fundamental concepts
at a low board size can thus more quickly progress to more advanced concepts at higher
sizes, and thereby learn them with less computational overhead.

The CPPN encoding allows the HyperNEAT substrate to input and output an entire
board of neurons. This method thus differs from other scalable approaches that either
divide the board into local segments [3] or local features [2]. Constructing a function
from the holistic board geometry is important for several reasons. First, it removes the
need for a human or external process to divide the search space into local features or
segments. Second, constructing functions directly from geometry allow long-distance
geometric relationships to be taken into account. For example, the decision to place a
piece in Go often hinges not only on the position in the local area, but also on the state
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of conflicts elsewhere on the board and the geometric relationship of those conflicts
with the local positions.

Future work will focus on incrementing to higher board sizes, evolving general
Go players with HyperNEAT, and comparing them to other Go players. In addition,
it is possible to bootstrap a Monte Carlo Tree Search (MCTS) algorithm with an
action-evaluation function evolved by HyperNEAT. For example, the Upper Confidence
Bounds Applied to Trees (UCT) algorithm is enhanced by adding a default policy [23];
however, the authors note that, “in many domains it is difficult to construct a good de-
fault policy.” It is possible that HyperNEAT can evolve an effective default policy for
UCT or any search algorithm.

7 Conclusion

This paper focused on the effects of scaling and demonstrated that players evolved
incrementally through a scalable representation learn faster and more effectively than
players evolved solely at the large scale. This result implies that fundamental concepts
learned at a lower resolution facilitated further learning at the higher scale. The sub-
strate extrapolation method scaled the information learned on the 5×5 Go board to the
7× 7 board and the HyperNEAT algorithm was able to continue evolution at this new
resolution. The main contribution is a step towards holistic neural strategies through
indirect encoding that can be scaled to higher resolution or size.
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Abstract. Taking inspiration from approximate ranking, this paper in-

vestigates the use of rank-based Support Vector Machine as surrogate

model within CMA-ES, enforcing the invariance of the approach with

respect to monotonous transformations of the fitness function. Whereas

the choice of the SVM kernel is known to be a critical issue, the pro-

posed approach uses the Covariance Matrix adapted by CMA-ES within

a Gaussian kernel, ensuring the adaptation of the kernel to the currently

explored region of the fitness landscape at almost no computational over-

head. The empirical validation of the approach on standard benchmarks,

comparatively to CMA-ES and recent surrogate-based CMA-ES, demon-

strates the efficiency and scalability of the proposed approach.

1 Introduction

The importance of invariances in science has long been acknowledged. In com-
puter science in particular, the invariance of an algorithm with respect to a given
transformation of the problem domain is a source of robustness, as any theoret-
ical or empirical result that is demonstrated for a given problem instance can be
extended to the whole class of problems obtained by applying the transformation.
For instance, many bio-inspired optimization algorithms such as tournament-
based EAs, PSO, or DE only rely on comparisons of the fitness function, making
them invariant under any monotonous transformation of the fitness. From a the-
oretical perspective, this invariance property is a source of robustness [5]; from
an algorithmic perspective, it removes the need to tune the algorithm hyper pa-
rameters according to some (generally unknown) scale of the fitness function. In
the realm of continuous optimization, the state-of-the-art CMA-ES [8] is known
to achieve invariance with respect to orthogonal transformations of the search
space. CMA-ES extreme robustness with respect to internal parameter tuning,
and its outstanding performances for many types of fitness functions [7] are
attributed in part to this invariance property, the importance of which is wit-
nessed by the variability of other algorithm performances depending on e.g. the
separability or condition number of the fitness function [1].
� Work partially funded by FUI of System@tic Paris-Region ICT cluster through con-

tract DGT 117 407 Complex Systems Design Lab (CSDL).
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Meta-model assisted optimization is used to decrease the number of evalua-
tions of computationally expensive fitness functions in the framework of con-
tinuous optimization: a surrogate model of the fitness is built on the fly, and
used in lieu of the actual fitness. Such method, also known as “Response Sur-
face Method”, has been used for long in the Numerical Engineering community
[2]. Because Evolutionary Algorithms (EAs) require a lot of fitness evaluations,
much work has been devoted in the last decade to specifically tune meta-model
assisted approaches to EAs (see e.g. [9] for a survey – and section 2).

Unfortunately, building a surrogate model from the fitness values gathered
during the search definitely obliterates any invariance by monotonous transfor-
mation of the fitness. Preserving such invariance in a surrogate-based approach
requires the surrogate model to only comply with the ranks of the sample points
with respect to the fitness function. In the realm of statistical Machine Learning,
rank-based Support Vector Machines (SVMs) precisely aims at learning a model
from the only ordering of the sample points [15]; such a rank-based surrogate
could be used in lieu of a value-based surrogate, enforcing the comparison-based
invariance of the underlying optimization algorithm. To the best of our knowl-
edge, the only work investigating the use of rank-based SVM as surrogate model
within a meta-model assisted EA is Runarsson’s [14]; while this approach was
reported to bring small improvements over a CMA-ES baseline, a major issue
regards the choice of the kernel, the Achilles heel of all SVM-based methods.

Following the path opened by [14], this paper investigates the use of rank-
based SVM surrogate models within CMA-ES. It further borrows [11] the use
of the Covariance Matrix adapted by CMA-ES, viewed as the proper metric
to look at the region of the fitness landscape currently explored. Finally, the
paper contribution is to integrate a rank-based Support Vector Machine sur-
rogate within CMA-ES, where the SVM kernel is set to the covariance matrix
adapted by CMA-ES. Section 2 surveys evolutionary model-assisted approaches,
focussing on rank-based surrogates and CMA-ES. Section 3 introduces the pro-
posed algorithm, called ACM-ES for (alphabetically) ranked CMA-ES; it details
how a rank-based SVM is tightly coupled with CMA-ES, using the change of
representation induced by the current covariance matrix to derive an adaptive
kernel with almost no computational overhead. The experimental validation of
the approach is reported and discussed in section 4, and directions for further
work are sketched in section 5.

2 Surrogate Models and Ranking

2.1 Approximate Ranking

Most approaches to evolutionary meta-model assisted optimization build and
use the surrogate model in a way similar to that of classical optimization. The
surrogate model is trained by regression, depending on the underlying model
space (from mostly quadratic polynomials to neural networks, kriging aka Gaus-
sian Processes or SVMs); the surrogate model (possibly taking into account its
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uncertainty) is used in lieu of the actual fitness function, or it is used to pre-
screen promising solutions; and the model is updated based on computations of
the true fitness on those promising solutions (see [9] for a detailed survey).

To our best knowledge, the first work acknowledging the fact that EAs “only”
require accurate ranking information, as opposed to accurate approximation of
the fitness function, is that of Th. Runarsson [13]. This work introduced the idea
of approximate ranking: a simple weighted nearest neighbor regression model is
used as surrogate model, and its validity is assessed based on whether it preserves
the (objective function-based) ordering of points. The most promising individuals
according to the surrogate model are evaluated with the objective function until
the ranking of the best individuals stabilizes. Significant savings are reported
on test functions compared to the baseline algorithm (an ES variant tailored to
constrained optimization), although they do not allow comparison with state-of-
the-art results. Moreover, the surrogate model is probably too simple to lead to
competitive results.

Approximate ranking however inspired Local Meta-Model CMA-ES (lmm-
CMA), proposed by Kern et al. [11]: a local quadratic model is build anew
for each offspring generated with the usual CMA-ES procedure, and approxi-
mate ranking is used to adaptively determine the number of actual objective
evaluations to be run at each generation. lmm-CMA significantly outperforms
the original CMA-ES with a speed-up factor of circa 2-3, making it competi-
tive with state-of-the-art approaches. The requirement on approximate ranking
was later relaxed by another variant, nlmm-CMA [3], using the rank stability
of the set of μ best offspring as stopping criterion (as opposed to, the rank of
each offspring), and thus improving over lmm-CMA on most benchmark func-
tions (detailed results will be given in section 4.2 for the sake of comparative
validation).

There are however a few drawbacks with lmm-CMA algorithms, apart from
the fact that they use a regression surrogate model and hence depart from the
comparison-based invariance of CMA-ES. Firstly, they rely on quadratic approx-
imations, and thus their performances decrease when the objective function is far
from being quadratic (see section 4.2). Secondly, they must use the full quadratic
model [11], and hence the surrogate model must be of order d2, where d denotes
the problem dimension; the regression problem thus is of order d6, which makes
it hardly scalable for medium size problems (d > 20).

2.2 Rank-Based Surrogate Model with Rank-SVMs

Another seminal idea regarding the comparison-based issue in meta-model as-
sisted EAs is again due to Th. Runarsson [14], using rank-based learning to train
the surrogate model. Let us briefly recall rank-based Support Vector Machines,
assuming the reader’s familiarity with SVM first principles [15].

Let (x1, . . . ,xN ) denote an N -sample in instance space X , assuming with no
loss of generality that point xi has rank i. Rank-based SVM learning [10] aims
at a real-valued function F on X such that F(xi) < F(xj) for all pairs i, j such
that i < j. In the SVM framework, this goal is formalized through minimizing
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the norm of F (regularization term) subject to the ordering constraints, thus
involvingN(N−1)/2 constraints. A more tractable formulation [15] only involves
the N − 1 constraints related to consecutive points, F(xi) < F(xi+1) for i =
1 . . .N − 1. The latter formulation was used in [14] and will also be used in the
presented approach.

Using the kernel trick1, ranking function F is defined as a linear function w
w.r.t. some feature space Φ(X), i.e. F(x) = 〈 w,Φ(x) 〉. With same notations
as in [15], the primal optimization problem is defined as follows, where slack
variable ξi and constant Ci respectively account for the violation of the i-th
constraint, and the weight of the violation, to be minimized:

Minimize{w, ξ} 1
2 ||w||2 +

∑N
i=1 Ciξi

subject to
{ 〈 w,Φ(xi)− Φ(xi+1) 〉 ≥ 1 + ξi (i = 1 . . .N − 1)
ξi ≥ 0 (i = 1 . . .N − 1)

(1)

The corresponding dual problem, quadratic in the Lagrangian multipliers α, can
be solved easily. Finally, the rank surrogate F is given as

F(x) =
∑N−1

i=1 αi(K(xi,x)−K(xi+1,x))

Like for any SVM-based approach, the main critical issue behind rank-based
SVMs remains the choice of the kernel, that is known to be highly problem-
dependent [15]. Furthermore, as pointed out in [4], the kernel used within an
SVM-based surrogate should adapt to the optimization process: the optimal ker-
nel is likely to change as search proceeds, exploring different regions of the search
space. Some results related to kernel adaptation within SVM-based surrogate in
CMA-ES, using fixed kernels, have been obtained by updating the surrogate
model using Kendall tests on ranks (although approximate ranking could also
have been used). The computational gains in terms of number of function evalu-
ations do depend on the kernel, as was expected; the gains however are reported
in [14] to rapidly decrease with the dimension d of the problem.

3 Rank-SVM CMA-ES

The main contribution of the paper is to integrate the rank-based surrogate
approach first proposed by [14] within the CMA-ES framework, taking advantage
of the Covariance-Matrix Adaptation scheme to adaptively define the kernel of
the rank-based surrogate.

3.1 From CMA-ES to Rank-SVM Kernel

By construction, CMA-ES adapts the covariance matrix describing the local
structure of the fitness landscape. After [6], CMA-ES proceeds by adapting the
1 The so-called kernel trick supports the extension of the SVM approach from linear to

non-linear functional spaces, by mapping instance space X onto some feature space.
It only requires the scalar product in feature space to be computable on instance

space X through a kernel function K: K(x, x′) =def 〈 Φ(x), Φ(x′) 〉.
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problem encoding, and performing a Cumulative Step-size Adaptation algorithm
in the transformed space. The change of coordinates, defined from the current
covariance matrix C and the current mean value m, reads:

x′j = C−1/2(xj −m), (2)

Notably, the CMA information was directly used in [11] to building quadratic
surrogate models; when training a quadratic surrogate model centered on x∗,
the weight of each sample x was set to

√
(x− x∗)TC−1(x− x∗).

In the case of a kernel-based surrogate model, it thus comes naturally to set
the Radius-Based (RBF) kernel directly to the covariance matrix, with σ > 0:

KC(xi,xj) = e−
(xi−xj)T C−1(xi−xj)

2σ2 (3)

Fig. 1 (left) illustrates the potential gain of using such transformation for the
simple case of the ellipsoid function, where the matrix C is exactly known.
Interestingly, the change of coordinates is already computed within CMA-ES,
therefore the transformation comes at almost no additional cost. Kernel width
σ is set to the average distance between training points in the experiments.
Another possibility, left for further work, could be to tie σ to CMA step size.

3.2 Overview of ACM-ES

Having chosen its kernel after Eq. (3), the integration of a rank-SVM as surrogate
model within CMA-ES raises three main issues: i/ how to train the surrogate
model, i.e. how to select the current training sample in the set of all points
evaluated with the true objective function; ii/ how to use the model within
CMA-ES, without perturbing the delicate adaptive mechanism thereof; and iii/
how to select the new points which will be evaluated with the true objective
function.

Regarding the first issue, i.e. the selection of the training sample, several re-
quirements have been identified. Firstly, the number Ntraining of training sam-
ples must increase with the dimension d of the search space. Using statistical
learning arguments, Ntraining should be of the order of the VC dimension of
the model space. Note that after transformation (Eq. 2) the decision space is a
variant of the sphere function, in the best case, or a noisy multimodal variant
thereof in the worst case. A second requirement is that the training samples
should not lie too far from the current mean m of the distribution used by
CMA-ES to generate its offspring, since the transformation defined by the cur-
rent covariance matrix only aims at the local structure of the fitness landscape
around m. Finally, the analysis of preliminary experiments on the d-dimensional
sphere function shows that Ntraining should increase proportionally to

√
d; the

proportionality constant however remains problem-dependent as will be seen in
section 4.1. These Ntraining selected points are the best points evaluated with
the true fitness function so far.

The second issue regards how to use the rank-based surrogate within CMA-
ES. Using the surrogate model in lieu of the true fitness is a risky option due
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(a) Contour plots of ellipsoid function (dotted

lines) and Rank-SVM surrogates (solid lines) ob-

tained with isotropic RBF kernel (left) or exact

transformed RBF kernel (right).

(b) λ = 12 offspring (’+’ and

’∗’) and λ′ = 4 candidates

for true evaluation (’∗’) selected

among 500 pre-children.

Fig. 1. (a) The transformed RBF kernel is more appropriate than the isotropic one.

(b) Selecting offspring from pre-children: mapping the ranks to a normal distribution.

to the lack of guarantees about errors in regions outside the training sample. A
more conservative option thus is to use the surrogate model to pre-screen the
offspring [12], generating many more pre-children than required, and keeping the
best ones after the surrogate model. Such an approach however rapidly looses
the offspring diversity, hindering the CMA-ES adaptive mechanism used to adapt
the covariance matrix. Some tradeoff between the optimization of the objective
and the adaptation of the covariance matrix must thus be found.

The proposed approach finally is a two-step process. In order to prevent pre-
mature convergence, and interfere as little as possible with CMA-ES cumulative
step-size adaptation, a large number Ntest of pre-children is drawn using the
standard CMA Gaussian distribution; let them be noted x1, . . . xNtest , assuming
with no loss of generality them to be ranked after the surrogate model. The λ
offspring are obtained by iteratively drawing a real number a < Ntest from dis-
tribution N (0,σ2

sel0) (where σsel0 is a parameter of the algorithm), and retaining
the pre-child with rank �a�. The same procedure is followed to select the points
to be evaluated according to the true objective function, with the same rationale:
on the one hand, one should select the best points according to the current sur-
rogate model; on the other hand, some diversity must be preserved. Finally, i/
the point with top rank is selected and always evaluated (as in the approximate
ranking approach [13]); ii/ other (λ′-1) points selected among the pre-children
using a rank distribution N (0,σ2

sel1) are evaluated, using the same process as for
the offspring selection albeit with a larger standard deviation (σsel1 > σsel0). A
typical distribution of the ranks of the λ offspring is depicted on Fig. 1 (right),
legend +, for Ntest = 500, λ = 12, and σ2

sel0 = 0.4, while points that will be
evaluated with the true fitness are represented by ∗ (λ′ = 4 and σ2

sel1 = 0.8).
In ACM-ES, a fixed number λ′ of points is evaluated in each generation, thus

bounding the complexity in terms of true fitness evaluation. The choice of the
ratio λ/λ′ thus controls the efficiency of the approach and the speedup w.r.t. the
standard CMA-ES (where λ offspring are evaluated in each generation).
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4 Experimental Validation

The experimental validation of ACM-ES investigates the performance of the
approach comparatively to CMA-ES and nlmm-CMA, focussing on its scalability
w.r.t. the problem dimension d, the robustness with respect to multi-modality,
and with respect to the calibration of the surrogate training.

4.1 Experimental Settings

Seven uni- and multimodal benchmark functions have been considered (see
Table 1, definitions in [11] and [3]), with dimension d ranging in [2, 40] except
for the Rastrigin function. Within ACM-ES, CMA-ES is used with its default
parameters [8]. Reported results are based on 20 independent runs. The stopping
criterion is reaching target value 10−10, with a maximum of 1000d2 evaluations.

The rank-based surrogate was trained using Ntraining = 30
√
d samples for all

functions, except for Ellipsoid and Rosenbrock where it was set to 70
√
d. The

maximum number of iterations of the SVM learning algorithm was arbitrarily set
to 50000

√
d. The constraint weights Ci (Eq. 1) were set to 106(Ntraining − i)2.0,

implying that the cost of constraint violation quadratically increases for top-
ranked samples. For all functions except Rastrigin, λ′ = λ

3 , σ2
sel0 = 0.4, σ2

sel1 =
2σ2

sel0 = 0.8, Ntest = 500. For Rastrigin function σ2
sel0 = σ2

sel1 = 0.6.

4.2 Results and Discussion

Firstly, experiments are conducted to estimate the empirical complexity of the
surrogate training and using, using 100

√
d training points, stopping after 50000

√
d

iterations and assessing the surrogated model on 500 test points. The empirical
complexity with respect to dimension d (Fig. 2 (left) in log scale) is 1.13 (thus,
slightly super-linear, contrasting with lmm-CMA complexity of O(d6)).

Secondly, the comparative validation of ACM-ES, nlmm-CMA and standard
CMA-ES on all benchmark functions is reported in Table 2; lmm-CMA and
nlmm-CMA results have been taken from original papers [11] and [3] when avail-
able; those of CMA-ES have been recomputed. Overall, ACM-ES outperforms
lmm-CMA and nlmm-CMA algorithms on most problems, particularly so for
problems with dimension d > 4. The invariance of ACM-ES w.r.t. monotonous

Table 1. Test functions, initialization intervals and initial std. dev. (from [11,3])

Noisy Sphere fNoisySphere(x)= (
∑d

i=1 x2
i )exp(εN (0, 1) [−3, 7]d 5

Ellipsoid fElli(x)=
∑d

i=1 10
i−1
d−1 x2

i [1, 5]d 2

Schwefel fSchwefel(x)=
∑d

i=1(
∑ i

j=1 xj)
2 [−10, 10]d 10

Schwefel1/4 f
Schwefel1/4 (x)= (fSchwefel(x))1/4 [−10, 10]d 10

Rosenbrock fRosenbrock(x)=
∑d−1

i=1

(
100.(x2

i − xi+1)
2 + (xi − 1)2

)
[−5, 5]d 0.5

Ackley fAckley(x)= −20exp

(
−0.2

√
1
d

∑d
i=1 x2

i

)
+exp( 1

d

∑d
i=1cos(2πxi)) [1, 30]d 14.5

Rastrigin fRastrigin(x)= 10d +
∑d

i=1(x
2
i − 10.cos(2πxi)) [1, 5]d 2
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Table 2. Computational effort SP1 (i.e. average number of function evaluations of suc-

cessful runs divided by proportion of successful runs), standard deviations and speedup

performance (spu) of ACM-ES, (n)lmm-CMA-ES and CMA-ES. Results in the (n)lmm-

CMA column are the best of those in [11] and [3] (marked with leading “n:” for the

latter). Successful runs are those who reached the target fitness value of 10−10. The

proportion of successful runs is given in parentheses if less than 100%. ε is the noise

level (when relevant).

Function n λ λ′ ε ACM-ES spu (n)lmm-CMA spu CMA-ES

fSchwefel 2 6 3 186±5 2.0 81±5 4.5 370±32
4 8 3 289±9 3.0 145±7 6.0 879±60
5 8 3 344±9 3.2 1112±72
8 10 3 558±18 3.6 282±11 7.1 2010±82
10 10 3 801±36 3.3 2667±87
16 11 3 2204±74 2.3 626±17 8.2 5156±161
20 12 4 3531±179 2.0 7042±172
32 14 4 8933±337 1.7 15072±377
40 15 5 13440±281 1.7 22400±289

fSchwefel1/4 2 6 3 551±12 2.8 n:413±25 3.7 1527±76

4 8 3 783±8 3.6 n:971±36 2.9 2847±109
5 8 3 914±15 3.8 n:1302±31 2.7 3505±114
8 10 3 1366±25 4.3 5882±146
10 10 3 1774±37 4.1 7220±206
16 11 3 4193±88 3.0 12411±198
20 12 4 6138±82 2.5 15600±294
32 14 4 14796±310 2.0 29378±330
40 15 5 22658±390 1.8 41534±466

fRosenbrock 2 6 3 511±84 1.4 n:252±52 2.8 700±194
4 8 3 775±108 2.8 n:719±54 (0.85) 3.0 2187±376 (0.85)

5 8 3 854±89 3.0 n:1014±94 (0.90) 2.5 2526±308 (0.95)

8 10 3 1388±139 4.2 2494±511 (0.90) 2.3 5769±547 (0.85)

10 10 3 2059±143 (0.95) 3.7 7669±691 (0.90)

16 11 3 5255±560 3.1 7299±1154 2.2 16317±1281 (0.90)

20 12 4 11793±574 (0.75) 1.8 21794±1529
32 14 4 32261±2165 (0.8) 1.6 52671±5587
40 15 5 49750±2412 (0.9) 1.6 82043±3991

fNoisySphere 2 6 3 0.35 413±114 1.0 n:109±12 3.7 407±61 (0.95)

4 8 3 0.25 428±46 2.0 n:236±19 3.6 844±141
5 8 3 0.22 480±66 2.1 1014±68
8 10 3 0.18 630±76 2.6 n:636±33 2.6 1663±140
10 10 3 0.15 766±90 (0.95) 2.7 2058±148
16 11 3 0.13 1119±115 2.8 n:2156±216 1.4 3120±168
20 12 4 0.11 1361±212 2.8 3777±127
32 14 4 0.09 1997±247 2.9 5767±162
40 15 5 0.08 2409±120 2.9 7023±173

fAckley 2 6 3 352±39 2.1 n:227±23 3.2 735±55
4 8 3 540±29 (0.95) 2.9 1577±83
5 8 3 566±33 3.4 n:704±24 (0.90) 2.2 1904±122 (0.95)

8 10 3 800±22 (0.95) 3.8 3066±114
10 10 3 892±28 4.1 n:2066±119 (0.95) 1.8 3641±154
16 11 3 1530±39 3.7 5672±151
20 12 4 1884±50 3.5 8150±196 0.8 6641±108
32 14 4 2747±62 3.7 10063±203
40 15 5 3690±80 3.3 12084±247

fElli 2 6 3 393±19 2.0 774±73
4 8 3 582±24 2.9 1688±11
5 8 3 683±33 3.4 2342±162
8 10 3 1142±53 4.0 4542±155
10 10 3 1628±95 3.8 6211±264
16 11 3 4706±148 2.8 13177±341
20 12 4 8250±393 2.3 19060±501
32 14 4 27281±753 1.6 44562±530
40 15 5 33602±548 2.1 69642±644

fRastrigin 2 50 25 1640±242 (0.6) 1.2 n:528±48 (0.95) 3.6 1970±418 (0.85)

5 140 70 23293±1374 (0.3) 0.5 n:4037±209 (0.60) 3.0 12310±1098 (0.75)
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Fig. 2. Left: the cost of model learning/testing increases quasi-linearly with d. Right:

the average speedup and speedup for all problems except Rastrigin.

transformations of the fitness is witnessed by its almost identical results on
fSchwefel and fSchwefel1/4 functions, when the stopping criterion is adjusted ac-
cordingly (which is not the case for the results of Table 2). Likewise, the results
on fElli confirm that ACM-ES also retains the good behavioral properties of
CMA-ES with respect to the ill-conditioning of the fitness function. The speedup
w.r.t CMA-ES is depicted on Fig. 2 (right) versus the problem dimension d. In-
terestingly, the speedup reaches its peak for d ranging in 8..10, then it decreases
– except on the Noisy Sphere function. A possible explanation is that the noise
level is comparatively less when the dimension increases (as in [3]), enabling the
regularization involved in the model optimization to counteract the noise effects.

On the negative side, ACM-ES performs poorly on fRastrigin function, and
only solves it marginally for dimensions d > 8. This failure is attributed to the
fact that ACM-ES does not handle well multi-modal diversity at the moment; it
tends to accelerate the premature convergence to a local optimum, thus ampli-
fying the weakness of CMA-ES on this benchmark problem: the best-performing
versions of CMA-ES require an increasing population size [7]. Further work will
consider the use of niching techniques to overcome this weakness.

5 Conclusion and Perspectives

The main contribution of the paper, ACM-ES, is a surrogate-based CMA-ES
preserving invariance with respect to both monotonous transformations of the
fitness function and orthogonal transformations of the search space. Comparison-
based invariance is enforced by using rank-based Support Vector Machines to
learn the surrogate model; coordinate invariance is enforced through using the
covariance matrix adapted by CMA-ES as SVM kernel. Experimental validation
confirms both invariance claims, and demonstrates the merits of the approach
in terms of fitness evaluations and scalability w.r.t. the space dimension.

The main weakness of the approach is due to the failure of the surrogate model
to account for multi-modal landscapes, as shown on the Rastrigin function; some
improvements, e.g. related to niching, have been mentioned in the previous sec-
tion and their validation is under way. Another issue regards the surrogate model
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hyper-parameters, which have been calibrated after preliminary experiments on
the Sphere function conditionally to the carefully tuned hyper-parameters of
CMA-ES [8]. A global approach, considering both sets of hyperparameters in an
integrated way, would be appropriate. Another perspective, pointed out in [13],
is to extend the approach to constrained optimization.
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Abstract. A challenge in partitional clustering is determining the num-

ber of clusters that best characterize a set of observations. In this paper,

we present a novel approach for determining both an optimal number of

clusters and partitioning of the data set. Our new algorithm is based on

cooperative coevolution and inspired by the natural process of sympatric

speciation. We have evaluated our algorithm on a number of synthetic

and real data sets from pattern recognition literature and on a recently-

collected set of epigenetic data consisting of DNA methylation levels.

In a comparison with a state-of-the-art algorithm that uses a variable

string-length GA for clustering, our algorithm demonstrated a signifi-

cant performance advantage, both in terms of determining an appropri-

ate number of clusters and in the quality of the cluster assignments as

reflected by the misclassification rate.

1 Introduction

Cluster analysis consists of partitioning a set of patterns so those that are sim-
ilar in some respect are clustered together and those that are dissimilar are
clustered apart. The patterns, often in the form of numerical or categorical vec-
tors, may represent many different types of observations. For example, in the
field of epidemiology the patterns may represent the time and location of cases
of a particular disease, in the field of image analysis the patterns may represent
pixel intensities in a number of different spectral bands, in the field of molecu-
lar biology the patterns may represent the expression level of genes at different
points in time, and so on. By performing cluster analysis on the patterns, we may
gain useful information—enabling us, for example, to determine how a disease
is spreading, segment an image into different land-cover regions, or characterize
tumors based on their genetic signature.

Clustering algorithms can be categorized as hierarchical or partitional. While
hierarchical clustering consists of creating larger clusters that are further parti-
tioned into smaller clusters, or the agglomerative approach of starting with small
clusters and merging them into larger clusters, partitional clustering creates a
single partition of the observations given a specified number of clusters. The two
best-known partitional clustering algorithms are K-means [1] and fuzzy C-means

R. Schaefer et al. (Eds.): PPSN XI, Part I, LNCS 6238, pp. 374–383, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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clustering [2]. These algorithms are similar, but K-means assigns each pattern
uniquely to one cluster, while C-means assigns each pattern to multiple clusters
with various levels of membership or fuzziness. K-means and its variants com-
pute optimal cluster centroids and use these centroids to partition the patterns
based on a relevant distance metric.

A challenge in partitional clustering is determining the number of clusters
that best characterize the observations (see, for example [3]). In this paper, we
present a novel approach for determining an optimal number of clusters and
assignment of patterns to clusters simultaneously. Our approach is inspired by
the process of sympatric speciation in nature. Specifically, each species repre-
sents a cluster, and its individuals are alternatives for that cluster’s centroid.
As a cooperative coevolutionary algorithm (CCEA) [4] evolves the centroids,
new species are created that “steal” pattern assignments from the preexisting
species while increasing the overall health of the ecosystem (reflected by the
cluster validity). Once new species can no longer be created without diminish-
ing cluster validity, the algorithm returns the best possible partitioning of the
observations.

The rest of this paper is organized as follows. After an introduction to cluster-
ing with evolutionary algorithms we describe our new coevolutionary clustering
algorithm in detail. This is followed by an empirical analysis of our approach on
a number of synthetic and real data sets, and a comparison of its performance
with that of the previous best approach to evolutionary clustering that also de-
termines an optimal number of clusters and pattern assignments simultaneously.
This earlier approach uses a variable string-length representation to evolve an
optimal number of clusters [5,6]. Finally, we will present results that suggest not
only why coevolution works better than the variable string-length representation
on this particular task, but on compositional tasks in general.

2 Evolutionary Clustering

The original motivation for applying evolutionary algorithms (EAs) to cluster-
ing was the observation that partitions produced by K-means and its variants
depend on the choice of seed values for the initial cluster centroids. While locally
optimal partitions are found, there is no guarantee of finding the global optimum
partitioning. It was shown in a comparison with K-means that the population-
based approach used by EAs helps in this regard by making it less likely that
the algorithm will converge to a local optimum or saddle point [7].

The earliest application of an EA to this problem by Raghavan [8] was to
evolve cluster membership directly, but this proved to be quite slow in converging
to an optimal solution. A more successful approach first proposed by Babu and
Murty [9] evolved cluster centroids with an evolution strategy, which were then
used to partition the patterns as in the K-means and fuzzy C-means algorithms.
This approach has continued to be modified and enhanced by others, including
using a genetic algorithm rather than an evolution strategy to evolve cluster
centroids [10,11,12], the use of multiobjective optimization in evaluating the
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fitness of clusters [13], and alternative distance metrics such as those based on
symmetry [14]. Other work includes using “do not care” symbols and variable-
length chromosomes to simultaneously evolve cluster centroids and determine
an optimal number of clusters [15,16,5,6], but as we will show, using the same
objective function for both purposes can be overly restrictive.

3 Coevolutionary Approach

The only previous use of coevolution for clustering involved coevolving clus-
ter centroids and the feature set used in the distance computation [17]. Our
approach, which we call CCEA clustering, is quite different from this earlier ap-
proach in that ours is the first use of coevolution to simultaneously determine the
number of clusters that best characterize the observations along with optimal
partitioning. This approach is inspired by the process of sympatric speciation,
which is a form of speciation that occurs when organisms share a common range
or geographic area. Using this analogy, a species represents a population of al-
ternative centroids for a particular cluster and the ecological range of the species
is the entire data set of patterns being clustered.

CCEA clustering begins by evolving two species in separate populations. We
have experimented with both GA- and ES-style algorithms for transitioning these
populations from one generation to the next and achieved similar results. Popu-
lations have the form: ((x1,x2, . . . ,xf )1, (x1, . . . ,xf )2, . . . , (x1, . . . ,xf )p), where
x is a feature, f is the dimensionality of the patterns and p is the population size.
Features could be represented as a binary strings or real numbers. Populations
are initialized with random patterns from the data set to be clustered.

Since an individual represents only a single cluster centroid, before it can be
evaluated it needs to be combined with a centroid from each of the other species,
i.e., the number of species is equal to the number of clusters in a complete
solution. Normally the current best centroid from each of the other species’
populations are chosen. However, during the initialization phase it is not known
which individuals are the best, so for the first round of evaluations a random
centroid is chosen from each of the other species.

The next step in the evaluation process consists of computing the cluster
membership of each pattern in the data set as in fuzzy C-means [2]:

uij =
1∑c

k=1

(
d(Xj ,Vi)
d(Xj ,Vk)

)2/(m−1)
, (1)

where uij is the membership strength between pattern Xj and centroid Vi, c is
the number of clusters (species), and d(X,V ) is the distance between a pattern
and centroid using a relevant metric. In this study we use Euclidian distance.
The exponent m controls the amount of fuzziness and will typically be set to
2.0, with values approaching 1.0 making the membership function less fuzzy.
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Centroids are then recomputed based on cluster membership as follows [2]:

Vi =

∑n
j=1 u

m
ijXj∑n

j=1 u
m
ij

, (2)

where n is the number of patterns in the data set. The individual being evalu-
ated is then updated with its corresponding recomputed centroid and assigned
a fitness using the following objective function from fuzzy C-means [2], which is
a measure of cluster compactness:

Jm =
c∑

i=1

n∑
j=1

um
ijd

2(Xj ,Vi). (3)

The species continue to evolve until their fitnesses are no longer significantly
improving. This is measured by comparing the current fitness with the best
fitness achieved over the past τ generations, where τ is a user specified parameter.
When improvement stagnates, the health of the ecosystem is measured using a
cluster validity index (see below). The first time stagnation occurs (when there
are only two species) the current best solution is saved, a new species is created
and evolution continues. Adding a new species will cause a reshuffling of pattern
assignments as some of the patterns in the data set switch their membership over
to the cluster represented by the new species and the preexisting species adapt
to this by adjusting the location of their centroids. When subsequent stagnations
occur, if the validity has not improved since the last species was created, that
species is removed and the algorithm terminates—returning the best solution
from just before the last species was added. Otherwise, as before, the current
best solution is saved, a new species is created and evolution continues.

We have experimented with two different cluster validity indexes in this study:
the commonly used Xie-Beni index (XB) [18] and the more recently developed
PBMF index [19]. Both of these validity indexes use a combination of cluster
compactness and separation to estimate the goodness of the partitioning.

Figure 1 illustrates the dynamics of CCEA clustering. As new species are
added, the cluster validity index improves for awhile and then drops. The drop
indicates the point at which too many clusters have been created, which occurs
in this example when the sixth species is created at generation 26. The youngest
species is then removed, the validity index returns to its previous level and the al-
gorithm terminates. Note that the objective Jm continues to decrease (a smaller
Jm indicates clusters are more compact) beyond the point where too many clus-
ters have been created, which illustrates why Jm alone is not appropriate for
determining the correct number of clusters.

4 Empirical Analysis

We compare the performance of CCEA clustering with a variable string-length
GA (VGA) previously used by Maulik et al. for partitional clustering [5,6].
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Fig. 1. Typical CCEA learning dynamics using the objective function Jm and the

PBMF index for validity on a data set optimally partitioned into five clusters

Specifically, we are interested in evaluating sympatric speciation versus vari-
able string-length to evolve an appropriate number of clusters along with cluster
assignments. The VGA we use here shares a common code base with our CCEA
to insure the results are not biased by implementation details of the algorithms.

Briefly, VGA initializes a single population with strings representing differ-
ent numbers of centroids. The number of clusters then becomes an inherited
trait along with the assignment of patterns to clusters. Over time evolutionary
pressure will fill the population with individuals representing both the correct
number of clusters and producing the correct assignments. VGA uses a crossover
operator that can be applied to parents with different lengths, can produce off-
spring with lengths unlike either of the parents, and is constrained to cut chro-
mosomes at cluster boundaries. For more information on the implementation of
the VGA crossover operator, see the detailed description by Maulik [5].

Parameters shared by both algorithms include a 16-bit binary representation
with values constrained to a range appropriate for the data set, population size
of 50, bit-flip mutation at the rate equal to the reciprocal of the chromosome
length, size-2 tournament selection, and a crossover rate of 0.6. The VGA uses the
specialized crossover operator described above while the CCEA used standard
two-point crossover. Both algorithms use the XB or PBMF validity index with
m = 2.0 for the XB index and m = 1.5 for the PBMF index. While the VGA
uses the validity index directly as its objective function, the CCEA uses the
validity index only for determining the health of the ecosystem and Jm (eq. 3)
as its objective function. Parameters unique to the CCEA include a minimum
fitness improvement of 0.01 over 5 generations for the purpose of determining
whether stagnation has occurred, which triggers the creation of a new species.

4.1 Evaluation Data Sets

We evaluated the CCEA and VGA algorithms by applying them to a number
of synthetic and real-world data sets, most of which are similar to those used in
previous studies. We chose the data sets to range from very easy to cluster to
more challenging ones that typically mislead clustering algorithms.
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Fig. 2. Synthetic data sets produced with a “cluster generator”. Data sets include (a)

Separate3, (b) Overlap3, (c) Overlap5 and (d) Separate6

The first four data sets, shown in Figure 2, are produced by sampling from
normal distributions with a cluster generator rather than being produced by
hand. This enables us to test the algorithms on multiple instances of the data
sets. Specifically, we used ten instances of each of these data sets in our evaluation
and multiple runs were distributed evenly across the instances. Of the four,
Separate3 is the easiest to cluster. Overlap3 is more difficult to cluster due to the
slight overlap of its three clusters. Clustering algorithms will typically not classify
all the patterns in Overlap3 correctly because with only two features there is
not enough information to disambiguate all the patterns given the overlap. The
proximity of the cluster distribution means will also mislead some cluster validity
indexes. Overlap5 has both overlap, which will produce misclassifications, and a
central cluster surrounded by others at equal distance, which will mislead some
validity indexes. In particular, the XB index will indicate this data set has only
four clusters. Separate6 clusters are separated, so one might assume they would
be easy to cluster, but this data set has a form of symmetry that will mislead
XB into indicating it has four clusters as in Overlap5.

We also evaluated the algorithms on two real-world data sets shown in
Figure 3. The first is the Iris data set from the UCI Machine Learning Repository
[20]. This data set is one of the most commonly used pattern recognition test
case, dating back to a 1936 paper by R.A. Fisher. It consists of 150 patterns,
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Fig. 3. Real-world data sets. (a) 2-dimensional slice of the 4-feature iris database. (b)

Heat map showing DNA methylation levels of various CpG sites.

each having four real-valued features (two are shown in figure) describing the
sepal and petal length and width of three classes of iris. One of the classes is lin-
early separable, but the other two are highly overlapping. Most cluster validity
indexes will peak at two classes rather than three for this data set. The second
is a recently collected epigenetic data set generated using a high-throughput Se-
quenom MassARRAY system that allows high-resolution interrogation of DNA
methylation in defined genomic regions [21]. In mammals, methylation only oc-
curs where the base cytosine is immediately followed on the DNA strand by the
base guanine, which is called a CpG site, and is one of the key determinants in
the control of gene expression. This data set, shown in Figure 3 using a heat map,
consists of 90 patterns (rows), each having 10 features (columns) representing
the average methylation at one or more CpG sites. Values range from 0.0 (dark)
indicating no methylation to 1.0 (light) indicating all the cells in the sample are
fully methylated at that site. This data set is characterized by a small number
of samples per class, missing values (gray) and noise. It is also the only data
set in which we do not know the “correct” clustering, i.e., while samples come
from 15 distinct classes of various tissue types, gestation periods, and whether
produced by artificial insemination (AI) or somatic cell nuclear transfer (SCNT),
there may not be epigenetic differences between all of these classes. From the
heat map we can clearly see three clusters, but there may be as many as fifteen.

4.2 Results

The results averaged over 50 runs on each of the evaluation data sets using the
PDMF validity index are shown in Table 1. For each method, the table includes
the average number of evolved generations, the average number of clusters in the
final partition, and the average number of patterns misclassified each run. 95%
confidence intervals for the means are included for all but the number of VGA
generations, which is always set to 50. CCEA generally outperformed the VGA
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Table 1. Performance of VGA and CCEA

VGA CCGA

Data set Gens Clusters Misclass Gens Clusters Misclass

Separate3 50 3.06 ± 0.07 0.34 ± 0.40 18.18 ± 0.37 3.00 ± 0.00 0.00 ± 0.00

Overlap3 50 4.22 ± 0.28 26.56 ± 5.11 20.94 ± 1.67 3.48 ± 0.21 16.22 ± 5.21

Overlap5 50 5.16 ± 0.13 16.82 ± 3.78 33.74 ± 1.11 5.00 ± 0.00 9.90 ± 0.62

Separate6 50 6.12 ± 0.11 3.08 ± 2.52 38.36 ± 0.54 6.00 ± 0.00 0.30 ± 0.13

Iris 50 3.00 ± 0.00 27.96 ± 2.39 17.48 ± 0.18 3.00 ± 0.00 16.76 ± 0.12

Methylation 50 4.94 ± 0.07 11.14 ± 0.45 25.00 ± 0.00 5.00 ± 0.00 10.98 ± 0.04

Table 2. PBMF validity values for various numbers of clusters

PBMF Objective Jm Objective

Clusters Clusters

Data set 3 4 5 6 7 3 4 5 6 7

Separate3 145.5 146.7 137.2 124.2 115.1 143.9 121.3 108.3 102.8 94.9

Overlap3 14.1 18.1 18.0 16.5 15.4 11.9 11.8 11.3 10.7 10.5

Overlap5 26.5 31.3 33.0 34.0 32.7 12.6 24.2 27.4 24.8 22.1

Separate6 141.4 387.0 449.5 666.5 616.1 120.0 384.9 446.9 659.1 560.6

Iris 32.2 30.6 25.7 23.9 21.2 28.1 24.6 23.1 21.5 19.0

Methylation 7.1 7.7 9.1 8.6 7.3 6.6 7.5 8.8 7.1 7.1

both in terms of the number of clusters produced and quality of the assignments
as indicated by the misclassification rate (Table 1). The CCEA also ran in fewer
generations because of its automatic termination feature based on stagnation.

A two-sample Student’s t-test was used to measure the significance of the
difference in the mean number of clusters and misclassifications produced by
CCEA versus VGA. The misclassification p-value was well below the 0.05 signif-
icance threshold for all data sets except Separate3, which had a p-value of 0.0909,
and Methylation, which had a p-value of 0.4820. The p-value for clusters was
well below threshold for Overlap3, Overlap5, and Separate6, while the p-value
for both Separate3 and Methylation was 0.0832. CCEA and VGA produced the
same number of clusters in all runs for the Iris data set so no t-test was done.

We suspected that CCEA performed significantly better than the VGA be-
cause it was able to use the compactness measure Jm as its evolutionary objec-
tive due to the separate PBMF-based speciation mechanism for determining an
appropriate number of clusters. The VGA had to use the PBMF index for its
objective because it uses evolutionary pressure to determine both the number
of clusters and the cluster assignments. This is contrary to speculation in [6]
that evolving the PBMF validity index directly would produce better results.
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To verify our hypothesis, we evolved different numbers of clusters with a GA
and measured the PBMF values after using PBMF as the evolutionary objective
versus using Jm as the objective. The results, averaged over 50 runs, are shown
in Table 2 with the index peaks highlighted in bold. Using the Jm objective,
all the PBMF peaks correspond to the correct number of clusters, while using
PBMF as the objective only half of the peaks are correct.

We also performed VGA and CCEA clustering using the XB validity index,
but in this case both methods produced the same number of clusters and the
differences in misclassification rate were not statistically significant. Clustering
using a GA over the same range of cluster numbers as before and comparing
the XB values after using XB as the objective function versus using Jm as the
objective, we found the index peaked on the same number of clusters in both
cases. This explains why there were no significant differences between the VGA
or CCEA clustering results using the XB index.

5 Conclusions

This paper presented a novel partitional clustering algorithm based on coopera-
tive coevolution and inspired by the process of sympatric speciation that simul-
taneously evolves optimal cluster assignments while determining the number of
clusters that best characterize the observations. The algorithm was evaluated on
a number of synthetic and real data sets, and compared with a state-of-the-art
algorithm that uses a variable string-length GA (VGA) for clustering.

Our algorithm demonstrated a significant performance advantage over the
VGA, both in terms of determining an appropriate number of clusters and in the
quality of the cluster assignments as reflected in the misclassification rate. Our
algorithm also requires less computation because solutions with more clusters
than necessary do not need to be evaluated, has a built-in termination procedure
based on evolutionary stagnation so it does not evolve for more generations than
necessary and does not require an estimate of the upper bound on the number of
clusters. With respect to disadvantages, when clustering a data set in which the
chosen validity index is multimodal, our algorithm may be more likely than the
VGA to miss the globally optimal number of clusters if this solution is blocked
by a coarser partitioning producing a locally optimum validity value. However,
in practice this form of validation curve rarely occurs [19].

We believe these results go beyond clustering and illustrate an advantage
of coevolution over VGAs for compositional problems in general. Coevolution
outperformed the VGA because it partially decoupled the compositional aspect
of the solution from evolving the populations, enabling one objective function
to be used to adapt the number of components and other objective functions to
be used to evolve the components themselves. Given the prevalence of problems
that are both multiobjective and compositional, this will often be beneficial.
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Feature Selection for Multi-purpose Predictive
Models: A Many-Objective Task

Alan P. Reynolds, David W. Corne, and Michael J. Chantler

School of Mathematical and Computer Sciences,

Heriot-Watt University, Edinburgh, Scotland

Abstract. The target of machine learning is a predictive model that

performs well on unseen data. Often, such a model has multiple intended

uses, related to different points in the tradeoff between (e.g.) sensitivity

and specificity. Moreover, when feature selection is required, different fea-

ture subsets will suit different target performance characteristics. Given

a feature selection task with such multiple distinct requirements, one is

in fact faced with a very-many-objective optimization task, whose target

is a Pareto surface of feature subsets, each specialized for (e.g.) a differ-

ent sensitivity/specificity tradeoff profile. We argue that this view has

many advantages. We motivate, develop and test such an approach. We

show that it can be achieved successfully using a dominance-based mul-

tiobjective algorithm, despite an arbitrarily large number of objectives.

1 Introduction

One of our motivating applications concerns images of textures (e.g. images of
sections of wallpaper, fabric, carpet, etc.). Determining computationally whether
two textures are similar to human eyes is a challenging and unsolved problem.
However, experimental data are available that, for a varied set of textures, in-
dicate which pairs users considered to be similar; we also have ∼5000 computa-
tional features for each texture. To support applications in texture search and
browsing, we need to predict whether two textures are perceptually similar, us-
ing only the computational features. We also wish to reduce, via feature selection
(FS), the number of features that need to be computed.

The selected features need to serve multiple purposes. Consider a search engine
that, when given a ‘query’ texture, searches a database for other textures that
would be perceived as being similar. Some users will be interested in as many
‘matching’ textures as possible and not be troubled by false positives. Others
may require only a few textures but may insist that those provided be similar to
the query case. Similar considerations apply in any domain where, for different
predictive tasks involving the same data, the relative costs of false positives and
false negatives vary significantly.

For such scenarios, in which FS is needed but the required performance profiles
of the reduced feature set are complex and varied, we introduce a multiobjective
(MO) approach that aims to find multiple subsets of features, each specialized for
distinct required performance characteristics. In general, FS is easily phrased as

R. Schaefer et al. (Eds.): PPSN XI, Part I, LNCS 6238, pp. 384–393, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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a MO problem, e.g. one may maximize accuracy while minimizing a measure of
feature subset complexity [7,8,9]. However, based on the many ways of measuring
accuracy, we argue that this may be considered a problem with an infinite set
of objectives. We explain this in sections 2 and 3, showing how the choice of
sensitivity and specificity as measures of classifier performance leads naturally
to a problem with an infinite set of objectives. In sections 4 and 5 we then
describe an algorithm capable of handling such a problem. Sections 6 and 7
describe an investigation of this algorithm on three datasets. The effectiveness
of the approach is discussed in section 8, along with ideas for further work.

2 Feature Subset Evaluation in the Wrapper Approach

When selecting features for a particular target application, the quality of the
feature set is determined by the resulting performance of the application. Here we
consider two-class problems, with the ‘class of interest’ considered ‘positive’ and
the other ‘negative’. Performance is calculated using the number of true positives
(TP ), false positives (FP ), true negatives (TN) and false negatives (FN). We
make particular use of the following measures: sensitivity (|TP | /(|TP |+ |FN |));
specificity (|TN | /(|TN |+ |FP |)); and confidence (|TP | /(|TP |+ |FP |)).

In the ‘wrapper’ approach to FS, feature set quality is estimated by applying
a simple classification algorithm. So if the balanced error rate is to be minimized
in the target application, the evaluation of a feature set should be an attempt to
minimize the balanced error rate using a suitable classifier. If, as in the case of the
texture search engine, the target application’s performance is judged according
to multiple, perhaps unknown accuracy measures, then feature subset evaluation
should be an attempt to optimize each of these measures. In this case, use of
a classification algorithm such as basic k-Nearest Neighbour (k-NN, as used by
Emanouilidis [4], in an effort to optimize specificity, sensitivity and feature set
size) is not appropriate, since k -NN generates only a single sensitivity-specificity
pair that cannot simultaneously optimize each of the competing objectives. On
the other hand, a model-based algorithm such as naive Bayes (NB) produces a
probability that each record belongs to the class of interest. Concrete predictions
are obtained by assigning a record to the class of interest if the probability is
above a threshold. By varying the threshold, NB classifiers produce a range of
different sensitivity-specificity trade-offs.

3 Uncountably Many-Objective Feature Selection

Users of a texture search engine will have varying preferences for the balance
to be struck between sensitivity and specificity. Figure 1 shows the results of
applying a classifier like NB to a single feature subset and the preferences of three
users. User 1 is happy with just a few (12%) similar textures being returned, but
is irritated by false positives. User 3 requires almost all (94%) similar textures
to be returned, and will tolerate a large number of false positives. User 2 takes
the middle ground, being satisfied with a sensitivity of 48%. Each user has set
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Fig. 1. User 1 is happy with few correct matches, but is easily irritated by false posi-

tives. User 3 requires most truly similar textures to be provided and can tolerate many

false positives. User 2 strikes a balance between these extremes.

a threshold on sensitivity and wishes specificity to be maximized subject to
this constraint. Users may state their requirements in different ways, e.g. via
estimates of the relative costs of false positives and false negatives, yet clearly
we wish the graph to be as high as possible at each value of sensitivity.

Conceptually, this results in uncountably many objectives: to please each po-
tential user of our search engine we should maximize specificity for each value
of sensitivity. In practice, however, the graph of specificity against sensitivity
is piecewise horizontal, with the number of pieces bounded by the number of
records in the class of interest. This reduces the number of objectives to ‘very
many’. The height of neighbouring points on the graph are also highly corre-
lated, which increases the chance that any pair of feature sets are comparable,
i.e. that one dominates the other. Finally, section 4 introduces modified domi-
nance relations that further increase the probability that a pair of solutions are
comparable, enabling an effective dominance-based approach to this problem.
Meanwhile, note that the methods developed here can handle the conceptually
infinite-objectives case — the resulting dominance relations and crowding mea-
sures are suitable for the comparison of graphs, rather than vectors of objectives.

There are many approaches to evaluating feature subsets; in this paper we
examine two. In each case, an objective is the value of some measure of quality
at a fixed value of some other quality measure or parameter. The first approach
plots specificity against sensitivity (equivalent to optimizing ROC curves [5]);
the second plots confidence against sensitivity. In either case, if a threshold
value produces a sensitivity-specificity pair or a sensitivity-confidence pair that
is dominated by some other pair, it is not considered part of the curve produced.

4 Dominance and Crowding

The basic dominance relation is familiar: one solution dominates another if it
is at least as good on all objectives and better on at least one. In the case of
specificity vs. sensitivity curves, this translates to the curve for the first solution
being at least as high as the curve for the second in all places, and higher in
some. While this seems reasonable, there is a concern that the large number of
objectives will result in a weak dominance relation. (Here, a dominance relation
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Fig. 2. Dividing the area of dark red by the area of pale green gives a value used by

the modified dominance relation

is considered ‘strong’ if, given a random pair of solutions, the probability that
they are comparable is high.) Solution B need only beat solution A over a tiny
portion of the curve in order to avoid being dominated by A. This may result in
a lack of selection pressure in dominance based algorithms such as NSGA II [3]
and a potentially unmanageable number of non-dominated solutions. Hence we
apply a simple modification to the dominance relation. In Fig. 2 the area in dark
red is dominated by feature set A but not by feature set B, while the pale green
area is dominated by B but not A. The modified dominance relation states that
A dominates B if there is a red area but no green area, or if the result of dividing
the red area by the green area exceeds a given dominance factor. A dominance
factor of 1 makes almost every pair of solutions comparable, reducing to the
problem of maximizing the area under the curve — a commonly used measure of
the performance of a machine learning algorithm (e.g. [2]). At the other extreme,
an infinite dominance factor produces the basic dominance relation.

Any well-behaved dominance relation should be anti-symmetric and transi-
tive. If the dominance factor is at least 1, then the relation is clearly anti-
symmetric — if the red area is bigger than the green area then the green area
cannot be bigger than the red area. Transitivity can also be shown, though this
requires a little more work. A brief proof is available in supplementary material
at http://www.macs.hw.ac.uk/~ar136, along with our code and datasets.

Finally, to underpin maintenance of a limited-size archive of non-dominated
solutions, we consider the choice of ‘crowding’ measure. It is possible to generalize
the standard crowding measure of NSGA II [3], but we elect to use a crowding
measure based on distances between pairs of solutions. We define this as the area
between the two curves, i.e. the sum of the red and green areas in Fig. 2.

5 Implementation

Two classification algorithms, logistic regression (LR) and naive Bayes (with
Laplace correction) (NB) [10], are used to evaluate the feature subsets. LR re-
quires numeric data, so categorical data were converted. For example, a categor-
ical field with three categories, cyan, magenta and yellow, is converted into two
numeric fields, taking the values zero and one. A one in the first field translates
to ‘cyan’, while a one in the second field translates to ‘magenta’. Two zeroes
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Fig. 3. Quality plots for four feature sub-

sets, generated from the ionosphere data

with dominance factor set to 2 and a limit

of 4 features per subset
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Fig. 4. Plotting the envelope of the qual-

ity plots for four feature subsets. Notice

that feature subset 3 does not contribute,

despite being non-dominated.

imply that the record is ‘yellow’. In contrast, our implementation of NB requires
categorical data. Any numeric field is discretized by partitioning its range into
a number of bins. To avoid problems that may arise from a highly non-uniform
distribution over the bins, we aim for an equal-frequency discretization. (Details
may be found in the supplementary material.)

Feature subsets were optimized using NSGA II [3], with the dominance rela-
tion and crowding measure replaced by those described above. Solutions were
encoded as bitstrings, with bits indicating the presence or absence of the corre-
sponding feature. A limit on the number of features was imposed and enforced
after crossover by removing random features as necessary. Three types of muta-
tion were used at equal rates: addition of a feature (if permitted), removal of a
feature or swapping a feature in the subset for one currently absent.

It has been suggested that dominance based algorithms such as NSGA II
perform poorly for problems with more than 4 objectives [6], most likely due to
the resulting weak dominance relation. Here we illustrate that despite the large
number of objectives, good results can be obtained if the dominance relation is
strong enough.

Finally, we note that, after performing the optimization, the presence of so
many objectives raises issues with the presentation of the results. Figure 3 shows
quality plots for four non-dominated feature subsets. Their quality may be com-
pared without too much difficulty using the figure. However, this task becomes
much more difficult given twenty or thirty non-dominated solutions.

One possibility is to plot only those points that are non-dominated with regard
to sensitivity and specificity, producing Fig. 4. Notice that feature subset 3 does
not contribute to the sensitivity-specificity front. However, this subset may be
the best choice, since it performs well over all values of sensitivity. Moreover,
this method of presenting results may result in an overoptimistic view of certain
feature subsets on unseen data. An alternative approach is to present two types
of graph. The main graph plots solutions according to, e.g., the specificity at
two different values of sensitivity. Selecting a solution produces a second graph
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of specificity against sensitivity for the solution including two markers, in this
case vertical lines, that indicate the objectives used on the main graph. With a
suitable user interface, dragging these markers changes the objectives used on
the main graph, allowing the user to fully explore the solution set.

6 Experimentation

We explore this approach to generating multiple feature subsets by testing our
algorithm on three datasets. In each case the result is a Pareto front of feature
subsets, each of which has its own characteristic tradeoff curve (e.g. specificity
vs. sensitivity). In evaluating the technique, we are constrained by the fact that
there are as yet no suitable alternative algorithms in the literature that address
the same problem. The closest is the approach of Emanouilidis [4]. However, we
maximize specificity for each possible value of sensitivity. Emanouilidis’s use of
1-NN as the core classifier means that only a single sensitivity-specificity pair
is obtained for each feature set and it is these single values of sensitivity and
specificity that are maximized. Hence the algorithms optimize different measures
of feature set quality. (Note that we can compare the best sensitivity-specificity
values obtained by the two approaches, where we might expect Emanouilidis’s
use of 1-NN to restrict the spread of solutions across the sensitivity-specificity
front.) Evaluation of our approach is therefore restricted mainly to illustrating
that it achieves apparently effective results on the three datasets studied, in each
case yielding a set of feature subsets with varied performance characteristics.
Beyond this, we also report on aspects of performance that vary according to
the dominance factor, and according to constraints on the size of feature subsets.

In all experiments, we used a crossover rate of 0.8, a mutation rate (the chance
that a solution is mutated) of 0.2, a population size of 100, 500 generations, and
10-bin discretization when NB was used as the core classifier. Each dataset is
split into training and test sets, used during optimization and final evaluation
respectively. Whenever a feature subset is evaluated on the training or test set,
cross-validation (CV) is used — leave-one-out-CV for the ionosphere data, and
5-fold CV in the other two cases. Dataset details are as follows:

Ionosphere: Available from [1] and used previously for MOFS [4], the iono-
sphere data comprises 351 records and 35 fields. The class field is either “good”
(g) or “bad” (b), where “bad” is the class of interest. Non-class fields are numeric.
The dataset was split into training and test data, with the test set containing
100 records, 36 in the class of interest.

Breast Cancer Wisconsin (Diagnostic): Again from [1], this dataset has a
class field that takes the value ‘M’ (malignant) or ‘B’ (benign) and has 30 numeric
input fields. The class of interest is the malignant class. The 569 records, 212 in
the class of interest, are divided randomly into training and test sets, with the
test set containing 169 records, including 63 in the class of interest.

Texture: In the texture data, each record corresponds with a pair of textures.
5376 numerical features were extracted computationally from a set of textures,
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using a range of methods including spectrum analysis, radon transforms, auto-
correlation etc. This was reduced to 283 features using simple correlation-based
methods. The input fields were obtained by calculating feature differences for
each texture pair. The class field was obtained by asking 30 people to group sim-
ilar textures, given either the full set of textures or a subset. Two textures were
considered similar if at least a third of people grouped the pair together. The
training set involved 19900 texture pairs (200 textures), 333 of which were con-
sidered similar. The test set was produced using another 100 textures, generating
4950 records, 85 in the class of interest.

The texture data is much larger than the other datasets, providing a more
challenging test. The class of interest forms only a small part of the dataset,
making it difficult to make true positive predictions without introducing many
false positives, i.e. it is difficult to achieve high confidence values.

7 Results

First, to examine the effect of the dominance factor and to determine a suitable
value for this parameter, experiments were performed on the ionosphere data
using an upper limit of 4 features per feature subset. NB was used to evalu-
ate feature sets, with sensitivity-specificity curves used to determine feature set
quality. The time taken by the algorithm and the numbers of non-dominated so-
lutions obtained, averaged over 30 runs, are outlined in Table 1. The last column
corresponds with the use of the basic dominance relation.

Note that the number of non-dominated solutions is small compared with the
number of solutions examined, even when the basic dominance relation is used.
This implies that the dominance relation is stronger than one might expect for
a problem with so many objectives. However, given the difficulty in comparing
397 feature subsets, modified dominance is used in the following experiments.

On the Ionosphere data, the algorithm was applied using NB, sensitivity-
specificity curves and a dominance factor of 5. Runs were performed with differ-
ent limits on the number of features. Table 2 shows the number of non-dominated

Table 1. The effect of modifying the dominance factor

Dominance factor 1 2 5 10 20 50 ∞
No. non-dominated 1.00 3.77 16.0 41.9 85.7 187 397

Time (s) 20.7 23.0 23.9 25.5 26.9 28.4 20.3

Table 2. Number of non-dominated solutions for different feature set size limits

Max. features 1 2 3 4 5 6 7 8

No. non-dominated 7.00 19.0 16.0 16.0 36.0 32.4 70.0 173

Time (s) 11.0 19.6 20.1 23.6 26.1 27.5 30.7 34.2
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Fig. 5. Performance on Ionosphere training data
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Fig. 7. Performance on Breast Cancer Wisconsin (diagnostic) training data

solutions obtained and time requirements, averaged over 30 runs. Time taken was
sufficient to find all Pareto-optimal solutions for subsets of up to 5 features, in all
runs. Results on training and test data are shown in Figs. 5 and 6 respectively.
(For clarity, Figs. 5–9 show the envelope of the sensitivity-specificity curves.)

Comparing with [4], the most notable difference is that the results presented
in Figs. 5 and 6 cover a much broader range of sensitivity-specificity values, since
the classification algorithm used is capable of effectively evaluating feature sets
that perform well at either high sensitivity or high specificity values.

On the breast cancer data, the algorithm was applied using LR, sensitivity-
confidence curves and a dominance factor of 5. Typical time requirements were 23
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Fig. 9. Performance on texture data, for one to eight features; results on training (left)

and test (right) data

min. for four features and 32 min. for eight. Results are shown in Figs. 7 and 8.
Finally, on the texture data the algorithm was applied using NB, sensitivity-
confidence curves and a dominance factor of 2. Typical time requirements were
23 min. for four features and 29 min. for eight. Results are in Fig. 9.

8 Discussion

This paper has shown that FS can be effectively treated as a MO optimization
problem with an infinite set of objectives. The approach has advantages over
other FS methods, in that each feature subset generated is evaluated across a
range of values of sensitivity. There are many possible avenues of further research.
For example, if one is only interested in the feature sets that contribute to
the overall sensitivity-specificity (or sensitivity-confidence) front, an alternative
approach to dominance is indicated. Meanwhile, the class field in the texture data
originally indicated the proportion of people that considered a pair of textures
to be similar. This can be considered as the ‘probability of class membership’.
Here we used a threshold to convert this into a binary field. However, research
should be performed into adapting the approach of this paper to probabilistic
class membership. Finally, an obvious avenue of further work is to generalize the
method to multi-class problems. For example, given a three class problem we
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may evaluate feature subsets according to the accuracy on each class. So rather
than dealing with curves and the area between curves, the problem becomes one
of surfaces and the volume between surfaces.
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Abstract. Understanding the genetic underpinnings of common heritable hu-
man traits has enormous public health benefits with implications for risk predic-
tion, development of novel drugs, and personalized medicine. Many complex 
human traits are highly heritable, yet little of the variability in such traits can be 
accounted for by examining single DNA variants at a time. Seldom explored 
non-additive gene-gene interactions are thought to be one source of this “miss-
ing” heritability. Approaches that can account for this complexity are more 
aptly suited to find combinations of genetic and environmental exposures that 
can lead to disease. Stochastic methods employing evolutionary algorithms 
have demonstrated promise in being able to detect and model gene-gene inter-
actions that influence human traits, yet the search space is nearly infinite be-
cause of the vast number of variables collected in contemporary human genetics 
studies. In this work we assess the performance and feasibility of sensible ini-
tialization of an evolutionary algorithm using domain knowledge. 

Keywords: Neural networks, grammatical evolution, gene-gene interaction, 
quantitative traits, domain knowledge. 

1   Introduction 

1.1   Genome-Wide Association Studies, Complex Disease, and Epistasis 

The genome-wide association study (GWAS) is a commonly employed technique in 
human genetics research to investigate DNA variations associated with common 
human diseases. Several technologies are currently available that allow for rapid, 
highly accurate genotyping of >1 million common single nucleotide polymorphisms 
(SNPs) at low cost per genotype. We have yet to fully explore the abundance of data 
generated by these studies in part because maturation of our analytical strategies for 
data of this scale have not kept pace. The most commonly used analytical procedures 
for analyzing genetic data are very simple tests of association looking at one genetic 
variant (SNP) at a time. This approach has been somewhat successful in identifying 
genetic variants associated with complex traits, including age-related macular 
degeneration, type II diabetes, hypertension, and blood cholesterol levels, among 
others [1]. However, these single SNPs collectively explain little of the genetic 
contribution to the trait variance that is expected based on family and twin studies [2].  
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For instance, HDL-cholesterol level is highly genetic – up to 73% of variation in HDL 
can be explained by genetic factors [3] – yet even the most highly powered studies 
found that collectively only ~5% of this variance could be accounted for by single-
SNP analysis [4]. Many agree that a portion of this “missing heritability” likely lies in 
gene-gene and gene-environment interactions [2;5], and it is well accepted that 
common traits are complex, and likely influenced by an elaborate interplay of 
multiple genetic and environmental factors [6-8]. Moreover, recent perspectives have 
emphasized that most true single locus genetic associations to complex traits carry a 
vanishingly small effect size [9], and experimental data from model organisms 
illustrates that gene-gene interaction is pervasive and often carries surprisingly large 
effects [10;11]. 

Several approaches to gene-gene interaction analysis include testing interactions 
between variants with statistically significant main effects [12], based on biological 
criteria [13], or exhaustively testing all possible interactions. Using biological criteria 
or statistical significance of main effects to guide an interaction analysis imposes 
severe limitations on the search for gene-gene interactions, and exhaustive interaction 
analysis is often computationally prohibitive in large GWAS datasets. This is  
the motivation for developing techniques that still utilize the full dimensionality of the 
data without exhaustively searching all possible combinations of variables with the 
goal of discovering a well-fitting model that explains variance in an outcome of 
interest. 

1.2   Grammatical Evolution Neural Networks (GENN) and Domain Knowledge 

Neural networks (NNs) are a robust and flexible modeling technique that attempt to 
mimic the basic structure and function of biological neurons to solve complex prob-
lems. NNs have been applied to many research fields, including robotics, speech rec-
ognition, optical character recognition, task scheduling, industrial processing, and to 
many problems in biological science, including microarray data analysis, genotype 
calling, human linkage analysis, genetic association studies, medical expert systems, 
survival analysis, and protein folding [14]. The conventional approach for applying 
NNs to a classification problem is to specify a network architecture, select which 
variables are included as inputs to the network, and fit network weights using a gradi-
ent-descent based approach such as backpropagation [15].  Recently, numerous evolu-
tionary search strategies have been applied to NN classification problems to reduce 
the issues associated with the traditional NN approach.  Genetic Programming Neural 
Networks [16] and Grammatical Evolution Neural Networks (GENN) [17] use ge-
netic programming [18] or grammatical evolution (GE) [19] to evolve populations of 
neural networks for human genetics classification problems.  These populations are a 
heterogeneous mix of architectures, weights, and input variables which undergo mat-
ing, crossover, and recombination to ultimately identify an optimum NN solution.  
Recent work has shown that certain features characteristic of human genetic data may 
provide advantages to methods that evolve NNs to detect gene-gene interactions by 
transforming the fitness landscape from a “needle in a haystack” to a broader, 
smoother surface [20]. 

The application of GE to find epistatic gene-gene interactions is still exceedingly 
difficult, especially when the underlying disease model is purely epistatic, where each 
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variant has no independent effect on the phenotype [21].  After demonstrating the 
critical need for expert knowledge when applying genetic programming to GWAS 
[22], others have shown that using expert knowledge guided mutation, selection,  
and crossover is highly beneficial, and dramatically improves the performance of 
evolutionary algorithms [23;24].  In much of the previous work showing that expert 
knowledge increases the performance of natural computing algorithms for finding 
epistatically interacting SNPs, the statistical expert knowledge was gleaned intrinsi-
cally – typically using a data-driven approach using variants of the Relief algorithm 
for feature selection [24-26]. Our goal here was to evaluate with simulation whether 
biological domain knowledge obtained extrinsically would increase GENN’s per-
formance in discovering epistatic interactions between genetic variants contributing to 
a quantitative trait outcome. Here we present results of a simulation study showing 
that incorporating biological knowledge from external sources results in a modest 
increase in GENN’s ability to detect and model gene-gene interactions among a large 
pool of unassociated noise variables. 

2   Methods 

2.1   Genetic Data Simulation with genomeSIMLA 

Simulated data where the true identity and size of the genetic or environmental effect 
in the population is known is a necessity for developing and testing novel methodol-
ogy. We recently developed genomeSIMLA [27] for simulating genome-wide scale 
data in population based case-control samples with a categorical outcome.  Here we 
use an extension of genomeSIMLA capable of simulating gene-gene interactions in 
the presence of main effects, all of which influence a quantitative trait at a desired 
effect size [28]. 

The effect size of a genetic variant on a quantitative trait outcome is often ex-
pressed in terms of heritability – the proportion of variance in the trait explained by 
genetic variation.  The narrow-sense heritability, here defined as the proportion of 
variance explained uniquely by a single source of genetic variation (e.g. the main 
effect of one member of an interacting pair of variants) is given by the semi-partial 
squared correlation coefficient in the equation below, where the first term represents 
the proportion of variance in the outcome explained by all sources of genetic variation 
currently modeled, and the second term represents the proportion of variance ex-
plained when a particular variable (i) is removed from the model [29]:  

2 2 2
.1,2,... ... .1,2,...( )... 'i Y i k Y i ksr R R= −   (1) 

Datasets are simulated using a linear regression equation where the genetic model can 
take a range of generally additive models, similar to the method implemented in [30] 
for a discrete outcome.  Here we simulated a quantitative trait under additive and 
dominant interaction models as shown in Figure 1.  In the additive model, the mean 
value of the simulated quantitative trait increases as a function of the number of cop-
ies of the less common allele an individual inherits both within and between the two 
functional genetic variants.  In the dominant model, the mean value of the simulated 
trait is increased if individuals contain at least one or more copies of the minor allele.  
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Individuals are drawn from a homoscedastic normal distribution with the mean being 
determined by the genotypes at the corresponding functional genetic variants. The 
three different genotypes for each variant are represented as -1, 0, 1. 

We simulated 500 SNPs in 2000 individuals, where only two SNPs were functional 
and the other 498 SNPs were unassociated “noise” variables.  We simulated a gene-
gene interaction between these two SNPs that carried a narrow-sense heritability (h²) 
of 0.05, meaning that only 5% of the variation in the quantitative trait could be ex-
plained by this gene-gene interaction.  This low effect size is typical of most findings 
in human genetic epidemiology [9]. We simulated this interaction in the context of 
very minimal main effects at each locus (h²=0.01).  A scenario such as this where 
main effects explain little of the overall outcome variance represents a very difficult 
problem for an evolutionary search procedure to model. 

 
    Additive       Dominant 

    AA    Aa    aa    AA    Aa    aa 

BB       

Bb       

bb       

 
Fig. 1. Genetic model types simulated.  The less common allele (“a” or “b”) increases the value 
of a simulated quantitative trait by an amount based on type of genetic model (additive or 
dominant) and the number of copies of the less common allele an individual possesses.  Darker 
cells indicate a higher mean value for the simulated trait.  The genetic model type applies to 
both main effects and interactive effects within and between the two functional variants. 

2.2   Domain Knowledge 

A recently developed tool called Biofilter is capable of integrating information from 
several publicly available biological databases in order to assess specific combina-
tions of genetic variations and their effect on the outcome based on prior statistical 
and biological knowledge [31].  Biofilter draws expert knowledge from databases 
containing protein family, gene ontology, and biological pathway information in order 
to construct two-SNP models that are supported by the biological literature. Their 
degree of support in the literature is characterized by an implication index – which is 
a count of how many times that two-SNP model appears across multiple databases 
incorporated into Biofilter.  

To determine whether incorporation of domain knowledge into GENN training can 
improve its performance, simulated domain knowledge that mimics information ob-
tained from Biofilter must be generated. Here, 4000 random undirected edges are 
drawn between a subset of the 500 SNPs simulated as described above. The implica-
tion index is the number of edges drawn between two models. This number typically 
ranges from 0 to 5, where implication index of zero indicates no support in the simu-
lated knowledge pool, while an implication score of 5 indicates that this model is very 
well supported.  The implication index corresponding to the functional two-SNP 
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model where the true effect was embedded could be manually specified. Our specific 
goals were to determine if and to what degree GENN's performance would diminish if 
irrelevant domain knowledge were incorporated, and if and to what degree GENN’s 
performance would increase if accurate domain knowledge were incorporated into the 
training process. 

2.3   GENN and Incorporation of Domain Knowledge 

GENN has been implemented as previously described [17].  Briefly, grammatical 
evolution (GE) is a variation of genetic programming (GP), an evolutionary algorithm 
originally proposed by Koza as a procedure to optimize NN architecture [18].  In GE, 
randomly initialized binary strings are transcribed into an ordered list of integers 
which are used to select from production rules in a Backus-Naur form grammar.  Our 
grammar applies GE to construct neural networks, and can simultaneously select 
important predictor variables and optimize network weights and architecture.   

Domain knowledge was used to perform sensible initialization. Rather than 
initializing a population of NNs randomly, the initial generation is partially 
composed of NNs containing as input variables SNPs that are represented in a 
domain knowledge source. This source can be two-SNP models supported by 
biological literature derived from Biofilter [31] or, as in this study, simulated domain 
knowledge which mimics domain knowledge derived from Biofilter. Part of the 
population is still initialized randomly. Here the proportion of the initial population 
which is initialized from domain knowledge was varied from 0 to 99% in intervals 
between 1-10%.  Two-SNP models from domain knowledge are prioritized for 
incorporation in the initial generation based upon implication index – models with 
higher implication index are initialized first. The implication index on the functional 
two-SNP model in these experiments ranged from 0 (negative control – all domain 
knowledge incorrect/irrelevant) to 3 (functional two-SNP model is somewhere in the 
top half of the implication index-ranked list of 4000 domain knowledge two-SNP 
models). The implication index could have been raised even higher, but this would 
have guaranteed that the functional model would have been very well supported, and 
would represent an overly optimistic scenario. 

Based on prior work [28], GENN was run for 200 generations using 10 demes of 
100 individuals. This took approximately 6 minutes per dataset on five 1.8 GHz Op-
teron PCs. The respective probability of crossover and mutation were 0.9 and 0.01, 
typical values for these parameters in many genetic algorithms [32].  Addition was the 
only production rule available for the arithmetic operator at each activation node, as 
described previously [33]. This allowed for the implementation and optional usage of 
backpropagation (BP), a local fitting procedure designed to optimize the weights in a 
neural network [15].  This hybrid algorithm allows for weight optimization in the event 
that sensible initialization from domain knowledge resulted in the inclusion of either of 
the two functional variables in the initial generation. BP was either not used at all, or 
used at initialization and again at generations 100 and 200, using a learning rate of 0.3. 
BP was halted after either a maximum of 100 epochs had been run, or when further BP 
showed no improvement, after which the GE process continues. Networks undergoing 
BP were reverted back to a binary genome by marking blocks of codons corresponding 
to a weight, which was then replaced with a block containing a grammar compatible 
block that generates the appropriate weight when GE continues after BP. 
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3   Results 

For the simulation study described above, sensitivity was measured as the proportion 
of datasets out of 100 simulated datasets, where the best performing neural network 
model contained the two functional SNPs, with no other SNPs in the model, i.e. a 
perfect match.  The best neural network model for each dataset was chosen by 
maximizing cross-validation consistency [8;34].  In case of a tie (e.g. two different  

 

 
Fig. 2. Sensitivity of GENN to detect both functional SNPs as the proportion of SNPs initial-
ized from domain knowledge increases from 0 to 99%. Panels show the implication index of 
the model that includes both functional variables. Solid line shows when GE alone was used to 
train NNs (no BP). Dashed line shows sensitivity when using the hybrid BP-GENN algorithm 
(see methods). Faint horizontal solid and dashed lines show for reverence the baseline sensitiv-
ity, for GENN and BP-GENN, when the population was initialized randomly, i.e. 0% initialized 
from domain knowledge. 
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models replicated across two CV intervals), the model with the higher R² (proportion 
variance explained) is deemed the overall best model.  The results are summarized in 
Figure 2. 

The results here show that sensitivity to detect both genetic variants contributing to 
the trait is always higher when BP was used in conjunction with GE. When the 
implication index is 0 (i.e. all domain knowledge is irrelevant), the sensitivity when 
using BP decreases substantially as the proportion of the initial population initialized 
from domain knowledge increases (upper left panel of Fig. 2, dashed line). This is 
likely due to the fact that as more NN models are initialized from a list of models 
from irrelevant domain knowledge, there is a smaller chance that either of the 
functional variables can be initialized by chance. When the implication index is at 
least 1 (meaning the functional two-SNP model is supported in our domain 
knowledge), as this proportion increases, sensitivity fluctuates around the baseline 
sensitivity (37%) at random initialization when BP is not used. This is not surprising, 
because even if a NN is initialized containing both functional variables which 
influence the trait, it is unlikely that by chance the NN would have suitable weights 
and architecture.  An increase in performance can be seen when BP is then used to 
optimize the weights in the sensibly initialized NNs from relevant domain knowledge.  
Furthermore, as the implication index for the domain knowledge model containing the 
functional variables increases from 1 to 3, this model is more likely to be incorporated 
into NNs in the initial generation. For instance, when the implication index of the 
functional model is 1, approximately 99% of the population must be initialized from 
domain knowledge in order to see any benefit. When the implication index is 2 or 
higher, it is very likely that the initial generation will contain a NN with the truly 
functional variables even when only a small proportion of the initial population is 
initialized from domain knowledge.  

4   Discussion 

The results presented here show that the sensitivity of using GE to train NNs to find 
genes with a nonlinear influence on a quantitative outcome can be improved by 
effectively using extrinsic domain knowledge. We showed that initializing a 
proportion of the NN population from domain knowledge when BP is employed to 
locally optimize the weights in a NN can result in a modest improvement in GENN’s 
ability to detect and model SNPs influencing a simulated trait (Figure 2). We also 
performed the same experiment shown in Figure 2 with two other population sizes: 
one larger (200 individuals) and one smaller (50 individuals) (data not shown). While 
sensitivity was higher when using a larger population size, the benefit of utilizing 
domain knowledge to initialize NNs was less striking. When a smaller population size 
was used, the benefit was even more noticeable, although absolute sensitivity was 
lower. This indicates that when the search space is small enough to be searched very 
throroughly or exhaustively, using domain knowledge is less beneficial than when the 
search space is very large compared to the number of individual solutions being 
evolved. In this scenario (such is the case in genome-wide association studies), using 
domain knowledge to bias an evolutionary search in favor of important features will 
be critical for acceptable performance. 
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While the benefits are not as striking as when using intrinsically obtained statistical 
expert knowledge [23;24], using this framework to initialize an evolutionary search 
for disease genes based on domain knowledge obtained from public biological data-
bases is another means to improve the performance of genetic algorithms for feature 
selection. Supplementing an evolutionary search using domain knowledge will be 
critical if using evolutionary procedures to find and model the effect of disease genes 
on complex human traits. Natural, biological  data will likely have many effects 
which will be enriched in knowledge sources, resulting in an improvement of the 
overall ability to find many members in the collection of influential loci.  It is clear 
that there are more fruitful approaches for understanding the genetic architecture of 
common human phenotypes than ignoring the complexity of biology by testing single 
variants in isolation [35]. One of the strengths of the method presented here is that if 
any arbitrarily complex interaction of genetic and environmental exposures influences 
disease risk, a NN can approximate this function [36], given proper training. These 
experiments show that incorporating domain knowledge into an evolutionary algo-
rithm for finding genes related to disease can aid the variable selection process if the 
domain knowledge is consistent with reality. 

One limitation in the current study is that these experiments make the assumption 
that loci involved in a gene-gene interactions contributing to a heritable trait will carry 
with them some small main effect at either variant.  There are, however, few exam-
ples of a consistently replicating, experimentally verified gene-gene interaction in the 
complete absence of main effects contributing to a complex quantitative trait in hu-
mans.  Perhaps the reason for this, however, is the inadequacy of our methods for 
finding gene-gene interactions in the absence of main effects rather than the absence 
of such effects altogether. Future studies should aim to assess these and other exten-
sions of GENN in their ability to detect and model epistatic interactions contributing 
to a quantitative trait in the absence of main effects, and should attempt to apply these 
methods in a natural, biological data analysis. 
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Abstract. Despite the growing abundance and quality of genetic data,

genetic epidemiologists continue to struggle with connecting the phe-

notype of common complex disease to underlying genetic markers and

etiologies. In the context of gene association studies, this process is

greatly complicated by phenomena such as genetic heterogeneity (GH)

and epistasis (gene-gene interactions), which constitute difficult, but ac-

cessible challenges for bioinformatisists. While previous work has demon-

strated the potential of using Michigan-style Learning Classifier Systems

(LCSs) as a direct approach to this problem, the present study examines

Pittsburgh-style LCSs, an architecturally and functionally distinct class

of algorithm, linked by the common goal of evolving a solution comprised

of multiple rules as opposed to a single “best” rule. This study highlights

the strengths and weaknesses of the Pittsburgh-style LCS architectures

(GALE and GAssist) as they are applied to the GH/epistasis problem.

Keywords: Genetic Heterogeneity, Epistasis, Learning Classifier Sys-

tem, Genetic Algorithm, GAssist, GALE, SNP.

1 Introduction

In the modern era of complex disease research, bioinformatisists and genetic epi-
demiologists have teamed up in search of disease markers and etiologies. While
genome-wide association studies are a current favorite strategy to search for
markers and etiologies of disease, these studies tend to focus on “main effects”,
or associations between an individual SNP and some disease phenotype. While
this may be well suited for Mendelian diseases, it has become increasingly clear
that different statistical and analytical techniques are needed to address the
demands of common complex disease [1]. Phenomena recognized to complicate
the epidemiological mapping of genotype to phenotype include epistasis, genetic
heterogeneity, phenotypic heterogeneity, trait heterogeneity, gene-environment
interaction, phenocopy, and epigenetics [2]. Epistasis, or gene-gene interaction,
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is a particularly challenging problem given that a gene’s association with disease
may only be seen in the context of at least one other gene. Genetic heterogeneity
(GH), refers to the presence of different underlying genetic mechanisms resulting
in the appearance of the same or similar disease phenotype [3]. The quality and
availability of SNPs and other genetic code information make epistasis and GH
obvious targets for bioinformatic development. Previous work examining this
pair of phenomena, evaluate the impact of GH on the detection and modeling
of epistasis using Multifactor Dimensionality Reduction (MDR) [4]. This work
demonstrated that GH dramatically hinders MDR’s power to detect/model all
underlying attributes involved in the underlying epistatic interactions, but ad-
ditional examination indicated that MDR retains significant power to identify
either the dominant branch of GH or at least one of the underlying attributes
[5,6]. In the present study, GH and epistasis are modeled concurrently as they
might occur simultaneously in a SNP-based genetic association study. Over the
last decade, the detection and modeling of epistasis has seen a considerable
amount of progress [7,8,9]. In contrast, methods for dealing with GH continue to
lag behind, having relied on a traditional epidemiological paradigm with seeks
to find a single best model of disease learned from a given data set [2]. These
methods rely on covariate data (i.e. phenotypic data, genetic risk factors, de-
mographic data, or endophenotypes) in order to identify more homogeneous
subsets of patients. An obvious downside to this dependency, is that the suc-
cess of these methods relies on the availability, quality, and relevance of these
covariates. Additionally, stratification of a dataset represents a reduction in sam-
ple size for respective analysis, leading to an inevitable loss in power. In order
to address these concerns, Urbanowicz and Moore recently proposed the appli-
cation and exploration of learning classifier systems (LCSs) as an alternative
approach to managing GH [10]. LCSs represent a class of algorithm which re-
quires neither covariates nor data stratification, and breaks from the traditional
single model paradigm by evolving a solution comprised of multiple rules. For
these reasons, it was hypothesized that LCS algorithms would be useful for the
detection, characterization, and modeling of GH. In [10], Michigan-style LCSs
(one of two major veins of LCS architectures) were implemented and evaluated
on the GH/epistasis problem. The results of that study provided a proof of
principle for the use of LCSs, highlighted the strengths and weaknesses of the
Michigan-style systems, and laid the foundation for the development of an LCS
algorithm specifically designed to address GH. In the present study, we explore
Pittsburgh-style systems, in an effort to obtain a well-rounded perspective on
LCS’s ability to address the GH/epistasis problem, and to compare their ability
to handle the GH/epistasis problem so that a suitable architectural foundation
may be selected upon which to develop an LCS customized to this epidemiolog-
ical task. This study involves (1) implementing standardized versions of existing
Pittsburgh-Style LCSs (GALE and GAssist), (2) performing a sweep of the ma-
jor run parameters for each LCS implemented, and (3) performing a quantitative
and qualitative evaluation of each LCS across the entire spectrum of simulated
GH/epistatic data sets.
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2 Methods

2.1 Learning Classifier Systems

LCSs combine machine learning with evolutionary computing and other heuris-
tics to produce an adaptive system that learns to solve a particular problem.
LCSs are closely related to and typically assimilate the same components as the
more widely utilized genetic algorithm (GA). The goal of LCS is not to identify
a single best model or solution, but to create a cooperative set of rules or models
which together solve the task. The solution evolved by an LCS is represented
as a population of rules, or rule-sets, which are utilized collectively to make
decisions/classifications.

The infancy of LCS research saw the emergence of two founding classes of
LCSs, referred to as the Michigan and Pittsburgh styles. The Michigan-style is
characterized by a population of rules with a GA operating at the level of indi-
vidual rules and an evolved solution represented by the entire rule population.
Alternatively, the Pittsburgh-style is characterized by a population of variable
length rule-sets (where each rule-set is a potential solution) with a GA operating
at the level of a single rule-set. Additionally, Michigan-style systems learn iter-
atively from a dataset (learning once instance at a time) while Pittsburgh-style
systems learn in a batch-wise fashion, learning from each instance in the dataset
every iteration. The Pittsburgh-style systems implemented for this study evolve
“ordered” rule sets (also known as decision lists) where rule order influences the
decision making process. Because of these differences in algorithm architecture
and solution size, the application of these two styles to the GH problem have
been explored separately. The present study focuses on Pittsburgh-style systems,
as a parallel to the recent Michigan-style LCS study [10].

Pittsburgh-style LCSs, generally possess three basic components; (1) a pop-
ulation of rule/classifier sets, (2) a performance component that assesses how
well rule sets collectively explain the data, and (3) a discovery component that
uses different operators to discover new rules and improve existing ones. For a
complete LCS introduction and review, see [11].

Implementing LCSs. Each of the implemented Pittsburgh-style LCSs were se-
lected based on their prominence, relevance, and availability. The systems imple-
mented include GALE [12,13] (http : //www.illigal.uiuc.edu/web/xllora/wp−
content/files/GALE/gale distribution 0.9alpha.tar), and GAssist [14] (http :
//www.infobiotic.net/software/GAssist− Java.tar.gz), each re-encoded and
modified in Python. This was done to (1) standardize the coding language, (2)
put the different LCS algorithms in a flexible, readable language to facilitate and
promote future algorithm development for biologists and other non-computer
scientists, (3) allow command line control over all run parameters, (4) gain a
detailed understanding of each system, and most importantly (5) to standardize
the rule representation. Additionally, wrapper scripts were written to run and
evaluate each LCS using Dartmouth’s 888 processor Linux Cluster, “Discov-
ery”. These implementations are freely available on the LCS & GBML Central
webpage (http : //gbml.org/).
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A quaternary rule representation, identical to what was used in [10] was
implemented in the selected Pittsburgh systems. This representation is well
suited for the discrete, nominal, SNP attributes and the discrete affection status
(case/control) characteristic of this problem domain. In short, the condition of
the rule is represented by a string of characters from the quaternary alphabet
(0, 1, 2, #) where # acts as a wildcard, and the intergers represent alternative
SNP alleles. In standardizing the rule representation of GALE and GAssist,
other algorithmic components which had relied on the original representation
were adjusted accordingly (e.g. crossover and mutation mechanisms).

Two Pittsburgh-Style LCSs. While the systems GALE and GAssist share
a number of features common to Pittsburgh systems, including batch/offline
learning, ordered rule-sets (decision lists), accuracy based fitness, and supervised
learning, they have distinct population architectures, and possess a very different
set of supporting heuristics. Also, encodings of both systems were originally
implemented in Java, and allowed for multiple knowledge representations. For
simplicity only the applicable quaternary representation described above was
encoded in the present python implementations. Every rule-set (a.k.a. agent) of
a Pittsburgh system represents a potential solution to a classification problem.
GALE, or the Genetic and Artificial Life Environment [12,13] is described as
a fine-grained parallel evolutionary algorithm. GALE uses a 2D grid to evolve
a population of rule-sets spatially, where discovery mechanisms may operate
only within the local neighborhood. GAssist, or (Genetic clASSIfier sySTem)
[14] descends from GABIL [15], having introduced several modifications to make
it one of the most competitive and flexible Pittsburgh systems to date. These
include elitism, an adaptive discretization intervals (ADI) rule representation,
windowing, intelligent initialization, minimum description length (MDL)-based
fitness, and the incorporation of an explicit default rule, detailed in [14]. In
GAssist, genetic operators function at the population level.

2.2 System Evaluations

Each system was evaluated over the spectrum of simulated datasets described
and generated in [10]. In brief, 1440 simulated SNP datasets, representing 96
data set configurations of differing GH heritability combinations, sample sizes,
mix ratios, and difficulties were utlized. LCS evaluations were performed exactly
as they were in [10], adding two new power estimates, and an additional track-
ing parameter to the previously used metrics; (1) an estimate of power to cor-
rectly detect predictive attributes (MichiganPower(MP)), (2) testing accuracy
(10-fold cross validation strategy employed), (3) computational time, and (4)
solution generality. As a precursor to evaluating each LCS across the spectrum
of simulated datasets, a parameter sweep was conducted in order to roughly
optimize the parameter settings for the respective algorithms. Parameters ex-
amined in GALE include: (1) the probability of wild incorporation (0.5 and
0.75), (2) pruning; a rule deletion mechanism (on or off), (3) resource allocation;
what instances were made available to cells within the 2D board (uniform, and
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pyramidal), and (4) maximum population size (MPS); the maximum number
of rule-sets (100, 625, 2500) [12]. Alternatively, parameters examined in GAssist
include: (1) probability of wild incorporation (0.5 and 0.75), (2) population ini-
tialization (random, smart, class-wise (cw)), (3) MDL fitness (on or off), (4) an
explicit default class (on or off), (5) windowing/window size (1, 2, 4), and (6)
MPS (100, 625, 2500) [14].

Power, or success rate, is typically estimated in these types studies by tracking
the frequency with which an algorithm successfully identifies the correct under-
lying model or attribute(s), across some number of data set replicates. This type
of estimation is not applicable to either Michigan or Pittsburgh LCSs, which
both evolve solutions made up of many rules. While the function of an LCS is
to evolve a solution which can accurately classify patients, it is more impor-
tant, and arguably much more difficult to evolve a solution that is meaningful
and interpretable for a genetic epidemiologist. With this in mind, [10] devel-
oped “MP”, based on the idea that attributes unimportant to the underlying
model(s) (noise attributes) would tend to be generalized (‘#’/don’t-care sym-
bol used) more frequently within rules of the population. Pittsburgh-style LCSs,
which evolve solutions made up dramatically fewer rules, required the addition of
two additional power estimates, (BothPower(BP) and SinglePower(SP)) which
indicate whether a precise predictive rule exists for both underlying epistatic
models, or for at least a single underlying model, respectively. In addition, this
study also tracked the proportion of the rules which were accurate predictive
rules (i.e rules which accurately specified both attributes of an epistatic pair,
but generalized across all other attributes with “#”).

All statistical evaluations were completed using R. Logistic regression, mod-
eling each data set dimension and all pair-wise combinations of dimensions,
was employed for the evaluations of power. ANOVA and Tukey’s HSD posthoc
analysis was employed for the evaluation of accuracies, generality, predictive
rule proportion, and run time. Differences were considered to be significant at
(p < 0.05).

3 Results

3.1 Parameter Sweep

Completion of a parameter sweep led to the selection of the following parame-
ters for GALE (MPS = 2500, Wild = 0.75, Pruning = On, Rescource Allocation
= Uniform) and for GAssist (MPS = 625, Wild = 0.75, Initialization = CW,
MDL Fitness = On, Default Class = On, Windows = 4). Any algorithm param-
eters not evaluated in the parameter sweep were left at their respective default
settings. While both systems showed an improvement in both MP and testing
accuracy with increasing MPS, GAssist runs allotted a MPS of 2500 failed to
complete within a reasonable amount of time (< 30 hours), thus an MPS of
625 was selected. Early testing of the two Pittsburgh systems indicated that
both algorithms were struggling to perform well on the allotted task within
the maximum time frame of 30 hours. Examination of the rule sets suggested
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that generalization may have been contributing to the slow initial learning of
both systems. An examination of “wild” as a parameter, indicated that a value
of 0.75 yielded a significant improvement for all power estimates, and testing
accuracy. For GALE, the “uniform” resource allocation showed significantly im-
proved testing accuracy at the expense of about twice as much run time, and
“pruning” (a built in function of GAssist) approximately halved run time while
significantly improving agent genenerality. In GAssist,(1) “CW” initialization
significantly improved testing accuracy while taking significantly less run time
than “smart”, (2) turning on MDL fitness significantly reduced run time while
increasing generality, MP, and BP, (3) using an explicit default class significantly
reduced run time, generality, and BP while significantly improving testing accu-
racy, MP, and SP, and (4) windowing, designed to reduce computational time
and increase generalization [14], did just that, along with significantly improving
MP and BP over the increase in window size from 1-4.

3.2 Pittsburgh LCS Evaluations

Table 1 summarizes statistics describing the performance of the respective Pitts-
burgh LCSs. It is important to note that averages are calculated over every
simulated dataset with the intention of comparing the overall performance of
systems. Low overall averages of power and testing accuracy are therefore ex-
pected. “Best” power and testing accuracies come from the configuration of
datasets with the highest respective values. All values in the table are represen-
tative of the performance of agents with the highest fitness in their respective
evolved populations. Figure 1 summarizes evaluations of testing accuracy (TA)
and each power estimate across the four dimensions of simulated data. An im-
mediate observation of this study was that the MP estimation method developed
for [10], showed little to no success for any Pittsburgh systems examined. Lo-
gistic regression models indicate that each of the selected dataset dimensions
(i.e. model combo, sample size, mix ratio, and difficulty) are significant pre-
dictors of all power estimations examined, as is the choice of LCS algorithm.
Additionally, the interaction between algorithm choice and sample size for SP
was significant, indicating that the choice of Pittsburgh LCS impacts the power
to evolve at least one precise predictive rule given varying sample sizes. While
MP and BP values over all simulated datasets were generally quite low, GAs-
sist yielded significantly higher MP and SP than GALE. Accuracy evaluations
indicate that GAssist evolves agents with significantly higher testing accuracies,
and significantly lower training accuracies than GALE. All dataset dimensions
were found to be significant predictors of both testing and training accuracies
in both systems. Similar to [10], datasets with a mix of 75:25 yielded signifi-
cantly higher testing accuracies than 50:50. This supports the expectation that
LCSs would be more proficient at learning a model which dominates the sample
population. It is therefore not surprising that while the LCSs examined obtain
higher testing accuracies and SP for datasets with a 75:25 model ratio, power
estimates which rely on finding both underlying models (i.e. MP, and BP) obtain
significantly lower values. Further evaluation demonstrates that GAssist, while
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Fig. 1. An illustration of testing accuracy and the three power estimates gathered from

each LCS evaluation. The plot for each LCS depicts the results over each dimension of

the simulated dataset (i.e. model combination, sample size, mix ratio, and penetrance

table difficulty / see section 2.2). The bars of each sub-plot represent an evaluation over

15 random seed datasets. Model combinations include the following pairs of heritability;

A = 0.1 & 0.1, B = 0.1 & 0.4, C = 0.2 & 0.2, and D = 0.4 & 0.4.
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Table 1. LCS Algorithm Summaries

Assorted GALE GAssist Power Estimates GALE GAssist

Best Testing Accuracy 0.7162 0.7192 Best MP 0.0 0.2

Average Testing Accuracy 0.5828 0.6004 Average MP 0.0 0.0083

Average Training Accuracy 0.7862 0.7189 Best BP 0.1333 0.1333

Average Agent Size 29.60 8.01 Average BP 0.0118 0.0104

Average Generality 0.7889 0.7876 Best SP 1.0 1.0

Average Run Time (Min.) 113.79 208.02 Average SP 0.4403 0.5972

Average Predictive Rule % 0.03278 0.14703

Table 2. Evolved GAssist Agent

Condition Class Matched Correct Class Accuracy

1 1 ################## 0 101 96 0.9505

0 # 0 0 ################ 0 453 266 0.5872

## 1 1 ################ 0 167 125 0.7485

0 0 #### 0 ############ 0 0 143 82 0.5734

#################### 1 576 425 0.7378

evolving agents with the fewest average number of rules, also evolves solutions
that on average are less general and require a longer runtime. Table 2 depicts
one such agent evolved by GAssist. While every evaluation described above was
performed over 100 learning iterations, performance after only 25, and 50 itera-
tions was also tracked. The impact of learning iteration on testing accuracy and
the power estimates is summarized by the following; (1) testing accuracy and
SP continued to significantly improve within iterations 25-100 and 50-100 for all
systems, (2) none of the Pittsburgh systems saw significant improvement in MP
from 50-100 iterations, (3) from iterations 50-100, GALE and GAssist each saw
a small drop in BP. Overall, additional iterations and run time would seem to
benefit testing accuracy and SP while suggesting little promise of improving MP
or BP in the Pittsburgh LCSs examined.

4 Discussion and Conclusions

One of the most obvious advantages of the two Pittsburgh-style LCSs exam-
ined is the compact solutions which they evolve. Compared to the population-
sized solutions evolved by the Michigan-Style systems [10], GALE and GAssist
evolve agents which are compact enough for an epidemiologist to directly ex-
tract knowledge. Overall, GALE and GAssist both show promise addressing
the GH/epistasis problem domain, evidenced by competitive testing accuracies
and manageable solution sizes. While the study-wide average testing accuracy
of GAssist is comparable to that of UCS in [10], the apparent failure of both
Pittsburgh LCSs to evolve a rule set with a correct predictive rule character-
istic of both underlying epistatic models (i.e. BP), represents a key challenge
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for adapting this style of LCS to the GH problem. One likely reason for this
difficulty, stems from two intertwined features (i.e. the decision list and default
rule), common to both Pittsburgh systems, designed to speed up and improve
classification accuracy and agent compactness [14]. By ordering the rules of an
agent (via the decision list), the explicit pressure on rule-sets to be accurate,
intuitively drives the evolution of a default rule ( a rule that is entirely general,
or a “catch-all”), which implicitly covers all un-matched instances, or in the
case of an explicit default rule (as found in GAssist), covers the “default-class”.
While this is an effective method for condensing rule-set size, the default rule
(either evolved, or explicitly included) essentially eliminates the specification of
predictive rules for an entire class, reducing rule diversity, and likely having a
direct impact on the power estimation methods intended to evaluate LCSs.

The results of the parameter sweep serve not only to roughly optimize each
LCS for a more thorough comparison, but demonstrate the importance of the
accessory features available to each respective system. The evaluation of each
system over the complete spectrum of simulated data suggests the following;
(1) the selected rule representation allowed each system to evolve interpretable
rules which model specific genotype combinations, (2) both GALE and GAssist
were able to achieve significant power to identify at least one predictive rule
from one of the two underlying models (> 0.8) for a number of challenging
data configurations, as well as average testing/prediction accuracies significantly
higher than 0.5, (3) both GALE and GAssist are computationally intensive, and
would likely benefit from a greater number of learning iterations, and (4) the
small rule-sets evolved by GALE and GAssist offer the potential for users to
identify underlying GH. As an example of such interpretability, refer to the agent
depicted in Table 2 where the underlying GH is correctly characterized by the
first and third rules which specify two high risk epistatic genotype combinations
involving two separate pairs of attributes. In this example the correct underlying
models involve attributes/SNPs (1, 2) and (3, 4) respectively.

The results of this study support the employment of LCSs to address the
detection, modeling and characterization of attributes associated with common
complex disease given the complicating presence of underlying GH and epistasis.
However, these findings do not necessarily indicate that a given LCS will perform
“better” or “worse” within any other problem domain to which they might
be applied. The collective findings of [10] and the present study will be used
to direct the development of a problem-specific LCS algorithm, aimed at (1)
improving the power to detect underlying attributes, (2) being able to distinguish
distinct underlying models constituting the GH, and (3) enhancing the overall
interpretability of the evolved LCS rule-population solution.
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Abstract. We present and analyse the behaviour of specialised opera-

tors designed for cooperative coevolution strategy in the framework of

3D tomographic PET reconstruction. The basis is a simple cooperative

co-evolution scheme (the “fly algorithm”), which embeds the searched

solution in the whole population, letting each individual be only a part

of the solution. An individual, or fly, is a 3D point that emits positrons.

Using a cooperative co-evolution scheme to optimize the position of

positrons, the population of flies evolves so that the data estimated from

flies matches measured data. The final population approximates the ra-

dioactivity concentration. In this paper, three operators are proposed,

threshold selection, mitosis and dual mutation, and their impact on the

algorithm efficiency is experimentally analysed on a controlled test-case.

Their extension to other cooperative co-evolution schemes is discussed.

1 Introduction

Evolutionary algorithms have been proven efficient to solve the inverse prob-
lem of 3D data reconstruction in tomography [1], and particularly of positron
emission tomography (PET) reconstruction in nuclear medicine [2,3,4].

In PET, a positron emitter is used as radionuclide for labelling. Positrons
generally lead to an annihilation reaction, that emits two photons of 511 keV
in opposite directions. This radiation is detected in coincidence, i.e. using the
difference in arrival times of the detected photons of each pair, and considering
that each annihilation produces two photons emitted in exactly opposite direc-
tions. The line joining the detectors that have been activated for a given pair
of photons is called “line of response” (LOR). An overview of reconstruction
methods in nuclear medicine can be found in [5].

In previous work, we showed that a cooperative coevolution strategy (or
Parisian evolution) called “flies algorithm” [6] could be used in Single-Photon
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Emission Computed Tomography (SPECT) reconstruction [1], and also in PET
reconstruction in 2D-mode [2,3], and in Fully-3D-mode [4]. The marginal fitness
was used to propose new operators, i) the threshold selection, and ii) the mitosis,
but no performance analysis of these operators has been performed so far.

This paper addresses this deficiency and it analyses the impact of each op-
erator on the performance of a PET reconstruction algorithm on a controlled
test-case. A new operator (namely the dual mutation) and a pre-initialisation of
the flies’ position using back-projection are also described and analysed. Stan-
dard PET reconstruction algorithms are reviewed in Section 2. It is followed by
an overview of the fly algorithm for PET reconstruction. The three operators
that control a varying population size scheme are presented in Section 4, as well
as an alternate initialisation process. Experimental setup and analysis are given
in Section 5, before presenting some conclusions and future work in Section 6.

2 Standard PET Reconstruction Algorithms

Tomography reconstruction algorithms can be divided into two main categories.
On the one hand, there are analytical methods. These are based on a contin-

uous modelling and the reconstruction consists in the inversion of measurement
equations, such as the well known Filtered Back-Projection (FBP). This method
is now rarely used due to strong artefacts in the reconstructed data (see Fig. 5)
and also because the correction of imaging physics effects need to be undertaken
before the reconstruction, leading to a systematic positive bias in the recon-
structed volume.

On the other hand, there are iterative methods. This class of methods can be
split into two kinds. Algebraic methods are used in X-ray Computed Tomography
(CT); statistical methods are used in nuclear medicine for both SPECT and
PET [7]. They take into account noise, and the correction of imaging physics can
be applied during the reconstruction in the iterative steps. Iterative methods are
relatively easy to model. In practice, the volume is usually discretised into voxels.
Each voxel intensity is treated as an unknown. A system of linear equations is
defined according to the imaging geometry and physics: p = R f , with f the
volume to recover, p the measured data, R the system model. Imaging physics,
such as non-uniform attenuation, scatter, etc. can be modelled in R, whereas
they are difficult to handle in an analytic algorithm. The system of equations is
finally solved using the iterative algorithm.

There are different ways to implement these iterative methods. The main
differences are about the computation of the projections, the physics corrections
(scattering, random, attenuation, etc.) are applied, and how the error corrections
are applied in the estimated projections.

The Maximum Likelihood - Expectation Maximisation (ML-EM) (or ‘EM”)
is a common algorithm in SPECT and PET. It assumes Poisson noise is present
in the projection data. ML-EM does not produce artefacts seen in FBP recon-
structions, and it has a better signal-to-noise ratio in region of low concentration.
However, the algorithm converges slowly.
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The Ordered Subset - Expectation Maximization (OS-EM) has been proposed
to speed-up convergence of the EM algorithm. Its principle is to reduce the
number of projections used at each iteration of the EM algorithm. Projections
are grouped in K sub-groups. The projections of a sub-group are uniformly
distributed around the volume to reconstruct.

3 PET Reconstruction Using the Fly Algorithm

The fly algorithm for tomography reconstruction follows the iterative paradigm.
The steps of the iterative method can be described as follows:

1. Each individual, or fly, corresponds to a 3D point. Initially, the flies’ position
is randomly generated in the volume within the scanner. The population of
flies corresponds to the tracer density in the patient.

2. To produce estimated projection data, each fly mimics a radioactive emitter,
i.e. a stochastic simulation of annihilation events is performed. For each
annihilation event, a photon is emitted in a random direction. A second
photon is then emitted in the opposite direction. If both photons are detected
by the scanner, the corresponding LOR is recorded. The scanner properties
(e.g. detector blocks and crystals positions) are modelled, and each fly is
producing an adjustable number of annihilation events.

3. The optimisation is performed using genetic operations. The fitness func-
tion used during the selection operation takes into account the comparison
between the estimated projections and the measured projections.

4. Using genetic operations to optimise the position of radioactive emitters,
the population of flies evolves so that the population total pattern matches
measured data.

5. Instead of a “generational” evolutionary strategy, in which at each loop every
individual (fly) will be eliminated and replaced with a new fly, we chose a
“steady state” evolutionary strategy.

Note that in classical evolutionary approaches, each individual in the population
is a potential solution; in the Fly approach, a subset of the evolving population
itself is the representation of the solution. After convergence, the “good” flies
(see Section 4.1) are then extracted to form the reconstructed volume.

4 Varying Population Size Scheme in a Cooperative
Co-evolution Algorithm

Cooperative co-evolution strategies rely on a “social” formulation of the optimi-
sation problem, where individuals collaborate or compete in order to collectively
build a solution. The fly algorithm is a mono-population strategy (Parisian ap-
proach): all flies contribute independently and collectively to build the solution.
In [8] a variable sized population Parisian GP strategy has been successfully
used on a cooperative co-evolution, based on adaptive population deflating and
inflating schemes. We test in this paper an “inflating-only” strategy, the mitosis,
described below, to gradually increase the precision of the reconstructed data.
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4.1 Marginal Fitness

In this application, the similarities or discrepancies between the estimated pro-
jection data and the measured projection data provided by the imaging system
have to be assessed. We chose City Block distance (also known as Manhattan
distance) as the fitness metrics to measure the distance between two LOR sets.
It provides a good compromise between speed and accuracy. Eq. 1 provides the
global fitness, i.e. the population’s cost:

dist(LORm,LORe) =
M∑
i

M∑
j

|LORm(i, j)− LORe(i, j)| (1)

with dist(LORm,LORe) the City Block distance between LORm and LORe,
the set of LORs for the measured data and the estimated data respectively,
LOR(i, j) is the number of counts of a LOR between the photon detectors i and
j, M is the total number of photon detectors within the imaging system. LOR
sets are efficiently implemented using triangular sparse matrices to reduce the
amount of memory needed to store the data. The smaller global fitness is, the
closer the simulated data will be to the measured data.

In [1], we showed that, when we were addressing the SPECT problem, if we
defined the fitness of a fly as the consistency of the image pattern it gener-
ates, with the actual images, it gave an important bias to the algorithm with
a tendency of the smaller objects to disappear. To address this, we introduced
marginal evaluation to assess a given fly. We use a similar approach in PET:

Fm(x) = dist (LORe − {LORx} ,LORm)− dist (LORe,LORm) (2)

with Fm(x) the marginal fitness of Fly x, and LORe − {LORx} is the set of
LORs simulated by the whole population without Fly x. In practice, each fly
needs to keep a record of its simulated LORs.

The fitness of a given fly will only be positive when the global cost is lower
(better) in presence rather than in the absence of this fly.

4.2 Threshold Selection

The fly to be killed is randomly chosen by the “selection” operator, with a
bias towards killing “bad” individuals. On the other hand, if the new fly is to be
created by mutation of another fly, this fly is randomly chosen by the “selection”
operator, with a bias towards reproducing “good” individuals. Classical selection
operators are ranking, roulette wheel and tournament [9]. In our algorithm,
as each fly’s fitness is the value of its (negative or positive) contribution to
the quality of the whole population, we managed to simplify and speed up the
selection process by using a fixed fitness threshold. Any “bad” fly (its fitness is
negative) is a candidate for death, and any “good” fly (its fitness is positive) is
a candidate for mutation.
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4.3 Mitosis

When the number of flies with a negative fitness decreases, the threshold selec-
tion fails to provide flies to be killed in an acceptable time. It also means that the
reconstruction is optimum at the current resolution. If the resolution is accept-
able, i.e. there are enough flies to approximate the radio-tracer concentration,
then the algorithm can stop and the reconstructed volume is extracted using
flies with a positive fitness. If not, a mitosis operator is triggered to gradually
increase the population size. Each fly is split into two new flies to double the
population size. One of the two flies is then mutated.

4.4 Dual Mutation

To optimise the flies’ position, our algorithm takes advantage of a mutation
operator. When a new fly (b) is created by mutation of an old “good” fly (a),
the position of Fly b is first initialised to the same position as Fly a. The new
fly is then stochastically translated in any direction, and LORs are randomly
generated from that fly. The length of the translation vector is a random variable
that follows a Gaussian law whose mutation variance is σ2. It needs first to be
set to a large value to better explore the search space. However, a constant large
mutation variance will lead to blurred reconstructed volumes. σ has therefore to
be gradually reduced.

The use of adaptive mutations in evolutionary algorithms is an ancient idea,
directly inspired by natural adaptive phenomena, e.g. mutations simulated by
stress [10]. In artificial evolution, various adaptive schemes have been considered
for mutation [11], depending of the parameter to be adapted (standard deviation,
σ [12], or mutation law [13] for continuous mutation, mutation probability for
discrete mutations [14]). Regarding the adaptation of σ, one can distinguish
several strategies :

– σ is directly adapted to local measurements, like fitness [15] or local regu-
larity [16],

– σ is tuned depending on some success measurement: in this category fall the
famous 1/5th rule proposed by Schewefel [17,18],

– σ is subject to an adaptive pressure itself, it is self-adapted [19]: σ is consid-
ered as an additional parameter in the genome, and a log-normal Gaussian
law is used to control the “mutation over the mutation”.

These techniques have been proven efficient in various cases, depending on the
fitness function and the genetic engine. It has however to be noticed that the
sophistication of a mutation operator has a computational cost, and that some
very rough schemes may perform better due to their capability to rapidly test
numerous sample points [20].

Concurrent testing with various subpopulation has been also considered for
mutation law adaptation [13].

Here we propose an adaptive mutation scheme based on the concurrent testing
of two alternative σ values (σlow and σhigh, with k σlow = σhigh). The update
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rule is multiplicative as for the 1/5th rule. If σhigh gives the best results during
the previous period, then both mutation variances are increased by a predefined
factor (pf , with pf > 1). If σlow gives better results, then the variances are
multiplied by 1

pf . The major advantage of this dual mutation scheme is to provide
a fully automatic method to adapt the mutation variance, whilst keeping the
administration cost of the algorithm relatively light. Additionnally, this scheme
does not need to make any assumption on the ideal success rate of the mutation
as in the 1/5th rule. In practice, the global fitness is recorded after each mutation.
The cumulative difference of the global fitness (Δ(σ)) before and after mutations
is computed to determine which σ value provides the best performance over a
given period of time. To prevent oscillation of σ values, a criteria can be added
to avoid changes when both σhigh and σlow provide relatively similar results,
e.g. when the absolute difference between Δ(σlow) and Δ(σhigh), relative to the
current global fitness, is below a given threshold (tmut).

4.5 Initialisation of Flies on LORs

Iterative reconstruction methods generally make use of a constant volume as an
initial estimate of the volume (see Fig. 5(a)).

However, to speed-up the reconstruction process, a volume is first recon-
structed using a fast analytical algorithm, the simple back-projection, that we
implemented on the graphics card using OpenGL. The algorithm consists in
back-projecting each LOR into the volume space. Pixels along the path of a
LOR are updated uniformly. This operation is fast and provides the evolution-
ary algorithm with an initial guess of the volume (see Fig. 5(c)). For each voxel
of the initial estimate, a given number of flies is assigned depending on the voxel
intensity (see Fig. 5(b)).

5 Results

The validity of the reconstruction method has been addressed in [4]. In this pa-
per, we focus on the evaluation of the performance of the new genetic operators.
For each test case, 750000 new individuals have been created. For each tested
configuration, the reconstruction has been repeated 20 times, and the final global
fitness was recorded. For every test, unless specified, the dual variance and the
threshold selection operators have been enabled. Results are presented using box
plots (also called box-and-whisker diagrams).

5.1 Experimental Setup

Here, a single ring PET system is considered. Its radius is about 430mm. The ring
is made of 72 linear blocks that include 8 crystals each. The width of a crystal
is about 4.5mm. Fig. 1(a) shows the reference image. It includes nine cylinders
having two different radii (1 cm and 2.5 cm) and five different radioactivity
concentrations (C1 = 114, 590 count/ml, C2 = 2C1, C3 = 3C1, etc.)
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Fig. 2. Performance of the threshold selection and of the tournament selection

5.2 Threshold Selection

The size of the population is fixed (160000 flies), i.e. no mitosis has been trig-
gered. The performance of the threshold selection and the tournament selec-
tion are presented in Fig. 2. Both operators provide similar performance. The
threshold selection is then preferred because of the additional information that
it brings: enable mitosis, and provide a convergence criteria at a given resolution
(i.e. for a given size of population).

5.3 Mitosis

Two variables have to be assessed at the end of the reconstruction: the current
size of the population, and the global fitness. The larger the final population,
the better the image resolution can be obtained. The smaller the global fitness,
the closer the estimated data to the measured data is.

Fig. 3(a) shows the average number of flies in the final population depend-
ing on the initial size of the population (625, 2500, 10000, 40000, 80000, and
160000 flies). When the size of the population is 160000 flies, no mitosis has
been triggered. Fig. 3(b) shows the corresponding global fitness.

Similar performance in term of global fitness is obtained when the initial
population size is below 10000 flies. The highest final population size is obtained
with the smallest initial population size. Then, the reconstruction converges
much faster when the initial population is small (smaller global fitness and bigger
final population size). These results validate the efficiency of the mitosis operator.
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5.4 Dual Mutation

The initial σlow value in this test is 35mm, pf is equal to 3
√

2, and σhigh is equal to
3
√

2σlow. Different threshold values (tmut) have been tested to limit oscillations
of σ values (Fig. 4(a)). Larger values not only prevent oscillations, they also
prevent any change of σ values, leading to unsatisfactory results.

Fig. 4(b) shows the global fitness obtained i) using a constant variance (see
(1) and (2)), or ii) enabling dual mutation operator (see (3) and (4)). The best
results are observed using the dual mutation operator with a very low tmut value.

5.5 Initialisation of Flies on LORs

Fig. 5(a) and Fig. 5(b) show two possible initial estimates of the radio-active
concentration. In the first case, flies are uniformly located within the space in
the imaging system. In the latter case, the position of flies is initialised using the
simple back projection. Fig. 3 shows the performance of both strategies when
the mitosis operator is enabled.

When the initial size of the population is relatively large, the algorithm con-
verges much faster using this initialisation step. This is not the case when the
initial size of the population is relatively small. It may be due to the fact that



422 F.P. Vidal et al.

(a) Uniform distribu-

tion of the flies.

(b) Initialisation of the

flies’ position using

Fig. 5(c)

(c) Image reconstructed

using the simple back

projection algorithm.

Fig. 5. Initial estimates of the reconstructed image

the algorithm converges fast enough when only a few flies are used. When the
initial number of flies is slightly higher, the reconstruction converges faster when
the position of flies are initialised using the back projection.

6 Conclusion and Futher Works

We have presented new operators in cooperative co-evolution and validated their
efficiency using a controlled test-case in PET reconstruction. Both the thresh-
old selection, mitosis and dual mutation operators have shown their usefulness
and ability. Experimental statistics show that the threshold selection perform as
well as the tournament selection, but it has the great advantage of bringing a
convergence criterion related to the current resolution. Additionally, it allows to
trigger an automatic mitosis, i.e. doubling the population size, to improve the
resolution. Best performance, both in term of final resolution and convergence,
are obtained using small initial population size. The dual mutation operator
provides an adaptive mutation variance that has proven to be better than using
fixed mutation variances.

Such operators can be used in any other cooperative co-evolution schemes
as soon as a marginal fitness can be considered as beneficial, that obviously
depends on the computation cost of the marginal fitness. For instance, threshold
selection, mitosis and dual selection will be considered as further work for the
original fly algorithm on a stereo-vision application ([6]). The marginal fitness
will also be considered for developing a “deflating operator”. This additional
mechanism for controlling the population size may be interesting in the case of
applications whose resolution does not depend on the size of the final population.
Further work will also include the correction of photon attenuation and Compton
scattering, and a concurrent study with the OS-EM algorithm.
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Abstract. Learning Bayesian networks from data is an NP-hard prob-

lem with important practical applications. Metaheuristic search on the

space of node orderings combined with deterministic construction and

scoring of a network is a well-established approach. The comparative

performance of different search and score algorithms is highly problem-

dependent and so it is of interest to analyze, for benchmark problems

with known structures, the relationship between problem features and

algorithm performance. In this paper, we investigate four combinations

of search (Genetic Algorithms or Ant Colony Optimization) with scoring

(K2 or Chain). We relate node juxtaposition distributions over a number

of runs to the known problem structure, the algorithm performance and

the detailed algorithmic processes. We observe that, for different reasons,

ACO and Chain both focus the search on a narrower range of orderings.

This works well when the underlying structure is compatible but poorly

otherwise. We conclude by suggesting future directions for research.

Keywords: Ant Colony Optimization, Genetic Algorithm, Bayesian

Network Structure Learning, Node Ordering, Chain Model, K2.

1 Introduction

Bayesian networks (BNs) are probabilistic graphical models which are used to
represent knowledge about uncertain domain. The network consists of a directed
acyclic graph (DAG) whose nodes represent random variables, and whose edges
represent the direct dependencies between these variables, and a joint probability
distribution (JPD) over the random variables. The JPD factorises according to
the DAG structure. In many domains, the BN structure and parameters must be
learned from data. Learning BN structure is a NP hard problem. It is known that
the number of possible structures grows super-exponentially with the number of
nodes [1], and so evaluating all possible structures is infeasible in most practical
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domains, where the number of variables is typically large. The process of finding
cheaper approaches for learning the structure of BNs from large datasets is now
a very research active area.

A well-established approach to learning BN structure uses metaheuristic search
on the space of node orderings combined with deterministic construction and scor-
ing of a network. The comparative performance of different search and score algo-
rithms is highly problem-dependent and so it is of interest to analyze, for bench-
mark problems with known structures, the relationship between problem features
and algorithm performance. In this paper, we investigate combinations of two
metaheuristic search techniques, Genetic Algorithms (GA) and Ant Colony Op-
timisation (ACO) with two scoring approaches, K2 and Chain. All are previously
published algorithms for which empirical trade-offs between computational ex-
pense and structural accuracy with a high degree of problem dependency have
been observed [2,3,4].

In this paper, we attempt to understand this problem dependency. We ex-
plore the distributions of nodes juxtapositions in the best solutions found over
a number of runs and relate this to the known problem structure, the algorithm
performance and the detailed algorithmic processes.

The remainder of this paper is organized as follows: in section 2, we briefly
describe search and score approaches for BN structuring learning. In section
3 we describe experiments used to generated node juxtaposition distributions.
Results are discussed in section 4, and conclusions presented in section 5.

2 Background

2.1 Bayesian Network Structure Learning Using Search and Score

Search and score approaches attempt to search for the BN structure which best
fits the data according to a scoring function. A range of well-known search tech-
niques have been applied in search and score, including Hill Climbing [5], Genetic
Algorithms [6], Simulated Annealing [7], Particle Swarm Optimization (PSO) [8],
and Ant Colony Optimization (ACO) [9,10]. The most common scoring functions
used in these algorithms include the K2-CH metric [11], BDeu [12], BIC [13],
and Minimum Description Length (MDL) [14].

2.2 K2 Algorithm and K2-Based Search and Score

K2 is a well-known greedy algorithm that constructs and evaluates a BN from
a database of cases [11]. K2 assumes that an ordering on the variables is avail-
able and that, a priori, all structures are equally likely. Moreover, it assumes a
maximum number of parents a node can have. It starts by assuming that all
nodes in the DAG are without parents (i.e. no edges). At each step, edges are
added where doing so increases the joint probability of the resulting structure.
K2 stops when no further edges can be added.K2 can thus be used as a scoring
approach by applying it to an ordering selected by a metaheuristic search. Sev-
eral K2-based search and score algorithms have been proposed. Here, we briefly
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introduce two relevant to this paper: K2GA and K2ACO. K2GA [2] uses a GA
to search the space of node orderings. The fitness of each ordering is evaluated
by running the K2 search algorithm on each ordering evaluated and returning
the score of the network structure found. Standard ordering based operators are
applied. Similarly, in K2ACO [4], node orderings are generated by a colony of
ants. Evaluations from K2 are then used for pheromone update.

2.3 Chain Based Search and Score

Chain scoring for BN structure learning is first proposed in [3]. It is based on
the hypothesis that an initial search phase of evaluating fixed chain structures
imposed on orderings provides a sufficiently good scoring function to locate
high scoring regions of the space of node orderings. A second phase then fol-
lows where K2 is applied directly to the best orderings found. Given a node
orderingX1,X2,. . . ,Xn, we define the chain structure by adding edges between
successive nodes. Thus Xi is the sole parent of Xi+1. Ei is the edge from Xi to
Xi+1 Figure 1.

Fig. 1. Chain structure on an ordering

In our previous work, GA (ChainGA) [3] and ACO (ChainACO) [4] are de-
veloped as Chain-based search heuristics. At each evaluation step, a chain struc-
ture of the given ordering is constructed and evaluated using the K2-CH [11]
score metric evaluations. At the end of evaluation, the ordering corresponding
to the best fitness score is then produced for K2 algorithm to construct the BN
structure. This is a relatively cheap evaluation in terms of the number of K2-CH
factor evaluations needed. Our previous results have shown that the Chain struc-
ture model can get a significant reduction in computational cost for large data
sets. The pseudocode for ChainACO and ChainGA is given in Tables 1 and 2
respectively.

3 Experiments

The aim of our experiments is to investigate the behaviour of GA and ACO
metaheuristics searching the space of node orderings using the Chain and K2
evaluation methods. We try to explore the relationship between arcs derived from
node juxtapositions in the best orderings found (Figure 1) and arcs in the original
structure. We therefore make runs of each metaheuristic with each evaluation
method, which we denote ChainACO, ChainGA, K2ACO and K2GA. Note that
in these experiments, we only require to run the first phase of ChainACO and
ChainGA algorithms to obtain the best node orderings, as the search of ordering
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Table 1. Pseudocode of ChainACO Algorithm

Initialize pheromone
Initialize heuristic information
Loop

Each ant is positioned on a starting node
Loop
Each ant applies a state transition rule to incrementally
build a solution and a local pheromone updating rule

Until all ants have built a complete solution
A global pheromone updating rule is applied

Until termination criterion is met
Implement K2 Algorithm on best solution to learn the best
structure.

Table 2. Pseudocode of ChainGA Algorithm

Initialize population
Repeat

Select best-ranking individuals to reproduce
Apply crossover operator
Apply mutation operator

Until termination criterion is met
Implement K2 Algorithm on best solution to learn the best
structure.

space ends at this point - the second phase is deterministic. However we are not
comparing the computational efficiency or the scores of final networks produced
as that has been covered in our earlier work [3,4].

Four well known benchmark problems have been selected in our research:
Asia, Car, Insurance and Alarm. The Asia network is a simple network with
8 binary nodes and 8 edges. It is a diagnostic demonstrative Bayesian network
[15]. The Car Diagnostic Network consists of 18 nodes and 17 edges. It can be
applied to diagnose malfunctioning of self-propelling vehicles [3] . The Insurance
network contains 27 nodes and 52 arcs, is a network for evaluating car insurance
risks [16] . The Alarm network is a medical diagnostic system for intensive care
patient monitoring consisting of 37 nodes and 46 edges [17]. All the data cases
are sampled using the Netica tool [18]. In this paper, the dataset sizes for Asia,
Car, Insurance and Alarm are 5000, 10000, 5000 and 3000 cases respectively.

In all cases, the scoring metric used to evaluate the node ordering is the K2-CH
metric. For ChainACO and ChainGA we carry out 200 experimental runs each.
For K2ACO and K2GA we carry out only 50 runs each due to time complexity.
The parameters used for ACO and GA based algorithms in this paper are the
same as those used in [3,4].
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4 Results and Discussion

Table 3 presents the distribution of node juxtapositions recorded from the best
ordering found in each of 200 experimental runs of ChainACO on the Asia net-
work. The row index indicates the first node in a juxtaposition, the column
index indicates the second. For example, the Table shows that in 65 of the runs,
the node juxtaposition 1-2 appeared 65 times, and the node juxtaposition 2-1
appeared 135 times. This means that, in all runs of ChainACO on Asia, nodes
1 and 2 were juxtaposed in the best ordering found, with a 135:65 preference
for node 2 preceding node 1. In all of these cases, the ordering will have been
evaluated using a chain structure inserting a directed edge between these nodes.
It is not of course necessary that any particular juxtaposition will appear in all
experimental runs. Each ordering found will contain n− 1 juxtapositions where
n is the number of nodes. The sum of entries in the ordering distributions table
will therefore in general be r· (n−1), where r is the number of runs. In this case,
the entries sum to 1400 = 200 × 7.

Table 3. Node Juxtaposition Distribution for 200 runs of ChainACO on Asia

1 2 3 4 5 6 7 8

1 0 65 0 135 0 0 0 0

2 135 0 19 21 9 7 0 0

3 10 76 0 3 12 4 0 4

4 44 0 4 0 0 145 0 0

5 0 9 65 0 0 0 2 31

6 0 3 0 37 0 0 158 2

7 0 0 0 0 0 42 0 158

8 0 2 3 0 155 0 40 0

It is noticeable from Table 3 that the distribution of node juxtapositions is
concentrated on a relatively small subset of possible node juxtapositions. This
indicates that ChainACO is highly consistent in the node orderings it produces
and suggests a strong convergence property of the search. In Figure 2, we present
a visual representation of the node distributions produced by all four algorithms
on Asia and Car. Here, the instance counts have been replaced by a normal-
ized grayscale representation running from white (juxtaposition occurs on 0%
of runs) through to black (juxtaposition occurs on 100% of runs). It is easy
to observe from Figure 2a that there is a marked difference in distribution be-
tween ChainACO (top-left) and K2GA (bottom right). ChainACO produces a
high contrast image consisting of mostly very dark or very light pixels whereas
the K2GA image is much more diffuse. It is hard to visually detect much of a
difference in contrast between K2ACO and ChainGA other than that they lie
somewhere in between the other two. Moreover the dark areas for ChainACO
do not particularly coincide with those for K2GA. However results in [4] show
that each algorithm reliably reproduces the Asia network.
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Fig. 2. Grayscale Grids of the Edges Occurrences in Asia and Car Networks within

the Four Algorithms

Fig. 3. Grayscale Grids of the Edges Occurrences in Insurance and Alarm Networks

within the Four Algorithms

In Figure 2b, there are more possible node juxtapositions and the visual con-
trast is more marked. In order from highest to lowest visual contrast, the images
are ordered ChainACO, K2ACO, ChainGA and K2GA. This ordering is con-
sistent with a hypothesis that both the Chain scoring approach and the ACO
metaheuristic result in more concentrated distributions than the K2 scoring ap-
proach and the GA metaheuristic respectively. Finally, the equivalent diagrams
for Insurance and Alarm are shown in Figure 3. As these networks have many
more possible node juxtapositions the diagrams have a finer granularity but the
same effects are observable.

We present node juxtaposition frequencies for all four algorithms for the In-
surance and Alarm problems as Box plots in Figure 4. These essentially show
the same information. Here the effect of the Chain approach manifests as a low
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Fig. 4. Comparison of Frequencies of Each Edges Found in Insurance and Alarm Net-

works within four Algorithms

median frequency for most possible juxtapositions with a small number of high
frequency outliers. This is particularly noticeable for ChainACO in both
Figures. Conversely, for K2 approaches, and K2GA in particular, there is a higher
median node distribution frequency and a large distribution of frequencies in the
interquartile range, corresponding to the more diffuse visual pattern observed
earlier.

Overall, there appears to be a small reduction in variability of the final order-
ing produced deriving from the use of ACO rather than GA, but the dominant
difference in behaviour derives from the choice of scoring approach. We observe
that the Chain scoring approach concentrates the search on a smaller set of node
juxtapositions, and hence node orderings than the K2 scoring approach does.
This is because, for any particular ordering, Chain only inserts edges between
juxtaposed nodes whereas K2 may insert an edge between any two nodes. Thus
it is possible to discover valuable interactions from a wider range of orderings
with K2 than with Chain. Conversely, it takes longer to evaluate orderings with
K2 because a large number of possible edges have to be considered in turn for
each ordering. Therefore, the relative merits of Chain and K2 for any particular
problem lie in how amenable the dependencies in the data are to discovery using
the Chain approach.

Figure 5 and Figure 6 are diagrams of the known true structures for Asia and
Car respectively, annotated with the best ordering found by ChainACO. For
each node juxtaposition occurring in the best ordering that corresponds with
an edge in the true structure, an arrow is added in the middle of the edge in
the direction of the node juxtaposition. If there is no edge in the true structure
corresponding to the node juxtaposition, a dotted arrow is added to the diagram.
Solid directed edges with no central arrow therefore represent edges that occur
in the true structure but are not represented by node juxtapositions in the
best ordering found. We also annotate each node juxtaposition with the overall
percentage of runs in which it appeared in the best ordering for that run.

Figure 5 shows that all but one of the node juxtapositions in the best order-
ing found by ChainACO for Asia coincide with true arcs. Of these three out
of six are correct and three reversed. The solution adds one node juxtaposition
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Fig. 5. Asia - annotated by best ChainACO ordering 3-5-8-7-6-4-1-2

Fig. 6. Car - annotated by best ChainACO ordering 17-16-12-18-14-7-6-10-11-5-9-8-

13-2-4-1-3-15

corresponding to a spurious arc and omits two arcs. However the nodes corre-
sponding to the two omitted arcs are correctly ordered and so could be discovered
by K2 in the second phase of the algorithm. This analysis shows that it is possible
to create chains closely aligned to the structure. This explains why ChainACO
and ChainGA perform well on Asia.

Figure 6 shows that only six of the seventeen node juxtapositions in the best
ordering found by ChainACO for Car coincide with true arcs. Of these only
one out of six is correct and five are reversed. The solution adds eleven node
juxtapositions corresponding to spurious arcs and omits ten arcs. It is noticeable
that the true Car structure contains nodes such as 4, 7, 14 and 18 each of which is
a hub for a cluster of tightly-bound nodes. The binding between these clusters is
loose. Such a topology is not amenable to the construction of chains where many
node juxtapositions correspond to a true arc independent parents. For example,
only one node can be positioned before node 18, which immediately excludes at
least three true arcs in any ordering. Therefore in this case, the Chain approach
finds spurious arcs that can coexist as node juxtapositions in a single ordering
and give a better score than orderings that include correct node juxtapositions.
This inherent difficulty in aligning chains of node juxtapositions with the true
structure explains why ChainACO and ChainGA perform poorly on Car.

Table 4 contains for each problem and for the best node ordering found over
all runs by ChainACO, the numbers: C, of node juxtapositions corresponding
to correct arcs; R to reversed arcs; A to additional, spurious, arcs; and O is the
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Table 4. Alignment of best ChainACO ordering with true structures

C R A O T

Asia 3 3 1 2 8

Car 1 5 11 11 17

Insurance 10 8 8 34 52

Alarm 14 6 15 26 46

number of arcs in the true structure to which no node juxtapositions correspond;
T represents the total arcs in true structure. The table shows that C and R
dominate for those problems (Asia and Alarm) where ChainACO performs well.
On the other hand, A and O dominate for those problems (Car and Insurance)
where ChainACO performs poorly.

5 Conclusions

In this paper we have conducted experiments to investigate the behaviour of GA
and ACO metaheuristics searching the space of node orderings using the Chain
and K2 evaluation methods. We have explained problem-dependent performance
trade-offs between cost and structure quality in terms of the relationship between
the Chain scoring mechanism, which relies on ordering node juxtapositions and
true arcs in the original structure. In all problems investigated, the Chain scoring
approach focused the search on a narrower range of orderings than did the K2
scoring approach. A lesser effect was also observed in that ACO-based methods
appeared to concentrate search more than GA-based methods.

The major conclusion of our analysis of node juxtaposition statistics is that in
problems where the true structure of the data is amenable to alignment of node
juxtapositions in a single ordering, the Chain scoring approach is able to yield
high quality solutions with significantly less computational effort than the K2
scoring approach. In problems where such alignment is not possible, the Chain
scoring approach is likely to be unsuccessful in producing high quality structures
and so the relative benefit of reduced computational time is lost.

Finally our results suggest a possible direction for future work. A generaliza-
tion of the Chain scoring approach that could detect shorter series of well-aligned
node juxtapositions combined with a coarser-grain version of the K2 algorithm
could potentially assemble high quality structures at reduced cost, even in situ-
ations where a single ordering would not admit a set of well-aligned arcs. ACO
is a promising approach for more generalized construction approaches.
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Abstract. The credit default swap has become well-known as one of the

causes of the 2007-2010 credit crisis but more research is vitally needed

to analyze and define its impact more precisely and help the financial

market transparency. This paper uses cartesian genetic programming as

a discovery tool for finding the relationship between credit default swap

spreads and debts and studying the arbitrage channel. (Arbitrage is the

practice of taking advantage of a price difference between markets.) To

our knowledge this work is the first attempt toward studying the credit

default swap market via an evolutionary process and our results prove

that cartesian genetic programming is human competitive and it has the

potential to become a regression discovery tool in credit default swap

market.

Keywords: Cartesian Genetic Programming, Credit Default Swap,

Regression.

1 Introduction

In the last two years, the world economy has been faced with one of the biggest
crises ever seen, throwing most countries into recession. The causes of the fi-
nancial meltdown are numerous, but it is widely accepted that one significant
factor was the “Credit Default Swap” market. Trading of this complex financial
product was unpredictable, out of control, and badly priced, leading to fortunes
being made and lost [11].

To understand what a Credit Default Swap (CDS) really is, consider the
following example. Imagine North bank made a five-year $10 million loan to
West Airways. North bank is concerned about West Airways performance and
not being able to pay back the loan (possible default). Therefore, in order to
protect itself and reduce the risk of not getting its loaned money back, North
bank can buy a kind of insurance (known as “protection”) on West Airways
from a insurance seller (a protection seller), which in this case might be East
bank. The insurance is based on a West Airways-issued bond (a debt security
which represents a formal contract to repay borrowed money with interest at
fixed intervals). This protection (insurance) contract is called a CDS contract
and East bank is then able to trade its CDS contracts with other banks, buying

R. Schaefer et al. (Eds.): PPSN XI, Part I, LNCS 6238, pp. 434–444, 2010.
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them when they cost less and selling them when they are worth more, in order
to make profit. The price of CDS contract changes according to the success or
failure of the business of West Airways (i.e., the credit quality of West Airways).
If the West Airways credit quality decreases (risk of default increases), the CDS
price will increase.

One of the major reasons why this product help cause the financial crisis is
because CDS contracts were often very poorly costed-although they were sup-
posed to represent a kind of insurance against a loan, their prices often showed
little relationships to the true ability of the companies to repay those loans.
Thus when companies unexpectedly defaulted on their loans (or unexpectedly
paid the loans back), a bank that bought a CDS contract at a very high price
might suddenly find it was worth very little, and it would lose money. Thus the
pricing of CDS contracts is of enormous concern and consequence. In this paper,
the first ever study is performed into CDS pricing by using Cartesian Genetic
Programming to analyse the relationship between price, debt and equity infor-
mation. We show that CGP can completely outperform the standard pricing
model, and we provide some analysis of the CGP solution, as well as the ability
of CGP to cope with this complex financial data.

More details of CDS contract pricing is provided in the following section.
This is followed by a description of our CGP model in section three. Section
four explains the datasets, CGP settings and experiment objectives. Results are
provided in the fifth section and we conclude in section six.

2 Credit Default Swap Background

A CDS contract is a kind of credit derivative. Credit derivatives are over-the-
counter (OTC)1 financial contracts that allows one to take or reduce credit
exposure, commonly on bonds or loans of corporate entity and it reflects the
risk of a default in a corporation. This risk is expressed through the CDS price.
A CDS is an agreement between two parties to exchange the credit risk of a
reference entity, also called an issuer (West Airways, in our previous example),
without directly involving the issuer [1]. The protection buyer (North bank, in
our example) pays a periodic fee and receives compensation if the reference entity
has a credit event. A credit event includes bankruptcy, failing to pay outstanding
debt obligations, or restructuring of a bond or loan. The protection seller (East
bank) collects the periodic fee and profits if the credit of the reference entity
remains stable or improves while the swap is outstanding [2]. Figure 1 illustrates
the terminology and mechanism of the CDS. The CDS is uniquely defined by
four key parameters [3, 2, 1]:

1. Issuer: CDS contracts specify a reference bond or loan which defines the
issuing entity through the bond prospectus (e.g. West Airways).

1 The phrase ”over-the-counter” can be used to refer to stocks, debt securities and

other financial instruments such as derivatives, which are traded through a dealer

as opposed to on a centralized exchange (e.g. London Stock Exchange).
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Fig. 1. Single Name CDS Functionality

2. Notional amount: Notional amount is the amount of credit risk being
transferred between protection buyer (North bank) and protection seller
(East bank).

3. Spread: A spread (also called coupon, or price) specifies the annual pay-
ments which are quoted in basis point2. These payments are paid quarterly
(e.g. from North bank to East bank).

4. Maturity Date: The expiration of the contract. The most liquid3 maturity
term for CDS contract is 5 years.

Over the last few years, the credit derivatives market has grown significantly
and exceeds both equity derivatives and corporate bond markets. The largest
participants in the credit derivatives market are banks, insurance and securities
companies. According to the British Bankers Association (BBA) report, the
most important and widely used products in credit derivatives are CDS (42%
of notional principal outstanding in 2006) [2]. The reality shows that the CDS
market suffers from a lack of any comprehensive study. The lack of sufficient
data had been a major problem for a broad empirical testing of CDS pricing
models (as seen in [8, 7]) until few years ago.The last few years with increased
bond market liquidity and a well-developed CDS market provide more sufficient
data for investigation.

2.1 CDS Pricing Challenge

In the credit risk literature, there are two broad approaches to modelling cor-
porate default risk (e.g. the risk that West Airways defaults on a loan): the
structural approach and the reduce-form model. In the structural model the
evolution of the company’s assets follows the diffusion process. In other words
the default occurs when the value of the firm assets becomes lower than its
debts; because the assets can be continuously assessed, downwards trends can
be spotted and so the risk of default should never be a surprise. In contrast to the
2 A basis point (often denoted as bp) is a unit relating to interest rates that is equal

to 1/100th of a percentage point per annum (pa).
3 Liquid means easily converted into cash (e.g. a bond which can be sold quickly).
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Table 1. History Track of Credit Risk Approaches

Structural Model Reduced-form Model

Investigators Date Investigators Date

Black & Scholes 1973 Geske, Ingersoll, Merton 1977

Merton 1974 Smith & Warner 1979

Black & Cox 1976 Cooper & Mello 1991

Longstaff & Schwarts 1995 Hull & White 1992

Abken 1993

Duffie & Singleton 1995

structural approach, the reduce-form approach assumes that there is no relation
between value of the company and risk of default. In this approach defaults are
seen as an unpredicted Poisson events involving a sudden loss in market value
and therefore firms never default gradually. See [11, 4, 6, 5] for more details on
credit risk literature. Table 1 presents the history of credit risk approaches by
referring to the investigators who contributed to the field.

As discussed, default risk is expressed through the CDS spread. While pric-
ing of this CDS is a challenging open problem that is a very quantitative and
qualitative field involving estimations of default, timing of default and balance
sheet value fluctuations (see: [8,9,12]), the Duffie approach provides a method to
evaluate the correct pricing of the CDS spread through the simple relationship.

CDSspread = RiskFreeRate−DebtReturn (1)

Where Risk Free Rate refers to Interest Rate and Debt Return refers to Bond
Yield. This paper uses Duffie regression model as the regression benchmark
model. This relationship is observed in the market and if it breaks down sig-
nificantly, traders will buy and sell the instruments to return the relationship
close to parity. But observing the CDS spread, debt return and risk free rate in
the financial market shows that this relation does not hold exactly. An example
of this observation is illustrated in figure 2. The reason of the gap between the
Duffie theory and market data is the cost of arbitrage or what is also known as
the arbitrage channel [1]. The arbitrage cost comes from the range of market
mechanics to borrow, sell and buy instruments to profit from the CDS spread,
inaccurately estimating the risk of a default event [8]. Therefore, the challenge of
the CDS pricing is narrowed to studying of this arbitrage channel and reduce it in
order to find a regression model which can match the market data. This paper is
focussed on investigating the relationship between CDS spread, debt and equity

Fig. 2. Duffie Theory Vs. Market Data
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information using CGP. In analyzing the results of CGP for a common group of
financial corporations we expect to discover and propose a new regression model
which can estimate the CDS price better than current regression benchmark.

3 CGP Model

CGP was developed from methods developed for the automatic evolution of
digital circuits by Miller and Thomson [10] for the purpose of evolving digi-
tal circuits. Unlike traditional Genetic Programming (GP), CGP represents a
program as a directed (that for feed-forward functions is acyclic) graph. The sig-
nificance of the difference between CGP and Linear GP has been established in
the means of restricting interconnectivity of nodes [16]. In CGP, the genotype is
a fixed length representation and consists of a list of integers, which encode the
function and connections of each node in the directed graph [15]. The number
of nodes in the graph is bounded but it can be varied, as CGP uses a genotype
phenotype mapping that allows the existence of unconnected nodes in the geno-
type which produce inactive sub-genotypes that have no effect on the phenotype.
This leads to an effect on search called neutrality, a CGP feature that has been
found to be tremendously valuable to the evolutionary process on the problems
studied [14]. Each of the nodes is encoded by a number of genes representing
a particular function and the inputs that each node has. The nodes take their
inputs in a feed forward manner from either the output of a previous node or
from one of the initial program inputs (terminals).

CGP has been applied to a growing number of domains and problems such
as digital circuit design, digital filter design, image processing, artificial life, bio-
inspired developmental models, evolutionary art and has been adopted within
new evolutionary techniques such as cell-based optimization and social program-
ming. To our knowledge it has not been investigated in the financial field so far
while GP is widely used in financial fields such as: Stock markets, Game the-
ory, Betting, Foreign exchange, Arbitrage and Studying markets. See [13] for
comprehensive overview of GP and its applications.

3.1 CGP Model Modification

For the purpose of this paper objectives the basic CGP model4 is modified in
order to provide more information from CGP result. Our CGP model has the
following features:

1. Training/Test Dataset: Our version of CGP divides the data Xa into two
datasets where Xi randomly chosen data points are considered as the test
set and the Xa−i remaining data points are considered as the training set.
The training set used by CGP as input data, and the best result at the end
of the evolutionary run is tested.

4 Visit http://www.cartesiangp.co.uk for CGP related information and CGP model.
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2. CGP Output: The original CGP model provide fitness report as the CGP
output. For the purpose of analysis our version of CGP reports on training
and test sets results which makes the data comparison possible.

3. Chromosome Translator: An important feature of this work is the evolved
equation (not just the fitness values). Hence we also have created a solution
parser that translates the chromosome into an understandable mathematical
equation, which we can then study for insights into the solution.

4 Experimental Datasets, Settings and Objectives

The Centrica Plc company is chosen for our experiments. The Centrica Plc is a
large multinational utility company. It is listed on the London Stock Exchange
and also listed on FTSE 100 Index5. Data is collected from 5th January 2004 till
25th Jun 2009 (which of course includes the recent highly turbulent nature of the
markets). Table 2 illustrates a sample of our database including the company
CDS spread, debt and equity information. Two datasets are specified for the
system. The first dataset contains three inputs: CDS spread (bp), bond yields
(ask and bid price) and Bank of England base rate. The second dataset includes
the all available information, eight inputs as shown in table 2. In the rest of
this paper we refer to the first dataset as the CDS-Debt dataset and the second
dataset is called CDS-Debt-Equity dataset. Each dataset contains 1400 data
points (Xa) where 400 randomly chosen data points (Xi) are considered as the
test set and the 1000 remaining data points (Xa−i) are considered as the training
set. The test set is the same for all runs.

Table 2. Centrica plc Database (CDS, Debt and Equity Information)

Date Spread(bp) Bid yield Ask yield Base rate Bid PX Ask PX E. Volatility E. Weight E. PX(High)

05/01/2004 0.2900 5.448 5.376 3.75 102.908 103.408 7.8840 187.7381 188.81
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
24/06/2009 0.6667 4.172 3.990 0.50 105.188 105.768 28.996 226.5237 230.75
25/06/2009 0.6652 4.157 3.972 0.50 105.232 105.822 28.840 227.5276 231.00

Table 3 shows the experimental setup. We run all experiments with the same
settings. We vary the mutation rates and the number of nodes (which in CGP
affects the overall size of solutions and thus the complexity of equations that can
be evolved) in order to monitor CGP behaviour. A simple function set is chosen,
containing only fundamental operators as listed in table 3. In addition to our
financial inputs, three constant integers (1,2 and 3) have been given as constant
inputs to the model as well.

The fitness is calculated for each datapoint by defining the error rate, calcu-
lated as the absolute value of difference between the CGP–Output and the actual
data: Error = |CGPOutput −Data| and converting this result to a number be-
tween 0 and 1 where this number demonstrate the portion of the number of actual
values that is predicted correctly by CGP: DataPointF itness = 1.0

1.0+Error . The

5 FTSE 100 index is a share index of the 100 most highly capitalised UK companies

listed on the London Stock Exchange.
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Table 3. CGP Settings

General Setting Function Symbol

Population size: 5 Add +
Mutation rate: 0.20, 0.50, 0.70 Subtract -
No. of generations: 200000 Multiplication *
No. of runs: 20 Division /
No. of rows: 1 Power Pow
No. of cols: 250 or 500 Square root Sqrt
Levels back: 250 or 500

fitness of the whole dataset is equal to sum of all data points’ fitnesses and the
best dataset fitness is equal to number of data points. Thus, a higher fitness
means a better result as it shows the smaller error rate. We follow two main
objectives in our experiments:

1. Monitoring CGP behavior under different settings. Therefore, the
first experiments are ran on the CDS-Debt dataset with different combina-
tions of nodes (500,250) and mutation rates (0.20, 0.50, 0.70) to see how
these two factors will affect the results. Following these experiments, the
ability of CGP to deal with and distinguish between relevant and irrelevant
inputs is examined by using the second dataset (CDS-Debt-Equity dataset)
containing more data attributes.

2. Assessing the CGP reliability as regression discovery tool. Of inter-
est, is to observe, whether CGP can come up with a regression model that
can price CDS better than the regression benchmark model (Duffie Theory)
and to understand something of how that model works.

Each experiment was run for 20 times and 200,000 generations.

5 Results

Figure 3 shows the CGP fitness report on CDS-Debt dataset. According to the
result, although the number of nodes (graph C and D) and mutation rate (graph
A and B) affect the CGP performance in terms of reaching a better fitness in
early generations, but it does not have a big impact on the average fitness. This
means the better fitness dose not always rely on a larger number of nodes and
higher mutation rate (graph B and C). For CDS-Debt dataset, the best fitness
was accived by 500 nodes and mutation rate of 0.50.

As we discussed in section 2 one of the important issues of CDS pricing is to
reduce the arbitrage channel. Figure 4 and table 4 show the results in terms of
accuracy of CDS pricing. In our experiments, CGP discovered a new relationship
between bond yield and risk free rate which creates a very accurate prediction of
the real CDS price in the market. It also demonstrates the arbitrage gap which
exists in Duffie theory is significantly reduced (see figure 4a and 4b). The result
shows that the trend of CDS price has been predicted correctly.

In the experiment using the larger dataset (CDS-Bond-Equity dataset), the
results show that the extra inputs helped CGP to reduce the arbitrage channel
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Fig. 3. CGP Behavior Under Different Settings

(a) CDS-Bond Training Dataset (b) CDS-Bond Test Dataset

(c) CDS Vs. Duffi Benchmark (d) CDS-Bond-Equity Training Dataset

Fig. 4. Experiments Result

in some parts but it had a negative effect on other parts (see figure 4c and 4d),
so the overall error increased, see table 4.

The inability of CGP to perform effective feature selection using this larger
number of attributes may be partly because of the complexity of this problem.
Some of the additional variables may be useful some of the time and detrimen-
tal at other times, meaning that CGP (and indeed any evolutionary algorithm)

Table 4. Error Report

Model Input Training Set Error Test Set Error

Duffie CDS-Bond 167.84928% 134.6789%

CGP CDS-Bond 8.9769295% 9.7533925%

CGP CDS-Bond-Equity 10.1807889% 10.0130045%
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would find it hard to eliminate them. The complexity of all the relationships,
means that an incremental change from a complex solution using more variables
into a simpler solution using fewer variables may be impossible without encoun-
tering extremely unfit variants, thus making the search unlikely to be successful.
Nevertheless, the results are fascinating for they indicate that good accuracy for
this problem can be obtained with fewer variables and simpler corresponding
equations.

CDSspread =
(−X2

1X3

3X3
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Not surprisingly, CGP has evolved completely different equation in each run.
Equation (2) shows one of the best evolved solutions. Analysis of all evolved
equations reveals that some components are repeated in all solutions. For in-
stance the component (X2

X3
) has been found in 12 best solutions. X2 is buying

price and X3 is selling price of bond yield. Moreover, the component (X2 −X3)
which shows the difference amount between sell price and buy price of bond yield
is several regions of the equations of 7 best solutions. CGP has discovered these
possible relationships between X2 and X3 (buy and sell prices). To understand
the significance of these relationships, we test the affect of these two components
by reducing the sell price and buy price difference.

lim
(X2−X3)→0

CDSspread and lim
(

X2
X3

)→1

CDSspread (3)

The computational results show that the error rate significantly increases by
ignoring the difference amount between X2 and X3 but the theoretical regression
benchmark ignored these relationships completely by using the average value of
buy and sell price or just one of them.

6 Conclusions

CDS pricing is highly significant, not just for finance, but for the world economy.
This is one of the first ever investigations into the CDS market using machine
learning. In this work we used Cartesian Genetic Programming to derive new
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relationships between variables in order to produce a dramatically more accurate
model for CDS pricing compared to the standard Duffi approach. We demon-
strated the effectiveness of this bio-inspired evolutionary method for a complex
real-world financial problem. Our data included the highly turbulent behaviour
of the markets in the last two years, with no loss of accuracy - a significant
improvement over the Duffi method which showed a serious fall in accuracy.
We also demonstrated the sensitivity of CGP parameters and showed that CGP
was able to provide more consistent results using fewer attributes. Future re-
search will focus on performing more experiments on a comprehensive financial
database and more comparison analysis.

Although this may be the first use of CGP in finance, the results are highly
significant and revealing. This suggests that other bio-inspired methods designed
for noisy, unpredictable and unknown data may also be able to illuminate some
of the hitherto murky waters of financial trading. We anticipate with tools such
as these, future financial crises may be less likely to occur.
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Alcázar, A.I., De Falco, I., Della Cioppa, A., Tarantino, E. (eds.) EuroGP 2008.

LNCS, vol. 4971, pp. 182–193. Springer, Heidelberg (2008)

http://www.essex.ac.uk/csee/research/publications/technicalreports/2007/ces475.pdf
http://www.essex.ac.uk/csee/research/publications/technicalreports/2007/ces475.pdf


A Memetic Cooperative Optimization Schema
and Its Application to the Tool Switching

Problem

Jhon Edgar Amaya1, Carlos Cotta2, and Antonio J. Fernández Leiva2

1 Universidad Nacional Experimental del Táchira (UNET)

Laboratorio de Computación de Alto Rendimiento (LCAR), San Cristóbal, Venezuela
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Abstract. This paper describes a generic (meta-)cooperative optimiza-

tion schema in which several agents endowed with an optimization tech-

nique (whose nature is not initially restricted) cooperate to solve an

optimization problem. These agents can use a wide set of optimization

techniques, including local search, population-based methods, and hy-

brids thereof, hence featuring multilevel hybridization. This optimiza-

tion approach is here deployed on the Tool Switching Problem (ToSP),

a hard combinatorial optimization problem in the area of flexible manu-

facturing. We have conducted an ample experimental analysis involving

a comparison of a wide number of algorithms or a large number of in-

stances. This analysis indicates that some meta-cooperative instances

perform significantly better than the rest of the algorithms, including a

memetic algorithm that was the previous incumbent for this problem.

1 Introduction and Related Work

Collaborative optimization models constitute a very appropriate framework for
integrating different search techniques. Each of these techniques has a differ-
ent view of the search landscape, and by combining the corresponding differ-
ent exploration patterns, the search can benefit from an increased capability
for escaping from local optima. Of course, this capability is more useful when-
ever the problem tackled poses a challenging optimization task to the individual
search algorithms. Otherwise, computational power is diversified in unproductive
explorations.

Different schemes have been proposed for cooperating metaheuristics. For ex-
ample, Toulouse et al. [1] considered using multiple instances of tabu search (TS)
running in parallel, eventually exchanging some of the attributes stored in tabu
memory. Crainic and Gendreau [2] presented a cooperative parallel TS method
that was shown to outperform independent search strategies. Crainic et al. [3]
also proposed a method for asynchronous cooperative multi-search using variable
neighborhood search (VNS). Pelta et al. [4] presented a cooperative multi-thread

R. Schaefer et al. (Eds.): PPSN XI, Part I, LNCS 6238, pp. 445–454, 2010.
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search-based optimization strategy, in which several solvers were controlled by a
higher-level coordination algorithm which collected information on their search
performance and altered the behavior of the solvers accordingly. Milano and Roli
[5] developed a multi-agent system called MAGMA (MultiAGent Metaheuristic
Architecture) in which metaheuristics are used at different levels (creating solu-
tions, improving them, defining the search strategy, and coordinating lower-level
agents). Recently, Amaya et al. [6] have proposed agent topologies equipped with
local search (LS) methods based on simple structures of communication simi-
lar to those used in the computer networks. More specifically, [6] proposed four
different cooperative models (i.e., Ring,Broadcast, Random, and a so-called
Ring SDI model) to handle the uniform tool switching problem (ToSP).

In this paper we go a step beyond and have generalized the first model (i.e.,
Ring) described in [6]; the result is a generic schema whose instances produce
meta-cooperative architectures in which one or more agents can also be loaded
with a cooperative optimization technique. This schema is not specific for a
particular optimization problem and thus can be applied to many combinato-
rial optimization problems. To demonstrate both the adequacy of the schema
and the goodness of its instances (as meta-cooperative algorithms) we have also
conducted an empirical evaluation on the ToSP.

2 Ring-Based (Meta-)Cooperative Model

Let us denote N+
n = {1, · · · ,n}. The optimization architecture proposed is shown

in Algorithm 1. As it can be seen, it features an architecture R with n agents
connected in form of a ring; each agent ai (0 � i � n − 1) in R consists of
an optimization method (e.g., any metaheuristic, such as a local searcher, a
population-based method, or even a hybrid thereof). Observe that there exists a
circular list of agents in which each node only sends (resp. receives) information
to its successor (resp. from its predecessor). The agents in the architecture engage
in periods of isolated exploration followed by synchronous communication. We
denote as cyclesmax the maximum number of such exploration/communication
cycles in a certain cooperative model. Also, let Si be the set of candidates solu-
tions managed by agent ai; note that the nature of Si is variable (e.g., if ai is
a population-based method this means that Si is its corresponding population
whereas if ai is a loaded with a trajectory-based method, then Si just contains
one candidate).

Firstly all the agents are initialized with a set of initial candidate solutions
(lines 1-3, function GenerateCandidateSet). The size of this set depends on
the technique endowed in the agent (e.g., it might be a population or just one
single candidate). Then, the algorithm is run for a maximum number of iterations
cycles (lines 5-16) where, in each cycle, an optimization phase of the specific
candidate set kept in each agent is done (lines 6-9) and the best solution obtained
in each agent (line 8, function BestCandidateIn) is sent to its successor agent if
this solution is better than the best one obtained in the successor agent (lines 10-
14). Note that an agent only accepts an incoming solution if it is better than the
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Algorithm 1. Ring-based (Meta-)Cooperative Modeln

for i ∈ N+
n do1

Si ← GenerateCandidateSet();2

endfor3

cycles ← 1;4

while cycles � cyclesmax do5

for i ∈ N+
n do6

Si ← ai(Si);7

bi ← BestCandidateIn(Si);8

endfor9

for (i, j) ∈ {(i, i(n) + 1) | i ∈ N+
n and i(n) denotes i modulo n} do10

if fitness(bi) < fitness(bj) then11

Replace worst candidate in Sj with bi;12

endif13

endfor14

cycles ← cycles + 115

endw16

return max−1{fitness(BestCandidateIn(Si)) | i ∈ N+
n };17

best one kept in its candidate set (lines 11-13) . Observe also that, for a maximum
number of evaluations Emax and for a specific number of cycles cyclesmax, each
cycle in our cooperative algorithms spends Ecycle = Emax/cyclesmax evaluations,
and the specific optimization method of any agent takes Ecycle/n evaluations at
most.

Multiple variants of this cooperative schema can be devised from the general
schema shown above as no specific mention is done about the type of the agents
involved in the architecture.

3 Experimental Results

To test the feasibility of the proposed architecture we consider the uniform
tool switching problem (ToSP) as a benchmark. This section is thus devoted
to present the problem and provide a formal description of it. Then, an ex-
perimental analysis that includes a wide number of optimization techniques is
shown.

3.1 The ToSP

The uniform tool switching problem (ToSP) is a hard combinatorial optimization
problem that can be found in flexible manufacturing systems (FMSs) and diverse
areas such as electronics manufacturing, metalworking industry, computer mem-
ory management, and aeronautics, among others [7,8,9,10]. This problem occurs
in a single machine that has several slots into which different tools can be loaded.
Each slot just admits one tool, and each job executed on that machine requires
a particular set of tools to be completed. Jobs are sequentially executed, and
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therefore each time a job is to be processed, the corresponding tools must be
loaded in the machine magazine. The ToSP consists of finding an appropriate
job sequence in which jobs will be executed, and an associated sequence of tool
loading/unloading operations that minimizes the number of tool switches in the
magazine. Therefore management tool directly affects the efficiency of FMS.
The ToSP has been tackled through different methods such as exact methods
[8], LS methods, population-based optimization methods [11], and even coop-
erative models [6]. [12] and [13] proved formally that the ToSP is NP-hard for
C > 2 and thus exact methods are inherently limited.

Following the previous description of the uniform ToSP, there are two major
elements in the problem: a machine M and a collection of jobs J = {J1, · · · , Jn}
to be processed. Regarding the latter, the relevant information for the optimiza-
tion process is the tool requirements for each job. We assume that there is a set of
tools T = {τ1, · · · , τm}, and that each job Ji requires a certain subset T (Ji) ⊆ T
of tools to be processed. As to the machine, we will just consider one piece of
information: the capacity C of the magazine (i.e., the number of available slots).
Given the previous elements, we can formalize the ToSP as follows: let a ToSP
instance be represented by a pair, I = 〈C,A〉 where C denotes the magazine
capacity, and A is a m × n binary matrix that defines the tool requirements to
execute each job, i.e., Aij = 1 if, and only if, tool τi is required to execute job
Jj . We assume that C < m; otherwise the problem is trivial. The solution to
such an instance is a sequence 〈Ji1 , · · · , Jin〉 (where i1, . . . , in is a permutation
of numbers 1, . . . ,n) determining the order in which the jobs are executed, and
a sequence T1, · · · ,Tn of tool configurations (Ti ⊂ T ) determining which tools
are loaded in the magazine at a certain time. Note that for this sequence of tool
configurations to be feasible, it must hold that T (Jij

) ⊆ Tj .
We will index jobs (resp. tools) with integers from N+

n (resp. N+
m). An ILP

formulation for the ToSP is shown below, using two sets of zero-one decision
variables – xjk (j ∈ N+

n , k ∈ N+
n ), and yik (i ∈ N+

m, k ∈ N+
n ) – that respectively

indicate whether a job j is executed at time k or not, or whether a tool i is in
the magazine at time k or not. Notice that since each job makes exclusive use of
the machine, time-step k can be assimilated to the time at which the kth job is
executed. Processing each job requires a particular collection of tools loaded in
the magazine. It is assumed that no job requires a number of tools higher than
the magazine capacity, i.e.,

∑m
i=1 Aij � C for all j ∈ N+

n . Tool requirements are
reflected in Eq. (5). Following [8], we assume the initial condition yi0 = 1 for all
i ∈ N+

m. This initial condition amounts to the fact that the initial loading of the
magazine is not considered as part of the cost of the solution (in fact, no actual
switching is required for this initial load). The objective function F (·) counts
the number of switches that have to be done for a particular job sequence:

min F (y) =
n∑

k=1

m∑
i=1

yik(1 − yi,k−1) (1)

This general definition shown above corresponds to the uniform ToSP in which
each tool fits in just one slot. The uniform ToSP considered the cost of switching
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∀j ∈ N+
n :

n∑
k=1

xjk = 1 (2)

∀k ∈ N+
n :

n∑
j=1

xjk = 1 (3)

∀k ∈ N+
n :

m∑
i=1

yik � C (4)

∀j, k ∈ N+
n ∀i ∈ N+

m : Aijxjk � yik (5)

∀j, k ∈ N+
n ∀i ∈ N+

m : xjk, yij ∈ {0, 1} (6)

a tool constant (the same for all tools) and computing the cost of a job sequence
by means of a greedy procedure termed Keep Tool Needed Soonest (KTNS) [8,9].
The importance of this policy is that given a job sequence KTNS obtains its op-
timal number of tool switches in polynomial time. Therefore, we can concentrate
on determining the sequence of jobs, and use KTNS as a subordinate procedure
to decide where (i.e., in which slot) to place each tool.

3.2 Computational Results

As far as we know, no standard data instance exists for this problem (at least
publicly available) so that we have selected a wide set of problem instances that
were attacked in [8,14,15,16]; more specifically, 16 instances were chosen with
values for the number of jobs, number of tools, and machine capacity ranging
in [10,50], [9,60] and [4,25] respectively. Table 1 shows the different problem
instances chosen for the experimental evaluation where a specific instance with
n jobs, m tools and machine capacity C is labeled as Cζm

n .

Table 1. Problem Instances considered in the experimental evaluation. The minimum

and maximum of tools required for all the jobs is indicated in second and third rows

respectively. Fourth row shows the work from which the problem instance was obtained.

4ζ10
10 4ζ9

10 6ζ15
10 6ζ12

15 6ζ20
15 8ζ15

20 8ζ16
20 10ζ20

20 24ζ30
20 24ζ36

20 30ζ40
20 10ζ25

30 15ζ40
30 15ζ30

40 20ζ60
40 25ζ40

50

Min. 2 2 3 3 3 3 3 4 9 9 11 4 6 6 7 9
Max. 4 4 6 6 6 8 8 10 24 24 30 10 15 15 20 20

Source [14] [8] [8] [8] [8] [8] [8]
[15] [16] [16] [16] [14] [15] [16] [16] [16] [16] [16] [15] [14] [15] [14] [15]

Five different datasets1 (i.e., incident matrixes or relations among tools and
jobs) were generated randomly per instance. Each dataset was generated with
the restriction, already imposed in previous works such as [14], that no job is
covered by any other job in the sense that ∀i, j ∈ N+

n , i 	= j, T (Ji) 	⊆ T (Jj). The
reason to enforce this constraint is to avoid the simplification of the problem by
preprocessing techniques as done for instance in [8] and [16].

1 All datasets are available at http://www.unet.edu.ve/∼jedgar/ToSP/ToSP.htm
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The experiments have been performed using a wide set of different algorithms.
In particular we have considered deterministic methods, local search (LS) tech-
niques, cooperative methods, and a number of meta-cooperative algorithms de-
vised from the schema shown in Algorithm 1. From these, a number of variants
have also been considered. For instance, as deterministic method we have con-
sidered the beam search (BS) algorithm presented in [16]; this algorithms admits
a parameter β (termed beam-widht) for which we have considered five different
values β ∈ N+

5 . As to LS methods, we have considered two of them: (1) The tabu
search versions (TSP and TSF) specialized for the ToSP and described in [6];
here *P and *F is used to indicate the algorithmic variant in which the neighbor-
hood is partially or fully explored respectively (the interested reader is referred
to [6] for more details), and (2) the steepest-ascent Hill Climbing (HC) method
presented in [11]; from this we have also devised two versions HCP and HCF
following the same principles of partial/full exploration mentioned previously.

As cooperative techniques we have considered the memetic algorithm (MA)
presented in [11] (denoted as MAHCP because it is a combination of a genetic
algorithm (GA) and the method HCP mentioned previously). In [6] we shown
that this MA was a killer approach for the ToSP (beating to a number of coop-
eratives models in which all agents where loaded with LS techniques). We have
also included in the comparison a new MA denoted as MATSP because it is a
combination of a GA and the TSP method mentioned previously (the param-
eters were the same as those indicated in [11] for the MAHCP). In these two
MAs the LS techniques were always applied to each offspring generated after the
mutation step. Other parameters are: popsize = 30, pX = 1.0, and pM = 1/n
where n is the number of jobs, with binary tournament selection; alternating
position crossover (APX) is used [17], and mutation is done by applying the
random block swap as operator (see [11] for more details).

Regarding the meta-cooperative model, we have devised 10 different instances
from the schema shown in Algorithm 1 where n = 3 and cyclesmax ∈ {4, 5};
GenerateCandidateSet represents a random initialization, and fitness is
defined as the KTNS method described in Section 3.1. In all the instances, at
least one agent has been loaded with a cooperative optimization technique, in
particular with one of the two MAs mentioned above (i.e., MAHCP or MATSP).
In the rest of the paper we have used the notation U(dd,ee,ff,xx ) to represent an
instance of three agents loaded with techniques dd, ee, ff and where xx is the
number of cycles considered. All algorithms were run 10 times (per instance and
dataset) and a maximum of Emax = ϕn(m − C) evaluations, cf. [6]. Regarding
the BS algorithm, because of its deterministic nature, just one execution per
dataset (and per value of beam width) was run and the algorithm was allowed
to be executed until exhaustion (i.e., until completing the search).

Due to space limitations we will not present all the obtained results for each
of the instances and for all the algorithms involved in the comparison, and will
use a rank-based approach in order to analyze the significance of the results.
To do so, we have computed the rank ri

j of each algorithm j on each instance
i (rank 1 for the best, and rank k for the worst, where k = 21 is the number
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Fig. 1. Rank distribution of each algorithm across all instances. As usual, each box

comprises the second and third quartiles of the distribution, the median is marked

with a vertical line, whiskers span 1.5 times the inter-quartile range, and outliers are

indicated with a plus sign.

of algorithms; in case of ties, an average rank is awarded). The distribution of
these ranks is shown in Fig. 1.

Next, we have used two well-known non-parametric statistical tests [18] to com-
pare ranks, namely Friedman test [19] and Iman-Davenport test [20]. The results
are shown in Table 2. As seen in the first row, the statistic values obtained are
clearly higher than the critical values, and therefore the null hypothesis, namely
that all algorithms are equivalent, can be rejected. Since there are algorithms with
markedly poor performance, we have repeated the test with the top 4 algorithms
(i.e., U(MAHCP,MATSP,MAHCP,4), U(MAHCP,MATSP,MAHCP,5), MAHCP,,
and U(MATSP,MAHCP,TSP,5)). Again, it can be seen that the statistical test is
passed, thus indicating significant differences in their ranks at the standard α =
0.05 level.

Subsequently, we have focused in these top 4 algorithms, and performed
Holm’s test [21] in order to determine whether there exists significant differences
with respect to a control algorithm (in this case U(MAHCP,MATSP,MAHCP,4),
the algorithm with the best mean rank). The results are shown in Table 3. The
test indicates there exists a significant difference between the control
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Table 2. Results of Friedman and Iman-Davenport tests

Friedman value critical χ2 value Iman-Davenport value critical FF value

all 277.30 31.41 97.41 1.61

top 4 41.44 7.81 94.71 2.81

Table 3. Results of Holm’s test using U(MAHCP,MATSP,MAHCP,4) as control

algorithm

i algorithm z-statistic p-value α/(k − i)

1 U(MAHCP,MATSP,MAHCP,5) 1.369 0.0855 0.017

2 MAHCP 3.834 6.3e − 5 0.025

3 U(MATSP,MAHCP,TSP,5) 4.108 1.9e − 5 0.050

Table 4. Computational results. Best results (in terms of the best solution av-

erage) are underlined and in boldface. U1 = U(MAHCP,MATSP,MAHCP,4), U2

= U(MAHCP,MATSP,MAHCP,5), U3 = U(MATSP,MAHCP,TSP,5) and MA =

MAHCP. x, σ and b denote the mean, standard deviation and best values respectively.

4ζ10
10 4ζ9

10 6ζ15
10 6ζ12

15 6ζ20
15 8ζ15

20 8ζ16
20 10ζ20

20 24ζ30
20 24ζ36

20 30ζ40
20 10ζ25

30 15ζ40
30 15ζ30

40 20ζ60
40 25ζ40

50
U1 x 8.78 7.9 13.82 15.92 22.98 22.66 26.96 30.18 24.42 44.82 40.6 64.2 99.1 95.08 205.78 143.22

σ 1.72 0.81 2.01 1.86 1.92 3.22 2.07 2.16 3.48 8.46 4.34 2.23 12.39 8.09 7.82 11.46
b 7 7 11 13 20 17 22 26 19 35 32 60 80 82 194 125

U2 x 8.86 7.98 13.76 16.12 22.84 22.9 26.78 30.26 24.34 44.92 41.04 64.3 98.64 95.46 206.0 144.72
σ 1.71 0.79 2.11 1.82 2.04 3.37 1.96 2.38 3.1 8.02 4.66 1.93 12.41 7.62 7.92 11.67
b 7 7 11 12 20 18 23 25 21 35 31 60 79 83 192 128

MA x 8.94 8.1 13.89 16.26 23.18 22.86 27.24 30.53 24.78 44.87 41.3 64.32 99.7 95.86 206.3 144.18
σ 1.62 0.75 1.99 1.79 1.96 3.41 2.22 2.49 3.29 7.55 4.41 2.4 12.82 7.52 8.81 11.94
b 7 7 11 12 20 17 22 26 20 35 31 59 80 80 193 122

U3 x 8.86 7.98 13.7 16.28 22.82 23.02 27.08 30.48 24.84 45.2 41.52 65.52 100.06 97.1 207.38 145.48
σ 1.69 0.73 2.06 1.77 2.17 3.72 2.12 2.74 3.13 8.49 4.69 2.86 12.77 7.73 9.89 11.72
b 7 7 11 13 20 17 22 25 21 33 31 59 81 85 191 127

algorithm and both MAHCP and U(MATSP,MAHCP,TSP,5), but not with re-
spect to U(MAHCP,MATSP,MAHCP,5) (at the 0.05 level; the p-value is only
slightly above this value though).

Also, analyzing the obtained results, grouped by problem instances (see Table
4 for the results of these top 4 algorithms), one can observe that the two best
meta-cooperative models (i.e., U1 and U2) outperform MAHCP (the previous
incumbent for this problem) in all the problem instances.

4 Conclusions

In this work we have proposed a memetic cooperative architecture where several
agents endowed with MAs and other techniques cooperate in solving a certain
optimization problem. This model takes advantage of maintaining a high diver-
sity of possible solutions as well as providing a certain degree of independence in
the exploration of different regions of the search space as in island model-based
evolutionary systems (although the former is much more flexible since it does not
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depend solely on population-based algorithms, and tries to exploit the synergy
between different search techniques).

The results obtained show the effectiveness of the model on the ToSP, a very
hard combinatorial problem related to flexible manufacturing. As expected, the
experimentation indicates the choice of heuristic combinations, as well as the
number of cycles used in the meta-cooperative model, are crucial parameters.
Combinations including several memetic algorithms endowed with both TS and
HC have been shown to provide the best results, with statistical significance with
respect to other models (including a single MA that was the previous incumbent
for this problem). Determining the proper values of some of the parameters (such
as the number of agents, number of cycles for communication, the probability
of acceptance of solutions, communication topology) in the ToSP and other
problems is a line of future work.
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Abstract. In this paper we consider several strategies to compete in a

spatial version of the Iterated Prisoner’s Dilemma (IPD). The cell in-

teraction is modeled by a two-dimensional square lattice, where each

cell only locally interacts with its neighbors. Cell actions are public and

therefore can be imitated by neighbors. The main contribution of the

paper is the framework for the memetic analysis of the population evo-

lution in this extended version of the spatial prisoner’s dilemma. Among

the classical strategies, cooperate (C) and defect (D), we consider two

other strategies based on the property of resources: Possession (P), as

the right to possess what one owns, and Trade (T), as the right to buy

and sell ownership. This work also includes a set of simulation results

showing how ownership and trade emerge from anarchy, as evolutionary

stable strategies, to enable the peaceful resolution of property conflicts

under certain environment conditions.

Keywords: Evolutionary Game Theory, Iterated Prisoner’s Dilemma,

Spatial Games, Conflict Resolution.

1 Introduction

Game Theory [2] provides useful mathematical tools to understand the possible
strategies that self-interested agents may follow when choosing a course of action.
The context of cooperative games and cooperation evolution has been extensively
studied seeking general theoretical frameworks like the Prisoner’s Dilemma (PD)
[1]. An interesting spatial version of the PD was suggested and deeply analyzed
by Nowak and other authors [11,10,7] trying to understand the role of local
interactions in the maintenance of cooperation.

Evolutionary Game Theory (EGT) [14] models the application of interaction
dependent strategies in populations along generations. EGT differs from classi-
cal game theory by focusing on the dynamics of strategy change more than in
the properties of strategy equilibrium. In evolutionary game theory participants
do not posses unfailing Bayesian rationality. Instead, they play with limited
computing and memory resources. All the requirement is that the players learn
by trial and error, incorporate what they learn in future behavior, and die or
somehow ’change’ if they do not.

R. Schaefer et al. (Eds.): PPSN XI, Part I, LNCS 6238, pp. 455–464, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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In The Selfish Gene [6], Dawkins proposes that social ideas, what he calls
’memes’, are a non-organic replicator form. His examples of memes include tunes,
catch-phrases, taboos, and fashions among others. In Dawkins’ view, the fun-
damental characteristics of life are replication and evolution. In biological life,
genes serve as the fundamental replicators; while in human culture, memes are
the fundamental ones. Both genes and memes evolve by mutation-coated replica-
tion and natural selection of the fittest. The memetic theme has found popularity
in several fields [12,4,3].

In the memetics model, less successful individuals and groups within a popu-
lation imitate the behavior of the more successful ones in order to improve their
competence for resources. Accordingly, the more above average an individual is,
the more others copy his behavior. As a result, the population establishes and
self-enforces over time standards of normal behavior. Normal behavior may ei-
ther be time-independent or it may cycle through a range of behaviors. Memetics
belong to evolutionary games because the evolutionary process is essentially a
scenario of replication dynamics based on survival of the fittest [9].

This paper develops an evolutionary spatial memetic game model of property
ownership and trade, as a way to analyze the conditions for the peaceful reso-
lution of property conflicts. The work is based on [13], but here the framework
is an spatial grid distribution where cells play the Iterated Prisoner’s Dilemma
(IPD) with their neighbors, using a defined 2x2 pay-off matrix.

The remainder of the paper is structured as follows. Section 2 introduces the
game model and the basic strategies to be performed by the cells. Section 3
presents the main results obtained in the simulations, and finally; Sect. 4 draws
the main conclusions obtained by this work.

2 Spatial Memetic Game Model

The approach we follow in this paper is a composite spatial game where actions
are effectively simultaneous, but every cell interacts with several neighbors at a
time, depending on the neighborhood radio. Considering the action selected by
a cell A, and depending on the action chosen by a neighbor B, cell A receives
a pay-off. We consider a spatial structure of the population, i.e., the interaction
among cells are locally restricted to their neighbors and obtained by repeating
one-to-one games. The background of the work presented here take its roots from
[10,11,7] and specially from [13].

2.1 Spatial Distribution

If we let every node in the system to interact with the remaining (N-1) nodes, we
have a panmictic population, and this is done with a theoretical analysis at [13].
But, in many real contexts like geography, biology, or Mobile Area Networks
(MANETs) [5]; each node interacts mainly with its neighbors. Therefore, for
the spatial distribution of the cells we consider a two-dimensional square lattice
consisting of N nodes. Figure 1 shows a cell A and two possible neighborhoods



Ownership and Trade in Spatial Evolutionary Memetic Games 457

Fig. 1. Cell (A) and two neighborhoods: first with 4 cells (A1,...,A4), and second with

8 cells (A1,...,A8)

depending on the neighborhood radio: the first with a radio 1.0 includes 4 neigh-
bors, while the second has a radio 1.5 and includes 8 neighbors. To determine if
a cell is within the neighborhood of cell A, we consider the euclidean distance
between the center of both cells.

2.2 Game Basic Strategies

In this section we describe the different actions, and basic strategies available in
the game. We start considering the famous Hawk-Dove game [8], whose payoffs
are depicted in the left side of Fig. 2. In this game, two equally matched parties
compete for a resource, worth by V by each, and we consider only two basic
strategies: Hawk and Dove. Since both parties are equal, in a fight between
two hawks, each one has only a one-half chance of winning the asset, so in the
immediate payoff we consider the average per each, dividing the whole payoff by
two. We also include an expected total cost to each participant of h, to model all
other costs, p.e., the expected energy expenditure. Doves retreat when confronted
by a Hawk. If two Doves meet, a random one of the two Doves retreats and leaves
the other to the spoils; so in the immediate payoff matrix we again divide V by
two, without any extra cost in this case.

The Prisoner’s Dilemma Game: In neoclassical game theory, when (V/2 >
h) we have the Prisoners Dilemma (PD), while when (V/2 < h) we have the
Chicken Game (see [2]). The general form of the Prisoner’s Dilemma matrix
appears at the right side of Fig. 2, and the matrix payoffs must fulfill the following
two inequalities:

T > R > P > S
2R > S + T

In any one round (or ”one-shot”) game, choosing defection (D) is a Nash equi-
librium, because it rewards the higher payoff for cell A whether the opponent
chooses cooperation (C) or defection (D). At the same time, the combined payoff
for both cells A and B is maximized if both cooperate. A simple analysis shows
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Fig. 2. (left) Hawk-Dove game matrix, and (right) general Prisoner’s Dilemma matrix

where (R: Reward, S: Sucker’s Payoff, T: Temptation and P: Punishment)

that defection is an ESS in a one-shot PD (see [2,9]). This conclusion holds for a
so called panmictic population, but here we are interested in the spatial games,
so each cell A interacts only with the m cells of its neighborhood. In evolution-
ary game theory this is called a m-person game, where n = m + 1 in the given
case. Each game is played between n players simultaneously, and the payoff for
each player depends on the actions taken by the other cells in its neighborhood.
Besides, we also consider the iterated version of the PD, i.e., the famous Iterated
Prisoner’s Dilemma (IPD) [1], and we use the same values for the IPD matrix
as in [11], i.e., T = 3.5, R = 3, P = 0.5, S = 0.

Introducing Ownership: Finders keepers and first come, first serve are not
only basic thumb rules in playground citizenship, they are powerful norms that
have been recognized by the courts and applied widely in several settings (see
[13]). The Possessor strategy models the practice of ownership, and unlike co-
operators or defectors, possessors observe convention based on their status; i.e.,
their behavior depends on whether they are the owner or the intruder of any
particular resource.

To model this norm [13] introduces the Possessor (P) strategy:

P ≡
{
D if current owner
C if current intruder

To model ownership in our spatial lattice, we consider that in any encounter
between cell A and any of its neighbors B, there is a probability of possession
ProbP , that makes B to consider A as the owner, i.e., the neighbor always
behaves as an intruder.

Introducing Trading: A trader (T) is a possessor who is willing to sell or
buy a property when dealing with a fellow trader. In particular, when both
owner and intruder of a particular encounter are traders, and the intruder values
the property by V , which is more than the owner’s value v, then the intruder
purchases the property at a value of x, where v < x < V . Reference [13] models
this norm introducing the Trader (T) strategy:
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T ≡

⎧⎪⎪⎨⎪⎪⎩
if neighbor is not T behave as P

if neighbor is T

⎧⎨⎩
sell for x if owner and v < x < V
buy for x if intruder and v < x < V
behave as P otherwise

2.3 Memetics

The payoff obtained by the neighbors of a cell is public, and every new round
every cell imitates the action previously done by the most successful peer in
its neighborhood, i.e., the one with the highest payoff. Therefore, the strategy
management is memetic, as it imitates the most successful peers.

Fig. 3. Snapshot of the CellNet simulator with all the strategies represented by different

colors: black (D), green (C), red (P) and blue (T)

3 Games and Results

This section presents some key results from an extensive set of simulations done
with the game model and the strategies introduced in the previous sections;
attending to the variation of several simulation parameters. All simulations have
been done on a PC (Pentium VI dual-core with a memory of 3 GB) and usually
taking less than 1 minute per execution (from a hundred to less than a thousand
rounds to achieve stability). The simulations has been performed ten times, and
the figures in the next subsections correspond to an average result.
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In all simulations we consider a square lattice of 40 x 40 = 1600 square cells.
When starting, every cell randomly selects its strategy, that may change latter
by means of imitation. The IPD game matrix used in all these simulations is the
same as in [11] with values: T = 3.5, R = 3, P = 0.5, S = 0. We also consider
the effect of mutation to analyze the stability of the different strategies. For
this purpose, in some simulations there is a probability that any cell changes its
strategy into any other one. Every new round, the income of every cell in the
lattice is reset to zero (no accumulation of payoffs). Figure 3 presents a snapshot
of our simulator with the coexistence of the different populations (D, C, P, T).

3.1 IPD Game

Figure 4 presents the IPD game with the percentage of cooperators (C) and
defectors (D) as a function of the neighborhood radio. As the reader may see,
cooperators are more popular with lower radios, but as the radio value reaches
2.5 defectors become the most popular option. The explanation is simple: if
there are many neighbors, defectors may attach many more cooperators and
avoid their core effect (see [11]).

Fig. 4. Evolution of defectors (D) and cooperators (C) as a function of the radio

without mutation (left) and with mutation M = 0.005 (right)

On the right side of the figure appears the same simulation, but in this case
with a mutation probability (M = 0.005) per every cell. In this case the results
are similar, but as an effect of the mutation, defectors are more popular in lower
radio values. The reason is that clusters of cooperators can be altered by a
mutation, and that makes cooperation more difficult.

3.2 IPD-Possessor Game

Figure 5 presents the more representative results of the IPD game, including
the possessor strategy, for a neighborhood radio of 1. In both figures the x axis
presents the probability of being an owner in a confrontation. As before, the
picture on the left has no mutation, while the one at the right has it.
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Fig. 5. Evolution of defectors (D) and cooperators (C) and possessors (P) as a function

of the ownership probability

On the left figure, we see how the percentages of D, C and P strongly de-
pends on the probability of ownership. Initially P is very popular, and its value
decreases as soon as the probability of being a possessor gets closer to 0.5. At
that moment, possessors decrease their popularity and cooperators emerge as
the preferred option; and this causes that the percentage of defectors also raises
as they can attack more cooperators. This seems counterintuitive, but the expla-
nation is that as ProbP gets closer to one, all possessor cells behave as defectors
with their neighbors providing 3.5 units to them and 0 to the possessor neighbors
in an encounter, this is clearly a lower payoff than when both are cooperators,
that receive 3 units each. In fact, the success of P when ProbP < 0.5 is that
the possessors behaves cooperatively when they are not owners. This is clear
when reviewing Fig. 4 as in scenarios with (Radio < 2.5) cooperators are more
popular.

Table 1. Relation among populations, neighborhood radio and ownership probability

Radio Neighbors Results (depending on ProbP)

1 4 P with ProbP < 0.7, then C

1.5 8 P with ProbP < 0.7, then C

2.0 12 P with ProbP < 0.7, then C

2.5 20 Mainly P

3.0 28 Alternation between P and D

3.5 36 Only D

On the right side of Fig. 5 appears the same simulation with a mutation effect
M = 0.005, and we see how both curves are very similar. Nevertheless, compared
to the figure in the left, the percentages of P and C are lower. The explanation
is simple: defectors may now appear at any group of cells behaving as P or C,
reducing their common success.



462 J.C. Burguillo and A. Peleteiro

Finally, on Table 1 appears the relation among populations, neighborhood
radio and ownership probability. We can see the effect described for Fig. 5, and
how the defectors take control as soon as the neighborhood is too big (radio over
3.0); which is coherent with the results obtained in Fig. 4.

3.3 IPD-Possessor-Trader Game

Concerning the game with all the strategies, Fig. 6 presents a snapshot with
radios 1 and 1.5, and with trading values, v and V , generated uniformly in the
interval [0.5, 3.0], which are the payoff values in the IPD matrix for P and R
respectively. The graphics in the left of the figure do not use mutation, while the
ones at the right do.

Concerning the case without mutation, the interesting effect is the alterna-
tion of the different populations depending on the owner’s probability (ProbP ).
When this value is low, possessors are more popular, but as we raise the owner’s
probability the value of P decreases, while traders and cooperators start to be-
come the most popular ones. This is clearly shown in lower left figure where we
see that, with a radio of 1.5, there is a clear succession of the different strategies
depending on the owner’s probability: first possessor, then traders and finally
cooperators.

On the right side of the figure, we see the effect of mutation (M = 0.005) that
is similar than in the previous games, i.e., defectors are more popular in both

Fig. 6. Evolution of defectors (D), cooperators (C), possessors (P) and traders (T) as

a function of the ownership probability for radios 1.0 (top figures) and 1.5 (bottom

ones).
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Table 2. Relation among populations, neighborhood radio and ownership probability

Radio Neighbors Results (depending on ProbP)

1 4 P with ProbP < 0.5, then C

1.5 8 P with ProbP < 0.4, then T, and C with ProbP > 0.7

2.0 12 P with PropP < 0.3, then T, and C with PropP > 0.95

2.5 20 P and D with PropP < 0.4, then T

3.0 28 Mainly D, sometimes T

3.5 36 Only D

figures than in the left ones without mutation. This causes that the rest of the
strategies are attenuated, but the whole picture is the same.

Finally, in Table 2 we describe the relation among populations, neighborhood
radio and ownership probability. We see how traders are more popular for in-
termediate values of ProbP and radios between 1.5 and 2.5. This means that
when the neighborhood is big enough and not everybody is an owner, trading
can emerge. The raising of T can be configured by the trading values v and V ,
that we set in the interval [0.5, 3.0]. Nevertheless, if the neighborhood is too big,
then defectors emerge disabling any possibility of cooperation or trading.

4 Conclusions

In this paper we consider several strategies to compete in a spatial version of
the iterated prisoner’s dilemma (IPD). Among the basic strategies, cooperate
(C) and defect (D), we consider two other strategies based on the property of
resources: Possession (P), as the right to occupy or possess what one owns;
and Trade, as the right to buy and sell ownership. The simulations based on this
model describe how evolutionary forces, depending on the simulation parameters,
allow the emergence of the different type of populations (D, C, P or T).

On the one hand, deference by intruders to owners is evolutionarily preferred
over non-status-based behavior because prior possession enables the resolution
of possession conflicts. On the other hand, trade is the ability to buy and sell
according to what optimizes personal gain; trading does not occur unless both
parties gain. Accordingly, traders always benefit from trade and, when the con-
ditions enable their appearance, they are evolutionarily preferred. But, as seen in
the simulations, this preference is clearly dependent, in spatial games, on several
parameters as the trading values, the neighborhood and the owner’s probability.

The main conclusion is that when the radio is low, defectors can only effect
local influences and do not succeed, being possessors the most common popu-
lation. As soon as the radio raises, traders can appear, but if the radio is too
big (bigger than 3.0 in our simulations) then defectors can affect many cells and
become a majority. Finally, we also consider the effect of mutations, and we have
seen that the results are similar (i.e., the strategies are evolutively stable) but
that defectors become more popular as they can infiltrate clusters of cooperators,
possessors and traders that would be isolated otherwise.
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Future work will analyze the game model described here under different game
matrix and trading values, and considering that the cells may learn (i.e., behave
as adaptive agents) what is the best action to play against their neighbors.
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J.: Agent-Controlled Sharing of Distributed Resources in User Networks. In: Lee,

R.S.T., Loia, V. (eds.) Computational Intelligence for Agent-based Systems. Stud-

ies in Computational Intelligence, vol. 72, Springer, Heidelberg (2007)

6. Dawkins, R.: The Selfish Gene. Oxford University Press, Oxford (1976)

7. Langer, P., Nowak, M.A., Hauert, C.: Spatial invasion of cooperation. Journal of

Theoretical Biology 250, 634–641 (2008)

8. Maynard Smith, J., Price, G.: The Logic of Animal Conflicts. Nature 246, 15–18

(1973)

9. Maynard Smith, J.: Evolution and the Theory of Games. Cambridge University

Press, Cambridge (1982)

10. Nowak, M.A., May, R.M.: Evolutionary games and spatial chaos. Nature 359, 826–

829 (1992)

11. Schweitzer, F., Behera, L., Mühlenbein, H.: Evolution of Cooperation in a Spatial

Prisoner’s Dilemma. Advances in Complex Systems 5(2-3), 269–299 (2002)

12. Waldrop, M.: Complexity: the emerging science at the edge of order and chaos.

Simon & Schuster, New York (1992)

13. Yee, K.K.: Ownership and Trade from Evolutionary Games. International Review

of Law and Economics 23(2), 183–197 (2003)



A Hyper-Heuristic Approach to Strip
Packing Problems

Edmund K. Burke, Qiang Guo, and Graham Kendall

School of Computer Science, University of Nottingham,

Nottingham, NG8 1BB, United Kingdom

{ekb,qxg,gxk}@cs.nott.ac.uk

http://www.asap.cs.nott.ac.uk/

Abstract. In this paper we propose a genetic algorithm based hyper-

heuristic for producing good quality solutions to strip packing problems.

Instead of using just a single decoding heuristic, we employ a set of

heuristics. This enables us to search a larger solution space without loss

of efficiency. Empirical studies are presented on two-dimensional orthog-

onal strip packing problems which demonstrate that the algorithm op-

erates well across a wide range of problem instances.

Keywords: Hyper-heuristic, Strip Packing.

1 Introduction

Cutting and packing problems are a large family of problems arising in many
industrial settings, from stock-cutting in the paper, metal, glass and wood indus-
tries to container, pallet loading, multi-processor scheduling and other resource
allocation problems. Many heuristics have been devised for the problems, and
their performance have been intensively studied [1,2]. For the offline version of
the problems, where all pieces are known beforehand, results can usually be
improved by a meta-heuristic search [3,4,5].

Coffman et al. [1] pointed out that the performance of a single heuristic,
in terms of both worst-case and average-case, may vary depending on given
instances. Their proofs presume a uniform distribution of item sizes and are
applicable to one dimensional problems. The performance for other distributions
and higher dimensional instances is not so well understood. The lack of insight
into instance properties and heuristic behaviour causes difficulty in practical
situations when we need to select an appropriate heuristic for the problem at
hand. In addition, many heuristics are designed to guarantee feasible packings,
especially in high dimensional cases, but may not be able to construct certain
patterns, effectively stopping us being able to find the optimal solution [6]. This
limitation is also inherited by any meta-heuristic which employs only one of these
heuristics as the mapping function from representation space to solution space.

Hyper-heuristics are currently receiving some attention in the literature [7,8,9].
The approach is motivated by the goal of raising the level of generality of search
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methodologies [7] and they have been successfully applied to cutting and pack-
ing problems [10,11]. In this paper, we propose a novel hyper-heuristic approach
which helps intelligently choose a suitable heuristic each time we need to place an
item. The main differences from previous, standard meta-heuristic approaches is
that a set of heuristics will be utilised. The heuristic set will map the representa-
tion space to the solution space so that the algorithm can avoid the shortcomings
of only using one heuristic. To demonstrate the effectiveness of the approach,
we propose a hyper-heuristic based on a genetic algorithm. The chromosome
contains not only which item to pack, but also which heuristic(s) are available
to pack that item. Therefore, we enhance the standard genetic algorithm (GA)
encoding, where a chromosome is a permutation of items, by adding a set of
heuristics together with probabilistic information. Such information will facili-
tate choice decisions to select heuristics rather than rely on a user’s arbitrary
judgement. Compared to the hyper-heuristic by Ross [12,10], the learning mecha-
nism updates the probabilities of applying heuristics according to their historical
performance, rather than through a learning classifier system.

2 Related Work

In classical two-dimensional orthogonal strip packing problems [6], we are given
a container C, with width W and infinite height. We are required to pack into
C a set of small rectangles R = {r1, r2, ..., rn} with (wi,hi) denoting the width
and height for each ri ∈ R. The objective is to minimise the total height of the
packed rectangles. Typical assumptions, as summarised by Fekete and Schepers
[13], are:

1. Each edge of the rectangles have to be parallel to one edge of the container
(orthogonal);

2. We do not require guillotine cutting (free-form);
3. All rectangles must be within the container (closeness);
4. Rectangles must not overlap with each other (disjoint);
5. Rectangles cannot be rotated (fixed orientation).

The problem can be classified as two-dimensional regular open dimensional pack-
ing (2D-R-ODP) according to the typology proposed by Wäscher et al. [14].

Some heuristics for one-dimensional cases can be modified for the strip pack-
ing problem. Baker et al. [6] presented a bottom-up left-justified (BL) heuris-
tic, which finds the lowest feasible space, similar to one dimensional First Fit
(FF), and packs left justified. Another heuristic has been described by Liu and
Teng [15]. Each rectangle is dropped from the top right corner of the container
and moved down and then left until it settles at a stable position. The heuris-
tic overlooks any holes formed by preceding rectangles in the partial packing.
Therefore, it can be regarded as Next Fit (NF) [1] which never utilises empty
spaces produced at an earlier stage. The Best Fit (BF) policy [1] fits a piece into
the smallest feasible space. Hayek et al. [16] proposed a way to search for the
smallest feasible space. Burke et al. [17] designed a Best Fit Decreasing Width
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(BFDW) heuristic, which was later enhanced using a meta-heuristic as a post
process operation [20].

Meta-heuristic approaches have also attracted much attention as they have
been shown to produce good quality solutions for cutting and packing problems
[18,19,20,21]. The most common way of implementing these methodologies for
packing problems is to use a hybrid strategy which combines an iterative search
component together with a placement heuristic. For example in a typical GA
method, the GA searches for the best permutation of shapes that enables a
decoder to return a good packing solution. Given that the different decoders
and parameter sets perform differently, it normally relies on a user’s decision (or
even intuition) to make appropriate choices.

Being aware of the difficulties faced by heuristics and meta-heuristics, a nat-
ural question to ask is if we can develop an automated system which requires
less human interaction and can deal with a wide range of problems? Ross et
al. [12,10] presented two approaches for one-dimensional bin packing problems.
They associate a set of packing heuristics with different packing statuses. A
learning classifier system [12] and a genetic algorithm [10], acting as higher level
managers, search for an appropriate packing heuristic to be employed at each
step of the packing. In these approaches, a set of predefined problem statuses
is used to describe the status of partially filled bins and the remaining pieces.
In [12], a classifier system determines the problem status and decides which low
level heuristic to call. This approach requires a good understanding between
problems and low level heuristics. For many situations, such as in high dimen-
sional cases, the task of gaining such understanding, and enumerating all possible
situations, can be non-trivial. In [10], a GA is employed to detect the problem
status and suitable heuristics to employ. As we demonstrate in the next section,
some heuristics such as left-justify or right-justify, may not be relevant to the
problem status, but are still crucial in some cases.

3 The GA-Based Hyper-Heuristic Approach

3.1 Overview

Our hyper-heuristic approach is based on a genetic algorithm for the over-riding
search strategy (Fig. 1). To facilitate the choice of heuristics, the standard chro-
mosomes are enhanced by combining the sequence of rectangles with heuristic-
probability pairs. Section 3.2 provides more details on the chromosomes. Com-
pared to the hyper-heuristic approach using a static learning classifier system
[12,10], our approach adopts a roulette-wheel selection mechanism to choose a
heuristic from the candidate set (step 2.3 in Fig. 1), along with an adaptive
learning mechanism to intelligently recognise a suitable heuristic within a set
(steps 2.5 to 2.7 in Fig. 1).
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1.1 for each individual cind random shuffle {r1, r2, . . . , rn};
1.2 for each rectangle ri initialize a set of heuristic-probability pairs (hj

i , p
j
i );

2 while Iteration ≤ Iterationmax

2.1 select parents cx, cy;

2.2 generate new child cind′ by crossover and mutation;

2.3 choose a heuristic hj∗
i according to its probability pj∗

i ;

2.4 pack ri with hj∗
i ;

2.5 Δ = (Heightcind − Heightcind′)/Heightcind ;

2.6 pj∗
i = max{0, pj∗

i + Δ};
2.7 for each j ∈ J \ j∗, update pj

i ;

Fig. 1. Pseudo-code of the GA-based hyper-heuristic framework

We also compare two alternative versions of the hyper-heuristic to decide the
types of heuristic decoders:

Non-competing heuristic sets (NC-HH). The type of heuristics are fixed.
They are all available to pack each shape even if the probability value ap-
proaches zero (see step 2.7 in Fig. 2). In this version, although the heuristics
hj

i are arbitrarily chosen and remain static, the probabilities pj
i are updated

adaptively and the search procedure is still a dynamic probability selection
mechanism. Fig. 2 shows details of the refined procedures of steps 1.2 and
2.7 for this version of the hyper-heuristic.

1.2 for each ri initialize a set of |J| heuristics, and set each pj
i = 1

|J| ;

2.7 for each j ∈ J \ j∗, pj
i = max{0, pj

i − Δ

|J|−1
};

Fig. 2. Refined step 1.2 and 2.7 for NC-HH

Competing heuristic sets (C-HH). The hyper-heuristic chooses initial
heuristic sets, and it allows badly performing heuristics to be replaced (Fig. 3).
When initialising, the hyper-heuristic randomly selects a subset of heuristics
from all those available. During the updating process, if the probability of a
heuristic drops below a threshold level, it will be replaced by another ran-
domly chosen heuristic. Whenever replacement happens, the probabilities of
the heuristics will be reset to allow the newly introduced heuristic a fair
chance of competing with the surviving members that are already in the set.
In effect, all heuristics are competing against each other in order to stay in
the candidate set.
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1.2 for each ri random select a set of |J’| < |J| heuristics, and set each pj
i = 1

|J’| ;

2.7 if the incumbent heuristic hj∗
i has pj∗

i < Probth replace hj∗
i with a new

heuristic, set pj
i = 1

|J’| , reset other heuristics’ probabilities;

otherwise for each j ∈ J’ \ j∗, pj
i = max{0, pj

i − Δ

|J’|−1
};

Fig. 3. Refined step 1.2 and 2.7 for C-HH

3.2 Chromosomes

We enhance the standard genetic algorithms’ chromosome by including with each
item (allele) some probabilistic information for heuristic selection. Each allele is
denoted as a set of pairs of heuristic hj

i and probability pj
i , i = 1, 2, ...,n,where

n is the number of items and j is a parameter defining the number of candidate
decoding heuristics available to each rectangle. Fig. 4 shows a chromosome for
the proposed hyper-heuristic methodology.

r1 r2 . . . rn

(h1
1, p

1
1) (h1

2, p
1
2) . . . (h1

n, p1
n)

(h2
1, p

2
1) (h2

2, p
2
2) (h2

n, p2
n)

. . . . . . . . . . . .

Fig. 4. A hyper-heuristic GA chromosome

The values of the probabilities (initially set equal) will be updated through a
learning mechanism. The choice of a heuristic for each piece will be rewarded or
punished according to the results of the final packing height, i.e. the probabilities
of incumbent heuristics will be increased if we obtain a better packing, and
decreased otherwise. Therefore, the system learns from its interaction with the
search problem. For example, a system may find it tends to apply rules finding
lower positions for large pieces, while for small pieces there is less difference in
heuristic probabilities. The hyper-heuristic uses this adaptive policy to learn how
to utilise the heuristics.

3.3 Decoding Heuristics

Decoding heuristics for higher dimensional problems are concerned with two
decisions: which space to select for the placement and where in the chosen space
to place the item. For the first decision, we will use three categories of heuristics:
First Fit, Next Fit and Best Fit. To implement these heuristics, we maintain a
list of feasible spaces, initially containing one element of the size of the strip. We
recalculate the list after placing each shape, similar to [16].

First Fit (FF) select the feasible space at the lowest level, break ties by choos-
ing the left most space (equivalent to the bottom-up heuristic [6]);
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Best Fit (BF) select the feasible space with the smallest area;
Next Fit (NF) spaces not exposed from the top of the partial packing will be

removed from the list, then select the lowest feasible space (equivalent to
bottom-left move with downward priority [15]).

For the second decision our hyper-heuristic will consider all four corners of a
chosen space. Therefore, in our experiments, we have twelve different placement
options for each item. The type and quantity of heuristics will affect the per-
formance of the hyper-heuristic, possibly due to the larger the size of the pool,
the potentially larger search space (see section 4.3). Therefore, we limit the
candidate sets to a more manageable size of four rather than using all twelve
heuristics.

3.4 Selection and Replacement Strategy

Parent selection is carried out by truncated selection. By experimentation we
found that it is more effective to select parents from the top third, rather than
using roulette-wheel selection from the entire population. A child chromosome
replaces the worst member in the population, that is not a replica of an existing
chromosome.

3.5 Recombination

The GA recombination operators are standard, involving a random two-point
order-based crossover (2OX) [5] and mutation. In particular, when exchanging
orders of items in a sequence the associated set of heuristics of each item will be
exchanged as well. We have implemented two other operators, partial matching
crossover (PMX) and single point crossover (1OX), which also guarantee fea-
sibility. Compared with 2OX, PMX makes little difference and 1OX performs
slightly worse. The detailed settings of parameters will be shown in Section 4.

4 Experimental Results

To examine the effectiveness of the proposed hyper-heuristics, we have created a
set of instances to demonstrate that hyper-heuristics can explore a wider solution
space (Section 4.1). We also compare the average performance with standard
GAs (Section 4.2). It is also interesting to investigate the impact of the size
of the heuristic sets, which is an important parameter affecting the size of the
search space (Section 4.3).

The benchmark instances are taken from Burke et al. [17] and the OR-library
http://people.brunel.ac.uk/~mastjjb/jeb/orlib/files/. C1 to C7 are
seven categories with three instances in each and N1a to N7e are 35 non-guillotine
instances. N1 to N12 have a number of items ranging from 10 to 500, and the
other two sets of instances have 16 to 197 items.

http://people.brunel.ac.uk/~mastjjb/jeb/orlib/files/
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The algorithm was implemented in C++ and ran on a grid computer with
2.2GHz CPUs, 2GB memory and GCC compiler. To obtain statistics every ex-
periment was run 100 times.

4.1 Feasibility and Optimality

The first set of experiments is designed to evaluate the effects of multiple de-
coders. We created some instances where gaps have to exist in the middle of
patterns in the optimal solutions (as per Baker et al. [6]). Using only one heuris-
tic will fail to achieve the optimal pattern. An example of such an instance is
as follows. Nine Items: 60x60, 60x60, 50x50, 50x50, 40x40, 40x40, 10x10, 10x10,
31x30 are to be packed into a strip of width of 151. (Note if the last item was
30x30 and the strip has a width of 150, the shapes would fit perfectly.) The best
results achieved by a meta-heuristic with a single placement heuristic (in our
experiments GA+NFBL, GA+FFBL, GA+BFBL) and hyper-heuristics (both
C-HH and NC-HH versions) are 120 and 110 respectively Fig. 5). It is simple
to verify that 110 is the optimal. Assuming the optimal is less than 110, say
109, the whole area of strip needed (including any utilised and wasted areas) is
16,459 (151x109), which is less than the total area of all items 16,530, therefore
it is impossible.

Other instances in our dataset are created by choosing a number of pieces and
cutting at random points. The hyper-heuristics demonstrates stronger

Fig. 5. Best result achieved by meta-heuristic is 120 and optimal achieved by hyper-

heuristic is 110

Table 1. Average and best results of new instances

instance 1 instance 2 instance 3 instance 4 instance 5 instance 6 instance 7 instance 8

min avg min avg min avg min avg min avg min avg min avg min avg

Next Fit HH 110 112.3 110 119.3 110 113.04 110 120.8 111 115.26 120 121.0 112 114.30 116 119.67
GA 120 120.0 120 120.0 110 113.70 120 120.7 111 115.45 120 120.5 112 115.06 117 120.37

First Fit HH 110 110.1 110 118.1 110 111.85 110 120.0 111 113.10 120 120.0 110 113.26 116 117.62
GA 120 120.0 120 120.0 110 112.43 120 120.1 111 114.31 120 120.2 111 114.20 116 118.40

Best Fit HH 110 110.0 110 116.3 110 111.77 110 119.5 111 112.43 120 120.2 110 112.61 116 118.50
GA 120 120.0 120 120.0 110 111.91 110 119.6 111 113.75 110 120.1 111 113.42 114 118.82
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performance (Table 1). Comparing best and average results to algorithms ap-
plying only one heuristic, hyper-heuristics are better on almost all cases. This
experiment provides evidence that hyper-heuristics can avoid the drawbacks of
applying only a single heuristic, and find more feasible solutions and, possibly,
optimal solutions.

4.2 Performance

In this experiment we further compare our hyper-heuristics to standard meta-
heuristics on well known benchmark instances for each category of decoders (FF,
NF and BF). The hyper-heuristic (NC-HH) utilises four positioning heuristics
while the standard GA uses only one. Table 2 shows that the hyper-heuristics
produces superior solutions in more cases on the First Fit and Best Fit and
equal solutions on Next Fit. The extra calculations to update the probabilities
only causes a minor increase to the CPU time even for larger sized instances, as
shown in Table 3 (0.5% on average).

Table 2. Average of all instances

dataset number of First Fit Next Fit Best Fit

instances HH Wins GA Wins equal HH Wins GA Wins equal HH Wins GA Wins equal

n1-n12 12 5 5 2 2 9 1 9 2 1

c1-c7 21 12 7 2 8 12 1 11 10 0

n1a-n7e 35 16 19 0 21 14 0 18 17 0

new 8 8 0 0 6 2 0 7 1 0

total 76 41 31 4 37 37 2 45 30 1

Table 3. Average CPU time for 5000 evaluations (milliseconds)

Set size n1 n2 n3 n4 n5 n6 n7 n8 n9 n10 n11 n12

GA 174 508 924 1546 2224 2216 2820 4076 4786 9902 18358 62022

HH 176 518 906 1568 2230 2208 2824 4074 4856 10008 18542 61950

4.3 Effects of Number of Heuristics in a Set

In the next set of experiments we attempt to find a suitable trade-off between the
size of the set (and thus computational time) and solution quality. In Table 4,
we present a comparison between four runs of a hyper-heuristic (C-HH version)
where heuristics are all randomly chosen and the set size varies between 4 and
8. It can be seen that many of the best results (highlighted) are produced with
just four heuristics.

Table 4. Heuristic set size affects results

Set size n1 n2 n3 n4 n5 n6 n7 n8 n9 n10 n11 n12

size of 4 40.00 51.51 52.59 84.08 106.19 104.78 110.04 85.79 156.48 154.36 155.88 317.26

size of 5 40.00 51.32 52.61 84.29 106.42 104.63 110.37 86.26 156.61 154.66 155.97 317.28

size of 6 40.00 51.08 52.65 84.39 106.50 104.70 110.20 86.02 156.70 154.80 155.80 317.20

size of 7 40.00 51.22 52.66 84.40 106.42 104.55 110.26 86.35 156.63 154.64 155.75 317.13
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5 Conclusion and Future Work

In this paper we have proposed a hyper-heuristic approach to tackle cutting
and packing problems. The idea is to combine a set of heuristic decoders with a
high level search operator. Empirical studies have demonstrated that the hyper-
heuristic approach is superior to standard meta-heuristics which use only one
decoder. The potential benefits can be summarised as follows:

– Compared to standard approaches the hyper-heuristic is able to explore a
larger solution space. Therefore, it has the potential to find the global optima
or deliver better results than other meta-heuristic approaches.

– Its built-in learning mechanism is highly automated requiring less user judge-
ment, as the hyper-heuristic itself will intelligently choose a suitable heuristic
to pack a given item. It is also flexible for further expansion by having the
option to add new heuristics into the candidate set.

In this paper, the hyper-heuristic utilises a GA as the search methodology and
a number of well known heuristics as decoders. The hyper-heuristic is flexible
to adopt other search engines, such as Tabu Search or Simulated Annealing.
It is also possible to employ other more sophisticated low-level heuristics, such
as those considering shared edges. There is scope for further improvement by
integrating techniques such as a local search into the hyper-heuristic framework.
Like most meta-heuristics, hyper-heuristics are usually computational intensive
algorithms. Therefore, it is interesting to investigate if parallelization (e.g. an
island model) could solve even lager instances. Further work is also required to
understand the dynamics among different level operators and the evolution and
interaction between the heuristic search space and solution space.

Acknowledgments. We would like to acknowledge the support of EPSRC
(Engineering and Physical Sciences Research Council) for supporting this work
(Ref: EP/D061571/1).
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Abstract. A stationary Markov chain model of the agent-based com-

putation system EMAS is presented. The primary goal of the model is

better understanding the behavior of this class of systems as well as their

constraints. The ergodicity of this chain can be verified for the particular

case of EMAS, thus implying an asymptotic guarantee of success (the

ability of finding all solutions of the global optimization problem). The

presented model may be further adapted to numerous evolutionary and

memetic systems.

1 Motivation

Evolutionary algorithms (EAs) and multi-agent systems (MAS) are closely re-
lated paradigms. Among other similarities, they share conceptual elements such
as the usage of a pool of entities (individuals in the case of EAs, agents in the
case of MAS) which interact among themselves directly (via n-ary operators in
EAs, and using autonomous, proactive or reactive behaviors in MAS) or indi-
rectly (via modifications of the environment in MAS, and by e.g. coevolution,
archive-based strategies, etc. in EAs). Not surprisingly, cross-fertilization of both
paradigms has been attempted in the so-called agent-based computational sys-
tems (e.g. EMAS [3], AMAS [22], GCE [6]). In particular, EMAS (Evolutionary
Multi-Agent System introduced by Cetnarowicz et al. in [5]) have been shown to
be effective in solving difficult optimization tasks, e.g., optimization of neural-
network architectures, multi-modal optimization, multi-criteria optimization.

The connection of MAS and EAs is particularly clear in the case of memetic
algorithms (MA). It is customary – and in some sense based on good practical
reasons – to consider that a MA is an EA hybridized with some form of local
search (LS). This definition of MA was actually popularized by early works
such as [17], and paved the way for the vigorous development of optimization
algorithms based on this idea (exhibiting a remarkable record of success, check
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e.g. [7]). It is also true that seminal works on this topic had a wider perspective, in
which EAs endowed with LS was rather an appropriate incarnation of a MA than
a restrictive definition [13]. Under this wider interpretation of the MA paradigm,
a stronger relationship with multi-agent systems emerges. Indeed, a MA has been
sometimes defined (as early as in [16] – see also [14]) as a cooperative-competitive
strategy of optimizing agents. The use of the term agent here tries to emphasize
the fact that individuals are more than mere solution placeholders that passively
suffer the application of different variation and selection operations on them [15].
On the contrary they can be regarded as active actors in the search process,
intertwining periods of individual search/learning with periods of cooperation
and competition. While this interpretation remains compatible with classical MA
approaches, it also opens up the door to more complex strategies, e.g. individual
roles [1], different recombination behaviors [2], etc.

The relationship between multi-agent systems and memetic algorithms is not
limited to a simple source of algorithmic inspiration. On the contrary, it can
provide a useful means for improving the theoretical understanding of these
techniques. In this sense, and opposed to classical evolutionary strategies for
which qualitative formal models were introduced and intensively studied (see
e.g. [23], [20], [19]), it must be noted that there is still lack of them for most
complex, biologically-inspired heuristics.

Based on the results presented in [4,21] we introduced a discrete, finite state-
space Markov chain as a model for EMAS. We also proved ergodicity of such
model. This feature in not so obvious in this case as in case of simple genetic
mechanisms, where the passage between two arbitrary states is possible in a
single step, if the mutation rate is strictly positive [23].

Such an analysis may ensure that the system is able to reach a population
containing an arbitrary minimizer in a finite number of steps. Moreover the
effective upper bound of step number may be evaluated. In addition, asymptotic
guarantee of success is satisfied [8,18]. In the course of modelling a number of
constraints were indicated, leading to better understanding of the functioning of
these systems (e.g. synchronization schemes, probability distributions used and
topology of connections).

2 EMAS Architecture and Behavior

We will focus on a EMAS systems solving global optimization problems consist-
ing of finding all global minimizers arg min{FITN(x)},x ∈ U where FITN :
U → R+, and U is a finite genetic universum #U = r < +∞.

Computational EMAS agents belong to the predefined finite set Ag one-to-one
mapped on set U×P , where P = {1, . . . , p} and p is assumed to be the maximum
number of agents contain the same genotype, so each agent aggen,n ∈ Ag is
uniquely represented by its signature (gen,n) ∈ U × P .

Agents are assigned to locations Loc = {1, . . . , s}. The locations are linked
by channels along which agents may migrate from one location to another. The
topology of channels is determined by the symmetric relation Top ⊂ Loc2. We
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assume that the connection graph 〈Loc,Top〉 is coherent and does not change
during the system evolution. Each agent possesses a variable parameter called
energy, its value is quantized and belongs to {0,Δe, 2 · Δe, 3 · Δe, . . . ,m ·Δe}.
The current value of the energy exhibits the maturity of agent in solving the
optimization problem, affecting its abilities (reproduction, cloning, migration)
(see [9]).

Let us introduce the set of three-dimensional, incidence and energy matrices
x ∈ X with s layers (corresponding to all locations) x(i) = {x(i, gen,n), gen ∈
U, n ∈ P}, i ∈ Loc. The layer x(i) will contain energies of agents in i-th location.
In other words, x(i, gen, k) > 0 means that the k-th clone of the agent containing
the gene gen ∈ U is active, its energy equals x(i, gen, k) and it is located in i-th
location.

We introduce the following coherency conditions:

– each layer x(i) contains at most qi values greater than zero, which denotes
the maximum capacity of the i-th location, moreover, the quantum of energy
Δe is lower or equal than total energy divided by the maximal number of
individuals that may be present in the system Δe ≤ 1∑ s

i=1 qi
what allows to

achieve maximal population of agents in the system,
– reasonable values of p should be greater or equal to 1 and less or equal to∑s

i=1 qi. We assume that p =
∑s

i=1 qi which assures that each configuration
of agents in locations is available, respecting the constrained total number
of active agents

∑s
i=1 qi. Increasing p over this value does not enhance the

descriptive power of the presented model,
– (·, j, k)-th column contains at most one value greater than zero, which ex-

presses that the agent with k-th copy of j-th genotype may be present in
only one location at a time, whereas other agents containing copies of j-th
genotype may be present in other locations,

– entries in the incidence and energy matrices are non-negative x(i, j, k) ≥
0, ∀ i = 1, . . . , s, j = 1, . . . , r, k = 1, . . . , p and

∑s
i=1

∑r
j=1

∑p
k=1 x(i, j, k) =

1, which means that the total energy contained in the whole system is con-
stant, equal to 1.

Gathering all these conditions, the set of three-dimensional incidence and energy
matrices may be described in the following way:

X =
{
x ∈ {0,Δe, 2 ·Δe, 3 ·Δe, . . . ,m ·Δe}s·r·p, Δe ·m = 1,

s∑
i=1

r∑
j=1

p∑
k=1

x(i, j, k) = 1 and ∀ i = 1, . . . , s

r∑
j=1

p∑
k=1

[x(i, j, k) > 0] ≤ qi

and ∀j = 1, . . . , r, k = 1, . . . , p

s∑
i=1

[x(i, j, k) > 0] ≤ 1
}

(1)

where [·] denotes the value of the logical expression contained in the parentheses.
Note that the formula (1) implies that there must exist at least one agent in

the system i.e. at least one location is non-empty at a time.
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EMAS may be modeled as the following tuple:

< U,Loc,Top,Ag, {agseli}i∈Loc, locsel, {LAi}i∈Loc,MA,ω,Act > (2)

where:

MA (master agent) is used to synchronize the work of the locations; it allows to
perform actions in particular locations. This agent is also used to introduce
necessary synchronization into the system.

locsel : X → M(Loc) is the function used by MA to determine which location
should be allowed to perform the next action.

LAi (local agent) is assigned to each location; it is used to synchronize the work
of computational agents present in its location, LAi chooses the computa-
tional agent and lets it evaluate a decision and perform the action, at the
same time asking MA whether this action may be performed.

agseli : X → M(U × P ) is a family of functions used by local agents to select
the agent that may perform the action, so every location i ∈ Loc has its own
function agseli. The probability agseli(x)(gen,n) vanishes when the agent
aggen,n is inactive in the state x ∈ X or it is present in other than i-th
location,

ω : X × U → M(Act) is the function used by agents for selecting actions from
the set Act; both these symbols will be described later.

Act is a predefined, finite set of actions.

Here and later M(·) stands for the space of probabilistic measures.
The population of agents is initialized by using introductory sampling. It

may be explained as a one-time sampling from X according to the predefined
probability distribution (possibly uniform) from M(X). Every agent starts its
work in EMAS immediately after being activated. At every observable moment
a certain agent on each location gains the possibility of changing the state of the
system by executing its action.

The function agseli is used by the Local Agent LAi to determine which agent
present on i-th location will be the next one to interact with the system. After
being chosen, the agent aggen,n chooses one of the possible actions according to
the probability distribution ω(x, gen). Notice the relationship of this probability
distribution with the concept of fine-grain schedulers introduced in the syntactic
model for memetic algorithms in [11].

Next, the agent applies to LAi for the permission to perform this action.
When the permission is granted, aggen,n checks whether the associated condition
is true, and if so, the agent performs the action. The agent suspends its work in
the system after performing the action which brings its energy to zero.

Master agent MA manages the activities of LAi allowing them to grant per-
missions for their agents (thus relating to coarse-grain schedulers in [11]). Each
action α ∈ Act is the pair of families of random functions {δgen,n

α }gen∈U,n∈P and
{ϑgen,n

α }gen∈U,n∈P where

δgen,n
α : X → M({0, 1}) (3)
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will denote the decision. The action α is performed with probability δgen,n
α (1)

by agent aggen,n in state x ∈ X i.e. when the decision is undertaken. Moreover

ϑgen,n
α : X → M(X) (4)

defines the non-deterministic state transition caused by the execution of action
α by agent aggen,n. The trivial state transition

ϑnull : X → M(X) (5)

such that for all x ∈ X

ϑnull(x)(x′) =
{

1 if x = x′

0 otherwise (6)

is performed with probability δgen,n
α (x)(0), i.e. when decision δα is not under-

taken (δgen,n
α (x) is evaluated as zero).

The value of the probability transition function for action α for the agent
containing the n-th copy of genotype gen being in the location l

!gen,n
α : X → M(X) (7)

for the arbitrary current state x ∈ X and the next one x′ ∈ X is given by:

!gen,n
α (x)(x′) = δgen,n

α (x)(0) · ϑnull(x)(x′) + δgen,n
α (x)(1) · ϑgen,n

α (x)(x′) (8)

Notice finally that it is formally possible to consider a very large (yet finite) set
Act, comprising all actions up to a certain description length (using a Gödel
numbering or any appropriate encoding). This implies that this set may be
implicitly defined by such an encoding, allowing much flexibility in the set of
actions available (a connection can be drawn with multimeme algorithms [10]).

The agents’ actions may belong to one of two distinct types:

– global – they change the state of the system in two or more locations, so
only one global action may be performed at a time,

– local – they change the state of the system inside one location respecting
only the state of local agents, only one local action for one location may be
performed at a time.

In the system governed by software agents there will be either a possibility of
performing many local or one global action at a time.

3 EMAS Dynamics

At the observable moment at which EMAS takes state x ∈ X all agents in all
locations notify their local agents their intent to perform an action, all local
agents choose an agent using the distribution given by the agseli(x), i ∈ Loc
function and then notify the master agent of their intent to let perform an
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action by one of their agents. The master agent chooses the location using the
probability distribution given by locsel(x).

The probability that in the chosen location i ∈ Loc the agent wants to perform
a local action is as follows:

ξi(x) =
∑

gen∈U

p∑
n=1

agseli(x)(gen,n) · ω(x, gen)(Actloc) (9)

The probability that the master agent will choose the location with the agent
intending to perform a local action is:

ζloc(x) =
∑

i∈Loc

locsel(x)(i) · ξi(x) (10)

Of course the probability of choosing a global action by the master agent is:

ζgl(x) = 1 − ζloc(x) (11)

If a global action has been chosen, the state transition is as follows:

τgl(x)(x′) =
∑

i∈Loc

locsel(x)(i)⎛⎝ ∑
gen∈U

p∑
n=1

agseli(x)(gen,n)·
⎛⎝ ∑

α∈Actgl

ω(x, gen)(α) · !gen,n
α (x)(x′)

⎞⎠⎞⎠ (12)

Let us state the set of action sequences containing at least one local action:

Act+1loc =

{
(α1, . . . ,αs) ∈ Acts;

s∑
i=1

[αi ∈ Actloc] > 0

}
(13)

Let us define now the family of coefficients {μαi,geni,ni(x)}, i ∈ Loc, geni ∈
U, ni ∈ P, x ∈ X . If the location i is nonempty at the state x, then μαi,geni,ni(x)
is equal to the probability that in the i-th location agent aggeni,ni chooses action
αi:

μαi,geni,ni(x) = agseli(x)(geni,ni) · ω(x, geni)(αi). (14)

Of course μαi,geni,ni(x) = 0 if agent aggeni,ni does not exist in location i at state
x, because agseli(x)(geni,ni) = 0 in this case. Moreover, we set μαi,geni,ni(x) =
1 if location i is empty at state x. Next we introduce the multi-index:

ind =
(
α1, . . . ,αs; (gen1,n1), . . . , (gens,ns)

) ∈ IND = Acts+1loc × (U × P )s.
(15)

The probability that at state x, in consecutive locations agents aggeni,ni

choose actions αi is given by:

μind(x) =
s∏

i=1

μαi,geni,ni(x) (16)
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the transition function for the case of parallel executing of local actions is then:

τ loc(x)(x′) =
∑

ind∈IND

μind(x)(πind
1 ◦ , . . . , ◦ πind

s )(x)(x′) (17)

where

πind
i (x) =

{
!geni,ni

αi
(x), αi ∈ Actloc and the location i is nonempty

ϑnull, αi ∈ Actgl or the location i is empty. (18)

It is possible to prove that the value of (πind
1 ◦, . . . , ◦ πind

s )(x)(x′) does not de-
pend on the composition order because transition functions associated with local
actions commutate pairwise. The proof of this property in the discrete model is
similar to the proof in [21] for a continuous system state space, and is omitted
here due to space constraints.

The commutativity of local action validates the following observation:

Observation 1. The probability transition function for the parallel EMAS model
is given by formula

τ(x)(x′) = ζgl(x) · τgl(x)(x′) + ζloc(x) · τ loc(x)(x′) (19)

and formulas (9)–(18).

It is also easy to see that

Observation 2. The stochastic state transition of EMAS given by formula (19)
satisfies the Markov condition. Moreover, the Markov chain defined by these
functions is stationary.

4 Sample Actions and Asymptotic Behavior

Let us consider a sample EMAS with the following set of actions:

Act = {get, repr, clo,migr} (20)

Due to space limitations we describe the actions informally, underlining only
the necessary conditions for the subsequent analysis of the systems’s ergodicity.
Complete formal descriptions of these actions leading to the probability transi-
tion functions (3) and (4) may be found in [4]. In the following (gen,n) stands for
the signature of a generic agent that attempts to execute the following actions:

get Decision δgen,n
get for energy transfer is positive when there is at least one agent

more on the same location. Agent chooses randomly one of its neighbors
and during the meeting, the energy is exchanged between agents, what may
be considered somewhat as a tournament (see tournament selection [12]).
The direction of the energy flow is determined by a probability distribution
CMP : U × U → M({0, 1}) dependent on agents’ fitnesses and the current
state of the system. In the next state one of the agents receives a predefined
part of energy Δe from its neighbor, which is assumed to satisfy Δe ≤
(
∑s

i=1 qi)−1.
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repr Decision δgen,n
repr for reproduction is positive when the energy of the agent

performing the action is greater than a reproduction threshold erepr and
there is at least one agent more in the same location satisfying the same
energy condition. We assume that erepr ≤ 2Δe. These agents create an
offspring agent based on their solutions using a predefined mixing operator.
Part of the parents’ energy (e0 = n0·Δe, n0 is even) is passed to the offspring.

clo Decision δgen,n
clo for cloning is based on checking the amount of agent’s en-

ergy only. An agent with enough energy strictly greater than Δe, creates an
offspring agent based on its solution (applying a predefined mutation oper-
ator MUT : U → M(U)). Part of the parent’s energy Δe is passed to the
offspring.

migr Decision δgen,n
migr is positive when an agent has enough energy greater than

emigr and there exists a location that is able to accept it (the number of
agents there is lower than its capacity). When these conditions are met the
agent is moved from its location to another. We assume, that emigr < s−1.

Theorem 1. Given the following assumptions:

1. The capacity of every location is greater than one, qi > 1, i = 1, . . . , s.
2. The graph of locations is connected.
3. Each active agent can be selected by its local agent with strictly positive

probability, so
∃ ιagsel > 0; ∀ i ∈ Loc, ∀ gen ∈ U, ∀ n ∈ P, ∀ x ∈ {y ∈ X ; y(i, gen,n) > 0},
agseli(x)(gen,n) ≥ ιagsel.

4. The families of probability distributions being the parameters of EMAS have
the uniform, strictly positive lower bounds:
∃ ιω > 0; ∀ x ∈ X, gen ∈ U, α ∈ Act, ω(gen,x)(α) ≥ ιω,
∃ ιCMP > 0; ∀ gen, gen′ ∈ U, CMP (gen, gen′) ≥ ιCMP ,
∃ ιmut > 0; ∀gen, gen′ ∈ U, MUT (gen)(gen′) ≥ ιmut,
∃ 0 < ιlocsel < 1; ∀ x ∈ X, ∀ j ∈ Loc, locsel(x)(j) ≥ ιlocsel.

We can construct a finite sequence of transitions between two arbitrarily chosen
system states which may be passed with strictly positive probability. Moreover
we can deliver the upper bound of the number of such transitions, which can be
effectively computed based on the system’s parameters.

The proof of the Theorem 1 is omitted in this paper because of its length and
strictly technical substance. It has already been completed and will be published
in an extended version.

Assumptions 1 and 2 allow to migrate agents to all locations that are not over-
populated (with a positive probability). The positive probability of performing
crucial actions (get, clo) changing energy and genotype is ensured by assump-
tions 3 and 4. The above stated properties make possible to define a generic path
between two arbitrary states of the system.

Notice that verifying the ergodicity is different than usually done for classical
genetic algorithms (see e.g. [23]), where all possible states of the system are
reachable within a single step, because of the characteristics of the mutation
operator.
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Remark 1. Theorem 1 makes all states containing the extrema reachable in a
finite number of states, thus EMAS satisfies an asymptotic guarantee of success
[8], [18]. Moreover the Markov chain modelling EMAS (see equation (19)) is
ergodic.

5 Conclusions

We presented a discrete version of EMAS model (following the continuous ver-
sions of the model published in [4,21]). The space of states of the system – Eq.
(1) – and the probability transition function – Eq. (19) – constitute a stationary
Markov chain.

Under assumptions of Theorem 1 an EMAS is able to reach the population
containing an arbitrary minimizer in a finite number of steps. The effective upper
bound for the number of steps required may also be evaluated. In addition,
asymptotic guarantee of success is satisfied [8,18]. The properties mentioned
above make the Markov chain modelling EMAS ergodic. The ergodicity in the
case of EMAS is not as straightforward as in classical genetic algorithms (cf. the
works of Vose [23]) where any possible state of the system may be reached in
one step thanks to positive mutation rates.

In the course of modelling several constraints were indicated leading to better
understanding of the functioning of agent-based memetic systems (e.g. synchro-
nization schemes, probability distributions used and topology of connections).
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Abstract. Stochastic Pareto local search (SPLS) methods are local search al-
gorithms for multi-objective combinatorial optimization problems that restart lo-
cal search from points generated using a stochastic process. Examples of such
stochastic processes are Brownian motion (or random processes), and the ones
resulting from the use of mutation and recombination operators. We propose a
path-guided mutation operator for SPLS where an individual solution is mutated
in the direction of the path to another individual solution in order to restart a
PLS. We study the exploration of the landscape of the bi-objective Quadratic as-
signment problem (bQAP) using SPLSs that restart the PLSs from: i) uniform
randomly generated solutions, ii) solutions generated from best-so-far local opti-
mal solutions with uniform random mutation and iii) with path-guided mutation.
Experiments on a bQAP with a large number of facilities and high correlation
between the flow matrices show that using mutation, and especially path-guided
mutation, is beneficial for performance of SPLS. The performance of SPLSs is
partially explained using their dynamical behavior like the probability of escaping
the local optima and the speed of enhancing the Pareto front.

1 Introduction

Stochastic local search algorithms, SLS, are among the most popular techniques for
solving combinatorial optimization problems in many areas from computer science, op-
erations research, engineering, physics, etc. A local search algorithm iteratively moves
from a current solution to a neighboring solution. The algorithm stops when no improv-
ing solution can be found in the neighborhood. Some of SLS’s properties that make
it so successful in all these areas are: simplicity, ease of understanding and in imple-
mentation, flexibility in design, and power of generalization. SLSs for multi-objective
spaces [1] are called stochastic Pareto local search (SPLS) [2, 3, 4, 5].

To enhance the efficiency of multi-start PLS, we want to exploit the structure of
the landscape with suitable exploration operators like for instance local perturbation
by mutation. The advantage of mutation-generated restarts is that the local search is
restarted from nearby, and therefore most likely, correlated areas of the landscape. We
call algorithms that mutate the local optima to restart Pareto local search, iterated PLS
(IPLS), as they are a straightforward extension of iterated local search algorithms for
single objective spaces [6, 7]. In this paper we compare uniform random mutation with
a path-guided mutation that generates solutions on the path linking two local optimal

R. Schaefer et al. (Eds.): PPSN XI, Part I, LNCS 6238, pp. 485–495, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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individuals. This operator resembles the path relinking operator [8], but the path-guided
mutation generates individuals at a certain distance from a parent on the path to the
second parent. In this paper, we want to investigate the use of path-guided mutation in
multi-objective optimization by stochastic Pareto local search. Specifically, we
compare PLS with IPLS and the path-guided pIPLS on a bi-dimensional quadratic
assignment problem (bQAP) where the dimensions have common structure (i.e., the
multi-dimensional QAPs have correlated flow matrices [9]). The solutions of QAPs can
be represented by permutations of facilities to different positions. Consequently, the
perturbation operators, mutation and recombination, we use here are tailored to this
type of representation. We measure the performance of the three SPLS with the unary
hypervolume indicator and attainment functions [10]. We also track the impact of the
different mutation operators and different mutation rates on the search efficiency. We
propose to connect the dynamical exploitation - the number of Pareto front enhance-
ments - and exploration - the probability of escaping the local optima - of the landscape
with the performance of SPLSs. As expected, the results show that multi-start PLS
is easily outperformed by IPLS using either uniform random mutation or path-guided
mutation. Furthermore, IPLS using path-guided mutation outperforms uniform random
IPLS by exploiting the commonalities in the correlated search spaces.

In the next section, we describe the PLS algorithm and its use for multi-objective
QAPs. In Section 3, we describe the IPLS algorithms and their use on multi-objective
QAPs. In Section 4, we show experimental results and correlate the performance with
the dynamical behaviour of SPLS algorithms. Section 5 concludes the paper.

2 The Multi-start Pareto Local Search Algorithm (PLS)

In [11,12], Paquete et al. introduce the Pareto local search algorithm (PLS). A PLS starts
from a (randomly generated) initial solution and iteratively generates new solutions
using a neighborhood function. In the multi-objective space, solutions can be better
than other solutions in some dimensions but worse in other dimensions.

We denote with s a solution and N (s) a neighborhood of s. The solution s has
attached a flag, s.visited which is set to true after evaluating the entire neighborhood
of s and false otherwise. We say that a solution s dominates another solution s′ if s is
at least as “good” on all objectives as well as being “better” on at least one. We say that
s does non-dominated s′ if there exists at least one dimension in which s is “worse”
than s′. The set of solutions that dominates the other solutions in at least one dimension
(or objective) is called the non-dominated archive (NDA). We say that s is dominated
by the NDA, if it is dominated by at least one solution in the NDA. Finally, s is not
dominated by the NDA, if it is not dominated by any solution in the NDA.

The NDA is initialized with a solution s that is generated randomly. Each iteration,
a solution s with the visited flag set to false is randomly chosen from the NDA. All
the neighborhood solutions, s′, of s are evaluated. s′ will be added to the NDA if s′

is not dominated by any solution in the current NDA, and the solutions dominated by
s′ are removed. If s′ is dominating all other solutions in the NDA, s′ will be the only
remaining solution in the NDA. The search continues until there are no solutions left in
the NDA that have their visiting flag set to false. Note that PLS is a best improvement
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algorithm because it selects all non-dominated neighboring solutions. The PLS algo-
rithm stops in a local optimal NDA set. To find the best optima of the search space, the
multi-restart PLS algorithm is restarted multiple times from M > 0 uniformly random
initial solutions.

2.1 PLS for Multi-objective Quadratic Assignment Problem (mQAP)

Single and multi-dimensional QAPs are NP-hard combinatorial optimization problems
that model many real-time problems (i.e., computer aided design in the electronic in-
dustry, scheduling, vehicle routing, etc.). Intuitively, QAPs can be described as the (op-
timal) assignment of N facilities to N locations. A distance is specified between each
pair of locations, and for each pair of facilities the amount of materials (or flows) trans-
ported between these facilities is given. The goal is to find the assignment of facilities
to locations that minimizes the sum of the products between distances and flows.

We consider the multi-dimensional QAPs (mQAPs) introduced by Knowles and
Corne [9]. These mQAPs have for each dimension different flow matrices and a sin-
gle distance matrix. The flow matrices are correlated with some correlation ρ. Let us
consider n facilities, a set Π(n) of all permutations of {1, 2, . . . ,n} and the n× n dis-
tance matrix A = (aij), where aij is the distance between location i and location j. We
assume an m-dimensional space, and m flow matrices Bk = (bkij), each with n × n

elements, where bkij represents the flow from facility i to facility j in the k-th objective
dimension. The goal is to minimize for all dimensions the set of functions

Ck(π) =
n∑

i=1

n∑
j=1

aij · bkπ(i)π(j)

where π(·) is a permutation fromΠ(n). It takes quadratic time to evaluate this function.
QAPs are permutation problems, and a suitable neighborhood operator for PLS is the
exchange operator that swaps the position of two or more facilities. For example, the
2-exchange swapping operator, swaps the position of two different facilities. The 2-
exchange operator is attractive because of its linear time to compute the change in the
cost function with the condition that all matrices A and Bk are symmetrical [2].

3 Iterated Pareto Local Search (IPLS)

Restarting PLS from randomly generated solutions is basically random sampling in
the space of local optima. To improve the efficiency, we need to exploit the structure of
the search space. Iterated PLS uses mutation operators to generate starting points for the
PLS algorithm. First, PLS is restarted N times, 0 < N < M , from uniform randomly
generated points to construct a “good” and diverse initial NDA. Then, a solution is
uniform randomly chosen from the current NDA and a new individual is generated with
some mutation operator. PLS is restarted from this individual. This process of restarting
PLS from mutations of NDA solutions is repeated until a stopping criterium is met. In
Section 3.1, two IPLS instances for mQAPs are proposed.
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Fig. 1. (a) An example of 3-exchange mutation. Three positions l1, l2 and l3 are chosen at random
and shifted to the right. (b) An example of 3-exchange path mutation. The main parent s and s′

form two cycles from which cycle = {2, 3, 5, 7} is randomly chosen. The three positions l1, l2
and l3 in cycle are used to decrease the distance between s and s′.

3.1 Iterated PLS for Multi-objective QAPs

In permutation problems like (m)QAPs, the mutation operator interchanges facilities
between different positions. When PLS uses the 2-exchange operator to generate a
neighborhood, the mutation operator should exchange at least 3 facilities to escape from
the region of attraction of the local optima. IPLS denotes the algorithms that use an m-
exchange operator,m > 2, to restart PLS. The stopping criterium for IPLS is chosen to
fairly compare its performance to PLS algorithms. The distance between two solutions
is defined as the minimum number of exchanges to obtain one solution from another
and is computed as in [13]. The distance between a solution and the solution obtained
with 2-exchange mutation is 1, meaning that one swap is necessary. In general, the dis-
tance between a solution and its m-exchange solution is m − 1. The search in IPLS is
halted when the same number of swaps is executed as with PLS. The difference in cost
function, ΔCk, for two solutions with distance m is linear in the number of facilities
and the number of exchanges. Counting the number of swaps is equivalent to counting
the number of function evaluations.

The m-exchange mutation uniform randomly selects without replacement m dis-
tinct locations in a solution s, {l1, . . . , lm}, where m > 2. To generate a new solution,
these locations are exchanged from left to right or from right to left with equal probabil-
ity to not bias the generation of individuals. When positions are exchanged from right
to left, a position li takes the value of its right neighbor li+1. Then

temp = l1; l1 = l2; . . . ; lm−1 = lm; lm = temp

where temp is a buffer variable. An example of 3-exchange mutation is given in Fig-
ure 1(a). Note that s and the resulting solution form a cycle of size m that contains the
mutated positions {l1, . . . , lm} and are m swaps apart.
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The path-guided m-exchange mutation uses two uniform randomly selected solu-
tions without replacement from the current NDA where the distance between them is at
least m. One of the solutions, we call it the parent solution, will be mutated. The other
solution is only used to construct the path between the two solutions. At first, the set of
cycles common for the two solutions are identified. A cycle is a minimal set of facilities
such that the set of locations associated with that set of facilities in both parents is the
same. It is possible to switch that subset from one parent to the other one while keeping
a valid permutation. For example, in Figure 1 (b) there are two cycles between s and s′:
i) {2, 7, 5, 3} and ii) {6, 8, 4, 1}. Next, a cycle, c, with a size larger than 1 is randomly
chosen. If the size of c, �c, is larger than m, �c > m, we uniform randomly select one
position, i, in the cycle. For m − 1 times, the i-th value in the parent solution is ex-
changed with the j-th value of the same solution, where the j-th position in the second
solution has the same value as the i-th position in the parent solution. If the size of c is
smaller or equal thanm, �c ≤ m the whole cycle is swapped with the second child. This
process of randomly selecting a cycle and swap locations is repeated untill the distance
between the parent s and its child is m. The generated solution s′′ is at m− 1 distance
from the parent solution s and �c −m + 1 distance to the second solution s′ since the
positions that were exchanged have the same value as the second parent. An example
of 3-exchange path mutation is given in Figure 1(b).

This path mutation resembles path relinking and cycle crossover. In path relinking,
all the individuals on the path will be generated. In cycle crossover, entire cycles are
swapped with some probability. Here we study the search efficiency of different m-
exchanges on bi-dimensional QAPs (bQAP) with correlated flow matrices.

4 Experimental Results

Although the principles discussed and the algorithms proposed in this paper are general,
we limit our experiments to two objectives because is easier to visualize the results of
the algorithms.

The tested problems. We compare the mentioned SPLS algorithms on bQAP instances
generated using the software of Knowles and Corne [9]. This bQAP has high positive
correlations ρ = {0.75} and a large number of facilities n = {50}. To facilitate com-
parisons, we used the same problems as the unstructured bQAP instances in Paquete’s
study [2] (http://eden.dei.uc.pt/ paquete/qap/ ). For QAPs with a large number of facil-
ities and high positive correlation Paquete reported a poor performance of multi-restart
PLSs. In the following, we show that restarts generated with m- exchange mutation and
path mutation outperform PLS by exploiting the structure in the search space.

The four tested algorithms. The multi-restart PLS, PLS, with a best improvement 2-
exchange neighborhood is restarted M times. The number of swaps S is counted. For
IPLS, at first, N PLSs are uniform randomly restarted. Next, until S swaps are reached,
PLSs are restarted from a mutated solution from the current NDA with an m-exchange
operator, m > 2. In pIPLS, after randomly restarting N PLSs, the algorithm is run S
swaps where the restarts are generated with the m-exchange path guided mutation. In
rIPLS, after randomly restartingN PLSs, the algorithm is run S swaps and the restarting
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Fig. 2. The (a) escape, (c) success and (b) improve probabilities for 15 values of m for IPLS,
pIPLS and rIPLS with N = 10 and M = 20. (d) The success probabilities with the number of
swaps for m = 10 for the three algorithms.

points are generated 50% with m-exchange mutation and 50% with the m-exchange
path-guided mutation.

rIPLS is a combination of IPLS and pIPLS algorithms, because pIPLS can be stuck
in a number of situations: i) the NDA size is 1, ii) all solutions in NDA have distances
smaller than m and iii) exploring the restarts on the path between NDA solutions does
not generate new non-dominated solutions. The three IPLS algorithms (IPLS, pIPLS
and rIPLS) are run 15 times with m-exchange mutations between 3 and 17. For high
exchange rates the m-exchange operator is almost equivalent with a random generator.
Each instance of the four algorithms is run 50 times.

The exploitation and exploration characteristics are measured by the success, im-
provement and escape probability as shown in Figure 2. The escape probability is the
probability that the solution after mutation does not belong to the basin of attraction
of its parent (= #escapes/#restarts, where #restarts are the number of times PLS
is restarted in a run). The success probability is the probability that the new starting
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Table 1. PLS vs IPLS and rIPLS using several measurements like: i) the hypervolume unary
indicator (hypervolume), ii) the average number of restarts for PLS (#restarts), iii) The average
number of neighborhood search per PLS (#neigh search/PLS), and iv) the average number of
NDA enhancements (#NDA enhancements). The table contains the maximum, minimum and
average values over all value of m-exchanges for IPLS and rIPLS algorithms.

PLS IPLS rIPLS
max min aver max min aver

hyper 0.45 ± 0.05 0.81 ± 0.13 0.48 ± 0.07 0.62 ± 0.12 0.89 ± 0.14 0.54 ± 0.08 0.70 ± 0.14
restart 100 ± 0 971 ± 204 184 ± 7 445 ± 241 1973 ± 445 254 ± 31 699 ± 475
neigh 57 ± 2 36 ± 1 9 ± 1 21 ± 9 26 ± 4 6 ± 1 16 ± 7
enhan 8 ± 7 52 ± 14 26 ± 19 44 ± 8 153 ± 36 49 ± 11 109 ± 27

solution escapes from the basin of attraction, and the local optima generated by PLS
are non-dominated by the current NDA ( = #success/#restarts). The improvement
probability is the probability that, if the restart escapes from the basin of attraction of
its parent, the generated local optima from that restart are non-dominated by the cur-
rent NDA (= #success/#escapes). Because pIPLS can get stuck after few restarts,
we have chosen N = 10 for an initial NDA with diverse solutions - 5-15 solutions -
and M = 20. On average, the number of swaps for 10 multi restarts of PLS are about
7 ∗ 105 with a variation of about 105 swaps. The measurements are started after the
initial phase of N swaps that are multi restarted PLSs for all the algorithms.

In Figure 2(a), the escape probability of pIPLS is about 1 which means that m-
exchange path guided is proposing solutions that do not belong to the parents’ basin
of attraction. On the other hand, the escape probaility of IPLS varies very much with
m. For small m, the probability of escaping the local optima is close to 0 and for m
large it is close to 1. On the other hand, Figure 2(b) reveals that, when escaping, the
improvement probability of IPLS is larger than of rIPLS and pIPLS. Furthermore, the
improvement probability decreases whenm increases for IPLS, whereas this probability
increases when m increases for rIPLS. The success probability for rIPLS is the highest,
see Figure 2(c), suggesting the rIPLS is enhancing its NDA more often than the other
two algorithms. By definition, for a given m, the success probability from Figure 2(c)
are equivalent with the escape probability from Figure 2(a) multiplied with the improve-
ment probability from Figure 2(b). The bad performance of pIPLS, as seen in Figure 2
(d), is due to the fact that it gets stuck very quickly (after about 3 ∗ 105 swaps) in local
optima where no improvements are possible. Clearly, one needs to mix uniformly ran-
dom mutation for exploration and path-guided mutation for exploitation of the search
space. In the following paragraph, we compute the performance of the IPLS and rIPLS
algorithms and investigate their success and improvement probabilities.

Performance assessment. The hypervolume indicator is a unary performance measure
designed to compare the Pareto fronts given by multi-objective combinatorial optimiza-
tion algorithms [10]. The larger the hypervolume, the larger is the volume between a
reference point, in this case the worst point in the bi-variate normalized search space,
and the Pareto front. The larger the hypervolume the better the algorithm performs. An-
other method to compare the performance of two (and more) algorithms are the attain-
ment functions (EAF). The unary attainment function gives the probability of attaining
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Fig. 3. Attainment surfaces at 1%, 25%,50%, 75% and 100% (lines from bottom left to top right)
of the normalized outputs of a) PLS and b) rIPLS with m = 10. The objective values found at
1% EAFs correspond to the best NDA found over 50 runs and those found at 50% EAFs are the
median outcome.

each point (independently) in the objective space. Certain contour surfaces through cer-
tain probabilities can then be drawn. For comparison purposes, a normalization function
assigns to the best point(s) in a dimension the value 1 and to the worst point(s) the value
2. All the other points are scaled to a value between 1 and 2 in both dimensions, and the
reference point is {2, 2}.

For this second experiment, the performance of three algorithms - that are PLS, IPLS
and rIPLS - are compared. PLS is restarted for M = 110 runs - that is about 77 ∗ 105

swaps. IPLS and rIPLS are run also for 77 ∗ 105 swaps, where N = 10.
Table 1 records the hypervolume of PLS and the maximum, minimum and the av-

erage of IPLS and rIPLS, whereas Figure 4(a) shows the hypervolume from small
(m > 2) to large exchange rates (m = 17) for IPLS and rIPLS. Mann-Whitney nonpara-
metric two-sided test for unary hypervolume indicators with significance level p < 0.05
compares the outputs of: i) m instances of rIPLS with PLS, ii) m instances of rIPLS
with PLS, and iii) m instances of rIPLS with corresponding instances of IPLS. The
hypervolume of PLS is significantly smaller than the hypervolume of rIPLS for all the
15 tested m values. 14 from 15 instances of IPLS have the hypervolume statistically
higher than PLS. 10 from 15 instances of rIPLS have the hypervolume higher than
IPLS with the same m-exchange value. Both PLS and IPLS’s hypervolumes are signif-
icantly smaller than the average hypervolume of rIPLS. In Figure 3, the EAFs of PLS
have larger, and thus worse, values that EAF’s of rIPLS showing that rIPLS is finding
faster good (smaller) solutions than PLS.

The performance of the three algorithms can be partly explained with aspects of
their dynamical behavior. PLSs are always restarted 100 times, whereas rIPLS restarts
and improves the NDAs more often than the two other algorithms. In Table 1 and
Figure 4(c), IPLSs are restarted, on average, about 2-3 times more often than PLS,
and rIPLSs even 4-6 times more often. In Table 1 and Figure 4(d), the number of neigh-
borhoods explored within PLS is the lowest for rIPLS and the highest for PLS. For m
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Fig. 4. a) The unary hypervolume indicator, b) the average number of enchangements in current
NDA, c) the average number of restarts per run and d) the average number of neighbourhood
exploration per PLS for 15 exchange mutations

large, the number of restarts multiplied with the number of neighborhood searches is
about 570 for IPLS, rIPLS, and PLS. The product increases for small values of m. Also
in Figure 4 (b) and Table 1, the number of times the NDA is improving is the largest for
rIPLS and both IPLSs improve their Pareto front more often than PLS. For a given m,
the success probability from Figure 2 (c) multiplied with the number of restarts from
Figure 4 (c) is equal with the number of NDA enhancements from Figure 4 (b).

We conclude the rIPLS is the most performant algorithm tested because of the high
escape and success rates, and a larger number of restarts, leading to a larger number
of Pareto front enhancements. That means that the IPLS and rIPLS algorithms perform
their best when the used exchange mutation is below half of the number of facilities
n/2. This is reflected in the larger hypervolume indicator.



494 M.M. Drugan and D. Thierens

5 Conclusions

In this paper, we have introduced a path-guided mutation that mutates a solution in the
direction of another solution in the population. We have applied it in a multi-objective
setting, where the mutated and the guiding solutions are members of the non-dominated
Pareto set. Path-guided mutation exploits the structure of the landscape since it pro-
tects the commonalities between the mutated and guiding solutions. At the same time
it explicitly specifies the mutation step size. These properties make it well suited to be
applied as perturbation operator for iterated Pareto local search algorithms. To balance
the exploitation and exploration of the IPLS, a mixture of path-guided mutation and
uniform random mutation is used. We have tested the algorithm on instances of the bi-
variate quadratic assignment problem. We proposed to associate the performance of an
algorithm with some simple measurements like the escape probability from a local opti-
mum and the speed of NDA enhancements. As expected, the IPLS with uniform random
mutation, and the rIPLS with mixed path-guided and uniform random mutation, both
outperform the multi-restart PLS. The rIPLS also outperforms the IPLS because it has
a higher escape probability and a higher success probability than IPLS. As future work,
we want to develop an algorithm that adapts its mutation to escape local optima based
on the speed of NDA enhancements.
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Abstract. One of the annual issues that has to be addressed in En-

glish football is producing a fixture schedule for the holiday periods

that reduces the travel distance for the fans and players. This problem

can be seen as a minimisation problem which must abide to the con-

straints set by the Football Association. In this study, the performance

of selection hyper-heuristics is investigated as a solution methodology.

Hyper-heuristics aim to automate the process of selecting and combin-

ing simpler heuristics to solve computational search problems. A selection

hyper-heuristic stores a single candidate solution in memory and itera-

tively applies selected low level heuristics to improve it. The results show

that the learning hyper-heuristics outperform some previously proposed

approaches and solutions published by the Football Association.

Keywords: Hyper-heuristic, Metaheuristic, Local Search, Machine

Learning, Sports Scheduling.

1 Introduction

The idea behind hyper-heuristics dates back to the 1960s, although the term was
introduced by Dezinger et al. [1]. A hyper-heuristic is a high level problem solving
methodology that performs a search over the search space generated by a set of
low level heuristics [2]. One of the hyper-heuristic frameworks is concerned with
automating the process of selecting and combining several simple heuristics to
solve a computational search problem. A selection hyper-heuristic is based on this
framework which operates on a set of perturbative low level heuristics performing
a single point search, storing only one solution, and applying different heuristic
strategies to determine which heuristic to apply, and move acceptance strategies,
to determine whether the move should be accepted or not [3,4]. Bilgin et al.
[5] provide a performance comparison of a variety of selection hyper-heuristics
which combine different heuristic selection and move acceptance criteria. More
on hyper-heuristics can be found in [6,7,8].

Scheduling, particularly sports scheduling, is a largely studied area [9]. In
American sports, it is possible to schedule road trips, where a team travels to
different locations, stadiums, without returning home. This is not necessary in
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England as the distance between any two teams is relatively small. Therefore
minimising the travelling distance over the entire season is not possible. The
need for scheduling with distance minimisation in English football however does
arise over the holiday period (Boxing Day and New Years Day) as fans do not
wish to travel long distances during this time of the year. The travelling salesman
problem is the problem of connecting each city together and returning back to
the starting city [10]. This problem differs from the travelling salesman problem
as it is only necessary for each city to visit only one other city.

Two approaches to the problem have been previously made by Kendall [11,12].
The first approach [11] is a two phase process. Depth first search is used to create
fixtures for Boxing Day and New Years Day and then a local search algorithm
aims to satisfy the remaining constraints to generate a feasible schedule, with
the minimal distance possible. Although Kendall provides an improved fixture
schedule from those published by the Football Association it could take up to
30 hours for a feasible solution to be created. Kendall [12] then adopts a dif-
ferent approach to improve the existing run time of the previous solution, a
CPLEX and Simulated Annealing approach is adopted, reducing the runtime
to approximately 4 minutes. In this paper, a set of hyper-heuristics combining
different heuristic selection methods and acceptance criteria are applied to the
fixture scheduling problem where they are evaluated and compared based on
their ability to produce good quality solutions.

2 Preliminaries

Scheduling fixtures is a real world constraint optimisation problem. Due to the
large size of the search space, it is impractical to use an exhaustive method,
since the computation time becomes excessive [12]. Therefore, an alternative
intelligent search method is needed. In this study, we investigate hyper-heuristics
for solving this problem.

Hyper-heuristics can be considered as a set of general search methods that
can be applied to computationally hard problems [6]. They are search and opti-
misation methodologies to select or generate heuristics. This study focuses on a
selection hyper-heuristic framework as illustrated in Figure 1. In this framework,
a perturbative low level heuristic H is selected by one of the heuristic selection
strategies, such as, simple (uniform) random selection, which is to applied to
Scurrent to create a new solution Snew. A perturbative heuristic accepts a com-
plete solution, perturbs it, if necessary and returns a new solution. Whether
the new solution Snew is accepted or rejected is determined by a move accep-
tance criteria, such as, simulated annealing. This process is repeated until some
termination criteria is reached. A selection hyper-heuristic will be identified as
<heuristic selection method> − <move acceptance criterion> from this point
onward. Determining which low level heuristic to apply is done by the heuristic
selection methods.

A selection hyper-heuristic approach has been chosen here as, at each state
of the problem (the distance), an operation, low level heuristic, can be chosen
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1 generate an initial candidate solution Scurrent

2 while(termination criteria not satisfied){
3 select a heuristic (or subset of heuristics) H from {LLH1, ..., LLHn}
4 generate a new solution Snew by applying H to Scurrent

5 decide whether to accept or reject Snew

6 if(Snew is accepted) then

7 Scurrent = Snew

8 }
9 return Scurrent;

Fig. 1. A selection hyper-heuristic framework

which performs well. It allows the combination of hill climbers, to obtain a local
optimum, and also mutational heuristics, to explore the search space. [13] and [3]
discuss different selection hyper-heuristic frameworks for utilising hill climbers
and mutational heuristics efficiently. In this study, a generic framework is used.

Choice function (CF) is a heuristic selection method. It uses a simple learning
capability based on a scoring mechanism that evaluates the low level heuristics’
most recent performance and the time that has passed since the last invocation.
As time progresses, it chooses more relevant low-level heuristics to apply to the
solution, increasing the likelihood of finding an optimal or good quality solution.
One term of the choice function allows each low level heuristic another opportu-
nity to be called (even if it has a poor recent performance) to see if an improved
solution can be generated, thus allowing the opportunity to escape local minima
and not punish, or discriminate against, the low-level heuristics for previously
poor solutions. The heuristic with the maximum score is selected for invocation
at each step. Most of the simple hyper-heuristic components are investigated in
[6]. The authors describe hyper-heuristics that combine different heuristic se-
lection methods, including simple random (SR) and choice function with two
move acceptance methods; accept all moves (AAM) and only improving moves
accepted. The choice function−accept all moves hyper-heuristic is reported to
outperform the other methods in solving a scheduling problem. Choice function
as a hyper-heuristic component has also been used in [14] and shown to yield
good results. Another simple acceptance method is accept improving and equal
moves (AIEM).

Reinforcement learning (RL) heuristic selection is classified as an online learn-
ing hyper-heuristic where learning takes place while the algorithm is solving an
instance of the problem [15,16]. A utility value is assigned to each low level
heuristic at each iteration. If the selected heuristic improves the current solution
then its score is increased by some ratio. Equally if the heuristic decreases the
evaluation (assuming a minimisation problem) its score is reduced by some, dif-
ferent, ratio. Low level heuristics are then chosen based upon the highest score
for the current state of the problem.

There are numerous reinforcement learning approaches. This paper uses a
QV-Learning approach which is an extension of Q-Learning and Sarsa where
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the state values are taken into consideration. QV-Learning, [17], uses Equation
1 to evaluate each heuristic at each state.

Q(s, a) = R(d, a) + γQ(s, a) (1)

Equation 1, defines two matrices, consisting of state, where state is the current
solution, and actions which relate to the low level heuristics. Q is a matrix
that holds an integer value for each heuristic, a, that specifies its quality at
each stage of execution. R is another matrix holding rewards or punishments
based on the quality of the solution generated by a. Where s is the current
state of the solution, the current solution distance, and d is the reduction or
increase made to the solution. γ is determined experimentally and typically
0 ≤ γ ≤ 1. Numerous studies have been made using reinforcement learning with
feasible solutions. Burke et al. [16] provides a number of advantages when using
the online learning approach, where the learning takes place as the algorithm
is solving the problem. Reinforcement learning has been used in a variety of
different scheduling problems [18,19,20,21], each of which report to have found
optimal solutions.

Bai and Kendall [22] used simulated annealing (SA) [23] as a hyper-heuristic
move acceptance criteria which performed well for solving a shelf allocation
problem. Bilgin et al. [5] reported the success of simulated annealing with a
linear cooling schedule as a move acceptance criteria for hyper-heuristics when
investigating examination timetabling benchmark instances. Simulated anneal-
ing accepts all improving moves, and the worsening moves are accepted with a
probability given in Equation 2.

e−
Δf

ΔF (1−t/M) , (2)

where Δf is the fitness change, ΔF is the (estimate of) maximum fitness change,
t is the current step and M is the maximum number of steps.

Great deluge (GD) algorithm is an optimisation heuristic proposed by Dueck
[24]. This method uses a threshold that decreases in time at a given rate (e.g., lin-
early) representing an expected solution quality. Improving moves are accepted,
while worsening moves may also be accepted if it is better than the threshold.
This acceptance criteria is used as a hyper-heuristic component with simple ran-
dom in [25] for solving a mobile telecommunication network problem. The same
hyper-heuristic is reported to perform well over a set of benchmark functions in
[5]. More on selection hyper-heuristic components can be found in [6,7,3,16].

3 Hyper-Heuristics for Sports Scheduling

The English Football League is made up of four leagues known, at the time
of writing, as The Barclays Premier League, Coca-Cola Championship, Coca-
Cola League One and Coca-Cola League Two. Each league consists of 24 teams
except for the Barclays Premier League which has 20 teams. Therefore there
will be a total of 46 fixtures on both Boxing Day and New Years Day (that
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is 92 teams each having to play). Each league can be treated as an individual
search space with the exception of teams that are classified as paired teams,
these are teams that are geographically close together and have limits on how
many paired teams may play in the same location on the same day. Our goal
is to generate a set of fixtures which are more efficient in terms of travelling
distance (i.e. lower travelling distances) than the fixtures that are released by
the Football Association each June/July whilst ensuring that all constraints are
respected. This section describes the problem and defines the constraints that
have been put in place by the Football Association, the constraints presented
here are based on [11], which can be referred to for a more complete discussion.

C1. The first constraint, home and away, requires that if a team plays at home
on Boxing Day, then it must play away on New Year’s Day. Equally, if a team
plays at home on New Year’s Day, it must play away on Boxing Day.

C2. This constraint, playing twice, requires the same teams not to play each
other on both New Year’s Day and Boxing Day.

C3. The third constraint, known as paired teams, requires paired teams not
to play each other over the holiday period. Paired teams are teams that are,
typically, geographically close to each other. This constraint has been put in
place by the Football Association due to the policing requirements. We treat this
as a hard constraint, however the Football Association do occasionally violate it.

C4. A pair clash occurs when two or more paired teams play at home on the
same day. This constraint, pair clashes, restricts the total number of paired
teams playing at home, which cannot exceed the limits specified in the Football
Associations fixtures during the holidays.

C5. This constraint, London and Manchester based, restricts the number of
London-based clubs that can play at home which must not exceed the limits
used by the Football Association during the holidays. Similarly, there is a limit
on the London based Premier League teams and Greater Manchester clubs that
can play at home on the same day.

The main objective is to minimise the total travelling distance that each team
is required to undertake during the holiday period; see Equation 3.

min{
n∑

x=0

n∑
y=0

Dx,yXx,y} (3)

where Dx,y is the distance, in miles, between team x and team y and Xx,y is 1
if team x is playing team y or 0 otherwise.

The selection hyper-heuristic framework shown in Figure 1 is used during
the experiments. The performance of twelve hyper-heuristics that combine the
following heuristic selection and move acceptance criteria combinations are in-
vestigated: {simple random, choice function and reinforcement learning} versus
{simulated annealing, great deluge, all moves accepted, accept improving and
equal moves}. Six low level heuristics are implemented which do not allow the
violation of any of the five hard constraints, explained in the problem definition,



Scheduling English Football Fixtures over the Holiday Period 501

throughout execution with the exception of when the initial Boxing Day or New
Years Day fixtures are generated. Each time a new solution is generated a check
is made using another heuristic to ensure that the swaps made do not violate
constraints, if it does the move is not made. In Figure 1, low level heuristics are
selected using heuristic selection at line 3 before applying the heuristic at line 4.
The low level heuristics are described as follows.

LLH1: A hill climbing heuristic that aims to improve the distance for Boxing
Day. LLH1 selects a random league and two random teams and performs a swap,
if the solution yields a worse fitness value, the original solution is returned. The
swap is only made for home teams.

LLH2: A mutational heuristic that allows the solution to move away from local
optima. A random league and two random teams are selected and swapped.
Providing there is no violation of constraints the move is accepted regardless of
its fitness value.

LLH3: A mutational heuristic which randomly selects a league and a fixture.
The home and away teams of the chosen fixture are swapped having only a
minor effect on the distance but allowing a new range of home or away swaps to
occur. The main purpose of LLH3 is to conform to C4, specified in the problem
definition.

LLH4: A hill climbing heuristic that selects a random league and two random
teams and performs a swap. It uses delta evaluation, evaluating only the changed
items in the solution, to evaluate the swaps and if either of them have a distance
greater than 120miles (we use 120miles as this represents about 2 hours travelling
time) the original solution is returned.

LLH5: A next gradient hill climbing heuristic. A random league is selected and
each home team is swapped with the one below, when ordered as a list of fixtures.
Each time a swap is made, if the fitness value is improved the move is accepted.
This happens for the entire league each time the heuristic is used.

LLH6: A hill climbing heuristic that relates to LLH1. A random league and two
random teams are selected and swapped. If the move results in a worse move the
original solution is returned. The only difference between LLH1 and LLH6 is
that LLH6 also swaps away teams. This has been added as a separate heuristic
as the performance of the two heuristics does differ.

4 Experimental Results

Two datasets are used during the experiments, the 2009-2010 season fixture
set along with the 2005-2006 season from the top four divisions in England;
Premier League, Coca Cola Championship and Division One and Two. The 2005-
2006 season was selected to be able to compare our results to the previously pro-
posed approaches. Season 2009-2010 was used so that the results generated here
could be compared to the latest season. Distances were collected based on the
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Fig. 2. Box plot of total distances found in all runs by each hyper-heuristic (displaying

maximum, upper quartile, median, lower quartile and mininimum) for (a) 2005-2006

and (b) 2009-2010 problems.

postcodes of the football stadiums from greenflag (http://www.greenflag.co.uk
- last accessed 4th April 2010).

An Intel Core 2 Duo, 2GHz laptop with 2.00GB memory was used to conduct
the experiments. All of the selection and acceptance method combinations were
executed fifty times, each of which generated a random initial fixture list; there
were no pre-defined fixture lists. They were allowed to run up to the maximum
number of 100,000 iterations or until 6,000 non-improving moves were made.
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Table 1. The comparison of the total distances for both days against the Football As-

sociation (FA), local search approach [11], CPLEX and simulated annealing approach

[12], and the best performing hyper-heuristics.

Instance FA Kendall [11] Kendall [12] Hyper-heuristics

2005-2006 10631 6917 6020 5547 (RL−GD)

2009-2010 8621 - - 5633 (RL−SA)

Figure 2 summarises the results obtained by using different hyper-heuristics
for the problem. The best results are obtained using reinforcement learning−great
deluge and reinforcement learning−simulated annealing for 2005-2006 and 2009-
2010 fixtures, respectively. Hyper-heuristics produce improvements over the pub-
lished fixtures shown in Table 1. Indeed both approaches by Kendall in [11,12]
improve the distances generated by the Football Association. However, we do
not need to explicitly compare against these results due to the differences in
collecting the distance data. A rough comparison does show that the hyper-
heuristic approach is superior. When the average performance of hyper-heuristics
are compared, choice function−great deluge and reinforcement learning−accept
all moves are better than the others for 2005-2006 and 2009-2010 fixtures, respec-
tively. Wilcoxon test shows that both of these hyper-heuristics perform signifi-
cantly better than the simple random heuristic selection based hyper-heuristics
within a confidence interval of 95%. Almost the rest of the learning hyper-
heuristics deliver a similar performance.

Simple random requires a much shorter computational time (4 seconds on av-
erage) than choice function (12 seconds on average) and reinforcement learning
(52 seconds on average) for solving a given problem instance. However, the learn-
ing approaches, choice function and reinforcement learning, do produce improved
results. It can be observed that, on average, as the computation time increases,
typically with the time spent for learning, the results improve. The results il-
lustrate that there is a trade off between time and quality of solutions. Simple
random as a heuristic selection runs quicker than any of the other heuristics yet
produces the worst results. Choice function improves the results of simple ran-
dom, by approximately 5%, yet increases the run time by approximately three
times as much, on average. Finally, reinforcement learning as a heuristic selection
method provides the highest ranked results for each of the criteria. It dramati-
cally improves the solutions generated by simple random but the computation
time is much higher.

5 Conclusion

Each combination of heuristic selection and move acceptance within a selection
hyper-heuristic framework improved the results and provided a good quality so-
lution to the sports scheduling problem in reasonable time whilst conforming to
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the constraints specified. While applying the 2005-2006 dataset, the reinforce-
ment learning−great deluge hyper-heuristic made savings to the Boxing Day
and New Years Day fixtures of 44.19% and 50.28%, respectively, whilst even
comparing results from the current season, dataset 2009-2010, it was possible
to improve the Boxing Day fixtures by 41.42% and New Years Day fixtures by
28.29% using the reinforcement learning−simulated annealing hyper-heuristic.

A trade off must be made between computation time and quality of solutions.
For each of the datasets, reinforcement learning found the best solutions but had
a runtime of at least two times than that of choice function and over ten times
the amount compared to simple random. Reinforcement learning produced the
most consistent set of solutions on average where each move acceptance criterion
generated similar results and, with the exception of great deluge, all executed
in similar times. Therefore we conclude, that reinforcement learning is the best
heuristic selection component to be used within hyper-heuristics for solving this
sports scheduling problem.
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Abstract. Probabilistic models of high-order statistics, capable of ex-

pressing complex variable interactions, have been successfully applied by

estimation of distribution algorithms (EDAs) to render hard problems

tractable. Unfortunately, the dependence structure induction stage in

these methods imposes a high computational cost that often dominates

the overall complexity of the whole search process.

In this paper, a new unsupervised model induction strategy built upon

a maximum flow graph clustering technique is presented. The new ap-

proach offers a model evaluation free, fast, scalable, easily paralleliz-

able method, capable of complex dependence structure induction. The

method can be used to infer different classes of probabilistic models.

1 Introduction

Estimation of Distribution Algorithms (EDAs) extend the classical framework of
Evolutionary Algorithms (EAs) with a novel approach consisting in learning and
exploiting information from selected individuals. Global statistical information
is extracted from promising solutions and used to infer a probabilistic model.
New solutions are then sampled from the probability distribution model in order
to generate the next population.

The search for an appropriate model in EDAs capable of modeling higher order
dependencies, requires many model evaluations with regard to the population.
Given the implied population sizes as the dimension of the problems increases,
the computational cost of model building may quickly exceed economical practi-
cality. Recent benchmarking and profiling results showed that easily more than
90% of EDAs running time may be spent in the model building phase [1].

Recent efforts have aimed making higher order EDAs computationally less
expensive. Enhancements and modifications of the original methods considered
parallelization [2,3] and hybridization with local search methods [4], the usage
of iterative [5] and sporadic model building [6] or incorporation of initial knowl-
edge [7]. More direct approaches aim to reduce the complexity of model building
by restricting the search over a reduced set of variables in each epoch [1].
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Another line of research concentrate on the usage of global statistics extracted
from the data to reduce or bypass the number of model accuracy evaluations. The
improved Estimation of Dependency Networks Algorithm [8] uses a multivari-
ate dependency network approximation by considering only bivariate statistics.
In another work [9], the O(n3) model building of the Extended Compact Ge-
netic Algorithm (eCGA) is successfully replaced by a variable correlation guided
search of linear complexity. Some methods completely avoid the goodness-of-
fit evaluations of the models with regard to the data, by clustering a pairwise
variable interaction matrix. The Dependency Structure Matrix Genetic Algo-
rithm (DSMGA) [10] and its extension to hierarchical problems DSMGA++
[11] both use dependency structure matrix clustering techniques for linkage
learning. These methods still employ a costly search process to find a cluster-
ing setting that minimizes a metric based on the Minimum Description Length
(MDL) principle. In [12] the authors use the affinity clustering of the sampled
mutual information matrix to obtain a marginal product model factorization
which is not able to represent overlapping linkages but may suffice for many
applications.

In this paper we further explore the confluence between clustering algorithms
and EDAs, where graph clustering algorithms are applied to pairwise interaction
statistic matrices to reveal dependency structures. We term this class of methods
as Graph Clustering assisted EDAs (GCEDAs). We are especially interested in
finding efficient clustering algorithms allowing the induction of various proba-
bilistic model classes.

Here, we focus on the class of flow-based graph clustering algorithms as they
are know to be relatively fast and simple while some variants still being able
to handle overlapping clusters. From the variants built upon this idea we have
chosen to use the Markov Clustering Algorithm (MCL) [13], as it has a simple
and elegant formulation based on just two operators, proved effectiveness in clus-
tering real-world biological data [14], good documentation and available source
code under GNU General Public License1.

The main technical contribution of this paper lays in showing that given the
pairwise interaction map of the variables, a simple unsupervised graph clustering
algorithm is able to assist qualitative linkage learning by allowing the inference of
different probabilistic models like Bayesian Networks, overlapping linkage models
and marginal product models. Hard optimization problems, characterized by
non-separable, high-order of interactions among the variables, with deceptive
subproblems are solved.

The following section provides some preliminaries and a discussion about how
an EDA can use the result of graph clustering for probabilistic model building.
Section 3 presents an EDA, which implements the ideas and particular cluster-
ing techniques discussed in Section 2. Section 4 contains the description of our
experimental setup, the results and a discussion of our findings related to the
MCL assisted EDA are given in section 5. Finally, Section 6 discusses results
and implications of this work and outlines some future work.

1 http://www.micans.org/mcl/

http://www.micans.org/mcl/
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2 Preliminaries

Let G = (V,E) denote the input graph for the graph clustering algorithm, with
V and E denoting the node set and edge set respectively. Let A be the |V ||V |
adjacency matrix, with A(i, j) denoting the weight of the edge between the vertex
vi and the vertex vj . In our setting, this weight represent the strength of the
pairwise interaction between variables, as extracted from the data available for
model building. In this paper, the pairwise dependency is quantified by sampled
mutual information.

2.1 Graph Clustering Paradigm, Stochastic Matrices and Flows

Maximum flow clustering algorithms rely on the following core idea: by sim-
ulating a special flow within a graph, which promotes flow where the current
is strong, and reduces flow where the current is weak will reveal the cluster
structure within the graph, as the flow across borders between different groups
diminish with time, while it increases within the group.

Simulation of flow through a graph is easily done by transforming the adja-
cency matrix into a column-stochastic square matrix, where each column sums
to 1. This matrix, which we denote by M , can be interpreted as the matrix of
the transition probabilities of a random walk (or a Markov chain) defined on the
graph, where M(j, i) represents the probability (stochastic flow) of a transition
from vertex vi to vj .

The flow matrix M is obtained by normalizing the columns of the adjacency
matrix to sum up to 1. Flow expansion can be simulated by computing powers
of the flow (Markov) matrix M.

2.2 Markov Clustering Algorithm

The MCL algorithm [13] is a fast and scalable unsupervised graph clustering
algorithm, based on simulation of stochastic flow in graphs. It offers several ad-
vantages, like a simple, elegant mathematical formulation, robustness to topo-
logical noise [14], support for easy paralellization and adaptation via a simple
parameter enables the obtaining of clusters of different granularities.

MCL iteratively simulates random walks within a graph by applying two
operators called expansion and inflation, until convergence occurs. At the end
of each inflation step a pruning step is also performed, in order to reduce the
computational complexity by keeping M sparse.

Intuitively, the MCL process may be regarded as alternative expansion and
contraction of the flow in the graph. The expansion step is responsible in spread-
ing the flow out of a vertex to potentially new vertices and with the strengthening
of the flow to those vertices which are reachable by multiple paths. This has the
effect of enhancing within-cluster flows as there are more paths between the
nodes belonging to the same cluster. The inflation operator is responsible for
both strengthening intra-cluster flow and weakening inter-cluster flow of current
and by this, introducing a non-linearity in the distribution of the flows. At the
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beginning the flow distribution is relatively smooth and uniform, but with each
iteration it becomes more and more peaked. In the end, all the nodes within
a tightly-linked group of nodes will start to flow towards one node within the
group, forming star sub-graphs associated with the MCL limits.

The idealized Markov Cluster process, consisting just from the expansion and
inflation operators is known to converge quadratically in the neighborhood of so
called doubly idempotent matrices [13]. In practice, the numbers of epochs until
convergence is reported to be nearly always far below 100.

2.3 Interpretation of MCL Clustering as Dependency Models

MCL iterants Mt are generally diagonally positive semi-definite matrices. Using
the property that minors of a diagonally positive semi-definite matrix are non-
negative, in [15] it is shown that Mt-s have a structural property which associates
a directed acyclic graph (DAG) with each of them. These DAGs generalize the
star graphs associated with the MCL limits.

We present several approaches on how the information from MCL iterants
can be conveyed in dependency models able to represent and exploit linkages.

In the first approach, the DAGs represented by Mt-s are directly used for
defining the structure for a Bayesian network, with the edges representing the
conditional dependencies between variables. Then, the parameters, which consist
of the conditional probabilities of each variable given the variables that this
variable depends on, are extracted from the data in the same way as in BOA [16]
or EBNA [17]. The obtained Bayesian network will encode the joint probability
distribution of the variables and can be used to sample the next generation. This
approach presents two small impediments. First, one has to decide from which
Mt to construct and use the Bayesian network, thus a few model evaluations
against the data still have to be computed. The second issue relates to the rare
occasions where a MCL iterant contains cycles. Before performing the parameter
extraction, these cycles must be detected and eliminated.

In a second approach, DAGs are interpreted as clusters by taking as cores all
end nodes (sinks) from the DAG, and by attaching to each core all the nodes that
reach it with a flow amount greater than a threshold. This procedure may result
in clusters containing overlap. The extracted linkages can be used to perform
building block wise crossover like in DSMGA [10] or DSMGA++ [11] or they
can be used to build overlapping linkage model based probability distributions.

The third approach is the cheapest one, as it deals only with the last iterant,
when the stochastic flow matrix M is completely converged. Here, the nodes
have found one “attractor” node to which all of their flow is directed, corre-
sponding to only one non-zero entry per column in M . Nodes sharing the same
“attractor” node are grouped in clusters. This approach is suitable for model-
ing non-overlapping building blocks, by building marginal product models as in
eCGA. [18].

Excepting the first approach, the dependency structure inferring is completely
autonomous, as its does not need to check the model fit with regard to the
data.
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3 MCL Assisted EDA

Wishing to present an EDA with unsupervised model building, capable of model-
ing complicated variable interactions, we employ the second interpretation of the
MCL iterants to obtain a overlapping linkage model based probabilistic model.
We name this algorithm Markov Clustering EDA (MCEDA). The details of the
algorithm are presented in the followings.

In this paper, the degree of pairwise dependency between variables is calcu-
lated using sampled mutual information between two variables and record into
an adjacency matrix A, which will be the input of the graph clustering algorithm.

The transformation of A in a stochastic Markov matrix is handled by the
MCL algorithm by normalization of the columns to sum up to 1.

3.1 The Overlapping Linkage Model (OLM)

In MCEDA, the multivariate variable interactions are modeled with the use
of overlapping linkage models (OLMs), which closely resembles the marginal
product model adopted by the eCGA [18]. The difference is that OLM models
subsets of variables jointly as clusters, allowing overlaps, in contrast with parti-
tions, which always divides the variables in collectively exhaustive and mutually
exclusive blocks. The clusters can naturally represent building blocks, providing
a direct linkage map of the variables, thus we will use this terms interchangeably
in the context of OLMs. Clusters together with the marginal distributions over
them form the OLMs.

3.2 Dependency Structure Building and Sampling

The clusters that form the basis of the OLMs are extracted from the iterants
Mt of the MCL algorithm.

For each node a potential building block is formed, by grouping together
all nodes that reach it with a flow amount greater than a threshold Fmin. Basic
clusters of size 1 are only allowed, if the described single position is not contained
in any other cluster. After all iterants have been processed, the procedure returns
the unique entries of the potential building block list. This sorting must be
performed, as the same cluster may be detected several times from different
iterants, or even from the same Mt in the rare cases when it contains cycles.

The building block extraction is depicted in Function ExtractBBs.
Please note that a practical implementation does not have to store all the

iterants for a final batch processing. It is described in this way to keep the pre-
sentation clean and simple. A clever building block extraction works in interplay
with the MCL, processing each iterant right after it was computed, retaining the
unique building blocks in the same fashion.

After the building blocks are determined, their probability distribution is es-
timated by simply counting the frequencies in the data.

As the performance of the method did not seem to be very sensible on the
setting of Fmin, we use a fixed value of 10e− 4.
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Function ExtractBBs(Mlist) returns BBlist
BBlist ← ∅;1

//each iterant from the MCL algorithm is processed2

foreach Mt from Mlist do3

//for all nodes find significant incoming flows4

for i ← 1 to size(Mt) do5

pBB ← find(Mt(i, :) > Fmin(i));6

if length(pBB) > 1 then7

BBlist ← BBlist
⋃

pBB;8

BBlist ← unique(BBlist);9

Algorithm 2: The Markov Clustering EDA
pop ← RandomInit();1

repeat2

ps ← Selection(pop); //select promising solutions3

{ps ← ReduceEntropy(ps)}; //optionally reduce entropy by LS4

A ← MutualInformation(ps); //extract global statistics5

Mlist ← MCL(A); //apply graph clustering6

BBlist ← ExtractBBs(Mlist); //extract dependency structure7

freq ← FrequencyCount(BBlist, ps); //compute marginal probabilities8

olm ← BuildMPM(BBlist, freq); //combine results into a OLM9

pop ← Sample(olm); //generate a new population using the model10

until convergence criteria is met ;11

The building blocks, together with the frequencies obtained from the data
form the OLM model. This probabilistic model is sampled by enumerating the
building blocks in a random order, and choosing a configuration according to
the registered probabilities.

3.3 The Markov Clustering EDA

Starting from a random population, the MCEDA applies the process of evalua-
tion, selection, MCL assisted OLM model-building and sampling until a halting
criterion is met, which is usually a combination of several criteria like computa-
tional and time resources spent, amount of progress between epochs, the energy
of best solution found so far etc.

As the method relies only on pairwise information statistics, the signal of this
measure must be relatively strong. A good entropy reduction of the samples used
to generate the statistics can be achieved by performing a local search, and/or
using a big population size with a high selection pressure.

Algorithm 2 summarizes the structure and workings of the method.
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4 Experiments

In this paper the class of additively decomposable functions (ADFs) with de-
ceptive trap subproblems is considered, a test bed which is widely used in the
literature as benchmarking problems[16,19,20].

4.1 Test Functions

The concatenated trap-5 [16] is an ADF based on unitation (number of ones
from a binary string) measures, exhibiting a single global optimum in the string
formed exclusively from ones.

The input string is partitioned into disjoint shuffled groups of five bits each.
A 5-bit trap function is applied to each of the groups and the fitness of the
individual is the sum of the contributions of each 5-bit group.

Each subproblem of five variables has two competing schemata which are
maximally distant: (0, 0, 0, 0, 0) and (1, 1, 1, 1, 1). The fitness gradient leads
towards the string formed by zeros, thus low order statistics, taking into account
less than 5 variable statistics, may lead away from the optimal value, deceiving
the search.

Non-separability can be introduced by applying a fixed length, circular over-
lapping scheme between the trap-5 functions [19]. For example, for a prob-
lem with 3 subproblems and overlap length l = 2, the fitness is given by
trap5(y1y2y3y4y5)+trap5(y4y5y6y7y8)+trap5(y7y8y9y1y2), where yi is a ran-
dom permutation of the variables xi, meant to break the tight linkage. Every
building block shares 2l variables, l with each of its two neighbor.

4.2 Numerical Results

Experiments are performed with the simple concatenated trap-5 function with-
out overlap (denoted by ctf5o0), with overlap 1 (ctf5o1) and overlap 2 (ctf5o2).
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In order to test the scalability, for each ADF the number of subproblems k is
scaled from 6 to 18 by increments of 3, resulting in various problem sizes up to
90 variables.

The MCEDA performance is compared with the DSMGA having the following
parameterization: tournament selection of size 8, crossover probability 1 and no
mutation. Population sizes for both algorithms were determined by the bisection
method, requiring the methods to converge to the global optima in 10 out of 10
independent runs. The obtained population sizes are depicted in Figure 1 a).

In these experiments, the MCEDA did not use local-search for entropy reduc-
tion. The selection operator chooses the winners based on truncation selection,
where the best 10% of the population is promoted.

Figure 1 b) presents the scaling of the methods for the different problem types
and sizes. The results show a similar scaling of the two methods. MCEDA uses
slightly fewer objective function evaluations and works with smaller population
sizes than the DSMGA. The performance difference is most likely explained by
the following two factors:

– DSMGA uses a crisp value when dealing with variable interactions. The
mutual information matrix is transformed in a binary matrix according to a
threshold, where two variables are considered fully interacting or completely
independent. In contrast, the MCEDA works directly with the normalized
mutual information values, which can describe more nuanced, weighted levels
or interactions, facilitating the earlier discovery of better models.

– The MCEDA has a better diversity maintenance mechanism as a higher
number of building-blocks are extracted due to the usage of early iterants
of the MCL process. Furthermore, the method samples according to the
exactly observed frequencies in the data. DSMGA may confront the hitch-
hiking phenomena [21] where some low fitness alleles are promoted together
with high-quality building-blocks in above average individuals and the right
crossover must be performed to eliminate them.

The MCL graph clustering is much faster than the MDL based clustering used
by DSMGA, having a worst case complexity O(nk2) [13], where k is the pruning
factor (at most how many non-zero entries will be in a row of the stochastic
matrix - a very small number in practice, k << n). Clustering of 5000 nodes
by the MCL takes only a few seconds, compared with minutes, in the case of
DSMGA model-building.

5 Conclusions and Future Work

The paper proposes a new model inferring method for EDAs, where unsuper-
vised graph clustering algorithms are applied to global statistics extracted from
the population data, in order to reveal dependency structures that facilitates the
induction of various probabilistic model types. As there is no explicit search for
models, with computationally expensive fit-to-data evaluations, this approach
has the potential to alienate the model building cost bottleneck in EDAs, en-
abling them to scale up to truly large problem sizes. Graph clustering algorithms
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are usually highly paralellizable, some are able to work in a decentralized, dis-
tributed fashion and they are known to be able to cluster graphs containing
millions of nodes.

Test results show that the method is able to efficiently solve well known bench-
mark problems, exhibiting deceptiveness and non-separable building blocks. The
strength of the algorithm is also its weakness: as it relies solely on pairwise in-
teraction information, this information needs to be of good quality.

The great advantage of the presented method is that it allows the induction
of various probabilistic model classes.

Future work will advance the study and exploration of the GCEDA framework
by interpreting clusterings as directed acyclic graphs, in order to build Bayesian
networks. Other research will focus in the development of highly parallel model
building and large scale optimization.
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Abstract. This paper demonstrates that the performance of multiobjective me-
metic algorithms (MOMAs) for combinatorial optimization strongly depends on 
the choice of solutions to which local search is applied. We first examine the ef-
fect of the tournament size to choose good solutions for local search on the  
performance of MOMAs. Next we examine the effectiveness of an idea of ap-
plying local search only to non-dominated solutions in the offspring population. 
We show that this idea has almost the same effect as the use of a large tourna-
ment size because both of them lead to high selection pressures. Then we exam-
ine different configurations of genetic operators and local search in MOMAs. 
For example, we examine the use of genetic operators after local search. In this 
case, improved solutions by local search are used as parents for recombination 
while local search is applied to the current population after generation update. 

Keywords: Multiobjective genetic local search (MOGLS), evolutionary mul-
tiobjective optimization (EMO), hybrid algorithms, memetic algorithms, mul-
tiobjective combinatorial optimization. 

1   Introduction 

Since the mid-1990s [3], [4], local search has often been combined with evolutionary 
multiobjective optimization (EMO) algorithms to improve their search ability in the 
literature [11]. Hybrid EMO algorithms with local search were first proposed under 
the name of multiobjective genetic local search (MOGLS [3], [4], [7], [8]). Such a 
hybrid algorithm is also referred to as a multiobjective memetic algorithm (MOMA 
[6], [9]-[11]). In early studies [3], [4], [7]-[10], MOMAs were mainly applied to mul-
tiobjective combinatorial optimization problems. Recently local search has been also 
combined with EMO algorithms for multiobjective continuous optimization [13].  

It is well-known that hybrid evolutionary algorithms with local search have high 
search ability for single-objective combinatorial optimization problems. They  
are often called genetic local search (GLS) or memetic algorithms (MAs [14]). A 
number of issues for designing high-performance MAs have been discussed for sin-
gle-objective optimization [12], [16], [17] and multiobjective optimization [5]. An 
important issue is the balance between local search and genetic search especially in 
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MOMAs [6]. When this balance is not appropriately specified, the performance of 
EMO algorithms is often severely degraded by the hybridization with local search. 

Another important issue in the design of high-performance MOMAs is the choice 
of solutions to which local search is applied. This issue has not been discussed in 
detail in MOMAs for multiobjective combinatorial optimization in the literature. This 
is because the performance of EMO algorithms is usually improved by simply apply-
ing local search to good offspring as long as the balance between local search and 
genetic search is appropriate. In this paper, we examine a number of strategies for 
choosing local search solutions in MOMAs. For this purpose, we use a simple 
MOMA called S-MOGLS [2], which is a hybrid algorithm of NSGA-II [1] with local 
search. Its generation update mechanism is illustrated in Fig. 1. First genetic search 
(i.e., selection, crossover and mutation) is applied to the current population in the 
same manner as NSGA-II. Next local search is applied to the offspring population. 
Then the next population is constructed by choosing good solutions from the current, 
offspring and improved populations in the same manner as NSGA-II. Of course, simi-
lar MOMAs can be designed using other EMO algorithms instead of NSGA-II. 

In this paper, we examine the following strategies to choose local search solutions: 

 (i) Selection of local search solutions from the offspring population as in Fig. 1. 
(ii) Selection from non-dominated solutions in the offspring population. 
(iii) Selection from a merged population of the current and offspring populations. 
(vi) Selection from the current population. In this case, local search is used before 

genetic search as shown in Fig. 2. 
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Fig. 1. Our standard MOMA with the CP-GS-LS structure (S-MOGLS [2]) 
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Fig. 2. Our MOMA with the CP-LS-GS structure 
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2   Our Multiobjective Memetic Algorithm 

Let us consider the following k-objective maximization problem: 

Maximize ))(...,),(),(()( 21 xxxxf kfff= . (1) 

We explain our MOMA and its variants using this multiobjective problem. 
Our MOMA in Fig. 1 is a simple hybrid algorithm of NSGA-II with local search. 

We denote the structure of MOMAs in Fig. 1 as “CP-GS-LS” since local search (LS) 
is used after genetic search (GS) is applied to the current population (CP). The outline 
of our MOMA with the CP-GS-LS structure can be written as follows: 

[MOMA with the CP-GS-LS structure] 
Step 1: P = Initialize(P) 
Step 2: While the stopping condition is not satisfied, do 
Step 3:   P’ = Genetic Search(P) 
Step 4:   P’’ = Local Search(P’) 
Step 5:   P = Generation Update(PUP’UP’’) 
Step 6: End while 
Step 7: Return Non-dominated(P) 

First an initial population P with Npop solutions is randomly generated in Step 1 
where Npop is the population size. Then Steps 3-5 are iterated until a prespecified 
stopping condition is satisfied. Step 3 is exactly the same as the genetic search of 
NSGA-II. An offspring population P’ is generated. Step 5 is conceptually the same as 
the generation update mechanism of NSGA-II. The best Npop solutions are selected as 

the next population P from the merged population PUP’UP’’ in Step 5 using Pareto 
ranking and crowding distance. 

In Step 4, we use the following weighted sum fitness function for local search: 

)()()()( 2211 xxxx kk ffff λλλ +⋅⋅⋅++= , (2) 

where λ=(λ1 , λ2 , ..., λk) is a weight vector. Of course we can use other functions. We 
use a set of uniformly distributed weight vectors satisfying the following conditions: 

dk =+⋅⋅⋅++ λλλ 21    and   }...,,1,0{ di ∈λ  for ki ...,,2,1= . (3) 

The same weight vector generation mechanism was used in [15] and [18]. We specify 
d in (3) as d =100 to generate 101 weight vectors for two-objective problems.   

In Step 4, first a weight vector is randomly drawn from the weight vector set. Then 
a local search solution is selected from the offspring population P’ using tournament 
selection with replacement. Various values of tournament size are examined in our 
computational experiments. Each solution in P’ is evaluated by the weighted sum 
fitness function in (2) with the current weight vector. Local search is applied to the 
chosen solution. The weighted sum fitness function in (2) with the current weight 
vector is used to compare the current solution and its neighbors in local search.  

In local search, a neighbor is randomly generated from the current solution. When 
a better neighbor is found, the current solution is replaced with it. That is, we use the 
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first move strategy where local search accepts the first improved neighbor rather than 
the best move strategy. As a termination condition of local search, we use the total 
number of examined neighbors (say, NLS neighbors) in a series of local search from 
the local search solution (i.e., starting solution) chosen from the offspring population. 

The number of solutions to which local search is applied in each generation can be 
specified using the local search application probability PLS as PLSNpop. Since NLS 
neighbors are examined in a series of local search from each local search solution, the 
total number of examined solutions by local search in each generation can be calcu-
lated as PLS Npop NLS while Npop  solutions are examined by genetic search. 

3   Variants of Our Multiobjective Memetic Algorithm 

As shown in Fig. 1, local search is usually applied to the offspring population in 
MOMAs. This is, however, not necessarily the best structure of MOMAs. In general, 
the offspring population may include many poor solutions due to the random nature of 
crossover and mutation. In Fig. 3, we show an example of the current population and 
its offspring population in a single run of NSGA-II on the two-objective 500-item 0/1 
knapsack problem [19]. Conditions of this experiment will be shown in Section 4.  
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                          (a) Current population.                                       (b) Offspring population. 

Fig. 3. Current and offspring populations at the 200th generation in a single run of NSGA-II on 
the two-objective 500-item 0/1 knapsack problem (see Section 4 for parameter values) 

The application of local search to poor solutions is often the waste of time. In our 
MOMA, we can choose a good solution from the offspring population using tourna-
ment selection with a large tournament size. We can also use a strategy to apply local 
search only to non-dominated solutions in the offspring population. This idea is writ-
ten as follows in our MOMA in the previous session. 

Step 4:   P’’ = Local Search(Non-dominated(P’)) 

As shown in Fig. 3 (a), the current population does not include many poor solutions. 
This is because the deterministic generation update mechanism of NSGA-II always 
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chooses the best Npop solutions for the next population. It may be a good idea to apply 
local search to the current population. One possible implementation of this idea is to 
choose local search solutions from the current and offspring populations. We denote 
this version of our MOMA as “(CP-GS)-LS” in order to explicitly show that LS is 
applied to the current and offspring populations. Except for the selection of local 
search solutions, the (CP-GS)-LS structure is the same as the CP-GS-LS structure in 
Fig. 1. Thus only Step 4 of our MOMA algorithm with the CP-GS-LS structure in 
Fig. 1 is modified for describing the (CP-GS)-LS structure as follows: 

[MOMA with the (CP-GS)-LS structure] 
Step 4:   P’’ = Local Search(PUP’) 

It is also possible to use local search before genetic search in each generation as 
shown in Fig. 2 in order to apply local search to solutions in the current population. 
We denote this version as “CP-LS-GS”. In the CP-LS-GS structure, parents for re-
combination are chosen from the improved population. The difference between the 
CP-LS-GS structure in Fig. 2 and the CP-GS-LS structure in Fig. 1 is only the order 
of local search (LS) and genetic search (GS). Thus only Step 3 and Step 4 of our 
MOMA algorithm with the CP-GS-LS structure in Fig. 1 are modified as follows: 

[MOMA with the CP-LS-GS structure] 
Step 3:   P’ = Local Search(P) 
Step 4:   P’’ = Genetic Search(P’) 

One potential difficulty in the CP-LS-GS structure in Fig. 2 is the possibility that the 
improved population P’ is empty (i.e., no solutions are improved by local search in 
Step 3). Only in this special case, we choose parents for recombination in genetic 
search from the current population P. This potential difficulty of the CP-LS-GS struc-
ture can be easily removed by choosing parents for recombination from the current 
and improved populations, which leads to the (CP-LS)-GS structure as follows: 

[MOMA with the (CP-LS)-GS structure] 
Step 3:   P’ = Local Search(P) 
Step 4:   P’’ = Genetic Search(PUP’) 

4   Computational Experiments 

In this section, we examine the effect of the choice of local search solutions on the 
performance of our MOMA through computational experiments.  

Knapsack Problem: We first show experimental results on the two-objective 500-
item knapsack problem [19]. Our experiments were performed under the following 
setting (we used the same greedy repair as in [19] to handle infeasible solutions): 

 Population size: 200, 
 Total number of examined solutions (Termination conditions): 400,000, 
 Tournament size for parent selection in genetic search: 2, 
 Crossover probability in genetic search: 0.8 (Uniform crossover), 
 Mutation probability in genetic search: 0.002 (Bit-flip mutation), 
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 Tournament size for local search solution selection: 1, 2, 5, 10, 20, 50, 
 Neighbor generation in LS: Bit-flip operation with the probability 0.008, 
 Local search probability: PLS = 0, 0.01, 0.02, 0.05, 0.1, 0.2, 0.5, 1.0, 
 LS length (LS termination condition): NLS = 0, 1, 2, 5, 10, 20, 50, 100. 

In Fig. 4, we show average hypervolume values over 100 runs by our standard CP-
GS-LS MOMA and its non-dominated variant (i.e., selection of only non-dominated 
offspring for local search). We used the origin (0, 0) of the objective space as the 
reference point for hypervolume calculation. Since our MOMA is exactly the same as 
NSGA-II when local search is not used (i.e., when PLS = 0 or NLS = 0), the left-bottom 
and left-top rows with the same height bars (about 3.8 × 108 hypervolume) can be 
viewed as the results of NSGA-II in each plot. We obtained better results from the 
two variants of our CP-GS-LS MOMA than NSGA-II in a wide range of PLS  and 
NLS . Their performance was, however, severely degraded when both PLS  and NLS  
were too large (i.e., when the genetic search and local search balance was not good). 

 

0
0.01

0.02
0.05

0.1
0.2

0.5
1

0
1

2
5

10
20

50
1003.72

3.77

3.82

3.87

3.92

3.97

H
yp

er
vo

lu
m

e
(x

 1
08 )

PLS

NLS

        

0
0.01

0.02
0.05

0.1
0.2

0.5
1

0
1

2
5

10
20

50
1003.72

3.77

3.82

3.87

3.92

3.97

H
yp

er
vo

lu
m

e
(x

 1
08 )

PLS

NLS

 
      (a) Standard CP-GS-LS MOMA (Size 10).         (b) Standard CP-GS-LS MOMA (Size 50). 
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       (c) Non-dominated CP-GS-LS (Size 2).              (d) Non-dominated CP-GS-LS (Size 10). 

Fig. 4. Two variants of CP-GS-LS (Size: tournament size for local search solution selection) 
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In Fig. 4, similar results were obtained by the two variants of the CP-GS-LS struc-
ture. It should be noted, however, that larger values were used as tournament size in 
the upper plots than the lower plots. This means that the use of non-dominated solu-
tions for local search in the lower plots has a similar effect to the use of large tourna-
ment size for local search solution selection on the performance of our MOMA. 

Four variants of our MOMA are compared with each other in Fig. 5 under the same 
tournament size of 50 for local search solution selection in all the four plots. The best 
results were obtained from the CP-LS-GS MOMA in Fig. 5 (c). 
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        (a) Non-dominated CP-GS-LS (Size 50).                 (b) (CP-GS)-LS MOMA (Size 50). 
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              (c) CP-LS-GS MOMA (Size 50).                      (d) (CP-LS)-GS MOMA (Size 50). 

Fig. 5. Four variants of our MOMA (Tournament size for local search solution selection is 50) 

In order to visually demonstrate the statistical significance of the difference in the 
performance between the CP-GS-LS and CP-LS-GS structures, we show the histo-
gram of 100 hypervolume values obtained from 100 runs of each variant in Fig. 6. In 
Fig. 6, we used the experimental results with the best combination of PLS  and NLS  
with respect to the average hypervolume in each plot of Fig. 5. For comparison, we 
also show the results of NSGA-II. We can observe in Fig. 6 that the CP-LS-GS vari-
ant clearly outperformed the standard CP-GS-LS MOMA. We can also see that the 
hybridization with local search clearly improved the performance of NSGA-II. 
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Fig. 6. Histogram of 100 hypervolume values obtained from 100 runs of each algorithm 

Flowshop Scheduling: We also applied our MOMA variants to two-objective 20-
machine flowshop scheduling problems with 20 and 80 jobs [6]. We used the follow-
ing setting (The other parameters were the same as in the previous experiments): 

 Total number of examined solutions (Termination conditions): 100,000, 
 Crossover probability in genetic search: 0.9 (Two-point crossover [6]), 
 Mutation probability in genetic search: 0.6 (Insertion mutation [6]), 
 Neighbor generation in local search: A single use of an insertion operator. 

Before hypervolume calculation, we normalized the objective space so that overall 
non-dominated solutions were in the unit square [0, 1] × [0, 1]. Hypervolume was 
calculated in the normalized objective space using the reference point (1.1, 1.1). Due 
to the page limitation, we show a part of experimental results on the 80-job problem 
in Fig. 7. The best results were obtained from the CP-LS-GS structure with the largest 
tournament size in Fig. 7 for the 80-job problem as in Fig. 5 on the knapsack problem. 

In Fig. 8, we show experimental results on the 20-job problem. The size of the 
search space of the 20-job problem is 20!, which is much smaller than 80! of the 80-
job problem. Thus good results were not obtained from high selection pressure for 
local search solution selection. The best results were obtained from CP-LS-GS with 
the tournament size 1 (i.e., random selection) for local search solution selections. 
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       (a) Standard CP-GS-LS MOMA (Size 50).             (b) CP-LS-GS MOMA (Size 50). 

Fig. 7. Results on the two-objective 20-machine 80-job flowshop scheduling problem 
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      (a) Standard CP-GS-LS MOMA (Size 1).           (b) Standard CP-GS-LS MOMA (Size 50). 
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                   (c) CP-LS-GS MOMA (Size 1).                   (d) CP-LS-GS MOMA (Size 50). 

Fig. 8. Results on the two-objective 20-machine 20-job flowshop scheduling problem 

5   Conclusions 

We demonstrated that the choice of local search solutions had a large effect on the 
performance of our MOMA, which is a hybrid algorithm of NSGA-II with local 
search. Its performance was improved by choosing good solutions for local search 
through tournament selection with large tournament size. Among four variants of our 
MOMA, the best results were obtained from a non-standard structure of MOMA: CP-
LS-GS. These observations were obtained from our computational experiments on a 
two-objective 500-item knapsack problem and a two-objective 80-job flowshop sche-
duling problem. Whereas we did not report due to the page limitation, similar results 
were also obtained from computational experiments on a three-objective 80-job flow-
shop problem and 500-item knapsack problems with four and six objectives. The best 
results, however, were obtained from random selection of local search solutions for a 
small-size flowshop problem with 20 jobs. Even in this case, the CP-LS-GS structure 
was the best among the four variants. These observations suggest high potential of the 
CP-LS-GS structure which has not been examined in many studies in the literature. 
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Abstract. In traditional distributed computing the users and owners of

the computational resources usually belong to the same administrative

domain. Therefore security and reliability of the resources are not con-

cerned in such a setting. These issues need to be addressed in scheduling

in the Computational Grid systems, where the users and distributed re-

source clusters work in different autonomous domains. In this paper we

present a non-cooperative symmetric game to address the requirements

for the security and reliability. The game model takes into account the

realistic feature that Grid users usually act independently. The users’

cost of playing the game is interpreted as a total cost of the secure job

execution, which can be aborted due the machines unreliability and Grid

dynamics. The Grid users game is transformed into a bi-level optimiza-

tion problem, which is solved by four hybrid genetic-based heuristics.

We have experimentally evaluated the approach using a Grid simulator

under the heterogeneity, the large-scale and dynamics conditions. The

relative performance of four hybrid schedulers is measured through the

makespan and flowtime metrics. The obtained results suggest that it is

worth for the Grid users to pay some additional cost of the verification

of the security conditions and possible task abortion in order to achieve

an efficient allocation of tasks to the trustful and reliable resources.

Keywords: Scheduling; Security; Computational Grid; Genetic Algo-

rithm; Game Theory; Grid Simulation.

1 Introduction

Computational Grids (CGs) primarily concerned with the development of high-
performance applications, which can be executed simultaneously on multiple
computers or supercomputers connected by wide-area networks. Unlike tradi-
tional distributed computing systems, in which the users and owners of the
computational resources usually belong to the same administrative domain, in
CGs the security and reliability of the resources are crucial issues. Thus, one of
the objectives of the research in this domain is to achieve an efficient assignment
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of tasks to the trustful machines. However, grid schedulers have recently started
to address these issues as the important scheduling criterions. Unfortunately
security and resource reliability are addressed separately in most of current ap-
proaches, while, because of the complex nature of Grid systems, it is necessary
to integrate both those features into the Grid schedulers.

Meeting those additional scheduling requirements we defined in this paper a
hierarchical model of Grid, which is aware of trust and task abortion. We adapt
a general concept of the Meta-broker, who is in our approach responsible for
checking the security condition and the resource availability. Next, we translated
it in a non-cooperative symmetric game for for addressing the requirements for
the security and resource reliability. This game model takes into account the
realistic feature that Grid users usually act independently. We also assume that
none of them can have a privileged to resources. The users’ cost of playing the
game is interpreted as a total cost of the secure job execution, which can be
aborted due the machines unreliability and Grid dynamics.

The Grid users’ game is then transformed into a bi-level optimization prob-
lem, solved through four genetic-based hybrid metaheuristics, which combine
GAs and modified Minimum Completion Time method. We have experimen-
tally evaluated the approach using a Grid simulator under the heterogeneity,
the large-scale and dynamics conditions. The relative performance of four hy-
brid schedulers is measured through the makespan and flowtime metrics.

The remainder of this paper is organized as follows. In Sect. 2 we define
a secure Grid meta-broker model and recall some preliminary concepts of in-
dependent task batch scheduling. The users’ game model and is specified in
Sect. 2.2. In Sect. 3 four hybrid GA-based schedulers for solving the users’ game
are defined. An experimental evaluation of proposed hybrid metaheuristics is
presented in Sect. 4. The papers is concluded in Sect. 5.

2 Game-Theoretical Model

Computational Grids, hierarchical by their nature, are usually modelled as multi-
level large-scale systems for an effective management of tasks and resources. In
this work we modify the a simple meta-broker (MB) model (see e.g. [3]) by
integrating the resource management with the secure scheduling.

The MB in our system plays the double role of Trust Manager and Resource
Manager. As a trust manager he is responsible for the verification of a security
assurance condition for each task-machine pair. The verification procedure is as a
comparison of the coordinates of a security demand vector SD = [sd1, . . . , sdn]
and a trust level vector TL = [tl1, . . . , tlm] (see [6]) specified for tasks and
machines respectively (m-number of machines, n-number of tasks)1. The security
assurance condition for a given task-machine pair is satisfied if sdj ≤ tlxj . In
the other case the failure of machine xj can be observed. Let us denote by Pf

1 The values of sdj and tlxj are real fractions in the range [0,1] with 0 representing the

lowest and 1 the highest security requirements and the most risky and fully trusted

machine.
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the Machine Failure Probability matrix, the elements of which, are interpreted
as the probabilities of machines failures during the particular tasks executions
due the high security restrictions. These probabilities denoted by Pf [j][xs] are
modelled by an exponential distribution given by the following formulae:

Pf [j][xj ] =
{

0 , sdj ≤ tlxj

1 − e−α(sdj−tlxj
) , sdj > tlxj

(1)

where α is interpreted as a failure coefficient and is a global parameter of the
model.

The other duty of MB in our model is controlling the resource allocation and
communication between Grid users and service resource owners. In some cases
machines in the grid system could be unavailable due to dynamics or special
policies of the resource owners. Analyzing the updated resource providers reports
MB generates the reliability probabilities Pxj , j = 1, . . . ,n for each machine xj .
The execution of the given task j can be then aborted with the probability
defined as follows:

Pab(j) = (1 − Pxj ). (2)

This task failure predictor was introduced by Rood and Lewis in [5].

2.1 Scheduling Problem Definition

In this work we consider the Independent Job Scheduling problem, in which tasks
are processed in the batch mode [9]. The total number of tasks n in the batch
can be calculated as the sum of tasks submitted by all users, i.e.: n =

∑N
l=1 kl,

where N is the number of Grid users and kl is the number of tasks submitted
by the user l.

A schedule of the batch of tasks at the Grid site is defined as a vector x =
[x(1), . . . ,x(k1+...+kl), . . . ,xn]T , in which xj ∈ [1,m] indicates the number of the
machine, to which task j is assigned (j = 1, . . . , (k1 + . . .+ kl), . . . ,n).

The problem formulation in this approach is based on the Expected Time to
Compute matrix model [1], in which an instance is defined by: (a)- the computa-
tional loads of the tasks (usually in millions of instructions); (b)- the computing
capacities of machines (usually in millions of instructions per second, MIPS);
(c)- the estimation of the prior load of each available machine and (d)- the ETC
matrix, the elements of which, define the estimations of the time needed for the
completion of the tasks on machines in the system.

2.2 The Secure and Task Abortion Aware Game

We consider the scenario where Grid users perform independently of each other
and resource usage privileges are the same for all of them. Each user tries to as-
sign his tasks to the machines to minimize the allocation cost under security and
resource reliability criteria. The users cannot cooperate, but they may know the
others’ previous decisions. The users behavior can be then modelled by a sym-
metric non-cooperative game defined as a tuple GN = (N ; {{Jl}; {Ql}}l=1,...,N),
where:
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– N is the number of Grid users;
– {J1, . . . , JN}; l = 1, . . . ,N are the sets of users strategies;
– {Q1, . . . ,QN};Ql : J1 × . . . × JN → R; ∀l=1,...,N is the set of users cost

functions.

Usually the users’ scheduling costs are limited to the costs of tasks execution (ex-
pressed as a makespan and/or flowtime) or to the resource utilization expressed
in the terms of the utility function (see [3]). In our approach an additional cost
can come from the possible machine failure as the result of some technical net-
works problems or special policies of the resource owners. We also consider a
resource utilization costs in the terms of the idle times of the machines to which
the users tasks are assigned. This is the method of utilization cost calculation
from the users point of view, not the resource owners (as it is presented in [3]).

The players cost functions Ql, l ∈ {1, . . . ,N} in the users’ game are composed
of the following three factors:

Ql = Q
(s)
l +Q

(ab)
l +Q

(u)
l , (3)

where: Q(s)
l indicates the cost of security-assured allocation of the user tasks,

Q
(ab)
l is the cost of possible abortion of the user’s task due the resource unavail-

ability and Q
(u)
l denotes a resource utilization cost.

The values of the function Q
(s)
l depend on the scheduling strategy and the

result of the verification of security condition. We consider in this work two
scheduling strategies:

– risky mode - in which all risky and failing conditions are ignored by the
users. In this case Q(s)

l = 0, l = 1, . . . ,N .
– secure mode - in which Q

(s)
l function is defined as follows:

Q
(s)
l =

(k1+...+kl)∑
j=(k1+...+kl−1+1)

Pf [j][xj ] · ETC[j][xj ]
(ETC)m(l) · kl

, (4)

where ETC[j][xj ] and Pf [j][xj ] are the elements of the ETC and TFP ma-
trices and (ETC)m(l) is the (expected) maximal computation time of the
tasks of the user l in a given schedule. This cost is calculated as an average
’wasted’ time as the result of failures of the machines during the user’s tasks
execution due the security restrictions.

The cost of user’s tasks abortion due the unavailability of the resources, denoted
as Q(e)

l , is defined using the following formulae:

Q
(ab)
l =

∑(k1+...+kl)
j=(k1+...+kl+1) Pab(j) ·ETC[j][xj ]

(ETC)m(l) · kl
, (5)

where Pab(j) is a task abortion probability defined by 2. It can be interpreted
as an average ’wasted’ time as the result of the task abortion.
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The resource utilization cost in our approach is calculated for each Grid user
as an average idle time of machines on which his tasks are executed. We define
function Q

(u)
l by the following formulae:

Q
(u)
l =

∑
xj∈machines(l)

(
1 − Completion(l)[xj ]

makespan

)
·
∑

j∈Tasks(l) [xj]
ETC[j][xj ]

Completion(l)[xj ]

(6)

where Completion(l)[xj ] is the completion time of a given machine, machines(l)
denotes a set of machines, to which all tasks of the user l are assigned and
Tasks(l)[xj ] is the set of the tasks of the user l assigned to the machine xj .
The completion time is calculated as the sum of ready time of this machine and
expected computational times of all tasks assigned to it.

Users’ game cost function. The objective of playing the game for each user
l is to minimize his cost function Ql. The equilibrium state for the game, where
each player holds correct expectations concerning the other players behavior, is
the result of the minimization of a game cost function Q : J1 × · · · × JN → R
defined by the following formulae:

Q(x1, ....,xN ) =
N∑

l=1

(
[Ql(x1, ...,xN ) −minQl]

)
, (7)

where minQl = minxl∈Jl
{Ql(x1, ...,xN )}, (l = 1, . . .N) denote the minimal

values of the players cost functions Ql calculated independently by the Grid
users2. To find the equilibrium states is the main objective of the Grid users’
game.

To compute the values of the game cost function Q defined by the Eq. (7) we
need to minimize first the cost functions of all players. The problem of solving
the Grid users game is then defined as a hierarchic procedure composed of two
cooperated modules: (1) Global Module - where the game cost function is
minimized, and (2) Players Module - in which the users cost functions Ql are
minimized.

In order to explain the communication mechanism between two modules, let
us denote by x(0) = [x1

(0), . . . ,x
N
(0)] an initial schedule for the optimization proce-

dure. Vector x(0) is replicated and sent to the Players Module - one copy per user
- and each user independently optimizes his game cost function by changing the
assignments of his tasks. Then the optimal values of the players cost functions cal-
culated for the schedule x(0), i.e. minQl;(0) = minxl∈Jl

{Ql(x(0))}; l = 1, . . . ,N ,
are sent back to the Global Module3, where the values of the objective function
for the whole game Q (Eq. (7) is calculated for the schedule x(0).

2 In the case of continuous players’ cost functions the solution of the game, given by

Eq. (7), is called the Nash equilibrium [2].
3 We denote by xl the vector of the decision variables of the player l.
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3 Genetic-Based Metaheuristics for Solving the Game

We defined four GA-based hybrid metaheuristics for solving the Grid users
game and denoted them by SGA-GA, RGA-GA, SGA-PMCT and RGA-PMCT.
Each hybrid is composed of two GA-based schedulers - Risky Genetic Algorithm
(RGA) and Secure Genetic Algorithm (SGA)- in the Global Module- and two
local level optimizers - Player’s Genetic Algorithm (PGA) and Player’s Mini-
mum Completion Time (PMCT) - in the Players Module. The main difference
between RGA and SGA lies in the method of calculation of the players costs Ql,
which is different in risky and secure modes.

As the basic mechanism of genetic scheduler in the Global Module we used
the GA implementation for independent batch scheduling [7] (see Alg. 1 for its
template).

Algorithm 1. Genetic Algorithm template
1: Generate the initial population P 0 of size μ;
2: Send the ready times vectors of the machines corresponding to the individuals of the population

P 0 to the Players Module;
3: Receive the minQl values from the subordinate unit
4: Evaluate P 0;
5: while not termination-condition do
6: Select the parental pool T t of size λ; T t := Select(P t);
7: Perform crossover procedure on pairs of individuals in T t with probability pc; P t

c :=

Cross(T t);
8: Perform mutation procedure on individuals in P t

c with probability pm; P t
m := Mutate(P t

c );
9: Send the ready times vectors of the machines corresponding to the individuals of the popu-

lation P t
m to the Players Module;

10: Receive the minQl values from the subordinate unit
11: Evaluate P t

m ;

12: Create a new population P t+1 of size μ from individuals in P t and/or P t
m ;

13: t := t + 1;
14: end while
15: return Best found individual as solution;

A schedule (an individual in the population) is represented by the vector
x = [x1, . . . ,xn]T of machines to which the particular tasks are assigned. In or-
der to implement the crossover and mutation procedures specified for the combi-
natorial optimization we transformed the vectors x into the permutation-based
representation, which is the permutation vector of tasks to machines (see [7] for
details).

A combination of the genetic operators applied in Global Module algorithms
was selected based on the results of the tuning process performed in [7]. We
used linear ranking selection, cycle crossover (CX), re-balancing mutation and
elitist generational replacement as the main evolutionary mechanism in Alg. 1.
The initial population is generated randomly and the game cost function Q is
defined as the fitness.

The algorithms implemented in the Players Module are executed sequentially
in order to minimize the users cost functions. We applied two modifications
of the well-known Grid schedulers, namely Player’s Minimum Completion Time
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- (PMCT) and Player’s Genetic Algorithm-(PGA). The first method is a simple
modification of Minimum Completion Time - MCT heuristic, which is applied
independently for each user’s tasks. The template of the main mechanism of
PMCT procedure is defined in Alg. 2.

Algorithm 2. PMCT algorithm template
1: Receive the population of schedules and ready times of the machines from the Main Unit;
2: for all Schedule in the population do
3: Calculate the completion times of the machines in a given schedule;
4: for all Individual user do
5: for all User’s Task do
6: Find the machine that gives minimum completion time;
7: Assign task to its best machine;
8: Update the machine completion time;
9: end for
10: Calculate the minQl value for a given schedule;
11: end for
12: Send the minQl values to the Main Unit;
13: end for

The second PGAis an extension of the classical GA-based scheduler [7](with
the same combination of the genetic operators as in Alg. 1) applied independently
for each user with his cost function Ql as a fitness. The genetic operators are
executed on sub-schedules of the length kl labeled just by the tasks submitted
by user l.

4 Experimental Analysis

In this section we present the results of the experimental evaluation of four
hybrid metaheuristics For this we integrated the schedulers with the discrete
event-based Grid simulator HyperSim-G [8]. The experiments were conducted
on two benchmarks composed by a set of static and dynamic instances generated
using the simulator [8]. In the static case, the number of tasks and the number of
machines is constant during the simulation, while in the dynamic case, both pa-
rameters values may vary over time. In both static and dynamic cases four Grid
size scenarios are considered: small (32 hosts/512 tasks), medium (64 hosts/1024
tasks), large (128 hosts/2048 tasks), and very large (256 hosts/4096 tasks).

In Tables 1 and 2 we define the settings for the simulator in static and dynamic
case and the GA setting at global and local levels for all experiments.

There are 16 Grid users and each of them maintains an equal fraction of
the task pool. The coefficients of SD, TL vectors and the machines reliability
probabilities Pxj are defined as the uniformly generated fractions in the ranges
[0.6 ; 0.9], [0.3 ; 1] and [0.85 ; 1] respectively. The value of failure coefficient α
needed for the generation of the TFP matrix (see Eq. 1) is 3.

To evaluate the scheduling performance we used the two main metrics, namely
makespan and flowtime,calculated as follows: makespan = maxj∈Tasks Fj and
flowtime =

∑
j∈Task Fj , where Fj is the time of finishing the task j.
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Table 1. Setting for the grid simulator for static and dynamic cases

Static setting
Small Medium Large Very Large

Nb. of hosts 32 64 128 256
Resource cap. (in MIPS) N(1000, 175)
Total nb. of tasks 512 1024 2048 4096
Workload of tasks N(250000000, 43750000)

Dynamic setting
Init. hosts 32 64 128 256
Max. hosts 37 70 135 264
Min. hosts 27 58 121 248
Resource cap. (in MIPS) N(1000, 175)
Add host N(625000, 93750) N(562500, 84375) N(500000, 75000) N(437500, 65625)
Delete host N(625000, 93750)
Total tasks 512 1024 2048 4096
Init. tasks 384 768 1536 3072
Workload N(250000000, 43750000)
Interarrival E(7812.5) E(3906.25) E(1953.125) E(976.5625)

Table 2. GA setting in the Global and Players Modules for static and dynamic cases

Parameter Global Module Players Module
evolution steps 5 ∗ n �0.5 ∗ n�
population size (pop size) 60 20
intermediate pop. 48 14
cross probab. 0.9 0.9
mutation probab. 0.15
max time to spend 200 secs (static) / 400 secs (dynamic)

Both flowtime and makespan metrics are minimized in the scheduling pro-
cess over the set of all possible schedules for a given Grid configuration.

Each experiment was repeated 30 times under the same configuration and we
report the averaged results.

Experimental results. We present in Fig. 1 the values of flowtime and makespan
achieved by four hybrid GA-based schedulers in static and dynamic cases.

It can be observed that in both static and dynamic cases the two PMCT
hybrids outperform the RGA-GA and SGA-GA algorithms. For makespan values
the differences in the results achieved by PMCT and GA hybrids are significant,
while in the case of flowtime all values are at the same level, except those obtained
for very large Grid size.

The best results in all instances are achieved by SGA-PMCT algorithm. How-
ever, in the case of static scheduling scenario the efficiencies of RGA-PMCT and
SGA-PMCT are very similar, while in the dynamic case, especially for makespan
values, the differences in both schedulers performances are significant.

The results of makespan and flowtime values achieved by the schedulers with
the same method implemented in the Payers Module suggest that the security
criterion is important in all cases. It can be also observed that as the instance size
is doubled, the flowtime values increase considerably for all applied schedulers,
while the makespan is almost at the same level.

In order to perform a simple statistical analysis of the obtained results we
measured the dispersion of the results obtained in each run of the simulator
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Fig. 1. Experimental results achieved by four hybrid schedulers: in static case - (a)

average makespan, (b) average flowtime ; in dynamic case - (c) average makespan, (d)

average flowtime

around their average values. We used for that the coefficient of variation (CV) [4]
which expresses the variation of the data as a percentage of its mean value, i.e.:
CV (x) = s.d./mean(x) · 100%. For stable heuristic methods the values of CV
should not be greater than 5%. The values of CV calculated for the makespan
and flowtime results achieved by four metaheuristics in all considered Grid and
scheduling scenarios are presented in Table 3.

It can be noted that just in two cases for makespan values CV is greater
than 5%: RGA-PMCT for very large grid and RGA-GA for large Grid. It is also
interesting to observe that the CV for all metaheuristics achieves the biggest
values in the case of small Grid scenario. In the other cases CV is very small,
which confirms the stability of applied algorithms.

Table 3. CV values for makespan and flowtime measures in large static and dynamic

instances

Strategy Small Medium Large Very Small Medium Large Very

Large Large

Makespan Flowtime
Large-scale static instances

RGA - GA 3.02% 2.17% 1.86% 1.65% 2.37% 1.78% 1.25% 0.86%
RGA-PMCT 2.07% 1.46% 3.09% 7.01 % 2.07% 1.07% 1.02% 1.60%
SGA - GA 3.01% 2.08% 2.08 % 1.55% 2.02% 1.53% 1.25% 0.91%
SGA-PMCT 2.03% 2.16% 4.72% 6.13% 2.11% 1.41% 1.93% 1.82%

Dynamic instances
RGA - GA 4.1% 2.7% 6.85% 2.7% 3.06% 1.35% 1.6% 0.06%
RGA-PMCT 4.5% 4.95% 3.13% 3.92% 4.5% 4.95% 3.13% 3.92%
SGA - GA 4.7% 3.6% 3.22% 4.78% 3.01% 1.85% 1.05% 0.99%
SGA-PMCT 4.4% 3.9% 3.30% 3.59% 3.00% 1.41% 1.14% 1.00%
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5 Conclusions

In this paper we have presented an approach for independent task addressing the
requirements for the security and reliability in Grid scheduling. Our approach
combines game-theoretic model and Genetic Algorithms based metaheuristics.
The former is used to model the scheduling problem as a non-cooperative non-
zero sum game of the grid users, while the later are used to minimize the game
cost function at global and users’ levels. We have evaluated the proposed model
under the heterogeneity, the large-scale and dynamics conditions using a Grid
simulator. The relative performance of four hybrid schedulers is measured by
the makespan and flowtime. The obtained results suggest that it is worth for the
Grid users to pay some additional scheduling cost of verification of the security
conditions and possible task abortion in order to achieve an efficient allocation
of tasks to the trustful and reliable resources.
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Abstract. The pickup and delivery problem with time windows (PDP

TW) is a variant of the vehicle routing problem. In this paper, we present

an memetic algorithm (MA) for the PDPTW. Particular attention is paid

to the design of the crossover because it is usually very hard to design an

effective crossover operator for tightly constrained problems such as the

PDPTW. Experimental results on Li and Lim’s benchmarks demonstrate

that our MA is competitive with existing approaches and improves 146

best-known solutions out of 298 instances.

1 Introduction

The vehicle routing problem with time window (VRPTW) is one of the most
studied NP-hard combinatorial optimization problems. This problem consists
in designing a least cost set of routes for a fleet of vehicles to satisfy a set of
transportation requests. Each request consists of delivering goods from a depot
to a customer within a specified time frame. The pickup and delivery problem
with time windows (PDPTW) is an extension of the VRPTW where each request
consists of delivering goods from a customer to another one (pickup and delivery
constraint). An objective is to minimize a combination of the number of vehicles
and the total travel distance.

There have been proposed a lot of heuristic algorithms for the VRPTW and
promising heuristic solution approaches are based on evolution strategies [4],
large neighborhood search (LNS) [8], iterated local search [2], and memetic al-
gorithm (MA) [6]. In particular, the MA by Nagata et al. [6] was proposed
very recently and has been one of the most effective algorithms. In fact, several
MAs were proposed for the VRPTW, but competitive results had not been ob-
tained. We believe that the main reason is the difficulty in designing an effective
crossover operator for the VRPTW because this problem has a fairly constrained
search space. In general, it is very hard to combine parent solutions such that
offspring solutions inherit meaningful building blocks even if a small violation of
constraints is allowed. In the MA [6], so-called edge assembly crossover (EAX)
was successfully designed along with a repair procedure.

R. Schaefer et al. (Eds.): PPSN XI, Part I, LNCS 6238, pp. 536–545, 2010.
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The pickup and delivery constraint makes the search space of the PDPTW
more constrained than that of the VRPTW. State-of-the-art heuristic algorithms
for this problem are based on LNS [1][9]. As suggested in [10][1], the use of
LNS seems to be a good choice to optimize tightly constrained combinatorial
optimization problems such as the PDPTW because of its ability to effectively
address side constraints. On the other hand, the existence of the pickup and
delivery constraint makes the design of an effective crossover operator more
difficult. For example, offspring solutions generated by the EAX will seriously
violate the pickup and delivery constraint. By applying an appropriate repair
procedure, the constraint violation may be eliminated, but the resulting solutions
will no longer inherit meaningful building blocks from the parent. So we believe
that it is worthwhile to develop a MA for the PDPTW in order to investigate
how we can apply MAs to tightly constrained problems in an effective manner.

In this paper we develop a MA for the PDPTW where particular attention is
paid to the design of the crossover. The suggested crossover generates offspring
solutions by combining routes from two parents. The key idea is to determine
combinations of the routes through a local search procedure so as to approxi-
mately minimize the amount of constraint violation in the resulting intermediate
offspring solutions, which are converted into feasible solutions by a repair pro-
cedure. So we call the suggested crossover selective route exchange crossover
(SREX). Other part of the MA is basically based on the MA for the VRPTW
[6] with several adaptations to the PDPTW.

The remainder of this paper is arranged as follows. The problem definition
and notations are described in Section 2. Section 3 presents the framework of
the MA followed by the description of the SREX and remaining components.
Computational results are presented in Section 4. Section 5 gives conclusions.

2 Problem Definition and Notations

The PDPTW is defined on a complete directed graph G = (V,E) with a set of
vertices V = {0, 1, . . . ,N} and a set of edges E. Node 0 represents the depot and
the set of nodes {1, . . . ,N} represents the customers. Let H = {1, . . . ,N/2} be
a set of requests. For each request h (∈ H), let ph and dh be the corresponding
pickup and delivery customers, respectively, and qh the amount of goods, i.e.
goods specified by request h are picked up at ph and dropped at dh in a route.
Each node v (∈ V ) is assigned a time interval. Each edge is assigned a travel
distance and travel time. All vehicles have the same capacity.

Given a route for a vehicle that departs from and returns to the depot, the
route is called feasible if the following constraints are satisfied. The total amount
of goods in the vehicle must not exceed the vehicle capacity at any location (ca-
pacity constraint). Each customer must be visited within its time interval (time
window constraint). A pickup customer exists in the route if and only if the cor-
responding delivery customer exists in the route, and the pickup customer must
be visited before visiting the delivery customer (pickup and delivery constraint).

A feasible solution is defined as a set of feasible routes such that all customers
are visited exactly once. In standard benchmarks, the objective consists of finding
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a feasible solution that minimizes the number of routes m (primary objective)
and, in case of ties, minimizes the total travel distance F (secondary objective).

3 Problem Solving Methodology

Given the hierarchical objective, state-of-the-art heuristic algorithms [1][9] for
the PDPTW use the two-stage approach where the number of routes is mini-
mized in the first stage and the travel distance is then minimized in the second
stage. The two-stage approach allows us to independently develop algorithms
for the route minimization and for the distance minimization. Our MA is also
based on the two stage approach. This section first presents the outline of the
MA followed by the descriptions of the SREX and remaining components.

3.1 Memetic Algorithm

The procedure of the MA is shown in Algorithm 1. In the first stage, the number
of routes is first minimized by executing the route minimization heuristic by
Nagata and Kobayashi [7] (line 1). Let m be the minimized number of the routes.
The population consisting of Npop solutions, each consisting of m routes, is then
created by repeating the route minimization heuristic (line 2).

In the second stage, the main part of the MA minimizes the travel distance
F with the number of routes kept constant. For each generation (lines 4–14),
each population member is selected once both as parent σp

A and as parent σp
B

in random order (lines 4 and 6). For each pair of parents, σp
A and σp

B , crossover
SREX generates offspring solutions where nch refers to the number of generated
offspring solutions (line 8). A local search procedure is then applied to the off-
spring solutions to reduce their travel distance (line 10). If the best offspring
solution has a smaller travel distance than σp

A, it replaces the population mem-
ber selected as σp

A (lines 7, 11 and 13). Iterations of the generation are repeated
until the termination condition is met (line 15).

Here, the replacement strategy (lines 7, 11, and 13) may seems to be slightly
strange because this strategy replaces only one parent σp

A rather than both par-
ents. However, we confirmed that this selection model is superior to conventional
ones in maintaining the population diversity because it prevents two parent so-
lutions from being replaced by two similar offspring solutions. In addition, we
will design the crossover operator so that offspring solutions tend to be more
similar to σp

A than σp
B to better make use of this selection model.

3.2 Selective Routes Exchange Crossover

The basic idea of the SREX is to combine routes from two parents, σp
A and σp

B ,
to generate offspring solutions. In other words, offspring solutions are generated
from σp

A by replacing some of the routes with different routes selected from σp
B .

For two parents, σp
A and σp

B , we define notations (see Fig. 1 for illustration).
Let RA(and RB) = {1, . . . ,m} be a set of the routes in σp

A (and σp
B). Let SA(⊆
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Algorithm 1 : Procedure MA()
1: m := Determine m();

2: {σ1, . . . , σNpop} := Generate Initial Population(m);

3: repeat
4: Let r(·) be a random permutation of 1, . . . , Npop;

5: for i := 1 to Npop do
6: σp

A := σr(i); σp
B := σr(i+1); (Note: r(Npop + 1) = r(1))

7: σc
best := σp

A;

8: {σc
1, . . . , σ

c
nch

} := Crossover(σp
A, σp

B);

9: for j := 1 to nch do
10: σc

j := Local Search(σc
j);

11: if F (σc
j) < F (σc

best) then σc
best := σc

j ;

12: end for
13: σr(i) := σc

best;

14: end for
15: until improvement of the best individual stagnates for the last gstag generations

16: return the best individual in the population;

RA) be a set of the replaced routes on σp
A and SB(⊆ RB) a set of the inserted

routes selected from σp
B . Let V A

i (and V B
j ) be a set of the customer nodes in

route i(∈ RA) (and route j(∈ RB)). Let VA\B be a set of the customer nodes
that exist in routes SA but not exist in routes SB. Let VB\A be a set of the
customer nodes that exist in routes SB but not exist in routes SA.

Assuming that SA and SB are determined, the SREX generates two (type I
and type II) offspring solutions by the following steps (see Fig. 1 for illustration).

Procedure SREX-Sub(σp
A, σp

B, SA, SB)
Step 0 Copy σp

A into offspring solutions: σc
I := σp

A and σc
II := σp

A.

Step 1 (Type I) Remove routes SA from σc
I and then eject customer nodes VB\A

from σc
I .

Step 1 (Type II) Remove routes SA from σc
II .

Step 2 (Type I) Insert routes SB into σc
I .

Step 2 (Type II) Insert routes SB from which customer nodes VB\A are ejected into

σc
II .

Step 3 Insert the unserved requests (customers) into σc (σc
I or σc

II depending on the

type). Here, one should note that if a customer ph is unserved then dh is inevitably

unserved, and vice versa.

(3-1) Randomly select a request h from the unserved requests.

(3-2) Insert ph and dh into σc such that the increase in the travel distance is

minimized. Here the two customers can be inserted only if the resulting route

is feasible.

(3-3) If all requests are served or the two customers can not be inserted, then

terminate Step 3, otherwise go to (3-1).

Step 4 Return σc
I and σc

II (only feasible solutions are returned).

After Step 2, two intermediate solutions are obtained, where one or more requests
are possibly unserved and a set of the customer nodes corresponding to the
unserved requests is VA\B . Therefore, the number of the unserved requests is
given by |VA\B|/2 (|V | means the number of the elements in a set V ). The
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σB

p
σI

c
σII

c

Fig. 1. Illustration of the SREX. σp
A and σp

B are parents. Routes SA and SB are

represented as dotted lines, customer nodes VA\B are represented by circles with x-

mark, and the customer nodes in VB\A are represented by double circles. σc
I and σc

II

are intermediate offspring solutions obtained after Step 2.

SREX has the following properties; (i) Intermediate solutions do not violate
the capacity, time window, and pickup and delivery constraints, and (ii) various
offspring solutions can be generated depending on the selection of SA and SB.
However, one problem is that the SREX does not necessarily generate a feasible
solution (serving all requests) after Step 3. In fact, we observed that the greater
the number of the unserved requests, the lower the probability of generating an
feasible offspring solution. So we should select SA and SB such that |VA\B | is
approximately minimized. In addition, we impose the condition that |SA| = |SB|
in order to keep the number of routes constant.

To determine SA and SB, we use a simple local search procedure where a
solution is a pair of SA and SB, denoted as (SA,SB), and |VA\B| is minimized.
The neighborhood is defined as a set of the solutions that are obtained from
the current solution (SA,SB) by adding one (non-selected) route to each of SA

and SB or removing one (selected) route from each of them in all possible ways.
During the search, we do not accept the following solutions: (i) SA and SB are
empty or all routes, and (ii) routes SA are identical to routes SB. Note that
such solutions give |VA\B| = 0 but create intermediate solutions identical to
either σp

A or σp
B. The search is started by randomly selecting a pair (SA,SB) on

condition that |SA| = |SB|. At each iteration, the current solution is moved to
the best solution in the neighborhood. The search is then terminated when no
improvement is found in the neighborhood. At each iteration, the evaluation of
|VA\B| for all solutions in the neighborhood is too time-consuming without an
efficient computation method, which is described in the Appendix.

In our MA, we generate several offspring solutions by selecting several pairs
of SA and SB. The overall procedure of the SREX is described as follows.

Procedure SREX-Overall(σp
A, σp

B)

Step 1 Execute the local search procedure Ntotal times, generating a set of Ntotal

pairs (SA, SB).

Step 2 Eliminate duplication in the obtained set. In addition, we eliminate a pair

(SA, SB) if the number of the arcs that exist in routes SB but not exist in routes

SA is greater than the half of the number of arcs that exist in σp
B but not exist in
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σp
A. This criterion is introduced in order to preferably generate offspring solutions

which are more similar to σp
A rather than σp

B as described in Section 3.1.

Step 3 Select top Ncross pairs (SA, SB) from the obtained set in ascending order of

|VA\B |. If the obtained set after Step 2 consists of less than Ncross pairs, all pairs

are selected.

Step 4 For each pair (SA, SB) selected in Step 3, procedure SREX-Sub(σp
A, σp

B , SA,

SB) generates offspring solutions.

Step 5 Return all offspring solutions obtained through Steps 1–4.

3.3 Local Search

The local search algorithm (Algorithm 1, line 10) is a simple hill climbing algo-
rithm. At each iteration, the current solution is moved to an better solution in
the pair relocation neighborhood of the current solution with the first improve-
ment strategy. The pair relocation neighborhood is defined as a set of feasible
solutions that are obtained from the current solution by ejecting two customers
corresponding to the same request and re-inserting them in all possible way.
Iterations are repeated until no better solution is found in the neighborhood.

The local search procedure is the most time consuming part of our MA and
we apply the search limitation strategy [5] to reduce the computation time. More
precisely, we rule out the moves that do not affect “new” routes where a route
is regarded as “new” if the same route does not exist in σp

A.

3.4 Generation of the Initial Population

We employ the route minimization (RM) heuristic for the PDPTW [7] to create
the initial population of the MA. The RM heuristic starts with an initial solution
consisting of N/2 routes (each request is served by a different route), and the
number of routes is reduced one by one until a termination condition is met.

At the beginning of the MA, the number of routes m is minimized and de-
termined by executing the RM heuristic once for T1 seconds (Algorithm 1 line
1). After m is determined, the initial population is generated by executing the
RM heuristic until Npop solutions, each consisting of m routes, are generated
(Algorithm 1, line 2). Each run is executed with the time limit of T2 seconds
(more than Npop runs may be required to generate Npop solutions). We call this
way of generating the initial population complete population strategy (CPS).

However, CPS is sometimes very time consuming when the minimization of
the number of routes is difficult for an instance. So we design another way of
generating the initial population. First, the RM heuristic is repeated until Npop

solutions, each consisting of m routes, are obtained or until the total execution
time reaches T3 seconds. If the generated solutions consists of less than Npop

solutions, these solutions are equally duplicated to generate Npop solutions. The
duplicated solutions are then randomly perturbed by iteratively executing ran-
dom moves selected from the pair relocation neighborhood and pair exchange
neighborhood [7] for a given number of times (10000 in our experiment). The
perturbation procedure is used also in the RM heuristic and we refer the reader
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to [7] for more details. We call this way of generating the initial population in-
complete population strategy (IPS), which will reduce the computation time at
the cost of the population diversity in the initial population.

4 Experimental Results

4.1 Experimental Settings and Benchmarks

The proposed MA was implemented in C++ and was executed on an AMD
Opteron 2.6GHz computer. The parameters for the main part of the MA were
determined by preliminary experiments and set as follows: Npop = 50, gstag =
100, Ntotal = 40, and Ncross = 5. The paremegters for the generation of the
initial population were set as follows: T1 = 600, T2 = 300, T3 = N . These
parameter values were determined so as to roughly equalize the computation
times for the main part of the MA and for the generation of the initial population
with IPS. As described in Section 3.4, we use CPS and IPS for generating the
initial population. The MAs were applied five times to each instance.

The MAs were tested on the well-known Li and Lim’s benchmarks [3]. The
data set and best-known solutions are available at http://www.sintef.no/pro-
jectweb/top. The benchmarks consist of five data sets of 200, 400, 600, 800 and
1000-customer. Each data set consist of 60 instances and they are divided into
two groups (Class 1 and Class2), each consisting of 30 instances (two instances
are not available in Class2 1000-customer instance set). Vehicles have smaller ca-
pacities and customers have shorter time intervals in Class 1 instances, meaning
that more vehicles are required to serve all requests in Class 1 instances.

In the following experiments, we evaluate the solution quality with respect to
the travel distance because the main part of the MA is developed for minimizing
the travel distance. However, the RM heuristic is very powerful at minimizing
the number of routes and the value of m determined by the RM heuristic at
the beginning of the MA sometimes improves upon the best-known solution.
This makes it difficult to compare our results with previous ones with respect
to the travel distance because the optimal travel distance varies depending on
the number of routes. So we set m to the number of routes of the best-known
solution (we denote it as m∗) in case that m is less than m∗. For each instance,
the value of m is determined by executing the RM heuristic once for T1 seconds
and the same value is used for all experiments.

4.2 Analysis of Performance

We compare our results with the best-known solutions to analyze the behavior
and performance of the MAs. Table 1 shows several average data for each instance
size and class. Note that if m is different from (greater than) m∗ on an instance,
we ignore such an instance in order to better analyse our results in terms of the
ability to minimize the travel distance (see Section 4.1). We present in the table
(column #I) the number of instances from which results were obtained.
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Table 1. Results of the MAs (instances in which m 	= m∗ are ignored). Column “#I”

gives the number of instances in which m = m∗. Column “W” (and “L”) gives the

number of instances in which the best travel distance is better (and worse) than that

of the best-known solution. The rest of the columns give average data over each instance

group. Column “m” gives the number of routes. Columns “best” and “average” give the

excess (%) of the best and average travel distances from the best-known travel distance,

respectively. Columns “T-S1” and “T-S2” give the CPU time (second) spent for the

generation of the initial population and for the main part of the MA, respectively.

MA with CPS MA with IPS

Instance #I m best ave W L T-S1 T-S2 best ave W L T-S1 T-S2

200-Class1 30 15.60 -0.054 0.116 9 7 296 19 -0.045 0.272 7 8 111 20

200-Class2 30 4.60 -0.352 0.049 7 4 583 12 -0.219 0.499 7 4 120 13

400-Class1 29 29.79 -0.531 -0.161 19 2 2281 94 -0.229 0.757 16 6 330 93

400-Class2 30 8.77 -0.034 0.723 14 8 2201 135 0.127 1.052 13 8 343 133

600-Class1 28 43.14 -0.920 -0.571 21 3 4783 277 -0.332 0.497 17 9 496 268

600-Class2 26 11.62 -0.350 1.053 12 11 3345 528 0.624 2.701 11 12 630 499

800-Class1 28 55.18 -1.736 -1.315 20 5 6651 656 -1.021 -0.167 15 12 732 645

800-Class2 24 15.21 0.525 1.954 16 8 81791 1458 1.885 3.765 15 9 822 1371

1000-Class1 25 64.56 -1.614 -0.942 21 3 7786 1243 -0.516 0.327 17 7 926 1182

1000-Class2 21 20.67 2.274 4.280 9 10 20018 1588 3.679 6.356 7 12 1155 1668

First, let us focus on the results of the MA with CPS. The best results (best)
on the Class 1 instances are better than the best-known solutions for all instance
sizes, improving the best-known solutions on 88 instances (but not reaching them
on 20 instances). The average results (ave) are also better than the best-known
solutions for all instance sizes except for the 200-customer instance set. The best
and average results on the Class 2 instances are inferior to those on the Class
1 instances for all instance sizes except for 200, in particular for the 800- and
1000-customer instance sets. This tendency would arise from the fact that the
SREX cannot adequately reduce |VA\B | due to the lack of possible pairs of SA

and SB when the number of routes is too small (see Section 3.2). But the results
on the Class 2 instances are still competitive with the best-known solution,
improving the best-known solutions on 58 instances (but not reaching them on
41 instances). The computation time for generating the initial population (T-S1)
is considerably greater than that for the main procedure of the MA (T-S2) when
the initial population is generated with CPS. Next, let us focus on the results of
the MA with IPS. We can see that the values of T-S1 are considerably reduced
at the cost of the solution quality. However, comparable results are still obtained
in particular for the Class 1 instances.

4.3 Comparisons with Other Algorithms

We compare our results with those of state-of-the-art heuristic algorithms listed
below: BH (Bent and Hentenryck [1]) and RP (Ropke and Pisinger [9]). BH and
RP heuristics were executed ten and five times, respectively, to each instance.

Table 2 compares the results of the four algorithms. Here, we compare the
results with respect to the cumulative travel distance (CTD) calculated from
the best solutions obtained by the given number of runs. We also report in the
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Table 2. Comparisons with state-of-the art algorithms. Columns “CNV” and “CTD”

gives the cumulative number of vehicles and the cumulative travel distance, respec-

tively, calculated from the best solutions obtained by the five or 10 runs. Column

“Time” gives the average CPU time (second) spent for a run on an instance. At the

bottom of the table, specifications on the computers used in the experiments are shown.

BH (10 runs) RP (5 runs) MA with CPS (5 runs) MA with IPS (5 runs)

N CNV CTD Time CNV CTD Time CNV CTD Time CNV CTD Time

200 614 180358 3900 606 180931 264 606 179996 456 606 180164 132

400 1188 423636 6000 1158 422201 881 1158 418455 2409 1158 419588 453

600 1718 879940 6000 1679 863442 2221 1670 851174 4866 1670 859028 938

800 2245 1480767 8100 2208 1432078 3918 2189 1416710 13670 2189 1435337 1732

1000 2759 2225190 8100 2652 2137034 5370 2659 2120760 16505 2659 2145564 3011

CPU Athlon 1.2GHz Penti. IV 1.5GHz Opteron 2.6GHz

table the cumulative number of vehicles (CNV) for reference. Here, one should
note that the number of routes can be usually reduced at the cost of the travel
distance when it is close to m∗.

Let us first compare the MA with CPS with the RP heuristic (the BH heuristic
is dominated by the RP heuristic). The CTDs of the MA with CPS are better
than those of the RP heuristic for all instance sizes. However, the computational
costs of the MA with CPS are much greater than those of the RP heuristic (we
estimate that an Opteron 2.6GHz processor is about three times faster than a
Pentium IV 1.5GHz processor). On the other hand, the computational costs of
the MA with IPS would not be greater than twice those of the RP heuristic for
all instance sizes. The CTDs of the MA with IPS are better than those of the
RP heuristic for the 200-, 400-, and 600-customer instance sets but worse than
those of the RP heuristic for the 800- and 1000-customer instance sets. As shown
in Table 1, the results on the Class 2 800- and 1000-customer instance sets are
not good, deteriorating the CTDs of these instance sizes.

5 Conclusions

We have demonstrated that the simple MA framework using the SREX shows
very good performance on the standard PDPTW benchmarks. One interesting
feature of the SREX is that the local search-based procedure is incorporated
into the crossover procedure in order to approximately minimize the amount
of the constraint violation in the intermediate offspring solutions. This feature
makes it possible to effectively generate offspring solutions on tightly constrained
problems such as the PDPTW. The SREX can be applied to most of the other
VRP variants without change. In addition, the SREX can be easily adapted to
other combinatorial optimization problems such as the graph coloring problem.
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Appendix

This section describes how the evaluation function |VA\B| can be computed
efficiently during the local search. First, the following notations are defined:
nA

i = |V A
i |, nB

j = |V B
j |, and wij = |V A

i ∩ V B
j | (i, j = 1, . . . ,m). These values

are computed in advance for a given pair of parents. In addition, we define
the following two notations: WB

i =
∑

j∈SB
wij and WA

j =
∑

i∈SA
wij (i, j =

1, . . . ,m). These values are computed at the beginning of each local search.
Let G be |VA\B | of the current solution (SA,SB). From the definition, G is

calculated as G =
∑

i∈SA
(nA

i − ∑j∈SB
wij). Let G′ be |VA\B| of a solution

(SA ∪ {i′},SB ∪ {j′}), i.e. a solution in the neighborhood obtained by adding
routes i′ and j′ to SA and SB, respectively. G′ can be expressed in the following
formula: G′ =

∑
i∈SA∪{i′}(n

A
i −∑j∈SB∪{j′} wij) =

∑
i∈SA

(nA
i −∑j∈SB

wij) −∑
i∈SA

wij′ + nA
i′ −

∑
j∈SB

wi′j − wi′j′ = G+ nA
i′ − wi′j′ −WB

i′ −WA
j′ .

Let G′′ be |VA\B | of a solution (SA\{i′},SB\{j′}). In the same way, G′′ can
be expressed in the following formula: G′′ = G− nA

i′ − wi′j′ +WB
i′ +WA

j′ .
According to these formulas, each solution in the neighborhood can be eval-

uated in constant time. Each time the current solution (SA,SB) is moved, WB
i

and WA
j (i, j = 1, . . . ,m) must be updated according to their definitions.
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Abstract. Recent years have witnessed great success of ant based hyper

heuristics applying to real world applications. Ant based hyper heuristics

intend to explore the heuristic space by traversing the fully connected

graph induced by low level heuristics (LLHs). However, existing ant based

models treat LLH in an equivalent way, which may lead to imbalance be-

tween the intensification and the diversification of the search procedure.

Following the definition of meta heuristics, we propose an Ant based Hy-

per heuristic with SpAce Reduction (AHSAR) to adapt the search over

the heuristic space. AHSAR reduces the heuristic space by replacing the

fully connected graph with a bipartite graph, which is induced by the

Cartesian product of two LLH subsets. With the space reduction, AH-

SAR enforces consecutive execution of intensification and diversification

LLHs. We apply AHSAR to the p-median problem, and experimental re-

sults demonstrate that our algorithm outperforms meta heuristics from

which LLHs are extracted.

Keywords: Hyper Heuristics, p-Median, Ant Colony Optimization,

Meta Heuristics, Heuristic Space Reduction.

1 Introduction

By definition, a hyper heuristic is the process of using heuristics to choose heuris-
tics to solve the problem in hand [1]. Since its emergence, hyper heuristics have
been applied to many problems, such as the timetabling problem [2] and the bin
packing problem [3]. The main motivation of hyper heuristics is to conduct search
over the heuristic space, rather than directly over the solution space. Among
various hyper heuristics, ant based algorithms have attracted much attention
in that the pheromone trail provides an intuitive but general representation of
the heuristic space. Ant based hyper heuristics explore the heuristic space by
traversing the fully connected graph induced by LLHs. However, existing ant
based hyper heuristics treat LLHs in an equivalent way, such that LLHs of sim-
ilar functionalities may be executed consecutively, which may lead to imbalance
between the intensification and the diversification of the search procedure.
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In this paper, we propose an Ant based Hyper heuristic with SpAce Re-
duction (AHSAR). Unlike existing ant based hyper heuristics, AHSAR reduces
the heuristic space into a subspace by restricting LLHs to be selected from the
Cartesian product of two subsets of LLHs. The idea is inspired by the defini-
tion of meta heuristics, which interprets the process of meta heuristics as the
combination of intensification and diversification mechanisms. With the space
reduction, AHSAR is able to adapt the intensification and the diversification of
the search procedure effectively. As a case study, AHSAR is applied to a classic
NP-hard problem, the p-median problem. Experimental results show that our
new algorithm outperforms meta heuristics from which LLHs are extracted.

The paper is organized as follows. In Section 2 we introduce related work of
both ant based hyper heuristics and meta heuristics. In Section 3, AHSAR is de-
veloped to express iterative intensification and diversification searching method-
ologies. In Section 4, we apply the new algorithm to the p-median problem, and
present the experimental results. Finally, conclusion is given in Section 5.

2 Related Work

2.1 Ant Based Hyper Heuristics

In this subsection, we briefly summarize existing work related to ant based hy-
per heuristics. In 2005, Burke et al. [4] propose an ant based hyper heuristic
to solve the project presentation problem. Alberto et al. [5] apply an ant based
hyper heuristic with multiple pheromone matrices for the 2D bin packing prob-
lem in the same year. A recent ant based hyper heuristic is proposed by Chen
et al. [6] to solve the travelling tournament problem in 2007. Various applica-
tions have shown the generality of ant based hyper heuristics. In existing ant
based hyper heuristics [4,6], a fully connected graph is firstly constructed, where
each vertex represents an LLH, and arcs between vertices indicate invokation
sequence relationship between heuristics. Each ant is represented as a sequence
of LLHs, which is associated with a solution. At each iteration, artificial ants
are constructed by traversing the graph. During the construction phase, the se-
lection of LLHs is guided by the pheromone trail, with each entry representing
probability of transition between LLHs. After each LLH sequence is constructed
and applied over the corresponding solution, the pheromone information is then
updated according to the quality of the solutions obtained.

2.2 Meta Heuristic

Over the last few decades, great efforts have been focused on various meta heuris-
tics, including Genetic Algorithm (GA) [7], ACO [8], Tabu Search (TS) [9, 10],
Variable Neighborhood Search (VNS) [11], Greedy Randomized Adaptive Search
(GRASP) [12], etc. Despite appearing to be far different from each other, these
algorithms share a few common aspects [13]. By concept, a meta heuristic al-
gorithm is defined as “an iterative generation process which guides a subor-
dinate heuristic by combining intelligently different concepts for exploring and
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exploiting the search space” [14], or the combination of intensification and di-
versification. In the definition, exploitation (also called intensification) indicates
mechanisms that conduct intensive search in order to improve the quality of
solutions; while exploration (also called diversification) refers to various mecha-
nisms that lead the search to diverse regions of the search space. Some ways of
achieving intensification and diversification are listed in Table 1.

Table 1. Some ways to achieve intensification and diversification in meta heuristics

Meta Heuristics Intensification Diversification

GA Survival selection Crossover and mutation

ACO Local search Initialization with pheromone

Pheromone accumulation Pheromone evaporation

VNS Local search Shake

GRASP Local search Greedy randomized initialization

As presented in Table 1, meta heuristic algorithms intend to balance the inten-
sification and the diversification mechanisms by combining those intensification
and diversification LLH operators. During the intensification process, heuristics
such as local search operators are usually applied so as to improve the quality
of solutions; while during the diversification process, various perturbing heuris-
tics such as crossover, mutation and shake are employed to restart the search
procedure in new regions of the search space.

3 Ant Based Hyper Heuristic with Space Reduction

In this section, we discuss strategies of exploring the heuristic space, and pro-
pose our new algorithm, AHSAR. For ant based models, how to traverse the
graph derived by LLHs so as to explore the heuristic space plays an essential
role. Burke et al. [4] discuss two traversing criteria: the Any Moves (AM) hyper
heuristics that accept any LLH sequences, and the Only Improving (OI) hyper
heuristics that only accept LLH sequences that improve solution quality. They
claim that AM outperforms OI, in that OI strategy provides no diversification
mechanism [4]. However, AM strategy treats all LLHs in an equivalent way, thus
heuristics with similar functionalities may be invoked consecutively. This may
diminish the effect of some LLHs. For example, if a random restart heuristic is
invoked immediately after a greedy heuristic, the execution of this greedy heuris-
tic is generally a waste of time. Based on this observation, we propose our new
ant model AHSAR, which directly follows the definition of meta heuristics. To
enforce the consecutive execution of intensification and diversification LLHs, we
replace the fully connected graph induced by the whole LLH set with a bipartite
graph derived by two subsets of LLHs.

Without loss of generality, given a minimization problem, let S be the solution
space, with objective function f : S �→ R, and a heuristic is defined as a function
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h : S �→ S. Let H be the set of LLHs, and I = {i|i ∈ H, ∀s ∈ S, f(i(s)) ≤ f(s)}
and D = {d|d ∈ H, ∃s ∈ S, f(d(s)) > f(s)} be the subset of H that provide
intensification and diversification mechanisms, respectively. For heuristics with
more than one input solution, such as the crossover of GA, we only need to
replace the objective function f with some other evaluation function. Instead
of traversing the fully connected graph in search for LLHs, at each iteration
of AHSAR, each ant selects a tuple 〈i, j〉 from the Cartesian product I × D,
and then the chosen heuristics are applied. In order to guide the LLH selection,
a pheromone matrix τ is incorporated, with each entry τij measuring the de-
sirability of selecting 〈i, j〉. The higher the pheromone value is, the higher the
probability of choosing the corresponding tuple will be. In contrast to existing
ant based hyper heuristics, the scale of pheromone matrix decreases significantly
from |H ×H | to |I ×D|.

In addition to the pheromone matrix τ , we also incorporate the heuristic in-
formation to balance the probability of choosing each LLH. The idea is intuitive,
which is used in other ant based hyper heuristics [4] as well: the computational
complexity of LLHs may be quite different from each other, so that we should
introduce some mechanism to penalize those time consuming LLHs. For an ex-
treme example, if we consider the exhaustive search as an operator, it can cer-
tainly obtain the best solution quality. However, the running time may increase
exponentially as the scale of the problem instance grows. Although LLHs with
high complexity may achieve high quality solutions, we should also take running
time into account. In AHSAR, ηij is defined as:

ηij =
Tnorm

Ti + Tj
(1)

where Ti and Tj indicate the running time of LLH i and j, respectively, and
Tnorm is a normalizer in order to balance those problem instances of different
scale. In practice, it can be set with the running time of an LLH, which can
be determined during the initialization of the algorithm. The definition of ηij

implies that we prefer those LLHs with low complexity, with respect to the
efficiency.

With τ and η, we can define the probability of choosing the tuple 〈i, j〉 at
each iteration:

Pij =
ηij · τij∑

i∈I

∑
j∈D

ηij · τij (2)

At each iteration, after the tuple 〈i, j〉 is chosen and applied on the solution
associated with each ant k, the pheromone τ is updated using the following rule:

τij =

⎧⎨⎩ρ · τij +
Cbest

Ck
ant k chooses 〈i, j〉,

ρ · τij otherwise.
(3)

where Ck and Cbest represent the objective function of the solution correspond-
ing with ant k and the current best solution, respectively, and ρ indicates the
evaporation rate.
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Algorithm AHSAR

Input: maximum iteration N,

number of ant K,

number of elite ant k∗,
evaporation rate ρ

Output: solution s
Begin

(1) Initialize τ and η with sufficiently small random values

(2) for iteration = 1 to N do

(3) for k = 1 to K do

(3.1) Choose 〈i, j〉 with probability defined in equation (2)

(3.2) Apply LLH tuple 〈i, j〉 to the solution

associated with ant k
(3.3) Update η with equation (1)

(3.4) if a better solution has been obtained

(3.4.1) Record the current best solution with s and update Cbest

(4) Select k∗ solutions with highest quality

(5) for k = 1 to k∗ do

(5.1) Update pheromone with equation (3)

(6) return the best solution obtained s
End

Fig. 1. Pseudo Code of AHSAR

Fig. 1 presents the pseudo code of AHSAR. First of all, initialization heuris-
tics are treated as special cases of diversification heuristics in order to make the
algorithm compact and easier to implement. Thus at each iteration, after the
tuple 〈i, j〉 is selected according to equation (2), the diversification operator j
is applied before i. Second, crossover is a pairwise heuristic that requires two
parent solutions, thus if the crossover operator is chosen, an extra solution is
randomly selected from the population. Third, in step (4), k∗ out of K ants
are selected, and only these ants are allowed to release pheromone. This mech-
anism is similar to the survival selection of GA and the elite ant strategy in
ACO. We introduce this strategy to penalize those ineffective heuristics, in that
the pheromone evaporation mechanism will decrease the probability of choosing
them. Finally, an interesting byproduct of the algorithm in this study is that
AHSAR actually provides a unified framework under which many existing meta
heuristics can be considered as special cases. Although the definition of the two
subsets of LLH may not be quite precise (for example, most intensification LLHs
are local search operators), the proposed model can express a wide range of meta
heuristics. For example, by fixing the value of the pheromone entry correspond-
ing to 〈Local search, Greedy randomized initialization〉 to be 1, and that of all
the other entries to be 0, AHSAR will degenerate into GRASP. Specifically, if we
are considering individual based algorithms such as VNS, we just set parameter
k = 1, which makes the ant model similar to Fast Ant (FANT) [15].
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4 Experimental Results: A Case Study of the p-Median
Problem

In this section, we apply our AHSAR to the p-median problem. The reasons
we choose the p-median problem are as follows. Firstly, it is a classic NP-hard
problem from location theory with wide applications ranging from industry to
data mining. Since location theory is a new domain for hyper heuristics, the
proposed algorithm demonstrates the generality and the extensibility of hyper
heuristics. Secondly, for the p-median problem, there exists many meta heuristics
from which LLHs can be extracted, such as VNS [16], ACO [17], and GA [18].

Given a set L of m facilities, a set U of n users, and an n×m matrix C with
the cost traveled cij for satisfying the demand of the user located at i from the
facility located at j, for all j ∈ L and i ∈ U . The objective of the p-median
problem is to minimize the sum of these costs:

min
∑
i∈U

min
j∈J

cij (4)

All LLHs are extracted from those existing meta heuristics mentioned above.
Intensification heuristics are listed as follows.

• Interchange: Interchange is first proposed in [19], and widely used in meta
heuristics, such as VNS [16] and GRASP [20]. The heuristic iteratively swaps
facilities aiming to reduce objective function, until no move can be applied.

• LK(2): LK(k) is extracted from ACO algorithm [17], in which k is a depth
parameter. Traversing an LK(k) neighborhood involves k swaps, which is k
times that of interchange. For LK(2), parameter k is set to be 2.

• LK(m/2): Same as LK(k), with k = m/2, where m indicates the number of
facilities.

• LK(m): Same as LK(k), with k = m.

Besides intensification heuristics, diversification heuristics are also listed.

• Crossover and mutation: These two heuristics are extracted from GA [18].
Note that crossover requires two input solutions.

• Initialization with pheromone (AntInit): At each iteration of ACO [17], each
ant is constructed with probability according to the pheromone trail. In this
study, there are two pheromone matrices, one for the solution space, while
the other for the heuristic space.

• Shake: Shake is proposed in VNS [16], and can be viewed as a special case
of mutation, whose input is provided by the current best solution.

• Random: Random is actually an initialization operator, which can provide
diversification functionality as well.

• Greedy: Greedy is also an initialization operator. Greedy starts with an
empty solution, followed by solving p 1-median problems.

• Random plus greedy (RPG): As mentioned above, greedy is a deterministic
heuristic, thus in [20], randomness is combined with greedy operator.
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Table 2. Results of Algorithms on ORLIB instances

id ACO time GA time MStart time RANDH time AHFAM time AHSAR time

1 5819 2.75 5819 0.81 5819 0.25 5819 2.79 5819 0.77 5819 0.72
2 4093 1.68 4102 0.86 4093 0.26 4093 1.66 4093 0.57 4093 0.52
3 4250 1.70 4250 0.83 4250 0.25 4250 1.70 4250 0.53 4250 0.46
4 3034 1.08 3038 0.83 3034 0.44 3034 1.08 3034 0.40 3034 0.45
5 1355 0.92 1362 0.87 1355 0.36 1355 0.91 1355 0.36 1355 0.37
6 7824 17.84 7824 0.81 7824 0.81 7824 17.83 7824 5.21 7824 4.26
7 5631 8.13 5631 0.83 5631 0.69 5631 8.15 5631 2.07 5631 2.09
8 4445 5.75 4445 0.82 4445 0.84 4445 5.87 4445 1.36 4445 1.25
9 2734 3.33 2734 0.86 2734 1.23 2734 3.20 2734 1.06 2734 1.07
10 1255 3.12 1272 0.86 1255 1.06 1255 3.16 1255 1.06 1255 1.10
11 7696 40.33 7696 0.82 7696 1.48 7696 39.85 7696 9.79 7696 5.98
12 6634 24.21 6634 0.84 6634 1.33 6634 24.20 6634 6.71 6634 5.80
13 4374 7.43 4381 0.85 4374 2.21 4374 7.45 4374 2.20 4374 2.30
14 2968 7.15 2975 0.89 2968 2.37 2968 6.85 2968 2.00 2968 1.87
15 1729 7.28 1736 0.88 1729 2.16 1729 7.22 1729 2.14 1729 2.27
16 8162 121.40 8162 0.83 8162 2.85 8162 121.66 8162 30.71 8162 16.78
17 6999 60.34 6999 0.84 6999 2.04 6999 61.10 6999 15.48 6999 7.58
18 4809 12.70 4815 0.87 4809 4.51 4809 12.78 4809 3.61 4809 3.76
19 2845 10.34 2853 0.94 2846 3.52 2845 10.30 2845 3.17 2845 3.09
20 1789 11.93 1795 0.94 1789 3.53 1789 11.87 1789 3.51 1789 3.22
21 9138 178.31 9138 0.82 9138 4.04 9138 178.78 9138 50.67 9138 28.92
22 8579 137.75 8579 0.94 8579 3.50 8579 139.86 8579 32.11 8579 16.47
23 4619 17.37 4627 0.95 4619 8.13 4619 17.15 4619 5.58 4619 5.78
24 2961 16.04 2977 0.90 2961 5.60 2961 16.36 2961 4.94 2961 4.46
25 1828 21.51 1847 0.97 1828 5.87 1828 20.77 1828 6.24 1828 6.01
26 9917 393.83 9924 1.10 9917 7.63 9917 395.34 9917 87.15 9917 46.96
27 8307 270.92 8307 0.94 8307 5.64 8307 277.16 8307 65.12 8307 28.12
28 4498 24.65 4520 1.06 4498 13.09 4498 24.66 4498 7.73 4498 7.80
29 3033 26.05 3042 1.18 3033 8.57 3033 25.08 3033 7.47 3033 7.29
30 1989 36.01 2004 1.21 1994 9.29 1989 34.70 1989 9.85 1989 7.55
31 10086 666.73 10086 1.00 10086 12.17 10086 663.73 10086 154.79 10086 108.91
32 9297 420.62 9297 0.91 9297 8.57 9297 420.05 9297 103.52 9297 34.86
33 4700 34.36 4723 1.04 4700 20.84 4700 33.76 4700 11.30 4700 11.82
34 3013 42.16 3032 1.30 3014 12.58 3013 40.11 3013 10.78 3013 10.69
35 10400 1124.54 10400 1.29 10400 17.44 10400 1119.59 10400 256.02 10400 127.66
36 9934 815.42 9951 1.30 9934 12.28 9934 804.58 9934 181.60 9934 98.18
37 5057 49.25 5071 1.24 5057 31.29 5057 48.79 5057 15.97 5057 18.26
38 11060 2065.51 11105 0.87 11060 27.03 11060 2106.39 11060 396.10 11060 206.86
39 9423 1027.39 9423 0.87 9423 15.81 9423 1027.65 9423 236.53 9423 106.17
40 5128 63.13 5134 1.09 5129 42.63 5128 64.00 5128 20.00 5128 23.21

All experiments of this paper are performed on a Pentium IV 3.2 GHz PC
with 4GB memory, running GNU/Linux with kernel 2.6.32. All the codes are
implemented in C++, compiled using gcc 4.4.3 with flag -O2. Running time is
measured in seconds, calculated using clock() function. For pseudo random num-
ber we use rand() from standard library. The benchmark instance set consists of
40 instances from ORLIB [21], and 10 instances from TSPLIB [22] (We consider
instance f1400, with various p indicated by id in Table 3). To evaluate the ef-
fectiveness and the efficiency of our algorithm, we implement several algorithms
for comparison, including ACO [17], GA [18], a multistart local search (denoted
as MStart), and a basic hyper heuristic algorithm that randomly chooses LLHs
at each iteration (denoted as RANDH). For ant based hyper heuristics, besides
AHSAR, we also implement the version that traverses over the fully connected
graph with AM strategy (denoted as AHFAM), as discussed in [4].

We first compare performance between existing meta heuristics and hyper
heuristics proposed in this paper. For all algorithms, parameters are set with
same values (population of solutions K = 10, maximum iteration N = 100,
number of elite solutions k∗ = 5 for ant based hyper heuristics and GA, and
evaporation rate ρ = 0.1) in order to compare both effectiveness and efficency
of each algorithm. For the results presented in Table 2 and Table 3, solutions
with best qualities are underscored for each instance. We can observe that solu-
tion quality of AHSAR outperforms meta heuristic algorithms from which LLH
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Table 3. Results of Algorithms on TSPLIB instances

id ACO time GA time MStart time RANDH time AHFAM time AHSAR time

50 29090.22 272.79 29328.30 1.31 29090.23 46.73 29090.23 273.47 29090.22 72.35 29090.22 100.88
100 16559.32 143.30 16759.88 1.59 16569.18 93.57 16562.20 145.16 16566.57 51.46 16552.22 72.74
150 12045.58 178.18 12100.59 1.68 12054.59 45.88 12049.74 175.09 12051.25 46.01 12026.43 77.38
200 9361.34 176.85 9409.70 2.34 9385.97 46.82 9365.61 178.43 9362.59 47.74 9359.05 64.23
250 7747.84 206.06 7781.28 2.51 7761.73 50.49 7748.78 209.76 7743.91 40.05 7742.67 62.97
300 6629.41 224.28 6674.16 2.08 6649.03 52.03 6629.98 227.09 6627.53 44.80 6623.81 107.64
350 5743.23 279.56 5784.00 3.13 5766.73 55.75 5738.79 280.16 5736.31 50.02 5723.47 93.28
400 5030.44 326.14 5093.38 2.72 5058.47 60.09 5026.96 324.66 5017.05 72.92 5009.67 116.64
450 4478.42 440.36 4525.08 3.06 4500.72 63.81 4480.79 452.71 4481.81 88.14 4476.72 112.18
500 4052.17 489.50 4086.64 3.59 4068.32 65.72 4053.38 495.88 4053.94 92.40 4048.96 194.46

are extracted. AHSAR obtains best solution for all benchmark instances. When
running time is concerned, we can see that both AHSAR and AHFAM run
faster than ACO. Although ACO obtains best quality among meta heuristics
presented, high complexity of LK(m) that ACO employs makes it quite time
consuming. With help of the heuristic information η in our algorithm, running
time is significantly reduced. We can also observe the effecacy of the pheromone
matrix, in that both AHSAR and AHFAM achieve solutions with higher quality
than RANDH in less computation time. Besides, the comparison between AH-
FAM and AHSAR implies the effect of the space reduction mechanism. With the
reduction mechanism, the combination of intensification and diversification con-
tributes to the better quality of the solution obtained. Although AHSAR runs
slower than AHFAM for some instances, the quality-time trade-off is worthy.

More insights can be gained by analyzing the distribution of LLHs over dif-
ferent instances. Fig. 2 depicts probabilities of selecting different combinations
of LLHs during one run of AHSAR. From Fig. 2, we can see that given differ-
ent problem instances, the distribution of LLH combinations exhibits different
patterns. For example, over orlib40 and fl1400 with p = 200, the probability of
selecting 〈LK(2), AntInit〉 varies from 40% to 22%. However, LLH distribution
of AHFAM doesn’t exhibit different pattern over different instances, as is illus-
trated in Fig. 3. The observation implies that our new algorithm is self-adaptive.
Besides, Fig. 2 implies the effect of the heuristic matrix η and the elite ant
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(a) ORLIB40 with m = 900, p = 90 (b) FL1400 with m = 1400, p = 200

Fig. 3. AHFAM’s distribution of LLHs over different instances

strategy. From Fig. 2 we can see that the LK(m) operator is seldom chosen, in
that its complexity is too high; while the probability of selecting LLHs such as
Random and RPG is also low, due to their poor performance.

5 Conclusion

In this paper a new ant based hyper heuristic with space reduction is developed.
The main contribution of this paper can be concluded as follows. (1) A new
ant model is proposed. We explicitly follow the definition of meta heuristics by
dividing LLHs according to their functionalities, and the search space of LLHs
is reduced by replacing the fully connected graph constructed by all LLHs with
a bipartite graph derived by two subsets of LLHs, which can be explored more
effectively. (2) We apply the proposed algorithm to the p-median problem for the
first time, which demonstrate the generality of hyper heuristics. (3) Numerical
results show that our algorithm outperforms the meta heuristics from which the
new algorithm is derived.
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Abstract. Using unconstrained binary quadratic programming problem

as a case study, we investigate the role of multi-parent crossover operators

within the memetic algorithm framework. We evaluate the performance

of four multi-parent crossover operators (called MSX, Diagonal, U-Scan

and OB-Scan) and provide evidences and insights as to why one particu-

lar multi-parent crossover operator leads to better computational results

than another one. For this purpose, we employ several indicators like

population entropy and average solution distance in the population.

Keywords: multi-parent crossover, memetic algorithm, unconstrained

quadratic programming, performance analysis.

1 Introduction

Memetic algorithms (MA) are known to be one of the highly effective metaheuris-
tic approaches for solving a large number of constraint satisfaction and optimiza-
tion problems [1]. One of the most important features of a MA is the crossover
operator for generating offspring solutions. In general, meaningful crossover op-
erators help to create healthy diversification in the population and to avoid a
premature convergence of the population.

In this paper, we provide a case study of multi-parent crossover operators
within memetic algorithms for the unconstrained binary quadratic programming
(UBQP) that can be written

UBQP: Maximize f(x) = x′Qx
x binary

where Q is an n by n matrix of constants and x is an n-vector of binary variables.
The formulation UBQP is notable for its ability to represent a wide range

of important problems [2]. The literature reports a number of evolutionary
and memetic algorithms with two-parent crossover operators for solving the
UBQP problem ([3,4,5,6]). However, one finds no studies concerning multi-parent
crossover operators for UBQP, where multi-parent crossover operators generate
offspring solutions by combining more than two parent solutions. In this work,
we are particularly interested in investigating the role of multi-parent crossover
operators as well as a number of related important questions: why does one par-
ticular multi-parent crossover operator lead to better computational results than
� Corresponding author.

R. Schaefer et al. (Eds.): PPSN XI, Part I, LNCS 6238, pp. 556–565, 2010.
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another one? What are the main characteristics of a good multi-parent crossover
operator? To what extent can the crossover operators influence the performance
of the memetic algorithms?

Without claiming to answer all these questions, we present an experimental
analysis of various multi-parent crossover operators within a memetic algorithm.
For this purpose, we use four multi-parent crossover operators, respectively called
MSX, Diagonal, U-Scan and OB-Scan. The last three ones are well known in
the literature while the first one is recently proposed in [7]. The analysis shows
that the computational results are strongly correlated with the characteristics of
the corresponding crossover operators, such as the entropy and average solution
distance of the population, the average solution quality in the population. Fur-
thermore, the analysis sheds light on how a tradeoff between local search and
crossover operator can be achieved when using different crossover operators.

2 Multi-parent Crossover within Memetic Algorithms

2.1 Main Scheme and Initial Population

This study is based on the general memetic framework described in Algorithm 1
that alternates between a combination operator and a local improvement proce-
dure. The combination operator (Section 2.4) is used to generate new offspring
solutions while the local improvement procedure based on tabu search (Section
2.2) aims at optimizing each offspring solution. As soon as an offspring solution
is improved by tabu search, the population is accordingly updated based on two
criteria: the solution quality and the diversity of the population. The individuals
of the initial population are generated randomly (i.e., each variable xi of the
n-vector x receives a value of 0 or 1 with equal probability).

Algorithm 1. Pseudo-code of the memetic algorithm
1: Input: matrix Q
2: Output: the best solution x∗ found so far
3: P = {x1, . . . , xp} ← Population Initialization( )
4: for i = {1, . . . , p} do
5: xi ← Tabu Search(xi)
6: end for
7: x∗ = arg max{f(xi)|i = 1, . . . , p}
8: repeat
9: randomly choose a subset of individuals E (|E| ∈ [4, 8]) from P

10: x0 ← Crossover Operator(E)
11: x0 ← Tabu Search(x0)
12: if f(x0) > f(x∗) then
13: x∗ = x0

14: end if
15: P ← Pool Updating(x0, P )
16: until a stop criterion is met
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2.2 Tabu Search Procedure

In this paper, we employ a simple tabu search algorithm as our local search
procedure. Our tabu search procedure uses a neighborhood defined by the simple
one-flip move, which consists of changing (flipping) the value of a single variable
xi to its complementary value 1− xi. The implementation of this neighborhood
uses a fast incremental evaluation technique [8] to calculate the cost (move value)
of transitioning to each neighboring solution.

Tabu search incorporates a tabu list as a “recency-based” memory structure
to assure that solutions visited within a certain span of iterations, called the tabu
tenure, will not be revisited [9]. In our implementation, we elected to set the tabu
tenure as TabuTenure(i) = tt+ rand(10), where tt is a given constant (n/100)
and rand(10) takes a random value from 1 to 10. Our tabu search method stops
when a given number α of moves are reached, called depth of tabu search.

2.3 Pool Updating

In our memetic algorithm, after an offspring x0 is obtained by the crossover
operator and improved by tabu search, we decide whether the improved offspring
should be inserted into the population, replacing the existing worst solution. For
this purpose, we define a quality-and-distance goodness score of the offspring x0

with respect to the population. The main idea is to favor the inclusion of x0 in the
population if x0 is “good enough” (in terms of its objective function evaluation)
and is not too similar to any solution currently in the population.

Our aim is not only to maintain a pool of good quality solutions but also to
emphasize the importance of the diversity of the solutions to avoid a premature
convergence of the population. Therefore, if the goodness score of the offspring
solution is good enough, it will have high probability to replace the worst solution
in the population. Interested readers are referred to [7] for more details.

2.4 Combination Operators

In this paper, we use four multi-parent crossover (or combination) operators to
generate offspring solutions, including a “logic” multi-parent combination opera-
tor (MSX), a diagonal multi-parent crossover (Diagonal), a multi-parent uniform
scanning crossover (U-Scan), a multi-parent occurrence based scanning crossover
(OB-Scan). Note that except MSX which is recently proposed for UBQP [7], the
last three ones have been widely used for other combinatorial optimization prob-
lems in the literature [10,11].

All the four combination operators used in our algorithm are applied on a set
E of s (|E| = s) parent solutions randomly selected from the current population,
i.e., E = {x(1), . . . ,x(s)}, where x(i) = (x(i)

1 , . . . ,x
(i)
n ). In our implementation,

we set s to be a random number between 4 and 8.

MSX Crossover (MSX): we define a weight w(i) for the solution x(i) and a
strength value Strength(j) for variable xj as: w(i) = 1/

∑
(i) = 1/

∑n
j=1 x

(i)
j

and Strength(j) =
∑s

i=1 w(i)x(i)
j .



A Study of Multi-parent Crossover Operators in a Memetic Algorithm 559

The value Strength(j) gives a relative indication of the tendency of the solu-
tions in E to favor xj = 1 or xj = 0. That is, we may say that the larger the
value of Strength(j), the greater is the degree that “E favors xj = 1”. Then,
we take an average of the sum(i) values over E to get a value for the num-
ber of xj components that should be 1 in an “average” solution, denoted by
Avg =

∑s
i=1 sum(i)/s.

Thus, the variables with the first Avg largest Strength values receive assign-
ment 1 and other variables receive assignment 0. In practice, it is preferable to
shift Avg slightly in one direction or another to increase the diversity of the
generated offspring solutions [7].

Diagonal Crossover (Diagonal): it is a generalization of the one-point
crossover. For s parent solutions, diagonal crossover divides each parents into
s sections through s− 1 crossover points. Each section has the same length ex-
cept the last section containing the surplus variables when divided unequally.
The offspring is constructed through extracting in a diagonal way respectively
one section from each parent. The formal definition is given as follows.

Given set E with s solutions and s − 1 crossover points {y1, y2, ..., ys−1},
where yi = i ∗ n/s and 0 < i < s. Diagonal crossover reproduces the offspring
c = (c1, c2, ...cs) by

ck =

⎧⎪⎨⎪⎩
x

(1)
j , 1 ≤ j < y1 k = 1;
x

(k)
j , yk−1 ≤ j < yk 1 < k < s;
x

(s)
j , ys−1 ≤ j ≤ n k = s.

(1)

Uniform Scanning Crossover (U-Scan): this is a generalization of the two-
parent uniform crossover. U-Scan uses a scheme that one of the parents selected
randomly determines the value of the offspring. Thus each parent has the same
probability to be the dominator of the value inherited by the offspring. It breaks
the limitation of traditionary two parents and can extend the number of parents
to an arbitrary number.

Given set E with s solutions, U-Scan generates offspring solution c = (c1, c2, ...
cn) as follows. Value cj is obtained by cj = x

(i)
j where x(i)

j denotes the jth value
of parent x(i) and i is randomly selected from 1 to s with probability 1/s.

Occurrence-Based Scanning Crossover (OB-Scan): OB-Scan relies on
parental occurrence on determining the offspring values. Generally speaking,
each parent votes and the values inherited will be the one favored by the ma-
jority of parents. As for UBQP problem, the value equals either one or zero,
thus we record the frequency of each variable’s value equal to one appearing in
the parents. If this frequency surpasses or is less than the half of the number of
parents, then the value of offspring in this position is assigned to one or zero,
respectively. Otherwise, the variable is assigned to be one or zero randomly. The
following gives a formal definition of OB-Scan.
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Given set E, OB-scan reproduces the offspring c = (c1, c2, ...cn) by

cj =

⎧⎪⎨⎪⎩
0,

∑s
i=1 x

(i)
j < s/2;

1,
∑s

i=1 x
(i)
j > s/2;

rand(0, 1), otherwise.
(2)

where rand(0, 1) ∈ {0, 1} is a binary random function.

3 Experimental Results

3.1 Instances and Experimental Protocol

To evaluate the MSX, Diagonal, U-Scan and OB-Scan crossover operators, we
carry out experiments on a set of 15 large random instances with 3000 to 5000
variables from the literature [12]. Our algorithm is programmed in C and com-
piled using GNU GCC on a PC running Windows XP with Pentium 2.66GHz
CPU and 512MB RAM. Given the stochastic nature of the algorithm, problem
instances are independently solved 10 times. The stop condition for a single run
is respectively set to be 5, 10 and 20 minutes on our computer for instances with
3000, 4000 and 5000 variables, respectively. Note that when performing exper-
iments on each crossover, the only difference consists in the crossover operator
and other components of the algorithm are kept unchanged. The parameters
are set as follows: population size p = 30, depth of tabu search α = 2n. The
experimental results are summarized in Tables 1 and 2.

3.2 Computational Results

Tables 1 and 2 report the best objective values (in parentheses number of hits
over 10 runs) and the average objective values using the four crossover operators,

Table 1. Computational results on the 15 large random instances with 3000 to 5000

variables: best values (succ rate)

Instance MSX U-Scan OB-Scan Diagonal

p3000.1 3931583(9) 3931583(10) 3931583(8) 3931583(9)

p3000.2 5193073(10) 5193073(10) 5193073(10) 5193073(10)

p3000.3 5111533(7) 5111533(7) 5111533(7) 5111533(6)

p3000.4 5761822(10) 5761822(10) 5761822(9) 5761822(10)

p3000.5 5675625(6) 5675625(1) 5675598(1) 5675625(4)

p4000.1 6181830(10) 6181830(10) 6181830(10) 6181830(10)

p4000.2 7801355(7) 7801355(6) 7801355(4) 7801355(6)

p4000.3 7741685(9) 7741685(9) 7741685(9) 7741685(7)

p4000.4 8711822(10) 8711822(9) 8711822(7) 8711822(9)

p4000.5 8908979(4) 8908979(7) 8908979(3) 8908979(2)

p5000.1 8559015(1) 8559312(1) 8559210(3) 8559210(4)

p5000.2 10835437(1) 10835832(3) 10835437(3) 10835437(5)
p5000.3 10488783(10) 10489137(3) 10489137(1) 10489137(1)

p5000.4 12251211(1) 12251211(2) 12251211(2) 12251211(1)

p5000.5 12731803(10) 12731803(1) 12731803(1) 12731803(1)
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respectively. We observe that MSX and U-Scan perform slightly better in terms
of the best objective values since both two crossovers obtain the best values for 4
out of the 15 instances. OB-Scan seems to be the worst in terms of the best objec-
tive value and the success rate. Table 2 indicates that MSX seems to be superior
to other three crossover operators in terms of the average objective values since
it reaches the best results for 7 out of the 15 instances. Moreover, U-Scan and
Diagonal perform quite well on 3 and 2 instances, respectively. In addition, the
results also disclose that the performance of various crossover operators depend
on the instances to be solved. For example, MSX operator dominates the other
three ones on instances p3000.5 and p5000.5; U-Scan obtains excellent results
on instance p5000.3; Diagonal performs the best on instances p5000.2.

Table 2. Computational results on the 15 large random instances with 3000 to 5000

variables: average objective function values over 10 runs

Instance MSX U-Scan OB-Scan Diagonal

p3000.1 3931522 3931583 3931368 3931418

p3000.2 5193073 5193073 5193073 5193073

p3000.3 5111403 5111307 5111292 5111194

p3000.4 5761822 5761822 5761784 5761822

p3000.5 5675360 5675041 5674950 5675130

p4000.1 6181830 6181830 6181830 6181830

p4000.2 7801170 7800556 7799766 7800731

p4000.3 7741493 7741653 7741557 7741541

p4000.4 8711822 8711775 8711410 8711582

p4000.5 8908438 8908189 8907347 8906880

p5000.1 8558848 8558945 8558916 8558963
p5000.2 10834470 10835107 10834762 10834987

p5000.3 10488783 10487995 10487865 10487941

p5000.4 12250012 12250161 12249935 12250559
p5000.5 12731803 12730255 12730454 12730563

4 Analysis

The above computational results show that for certain instances, some crossover
operators perform better than other ones in terms of the solution quality. In
this section, we attempt to explain what causes the effectiveness or weakness
of a crossover operator. For this purpose, we introduce the following evaluation
criteria to characterize the search capacity of different crossover operators: pop-
ulation entropy, average solution distance and average solution quality in the
population. We argue that a good crossover operator should help the population
to maintain a good diversity (high entropy and high average solution distance)
and good average solution quality. We also perform an experiment to show how
different crossover operators and local search jointly influence the performance
of the memetic algorithms.
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As an example, the experiments are presented on the large random instance
p5000.5. The stopping criterion is the number of generations which is limited to
100. From Tables 1 and 2, one observes that for this instance MSX performs the
best, while U-Scan and OB-Scan are much worse than MSX and even Diagonal.

4.1 Evolution of Solution Quality

We first study one of the most important characteristics for the four crossover
operators, i.e., the solution gaps to the best known value evolving with the
generation iterations, denoted by gb. gb is defined as the average value of solution
gaps between the best solution in the current population and the best known
objective value over 10 independent runs. The smaller is this value, the higher
quality the best solution in the population has. Figure 1 shows how this value
evolves with the generation iterations for the four crossover operators.
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Fig. 1. Best population solution quality evolving with the generation iterations

One observes that at the first generations, the four crossover operators have
no clear difference in terms of this criterion. However, with the search progresses,
MSX performs much better than other three ones. Note that Diagonal also per-
forms very well and U-Scan is the worst among the four operators. This obser-
vation coincides very well with the results reported in Tables 1 and 2, showing
the advantage of the crossover operators of MSX and Diagonal, as well as the
weakness of U-Scan and OB-Scan for this problem instance.

4.2 Population Entropy and Distance

In our second experiment, we observe the two characteristics of the four multi-
parent crossover operators in terms of the population diversity: the population
entropy vs. the number of generations; the average solution distance in the pop-
ulation vs. the number of generations.

The entropy, taking into account the value of each variable in each individual
of the population P , is calculated as follows [13]:

entropy(P ) =
−∑n

i=1

∑1
j=0

nij

p log
nij

p

nlog2
(3)
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where n is the number of variables and nij is the number of times the variable xi

is set to j in P . In this definition, entropy(P ) ∈ [0, 1]. entropy(P ) = 0 indicates
a population of identical individuals whereas entropy(P ) = 1 means that all
possible assignments are almost uniformly distributed in the population.

The average solution distance in the population is calculated:

d̄(P ) =
2

p(p− 1)

p∑
i=1

p∑
j=i+1

dij (4)

where dij is the Hamming distance between any two solutions x(i) and x(j) in
the current population P .

Figure 2 shows how the population entropy (left) and average solution distance
of the population (right) evolve with the number of generations. We see that the
population diversity measured in terms of these two characteristics is better
preserved during the evolution process for MSX and Diagonal than for U-Scan
and OB-Scan, especially after the first 60 generations.

Following the spirit of scatter search and path-relinking, an efficient solution
combination operator is one that ensures not only high quality solutions but
also a good diversity of the population. In other words, the diversification of
the population induced by MSX and Diagonal allows the algorithm to benefit
from a better exploration of the search space and prevents the population from
stagnating in poor local optima.

4.3 Tradeoff between Intensification and Diversification

In this section, we turn our attention to study another important aspect of
the memetic algorithms, i.e., the tradeoff between local search and crossover
operators. In fact, the performance of the memetic algorithm is influenced by
the value of the depth of tabu search α. Under a limited computational resource,
the depth of tabu search reflects the relative proportion of combination operators
and tabu search in the algorithm. In this section, we analyze the influence of the
parameter α on the performance of the memetic algorithm.
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Fig. 3. Tradeoffs between TS and crossover operator

To implement this experiment, we consider 3 different values of the parameter
α: α = n, α = 2n and α = 4n. For each value, we perform 10 independent runs,
each run being given 20 minutes CPU time. Figure 3 shows the average evolution
of the best solution gaps during the search obtained with these three α values
and four crossover operators.

From Figure 3, we first notice that the memetic algorithm performs much
worse with α = n and α = 2n than with α = 4n in three cases (Diagonal, U-Scan
and OB-Scan), which means that tabu search is an essential part in the memetic
algorithm when using these three operators and stronger tabu search can eclipse
the role of the crossover. However, when it comes to the MSX crossover oper-
ator, one observes that MSX is not really sensitive to various α values, show-
ing that MSX plays a real driving role for the search process. This experiment
shows a clear advantage of MSX and the importance of setting an appropriate α
value for other crossover operators in order to achieve a desired tradeoff between
intensification and diversification.

5 Conclusions

Understanding and explaining the performance of crossover operators within a
memetic algorithm is an important topic. In this paper, we presented an attempt
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to analyze the intrinsic characteristics of four crossover operators for the UBQP
problem. To this end, we employed several evaluation indicators to characterize
the search capability of a crossover operator. The experimental analysis allowed
us to understand to some extent the relative advantages and weaknesses of the
four studied crossover operators within the memetic framework.
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Abstract. We present a hybrid genetic algorithm that incorporates the

Generalized Partition Crossover (GPX) operator to produce an algo-

rithm that is competitive with the state of the art for the Traveling

Salesman Problem (TSP). GPX is respectful, transmits alleles and is ca-

pable of tunneling directly to new local optima. Our results show that

the hybrid genetic algorithm quickly finds optimal and near optimal so-

lution on problems ranging from 500 to 1817 cities using a population

size of 10. It is also superior to Chained-LK given similar computational

effort. Additional analysis shows that all the edges found in the globally

optimal solution are present in a population after only a few generations

in almost every run. Furthermore the number of unique edges in the

population is also less than twice the problem size.

Keywords: Traveling Salesman Problem, Generalized Partition

Crossover, Hybrid Genetic Algorithm, Chained-LK.

1 Introduction

Chained Lin-Kernighan (Chained LK) [1] is a highly competitive local search
algorithm for the Traveling Salesman Problem that uses a carefully designed
operator called the “double bridge move.” In this paper, we present an evolu-
tionary algorithm that yields better results than Chained LK and that can be
shown to possess several desirable characteristics. Our hybrid Genetic Algorithm
combines local search with a new recombination operator, Generalized Partition
Crossover (GPX), which is a generalization of the Partition Crossover operator
(PX) [2].

PX is respectful and transmits alleles: this means that the children of parent
solutions are guaranteed to have all edges that are found in both parents (respect)
and any edge found in an offspring can also be found in one of the parents
(transmits alleles) [3]. Additionally the operator has a property which we call
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“tunneling”: the offspring of parents that are locally optimal are also locally
optimal with high probability.

Partition Crossover (PX) partitions a graph G constructed from the union
of two parent tours. If a partition of cost 2 exists in this graph, PX is able to
construct two children which are distinct from the parents in O(n) time, where
n is the number of vertices in graph G. If there are multiple ways to partition
graph G into subgraphs, where each partition has cost 2, PX uses only one of
these partitions. But empirically we have found that multiple partitions exist
when recombining solutions that are already locally optimal. GPX exploits all
partitions of cost 2 with no significant increase to the O(n) running time of the
original PX operator; the resulting recombination is still respectful and transmits
alleles.

When we embed GPX in a hybrid GA, we can show improvements in effi-
ciency and effectiveness over Chained LK. We demonstrate its performance in
experiments in which we carefully control computational effort to provide a fair
comparison. On small 500 city problems the hybrid Genetic Algorithm often
quickly finds the global optimum. It occasionally finds the global optimum on
larger problem instances using a very modest amount of computational effort as
compared to Chained LK.

More importantly, we analyze the cases when the hybrid GA does not easily
find the global optimum. We find that the edges in the global optimum which
may be missing from the best tour are present in other members of the popu-
lation. Furthermore, the number of unique edges in the population is relatively
small compared to the total number of edges in the cost matrix. In addition, the
edges from the global optimum which are missing from the best solutions are pre-
dominantly contained within a single subgraph which is the largest “component”
of the graph that is being broken apart during the recombination.

2 Generalized Partition Crossover

To recombine two Hamiltonian circuits, Partition Crossover partitions a graph
G = (V,E) where V is the set of vertices (i.e., cities) of an instance of a TSP and
E is the union of the edges found in two parents. An edge in E can be classified
as either a common edge or an uncommon edge. An edge in E is a common edge
if it is found in both parents; an edge is an uncommon edge if it is found in only
one parent.

Whitley et al. [2] prove that if graph G contains at least one partition of
cost 2, then it is possible to create at least two offspring in O(n) time which
are Hamiltonian circuits distinct from the parents. Figure 1(a) shows a graph G
created from two parents. The edges from one parent are represented by solid
lines and those from the other by dashed lines. When the common edges are
deleted, the graph breaks into 3 subgraphs. There are two partitions of this
graph with cost 2 (the heavy dark lines).

The original PX operator constructs two children using only one of the par-
titions of cost 2 in G. PX could construct two children using partition A in
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Fig. 1. An example of (a) The graph G created from the union of two parent tours

with two partitions shown by the heavy dark lines and (b) The graph Gu, constructed

by deleting the common edges between the two parent tours from G

Figure 1 by taking the solid edges from the left of A and the dashed edges from
the right, and the second child by taking the dashed edges from the left of A
and the solid edges from the right. Two different children would be constructed
if PX used partition B in a similar manner. Whitley, Hains and Howe [2] prove
that Partition Crossover is respectful and transmits alleles.

Generalized partition crossover (GPX), makes use of all partitions of cost 2
in a single recombination with no significant increase to the O(n) running time
of PX. We recombine solutions by creating a subgraph of G, Gu = (V,Eu),
where V is the vertex set of the original TSP instance and Eu is the set of
uncommon edges found in E. Typically, Gu is made up of multiple disconnected
subgraphs. We use Breadth First Search on Gu to find each connected subgraph
of Gu; this has O(n) cost, because the degree of any vertex is at most 4, and
each vertex is processed only once. Some additional bookkeeping is needed to
track which partitions have cost 2 for graph G. When all the partitions of cost
2 are applied, the graph G is broken into k pieces which we will define to be
partition components; not all connected subgraphs in Gu yield feasible partition
components because they may not yield partitions of cost 2.

Figure 1(b) shows an example of the graph Gu created from the graph G
shown in Figure 1(a). GPX creates children tours by using the common edges
from G and taking either the dashed or solid edges from each of the partition
components. The path followed by a tour within a partition component is inde-
pendent of the path followed by a tour in any other partition component. Thus,
within each component, a new tour could follow the path of the “dashed” parent
or the “solid” parent.

The GPX Theorem
Let graph G be constructed by unioning the vertices and edge found in two Hamil-
tonian Circuits for some instance of the TSP. If graph G can be separated into
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k partition components of cost 2, then there are 2k − 2 distinct offspring; every
recombination is both respectful and transmits alleles.

Proof
By construction, all of the common edges connecting partition components are
inherited. Within a partition component, a path followed by one of the parents
is followed. This also means that all common edges within a partition compo-
nent are inherited. Therefore the operator is respectful: all common edges are
inherited. Generalized Partition Crossover “transmits alleles” because it only
uses edges found in the graph G.

Since offspring inherit the common edges; partitions are also always inherited.
This means we could recombine the parents using a single partition A, then re-
combine the children again using another partition B to produce grandchildren.
By separating all partitions of cost 2, Generalized Partition Crossover is equiv-
alent to iterative applications of Partition Crossover and the offspring must be
Hamiltonian circuits.

Let s be a string of k bits, one bit for each partition component. Let bit si = 0
if a tour follows the path of the “dashed” parent in partition component i. Let
bit si = 1 if a tour follows the path of the “solid” parent in partition component
i. Clearly, there are 2k possible tours (and bit strings) that can be constructed
by GPX, but 2 of these represent the parents. Thus, if there are k partition
components, there are 2k − 2 possible offspring tours that are respectful and
that transmit alleles. �

Since the objective function is linear, and all of the offspring are tours, if we make
a greedy choice in each partition component by deciding whether the dashed-
path or solid-path is shortest, we can also construct the shortest tour possible
of the 2k−2 possible offspring by making k greedy choices within each partition
component. This is also accomplished in O(n) time.

2.1 GPX with Local Search

We run local search to generate an initial population and to further optimize the
offspring. We tested different local search operators. In our previous study [2]
looking at randomly chosen local optima produced by the application of 2-opt,
we found that Partition Crossover was feasible more than 90 percent of the time.
Since PX and GPX are closely related operators, when one is feasible the other
is feasible. When randomly chosen local optima are generated by the application
of 3-opt, we found that Generalized Partition Crossover is feasible in 100 percent
of the cases tested across all of the TSP instances studied in this paper; in more
than half of all cases, the offspring are still locally optimal under 3-opt.

To ascertain the number of partition components available to GPX, we re-
combined 50 random local optima generated using 2-opt [4], 3-opt and Lin-
Kernighan search [5] (LK-search). The results are presented in Table 1. The
instances rand500 and rand1500 are random Euclidean instances and att532,
nrw1379 and u1817 are from the TSPLIB. The number of cities in each instance
is indicated by the numerical suffix.
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Table 1. Average number of partition components used by GPX in 50 recombinations

of random local optima found by 2-opt, 3-opt and LK-search

Instance rand500 att532 nrw1379 rand1500 u1817

2-opt 2.6 ± 0.1 3.3 ± 0.2 3.2 ± 0.2 3.7 ± 0.3 5.0 ± 0.3
3-opt 9.42 ± 0.4 10.5 ± 0.5 11.3 ± 0.5 24.9 ± 0.2 26.2 ± 0.7

LK-search 4.5 ± 0.2 5.3 ± 0.2 5.2 ± 0.3 10.6 ± 0.3 13.3 ± 0.4

Our data indicate 3-opt induces more partition components than 2-opt be-
cause it induces more subtours made up of common edges that can be used to
partition the graph. The big valley hypothesis [6] supports a strong correlation
between the number of common edges shared with the global optimum and the
evaluation of a tour. Tours produced by LK-search have even more total common
edges than 3-opt, but some partitions are now absorbed into common subtours.
Thus, there are a smaller number of common subtours (and fewer partitions)
than 3-opt but the common subtours become longer for LK.

Sometimes there are more than 20 partition components under 3-opt. Using
more than 20 partition components, one recombination is selecting the best of
more than 1 million solutions, most of which are local optima. Nevertheless,
working with LK-search gets us closer to the global optimum. In the remainder
of this paper we will only employ LK-search.

3 The Algorithms: Descriptions and Comparisons

Our hybrid GA is described in Figure 2. The initial population is produced by
randomly generating t tours and applying the same LK-search procedure used
in step 5. The algorithm was run for a fixed number of generations.

The version of LK-search used is the implementation from Applegate et al.
[1] with don’t-look bits and uses the default neighborhood list size and search
depth. By restricting moves (and clever programming), one iteration of LK-
search is faster than a full exploration of the 2-opt neighborhood. The ordering
and choice of neighbors is non-deterministic, meaning LK-search may improve
upon a tour with subsequent calls until the potential improving moves under
LK-search have been exhausted. Only one call to LK-search is done in Step 5.

One of the first questions we considered was whether to use truncation selec-
tion (always keep the t best solutions), or to try to preserve diversity by keeping
offspring containing edges that are under-represented in the population. When
GPX is applied in a greedy fashion, we generate two offspring. The first offspring
is the greedy offspring: the shortest path in each partition component is selected.
Usually, there are many small partition components, and one large partition com-
ponent that is typically 20% of the tour. The second offspring also inherits the
shortest path in all of the partition components, except for the largest partition
component; in this component the offspring inherits the path not used by the
first greedy offspring. Thus, t recombinations produces 2t offspring.
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Let P1 be a randomly generated population of size t;
Let P2 be a temporary child population of size t;
For each member of P1: apply LK-search and evaluate;

1. Attempt to recombine the best tour of P1 with the remaining t − 1 tours

using GPX; this generates a set of up to 2t offspring.

2. If recombine was not feasible between the best tour and tour i, mutate

tour i using a double bridge move and place in population P2;

3. Place the best solution found so far in population P2;

4. From the set of offspring, select offspring to fill population P2;

5. For each member of population P2: apply LK-search and evaluate;

6. P1 = P2; If stopping condition not met, goto 1.

Fig. 2. Algorithm for the hybrid GA; the GA is generational, but elitist

We developed a strategy called diversity selection that uses an edge weighting
function d to quantify the diversity of edges contributed to the population by
each tour. For tour si in the population,

d(si) =
∑

e(j,k)∈si

1
M(j, k)

where e(j, k) is an edge from city j to k and M(j, k) is the number of times e(j, k)
appears in the population. We then retain tours from among the offspring with
the highest summed edge diversity, d(si).

The use of diversity selection means that the GA must be generational and
that offspring replace parents, because parents typically have higher diversity
than offspring. In empirical studies, a generational GA using diversity selection
consistently produced much better results than keeping the t tours with lowest
cost. Thus, we used “diversity selection” (step 4) in the hybrid GA.

We retain the best tour found so far (step 3) in the population of offspring.
If GPX fails to recombine two tours, we then apply one double-bridge move to
tour i where i is not the best tour in the population, and directly place this
“mutated” tour in the population of offspring (step 2). The remaining members
of the offspring population are selected by diversity selection (step 4).

3.1 Comparisons: The Hybrid GA with GPX versus Chained-LK

The hybrid GA was run using a population of 10 tours. The hybrid GA used LK-
search as the local search method and Generalized Partition Crossover. We then
compare the minimum tour found using the hybrid Genetic Algorithm against
the best tour found using Chained Lin-Kernighan. Both methods used exactly
the same implementation of LK-search using identical parameters.

Chained Lin-Kernighan is one of the best performing local search heuristics
for the TSP [1]. Chained LK applies LK-search to a single tour and then uses
a double bridge move [7] to perturb the solution; Chained-LK then reapplies
LK-search. Since the population size is 10, the hybrid GA uses 10 applications



572 D. Whitley, D. Hains, and A. Howe

Table 2. Average percentage of the cost of the minimum tour found above the globally

optimal cost averaged over 500 experiments using Chained LK and the hybrid GA

Generation −→ 5 10 20 50

Instance Algorithm 60 LK calls 110 LK calls 210 LK calls 510 LK calls

rand500 GA w/ GPX 0.29 ± 0.01 0.17 ± 0 0.1 ± 0 0.05 ± 0

Chained-LK 0.30 ± 0.01 0.19 ± 0.01 0.13 ± 0 0.09 ± 0

att532 GA w/ GPX 0.29 ± 0 0.18 ± 0 0.12 ± 0 0.07 ± 0

Chained-LK 0.30 ± 0.01 0.21 ± 0.01 0.13 ± 0 0.08 ± 0

nrw1379 GA w/ GPX 0.63 ± 0 0.48 ± 0 0.34 ± 0 0.23 ± 0

Chained-LK 0.62 ± 0.01 0.46 ± 0.01 0.32 ± 0 0.19 ± 0

rand1500 GA w/ GPX 0.71 ± 0.01 0.52 ± 0.01 0.36 ± 0 0.22 ± 0

Chained-LK 0.73 ± 0.01 0.54 ± 0.01 0.39 ± 0.01 0.25 ± 0

u1817 GA w/ GPX 1.61 ± 0.01 1.26 ± 0.01 0.95 ± 0.01 0.63 ± 0.01
Chained-LK 2.08 ± 0.02 1.61 ± 0.02 1.19 ± 0.01 0.83 ± 0.01

Table 3. The number of times the global optimum is found by each algorithm after

1010 calls to LK-search over 50 experiments

rand500 att532 nrw1379 rand1500 u1817

Hybrid GA 50/50 26/50 1/50 12/50 1/50

Chained-LK 38/50 16/50 1/50 2/50 0/50

of LK-search each generation; therefore, Chained LK is allowed to do 10 double-
bridge moves and apply the LK-search 10 times for every generation that the
hybrid GA is allowed to execute. This means that each algorithm is allowed to
call LK-search exactly the same number of times. The hybrid GA has the addi-
tional cost of recombination, but this cost is O(n) with a small constant and the
computation is very small compared to one iteration of LK-search. Furthermore,
applying LK-search after a double bridge move is more expensive that applying
LK-search after recombination: the double bridge move is a disimproving move,
and recombination using GPX solutions is typically an improving move. Thus,
the run times are approximately the same. (Exact comparisons of run times are
difficult because LK-search is integrated into the Chained-LK code, while the
hybrid GA uses a simple but unoptimized interface to call the LK-search.)

Table 2 lists the average percentage of the cost of the minimum tour found
compared to the cost of the global optimum for each problem instance. The
hybrid GA was allowed to run for 50 generations in these experiments.

After 510 calls each to LK-search, the hybrid GA using GPX yields better
results on all of the problems except nrw1379. This is remarkable because the
hybrid GA must optimize 10 solutions and the best solution must be optimized
10 times faster than Chained-LK to obtain a better result.

If each algorithm is run longer, the performance of the hybrid Genetic Algo-
rithm is increasingly better than Chained LK. Table 3 shows how many times
(out of 50 attempts) that each method finds the global optimum after 1010 calls
to LK-search (which is 100 generations for the hybrid GA).
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Table 4. Results obtained by running the hybrid GA for only 5 generations and without
mutation (double-bridge moves). “Global Edges in population” is the number of edges

found in the global optimum that are also present in the population. “Global Edges

in Minimal Tour” is the number of edges shared in common between the best solution

found and the global optimum. “Unique Edges in Population” is the total number of

distinct edges found in the population at the end of generation 5. The number of edges

in each instance is indicated by the numerical suffix of the instance name.

Instance
Global Edges Global Edges Unique Edges

in Population in Minimum Tour in Population

rand500 500 ± 0 449.68 ± 1.98 941.56 ± 1.56

att532 532 ± 0 464.1 ± 2.11 979.54 ± 1.47

nrw1379 1378.9 ± 0.04 1162.3 ± 3.44 2709.34 ± 2.25

rand1500 1500 ± 0 1301.02 ± 4.15 2871.9 ± 3.14

u1817 1815.12 ± 0.18 1562.44 ± 3.22 3616.92 ± 4.71

4 The Power of a Population

While it is encouraging that the hybrid GA is able to yield performance that
exceeds that of Chained-LK, is this really the best way to exploit the population
of solutions that is being generated by the hybrid GA? To explore this question,
we ran the hybrid GA again. However, we turned off the mutation operator in
step 2. This means that step 4 now selects t− 1 offspring to place in population
P2. During the first few generations, recombination is almost always feasible.

We ran 50 trials of the hybrid GA for only 5 generations. At generation 5 we
record the minimum tour found, the number of unique edges in the population
and the number of edges in the population that also appear in the global op-
timum. When there is no mutation (i.e., double bridge moves) the hybrid GA
converges very fast, but it also loses diversity and gets “stuck” after about 5
generations.

Nevertheless, the hybrid GA is already finding very good solutions after
only 5 generations: for rand500 and att532, it found the global optimum in
2 out of 50 trials, using only 50 recombinations and only 50 calls to LK-search.
The convergence to the global optimum is extremely fast in these exceptional
cases.

As the data shows in table 4, the edges found in the global optimum are all
present in the population in the majority of the runs. On instances rand500,
att532 and rand1500 all of the edges found in the global optimum were also in
the population on every single run. The population therefore contains all of the
edges needed to construct the globally optimal solution after only 5 generations.

Furthermore, the results for all of the TSP instances show that the total num-
ber of unique edges in the population was always less than 2n after 5 generations.
Assume that we merge all 10 members of the population after 5 generations into
a single graph. We can now search this reduced graph for a minimal Hamilto-
nian circuit. The search space is dramatically smaller than that of the original
TSP instances. This means that the optimization problem has been reduced to
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Table 5. Percentages were averaged over 50 trials. These results were captured during

recombination during the 5th generation. Common Edges can appear inside of compo-

nents, or between components of Graph Gu. Uncommon edges appear only inside of

components of Gu.

att532 u1817

Common Edges also found in the global optimum 406.75 1407.90

Uncommon edges in largest component also found in global optimum 87.39 268.62

Uncommon in all other components also found in global optimum 0.04 0.96

Total edges in the largest component 102.11 289.12

finding the minimal Hamiltonian Circuit of length n in a graph with only 2n
edges.

4.1 Where Are the Global Edges?

We next look at those edges that appear in the global optimum, but which do
not appear in the best tour in the population. We already know that typically
all of the edges found in the global optimum are present in the population after 5
generations. Since we recombine the best tour with all members of the population,
those edges that are shared with the global but not found in the minimal tour must
be classified as uncommon by GPX and will appear in the graphGu during at least
one recombination.

Because of the way GPX performs crossover, edges that appear in the same
partition component cannot be chosen on an individual level. Either all the edges
from one parent are chosen from that component or all the edges from the other
parent are chosen.

We want to determine if the uncommon globally optimal edges are spread
out among different partition components in Gu or if they appear in the same
component. If a majority of the uncommon global edges appear in the same
component, then this means it will be impossible for GPX (working without any
form of mutation) to reassemble these edges and reach the global optimum.

We looked at the trials from the previous experiments and found in the ma-
jority of recombinations the uncommon globally optimal edges fell into a single
partition component which was larger than the rest. In table 5 we report the
number of uncommon globally optimal edges which fell into this large partition
component, the size of this component, and the number of uncommon global
edges which fell into other components; we also report the number of shared
common global edges observed during recombination. Results for two instances,
att532 and u1817, are shown in table 5.

As can be seen from Table 5, the majority of edges that are not found in
the best solution but that are found in the global optimal solution appear as
uncommon edges that are largely contained in the largest component during the
recombination process. Nevertheless, most of the edges that are found in the
globally optimum actually appear as common edges (the first row in Table 5)
during recombination, meaning these edges will be passed onto the children.
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5 Conclusions and Future Work

A new recombination operation has been developed for the TSP. GPX is a gener-
alization of the previously described PX operator. Both operators are respectful
and transmits alleles. GPX in a hybrid GA with LK-search is capable of finding
better tours than Chained LK using double bridge moves. Additionally, we find
that the hybrid genetic algorithm using GPX and LK-search is capable of finding
globally optimal solutions in a relatively small number of generations.

Additional analysis shows that all the edges found in the globally optimal
solution are present in a population after only a few generations in almost every
case. Furthermore, the number of unique edges in the population is also less than
twice the problem size.

When critical edges are concentrated in a single partition component, GPX is
not able to “re-assort” these edges. However, this represents a challenge as well
as an opportunity. Instead of needing to optimize over the entire search space,
effort can be focused on optimizing a small subregion of the search space. Future
research will examine how best to exploit this knowledge.
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Abstract. The development of multi-objective evolutionary algorithms

(MOEAs) assisted by meta-models has increased in the last few years.

However, the use of local search engines assisted by meta-models for

multi-objective optimization has been less common in the specialized lit-

erature. In this paper, we propose the use of a local search mechanism

which is assisted by a meta-model based on support vector machines.

The local search mechanism adopts a free-derivative mathematical pro-

gramming technique and consists of two main phases: the first generates

approximations of the Pareto optimal set. Such solutions are obtained

by solving a set of aggregating functions which are defined by different

weighted vectors. The second phase generates new solutions departing

from those obtained during the first phase. The solutions found by the

local search mechanism are incorporated into the evolutionary process

of our MOEA. Our experiments show that our proposed approach can

produce good quality results with a budget of only 1,000 fitness function

evaluations in test problems having between 10 and 30 decision variables.

1 Introduction

Evolutionary algorithms (EAs) have been successfully adopted for solving multi-
objective optimization problems (MOPs) in a wide variety of engineering and
scientific problems [1]. However, in real-world applications is common to find ob-
jective functions which are very expensive to evaluate (computationally speak-
ing). This considerably limits the application of EAs. This has motivated the
development of numerous strategies for reducing the number of fitness function
evaluations when using EAs [2]. From such strategies, the use of meta-models has
been one of the most commonly adopted. Several authors have reported the use
of surrogate models which aim to model a function by means of a simple linear
regression, polynomial regression or by more elaborated models such as Artifi-
cial Neural Networks (ANNs), Radial Basis Functions (RBFs), Support Vector
Machines (SVMs), Gaussian processes (also known as Kriging), among others.
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Most of this work, however, focuses on single-objective optimization problems,
and relatively few refer to multi-objective optimization tasks. In this paper, we
present a strategy which combines an approximation function model (based on
support vector machines) combined with a local search engine (which adopts a
non-gradient mathematical programming technique) and a multi-objective evo-
lutionary algorithm (MOEA). Our goal was to reduce the number of fitness
function evaluations, while still producing reasonably good approximations of
the Pareto optimal set.

The remainder of this paper is organized as follows. In Section 2, we present
a brief survey of previous related work reported in the specialized literature. In
Section 3, we describe in detail our proposed approach. In Section 4, we show
the results of our proposal. Finally, in Section 5 we present our conclusions and
provide some possible paths for future research.

2 Previous Related Work

The incorporation of meta-models in EAs to approximate the real fitness function
of a problem, aiming to reduce the total number of fitness evaluations performed
has been studied by several researchers. However, most of these approaches have
been developed to deal with single-objective optimization problems (see for ex-
ample [2]). Here, however, our review of previous work will focus only on MOEAs.

Ong et al. [3] proposed an approach that incorporates surrogate models for
solving computationally expensive problems with constraints. The authors used
a combination of a parallel EA coupled with sequential quadratic programming
in order to find optimal solutions of an aircraft wing design problem. A local
surrogate model based on RBFs is the strategy adopted to approximate the
objective and the constraint functions.

Emmerich and Naujoks [4] proposed several metamodel-assisted MOEAs.
Gaussian field (Kriging) models fitted by results from previous evaluations are
used in order to pre-screen candidate solutions and decide whether they should
be evaluated or rejected. Three different rejection mechanisms were proposed
and integrated into MOEA variants (NSGA-II and ε-MOEA).

In [5], Knowles proposed “ParEGO”, which consists of a hybrid algorithm
based on a single optimization model (EGO) and a Gaussian process, which is
updated after each function evaluation, coupled to an evolutionary algorithm.
EGO is a single-objective optimization algorithm that uses Kriging to model the
search landscape from the previously visited solutions.

Isaacs et al. [6] proposed a MOEA with spatially distributed surrogate mod-
els based on RBFs. In this approach, the objective functions are analyzed with
their actual values for the initial population and then periodically, at every few
generations. The approach maintains an external archive of these actual objec-
tive function values, since these values are used to train the surrogate models.
The data points are divided into multiple partitions using clustering techniques
(the k-means algorithm). The surrogate model is built for each partition using
a fraction of the points lying in that partition. The rest of the points in the
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partition are used as validation data to decide the prediction accuracy of the
surrogate model.

Finally, Georgopoulou and Giannakoglou [7] proposed a metamodel-assisted
memetic algorithm for multi-objective optimization. This approach uses several
RBFs, each of them corresponding to a small portion of the search space. The
local search mechanism uses a function which corresponds to an ascent method
that incorporates gradient values provided by the metamodels. Each RBF is re-
trained by considering the current offspring, parent and elite populations. The
performance of this approach was evaluated with three benchmark problems and
a combined cycle power plant problem. This approach outperformed a conven-
tional MOEA in all the test problems adopted.

3 Our Proposed Approach

In this section, we present a new Multi-Objective Meta-Model Assisted Memetic
Algorithm (MO-MAMA) which incorporates a local search mechanism based on
non-gradient mathematical programming techniques. Our algorithm is charac-
terized by using an approximation model based on support vector regression [8].
Additionally, our approach adopts an external archive A and a solutions set R
(obtained by the local search mechanism) to create the offspring population in
the EA. The meta-model is trained with the set D, which consist of all the solu-
tions evaluated with the real fitness function values obtained up to the current
generation. The details of this approach are described next.

3.1 The Multi-objective Meta-model Assisted Memetic Algorithm

Initially, we create a sample S of size 2N (where N is the population size) which
is randomly distributed in the search space using the Latin hypercube sampling
method [9]. The initial population P0 is defined by N solutions randomly chosen
from S. Then, the normal evolutionary process of the MOEA is carried out. The
proposed approach uses the current population Pt, a set of solutionsRt (obtained
by the local search mechanism) and a (bounded) external archive At (defined by
all the nondominated solutions found throughout the evolutionary process) to
create the offspring population Qt at generation t. The next population Pt+1 is
obtained by selecting N individuals from Pt ∪ Qt according to Pareto ranking.
This procedure is called SelectNextPopulation in the algorithm of Figure 1,
which shows the complete scheme of our proposed MO-MAMA. Its details are
explained next.

Archiving Solutions: Our algorithm uses an external archive A which stores
all the nondominated solutions found at each generation of the MOEA. The
archive A is bounded according to the population size. Thus, the maximum
number of solutions in A is N . Since we are interested in obtaining a well-
distributed set of solutions along the Pareto front, we adopted a strategy based
on the k-means algorithm [10]. At each generation, the archive A is updated
with the new nondominated solutions found in the population P . If the number
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// tmax = maximum number of generations
1. t = 0,A = ∅;
2. Generate S of size 2N // using the Latin Hyper-cubes method;
3. Evaluate(S); // using the real fitness function
4. Pt = {xi ∈ S} such that: xi is randomly chosen from S and |Pt| = N ;
5. Rt = S \ Pt;
6. A = UpdateArchive(Rt,A);
7. D = S;
8. while (t < tmax)do
9. A = UpdateArchive(Pt,A);
10. Qt = CreateOffspring(Pt,Rt,At);
11. Evaluate(Qt); // using the real fitness function
12. D = D ∪ Qt;
13. Pt+1 = SelectNextPopulation(Pt ,Qt);
14. Rt+1 = SurrogateLocalSearch(Pt,A);
15. t = t + 1;
16. end while

Fig. 1. Main algorithm of our proposed MO-MAMA

of solutions is greater than N , then we define k-means (k = N) from A. In
this way, the archive is updated with the nearest solutions to each mean. This
procedure is called UpdateArchive in the algorithm of Figure 1.

Generating Offspring Population: We consider the set D as the set of all
solutions obtained by the MOEA, and R as the set of solutions obtained by the
local search mechanism. Furhermore, we assume that our approach will even-
tually converge to the Pareto optimal set (or, at least, to a reasonably good
approximation of it). Therefore, in the last generations of the algorithm, a well-
distributed sample of the Pareto set is achieved and maintained inD. For this, the
improvement mechanism (which approximates solutions to the Pareto optimal
set) generates solutions, which, when evaluated into the meta-model, correspond
to good approximations of the real fitness values. Furthermore, since the set R
is the result of an improvement procedure, we consider that both the R set
and the A set (the nondominated set) have solutions of similar quality. Based
on the previous discussion, crossover takes place between each individual of the
population P (the current population) and an individual which can be chosen
from either R or A. Therefore, we define the parents for the crossover operator
according to the following procedure:

parent1 = xi ∈ P ∀i = 1, . . . ,N

parent2 =

{
y ∈ R, if

(
g < 1− |A|

2N

)
y ∈ A, otherwise

(1)

where g is a uniformly distributed random number within (0, 1) and y is a
solution randomly chosen from A or R. Clearly, when the archive pool A is
full, |A| = N and equation (1) guarantees to choose a solution from either R
or A (both have the same probability). The mutation operator is applied (with
a certain probability) to each child generated by the crossover operator. In this
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// P = current population
// R = set of solutions obtained by the local search mechanism
// A = external archive
1. Q = ∅;
2. forall (x ∈ P)do
3. parent1 = x;
4. Define parent2 according to equation (1);
5. Generate child1 and child2 performing SBX(parent1, parent2);
6. y1 = PBM(child1) and y2 = PBM(child2);
7. Q = Q ∪ {y1, y2};
8. end forall
9. return Q;

Fig. 2. Creating the offspring population (CreateOffspring(P ,R,A))

work, we adopted the genetic operators from the NSGA-II [11] (Simulated Binary
Crossover (SBX) and Parameter-Based Mutation (PBM)). Figure 2 shows the
complete procedure for creating the offspring population.

Local Search Mechanism: The main goal of the local search mechanism in-
corporated into our meta-model is to find new solutions nearby the solutions
provided by the MOEA (such solutions should be at least nondominated with
respect to the current and previous populations). While the local search engine
explores promising areas into the meta-model, the MOEA performs a broader ex-
ploration of the search space. All this procedure is called SurrogateLocalSearch
within the algorithm of Figure 1.

Approximating Solutions: There exist several mathematical programming
methods designed for solving multi-objective optimization problems (see e.g.,
[12,13]). Here, we are interested in solving the weighted Tchebycheff problem
which is of the form:

min
x∈Rn

max
i=1,...,k

{wi|fi(x) − z∗i |} (2)

where z∗ denotes the ideal vector, w is a vector in Rk such that 0 < w and∑k
i=1 wi = 1 (a convex combination of weights). It is well known that, for each

Pareto optimal point there exists a weighting vector 0 < w ∈ Rk such that it
is the optimum solution of (2). Unfortunately, if the solution of the Tchebycheff
problem is not unique, the solutions generated will be weakly Pareto optimal. In
order to identify the Pareto optimal solutions, the following augmented weighted
Tchebycheff problem is suggested:

min
x∈Rn

max
i=1,...,k

{wi|fi(x)− z∗i |}+ ρ

k∑
i=1

|fi(x)− z�
i | (3)

where ρ is a sufficiently small positive scalar and z∗ represents the utopian vector.
Initially, a set of nw well-distributed weighted vectors W ⊂ Rk is defined (for

this task, we use the method proposed by Zhang and Li [14]). The approximate
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solutions to the Pareto optimal set are obtained by solving the Tchebycheff
problem for each weighted vector. For each weighted vector wj ∈ W , a set of
solutions λj is found, which consists of all the solutions evaluated so far into
the meta-model by solving the above Tchebycheff problem. The utopian vector
z∗ is constructed with the minimum of each objective function at the current
generation. Moreover, here, we use the well-known pattern search (or Hooke and
Jeeves) algorithm [15], in order to solve each Tchebycheff problem. Clearly, all
the candidate solutions are evaluated into the surrogate model. The initial search
point xs for solving the first problem corresponding to the weighted vector w1,
is defined according to the next equation:

xs = x∗ ∈ {Pt ∪ A}, such that x∗ minimizes equation (3) (4)

where Pt andA are the population and the external archive at the current gener-
ation, respectively. The remaining sets λj (j = 2, . . . ,nw) are obtained by solving
the Tchebycheff problem for the weighted vector wj . The initial search point for
obtaining λj is given by the decision vector which minimizes the Tchebycheff
problem for the weighted vector wj−1. Therefore, we define the set Λ as the
union of all the sets λ found by solving the nw Tchebycheff problems, that is:

Λ =
nw⋃
j=1

λj (5)

Generating New Solutions: We consider Λ to be the set of solutions found
by the above process. Furthermore, we consider:

P (∃p ∈ Rn : ||q∗ − p|| < δ and q∗ ⊀ p) = 1 (6)

for any small δ ∈ R+. Here, q∗ is at least a locally nondominated solution. That
is, the probability that p is nondominated with respect to q∗ is equal to one,
which implies that p is also nondominated. We generate more approximate solu-
tions using an evolutionary algorithm available within the meta-model. The dif-
ferential evolution (DE) [16] algorithm with a DE1/rand/bin strategy is adopted
for this task. Furthermore, the following dominance rule is used to select the new
individuals for the next generation:

xi,g+1 =

⎧⎪⎨⎪⎩
x∗i,g if (x∗i,g ≺ xi,g)

or (x∗i,g and xi,g are nondominated)
xi,g otherwise

(7)

where xi is a solution in the current population, x∗ is the test vector and g is
the current iteration of the DE algorithm. For more details about DE see [17].
The initial population is given by G0 = Λ. Each new individual xi,g+1 is stored
(or not) in an external archive L according to the dominance rule. The archive
strategy can make that the set of solutions L increases or decreases its size.
Given the probability defined by equation (6), we generate more nondominated
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solutions from L. Thus, the next population for the DE algorithm is defined by
Gg+1 = L.

Since all the solutions in the archive L are nondominated, we can say that the
algorithm has converged (at least to a local Pareto front) when it has obtained
N different nondominated solutions from the evolutionary process. That is:

if |L| = N then stop the DE algorithm (8)

Therefore, the solutions set R obtained by our local search mechanism is given
by R = L. However, this stopping criteria is not always satisfied. Thus, we can
define the R set by selecting N individuals from Λ ∪ L using Pareto ranking
after a certain number of iterations.

4 Comparison of Results

In order to assess the performance of our proposed approach, we compare it with
respect to NSGA-II [11]. The test problems adopted are the ZDT (Zitzler-Deb-
Thiele) test suite [18] (except from ZDT5, which is a binary test problem). We
adopted three performance measures to assess our results: Inverted Generational
Distance (IGD) [19], Spacing (S) [20] and the Set Coverage (SC) [18].

4.1 Experimental Setup

As indicated before, we compared our proposed approach with respect to the
NSGA-II. For each MOP, we performed 25 independent runs with each approach.
The parameters used in the algorithms are shown below.

Since our approach adopts the same genetic operators included in the NSGA-
II (SBX and PBM), we adopted the same parameter values for these operators
in both algorithms, that is: crossover index ηc = 15 and mutation index ηm = 20.
Furthermore, for both algorithms we used: crossover probability Pc = 1.0, mu-
tation probability Pm = 1

n (where n represents the number of decision variables
of the MOP) and a population size N = 100.

The Hooke-Jeeves algorithm was implemented with: δi = upi−lowi

2 (upi and
lowi are the upper and lower bounds of the ith decision variable component,
respectively), the reduction factor was set to α = 2 and ε = 1 × 10−3. The
differential evolution algorithm was implemented using a weighting factor F =
0.5 and a crossover constant CR = 1.0. Finally, for the approximation phase,
we set nw = 5 (which is equal to 5% of the population size) as the number of
weighted vectors which define the number of Tchebycheff problems. We should
consider that more weight vectors implies more local search and with this, greater
computational effort.

4.2 Discussion of Results

Our results are summarized in Tables 1 to 3. Each table displays both the av-
erage (showing the best results in boldface) and the standard deviation (σ) of
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Table 1. Results for IGD
metric (MO-MAMA vs

NSGA-II)

MOP
MO-MAMA NSGA-II

average average
(σ) (σ)

ZDT1
0.000068 0.055665
(0.000036) (0.005467)

ZDT2
0.000186 0.065110
(0.000400) (0.006909)

ZDT3
0.000965 0.055609
(0.000028) (0.006253)

ZDT4
0.151272 0.143483

(0.033721) (0.022090)

ZDT6
0.000483 0.023264
(0.000210) (0.001469)

Table 2. Results for S met-

ric (MO-MAMA vs NSGA-

II)

MOP
MO-MAMA NSGA-II

average average
(σ) (σ)

ZDT1
0.020216 1.285481
(0.013534) (0.848476)

ZDT2
0.034953 1.690465
(0.062620) (1.171313)

ZDT3
0.022872 1.455995
(0.007906) (1.258330)

ZDT4
6.522628 19.108133
(8.981982) (24.636678)

ZDT6
0.415136 0.226461

(0.320719) (0.162008)

Table 3. Results for SC
metric (MO-MAMA vs

NSGA-II)

MOP
MO-MAMA NSGA-II

average average
(σ) (σ)

ZDT1
1.000000 0.000000
(0.000000) (0.000000)

ZDT2
0.979200 0.000000
(0.048656) (0.000000)

ZDT3
1.000000 0.000000
(0.000000) (0.000000)

ZDT4
0.673600 0.684000

(0.093590) (0.073103)

ZDT6
1.000000 0.000000
(0.000000) (0.000000)

each performance measure, for each of the test problems adopted. Each run was
restricted to 1, 000 fitness function evaluations. These results clearly show that
our proposed approach (MO-MAMA) outperformed the NSGA-II in most of the
test problems adopted (except for ZDT4), not only with respect to IGD but
also with respect to SC. It is worth noticing that the NSGA-II performed bet-
ter with respect to S, which indicates that it produced solutions with a better
distribution. However, a better distribution of solutions is relevant only when
a good approximation of the true Pareto front has been achieved. Since in our
case, we were emphasizing efficiency (i.e., only a fairly limited number of fit-
ness function evaluations was allowed). Furthermore, according to the Wilcoxon
rank-sum test [21], our MO-MAMA is significantly better than NSGA-II over
the IGD metric (which is the most important metric that we considered in
this work) in most of the adopted test problems (except for ZDT4) with a
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significance level of 0.05. In the other hand, for the ZDT4 problem the Wilcoxon
test did not show a significant variation. Therefore, we considered these results
to be satisfactory. Finally, a picture of the convergence for the IGD metric in
the ZDT1 problem is shown in Figure 3.

5 Conclusions and Future Work

We have proposed a multi-objective memetic algorithm assisted by support vec-
tor machines, with the aim of performing an efficient exploration of the search
space. Our local search engine was based on a weighted Tchebycheff function
and the Hooke-Jeeves method was adopted as our minimizer for each problem
defined by each weighted vectors under consideration. Our proposed approach
was found to be competitive with respect to the NSGA-II over a set of test func-
tions taken from the specialized literature, when performing only 1, 000 fitness
function evaluations.

As part of our future work, we plan to use our approach in problems having
more objectives (three or more) and we aim to experiment with other search
engines (e.g., with multi-objective scatter search [22]). The introduction of al-
ternative approaches to improve the uniform distribution of our solutions as
well as the use of more difficult test problems (e.g., the Deb-Thiele-Laumanns-
Zitzler (DTLZ) test problems [23] and the Walking-Fish-Group (WFG) test
problems [24]) is also part of our future work. Finally, we are also interested
in testing our approach with real-world problems having computationally ex-
pensive objective functions, and that is indeed part of our ongoing research.
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Abstract. Several indicator-based evolutionary multiobjective optimization al-
gorithms have been proposed in the literature. The notion of optimal μ-distribu-
tions formalizes the optimization goal of such algorithms: find a set of μ solutions
that maximizes the underlying indicator among all sets with μ solutions. In partic-
ular for the often used hypervolume indicator, optimal μ-distributions have been
theoretically analyzed recently. All those results, however, cope with bi-objective
problems only. It is the main goal of this paper to extend some of the results to
the 3-objective case. This generalization is shown to be not straight-forward as a
solution’s hypervolume contribution has not a simple geometric shape anymore
in opposition to the bi-objective case where it is always rectangular. In addition,
we investigate the influence of the reference point on optimal μ-distributions and
prove that also in the 3-objective case situations exist for which the Pareto front’s
extreme points cannot be guaranteed in optimal μ-distributions.

1 Introduction

Several evolutionary multiobjective optimization (EMO) algorithms have been pro-
posed to tackle multiobjective optimization problems. Among them, the indicator-based
algorithms are the most recent developments [17,6,13]. These algorithms often explic-
itly optimize a unary quality indicator which maps a set of solutions to a single real
value. This not only allows to decouple preference articulation from the search algo-
rithm [17] but also transforms the multiobjective problem into a single-objective one:
the goal is no longer to find or approximate the so-called Pareto front, but to find a
solution set of fixed size (typically the population size μ) that maximizes the indicator.
Therefore, it is important to characterize these solution sets to understand the optimiza-
tion goal implicitly defined by a given indicator. In particular when benchmarking algo-
rithms on certain test functions, it is highly useful to know the largest possible indicator
value achievable with μ points. Throughout the paper, and in line with [2], we use the
term optimal μ-distribution for those sets of μ solutions optimizing a given indicator.

One of the most often used quality indicators within indicator-based EMO algorithms
is the hypervolume indicator or S-metric which maps a set of solutions to the size of
the objective space covered [18]. It has the nice property of being a refinement of the
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Pareto dominance relation [19] which implies that the optimal μ-distributions contain
only solutions that are mapped to the Pareto front [10]. The question of how the optimal
μ-distributions are spread over the Pareto front, interestingly, has only gained attention
recently. Besides specific results on optimal μ-distributions in the case of linear Pareto
fronts [9,5], optimal μ-distributions have been theoretically investigated in more detail
in [2,1] for bi-objective problems. The main results are an exact characterization of op-
timal μ-distributions for problems with arbitrary linear Pareto fronts and a limit result
in terms of a density for general front shapes that can be described by a continuous and
differentiable function f . The density result proves that the empirical density of points
converges to a density proportional to the square root of the negative of the first deriva-
tive of the front. In other words, it is only the slope of the front which determines how
the points that maximize the hypervolume indicator are distributed—independent of the
second derivative, i.e., whether the front is convex or concave. It has also been proven
in [2] that for certain types of fronts, no finite reference point of the hypervolume indi-
cator allows to have the extreme points in the optimal μ-distribution; for the remaining
cases, it has been shown where to place the reference point such that the extremes are
included. Later, the relation between optimal μ-distributions for the hypervolume in-
dicator and the approximation ratio has been investigated theoretically as well [11,7].
However, also in these studies, the results are restricted to only two objectives. The
main reason why almost no results about optimal μ-distributions for 3-objective prob-
lems are known1 is that the geometry of the hypervolume becomes more complicated
in higher dimensions. We will see later on that, e.g., the hypervolume contributions of
single points are not anymore simple rectangles or cuboids if 3-objective problems are
considered and that all solutions can have an influence on the optimal placement of one
point—in comparison to the local property proven in [2] for bi-objective problems.

Contributions of this paper. In this paper, we present for the first time theoretical re-
sults about optimal μ-distributions for the hypervolume indicator for more than 2 objec-
tives, in contrast to [2,1,11,7] where only bi-objective problems were tackled. Besides
fundamental results on the existence and the monotonicity of optimal μ-distributions
(Sec. 3), we prove fundamental, yet often not obvious statements about the shape of
the hypervolume contribution of a single solution (Sec. 4) and investigate their impli-
cations on optimal μ-distributions—in particular on the influence of the reference point
(Sec. 5). More specifically, we prove that situations exist (and characterize them) for
which the extreme points of the Pareto front will never be contained in an optimal μ-
distribution for 3-objective problems which covers the results for the bi-objective case
of [2]. The results show in particular, that the investigation of optimal μ-distributions
is, indeed, more difficult for 3-objective problems than in the case of 2 objectives.

2 Preliminaries

Without loss of generality (w.l.o.g.), we consider minimization problems where the
vector-valued objective function is defined as F : X → �

k and k is the number of
objectives. In this paper, k = 3 most of the time. We say F maps a solution x ∈ X

1 The only exception is a conjecture in [3] about the influence of the dimension on the density.
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Fig. 1. 3-dimensional fronts implicitly described by f3d(x, y, z) = 0 and restricted to the cube
[0, 1]3 (left and middle), and to [0, 0.6] × [0, 1]× [0, 1] (right). Left: f3d = x3 + (.1 · (sin(5π ·
y)+10)) · y + z− 1; Middle: f3d = x2 + y2 + z2 − 1; Right: f3d = x2/3 + y2/3 + z2/3 − 1.

from the decision space X to its objective vector F(x) = (F1(x), . . . ,Fk(x)) ∈ �k

within the objective spaceF(X) ⊆ �k. As the single objective functionsFi, in general,
cannot be simultaneously minimized and therefore no single optimal solution exists,
we denote the sought set of so-called Pareto-optimal solutions (or Pareto set) as the set
{x ∈ X | �y ∈ X: y � x and x � y}. Thereby, the relation � is defined as: x � y if
and only if Fi(x) ≤ Fi(y) for all 1 ≤ i ≤ k and we say, x is weakly dominating y if
x � y. The image of the Pareto set is called Pareto front or front for short. Note that in
the remainder of this paper, we make an abuse of terminology and use the term solution
both for a solution in the decision space and for its corresponding objective vector.
Moreover, in order to increase readability, we also define� on objective vectors.

The Hypervolume Indicator. The hypervolume indicator of a solution set has been
introduced as the size of the objective space covered [18]. Here, we formalize the hy-
pervolume indicator IH(A, r) for sets of objective vectors A ⊆ �

k and a reference
point r ∈ �k according to [2] to ease readability compared to defining IH for solutions
in X as in the original paper: IH(A, r) = λ

(⋃
a∈A C(a, r)

)
where C(a, r) = {z ∈

�
k | a � z � r} is the (hyper-)cuboid containing all objective vectors that are weakly

dominated by a and themselves weakly dominate r. λ is the Lebesgue measure.

Notations for 3-objective problems. For the specific case of 3-objective problems, we
assume the Pareto front to be implicitly describable as the points (x, y, z) ∈ �3 for
which a function f3d : �3 → � is zero2: f3d(x, y, z) = 0. W.l.o.g., we restrict the
front to a cuboid [xmin,xmax] × [ymin, ymax] × [zmax, zmin], see Fig. 1. Besides a few
exceptions of disrupted fronts, the Pareto fronts of well-known test problems, e.g., from
the DTLZ [8], IHR [13], or WFG [12] test suites, can be described as assumed. Further-
more, we denote the reference point of the hypervolume by r = (r1, r2, r3). For some
proofs, we will need an explicit description of the front, i.e., in terms of z = f(x, y)
(resp. y = f(x, z), x = f(y, z)). Note that it is not always possible to find an explicit
representation of an implicit equation f3d(x, y, z) = 0. However, it is possible locally

2 In addition, in order to describe a Pareto front, the partial derivatives of f3d with respect to the
first, second, and third variableare not supposed to change their sign, see for example [15].
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assuming regularity of f3d as stated by the implicit function theorem [14]. Therefore,
assuming an explicit representation is not very restrictive.

3 General Results on Optimal μ-Distributions in 3-Objective
Problems

In this section, we generalize some basic results of [2] about the existence of optimal
μ-distributions and their monotonicity in μ to the 3-objective case. The proofs comprise
the same ideas as in the bi-objective case though they are a bit more technical.

Theorem 1 (Existence of optimal μ-distributions for 3-objective problems). As-
sume a 3-objective problem and assume that the front is described explicitly by a 2-
dimensional function f , i.e., points of the Pareto front satisfy z = f(x, y) (or y =
f(x, z) or x = f(y, z)). If the function f is continuous, there exists (at least) one set of
μ points maximizing the hypervolume.

Proof. Assume w.l.o.g. that the front is described via z = f(x, y). Let p1, . . . , pμ be μ
points of�3. A point pi writes as (xi, yi, f(xi, yi)). Since f is continuous, the mapping
((x1, y1), . . . , (xμ, yμ))→λ(

⋃
iC((xi, yi, f(xi, yi)), r)),whereC((xi, yi, f(xi, yi)), r)

is the cuboid with space diagonal defined by the extremes pi and r, is continuous accord-
ing to the Lebesgue dominated convergence theorem [4]. Moreover IH is upper bounded
by the hypervolume of the entire front. From the Extreme Value Theorem, there exists a
set of μ points maximizing the hypervolume indicator. ��
Note that the previous theorem states the existence but not the uniqueness, which cannot
be guaranteed in general and that, in principle, the result can be easily generalized to
the weighted hypervolume of [16]. A set of points maximizing the hypervolume whose
existence is proven in the previous theorem will be called optimal μ-distribution. The
associated value of the hypervolume is denoted as Iμ

H .
The following proposition establishes that the hypervolume of optimal (μ + 1)-

distributions is strictly larger than the hypervolume of optimal μ-distributions in the
case of 3-objective problems and when the Pareto front contains at least μ + 1 distinct
points. This result is a generalization of Lemma 1 in [2].

Proposition 1 (Strict monotonicity in μ of the optimal hypervolume value). Let
xmin, xmax, ymin, ymax, zmax, zmin ∈ �, f3d : �3 → �, and let P =

{
(x, y, z) ∈ �3 |

f3d(x, y, z) = 0 ∧ (xmin ≤ x ≤ xmax) ∧ (ymin ≤ y ≤ ymax) ∧ (zmin ≤ z ≤ zmax)}
describe the corresponding Pareto front. Let μ1 and μ2 ∈ � with μ1 < μ2, then

Iμ1
H < Iμ2

H

holds if P contains at least μ1 + 1 elements (xi, yi, zi) for which xi < r1, yi < r2, and
zi < r3 holds where r = (r1, r2, r3) is the hypervolume’s reference point.

Proof. To prove the proposition, it suffices to show the inequality for μ2 = μ1 + 1
where we denote μ1 by μ for readability. Assume the optimal μ-distribution is Dμ =
{(xμ

1 , yμ
1 , zμ

1 ), . . . , (xμ
μ, yμ

μ , zμ
μ)} with xμ

i , yμ
i , zμ

i ∈ � and f3d(x
μ
i , yμ

i , zμ
i ) = 0 for all
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1 ≤ i ≤ μ. Since P contains at least μ + 1 elements, the set P\Dμ is not empty and
we can pick any pnew = (xnew, ynew, znew) ∈ P\Dμ to define a set S = Dμ ∪ {pnew}.
As IH(Dμ2) ≥ IH(S) holds, it remains to prove that IH(S) > IH(Dμ). To this end,
let us sort the points in Dμ with respect to each objective and pick the solution with the
smallest x- (y-, z-) value which is larger than xnew (ynew, znew) and denote it by x (y, z).
If such a solution does not exist in Dμ, we set x to r1 (y to r2, z to r3):

x = min {{xμ
i | (xμ

i , yμ
i , zμ

i ) ∈ Dμ ∧ xnew < xμ
i < r1} , r1}

y = min {{yμ
i | (xμ

i , yμ
i , zμ

i ) ∈ Dμ ∧ ynew < yμ
i < r2} , r2}

x = min {{zμ
i | (xμ

i , yμ
i , zμ

i ) ∈ Dμ ∧ znew < zμ
i < r3} , r3}

Then, all objective vectors within Hnew := [xnew,x) × [ynew, y) × [znew, z) are weakly
dominated by pnew but are not dominated by any vector in Dμ. Furthermore,Hnew is not
a null set (i.e. has a strictly positive Lebesgue measure) since xnew < x, ynew < y, and
znew < z. This additional contribution makes IH(S) strictly larger than IH(Dμ). ��
Although the result is proven only for the 3-objective case, the generalization to an arbi-
trary number of objectives is straightforward though technical such that we refrain from
presenting it here. Moreover, the same monotonicity directly follows for the weighted
hypervolume indicator of [16] by replacing Lebesgue by weighted Lebesgue.

4 Geometrical Properties of the Hypervolume Contributions of
Single Solutions in 3-Objective Problems

As we have seen so far, some basic results about optimal μ-distributions can be eas-
ily transferred to the 3-objective case. For some other results of [2], mainly regarding
the exact distribution of μ solutions that maximize the hypervolume indicator, gener-
alizations to higher dimensions are more difficult. The main reason is the fact that the
optimal placement of a single solution is not determined by only two neighbors any-
more as it is the case for bi-objective problems, see [2, Proposition 1]. As we will see in
this section, the hypervolume contribution of a single solution in a 3-objective scenario
can be influenced by all other solutions. The stated properties of the possible shape
of a solution’s hypervolume contribution will be used in the following section to gen-
eralize a non-trivial result of [2] about the absence of the extreme points in optimal
μ-distributions to the 3-objective case.

Before we investigate the general shape of the hypervolume dominated by a single
solution, let us define a geometrical object to be a generalized cylinder if there exists
one coordinate axis for which all cross sections of the geometrical object, perpendicular
to this axis, yield the same 2-dimensional shape and the corresponding projections of
the cross sections along this axis on the coordinate system are the same. The usual
cylinder with a circular cross section is one specific case of such a generalized cylinder
when oriented along a coordinate axis. Figure 3 shows an example of a generalized
cylinder with a steplike cross section. With this definition, we can state the first result
about the volume solely dominated by a single solution in 3 objectives, see Fig. 2:

Lemma 1. Given a set A ⊆ �3 of 3-dimensional objective vectors, the hypervolume
solely dominated by a single point a ∈ A is an axis-aligned cuboid, with the point itself
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Fig. 2. Hypervolume contribution of a point (unfilled circle) on a three dimensional sphere func-
tion. The remaining nine points (black circles) all affect the shape of the contribution.

and the reference point as the end points of one of the cuboid’s space diagonals, from
which three generalized cylinders are cut—one parallel to each coordinate axis with
steplike base areas, which depend on the other points in A.

Proof. The points that are weakly dominated by a specific 3-dimensional point p =
(x, y, z) ∈ �3 and that weakly dominate the hypervolume’s reference point form a
cuboid [x, r1] × [y, r2] × [z, r3] with the point p as one corner and the reference point
r = (r1, r2, r3) as the other end of its space diagonal. If we investigate now the points
that are solely dominated by the point p, we have to subtract from this cuboid all so-
lutions that are weakly dominated by other points a = (a1, a2, a3) ∈ A, i.e., by the
corresponding cuboids of which one corner is also the reference point. This gives the
following set of points that are solely weakly dominated by p which can be obtained by
deleting a general cylinder with steplike base area in each dimension from the cuboid
associated to p: ([x, r1]× [y, r2]× [z, r3]) \

(⋃
a∈A[a1, r1]× [a2, r2]× [a3, r3]

)
. ��

Note that the previous result does not only characterize the special shape of the hyper-
volume contribution of a single solution but also that this hypervolume contribution can
be influenced by an arbitrary number of other solutions in a set A.

Interestingly, the shape of the space solely dominated by a single solution is becom-
ing a generalized cylinder itself if we consider extreme solutions of a solution set A,
see Fig. 3 (left). A solution ai is thereby called extreme with respect to A (or extreme
point of A) and objective Fi, if no other solution in A has larger values in objective Fi,
i.e., ai∈argmax{a′∈A | �a′′∈A : Fi(a′)<Fi(a′′)}. Note that extreme points are not
unique in the 3-objective case in general and that their objective values do not always
coincide with the values xmax, ymax, and zmax, see, e.g., Fig. 1. We denote the obtained
maximal values of extreme points in the three dimensions as x, y, and z respectively.

Lemma 2. Given a set of 3-dimensional objective vectorsA ⊆ �3. An extreme point of
A, i.e., a point with the largest objective value among all points in A for (at least) one
objective, solely dominates a region the shape of which is itself a generalized cylinder
with a steplike base area.
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Fig. 3. Illustration of the hypervolume contribution of an extreme point in x-direction. Left: hy-
pervolume solely dominated by the extreme point pxmax which is depicted by a black circle;
Middle: hypervolume solely dominated by the moved point pxmax − ε; Right: illustration of
benefit and deficit in hypervolume if we move the extreme point towards pxmax − ε; in all three
plots, the reference point is depicted by a cross and the remaining points influencing the extreme
point’s hypervolume contribution are depicted by unfilled circles.

Proof. Let us consider w.l.o.g. only one extreme point in x-direction and its hypervol-
ume contribution, i.e., a point pxmax = (x, y, z) with the largest x-value x among μ
solutions on the front. Without any other point, the hypervolume contribution of pxmax

would be again the cuboid from above with the point itself as one corner and the hy-
pervolume’s reference point as the other end of the cuboid’s space diagonal starting
at pxmax. Due to other incomparable solutions on the front, this cuboid is pruned in a
specific way. To investigate how the hypervolume contribution of pxmax is influenced
by other points on the front, we consider the projection of all points to the y-z-plane,
see Fig. 4. Two statements can be easily proven: (i) no point in the lower left region of
pxmax exists (otherwise it would be dominating pxmax due to its better objective values
in x-, y-, and z-direction) and (ii) all other solutions dominate a cuboid themselves and
therefore cut this cuboid from the extreme point’s cuboid (all solutions obviously dom-
inate a volume that is a cuboid and the points are in addition not worse in x-direction
and therefore their dominated volume is reaching in x-direction over the entire cuboid
of pxmax). This results in a volume solely dominated by pxmax, that has a steplike projec-
tion and is a general cylinder in x-direction, see the leftmost plot of Fig. 3. ��

5 Fronts for Which It Is Impossible to Obtain the Extreme Points

Given the knowledge about the shape of the hypervolume solely dominated by ex-
treme solutions obtained above, we are able to generalize another result on optimal
μ-distributions of [2] to the 3-objective case: There are cases where no finite refer-
ence point allows to have an extreme point of the Pareto front contained in optimal
μ-distributions. In the 3-objective case, this corresponds to the cases where the (finite)
partial derivative of the front at an extreme with respect to the first (second, third) axis
is perpendicular to the first (second, third) axis:
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Fig. 4. Projection of all points to the y-z-plane

Theorem 2. Let f3d be a continuous and differentiable function describing the front
with gradient ∇f3d continuous in [xmin,xmax] × [ymin, ymax] × [zmin, zmax]. If the
gradient∇f3d(x, y, z) = (∂1f3d(x, y, z), ∂2f3d(x, y, z), ∂3f3d(x, y, z)) of the front at
an extreme point (x, y, z) (at an extreme point (x, y, z), or at (x, y, z)) is finite, i.e., the
single components of the gradient are finite, and the gradient is perpendicular to the
x-axis (y-, z-axis), i.e., if ∇f3d(x, y, z) · (1, 0, 0) = 0 (∇f3d(x, y, z) · (0, 1, 0) = 0 ,
∇f3d(x, y, z) · (0, 0, 1) = 0), the corresponding extreme point is not included in any
optimal μ-distribution with μ ≥ 1.

Proof. W.l.o.g., we consider only the case of the extreme point pxmax := (x, y, z) where
∇f3d(pxmax) · (1, 0, 0) = 0 and therefore ∂1f3d(pxmax) = 0. The proof idea is similar to
the bi-objective case in [2]: we consider the hypervolume that we gain and the hyper-
volume that we lose if we move the extreme point pxmax towards larger values of y and
z. To this end, we use the notations of Fig. 3. In particular, we move pxmax by a small
value εx > 0 in x direction towards smaller x-values and at the same time parallel to
the plane defined by the x-axis and the gradient∇f3d(pxmax) along the front:

pxmax − ε = pxmax −
⎛⎝εx

εy

εz

⎞⎠ = pxmax −
⎛⎝ εx

0
0

⎞⎠+ ν

⎛⎝ 0
∂2f(pxmax)
∂3f(pxmax)

⎞⎠ (1)

where ν ∈ � and the last equality follows from the assumption that the gradient
∇f(pxmax) is perpendicular to the x-axis. Note that at least one of the values εy and
εz has to be negative since all points on the Pareto front are incomparable and a point
with all three objectives smaller than pxmax would therefore not lie on the front.

If we choose εx small enough, i.e., as long as there is no other point p′ = (x′, y′, z′)
with x′ > x − εx, y′ > y, and z′ > z among the μ solutions under consideration,
the hypervolume contribution of the moved extreme point keeps its shape, see Fig. 3.
According to the rightmost plot of Fig. 3, we denote the area of the y-z-projection
of the new point’s hypervolume contribution as A, by az the height of this area in z-
direction, and by ay the length of this area in y-direction. Then, the benefit and deficit
in hypervolume if we move the extreme point from pxmax to pxmax − ε can be written as

benefit: εx · A deficit: (εy · az + εz · ay + εy · εz) · (r1 − x) .

Now, it remains to be shown that the ratio between deficit and benefit goes to zero
when εx converges to zero. To this end, we decompose the ratio R between deficit and
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benefit as R = deficit
benefit = εy·az·(r1−x)

εx·A + εz ·ay·(r1−x)
εx·A + εy·εz·(r1−x)

εx·A . Because A is lower
bounded by a constant and ax and az are upper bounded by a constant, showing that
limεx→0

εy

εx
= 0 and limεx→0

εz

εx
= 0 will directly prove that the ratio R converges to

zero. W.l.o.g., we are only going to prove limεx→0
εy

εx
= 0 in the following. The proof

of limεx→0
εz

εx
= 0 can be done in the same way by exchanging the roles of εy and εz .

Assuming ∂2f3d(pxmax) = 0 (otherwise, limεx→0
εy

εx
= 0 follows directly), we know

from Eq. 1 that ν = εy

∂2f3d(pxmax)
and therefore that

εz = εy
∂3f3d(pxmax)
∂2f3d(pxmax)

. (2)

Since the gradient of f3d is continuous within the cuboid restricting the front, we can
expand f3d(pxmax − ε) with the Taylor formula as f3d(pxmax − ε) = f3d(pxmax) −
∇f3d(pxmax) ·ε+O(||ε||2) which indicates that∇f3d(pxmax) ·ε−O(||ε||2) = 0 for any
ε ≥ 0 as f3d equals zero for all points on the front by definition. From ∇f3d(pxmax) ·
ε−O(||ε||2) = 0 we can conclude that limε→0∇f3d(pxmax) ·ε = limε→0O(||ε||2) and
even limε→0 (∇f3d(pxmax) · ε/||ε||) = limε→0O(||ε||) = 0. Since ∂1f3d(pxmax) = 0
and the other partial derivatives ∂2f3d(pxmax) and ∂2f3d(pxmax) are finite and constant,
the previous equation can be rewritten as

lim
ε→0

(
(∂2f3d(pxmax) · εy + ∂3f3d(pxmax) · εz) /

√
ε2x + ε2y + ε2z

)
= 0 .

Using (2) in the previous equation and factorizing the numerator and denominator by
εy we obtain

lim
ε→0

∂2f3d(pxmax) + (∂3f3d(pxmax))
2

∂2f3d(pxmax)√
ε2

x

ε2
y

+ 1 + (∂3f3d(pxmax))
2

(∂2f3d(pxmax))
2

= 0

which implies that limε→0
εy

εx
= 0. ��

Remark. Note that the case covered by the previous theorem is not an artificial case but
obtained for some well-known test problems, e.g., DTLZ2–4 [8] and WFG4–9 [12]. It
also covers the bi-objective case proven in [2] which, however, used a slightly different
notation due to a simpler description of the front shape.

6 Conclusions

Obtaining optimal μ-distributions for a certain quality indicator I , i.e., a set of μ so-
lutions maximizing I , is the optimization goal of several indicator-based multiobjec-
tive evolutionary algorithms [2]. In particular, the hypervolume indicator, among others
employed in the SMS-EMOA [6] and the MO-CMA-ES [13], received interest as a
selection criterion in multiobjective algorithms due to its property of being a refine-
ment of the Pareto dominance relation. However, theoretical investigations of optimal
μ-distributions for the hypervolume indicator are rare and limited to the bi-objective
case so far [9,5,2,1,11,7].
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Here, we obtain first theoretical results on optimal μ-distributions for the hypervol-
ume indicator in 3-objective scenarios. It turns out that the hypervolume contribution
of a single point has a specific shape that is not as simple as in bi-objective problems
anymore—indicating that all solutions have an influence on where to optimally place a
solution instead of only two solutions in the bi-objective case. Besides generalizations
of basic statements of [2] to the 3-objective case, we prove in particular that also in
3-objective problems there are situations where no finite reference point can ensure the
extreme solutions of the Pareto front within an optimal μ-distribution.

Acknowledgments. This work has been in part supported by the French national re-
search agency (ANR) within the SYSCOMM project ANR-08-SYSC-017 and within
the COSINUS project ANR-08-COSI-007-12.
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Abstract. Convergence analyses of evolutionary multiobjective opti-

mization algorithms typically deal with the convergence in limit (stochas-

tic convergence) or the run time. Here, for the first time concrete results

for convergence rates of several popular algorithms on certain classes

of continuous functions are presented. We consider the algorithms in

the version of using a (1+1) selection scheme. Then, SMS-EMOA and

IBEAε+ achieve linear convergence rate, proved by showing algorith-

mic equivalence to the single-objective (1+1)-EA with self-adaptation,

whereas NSGA-II and SPEA2 have a sub-linear convergence rate, proved

by reducing them to a multiobjective algorithm with known properties.

Keywords: multiobjective optimization, convergence rate, hypervolume,

self-adaptation.

1 Introduction

Research on evolutionary algorithms is developed further for single-objective
optimization than for multi-objective optimizers. A common hope is that the
understanding of evolutionary multiobjective optimization algorithms (EMOA)
can profit from the bases acquired for the single-objective case. Here, we transfer
knowledge on the convergence of the single-objective (1+1)-EA to gain insights
into the convergence behavior of complex EMOA.

Convergence properties of EMOA are yet not well understood. More recently,
theory concentrated on the convergence or runtime of simple EMOA on special
discrete problems, considering whether and how quickly the Pareto set is reached.
For the case of a continuous search space �n only a few results exist for special-
ized algorithms, the first obtained by Rudolph [1]. He showed that a multiobjec-
tive (1+1)-EAthat accepts incomparable points with probability 1

2 convergeswith
probability 1 to the Pareto set if the step size is chosen proportional to the dis-
tance to the Pareto set, while two other step size concepts fail. Hanne [2] consid-
ered stochastic convergence of EMOA with different selection schemes, the pos-
sibilities of temporary fitness deterioration, and on problems with unattainable
solutions. A recent subject of interest has been whether a certain distribution on
the Pareto front can be obtained that is optimal regarding specified preferences.

Despite these advances, the convergence rate in continuous space remains a
neglected topic. Teytaud [3] shows that the convergence rate scales badly with

R. Schaefer et al. (Eds.): PPSN XI, Part I, LNCS 6238, pp. 597–606, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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increasing number of objectives entailing that any comparison-based EMOA
performs hardly better than random search for a large number of objectives.
Also a general lower bound for the convergence time is given.

In this paper we consider popular EMOA in the simple version of using a
(1+1) selection scheme. For (strongly) convex quadratic objective functions, the
order of the convergence rate is calculated, whereas SMS-EMOA and IBEAε+

reach a linear convergence rate. This is to the best of our knowledge the first
time that a linear convergence rate is shown for a multiobjective evolutionary
algorithms that does not use an explicit weighting of objectives.

The next section introduces the technical background of our topic. Section 3
shows the linear convergence rate for SMS-EMOA and IBEA, whereas Section 4
gives the negative results for NSGA-II and SPEA2. We summarize our findings
in section 5 and give hints on future research.

2 Preliminaries

2.1 Single-Objective Optimization with the (1+1)-EA

Let f : �n → � be the objective function to be minimized. The (1 + 1) Evolu-
tionary Algorithm (EA) (cf. Alg. 1) minimizes f(·) by drawing an n-dimensional
random vector from a multivariate standard normal distribution that is scaled
by factor σ and then added to the current position. If the new point is better it
is accepted, otherwise it is rejected. Then the scaling factor is adapted and this
sequence is run again.

Algorithm 1. (1 + 1)-Evolutionary Algorithm with Self-Adaptation

choose X(0) ∈ �n and σ(0) > 0, set t = 0 and k = 01

repeat2

draw Z(t) from a multivariate standard normal distribution3

Y (t) = X(t) + σ(t) Z(t)
4

if f(Y (t)) ≤ f(X(t)) then5

X(t+1) = Y (t) ; increment k6

else X(t+1) = X(t)
7

σ(t+1) = adapt(σ(t), t, k ; δ, ps, γ)8

increment t9

until termination criterion fulfilled10

The self-adaptation mechanism considered here (Procedure 2) is termed the
1
5 -success rule that has some parameters: the observation interval δ > 0, the
success probability ps = 1

5 and the adaptation factor γ > 1. If the self-adaptation
procedure is properly parameterized a remarkable result has been proven by
Jägersküpper [4,5]:

Theorem 1. Let f : �n → � be a quadratic function f(x) = x′Ax + b′x + c
with positive definite matrix A whose condition number is bounded. The (1 +1)-
EA with self-adaptation as in Procedure 2 using δ = Θ(n), ps = 1

5 and c ≥ 2
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Procedure 2. adapt(σ, t, k ; δ, ps, γ)

if t mod δ 	= 0 then return σ1

qs = k/δ ; k = 02

if qs ≥ ps then return σ × γ else return σ/γ3

halves the distance to the optimum in O(n) iterations in expectation, provided
that σ(0) = Θ(D/n) where D is the distance to the optimum after initialization.

In other words: under the conditions of the theorem the (1+1)-EA with self-
adaptation minimizes every strongly convex quadratic function with linear con-
vergence rate, i.e., the approximation error decreases exponentially fast.

2.2 Multi-objective Optimization with the SMS-EMOA

We consider unconstrained multiobjective optimization problems min f(x) :
�

n → �
d where f(x) = (f1(x), . . . , fd(x)) maps an n-dimensional vector of

the search space to a d-dimensional vector of the objective space.
A strict partial order, called Pareto dominance, holds in the objective space

based on the coordinate-wise total order: a point p = (p1, . . . , pd) weakly dom-
inates a point q (written as p � q) iff pi ≤ qi holds for all 1 ≤ i ≤ d. A point
p dominates q iff p � q and p = q. Two distinct points p = q are incomparable
(p ‖ q) iff neither point dominates the other. Considering a set A ⊆ �d, points
of A that are not dominated by any other of A are referred to as non-dominated
in A or the minima of A. Those points that are non-dominated regarding the
whole objective space are Pareto-optimal and called the Pareto front. The set of
their preimages in the search space is named the Pareto set.

In the continuous domain only an approximation of the Pareto set can be
expected to be achieved. In order to compare the results of different EMOA, sev-
eral quality measures exist, typically rewarding quantity, closeness to the Pareto
set, and high diversity. Among these, the hypervolume indicator (or S-metric or
Lebesque measure) by Zitzler and Thiele [6] is of outstanding importance due
to its consistency with the Pareto dominance relation, cf. [7].

Definition 1. Let {v(1), v(2), . . . , v(μ)} ⊂ �d, d ≥ 2 be a finite set of elements,
which are mutually incomparable w. r. t. to the dominance relation �. Let r ∈ �d

indicate the reference point with v(i) ≺ r for all i = 1, . . . , μ ∈ �. The quantity

H(v(1), . . . , v(μ); r) = Leb

(
μ⋃

i=1

[v(i), r]

)
(1)

is termed the dominated hypervolume or S-metric where Leb(·) denotes the
Lebesgue measure in �d.

If d = 2, provided the elements v(1), . . . , v(μ) have been labeled in ascending order
of their first component, i.e., v(1)

1 < v
(2)
1 < . . . < v

(μ)
1 , equation (1) specializes to

H(v(1), . . . , v(μ); r) = (r1 − v
(1)
1 ) (r2 − v

(1)
2 ) +

μ∑
i=2

(r1 − v
(i)
1 ) (v(i−1)

2 − v
(i)
2 ). (2)
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The SMS-EMOA [8] is a steady-state, i.e. (μ+1), EMOA that aims to maximize
the population’s dominated hypervolume by incorporating it in the selection
operator. The selection starts with non-dominated sorting in order to determine
the worst front. Among these points, the one contributing least to the dominated
hypervolume of the set is discarded. The hypervolume contribution of a point
is defined as the dominated hypervolume that is exclusively dominated by the
point and thus would get lost when the point was discarded. The calculation
of the hypervolume requires the specification of a reference point r. Yet, it is
no exogenous parameter of the SMS-EMOA but chosen automatically. For each
objective function, the maximal value among the μ+1 points is determined. The
reference point is constructed by these maxima plus 1. The decisive properties
that will be utilized to prove the linear convergence rate are: (1) The reference
point is not static throughout the optimization process but dynamically adapted
in each generation. (2) Those points that are the worst ones in the population
regarding an objective function have a distance to the reference point of exactly
1 w.r.t. that worst objective (cf. Fig. 1, left).

The SMS-EMOA does not specify a certain variation operator. It has mainly
been considered using SBX recombination and polynomial mutation (see e.g.
[9]). Here, we consider Gaussian mutation with self-adaptation as detailed in the
following section.

Section 3.3 contains the analysis of IBEAε+ [10] that performs non-dominated
sorting and afterwards selects among the worst points using the additive ε-
indicator Iε+. Section 4 deals with NSGA-II [9] that firstly uses non-dominated
sorting, and afterwards a particular density measure, the crowding distance, as
the secondary selection criterion. SPEA2 [11] as well applies a selection criterion
based on the Pareto dominance relation by counting dominated and dominating
solutions for each point. Among the incomparable ones, again a kind of density
measure comes into play, namely a k-nearest neighbor method.

3 Linear Convergence Rates

3.1 (1+1)-SMS-EMOA on 2-Objective Problems

If the (μ+1)-SMS-EMOA is instantiated with μ = 1 it reduces to the algorithm
described below (see Alg. 3).

Theorem 2. The (1 + 1)-SMS-EMOA with self-adaptation applied to applied
to a bi-objective optimization problem min{f : �n → �

2} is algorithmically
equivalent to a (1 + 1)-EA with self-adaptation applied to the minimization of
the single-objective function fs : �n → � with fs(x) = 1

2 (f1(x) + f2(x)).

Proof. The (1+1)-SMS-EMOA differs from the (1+1)-EA only in the additional
determination of the reference point R(t) which is required in the seemingly more
complex acceptance criterion. Evidently, it is sufficient to show that the (1 +1)-
SMS-EMOA accepts/rejects a new point if it would be accepted/rejected by the
(1+1)-EA with the scalarized objective function (cf. Fig. 1 (right) for its regions
of acceptance or rejection).
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Algorithm 3. (1+1)-SMS-EMOA with Self-Adaptation

choose X(0) ∈ �n and σ(0) > 0, set t = 0 and k = 01

repeat2

draw Z(t) from a multivariate standard normal distribution3

Y (t) = X(t) + σ(t) Z(t)
4

R(t) = (max{f1(X
(t)), f1(Y

(t))} + 1, max{f2(X
(t)), f2(Y

(t))} + 1)′5

if f(Y (t)) ≺ f(X(t)) or6 (
f(Y (t)) ‖ f(X(t)) and H(f(Y (t)); R(t)) > H(f(X(t)); R(t))

)
then

X(t+1) = Y (t) ; increment k7

else X(t+1) = X(t)
8

σ(t+1) = adapt(σ(t), t, k ; δ, ps, c)9

increment t10

until termination criterion fulfilled11

The mutated individual y is accepted if it dominates its parent x, i.e., f(y) ≺
f(x). This implies fs(y) < fs(x) and the (1 + 1)-EA would accept y:

f(y) ≺ f(x) ⇔ f1(y) < f1(x) ∧ f2(y) < f2(x)
⇒ f1(y) + f2(y) < f1(x) + f2(x)

⇔ 1
2
f1(y) +

1
2
f2(y) <

1
2
f1(y) +

1
2
f2(y)

⇔ fs(y) < fs(x)

Moreover, the mutated individual y is also accepted if it is incomparable to
its parent x, i.e., f(y) ‖ f(x), but has a larger dominated hypervolume. This
condition also implies fs(y) < fs(x) which is easily seen as follows: Since f(y) ‖
f(x) we have to distinguish two cases.

1. f1(x) > f1(y) ∧ f2(x) < f2(y)
According to Algorithm 3 the reference point is r = (f1(x) + 1, f2(y) + 1)′,
here. Recall that H(v; r) = (r1 − v1) (r2 − v2) for a single point. It follows:

Hx = H(f(x); r) = [ f1(x)+1−f1(x) ] [ f2(y)+1−f2(x) ] = f2(y)−f2(x)+1
Hy = H(f(y); r) = [ f1(x)+1−f1(y) ] [ f2(y)+1−f2(y) ] = f1(x)−f1(y)+1

The new point y is accepted if

Hy

!
> Hx ⇒ f1(x) − f1(y) + 1 > f2(y)− f2(x) + 1

⇔ f1(x) − f1(y) > f2(y)− f2(x)
⇔ f1(x) + f2(x) > f1(y) + f2(y)
⇔ fs(x) > fs(y) .

Thus, in this particular situation the (1 + 1)-SMS-EMOA would accept y
and so would do the (1 + 1)-EA.
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ƒ1

ƒ2

a

b

r

1

1
ƒ1

ƒ2

45°

accept

reject

Fig. 1. Left: Dominated hypervolume of the points a and b w.r.t. the reference point

r, whereas the hypervolume contribution is shaded in light gray. Right: Regions of

acceptance or rejection for the substitute weighted sum function.

2. f1(x) < f1(y) ∧ f2(x) > f2(y)
Now the reference point is r = (f1(y) + 1, f2(x) + 1)′ yielding a dominated
hypervolume of
Hx = H(f(x); r) = [ f1(y)+1−f1(x) ] [ f2(x)+1−f2(x) ] = f1(y)−f1(x)+1
Hy = H(f(y); r) = [ f1(y)+1−f1(y) ] [ f2(x)+1−f2(y) ] = f2(x)−f2(y)+1
The new point y is accepted if

Hy

!
> Hx ⇒ f2(x) − f2(y) + 1 > f1(y)− f1(x) + 1

⇔ f2(x) − f2(y) > f1(y)− f1(x)
⇔ f1(x) + f2(x) > f1(y) + f2(y)
⇔ fs(x) > fs(y)

Again, the (1 + 1)-SMS-EMOA would accept the new point y and so would
do the (1 + 1)-EA.

Putting all together we have shown that whenever the (1 + 1)-SMS-EMOA ac-
cepts a new element so does the (1 + 1)-EA. Finally we have to preclude that
the (1+1)-EA accepts elements that are rejected by the SMS-EMOA. Or equiv-
alently, if the (1 + 1)-SMS-EMOA rejects a new element then so must do the
(1 + 1)-EA. Notice that the proof of this property is analogous to acceptance
case above and therefore omitted here.

The equivalence of (1+1)-SMS-EMOA and the specific (1+1)-EA as formulated
in Th. 2 holds for all bi-objective problems. For a certain class of problems, we
show a linear convergence rate:

Corollary 1. The (1+1)-SMS-EMOA with self-adaptation applied to applied to
a bi-objective optimization problem min{f : �n → �

2} approaches an element
of the Pareto front with linear order of convergence if both objective functions
are quadratically convex and at least one of them strongly convex.
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Proof. Since both objective functions are quadratically convex they are of form

f1(x) = 1
2x

′Ax+ b′x+ c and f2(x) = 1
2x

′Ǎx+ b̌′x+ č

with positive semidefinite matrices A and Ǎ. Notice that at least one objective
function is even strongly convex so that its Hessian matrix is positive definite.
Suppose w. l. o. g. that A is positive definite. Since

fs(x) =
1
2
(f1(x) + f2(x)) =

1
2

[
1
2
x′(A+ Ǎ)x+ (b + b̌)′x+ (c+ č)

]
and x′(A+ Ǎ)x = x′Ax︸ ︷︷ ︸

>0

+ x′Ǎx︸ ︷︷ ︸
≥0

> 0

for all x ∈ �n \ {0}, its Hessian matrix is positive definite ensuring that fs(x)
is a strongly convex quadratic function. Now we can invoke Theorem 1 that
guarantees linear convergence rate of the (1 + 1)-EA with self-adaptation for
fs(x). Owing to Theorem 2 we know that the (1 + 1)-EA with self-adaptation
is algorithmically equivalent to a (1 + 1)-SMS-EMOA for minimizing the bi-
objective function (f1(x), f2(x))′. As a consequence, the (1 + 1)-SMS-EMOA
must have linear convergence rate to an element of the Pareto front under the
conditions of the corollary.

3.2 (1+1)-SMS-EMOA beyond Two Objectives

Expectedly, the result from the previous section does not generalize to more
than two objectives, which we show by a simple counter-example. First notice
that the reference point for two points f(x) and f(y) in objective space �d is

r =
(
max{f1(x), f1(y)}+ 1, max{f2(x), f2(y)}+ 1, . . . , max{fd(x), fd(y)}+ 1

)′
where f : �n → �

d, d ≥ 2. The dominated hypervolume H(v; r) for a single
point v ∈ �d and the scalarized objective function fs(x) used by the single-
objective (1 + 1)-EA are, respectively

H(v; r) =
d∏

i=1

[ ri − vi ] and fs(x) =
1
d

d∑
i=1

fi(x) .

Suppose there are two incomparable points x, y ∈ �
d with values f(x) =

(0, 0, . . . , 0)′ and f(y) = (−1,−1, . . . ,−1, d− 1 + ε)′ where ε ∈ (0, 1) ⊂ �. Inser-
tion yields the reference point r = (1, 1, . . . , 1, d + ε) leading to the dominated
hypervolume Hx = d+ ε and Hy = 2d−1.

The (1+1)-SMS-EMOA would accept y if Hy > Hx. Notice that Hy > Hx ⇔
2d−1 > d+ ε is true for d ≥ 3. But the (1+1)-EA would reject y since

fs(y) =
1
d

[(d− 1) · (−1) + d− 1 + ε] =
ε

d
> 0 = fs(x) .

As a consequence, both algorithms are not algorithmically equivalent for d ≥ 3
in case of a uniformly weighted scalarized objective function.
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probability 1/2

Fig. 2. Left: Values of the additive ε indicator Iε+ correspond to the hypervolume

contributions in the (1+1)-SMS-EMOA. Right: Regions of acceptance, rejection, or

random acceptance in case of incomparable points for (1+1)-NSGA-II, (1+1)-SPEA2,

and the simple (1+1)-EA from [1]

3.3 (1+1)-IBEA Using the Additive ε-Indicator

We show that a (1+1)-IBEA [10] selecting according to the additive ε-indicator
Iε+ [7] performs equal to the (1+1)-SMS-EMOA for two objectives. IBEAε+

prefers non-dominated individuals over dominated ones, so for the case of two
comparable individuals, the behavior of acceptance and rejection is clearly equal
to the one of the SMS-EMOA. For incomparable individuals, the indicator Iε+
comes into play, which is a relative binary indicator, originally defined on two
sets of points. For two points, Iε+(a, b) calculates the minimal distance ε by
which a can be moved in each direction until it is weakly dominated by b.

Iε+(a, b) = min
ε
{∀i ∈ {1, . . . , d} : fi(a) + ε ≥ fi(b)} (3)

Obviously large values correspond to valuable individuals, analogously to the
hypervolume (contribution). The hypervolume contribution has been shown to
reduces to a distance for the (1+1)-SMS-EMOA. This distance is exactly equal
to the value of the Iε+ (cf. Fig. 2, left). Thus it directly follows:

Corollary 2. Theorem 2 and Corollary 1 hold as well for the (1+1)-IBEAε+

which selects according to the additive ε-indicator Iε+.

4 Sub-linear Convergence Rates

We investigate whether the equivalence of (1+1)-SMS-EMOA and IBEAε+ to
the (1+1)-EA is outstanding. To this end, we consider further popular EMOA
in the version of using a (1+1) selection scheme.

NSGA-II [9] has been developed with a (μ+μ) selection, and is thus considered
for μ = 1. The selection starts by performing non-dominated sorting on the set
of parent and offspring. If the individuals are comparable, the dominating one
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is kept and the dominated one discarded. In case of incomparable individuals
the crowding distance is invoked. It rewards individuals with a large distance
to their neighbors, and assigns a value of infinity to points at the boundary of
the non-dominated front, i.e. those not having neighbors in one dimension. Here,
both points are boundary points with equal crowding distance values. Thus, one
is chosen to be discarded uniformly at random, so in case of incomparable points,
each is accepted with probability 1/2 (cf. Fig. 2, right).

The same result holds for the (1+1)-SPEA2 [11]. For incomparable individ-
uals, there are neither dominated nor dominating ones, thus the raw fitness of
both individuals is zero. So, the secondary indicator based on a k-nearest neigh-
bor method is used. The resulting values for the individuals are equal since they
both are their only neighbors and distances are symmetrical.

We declare that both algorithms in their (1+1) version are equal to the EMOA
considered by Rudolph [1]: Recall that this (1+1)-EA chooses uniformly at ran-
dom one fitness function for selection. The better individual w.r.t. to the function
is kept, the other one discarded. Two incomparable individuals have both worst
and best values in interchanged functions. So, choosing a function is equivalent
to choosing the preferred individual. Since [1] proves that convergence is given
but only with a sub-linear rate for at least one instance from the problem class,
we immediately get the following result.

Theorem 3. The (1+1)-NSGA-II and the (1+1)-SPEA2 have sub-linear con-
vergence rate under conditions for the step sizes given in [1].

It is still unclear how this step size rule can be realized in practice and, thus,
whether NSGA-II and SPEA2 converge at all for any other known mutation
operator. Nevertheless, our result indicates that sub-linear convergence might
be the best one can hope for.

5 Conclusions

We showed that the (1+1) versions of SMS-EMOA and IBEAε+ have linear
convergence rate on the class of bi-objective problems whose functions all are
quadratically convex with at least one being strongly convex. This is the first time
that a linear convergence rate could be proved for evolutionary multiobjective op-
timization algorithms that do not require an explicit weighting of objectives. The
convergence rate is proved by reduction to an already analyzed single-objective
(1+1)-EA with self-adaptation. The equivalence of the algorithms holds for ar-
bitrary bi-objective problems, and a result regarding the linear convergence rate
on a certain class of functions is transferred to the EMOA. By a counter example
it is shown that the selection behavior of the EMOA is no longer equal to the
single-objective (1+1)-EA for more than two objectives.

(1+1)-NSGA-II and (1+1)-SPEA2 have a sub-linear convergence rate on the
considered class of functions due to the fact that their selection operators de-
generate to random choice among incomparable individuals.
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Future research shall consider how population sizes greater than one influence
the convergence properties of different evolutionary multiobjective optimization
algorithms.
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Abstract. The hypervolume indicator is widely used to guide the search

and to evaluate the performance of evolutionary multi-objective opti-

mization algorithms. It measures the volume of the dominated portion

of the objective space which is considered to give a good approxima-

tion of the Pareto front. There is surprisingly little theoretically known

about the quality of this approximation. We examine the multiplicative

approximation ratio achieved by two-dimensional sets maximizing the

hypervolume indicator and prove that it deviates significantly from the

optimal approximation ratio. This provable gap is even exponential in

the ratio between the largest and the smallest value of the front. We also

examine the additive approximation ratio of the hypervolume indicator

and prove that it achieves the optimal additive approximation ratio apart

from a small factor � n/(n − 2), where n is the size of the population.

Hence the hypervolume indicator can be used to achieve a very good

additive but not a good multiplicative approximation of a Pareto front.

1 Introduction

Most real-world optimization problems have to deal with multiple objectives
(like time vs. cost) and cannot be easily described by a single objective function.
This implies that there is in general no unique optimum, but a possibly very
large set of incomparable solutions which forms a Pareto front. Many different
multi-objective evolutionary algorithms (MOEAs) have been developed to find
a Pareto set of (preferably small) size n which gives a good approximation of
the Pareto front. A popular way to measure the quality the approximation is
the hypervolume indicator. It measures the volume of the dominated space [18].
For a small number of objective, MOEAs which directly use the hypervolume
indicator to guide the search are the methods of choice. These include for example
the generational MO-CMA-ES [8, 16], the SMS-EMOA [3, 6], and variants of
IBEA [17, 19].

One of the reasons why the hypervolume indicator is so popular is that it
matches very well with our intuition how a good approximation of a Pareto
front should look like. However, there is only little known whether maximizing
the hypervolume also gives a good approximation of the Pareto front in strictly
mathematical sense. Considering the wide use of the hypervolume indicator, the

R. Schaefer et al. (Eds.): PPSN XI, Part I, LNCS 6238, pp. 607–616, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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question whether it achieves a good approximation appears to be fundamen-
tal. The distribution of the points maximizing the hypervolume indicator has
been examined by several authors. It was observed that “convex regions may be
preferred to concave regions” [13, 18] as well as that HYP is “biased towards
the boundary solutions” [5]. In contrast to this, such sets are empirically “well
distributed” according to [6, 9, 10] and it was also proven that for the number
of points n→∞ the density of points only depends on the gradient [2].

However, the question whether sets maximizing the hypervolume give an ap-
proximation of the Pareto front in the mathematical sense remained open besides
two preliminary papers [4, 7]. We follow up on this and study the approxima-
tion quality of the hypervolume indicator by classic approximation theory. Which
concept from approximation theory is the right measure depends on the problem
at hand. As a general rule of thumb, for linear axes this is the additive approxi-
mation ratio while for exponential axes this is the multiplicative approximation
ratio.

To illustrate this with a small example, consider a knapsack problem (see
e.g. [18]) with linearly distributed weights and exponentially distributed profits.
In this case a good approximation of the front should be an additive approxi-
mation of the weights and a multiplicative approximation of the profits. Within
this example the result of this paper is that compared to the optimal set with
best possible approximation, sets maximizing the hypervolume only achieve the
first aim, not necessarily the latter.

In our previous paper [4], we proved that for all possible Pareto fronts the
multiplicative approximation factor achieved by a set of n solutions maximizing
the hypervolume indicator is 1+Θ(1/n) (cf. Theorem 3.6)1. As this was shown to
be asymptotically equivalent to the optimal multiplicative approximation factor
(cf. Corollary 3.4), we concluded that the hypervolume indicator is guiding the
search in the correct direction for sufficiently large n. However, the size n of a
population is usually not large. Also, the constant factors hidden by the Θ might
still be larger for the set maximizing hypervolume compared to the set with best
possible approximation factor.

Our Results

We significantly extend the results of [4]. First, we are now able to give tight
bounds on the multiplicative approximation ratio depending on the ratio A/a
between the largest and smallest coordinate2. Using this notation, the precise
result of [4] is the computation of the optimal multiplicative approximation ratio
as 1 + log(A/a)/n (cf. Corollary 3.4). We are now able to show that the multi-
plicative approximation ratio for a set maximizing the hypervolume is strictly

1 The precise statements of this and the following results of this introduction are

slightly more technical. For details see the respective theorems.
2 The approximation ratio actually depends on the ratios in both dimensions. To

simplify the presentation in this introduction, we assume here that the ratio A/a in

the first dimension is equal to the ratio B/b in the second dimension.
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larger, namely of the order of at least 1 +
√
A/a /n (cf. Theorem 3.7). This im-

plies that the dependence of this multiplicative approximation ratio on the ratio
A/a can be exponentially worse than in the optimal case. Hence for numerically
very wide spread fronts (that is, large A/a) there are Pareto sets which give a
much better multiplicative approximation than the Pareto sets which maximize
the hypervolume.

Second, we now also analyze the additive approximation ratio of the hyper-
volume indicator. While the multiplicative approximation factor is determined
by the ratio A/a, the additive approximation factor is determined by the width
of the domain A− a. We prove that the optimal additive approximation ratio is
(A− a)/n (cf. Theorem 4.3) and upper bound the additive approximation ratio
achieved by a set maximizing the hypervolume by (A − a)/(n − 2) (cf. Theo-
rem 4.5). This is a very strong statement, as apart from the small factor n/(n−2)
the additive approximation ratio achieved when maximizing the hypervolume is
optimal! This shows that the hypervolume indicator yields a much better additive
than multiplicative approximation.

2 Preliminaries

We only consider the case of two objectives where there is a mapping from an
arbitrary search space to an objective space which is a subset of R2. Throughout
this paper, we will only work on the objective space. For points from the objective
space we define the following dominance relation:

(x1, y1) � (x2, y2) iff x1 � x2 and y1 � y2,
(x1, y1) ≺ (x2, y2) iff (x1, y1) � (x2, y2) and (x1, y1) = (x2, y2).

We restrict ourselves to Pareto fronts that can be written as {(x, f(x)) | x ∈
[a,A]} where f : [a,A] → [b,B] is a (not necessarily strictly) monotonically de-
creasing, upper semi-continuous3 function with f(a) = B, f(A) = b for a < A,
b < B. We write F = F[a,A]→[b,B] for the set of all such functions f . We will
use the term front for both, the set of points {(x, f(x)) | x ∈ [a,A]}, and the
function f .

The condition of f being upper semi-continuous cannot be relaxed further as
without it the f lacks symmetry in the two objectives in the following sense:
Being upper semi-continuous is necessary and sufficient for the existence of the
inverse function f−1 : [b,B] → [a,A] defined by setting f−1(y) := max{x ∈
[a,A] | f(x) � y}. Without upper semi-continuity this maximum does not exist
in general. Furthermore, this condition implies that there is a set maximizing
the hypervolume indicator.

Note that the set F of fronts we consider is a very general one. Most papers
that theoretically examine the hypervolume indicator assume that the front is
3 Semi-continuity is a weaker property than normal continuity. A function f is said to

be upper semi-continuous if for all points x of its domain, lim supy→x f(y) � f(x).

Intuitively speaking this means that for all points x the function values for arguments

near x are either close to f(x) or less than f(x). For more details see e.g. [15].
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continuous and differentiable (e.g. [1, 2, 7]), and are thus not able to give results
about discrete fronts, which we can.

Let n ∈ N. For fixed [a,A], [b,B] ⊂ R we call a set P = {p1, . . . , pn} ⊂
[a,A]× [b,B] a solution set (of size n) and write P = Pn for the set of all such
solution sets. A solution set P is said to be feasible for a front f ∈ F , if y � f(x)
for all p = (x, y) ∈ P . We write Pf ⊆ P for the set of all solution sets that are
feasible for f .

We are now ready to formally define the hypervolume indicator. It was first
introduced for performance assessment in multiobjective optimization by [18],
but since then also has become a very popular way to guide the search in multi-
objective evolutionary optimizers. On a two-dimensional objective space it is
defined as follows.

Definition 2.1. The hypervolume indicator HYP(P ) of a solution set P ∈ P
relative to a reference point R = (Rx,Ry) is

HYP(P ) := vol

( ⋃
(x,y)∈P

[Rx,x]× [Ry, y]

)
.

with vol( · ) being the usual Lebesgue measure.

3 Multiplicative Approximation

The standard measure of approximation quality in approximation theory is the
multiplicative approximation ratio. We use the multi-objective definition for the
multiplicative approximation ratio by [14] which was also used in [4, 7, 11, 12].
Note that here and in the rest of the paper when talking about multiplicative
approximation we require a, b > 0 as this ratio only makes sense for positive
values.

Definition 3.1. Let f ∈ F and P ∈ Pf . The solution set P is a multiplicative
α-approximation of f if for each x̂ ∈ [a,A] there is a point p = (x, y) ∈ P with

x̂ � αx and f(x̂) � αy

where α ∈ R, α � 1. The multiplicative approximation ratio of P with respect
to f is then defined as

α∗(f,P ) := inf{α ∈ R | P is a multiplicative α-approximation of f}.
The quality of an algorithm which calculates a solution set of size n for each
Pareto front in F has to be compared with the respective optimal approximation
ratio defined as follows.

Definition 3.2. For fixed [a,A], [b,B], and n, let

α∗
OPT := sup

f∈F
inf

P∈Pf
α∗(f,P ).
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The value α∗
OPT is chosen such that every front in F can be approximated by n

points to a ratio of α∗
OPT , and there is a front which cannot be approximated

better. In [4] the authors showed the following two results.
Theorem 3.3 (from [4]). α∗

OPT = min{A/a,B/b}1/n.

Corollary 3.4 (from [4]). For all n � log(min{A/a,B/b})/ε and ε ∈ (0, 1),

α∗
OPT � 1 +

log(min{A/a,B/b})
n

,

α∗
OPT � 1 + (1 + ε)

log(min{A/a,B/b})
n

.

We further want to measure the approximation of the solution set of size n
maximizing HYP. As there might be several solution sets maximizing HYP, we
consider the worst case and use the following definition.
Definition 3.5. For fixed [a,A], [b,B], and n, let

Pf
HYP :=

{
P ∈ Pf

∣∣ HYP(P ) = max
Q∈Pf

HYP(Q)
}

for f ∈ F , and

α∗
HYP := sup

f∈F
sup

P∈Pf
HYP

α∗(f,P ).

The set Pf
HYP is the set of all feasible solution sets that maximize HYP on f .

The value α∗
HYP is chosen such that for every front f in F every solution set

maximizing HYP approximates f by a ratio of at most α∗
HYP . Note that this

assumes that there is at least one solution set which maximizes the indicator,
i.e., the set Pf

HYP is non-empty. That this is indeed the case was proven in [4].
In [4] the authors also examined α∗

HYP and showed an upper bound that has
the same asymptotic behavior as α∗

OPT , but a much larger constant factor.
Theorem 3.6 (from [4]). Let f ∈ F , n > 4, and let R = (Rx,Ry) � (0, 0) be
the reference point. If we have
• n � 2 + max

{√
A/a ,

√
B/b

}
or

• Rx � −√Aa /n, Ry � −√B b /n,

then

α∗
HYP � 1 +

√
A/a +

√
B/b

n− 4
.

The previous paper [4] left open whether (i) the upper bound of Theorem 3.6
is not tight and α∗

HYP is actually much closer to the bounds for α∗
OPT given in

Corollary 3.4 or (ii) α∗
HYP is indeed significantly larger than α∗

OPT . By giving a
lower bound for α∗

HYP we can now prove the latter. In the following theorem we
restrict ourselves to the case of A/a = B/b. We show that in this situation the
bound of Theorem 3.6 is tight except for a small constant factor.
Theorem 3.7. Let n � 4, A/a = B/b � 13, and R = (Rx,Ry) � (0, 0) be the
reference point. Then

α∗
HYP � 1 +

2
√
A/a− 1

3 (n− 1)
.

The proof of this theorem will be provided in the full version of the paper.
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4 Additive Approximation

After the previous section showed that sets maximizing the hypervolume have
sub-optimal multiplicative approximation ratio we now analyze their additive
approximation properties. Analogous to Definition 3.1 we use the following
definition.

Definition 4.1. Let f ∈ F and P ∈ Pf . The solution set P is an additive
α-approximation of f if for each x̂ ∈ [a,A] there is a point p = (x, y) ∈ P with

x̂ � x+ α and f(x̂) � y + α

where α ∈ R, α � 0. The additive approximation ratio of P with respect to f is
defined as

α+(f,P ) := inf{α ∈ R | P is an additive α-approximation of f}.

Again, we are interested in the optimal approximation ratio for Pareto fronts
in F . Analogous to Definition 3.2 we give the following definition.

Definition 4.2. For fixed [a,A], [b,B], and n, let

α+
OPT := sup

f∈F
inf

P∈Pf
α+(f,P ).

Analogously to the precise bound α∗
OPT = min{A/a,B/b}1/n of Theorem 3.3

for the optimal multiplicative approximation ratio, we can prove the following
for the optimal additive approximation ratio α+

OPT .

Theorem 4.3. α+
OPT =

min{A− a,B − b}
n

.

The proof of Theorem 4.3 will be provided in the full version of the paper.
In order to compare the optimal additive approximation ratio with the ap-

proximation ratio achieved by the hypervolume, we give the following definition
analogously to the definition of α∗

HYP in Definition 3.5.

Definition 4.4. For fixed [a,A], [b,B],n, and f ∈ F let

α+
HYP := sup

f∈F
sup

P∈Pf
HYP

α+(f,P ).

We can now state the main result of this paper that α+
HYP is very close to α+

OPT .
Similar to the proof of the upper bound for α∗

HYP of Theorem 3.6 we can prove
the following upper bound for α+

HYP .

Theorem 4.5. For all n > 2 and (n− 2)min{a−Rx, b−Ry} �√
(A− a) (B − b) ,

α+
HYP �

√
(A− a) (B − b)

n− 2
.
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Let us briefly discuss the result before the theorem will be proven in the remain-
der of this section. First note that the precondition is fulfilled if n is large enough
or if the reference point is sufficiently far away from (a, b). Hence this is no real
restriction. Moreover, compare this result to the bound for the optimal additive
approximation ratio of Theorem 4.3. This shows that for A−a ≈ B−b and mod-
erately sized n, α+

HYP is very close to α+
OPT . More precisely, for A− a� B − b

(or A− a� B− b) the constant in Theorem 4.5 is the geometric mean of A− a
and B− b while in Theorem 4.3 it is instead the minimum of both. As there is a
provable gap of log vs. square root of A/a for the multiplicative approximation
ratio, this proves that HYP yields a much better additive approximation than
a multiplicative one.

Proof of Theorem 4.5. Let P be a solution set maximizing HYP on a front f ∈
F , i.e., P ∈ Pf

HYP . Assume that there are points p, q ∈ P with p ≺ q. Such
a “redundant” set can maximize HYP only on degenerate fronts: If there is a
point r = (x, f(x)) on the front which is not dominated by any point in P ,
then4 P ′ := P + r− p would have HYP(P ′) > HYP(P ), as it dominates all the
space P dominates united with the space r dominates. Thus, there is no such
point r and P dominates already the whole front. In this case the approximation
ratio α+(f,P ) = 1 and the inequality we want to show holds trivially. This can
only happen for f being a step function with less than n steps.

Hence, for the rest of the proof we can assume that there are no points p, q ∈ P
with p ≺ q. Then we can write P = {p1, . . . , pn}, pi = (xi, yi) with a � x1 <
. . . < xn � A and B � y1 > . . . > yn � b. Furthermore, we can assume
that yi = f(xi) as otherwise P − pi + p′i with p′i = (xi, f(xi)) would have a
larger hypervolume than P (this uses that the points in P are mutually non-
dominating).

We want to argue about the contribution of a point p to the hypervolume of
a solution set P , namely CONP (p) := HYP(P ) − HYP(P − p). In particular
we need the minimal contribution of any of the points p2, . . . , pn−1:

MinCon(P ) := min
1<i<n

CONP (pi)

= min
1<i<n

(xi − xi−1) (f(xi)− f(xi+1)).

This value has been (with slightly different notation) examined in [4]. In partic-
ular, the authors showed that for n > 2

MinCon(P ) � (xn − x1) (f(x1)− f(xn))
(n− 2)2

.

This implies

MinCon(P ) � (A− a) (B − b)
(n− 2)2

. (1)

4 To increase the readability, for a set P ⊂ R2 and a point r ∈ R2 we define P + r :=

P ∪ {r} and P − r := P \ {r} here and in the remainder of this section.
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Table 1. Results for the optimal approximation ratio and upper bounds for the ap-

proximation ratios of HYP. See the cited theorems for the precise statements.

Multiplicative approximation Additive approximation

OPT 1 +
log(min{A/a, B/b})

n
(Cor. 3.4)

min{A − a, B − b}
n

(Thm. 4.3)

HYP 1 +

√
A/a +

√
B/b

n − 4
(Thm. 3.6)

√
(A − a) (B − b)

n − 2
(Thm. 4.5)

Let r = (x, f(x)), x ∈ [a,A] be an arbitrary point and let α > 0 be such that r
it not additively approximated by α. We make a case distinction depending on
the position of r. Let us first assume that r is an “inner point”, i.e., there is an
i ∈ {1, . . . ,n−1} with xi � x < xi+1. As r is not additively approximated by α,
we have

x > xi + α and f(x) > f(xi+1) + α. (2)

As P maximizes the hypervolume indicator on f , replacing the point p ∈ P
contributing MinCon(P ) to P by the point r must not increase the hypervolume.
Therefore,

HYP(P ) � HYP(P + r − p) = HYP(P )−CONP (p) + CONP+r−p(r)
� HYP(P )−CONP (p) + CONP+r(r),

which in turn implies

MinCon(P ) = CONP (p) � CONP+r(r) = (x − xi) (f(x)− f(xi+1))
(2)
> α2.

Using equation (1) and taking square roots on both sides gives the desired

α <

√
(A− a) (B − b)

n− 2
.

It remains to study the case where r = (x, f(x)) is an “outer point” with x � x1

or x � xn. It suffices to examine x � x1 as then the case x � xn follows by
symmetry in the two objectives.

As r is not approximated by a ratio of α we have f(x) > f(x1) + α. Addi-
tionally, replacing the point p ∈ P contributing MinCon(P ) to P by r must not
increase the hypervolume, so we have

MinCon(P ) � CONP+r−p(r) � CONP+r(r) = (a−Rx) (f(x) − f(x1))
� (a−Rx)α.

We use equation (1) again and get

α � (A− a) (B − b)
(a−Rx) (n− 2)2

�
√

(A− a) (B − b) /(n− 2),

where the second inequality follows from the precondition of the theorem.
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5 Conclusion

Many modern MOEA use the hypervolume indicator to guide the search pro-
cess. We presented a mathematically rigorous framework to analyze the ap-
proximation ratio achieved by sets maximizing the hypervolume. We prove that
sets maximizing HYP do not give a perfect multiplicative approximation. The
proven bounds can be found in Table 1. The multiplicative approximation ratio
of HYP is getting large for numerically wide spread fronts with large A/a. On
the other hand, we can prove that maximizing HYP gives a close-to-optimal
additive approximation.
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Abstract. In the paper we consider the ranking given by the Pareto

dominance relation as a basis to create a selection operator for the Evo-

lutionary Multiobjective Optimization Algorithm (EMOA). Assuming

that sampling to the next epoch is performed according to the general-

ized Bernoulli schema with regard to a selected type of the rank selection,

a heuristic operator for EMOA is introduced. Having defined the heuris-

tic operator, the transition probability matrix of the uniform Markov

chain modeling EMOA can be explicitly obtained as in the Vose’s the-

ory of the Simple Genetic Algorithm (SGA). This chain is ergodic if the

mixing operator following the EMOA selection operator in each epoch

is strictly positive. Moreover, we show that the measure on the space of

populations imposed by the EMOA infinite population concentrates on

the set of fixed points of the heuristic operator after infinite number of

epochs, assuming that the heuristic operator is focusing.

Keywords: evolutionary algorithm, multi-objective optimization,

Markov system.

1 Introduction

Evolutionary Multiobjective Optimization Algorithms (EMOAs) have been stud-
ied by several groups of researchers. Different types of selection were introduced
i.a. by Goldberg in [5], Fonseca and Fleming in [4] and Zitzler and Thiele in [16].
Nondominated sorting was also used by Srinivas and Deb (see. e.g. [12]). The-
oretical properties of EMOAs applied to discrete problems were studied i.a. by
Rudolph in [9], [10], Hanne in [6] and Laumanns in [7]. Authors of these papers
base on the Markov description of populations processing and use an archive in
which an approximation of the Pareto front is stored. Convergence with regard
to ε-Pareto dominance relation was analyzed by Laumanns in [7].

We build a Markov model of EMOA basing on the introduced heuristic op-
erator, similar to the Vose’s genetic operator for the Simple Genetic Algorithm

R. Schaefer et al. (Eds.): PPSN XI, Part I, LNCS 6238, pp. 617–626, 2010.
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(SGA) (see e.g. [13]). We assume the set of genes to be finite but general (in-
dividuals are not necessarily strings over any alphabet). The proposed heuristic
is created with regard to some special types of rank selection. We will analyze
asymptotic features of the evolved population according to such EMOA selec-
tion rules and mixing operations (crossover, mutation, etc.) that return a strictly
positive sampling probability.

Because the asymptotic results obtained for EMOA Markov model are similar
as those obtained for SGA by Vose, they can be used for verifying two-phase
strategies in the same manner as for the single criteria ones (see e.g. [11]). Such
strategies consist of finding the approximation of the connected components of
the Pareto set (using EMOA combined with the proper population clustering)
in the first phase, and the parallel, detailed search in each of them.

2 Evolutionary Approach to the Multiobjective
Optimization

2.1 Pareto Dominance

In the multiobjective optimization, we are given k ≥ 2 objective functions

fi : U → [0,M ] ⊂ R, M < +∞, i ∈ {1, . . . , k} (1)

defined over some search space U , which might be implicitly defined by con-
straints. We assume the search space U to be finite #U = r < +∞ and that all
objectives shall be maximized. Therefore we are interested in solving

max
{
f(p) = (f1(p), . . . , fk(p))T | p ∈ U

}
. (2)

Definition 1. (Pareto dominance) For any pair (p, q) ∈ U × U , p is said to
dominate q, denoted as p � q, if and only if

f(p) ≥ f(q) and ∃i=1,...,k fi(p) = fi(q). (3)

Remark 1. The definition can be easily adapted to the minimization problem,
when in formula (3) inequality changes form ≥ to ≤. It can be also adapted
to mixed min-max problems by changing inequalities for certain coordinates
representing different objective functions.

2.2 Evolutionary Multiobjective Optimization (EMOA)

One of the possible ways of solving (2) is finding the Pareto set P being the
set of non-dominated elements from U and its image f(P) ⊂ [0,M ]k called the
Pareto front.

A popular class of stochastic algorithms designed for finding Pareto set is
called Evolutionary Multiobjective Optimization (EMOA) (see e.g. [14]). Their
simplest instances operate on the single population being the multiset P = (U, η)
of the search space members called individuals, while U is called now genetic
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universum. The occurrence function η : U → Z+ ∪ {0} returns η(i) being the
number individuals with the genotype i ∈ U and μ =

∑
i∈U η(i) < +∞ stands

for the population cardinality.
As other genetic algorithms, EMOA consists in producing the sequence of

populations {P t} in the consecutive genetic epochs t = 1, 2, . . . starting from the
population P 0 uniformly sampled from U .

Later, we will consider only the scheme (μ, λ) where λ = μ, such that the
transformation between P t and its successor P t+1 is obtained by the composi-
tion of two groups of random operations: selection and mixing. Hereafter (μ, λ)
stands for the Schwefel’s symbol, where λ is the offspring cardinality and μ is
the population cardinality.

While the mixing operations utilized in EMOA do not differ significantly from
those applied in other groups of evolutionary algorithms, the EMOA selection is
performed with regard to the Pareto dominance (see e.g. [2]). The algorithm ter-
minates after a predefined number of epochs or when another stopping criterion
is satisfied (see e.g. [14]).

2.3 Selection Schemes

Several important EMOAs with different selection schemes will be briefly de-
scribed in the following section. A comparison of these methods can be found
e.g. in [14].

The idea of calculating an individual’s fitness according to Pareto-dominance
was first suggested by Goldberg in [5]. The procedure of NSGA (Nondominated
Sorting Genetic Algorithm) is based on ranking individuals in an iterative way:
firstly nondominated solutions are assigned rank one and temporarily removed
from the population. After that, next nondominated solutions are given rank two
and so forth. The rank of an individual determines its fitness value. Goldberg’s
concept was implemented e.g. by Srinivas and Deb [12].

Fonseca and Fleming in [4] proposed a Pareto-based ranking procedure
(FFGA), where an individual’s rank equals the number of solutions by which it
is dominated. After sorting population according to the rank, new fitness values
are assigned to individuals by interpolating from the best (with the lowest rank)
to the worst (with the highest rank) according to some function. Fitness of
individuals with the same rank should be equal, so that all of them will be
sampled at the same rate. We used this type of selection as a basis for creating
the selection operator.

Later on we will refer mainly to NSGA and FFGA selection schemes in prepar-
ing the EMOA Markov model. In the following paragraphs we will mention two
important strategies which seem to be difficult or impossible to model in the
way presented in next sections.

One of these methods is aimed to construct an algorithm in which the hy-
pervolume measure (see e.g. [3]) governs the selection operator of an EMOA in
order to find a set of solutions well distributed on the Pareto front. Hypervolume
measure or S-metric corresponds to the size of dominated space [16]. Individuals
are rated according to their contribution to the dominated hypervolume of the
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current population, therefore ranks are not based on relations between pairs of
individuals but on relation between an individual and the whole population.

Strength Pareto Evolutionary Algorithm (SPEA, see [16]) uses a regular pop-
ulation and an external set (archive) into which all nondominated solutions are
copied in each iteration. If the size of the archive exceeds a predefined limit, fur-
ther archive members are deleted by a clustering strategy which preserves the
characteristics of the nondominated front. Ranks of solutions are calculated bas-
ing on strength values of individuals stored externally. SPEA was later improved
and introduced as SPEA2 in [15]. The selection in SPEA cannot be described by
our selection operator because of the existence of the archive. In order to model
this selection scheme one should consider a different space of states.

3 EMOA Markov Model

3.1 Evolutionary Algorithms with Heuristic

Each finite population represented as the multiset P = (U, η) may be identified
with its frequency vector x = { 1

μ η(p)}, p ∈ U and all such vectors belong to the
finite subset Xμ of the well-known Vose simplex

Λr =

⎧⎨⎩x = {xp}; 0 ≤ xp ≤ 1, p ∈ U,
∑
p∈U

xp = 1

⎫⎬⎭ . (4)

Such construction has several advantages:

1. Although the frequency vector represents unambiguously only the finite pop-
ulations (μ < +∞), it is possible to represent also the infinite size popula-
tions. We will identify the population with its frequency vector if it does not
lead to the ambiguity.

2. Each x ∈ Λr being the population frequency vector (possibly infinite one)
belongs to M(U) being the set of probabilistic measures on the set U .

3. The set containing representations of all populations is compact in Rr.

The above settings allow to define the class of evolutionary algorithms which
are characterized by the same genetic universum U and fitness as well as the
same set of genetic operations that do not depend on the genetic epoch number.
They can differ only by the population size μ. This class of EA’s may be also
characterized as ”stationary” because the evolutionary rule does not change
during computations.

Definition 2. The mapping H ∈ C(Λr → Λr) will be called the heuristic of the
particular class of genetic algorithms if:

1. Each coordinate (H(x))p is equal to the sampling probability of the individual
with the genotype p ∈ U in the epoch that immediately follows the epoch in
which the population x ∈ Λr appears.
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2. The value H(x) is the expected population in the epoch that immediately
follows the epoch in which the population x ∈ Λr appeared, for all algorithms
from the considered class.

3. It stands for the law of evolution of the abstract, deterministic, infinite pop-
ulation algorithm (we assume that it exists in the considered class). In other
words, the infinite population algorithm is the dynamic system that starts
from a particular initial population x0 ∈ Λr and then passes consecutively by
H(x0),H2(x0),H3(x0), . . . .

If a particular class of genetic algorithms admits a heuristic operator, we will call
those algorithms the genetic algorithms with heuristic. The heuristic operator
was introduced by Vose and his collaborators for the class of Simple Genetic
Algorithms (SGA) (see e.g. [13]). This operator was equivalently called genetic
operator in this case. Some further comments are contained in [11].

Furthermore, we restrict ourselves to the evolutionary algorithms in which
the next epoch population xt+1 ∈ Λr is obtained by the μ-times sampling with
return according to the polynomial scheme (generalized Bernoulli scheme, see
e.g. Billingsley [1]), assuming the probability distribution on the set of genotypes.
Of course, in case of the GA class with heuristic, the value of H(xt) stands for
such probability distribution.

Observation 1. If the next population xt+1 is obtained using generalized Ber-
noulli scheme, then the condition 1 of the Definition 2 implies the condition 2.

The Observation 1 can be motivated as follows. Let us denote by P t+1 =
(U, ηt+1) the random variable being the population in the t+ 1 epoch. Because
P t+1 is obtained using the generalized Bernoulli scheme associated with the
probability distribution H(xt) ∈ M(U), we have that EP t+1 = (U, η̄t+1) with
η̄t+1(p) = μ H(xt)p, where E is the proper expected value operator. There-
fore the expected coordinate of the frequency vector xt+1 satisfies (Ext+1)p =
1
μ η̄t+1(p) = H(xt)p for all p ∈ U .

Observation 2. If the next population xt+1 is obtained using generalized
Bernoulli scheme, then the condition 1 of the Definition 2 implies also the
condition 3.

The motivation of the Observation 2 in not so trivial as the previous one. It may
be drawn from the following theorem.

Theorem 1. ∀ k > 0, ε > 0, ν < 1 ∃ N independent upon x0 ∈ Λr such that

μ > N ⇒ Pr{∥∥xt −Ht(x0)
∥∥ < ε} > ν ∀ t ∈ [0, k] ∩ N.

This theorem is a generalization of the well known Nix and Vose result (see
Theorem 2 in [8]) proved originally for the SGA heuristic only. This theorem
states that the finite population algorithm spends arbitrarily large number of
epochs arbitrarily close to the heuristic trajectory with the probability arbitrarily
close to 1 if the population size is large enough, so the heuristic trajectory might
be understood as the trajectory of infinite population algorithm in this sense.
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Observation 3. If the particular EA has the heuristic H and the next epoch
population P t+1 is obtained using generalized Bernoulli scheme associated with
the probability distribution H(xt) ∈ M(U), then it can be modeled as the sta-
tionary Markov chain with the finite space of states Xμ and with the transition
probability matrix Q given by the formula similar to the formula introduced by
Vose for SGA Markov model (see Theorem 1 in [8])

(Q)x,y = μ!
∏
p∈U

(H(x)p)μyp

(μyp)!
∀x, y ∈ Xμ. (5)

The above observation is a simple issue of the polynomial sampling distribution.

3.2 The EMOA Selection Operator

Let us start with the definition of the binary Pareto dominance matrix

Ξ ∈ {0, 1}r × {0, 1}r; Ξp,q =

{
1 if q � p

0 otherwise.
, ∀ p, q ∈ U. (6)

which completely characterizes the Pareto dominance relation among the geno-
types from U for the particular multiobjective optimization (2). The above defi-
nition is appropriate also for different cases of problems, not only maximization
(see Remark 1). NSGA selection scheme can be represented in a similar way but
with a different Ξ matrix.

It is easy to observe that the p-th entry of the vector (Ξ η) represents the num-
ber of individuals which dominate the individual with the genotype p belonging
to the population P = (U, η) (i.e. η(p) > 0).

Next, we introduce function ξ : Λr → [0, 1]r of the form

ξ(x) = Ξ x , (7)

so that ξ(x)p defines the rank of all individuals with the genotype p ∈ U con-
tained in the population P represented by its frequency vector x.

This function is well defined for both finite and infinite populations. In case of
finite population of the cardinality μ < +∞ the entry ξ(x)p may be interpreted
as the relative number of individuals that dominate the individual with the
genotype p because ξ(x) = 1

μ (μ Ξ x) = 1
μ (Ξ μ x) = 1

μ (Ξ η).

Observation 4. It may be easily checked that

∀x ∈ Λr ∃p ∈ U : ξ(x)p = 0, xp > 0.

It follows from the fact that there is at least one non-dominated individual in
each population.

As usual, it is necessary to introduce the validating function in order to obtain
the probability distribution of the rank selection

g ∈ C([0, 1]→ [0, 1]); ∀ζ, γ ∈ [0, 1], ζ > γ ⇒ g(ζ) < g(γ). (8)
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As a simple example of a function correlated with the rank-based fitness assign-
ment method [4] we can take

g(ζ) = 1− ζ. (9)

To obtain more control on the selection pressure the function

g(ζ) = e−αζ , α ∈ R+ (10)

may be chosen.
For technical purposes we introduce a next function G : [0, 1]r → [0, 1]r such

that G(x)p = g(xp), p ∈ U .
The probability of selecting the individual p ∈ U from the current EMOA

population P represented by the vector x ∈ Λr equals to

Pr(p) =
1

xT G(ξ(x))
g((ξ(x))p) xp. (11)

We are now ready to define the selection operator F : Λr → Λr for the EMOA
rank selection

F (x) =
1

xT G(Ξ x)
diag(x) G(Ξ x) , (12)

where diag(x) denotes the r × r diagonal matrix with the diagonal x.

Observation 5. Taking into account the features of the function ξ (see Obser-
vation 4) and the features of the function g (see formula (8)) the EMOA rank
selection operator (12) as well as the formula (11) are well defined, because the
denominator xT G(Ξ x) is strictly positive for all x ∈ Λr.

Observation 6. Because g is continuous in its domain the EMOA rank selec-
tion operator (12) is continuous on the whole Λr. If we additionally assume, that
g is continuously differentiable, as in case of both examples (9), (10), then the
EMOA rank selection operator is also continuously differentiable on the whole Λr.

Observation 7. If the validating function g is strictly positive, then the EMOA
rank selection is always ”soft”, which means that each individual from the current
population can be selected (with the positive probability) as a parental one. If we
relax conditions of g contained in (8), assuming only that g is weakly decreasing
(g(x) ≤ g(y) for x > y) and exists γ ∈ (0, 1) so that g(x) > 0 only for x ∈ [0, γ],
then the EMOA rank selection may become partially hard, elitist one. Such a
relaxation does not contradict the well-posedness of the formula (12) because the
denominator xT G(Ξ x) remains strictly positive for all x ∈ Λr.

3.3 The EMOA Heuristic

The selection is followed by the genetic operations (e.g. mutation, crossover)
in each EMOA epochs. They can be represented by the mixing operator M ∈
C1(Λr → Λr). Currently, we do not impose any specific restrictions for this
mapping.
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The well known example of mixing operator was introduced by Vose and col-
laborators [13]. It expresses the binary mutation and positional crossover utilized
in SGA.

M(x)p = (σp x)TMσp x, ∀ x ∈ Λr, p ∈ U (13)

where σi stands for the r × r dimension permutation matrix with the entries
(σp)q,k = [q⊕k = p], p, q, k ∈ U . The entries Mp,q of the symmetric r×r matrix
M express the probability of obtaining the genotype 0 ∈ U (the genotype being
the string of zeros) from the parents p, q ∈ U by the crossover and mutation.

Similarly, like in case of SGA, the composition

H = M ◦ F (14)

may be considered as the candidate for the heuristic of the particular class of
EMOA considered in this paper.

Observation 8. As an immediate consequence of its construction, H is well
defined and continuous on the whole Λr. Assuming additionally that the function
g (see formula (8)) is continuously differentiable on [0, 1] we have also that H is
continuously differentiable on the whole Λr.

Observation 9. Again, as the result of the construction, H described by (14)
satisfies the condition 1 of the Definition 2, because each coordinate of its value
(H(x))p stands for the probability of sampling the genotype p ∈ U to the pop-
ulation following the population associated with the frequency vector x. If we
moreover assume, that the sampling to the next epoch population is performed
according to the generalized Bernoulli model (according to the polynomial prob-
ability distribution) then also the conditions 2 and 3 of the Definition 2 are
satisfied (see Observations 1 and 2).

Observation 10. Immediately from the Observations 9 and 3 it follows that the
considered class of EMOA transforming the finite populations of the cardinality
μ < +∞ can be modeled as the stationary Markov chain with the finite space of
states Xμ and with the transition probability matrix Q given by the formula (5).

3.4 Asymptotic Features

Observation 11. If the mixing operator (13) is strictly positive, e.g. M(x)p >
0, ∀x ∈ Λr, ∀p ∈ U , then the Markov chain describing EMOA is ergodic.
The algorithm possesses the asymptotic guarantee of success, e.g. it will reach
the population (state) which contain all points lying in the Pareto set after an
infinite number of epochs.

Let us denote by πt
μ ∈ M(Xμ) the probability distribution of the random vari-

able representing EMOA population of the size μ after t epochs. Assuming that
EMOA is modeled by the ergodic Markov chain, each sequence π0

μ,π1
μ, . . . has

a strictly positive limit πμ that does not depend on the initial distribution π0
μ,

which is the simple issue of the ergodic theorem (see e.g. [1]). Measures πμ orig-
inally defined over Xμ can be easily extended to Λr.
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Next, according to the Prokhorov theorem (see Theorem 29.3 in [1]), the
sequence {πμ} has a weak limit π∗ in Λr, because Λr is compact.

Let us assume now, that the EMOA heuristic is focusing i.e. if for all x ∈ Λr

the sequence {Ht(x)} converges in Λr for t → +∞. Let w ∈ Λr be the limit of
such sequence for some starting point x ∈ Λr. The continuity of H guarantees,
that H(w) = H (limt→+∞Ht(x)) = limt→+∞Ht+1(x) = w, so w is the fixed
point of H. Let us denote the set of fixed points of H by K ⊂ Λr. If H is
focusing, then obviously K = ∅.
Theorem 2. Assuming that the EMOA heuristic is focusing and the Markov
chains associated with family of EMOA with various population sizes are ergodic,
we obtain π∗(K) = 1.

The above theorem is a formal extension of the well known Vose and Nix result
(see Theorem 3 in [8]) and it can be proved in an analogous way.

4 Conclusions and Further Research

– EMOA can be modeled as the ergodic Markov chain given some reasonable
assumptions upon the type of selection and the presence of mutation in the
mixing step of each epoch.

– Alternative selection types might be considered and formalized. The main
step to adapt the current model to other EMOA selection schemes will consist
of redefining the Pareto dominance matrix (6).

– In the proposed model a particular form of genotypes has not been assumed:
the most common form of strings over an alphabet is appropriate but geno-
types may be graphs as well.

– It was also proved that EMOA has the heuristic which fixed points are the
only ones visited by the infinite population algorithm (see Theorem 2). It
is possible to prove the theorem of a fixed point approximation and the
theorem of the convergence of sampling measures, similar to those proved
for SGA (see Theorems 4.54 and 4.66 in [11]).

– Furthermore, these results might be used for verifying two-phase strategies in
the same manner as for the single criteria ones (see e.g. [11]). Such strategies
consist in finding the approximation of the connected components of the
Pareto set (using EMOA combined with the proper population clustering)
in the first phase and the parallel, detailed search in each of them. It seems
that the obtained results might also be useful in the analysis of the ε-Pareto
dominance problem (see [7]).
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Abstract. The recently introduced family of natural evolution strate-

gies (NES), a novel stochastic descent method employing the natural

gradient, is providing a more principled alternative to the well-known

covariance matrix adaptation evolution strategy (CMA-ES). Until now,

NES could only be used for single-objective optimization. This paper ex-

tends the approach to the multi-objective case, by first deriving a (1+1)

hillclimber version of NES which is then used as the core component of a

multi-objective optimization algorithm. We empirically evaluate the ap-

proach on a battery of benchmark functions and find it to be competitive

with the state-of-the-art.

1 Introduction

The last decade has seen a shift in research focus from single-objective to multi-
objective optimization (MOO) [13, 7, 2, 12, 1, 5]. While many problems can very
naturally be viewed as multi-objective (e.g., minimizing cost while simultane-
ously maximizing utility), they have traditionally been traded off into a single
objective to be optimized. Numerous arguments have been put forward in favor
of handling the multiple objectives explicitly, especially in the context of evolu-
tionary computation. For one, the diversity of solutions found is larger than for
single-objective optimization with fixed trade-offs, which in turn can improve
over the single-objective optimization performance at its own game, as it may
allow the search to circumnavigate local optima [7]. Furthermore, in many prac-
tical applications it is more advantageous to choose among the non-dominated
solutions within the Pareto-front, rather than deciding upon a trade-off a pri-
ori and then maximizing it. Among the broad range of MOO algorithms that
have been proposed (see e.g. [1] for an overview, omitted here for space reasons),
approaches based on evolution strategies [5] are of particular interest for the
present paper. They show how algorithms like the covariance matrix adaptation
evolution strategy (CMA-ES [4, 6]), that shine on non-seperable optimization
problems, can be utilized for MOO.

The recently introduced family of natural evolution strategies (NES [11,10,9,
3,8]), consists in an optimization method that follows a sampled natural gradient
of the expected fitness, and as such, provides a more principled alternative to
CMA-ES. In this paper we combine the well-founded framework of NES with the
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proven approach of tackling MOO using evolution strategies. This both signifi-
cantly broadens the applicability of NES, and establishes a novel, elegant MOO
algorithm. Our contribution is two-fold: First, we turn the most recent NES
algorithm into a hillclimber. Second, we use this hillclimber as a module of an
evolutionary algorithm for multi-objective optimization, following an established
scheme. We benchmark both algorithms against their CMA-ES counterparts and
obtain competitive results.

2 Natural Evolution Strategies

Natural evolution strategies (NES) [11, 10, 9, 3, 8] are a class of evolutionary
algorithms for real-valued optimization. They maintain a Gaussian search dis-
tribution with fully adaptive covariance matrix. The principal idea is to adapt
the search distribution to the problem at hand by following the natural gradient
of expected fitness. Although relying exclusively on function value evaluations,
the resulting optimization behavior closely resembles second order optimiza-
tion techniques. This avoids drawbacks of regular gradients which are prone to
slow or even premature convergence. Just like CMA-ES [4, 6], NES algorithms
are invariant under monotone transformations of the fitness function and linear
transformations of the search space (given that the initial search distribution is
transformed accordingly).

In this paper we build upon the most recent NES variant, exponential NES
(xNES), first presented in [3]. We start with stating its working principles, which
are needed later on to cleanly derive its hillclimber variant.

In each generation the algorithm samples a population of n ∈ N individuals
xi ∼ N (μ,C), i ∈ {1, . . . ,n}, i.i.d. from its search distribution, which is repre-
sented by the center μ ∈ Rd and a factor A ∈ Rd×d of the covariance matrix
C = AAT . These points are obtained by sampling zi ∼ N (0, I) and setting
xi = μ + A · zi. In this paper, I always denotes the d-dimensional unit matrix.
Let p(x |μ,A) denote the density of the search distribution N (μ,AAT ). Then,

J(μ,A) = E[f(x) |μ,A] =
∫
f(x) p(x | θ) dx

is the expected fitness under the current search distribution. The so-called ‘log-
likelihood trick’ enables us to write

∇(μ,A)J(μ,A) =
∫ [

f(x) ∇(μ,A) log(p(x |μ,A))
]
p(x |μ,A) dx

≈ 1
n

n∑
i=1

f(xi) ∇(μ,A) log(p(x |μ,A)) .

Using raw fitness values endangers the algorithm to get stuck on plateaus and
to systematically overjump steep optima. Thus, fitness shaping [11] is used to
normalize the fitness values by shaping them into rank-based utility values ui ∈
R, i ∈ {1, . . . ,n}. For this purpose we order the individuals by fitness, with
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Algorithm 1. The xNES Algorithm
Input: d ∈ N, f : Rd → R, μ ∈ Rd, A ∈ Rd×d

σ ← d
√|det(A)|; B ← A/σ

while stopping condition not met do
for i ∈ {1, . . . , n} do zi ← N (0, I); xi ← μ + σB · zi

sort {(zi, xi)} with respect to f(xi)

Gμ ←∑n
i=1 ui · zi

GA ←∑n
i=1 ui · (ziz

T
i − I); Gσ ← tr(GA)/d; GB ← GA − Gσ · I

μ ← μ + ημ · σB · Gμ; σ ← σ · exp(ησ · Gσ); B ← B · exp(ηB · GB)
end

x1:n denoting the best and xn:n denoting the worst offspring. We then use the
“fitness-shaped” gradient G =

∑n
i=1 ui · ∇(μ,A) log(p(xi:n |μ,A)) to update the

parameters of the search distribution. Typically, the utility values are either
non-negative numbers that add to one, or a shifted variant with zero mean.

The xNES algorithm introduces a number of novel techniques for its updates.
In each step, the coordinate system is transformed such that the search distri-
bution has zero mean and unit variance. This results in the Fisher information
matrix being the unit matrix and the natural gradient coinciding with the ‘stan-
dard’ gradient. The exponential map M !→ exp(M) =

∑∞
n=0

1
n!M

n for symmet-
ric matrices is used to encode the covariance matrix, resulting in a multiplicative
form of the covariance matrix update (see [3] for details).

The parameters (μ,A) of the distribution can be split canonically into invari-
ant components. This amounts to a (non-redundant) representation similar to
CMA-ES, that is, we split off a global step size variable from the covariance
matrix in the form A = σ · B, with det(B) = 1. We obtain the corresponding
gradient components

Gμ =
n∑

i=1

ui · zi GA =
n∑

i=1

ui · (ziz
T
i − I)

with sub-components Gσ = tr(GA)/d and GB = GA−Gσ · I (refer to [3] for the
full derivation).

Let ημ, ησ, and ηB denote learning rates for the different parameter com-
ponents. Putting everything together, the resulting xNES update rules for the
search distribution read

μ← μ + ημ · σB ·Gμ σ ← σ · exp(ησ ·Gσ) B ← B · exp(ηB ·GB) .

The full xNES algorithm is summarized in Algorithm 1.
As indicated earlier, xNES is closely related to CMA-ES. However, concep-

tually xNES constitutes a much more principled approach to covariance matrix
adaptation. This is because the updates of all parts of the search distribution,
center, global step size, and full covariance matrix, result from the same principle
of natural gradient descent.
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Algorithm 2. (1 + 1)-xNES

Input: d ∈ N, f : Rd → R, μ ∈ Rd,

A ∈ Rd×d

σ ← 1

while stopping condition not met
do

z ← N (0, I)

x ← μ + σA · z
if f(x) is better than f(μ) then

Gμ ← z
GA ← zzT − I
μ ← μ + 1 · A · Gμ

A ← A · exp(ηA · GA)

σ ← σ · exp(η+
σ )

else σ ← σ/ exp(η−
σ )

end

Algorithm 3. (1 + 1)-xNES with
natural gradient descent

Input: d ∈ N, f : Rd → R, μ ∈ Rd,

A ∈ Rd×d

while stopping condition not met
do

z ← N (0, I); x ← μ + A · z
if f(x) is better than f(μ) then

succ ← +; z1:2 ← z; z2:2 ← 0

else
succ ← −; z1:2 ← 0; z2:2 ← z

Gμ ←∑2
i=1 u

(μ)
i · zi:2

GA ←∑2
i=1 u

(A,succ)
i (zi:2z

T
i:2−I)

μ ← μ + 1 · A · Gμ

A ← A · exp(ηA · GA)
end

3 An Elitist Variant for the NES Family

In this section we introduce (1 + 1)-xNES, a hillclimber variant of xNES. Our
goal is to use this algorithm as a building block for a multi-objective optimiza-
tion scheme, in analogy to the development of the (1 + 1)-CMA-ES. The main
motivation for this work is that (1 + 1)-xNES is conceptually simpler and more
unified than (1 + 1)-CMA-ES. We apply a number of techniques to xNES that
were used to derive (1 + 1)-CMA-ES from its population-based variant. In a
second step we show that the resulting algorithm can be derived from the NES
principle of following the natural fitness gradient.

The resulting algorithm implements the following principles to adapt its search
strategy (as usual, an offspring is considered successful if its fitness is better than
the fitness of the parent):

1. A successful offspring becomes the center of the search distribution.
2. Sampling a successful offspring results in a covariance matrix update.
3. Global step size adaptation is used to sustain a success rate of about 1/5.

The elitist (1+1)-xNES algorithm, stated in Algorithm 2, incorporates the above
principles into the xNES algorithm in a straightforward way. It is designed such
that its state is completely determined by its current search distribution. We use
a global step size σ and a factor A to represent the covariance matrix C = σ2 ·
ATA. We stick to this redundant representation for the sake of clarity, as it allows
us to separate the mechanisms of xNES-style covariance matrix adaptation and
success rule-based step size adaptation. Also note that the learning rate for the
center has been fixed to one in order to satisfy the elitism rule. We set the other
learning rates to ηA = 1/4 · d1.5, η−σ = 1/5 · d1.5, and η+

σ = d1.5. The form of the
dependency of the learning rates on the problem dimension is inspired by the
learning rates of xNES, divided by its population size.
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In the special case of (1 + 1)-xNES the matrix exponential in the covari-
ance matrix update can be computed analytically (that is, without resorting
to iterative matrix decomposition techniques) and in quadratic time. This is a
consequence of the special form M = v · zzT +w · I of the argument: We exploit
its eigen-decomposition, which consists of a one-dimensional eigenspace along z
with eigenvalue v · ‖z‖2+w, while the space orthogonal to z forms an eigenspace
with eigenvalue w. With the definitions S = (1/‖z‖2) · zzT and R = I − S we
obtain exp(M) = exp(v) · R + exp(v · ‖z‖2 + w) · S, which can be computed
in O(d2) operations. The decisive advantage of this computation is numerical
stability, even if the time per generation remains cubic (matrix multiplication).

From a conceptual point of view Algorithm 2 is still unsatisfactory, because
the step size adaptation mechanism is not derived from the NES principle of
updating the search distribution by following the natural gradient of expected
fitness. Fortunately, the NES update scheme (and fitness shaping in particular)
is flexible enough to cover the elitist case, including the success-based update
rule, as we will see in the following.

In the (1 + 1)-selection scheme we need to assign a rank-based utility value
not only to the offspring, but also to the parent, giving us an additional degree
of freedom. Using different utility values for different parts of the (1 + 1)-xNES
update (analogous to using different learning rates) allows us to derive the full
update rule from the principle of natural gradient descent. Note that multiplica-
tive factors in the learning rate and the utility values are exchangable, because
they have the exact same effect.

The simplest case is the update of the center μ, which is completely deter-
mined by the elitism rule. This leaves us with a single choice, amounting to
(u(μ)

1 ,u
(μ)
2 ) = (1, 0) for the utility values. Note that in this notation the utility

value u1 automatically refers to the better individual, such that it may corre-
spond to either parent or offspring. This reflects the intuitive notion that in the
(1+1)-selection scheme only the better individual is of use (has positive utility),
while the worse individual is discarded (has zero utility).

The covariance matrix update is a bit more involved, as here the utility values
are success dependent. In the simpler case where the offspring is not successful
(the else part in Algorithm 2), it does not have an impact on the update, and
the corresponding utility value is u(A,−)

2 = 0. Interestingly, we can use the utility
of the parent to encode the shrinking of the global step size. The calculation

−η−σ · I = ηA ·GA = ηA ·
(
u

(A,−)
1 · (00T − I) + u

(A,−)
2 · (zzT − I)

)
shows that the choice u(A,−)

1 = η−σ /ηA does the job (with 0 ∈ Rd denoting the
zero vector). In case of the offspring being successful the analog calculation

η+
σ · I + ηA · (zzT − I) = ηA ·GA = ηA ·

(
u

(A,+)
1 · (zzT − I) + u

(A,+)
2 · (−I)

)
results in u

(A,+)
1 = 1 and u

(A,−)
2 = −η+

σ /ηA. These rules amount to a natural
adaptation of the notion of utility to the (1 + 1) elitist selection scheme. This
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means that Algorithm 2 is fully compatible with the principle of strategy adap-
tation by following the (utility shaped) gradient of expected fitness. It can be
turned into the equivalent Algorithm 3.

4 Experimental Evaluation of (1 + 1)-xNES

We compared the (1 + 1)-xNES hillclimber to both xNES and (1 + 1)-CMA-ES
a number of standard benchmark functions. We initialized the algorithms by
drawing the initial center of the search distribution from a Gaussian with zero
mean and unit variance, and setting the covariance matrix to I. Each algorithm
was run until it reached the target fitness of 10−10 (−103 for the unbounded
functions ParabR and SharpR), in which case the trial is counted as a success. A
trial is said to fail if it reaches the maximum number of 107 iterations or shrinks
the search distribution below numerical limits, which amounts to premature
convergence. The results are shown in Figure 1.

The plots in Figure 1 show (1+1)-xNES practically reaching the performance
of (1+1)-CMA-ES on some benchmarks, while it falling behind on others, partic-
ularly in high dimensions. We attribute this to a better tuning of the parameters
of (1 + 1)-CMA-ES, and the lack of evolution paths in xNES. Not surprisingly,
the new elitist algorithm improves on the original xNES on nearly all unimodal
problems studied here. Interestingly, both elitist algorithms have severe prob-
lems with the sharp ridge benchmark, on which they prematurely converge due
to their too greedy strategy adaptation.

5 Multi-objective NES

We now posess all the ingredients to construct a natural evolution strategy
for multi-objective optimization, named MO-NES. Our construction follows the
successful scheme developed in [5].

The MO-NES algorithm maintains a population of (1+1)-xNES hillclimbers,
with the goal of maximally approximating the Pareto front. Each generation,
the N ∈ N hillclimbers generate one offspring each. As in MOO there is no
unique notion of success due to multiple contradicting objectives, the selection
scheme of the individual hillclimbers becomes meaningless. Instead, we adopt
the indicator-based selection scheme used in [5] which consists of two stages.
Parents and offspring are merged into a single population and ranked according
to (1) the dominance relation, and (2) an indicator (see, e.g, [12]) that permits
aggregating the relative value of each individual within its front into a single
number (in contrast to the m-dimensional fitness vector).

For this purpose, the population is split into fronts F1, . . . ,Fk using non-
dominated sorting. Within each front no individual weakly dominates another,
while Fi weakly dominates Fj for i < j. Thus, in this notation the set F1

consists of the non-dominated solutions. A secondary sorting criterion is needed
to rank individuals within each front. In this study we use the S-measure or
hypervolume contribution [13], which is the Laplace measure of the volume of
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Algorithm 4. The MO-NES Algorithm
Input: f : Rd → Rm, (μi, σi, Ai) ∈ Rd × R × Rd×d for i ∈ {1, . . . , N}
while stopping condition not met do

for i ∈ {1, . . . , N} do
zi ∼ N (0, I); μ′

i ← μi + σiAizi; σ′
i ← σi; A′

i ← Ai

use non-dominated sorting to compute fronts F1, . . . , Fk

compute the S-measure of each individual within its front

compute ranks R1, . . . , RN , R′
1, . . . , R

′
N ∈ {1, . . . , 2N}

for i ∈ {1, . . . , N} do
if R′

i < Ri then
σi ← σi · exp(η+

σ ); σ′
i ← σ′

i · exp(η+
σ ); A′

i ← A′
i · exp(ηA · [ziz

T
i − I ])

else
σi ← σi/ exp(η−

σ ); σ′
i ← σ′

i/ exp(η−
σ )

copy best ranked N individuals into (μi, σi, Ai) for i ∈ {1, . . . , N}
end

the set dominated by some point in objective space, but not by any other point
in the front. The hypervolume depends on a reference point, which is chosen
adaptively such that it is dominated by the whole population, and such that the
best individuals w.r.t. a single objective are always preferred (which amounts to
elitism w.r.t. each single objective). Then selection amounts to keeping the best
N out of 2N individuals according to this ranking.

Care has to be taken when adapting the (1+1)-xNES hillclimber to this selec-
tion scheme, because the notion of success differs from the condition for survival.
We say that an offspring that is ranked higher than its parent is successful, re-
sulting in a covariance matrix update. In contrast, depending on the success of
the mutation, the step size is updated for parent and offspring.

The resulting MO-NES algorithm is summarized in Algorithm 4. It is derived
straightforwardly by removing the (1 + 1)-CMA-ES module from MO-CMA-ES
and replicing it with (1 + 1)-xNES. An individual is represented by the triplet
(μ,σ,A) ∈ Rd × R × Rd×d, which is the state of the corresponding hillclimber.
We denote parents by (μi,σi,Ai) and offspring by (μ′

i,σ
′
i,A

′
i) for i ∈ {1, . . . ,N}.

6 Experimental Evaluation of MO-NES

We assess the performance of MO-NES compared to MO-CMA-ES on a collec-
tion of test problems found in [5], namely the standard benchmarks FON, ZDT1,
ZDT2, ZDT3, ZDT4, ZDT6, coming with rectangular feasible regions, and the
unbounded problems ELLI1, ELLI2, CIGTAB1, and CIGTAB2. These bench-
marks cover a number of typical challenges such as concave and disconnected
pareto fronts, as well as highly correlated variables.

Experimental Setup. We largely follow the experimental procedure of [5]. The
population size was set to N = 100, with individuals initialized uniformly at
random in the feasible region. For the unbounded benchmarks the population
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Fig. 1. Log-log plot of fitness evaluations required to reach target fitness (see text)

over search space dimension for 9 different benchmark functions. The level of opacity

of dashed connections indicates the fraction of successful runs. Setups for which no

single run converged are not shown at all.

Table 1. Hypervolume covered by the populations of MO-NES and MO-CMA-ES

after 50,000 fitness evaluations. Statistically superior results are marked bold.

MO-NES MO-CMA-ES

benchmark 25% 50% 75% 25% 50% 75%

function quantile quantile quantile quantile quantile quantile

FON 0.337443 0.337453 0.337479 0.337496 0.337511 0.337539

ZDT1 0.661945 0.661962 0.661972 0.661934 0.661958 0.661972

ZDT2 0.328698 0.328703 0.328713 0.328697 0.328707 0.328720

ZDT3 1.042180 1.042180 1.042190 1.042180 1.042180 1.042190

ZDT4 0.661836 0.661860 0.661885 0.661834 0.661857 0.661879

ZDT4 10.93040 12.80430 15.95730 9.53145 11.77960 12.46610

ZDT6 0.3225640 0.3225750 0.3225810 0.0863215 0.3225550 0.3225770

ELLI1 95.5311 95.5527 95.5593 95.5466 95.5553 95.5604

ELLI2 99.9872 99.9905 99.9922 99.9897 99.9907 99.9931

CIGTAB1 97.2286 97.2302 97.2310 97.2303 97.2312 97.2318
CIGTAB2 99.9981 99.9985 99.9987 99.9984 99.9988 99.9990
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was sampled from [−10, 10]d. We used a search space dimension of d = 10 for
all problems except FON, where it is fixed to d = 3. Resembling [5], we set
the component-wise standard deviation of the initial search distribution to 0.6
times the edge length of the hyper-rectangle from which the initial population is
sampled. Constraints were handled by evaluating the closest feasible point and
adding 10−6 times the squared norm of the distance to the feasible region to
each fitness component.

Each algorithm was granted 50, 000 fitness evaluations, and assigned a score
according to the hypervolume dominated by the final population. To achieve
comparability with other studies, we fix the reference point for the hypervolume
computation to (1, 1)T for FON and the ZDT-benchmarks, with the exception
of (1, 20)T for ZDT4 (which is not solved satisfactory by any of the two algo-
rithms), and to (10, 10)T for the unconstrained ELLI and CIGTAB problems.1

We performed 25 independent trials for each experiment.

Results and Discussion. The results are summarized in Table 1. There is no clear
trend indicating that one algorithm would be generally preferable to the other.
In most cases the differences between the algorithms are negligible, in the sense
that they are below the range of the inter-trial deviations, and only in the fifth
digit of the hypervolume. We found four significant differences (Wilcoxon rank
sum test, p = 0.01): The MO-CMA-ES performs better on benchmarks with
quadratic objectives, such as FON and CIGTAB, while MO-NES is superior on
the ZDT6 problem. We conclude that the Pareto front approximations obtained
by the two algorithms are generally of comparable quality. Taking the conceptual
parallels of the two algorithms into account, this result does not come as a
surprise. It shows that our novel MO-NES algorithm achieves state-of-the-art
performance.

7 Conclusion

We presented two novel algorithms. The (1 + 1)-xNES hillclimber constituts a
minimal elitist variant of the xNES algorithm which can be derived completely
from the principle of natural gradient descent, despite its success-based step size
adaptation rule. Like other NES algorithms, (1+1)-xNES is more principled than
its canonical counterpart (1 + 1)-CMA-ES. Combining our new hillclimber with
the multi-objective optimization scheme established for MO-CMA-ES results in
the MO-NES algorithm. We empirically find both algorithms to exhibit state-
of-the-art performance.

The impact of these contributions be seen from two perspectives: On the
one hand, they make NES capable of multi-objective optimization, on the other
1 Note that adaptively computed reference points are used in both algorithms to com-

pute the S-measure for selection, and that we use these fixed reference points only

for the evalution of the final fronts. This procedure is chosen to foster comparability

with future studies. In particular, it does not expose any additional information to

the search algorithms.
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hand, they enrich the field of evolutionary MOO by the NES principle of descent
along the natural fitness gradient.
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Abstract. Multiobjective optimization problems (MOPs) have

attracted intensive efforts from AI community and many multiobjec-

tive evolutionary algorithms (MOEAs) were proposed to tackle MOPs.

In addition, a few researchers exploited MOEAs to solve constraint opti-

mization problems (COPs). In this paper, we investigate how to tackle a

MOP by iteratively solving a series of COPs and propose the algorithm

named multiobjective evolutionary algorithm based on constraint opti-

mization (MEACO). In contrast to existing MOEAs, MEACO requires

no complex selection mechanism or elitism strategy in solving MOPs.

Given a MOP, MEACO firstly constructs a new COP by transforming

all but one of objective functions into constraints. Then, the optimal so-

lution of this COP is computed by a subroutine evolutionary algorithm

so as to determine some Pareto-optimal solutions. After that, a new COP

with dramatically reduced search space can be constructed using exist-

ing Pareto-optimal solutions. This new generated COP will be further

solved to find more Pareto-optimal solutions. This process is repeated

until the stopping criterion is met. Experimental results on 9 well-known

MOP test problems show that our new algorithm outperforms existing

MOEAs in terms of convergence and spacing metrics.

Keywords: Multiobjective Optimization, Constraint Optimization,

Evo- lutionary Algorithm.

1 Introduction

Multiobjective optimization problems (MOPs) arising from real-world applica-
tions have attracted great efforts from AI community. Since those objective func-
tions in MOPs may conflict with each other, researchers usually seek for a set of
trade-off solutions (Pareto-optimal solution set) rather than a unique solution.
Since evolutionary algorithms (EAs) are capable of handling a set of solutions
for complex problems, many multiobjective evolutionary algorithms (MOEAs)
have been proposed for MOPs in recent years. Those MOEAs fall into two cat-
egories [1]. Algorithms of the first category use Pareto-ranking based selection
mechanisms and employ fitness sharing to retain diversity. Some representative

R. Schaefer et al. (Eds.): PPSN XI, Part I, LNCS 6238, pp. 637–646, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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algorithms include VEGA [2], MOGA [3], NSGA [4], NPGA [5]. Algorithms of the
second category employ elitism strategy and some other mechanisms (e.g., the
clustering procedure, the nearest neighbor density estimation technique, and the
adaptive grid algorithm) to maintain diversity. Some representative algorithms
include SPEA2 [6], PAES [7], NSGA-II [8], PESA-II [9], RM-MEDA [10], and
NNIA [11].

Constraint optimization problems (COPs) aim to achieve the optimal solu-
tion of the objective function under certain constraints, including inequality and
equality constraints. Due to the great success of MOEAs, many researchers have
exploited MOEAs to solve COPs by transforming a fraction of those constraints
in COPs into objective functions. Some representative algorithms include IS-
PAES [12], COMOGA [13], and HCOEA [14].

In this paper, we investigate how to solve MOPs in a reverse way by trans-
forming them into a series of COPs. Motivated by this idea, the multiobjective
evolutionary algorithm based on constraint optimization (MEACO) is proposed.
Given a MOP, MEACO retains only one objective function and transforms other
ones into constraints. In this way, a new COP is constructed. Then, the optimal
solution of this COP can be achieved to initialize the Pareto-optimal solution
set. With existing Pareto-optimal solutions, another new COP with dramati-
cally reduced search space can be constructed. This new COP can be solved to
find more Pareto-optimal solutions. This process is iteratively repeated until no
Pareto-optimal solution can be found. To evaluate the performance of MEACO,
experiments are conducted on 9 widely used MOP test problems. Experiments
indicate that MEACO can achieve better convergence and spacing metrics than
NSGA-II, SPEA2, and NNIA.

2 Notations

Without loss of generality, we consider the minimization problem forms for both
MOPs and COPs in this paper. A MOP can be defined as follows.

minF (x) = (f1 (x) , f2 (x) , . . . , fm (x))T (1)

s.t. x = (x1,x2,. . . ,xn) ∈ Ω, where x is the decision vector and Ω is the feasible
region in decision space.

Let x1,x2 ∈ Ω, x1 is said to dominate x2 (denoted as x1 � x2) iff ∀i ∈
{1, 2, . . . ,m}, fi(x1) ≤ fi(x2) and ∃i∗ ∈ {1, 2, . . . ,m}, fi∗(x1) < fi∗(x2). A deci-
sion vector x∗ is a Pareto-optimal solution in (1) iff there is no x ∈ Ω such that
x � x∗. The Pareto-optimal set is defined as P ∗ = {x∗ ∈ Ω|¬∃x ∈ Ω,x � x∗}.
The Pareto-optimal front is the image of the Pareto-optimal set in the objective
space, which is defined as PF ∗ = {F (x∗) = (f1(x∗), f2(x∗), . . . , fm(x∗))T |x∗ ∈
P ∗}. Under those definitions, the goal is to achieve a set of Pareto-optimal so-
lutions equidistantly approximating the true Pareto-optimal front.

In contrast to MOP, a COP can be defined as follows.

min f (x) (2)
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s.t. gi(x) ≤ 0 (i ∈ {1, 2, . . . , q}) and hj(x) = 0 (j ∈ {1, 2, . . . , r}), where x =
(x1,x2, . . . ,xn) ∈ Rn is a n-dimensional decision vector and f(x) is the objective
function. If a decision vector satisfies all the inequality and equality constraints,
we say it is a feasible solution. Otherwise, it is an infeasible solution.

There are many metrics for evaluating the performance of MOEAs in the
literature. In this paper, we adopt two widely used metrics, i.e., convergence
metric [15] and spacing metric [16].

Convergence metric: let P ∗ = {p1, p2, p3, . . . , p|P
∗|} be the target set of points

on the true Pareto-optimal front and P = {x1,x2,x3, . . . ,x|P |} be the solution
set by an algorithm. For every solution xi ∈ P , the smallest normalized Euclidean
distance to P ∗ is defined as

di =
|P∗|
min
j=1

√√√√ m∑
k=1

(
fk (xi)− fk (pj)
fmax

k − fmin
k

)2

(3)

wherefmax
k and fmin

k are the maximum and minimum values of the kth ob-
jective function in P ∗, respectively. Then convergence metric is defined as the
average value of those normalized distance for all solutions in P , i.e., Con(P ) =∑|P |

i=1 di/|P |. It indicates the extent to which P approximates the true Pareto-
optimal front. The smaller Con(P ) is, the better an algorithm is.

Spacing metric: let P = {x1,x2,x3, . . . ,x|P |} be the solution set by an algo-
rithm. Let d̂i = min|P |

j=1

∑m
k=1|fk(xi) − fk(xj)| for every xi ∈ P . Let d̄ be the

average value of d̂i. Spacing metric is defined as follows.

S (P ) =

√√√√ 1
|P | − 1

|P |∑
i=1

(
d̄− d̂i

)2

(4)

Spacing metric presents the spread measure of the solution set obtained by
an algorithm. The smaller this value is, the better distribution an algorithm
provides. This value is zero when all the solutions in P are equidistantly spaced.

3 MEACO

Due to the paper length limit, we will explain our algorithm for bi-objective
optimization problem in this paper.

3.1 An Example

Fig.1 presents an example for a bi-objective optimization problem. We transform
the second objective function f2 into a constraint. Given a value f∗, there may
exists several solutions x1,x2,x3, . . . ,xw such that f2(xi) = f∗(i ∈ {1, 2, . . . ,w})
and f1(x1) ≤ f1(x2) ≤ f1(x3) ≤ . . . ≤ f1(xw) (see Fig.1 (a)). For brevity, we
only plot the pixel (f∗, f1(x1)) in Fig.1.
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Fig. 1. Illustration of MEACO

For this example, our algorithm works as follows. Firstly, the minimum and
maximum values (denoted as a and b, respectively) of f2 are calculated (see Fig.1
(b)). Obviously, this computation for a can be done by solving a single-objective
optimization problem (SOP) min f2(x) s.t.x ∈ Ω. Similarly, the computation
for b is equivalent to solving a SOP max f2(x) s.t.x ∈ Ω. According to the
definition of Pareto-optimal solution, the solution xa must be Pareto-optimal
and be added to the solution set P . A COP is then constructed as min f1(x) s.t.
a < f2(x) < b, where x ∈ Ω. Let xc be the optimal solution to this new COP,
let c = f2(xc) (see Fig.1 (c)). Obviously, xb is dominated by xc. It can be easily
verified that xc is Pareto-optimal, and no Pareto-optimal solution exists when
f2(x) > c. Therefore, the solution set P is updated by adding xc to it. Then,
we continue to construct a new COP as min f1(x) s.t. a < f2(x) < c− ξ, where
x ∈ Ω and ξ is a predefined parameter aiming to keep the spacing of P . This
latest constructed COP is solved to achieve the optimal solution xd (see Fig.1
(d)). Similar to xc, we can verify that xd is Pareto-optimal and P is further
updated. Since no other Pareto-optimal solution exists when d < f2(x) < c− ξ,
we further solve the COP min f1(x) s.t. a < f2(x) < d − ξ, where x ∈ Ω(see
Fig.1 (e)). This process is repeated until the stopping criterion is met. Usually,
the stopping criterion is determined by spacing metric.

3.2 Framework of MEACO

Table 1 presents the framework of our MEACO algorithm. Firstly, the minimum
value and maximum values of f2(x) are achieved by solving SOPs min f2(x) or
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maxf2(x) s.t.x ∈ Ω (see Step (1)). When multiple solutions x1,x2,x3, . . . ,xw

can be returned, the only solution xi is retained such that f1(xi) is minimal
among f1(x1), f1(x2), f1(x3), . . . , f1(xw). By this way, we have two solutions xa

and xb, where a = f2(xa), b = f2(xb) are the minimum, maximum values for
f2(x), respectively. Obviously, xa is Pareto-optimal to be added to the Pareto-
optimal solution set P (see Step (2)). It’s still uncertain at this time whether
xb is Pareto-optimal or not. Then, a COP is constructed as min f1(x) s.t. a <
f2(x) < b, where x ∈ Ω. After the optimal solution xc is obtained (see Step (3)),
we can decide whether xb is Pareto-optimal or not. There’re two cases as follows.

Case 1: xb is Pareto-optimal (see Step (4.1)–(4.5))
After xb is added to P (see Step (4.1)), we compare xa and xc to check

whether xc is dominated by xa. If so, no Pareto-optimal solution exists under

Table 1. MEACO algorithm

Algorithm: MEACO
Input: f1, f2

Output: solution set P

Begin

(1) obtain the minimum value a, maximum value b of f2, let xa, xb be the solution

related to a, b, respectively

(2) let P = {xa} // xa must be Pareto-optimal

(3) obtain the optimal solution xc to min f1(x) s.t. a < f2(x) < b, where x ∈ Ω, let

c = f2(x
c)

(4) if f1(x
b) < f1(x

c) and f1(x
b) < f1(x

a) then //xb is Pareto-optimal

(4.1) P = P ∪ {xb}, δ = (|f1(x
a) − f1(x

b)| + |b − a|)/200
(4.2) if f1(x

a) < f1(x
c) then return P //xc isn’t Pareto-optimal

(4.3) if |f1(x
a) − f1(x

c)| + |c − a| > δ and |f1(x
c) − f1(x

b)| + |b − c| > δ then

(4.3.1) P = P ∪ {xc}
(4.3.2) P ′ = IntervalOpt(a, c − ξ, xa, xc, δ, ξ)
(4.3.3) P = P ∪ P ′

(4.3.4) return P
(4.4) if |f1(x

a) − f1(x
c)| + |c − a| ≤ δ then return P ;

(4.5) if |f1(x
c) − f1(x

b)| + |b − c| ≤ δ then

(4.5.1) P ′ = IntervalOpt(a, c − ξ, xa, xb, δ, ξ)
(4.5.2) P = P ∪ P ′

(4.5.3) return P
else // xb isn’t Pareto-optimal

(4.6) if f1(x
a) < f1(x

c) then return P //xc isn’t Pareto-optimal

(4.7) if |f1(x
a) − f1(x

c)| + |c − a| ≤ δ then return P
else

(4.7.1) P = P ∪ {xc}, δ = (|f1(x
a) − f1(x

c)| + |c − a|)/200
(4.7.2) P ′ = IntervalOpt(a, c − ξ, xa, xc, δ, ξ)
(4.7.3) P = P ∪ P ′

(4.7.4) return P

End



642 H. Jiang, S. Zhang, and Z. Ren

the constraint a < f2(x) < b and the current solution set P is then returned
(see Step (4.2)). Otherwise, we need to further check if xc satisfies the spacing
requirement that the distance (in the objective space) between any two solutions
in P must be greater than a threshold δ. If the spacing requirement is satisfied,
xc can be added to P and we continue to obtain Pareto-optimal solutions under
the constraint a < f2(x) < c−ξ by calling a subroutine function IntervalOpt (see
Step (4.3)), where ξ( ξ is set to be δ /10 ) is introduced to avoid endless loops
when the Pareto-optimal front is smoothly continuous. If the spacing requirement
is not met, there may be two possible reasons.

For the first reason that xc is too close to xa (see Step (4.4)), it’s unnecessary
to further investigate those solutions under either the constraint c+ξ < f2(x) < b
or the constraint a < f2(x) < c− ξ. On the one hand, every solution under the
constraint c + ξ < f2(x) < b is dominated by xc. On the other hand, every
solution under the constraint a < f2(x) < c − ξ is either dominated by xa or
closer to xa than xc.

For the second reason that xc is too close to xb (see Step (4.5)), we need
to further achieve those solutions under the constraint a < f2(x) < c − ξ by
calling the subroutine function IntervalOpt (see Step (4.5.1)–(4.5.3)). It’s now
unnecessary to consider those solutions under the constraint c+ ξ < f2(x) < b,
since all such solutions are dominated by xc.

Case 2: xb isn’t Pareto-optimal (see Step (4.6)–(4.7))
In this case, xb will be dominated by xc or xa. We compare xa and xc to

check whether xc is dominated by xa. If so, no Pareto-optimal solution exists
under the constraint a < f2(x) < b and P is then returned (see Step (4.6)).
Otherwise, we continue to check whether xc satisfies the spacing requirement or
not (see Step (4.7)). The following work (Step (4.7.1)–(4.7.4)) can be explained
in a similar way as Step (4.3.1)–(4.3.4).

3.3 IntervalOpt

In MEACO, a subroutine named IntervalOpt is called to achieve the Pareto-
optimal solution set under certain constraints. As shown in Tab.2, IntervalOpt
takes in several parameters, including a, b,x1, and x2, where a and b impose
the constraint a < f2(x) < b, x1 and x2 provide the spacing requirements.
IntervalOpt consists of 5 steps.

In Step (1), we achieve the optimal solution xc to the COP min f1(x) s.t.
a < f2(x) < b, where x ∈ Ω.

Then we check whether xc is dominated by x1 in Step (2). If so, it can be
verified that no other Pareto-optimal solution exists under the constraint a <
f2(x) < b. Therefore, an empty solution set will be returned. It should be noted
that we needn’t to compare xc with x2, since f2(xc) < b ≤ f2(x2) implies that
xc will never be dominated by x2.

When xc is Pareto-optimal, InterverOpt continues to check if xc is too close
to x1 in Step (3). If so, no other Pareto-optimal solution can be found under
the constraint a < f2(x) < b, due to the same reason as Step (4.4) in MEACO.
Otherwise, IntervalOpt continues to check whether it’s too close to x2 (see Step
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Table 2. IntervalOpt algorithm

Algorithm: IntervalOpt
Input: a, b, x1, x2, δ, ξ
Output: solution set P

Begin

(1) obtain the optimal solution xc to min f1(x) s.t. a < f2(x) < b, where x ∈ Ω, let

c = f2(x
c)

(2) if xc is dominated by x1 then return φ
(3) if |f1(x

c) − f1(x
1)| + |c − f2(x

1)| ≤ δ then return φ
(4) if |f1(x

c) − f1(x
2)| + |c − f2(x

2)| ≤ δ then

(4.1) P = IntervalOpt(a, c − ξ, x1, x2, δ, ξ)
(4.2) return P

(5) if |f1(x
c)− f1(x

1)|+ |c− f2(x
1)| > δ and |f1(x

c)− f1(x
2)|+ |c− f2(x

2)| > δ then

(5.1) P = {xc}
(5.2) P ′ = IntervalOpt(a, c − ξ, x1, xc, δ, ξ)
(5.3) P = P ∪ P ′

(5.4) return P

End

(4)). If so, the Pareto-optimal solutions will be further achieved by recursively
calling IntervalOpt with more restrictive constraints (see Step (4.1)–(4.2)).

Finally, when xc satisfies all spacing requirements, xc will be added to P
and IntervalOpt recursively obtains new Pareto-optimal solutions with more
restrictive constraints (see Step (5)).

3.4 Solving COPs with EAs

As shown in both MEACO and IntervalOpt, we need to solve some COPs trans-
formed from the original MOPs. (1) In Step (1) of MEACO, we need to compute
the minimum and maximum values of f2. (2) In Step (3) of MEACO, we need to
compute the optimal solution xc to min f1(x), s.t. a < f2(x) < b. (3) In Step (1)
of IntervalOpt, we also need to compute the the optimal solution xc to min f1(x),
s.t. a < f2(x) < b.

Although any existing algorithm for COPs can be incorporated into MEACO,
we employ EAs to tackle those COPs in this paper. In contrast to other algo-
rithms, EAs are more widespread with no restriction on COPs. Due to the paper
length limit, all the details of those EAs are presented in our technical report
http://www.cems.uvm.edu/∼hejiang/MEACO-tech.pdf.

4 Experimental Results

To evaluate our algorithm, experiments are conducted on 9 well-known bi-
objective optimization problems, including SCH, FON, POL, KUR, ZDT1, ZDT2,
ZDT3, ZDT4, and ZDT6. In the experiment, MEACO is coded in Microsoft
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Fig. 2. Pareto-optimal front of algorithms

VC++ 6.0 and run on a Pentium Dual Core 2.8G with 4G memory running
Win XP. For comparison, we also run NSGA-II, SPEA2, and NNIA on the
same test problems. Those source codes of NSGA-II and SPEA2 are downloaded
from (http://www.lania.mx/∼ccoello/EMOO/). The source code of NNIA is
obtained from (http://see.xidian.edu.cn/iiip/mggong/Projects/NNIA.htm). All
the parameters for NSGA-II, SPEA2, and NNIA are also from [11].

In this conference paper, we only plot part of the Pareto-optimal front of
algorithms on FON (see Fig.2(a)) and ZDT4 (see Fig.2(b)). Similar results can
be concluded for other MOPs. It can be observed that all the algorithms can
well approximate the true Pareto-optimal fronts on both FON and ZDT4. Out
of all 4 algorithms, our new algorithm achieves solutions which are the most
equidistantly distributed on the true Pareto-optimal fronts on both FON and
ZDT4.

Table 3 present the numerical results of convergence, spacing and time metrics
on all MOPs. For every MOP, the averaged values over 30 runs are given and the
best ones are marked in bold font. It can be observed from Table 3 that MEACO
outperforms other algorithms on all MOPs except POL and ZDT6 ni terms of
convergence metric, while SPEA2 achieves the best convergence metric on POL
and NSGA-II achieves the best on ZDT6. Table 3 illustrates that MEACO could
achieve better spacing metrics on 6 MOPs out of all MOPs.From Table 3, we
can observe that NSGA-II uses least time for all test problems among those 4
algorithms.The running of our algorithm is similar to that of SPEA2.
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Table 3. Convergence spacing and time results of algorithms on MOPs

NSGA SPEA2 NNIA MEACO
Conv. Spac. Time Conv. Spac. Time Conv. Spac. Time Conv. Spac. Time

SCH 0.0020 0.0193 0.0373 0.0020 0.0147 0.1564 0.0021 0.0272 0.0646 0.0019 0.0209 0.0380

FON 0.0034 0.0068 0.0414 0.0025 0.0029 0.1826 0.0031 0.0060 0.1033 0.0020 0.0019 0.1568

POL 0.0017 0.1002 0.0418 0.0015 0.0394 0.1715 0.0016 0.0916 0.0929 0.0022 0.0719 0.2017

KUR 0.0022 0.1016 0.0416 0.0018 0.0823 0.1744 0.0020 0.0878 0.0978 0.0018 0.0814 0.1347

ZDT1 0.0024 0.0068 0.0401 0.0022 0.0034 0.1240 0.0020 0.0072 0.0648 0.0019 0.0018 0.1475

ZDT2 0.0020 0.0072 0.0382 0.0019 0.0032 0.1445 0.0018 0.0073 0.0648 0.0018 0.0016 0.1600

ZDT3 0.0019 0.0077 0.0360 0.0019 0.0039 0.1589 0.0018 0.0079 0.0634 0.0016 0.0101 0.0878

ZDT4 0.0031 0.0075 0.0361 0.0032 0.0028 0.2729 0.0027 0.0069 0.0643 0.0020 0.0021 0.5304

ZDT6 0.0019 0.0075 0.0450 0.0020 0.0023 0.0805 0.0020 0.0056 0.0686 0.0030 0.0013 0.1015

5 Conclusion and Future Work

In this paper, a new algorithm MEACO is proposed to solve MOPs by trans-
forming them into a series of COPs. Several EAs are also presented to tackle
those transformed COPs. Experimental results indicate that our algorithm is a
promising way to tackle MOPs. In contrast to solving COPs with MOEAs, work
of this paper throws a light on how to solve MOPs by methods for COPs. In
future work, we will extend MEACO for MOPs with more objective functions.
It’s also interesting to incorporate some other efficient algorithms (for COPs)
into MEACO.
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Abstract. The average ranking (AR) method has been shown highly

effective to provide sufficient selection pressure searching towards Pareto

optimal set in many-objective optimization. However, as lack of diversity

maintenance mechanism, the obtained final set may only concentrate in

a subregion of Pareto front. In this paper, we propose a diversity main-

tenance strategy for AR to balance convergence and diversity during

evolution process. We employ grid to define an adaptive neighborhood

for each individual, whose size varies with the number of objectives.

Moreover, a layering selection scheme integrates it and AR to pick out

well-converged individuals and prohibit or postpone the archive of ad-

jacent individuals. From an extensive comparative study with original

AR and two other diversity maintenance methods, the proposed method

shows a good balance among convergence, uniformity and spread.

Keywords: Multiobjective optimization, Many-objective optimization,

Average ranking, Diversity maintenance.

1 Introduction

During the recent past, evolutionary multiobjective optimization (EMO) algo-
rithms have been receiving an extensive interest, mainly because of their poten-
tial to find a well-distributed approximation of Pareto optimal set. Nonetheless,
most of them merely focus on the problems with two or three objectives, in spite
of the fact that the problems with more than three objectives widely exists in
real-world application [1], which is generally termed many-objective problems.
One of the main reasons for this occurrence is that the proportion of nondomi-
nated solutions in a population rises rapidly with the increasing of the number of
objectives [2]. The Pareto dominance relation based algorithms, such as NSGA-II
[3] and SPEA2 [4], would fail to provide enough selection pressure to distinguish
these solutions for searching towards the Pareto front.

Very recently, some non-Pareto-based techniques have been proposed spe-
cially for solving many-objective problems; such as, k-optimality, preference or-
der ranking, favour relation, contraction-expansion, and so forth [2,5,6]. These

R. Schaefer et al. (Eds.): PPSN XI, Part I, LNCS 6238, pp. 647–656, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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methods commonly employ some other optimality relations replacing or enhanc-
ing Pareto dominance relation to increase the selection pressure, and they seem
to perform well in terms of converging close to the optimum. However, as lack
of effective diversity maintenance mechanism, the final sets obtained by these
relations are usually just a subset of the Pareto optimal set [6]. In fact, as for
many-objective problems, it is not a trivial job to provide sufficient selection
pressure towards the Pareto front and at the same time maintain a good distri-
bution of solutions. The conflict between the requirements of convergence and
diversity is gradually aggravated with the growing of the number of objectives,
due to the fact that the size of feasible objective space for a certain problem
increasing with the dimensionality of the optimization problem [7].

Average ranking (AR) proposed by Bentley and Wakefield [8] is regarded as
an alternative to rank individuals in multiobjective population, though the au-
thors were not particularly concerned with many objective problems. In recent
years, the AR method has been found to perform successfully in searching to-
wards the Pareto front in many-objective optimization [5,6]. However, similar to
the aforementioned non-Pareto-based methods, it often converges into a subset
of Pareto front because of the lack of diversity maintenance mechanism [6]. In
this paper, we incorporate a diversity maintenance strategy into AR to cover
this shortage. We define a grid-based adaptive neighborhood for each individual
in the population to preserve the suitable spacing among them. Moreover, a lay-
ering selection method utilizing it and AR is designed to pick out well-converged
individuals and prohibit or postpone the archive of neighboring individuals.

The remainder is structured as follows. Section 2 describes the AR method
and shows its properties. Section 3 is devoted to detail our diversity mainte-
nance strategy. Section 4 provides a comparison of the proposed method versus
the original AR and other high dimension optimization techniques. Finally, in
Section 5 the results are summarized and directions for future line are pointed
out.

2 Average Ranking

The average ranking method compares all individuals on each objective and
ranks them independently. For a specific solution, a rank for each objective is
assigned based on the level of its objective value among all solutions in the pop-
ulation. Thus each solution has M ranks (where M is the number of objectives),
and the final rank is obtained by summing them. Table 1 illustrates the AR
method with a simple example considering 4-objective solutions.

Clearly, AR is capable of distinguishing the nondominated solutions according
to their ranks on different objectives. Additionally, it is also computationally
simple and range-independent since all objective values are compared separately.
Corne and Knowles have reported that AR outperforms some more complicated
ranking strategies in terms of cover metric [5]. However, as lack of diversity
maintenance mechanism, the population may converge into a subregion of the
Pareto front. For instance, in Table 1 if the size of the population is 3, the winner
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Table 1. An example of the AR method

solution (f1, f2, f3, f4) rank1 rank2 rank3 rank4 AR
A (1, 1, 6, 5) 1 1 4 2 8
B (1, 3, 5, 6) 1 3 2 3 9
C (2, 2, 5, 6) 3 2 2 3 10
D (6, 5, 1, 7) 4 4 1 5 14
E (7, 5, 7, 1) 5 4 5 1 15

Fig. 1. Final solutions obtained by AR

on DTLZ1

Fig. 2. Setting of grid in the kth objective

will be A, B and C according to the AR values of them. Unfortunately, though
they seem to perform better in terms of convergence, they concentrate in a tiny
region against the whole objective space, and have a high likelihood of evolving
towards a local region of the optimal front. Figure 1 gives the final solutions set
obtained by AR on 3-objective DTLZ1 problem.

3 The Proposed Diversity Maintenance Method

Grid technique has been widely used in the field of evolutionary multiobjective
optimization. Many grid-based EMO algorithms have been proven to perform
well in maintaining diversity when problems have two or three objectives. Here,
we expand its potential to many-objective problems. First we fix a grid environ-
ment, where the population dwells.

3.1 Grid Setting

Borrowing from AGA [9], the grid is determined by the distribution of the current
population. Fig. 2 illustrates the setting of grid in the kth objective.

First the minimum and maximum values of the objective k among the indi-
viduals in a population P are found and thus denoted as mink(P ) and maxk(P ),
respectively. Afterward, the lower and upper boundaries of grid in the kth ob-
jective are determined by them:

lbk = mink(P ) − (maxk(P ) − mink(P ))/(2×div) (1)
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ubk = maxk(P ) + (maxk(P ) − mink(P ))/(2×div) (2)

where div is a constant parameter, the number of divisions of the objective space
in each dimension, set by the user (e.g., in Fig. 2 div = 5). Accordingly, the
original M -dimensional objective space will be divided into divM hyperboxes.
Thus, the hyperbox width in the kth objective, dk, could be formed as

dk = (ubk − lbk)/div (3)

Therefore, according to lbk and dk, the grid coordinate of any individual in the
kth objective is determined as

Gk(A) = 
(Fk(A) − lbk)/dk� (4)

where Gk(A) is the grid coordinate of individual A in the kth objective, Fk(A)
is the actual objective value in the kth objective. For instance, in Fig. 2, the grid
coordinates of all individuals (from left to right) in the kth objective are 0, 1, 2,
3, 4 and 4, respectively.

3.2 Adaptive Neighborhood

Many existing grid-based EMO algorithms encounter difficulties in their scal-
ability to many-objective optimization. One of the main reasons is that their
density estimation mechanisms, which only consider the crowding of unit hy-
perbox in grid, may be invalid in high dimensional space. As the increase of
objectives, the number of hyperboxes in grid will grow exponentially [5] (the
number of hyperboxes in a k -objective problem is rk, where r is the divisions in
each dimension).

In this paper, we present an adaptive neighborhood based density estimation
strategy to address this issue. The neighborhood of individuals here is composed
of several hyperboxes around it, and the size of it will vary with the number of
objectives. Specifically, for individual A, the neighborhood of it is defined as:

N(A) =

∣∣∣∣∣{X :

M∑
k=1

|Gk(A) − Gk(X)| < M}
∣∣∣∣∣ (5)

where |·| denotes the cardinality of a set, Gk(A) implies the grid coordinate of
individual A in the kth objective, Gk(X ) stands for the coordinate of hyperbox
X in the kth objective, and M is the number of objectives. It is clear to note
that the range of neighborhood of individual is determined by variable M. As
M becomes larger, the number of hyperboxes in the neighborhood of individ-
uals will increase steadily. This seems to be consistent with the total number
of hyperboxes in grid environment. In the following, we describe the diversity
maintenance method using the neighborhood.

3.3 Layering Selection

In this section, we introduce a layering selection approach integrating AR and
adaptive neighborhood to determine the survival of individuals. The individual
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Algorithm 1. Layering Selection (P)
Require: P(candidate set), Q(archive set), N (archive size),CP(current layer solutions

set), NP(next layer solution set)

1: Q ←− null, NP ←− null, CP ←− P /∗ Initialize sets Q, NP, and CP∗/

2: while |Q| < N do
3: if CP = null then
4: CP ← NP
5: NP ← null
6: end if
7: q ← FindoutBest(CP ) /∗ Find out the individual with the best AR value in CP∗/

8: Q ← Q
⋃{q} /∗ Put the best individual into archive set∗/

9: CP ← CP\{q} /∗ Remove the best individual from CP∗/
10: for all p ∈ CP do
11: if G(p) ∈ N(q) then
12: NP ← NP

⋃{p}
/∗ Add the individual who is the neighbor of q into NP and delete it from CP∗/

13: CP ← CP \ {p}
14: end if
15: end for
16: end while
17: return Q

with best AR value in current layer is selected to be archived firstly, and the
neighbors of it (i.e., the individuals located in its neighborhood) will be demoted
to next layer, no matter how good their ranks are. Algorithm 1 gives a detailed
procedure of this approach.

The essential purpose of the algorithm is to prohibit or postpone the entry of
adjacent individuals. Function FindoutBest (line 7) is designed to find out the
best individual according to AR in current layer. The lines 10-15 of the algorithm
is implemented a punishment to the neighbors of the best individual by relegating
them to next layer. If the current layer is null, the next layer is activated to
continue the above selection procedure (lines 3-6). Fig. 3 illustrates the algorithm
with a simple example on 2-objective optimization problem. Initially, the current
layer set contains individuals A-H. G is picked out firstly into the archive since
it has the best AR value (7). Correspondingly, the neighbors (B, C, D, E, F) of
G are degraded into the next layer (shown in Fig. 3(b)). Repeat this procedure
until the current layer is null (shown in Fig. 3(e)). At this time, the next layer
will be activated and turn into the current layer. So the best individual (D) in
new current layer is selected, and the neighbors (B, C, E, F) of it enter the new
next layer correspondingly (shown in Fig. 3(f)). Finally, the individuals in the
archive are A, D, G, H, and J, when the vacancies are filled up.



652 M. Li et al.

Fig. 3. An illustration of layering selection algorithm. Where archive size is set to 5.

The value in the brackets corresponds to AR of individuals. Hollow points stand for the

candidate individuals for archive and black points stand for the individuals that have

selected into the archive set. Shadow area indicates the neighborhood of the selected

individuals in current layer (i.e., the candidate individuals located in this area have

been demoted to next layer)

4 Experimental Setup and Results

In this section, two diversity maintenance methods, improved Crowding Dis-
tance [10] and DMO [7], as well as Original AR algorithm are introduced to
validate the proposed method. The improved crowding distance method assigns
a zero distance (instead of an infinity distance) to extreme solutions in order to
advance the convergence of algorithm [10]. DMO employs a diversity manage-
ment operator to control or promote the diversity requirement. If the diversity
indicator is smaller than 1 according to normal maximum spread test, the di-
versity promotion mechanism (i.e., crowding distance) is activated, conversely
deactivated. For a fair comparison,the two methods are incorporated into AR.
We note them as AR+CD′ and AR+DMO, respectively. The original AR al-
gorithm, similar to [5], is implemented to select individuals according to AR
for variation yet renew the archive in a random way. Anyway, the four algo-
rithms (AR, AR+CD′, AR+DMO and the proposed method) adopt identical
fitness strategy (AR) in selection for variation stage and yet adopt distinct di-
versity maintenance schemes (random selection, improved Crowding Distance,
DMO and grid-based technique) in selection for survival stage. In addition, these
algorithms are embeded into NSGA-II template for a fair comparison. Parent
population combines with current population for generating the best half off-
spring. The last allowed nondominated front is considered by the above schemes
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instead of crowding distance. In the following, several performance metrics and
test problem used in comparison are introduced in brief.

4.1 Performance Metrics and Test Problem

Usually, there are three goals that EMO algorithms can be identified and mea-
sured in performance [11]: (i) the distance of the resulting solutions to Pareto
front (PF) should be minimized; (ii) a uniform distribution of the solutions found
is desirable and (iii) the extent of the solutions should be maximized. In this pa-
per, three performance metrics (CM [12], DM [12] and MS [13]), which directly
evaluate each of the above goals, are considered.

The convergence metric CM calculates the average distance of the obtained
solutions set away from the Pareto front. Similar to the studies in [10], the
distance to the Pareto front is determined analytically without using a reference
set. The uniformity metric DM measures the homogenization for a set of points.
In DM, the obtained nondominated points are projected on a hyperplane, which
is divided into a number of boxes. Depending on each box contains a point or
not, the DM value is defined. DM takes the value between zero and one (one is
the ideal result), and the larger value it achieves, the better is the uniformity.
The detailed description of DM can be referred in [12]. The spread metric MS
is an improved version of Maximum Spread considering the distribution of the
Pareto front [13]. The original MS, which measures the length of the diagonal
of the hypercube formed by the extreme objective values in a given set, may be
influenced heavily by convergence of algorithm. The improved MS is devised to
introduce the extreme values of the Pareto front for ease this effect. It also takes
the value between zero and one and a higher value will tell about a larger extent
of the obtained nondominated set.

To benchmark the performance of the four algorithms, the scalable function
DTLZ2 [14] is invoked.The number of objectives used in this experiment is 3,
4, 6, 8, 10, 12, and 15. The total number of decision variables of the function is
l=M+n−1. Where M is the number of objectives and n can be set by user to
specify the distance to PF. According to [14], n=10 is used in DTLZ2.

4.2 Comparative Experiment

All compared algorithms are given real-valued decision variables. A crossover
probability pc=1.0 and a mutation probability pm=1/l (where l is the number
of decision variables) are used. The operators for crossover and mutation are
simulated binary crossover (SBX) and polynomial mutation with the both dis-
tribution indexes 20. We run each algorithm independently 100 times. In each
run a population of 100 individuals during 300 generations is predefined. For the
proposed method, the parameter div setting for different number of objectives
is shown in Table 2.

Tables 3, 4 and 5 give the convergence, uniformity and spread comparison
respectively for all four algorithms over 3, 4, 6, 8, 10, 12, and 15 objectives. The
values in the tables correspond to mean and standard deviation. In order to give
a visual comparison, Figure 4 plots the distribution of the final solution set for
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Table 2. The div setting of the proposed method

Objective number 3 4 6 8 10 12 15
Division 20 18 15 14 13 12 11

Table 3. CM comparison of the four EMOAs

Obj. AR AR + CD′ AR+DMO P roposed Method
3 0.002630(0.001219) 0.007697(0.000969) 0.003127(0.001131) 0.002122(0.000512)
4 0.000265(0.000368) 0.019888(0.002790) 0.009224(0.003546) 0.005162(0.001205)
6 0.000197(0.000161) 0.061420(0.010694) 0.076881(0.017319) 0.011763(0.002084)
8 0.000314(0.000427) 0.464933(0.093250) 0.166829(0.024957) 0.166829(0.024957)
10 0.000414(0.000522) 1.175100(0.145026) 0.258695(0.034931) 0.031825(0.008503)
12 0.000634(0.000454) 1.489080(0.120641) 0.335911(0.049553) 0.065004(0.028429)
15 0.001182(0.000610) 1.686800(0.101894) 0.507604(0.062442) 0.144395(0.039438)

Table 4. DM comparison of the four EMOAs

Obj. AR AR + CD′ AR+DMO P roposed Method
3 0.285620(0.061040) 0.765828(0.033490) 0.307042(0.092739) 0.875861(0.038620)
4 0.024635(0.006037) 0.750573(0.056049) 0.272139(0.073947) 0.830936(0.043014)
6 0.013498(0.004680) 0.728653(0.062698) 0.291955(0.053626) 0.769867(0.036861)
8 0.007968(0.002830) 0.577113(0.095491) 0.232654(0.035723) 0.687197(0.015683)
10 0.003084(0.001091) 0.143857(0.032180) 0.179114(0.015738) 0.554510(0.018500)
12 0.003356(0.000000) 0.097137(0.019159) 0.107763(0.011902) 0.430962(0.031788)
15 0.000625(0.000000) 0.045647(0.023319) 0.075254(0.024951) 0.344784(0.040216)

Table 5. MS comparison of the four EMOAs

Obj. AR AR + CD′ AR+DMO P roposed Method
3 0.954843(0.101269) 0.976454(0.015941) 0.999668(0.001187) 0.999982(0.000050)
4 0.136769(0.045679) 0.945741(0.018671) 0.982307(0.031182) 1.000000(0.000000)
6 0.111958(0.035708) 0.944685(0.019716) 0.857206(0.048480) 0.999716(0.000808)
8 0.098869(0.032621) 0.997528(0.005891) 0.726130(0.024045) 0.998269(0.005425)
10 0.078272(0.034608) 0.999999(0.000004) 0.664174(0.030018) 0.991779(0.017571)
12 0.063128(0.022658) 0.999996(1.177e−06) 0.614995(0.033558) 0.978742(0.031660)
15 0.064900(0.019471) 1.000000(1.583e−07) 0.545415(0.029611) 0.965983(0.039171)

four algorithms by parallel coordinates on the problem with 6 objectives. Inferred
from the CM value in Table 3, the proposed method could in general reach the
Pareto front of the problem with all considered number of objectives. The other
two diversity maintenance methods perform well for 3, 4, and 6 objectives, but
encounter difficulty in case of more objectives. Note that original AR obtains
the better CM values than the proposed method in all case except the number
of objectives is equal to 3. However, from Tables 4 and 5, this result is achieved
at the cost of the loss of diversity. In most case, the final solution set obtained
by AR locates in a microscopic part of the Pareto front.

Concerning uniformity assessment metric DM in Table 4, the proposed method
achieves the best values on the problem with all considered number of objectives.
AR+CD′ performs better than AR+DMO on the problem with 3, 4, 6, and 8
objectives, but slightly worse in case of higher dimension. The original AR algo-
rithm obtains the worst results for all objectives. This is due to the final solutions
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(a) AR (b) AR + CD′ (c) AR+DMO (d) Proposed method

Fig. 4. Distribution of final solution set by parallel coordinates on six-objective DTLZ2

set of it concentrated practically into a point, rather than distributed over the
Pareto front.

Table 5 shows the spread comparison results from the MS metric. Clearly,
the proposed method reaches the boundary of the whole Pareto front for all
considered number of objectives. AR achieves a fairly good value on 3-objective
problem, but fail in case of more objectives. Similarly, AR+DMO only performs
well for the problem with 3 and 4 objectives. AR+CD′ can obtain a passable
value for 3, 4 and 6 objectives problem. The proximity of the four algorithms to
the boundary of Pareto front on 6-objective DTLZ2 could be seen in Figure 4.
Additionally, it is interesting to note that the MS values obtained by AR+CD′

have a sudden raise when the number of objective reaches 8. This occurrence
could be attributed to the reason that AR+CD′ fails to approximate to the
Pareto front on 8 or more objectives problem. The maximum value in each
objective obtained by it would exceed one, thereby producing a misleading result
with respect to MS.

In summation, from the comparative studied above, we can conclude that the
proposed method produces a good balance with regard to convergence, uniformity,
and spread in the specific settings of grid parameter. Due to space limitations, we
do not show results of itwith different settings.Actually, in somepreliminary trials,
we found that grid division has more effect upon uniformity than convergence and
spread, especially in lower dimension space (e.g., objective = 3, 4, or 6).

5 Conclusions

This paper has presented a diversity maintenance strategy for original AR algo-
rithm to balance its convergence and diversity in evolutionary many-objective
optimization. The proposed method has defined a grid-based adaptive neigh-
borhood varied with the number of objectives to preserve a suitable spacing
among individuals. Moreover, a layering approach integrating it and AR has
been introduced to select the promising individuals for archive store. Simulation
experiments have been studied by providing a detailed comparison with other
three algorithms (AR, AR + CD′, and AR+DMO). The results reveal that the
proposed algorithm has been successful in finding a near-optimal, uniformly dis-
tributed and well-extended solution set. Possible avenues of future work include
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the investigation of grid parameter, more many-objective test problems, and
the incorporation of layer information to automatically tune the division setting
according to the number of objectives.
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Abstract. Here, we present a partition strategy to generate objective

subspaces based on the analysis of the conflict information obtained from

the Pareto front approximation found by an underlying multi-objective

evolutionary algorithm. By grouping objectives in terms of the conflict

among them, we aim to separate the multi-objective optimization into

several subproblems in such a way that each of them contains the in-

formation to preserve as much as possible the structure of the original

problem. The ranking and parent selection is independently performed in

each subspace. Our experimental results show that the proposed conflict-

based partition strategy outperforms NSGA-II in all the test problems

considered in this study. In problems in which the degree of conflict

among the objectives is significantly different, the conflict-based strat-

egy achieves its best performance.

1 Introduction

Since the first implementation of a Multi-objective Evolutionary Algorithm
(MOEA) in the mid 1980s, a wide variety of approaches have been proposed,
gradually improving in both their effectiveness and their efficiency to solve multi-
objective problems (MOPs) [1]. However, recent experimental and analytical
studies have shown that MOEAs based on Pareto optimality scale poorly when
the number of objectives is increased (this is called a many-objective problem) [2].
Approaches to deal with such problem have mainly focused on the use of alter-
native optimality relations [3,4], reduction of the number of objectives of the
problem, either during the search process [5,6] or, at the decision making pro-
cess [7,8,9], and the incorporation of preference information [2].

A general scheme for partitioning the objective space in several subspaces in
order to deal with many-objective problems was introduced in [10]. In this ap-
proach the solution ranking and parent selection are independently performed
in each subspace to emphasize the search within smaller regions of objective
function space. Here, we propose a new partition strategy that creates objective
subspaces based on the analysis of the conflict information obtained from the
Pareto front approximation found by the underlying MOEA. By grouping ob-
jectives in terms of the conflict among them, we aim to separate the MOP into

R. Schaefer et al. (Eds.): PPSN XI, Part I, LNCS 6238, pp. 657–666, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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several subproblems in such a way that each subproblem contains the informa-
tion to preserve as much as possible the structure of the original problem.

Our approach is more closely related to the objective reduction approaches,
specially those adopted during the search. However, its main difference with re-
spect to them is the incorporation of all the objectives in order to cover the entire
Pareto front. Deb and Saxena [7] proposed a method for reducing the number of
objectives based on principal component analysis. Although some modifications
can be made to this method in order to use it during the search, this method
was designed as an a posteriori method. Brockhoff and Zitzler [5], and López
Jaimes et al. [6] used similar objective reductions algorithms incorporated into
a MOEA. However, in both cases, the non-conflicting objectives were discarded
or aggregated to form a single objective.

2 Basic Concepts and Notation

Definition 1 (Objective space Φ). The objective space of a MOP is the set
Φ = {f1, f2, . . . , fM} of the M objective functions to be optimized.

Definition 2 (Subspace ψ). A subspace ψ of Φ is a lower dimensional space
that includes some of the objective functions in Φ, i.e. ψ ⊂ Φ.

Definition 3 (Space partition Ψ). A space Φ is said to be partitioned into NS

subspaces, denoted as Ψ , if Ψ = {ψ1,ψ2, . . . ,ψNS | ∪NS

i=1 ψi = Φ ∧ ∩NS

i=1ψi = ∅}.
Definition 4 (Pareto dominance relation). A solution x1 is said to Pareto
dominate solution x2 in the objective space Φ, denoted by x1 ≺ x2, if and only if
(assuming minimization): ∀fi ∈ Φ : fi(x1) ≤ fi(x2) ∧ ∃fi ∈ Φ : fi(x1) < fi(x2).

Definition 5 (Pareto optimal set). The Pareto optimal set, Popt, is defined
as: Popt = {x ∈ X | �y ∈ X : y ≺ x}, where X ∈ Rn is the variable space.

Definition 6 (Pareto front). For a Pareto optimal set Popt, the Pareto front,
PFopt, is defined as: PFopt = {z = (f1(x), . . . , fk(x)) | x ∈ Popt}. We will
denote by PFapprox the Pareto front approximation achieved by a MOEA.

Definition 7 (Sample Correlation coefficient). The sample correlation co-
efficient, rXY , is defined by rXY =

∑m
i=1(Xi− X̄)(Yi− Ȳ )/(m− 1)sXsY , where

sX > 0 and sY > 0 denote the sample standard deviations for the data sets X
and Y , respectively, and m is the number of elements of each data set.

3 The Conflict-Based Partitioning Framework

3.1 General Idea of the Partitioning Framework

The basic idea of the partitioning framework is to divide the objective space into
several subspaces so that a different portion of the population focuses the search
in a different subspace. By partitioning the objective space into subspaces, we
aim to emphasize the search within smaller regions of objective space. Instead of
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dividing the population into independent subpopulations, a fraction of the pool
of parents for the next generation is selected based on a different subspace. This
way, the pool of parents will be composed with individuals having a good perfor-
mance in each subspace. In our approach, we partition the M -dimensional space
Φ = {f1, f2, . . . , fM} into NS non-overlapping subspaces Ψ = {ψ1,ψ2, . . . ,ψNS}.
We selected NSGA-II to implement our proposed partitioning framework. Thus,
the nondominated sorting and truncation procedures of NSGA-II are modified
in the following way. The union of the parents and offspring, P ∪Q, is sorted NS

times using a different subspace each time. Then, from each mixed sorted popu-
lation, the best |P|/NS solutions are selected to form a new parent population of
size |P|. After this, the new population is generated by means of recombination
and mutation using binary tournaments. Algorithm 1 shows this procedure.

3.2 A New Partition Strategy

The number of all possible ways to partition Φ into NS subspaces is very large.
Therefore, it is not feasible to search in all the possible subspaces. Instead, we
can define a schedule of subspace sampling by using a partition strategy. In [10]
three strategies to partition Φ were investigated: random, fixed, and shift parti-
tion. Here, we investigate a new strategy using the conflict information among
objectives. Namely, the first partition would contain the least conflicting objec-
tives, the second one the next least conflicting objectives, and so on. Therefore,
instead of removing the least conflicting objectives, we integrate those objectives
to form subspaces in such a way that all the objectives are optimized. By group-
ing objectives in terms of the conflict among them, we are trying to separate the
MOP into subproblems in such a way that each subspace contains information to
preserve most of the structure of the original problem. We propose using the cor-
relation among solutions in PFapprox to estimate the conflict among objectives.
A negative correlation between a pair of objectives means that one objective
increases while the other decreases and vice versa. Thus, a negative correlation
estimates the conflict between a pair of objectives. On the other hand, if the cor-
relation is positive, then both objectives increase or decrease at the same time.
That is, the objectives support each other.

In order to implement the new partition strategy we should take into account
that the conflict relation among the objectives changes during the search. To
deal with this situation we suggest a new partitioning framework in which the
search is divided in several stages. Each of these stages is divided in two phases,

Algorithm 1. Procedure of non-dominated sort and truncation.

procedure sort&Truncation(R,P, Ψ)
P∗ ← ∅
for i ← 1 until |Ψ | do

Fψi ← nonDominatedSort(R, ψi)

crowding(Fψi , ψi)

Pψi ← truncation(Fψi , |P|/|Ψ |) � |Pψi | = |P|/|Ψ |
P∗ ← P∗ ∪ Pψi

return P∗ � |P∗| = |P|
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Algorithm 2. Pseudocode of our proposed partitioning MOEA.

Input: Evolutionary operators values, NS (Num. of subspaces).
Output: Pareto front approximation.

P0 ← randomPopulation()
evaluate(P0)
crowding(P0)
integrationPhase = TRUE
for t ← 1 until Gmax do

Qt ← newPop(Pt) � selection, crossover and mutation.
evaluate(Qt)
Rt ← Pt ∪ Qt

if integrationPhase = TRUE then
Pt+1 ← sort&Truncation(Rt,Pt, {Φ})
if g ≥ GΦ then

integrationPhase = FALSE
g ← 0

else
if g = 1 then

Ψ ← conflictPartition(P, Φ, NS)

Pt+1 ← sort&Truncation(Rt,Pt, Ψ)
if g ≥ GΨ then

integrationPhase = TRUE
g ← 0

g ← g + 1

Algorithm 3. Partitioning Using Conflict Information.

procedure conflictPartition(P, Φ, NS)
cMatrix ← computeConflictMatrix(P)
k ← (|Φ|/NS) − 1
Φ′ ← Φ = {f1, . . . , fM}
for 1 until NS − 1 do

for each objective fi in Φ′ do
Vfi

← Ascending ordered list of k-nearest neighbors of fi wrt conflict.

V  ← Vfi
∪ {fi} : ∀fj ∈ Φ′, Vfi

[k] ≤ Vfj
[k]

ΨNS
← ΨNS

∪ V 

Φ′ ← Φ′ − V .

ΨNS
← ΨNS

∪ Φ′.

namely, an approximation phase followed by a partitioning phase. In the approx-
imation phase all the objectives are used to select the new parent population.
The goal of this phase is finding a good approximation of the current PFopt.
The proposed procedure is described in Algorithm 2.

3.3 Partitioning Using Conflict Information

Since we are interested in measuring the negative correlation between objectives,
the correlation matrix was modified so that each entry, rfi,fj , contains the value
1− rfi,fj . Thus, each value of this new “conflict matrix” is in the range [0, 2]. A
value of zero indicates that objectives fi and fj are not in conflict at all, and a
value of 2 indicates that they are completely in conflict. The procedure to create
the subspaces is presented in Algorithm 3.
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4 Experimental Results

4.1 Algorithms, Metrics and Parameter Settings

Since we wish to investigate the advantages and disadvantages of the conflict-
based strategy with respect to a random strategy which creates the partitions at
random, we compare the original NSGA-II with the NSGA-II using the conflict-
based strategy and the random strategy. In all the algorithms we use a population
of 200 individuals running during 200 generations. The results presented are the
average over 30 runs of each MOEA. In the conflict-based strategy, the search is
divided in 10 stages, and the values for GΦ and GΨ represent the 30% and 70%
of the generations of each stage, respectively.

In order to show how the conflict-based strategy works, we will use a test
problem in which the conflicting objectives can be defined a priori by the user.
Namely, the problem DTLZ5(I,M) [7], where M is the total number of objec-
tives, and I is the number of objectives in conflict. Additionally, we employ the
0/1 Knapsack with 300 items since the conflict relation among its objectives is
not known a priori. Unless specified otherwise, in our experiments we use from
4 to 15 objectives in each test problem. For 4-9 objectives we use 2 subspaces,
and for 10-15 objectives, we use 3 subspaces. In order to assess convergence we
adopt generational distance (GD). In the case of DTZL5(I,M) we use the ex-
act generational distance, namely GD = 1

m

∑
z∈PFapprox

∑M
j=1(zj)2 − 1, where

m = |PFapprox|. In the case of the Knapsack problem, the generational distance
is computed using as our reference Pareto front, the non-dominated set resulting
of the union of the PFapprox sets obtained by the three algorithms in all the runs.
Additionally, to directly compare the convergence of the MOEAs, we utilize the
additive ε-indicator [11]. In order to evaluate diversity, we adopt the inverted
generational distance (IGD). Finally, to assess both convergence and diversity,
we adopt the hypervolume indicator. For DTLZ5(I,M) the reference point was
zref = 1.5M . For the Knapsack problem, the reference point was formed using the
worst value in each objective of all the PFapprox generated by all the algorithms.

4.2 DTLZ5(I, M): Conflict Known a Priori

In these experiments we use I = 4 conflicting objectives from a total of
M = 4, . . . , 15 objectives. For 4-9 objectives, 2 subspaces are used, whereas for
10-15 objectives, we employ 3 subspaces. First, we show that the conflict-based
strategy is able to identify the conflicting objectives in most of the partitions
generated during the search process. Fig. 1 shows the subspaces generated by
the conflict-based and the random partition strategies during the search process.
In this example, there is a total of M = 8 objectives. The conflicting objectives
are objectives 6-8 and any other objective. The objectives in the most conflicting
subspace are denoted by squares, and the other subspace is denoted by circles.

As the search progresses, the input PFapprox used to estimate the conflict
approaches the true Pareto front. Therefore, as can be seen in Fig. 1(a), in the
last stages of the search, the conflict-based strategy was able to create the correct
partition. On the other hand, by using the random strategy (Fig. 1(b)), only
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one of the generated partitions contains the correct subspaces. Consequently, in
most of the generations of the search, the selected parents emphasize objective
subspaces that do not maximize the contribution to form the true Pareto front.
By inspecting the parallel coordinate plot presented in Fig. 2 we realize that
NSGA-II with the random strategy converges to the extremes of the Pareto
front. That is, most of the solutions are close to 0 or 1 in one objective, but very
few solutions are in the middle. In contrast, the conflict-based strategy covers
all the trade-offs among the objectives. In order to quantify this situation, we
compute the IGD. Fig. 3 shows that the conflict-based partition strategy achieves
better values in terms of IGD.

This indicates a better distribution using the conflict-based partition
strategy. In addition, the convergence of NSGA-II degrades dramatically when
the number of objectives is more than 6. A possible reason of this behavior is
the generation of dominance resistant solutions in DTLZ5(I,M). In contrast,
the IGD values using any of the partition strategies, are not affected by the
number of objectives. In particular, we can see that the convergence obtained
by using the conflict-based partition strategy is better than the one achieved by
the random strategy.

The results of the ε-indicator are presented in the matrices of subplots of
Fig. 4. Iε+(A,B) is the subplot located in row A and column B of the matrix.

(a) Conflict-based partition strategy. (b) Random partition strategy.

Fig. 1. Subspaces generated using the conflict and random partition strategies in

DTLZ5(I = 4, M = 8). Objectives 6-8 and any other are the conflicting objectives.

Fig. 2. Parallel coordinate plot of the

PFapprox obtained with the random and

the conflict partition strategies

Fig. 3. IGD for DTLZ5(I=4,M). For 4-

9 objs. we used a partition with 2 sub-

spaces, and for 10-15 objs., one with 3.
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Fig. 4. ε-indicator results. The horizontal

axis denotes the number of objectives.

Fig. 5. Normalized hypervolume results

on DTLZ5(I, M)

As we can see, NSGA-II is clearly outperformed by the NSGA-II using any of
the partition strategies. In turn, we can observe that the conflict-based strategy
is better than the random strategy, specially for 6 or more objectives. Since
the hypervolume considers both convergence and distribution, as we can see
in Fig. 5, the conflict-based partition strategy outperforms the random strategy.
For less than 5 or 6 objectives, NSGA-II presents a better or similar performance
than that achieved by using a partition strategy. There are two causes for this
behavior. Firstly, that the NSGA-II is still able to deal with that lower number
of objectives. Second, since there are 4 conflicting objectives for 4-6 objectives,
using 2 subspaces is not possible that all the conflicting objectives are grouped in
one subspace. This suggests that is convenient to assign all the highly correlated
objectives to a single subspace. However, a large subspace might surpass the
capacities of the underlying MOEA.

4.3 Effect of the Size of the Subspaces

In this section we analyze if it is better to have all the conflicting objectives
together in a large subspace, or small subspaces in which the conflicting objec-
tives are in different subspaces. To this end, we used DTLZ5(I = 12,M = 24)
to compare two partitions, namely, one with two subspaces with 12 objectives
each, and another one with 6 subspaces with 4 objectives each. Fig. 6 shows the
progress of GD during all the search process. We want to emphasize the fact that
each partition strategy achieved a better convergence using 6 subspaces with 4
objectives. This suggests that is preferable to have subspaces of moderate size,
even if highly conflicting objectives have to be assigned to different subspaces.
The optimal size of the subspaces depends on the capacities of the underlying
MOEA. For example, based on the experimental results, an appropriate size of
the subspaces for NSGA-II would be between 4 and 6 objectives.

As in previous experiments, using parallel coordinate plots we realized that the
solutions using the random strategy converge to the extremes of some objectives.
To quantitatively assess the distribution, we compare the algorithms using IGD
(Table 1). Although the obtained GD of the conflict and random strategies are
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Fig. 6. Online GD using a partition with 2 subspaces and another one with 6 subspaces

Table 1. IGD values for using 2 and 6 subspaces in each of the partitioning strategies,

namely, random- and conflict-based partitions

NSGA-II Conflict Random
NS = 2 NS = 6 NS = 2 NS = 6

Average 0.18005 0.00838 0.00570 0.00682 0.00769
Std. Dev. 0.04695 0.00010 0.00047 0.00092 0.00029

similar using 6 subspaces (Fig. 6), the results of IGD suggest that the conflict
strategy with 6 subspaces achieved a better distribution of the solutions than
the random strategy with 6 subspaces.

4.4 Knapsack Problem: Unknown Conflict a Priori

In the Knapsack problem there is an interesting conflict relation among the
objectives that allows the conflict-based strategy performing better than the
random strategy. Fig. 7 shows the subspaces generated by the conflict strategy
in the Knapsack problem. As we can see, as the search progresses, a particular
partition is formed repeatedly, namely Ψ3 = {{4, 5, 8}, {1, 3, 9}, {2, 6, 7}}. This
suggests that the conflict among certain objectives is considerably larger than
the conflict among others. In order to measure the contribution of each subspace
to the total conflict in the problem, we compute for each subspace its “conflict
degree”, i.e., the sum of the conflict between each pair of objectives.

The ratio of the conflict degree of each subspace and the total conflict is
called the conflict contribution. In Fig. 8, we can clearly see that subspace 3 has a
larger conflict contribution with respect to the other subspaces. From the results
obtained in GD and IGD (see Fig. 9) we can say that the conflict-based partition
strategy achieved better Pareto front approximations than the random-based
strategy both in terms of convergence and distribution. The results obtained
with the hypervolume indicator (Fig. 10) confirm that the conflict-based strategy
outperformed the random strategy. We can conclude that the differences in the
degrees of conflict between each pair objectives was used by the conflict-based
strategy to obtain better results than those obtained using a random partition.
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Fig. 7. Generated subspaces by the

conflict-based partition strategy on the

Knapsack problem

Fig. 8. Conflict contribution of each of

the three subspaces generated using the

conflict partition strategy

Fig. 9. Inverted generational distance in

the Knapsack problem

Fig. 10. Normalized Hypervolume wrt

the one achieved by the NSGA-II

5 Conclusions and Future Work

The experimental results showed that both the conflict-based and random parti-
tion strategies outperformed NSGA-II in all the test problems considered in this
study. While NSGA-II diverges in some test problems, the NSGA-II using any
of the partition strategies maintains a good convergence despite the number of
objectives. Regarding the two partition strategies, the conflict-based partition
strategy achieved a better distribution of the solutions than the random strat-
egy. In some problems, by using the random strategy, the solutions converged
to the extremes of the Pareto front. In problems in which the degree of conflict
among the objectives was different, the conflict-based strategy presented a bet-
ter performance. It is important to note that in the Knapsack problem, where
the conflict relation among the objectives is not known a priori, the conflict-
based strategy was able to detect important dependencies among the objectives
in terms of the conflict. Another finding is that the best size of the subspaces
considerably depends on the scalability of the underlying MOEA. As part of our
future work, we plan to exploit the conflict information to automatically adapt
the proportion of resources granted to each subspace.



666 A. López Jaimes et al.

Acknowledgements. The first author acknowledges support from conacyt
to pursue graduate studies in Computer Science at cinvestav-ipn. The fourth
author acknowledges support from conacyt project no. 103570.

References

1. Coello Coello, C.A., Lamont, G.B., Van Veldhuizen, D.A.: Evolutionary Algorithms

for Solving Multi-Objective Problems, 2nd edn. Springer, New York (2007), ISBN

978-0-387-33254-3

2. Ishibuchi, H., Tsukamoto, N., Nojima, Y.: Evolutionary many-objective optimiza-

tion: A short review. In: CEC 2008, Hong Kong, pp. 2424–2431. IEEE Service

Center, Los Alamitos (2008)

3. Farina, M., Amato, P.: On the Optimal Solution Definition for Many-criteria Opti-

mization Problems. In: Proceedings of the NAFIPS-FLINT International Confer-

ence 2002, Piscataway, New Jersey, pp. 233–238. IEEE Service Center, Los Alami-

tos (June 2002)

4. Sato, H., Aguirre, H.E., Tanaka, K.: Controlling Dominance Area of Solutions and

Its Impact on the Performance of MOEAs. In: Obayashi, S., Deb, K., Poloni, C.,

Hiroyasu, T., Murata, T. (eds.) EMO 2007. LNCS, vol. 4403, pp. 5–20. Springer,

Heidelberg (2007)

5. Brockhoff, D., Zitzler, E.: Improving Hypervolume-based Multiobjective Evolution-

ary Algorithms by Using Objective Reduction Methods. In: CEC 2007, Singapore,

pp. 2086–2093. IEEE Press, Los Alamitos (September 2007)

6. López Jaimes, A., Coello Coello, C.A., Uŕıas Barrientos, J.E.: Online Objective

Reduction to Deal with Many-Objective Problems. In: Ehrgott, M., Fonseca, C.M.,

Gandibleux, X., Hao, J.-K., Sevaux, M. (eds.) EMO 2009. LNCS, vol. 5467, pp.

423–437. Springer, Heidelberg (2009)

7. Deb, K., Saxena, D.K.: Searching for Pareto-optimal solutions through dimension-

ality reduction for certain large-dimensional multi-objective optimization problems.

In: CEC 2006, Vancouver, BC, Canada, pp. 3353–3360. IEEE Press, Los Alamitos

(2006)

8. Brockhoff, D., Zitzler, E.: Are All Objectives Necessary? On Dimensionality Re-

duction in Evolutionary Multiobjective Optimization. In: Parallel Problem Solving

from Nature IX, pp. 533–542. Springer, Heidelberg (2006)
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Abstract. Understanding the impact of crossover in evolutionary algo-

rithms is one of the major challenges in the theoretical analysis of these

stochastic search algorithms. Recently, it has been shown that crossover

provably helps to speed up evolutionary algorithms for the classical all-

pairs-shortest path (APSP) problem. In this paper, we extend this ap-

proach to the NP-hard multi-criteria APSP problem. Based on rigorous

runtime analyses, we point out that crossover leads to better worst case

bounds than previous known results. This is the first time that rigorous

runtime analyses have shown the usefulness of crossover for an NP-hard

multi-criteria optimization problem.

1 Introduction

Stochastic search algorithms such as evolutionary algorithms [7] and ant colony
optimization [4] have found many application for complex combinatorial opti-
mization problems. In contrast to the variety of application domains and many
successful approaches for different kind of problems, the theoretical understand-
ing lacks far behind the practical success. Analyzing stochastic search algorithms
with respect to their runtime behavior has become a major branch in the theoret-
ical analysis of these algorithms. Starting with results on simple pseudo-Boolean
functions (see e. g. [12,5,9]), different results have been obtained for classical
combinatorial optimization problems such as shortest paths, minimum spanning
trees, or maximum matchings (see [11] for an overview). The goal of all these
studies is to increase the understanding of stochastic search algorithms in a
rigorous way and provide guidelines for the application of these methods.

Recently, evolutionary algorithms have been analyzed for the basic all-pairs-
shortest-path (APSP) problem. It has been shown that the use of crossover leads
to a better bound on the expected optimization time compared to an algorithm
that is just based on mutation [2,3]. The question arises whether these results can
be generalized to NP-hard variants of the APSP problem ([6]). We answer this
question in a positive way and show that the approach introduced in [2] leads to a
good approximation for the multi-criteria APSP problem. For the multi-criteria
APSP problem, the task is to approximate for each pair of distinct vertices the
set of Pareto optimal paths.
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Coping with multi-objective problems one is often faced with the fact that the
number of Pareto optimal objective vectors might be exponential with respect
to the problem size. Due to this it is not possible to compute the whole Pareto
front in polynomial time. As we are only interested in good approximations for
the multi-criteria APSP problem, we investigate evolutionary algorithms that
make use of the ε-dominance approach [10]. This has already been shown to
be successful for the multi-criteria single-source shortest path (SSSP) problem
[8]. Using the ε-dominance approach, the population size can be controlled by
a parameter ε that determines the quality of the approximation to be achieved.
Note, that the multi-criteria APSP problem can be solved by computing n times
the multi-criteria SSSP problem where n denotes the number of vertices of the
given input graph.

We generalize the model for the APSP problem given in [2] to the multi-
criteria APSP problem and analyze the corresponding multi-objective evolu-
tionary algorithm with respect to the runtime behavior. Our results are runtime
bounds that generalize the ones given in [3] to the multi-objective case. Com-
paring these results for 2 and 3 objectives to the ones that can be obtained by
applying n times the approach for the multi-criteria single-source-shortest path
(SSSP) problem [8], we show that our approach yields better runtime guarantees.
The reason for this is the use of a crossover operator which allows the algorithm
to work with a smaller population size.

The outline of the paper is as follows. In Section 2, we introduce the problem
and the algorithm under consideration. We carry out a rigorous runtime anal-
ysis which shows the impact of crossover for the computation of multi-criteria
all-pairs-shortest-paths in Section 3. Finally, we finish with some concluding
remarks.

2 Problem and Algorithm

Computing shortest paths in a given graph is one of the fundamental problems in
computer science. We consider the multi-criteria all-pairs-shortest-path (APSP)
problem. The input is a connected directed graph G = (V,E) with n vertices
and m edges, and a weight function w : E → (�+)d which assigns to each edge
a vector of d ≥ 2 weights. We denote by wmax = maxd

i=1(maxe∈E wi(e)) the
maximum weight of the given input. In addition, we assume that there are no
negative cycles with respect to each dimension of the weight function.

Let Pu,v be a path from u to v in G and

w(Pu,v) = (w1(Pu,v), . . . ,wd(Pu,v))

the corresponding objective vector which gives the different paths weights with
respect to the d objective functions. Comparing two paths Pu,v and P ′

u,v, we write
w(Pu,v) ≤ w(P ′

u,v) iff wi(Pu,v) ≤ wi(P ′
u,v), 1 ≤ i ≤ d. Similarly, we write w(Pu,v)

< w(P ′
u,v) iff w(Pu,v) ≤ w(P ′

u,v) and wi(Pu,v) < wi(P ′
u,v) for at least one i.

Considering a multi-objective problem, one is interested in computing or ap-
proximating the Pareto front. Pu,v is called Pareto optimal if there is no other
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path P ′
u,v = Pu,v from u to v for which w(P ′

u,v) < w(Pu,v) holds. The Pareto
front Fu,v for a given pair of vertices u, v is the set of all objective vectors for
which a Pareto optimal path from u to v exists. The Pareto front for the multi-
criteria APSP problem is constituted by the Pareto fronts Fu,v for each distinct
pair of vertices u and v. Computing the Pareto front for the multi-criteria APSP
problem is NP-hard iff d ≥ 2 (see [6]). On the other hand, the number of Pareto
optimal objective vectors might grow exponentially with respect to the given
input.

Due to this, we are interested in good approximations for the problem. In
this case, it is only necessary to compute a smaller set of solutions. Our goal is
to compute for each pair of distinct vertices u and v and each Pareto optimal
path Pu,v an (1 + ε)-approximation P ′

u,v of Pu,v, i. e. a path P ′
u,v for which

w(P ′
u,v) ≤ (1+ ε) ·w(Pu,v) holds. Here ε > 0 is a parameter that determines the

quality of the approximation.
This notion of a multiplicative (1 + ε)-approximation is very common when

considering approximations and relates well to the concept of ε-dominance used
in evolutionary multi-objective optimization. The concept of ε-dominance is im-
plemented in the algorithm in terms of hyperboxing (dividing the objective space
into hyperboxes) and box-domination. Let r > 1 be a parameter determining
the size of the hyperboxes. The box value br(Pu,v) of path Pu,v is given by

br(Pu,v) := (#logr(w1(Pu,v))$, #logr(w2(Pu,v))$, . . . , #logr(wd(Pu,v))$).

For the multi-criteria APSP problem we investigate an algorithm called Diversity
Evolutionary Multi-objective Optimizer (DEMO) which is an extension of the
population-based approach for the single-criteria APSP problem introduced in
[2]. Each individual Pu,v in the population is a path from u to v, where u and v
are two distinct vertices of the given input graph. The fitness of Pu,v is given by
w(Pu,v). Our algorithm starts with a population P := {Pu,v = (u, v)|(u, v) ∈ E}
of size |E| which contains all paths corresponding to the edges of the given graph
G. In each iteration a single new individual is produced either by crossover or
mutation depending on the pre-defined probability pc. For all investigations in
this paper, we assume that pc is chosen as an arbitrary constant, i. e. pc ∈ ]0, 1[
and pc = Ω(1).

The mutation operator takes an individual Px,y from the population and
applies sequentially S + 1 local operations. Here, S is a parameter that is cho-
sen according to the Poisson distribution (cf. [13]) with parameter λ = 1. In
a local operation, the current path is either lengthened or shortened by a sin-
gle edge. Assume that the current individual represents a path Px,y = (x =
v0, v1, . . . v�−1, y = v�) from x to y of length �, i. e. consisting of � edges. We
denote by E−(v) and E+(v) the set of incoming and outgoing edges of a vertex
v in G and choose an edge e = (u, v) ∈ E−(x) ∪E+(y)∪ {(x, v1), (v�−1, y)} uni-
formly at random from union of the sets. If e ∈ {(x, v1), (v�−1, y)}, the edge is
removed, otherwise the edge e ∈ (E−(x) ∪E+(y)) \ {(x, v1), (v�−1, y)} is added.

The crossover operator combines two individuals P1,P2 consisting of �1 and
�2 edges by appending P2 to P1 which results in an individual of length �1 +
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1 P = {Pu,v = (u, v) | (u, v) ∈ E};
2 while true do
3 Choose q ∈ [0, 1] uniformly at random;

4 if q ≤ pc then
5 choose two individuals Px,y and Px′,y′ from P ;

6 perform crossover on Px,y and Px′,y′ to obtain an individual P ′
s,t ;

7 else
8 choose one individual Px,y uniformly at random from P and mutate

Px,y to obtain an individual P ′
s,t;

9 if (P ′
s,t is a path from s to t) and (there is no P ′′

s,t ∈ P with
w(P ′′

s,t) ≤ w(P ′
s,t) and w(P ′′

s,t) 	= w(P ′
s,t)) then

10 exclude all P ′′
s,t where br(P

′
s,t) ≤ br(P

′′
s,t) and add P ′

s,t to P
Algorithm 1. DEMO(r) (Diversity Evolutionary Multi-objective Optimizer)

�2. Contrary to the mutation operator a new individual created by a crossover
operation may no longer represent a path and thus constitute an invalid solution
which is rejected by the algorithm.

Finally the environmental selection of Line 9 and 10 includes such a new
individual in the population iff it is not dominated by some other s-t-path.
Inserting the new individual in the population all other s-t-paths residing in the
same hyperbox are removed.

In this paper, we study the runtime of DEMO until it has produced an (1+ε)-
approximation of the multi-criteria APSP problem. The runtime is measured by
the number of iterations (of the while loop) until the algorithm has achieved the
desired approximation. To analyze the runtime behavior of our algorithm, we
make use of the following upper bound on the population size of DEMO which
is a consequence of Theorem 2 given in [10].

Lemma 1. Let r > 1 be the input of DEMO(r), wmax be the maximum weight
of the weight function w, and Pmax be the maximal population size. Then

Pmax ≤ n(n− 1) ·
(

log(n · wmax)
log(r)

)d−1

.

We will show improved runtime bounds for d ∈ {2, 3}. In principle our analysis
can be extended to larger dimensions. However, for d > 3 they would not reveal
an asymptotic speed up in comparison to using n times the multi-criteria SSSP
approach of [8].

3 Analysis

In this section we show improved worst-case bounds on the runtime of our al-
gorithm compared to the SSSP problem approach of [8]. The results for the
single-criteria APSP problem [3] are included in our generalized bounds as a
special case.
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We adapt the concept of Pareto-optimality and box-domination with respect
to the length k of a path, whereas the length of a path is measured by the
number of its edges. With Lemma 3 we show how much time is needed to evolve
a population approximating the Pareto-front of paths of length at most k into
a population approximating the Pareto-front of paths of length at most k + c.
This result is based on mutation only and is needed in Lemma 4 to prove how
crossover and mutation work together. To show the interaction between crossover
and mutation we make use of the the gap concept introduced in [3]. The final
proof of our main theorem uses this lemma to show how a stage-wise increase
of the length of the paths in the population constructs an approximation of the
Pareto-front with a well controlled approximation factor.

In the following, we assume 2 ≤ d ≤ 3. Our results can be extended to
larger dimensions but for larger dimensions we would only get results that are
comparable to running n times the approach of [8]. Our results are summarized
in the following main theorem.

Theorem 1. Let r > 1 be the input parameter of DEMO, and let g :=(
Pmax log(n)

n

)1/4

. Then w. h. p. DEMO(r) computes an r3·g·log(n)-approximation
for the multi-criteria APSP problem in time

O(n · Pmax · g).
We remark that by the term w. h. p. (with high probability) we understand a re-
sult that holds with probability at least (1−O(n−c)) for some c > 0 independent
of n. The bound given in Theorem 1 depends on the maximal population size
Pmax that DEMO might encounter. Furthermore, the bound on Pmax given in
Lemma 1 depends on the number of given objectives as well as on the maximal
weight wmax and the approximation guarantee log(r) both of which are required
to be polynomially bounded in n.

We discuss the interesting cases for the value of d. Setting d := 1 we get the
well-known tight bounds of Θ

(
n3.25

)
on the optimization time for the single-

criteria case as has been proven in [3]. Note, that no approximation is needed in
this case.

To achieve an (1+ε)-approximation for the multi-criteria APSP problem, the
parameter r needs to be tuned accordingly. Aiming at an (1+ ε)-approximation,
we may choose r = (1 + ε)

1
3·g·log(n) . Then for d = 2 the corresponding worst-case

bound is

O

(
n11/3 · (log(n))

7
3 ·
(

log(n · wmax)
log(1 + ε)

) 5
3
)

,

and for d = 3 it becomes

O

(
n4.5 · (log(n))6.5 ·

(
log(n · wmax)

log(1 + ε)

)5
)
.

The multi-criteria APSP problem can be tackled by solving for each vertex of the
given input graph the multi-criteria single-source-shortest path (SSSP) problem.
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We compare our bound for dimension d = 2 and dimension d = 3 to n times the
mutation-only worst-case bound of O

(
n2 · Pmax

)
for the multi-criteria SSSP of

[8] with a maximal population of size

Pmax ≤ (n− 1)
(

log(n · wmax)
log(r)

)d−1

and r = (1 + ε)1/(n−1).

Due to [8], the worst-case bound for d = 2 is

O

(
n5 · log(n · wmax)

log(1 + ε)

)
Hence, our approach yields an asymptotic improvement of a factor of

n4/3 · log(n)−7/3 ·
(

log(n · wmax)
log(1 + ε)

)−5/3

.

For dimension d = 3, the bound given in [8] is

O

(
n6 ·

(
log(n · wmax)

log(1 + ε)

)2
)

and our approach gives an asymptotic improvement of a factor of

n3/2 · log(n)−13/2 ·
(

log(n · wmax)
log(1 + ε)

)−3

.

For the analysis of DEMO we need to consider a slightly adapted notion of
Pareto-optimality which also takes into account the length of the path. Among
all paths of length at most k we define an s-t-path P̂ k

s,t to be Pareto-optimal
with respect to length k iff there is no other path P̃ k

s,t of length at most k for
which w(P̃ k

s,t) < w(P̂ k
s,t) holds.

We denote by �k the set of Pareto-optimal paths of length at most k, i. e. �k =
{Pu,v | (u, v) ∈ V 2∧|Pu,v| ≤ k∧�P̃u,v : |P̃u,v| ≤ k∧w(P̃u,v) < w(Pu,v)}. Mapping
the objective vectors of the set �k into the set of hyperboxes Bk := br(w(�k)),
we are able to relate the notion of Pareto-optimality to the individuals kept in
the population. We call a hyperbox B ∈ �k dominated with respect to a pair of
vertices (u, v) ∈ V 2 iff there is an individual Pu,v ∈ P such that br(w(Pu,v)) < B.
With the concept of box-domination we keep the size of the population as small
as claimed in Lemma 1 because we only keep individuals from non-dominated
hyperboxes in the population. Furthermore, for each non-dominated hyperbox
and every s-t-path, s, t ∈ V , we have at most one individual. At the same time we
are able to control the approximation-factor of the individuals in the population.

We need to make our arguments concerning the approximation precise. As-
sume that for every Pareto-optimal path

P̂s,t = (s = v0, v1, . . . , vk = v, vk+1 = t) ∈ �k+1
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there is an individual Ps,v in our population that ri-approximates P̂s,v ∈ �k.
Then it is clear that there is a mutation operation which appends the edge (v, t)
to Ps,v. This increases the length of Ps,v by one and results in an individual
Ps,t that ri-approximates P̂s,t. During the remaining process of the optimization
it might happen that we replace the path Ps,t by some path P ′

s,t that is not
dominated by Ps,t and resides in the same hyperbox. In such a situation the
approximation factor may increase from ri to at most ri+1 while at the same
time P ′

s,t also ri+1-approximates all Pareto-optimal paths from s to t mapped
to the hyperbox br(w(P̂s,t)) (see Lemma 2).

We extend the notion of approximation to sets in the following way: By
w(P) ≤ ri ·w(P̂s,t) we say that there exists a path Ps,t ∈ P such that w(Ps,t) ≤
ri · w(P̂s,t) holds. And in the same fashion w(P) ≤ ri · w(�k) denotes that for
every P̂s,t ∈ �k we have w(P) ≤ ri · w(P̂s.t).

Lemma 2 (Due to Lemma 1 in [8]). Let P̂s,t be an arbitrary path of the
search space S. Assume that there is a path Ps,t ∈ P in the current population
with w(Ps,t) ≤ ri ·w(P̂s,t). Then all subsequent populations P ′ of DEMO(r) with
r > 1 fulfill

w(P ′) ≤ ri+1 · w(P ′
s,t)

for all P ′
s,t ∈ S with br(w(P ′

s,t)) ≤ br(w(P̂s,t)).

With the result from [3, Lemma 2] we are able to analyze the time and proba-
bility of how to evolve a population P based on individuals that ri-approximate
all paths from �k, i. e. w(P) ≤ ri · w(�k), into a population P ′ that ri+c-
approximates all paths from �k+c, i. e. w(P ′) ≤ (ri+c) · w(�k+c).

Lemma 3 (Analysis of Mutation). Let w(P) ≤ ri · w(�k) and c · λ ≥
12 · ln (n). Then, DEMO(r) computes w. h. p. in time O(c · λ · n · Pmax) an ri+c-
approximating individual for every Pareto-optimal path �k+c.

One of the obvious problems when theoretically analyzing crossover algorithms
is the proof of a good success probability. Often there are not that many indi-
viduals that can be combined to obtain a good offspring which may decrease
the usefulness of crossover. To analyze the crossover operator, we use the gap
concept introduced in [3]. This leads to an improved worst-case bound on the
optimization time of evolutionary algorithms for the multi-criteria APSP prob-
lem. For a path Pu,v = (u = u0,u1, . . . ,u� = v) and an arbitrary sub-path
Pui,uj = (ui,ui+1, . . . ,uj) with 0 ≤ i ≤ j ≤ �, we call the integer g := i + �− j
the gap of the path Pui,uj (w.r.t. Pu,v). We also call Pui,uj a gap-path of Pu,v.

The key observation is that it suffices that crossover finds a gap-path that is
sufficiently close to a sought-after path, because mutation is fast enough to fill
in the edges of the gap. Utilizing the ideas introduced in [3] to our framework we
can prove a sufficiently good success probability for a single crossover step that
produces a gap-path. Assume that our current population P ri-approximates
all Pareto-optimal paths from the set �k, i. e. w(P) ≤ ri · w(�k). Consider
a Pareto-optimal path P̂u,v ∈ � 3k

2
and a gap-path P̂u′,v′ of P̂u,v having gap
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g ≤ n. Then DEMO constructs a path Pu′,v′ that ri-approximates the gap-path
P̂u′,v′ with probability Ω( g2·k

Pmax
2 ). In subsequent populations P ′ we might again

loose an additional approximation factor r due to the selection in the algorithm
such that we have w(P ′) ≤ ri+1 · w(P̂u′,v′). And P ′ also ri+1-approximates all
Pareto-optimal paths from the hyperbox br(w(P̂u′,v′)).

Combining the analysis of the mutation operator (cf. Lemma 3) and the
crossover operator employing the gap concept, we obtain the following key
lemma. It shows the interplay between the two operators from the point on
when we have an ri-approximating individual in P for every Pareto-optimal �k0

with

k0 =
(Pmax log(n)

n

)1/4

.

The Lemma also shows, why it is not possible to have presumably better upper
bounds for dimensions beyond d > 3 with crossover. The problem here is, that
k0 as well as the gap g are naturally upper bounded by n − 1, the maximum
length of a path.

Lemma 4. Let k0 := g :=
(

Pmax log(n)
n

)1/4

, k := (1.5)i · k0, and w(P) ≤ rj ·
w(�k). Then DEMO produces a population P ′ with w(P ′) ≤ rj+1+g · w(�1.5k)
in time O

(
(1.5)−i · n · Pmax · g

)
w. h. p.

For the proof we first of all compute the time needed to get at least a path in
our population which is an approximating path of a gap-path (towards a Pareto-
optimal path). Interestingly this time is also sufficient to produce such a path
for every path of the Pareto-set with respect to length 1.5k. In the final step we
show that again this time suffices to fill the remaining gap with mutation.

Proof. Fix an arbitrary Pareto-optimal path

P̂u,v = (u,u1, . . . , v) ∈ �1.5k \ �k.

The probability to get an arbitrary but fixed rj -approximating gap-path of P̂u,v

with gap at most g in a crossover step is Ω
(

g2k2

Pmax
2

)
. Note, that our success

probabilities for crossover and mutation steps hold regardless of the steps before.
Hence, we are allowed to treat the events considered here independently.

Consider a phase of length t = O(n · Pmax · g ·Δ) with Δ := k0
k . Then the

probability not to get any of the possible gap-paths of P̂u,v within t iterations is(
1−Ω

(
g2 · k
Pmax

2

))t

≤ exp
(
− g2 · k
Pmax

2 · t
)

≤ exp(−Ω(ln(n)))

Time t also suffices to produce an rj -approximating path for at least one of
the possible gap-paths for every P̂ ∈ �1.5k. Consider the set of hyperboxes
�k := br(w(�k)) as defined above with a size of at most |�k| ≤ Pmax. And fix
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for each B ∈ �k a path P̂s,t with w(P̂s,t) = B. Then we have already computed
the failure probability that the algorithms does not derive at least one path
P ′

s′,t′ which is a rj-approximation of an arbitrary gap-path P̂s′,t′ of P̂s,t in time
t. With the Union Bound Theorem cf. [1] we can thus bound the probability to
get at least one rj -approximating gap-path P ′

s′,t′ for every P̂s,t ∈ �1.5k to

1− Pmax · exp(−Ω(logn)) ≤ 1−O
(
n−c′

)
,

for a constant c′. For subsequent populations P ′ and all paths from s′ to t′

mapped to br(w(P ′
s′ ,t′)) we have have again to account for a loss in the approx-

imation factor, going over from rj to rj+1 due to Lemma 2.
Assuming now that we have at least an rj+1-approximating gap-path of an

arbitrary but fixed (Pareto-optimal) P̂s,t path with gap at most g in our popula-
tion. Then DEMO can fill the gaps to gain an rj+1+g -approximating path Ps,t of
path P̂s,t (and all Pareto-optimal st-paths from the same hyperbox br(w(P̂s,t)))
with mutation only. Assume, that the subpath Ps′,t′ of Ps,t has to be extended at
both ends to get Ps,t. Then two phases of overall length t = O(n · Pmax · g ·Δ)
suffice to close the gap of Ps,t with mutation. Without loss of generality in the
first phase Ps′,t′ is extended to Ps,t′ , and in the second phase to Ps,t. Using
Lemma 3 we set c to the value of the gap g and choosing λ in such a way, that
c · λ ≥ 12 ln(n) holds. For every reasonable choice of λ (depending on c) we
get a runtime bound of O(n · Pmax · g ·Δ) which holds w. h. p. Time t does not
suffice if our assumption to have a rj+1-approximating gap-path in the popula-
tion for every P̂s,t ∈ �1.5k fails. However, the failure probability of O

(
n−c′

)
is

very small. The claim now follows directly because the overall runtime does not
exceed O(n · Pmax · g ·Δ) with high probability. ��
Based on our previous investigations which control the runtime and approxima-
tion error in the different steps, we are able to prove our main theorem.

Proof (of Theorem 1). The probability to apply the crossover or the mutation
operator in an iteration is constant, and neither decreases the fitness of an indi-
vidual. Hence, it is no problem to only regard the effect of one of the two in a
starting phase. Let k0 := g. Applying Lemma 3 with c ·λ := k0, we see that after
O(n · Pmax · k0) iterations, w. h. p. we have a population P with the property
w(P) ≤ rk0 · �k0 .

We now repeatedly apply Lemma 4. In timeO
(
n · Pmax · g · (1.5)−i

)
, with high

probability we get a population P ′ with w(P ′) ≤ rk0+i·(g+1) · �(1.5)ik0 out of a
population P with w(P) ≤ rk0+(i−1)·(g+1) ·�(1.5)i−1k0 . Hence the run-times form
a geometric series and less than log1.5(n) such stages suffice to find a population
P with an approximation factor

rk0+log1.5(n)(g+1) ≤ r3·g·log(n) =: α

such that w(P) ≤ α�n in time O(n · Pmax · g). Since each stage works fine with
high probability, our algorithm finds the desired approximation for the multi-
criteria APSP problem with high probability as well. ��
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4 Conclusions

Understanding the usefulness of crossover is one of the major challenges in the
theoretical analysis of evolutionary computation. In this paper, we have exam-
ined how crossover can speed up the computation for the multi-criteria all-pairs-
shortest path problem. Due to the use of crossover, we were able to show runtime
bounds that are significantly better than solving the multi-criteria single-source
shortest path problem n times. Future research should further explore the use-
fulness of crossover for other combinatorial and multi-criteria problems.
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Abstract. Path relinking is a population-based heuristic that explores

the trajectories in decision space between two elite solutions. It has been

successfully used as a key component of several multi-objective optimiz-

ers, especially for solving bi-objective problems. In this paper, we focus

on the behavior of pure path relinking, propose several variants of the

path relinking that vary on their selection strategies, and analyze its per-

formance using several many-objective NK-landscapes as instances. The

study shows that the path relinking becomes more effective in improving

the convergence of the algorithm as the number of objectives increases.

It also shows that the selection strategy associated to path relinking

plays an important role to emphasize either convergence or spread of the

algorithm.

1 Introduction

Multi-objective optimization (MO) is the process of simultaneously finding solu-
tions to two or more objectives. It is often called as many-objective optimization
(MaO) if there are at least four objectives. MaO has attracted the interest of
many researchers because of the poor performance of multi-objective evolution-
ary algorithms (MOEAs) that are known to be efficient in solving MO problems.
Their poor performance is due to the large number of solutions in every Pareto
front levels when the number of objectives is high [1], making their Pareto dom-
inance ranking coarser, thus weakening their convergence property [2,3].

Most of the recent approaches that improve the performance of MOEAs in
solving MaO problems introduce modifications that are based on either ranking
improvement, dimensionality reduction, use of preference information, or use
of indicator or scalarizing functions [3]. Recently, a strategy that searches on
the subspaces obtained by partitioning the objective space has been studied [4].
However, all these approaches have focused mainly on the management of the
objective space taking no or just slight consideration of the decision space.

In this paper, we study the behavior of path relinking (PR), a procedure that
provides a unifying principle for combining elite solutions to create new ones

R. Schaefer et al. (Eds.): PPSN XI, Part I, LNCS 6238, pp. 677–686, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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based on generalized path constructions in both objective and decision spaces
[5]. Although the efficacy of path relinking in solving MO problems has been
demonstrated, it has not been used as a stand-alone algorithm but only as key
component of different optimizers. Moreover, except for [6] where it considered
four-objective knapsack problems, it has not been applied to solve complex MaO
problems. Thus, we propose several approaches for implementing path relinking
for complex combinatorial optimization problems having many objectives. We
also investigate how the different selection strategies associated to PR can em-
phasize either convergence or spread of the algorithm

It is important to note that we do not aim to propose a pure PR as an alter-
native search procedure to MaO problems. Rather, we study the performance of
PR using MNK-landscape models [2] to provide useful insights for practitioners
on how to exploit the desirable properties of PR to enhance existing MOEAs.

2 Multi-objective Optimization and MNK-Landscapes

Multi-objective optimization involves simultaneously optimizing a set of two or
more, and often conflicting, objective functions. In general, there are several
efficient or nondominated solutions to MO problems. A solution x is nondom-
inated if there exists no other feasible solution y such that fi(y) ≥ fi(x)1, for
i = 1, 2, . . . ,M and fi(y) > fi(x) for some i, where fi denote the individual
objective functions and M is the number of objectives.

The MNK-landscape is an extension of Kauffman’s NK-landscape models of
epistatic interaction [7] to multi-objective combinatorial optimization problems.
It is defined as a vector function mapping binary strings of length N into M real
numbers f : ZZN → IRM , where ZZ = {0, 1}. K = {K1,K2, . . . ,KM} is a set of
integers where each Ki gives the number of bits in the string that interact with
each bit in the ith landscape. Each fi(·) is expressed as

fi(x) =
1
N

N∑
j=1

fi,j(xj , z
(i,j)
1 , z

(i,j)
2 , . . . , z

(i,j)
Ki

) (1)

where fi,j : ZZKi+1 → IR gives the fitness contribution of xj to fi(·), and
z
(i,j)
1 , z

(i,j)
2 , . . . , z

(i,j)
Ki

are the Ki bits interacting with xj in string x.

3 General Concepts of Path Relinking

Path relinking generates a sequence of solutions in the decision space by exploring
the trajectories that connect elite solutions. Starting from an initiating solution
(is), it creates new solutions that form a path by performing moves in the deci-
sion space that progressively incorporate the attributes (e.g edges) of the guiding
solution (gs) [5]. In general, PR requires the following: (a) neighborhood struc-
ture for the moves, (b) solution attribute and its measure, (c) selection criteria
1 Throughout the paper, we assume maximization of the objective functions.
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1: P ←Generate();

2: repeat {/*iteration loop*/}
3: I ←Define(P);

4: S ← {};
5: for all (is, gs) ∈ I do
6: repeat {/*Path Generation*/}
7: F ←PathRelink(is , gs, N, γ);

8: x ←PathSelect(F ,ω);

9: S ← S ∪ {x};
10: is ← x;

11: until γ(is, gs) < d0

12: end for
13: P ← Nondominated(P ∪ S);

14: P ←Select(P , l);
15: until termination condition is satisfied

16: return nondominated set P
Fig. 1. Path relinking algorithm

(a) Cycle (b) Pair

Fig. 2. Concept diagram of selecting ini-

tiating and guiding solution via Cycle and

Pair. The head of the arrow points to the

guiding solution and the tail corresponds

to the initiating solution

for is and gs, and (d) selection criteria for the path. The neighborhood structure,
solution attribute and its measure are usually problem dependent while is and
gs are characterized as high quality solutions. For the multi-objective case, these
solutions are usually drawn from the set P of potentially efficient solutions (e.g.
[8]). Since there are several paths that can be formed between any two solutions,
the path selection strategy chooses the moves to realize. For example, one may
use scalarizing function [8,9].

4 Path Relinking for Many-Objective Optimization

Like any other implementation of PR in multi-objective case, we perform PR
between two solutions that belong to set P . However, since we deal primarily
with many-objective problems, we consider several ways of defining the initiating
and guiding solutions only from the set of extreme solutions P ′ ⊂ P . Moreover,
we use several forms of scalarizing functions to select new solutions to form
the path. Whereas all applications perform local search procedures within PR
to intensify the search towards the optimal Pareto front (e.g. [8]), we do not
implement any such procedure in order to clearly reveal the behavior of the pure
PR algorithm. Figure 1 provides the algorithmic framework for the PR used in
this study.

4.1 Initial, Initiating and Guiding Solutions

In Fig. 1, the procedure Generate creates a randomly generated distinct extreme
solutions that initially forms the set P . The procedure Define initializes the set
I of is–gs pairs in every iteration by first determining the set P ′. Then, it forms
the is–gs pairs via two proposed methods, called Cycle and Pair, that differ



680 J.M. Pasia, H. Aguirre, and K. Tanaka

in the way they sample the solutions. In every iteration, Cycle arranges the
solutions of P ′ in random order. Then, the first and second solutions are labeled
as the is and gs, respectively. For the succeeding pairs of solutions, the initiating
solution is the guiding solution of the previous pair and the guiding solution is
the next solution in P ′. The final is-gs pair are the last and first solutions in
P ′, respectively. The total number of pairs formed is |P ′|.

Pair forms a set of distinct pairs of is and gs by iteratively drawing two
distinct solutions from P ′, until it is no longer possible to obtain different pair of
solutions from P ′. It forms a total of #|P ′|/2$ is–gs pairs and leaves one solution
unmatched if |P ′| is odd. Figure 2 illustrates the two methods when M = 5.

4.2 Path Generation and Selection

The actual generation of the sequence of solutions or path from solution is

to gs consists of two procedures. The first procedure PathRelink(is, gs,N , γ)
returns at each step the set F of 1-bit neighbor solutions of is that reduces
the Hamming distance γ from gs, i.e. F = {x ∈ N (is) : γ(x, gs) < γ(is, gs)}.
Since each call of PathRelink may return many solutions i.e. |F | ≥ 1, then the
second procedure PathSelect is used to choose the preferred path. PathSelect
immediately chooses a single solution from F having the best value of the real-
valued function ω expressed as the weighted sum fitness function by

ω(x) = w · f(x) (2)

where w=[w1,w2, . . . ,wM ] is a weight vector such that
∑M

i=1 wi = 1 and wi ≥
0 ∀i. The interaction between these procedures is illustrated in Fig. 3.

Initially, ω is defined as the objective function where gs is best. Thus, this
strategy clearly prefers moves that are attractive relative to fi. Moreover, it limits
the search from the many objective standpoint to single objective optimization.
This is our natural way of extending the implementation of path selection in
single-objective optimization problems [5] to many objective optimization. The
solution selected by PathSelect then becomes an intermediate solution of the
path. It is important to note that the two procedures have been expressed as a
local search that optimizes a lexicographic objective function Φ = (γ,ω) [9].

is: 1 1 1 1 1 1

0 1 1 1 1 1 ω1

1 0 1 1 1 1 ω2

1 1 0 1 1 1 ω3

1 1 1 0 1 1 ω4
gs: 0 0 0 0 1 1

PathRelink(is ,gs,N , γ)

1 0 1 1 1 1

PathSelect(F, ω)

F ω

Fig. 3. Path relinking and selection. PathRelink generates several solutions and

PathSelects chooses one solution to be a solution of the path
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4.3 Link Direction and Archive

We consider re-initiating the process of path generation in the opposite direction
by interchanging the roles of is and gs to generate better extreme solutions. This
has been implemented only in the bi-objective case in [6]. Combining the two
strategies for setting the sets of is–gs pairs, and whether to interchange the roles
of is and gs initially give us four variants of the PR algorithm (see Table 1).

Since the number of nondominated solutions in every Pareto front increases
dramatically with M [2], it is important to have an archiving strategy that
controls the size (say, less than l) of the set P . The method Select performs
the archiving by selecting the M extreme solutions of P and randomly selecting
solutions from the remaining l−M solutions.

Table 1. Four variants of the path relinking algorithm. The symbol is ↔ gs (is → gs)

indicates that there is (no) reversal of roles between initiating and guiding solutions.

Cycle is → gs PRCycle1

is ↔ gs PRCycle2

Pair is → gs PRPair1

is ↔ gs PRPair2

5 Experimental Results and Analysis

5.1 Metrics, Test Problems, and Parameters

We evaluate the performance of PR algorithms using the hypervolume H and
coverage C metrics [10], the sum of maximum objectives Smax [3], and using
the performance of conventional NSGA-II [11] as benchmark. The H metric
uses several reference points O defined by the parameter α. If α = 0 then O
is the origin O and as α approaches 1, O approaches the point W having as
coordinates the worst objective values of the solutions found. If α = 0.5 then O
is the midpoint of the segment OW . C(A,B) gives the proportion of set B that
is weakly dominated by set A. Smax measures the convergence at the extremes
and around the M edges of the Pareto front. It is equal to

∑M
i=1 maxx∈P fi(x).

We test the PR algorithms using MNK-landscapes with 2 ≤ M ≤ 10 objec-
tives,N = 100 bits, and Ki = K = {0, 1, 3, 5, 7, 10, 15, 25, 35, 50}, i = 1, 2, . . . ,M
epistatic interactions. Each M,N,K combination has 50 different landscapes.
NSGA-II uses 100 individuals, 2-pt crossover with 0.6 recombination rate, and
1/N per bit mutation rate. All algorithms run once per landscape, use an archive
size l of 100, and terminate after performing 3× 105 function evaluations.

5.2 Performance Varying the Number of Objectives and Selection

We analyze the performances of the PR variants for M = 2, 3, . . . , 10 and K =
7. It is known that high values of M translates to fewer but denser Pareto
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fronts [2]. We can see from Fig. 4(a)–(d), which gives the normalized H values
H(PR)/H(NSGA-II), that NSGA-II outperforms the PR variants when 2 ≤M ≤
4, and there is a decrease in H values when α increases to 0.99 and 2 ≤M ≤ 3.
Likewise, the C metric in Fig. 4(e) shows that NSGA-II weakly dominates all
solutions of PR when M = 2 and covers most solutions when M = 3.

As M increases from 4 to 10, the convergence of PR variants improves. For
example, at least 75% of the runs of PR show improvement in H (i.e. normalized
H > 1) for all values of α when M ≥ 6. Also, although they just weakly dominate
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PR and NSGA-II for different M and K = 7
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few of the solutions of NSGA-II, almost none of their solutions are covered by
NSGA-II. Likewise, the big difference in the performance in H between α = 0.5
and α = 0.99 can be attributed to the better convergence in the central region.

Among the different PR variants, it can be seen that reversing the roles of
is and gs is beneficial in terms of improving the extreme solutions for M ≤ 5.
Figure 4(f) shows that for M ≤ 5, the median of the normalized Smax values
of PRCycle2 and PRPair2 are significantly better than that of PRCycle1 and
PRPair1. Likewise, Cycle shows significant edge over Pair only in the Smax

metric and only between PRCycle1 and PRPair1. This edge is insignificant when
the re-initiating strategy is implemented. This suggests that reversing the roles
of is and gs is more effective in improving the quality of the extreme solutions.

In terms of convergence, there is no strong indication that one variant is better
than the others. This suggests that the manner of defining is and gs from the set
of extreme solutions and the re-initiating strategy do not have strong influence
in the convergence property of the path relinking.

We also study three other ways of defining the components wi of w (see Table
2). First, we let wi = 1 if and only if is is best in fi. Next, wi is set to 0.5 if and
only if is or gs is best in fi, and 0 otherwise. This method performs the search by
using two objective functions each time. It is biased towards the central portion
between the two functions. The final method targets the central region of the
Pareto front by using Eq. 2 that aggregates (aggr) all the objective functions.
The values of the weights are changed for every call of PathSelect.

Table 2. Selection strategies for the path relinking algorithm using PRCycle2 variant

Fitness Function Path relinking

ω(x) = fi(x) PRCycle2 w1.0

ω(x) = 0.5fi(x) + 0.5fj(x) PRCycle2 w0.5

ω(x) =
∑M

i=1 wifi(x) PRCycle2 aggr

It can be seen in Fig. 5(a)–(d) that the normalized H for the different se-
lection strategies improves as M increases. Remarkably, PRCycle2 aggr posted
the biggest improvement. For example when α = 0.99, the median H value of
PRCycle2 aggr is almost 100% greater than that of the NSGA-II if M = 6.
Also, roughly between 40% to 60% of the solutions of NSGA-II are covered by
PRCycle2 aggr when M ≥ 6, while NSGA-II covers nothing of PRCycle2 aggr
(see Fig. 5(e)). The good convergence of PRCycle2 aggr expectedly sacrifices
the quality of its extreme solutions since the Smax metric (see Fig. 5(f)) shows
that PRCycle2 aggr is totally outperformed by NSGA-II. It is PRCycle2 and
PRCycle2 w1.0 that perform well in terms of Smax with the latter obtaining the
best extreme values. PRCycle w1.0 even outperforms NSGA-II when M ≥ 6. All
these results suggest that the manner of selecting the intermediate solutions or
creating the path is a valuable factor when implementing PR. The different selec-
tion strategies exhibit a trade-off between convergence and spread. Thus, it will
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PR and NSGA-II for different M and K = 7

be interesting in the future to investigate adaptive strategies that simultaneously
improve both convergence and spread.

5.3 Performance Varying the Levels of Epistastic Interactions

It was demonstrated in [2] that the complexity of the MNK-landscape models
increases with K since the optimal solutions and their true Pareto fronts become



Path Relinking on Many-Objective NK-Landscapes 685

0
1

2
3

4
5

(alpha=0.99)

M=2
M=4
M=6

M=8
M=10

N
or

m
al

iz
ed

H
yp

er
vo

lu
m

e NSGAII

K=0 K=1 K=3 K=5 K=7 K=10 K=15 K=25 K=35 K=50

(a) H: PRCycle2

0
2

4
6

(alpha=0.99)

M=2
M=4
M=6

M=8
M=10

N
or

m
al

iz
ed

H
yp

er
vo

lu
m

e

NSGAII

K=0 K=1 K=3 K=5 K=7 K=10 K=15 K=25 K=35 K=50

(b) H: PRCycle2 aggr

0
.0

0
.4

0
.8

C
ov

e
ra

g
e

(N
S

G
A

II
,P

R
)

0
.0

0
.4

0
.8

K=0 K=1 K=3 K=5 K=7 K=10 K=15 K=25 K=35 K=50

C
ov

e
ra

g
e

(P
R

,N
S

G
A

II
)

PRCycle2 PRCycle2_aggr

(c) C metric

0
.8

5
0

.9
0

0
.9

5
1

.0
0

1
.0

5

K=0 K=1 K=3 K=5 K=7 K=10 K=25 K=50

N
o

rm
a

liz
e

d
S

u
m

 o
f

M
a

x
O

b
je

ct
iv

e
 V

a
lu

e
s

NSGAII

PRCycle2
PRCycle2_aggr

(d) Smax metric

Fig. 6. (a)–(b) Normalized H metric (c) C metric (d) normalized Smax metric between

PR and NSGA-II for different values of K and for M = 2, 4, 6, 8, 10

more “discontiguous”, and more non-convex regions appear in the fronts. To
study the effects of varying K, we analyze the performances of PRCycle2 and
PRCycle2 aggr when K ranges from 0 to 50 and under different M values. It
can be observed in Fig. 6(a)–(b) that for all values of K, the H values of PR
are better than NSGA-II only when M is high. However, the edge of PR over
NSGA-II diminishes as K increases.

Figure 6(c) shows that NSGA-II covers almost all the solutions of PR for all
K and M = 2. But, PRCycle2 and PRCycle2 aggr weakly dominated more so-
lutions of NSGA-II than NSGA-II can cover them when M > 4. PRCycle2 aggr
also has higher coverage of NSGA-II compared to PRCycle2. However, the C
values of NSGA-II by PRCycle2 aggr decreases as K increases from 3 to 50.
For example when K = 3, the average coverages of NSGA-II by PRCycle2 aggr
are 32.16% and 58.16% for M = 4 and 8, respectively. These values drop to
9.78% and 24.1%, respectively, when K increases to 50. Figure 6(d) suggests
that PRCycle2 obtains better extreme solutions than PRCycle2 aggr but both
don’t find extreme solutions that are as good as NSGA-II. However, as K in-
creases, there is an improving trend for the normalized Smax of PRCycle2 aggr.
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6 Conclusions

In this paper, we study the performance of PR algorithm on different MNK-
landscape models. We design several variants of path relinking that differ on
the way the initiating and guiding solutions are defined, and on whether to
interchange their roles or not. We also study how the selection of the path using
several fitness functions affects the performance of PR. Experiments show that
the choice of the initiating and guiding solutions have a slight effect on the
convergence around the edges of the Pareto front while the selection of path
has strong influence on the convergence in the central region. In fact, PR has a
stronger convergence property around the central region compared to NSGA-II
when M ≥ 4. This good convergence can be seen in a broad range of levels of
epistatic interaction K, with its peak improvement around 1 ≤ K ≤ 10.
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Abstract. Over the last two decades, evolutionary algorithms have been

applied in solving multi-objective optimization problems. Most of these

algorithms use the concept of Pareto-optimality to drive their search.

However, many real-world multi-objective applications, in particular from

location theory and general resource allocation models, require finding

so-called equitably efficient points. These solutions form a subset of the

Pareto-optimal set. In equitable efficiency, objective functions are con-

sidered impartial which makes the distribution of outcomes more im-

portant rather than assignment of several outcomes to an objective. In

literature, we found two classical approaches to compute an equitably

efficient point. These approaches rely on either solving a problem which

is always non-differentiable or on solving a more difficult problem. In

this paper, for the first time, a multi-objective evolutionary approach

to this problem is proposed. The approach finds a diverse set of equi-

tably optimal solutions and, in addition, tackles the non-differentiability

which is inherently present in the classical approach. It is shown that

even for simple differentiable problems, which belong to the realm of

classical techniques, the evolutionary approach is a better choice than

the classical ones. Computational studies on a number of test problems

of varying complexity demonstrate the efficiency of the evolutionary ap-

proach in solving a large class of both simple and complex equitable

multi-objective optimization problems.

1 Introduction

Over the last two decades, evolutionary algorithms have been applied in solving
multi-objective optimization problems. Most of these algorithms use the con-
cept of Pareto-optimality to drive their search [1]. However, in many real-world
applications the objective functions express ideas of allocation of resources and
the corresponding multi-objective optimization problem is to achieve some eq-
uitable allocation of resources. These problems arise in general resource alloca-
tion models and location theory among others [2, 3]. Equitable optimality is a
stronger notion than that of Pareto-optimality and equitably optimal points to
a multi-objective optimization problem form a subset of the Pareto-optimal set.
In equitable efficiency, objective functions are considered impartial/ anonymous
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and this emphasizes the distribution of outcomes rather than the assignment of
several outcomes to an objective. This issue is detailed later in Section 2.

In literature, we found two classical approaches towards finding an equitably
optimal point [2]. These approaches rely on either solving a problem which is
always non-differentiable (even if the original problem is differentiable) or on
solving a more difficult problem having a large number of variables and con-
straints. In this paper, for the first time, we propose a multi-objective evolution-
ary approach to find a diverse set of equitably optimal solutions. In addition to
this, the evolutionary approach tackles the non-differentiability which is inher-
ently present in the classical approach. It is shown that even for simple differen-
tiable problems the evolutionary approach is a better choice than the classical
ones. Computational studies on a number of test problems of varying complexity
demonstrate the efficacy of the evolutionary approach in solving a large class of
both simple and complex equitable multi-objective optimization problems.

This paper is divided into four sections of which this is the first. The next
section presents concepts of equitable efficiency and an overview of solution ap-
proaches using classical generating methods. The same section also introduces
a multi-objective evolutionary approach for finding equitably efficient points.
Simulation results using the evolutionary approach and a comparison with some
existing classical methods is presented in Section 3. Conclusions as well as
extensions which emanated from this study are presented at the end of this
contribution.

2 Equitable Efficiency and Solution Approaches

In this section, we present the notion of equitable efficiency and discuss possible
ways to solve equitable multi-objective optimization problems.

2.1 Equitable Efficiency

For given objective functions f1, . . . , fm : Rn → R and a given X ⊆ Rn, let us
consider the following multi-objective optimization problem (MOP ):

min f(x) := (f1(x), f2(x), . . . , fm(x)) s.t. x ∈ X. (1)

Let I := {1, 2, . . . ,m} denote the index set and let Y := f(X) denote the set
of all feasible points in the objective space. A central optimality notion for the
above problem is that of Pareto-optimality.

Definition 1 (Pareto-optimality). A point x∗ ∈ X is called Pareto-optimal
if no x ∈ X exists so that fi(x) ≤ fi(x∗) for all i ∈ I with strict inequality for at
least one index i. If x∗ is Pareto-optimal, then f(x∗) is called an efficient point.

The above notion of Pareto-optimality is related to a preference model. Corre-
sponding to a preference model, denoted as �, the corresponding relations of
strict preference ≺ and indifference ∼= are defined as:

y1 ≺ y2 ⇐⇒ (y1 � y2 and not y2 � y1) and
y1 ∼= y2 ⇐⇒ (y1 � y2 and y2 � y1),
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for all y1,y2 ∈ Y. In order to study general preference relations, we introduce
the following axioms.

(A1) � is reflexive, i.e., y � y, ∀y ∈ Y.
(A2) � is transitive, i.e., y1 � y2 and y2 � y3 implies y1 � y3, ∀y ∈ Y.
(A3) � is strictly monotonic, i.e., y− εei ≺ y, ∀ε > 0, y ∈ Y, where ei denotes

the i-th unit vector in Rm.

Preference models satisfying axioms (A1-A3) are known as rational preference
models. The next two definitions from [2] characterize Pareto-domination and
Pareto-optimality.

Definition 2 (Pareto-domination). A point y∗ ∈ Y is said to (Pareto) dom-
inate a point y ∈ Y, or y is (Pareto) dominated by y∗, if and only if y∗ ≺ y for
all rational preference models �.

Definition 3 (Pareto-optimality). A point x∗ ∈ X is Pareto-optimal if and
only if there does not exist an x ∈ X such that f(x) (Pareto) dominates f(x∗).
If x∗ is Pareto-optimal, then f(x∗) is called an efficient point.

The characterization of Pareto-optimality in Definition 3 is an axiomatic char-
acterization and is equivalent to Definition 1 (see details in [2]).

The notion of equitably optimal points comes from axioms (A1-A3) and two
additional axioms, which are defined next.

(A4) � is impartial, i.e., ∀y := (y1, . . . , ym) ∈ Y and any permutation τ of I,
it holds that (

yτ(1), yτ(2), . . . , yτ(m)

) ∼= (y1, y2, . . . , ym) .

(A5) � satisfies the Pigou-Dalton principle of transfers, i.e.,

yi < yj ⇒ y − εei + εej ≺ y for 0 < ε < yj − yi, i, j ∈ I.
The Pigou-Dalton principle of transfers [4] states that a transfer of small amount
from an objective to a relatively worse objective results in a more preferred vector
(in the objective space). Preference models satisfying axioms (A1-A5) are known
as equitable preference models.

Definition 4 (Equitable-domination). A point y∗ ∈ Y is said to equitably
dominate a point y ∈ Y, or y is equitably dominated by y∗, if and only if y∗ ≺ y
for all equitable preference models �.

Definition 5 (Equitable-optimality). A point x∗ ∈ X is equitably optimal
if and only if there does not exist an x ∈ X such that f(x) equitably dominates
f(x∗). If x∗ is equitably optimal, then f(x∗) is called an equitably efficient point.

From Definitions 3 and 5 it is clear that an equitably optimal point is also
Pareto-optimal. The goal of solving an equitable multi-objective problem (and
the topic of this paper) is to find equitably optimal points.
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2.2 Problem Formulation

Here, we provide further characterizations of equitably optimal points and dis-
cuss some solution approaches. Many of the results are from [2].

In order to mathematically formalize the preference model of equitable dom-
ination, we proceed as follows. Let the map Θ : Rm → Rm be so that Θ(y) =
(θ1(y), θ2(y), . . . , θm(y)), where θ1(y) ≥ θ2(y) ≥ . . . ≥ θm(y) and there exists a
permutation τ of the set I such that θi(y) = yτ(i) for all i ∈ I. Moreover, let
Γ : Rm → Rm and q := (q1, . . . , qm) be so that Γ (q) = (γ1(q), γ2(q), . . . , γm(q)),
where

γi(q) =
i∑

j=1

qj for all i ∈ I.

Composition ofΘ andΓ gives us the cumulative ordering map Θ̄ =
(
θ̄1, θ̄2, . . . , θ̄m

)
defined as Θ̄(y) = Γ (Θ(y)), i.e.,

θ̄i(y) =
i∑

j=1

θj(y) for all i ∈ I.

It can be easily seen that if y = f(x), the coefficients of the vector Θ̄(f(x))
represent the largest, the sum of the two largest, the sum of the three largest
etc., objective functions values at x, respectively. From [5, Theorem 1], we obtain
that equitable domination is equivalent to Pareto-domination on the modified
set of objectives Θ̄. This is an important result and is used to transform the goal
of finding equitably optimal points of the original problem to that of finding
Pareto-optimal points of the following multi-objective problem:

min Θ̄(x) :=
(
θ̄1(x), θ̄2(x), . . . , θ̄m(x)

)
s.t. x ∈ X. (P1)

If we look carefully at (P1), we see that now all the first m−1 objective functions
are non-differentiable. This non-differentiability is inherent in the Θ mapping
and is there even if the original multi-objective problem (1) is differentiable.
Hence, although we have now reduced the problem of finding equitably optimal
points to the well-studied problem of finding Pareto-optimal points, this comes
at the cost of non-differentiability. In order to have a smooth formulation, the
authors of the original study reformulated the multi-objective problem (P1) as
the following equivalent problem:

min (z1, z2, . . . , zm)
s.t. x ∈ X,

zk = ktk +
m∑

i=1

d+
ik for all k ∈ I,

tk + d+
ik ≥ fi(x), d+

ik ≥ 0 for all i, k ∈ I.

(P2)

Although (P2) removes the problem of non-differentiability, this is done at the
extra cost of inserting a large number of additional variables and additional
constrains. Assuming that the original problem (1) has k constraints, Table 2
shows a comparison of the two formulations.
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Table 1. Comparison between two formulations for finding equitably optimal points

Formulation (P1) Formulation (P2)

# objectives m m
# variables n n + m + m2

# constraints k k + 2m2

2.3 Classical and Evolutionary Solution Approaches

Formulations (P1) and (P2) are multi-objective problems and could, in principle,
be solved by any multi-objective algorithm. The main aim of this paper is to
show that evolutionary algorithms are better suited for finding equitably optimal
points, not only for difficult but also for simple problems. This is done by apply-
ing the NSGA-II algorithm [6] with the equitable definition of domination. We
call this algorithm as eNSGA-II. We will see that the non-differentiability that
is inherent in formulation (P1) or the additional large number of variables and
constraints that are present in formulation (P2) make it very difficult for clas-
sical techniques. It will turn out that even for simple multi-objective problems,
having all differentiable objectives, eNSGA-II gives better results than classical
ones. An earlier study showed that for finding efficient points, classical methods
perform better than NSGA-II for simple differentiable problems [7].

In addition to the eNSGA-II algorithm, we use the Normal Boundary Inter-
section (NBI) method [8] and a modified NBI (mNBI) method [9], on both the
formulations (P1) and (P2) (we call these as NBI-P1, NBI-P2, mNBI-P1 and
mNBI-P2, respectively). Both NBI and mNBI methods are used for finding uni-
formly spread Pareto-optimal solutions for a general nonlinear multi-objective
optimization problem. These approaches use a scalarization scheme with the
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property that a uniform spread in parameters will give rise to a near uniform
spread in points on the efficient frontier. Figures 1 and 2 show a schematic of the
NBI and mNBI methods, respectively. These methods work with the convex hull
of the minima of the individual objective functions. An advantage of the mNBI
method over the NBI method is that it guarantees Pareto-optimality. For further
details, we refer the reader to the original studies [8, 9] or to the book [10].

3 Simulation Results

In this section, we present simulation results using eNSGA-II, NBI-P1, NBI-P2,
mNBI-P1 and mNBI-P2 on a number of test problems of varying complexity.
These include five from the ZDT suite (ZDT1, ZDT2, ZDT3, ZDT4, ZDT6)
[6], four problems from the CEC-2007 competition (SZDT1, SZDT2, SZDT4,
SZDT6), one from the DTLZ family (DTLZ5-3D) [1], and four from the WFG
suite (WFG1, WFG8, with both 2 and 3 objectives) [1]. Note that the DTLZ5
and the ZDT problems are differentiable and uni-modal, except ZDT4 which
is differentiable and multi-modal. The other problems are differentiable almost
everywhere (the set of non-differentiable points is countable). In their equitable
form (P1), all the problems are non-differentiable. For all problems solved using
eNSGA-II, we use a population of size 100 and set the maximum number of func-
tion evaluations as 20,000 (200 generations). We use a standard real-parameter
SBX and polynomial mutation operator with ηc = 15 and ηm = 20, respectively
[6]. For the classical methods, we solve 100 sub-problems (analogous to the pop-
ulation size of 100 in eNSGA-II) and note the number of function evaluations.

As noted earlier, the equitable front is a part of the efficient front. For all
problems we compute a well-distributed approximation of the equitable front
(reference set) as follows. Corresponding to the problem, first we generate 10,000
well-diverse points on the efficient front. Then we find the equitable points,
i.e., the points that are non-dominated in the Θ̄ space. In order to evaluate
the results, we use the Inverted generational distance (IGD) and Generational
distance (GD) metrics (wrt. the obtained reference set). For statistical evaluation
we use the attainment surface based statistical metric [6]. We run each algorithm
for 51 times and the median (50%) attainment surface (26st) for eNSGA-II is
plotted. In the classical methods, we use the SQP method for solving and we
present the number of function evaluations needed for 100 sub-problems and
the number of failed optimization runs. The source code of eNSGA-II, NBI and
mNBI is made available1. The data files for all the 51 runs of all the problems
are available on request.

Figure 3 illustrates the effect of the equitable transformation Θ̄ on the test
problems ZDT1, ZDT2, ZDT3 and WFG1-2D. It can be seen that equitable front
is only a small portion of the efficient front, except for ZDT2. From Figure 4 we
see that all the algorithms are able to converge to the equitable front for ZDT1.
However, mNBI-P2 and NBI-P2 find very few (∼5) points on the equitable front.
This has to do with the additional large number of variables that are introduced
1 http://www.aifb.kit.edu/web/eNSGA-II/en
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Table 2. The number of function evaluations needed for solving 100 sub-problems and

the number of failed optimization runs using the NBI and the mNBI method

NBI Algorithm
ZDT1 ZDT2 ZDT3 ZDT4 ZDT6 SZDT1 SZDT2

# evals. P1 12893 12775 36423 11029 8390 25959 113268
# failed P1 0 0 27 0 80 99 96
# evals. P2 11769 12643 14010 30160 7848 287020 526100
# failed P2 0 0 0 1 38 81 60

SZDT4 SZDT6 DTLZ5 WFG1,2d WFG1,3d WFG8,2d WFG8,3d

# evals. P1 27089 15237 24335 76171 204096 65172 71207
# failed P1 100 100 100 97 1 2 53
# evals. P2 298046 202273 5848 30208 80881 255266 341487
# failed P2 0 14 0 98 91 40 18

mNBI Algorithm
ZDT1 ZDT2 ZDT3 ZDT4 ZDT6 SZDT1 SZDT2

# evals. P1 12893 12775 36423 11029 8390 25959 113268
# failed P1 0 0 27 0 80 99 96
# evals. P2 11769 12643 14010 30160 7848 287020 526100
# failed P2 0 0 0 1 38 81 60

SZDT4 SZDT6 DTLZ5 WFG1,2d WFG1,3d WFG8,2d WFG8,3d

# evals. P1 27089 15237 24335 76171 204096 65172 71207
# failed P1 100 100 100 97 1 2 53
# evals. P2 298046 202273 5848 30208 80881 255266 341487
# failed P2 0 14 0 98 91 40 18

Table 3. Generational distance (GD) and Inverted generational distance (IGD) metric

values for the test problems, using the eNSGA-II algorithm

eNSGA-II
GD ZDT1 ZDT2 ZDT3 ZDT4 ZDT6 SZDT1 SZDT2

best 0.000036 0.000061 0.000229 0.000099 0.000334 0.000513 0.004345
worst 0.000055 0.000097 0.000291 0.003960 0.000606 0.001613 0.013401
mean 0.000040 0.000078 0.000265 0.000614 0.000459 0.000912 0.006865
std. 0.000003 0.000007 0.000012 0.000733 0.000057 0.000265 0.001650
GD SZDT4 SZDT6 DTLZ5 WFG1,2d WFG1,3d WFG8,2d WFG8,3d

best 0.436254 0.292219 0.000181 0.079634 0.117718 0.043129 0.056362
worst 3.369149 0.698726 0.000261 0.399920 0.710253 0.139375 0.153480
mean 1.303690 0.483888 0.000226 0.127480 0.390463 0.067919 0.087787
std. 0.644303 0.086988 0.000020 0.089739 0.188274 0.018488 0.020908

IGD ZDT1 ZDT2 ZDT3 ZDT4 ZDT6 SZDT1 SZDT2

best 0.000055 0.000136 0.000171 0.000113 0.000068 0.000509 0.029495
worst 0.000134 0.002676 0.000244 0.001859 0.000126 0.001984 0.030233
mean 0.000072 0.001681 0.000215 0.000534 0.000096 0.000924 0.029917
std. 0.000017 0.001246 0.000016 0.000395 0.000013 0.000292 0.000156
IGD SZDT4 SZDT6 DTLZ5 WFG1,2d WFG1,3d WFG8,2d WFG8,3d

best 0.137492 0.084707 0.000299 0.125045 0.161601 0.027181 0.017899
worst 0.606653 0.104575 0.000402 0.175836 0.185154 0.117519 0.061577
mean 0.340396 0.096066 0.000340 0.142345 0.390462 0.044174 0.031567
std. 0.108192 0.004333 0.000017 0.011033 0.004141 0.019187 0.010425

in formulation (P2). Each objective function of (P2) depends on only few of
these variables. Hence, there are many points (weakly efficient) which give the
individual function optima. This causes a very large unnecessary region to be
explored by the NBI and the mNBI method and among this region, only few
points (∼5%) are equitably efficient. On the ZDT2 problem, in Figure 5 we see
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Fig. 5. Performance of all the five algo-

rithms on ZDT2
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Fig. 6. Median attainment surface plot of

eNSGA-II on ZDT2
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Fig. 7. Performance of all the five algo-

rithms on ZDT3
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Fig. 8. Median attainment surface plot

of eNSGA-II on ZDT3



In Search of Equitable Solutions Using MOEAs 695

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

f
1

f 2

 

 

Efficient front
Equitable front
50% attainment surface

Fig. 9. Median attainment plot of

eNSGA-II on ZDT4
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Fig. 10. Median attainment surface

plot of eNSGA-II on SZDT2
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Fig. 11. Median attainment surface plot

of eNSGA-II on WFG1 3D
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Fig. 12. Median attainment surface plot

of eNSGA-II on WFG8 3D

an interesting behavior of the (P1) formulation: non-equitably efficient points
are found. Looking at the second subplot in Figure 3 we see that instead of
the blue equitably efficient points, the SQP based NBI/ mNBI procedure finds
the black points. The methods start from the individual function minima (in
equitable space, second subplot in Figure 3) and then use this optimal point as
the starting point of the next sub-problem. This causes the behavior in Figure 5.
Our experiments showed that if we do not use the individual function minima as
the starting points (warm start strategy), we need considerably more function
evaluations. Figure 7 shows the performance of all the five algorithms on ZDT3.
Here also, we see that with the exception of eNSGA-II, the other algorithms
either do not find the equitable front or find just few points on it. Table 2 shows
the performance of the classical algorithm in terms of the number of function
evaluations and the number of failed runs (out of 100). On all the test problems
except ZDT1, ZDT2 and ZDT3, the classical algorithms are not able to find
more than 2–3 points, if at all they find any. Table 3 and Figures 6, 8, 9, 10 11
and 12 show that the evolutionary based approach eNSGA-II finds a reasonably
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well-diverse set of equitably efficient points. On the three dimensional WFG
problems, we see that eNSGA-II approaches the equitable efficient front in a
way so as not to explore the unnecessary regions of the efficient front.

4 Conclusions

This study brings into light that evolutionary algorithms are better suited for
finding equitably optimal points than their classical counterparts. The inherent
difficulties that are present in various problem formulations, like non-differentiability
or a large number of additional variables, prohibit the use of classical techniques,
even for simple differentiable problems. The non-differentiability on the other
hand, poses no problem for the eNSGA-II method over a wide gamut of prob-
lems, ranging from very simple to very difficult. Hence, this paper adequately
demonstrates the niche of population based algorithms in finding equitably opti-
mal points. This is the first attempt towards finding a well-diverse representation
of equitably optimal solutions and we hope that the study motivates others. It
would be interesting to see how other algorithms, like SPEA-2, perform on prob-
lems with equitable objectives.
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Abstract. For a general Markov chain model of genetic algorithm, we

establish an upper bound for the number of iterations which must be

executed in order to generate, with a prescribed probability, a population

consisting entirely of minimal solutions to a multiobjective optimization

problem. However, since populations may contain multiple copies of the

same element, we can only guarantee that at least one minimal solution

is found. Using this upper bound, we then derive a stopping criterion

which ensures that at least one minimal element is a member of the last

population generated.

Keywords: Random Heuristic Search, genetic algorithm, stopping cri-

terion, multiobjective optimization.

1 Introduction

Obtaining sensible stopping criteria is an important issue in the theory of genetic
algorithms. One of the possible approaches to this problem is to obtain upper
bounds for the number of iterations necessary to ensure finding an optimal solu-
tion with a prescribed probability (see [1] and references therein). In an earlier
paper [6], we have presented some results of this type for a general model of
genetic algorithm, based on the theory developed in [4] and [7]. The aim of this
paper is to modify the results of [6] so as to obtain some stopping criteria for
the case of multiobjective optimization.

2 The RHS Algorithm as a Markov Chain

The RHS (Random Heuristic Search) algorithm, described in [7], is defined by
an initial population P (0) and a transition rule τ which, for a given population
P (i), determines a new population P (i+1). Iterating τ , we obtain a sequence of
populations:

P (0) τ−→ P (1) τ−→ P (2) τ−→ ... (1)

Each population consists of a finite number of individuals which are elements of a
given finite set Ω called the search space. Populations are multisets, which means
that the same individual may appear more than once in a given population.

R. Schaefer et al. (Eds.): PPSN XI, Part I, LNCS 6238, pp. 697–706, 2010.
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To simplify the notation, it is convenient to identify Ω with a subset of inte-
gers: Ω = {0, 1, ...,n− 1}. The number n is called the size of search space. Then
a population can be represented as an incidence vector (see [4, p. 141]):

v = (v0, v1, ..., vn−1)T , (2)

where vi is the number of copies of individual i ∈ Ω in the population (vi = 0
if the i-th individual does not appear in the population). The size of population
v is the number r =

∑n−1
i=0 vi. We assume that all the populations appearing in

sequence (1) have the same size r. Dividing each component of incidence vector
(2) by r, we obtain the population vector

p = (p0, p1, ..., pn−1)T ,

where pi = vi/r is the proportion of individual i ∈ Ω in the population. In
this way, we obtain a more general representation of the population which is
independent of population size. It follows that each vector p of this type belongs
to the set

Λ :=

{
x ∈ Rn : xi ≥ 0 (∀i),

n−1∑
i=0

xi = 1

}
,

which is a simplex in Rn. However, not all points of this simplex correspond to
finite populations. For a fixed r ∈ N, the following subset of Λ consists of all
populations of size r (see [7, p. 7]):

Λr :=
1
r

{
x ∈ Rn : xi ∈ N ∪ {0} (∀i),

n−1∑
i=0

xi = r

}
.

We now define the mapping
G : Λ −→ Λ,

called heuristic [7, p. 9] or generational operator [4, p. 144], in the following way:
for a vector p ∈ Λ representing the current population, G(p) is the probability
distribution that is sampled independently r times (with replacement) to pro-
duce the next population after p. For each of these r choices, the probability of
selecting an individual i ∈ Ω is equal to G(p)i, the i-th component of G(p).

A transition rule τ is called admissible if it is a composition of a heuristic G
with drawing a sample in the way described above. Symbolically,

τ(p) = sample(G(p)), ∀p ∈ Λ. (3)

Of course, a transition rule defined this way is nondeterministic, i.e., by applying
it repeatedly to the same vector p, we can obtain different results. It should also
be noted that, although G(p) may not belong to Λr, the result of drawing an
r-element sample is always a population of size r; therefore, it follows from (3)
that τ(p) ∈ Λr.

A sequence of random variables {Xt}t∈N0 (where N0 := N ∪ {0}) defined on
the same probabilistic space (Z,F , Pr), with values in a countable set S (the
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state space) is called a Markov chain if, for every t ∈ N and every sequence
s0, s1, ..., st ∈ S, the following condition is satisfied:

Pr (Xt = st| Xt−1 = st−1, ...,X1 = s1,X0 = s0) = Pr (Xt = st| Xt−1 = st−1) ,
(4)

provided Pr(Xt−1 = st−1, ...,X1 = s1,X0 = s0) > 0.
A matrix is called stochastic if all its elements are nonnegative and the sum

of every row is equal to 1. A stochastic matrix Π(t) = [πi,j(t)]i,j∈S is called the
transition matrix of the Markov chain {Xt}t∈N0 at time t, t ≥ 1, if πi,j(t) =
Pr (Xt = sj | Xt−1 = si) for all j ∈ S and i such that Pr(Xt−1 = si) > 0. A
Markov chain is called (temporally) homogeneous if there exists a matrix Π =
[πi,j ]i,j∈S being the transition matrix of this Markov chain at every time t.

Let us now return to the RHS algorithm. It generates a sequence of
populations

p̂, τ(p̂), τ2(p̂), ... , (5)

where p̂ is a fixed initial population. The RHS can be regarded as a Markov
chain where the state space is Λr and the values of successive random vectors
X0, X1, X2,... are populations (5). Since p̂ is fixed, we may assume that X0 is a
random vector taking on the single value p̂ with probability 1.

We denote by Pr (q | p) = Pr(τ(p) = q) the probability of obtaining a pop-
ulation q in the current iteration of the RHS algorithm provided the previous
population is p. It follows from [7, Thm. 3.4] that

Pr(q | p) = r!
n−1∏
j=0

(G(p)j)rqj

(rqj)!
. (6)

Since this probability does not depend on t, we deduce that the RHS algo-
rithm is a homogeneous Markov chain with the constant transition matrix Π =
[πp,q]p,q∈S , where S = Λr, and the elements

πp,q = Pr(q | p) (7)

are given by (6).

3 The Transition Matrix of a Genetic Algorithm

In this section we consider a genetic algorithm as a particular case of the RHS.
We assume that a single iteration of the genetic algorithm produces the next
population form the current population according to the following procedure:

1. Choose two parents from the current population by using a selection method
which can be described by some heuristic (see [7, § 4.2]). It should be noted
that classical proportional (roulette wheel) selection is not suitable for mul-
tiobjective optimization. However, some variants of Pareto ranking or tour-
nament selection, based on partial order, can be used.
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2. Crossover the two parents to obtain a child.
3. Mutate the child.
4. Put the mutated child into the next population.
5. If the next population contains less than r members, return to step 1.

We assume that the composition of selection, crossover and mutation can be
described in terms of some heuristic that does not vary in time. We also assume
that mutation consists in replacing a given individual from Ω by another indi-
vidual, with a prescribed probability. Let us denote by ui,j the probability that
individual i mutates to j. In this way, we obtain a n× n matrix U = [ui,j ]i,j∈Ω .
The probability of generating individual j ∈ Ω from population p by successive
application of selection, crossover and mutation is equal to (compare with the
first equation on p. 120 in [4])

G(p)j = Pr([j] | p)scm =
n−1∑
i=0

ui,j Pr([i] | p)sc, (8)

where the symbol [i] means that we generate a single individual i (not a whole
population as in (6)), the subscript sc means that we are dealing with the compo-
sition of selection and crossover, and the subscript scm indicates the composition
of selection, crossover and mutation. To get a whole new population, one should
draw an r-element sample from probability distribution (8). The probability of
generating a population q in this way is equal, by (6) and (8), to

Pr(q | p)scm = r!
n−1∏
j=0

(Pr([j] | p)scm)rqj

(rqj)!
. (9)

According to (7), equation (9) gives also a formula for the transition matrix of
our algorithm.

4 Stopping Criteria for a Genetic Algorithm

Consider the following multiobjective optimization problem. Let Ω be a finite
search space defined in § 2, and let f : Ω → F be a function being minimized,
where F = {f(ω) : ω ∈ Ω} and (F,�) is a partially ordered set. An element
x∗ ∈ F is called a minimal element of (F,�) if there is no x ∈ F such that
x ≺ x∗, where the relation ≺ is defined by

(x ≺ y) :⇔ (x � y ∧ x = y).

The set of all minimal elements of F is denoted by Min(F,�). We define the set
of optimal solutions in our multiobjective problem as follows:

Ω+ = Minf (Ω,�) := {ω ∈ Ω : f(ω) ∈ Min(f(Ω),�)} . (10)

In particular, if F is a finite subset of the Euclidean space Rγ , and f = (f1, ..., fγ),
where each component of f is being minimized independently, then the relation
� in F can be defined by

(x � y) :⇔ (xi ≤ yi, i = 1, ..., γ).
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In this case, Ω+ is the set of all Pareto optimal solutions of the respective
multiobjective optimization problem.

Suppose that the goal of RHS is to find as many elements of Ω+ as possible.
We assume that the algorithm stops when, with a prescribed probability, among
the populations generated so far there is at least one consisting only of individuals
belonging to Ω+. Let Ω− := Ω\Ω+, and let S+ denote the subset of the state
space S = Λr consisting of all populations which do not contain an element
of Ω−:

S+ :=
{
p ∈ S : pi = 0, ∀i ∈ Ω−} . (11)

Let S− := S\S+. We denote by At the event that the population generated in
iteration t contains at least one nonoptimal element:

At :=
{
τ t(p̂) ∈ S−} . (12)

The following theorem will be used in the proof of Lemma 1 below.

Theorem 1. [2, p. 38] Let {Hθ}θ∈Θ (where Θ is an arbitrary index set) be a
division of sample space Z onto events with positive probability. Then, for any
events A and B such that Pr(B) > 0, we have

Pr(A |B) =
∑

{θ:Pr(B∩Hθ)>0}
Pr(A |B ∩Hθ) Pr(Hθ |B).

The following lemma gives an upper bound of the probability that no population
in S+ has been generated in the first t iterations.

Lemma 1. Suppose that, for some α ∈ (0, 1), we have that∑
q∈S−

πp,q ≤ α, ∀p ∈ S. (13)

Then
Pr (A1 ∩A2 ∩ ... ∩At) ≤ αt (14)

for all t ∈ N.

Proof. We apply induction with respect to t. First, we shall verify that inequality
(14) holds for t = 1. Indeed, from assumption (13) for p = p̂, we obtain

Pr(A1) =
∑

q∈S−
Pr(q | p̂) =

∑
q∈S−

πp̂,q ≤ α.

Suppose now that (14) holds for t = s. Without loss of generality, we may assume
that

Pr (A1 ∩A2 ∩ ... ∩As) > 0, (15)

since in the opposite case condition (14) is satisfied automatically for all t ≥ s.
Taking (15) into account, we obtain form the definition of conditional probability
and from our assumption that
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Pr (A1 ∩A2 ∩ ... ∩As ∩As+1)
= Pr(A1 ∩A2 ∩ ... ∩As) Pr(As+1 |A1 ∩A2 ∩ ... ∩As)
≤ αs Pr(As+1 |A1 ∩A2 ∩ ... ∩As). (16)

Let {Hs
θ}θ∈Θ be the family of all possible events of the form

Hs
θ :=

{
τk(p̂) = pθ,k, k = 1, ..., s

}
. (17)

In other words, Hs
θ is the event that the following sequence of populations has

been generated in the first s iterations:

p̂, pθ,1 , ..., pθ,s. (18)

Since the set of populations S is finite, the family {Hs
θ}θ∈Θ is also finite. We

assume that, for different indices θ1 and θ2, the sequences of populations (18)
are different, that is, pθ1,k = pθ2,k for at least one k ∈ {1, ..., s}; then Hs

θ1
= Hs

θ2
.

Discarding the events Hs
θ with probability zero, we may assume that Pr(Hs

θ ) > 0
for all θ ∈ Θ. Hence, the family of events (17) is a division of Z onto disjoint
events with positive probability. From Theorem 1, we obtain

Pr(As+1 |A1 ∩A2 ∩ ... ∩As) (19)

=
∑

{θ:Pr(A1∩...∩As∩Hs
θ )>0}

Pr(As+1 |A1 ∩ ... ∩As ∩Hs
θ ) Pr(Hs

θ |A1 ∩ ... ∩As).

If Pr(A1 ∩ ... ∩ As ∩Hs
θ ) > 0, then A1 ∩ ... ∩ As ∩Hs

θ = ∅. From this fact and
from the definitions of the respective sets (equations (12) and (17)), it follows
that pθ,1, ..., pθ,s ∈ S−, and consequently, Hs

θ ⊂ A1 ∩ ... ∩As. Hence,

A1 ∩ ... ∩As ∩Hs
θ = Hs

θ . (20)

It follows from (19) and (20) that

Pr(As+1 |A1 ∩A2 ∩ ... ∩As)

=
∑

{θ:Pr(A1∩...∩As∩Hs
θ )>0}

Pr(As+1 |Hs
θ ) Pr(Hs

θ |A1 ∩ ... ∩As). (21)

We shall now estimate the term Pr(As+1 |Hs
θ ). From the definition of a Markov

chain (equation (4)) and from assumption (13), we obtain

Pr(As+1 |Hs
θ ) = Pr(τs+1(p̂) ∈ S− | τk(p̂) = pθ,k, k = 1, ..., s)

=
∑

q∈S−
Pr(τs+1(p̂) = q | τk(p̂) = pθ,k, k = 1, ..., s)

=
∑

q∈S−
Pr(τs+1(p̂) = q | τs(p̂) = pθ,s)

=
∑

q∈S−
πpθ,s,q ≤ α. (22)
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It follows from (21) and (22) that

Pr(As+1 |A1 ∩A2 ∩ ... ∩As)

≤ α
∑

{θ:Pr(A1∩...∩As∩Hs
θ
)>0}

Pr(Hs
θ |A1 ∩ ... ∩As) = α, (23)

where the last equality follows from the property that the family {Hs
θ : Pr(A1 ∩

...∩As∩Hs
θ ) > 0} is a division ofA1∩...∩As onto events with positive probability.

Combining (16) and (23), we get

Pr (A1 ∩A2 ∩ ... ∩As ∩As+1) ≤ αs+1,

which completes the proof of (14) by induction. �

Using Lemma 1, we can easily obtain a lower bound for the probability that
a population in S+ has been generated in the first t iterations. Indeed, let Bt

denote the event that population in S+ has been generated in iteration t:

Bt := Z\At :=
{
τ t(p̂) ∈ S+

}
. (24)

Then, assuming (13), we get from (24) and (14)

Pr (B1 ∪ ... ∪Bt) = Pr((Z\A1) ∪ ... ∪ (Z\At))
= Pr(Z\(A1 ∩ ... ∩At))
= 1− Pr(A1 ∩ ... ∩At) ≥ 1− αt. (25)

The following theorem gives a more precise lower bound of the form (25) for the
genetic algorithm model considered in the earlier sections.

Theorem 2. We consider the general model of genetic algorithm described in §
3, being a special case of the RHS algorithm with the heuristic G given by (8).
Suppose that the set Ω+ of optimal solutions has the form

Ω+ = {j1, j2, ..., jm}, (26)

where the (possibly unknown) number m of these solutions is bounded from below
by some known positive integer m̄. Suppose also that there exists a number β ∈
(0, 1/m̄) satisfying

ui,j ≥ β, ∀i, j ∈ Ω. (27)

Then the probability of generating a population in S+ in the first t iterations is
at least 1− (1 − (m̄β)r)t.

Remark 1. (a) Since any finite partially ordered set has minimal elements, the
set Ω+ is nonempty. Therefore, if no nontrivial lower bound m̄ is known, we
may always use m̄ = 1. (b) Condition (27) (with β > 0) is always satisfied
for a genetic algorithm where individuals are strings of symbols from a finite
cardinality alphabet, and the mutation is defined by a positive mutation rate
(see [3, p. 444, Remark 1]).
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Proof. We shall show that the assumption of Lemma 1 is satisfied with α =
1− (m̄β)r. Let Pr(S− | p)scm denote the probability of generating a population
in S− from population p by first applying heuristic G and then drawing an r-
element sample from probability distribution G(p). Further, let Pr([Ω+] | p)scm

denote the probability of generating an individual in Ω+ from population p by
single application of the operations of selection, crossover and mutation (which
is equivalent to drawing a one-element sample from G(p)). Then the left-hand
side of (13) can be rewritten as follows:∑

q∈S−
πp,q =

∑
q∈S−

Pr(q | p)scm = Pr(S− | p)scm

= 1− Pr(S+ | p)scm = 1− (Pr([Ω+] | p)scm)r, (28)

where the last equality in (28) follows from the independence of r random vari-
ables constituting an r-element sample.

Now, using (8) and (27), we deduce that, for any p ∈ S and j ∈ Ω,

Pr([j] | p)scm ≥ β

n−1∑
i=0

Pr([i] | p)sc = β, (29)

where the final equality follows because we add probabilities of disjoint events
whose union is the entire sample space Z. Taking into account the representation
of Ω+ given by (26), and using inequality (29), we get

Pr([Ω+] | p)scm =
m∑

l=1

Pr([jl] | p)scm ≥
m∑

l=1

β = mβ ≥ m̄β. (30)

Conditions (28) and (30) imply∑
q∈S−

πp,q ≤ 1− (m̄β)r.

Since by assumption β ∈ (0, 1/m̄), so α = 1− (m̄β)r ∈ (0, 1). Therefore, we can
apply Lemma 1 to obtain

Pr (A1 ∩ ... ∩At) ≤ (1− (m̄β)r)t,

for all t ∈ N. By using (25), we can estimate the probability of obtaining a
population in S+ in the first t iterations as follows:

Pr (B1 ∪ ... ∪Bt) = 1− Pr(A1 ∩ ... ∩At) ≥ 1− (1− (m̄β)r)t,

which concludes the proof of the theorem. �
Corollary 1. For any δ ∈ (0, 1), we denote by tmin(δ) the smallest number of
iterations required to guarantee that a population in S+ has been generated with
probability δ. Then

tmin(δ) ≤
⌈

ln(1− δ)
ln(1− (m̄β)r)

⌉
, (31)

where &x' is the smallest integer greater than or equal to x.
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Proof. By choosing the number of iterations t satisfying the inequality

1− (1− (m̄β)r)t ≥ δ, (32)

we have guaranteed that a population in S+ has been generated with probability
at least δ. Inequality (32) is equivalent to the following one:

t ≥ ln(1 − δ)
ln(1− (m̄β)r)

. (33)

For each positive integer t satisfying (32) (or equivalently, (33)), we have that
tmin(δ) ≤ t. Hence, by taking t equal to the right-hand side of (31), we get the
desired inequality for tmin(δ). �

Corollary 1 can be used as a stopping criterion for our genetic algorithm in the
following way. First, we choose the probability δ (guarantee level) with which
we want to find optimal solutions. Then we stop the algorithm after t iterations,
where t is the right-hand side of inequality (31). For a real-valued function f , we
can compare every two individuals, and consequently, we can store in memory
and update the best individual found so far (i.e., the one which has the smallest
value of f). Then the best individual found in t iterations is an optimal solution
with probability δ (see [6, p. 179]).The situation is more difficult in the multi-
objective case. We only know that, with probability δ, one of the populations
generated so far belongs to S+, say τs(p̂) ∈ S+, where 1 ≤ s ≤ t. Unfortunately,
we do not know the number s, and so we cannot identify this optimal population.
A possible way to overcome this difficulty is discussed below.

The algorithm we shall describe is a combination of the RHS and the base
VV (van Veldhuizen) algorithm described in [5, § 3.1]. Suppose we have some
RHS satisfying the assumptions of Theorem 2. It generates a sequence (5) of
populations, all of them being members of Λr. For each p ∈ Λr, we define the
set of individuals represented in population p:

set(p) := {ω ∈ Ω : pω = 0}.
Then we construct a sequence {Dt} of subsets of Ω as follows:

Dt := set(τ t(p̂)), t = 0, 1, ... ,

where τ0 := id is the identity mapping. Finally, we define another sequence {Et}
of sets recursively by

E0 : = Minf (D0,�),
Et+1 : = Minf (Et ∪Dt+1,�), t = 0, 1, ... ,

where we have used the notation Minf as in (10). It is shown in [5, Prop. 1]
that the sets f(Et) converge with probability 1 to Min(F,�) in the sense of
some metric. We know from Corollary 1 that, with probability δ, in the first t
iterations there has been generated a population belonging to S+. This means



706 M. Studniarski

that Ds ⊂ Ω+ for some s such that 1 ≤ s ≤ t. Using this inclusion, it is not
difficult to show that Ds ⊂ Et (we omit the details). Hence, among the elements
of Et there is at least one optimal element. Now we know the iteration counter
t of Et (this is our last iteration), but we have no method to identify which
elements of Et are optimal because the size of Ds is unknown. In extreme cases,
Ds may even be a singleton. We also do not know if the elements of Et\Ds

are optimal or not. Therefore, it would be desirable to develop some method
of eliminating nonoptimal elements form Et. This will be the subject of further
research.
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Abstract. In this paper, we elaborate how decision space diversity can be in-
tegrated into indicator-based multiobjective search. We introduce DIOP, the di-
versity integrating multiobjective optimizer, which concurrently optimizes two
set-based diversity measures, one in decision space and the other in objective
space. We introduce a possibility to improve the diversity of a solution set, where
the minimum proximity of these solutions to the Pareto-front is user-defined. Ex-
periments show that DIOP is able to optimize both diversity measures and that
the decision space diversity can indeed be improved if the required maximum
distance of the solutions to the front is relaxed.

1 Motivation

The task of evolutionary multiobjective optimization (EMO) includes to find a set of
Pareto-optimal solutions which is as diverse as possible to offer the decision maker a
good selection of solutions. Traditionally, diversity relates to objective values. Only re-
cently, multiobjective algorithms also aim at finding solutions that are diverse in the
decision space. Maintaining multiple solutions which cover different parts of the deci-
sion space, e.g. different designs, offers many advantages: first, it enables the decision
maker to choose among different designs with the same or at least equally preferable
objective values; second, it helps the decision maker to gather information about the
problem structure; and third, it can speed up search—for instance by improving explo-
ration and preventing premature convergence.

Many algorithms have been proposed to promote diversity of solutions also in the
decision space. However, the exact optimization goal is often far from clear. The Omni-
Optimizer [4] for example is based on a crowding distance, which prefers solutions
with large distance to the remaining solutions and alternates between the distance in the
objective space and in the decision space. In this setting, the optimal set of solutions
is not well-defined, nor is it easily possible to specify the desired tradeoff between
diversity in the objective space and diversity in the decision space.

We here make the following assumptions about the preference of a decision maker:

1. The decision maker is interested in a set of solutions.
2. Each solution in this so-called target population should be close to optimal, i.e.,

not “far” from the Pareto-front in objective space.
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3. The target population should cover large parts of the Pareto-front or regions nearby
and should therefore offer objective space diversity.

4. The target population should cover large parts of the decision space, i.e. offering
decision space diversity.

Diversity is inherently a property of sets of solutions rather than single solutions as
individual solutions can only be divers with respect to others. Therefore, optimizing
diversity is closely linked to the set-based view on multiobjective optimization as pro-
posed in SPAM [21] for example. The advantages of formalizing the optimization goal
by a set-based preference relation are twofold: A preference relation defines which of
two sets is preferred, and therefore, the optimization goal of the multiobjective search is
clearly defined. In addition, the convergence of algorithms using this preference relation
can be proven under certain conditions.

This study makes the following contributions to optimization considering diversity:

– A new diversity measure of sets in decision space is proposed which has not been
used in evolutionary multiobjective optimization before. This measure imposes less
strict requirements on the decision space properties than other commonly used di-
versity measures. An efficient procedure is presented to use this set diversity as a
selection criterion for solutions during the optimization process.

– We introduce the possibility of predefining a maximal distance to the Pareto-front,
that must not be exceeded by any solution. This mechanism enables a decision
maker to explore the tradeoff between diversity in decision space and solution
optimality.

– We provide experimental results which compare the proposed method to the well-
established Omni-Optimizer [4] and which show the influence of the different pa-
rameters involved.

2 Background and Notation

Consider a multiobjective optimization problem with a decision space X and an objec-
tive space Z ⊆ Rn = {f(a) | a ∈ X}, where f : X → Z denotes a mapping from the
decision space to the objective space with n objective functions f = {f1, ..., fn} which
are to be minimized. An element a ∈ X of the decision space is also named a solution.

The underlying preference relation is weak Pareto dominance, where a solution a ∈
X weakly dominates another solution b ∈ X , denoted a � b, if and only if solution a
is better or equal than b in all objectives, i.e., a � b iff f(a) � f(b) or equivalently, iff
fi(a) ≤ fi(b), ∀ i ∈ {1, ...,n}. Furthermore, we will use the notion of weak ε-Pareto-
dominance defined as a �ε b iff f(a) − ε � f(b). In other words, suppose that we
improve solution a in any objective by ε. Then a �ε b iff the improved solution weakly
dominates solution b.

Let X∗ ⊆ X denote the Pareto-optimal set, X∗ = {x | �a ∈ X : a � x ∧ x � a},
let T ⊂ X denote a target population of solutions, and let qX∗ : X → R≥0 measure
for each solution x ∈ X the distance qX∗(x) to the Pareto-optimal set X∗. Let Do(T ) :
2X → R≥0 and Dd(T ) : 2X → R≥0 measure the diversity of a set of solutions T ⊆ X
in the objective space (Do(T )) and in the decision space (Dd(T )), respectively. Given
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this notation, the four optimization assumptions provided in Section 1 can be formalized
as follows:

1. We are interested in a target population of solutions T ⊆ X , |T | = μ, where μ
denotes its size.

2. Optimality: ∀t ∈ T : qX∗(t) ≤ ε, where ε is given bound on the optimality of
solutions in T .

3. Diversity in objective space: Determine T such that Do(T ) is maximal among all
possible target populations.

4. Diversity in decision space: Determine T such that Dd(T ) is maximal.

As a consequence, we are dealing with a bi-objective optimization problem on sets of
solutions. Given this setting, different problems arise:

– In order to determine qX∗(T ) one needs the knowledge of the Pareto-optimal set of
solutions X∗, which in general is not known.

– The problem of optimizing diversity in objective and decision space is a bi-objective
problem on the set of all possible populations. It is not clear which tradeoff the de-
cision maker is interested in and how to express these tradeoffs in an optimization
method.

– There are many choices for the distance and diversity measures qX∗ , Do and Dd.
Guidelines are necessary to choose appropriate measures (see the following Sec. 3).

3 Measuring Diversity–Approaches in Biology and in EAs

Typically, measures for the diversity of a set are based on the definition of a pairwise
distance between any two elements. Therefore, we assume that we are given a distance
measure d : X2 → R≥0 on the decision space. Here, we are often confronted with many
different classes of decision spaces, such as vectors, graphs, trees or even programs. In
order to be applicable to a large class of optimization domains, we would like to place as
few restrictions on the structure of the decision space as possible, i.e. we do not require
that X is an Euclidean space or that the triangle inequality is satisfied. Instead, we just
assume X to be a semimetric space, i.e., ∀a, b ∈ X : d(a, b) ≥ 0 (non-negativity),
d(a, b) = d(b, a) (symmetry), d(a, a) = 0 (identity of indiscernibles). Given such a
distance measure, we now would like to define a set diversity measure D : 2X → R≥0

which assigns to each subset of the decision space a real value, i.e. its diversity.
There are many possible interpretations and concepts of set diversity, i.e. how a given

number of solutions should be distributed such that they achieve an optimal set diversity.
In order to get a first insight, let us consider a very simple example. Figure 1 shows the
optimized distribution of 100 points in a two dimensional Euclidean space X = [0, 1]2

for two diversity measures, namely the sum of all pairwise distances and the Solow-
Polasky [12] measure. While the Solow-Polasky measure gives a grid-like structure,
the sum of pairwise distance measure distributes all 100 solutions into the four corners.
As a result, it appears that we need to define a set of formal requirements for a useful
diversity measure.
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Fig. 1. Best distributions found by the hill-climber, for the sum of pairwise distances diversity
measure (left) and the Solow-Polasky measure (right)

Measuring diversity of sets is much-discussed in biology, more specifically in the
field of biodiversity. Just as for the decision maker’s preference, no generally agreed-
on definition exists neither in biology nor in the field of evolutionary algorithms. In
the following, we discuss the most prominent classes of existing biodiversity measures
with respect to their applicability to EAs. In particular we consider the following three
requirements to a diversity measure D, first proposed by Solow and Polasky [12]:

P1: Monotonicity in Varieties. The diversity of a set of solutions A should increase
when adding an individual b not yet in A, i.e., D(A∪b) > D(A) if mina∈A d(a, b)
> 0. This fundamental property assures that increased species richness is reflected
by the diversity measure [6].

P2: Twinning. Diversity should stay constant when adding an individual c already in
A, i.e.,D(A∪c) = D(A). Intuitively, if diversity is understood as the coverage of a
space by a set of solutions [17], adding duplicates should not increase the coverage
and the chosen diversity measure should reflect that property.

P3: Monotonicity in Distance. The diversity of set A should not decrease if all pairs
of solutions are at least as dissimilar (measured by d) as beforeD(A′) ≥ D(A), iff
d(a′i, a

′
j) ≥ d(ai, aj), ∀ai, aj ∈ A, a′i, a

′
j ∈ A′. So the more dissimilar solutions

are, the better.

One straightforward way of measuring diversity is based on the relative abundance of
each solution present in set A, e.g. [5]. But the degree of dissimilarity between indi-
viduals has no influence and the twinning property is not fulfilled. The second group
of diversity measures is based on taxonomy, e.g. [19], but unfortunately building the
taxonomic tree has a runtime which is exponential in the number of individuals. A very
simple way of aggregating the dissimilarity information into a diversity measure is to
sum up the values, D(A) =

∑
a∈A

∑
b∈B d(a, b) [6]. Shir et al. for instance used this

measure in their EA [11], while the Omni-Optimizer considers the distance d to the
closest neighbors of a solution. However, these measures do not meet the twinning re-
quirement and they promote having only two solutions with large distance duplicated
multiple times. A completely new approach has been presented by Solow and Polasky
[12]. Their measure is based on an utilitarian view on individuals, where the function
u : X → R≥0 defines the utility of any subset of solutions. This view of utility is
equivalent to the method proposed in a previous study of the authors [17], where in-
stead of utility the area covered by individuals has been considered. All three above
requirements are fulfilled.
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Table 1. Comparison of different diversity metrics with respect to the three properties: mono-
tonicity in varieties (P1), twinning (P2), and monotonicity in distance (P3)

class method P1 P2 P3

relative abundance Simpson, Shannon, Berger-Parker no no yes

taxonomy
clustering no yes no
Weitzman yes yes no

functions of distance
sum yes no yes
crowding distance no no yes

utilitarian Solow-Polasky yes yes yes

In the evolutionary algorithm literature, decision space diversity has often been used
to prevent premature convergence. Examples of measures can be found in [16], [10],
[13], [18,17], [4], [14], [20], [7] or [8,4]. Most of these measures either require a spe-
cific structure of the decision space, they do not define a measure on sets, they make
assumptions about the Pareto-front or the problem landscape or they do not satisfy the
required properties.

Table 1 summarizes the different diversity measures in context of the three require-
ments P1, P2 and P3. As can be seen, only the measure by Solow-Polasky satisfies all
three requirements, so we will apply this measure in the experimental study (Sec. 5).
However, the algorithmic framework presented in this paper is also compatible with
other measures.

4 Optimizing Diversity – A Novel Set-Based Algorithm

Now that we have presented some possibilities to measure diversity, be it to determine
Do(A) or Dd(A), the decision maker’s preference 3 and 4 stated in Sec. 1 can be for-
mally expressed. Optimizing those indicator-based set preferences can be accomplished
within the SPAM framework [22]. There remain, however, a number of issues to be re-
solved which we are going to tackle with DIOP (Diversity Integrating Optimizer).

As the Pareto-optimal set X∗ in general is unknown, we propose using a helper set,
called the archive A, which approximates X∗. We therefore have two concurrent EAs,
one which optimizes the target population and one which optimizes the archive popu-
lation. This offers the advantage that the quality constraint (decision maker preference
2, Sec. 1) continuously tightens as the archive population improves. In order to benefit
from one another, the two sets can exchange solutions, therefore improving the diver-
sity in the archive and producing more solutions that satisfy the quality constraint in the
target. This is useful as experiments have indicated that considering diverse solutions
might speed up search for some problems [17].

Having an approximation A of the Pareto-optimal set X∗, a distance metric qA has
to be defined. We here propose to use�ε to define the distance as the smallest ε to reach
ε-dominance of any solution in A, i.e.,

qA(x) := min{ε | ∃y ∈ A : x �ε y} . (1)
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Algorithm 1. DIOP algorithm. Takes a parameter ε, an archive size μa, a target size μt,
and a decision space X . Returns the optimized target set.

function DIOP(ε, μa , μk)
A = {x1, ..., xμa}, xi ∈ X /* randomly initialize archive */
T = {x1, ..., xμt}, xi ∈ X /* randomly initialize target */
while stopping criterion not met do

A′ = variate(A ∪ T ) /* generate archive offspring */
A′′ = archiveSelect(A ∪ A′ ∪ T, μa) /* select μa new individuals */
/* Only use new archive if its Do value is better */
if Do(A′′) > Do(A) then

A = A′′

end if
T ′ = variate(A ∪ T ) /* generate target offspring */
T ′′ = targetSelect(A, T ∪ T ′ ∪ A, μt, ε) /* select μt new individuals */
/* Only use new target if its Dd value is better */
if G(T ′′) > G(T ) then

T = T ′′

end if
end while
Return T

end function

As the decision maker is only interested in solutions not exceeding a predefined distance
ε to the Pareto-front, the diversity measures of an arbitrary set P is only calculated for
those solutions P ε ⊆ P not exceeding the distance ε from the front approximation A,
P ε = {p ∈ P | qA(p) ≤ ε}.

In contrast to the framework of SPAM [22], DIOP needs to maximize two indica-
tors Do and Dd instead of one. Therefore, two sets can no longer be unambiguously
compared in general, as we are dealing with a biobjective problem. Many other stud-
ies have implicitly tackled this tradeoff, however, to the best of the authors’ knowledge,
none of these approaches explicitly set the tradeoff, but use subpopulations [9,16], adapt
mutation [18], use the diversity to the best single objective solution [10], use the con-
tribution to the set diversity [13], use nondominated sorting [14], use a sequence of
indicators [22], alternate between decision space and objective space diversity [4], use
an unweighted sum of both measures [11], use diversity as an additional objective [15],
adapt the variation process [20] or integrate diversity into the hypervolume indicator
[17].

In this study, we propose to consider a weighted sum of the two diversity indicators:

G(T ) := wo ·Do(T )+wd ·Dd(T ), |T | = μ with qA(t) ≤ ε ∀t ∈ T ,wo+wd = 1 (2)

This enables a flexible tradeoff between the two diversity indicator values Do and Dd

by using different weights.
The DIOP algorithm simultaneously evolves two population, namely the archive A

which approximatesX∗, and the target populationT which maximizesG(T ). Offspring
is always generated from the union of both sets, whereas the selection procedure uses
different indicators for the archive and target. In each generation, a selected subset is
only accepted if the corresponding indicator value is larger than the one of the parent
population. The pseudocode of the proposed algorithm is shown in Algorithm 1.

The function A′′ = archiveSelect(A, μa), selects μa solutions A′′ from a set A.
The selection goal is to maximizeDo(A′′). The functionP ′ = variate(P,m) generates
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m offspring P ′ from a given set P . The method T ′ = targetSelect(A,T , μt, ε) selects
μt solutions T ′ from set T . The goal here is to maximize G({t ∈ T : qA(t) ≤ ε}).

5 Experimental Results

In this section, two main questions are investigated: first, how do the parameters of
DIOP, i.e. ε and wo, influence the obtained target population in terms of the two di-
versity measures Dd and Do? Second, we compare DIOP on two test problems to the
Omni-Optimizer [4] to assess its performance.

Experimental Setup: The method variate(P,m) selects m/2 random pairs of solu-
tions from P to generate the offspring population. These pairs are then recombined by
the SBX crossover operator [2] and mutated by adding a new normally distributed value
with standard deviation 1/ηm. Solow-Polasky with ηSP = 10 is used to measure the
decision space diversity Dd. To determine the objective space diversity Do, the hyper-
volume indicator is used with iterative greedy environmental selection as described in
[22]. To perform the target selection targetSelect(T ,n) according to G(T ) (Eq. 2), the
following wide-spread greedy strategy is used: Starting with an empty set T ′ = {}, it-
eratively the solution ti ∈ T is added to T ′ which leads to the largest indicator increase
ΔtiG(T ′) := wo(Do(T ′∪ ti)−Do(T ′))+wd(Dd(T ′∪ ti)−Dd(T ′)) Since determin-
ing the diversity measure of Solow-Polasky is costly (involving matrix inverses [12]),
we use the following approximation:Dd(T ′∪ ti)−Dd(T ′) ≈ mina∈T ′\ti

d(ti, a), i.e.,
we take the utility lost with respect to the closest individual as the overall utility loss.

Influence of ε and wo: To assess the influence of the parameters ε and wo, DIOP is
run on DTLZ2 [3] with 3 objectives and d = 7 decision variables. DTLZ2 was chosen
as it is a well-known problem, its results are easy to interpret as the connection between
decision space values and objective space values is known, and the true Pareto-front
is known. Note though that DIOP can also be run on real-world problems with more
complex decision spaces that are not metric. The variation parameters are set according
to [3] with a crossover probability of 1 with ηc = 15 and a variable exchange probability
of 0.5, as well as a mutation probability of 1/d with ηm = 20. We chose the archive
and target size to be 50 and run the algorithm for 1000 generations. The parameter ε
takes the values {0, 0.0865, 1}, the weights wo = {0, 0.7692, 0.9091, 0.9677, 1} are
logarithmically spaced with wd = 1 − wo. The results are shown in Fig. 2 on the left
hand side.

It can be seen that with an increasing ε and an increasing wd value, the achievable
diversity increases, while the hypervolume decreases. This illustrates how the tradeoff
between hypervolume and decision space diversity can be set by the user. Figure 3
shows the non-dominated solutions for one run with ε = 0 and wo = {0, 0.7699, 1}.
The higher wo is, the more solutions lie on the Pareto-front (50/8/1 out of 50 solutions
lie on the front for wo = 1/0.7699/0, respectively). The dominated solutions do not
contribute to the hypervolume and are distributed within the quality constraint set by ε
and A in such a way that they optimize diversity. This indicates how the tradeoff is set
in practice: A subset of the final target population is distributed on the Pareto-front and
optimizes the hypervolume, whereas the remaining solutions optimize decision space
diversity. The number of solutions that optimize the hypervolume increases with wo.
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Fig. 3. Non-dominated solutions of one DTLZ2 run for three different weights

Comparison to the Omni-Optimizer. While the Omni-optimizer uses the same SBX
crossover operator as DIOP, it uses an adaption of polynomial mutation with ηm = 20
[4] instead of the Gaussian mutation employed by DIOP.

As the first test problem we use the Omni-Test as described in [11] with 5 deci-
sion variables. The Omni-Test was chosen because it allows for an additional intuitive
problem-specific diversity measure, which exploits the fact that the Pareto-optimal so-
lutions are distributed over a total of 3d clusters, where d is the number of decision
variables. Therefore, the additional diversity measure can be defined as the number of
clusters found by the algorithm. For optimization, we use the parameters from [11] with
a population size of 50, 1000 generations, and ε = 0. As we use an archive of size 50
in addition to the target of size 50, we require more fitness evaluations than the Omni-
Optimizer. In order to compensate for that, the Omni-Optimizer is run for twice as many
generations, i.e. 2000. For the variation operators, we use the parameters from [4] with
a crossover probability of 0.9 with ηc = 1, where the variables are exchanged with a
probability of 0.5, and a mutation probability of 1/n with ηm = 1. Each algorithm was
run 15 times with different random seeds. To test the two algorithms for statistically sig-
nificant differences, the Kruskal-Wallis with post-hoc Conover-Inman procedure [1] is
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Table 2. Omni-Test problem: Four measures, all to be maximized. Statistically significantly bet-
ter/worse results of DIOP compared to the Omni-optimizer are marked with a +/−.

Hypervolume Diversity (Pairs) Diversity (Solow) Found Clusters
DIOP wo = 0.00 30.04 ± 0.10+ 0.63 ± 0.05− 46.7 ± 2.0+ 33.2 ± 5.2+

DIOP wo = 0.77 30.21 ± 0.03+ 0.64 ± 0.05− 47.9 ± 2.3+ 37.3 ± 5.2+

DIOP wo = 0.91 30.25 ± 0.03+ 0.66 ± 0.06− 48.7 ± 0.9+ 39.9 ± 3.7+

DIOP wo = 0.97 30.31 ± 0.02+ 0.65 ± 0.06− 48.5 ± 1.0+ 39.5 ± 4.0+

DIOP wo = 1.00 30.42 ± 0.00+ 0.43 ± 0.11− 16.1 ± 2.5− 9.8 ± 2.6−

Omni 29.94 ± 0.05 0.70 ± 0.04 34.7 ± 1.1 23.8 ± 1.4

applied with a significance level of 5%. The results are given in Table 2. It can be seen
that DIOP achieves significantly better hypervolume values than the Omni-optimizer
for all weight combinations, even if only decision space diversity is optimized. This is
due to the fact that the solutions, while optimizing decision space diversity, must not be
dominated by any archive solutions (ε = 0). Even though DIOP finds twice as many
clusters as the Omni-Optimizer (except for wo = 1, i.e. when the decision space diver-
sity is not optimized at all), its pairwise distance measure is significantly worse than the
Omni-Optimizers. This indicates that the pairwise distance measure does not accurately
reflect the number of found clusters. DIOP’s Solow-Polasky values, on the other hand,
are significantly better than the Omni-optimizer’s, as expected.

As a second test problem, we selected DTLZ2 with 3 objectives and 7 decision vari-
ables. In this test problem, the last 5 decision variables of a Pareto-optimal solution are
equal to 0.5, whereas the first two variables define its location on the front. Solutions
with values that differ from 0.5 in the last 5 variables are not Pareto-optimal. The popu-
lation sizes and generation numbers are the same as for the Omni-Test problem. DIOP
was run for ε = {0, 0.0856, 1}, with the weights set to wo = 0.9677, wd = 0.0333.
The algorithms were again run 15 times with different seeds. The results are shown in
Figure 2 on the right hand side. At each point in the figure, all solutions that are within
the distance given on the x-axis from the true Pareto-front are used to calculate the deci-
sion space diversity Dd, which gives the corresponding y-axis value. The results show
that the Omni-Optimizer has problems approximating the Pareto-front. Its diversity re-
mains close to zero until about a distance of 0.5 from the front, which is due to the
fact that it finds only few solutions that are closer than 0.5 to the true front. The DIOP
population reaches its maximum diversity at a distance of around 0.2 from the front,
which is an effect of the fact that not the true front but an approximation thereof is used
during the optimization. For ε = 0 and ε = 0.0856, DIOPs population has a better
diversity than the Omni-optimizer no matter what distance from the front is considered.
For ε = 1.0, the solutions seem to be located in a distance interval between 0.5 and
1.2 from the front, which indicates that solutions further away from the front are more
diverse than those close to the front. This matches the DTLZ2 problem; the further the
last 5 decision variables are from their optimal value of 0.5, the better the diversity and
the larger the distance to the front gets.

6 Conclusions

In this paper we investigate how decision space diversity can be integrated into
indicator-based search. Experiments show that the algorithm can generate various
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tradeoffs between objective and decision space diversity, adjustable by the user. Further-
more, it is shown that the algorithm performs well when compared to the well-known
Omni-Optimizer. In the future, DIOP should be tested on more complex, non-Euclidean
problems. Also, it could be compared to other state-of-the-art multiobjective optimizers
that do not optimize diversity, in order to quantify the increase in diversity that can be
gained from using DIOP.
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Abstract. Surrogate models, as used for the Design and Analysis of

Computer Experiments (DACE), can significantly reduce the resources

necessary in cases of expensive evaluations. They provide a prediction

of the objective and of the corresponding uncertainty, which can then

be combined to a figure of merit for a sequential optimization. In single-

objective optimization, the expected improvement (EI) has proven to

provide a combination that balances successfully between local and global

search. Thus, it has recently been adapted to evolutionary multi-objective

optimization (EMO) in different ways. In this paper, we provide an

overview of the existing EI extensions for EMO and propose new for-

mulations of the EI based on the hypervolume. We set up a list of neces-

sary and desirable properties, which is used to reveal the strengths and

weaknesses of the criteria by both theoretical and experimental analyses.

Keywords: Design and Analysis of Computer Experiments, Expected

Improvement, Hypervolume Indicator, Multi-Objective Optimization.

1 Introduction

Surrogate modeling has become the method of choice to overcome the problem
of expensive evaluations in EMO [1]. Using the evaluations already available,
surrogate models of the objectives are created, which can then be used to filter
or decide on candidate solutions. To accomplish this, a criterion which scalarizes
the predictions of the models is required. This criterion should balance between
a local refinement of the Pareto-front (PF) approximation and an improvement
of the global model quality.

In this paper, such criteria for multi-objective optimization are presented,
analyzed, and discussed. The main definitions are provided, existing criteria are
summarized, and enhancements in the calculation of these criteria are proposed
in section 2 and 3. For the evaluation of the criteria necessary requirements
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and desired properties are formulated in section 4. By means of both, formal
and empirical, analyses, we study whether these requirements and properties
are met by the various criteria. Concluding, a summary of the results and an
outlook on further research topics are provided in section 5.

2 Single-Objective Optimization Based on EI

A surrogate model allows the objective function value y = f(x) of a decision
vector x to be predicted without an expensive evaluation. This prediction is
denoted as ŷ.1 Since an evaluation is particularly worthwhile if it provides
an improvement to the current state of the optimization, often the improve-
ment I(ŷ, fmin) = max{fmin− ŷ, 0} obtained with respect to the best currently
known objective value fmin is maximized. Consequently, we consider minimiza-
tion of the objectives. Many modeling techniques, such as the ones used in
DACE [2], predict both the mean ŷ and the standard deviation ŝ of a normal
distribution. Consequently, the probability density function (PDF) φ(ŷ,ŝ)(y) =
φ(0,1)(

y−ŷ
ŝ ) and the cumulative density function (CDF) Φ(ŷ,ŝ)(y) = Φ(0,1)(

y−ŷ
ŝ )

of an objective value y can be computed (cf. Fig. 1). Based on the definition
of the improvement I(y, fmin) and the PDF of y, the expected value of the
improvement

EI(ŷ, ŝ, fmin) =
∫ ∞

−∞
I(y, fmin)φ(ŷ,ŝ)(y)︸ ︷︷ ︸

PDF(y)

dy =
∫ fmin

−∞
(fmin− y)φ(ŷ,ŝ)(y) dy (1)

has been proposed as criterion by the Vilnius school of global optimization,
e. g. [3]. Later, the EI has become popular as part of the single-objective Effi-
cient Global Optimization (EGO) [4] approach.2 EGO makes an extensive use
of DACE models by only evaluating one solution in each iteration on the true
objective function, refitting the model, and then determining the next candi-
date solution based on the EI. Since both predictions, ŷ and ŝ, are considered,
a balancing between a local search and a reduction of the model uncertainty
is achieved. Thereby, the number of function evaluations could be significantly
reduced for many global optimization problems – often below one hundred.

By expanding equation 1 and integrating the first factor, the EI can also be
written as fminΦ(ŷ,ŝ)(fmin)− ∫ fmin

−∞ yφ(ŷ,ŝ)(y) dy, and thus

EI(ŷ, ŝ, fmin) =

⎛⎜⎜⎜⎝fmin −
∫ fmin

−∞ yφ(ŷ,ŝ)(y)dy
Φ(ŷ,ŝ)(fmin)︸ ︷︷ ︸

y

⎞⎟⎟⎟⎠Φ(ŷ,ŝ)(fmin). (2)

1 For notational simplicity, we omit the dependency of the predictions on x.
2 In the evolutionary computation community, EGO has become popular under the

SPO (Sequential Parameter Optimization) acronym [5].
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Fig. 1. Graphical explanation of the components I(y, fmin) (left) and Φ(ŷ,ŝ)(fmin)

(right) of the EI definition in equation 2

Consequently, the EI can be regarded as the improvement I(y, fmin) obtained by
the center of mass (centroid) y of the area under φ(ŷ,ŝ) in the interval ]−∞, fmin]
weighted with the corresponding CDF Φ(ŷ,ŝ)(fmin) (cf. Fig. 1).

3 Multi-objective Optimization Based on EI

Over the last decade, a set-based view on multi-objective optimization has
been established [6]. According to equation 1, a true multi-objective formula-
tion EI(ŷ, ŝ,APF ) requires the PDF of y and a definition of the improvement
I(y,APF ) of the PF approximation APF obtained by a specific candidate vec-
tor y. Despite the usually conflicting objectives in EMO, it is common prac-
tice [7, 8, 9, 10, 11] to make the independence assumption (correlation coefficient
ρ = 0). Then, the multivariate PDF of y as

∏m
i=1 φ(ŷi,ŝi)(yi) can be directly com-

puted, and the important aspect is the design of an appropriate improvement
function.

An overview of recently proposed multi-objective EI definitions is given in
Table 1. The acronyms introduced in this table are used throughout the paper.
Unfortunately, we cannot describe the approaches due to space requirements.
Detailed explanations will be found in the references given in Table 1.

Most of the presented approaches do not directly define a set-based improve-
ment I(y,APF ). Emmerich [7] proposed SExI – the expected increment of y
to the hypervolume (HV) or S-metric. The HV is the Lebesgue measure of the
hyperspace dominated by APF and bounded by a reference point r. A closed-
form expression for SExI is based on integration over interval boxes determined
by the coordinates of the points in APF [10]. Independently, Emmerich [7] and
Ponweiser et al. [14] have proposed a EI criterion, whose computation is simpler.
This measure is the increment of the hypervolume when yLCB = ŷ − αŝ (lower
confidence bound) is added to APF . The gain factor α is computed based on a
given probability level p as α(p) = −Φ−1(0.5 m

√
p) (in this study p = 0.5 is used).
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Table 1. Overview of existing multi-objective EI criteria

authors (reference) acronym definition of improvement PDF
direct
integration

Knowles [12] ParEGO
single-objective EI of an aug-
mented Tchebycheff aggregation

univariate yes

Jeong and Obayashi [13] EI-EMO m single-objective EIs univariate yes

Liu et al. [9] WS-EI
sum over single-objective EIs of
different weighted sums (WS)

multivariate
partially (only
subproblems)

Zhang et al. [11] TA-EI
maximum over single-objective
EIs of different Tchebycheff
aggregations (TA)

multivariate
partially (only
subproblems)

Keane [8] Euclid
Euclidean distance to the
nearest vector of the PF

multivariate
partially (only
PDF)

Ponweiser et al. [14] SMS-EGO HV increment to the PF multivariate no
Emmerich et al. [7, 10] SExI HV increment to the PF multivariate yes
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Fig. 2. Comparison of the old (left) and new (right) variant of SMS-EGO. The details

of the calculation of the figure is described in section 4.

In order to guide search in dominated regions of the objective space, Ponweiser
et al. [14] augmented this criterion by a penalty. In this paper, we introduce
a new definition of this penalty. Still, a set of penalties for the ε-dominating
solutions y(i) ∈ APF is computed

Ψ(yLCB) =

{
−1 +

∏m
j=1

(
1 + (yLCB,j − y

(i)
j )
)

if y(i) �ε yLCB

0 otherwise
.

Whereas we computed the sum over all penalties
∑

Ψ in the old version, which
resulted in discontinuities of the criterion whenever a dominating solution enters
or drops out, we take only the maximum component of Ψ in the new one. This
modification leads to a continuous global trend toward APF (cf. Fig 2).

4 Analysis and Evaluation

For a formally sound evaluation of multi-objective EI criteria, we propose the
following necessary conditions. Given two different predictions of mean vectors
ŷ and ŷ′ and corresponding uncertainties ŝ and ŝ′,
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N1 the dominance relation between ŷ and ŷ′ is preserved by the EI for ŝ = ŝ′:
ŷ ≺ ŷ′ ∧ ŝ = ŝ′ ⇒ EI(ŷ, ŝ,APF ) > EI(ŷ′, ŝ′,APF ),

N2 the EI monotonically increases with ŝ for I(ŷ,APF ) ≤ 0 and ŷ = ŷ′:
I(ŷ,APF ) ≤ 0 ∧ ŷ = ŷ′ ∧ ŝ > ŝ′ ⇒ EI(ŷ, ŝ,APF ) > EI(ŷ′, ŝ′,APF ),

N3 the EI monotonically increases with I(ŷ,APF ) for ŝ = ŝ′ = 0:
I(ŷ,APF ) > I(ŷ′,APF ) ∧ ŝ = ŝ′ = 0⇒ EI(ŷ, ŝ,APF ) > EI(ŷ′, ŝ′,APF ).

The necessary conditions can be analytically checked in most cases and should
be considered during the design of a multi-objective EI criterion in order to
identify conceptual problems. The restriction to solutions with no improvement
in condition N2 and vanishing uncertainties in N3 was made since an increase
in ŝ is related to a balancing between risk and opportunity for I(ŷ,APF ) > 0.

Moreover, we compiled a second list, which includes properties that are desired
with respect to the internal optimization:

D1 For small ŝ in relation to the range of APF , a solution should be preferred
whose ŷ improves the distribution and/or spread of APF .

D2 Discontinuities and nondifferentiabilities of the criterion should be avoided,
particularly if gradient-based methods are used for the internal optimization.

D3 The fitness landscape of the criterion should guide the optimizer to its global
optimum, e. g., plateaus should be avoided and basin sizes should grow with
the quality of the corresponding local optimum.

D4 The criterion should be easy to implement and efficient to calculate.

Since the importance of these properties depends on the internal optimization
approach and on the application domain, their discussion can assist in choosing
the right criterion for a given application.

An overview of the results of our analyses is provided in Table 2. Whenever
possible, the necessary conditions N1-N3 were checked analytically.3 In order to
also provide a visual impression of the EI criteria and to allow the assessment of
the desirable properties D1-D3, contour plots of the criteria were generated in a
bi-objective space – omitting ParEGO and EI-EMO because of the a-priori re-
duction to the single-objective EI. The contour lines represent the evaluation of
different ŷ for constant ŝ using MATLAB R© implementations of the criteria based
on code of the corresponding authors. The reference set APF of size |APF | = 7
was created by the evaluation of a 65-point Latin Hypercube Design in the do-
main [−1, 2]2 on the bi-objective generalized Schaffer problem [7] with exponent
γ = 0.5 (convex). The true PF is located within the domain [0, 1]2. In order to
analyze the influence of ŝ, predictions slightly outside the objective space were
also considered. Therefore, the evaluation of the possible predictions ŷ were vi-
sualized in the domain [−0.1, 1.5]2 using a constant ŝ = 0.2. This relatively high
value was chosen because the behavior for low ŝ can be derived analytically in
most cases. For the calculation of the indicator-based criteria, the ideal point
i = (−0.1,−0.1) and the reference point r = (2, 2) were chosen. Consequently,

3 When not explicitly stated, we omit the special case of s = 0, as it holds only for

known evaluations which have a negligibly low probability of being evaluated again.
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Table 2. Overview of the compliance of the multi-objective EI criteria with the defined

conditions and properties

ParEGO EI-EMO WS-EI TA-EI Euclid
SMS-EGO
(old)

SMS-EGO
(new)

SExI

N1
√∗ √ √ √∗ − √ √ √

N2
√ √ √ √ − √ √ √∗∗

N3
√

(
√

) − √ √ √ √ √

D1 © − −− + ++ ++ ++ +
D2 + ++ ++ − − −− − ++
D3 © + − + + − © +
D4 ++ + + © −− ++ ++ −−
∗Only for weight vectors with strictly positive components.
∗∗Empirical evidence, no formal proof could be provided until now.

it is ensured that all evaluated vectors are dominated by i and dominate r. In
practice, this can be accomplished by determining i and r by minimizing and
maximizing the surrogate model of each objective. Thus, it is also assumed in
the proofs of this section. If required, N = 501 uniformly distributed weight
vectors including (0, 1) and (1, 0) were used. Due to space limitations, only a few
of the contour plots can be shown in the paper. All figures computed for this
study (also for γ = 1, γ = 2, and ŝ = 0.01) can be found online.4

N1: For Euclid and SExI, EI(ŷ, ŝ,APF ) =
∫ r

−∞ I(y,APF )φŷ,ŝ(y) dy holds. By
centering the PDF, we get EI(ŷ, ŝ,APF ) =

∫ r

−∞ I(y+ ŷ,APF )φ0,ŝ(y) dy. Thus,
N1, assuming equal ŝ, is directly related to the compliance of I(y,APF ) with
the dominance relation. This relation also holds for I(yLCB,APF ) because the
constant displacement αŝ can be neglected. Whereas the HV used in SExI and
SMS-EGO is Pareto-compliant [15], the Euclidean distance is not (cf. Fig. 3).

All other approaches directly use I(y, fmin) of the single-objective EI. Thus,
their compliance with N1 is related to the preprocessing before the EI computa-
tion. Both, the TA and the WS, are compliant with the dominance relation as
long as no component of the weight vector is zero [16]. In this case, an improve-
ment in the objective with the zero component is not reflected in the scalarization
(cf. Fig. 4 (left) for f1 = 0 or f2 = 0). Consequently, ParEGO and TA-EI are
only compliant with N1 if no such weight vectors are used. WS-EI takes the sum
over the EI of all weight vectors. Thus, at least one weight vector with a positive
component for each objective is required, which is very likely to be fulfilled. De-
spite the a-posteriori selection of the extreme solutions, all single-objective EIs
are considered during EI-EMO. Thus, N1 holds for this criterion.

N2: It is has been shown by Jones et al. [4, pp. 172f.] that a higher ŝ mono-
tonically improves the single-objective EI, even when I(ŷ, fmin) > 0. Based on
this result, N2 is fulfilled for ParEGO, EI-EMO, and all subproblems of TA-EI
and WS-EI, which directly transfers to the final aggregation. Since the yLCB is
linearly improved by ŝ, N2 also holds for both variants of SMS-EGO.

4 http://www.pbase.com/emmerich/expected improvement
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Fig. 3. Comparison of Euclid (left) and SExI (right)

For Euclid and SExI, we conducted an experiment, in which ŝ = 0, 0.1, . . . , 1
were evaluated for each ŷ of Fig. 2-4. For SExI no counterexample was found,
but Euclid violated N2 in 797 of 4925 cases. This violation is often caused by a
reduced minimum distance due to a movement of the centroid from the domi-
nated to the nondominated area. The results of SExI provide empirical evidence
for a compliance with N2, but no formal proof could be provided until now.

N3: SMS-EGO, SExI, and Euclid fulfill N3 by definition. If ŝ = 0, no displace-
ment of yLCB occurs or the PDF becomes singular. This results in a direct
evaluation of I(ŷ,APF ). In ParEGO and EI-EMO, the single-objective EI is
evaluated. Therefore, N3 also holds for the considered subproblems. The center
solution of EI-EMO, however, is not related to a clearly formulated improvement,
which does not allow a complete evaluation of this approach.

Given the final decision making, applied in TA-EI and WS-EI, both aim for a
maximum improvement, either of a single subproblem (TA-EI) or of the sum over
all subproblems (WS-EI). However, the separated computation of EIs and the
subsequent aggregation is only straightforward for maximizing the improvement
on a single subproblem. In WS-EI, the sum of the EIs substitutes the EI of
the sum. Since the EI nonlinearly depends on ŷ and ŝ, N3 is violated. In order
to calculate the actual EI, the mean and the standard deviation of the sum
of scalarizations have to be computed. To accomplish this, the equations for
calculating each ŷsc and ŝsc can be applied again.

D1: It has been shown that the maximization of the HV increment produces
well-distributed sets [7]. Given that r is sufficiently far away from APF , the
spread is also improved [17]. Therefore, all criteria based on the HV cope with
D1 for sufficiently small ŝ (cf. N3). However, a comparison of Fig. 2 and Fig. 3
(right) reveals that the gap-filling property of the SExI fades away with increas-
ing ŝ whereas it is conserved for SMS-EGO. This is caused by the fact that
samples from N (ŷ, ŝ) can improve the distribution or spread of APF , even if ŷ
does not improve it. Moreover, this property enhances the guidance to the most
promising local optima, as discussed for D3. Since the maximization of the Eu-
clidean distance to the neighboring solution is an established diversity-measure,
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Fig. 4. Comparison of TA-EI (left) and WS-EI (right)

Euclid also copes with D1. Contrary to the direct approach, this also holds for
high ŝ as shown in Fig. 3 (left).

For the scalarization-based approaches, only TA-EI copes with D1. As shown
in Fig. 4 (left), the contour lines indicate the improvement by filling the gaps
in the upper left part of APF . Compared to TA-EI, which evaluates all weight
vectors in each iteration, ParEGO randomly chooses a weight vector which may
target toward an already crowded region of APF , deteriorating its compliance
with D1. The WS-EI is generally biased to the knee (convex) or to the extremes
(concave) of APF . The maximization of the sum of EIs produces an additional
bias toward the center of the targets defined by the weight vectors (cf. Fig. 4,
right). The a-posteriori selection of EI-EMO exclusively focuses on the extremes
and the center of the EI Pareto front. Thus, only the spread of APF will be
improved. A good distribution between the extremes cannot be accomplished.

D2: Only SExI, WS-EI and EI-EMO are continuous and differentiable over the
whole domain. TA-EI and Euclid use maximum or minimum operations which
lead to nondifferentiabilities of the corresponding criterion (cf. the left plots of
Fig. 3 and Fig. 4). In ParEGO, the nondifferentiabilities are smoothed out by the
surrogate model, making the actual EI criterion continuous and differentiable.

The problem of discontinuities in the old SMS-EGO approach and the answer
of the new one has already been described in section 3. However, the nondifferen-
tiabilities at the corners of the attainment surface of APF could not be resolved.
This is shown in Fig. 2 by the contour lines in the proximity of APF .

D3: All approaches relying on an EI formulation without penalties can show
plateaus of zero EI based on the limited machine accuracy. This problem is
overcome by the penalty functions used in SMS-EGO. Nevertheless, the fitness
landscapes of SExI and TA-EI are evaluated best since these approaches show
strong gradients to their local optima. This is shown in Fig 3 (right) and Fig. 4
(left). In contrast, the gradients in the landscape of SMS-EGO are very local,
making the search for the global optimum difficult (cf. Fig. 2). The approach
of Keane shows the most complex fitness landscape with many local optima.
Nevertheless, the gradients to each local optimum are clearly defined even far
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from those, and the size of each basin grows with quality of the optimum (cf.
Fig. 3, left). WS-EI fails to indicate the direction toward the optimum in the
knee of APF by providing gradients that are normal to the true PF. In ParEGO,
the original EI (equation 1) has to be optimized, which is known for multi-
modality and plateaus. For EI-EMO these problems are relaxed because the
multi-objective optimization of the different EIs enhances diversity and avoids
the premature convergence to one of the local optima of the single-objective EI.

D4: Besides the approaches based on a piecewise integration over the nondom-
inated region which require a tedious partitioning of the objective space, all EI
criteria are easy to implement. For ParEGO, only one model has to be com-
puted making it the fastest of all approaches. The multi-objective optimization
in EI-EMO slightly increases the runtime compared to the single-objective op-
timizations performed in all other approaches.

Regarding the empirical runtime for computing the figures in bi-objective
space, SMS-EGO and Keane are the fastest approaches (≈ 4 s for 6561 eval-
uations). The scalarization-based EI criteria show a surprisingly high runtime
for the recommended number of N = 501 weight vectors (Tchebycheff: 978 s,
weighted sum: 398 s), deteriorating their rating in D4. The direct integration
takes about 140 s for the bi-objective computations. However, the runtime of
the SExI and Euclid may increase exponentially with the number of the objec-
tives m.

5 Conclusions and Outlook

In this paper, we summarized, compared, and analyzed existing EI criteria for
multi-objective optimization. For one of the criteria, an improved variant has
been introduced. Moreover, we proposed necessary conditions and desired prop-
erties for a formal evaluation. Based on theoretical and empirical analyses, we
showed that Euclid and WS-EI are not compliant with the dominance relation or
provide no clear formulation of the desired improvement. Thus, these approaches
should no longer be used. All other approaches considered in this study fulfill
the necessary conditions. Depending on the application, the appropriate criterion
can be chosen based on the performance on the desired properties (cf. Table 2).

For the scalarization-based approaches, improvements in the formulation and
requirements for the weight vectors could be stated. However, a trade-off be-
tween accuracy and runtime still exists. To overcome this problem, an adaptive
calculation of the corresponding optimal weight vector [16] during the integra-
tion seems promising. The problem of plateaus in the EI landscapes may be
solved by combining the EI with penalty functions for values below the machine
accuracy.
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Abstract. Typically, the variation operators deployed in evolutionary

multiobjective optimization algorithms (EMOA) are either simulated bi-

nary crossover with polynomial mutation or differential evolution oper-

ators. This empirical study aims at the development of a sound method

how to assess which of these variation operators perform best in the

multiobjective context. In case of the S-metric selection EMOA our main

findings are: (1) The performance of the tuned operators improved signif-

icantly compared to the default parameterizations. (2) The performance

of the two tuned variation operators is very similar. (3) The optimized

parameter configurations for the considered problems are very different.

Keywords: parameter tuning, performance assessment, benchmarking,

multiobjective variation operators, sequential parameter optimization.

1 Introduction

Numerous multiobjective evolutionary algorithms have been developed and stud-
ied in various benchmarks. However, clear evidence on which methods, operators,
and even parameters are promising for certain test cases could not be received.
Here, the functions from the well-known CEC 2007 [1] competition are dealt
with investigating the performance of different variation operators for one spe-
cial algorithm. The aim is to either propose one promising setting for this special
scenario or to empirically prove that such settings differ along the considered test
functions and operators.

The operators polynomial mutation (PM) and simulated binary crossover
(SBX) devised by Deb et al. [2] are standard, have been incorporated in many
algorithms, and considered in just as many benchmarks. In the competition on
multiobjective optimization at the CEC 2007 [1], algorithms using differential
evolution (DE) were among the best especially on the alterations of standard
test functions and thereby recommend themselves. These variation operators are
plugged into the SMS-EMOA [3], which is compliant and well working with both
variation concepts as well as the test cases considered.

We aim at performing this study as professional as possible with state-of-the-
art methodologies of experimental research, so that it may serve as a prototypic
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example to gain a very deep understanding of the object of investigation. In the
past, experimental studies were mostly set up such that several algorithms are
compared based on their default parameters (performing with unknown quality)
or equal parameter values, e.g. for the population size. But a certain parameter
value can of course be more suitable for one algorithm than for another. Ac-
cording to Bartz-Beielstein [4], a comparison of algorithms is fair only if these
are both set up with optimal parameter configurations with respect to the op-
timization problem. To comply with this mindset, we use Sequential Parameter
Optimization (SPO) [4] to find good configurations before comparing the per-
formance. The tuning is an optimization problem with unknown optimum and
better parameterization are likely to exist. Since we can neither determine the
optimum nor prove the optimality of a configuration, the chosen methodology
seems to be the best way to proceed.

Wessing and Naujoks [5] compared the established performance indicators
IH , IR2 and Iε+ [6] in combination with SPO, finding out that the hypervolume
indicator IH is the most suitable one for a comparison. For this reason, we are
focusing on IH exclusively. From the CEC 2007 testbed we have chosen the two-
objective problems OKA2, SYM-PART, the shifted as well as rotated variants
of ZDT problems, and three-objective DTLZ and WFG problems. Note that the
results are not directly comparable to others obtained before in the environment
of the CEC 2007 contest, since a number of bugs in the implementation of the
benchmark have been fixed. In a second experiment, two aerodynamic test cases
are analyzed.

The next section details the invoked algorithm and variation operators as well
as the parameter tuning tool SPO. Section 3 contains our experimental studies
and we summarize our work in Sec. 4.

2 Preliminaries

The SMS-EMOA [3] is an indicator-based steady-state algorithm which performs
its selection such that the hypervolume dominated by the population in the
objective space is maximized. Thereby, the algorithm aims at converging towards
a good distribution along the Pareto front. Its conception does not include any
prescribed variation operator but it has mostly been studied with PM and SBX.

Recall that in single-objective optimization the CMA-ES [7] is unchallenged as
the most successful variation operator on most problems. However, this question
is not settled yet in multi-objective optimization (MOO), because of the different
requirements. The aim in MOO is not to converge to a single global optimum,
but to approximate the whole Pareto-front, which requires appropriate diversity
in the population.

Simulated Binary Crossover (SBX) was devised by Deb et al. [2] to carry over
the behavior of single-point crossover in binary search spaces to real valued search
spaces. It always creates two children from two parents. Polynomial Mutation
(PM) utilizes the same probability distribution to vary a single individual. These
two variation operators together will simply be called SBX variation in the
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remainder of the paper. They contain several parameters to be adjusted by the
user. The variance of the distributions is controlled by the parameters ηc, ηm ∈
R+. For recombination and mutation the parameters pc and pm, respectively,
describe the probability for each position in the genome to apply variation. This
means that the impact of the η values is directly depending on the probabilities.

Another variation method that copes well with (μ+1) selection scheme of the
chosen EMOA is Differential Evolution (DE), developed by Storn and Price [8].
The classic DE algorithm contains a special selection scheme, which lets the
offspring only compete with its parent, achieving a crowding effect. However,
only the DE variation is picked here to be used with the SMS-EMOA. We choose
to focus on the two user-adjustable parameters F and CR for optimization. F
is a scaling factor to vary the length of the difference vectors and CR controls
the crossover rate, similar to pc in SBX. In this work, we employ the plain SBX
and DE versions that were originally proposed by their inventors.

The main idea of SPO is to treat optimizer runs as experiments, using meth-
ods from Design of Experiments (DoE) [9] and Design and Analysis of Computer
Experiments (DACE) [10]. The optimizer’s exogenous parameters are considered
as the experiment’s design variables. SPO begins with a latin hypercube sample
(LHS) in the search space and creates a surrogate model from the results. In
our case, DACE Kriging [11] is used for modeling. As the optimizer’s results
are stochastic, each point is sampled several times and the results are averaged.
In an optimization loop, the model is then used to predict promising parame-
ter configurations. The new candidates are evaluated and the data is fed back
into the model. If no new best configuration is found in a step, the number of
repetitions is increased.

3 Experiments

The first experiment investigates the performance of the algorithms and method-
ologies above on a set of well known mathematical test functions. A second
experiment deals with two real-world problems.

3.1 DE vs. SBX on CEC 2007 Problems

Research Question: How does DE compare to SBX variation on the CEC 2007
test case collection [1]?

Table 1. The default values and region of interest (ROI) of parameters. The ROI is

the range on which the search is conducted.

DE SBX

Param. μDE CR F μSBX ηc ηm pc pm

Default 100 0.1 0.5 100 20.0 15.0 1.0 0.1

ROI {6, . . . , 120} [0, 1] [0, 2] {3, . . . , 120} [0, 40] [0, 40] [0, 1] [0, 1]
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Preexperimental planning: For the experiment’s preparation, some SPO runs
were carried out to determine the parameters’ regions of interest (see Tab. 1).
Additionally, the optimization of SBX configurations on OKA2 and S ZDT2 with
1000 problem evaluations was repeated 20 times, to get an estimate of SPO’s re-
liability. It is not necessary that SPO always delivers the same parameterization
as the optimized one, because not all parameters have influence on the perfor-
mance. But it is desired that an algorithm set up with the final parameterization
achieves Pareto front approximations of similar quality. Fig. 1 shows that the
performance could be increased in all cases and we regard the variance as small
enough for meaningful comparisons, even when only one SPO run is performed
per problem. The tuned parameter configurations will be called DE* and SBX*
in the remainder.
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Fig. 1. Boxplots show the performance distributions in terms of dominated hypervol-

ume (HV) of 20 SPO runs. Additional lines mark the default SBX (solid) and DE

(dashed) configurations’ mean performance.

Task: After SPO has finished, the new configurations are run 50 times and eval-
uated with IH . These samples are compared to same-sized samples of the default
configurations and each other. For each comparison, a two-sided U-Test [12] is
employed. The null hypothesis is that there is no difference in means and we
require a significance level of 5% to reject it.

Setup: SPO is applied to all 2-objective and 3-objective test problems in the
CEC 2007 suite. The contained 5-objective problems are excluded, because of the
SMS-EMOA’s high runtime on these. Two different run lengths, namely 500 ·M
and 5000 ·M function evaluations, of the SMS-EMOA are examined to detect
possible floor or ceiling effects. Here, M denotes the number of the problem’s
objectives. Tables 1 and 2 show the regions of interest and the setup for the
experiments. The default parameters for DE variation are chosen according to
[13]. DE’s lower bound for μ is higher than that for SBX, because it uses more
parents for variation. The performance evaluation is generally done according to
the CEC 2007 contest rules [1], i.e the whole objective space of each problem is
approximately normalized to [1, 2]M . The reference point for IH is then set to
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Table 2. The setup for Experiment 3.1

Problems Two- and three-objective CEC 2007 problems

SPO budget 500 algorithm runs

Algorithm initialization Uniform random

Stopping criterion 500 · M and 5000 · M problem evaluations

Algorithm SMS-EMOA

Parameters DE: μ, CR, F ; SBX: μ, ηc, ηm, pc, pm

Initial experimental design Latin Hypercube (50 points, 3 repeats per point)

Performance measure IH

(2.1, . . . , 2.1)T , although Wessing and Naujoks [5] show that the whole approach
can have drawbacks on some problems.

Results/Visualization: Tables 3 and 4 show the performance results of DE and
SBX variation. Optimized configurations that are significantly better than the
competing optimized configuration are highlighted in bold face. Figure 2 shows
parallel plots of the configurations. More details on the parameter configurations
are provided by Wessing [14].
Observations: SBX reaches significantly better mean values than DE for all
test cases. For 500 ·M problem evaluations, SBX* is better than DE* on ten
problems, while the opposite is true on only two problems (there is one tie).
For 5000 ·M evaluations, SBX* wins seven times and DE* four times (there
are two ties). Except for SBX* on R ZDT4, both operators can always improve
significantly compared to their default configurations. Figure 2 shows that small
population sizes should be used on the short runs. Especially for long runs, low
values of pm are a good choice. It also seems to be promising to choose CR >
F. The rest of the parameters does not follow any general trend.

Table 3. Mean hypervolume and standard deviation with 500 · M evaluations

Problem SBX SBX* DE DE*

OKA2 0.5053 ±0.013 0.5450 ±0.011 0.4976 ±0.013 0.5322 ±0.021

SYM-PART 1.1640 ±0.009 1.2063 ±0.001 1.0335 ±0.023 1.1935 ±0.011

S ZDT1 1.0189 ±0.020 1.1024 ±0.015 0.8706 ±0.019 1.0403 ±0.026

S ZDT2 0.9488 ±0.023 1.0496 ±0.042 0.7451 ±0.028 0.9422 ±0.033

S ZDT4 0.9505 ±0.027 1.0407 ±0.043 0.8489 ±0.025 1.0546 ±0.027

R ZDT4 1.0994 ±0.018 1.1214 ±0.039 1.0605 ±0.022 1.1350 ±0.024

S ZDT6 0.7340 ±0.011 0.7592 ±0.016 0.6573 ±0.007 0.7013 ±0.011

S DTLZ2 1.3270 ±0.001 1.3291 ±0.002 1.3189 ±0.003 1.3290 ±0.001

R DTLZ2 1.3100 ±0.009 1.3204 ±0.008 1.2531 ±0.024 1.3243 ±0.003

S DTLZ3 1.3165 ±0.003 1.3304 ±0.001 1.3054 ±0.005 1.3257 ±0.003

WFG1 0.9051 ±0.005 0.9936 ±0.005 0.8677 ±0.012 0.9084 ±0.008

WFG8 1.1101 ±0.014 1.2231 ±0.009 1.1062 ±0.015 1.1985 ±0.009

WFG9 1.1651 ±0.020 1.2147 ±0.013 1.1474 ±0.024 1.2012 ±0.019
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(a) SBX, 500 · M evals. (b) SBX, 5000 · M evals.

(c) DE, 500 · M evals. (d) DE, 5000 · M evals.

Fig. 2. Parallel plots of best parameter configurations found by SPO. Parameters for

all 13 test functions are shown in light gray. Default configurations are marked as

dashed lines. Results from Exp. 3.2 are shown as dark bold lines.

Table 4. Mean hypervolume and standard deviation with 5000 · M evaluations

Problem SBX SBX* DE DE*

OKA2 0.5610 ±0.010 0.5725 ±0.011 0.5480 ±0.008 0.5676 ±0.010

SYM-PART 1.2074 ±3.0e-4 1.2095 ±1.4e-4 1.1194 ±0.012 1.2098 ±4.0e-5

S ZDT1 1.1508 ±0.004 1.1684 ±0.005 0.8755 ±0.012 1.1686 ±0.002

S ZDT2 1.0668 ±0.006 1.1271 ±0.009 0.7394 ±0.023 1.0928 ±0.018

S ZDT4 1.1241 ±0.015 1.2029 ±0.003 0.8441 ±0.020 1.1654 ±0.011

R ZDT4 1.1908 ±0.010 1.1933 ±0.008 1.0845 ±0.015 1.1923 ±0.006

S ZDT6 0.8658 ±0.007 0.9293 ±0.024 0.6584 ±0.004 0.9574 ±0.016

S DTLZ2 1.3301 ±1.1e-5 1.3302 ±4.0e-6 1.3224 ±5.7e-4 1.3302 ±1.6e-5

R DTLZ2 1.3296 ±3.2e-5 1.33000 ±3.2e-5 1.2638 ±1.3e-2 1.32997 ±4.2e-5

S DTLZ3 1.3306 ±2.3e-4 1.33099 ±1.4e-5 1.3028 ±2.2e-3 1.33097 ±2.1e-5

WFG1 0.9684 ±0.003 1.0803 ±0.017 0.8929 ±0.005 1.0633 ±0.025

WFG8 1.2197 ±0.005 1.2702 ±0.003 1.2003 ±0.046 1.2615 ±0.003

WFG9 1.2459 ±0.007 1.2592 ±0.008 1.1894 ±0.007 1.2607 ±0.010
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Discussion: The experiment shows that the decision which variation is chosen
is less important than the decision to tune the chosen variation operator, be-
cause the differences between the default and optimized configurations are much
bigger than between different optimized configurations. It is also obvious that
the default setting is completely opposing the optimal configuration on some
problems. SBX* winning more often might be due to a biased set of problems.
The result is more balanced on the longer runs, so it would be interesting to test
if DE* performance increases for run lengths extended even further.

3.2 DE vs. SBX on Aerodynamic Problems

From the academic test cases we have learned that optimal parameterizations
differ considerably. As a consequence, there is no general near-optimal default
parameterization. However, this could be due to artificial structures of the aca-
demic test cases. Therefore, the next experiment shall reveal whether our insights
gained so far are transferable to real-world problems.

Research Question: How does DE compare to SBX variation on examples of
real-world problems? How do the results compare to the ones from the previous
experiment?

Preexperimental planning: We consider a 2-objective and a 3-objective aero-
dynamic problem, which have been subject of previous studies [15,16]. Due to
the large calculation times for the computational fluid dynamics simulations, a
restricted number of 1000 objective function evaluations is allowed and the SPO
budget is slightly decreased to 300 algorithm runs (see Tab. 5).

Task: See Experiment 3.1.

Setup: In the first investigation, a two-objective airfoil design problem is con-
sidered (referred to as NACA, cf. [15]). Two regimes of flow conditions have been
chosen, which vary in the flow parameter settings. Practitioners are interested in
good compromise solutions ranging from considering mainly the first flow condi-
tion to the other way around. This way, a Pareto front according to this trade-off
is highly appreciated. To achieve this Pareto front, two nearly optimal airfoils
have been identified to become target airfoils, and a two-objective redesign test
case is defined.

The second aerodynamic test case is a true design test case (referred to as
RAE, cf. [16]). Here, the drag for some given airfoil is to be minimized for three
different flow conditions. Different constraints were defined to guarantee for a
minimum of structural feasibility of the received results. These constraints were

Table 5. Settings for Experiment 3.2 that differ from Tab. 2

Problems NACA, RAE

SPO budget 300 algorithm runs

Stopping criterion 1000 problem evaluations

Initial experimental design Latin Hypercube (25 points, 4 repeats per point)
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of geometric, as well as of aerodynamic nature. Both kind of constraints were
handled in different ways as can be gleaned from [16]. The baseline RAE 2822
design is always included in the initial population. The airfoil parametrization
is done using Bezier points like for the NACA test case. While 18 degrees of
freedom were allowed to control the airfoil in the NACA test case, the RAE test
case features only six.

The default configurations and regions of interest are identical to those in
Experiment 3.1 (see Tab. 1). Table 5 shows the differences in the experimental
setup compared to Experiment 3.1. The reference point is set to (0.4, 0.4)T for
the NACA problem and (10, 10, 10)T for the RAE problem.

Results/Visualization: Table 6 shows the found optimized configurations,
which are also included in Fig. 2 as bold lines. Table 7 shows the performance
results.

Table 6. Parameter results on the aerodynamic problems

DE Configuration SBX Configuration

Problem μDE CR F μSBX ηc ηm pc pm

NACA 21 0.90 0.34 10 0.16 15.43 0.06 0.68

RAE 14 0.76 0.71 10 20.50 34.24 0.01 0.48

Table 7. Mean hypervolume and standard deviation on aerodynamic problems

Problem SBX SBX* DE DE*

NACA 0.1462 ± 0.0012 0.1501 ± 0.0007 0.1467 ± 0.0009 0.1502 ± 0.0007

RAE 993.663 ± 0.005 993.844 ± 0.022 993.672 ± 0.033 993.869 ± 0.041

Observations: All optimized configurations are significant improvements over
their default configurations. The difference between SBX* and DE* is not signif-
icant on NACA, but on RAE. The possible improvements by parameter tuning
can be gleaned from Tab. 7: SPO is able to improve the NACA values by 2.7%
using SBX* and 2.4% featuring DE*. However, the results on RAE cannot be
improved accordingly, here the improvements are about 0.02%.

Interestingly, the same population size is identified for SBX variation on both
test cases. For DE*, a roughly similar population size was identified for the RAE
case as well, while the best value for the NACA case is twice as big. Concerning
the operators’ probabilities, SBX* variation focuses on mutation. The applica-
tion probabilities for the recombination operator are very small, which means
that ηc cannot have much influence. Generally, it is remarkable that SBX* and
DE* are completely opposed to the default configurations.

Discussion: The improvement seems so low on RAE, because the initial popula-
tion always contains the mentioned near-optimal baseline solution, which already
dominates a hypervolume of 993.662. But in fact, the default SBX configuration
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fails to find any other feasible solution in 49 of the 50 runs. The default DE
configuration ‘only’ fails in 39 runs. DE* and SBX*, on the other hand, achieve
success rates of 100% for this measure.

4 Conclusions

On real-world problems, it is still common practice to use EMOA parameteriza-
tions obtained from unrelated test problems. Our experiments clearly put this
into question. This work shows that the performance of the tuned operators im-
proved significantly compared to the default parameterizations. Moreover, the
performance of the two tuned variation operators is very similar, whereas the
optimized parameter configurations for the considered problems are very dif-
ferent. As a consequence, parameter tuning should become standard. While we
acknowledge that the proposed parameter optimization is computationally very
expensive, ignoring the problem is not an option, because significantly improved
solutions can be obtained. Moreover, Preuss et al. [17] outline a possible remedy
by replacing the original, expensive problem by a surrogate model. An EA tuned
on the surrogate yields a parameter configuration that performs better than the
default parameterization on the original problem.

From the practitioners point of view there is a clear message: Regardless
which variation operator is eventually chosen, make sure that the parameters
are tuned. Do not trust in default settings! This is also the result of Smit and
Eiben [18], who studied parameter tuning on single-objective problems. Thus, we
recommend that publications include information on how much effort was put
into finding any parameter values. Also, benchmarking contests should add rules
for dealing with parameters. For example, the parameter tuning can be regarded
as part of the problem, i.e. parameter tuning has to be performed within given
budget restrictions. At least, it is not fair to compare algorithms with default or
equal parameterizations.
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Valdivieso, Pedro Ángel Castillo II-452

Vatolkin, Igor I-314
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