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Preface

This volume is part of the three-volume proceedings of the 20th International
Conference on Artificial Neural Networks (ICANN 2010) that was held in Thes-
saloniki, Greece during September 15–18, 2010.

ICANN is an annual meeting sponsored by the European Neural Network
Society (ENNS) in cooperation with the International Neural Network Soci-
ety (INNS) and the Japanese Neural Network Society (JNNS). This series of
conferences has been held annually since 1991 in Europe, covering the field of
neurocomputing, learning systems and other related areas.

As in the past 19 events, ICANN 2010 provided a distinguished, lively and
interdisciplinary discussion forum for researches and scientists from around the
globe. It offered a good chance to discuss the latest advances of research and also
all the developments and applications in the area of Artificial Neural Networks
(ANNs). ANNs provide an information processing structure inspired by biologi-
cal nervous systems and they consist of a large number of highly interconnected
processing elements (neurons). Each neuron is a simple processor with a limited
computing capacity typically restricted to a rule for combining input signals
(utilizing an activation function) in order to calculate the output one. Output
signals may be sent to other units along connections known as weights that excite
or inhibit the signal being communicated. ANNs have the ability “to learn” by
example (a large volume of cases) through several iterations without requiring a
priori fixed knowledge of the relationships between process parameters.

The rapid evolution of ANNs during the last decades has resulted in their
expansion in various diverse scientific fields, like engineering, computer science,
mathematics, artificial intelligence, biology, environmental science, operations
research and neuroscience. ANNs perform tasks like pattern recognition, image
and signal processing, control, classification and many others.

In 2010 ICANN was organized by the following institutions: Aristotle Uni-
versity of Thessaloniki, University of Macedonia at Thessaloniki, Technologi-
cal Educational Institute of Thessaloniki, Hellenic International University and
Democritus University of Thrace.

The conference was held in the Kapsis Hotel and conference center in Thes-
saloniki, Greece. The participants were able to enjoy the atmosphere and the
cultural heritage of Thessaloniki, which is built by the seaside and has a glorious
history of 2300 years.

As a matter of fact, a total of 241 research papers were submitted to the
conference for consideration. All of the submissions were peer reviewed by at
least two academic referees. The international Program Committee of ICANN
2010 carefully selected 102 submissions (42%) to be accepted as full papers.
Additionally 68 papers were selected for short presentation and 29 as posters.



VI Preface

The full papers have up to 10 pages, short ones have up to 6 pages and posters
have up to 4 pages in the proceedings.

In addition to the regular papers, the technical program featured four keynote
plenary lectures by the following worldwide renowned scholars:

– Prof. Alessandro E.P. Villa: NeuroHeuristic Research Group, Information
Science Institute, University of Lausanne, Switzerland and Institut des Neu-
rosciences, Université Joseph Fourier, Grenoble, France. Subject: “Spatiotem-
poral Firing Patterns and Dynamical Systems in Neural Networks”;

– Prof. Stephen Grossberg: Department of Cognitive and Neural Systems, Cen-
ter for Adaptive Systems, and Center of Excellence for Learning in Edu-
cation, Science, and Technology, Boston University. Subject: “The Predic-
tive Brain: Autonomous Search, Learning, Recognition, and Navigation in a
Changing World”;

– Prof. Sergios Theodoridis: Department of Informatics and Telecommunica-
tions, National and Kapodistrian University of Athens. Subject: “Adaptive
Learning in a World of Projections”;

– Prof. Nikola Kasabov: Knowledge Engineering and Discovery Research Insti-
tute (KEDRI), Auckland University of Technology. Subject: “Evolving Inte-
grative Spiking Neural Networks: A Computational Intelligence Approach”.

Also two tutorials were organized on the following topics:

– Prof. J.G. Taylor: Department of Mathematics, King’s College London. Sub-
ject: “Attention versus Consciousness: Independent or Conjoined?”;

– Dr. Kostas Karpouzis: Image, Video and Multimedia Systems Lab, Institute
of Communication and Computer Systems (ICCS/NTUA). Subject: “User
Modelling and Machine Learning for Affective and Assistive Computing”.

Finally three workshops were organized namely:

– The First Consciousness Versus Attention Workshop (CVA);
– The Intelligent Environmental Monitoring, Modelling and Management Sys-

tems for Better QoL Workshop (IEM3);
– The First Self-Organizing Incremental Neural Network Workshop (SOINN).

The ENNS offered 12 travel grants to students who participated actively
in the conference by presenting a research paper, and a competition was held
between students for the best paper award.

The three-volume proceedings contain research papers covering the following
topics: adaptive algorithms and systems, ANN applications, Bayesian ANNs, bio
inspired-spiking ANNs, biomedical ANNs, data analysis and pattern recognition,
clustering, computational intelligence, computational neuroscience, cryptogra-
phy algorithms, feature selection/parameter identification and dimensionality
reduction, filtering, genetic-evolutionary algorithms, image, video and audio pro-
cessing, kernel algorithms and support vector machines, learning algorithms and
systems, natural language processing, optimization, recurrent ANNs, reinforce-
ment learning, robotics, and self organizing ANNs.
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the Steering Committee, we would like to thank all the keynote invited speakers
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Abstract. In our previous work we have discussed the training method

of a support vector regressor (SVR) by active set training based on

Newton’s method. In this paper, we discuss convergence improvement

by modifying the training method. To stabilize convergence for a large

epsilon tube, we calculate the bias term according to the signs of the pre-

vious variables, not the updated variables. And to speed up calculating

the inverse matrix by the Cholesky factorization during iteration steps,

at the first iteration step, we keep the factorized matrix. And at the sub-

sequent steps we restart the Cholesky factorization at the point where

the variable in the working set is replaced. By computer experiments we

show that by the proposed method the convergence is stabilized for a

large epsilon tube and the incremental Cholesky factorization speeds up

training.

1 Introduction

A support vector machine (SVM) with nonlinear kernels is usually trained in
the dual form to avoid explicit treatment of variables in the feature space. In
the dual form, the number of variables is the number of training data in pattern
classification and twice the number of training data for function approximation.
Therefore to reduce the number of variables that are treated simultaneously,
decomposition techniques are used. They are classified into fixed-size chunking
[1] and variable-size chunking [2]. The most well known training method using
fixed-size chunking is sequential minimal optimization (SMO) [3]. It optimizes
two data at a time. In variable-size chunking, we keep support vector candidates
in the working set and when the algorithm terminates, the working set includes
support vectors. Training based on variable-size chunking is sometimes called
active set training. Cauwenberghs and Poggio’s incremental and decremental
training [4] is one type of active set training and it keeps track of the status
change among unbounded support vectors, bounded support vectors, and non-
support vectors. This method is extended to batch training [5,6,7,8,9].
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Because the coefficient vector of the hyperplane is expressed by the kernel
expansion, substituting the kernel expansion into the coefficient vector, the SVM
in the primal form can be solvable. Based on this idea Chapelle [10] proposed
training the SVM in the primal form. In [11], this method is extended to dual
L2 SVMs, where at each step variables are allowed to be infeasible. Because in
the dual form kernel expansion is not used and the coefficient matrix is positive
definite, training in the dual form is usually faster than in the primal.

The training methods using variable-size chunking developed for pattern clas-
sification are extended to function approximation [12,13,14]. In [14], active set
training in [11] was extended to function approximation. This method, however,
has a convergence problem for a large epsilon tube.

In this paper we solve the above convergence problem and propose acceler-
ating training L2 SVRs. We use Mattera et al.’s formulation of the SVR [15],
whose number of variables is the number of training data. Then the dual vari-
ables take real values. The training algorithm in [14] is as follows. Starting from
the initial working set, we repeatedly solve the dual quadratic programming
problem, delete from the working set the variables which are within the epsilon
tube and add to the working set the data which are outside of the epsilon tube
until the same working sets are obtained. In this method, at each iteration step
we need to calculate the bias term of the separating hyperplane. We find that
unstable convergence for a large epsilon tube is caused by the incorrect value of
the bias term. Thus, we calculate the bias term according to the signs of the pre-
vious variables, not the updated variables. Furthermore, to speed up training, we
calculate the inverse of the coefficient matrix incrementally using the Cholesky
factorization. Namely, at the first iteration step, we keep the factorized matrix
by the Cholesky factorization. Then at the subsequent iteration steps, we restart
the Cholesky factorization at the point where the variable in the working set is
replaced.

In Section 2, we explain L2 SVRs in the dual form, and in Section 3 we explain
the training method of SVRs discussed in [14]. Then, in Section 5, we discuss
how to improve convergence and accelerate training. In Section 6, by computer
experiment we demonstrate the effectiveness of the proposed method for some
benchmark data sets.

2 L2 Support Vector Regressors in the Dual Form

Using the M training input-output pairs (xi, yi) (i = 1, . . . , M), where xi is the
ith training input and yi is the associated output, we consider determining the
regression function:

y = w�φ(x) + b, (1)

where φ(x) is the mapping function to the feature space, w is the coefficient
vector of the hyperplane in the feature space and b is its bias term.
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The L2 SVR is given by

minimize Q(w, b, ξ, ξ∗) =
1
2
‖w‖2 +

C

2

M∑
i=1

(ξ2
i + ξ∗2i ) (2)

subject to yi −w�φ(xi )− b ≤ ε + ξi for i = 1, . . . , M, (3)
w�φ(xi) + b − yi ≤ ε + ξ∗i for i = 1, . . . , M, (4)
ξi ≥ 0, ξ∗i ≥ 0 for i = 1, . . . , M, (5)

where ε is the parameter to define the epsilon tube, ξi and ξ∗i are slack vari-
ables, and C is the margin parameter that determines the trade-off between the
magnitude of the margin and the estimation error of the training data.

The above optimization problem can be converted into the dual form in-
troducing nonnegative slack variables αi and α∗

i associated with the inequality
constraints (3) and (4), respectively. Then the number of variables of the sup-
port vector regressor in the dual form is twice the number of the training data.
But because nonnegative dual variables αi and α∗

i appear only in the forms of
αi − α∗

i and αi + α∗
i and both αi and α∗

i are not positive at the same time, we
can reduce the number of variables to half by replacing αi − α∗

i with αi, which
take negative values as well as nonnegative values, and αi + α∗

i with |αi| [15].
Then, we obtain the following dual problem for the L2 SVR:

maximize Q(α) = −1
2

M∑
i,j=1

αi αj

(
K(xi,xj) +

δij

C

)

−ε
M∑
i=1

|αi|+
M∑
i=1

yi αi (6)

subject to
M∑
i=1

αi = 0, (7)

where αi are dual variables associated with xi and take negative values as well as
nonnegative values, K(x,x′) = φ�(x)φ(x) is the kernel, and δij is Kronecker’s
delta function.

The KKT complementarity conditions are

αi (ε + ξi − yi + w�φ(xi) + b) = 0 for αi ≥ 0, i = 1, . . . , M, (8)
αi (ε + ξi + yi −w�φ(xi)− b) = 0 for αi < 0 i = 1, . . . , M, (9)

C ξi = |αi| for i = 1, . . . , M. (10)

Therefore, b is obtained by

b =

⎧⎪⎨⎪⎩
yi −w�φ(xi)− ε− αi

C
for αi > 0,

yi −w�φ(xi) + ε− αi

C
for αi < 0, i ∈ {1, . . . , M}.

(11)
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By the formulation, L2 SVRs are very similar to L2 SVMs. If the value of ε is
very small almost all training data become support vectors. In such a case the
L2 SVR behaves very similar to the least squares (LS) SVR. And for ε = 0 the
L2 SVR is equivalent to the LS SVR.

3 Training Methods

In this section we explain the training method discussed in [14].
We solve the equality constraint (7) for one variable and substitute it into

(6). Then the optimization problem is reduced to the maximization problem
without constraints. We divide the variables into the working set and the fixed
set and solve the subproblem for the working set fixing the variables in the fixed
set. In the next iteration process, we delete the variables that are within the
ε-tube from the working set and add, from the fixed set, the variables that do
not satisfy the KKT conditions and iterate optimizing the subproblem until the
same solution is obtained. This method allows variables to change signs jumping
over the epsilon tube between the consecutive iteration steps. We discuss the
method more in detail.

Consider solving (6) and (7) for the index set S. Solving the equality constraint
in (7) for αs (s ∈ S), we obtain

αs = −
∑
i�=s,
i∈S

αi. (12)

Substituting (12) into (6), we obtain the following optimization problem

maximize Q(αS) = c�S α′
S −

1
2
α′

S
�

KS α′
S , (13)

where αS = {αi|i ∈ S}, α′
S = {αi|i �= s, i ∈ S}, cS is the (|S| − 1)-dimensional

vector, KS is the (|S| − 1)× (|S| − 1) positive definite matrix, and

cSi =

⎧⎪⎪⎨⎪⎪⎩
yi − ys for D(xi, yi) ≥ 0, D(xs, ys) ≥ 0

yi − ys − 2 ε for D(xi, yi) ≥ 0, D(xs, ys) < 0
yi − ys + 2 ε for D(xi, yi) < 0, D(xs, ys) ≥ 0

yi − ys for D(xi, yi) < 0, D(xs, ys) < 0 i �= s, i ∈ S

(14)

KSij = K(xi,xj)−K(xi,xs)−K(xs,xj)

+K(xs,xs) +
1 + δij

C
for i, j �= s, i, j ∈ S, (15)

where cSi is the ith element of cSi and D(x, y) = y − φ(x)− b.
If ε = 0, in (14), cSi = yi − ys irrespective of the signs of D(xi, yi) and

D(xs, ys). Thus, similar to LS SVRs, we can solve (13) by a single matrix inver-
sion.

Initially, for positive ε, we set some indices to S and set αi = 0 (i ∈ S) and
b = 0. Therefore, D(xi, yi) = 0. Thus, in (14), cSi is set according to the signs
of yi and ys. We solve (13):

α′
S = K−1

S cS . (16)
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We calculate b using (11). Because of ε, the b values calculated by different
αi in S may be different. Thus we calculate the average of bs. If training data
associated with the variables in S are within the ε-tube, we delete these variables
and add the indices of the variables to S that violate KKT conditions. If the
working sets and cSi are the same for the consecutive two iterations, the solution
is obtained and we stop training. This stopping condition is different from that
for the SVM discussed in [11] because of the absolute value of αi in the objective
function.

The procedure for training the L2 SVR is as follows.

1. Set the indices associated with h training data to set S and go to Step 2.
2. Calculate α′

S using (16) and using (12) obtain αs. Calculate bs for i ∈ S
using (11) and calculate the average of bs.

3. Delete from S the indices of xi that satisfy |D(xi, yi)| ≤ ε. And add to S
the indices associated with at most h most violating data, namely xi that
satisfy |D(xi, yi)| > ε from the largest |D(xi, yi)| in order. If the solution is
obtained, stop training. Otherwise, go to Step 2.

For a large value of ε, there may be cases where a proper working set is not
obtained and thus the solution does not converge. This is because the monotonic
decrease of the objective function values is not guaranteed.

4 Convergence Improvement

The training method discussed in Section 3 works well for a small epsilon tube,
but for a large epsilon tube the numbers of violations of KKT conditions fluctu-
ate considerably and convergence becomes difficult. This occurs because of the
incorrect bias term calculation. Thus to avoid this, in calculating the bias term
by (11), we use the signs of αi at the previous step, not the updated αi. As will
be shown in the “Performance Comparison” Section, this drastically stabilizes
convergence.

In calculating (16), we use the Cholesky factorization. It is known that the
Cholesky factorization can be done incrementally [16]. Therefore, we use the
incremental Cholesky factorization to speed up training. Suppose that the ele-
ments in S are ordered from 1 to |S|, the first index in S is set to s, and the data
associated with ith and jth indices and index s are used to generate the (i−1)th
column (row) and (j−1)th row (column) of KS . And suppose that at the end of
some iteration step, the ith index is the highest order among the replaced indices
in S. Then the first (i − 1) × (i − 1) sub-matrix of KS is the same with that
of the previous one. Therefore, the factorized matrices of the sub-matrices are
also the same. Thus, keeping the factorized matrix at each step, the Cholesky
factorization at the next iteration step can be restarted at the ith column and
row of KS.

Now discuss the complexity of the proposed training method for ε = 0, where
no indices in S are removed from S during training. Then, training proceeds
as indices for h data are added to S at the end of each iteration step and
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training ends after M/h iterations. Because the Cholesky factorization is done
incrementally, the computational cost of the Cholesky factorization is O(N3),
where N is the number of support vectors and N = M . Because the Cholesky
factorization is the most crucial part of computation, computational complexity
of the proposed method is O(N3). For ε > 0 the indices in S are replaced
with those in the fixed set. But if in most cases the indices of the less violating
variables that are added at the previous step are deleted in the next step, the
cost for the Cholesky factorization will still be O(N3). Thus in this case also, the
computational complexity will be assumed to be O(N3). This will be evaluated
in the next section.

5 Performance Comparison

Using the benchmark data sets obtained from the home page of LIBSVM [17],
we first evaluated the convergence of the proposed method and then compared
the training time with that of LIBSVM, which is based on SMO.

We scaled the input range into [−1, 1] and used the polynomial kernels:
K(x,x′) = (x�x′ + 1)d/(m + 1)d, where d is the polynomial degree and RBF
kernels: exp(−γ‖x− x′‖2/m), where γ is the radius of the spread and m is the
number of input variables.

To check the convergence of the proposed method, we set two cases of pa-
rameter values where number of support vectors is large: γ = 10, C = 10, and
ε = 0.1 and small: γ = 0.1, C = 104, and ε = 1.0. Changing the value of
h we checked the mean absolute error (MAE), the numbers of support vectors
(SVs) and iterations, and training time. Table 1 shows the results. Because MAE
and SVs were the same for different values of h, namely the same solution was
obtained, we listed these values only in the first line of the results. Previous
time and proposed time denote the training time without and with the incre-
mental Cholesky factorization, respectively. For each problem and each training
method, the shortest training time is shown in boldface. The effect of the in-
cremental Cholesky factorization is especially evident for the abalone data set.
The values of h that gave the shortest training time were different for different
problems. By the incremental Cholesky factorization, the median of the shortest
training times is h = 100. Therefore, in the following we use h = 100.

To check convergence improvement for the large value of ε, we used the abalone
problem using the RBF kernel with γ = 0.1 and polynomial kernels with d = 3
and with C = 10000 and change the value of ε. Table 2 lists the results. In this
table, we also includes the maximum absolute error “Max E.” “Previous” and
“Proposed” denote that the bias terms are calculated by the signs of current αi

and one-step-before αi. Using the current αi, the solutions were obtained only
for ε = 1 with the maximum iterations of 1000. But for the proposed method, for
the RBF kernel, for ε = 13 the number of support vectors is 2 and for ε = 14, the
solution process was not monotonic and did not converge. This was because the
optimum solution was expressed by a constant with no support vectors and the
proposed method did not consider the solution with no support vectors. For the
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Table 1. Convergence for the change of h

Data h γ, C, ε MAE SVs Iters Previous

Time (s)

Proposed

Time (s)

Housing 500 10, 10, 0.1 1.186 483 4 0.406 0.375

250 5 0.421 0.406

100 8 0.421 0.343
50 13 0.484 0.359

500 0.1, 104, 1.0 1.927 339 5 0.312 0.312

250 6 0.234 0.234

100 11 0.218 0.171
50 12 0.218 0.171

Mg 1000 10, 10, 0.01 0.07892 1279 4 8.84 7.11

500 5 8.81 7.22

250 8 10.9 6.25
100 15 13.0 6.56

50 28 20.5 6.58

1000 0.1, 104, 0.1 0.09981 599 7 3.22 3.14

500 6 1.98 2.08

250 7 1.50 1.27

100 9 1.14 0.968

50 16 1.55 0.812

Space-ga 1500 10, 10, 0.1 0.07872 941 7 24.6 24.3

1000 6 14.2 14.6

500 9 9.20 7.84

250 10 8.75 4.92

100 15 8.53 4.09
50 24 10.3 4.92

1500 0.1, 104, 1.0 0.5093 7 30 20.1 20.8

1000 25 9.45 9.25

500 22 2.80 2.47

250 29 1.41 0.968

100 33 0.656 0.656

50 29 0.484 0.437

Abalone 1500 10, 10, 0.1 1.425 3961 5 439 310

1000 7 543 310

500 10 518 228
250 18 742 324

100 11 1381 281

50 80 2600 261

1500 0.1, 104, 1.0 1.533 2323 5 109 106

1000 6 101 60.1

500 8 105 39.7

250 13 129 31.5
100 26 177 37.3

50 50 328 46.7
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Table 2. Convergence for the abalone data set for the change of ε with C = 10000

Parm. ε MAE Max E SVs Previous Proposed

Iters Time (s) Iters Time (s)

γ0.1 1 1.533 14.85 2323 31 35.8 25 37.3

5 2.577 12.79 192 — — 8 1.03

10 4.818 10.09 5 — — 25 0.859

13 5.689 13.00 2 — — 47 0.984

d3 1 1.482 11.40 2311 31 44.4 29 45.4

5 2.279 9.390 229 — — 18 2.05

7 2.970 7.683 81 — — 311 13.2

polynomial kernel, for ε = 7 the number of support vectors was 81 and for ε = 8
the solution was not obtained. Therefore, training using RBF kernels is more
stable than using polynomial kernels. But because we do not set so large a value
to ε unstable convergence for polynomial kernels may not be a serious problem.
In addition by changing the calculation method of the bias terms, convergence
was drastically improved.

We compared training time of the proposed method with that of LIBSVM.
Because the proposed method is based on the L2 SVR but LIBSVM offers only
the L1 SVR, the exact comparison is not possible. Usually the L2 SVR gives
larger number of support vectors than the L1 SVR. For each case that tested
we carefully checked that the above relation held. Except for the CPUsmall
problem, we set γ = 1 for the RBF kernel, d = 3 for the polynomial kernel,
and ε = 0.1. For the CPUsmall problem, to obtain solutions with the number
of support vectors smaller than 5000, we used the RBF kernel with γ = 0.001
and linear kernels and ε = 20 for both cases. We changed the values of C and
measured the training time using a personal computer (3.16GHz, 3GB memory,
Windows XP operating system). For parameter values of LIBSVM other than
stated above, we set default values.

Table 3 lists the results. In the “Data” column, in addition to the name of the
data set, we included the numbers of inputs and data. The “SVs” column lists the
number of support vectors for the proposed method. For each case, the shorter
training time is shown in boldface. From the table it is clear that for small values
of C LIBSVM is faster but for large value of C LIBSVM slows down.

For the proposed method the training time did not change very much except
for the CPUsmall problem with the RBF kernel. For the CPUsmall problem, the
number of support vectors reduced significantly as the C value was increased.
This led to the shorter training time. Except for the abalone and CPUsmall
problems with RBF kernels the proposed method is faster than LIBSVM for
large C values.

Assuming that the computational complexity of the proposed method is O(N3)
and the training time of the housing data set with RBF kernels and C = 100000,
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Table 3. Training time comparison in seconds

Data C SVs RBF SVs Polynomial

Proposed LIBSVM Proposed LIBSVM

Housing 10 487 0.328 0.093 487 0.406 0.093
13 100 480 0.343 0.125 495 0.593 0.203
506 1000 488 0.406 0.375 489 0.656 1.02

10000 486 0.421 2.67 494 1.00 11.5

100000 492 0.562 36.9 497 1.45 284

Mg 10 602 0.781 0.234 573 1.00 0.296
6 100 576 0.859 0.593 562 0.921 1.31

1385 1000 560 1.16 2.88 566 1.00 8.89

10000 551 1.28 29.8 564 1.28 93

100000 533 1.45 982 564 1.71 1487

Space-ga 10 1082 4.70 0.531 978 3.66 0.703
6 100 994 3.86 1.64 974 4.48 3.25
3107 1000 976 4.98 9.09 979 4.13 25.2

10000 943 3.75 78.2 962 4.53 259

100000 887 3.84 1931 959 4.92 7367

Abalone 10 3968 264 1.48 3977 319 1.25
8 100 3961 206 1.72 3951 240 1.81
4177 1000 3962 296 3.55 3957 301 7.06

10000 3962 202 19.4 3956 297 69.2
100000 3959 238 196 3962 287 986

CPUsmall 10 2745 241 0.609 784 10.3 0.625
12 100 1449 23.4 0.625 783 9.98 0.968
8192 1000 953 11.4 0.609 783 8.56 3.66

10000 786 8.91 0.687 783 9.09 22.6

100000 724 8.72 0.781 783 9.19 155

the training time of the abalone data set with the same condition is estimated
to be (3959/492)3× 0.562 = 293 (s), which is near to the actual training time of
238 (s).

6 Conclusions

In this paper we proposed improving convergence of an active set training method
for L2 SVRs. To stabilize convergence for a large epsilon tube, we calculate the bias
terms according to the signs of previous variables not the current ones. And to ac-
celerate training, we introduce incremental Cholesky factorization. The compu-
tation complexity of the proposed method is the cubic of the number of support
vectors. Using the benchmark data sets, we showed that the convergence of the
training method was drastically stabilized for a large epsilon tube and by the in-
cremental Cholesky factorization, training was sped up and the proposed method
was faster than LIBSVM for large C value for medium size problems.
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Abstract. Although the real reproducing kernels are used in an increas-

ing number of machine learning problems, complex kernels have not,

yet, been used, in spite of their potential interest in applications such

as communications. In this work, we focus our attention on the complex

gaussian kernel and its possible application in the complex Kernel LMS

algorithm. In order to derive the gradients needed to develop the complex

kernel LMS (CKLMS), we employ the powerful tool of Wirtinger’s Cal-

culus, which has recently attracted much attention in the signal process-

ing community. Writinger’s calculus simplifies computations and offers

an elegant tool for treating complex signals. To this end, the notion of

Writinger’s calculus is extended to include complex RKHSs. Experiments

verify that the CKLMS offers significant performance improvements over

the traditional complex LMS or Widely Linear complex LMS (WL-LMS)

algorithms, when dealing with nonlinearities.

Keywords: Kernel Methods, LMS, Reproducing Kernel Hilbert Spaces,

Complex Kernels, Wirtinger Calculus, Kernels.

1 Introduction

In recent years, kernel based algorithms have become the state of the art for
many problems, especially in the machine learning community. The common
feature of these problems is that they are casted as optimization problems over a
Reproducing Kernel Hilbert Space (RKHS). The main advantage of mobilizing
the tool of RKHSs is that the original nonlinear task is “transformed” into
a linear one, where one can employ an easier “algebra”. Moreover, different
types of nonlinearities can be treated in a unifying way, that does not affect the
derivation of the algorithms, except at the final implementation stage. The main
concepts of this procedure can be summarized in the following two steps: 1) Map
the finite dimensionality input data from the input space F (usually F ⊂ R

ν)
into a higher dimensionality (possibly infinite) RKHS H and 2) Perform a linear
processing (e.g., adaptive filtering) on the mapped data in H. The procedure is
equivalent with a non-linear processing (non-linear filtering) in F .

An alternative way of describing this process is through the popular kernel
trick [1], [2]: “Given an algorithm, which is formulated in terms of dot prod-
ucts, one can construct an alternative algorithm by replacing each one of the
dot products with a positive definite kernel κ”. The specific choice of kernel,

K. Diamantaras, W. Duch, L.S. Iliadis (Eds.): ICANN 2010, Part II, LNCS 6353, pp. 11–20, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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implicitly, defines a RKHS with an appropriate inner product. Furthermore, the
choice of a kernel also defines the type of nonlinearity that underlies the model
to be used. Although there are several kernels available in the relative literature,
in most cases the powerful real Gaussian kernel is adopted.

The main representatives of this class of algorithms are the celebrated support
vector machines (SVMs), which have dominated the research in machine learning
over the last decade. Moreover, processing in Reproducing Kernel Hilbert Spaces
(RKHSs) in the context of online adaptive processing is also gaining in popularity
within the signal processing community [3], [4], [5], [6], [7]. Besides SVMs and
the more recent applications in adaptive filtering, there is a plethora of other
scientific domains that have gained from adopting kernel methods (e.g., image
processing and denoising [8], [9], principal component analysis [10], clustering
[11], e.t.c.).

Although the real Gaussian RBF kernel is quite popular in the aforemen-
tioned context, the existence of the corresponding complex Gaussian kernel is
relatively unknown to the machine learning community. This is partly due to
the fact, that in classification tasks (which is the dominant application of kernel
methods) the use of complex kernels is prohibitive, since no arrangement can be
derived in complex domains and the necessary separating hyperplane of SVMs
cannot be defined. Consequently, all known kernel based applications, since they
emerged from the specific background, use real-valued kernels and they are able
to deal with real valued data sequences only. While the complex gaussian RBF
kernel is known to the mathematicians (especially those working on Reproducing
Kernel Hilbert Spaces or Functional Analysis), it has remained in obscurity in
the machine learning society. In this paper, however, we use the complex gaus-
sian kernel to address the problem of adaptive filtering of complex signals in
RKHSs, focusing on the recently developed Kernel LMS (KLMS) [3], [12]. The
main goals of this paper are: a) to elevate from obscurity the complex Gaussian
kernel as an effective tool for kernel based adaptive processing of complex sig-
nals, b) the extension of Wirtinger’s Calculus in complex RKHSs as a means for
the elegant and efficient computation of the gradients, that are involved in many
adaptive filtering algorithms, and c) the development of the Complex Kernel
LMS (CKLMS) algorithm, by exploiting the extension of Wirtinger’s calculus
and the RKHS of complex gaussian kernels. Wirtinger’s calculus [13] is enjoying
increasing popularity, recently, mainly in the context of Widely Linear complex
adaptive filters [14], [15], [16], [17], [18], providing a tool for the derivation of
gradients in the complex domain.

The paper is organized as follows. In section 2 we provide a minimal introduc-
tion to complex RKHSs focusing on the complex gaussian kernel and its relation
with the real one. Next, in section 3 we summarize the main notions of the
extended Wirtinger’s Calculus. Section 4 presents the gaussian complex kernel
LMS algorithm. Finally, experimental results and conclusions are provided in
Section 5. We will denote the set of all real and complex numbers by R and C

respectively. Vector or matrix valued quantities appear in boldfaced symbols.
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2 Reproducing Kernel Hilbert Spaces

In this section we briefly describe the Reproducing Kernel Hilbert Spaces. Since
we are mainly interested on the complex case, we recall the basic facts on RKHS
associated with complex kernels. The material presented here may be found with
more details in [19] and [20]. Given a function κ : X ×X → C and x1, . . . , xN ∈
X , the matrix1 K = (Ki,j)N with elements Ki,j = κ(xi, xj), for i, j = 1, . . . , N ,
is called the Gram matrix (or kernel matrix ) of κ with respect to x1, . . . , xN . A
complex hermitian matrix K = (Ki,j)N satisfying

cH ·K · c =
N,N∑

i=1,j=1

c∗i cjKi,j ≥ 0,

for all ci ∈ C, i = 1, . . . , N , is called Positive Definite2. Let X be a nonempty set.
Then a function κ : X×X → C, which for all N ∈ N and all x1, . . . , xN ∈ X gives
rise to a positive definite Gram matrix K is called a Positive Definite Kernel.
In the following we will frequently refer to a positive definite kernel simply as
kernel.

Next, consider a linear class H of complex valued functions f defined on a
set X . Suppose further, that in H we can define an inner product 〈·, ·〉H with
corresponding norm ‖·‖H and that H is complete with respect to that norm, i.e.,
H is a Hilbert space. We call H a Reproducing Kernel Hilbert Space (RKHS),
if for all x ∈ X the evaluation functional Tx : H → C : Tx(f) = f(x) is
a continuous (or, equivalently, bounded) operator. If this is true, then by the
Riesz’s representation theorem, for all x ∈ X there is a function gx ∈ H such
that Tx(f) = f(x) = 〈f, gx〉H. The function κ : X ×X → C : κ(y, x) = gx(y) is
called a reproducing kernel of H. It can be easily proved that the function κ is
a positive definite kernel.

Alternatively, we can define a RKHS as a Hilbert space H for which there
exists a function κ : X ×X → C with the following two properties:

1. For every x ∈ X , κ(·, x) belongs to H.
2. κ has the so called reproducing property, i.e.

f(x) = 〈f, κ(·, x)〉H, for all f ∈ H, (1)

in particular κ(x, y) = 〈κ(·, y), κ(·, x)〉H.

It has been proved (see [21]) that to every positive definite kernel κ there corre-
sponds one and only one class of functions H with a uniquely determined inner
product in it, forming a Hilbert space and admitting κ as a reproducing kernel.
In fact the kernel κ produces the entire space H, i.e., H = span{κ(x, ·)|x ∈ X}.
The map Φ : X → H : Φ(x) = κ(·, x) is called the feature map of H. Recall,
that in the case of complex Hilbert spaces the inner product is sesqui-linear and
1 The term (Ki,j)

N denotes a square N × N matrix.
2 In matrix analysis literature, this is the definition of the positive semidefinite matrix.
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Hermitian. In the real case the condition κ(x, y) = 〈κ(·, y), κ(·, x)〉H may be re-
placed by the well known equation κ(x, y) = 〈κ(·, x), κ(·, y)〉H. However, since in
the complex case the inner product is Hermitian, the aforementioned condition
is equivalent to κ(x, y) = (〈κ(·, x), κ(·, y)〉H)∗.

Consider the complex valued function

κσ,Cd(z, w) := exp

(
−
∑d

i=1(zi − w∗
i )2

σ2

)
, (2)

defined on C
d × C

d, where z, w ∈ C
d, zi denotes the i-th component of the

complex vector z ∈ C
d and exp is the extended exponential function in the

complex domain. It can be shown that κσ,Cd is a C-valued kernel on C
d, which

we call the complex Gaussian kernel with parameter σ. Its restriction κσ :=(
κσ,Cd

)
|Rd×Rd is the well known real Gaussian kernel :

κσ,Rd(x, y) := exp

(
−
∑d

i=1(xi − yi)2

σ2

)
. (3)

An explicit description of the RKHSs of these kernels, together with some im-
portant properties can be found in [22].

3 Wirtinger’s Calculus in Complex RKHS

Wirtinger’s calculus [13] has become very popular in the signal processing commu-
nity mainly in the context of complex adaptive filtering [14], [23], [15], [16], [24],
as a means of computing, in an elegant way, gradients of real valued cost functions
defined on complex domains (Cν). The Cauchy-Riemann conditions dictate that
such functions are not holomorphic and therefore the complex derivative cannot
be used. Instead, if we consider that the cost function is defined on a Euclidean
domain with a double dimensionality (R2ν), then the real derivatives may be em-
ployed. The price of this approach is that the computations become cumbersome
and tedious. Wirtinger’s calculus provides an alternative equivalent formulation,
that is based on simple rules and principles and which bears a great resemblance
to the rules of the standard complex derivative. A self-consistent presentation of
the main ideas of Wirtinger’s calculus may be found in the excellent and highly
recommended introductory report of K. Kreutz-Delgado [25].

In the case of a simple non-holomorphic complex function T defined on U ⊆ C,
Wirtinger’s calculus considers two forms of derivatives, the R-derivative and the
conjugate R-derivative, which are defined as follows:

∂T

∂z
=

1
2

(
∂u

∂x
+

∂v

∂y

)
+

i

2

(
∂v

∂x
− ∂u

∂y

)
,

∂T

∂z∗
=

1
2

(
∂u

∂x
− ∂v

∂y

)
+

i

2

(
∂v

∂x
+

∂u

∂y

)
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where T (z) = T (x + iy) = T (x, y) = u(x, y) + iv(x, y). Note that any such non-
holomorphic function can be written in the form T (z, z∗). Having this in mind,
∂T
∂z , can be easily evaluated as the standard complex partial derivative taken with
respect to z (thus treating z∗ as a constant). Consequently, ∂T

∂z∗ is evaluated as
the standard complex partial derivative taken with respect to z∗ (thus treating z
as a constant). For example, if T (z, z∗) = z(z∗)2, then ∂T

∂z = (z∗)2, ∂T
∂z∗ = 2zz∗.

Similar principles and rules hold for a function of many complex variables (i.e.,
U ⊆ C

ν) [25].
Wirtinger’s calculus has been developed only for operators defined on finite

dimensional spaces, C
ν . Hence, this calculus cannot be used in RKH spaces,

where the dimensionality of the function space can be infinite, as, for example,
it is the case for the Gaussian RKHSs. To this end, Wirtinger’s calculus needs
to be generalized to a general Hilbert space. A rigorous presentation of this
extension is out of the scope of the paper (due to lack of space). Nevertheless,
we will present the main ideas and results. We employ the Fréchet derivative,
a notion that generalizes differentiability on abstract Banach or Hilbert spaces.
Consider a Hilbert space H over the field F (typically R or C). The operator
T : H → F is said to be Fréchet differentiable at f0, if there exists a u ∈ H ,
such that

lim
‖h‖H→0

T (f0 + h)− T (f0)− 〈u, h〉H
‖h‖H = 0, (4)

where 〈·, ·〉H is the dot product of the Hilbert space H and ‖ · ‖H =
√〈·, ·〉H is

the induced norm. The element u is usually called the gradient of T at f0.
Assume that T = (T1, T2)T , T (f ) = T (f1 + if2) = T (f1, f2) = T1(f1, f2) +

iT2(f1, f2), is differentiable as an operator defined on the RKHS H and let ∇1T1,
∇2T1,∇1T2 and∇2T2 be the partial derivatives, with respect to the first (f1) and
the second (f2) variable respectively. It turns out, proofs are omitted due to lack
of space, that if T (f1, f2) has derivatives of any order, then it can be written in
the form T (f , f∗), where f∗ = f1− if2, so that for fixed f∗, T is f -holomorphic
and for fixed f , T is f∗-holomorphic. We may define the R-derivative and the
conjugate R-derivative of T as follows:

∇fT =
1
2

(∇1T1 +∇2T2) +
i

2
(∇1T2 −∇2T1) (5)

∇f∗T =
1
2

(∇1T1 −∇2T2) +
i

2
(∇1T2 +∇2T1) . (6)

The following properties can be proved (among others):

1. The first order Taylor expansion around f ∈ H is given by

T (f + h) =T (f) + 〈h, (∇fT (f ))∗〉H + 〈h∗, (∇f∗T (f))∗〉H.

2. If T (f ) = 〈f , w〉H, then ∇fT = w∗, ∇f∗T = 0.
3. If T (f ) = 〈w, f 〉H, then ∇fT = 0, ∇f∗T = w.
4. If T (f ) = 〈f∗, w〉H, then ∇fT = 0, ∇f∗T = w∗.
5. If T (f ) = 〈w, f∗〉H, then ∇fT = w, ∇f∗T = 0.
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An important consequence of the above properties is that if T is a real valued
operator defined on H, then its first order Taylor’s expansion is given by:

T (f + h) = T (f ) + 〈h, (∇fT (f))∗〉H + 〈h∗, (∇f∗T (f ))∗〉H
= T (f ) + 〈h,∇f∗T (f )〉H + (〈h,∇f∗T (f )〉H)∗

= T (f ) + 2 ·  [〈h,∇f∗T (f )〉H] .

However, in view of the Cauchy Riemann inequality we have:

 [〈h,∇f∗T (f )〉H] ≤ |〈h,∇f∗T (f )〉H| ≤ ‖h‖H · ‖∇f∗T (f )‖H.

The equality in the above relationship holds if h ∝ ∇f∗T . Hence, the direction
of increase of T is ∇f∗T (f ). Therefore, any gradient descent based algorithm
minimizing T (f ) is based on the update scheme:

fn = fn−1 − μ · ∇f∗T (fn−1). (7)

4 Complex Kernel LMS

As an application of the complex gaussian kernel in adaptive filtering of complex
signals, we focus on the recently developed Kernel Least Mean Squares Algorithm
(KLMS), which is the LMS algorithm in RKHSs [3], [12]. KLMS, as all the known
kernel methods that use real-valued kernels, was developed for real valued data
sequences only. Here, the KLMS is extended to include the complex case. To our
knowledge, no kernel-based strategy has been developed, so far, that is able to
effectively deal with complex valued signals. Wirtinger’s calculus is exploited to
derive the necessary gradient updates.

Consider the sequence of examples (z(1), d(1)), (z(2), d(2)), . . . , (z(N), d(N)),
where d(n) ∈ C, z(n) ∈ V ⊂ C

ν , z(n) = x(n) + iy(n), x(n), y(n) ∈ R
ν , for

n = 1, . . . , N . We map the points z(n) to the gaussian complex RKHS H using
the feature map Φ, for n = 1, . . . , N . The objective of the complex Kernel LMS
is to minimize E [Ln(w)], where

Ln(w) = |e(n)|2 = |d(n)− 〈Φ(z(n)), w〉H|2
= (d(n)− 〈Φ(z(n)), w〉H) (d(n)− 〈Φ(z(n)), w〉H)∗

= (d(n)− 〈w∗, Φ(z(n))〉H) (d(n)∗ − 〈w, Φ(z(n))〉H) ,

at each instance n. We then apply the complex LMS to the transformed data,
using the rules of Wirtinger’s calculus to compute the gradient ∇w∗Ln(w) =
−e(n)∗ ·Φ(z(n)). Therefore the CKLMS update rule becomes w(n) = w(n−1)+
μe(n)∗ · Φ(z(n)), where w(n) denotes the estimate at iteration n.

Assuming that w(0) = 0, the repeated application of the weight-update equa-
tion gives:

w(n) =
n∑

k=1

e(k)∗Φ(z(k)). (8)
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Thus, the filter output at iteration n becomes:

d̂(n) =〈Φ(z(n)), w(n− 1)〉H = μ

n−1∑
k=1

e(k)〈Φ(z(n)), Φ(z(k))〉H

=μ

n−1∑
k=1

e(k)κσ,Cν (z(n), z(k)).

It can readily be shown that, since the CKLMS is the complex LMS in RKHS, the
important properties of the LMS (convergence in the mean, misadjustment, e.t.c.)
carry over to CKLMS. Furthermore, note that using the complex gaussian kernel
the algorithm is automatically normalized. The CKLMS algorithm is summarized
in Algorithm 1. Although it is developed in the context of the complex gaussian
kernel, it may be used with any other complex reproducing kernel.

Algorithm 1. Normalized Complex Kernel LMS
INPUT: (z(1), d(1)), . . . , (z(N), d(N))

OUTPUT: The expansion

w =
∑N

k=1 a(k)κ(z(k), ·).

Initialization: Set a = {}, Z = {} (i.e., w = 0). Select the step parameter μ
and the parameter σ of the complex gaussian kernel.

for n=1:N do
Compute the filter output: d̂(n) =

∑n−1
k=1 a(k) · κσ,Cν (z(n), z(k)).

Compute the error: e(n) = d(n) − d̂(n).

a(n) = μe(n).

Add the new center z(n) to the list of centers, i.e., add z(n) to the list Z , add

a(n) to the list a.

end for

In CKLMS, we start from an empty set (usually called the dictionary) and
gradually add new samples to that set, to form a summation similar to the one
shown in equation (8). This results to an increasing memory and computational
requirements, as time evolves. To cope with this problem and to produce sparse
solutions, we employ the well known novelty criterion [26], [12]. In novelty cri-
terion online sparsification, whenever a new data pair (Φ(zn), dn) is considered,
a decision is immediately made of whether to add the new center Φ(zn) to the
dictionary of centers C. The decision is reached following two simple rules. First,
the distance of the new center Φ(zn) from the current dictionary is evaluated:
dis = minck∈C{‖Φ(zn)−ck‖H}. If this distance is smaller than a given threshold
δ1 (i.e., the new center is close to the existing dictionary), then the center is not
added to C. Otherwise, we compute the prediction error en = dn − d̂n. If |en| is
smaller than a predefined threshold δ2, then the new center is discarded. Only
if |en| ≥ δ2 the new center Φ(zn) is added to the dictionary.
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Fig. 1. The equalization problem

5 Experiments

We tested the CKLMS using a simple nonlinear channel equalization problem
(see figure 1). The nonlinear channel consists of a linear filter: t(n) = (−0.9 +
0.8i) · s(n) + (0.6− 0.7i) · s(n− 1) and a memoryless nonlinearity q(n) = t(n) +
(0.1 + 0.15i) · t2(n) + (0.06 + 0.05i) · t3(n). At the receiver end of the channel,
the signal is corrupted by white Gaussian noise and then observed as r(n). The
input signal that was fed to the channel had the form

s(n) = 0.70(
√

1− ρ2X(n) + iρY (n)), (9)

where X(n) and Y (n) are gaussian random variables. This input is circular
for ρ =

√
2/2 and highly non-circular if ρ approaches 0 or 1 [15]. The aim of

channel equalization is to construct an inverse filter which taking the output
r(n), reproduces the original input signal with as low an error rate as possible.
To this end we apply the NCKLMS algorithm to the set of samples(

(r(n + D), r(n + D − 1), . . . , r(n + D − L))T , s(n)
)
,

where L > 0 is the filter length and D the equalization time delay.
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Fig. 2. Learning curves for KCLMS, (μ = 1) CLMS (μ = 1/16) and WL-CLMS (μ =

1/16) (filter length L = 5, delay D = 2) in the nonlinear channel equalization, for the

(a) circular input case and (b) the non-circular input case



The Complex Gaussian Kernel LMS Algorithm 19

Experiments were conducted on a set of 5000 samples of the input signal (9)
considering both the circular and the non-circular case. The results are compared
with the NCLMS and the WL-NCLMS algorithms. In all algorithms the step
update parameter μ is tuned for best possible results. Time delay D was also set
for optimality. Figure 2 shows the learning curves of the NCKLMS with σ = 5,
compared with the NCLMS and the WL-NCLMS algorithms. Novelty criterion
was applied to the CKLMS for sparsification with δ1 = 0.1 and δ2 = 0.2. In
both examples, CKLMS considerably outperforms both the NCLMS and the
WL-NCLMS algorithms. However, this enhanced behavior comes at a price in
computational complexity, since the CKLMS requires the evaluation of the kernel
function on a growing number of training examples.

References

1. Schölkopf, B., Smola, A.J.: Learning with Kernels. MIT Press, Cambridge (2002)

2. Theodoridis, S., Koutroumbas, K.: Pattern Recognition, 4th edn. Academic Press,

London (2009)

3. Liu, W., Pokharel, P., Principe, J.C.: The kernel least-mean-square algorithm.

IEEE Trans. Sign. Proc. 56(2), 543–554 (2008)

4. Kivinen, J., Smola, A., Williamson, R.C.: Online learning with kernels. IEEE Trans.

Sign. Proc. 52(8), 2165–2176 (2004)

5. Engel, Y., Mannor, S., Meir, R.: The kernel recursive least-squares algorithm. IEEE

Trans. Sign. Proc. 52(8) (2004)

6. Slavakis, K., Theodoridis, S., Yamada, I.: On line classification using kernels and

projection based adaptive algorithm. IEEE Trans. Signal Process. 56(7), 2781–2797

(2008)

7. Slavakis, K., Theodoridis, S., Yamada, I.: Adaptive constrained learning in repro-

ducing kernel hilbert spaces: The robust beamforming case. IEEE Trans. Signal

Process. 57(12), 4744–4764 (2009)

8. Kim, K., Franz, M.O., Scholkopf, B.: Iterative kernel principal component analysis

for image modeling. IEEE Trans. Pattern Anal. Mach. Intell. 27(9), 1351–1366

(2005)

9. Bouboulis, P., Slavakis, K., Theodoridis, S.: Adaptive kernel-based image denoising

employing semi-parametric regularization: Image Processing. IEEE Transactions.

19(6), 1465–1479 (2010)

10. Smola, A.J., Schölkopf, B., Muller, K.R.: Kernel principal component analysis. In:

Gerstner, W., Hasler, M., Germond, A., Nicoud, J.-D. (eds.) ICANN 1997. LNCS,

vol. 1327, pp. 583–588. Springer, Heidelberg (1997)

11. Filippone, M., Camastra, F., Masulli, F., Rovetta, S.: A survey of kernel and spec-

tral methods for clustering. Pattern Recognition 41(1), 176–190 (2008)

12. Liu, W., Principe, J.C., Haykin, S.: Kernel Adaptive Filtering. Wiley, Chichester

(2010)

13. Wirtinger, W.: Zur formalen theorie der functionen von mehr complexen

veränderlichen. Math. Ann. 97, 357–375 (1927)

14. Picinbono, B., Chevalier, P.: Widely linear estimation with complex data. IEEE

Trans. Signal Process. 43(8), 2030–2033 (1995)

15. Adali, T., Li, H.: Complex-valued adaptive signal processing. In: Adali, T., Haykin,

S. (eds.) Adaptive Signal Processing: Next Generation Solutions, Hoboken, NJ.

Wiley, Chichester (2010)



20 P. Bouboulis and S. Theodoridis

16. Adali, T., Li, H., Novey, M., Cardoso, J.F.: Complex ICA using nonlinear functions.

IEEE Trans. Signal Process. 56(9), 4536–4544 (2008)

17. Mattera, D., Paura, L., Sterle, F.: Widely linear decision-feedback equalizer for

time-dispersive linear MIMO channels. IEEE Trans. Signal Process. 53(7), 2525–

2536 (2005)

18. Navarro-Moreno, J.: ARMA prediction of widely linear systems by using the inno-

vations algorithm. IEEE Trans. Signal Process. 56(7), 3061–3068 (2008)

19. Saitoh, S.: Integral Transforms, Reproducing Kernels and their applications. Long-

man Scientific & Technical, Harlow (1997)

20. Paulsen, V.I.: An introduction to the theory of reproducing kernel hilbert spaces,

http://www.math.uh.edu/~vern/rkhs.pdf

21. Aronszajn, N.: Theory of reproducing kernels. Transactions of the American Math-

ematical Society 68(3), 337–404 (1950)

22. Steinwart, I., Hush, D., Scovel, C.: An explicit description of the reproducing ker-

nel hilbert spaces of gaussian rbf kernels. IEEE Transactions on Information The-

ory 52(10), 4635–4643 (2006)

23. Mandic, D., Goh, V.S.L.: Complex Valued Nonlinear Adaptive Filters. Wiley,

Chichester (2009)

24. Cacciapuoti, A.S., Gelli, G., Paura, L., Verde, F.: Widely linear versus linear blind

multiuser detection with subspace-based channel estimation: Finite sample-size

effects. IEEE Trans. Signal Process. 57(4), 1426–1443 (2009)

25. Kreutz-Delgado, K.: The complex gradient operator and the CR-calculus,

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.86.6515&

rep=rep1&type=pdf

26. Platt, J.: A resourse allocating network for function interpolation. Newral Compu-

tation 3(2), 213–225 (1991)

http://www.math.uh.edu/~vern/rkhs.pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.86.6515&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.86.6515&rep=rep1&type=pdf


K. Diamantaras, W. Duch, L.S. Iliadis (Eds.): ICANN 2010, Part II, LNCS 6353, pp. 21–29, 2010. 
© Springer-Verlag Berlin Heidelberg 2010 

Support Vector Machines-Kernel Algorithms for the 
Estimation of the Water Supply in Cyprus 

Fotis Maris1, Lazaros Iliadis1, Stavros Tachos2, Athanasios Loukas3,  
Iliana Spartali2, Apostolos Vassileiou1, and Elias Pimenidis4 

1 Democritus University of Thrace Greece 
liliadis@fmenr.duth.gr  

2 Aristotle University of Thessaloniki Greece  

3University of Thessaly Greece 
4 University of East London, UK 

Abstract. This research effort aimed in the estimation of the water supply for 
the case of “Germasogeia” mountainous watersheds in Cyprus. The actual tar-
get was the development of an ε-Regression Support Vector Machine (SVMR) 
system with five input parameters. The 5-Fold Cross Validation method was 
applied in order to produce a more representative training data set. The fuzzy-
weighted SVR combined with a fuzzy partition approach was employed in or-
der to enhance the quality of the results and to offer an optimization approach. 
The final models that were produced have proven to perform with an error of 
very low magnitude in the testing phase when first time seen data were used. 

Keywords: support vector machines, water supply, kernel algorithms, 5 fold 
cross validation. 

1   Introduction  

The “Germasogeia” watershed is located northeast of Lemessos and it has an area of 
157 km2. The maximum water supply is 0.42 m3/sec whereas its forest cover is 57.7% 
(33.7% brush lands). A large dam with a capacity of 13 million m3 has been con-
structed in the watershed of Germasogeia in Cyprus. Traditional approaches for the 
estimation of water supply use too many data features, they are complicated and time 
consuming. This modeling effort uses the same input data with the UBC watershed 
model (University of British Columbia) (Quick and Pipes, 1977) and it is cheap and 
very fast (Loukas, 2009). The UBC method creates a computational representation of 
the hydrological behavior of the watershed. It divides the watershed in altitude zones 
and the daily rain height and daily temperature values (min and max) are used as in-
put. The input data features used in this modeling approach were meteorological, such 
as daily rain height, maximum and minimum daily temperatures. The data were 
measured by three meteorological stations located in 75, 100 and 995 meters respec-
tively. For the control of the output, actual measurements of the water supply of the 
main water stream were used. The data concern the period 1986-1997.  
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1.1   Literature Review 

SVMR, and other machine learning soft computing and adaptive approaches have been 
used recently by other research scientists in hydrological applications (Lin et al., 2006), 
(Lobbrecht and Solomatine, 1999), (Iliadis et al. 2010) and more specifically for hydro-
logical cases in Cyprus island (Iliadis and Maris, 2007). The following figure 1 presents 
clearly the evolution of the maximum and minimum temperatures (MAX TEMP, MIN 
TEMP), of the rainfall (in the three meteorological stations RAINFALL1, 2,3) and of the 
runoff values (RUN OFF) in the area under research for 1997.  
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Fig. 1. Graphical display of the data for 1997 

2   Material and Methods 

The actual amount of data comprised of 4018 records, whereas the actual values of 
the parameters were located in the interval [ ]0, 33 . Due to the very wide range of the 

features’ values, they were normalized by a scaling process before their potential use 
as input vectors. More specifically, this was done so that the features with a wide 
range of values should not prevale over the ones with a narrow range. The scaling was 
done by associating each parameter with a typical normal distribution, which has a 
standard deviation 2 1σ =  and an average value of 0μ = . It is well known that the 

99.7% of the values of a parameter that follows a normal distribution can be found in 

the interval [ ]3 , 3σ σ−  +  and hence in [ ]3, 3−   since 2 1σ σ= = . The first column in 

the tabular data is the output parameter. According to the above, the values of each 
feature were scaled based on the following function 1: 

j j
j

j

X
Z

μ
σ
−

=
 

(1)  
 

where jX  is the jth parameter, jZ  is the scaled variable following a normal 

distribution and ,j jσ μ  are the standard deviation and the mean value of the jth 

parameter. After the calculation of the estimated value  of the scaled data, it was 
restored in the actual range of the output parameter based on the following function 2: 
  

 (2) 
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It should be clarified that the average value in function 2 is always related to the first 
field data.  

2.1   The 5-Fold-Cross Validation Approach 

Cross-validation is the process where training and validation sets must cross-over in 
successive rounds such that each data point has a chance of being validated against. 
The general form of cross-validation is k-fold cross-validation (Refaeilzadeh et 
al.,2008). The 5-Fold-Cross Validation modeling method was also applied. Τhe data 
was split in 5 groups (folds) of equal size and the ε-regression algorithm was executed 
5 times. Every time a different fold was chosen to serve as the training set. This ap-
proach does not allow the existence of extreme values which are not representative for 
the training set. The division of the data set was done by the use of MATLAB’s 
crossvalind, which is included in the Bioinformatics Toolbox. 

2.2   ε-SV Regression (ε-SVR) 

Support Vector Machines (SVM) were initially developed aiming in pattern recogni-
tion (Boser, Guyon & Vapnik 1992).  The support vectors are a small subset of the 
training set. Vapnik (Vapnick, 1997), (Kecman, 2001) introduced the following loss 
function (3) that ignores errors less than a predefined value 0ε >  

( ) ( ){ }max 0 ,y f x y f x
ε

ε− =     − −  (3) 

In this way the ε-SVR algorithm was developed which offers the optimal function of 
the form: ( ) ( ), , ,Nf x k w x b w x R b R= +         ∈   ∈ (4). This is achieved based on the 

training set ( ) ( )1 1, , ..., , N
p px y x y R R  ∈  × (5). The target of this process is the search of 

a function f  with a small testing error which is described by the above function 3. 
However it is not possible to minimize function 3 because the probability distribution 
P  is unknown. Thus the solution is the minimization of the following normalized 
risk function 5 

[ ]
21

2 SVR empw C R fε+ ⋅  (5)  

where [ ]empR fε
is the function of empirical risk [ ] ( )

1

1
, ,

p

emp i i
i

R f L f x y
p =

= ∑ (6) and the 

loss function is ( )( , , )i i i iL f x y y f x
ε

= − (7) that ignores errors less than ε . 
2

w is 

related to the complexity of the model, whereas SVRC  is a constant value determining 

the point that relates [ ]empR fε to 
2

w (Davy, 2005).  

Minimization of function 5 is based on the following optimization problem with 
constrains:  Minimize 

( ) ( )2

1

1 1
, ,

2

p

SVR i i
i

w w C
p

τ ξ ξ ξ ξ∗ ∗

=

= + ⋅ +∑  (8)  
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subject to ( )( ), i i ik w x b y ε ξ+ − ≤ + (9) to ( )( )i i iy k w x b ε ξ ∗− ⋅ + ≤ +  (10) and 

to , 0i iξ ξ ∗ ≥ (11). Obviously, iξ ∗ , iξ  are the distances of the training data set points 

from the zone where the errors les thanε  are ignored. If the i − training point is lo-

cated above the zone then its distance from the zone is represented by iξ , whereas if it 

is below its distance is denoted as iξ ∗ . Using Lagrange multipliers the problem can be 

faced as a double optimization one as follows:  Maximize  

( ) ( ) ( ) ( ) ( ) ( )
1 1 , 1

1
, ,

2

p p p

i i i i i i i j j i j
i i i j

W a a a a a a y a a a a k x xε∗ ∗ ∗ ∗ ∗

= = =

= − + + − − − −∑ ∑ ∑  (12) 

subject to ( )
1

0
p

i i
i

a a∗

=

− =∑  (13) and ( ) 0, SVR
i

C
a

p
∗ ⎡ ⎤∈⎢ ⎥

⎣ ⎦

 (14). According to Vapnik (Vapnick, 

1997), (Kecman, 2001) the solution of the above problem is found in the form of the 
following linear extension of the kernel functions (15) and (16)  

( )
1

p

i i i
i

w a a x∗

=

= −∑  (15) 

( ) ( ) ( )
1

, , ,
p

i i i
i

f x a a a a k x x b∗ ∗

=
= − +∑  

(16) 

where b is estimated by the following function: 

( ) ( ) ( ),i i i k j j j i
j

b average sign a a y a a k x xε ∗ ∗⎧ ⎫
= ⋅ − + − −⎨ ⎬

⎩ ⎭
∑  

(17) 

The vectors ix  of the training set that correspond to nonzero values of   ( )i ia a∗−  

are called SVM. If in 16 the Radial Basis function (RBF) kernel is employed, then the 
function estimated by the ε-SVR will be the following: 

( ) ( )
2

2
1

, , exp
2

p
i

i i
i R B F

x x
f x a a a a b

σ
∗ ∗

=

⎧ ⎫− −⎪ ⎪= − +⎨ ⎬⋅⎪ ⎪⎩ ⎭
∑

 
(18) 

The following parameters { }, ,RBFσ γ ε  play a significant role in the success of the ε-

SVR where RBFσ  is the RBF kernel’s standard deviation, γ  is a constant defining the 

point where the empiric error is related to complexity andε  is the width of the ε-zone. 

3   Fuzzy Weighted SVR with Fuzzy Partition 

The Fuzzy Weighted Support Vector Regression with a Fuzzy Partition (FWSVRFP) 
has been introduced by (Chuang, 2007). This approach manages to take advantage of 
the local behavior of a model (meaning the response differentiation between two or 
more inputs which differ to each other slightly), due to the use of fuzzy C-means clus-
tering (Cox, 2005).  The initial problem is divided to many smaller ones, which re-
sults in the more enhanced study of the training set and also the independent study of  
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Fig. 2. a) System with bad performance of the model’s local behavior b) System with boundary 
effects phenomena 

each partition under a separate ε-SVR. On the other hand it might result in the appear-
ance of boundary effects. Boundary effects exist when sudden and significant differ-
entiations in the response between neighboring points occur. In order to extinguish 
such problems the suggested method integrates the partial responses of the ε-SVR by 
using the Takagi-Sugeno-Kang fuzzy model (Schnitman et al., 1998). 

In  case a) the model’s local behavior output is not good. The blue line corresponds 
to the training set whereas the black line is the model’s output. In case b, the blue line 
is related to the training set, the black line is the output of group 1, and the red the 
output of group 2.  

The first step in this process is the application of fuzzy c-means clustering. Each 

cluster has its own center jβ  and its own width for each input dimension s
jδ  (Cox, 

2005). For example if we have a two dimensional input, then 1
3δ is the width of the 

third cluster in the first dimension. In this way local Regression Models (LRMs) are 
created by using ε-SVR. The local results of the LRMs are used for the integration of 
the overall output through a fuzzy weighted approach that employs Triangular mem-
bership functions to weight the output of each LRM, by using the center and the width 
of its corresponding cluster.  

The integration of the partial output of the k
SVRLRM , requires knowledge of  

the degree of membership of each training vector to each of the clusters. Based on  

the cluster centers kβ  and on the corresponding widths of the clusters, the k 

1,...,k C=  triangular membership functions are created. From the triangular mem-

bership functions the weights ( )s s
k iw x  are obtained for 1, 2,..., , 1, 2,i p k=    =  

..., , 1,...,C s q    =  

( ) ( )
( )

( )
( )max min , , 0

s s s s s s
i k k k k is s

k i s s s s s s
k k k k k k

x x
w x

β η δ β η δ
β β η δ β η δ β

⎛ ⎞⎛ ⎞− ⋅ + ⋅ −
⎜ ⎟⎜ ⎟=

⎜ ⎟⎜ ⎟− − ⋅ + ⋅ −⎝ ⎠⎝ ⎠                  

 (19) 

The degree of belonging of ix  to the k − cluster is obtained by function 20.  

( ) ( ) ( ) ( )1 1 2 2 q q
k i k i k i k iW x w x w x w x= ⋅ ⋅⋅ ⋅  (20) 

The overall output of the proposed fuzzy weighted SVR with fuzzy partition is ob-
tained by the following De-fuzzifier.  
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=
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(21) 

The Root Mean Square Error (RMSE) 
( )2

1

ˆ
N

j j
j

y y

RMSE
N

=

−
=
∑

 (22) is used as an evalua-

tion instrument. Where N is the number of the training vectors, jy  is the actual out-

put of the j − training or testing data and ˆ jy  is the corresponding estimated output.  

 

 

Fig. 3. Triangular membership functions for the estimation of the weight ν s
kw  of point 

ix . A 
case with a two dimensional input and C=3 LRMs. 

4   Application 

The following chapter presents the application results of the Global SVR and FWSVR 
approaches in the total data set. According to Global SVR a global regression model 
was obtained for all of the data set, whereas with the FWSVR several local regression 
models LRMs were constructed. By the use of the 5-Fold Cross Validation, the  
regression algorithm was executed five times for 3214 training records and 804  
testing ones.The regression was performed by the use of the LIBSVM v2.9 
(http://www.csie.ntu.edu.tw/~cjlin/libsvm/) (Chang, 2009) which is encoded in C++ 
and offers a Matlab Interface. In this specific application the RBF-Kernel was ap-
plied. In both cases, the SVR-parameters’ values { } { }, , 9, 6, 0.02RBFσ γ ε  =      were used 

respectively as the optimal ones. They were chosen because after several trial and 
error experiments they were proven to offer better performance in the model. For the 
FWSVR the value of 2η = . As it can be seen the best performance was achieved for 

2C =  where 0.7RMSE ≈ . Considering that the range of the output values was 

[ ]0, 33 , one can conclude that the error was more or less equal to the 2.12% of the 

values’ range which can be an acceptable. However a second optimization approach 
was performed after partitioning the data records in two subsets. 
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Table 1. Performance using the Global SVR and FWSVR approaches with {σ, γ, ε}={9, 6, 
0.02} respectively and  η=2 

RMSE Method Group 
Training Testing 

Global SVR - 1.163 1.167 
2 0.72 0.699 
3 0.722 0.699 
4 0.95 0.934 
5 0.906 0.786 
6 0.834 0.835 
7 0.887 0.864 
8 0.952 0.934 
9 0.98 0.861 

Fuzzy 
Weighted SVR

10 0.948 0.9 

4.1   Optimizing the Performance 

A optimization effort has been done by partitioning the data properly. Based on a 
closer look in the data, it can be seen that from the 4018 data records, the 3660 (the 
91.09%) had an output in the range [0,1] . Consequently for this data group an error 

of the 0.7 magnitude was significant. In order to phase this problem the data set was 
divided in two groups. The first one contained the data vectors with an output in the 
interval [0,1] and the second in the interval (1,33] . The SVM regression algorithms 

were applied for each group of data separately. 

4.2   The 5-Fold Cross Validation for the Data Group in the Interval [0,1]  

The regression algorithm was executed five times, whereas 2928 training data records 
and 732 testing ones were used in each execution. In both of the cases cases the SVR-
parameters applied were{ } { }, , 9, 6, 0.02RBFσ γ ε  =     respectively and 2η = . As it can be 

seen in the above table 2, the optimal performance was achieved for the FWSVR and 
for 2C = , where the obtained root Mean Square Error was 0.2RMSE ≈ . This error 
was actually very small and acceptable.  

4.3   Results for the Data Group with Output in the Interval (1,33]  

The second data group that was formed by the partitioning process, contained only 
385 data records. By employing the 5-Fold Cross Validation method 308 training data 
records and 77 testing ones were used in each of the five executions. The values of the 
SVR-parameters were { } { }, , 12, 5, 0.02RBFσ γ ε  =     respectively and 2η = .  

As it can be seen in table 3, the best performance was achieved by using the 
FWSVR and 3C = , where 2.45RMSE ≈ . This error was very low compared to the 
output values.  
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Table 2. Performance using the Global SVR and the FWSVR approaches with {σ, γ, ε}={9, 6, 
0.02} respectively and  η=2. Application for the data records having an output in the interval [0,1] 

RMSE 
Method Group 

Training Testing 
Global SVR - 0.211 0.212 

2 0.201 0.202 
3 0.202 0.203 
4 0.209 0.209 
5 0.208 0.209 
6 0.208 0.209 
7 0.207 0.21 
8 0.209 0.211 
9 0.211 0.213 

Fuzzy 
Weighted SVR 

(FWSVR) 

10 0.21 0.213 

Table 3. Performance by using Global SVR and FWSVR with {σ, γ, ε}={12, 5, 0.02} 
respectively and  η=2 Application for the region (1,33] 

RMSE 
Method Groups 

Training Testing 

Global SVR - 3.342 3.341 

2 2.516 2.442 

3 2.547 2.407 

4 2.582 2.648 

5 3.022 2.617 

6 3.016 2.839 

7 2.8 2.8 

8 2.962 2.466 

9 2.987 2.503 

Fuzzy 
Weighted SVR 

10 2.976 2.5 

5   Conclusions 

Initially a 5-Fold Cross Validation approach was performed for the integrated data set 
and the best achieved performance had an error value 0.7RMSE ≈ . 

Afterwards another 5-Fold Cross Validation optimization approach was performed 
by dividing the actual data records in two partitions according to the range of their ex-
pected output. Based on the results of the employed approach, the general conclusions 
were the following: Every time that the prediction of the performance is required for a 
new set of input vectors it is well known that the value of the actual output is located in 

the closed interval [0,1]  with a probability of 
4018

91.09%
3660

= . Respectively, the value of 

the actual output might be in the closed interval (1,33]  with a probability of 
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4018
8.91%

358
= . So by using a heuristic approach, the user can use his experience in the 

input data vectors in order to expect the output in the one of the two intervals of values. 
In the first case when the output values are expected to be low, then the first model 
should be used with a very low expected error 0.2RMSE ≈ . In the opposite case the 
second regression model should be applied with an error more or less 2.45RMSE ≈ . 
The models obtained by this research effort are quite promising and they produce 
RMSE values of a very low magnitude in the testing phase.  

References 

1. Boser, B., Guyon, I., Vapnik, V.: A training algorithm for optimal margin classifiers. In: 
Fifth Annual Workshop on Computational Learning Theory, Pittsburgh, pp. 144–152. 
ACM, New York (1992) 

2. Chang, C.C., Lin, C.J.: LIBSVM A Library for Support Vector Machines (2009),  
  http://www.csie.ntu.edu.tw/~cjlin/libsvm/ 

3. Chuang, C.: Fuzzy Weighted Support Vector Regression with a Fuzzy Partition. IEEE 
Transactions on Systems, Man and Cybernetics Part B: Cybernetics 37(3) (2007) 

4. Cox, E.: Fuzzy Modeling and Genetic Algorithms for Data Mining and Exploration. El-
sevier Science, USA (2005) 

5. Davy, M.: An Introduction to Support Vector Machines and other kernel algorithms. In: Proc. 
of the 9th Engineering Applications of Neural Networks Conference, Lille, France (2005) 

6. Iliadis, L., Maris, F.: An Artificial Neural Network model for Mountainous Water-
Resources Management: The case of Cyprus Mountainous Watersheds Environmental 
Modeling and Software 22(7), 1066–1072 (2007) 

7. Iliadis, L., Spartalis, S., Tachos, S.: Kernel methods and neural networks for water re-
sources management. Journal Environmental Engineering and Management 9(2) (2010) 

8. Kecman, V.: Learning and Soft Computing. MIT Press, London (2001) 
9. Kotoulas, D.: Hydrology and Hydraulics of Natural Environment. Aristotle University of 

Thessaloniki, Greece (2001) 
10. Lin, J.Y., Cheng, C.T., Chau, K.W.: Using support vector machines for long-term dis-

charge prediction. Hydrological Sciences Journal 51, 599–612 (2006) (in French) 
11. Lobbrecht, A.H., Solomatine, D.P.: Control of water levels in polder areas using neural 

networks and fuzzy adaptive systems. In: Savic, D., Walters, G.A. (eds.) Water Industry 
Systems: Modelling and Optimization Applications, vol. 1, pp. 509–518. Research Studies 
Press, Baldock (1999) 

12. Loukas, A.: Class Notes of Laboratory of Hydrology and Water Resources Systems 
Analysis (2009) 

13. Quick, M.C., Pipes, A.: U.B.C. watershed model. Hydrological Sciences-Bulletin-des Sci-
ences Hydrologiques XXII, 1 3/1977 (1977) 

14. Refaeilzadeh, P., Tang, L., Liu, H.: Cross-Validation. Arizona State University, USA (2008), 
http://www.public.asu.edu/~ltang9/papers/ 
ency-cross-validation.pdf 

15. Schnitman, L., Felippe de Souza, J.A.M., Yoneyama, T.: Takagi-Sugeno-Kang Fuzzy 
Structures in Dynamic System Modeling Issues of Linear Takagi-Sugeno Fuzzy Models. 
IEEE. Trans. on Fuzzy Systems 6(3), 402–410 (1998) 

16. Vapnik, V.N., Golowich, S., Smola, A.: Support Vector method for function approxima-
tion regression estimation and signal processing. In: Mozer, M., Jordan, M., Petsche, T. 
(eds.) Advances in Neural Information Processing Systems, vol. 9, pp. 281–287. MIT 
Press, Cambridge (1997) 



Faster Directions for Second Order SMO
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Abstract. Second order SMO represents the state–of–the–art in SVM

training for moderate size problems. In it, the solution is attained by

solving a series of subproblems which are optimized w.r.t just a pair of

multipliers. In this paper we will illustrate how SMO works in a two stage

fashion, setting first the values of the bounded multipliers to the penalty

factor C and proceeding then to adjust the non–bounded multipliers.

Furthermore, during this second stage the selected pairs for update often

appear repeatedly during the algorithm. Taking advantage of this, we

shall propose a procedure to combine previously used descent directions

that results in much fewer iterations in this second stage and that may

also lead to noticeable savings in kernel operations.

1 Introduction

Given a training sample S = {(Xi, yi) : i = 1, . . . , N} with yi = ±1, SVM
training seeks [1] to find a separating hyperplane in the form W · X + b with
maximal margin by solving the dual problem

min
α

f(α) =
1
2
αT Qα− e · α s.t.

{
0 ≤ α ≤ C
α · y = 0 (1)

where Q = (Qij) with Qij = yiyjXi · Xj , e is an all-ones vector, αT denotes
the transpose of α, · indicates the standard dot product and C is a penalty
parameter. Once the problem is solved, the primal problem solution can be
obtained as well using W =

∑
i αiyiXi and computing b though the Karush–

Kuhn–Tucker optimality conditions [1]. At first sight, this problem is a relatively
simple constrained quadratic minimization problem and, as such, easy to solve.
However, dim(α) = N and so we may not be able to store the full matrix
Q into memory, even for moderate size problems. Furthermore, non-linearity is
usually introduced in the SVM by using the kernel trick as Qij = yiyjK(Xi, Xj),
making the entries of Q costly to evaluate, as non-linear Kernel Operations
(KOs) are required. These conditions make impossible to apply standard and
fast inner point solvers to the problem. The solution to this are decomposition
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methods, where iteratively a series of subproblems are solved, each of them
involving only a small number q of the multipliers. Among the most effective
decomposition procedures is Joachims’ SVM–Light [2] where the subproblem
multipliers are chosen using gradient information. For q = 2 SVM–Light reduces
to Sequential Minimal Optimization (SMO) [3], that iteratively changes α to
α′ = α + δ(eU − yUyLeL) for appropriate L, U and δ (see below).

However, decomposition methods are not problem free, because as we will
see, the gradient of f(α) needs to be updated at every iteration, which requires
at least N × q KOs. Therefore, if the number of iterations does not decrease
substantially, the cost in KOs of a q–multiplier procedure may degrade as q
grows [4]. The SMO method has a cost of 2N KOs per iteration and benefits from
the ability of solving its corresponding subproblems in closed form. Therefore,
as implemented for instance in the LIBSVM package [5] (also known as second
order SMO) is often the most efficient choice, at least for moderate size problems.

In the experimental use of SMO there are two folk observations. The first one
is that the initial iterations of second order SMO concentrate predominantly on
the bounded multipliers, i.e., those αi for which at the optimum α∗

i = C, as their
number increases until it becomes stable. Then SMO focuses on the unbounded
multipliers, which are adjusted to arrive at their optimal values 0 < α∗

i < C.
The decrease of f(α) is very fast in the first phase but much slower in the second
one. The second observation is that there are often several pairs that are selected
repeatedly, particularly as SMO training advances. These observations suggest
that, in order to improve the speed of SMO, one should concentrate in this second
stage and try to exploit the repeated pairs to derive better descent directions.

In this paper we present an improvement over SMO, which constructs accel-
erating directions much in the way the Hooke–Jeeves (H–J) method improves
cyclic coordinate descent [6], therefore allowing for updating directions unavail-
able to standard SMO while keeping the burden in KOs under control. Whereas
in H–J an accelerating direction is built after a fixed number of iterations, here
we will attempt to do so each time an updating pair of multipliers reappears
during the optimization process. We shall briefly review first and second order
SMO in section 2 and in section 3 we will give the details of our accelerated
version. Both second order SMO procedures are compared in section 4 and the
paper ends with a short discussion.

2 First and Second Order SMO

In principle, the SMO updates would be of the form α′ = α + δUeU + δLeL,
where ei is an all-zeros vector except for the i− th component which is valued 1,
i.e. only two coefficients are allowed to change. However the constraint y ·α = 0
implies that δLyL + δUyU = 0; that is, δL = −δUyLyU . Therefore, the SMO
updates become α′ = α + δ(eU − yUyLeL) where we write δ instead of δU . Note
that this update can be thought as performing a step of size δ in the direction
dU,L = (eU − yUyLeL). As a consequence of this and if we ignore the problem’s
constraints for the moment, by solving ∂

∂δ f(α + δdU,L) = 0 we obtain optimal
an step δ∗ as
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δ∗ =
dU,L · (α−Qα)

dT
U,LQdU,L

=
−dU,L · ∇f(α)

dT
U,LQdU,L

= −yU
ΔU,L

ZU,L
= −yUλ∗ (2)

where ∇f(α) stands for the gradient of f(α) and we write ΔU,L = yU∇f(α)U −
yL∇f(α)L, ZU,L = dT

U,LQdU,L = K(XU , XU ) + K(XL, XL) − 2K(XL, XU ) and
λ∗ = ΔU,L/ZU,L. The corresponding multiplier updates can be expressed as
α′

L = αL + yLλ∗, α′
U = αU − yUλ∗ and α′

j = αj for any other j.
Several proposals can be found in the literature regarding how to choose the

updating pair (L, U). In the so-called first order SMO, also known as Mod-
ification 2 [3], L and U are chosen as the pair that most violates at α the
Karush–Kuhn–Tucker optimality conditions, i.e.

L = arg minj{yj∇f(α)j : j ∈ IL}, U = arg maxj{yj∇f(α)j : j ∈ IU}, (3)
IL = {j|(yj = −1, αj > 0) or (yj = 1, αj < C)},
IU = {j|(yj = −1, αj < C) or (yj = 1, αj > 0)}. .

Notice that this choice implies ΔU,L > 0 and λ∗ > 0, and the restrictions on the
α multipliers are needed so that we have 0 ≤ α′

L ≤ C, 0 ≤ α′
U ≤ C. Moreover,

the initial λ∗ value given by (2) may have to be clipped down so that these
bounds hold.

Note also that, since ΔU,L = yU∇f(α)U − yL∇f(α)L, we have ΔU,L ≥ Δj,i

for any other feasible direction dj,i, and it follows that the most violating pair
U, L choice also gives the feasible direction more aligned with ∇f(α). In other
words, dU,L is the best first order feasible descent direction. However, if no
clipping is needed for λ∗, is is easy to see [7] that the gain can also be written

as f(α)− f(α′) = Δ2
U,L

ZU,L
. This suggests a second order choice of L, U (see [7] for

more details) as the pair for which the full gain is maximal. To avoid a nested
loop on L and U , one chooses first L as in (3) and then U is selected as

U = arg maxj

{
Δ2

j,L

ZU,L
: j ∈ IU , Δj,L > 0

}
. (4)

These second order index choices result in a much faster convergence of SMO
and are implemented, for instance, in the latest versions of LIBSVM [5], the
SVM training tool that can be considered representative of the current state–
of–the–art.

To close this section we remark that we have to keep track of the gradient in
order to compute the optimal L, U indices at each. After an α update we can
also update the gradient efficiently using

∇f(α + δd) = ∇f(α) + δQd = ∇f(α) + δ(QU − yUyLQL),

where Qi stands for the i-th column of Q. It follows that SMO requires essentially
2N KOs at each iteration.
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3 Better Directions for Second Order SMO

In this section we will propose a way to improve SMO convergence speed by
combining recently used descent directions. Let dt = dLt,Ut denote a certain
update vector that we assume has appeared again after K steps from a former
use as the update vector dt−K ; in other words, we are assuming that Lt =
Lt−K , Ut = Ut−K . Consider then v =

∑K
j=1 δt−jd

t−j , with δt−j the optimal
updating coefficient at step t− j.

Clearly, v would have been a better descent direction at αt−K than dt−K ,
as we would have arrived to αt (or another α′ such that f(α′) < f(αt)) in
just one iteration, i.e., it is able to provide greater decrease in f(α). Thus, it
makes sense to consider using v as a descent direction at αT alternative to dt,
as it might still be a better direction; to choose the best option we have to
compare the ∂1 = −∇f(αt) ·dt and ∂2 = −∇f(αt) · v values, i.e., the directional
derivatives at αt with respect dt and v respectively, and decide on the most
negative one. That is, we will be choosing the direction with largest negative
steep. The computation of ∂1 is straightforward, as ∂1 = ΔU,L, and that of ∂2

is only slightly more complex. In fact, we have

∇f(αt) · v =
K∑

j=1

δt−j∇f(αt) · dT−j

=
K∑

j=1

δt−j(∇f(αt)U − yUt−j yLt−j∇f(αt)L)

which can be computed without needing any KO. Once we have decided to
perform an update in the v direction, observe that the value of the objective
function will change as f(α + λv) = f(α) + 1

2λ2vT Qv + δvT Qα− δv · α, and so
the optimal stepsize ignoring constraints can be obtained as

λo =
−v · ∇f(α)

vT Qv
=
−∂2

vT Qv
. (5)

As v is sparse by construction, at most 2K entries are non-zero, and so vT Qv can
be computed efficiently by defining Ri = Qiv =

∑
vj �=0 Qijvj and using vT Qv =∑

vj �=0 vjRj , which requires at most 2KN kernel operations. Furthermore the
vector R can be used to update the gradient as ∇f(α + λv) = ∇f(α) + λR.

Now, taking the constraints back into account note that by using v as updating
direction the α will be modified as αt+1

i = αt
i + λvi ∀ vi �= 0. Therefore we

must have 0 ≤ αt+1
i = αt

i + λvi ≤ C. Thus, if vi > 0, the relevant bound
is the right one, while the left one has to be met when vi < 0. Define MC =
min {(C − αt

i)/vi : vi > 0} and M0 = min {−αt
i/vi : vi < 0}. By clipping λo from

above as λ∗ = min {λo, M0, MC} we guarantee feasibility.
Finally, to detect a repetition of the Lt, Ut indices, we keep them in a cir-

cular queue Q which is searched from its beginning each time a new pair L, U
is selected. If the search fails we insert the pair in Q, but if a previous copy
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(Lt−K , Ut−K) is found we check, as mentioned before, whether the updating
vector V actually defines a descent direction with larger steep than the stan-
dard updating direction. If it does so, we will perform a v update and reset
Q afterwards. Conversely, if it does not, we will remove the previous appear-
ance (Lt−K , Ut−K) from Q and, in order to keep the temporal structure of the
(L, U) index pairs in Q, we will also remove all pairs from Q’s front up to the
(Lt−K , Ut−K) position. All in all, the overall cost of a v update can be regarded
as O(2KN) KOs plus other non-KOs operations involving the queue manage-
ment, which results in roughly K times the cost of standard SMO. Therefore a
global speed-up will only happen if the total number iterations the algorithm
requires to achieve convergence is sufficiently reduced to make up for the ad-
ditional costs for these accelerating iterations. An outline of the algorithm is
presented in 1.

4 Numerical Experiments

In this section we will compare the performance of standard second order SMO
(SO) and of our accelerated procedure (AccSO) on the datasets taken from
G. Rätsch’s benchmark repository [8]. Unless otherwise stated, we shall always
use Gaussian kernels with parameter values C and 2σ2 as reported in [8]. The
stopping criterion will be that the maximum KKT violating value Δ be smaller
than a tolerance ε = 10−5 and the initial α multipliers values are 0.

First we will briefly illustrate the two–stage nature of SO. Figure 1 shows
the evolution of the number of multipliers at the C bound (upper bounded)
and of unbounded multipliers (0 < α < C) for each of the datasets when SO
is applied. A general trend among datasets can be noticed, in which during a
first phase of the algorithm most of the updates are displacing multipliers to the
upper bound, while a lesser quantity get moved to an unbounded state. Next,
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Fig. 1. Evolution of the number of bounded and unbounded α coefficients for every

dataset. The x-axis represents the percentage of iterations performed by the algorithm
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unbounded coefficients.
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Algorithm 1. Accelerated SMO
1: initialize α = 0, ∇f(α) = 0p, Q = ∅ ;

2: while (stopping condition == FALSE) do

3: find (L, U) second (4) order SMO rules ;

4: if pair (L, U) is found in Q then

5: build accelerating direction v ;

6: if v is feasible and ∂2 < ∂1 then

7: compute R, optimal unbounded stepsize λo using (5) ;

8: clip λo to meet constraints → λ∗ ;

9: α = α + λ∗v, ∇f(α) = ∇f(α) + λ∗R, Q = ∅ ;

10: else

11: remove (L, U) and previous updates from Q ;

12: perform standard SMO update using (L, U), add (L, U) to Q ;

13: end if

14: else

15: perform standard SMO update using (L, U), add (L, U) to Q ;

16: end if

17: end while

the number of upper bounded and unbounded multipliers becomes stable, and
only slight changes in their numbers are made until the end of the algorithm.
Notice also that some datasets differ from this behaviour. In the case of Heart,
Diabetes and Flare datasets unbounded multipliers are only generated after a
number of iterations have been completed. On the other hand, in Splice and
Ringnorm datasets no upper bounded coefficients appear at all. As we will later
see, these datasets present no improvement under our procedure.

While we cannot give a rigorous argument for the generalized two–phase
regime, notice that at the early stages of SMO any pair L, U would be eligi-
ble and the gain will be large when we have XL � XU but yL �= yU , as ZL,U � 0
and ΔL,U = yU∇f(α)U − yL∇f(α)L = W ·XU − yU − (W ·XL − yL) � −2yU .
If this is the case, either XL or XU will not be correctly classified and the cor-
responding multiplier will be set to C and it is likely that it will stay there. On
the other hand, if we set O(α) = {i : αi = 0} and C(α) = {i : αi = C}, it
can be shown [9] that for a large enough t0 we will have O(αt) ⊂ O(α∗) and
C(αt) ⊂ C(α∗) for t ≥ t0, with α∗ the optimal multiplier vector. Thus, the sta-
bilization of the number of 0 and C bounded multipliers is to be expected (this
is also the reason why shrinking works).

Turning now our attention to our method, before performing any compar-
isons we should note that this method introduces a new parameter τ into the
SVM training, which stands for the maximum length of the circular queue Q.
Small values of τ might overlook some (L, U) pair repetitions, while large τ val-
ues might detect lengthy, spurious cycles which provide small improvement at
a high computational cost. To analyse the influence of this parameter we run
our method for a range of τ values from 1 to 100 and measure the percentage
of reduction in KOs when compared against the standard second order proce-
dure, computed as p = 100KOs(AccSO)

KOs(SO) . Results are plotted in figure 2 for all
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Fig. 2. Percentage of reduction achieved as a function of the queue size. Reductions

for each dataset are plotted as dashed lines, while the solid line stands for an average

reduction across datasets.

the datasets, along a global reduction value averaged across datasets. It can be
observed that in most of the datasets AccSO obtains an improvement in the
number of KOs, although there is no reduction or even a worsening in perfor-
mance in some cases. Note also that on average a good choice of τ seems to be
any value in the interval [20 − 35]. However, it should be pointed out that the

Table 1. Average and std. deviation values of the number of KOs (in thousands)

and execution times (in milliseconds) by our second order SMO code (SO) and its

accelerated version (AccSO) ; the reduction in % also is given.

KOs Running time

Dataset SO AccSO Red. SO AccSO Red.

Banana 13576 ± 8377 8751 ± 4813 64,5

√
456,3 ± 246,88 306,74 ± 146,09 67,22

√
Image 56304 ± 8776 41728 ± 5336 74,1

√
1666,87 ± 258,06 1605,91 ± 205,26 96,34

√
Breast 703 ± 270 543 ± 181 77,3

√
27,87 ± 10,7 20,76 ± 6,89 74,49

√
Heart 131 ± 36 106 ± 23 81,2

√
5,39 ± 1,53 4,31 ± 0,94 79,96

√
Flare 1130 ± 594 1047 ± 420 92,6

√
49,18 ± 26,58 46,51 ± 19,22 94,57

√
German 2595 ± 269 2444 ± 229 94,2

√
107,23 ± 16,8 106,03 ± 14,33 98,88

√
Titanic 50 ± 9 48 ± 7 94,4

√
1,89 ± 0,35 1,8 ± 0,28 95,24

√
Thyroid 64 ± 20 61 ± 18 95,4

√
2,28 ± 0,74 2,15 ± 0,65 94,3

√
Twonorm 365 ± 49 356 ± 46 97,7

√
15,15 ± 3,16 14,37 ± 3 94,85

√
Diabetes 451 ± 58 441 ± 52 97,9

√
18,27 ± 2,56 17,72 ± 2,2 96,99

√
Splice 9613 ± 399 9613 ± 399 100,0 ≈ 312,37 ± 37,86 308,01 ± 34,34 98,6

√
Ringnorm 487 ± 41 487 ± 41 100,0 ≈ 21,46 ± 3,38 21,57 ± 3,41 100,51 ×
Waveform 340 ± 39 347 ± 39 102,2 × 13,7 ± 2,6 13,9 ± 2,59 101,46 ×
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queue management also implies a computational burden scaling proportionally
to the queue size. This extra cost, although small in comparison to the cost of
computing KOs, cannot be neglected. Hence, we shall use a value of τ = 20 for
the rest of our experiments.

Table 1 shows the detailed results in KOs for that selection of τ : the table’s
datasets are sorted with respect to the percentage of reduction achieved. Addi-
tionally, a

√
symbol denotes a significant improvement in a Wilcoxon rank–sum

test at a 10% level, whereas × stands for significant worsening and ≈ for no
significant difference. AccSO requires more KOs for the Waveform dataset, ties
with SO over Splice and Ringnorm and wins in the other ten datasets. We can
thus conclude that AccSO may lead to sizeable savings in KOs when compared
with SO and, most likely, with the state–of–the–art SMO packages. Moreover,
when this is not the case, AccSO does not seem to add such a great complexity
burden as to discourage its use. Additionally, also in table 1 we provide the cor-
responding execution times, where we can check that the amount of reduction
is roughly the same as the observed in KOs for most of the datasets.
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Fig. 3. Percentage of KOs reduction in AccSO for different settings of C and σ pa-

rameters. The squared dots represent the values recommended in [8] for the dataset.



38 Á. Barbero and J.R. Dorronsoro

Finally, it is of interest to test whether different values for the SVM parameters
C and σ would provide a different degree of improvement. To do this we measure
the performance of SO and AccSO for a grid of C and σ values in the range
[0.1, 1000]. We depict the percentage of reduction achieved for this range of values
as contour maps in figure 3 for the datasets Breast, Flare, Image and Waveform,
the rest of the datasets showing similar behaviours. It can be observed that
the degree of reduction achieved by the method depends heavily on the SVM
parameters, the best results being obtained when both of them have large values.
Note that C and σ are normally selected through a cross–validation procedure,
and so their values will depend on the problem at hand. So, AccSO might be
able to provide larger improvements in performance depending on the dataset.
On the other hand, note that for most of the parameter space either a notable
reduction or no reduction at all is obtained. Worsenings only appear in small
areas. Therefore, it is advisable to apply AccSO over SO regardless of the dataset,
as generally no increase in computational cost will take place. Also, due to these
same reasons, the method could be specially useful to improve running times of
a cross-validation procedure that requires training the SVM for a large number
of points in the parameter space.

5 Discussion and Conclusions

While decomposition methods for SVM training result in less iterations as the
size of the working set grows, this does not translate automatically in a smaller
number of kernel operations (KOs), that in fact may increase for larger working
sets. The practical consequence of this is that second order SMO, as implemented
for instance in the LIBSVM packages, is often the best option to build SVMs on
problems with moderately large sample sizes. In any case, as training advances,
the convergence speed of second order SMO decreases, something that is usually
accompanied by the repeated appearance of some descent directions.

In this work we have numerically shown how there is a further speed gain in
second order SMO if its standard descent directions are replaced, when appropri-
ate, by the combination of the successive descent steps between two appearances
of a repeated index pair. We thus arrive at a simple procedure to accelerate sec-
ond order SMO training.

The question that remains is the reason for this faster convergence. While we
do not have a full answer at this moment, there are some facts that may partially
explain why this is so. As pointed out above, SMO uses the dL,U = eU −yUyLeL

vectors as descent directions. Thus, it can be seen as a kind of coordinate descent
on the di,j meta–coordinate system. If we define the N − 1 vectors χi = di,1,
2 ≤ i ≤ N , they are clearly linearly independent and we have dL,1 = χL and
dL,U = χL−χU . Thus the subspace spanned by the di,j directions used in SMO
is at most N − 1 dimensional but if we center our attention on SMO’s second
training phase, the subspace dimension would be much smaller, as we replace N
by the number of unbounded support vectors.

On the coordinates associated to these directions, first order SMO can be
seen as a kind of Gauss–Southwell (GS) minimization method, as the dL,U
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coordinate chosen is precisely the one associated to the largest negative gradient
component. Second order SMO becomes then an improved GS variant. The GS
method is essentially an improvement on basic cyclic coordinate descent, where
one sequentially explores the coordinate descent directions (see [6], chapter 8).
A frequent observation on these methods is that their simple descent directions
can be sequentially combined to obtain a new direction that leads to a faster
convergence. Examples of this are the acceleration step for cyclic coordinate
descent or the Hooke–Jeeves (H–J) method [6] that for a D–dimensional space
combines D standard coordinate descent steps with a single step on a certain
combination of previously taken directions. As such, it cannot be applied in an
SMO setting, as the dimension D might be too large, but our method detects
direction cycles and combines the previously taken directions in a way not too
far away from those in the H–J algorithm and, as it is the case with H–J, that
leads to a convergence speed up.

In any case, further work is required to obtain insights into the method, that
may also suggest other ways to improve second order SMO performance.
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Abstract. Almost Random Projection Machine (aRPM) is based on generation
and filtering of useful features by linear projections in the original feature space
and in various kernel spaces. Projections may be either random or guided by some
heuristics, in both cases followed by estimation of relevance of each generated
feature. Final results are in the simplest case obtained using simple voting, but
linear discrimination or any other machine approach may be used in the extended
space of new features. New feature is added as a hidden node in a constructive
network only if it increases the margin of classification, measured by the increase
of the aggregated activity of nodes that agree with the final decision. Calculating
margin more weight is put on vectors that are close to the decision threshold
than on those classified with high confidence. Training is replaced by network
construction, kernels that provide different resolution may be used at the same
time, and difficult problems that require highly complex decision borders may be
solved in a simple way. Relation of this approach to Support Vector Machines
and Liquid State Machines is discussed.

Keywords: Neural networks, machine learning, random projections, liquid state
machines, boosting.

1 Introduction

Although backpropagation of errors (BP) algorithm [1] has been very useful and is still
widely used it has several well-known drawbacks and is not a good candidate for a
model of neurobiological learning. Alternative models, such as Leabra, use a combina-
tion of Hebbian learning with error-correction, creating sparse, simple representation in
their hidden layers [2], but so far they have not been too useful in practical applications
to approximation or classification problems. The simplest model that has good biolog-
ical foundation treats microcircuits in neural minicolumns as a kind of neural liquid
that resonates in a complex way when a signal comes [3]. Liquid State Machines [4],
and echo state networks [5] are now investigated in the "reservoir computing" field, as-
suming that a large number of randomly connected neurons form a reservoir providing
memory for different aspects of signals [6]. Readout neurons extract from this reservoir
stable information in real-time reacting to transient internal states formed by microcir-
cuits in this high dimensional system. Projections into high dimensional space increase
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the probability of data separation, as proved by Cover [7]. This is the main reason for
success of the kernel methods in machine learning [8]. It also agrees with the boosting
principle [9], treating each projection as a week classifier.

Following these inspirations we have introduced the almost Random Projection Ma-
chine (aRPM) algorithm [10], a single hidden layer constructive network based on ran-
dom projections that are added only if the new node contains useful information. This
was determined by checking if the projection contains an interval of relatively pure
(single-class) vectors that could be potentially useful. Such localized linear projections
are able to solve highly-non-separableproblems [11]. They may be further optimized us-
ing projection pursuit algorithms based on Quality of Projected Clusters (QPC) indices
[12], but this would increase computational costs of the method. So far transformations
used to create hidden nodes in aRPM were based on linear projections followed by
non-linear separation of intervals, and filtering based on simple correlation coefficient.

Hidden neurons should maximize information transmission, a principle used in de-
riving learning rules for spiking networks [13]. One can assume that readout neurons
with rich connections to different brain areas should be able to discover useful fea-
tures correlated with a given tasks if they are already present in the neural reservoir,
and Hebbian correlation-based learning should be sufficient to form strong weights.
In particular, similarity to already learned objects, captured by various kernels, may
be quite useful. Therefore instead of using projections based on input features, kernel-
based features should also be added to the hidden nodes. Adding new types of features
extends the hypothesis space that simple voting or linear discrimination methods are
able to explore. Linear kernels define new features t(x; w) = KL(x, w) = x · w
based on a projection on the w direction, or distance along t(x, w) line. Gaussian ker-
nels g(x, w) = exp(−||x − w||/2σ2) evaluate similarity between two vectors using
weighted radial distance function. Support Vector Machines (SVM) find large margin
linear discriminators in these spaces without explicitely constructing the feature space.
The final discriminant function is constructed as a linear combination of such kernels,
creating in fact a weighted nearest neighbor solution. Each support vector used in a ker-
nel may provide a useful feature, but this type of solution is optimal only for data with
particular distributions, and will not work well for example on parity data [14] or other
problems with complex logical structure [15].

Creating support features directly instead of using kernels based on support vectors
w has some advantages, allowing for judicious design of the feature space, optimization
of parameters of individual features, selection of features, increased comprehensibility
of solutions. Transfer of knowledge between learning of different tasks can be easily
implemented by borrowing good non-linear features from other algorithms (learning
from others), for example using features corresponding to fragments of path derived
from decision trees [16].

In this paper we focus on margin maximization in the aRPM algorithm. New pro-
jections should be added only if they increase correct classification probability of those
examples that are either on the wrong side, or are close to the decision border. In the
next section aRPM algorithm with margin maximization is formally introduced. Section
three presents empirical tests and comparisons with standard machine learning meth-
ods, and the last section contains discussion and conclusions.
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2 Almost Random Projections with Margin Maximization

In essence the aRPM algorithm [10] transforms the input features space X into the
support feature spaceH discovering various kinds of useful features. The final analysis
in the H space may be done by any machine learning method. In this paper we shall
use only the majority voting as it is the simplest model, and linear discrimination, but
once a proper information is extracted other classification methods may benefit from
it. The emphasis is thus on generation of new features. If linear discrimination with
wide margin is used (linear SVM is a very good choice here), and support features are
generated using specific kernel z(x; w) = K(x, w), results will be equivalent to the
kernel-based SVM. Creating support feature space in an explicit way does not require
O(n2) operations to calculate the full kernel, which for a large number of vectors n
may be quite costly. Mixing features from different kernels, using a priori knowledge,
or adding interesting features extracted from other models, is quite easy. In this paper
we shall use only features generated by random projection and Gaussian kernels, filtered
by an index that estimates classification margin.

It is convenient to identify each new candidate feature with a class-labeled hidden node
h(x; w) in a constructive network. Projections on random directions t(x; wi) = x ·
wi are especially useful if the direction w = x/||vx|| is taken as a point x close to
the decision border. Selecting such points may be done in a rough way by starting from
projectionson a lineconnecting centersof theclasses, andfinding theoverlapping regions.

Although some projections may not be very useful as a whole, but the distribution
of the training data along t(x; wi) direction may have a range of values that includes
a pure cluster of projected patterns sufficient large to be useful. For example, in case
of parity problems [11,15] linear projections never separate all vectors labeled as even
and odd, but projections on diagonal [1, 1..1] direction show alternating large even or
odd pure clusters. One can model posterior probabilityP(C|ti) along the ti = t(x; wi)
direction, separating such clusters using [ta, tb] intervals. This creates binary features
bi(x) = t(x; wi, [ta, tb]) ∈ {0, 1}, based on linear projection in the direction wi,
restricted to a slice of the input space perpendicular to the wi direction.

Good candidate feature should cover some minimal number η of training vectors.
The optimal number may depend on the data, and the domain expert may consider even
a single vector to be a significant exception. Here η has been optimized in CV in the
4-15 range, but simply fixing it to η = max[3, 0.1NCmin] value, where NCmin is
the number of vectors in the smallest class, is usually sufficient. This condition avoids
creation of overspecific features and is applied to all features. After a new feature has
been accepted search for new projection is continued few times (here Nrep is simply
set to 20), and if no new features is accepted the procedure is stopped and other types
of features are generated.

To determine interval [ta, tb] that extracts a cluster from projection t(x; w) sort all
projected values and call them t1 ≤ t2 ≤ ...tn. Now count how many vectors, starting
from ta = t1, are from the same class C as vector x projected at ta; find the first vector
tk on the ordered list that is from a different class C′ �= C. If k − 1 ≥ η the interval
[ta, tb = (tk − tk−1)/2] contains sufficient number of vectors to be included and new
candidate feature is created. Start again from ta = tb and repeat the procedure to check
if more intervals may be created using the same projection.
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Even the simplest version of aRPM is thus non-linear, and is capable of solving
highly-nonseparable problems [10], posing a real challenge to traditional neural net-
works and SVMs, for example the parity problem for a large number of bits [14].

The second type of features considered here are based on kernels. While many ker-
nels may be mixed together, here only Gaussian kernels with several values of disper-
sion σ are used for each potential support vector g(x; xi, σ) = exp(−||xi−x||2/2σ2).
Local kernel features have values close to zero except around their support vectors xi.
Therefore their usefulness is limited to the neighborhood O(xi) in which gi(x) > ε. In
this neighborhood we should have at least η vectors, otherwise candidate feature will
be rejected. To create a multi-resolution kernel features based on a few support vectors,
candidate features with large σ are first created, providing smooth decision borders.
Then significantly smaller σ values are used to create features more strongly localized.
In our case 5 values σ =∈ {25; 22; 2−1; 2−4; 2−7} have been used.

The candidate feature is converted into a permanent node only if it increases classifi-
cation margin. In SVM classification margin is simply related to the norm of the weight
vector w in the kernel space. It is optimized in a fixed feature space using quadratic
programming, reducing the number of support vectors and therefore removing some di-
mensions from the feature space. In our case we have incremental algorithm, expanding
feature space until no improvements are made. Expanding the space should move vec-
tors away from decision border. However, only those vectors that are on the wrong side
or rather close to the decision border should be moved in the direction of correctly clas-
sified vectors, while the remaining vectors may even move slightly towards the decision
border. This idea is similar to boosting [9], with each feature treated as a weak classi-
fier, except that these classifiers have high specificity with low recall. We shall use here
a simple confidence measure based on the winner-takes-all principle (WTA), summing
the activation of hidden nodes. Projections with added intervals give binary activations
bi(x), but the values of kernel features g(x; xi, σ) have to be summed, giving a total
activation A(C|x) for each class. Although probability of classification p(C|x) may be
estimated by dividing this value through total activation summed over all classes infor-
mation about confidence will be lost. Plotting A(C|x) versus A(¬C|x) for each vector
leads to scatterograms shown in Fig. 1, giving an idea how far is a given vector from
the decision border.

In the WTA procedure the difference |A(C|x)−A(¬C|x)| estimates distance from
the decision border. Specifying confidence of the model for vector x ∈ C using logistic
function: F (x) = 1/(1 + exp(−(A(C|x)−A(¬C|x)))) gives values around 1 if x is
on the correct side and far from the border, and goes to zero if it is on the wrong side.
Total confidence in the model may then be estimated by summing over all vectors, and
it should reach n for perfect separation. The final effect of adding new feature h(x) to
the total confidence measure is therefore:

U(H, h) =
∑

x

(F (x;H+ h)− F (x;H))

If U(H, h) > α than the new feature is accepted, contributing to a larger margin. Pa-
rameter α has been fixed at 0.01, lower values will lead to faster expansion of the feature
space. Note that the mislabeled cases that fall far from the decision borders will have
large number of votes for the wrong class and thus will fall into the saturation region
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of the confidence functions F (x;H), so they will have little influence on the U(H, h)
change. This is in contrast to the mean square error or other such measures that would
encourage features pushing mislabeled cases strongly towards the decision border.

To make final decision aRPM with margin maximization uses winner-takes-most
mechanism or linear discrimination. We have tested also several other models (Naive
Bayes, decision trees, neural networks and nearest neighbor methods) in the final H
space, and results in all cases are significantly improved comparing them to the original
feature space. The aRPM algorithm is summarized in Algorithm 1. The initial spaceH
is created treating the single features xi in the same way as projections t(vx), without
checking confidence measures. In this way simple original features that may be very
useful, are preserved (note that they are never used in SVMs).

Algorithm 1. aRPM with margin
Require: Fix the values of internal parameters η, α parameters and the set of σ dispersions

(sorted in descending order).

1: Standardize the dataset, n vectors, d features.
2: Set the initial space H using input features xi, with i = 1..d features and n vectors.
3: for k = 0 to Nrep do
4: Randomly generate new direction w ∈ [0, 1]d

5: Project all vectors on direction t(x) = w · x
6: Sort t(x) values in ascending order, with associated class labels.
7: Analyze p(t|C) distribution to find all intervals with pure clusters defining binary features

bi(x; C).
8: if the number of vectors covered by the feature bi(x; C) > η and U(H, bi) > α then
9: accept new binary feature bi(x) creating class-labeled hidden network node.

10: goto 3

11: end if
12: end for
13: for j = 1 to nσ do
14: Set the Gaussian dispersion to σ = σj .
15: Create kernel features gi(x) = exp(−||xi − x||2/2σ2).
16: if U(H, gi) > α then
17: accept new kernel feature gi(x) creating class-labeled hidden network nodes.
18: end if
19: end for
20: Sum the activity of hidden node subsets for each class to calculate network outputs.
21: Classify test data mapped into enhanced space.

aRPM with margin maximization may be presented as a constructive network, with
new nodes representing transformations and procedures to extract useful features, and
additional layers analyzing the image of data in the feature space created in this way.
The algorithm has only a few parameters that in the experiments reported below have
been fixed at values given above in this section. Although in tests all vectors have been
used as potential Gaussian kernel support features, leading to O(n2) complexity, in
practice only a few such features are accepted.
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3 Illustrative Examples

The usefulness of algorithm described in this paper has been evaluated on six datasets
downloaded from the UCI Machine Learning Repository. A summary of these datasets
is presented in Tab. 1. These datasets are standard examples of benchmark type and
are used here to enable typical comparison of different learning methods. To compare
aRPM with and without margin maximization with other popular classification methods
10-fold crossvalidation tests have been repeated 10 times and average results collected
in Table 2, with accuracies and standard deviations for each dataset. Results of Naive
Bayes, kNN (with optimized k and the Euclidean distance), SSV decision tree [17],
SVM with optimized linear and Gaussian kernels are given for comparison.

Table 1. Summary of datasets

Title #Features #Samples #Samples per class Source
Appendicitis 7 106 85 / 21 [18]

Diabetes 8 768 500 / 268 [18]
Glass 9 214 70 / 76 / 17 / 13 / 9 / 29 [18]
Heart 13 297 160 absence / 137 presence [18]
Liver 6 345 145 / 200 [18]
Wine 13 178 59 / 71 / 48 [18]

Parity8 8 256 128 even, 128 odd artificial
Parity10 10 1024 512 even, 512 odd artificial

Table 2. 10 x 10 crossvalidation accuracy and variance

Dataset Method
NB kNN SSV SVM(L) SVM(G) aRPM-no aRPM (WTA) aRPM(LDA)

Append. 83.1 ± 10.2 87.0 ± 10.6 87.9 ± 7.4 85.1 ± 6.0 85.9 ± 6.4 82.6 ± 9.3 87.7 ± 8.1 88.0 ± 6.7
Diabetes 68.1 ± 2.3 75.2 ± 4.1 73.7 ± 3.8 76.4 ±4.7 75.7 ± 5.9 67.7 ± 4.2 61.2 ± 5.7 76.7 ± 4.4

Glass 68.6 ± 9.0 69.7 ± 7.4 69.7 ± 9.4 40.2 ±9.6 63.2 ± 7.7 65.0 ± 9.9 60.3 ± 8.5 68.9 ± 8.3
Heart 76.5 ± 8.6 82.8 ± 6.7 74.7 ± 8.7 83.2 ±6.2 83.5 ± 5.3 78.3 ± 4.2 80.1 ± 7.5 83.1 ± 4.7
Liver 58.6 ± 3.8 62.6 ± 8.5 68.9 ± 9.7 68.4 ±5.9 69.0 ± 8.4 61.1 ± 5.1 67.5 ± 5.5 72.7 ± 7.9
Wine 98.3 ± 2.6 94.9 ± 4.1 89.4 ± 8.8 96.0 ± 5.9 97.8 ± 3.9 68.6 ± 7.8 94.3 ± 5.8 97.7 ± 4.0

Parity8 28.9 ± 4.6 100 ± 0 49.2 ± 1.0 34.1 ±11.7 15.6 ± 22.7 99.2 ± 1.6 100 ± 0 34.7 ± 3.8
Parity10 38.1 ± 3.3 100 ± 0 49.8 ± 0.3 44.1 ±5.0 45.6 ± 4.3 99.5 ± 0.9 100 ± 0 40.3 ± 2.7

The aRPM-no column gives results of our algorithm without margin optimization
[10], and the next two columns with margin, using WTA output and linear discrimina-
tion output (calculated here with linear SVM). In all cases adding margin optimization
has improved results and linear discrimination in the enhanced space achieves the best
results, or at least statistically equivalent. In most cases results are better than linear
and Gaussian kernel SVM. The only highly non-separable problem here is the 8 and 10
bit parity that is perfectly handled thanks to the projected binary features even with the
WTA output.
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Fig. 1. Output of aRPM algorithm for the Heart data, without and with margin optimization
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Fig. 2. Output of aRPM algorithm for the Wine data, without (left column) and with (right col-
umn) margin optimization. Each row present different class (one class vs rest).
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Only a few kernel features have been selected in most cases, showing that local-
ized projections are able to provide quite good model of the data. This does not mean
that a simpler model would not be created if kernel features will be analyzed before
projections. An interesting solution that has not been checked yet is to create first low
resolution features, with projections and intervals that cover large number of vectors
(large η), followed by large kernels, and than remove vectors that are correctly handled
and progressively reduce η to account for the remaining errors. The final model may be
then analyzed in terms of general rules and exceptions.

The effect of margin optimization is clearly seen in scatterograms, Fig. 1 and 2. Most
vectors that were not classified with high confidence are removed now away from the
decision border (which is at the diagonal), activating many units, except for those that
cannot be classified correctly. Some vectors that were far from decision border have
moved a bit closer to it.

4 Conclusions

Almost Random Projection Machine algorithm [10] has been improved in two ways,
by adding selection of network nodes to ensure wide margins, and by adding kernel
features. Relations to kernel SVM, Liquid State Machines, reservoir computing, and
boosting on the machine learning side, and biological plausibility on the other side,
make aRPM a very interesting subject of study. In contrast to typical neural networks
that learn by parameter adaptation there is no learning involved, just generation and
selection of features. Shifting the focus to generation of new features followed by
the winner-takes-all algorithm (or linear perceptron), makes it a candidate for a fast-
learning neural algorithm that is simpler and learns faster than MLP or RBF networks.
Features discovered solving other tasks may be transfered to new tasks facilitating faster
learning. Kernel features may be related to neural filters that evaluate similarity to previ-
ous complex stimuli. Although kernels have been recommended in cognitive science for
analysis of categorization experiments and behavioral data [19] the view expressed in
this paper offers a simpler and more comprehensible explanation. Feature selection and
construction, finding interesting views on the data is the basis of natural categorization
and learning processes.

Results on benchmark problems show improvements of aRPM(LDA) over all other
classifiers over the most cases, and results of aRPM(WTA) on the parity problem (and
other Boolean functions, not showed here) show that this approach will be particularly
useful in solving difficult problems with inherent complex logic. Calculations on much
larger datasets from the NIPS 2003 competition [20] are in progress. These datasets
have been selected because they are very difficult to analyze correctly by standard
MLPs, Support Vector Machines or other machine learning algorithms.

Scatterogram of WTA output shows the effect of margin optimization, and allows for
estimation of confidence in classification of a given data. Further improvements to the
aRPM algorithm will include admission of impure clusters instead of binary features,
with modeling actual P(C|t(x)) distribution along projection directions, use of other
kernel features, judicious selection of candidate vectors to define support features and
optimization of the algorithm.
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A New Tree Kernel Based on SOM-SD
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Abstract. Many different paradigms have been studied in the past to treat tree
structured data, including kernel and neural based approaches. However, both
types of methods have their own drawbacks. Kernels typically can only cope with
discrete labels and tend to be sparse. On the other side, SOM-SD, an extension
of the SOM for structured data, is unsupervised and Markovian, i.e. the represen-
tation of a subtree does not consider where the subtree appears in a tree. In this
paper, we present a hybrid approach which tries to overcome these problems. In
particular, we propose a new kernel based on SOM-SD which adds information
about the relative position of subtrees (the route) to the activation of the nodes in
such a way to discriminate even those subtrees originally encoded by the same
prototypes. Experiments have been performed against two well known bench-
mark datasets with promising results.

Keywords: Tree Kernels, Kernel Methods, SOM, Supervised Learning.

1 Introduction

Recently, there has been a great interest in the study of techniques able to learn in struc-
tured domains with no need to represent data in vectorial form. For example, kernels
for structured domains (see [7] for an overview), allow for a direct exploitation of the
structural information obtaining very good results in practice.

However, kernel for structures have the well known disadvantage that, in the case of
large structures and many symbols, the feature space implicitly defined by these kernels
is very sparse [10]. In fact, these kernels are usually defined in terms of the number
of matching subparts and, whenever many different types of these parts can be found
in data, these matches tend to be barely observed. As a result, kernel based learning
methods like Support Vector Machines (SVM) [5] using these standard kernels cannot
be trained effectively. They will tend to generate several support structures thus leading
to a final model which is similar to the nearest neighbor rule. It is then clear that any
kernel machine cannot work well when used together with these kernels.

A completely different approach for the treatment of structured data has been pre-
sented in [8], a neural network based method, called SOM-SD. This is an unsupervised
learning algorithm which extends the SOM to structured domains. As SOMs, SOM-SD
organizes data (structures in this case) onto a topological discrete lattice. Moreover, the
neural approach is well suited to cope with structures having real valued labels, while
in the case of standard kernels for trees labels are assumed to be discrete.

The ability of the SOM-SD to represent the data onto a lattice preserving as much
as possible their topology in the original space provides a viable technique for defining
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similarity functions based on matching of non identical structures in the original space.
This idea has been exploited by the Activation Mask Kernels family of kernels (see
[1,3]), defined on top of a SOM-SD with the aim of exploiting both its compression
and “topology” preserving capabilities. Experimental results with these kernels pro-
vided evidence that, when sparsity on the data was present, they were able to improve
the overall categorization performance over each method taken individually, i.e. either
SVM using tree kernels or SOM-SDs equipped with a 1-NN classification rule. This
also demonstrates that, neither tree kernels nor SOM-SDs are always able to retain all
the relevant information for classification.

One issue with the SOM-SD type of algorithms, and SOM-SD activation based ker-
nels consequently, is that they are computed by almost neglecting the contextual infor-
mation of substructures. More specifically, the path linking the root of a tree to the root
of the subtree we want to represent is not actually considered when training takes place.
This can be a problem when this type of information is relevant for a given task.

In this paper, we propose a new method which tries to fill this gap. The proposed
method can be though of as a hybrid method which combines the SOM-SD neural ap-
proach, and the Activation Mask kernels, in conjunction with a standard kernel for trees
devised in [2]. Specifically, we propose to add additional (contextual) information to
the activations of the nodes in such a way to discriminate between subtrees encoded by
the same prototypes. Then we propose to add a type of information which is orthogonal
to the one processed by the SOM-SD, i.e. information about the antecedents of the root
of a given subtree (here referred to as a route).

Experiments performed with this new kernel against two well known competition
datasets have shown a systematic improvement with respect to baseline approaches.

2 Background

In the following sections, the SOM-SD, an extension presented in [1,3] of the Self
Organizing Maps for structured data, and the Activation Mask Kernel presented in [2],
are sketched. Please, see the referred paper for details on these algorithms.

2.1 Self-Organizing Maps for Structured Data

The SOM-SD extends the Self Organizing Map (SOM) approach [9] by allowing to
process structured input. In this paper we are interested in structures in the form of
(positional) trees, where each node v of a tree T can have a label (e.g., a real valued
vector) v attached to it. Moreover, we assume that each child of a node v is associated
to a specific position out of a maximum number o of available positions (the maximum
out-degree of the trees we are interested in.) The i-th child of v will be denoted by
chi[v].

The SOM-SD can be understood as the recursive application of a standard SOM to
individual nodes in a tree T where the input is properly coded to take into consideration
the structural information. As for the standard SOM, the SOM-SD consists of a number
of neurons which are organized in a q-dimensional grid (usually q = 2). A codebook
vector m is associated with each neuron. Given an input vector x, let yx denote the
coordinate vector of the winning neuron.
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The network input for SOM-SD is a vector xv representing the information of a node
v ∈ T , and it is built through the concatenation of the data label v attached to v and the
coordinates obtained by the mapping of its child nodes on the same map, so that xv =
[v,yxch1[v] , . . . ,yxcho[v] ]. In this representation, the “impossible” coordinate (−1,−1),
is used to represent a missing child. As a result, the input dimension is n = p + 2o,
where p is the dimension of the data label and the constant 2 refers to the number
of dimensions of the map which is the most commonly used. The codebook vectors
m ≡ [mlabel,mch] are of the same dimension.

A number of parameters need to be set before starting the training of a SOM-SD.
These parameters (network dimension, learning rate, number of training iterations) are
problem dependent and are also required for the standard SOM. The weight value μ
introduced with the SOM-SD is an additional parameter which can be computed while
executing the training through a statistical analysis of the size and magnitude of the
data labels which typically remain constant during training, and the coordinate vectors
which can change during training. In other words, μ can be used to weight the input
vector components so as to balance their influence on the distance measure in Step 1.
In practice, however, it is often found that a smaller value for μ can help to improve the
quality of the mappings. This is due to the recursive nature of the training algorithm and
to the fact that a stronger focus on structural information helps to ensure that structural
information is passed on more accurately to all causally related nodes when processing
a tree.

The SOM-SD then is able to map structures in input onto a discrete low dimensional
lattice with the aim to preserve the topology of the input data. Structures which are
similar tend to be mapped onto closer neurons. This is a key property for the intuition
behind this paper. Figure 1 gives an examples of how trees are mapped into a SOM-SD.
One can note similar (sub)trees are mapped close each other.

Fig. 1. Example of a SOM-SD mapping of a set of trees and their subtrees
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2.2 The Activation Mask Kernel

The unsupervised SOM-SD model can also be used to define a kernel for trees [1,3].
The idea is to define a feature space having one dimension associated to each neuron
of the map. Then a vectorial representation for a tree can be obtained by considering
which ones of these neurons are activated for the nodes of the tree. Once the above
representation has been computed for any pair of trees, a kernel can be promptly defined
as the dot product of these representations.

More formally, given a SOM-SD map, let neε[y(i)] denote the set of neurons (co-
ordinates) in the ε-neighborhood of neuron i, i.e. {y(j)|Δy(i)y(j) ≤ ε}, where y(i) =
(xi, yi) is the coordinate vector associated to neuron i, and Δ is the topological dis-
tance defined on the 2-dimensional map. Given two trees T1 and T2, we define the set
of neurons (coordinates) shared by the two ε-neighbors related to nodes v1 ∈ T1 and
v2 ∈ T2 as

Iε(v1, v2) = neε[yxv1
] ∩ neε[yxv2

]. (1)

Then, the Activation Mask Kernel is defined by taking:

Kε(T1, T2) =
∑

v1∈T1,
v2∈T2,

y∈Iε(v1,v2)

Qε(y,yxv1
)Qε(y,yxv2

), (2)

where Qε(y,y′) is inversely proportional to the distance Δyy′ between map neurons
with coordinates y and y′ and Qε(y,y′) = 0 when the neurons are not in the ε-
neighborhood of each other, i.e. when Δyy′ > ε. In [1], Qε(y,y′) is defined as

Qε(y,y′) =
{

ε− ηΔyy′ if Δyy′ ≤ ε
0 otherwise

(3)

where 0 ≤ η ≤ 1 is a parameter determining how much the distance influences the
neighborhood activation.

Thus, the representation of a tree T into the feature space induced by the map is
defined as the vector φ(T ) with i-th component φi(T ) =

∑
v∈T Qε(y(i),yxv ).

Figure 2 gives an example of construction of the feature space representation of 3
trees according to the AM-kernel (ε = 2, η = 1). On the lower part of the image three
simple trees selected from the INEX 2005 dataset (see section 4.1) and on the right
part their activation masks referring to a 5 × 4 map. The height of each element of the
map corresponds to the value of the activation. Note that the tree at the left side is more
similar to the tree at the center than to the tree at the right side, and this is reflected in
the activation masks.

In [1,3] it has been shown that the similarity function Kε(T1, T2) is a kernel for any
choice of Qε(y,y′) and that the complexity of its evaluation is O(a · b · (|T1|+ |T2|)),
where a · b is the size of the map. The overall computational complexity is not affected
by the required initial training of the SOM-SD as it is performed only once.
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Fig. 2. Example of feature space construction for the AM-Kernel (ε = 2, η = 1). The figure
presents three trees (bottom) and the corresponding feature mapping onto a 5× 4 map. Note that
the feature maps of the first two trees are quite similar while they both differ from the third one,
as expected.

3 Adding Route Information to the Activation Mask Kernel

In this section, we introduce the main contribution of the paper, i.e. the extension of
the feature space of the Activation Mask Kernel with features that are based on route
information. Intuitively, a route in a tree explicitly keeps information about the position
of the nodes with respect to adjacent nodes.

Definition 1 (Route). Let T be a (positional) tree, v1, v2 ∈ T any two nodes in the
tree, with v2 being a descendant of v1. Then the route from v1 to v2 in T , denoted by
π(v1, v2), is the sequence of indexes of edges connecting the consecutive nodes in the
path connecting nodes v1 and v2.

Figure 3 gives an example of a tree and a route computed between nodes a and e. The
nodes connected by red edges represent the path connecting nodes a and e. The route
connecting nodes a and e is represented by the sequence (2, 3), since node b is the
second child of a and node e is the third child of b. It must be pointed out that a route
is not a path, since a path can be understood as a route where we retain the information
about the label attached to each node belonging to the path.

The concept of route is useful for those tree domains where it may be important to
“recognize” that a specific subtree, or family of subtrees, occurs into a specific “lo-
cation” within a tree, e.g. at the end of a specific route, with no consideration of the
labels attached to nodes crossed by the route. It must be noticed that, because of the
causal style of processing, SOM-SD cannot discriminate among different occurrences
of the same subtree within the same or different trees. In fact, when computing the
winning neuron for a node in a tree, no information about the node’s ancestors is used
(see Fig. 4). It is true that the Activation Mask Kernel can actually exploit information
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Fig. 3. An example of a route connecting nodes labeled with a and e. The positional nature of the
tree is shown in the figure by representing missing edges by dashed lines and missing nodes by
black squares. Edges crossed by the route are colored in red. The route is formed by the sequence
2, 3 since node b is the second child of a and node e is the third child of b.
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Fig. 4. Since SOM-SD is a causal model, the different occurrences of subtree a(a, ,c) in the trees
T1, T2, T3, get the same winner

about the node’s ancestors, since the activation map used by the kernel is obtained by
collecting the information about winners for all the nodes in the tree. However, this
information is heavily dependent on the label attached to each node. This can be easily
understood by recalling that the winner neuron is determined by combining the infor-
mation about labels and structure. Thus, the feature space exploited by the Activation
Mask Kernel does not possess single features based on route information.

Our proposal is to enrich the feature space of the Activation Mask Kernel by intro-
ducing explicit information about routes. Let v be a node belonging to a tree T , and let
πT

v be the route associated to it. Then, we define neπ
ε [yxv ]={πT

u |u ∈ T, Δyxv ,yxu
≤ε}.

Notice that for ε = 1, neπ
ε [yxv ] just contains routes of nodes of T that share the same

winning neuron with coordinate vector yxv , i.e. if πT
v ∈ neπ

0 [yxv ] and πT
u ∈ neπ

0 [yxv ],
with u �= v, then yxv = yxu . Given two trees T1 and T2, we define the set of routes
shared via SOM-SD by the two π-ε-neighbors related to nodes v1 ∈ T1 and v2 ∈ T2 as

Iπ
ε (v1, v2) = neπ

ε [yxv1
] ∩ neπ

ε [yxv2
]. (4)
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Then, we define the kernel contribution of the routes as:

Kπ
ε (T1, T2) =

∑
v1∈T1,v2∈T2

yxv1
=yxv2

π′∈Iπ
ε (v1,v2)

Qε(yxv1
,yxπ′|T1

)Qε(yxv2
,yxπ′|T2

), (5)

where π′|Ti refers to the node reached by following route π′ starting from the root of
Ti. Note that eq. 5 can be computed efficiently by explicitly representing each feature
since the number of distinct routes for a tree is at most |T |.

The final kernel is defined as K̂ε(T1, T2) = Kε(T1, T2) + Kπ
ε (T1, T2).

In Fig. 5 we give an example of how routes are exploited.
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Fig. 5. In the proposed representation, the activation mask for each tree is enriched by associat-
ing to each neuron the routes to (sub)trees for which the neuron is a winner. In the figure, two
examples are shown, where only the contribution of subtree a(a, ,c) is reported.

4 Experiments and Results

In order to test the effectiveness of the proposed approach, two experiments on multi-
class classification problems were performed. The datasets considered are derived from
the INEX 2005 and INEX 2006 competitions [6], respectively.

4.1 Data Description and Experimental Setting

The INEX 2005 Competition dataset is formed by XML documents describing movies
from the IMDB site1. The dataset employed in the experiments is obtained from the (m-
db-s-0) corpus of INEX 2005 after a preprocessing phase. It consists of 9631 documents

1 http://www.imdb.com
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containing XML tags only. The data are divided into 11 classes. The preprocessing is
described in detail in [11]. The choice of such preprocessing is motivated by the need to
obtain input structures of manageable size and to compare to the techniques which won
the competition. The mean size of the input structures has been reduced from 684191
vertices with maximum out-degree 6418 to 124359 vertices with maximum outdegree
32. The data are divided into training, validation and test sets containing 3397, 1423
and 4811 documents, respectively. The dataset is unbalanced and sparse with respect to
two of the most popular kernels for trees: the Subtree (ST) and the Subset tree kernels
(SST) [4]. Their sparsity index, computed as the proportion of example pairs in the
dataset whose kernel value is 0, is 0.54 (see [1] for details).

The INEX 2006 dataset is derived from the IEEE corpus and it’s composed of 12107
scientific articles from IEEE journals in XML format. It includes XML formatted doc-
uments, each from one of 18 different journals. Each different journal corresponds to
one class. The data have been preprocessed with the same methodology used for INEX
2005. The data is again split into training, validation and test sets containing 4251,
1802 and 6054 documents, respectively. The dataset is unbalanced and non sparse with
respect to ST and SST kernels. In fact, their sparsity index is 0.002489.

Experiments proceeded as follows. First, for each dataset, five maps were trained with
the SOM-SD software2. The maps were chosen among the 45 described in [1] by sort-
ing them in ascending order according to the classification error, computed with a 1-NN
procedure, and then selecting one map every 11. This choice allows us to investigate
the dependency of the error of our kernel from the map. Only 5 maps were selected
because of the need to reduce the duration of the experiments. The maps selected for
INEX 2005 and INEX 2006 are listed in table 1 and table 2, respectively. The parame-
ters not listed in the two tables are kept fixed: α = 1, neighbourhood radius=18, type of
α decrease=sigmoidal, map topology=hexagonal. Given a map, the set of features of the
activation mask kernel with information about the routes, were computed as described
in sections 2.2 and 3. Experiments with the SVM3 and the proposed kernel, AMπ, were
performed by selecting, on the validation set, the ε of the AM kernel and the c of the SVM
among these values: 1 ≤ ε ≤ 6, c ∈ {0.001, 0.01, 0.1, 1, 10, 100, 1000}. The parameter
η of the AM kernel is set to 1. Finally, the performance of the best parameter setting,
for each map, was checked on the test set. The classification of a tree according to the
SOM-SD is the one of the neuron representing the root of the tree. The class of a neuron
is the most frequent class of the trees of the training set represented by such neuron.

4.2 Results and Discussion

Table 1 summarizes the results on the INEX 2005 dataset. Note that the results of the
AM kernel differ from those in [1] because a newer version of the SVMlight software
has been employed. The AMπ kernel show a clear improvement for all maps both on
validation and test with respect to the SOM-SD alone and the AM kernel. The mean
classification error of the AM kernel is 7.508 with standard deviation 1.610 on the vali-
dation set and 7.158 with standard deviation 1.4 on the test set. The mean classification

2 http://www.uow.edu.au/∼markus/apods/software.html
3 http://disi.unitn.it/moschitti/Tree-Kernel.htm
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Table 1. Characteristics of the SOM-SD maps trained on the INEX 2005 dataset and classification
error for the SOM-SD, AM and AMπ kernels

Map # Size
Learning

μ
SOM-SD error % AM error % AMπ error %

Iterations test valid test valid test
1 110 x 80 128 0.85 8.65 6.33 6.41 3.45 3.48
2 110 x 80 32 0.05 12.62 5.77 5.60 3.59 3.16
3 77 x 56 32 0.65 18.62 8.22 7.18 3.52 3.14
4 55 x 40 128 0.85 22.51 7.38 7.24 3.45 3.23
5 55 x 40 32 0.25 32.49 9.84 9.36 3.45 3.39

Table 2. Characteristics of the SOM-SD maps trained on the INEX 2006 dataset and classification
error for the SOM-SD, AM and AMπ kernels

Map # Size
Learning

μ
SOM-SD error % AM error % AMπ error %

Iterations test valid test valid test
1 110 x 80 128 0.05 60.77 59.22 61.07 57.72 60.16
2 110 x 80 32 0.85 61.98 58.77 59.93 57.22 59.67
3 77 x 56 128 0.85 63.45 59.22 61.37 58.50 59.49
4 55 x 40 64 0.05 66.25 59.94 61.75 60.44 61.73
5 55 x 40 32 0.45 67.66 59.55 61.77 57.50 59.26

error of the AMπ kernel on validation is 3.492 with standard deviation 0.062, and 3.28,
with standard deviation 0.148, on the test set. The low values of the mean and standard
deviations for the AMπ kernel suggests that the accuracy of the kernel does not seem
to depend on the employed map.

The results on the INEX 2006 dataset are summarized in table 2. Except for one
case on the validation set, the AMπ kernel always improves with respect to the AM
kernel and always improves with respect to the SOM-SD alone. The mean classification
error of the AM kernel is 59.34 with standard deviation 0.435 on the validation set and
61.178 with standard deviation 0.755 on the test set. The mean classification error of
the AMπ kernel on validation is 58.276 with standard deviation 1.299, and 60.062, with
standard deviation 0.989, on the test set. Although AMπ kernel shows more variability
on the results, on average an improvement of 1.116 is obtained on the test set.

5 Conclusions

The Activation Mask Kernel is a tree kernel based on SOM-SD. Here we have proposed
an extension of the Activation Mask Kernel which adds to the feature space information
about routes, i.e. how to reach a specific node in a tree by starting from its root. In our
proposal, the contribution to the kernel of two trees given by the sharing of a specific
subtree is reinforced if the root of the subtree can be reached by the same route in
both trees. The SOM-SD is basically enriched with information about routes, and the
new kernel computed by adding to the Activation Mask Kernel the contribution due
to routes. This extension is supposed to be particularly effective when the tree domain
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is such that the relative location of a subtree, or family of subtrees, within the tree is
important for the task. Experimental results obtained on XML datasets seem to confirm
the usefulness of the proposed approach.
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Abstract. In this paper we elaborate on a kernel extension to tensor-
based data analysis. The proposed ideas find applications in supervised
learning problems where input data have a natural 2−way representa-
tion, such as images or multivariate time series. Our approach aims at
relaxing linearity of standard tensor-based analysis while still exploiting
the structural information embodied in the input data.

1 Introduction

Tensors [8] are N−way arrays that generalize the ordinary notions of vectors
(first-order tensors or 1−way arrays) and matrices (second-order tensors or
2−way arrays). They find natural applications in many domains since many
types of data have intrinsically many dimensions. Gray-scale images, for exam-
ple, are commonly represented as second order tensors. Additional dimensions
may account for different illuminations conditions, views and so on [14]. An al-
ternative representation prescribes to flatten the different dimensions namely to
represent observations as high dimensional vectors. This way, however, important
structure might be lost. Exploiting a natural 2−way representation, for example,
retains the relationship between the row-space and the column-space and allows
to find structure preserving projections more efficiently [7]. Still, a main draw-
back of tensor-based learning is that it allows the user to construct models which
are linear in the data and hence fail in the presence of nonlinearity. On a different
track kernel methods [12],[13] lead to flexible models that have been proven suc-
cessful in many different context. The core idea in this case consists of mapping
input points represented as 1−way arrays {xl}nl=1 ⊂ R

p into a high dimensional
inner-product space (F , 〈·, ·〉) by means of a feature map φ : R

p → F . In this
space, standard linear methods are then applied [1]. Since the feature map is
normally chosen to be nonlinear, a linear model in the feature space corresponds
to a nonlinear rule in R

p. On the other hand, the so called kernel trick allows
to develop computationally feasible approaches regardless of the dimensionality
of F as soon as we know k : R

p × R
p → R satisfying k(x, y) = 〈φ(x), φ(y)〉.

When input data are N−way arrays {X l}nl=1 ⊂ R
p1×p2×···×pN , nonetheless,

the use of kernel methods requires to perform flattening first. In light of this, our
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main contribution consists of an attempt to provide a kernel extension to tensor-
based data analysis. In particular, we focus on 2−way tensors and propose an
approach that aims at relaxing linearity of standard tensor-based models while
still exploiting the structural information embodied in the data. In a nutshell,
whereas vectors are mapped into high dimensional vectors in standard kernel
methods, our proposal corresponds to mapping matrices into high dimensional
matrices that retain the original 2−way structure. The proposed ideas find appli-
cations in supervised learning problems where input data have a natural 2−way
representation, such as images or multivariate time series.

In the next Section we introduce the notation and some basic facts about
2−way tensors. In Section 3 we illustrate our approach towards an operatorial
representation of data. On Section 4 we turn into a general class of supervised
learning problems where such representations are exploited and provide an ex-
plicit algorithm for the special case of regression and classification tasks. Before
drawing our conclusions, in Section 5 we present some encouraging experimental
results.

2 Data Representation through 2-Way Tensors

In this Section we first present the notation and some basic facts about 2-way
tensors in Euclidean spaces. In order to come up a with kernel-based extension
we then discuss their natural extensions towards infinite dimensional spaces.

2.1 Tensor Product of Euclidean Spaces and Matrices

For any p ∈ N we use the convention of denoting the set {1, . . . , p} by Np. Given
two Euclidean spaces R

p1 and R
p2 their tensor product R

p1
⊗

R
p2 is simply the

space of linear mappings from R
p2 into R

p1 . To each pair (a, b) ∈ R
p1 × R

p2 we
can associate a⊗ b ∈ R

p1
⊗

R
p2 defined for c ∈ R

p2 by

(a⊗ b)c = 〈b, c〉a (1)

where 〈b, c〉 =
∑

i∈Np2
bici. It is not difficult to show that any X ∈ R

p1
⊗

R
p2

can be written as a linear combination of rank-1 operators (1). Furthermore,
as is well known, any such element X can be identified by a matrix in R

p1×p2 .
Correspondingly R

p1×p2 or R
p1 ⊗R

p2 denote essentially the same space and we
may equally well write X to mean the operator or the corresponding matrix.
Finally, the Kronecker (or tensor) product between A ∈ R

w1
⊗

R
p1 and B ∈

R
w2
⊗

R
p2 , denoted by A ⊗ B is the linear mapping A ⊗ B : R

p1
⊗

R
p2 →

R
w1
⊗ ∈ R

w2 defined by
(A⊗B)X = AXB� (2)

where B� denotes the adjoint (transpose) of B. This further notion of tensor
product also features a number of properties. If X is a rank-1 operator a⊗ b, for
example, then it can be verified that (A⊗B)(a⊗ b) = Aa⊗Bb.
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2.2 Extension to Hilbert Spaces and Operators

Instead of Euclidean spaces, we now consider more general Hilbert spaces (HSs)
(H1, 〈·, ·〉H1), (H2, 〈·, ·〉H2). The definitions and properties recalled above have a
natural extension in this setting. In the general case, however, additional tech-
nical conditions are required to cope with infinite dimensionality. We follow [15,
Supplement to Chapter 1] and restrict ourselves to Hilbert-Schmidt operators.

Recall that a bounded operator A : H2 → H1 has adjoint A∗ defined by the
property 〈Ax, y〉H1 = 〈x, A∗y〉H2 for all x ∈ H2, y ∈ H1. It is of Hilbert-Schmidt
type if ∑

i∈N

‖Aei‖2H1
<∞ (3)

where ‖x‖2H1
= 〈x, x〉H1 and {ei}i∈N is an orthonormal basis1 of H2. The tensor

product between H1 and H2, denoted by H1

⊗H2, is defined as the space of
linear operators of Hilbert-Schmidt type from H2 into H1. Condition (3) ensures
that H1

⊗H2 endowed with the inner-product

〈A, B〉H1
⊗ H2 =

∑
i∈N

〈Aei, Bei〉H1 = trace(B∗A) (4)

is itself a HS. As for the finite dimensional case to each pair (h1, h2) ∈ H1 ×H2

we can associate h1 ⊗ h2 defined by

(h1 ⊗ h2)f = 〈h2, f〉H2h1 . (5)

One can check that (5) is of Hilbert-Schmidt type and hence h1⊗h2 ∈ H1

⊗H2.
As for the finite dimensional case, elements of H1

⊗H2 can be represented as
sum of rank-1 operator (5). Finally let A : H1 → G1 and B : H2 → G2 be
bounded Hilbert-Schmidt operators between HSs and suppose X ∈ H1

⊗H2.
The linear operator X → AXB∗ is a mapping from H1 ⊗ H2 into G1 ⊗ G2.
It is called Kronecker product between the factors A and B and denoted as
A ⊗ B. The sum of elements A1 ⊗ B1 + A2 ⊗ B2 corresponds to the mapping
X → A1XB∗

1 +A2XB∗
2 and scalar multiplication reads αA⊗B : X → αAXB∗.

With these operations the collection of tensor product operators we just defined
can be naturally endowed with a vector space structure and further normed
according to:

‖A⊗B‖ = ‖A‖‖B‖ (6)

where ‖A‖ and ‖B‖ denote norms for the corresponding spaces of operators.
One such norm is the Hilbert-Schmidt norm

‖A‖ =
√
〈A, A〉H1⊗H1 (7)

where 〈·, ·〉H1⊗H1 is defined as in (4). Another norm that recently attracted
attention in learning is the trace norm (a.k.a. Schatten 1−norm, nuclear norm

1 If A is of Hilbert-Schmidt type then (3) actually holds for any basis.
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or Ky Fan norm). For2 |A| = (A∗A)
1
2 the trace norm of A is defined as:

‖A‖� = trace (|A|) . (8)

3 Reproducing Kernels and Operatorial Representation

Our interest arises from learning problems where one wants to infer a mapping
given a number of evaluations at data sites and corresponding output values.
Hence we focus on the case where (H1, 〈·, ·〉H1) and (H2, 〈·, ·〉H2) are Reproduc-
ing Kernel HSs (RKHSs) [3] where such function evaluations are well defined.
We briefly recall properties of such spaces and then turn into the problem of
representing 2-way tensor input observations as high dimensional operators.

3.1 Reproducing Kernel Hilbert Spaces

We recall that given an arbitrary set X , a HS (H, 〈·, ·〉) of functions f : X → R

is a RKHS if for any x ∈ X the evaluation functional Lx : f �→ f(x) is bounded.
A function k : X × X → R is called a reproducing kernel of H if k(·, x) ∈ H for
any x ∈ X and f(x) = 〈f, k(·, x)〉 holds for any x ∈ X , f ∈ H. From the two
requirements it is clear that k(x, y) = 〈k(·, y), k(·, x)〉 for any (x, y) ∈ X × X .
Hence, H is an instance3 of the feature space F discussed in the introduction as
soon as we let φ(x) = k(x, ·). The Moore-Aronszajn theorem [3] guarantees that
any positive definite kernel4 is uniquely associated to a RKHS for which it acts
as reproducing kernel. Consequently, picking up a positive definite kernel such as
the popular Gaussian RBF-kernel [12], implicitly amounts at choosing a function
space with certain properties. Finally, the space of continuos linear mappings of
a finite dimensional space is the space itself. Hence Euclidean spaces R

p can be
seen as specific instances of RKHSs corresponding to the choice of linear kernel
k(x, y) =

∑
i∈Np

xiyi.

3.2 2-Way Operatorial Representation

So far we have defined tensor products and characterized the spaces of interest.
We now turn into the problem of establishing a correspondence between an input
matrix (a training or a test observation) X ∈ R

p1
⊗

R
p2 with an element ΦX ∈

H1

⊗H2. Notice that the standard approach in kernel methods corresponds to
(implicitly) mapping vec(X), where vec(X) ∈ R

p1p2 is a vector obtained for
example by concatenating the columns of X . On the contrary, our goal here
is to construct ΦX so that the structural information embodied in the original
representation is retained. Recall that for p = min {p1, p2} the thin SVD [6] of
a point X is defined as the factorization X = UΣV � where U ∈ R

p1×p and
V ∈ R

p2×p satisfies U�U = Ip and V �V = Ip respectively and Σ ∈ R
p×p

2 Given a positive operator T , by T
1
2 we mean the unique positive self-adjoint operator

such that T
1
2 T

1
2 = T .

3 Alternative feature space representations can be stated, see e.g. [5, Theorem 4].
4 See e.g. [12] for a formal definition.
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has its only nonzero elements on the first r = rank(X) entries along the main
diagonal. These elements are the ordered singular values σ1 ≥ σ2 ≥ · · · ≥ σr >
0 whereas columns of U and V are called respectively left and right singular
vectors. Equivalently

X =
∑
i∈Nr

σiui ⊗ vi (9)

where ui ⊗ vi are rank-1 operators of the type (1) and the set {ui}i∈Nr
⊂ R

p1

and {vi}i∈Nr
⊂ R

p2 span respectively the column space R(X) and the row space
R(X�). Let φ1 : R

p1 → H1 and φ2 : R
p2 → H2 be some feature maps. Based

upon {ui}i∈Nr
and {vi}i∈Nr

we now introduce the mode-0 operator ΓU : H1 →
R

p1 and the mode-1 operator ΓV : H2 → R
p2 defined, respectively, by

ΓUh =
∑
i∈Nr

〈φ1(ui), h〉H1ui and ΓV h =
∑
i∈Nr

〈φ2(vi), h〉H2vi . (10)

Recall from Section 2.2 that by ΓU⊗ΓV we mean the Kronecker product between
ΓU and ΓV , ΓU ⊗ ΓV : H1 ⊗ H2 → R

p1 ⊗ R
p2 . Under the assumption that

X ∈ R(ΓU ⊗ ΓV ) we finally define ΦX ∈ H1 ⊗H2 by

ΦX := argmin
{‖ΨX‖2H1⊗H2

: (ΓU ⊗ ΓV )ΨX = X, ΨX ∈ H1 ⊗H2

}
. (11)

In this way the feature representation ΦX is chosen as that particular solution of
(ΓU ⊗ ΓV )ΨX = X having minimum energy. Notice that the range R(ΓU ⊗ ΓV )
is closed in the finite dimensional space R

p1⊗R
p2 and hence ΦX is guaranteed to

exist. The following result that we state without proof due to space limitations,
characterizes ΦX by providing a concrete representation.

R(X) ⊆ R
p1

X�=V ΣU�

��

φ1

�� H1

ΓU
��

R(X�) ⊆ R
p2

Γ∗
V

��

φ2

�� H2

ΦX

��

Fig. 1. A diagram illustrat-
ing the different spaces and
mappings that we have intro-
duced. The operator ΦX ∈
H1 ⊗ H2 is the feature rep-
resentation of interest.

Theorem 1. Let AU : H1 → R
r and BV : H2 → R

r be defined entry-wise as
(AUh)i = 〈φ(ui), h〉 and (BV h)i = 〈φ(vi), h〉 respectively. The unique solution
ΦX of (11) is then given by

ΦX = A∗
UZBV (12)

where Z ∈ R
r ⊗ R

r is any solution of

KUZKV = Σ (13)

where (KU )ij = 〈φ1(ui), φ1(uj)〉 and (KV )ij = 〈φ2(vi), φ2(vj)〉.
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Fig. 2. An image (a)
and its feature represen-
tation (b) for the case of
2−degree polynomial fea-
ture maps. ΦX was found
based upon (12) and (13).

(a) A 19 × 18 image X

(b) Its 190 × 171 feature repre-
sentation ΦX (not in scale)

The approach can be easily understood for the case of polynomial kernel k(x, y)=
(〈x, y〉)d where d > 1 is an arbitrary degree [12]. Suppose this type of kernel is
employed and φ1, φ2 in (10) denote the corresponding feature maps. Then KU

and KV are identity matrices, Z = Σ and

ΦX =
∑
i∈Nr

σiφ1(ui)⊗ φ2(vi) . (14)

In particular when d = 1 (linear kernel), φ1 and φ2 denote the identity mapping
and the latter formula corresponds to the factorization in (9). Hence, our feature
representation (14) has the desirable property to be consistent with the original
data representation as soon as we use linear kernels.

4 Tensor-Based Penalized Empirical Risk Minimization

We now turn into problem formulations where the generalized tensor-based
framework presented might find application. For the 2-way case, existing tensor-
based learning algorithms (e.g. [11],[14],[7]) work with input observations X
(training or test points) represented as matrices. Instead, our key idea consists
in using the corresponding feature representation ΦX .

4.1 A General Class of Supervised Problems

We consider supervised learning and assume we are given a dataset consisting
of input-output pairs D =

{
(X l, Y l) : l ∈ Nn

} ⊂ X × Y where X ⊂ R
p1 ⊗ R

p2

and Y ⊂ R
w1 ⊗ R

w2 . The situation where Y ⊂ R
w or simply Y ⊂ R is clearly a

special case of this framework. Our goal is then to find a predictive operator

F : ΦX �→ Ŷ (15)

mapping the operatorial representation ΦX into a latent variable Ŷ . This objec-
tive defines a rather broad class of problems that gives rise to different special
cases. When the feature maps φ1, φ2 are simply identities, then ΦX corresponds
to X and we recover linear tensor models. In this case we have F = A ⊗ B :
R

p1⊗R
p2 → R

w1⊗R
w2 , F : X �→ AXB�. This is the type of models considered,

for example, in [7]. Their problem is unsupervised and amounts to finding a pair
of matrices A ∈ R

w1×p1 and B ∈ R
w2×p2 such that the mapping X �→ AXB�

constitutes a structure preserving projection onto a lower dimensional space
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R
w1×w2 . A similar projection-based strategy is followed for a multi-class classifi-

cation task in [11]. One of the proposed 2-stages algorithms, in fact, is based on
firstly finding the dominant subspace for each class. In contrast, here we propose
to build the model in a single supervised step as detailed below.

Going back to representations, for general feature maps φ1, φ2, we have A⊗B :
H1⊗H2 → R

w1⊗R
w2 and the predictive model becomes AΦXB∗. For nonlinear

feature maps, AΦXB∗ defines a nonlinear model in X and thus we can account
for possible nonlinearities. Here below for both the linear and nonlinear case we
write Φl to mean ΦXl . Extending a classical approach, the problem of finding
A⊗B can be tackled by penalized empirical risk minimization as:

min

{∑
l∈Nn

c(Y l, (A⊗B)Φl) +
λ

2
‖A⊗B‖2 | A : H1 → R

w1 , B : H2 → R
w2

}
(16)

where c : (Rw1⊗R
w2)× (Rw1 ⊗R

w2)→ R
+ is a loss function and the regulariza-

tion term is based on the norm defined in (6) as ‖A⊗ B‖ = ‖A‖‖B‖. Different
norms for the factors are of interest. The use of Hilbert-Schmidt norm (7) corre-
sponds to a natural generalization of the standard 2−norm regularization used
for learning functions [16]. However, recently there has been an increasing in-
terest in vector-valued learning problems [9] and multiple supervised learning
tasks [2]. In both these closely related class of problems the output space is R

w.
In this setting the nuclear norm (8) has been shown to play a key role. In fact,
regularization via nuclear norm has the desirable property of favoring low-rank
solutions [10].

Our next goal in this paper is to compare linear versus non-linear approaches
in a tensor-based framework. Hence in the next Section we turn into the simpler
case where outputs take values in R. Before, we state a general representer
theorem for the case where

c :
(
Y, Ŷ

)
�→ 1

2

∥∥∥Y − Ŷ
∥∥∥2

F
(17)

and ‖ · ‖F denotes the Frobenius norm. The proof is not reported for space
constraints.

Theorem 2 (Representer theorem). Consider problem (16) where the loss
is defined as in (17) , ‖A⊗B‖ = ‖A‖‖B‖ is such that ‖A‖ is either the Hilbert-
Schmidt norm (7) or the nuclear norm (8) and B is fixed. Then for any optimal
solution Â there exist a set of functions {ai}i∈Nw1

⊂ H1 such that for any i ∈ Nw1

(Âh)i = 〈ai, h〉H1 (18)

and for5 p = min{p1, p2} there is αi ∈ R
np so that

ai =
∑

l ∈ Nn

m ∈ Np

αi
lmφ1(ul

m) . (19)

5 Without loss of generality it is assumed that all the training matrices have rank p.



66 M. Signoretto, L. De Lathauwer, and J.A.K. Suykens

where ul
m denotes the m−th left singular vector corresponding to the factorization

of the l−th point X l = UlΣlV
�
l .

A symmetric result holds if we fix A instead of B. This fact naturally gives rise
to an alternating algorithm that we fully present for scalar outputs in the next
Section.

4.2 The Case of Scalar Outputs

In this Section we focus on simple regression (Y ⊂ R) or classification (Y =
{+1,−1}) tasks. With respect to the general formulation (16) in this case the
unknown operators are actually linear functionals A : H1 → R, B : H2 → R

and ‖ · ‖ boils down to the classical 2−norm. By Theorem 2, the problem of
finding A and B corresponds to finding single functions a and b which are fully
identified by respectively α ∈ R

np and β ∈ R
np. On the other hand Theorem

1 ensures that the feature representation of the l−th point can be written as
Φl = A∗

Ul
ZlBVl

where Zl is any solution of KU
l,lZlK

V
l,l = Σl and

(KU
l,m)ij = 〈φ1(ul

i), φ1(um
j )〉 , (KV

l,m)ij = 〈φ2(vl
i), φ2(vm

j )〉 (20)

where ul
i (resp. vl

i) denotes the i−th left (resp. right) singular vector correspond-
ing to the factorization of the l−th point X l = UlΣlV

�
l . Relying on these facts

the single task problem can be stated as

min

{
1

2

∑
l∈Nn

(
Y l − α�GU

:,lZlG
V
l,:β
)2

+
λ

2
(α�GUα)(β�GV β) : α ∈ R

np, β ∈ R
np

}
(21)

where GU , GV ∈ R
np⊗R

np are structured matrices defined block-wise as [GU ]l,m
= KU

l,m and [GV ]l,m = KV
l,m and by GV

l,: and GU
:,l we mean respectively the l−th

block row of GV and the l−th block column of GU . Define now the matrices
Sα,β, Sβ,α ∈ R

n ⊗ R
np row-wise as

(Sα,β)l,: =
(
GU

:,lZ
iGV

l,:β
)�

and (Sβ,α)l,: = α�GU
:,lZ

iGV
l,: .

A solution of (21) can be found iteratively solving the following systems of linear6
equations dependent on each over(

S�
α,βSα,β + λβGU

)
α = S�

α,βy, λβ := λ(β�GV β) (22)(
S�

β,αSβ,α + λαGV
)
β = S�

β,αy, λα := λ(α�GUα) . (23)

In practice, starting from a randomly generated β ∈ R
np, we alternate between

problems (22) and (23) until the value of the objective in (21) stabilizes. Once
a solution has been found, the evaluation of the model on a test point X� =
U�Σ�V

�
� is given by α�GU

:,�Z
�GV

�,:β where Z� is any solution of KU
�,�Z

�KV
�,� =

Σ�, (KU
�,�)ij = 〈φ1(u�

i ), φ1(u�
j )〉 and

GU
:,� =

[
KU

1,� KU
2,� . . . KU

n,�

]�
, GV

�,: =
[
KU

�,1 KU
�,2 . . .KU

�,n

]
.

6 The two systems are linear in the active unknown conditioned on the fixed value of
the other.
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5 Experimental Results

In linear tensor-based learning exploiting natural matrix representation has been
shown to be particularly helpful when the number of training points is limited
[7]. Hence in performing our preliminary experiments we focused on small scale
problems. We compared a standard (vectorized) nonlinear kernel-based approach
versus our nonlinear tensor method highlighted in Section 4.2. Both the type of
kernel matrices in (20) were constructed upon the Gaussian RBF-kernel with the
same value of width parameter. As nonlinear kernel-based approach we consid-
ered LS-SVM [13] also trained with Gaussian RBF-kernel. This specific choice
was considered because the primal problem of LS-SVM share the same quadratic
loss used in our problem formulation (21). Also, we did not consider a bias term
as this is not present in problem (21) either. In both the cases we took a 20× 20
grid of kernel width and regularization parameter (λ in problem (21)) and per-
form model selection via leave-one-out cross-validation (LOO-CV).

Robot Execution Failures [4]. Each input data point is here a 15 × 6 mul-
tivariate time-series where columns represent a force or a torque. The task we
considered was to discriminate between two operating states of the robot, namely
normal and collision_in_part. Within the 91 observations available, n were used
for training and the remaining n − 91 for testing. We repeated the procedure
over 20 random split of training and test set. Averages (with standard devia-
tion in parenthesis) of Correct classification rates (CCR) of models selected via
LOO-CV are reported on Table 1 for different number n of training points. Best
performances are highlighted.

Table 1. Test performances for the Robot Execution Failures Data Set

Correct Classification rates
n=5 n=10 n=15 n=20

RBF-LS-SVM 0.55(0.06) 0.64 (0.08) 0.66 (0.08) 0.70(0.06)
RBF-Tensor 0.62(0.07) 0.66(0.08) 0.68(0.10) 0.71(0.11)

Optical Recognition of Handwritten Digits [4]. Here we considered recog-
nition of handwritten digits. We took 50 bitmaps of size 32× 32 of handwritten
7s and the same number of 1s and add noise to make the task of discriminating
between the two classes more difficult (Figure 3(a) and 3(b)). We followed the
same procedure as for the previous example and report results on Table 2.

(a) A noisy 1 (b) A noisy 7

Correct Classification rates
RBF-LS-SVM RBF-Tensor
n=5 n=10 n=5 n=10

0.71(0.20) 0.85 (0.14) 0.84 (0.12) 0.88(0.09)

Fig. 3 & Table 2. Instances of handwritten digits with high level of noise ((a) and
(b)) and CCR on test for different number n of training points
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6 Conclusions

We focused on problems where input data have a natural 2-way representa-
tion. The proposed approach aims at combining the flexibility of kernel methods
with the capability of exploiting structural information typical of tensor-based
data analysis. We then presented a general class of supervised problems and
gave explicitly an algorithm for the special case of regression and classification
problems.
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Abstract. Supervised learning requires a large amount of labeled data

but the data labeling process can be expensive and time consuming, as it

requires the efforts of human experts. Semi-supervised learning methods

that can reduce the amount of required labeled data through exploit-

ing the available unlabeled data to improve the classification accuracy.

Here, we propose a learning framework to exploit the unlabeled data

by decomposing multi-class problems into a set of binary problems and

apply Co-Training to each binary problem. A probabilistic version of Tri-

Class Support Vector Machine is proposed (SVM) that can discriminate

between ignorance and uncertainty and an updated version of Sequen-

tial Minimal Optimization (SMO) algorithm is used for fast learning of

Tri-Class SVMs. The proposed framework is applied to facial expres-

sions recognition task. The results show that Co-Training can exploit

effectively the independent views and the unlabeled data to improve the

recognition accuracy of facial expressions.

1 Introduction

Many real-world pattern recognition applications involve a large number of
classes. Usually output space decomposition schemes, such as One-Against-
One, One-Against-Others and Error-correcting output code (ECOC) are applied.
These schemes are supervised learning tasks that require a large amount of la-
beled data in order to achieve a high classification accuracy. In addition, these
applications such as remote sensing image classification, or automated classifi-
cation of text documents, have often an extremely large pool of unlabeled data
available. However, data labeling is often difficult, expensive, or time consuming,
as it requires the human efforts.
� This paper is based on work done within the Transregional Collaborative Research
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(a) Binary SVM (b) Tri-Class SVM

Fig. 1. An illustration of the hyperplane(s) that discriminates between ωk and ωh

We propose a learning framework based on Co-Training to incorporate un-
labeled data into the one-against-one setup. A variant of Sequential Minimal
Optimization (SMO) algorithm is introduced for fast learning of probabilistic
Tri-Class SVMs. Gaussian Mixture Model (GMM) supervectors are extracted
as features for facial expressions. These are then the inputs to the Tri-Class
SVMs. Experiments demonstrate that Co-Training can automatically improve
the recognition of facial expressions in video [1] using a small amount of human-
labeled images which minimize the cost of data labeling. The paper is organized
as follows: the fast probabilistic Tri-Class SVM, is introduced in Section 2. Then
the one-against-one Co-Trainings framework is discussed in Section 3 and the
results are shown in Section 4. Finally, we conclude in Section 5.

2 Tri-Class Support Vector Machines

Given a training set L = {(xi, yi)|xi ∈ R
d, yi ∈ Ω, i = 1, . . . , n} where Ω =

{ω1, . . . , ωK} is a predefined set of classes. Let Lk = {(xi, yi)|yi = ωk} be the
set of nk = |Lk| training examples belonging to class ωk. If fkh is the optimal
hyperplane, then sign(fkh(xi))=1, for xi ∈ Lk and sign(fkh(xi))= -1, for xi ∈
Lh. Note that the remaining training examples L−{Lk∪Lh} are not considered
in the optimization problem. If a hyperplane fkh must classify an example x
where y �= ωk and y �= ωh, the correct decision is fkh(x) =0 which means that
the fkh rejects the example x. In order to add the reject option to an SVM, it
must be enforced to produce output fkh(x) =0 for all the training examples x
that do not belong to the target classes ωk and ωh (see Figure 1(a)).

Angulo et al. [2] introduced one-against-one Tri-Class SVMs that is an ex-
tension to the idea used for ordinal regression in [3] to classification. For each
pair of classes ωk and ωh, two parallel hyperplanes are trained to separate Lh,
L−{Lk∪Lh} and Lk, respectively where the training set L is divided into three
groups, labeled 1, 2, 3 (see Figure 1(b) and Table 1(a)). The primal formulation
for the Tri-Class SVM is:

min
w,b1,b2,ε,ε∗

1
2
‖w‖2 + C

(
n1∑
i=1

ε1i +
n2∑
i=1

ε∗2i +
n2∑
i=1

ε2i +
n3∑
i=1

ε∗3i

)
(1)
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subject to the constraints

〈w, x1
i 〉 − b1 ≤ −1 + ε1i , ε1i ≥ 0, i = 1, . . . , n1 (for x1

i ∈ Lh);

〈w, x2
i 〉 − b1 ≥ 1− ε∗2i , ε∗2i ≥ 0, i = 1, . . . , n2 (for x2

i ∈ L− {Lh ∪ Lk});
〈w, x2

i 〉 − b2 ≤ −1 + ε2i , ε2i ≥ 0, i = 1, . . . , n2 (for x2
i ∈ L− {Lh ∪ Lk});

〈w, x3
i 〉 − b2 ≥ 1− ε∗3i , ε∗3i ≥ 0, i = 1, . . . , n3 (for x1

i ∈ Lk); b1 ≤ b2

where C controls the trade-off between maximizing the margin and minimizing
the errors ε1i , ε∗2i , ε2i and ε∗3i . The inequality constraint b1 ≤ b2 is added explicitly
to make sure that the hyperplanes are correctly ordered. This primal problem is
a convex quadratic optimization problem that can be solved by a modification
of the standard SVM. Wolfe duality theory is applied to the primal problem
to obtain its dual formulation as defined in [2]. Note that the size of the dual
optimization problem is N = 2n − n1 − n3. In [2], this dual problem is solved
using the quadratic program-solver provided by Matlab Optimization Toolbox.
But quadratic programming algorithms are computationally inefficient because
they require an N×N kernel matrix H be computed and stored in memory. Chu
et al. [4] presented a modified version of SMO algorithm for ordinal regression
which has been adopted in this paper for Tri-Class SVMs.

2.1 Probabilistic Output for Tri-Class SVM

In order for Tri-Class SVM to discriminate between uncertainty and ignorance,
we derive a probabilistic interpretation for its output fkh through fitting a sig-
moid function on the SVM output. Therefore, Eq. (2) and Eq. (4) represent the
uncertainty and Eq. (3) represents the ignorance degree for an example x.

Pkh(y = 1|x) = Pkh(ωh|x) =

(
1 − 1

1 + exp(−(fkh(x) − b1))

)
(2)

Pkh(y = 2|x) =

(
1

1 + exp(−(fkh(x) − b1))

) (
1 − 1

1 + exp(−(fkh(x) − b2))

)
(3)

Pkh(y = 3|x) = Pkh(ωk|x) =

(
1

1 + exp(−(fkh(x) − b1))

) (
1

1 + exp(−(fkh(x) − b2))

)
(4)

A decision profile is created for a given example x as in Table(1(b)) based
on Eq. (2) to Eq. (4). Then the final probabilistic output of one-against-one
ensemble of Tri-Class SVMs is defined as follows:

P (y = ωk|x) =

∑k−1
h=1 Phk(y = 1|x) +

∑K
h=k+1 Pkh(y = 3|x)∑K

k′=1

∑k′−1
h=1 Phk′(y = 1|x) +

∑K
h=k′+1 Pk′h(y = 3|x)

(5)

3 Co-Training for Facial Expressions Annotation

The most confident examples with respect to a single SVM are typically not
informative because these examples have a large margin and therefore have no
impact on its decision boundary (see Figure 1(a)). To address this problem, Co-
Training, introduced by Blum and Mitchell in [5], is applied using an ensemble
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Table 1. Fusion of One-against-One Probabilistic Tri-Class SVMs

(a) Code matrix

f12 f13 f14 f23 f24 f34
ω1 3 3 3 2 2 2
ω2 1 2 2 3 3 2
ω3 2 1 2 1 2 3
ω4 2 2 1 2 1 1

(b) One-against-One Decision Profile

ω1 ω2 ω3 ω4
ω1 - P12(y = 3|x) P13(y = 3|x) P14(y = 3|x)
ω2 P12(y = 1|x) - P23(y = 3|x) P24(y = 3|x)
ω3 P13(y = 1|x) P23(y = 1|x) - P34(y = 3|x)
ω4 P14(y = 1|x) P24(y = 1|x) P34(y = 1|x) -

of three Tri-Class SVMs (mvEns), defined in Eq. (6) as the average of the
probabilistic outputs of three Tri-Class SVMs (see Eq. (2), Eq. (3) and Eq. (4)).
Since the margins assigned by different SVMs are not directly related, there
may exist a set of examples that have large average margin with respect to the
ensemble (confident) and have a small or negative margin with respect to an
individual machine (informative). For each pair of classes ωk and ωh, initially
define a labeled data set L = {(x(1)

i , x
(2)
i , x

(3)
i , yi)|x(j)

i ∈ R
dj , j = 1, . . . , 3, yi ∈

{1, 2, 3}, i = 1, . . . , n} and an unlabeled data set U = {(x(1)
i , x

(2)
i , x

(3)
i )|x(j)

i ∈
R

dj , j = 1, . . . , 3, i = n + 1, . . . , m}. Then for each view j, a Tri-Class SVM f
(j)
kh

is trained using the available labeled data (x(j)
i , yi). Then the following steps are

repeated for a given number of iterations T or until the U becomes empty. At
each iteration t, a pool U ′ is created by randomly sampling u unlabeled examples
from U . Then the ensemble mvEns is applied to predict the class label of each
example xu in U ′ and the confidence about its prediction is estimated as follows.

Pkh(y|xu) =
1
3

3∑
j=1

P
(j)
kh (y|xu) and Confidence(xu) = max

y=1,2,3
Pkh(y|xu) (6)

The newly labeled examples are ranked in descending order by confidence. Then
the three SVMs of mvEns are retrained using the training set augmented with
the most confident examples assigned to each class. In the classification phase, a
given sample is classified as defined in Eq. (6) based on SVMs created at the last
Co-Training iteration. Traditional SVM fkh can not ignore (reject) the unlabeled
examples in U ′ that belong neither to ωk nor to ωh. These examples may have
a margin larger than those belong to ωk and ωh (see Figure 1(a)). Hence, the
most confident examples may have no influence on the decision boundary. To
avoid this problem, Tri-Class SVM is used instead of the traditional SVM.

4 Experimental Evaluation

4.1 Setup

The Cohn-Kanade dataset [1], is a collection of image sequences with facial
expressions that is available for research purposes. As a result of a manual la-
beling procedure, there are 105, 49, 91, 81, 81 and 25 videos for “happiness”
(ω1), “anger”, “surprise” (ω2), “disgust” (ω3), “sadness” (ω4) and “fear”, re-
spectively. Due to their sparse appearance, “anger” and “fear” were excluded
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Fig. 2. Average test accuracy percentage of Tri-Class SVMs and Co-Training

from our experiments. Three feature vectors (views) have been extracted to be
used for Co-Training: orientation histograms from the mouth facial region (V1),
in order to represent the facial motion, the optical flow1 features from pairs of
consecutive images have been computed from the full facial region (V2) and from
the mouth region (V3). An 8-fold cross validation has been conducted 5 times.

For each fold and each view, the GMM supervectors approach, introduced by
Campbell et al. in [7], is used to extract the input vectors that are afterward
used to train the Tri-Class SVMs with the Gaussian kernel function k(x, xj) =
exp(−κ

2

∑d
i=1(xi − xji)2) where C = 32, the width of the kernel κ = 0.3 and

tolerance parameter τ = 0.001. For the GMM, the number of GMM components
is set to two and diagonal covariance matrix has been used. Then, the training
set of supervectors is split randomly into two sets L and U : 20% of the training
examples of each class are used in L (18, 16, 14 and 14, respectively), while the
remaining are in U . For each pair of classes, Co-Training has been performed
until 3/4 the maximum number of iterations is reached.

4.2 Results and Discussion

Figure 2 summarizes the results of all the experiments. We have the following
observations from the experimental results.

– For all pair of classes, the ensemble of Tri-Class SVMs (mvEns) outperforms
its members in all cases: using full training set (100%), reduced training

1 A biologically inspired optical flow estimator, which was developed by the Vision

and Perception Science Lab of the Institute of Neural Information Processing at the

University of Ulm [6].
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set (20%) and after Co-Training. This indicates that the multi-view SVMs
are not correlated (diverse) to the extent that their underlying views are
independent enough to apply Co-Training.

– For all binary problems, the accuracy of individual SVMs is improved after
Co-Training and the improvement ranges between 10.99% and 1.52%.

– Also the performance of the ensembles mvEns are improved after
Co-Training where the improvement ranges between 4.95% and 0.96%.

– In addition, the one-against-one ensemble (1v1Ens) consisting of the six
ensembles of Tri-Class SVMs (mvEns) after using the unlabeled image se-
quences achieves an accuracy 86.95% compared to 91.45% using the full
training set. Hence, further investigation is required to minimize this gap.

5 Conclusion

The main objective of this paper is to show that there is an improvement from
using unlabeled data when training one-against-one ensembles. We proposed a
learning framework to combine Co-Training and the one-against-one output-
space decomposition approach that uses Tri-Class SVMs as binary classifiers.
In order for Co-Training to measure confidence, a probabilistic interpretation
for Tri-Class SVM outputs is proposed that can differentiate between ignorance
and uncertainty. Since the Tri-Class SVMs are retrained several times during
Co-Training, we introduced a variant of SMO algorithm for faster learning. Ex-
periments on facial expressions annotation show that Co-Training improves the
accuracy when the quantity of labeled videos is small. Also, the GMM supervec-
tors approach provides flexible features for the classification of image sequences.
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Abstract. Support Vector Machines (SVMs) have gained outstanding

generalization in many fields. However, standard SVM and most mod-

ified SVMs are in essence batch learning, which makes them unable to

handle incremental learning well. Also, such SVMs are not able to handle

large-scale data effectively because they are costly in terms of memory

and computing consumption. In some situations, plenty of Support Vec-

tors (SVs) are produced, which generally means a long testing time. In

this paper, we propose an online incremental learning SVM for large

data sets. The proposed method mainly consists of two components,

Learning Prototypes (LPs) and Learning SVs (LSVs). Experimental re-

sults demonstrate that the proposed algorithm is effective for incremental

learning problems and large-scale problems.

Keywords: online incremental SVM, incremental learning, large-scale

data.

1 Introduction

SVM has established itself as the most widely used kernel learning algorithm.
The good generalization property of an SVM depends on a subset called Support
Vectors (SVs). Unfortunately, the training of traditional SVM is very costly in
time and space. Thus it may be intractable for traditional SVM to deal with
large-scale problems.

One way apply SVMs for large-scale problems is to adapt SVMs to learn
incrementally. Syed, Liu and Sung [1] proposed an incremental SVM (ISVM),
and it is one of the earliest attempts to adapt SVM with incremental learning.
It re-trains a new SVM by using new examples combined with old SVs. ISVM
mainly solves the so-called example-incremental problems. In [2], the old support
vectors are more “costly” by adding a constant which may vary with different
problems. Laskov et al. [3] proposed an online learning algorithm. However, the
algorithm suffers from excessive memory consuming.

For large-scale problems, another approach is to scale down the problem size
(down-sampling), and the representatives are used for training. Active learning
� This work was supported in part by China NSF grant (#60975047, #60723003,

#60721002), Jiangsu NSF grant (#BK2009080), and 973 Program (2010CB327903).
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[4] chooses the representatives by heuristic; Cluster-based SVM (CB-SVM) [5]
recursively selects SV clusters along the cluster tree to get better performance;
Cluster-SVM [6] first trains an SVM with cluster algorithm; Core Vector Ma-
chine (CVM) [7] chooses a core set by solving the Minimal Enclosing Ball (MEB)
problem; Ball Vector Machine (BVM) [8] places the MEB problem with Enclos-
ing Ball (EB) problem, which is seen as a simplified version of MEB. Support
Cluster Machine (SCM) [9] exploits a compatible kernel-Probability Product
Kernel (PPK) which measures the similarity between data.

In this paper, we try to improve SVM with the following three targets: (1)
realize online incremental learning; (2) solve large-scale problem; (3) To save the
number of SVs. We designed an online incremental SVM (OI-SVM) to achieve
the three targets. OI-SVM can effectively deal with large-scale problems, incre-
mental problems, and online learning problems.

2 The Proposed Online Incremental SVM (OI-SVM)

We adapt the traditional SVM into an online incremental version to deal with
incremental learning and large-scale problems. For this reason, we name the
proposed method online incremental SVM (OI-SVM). One epoch of OI-SVM
includes two phases, Learning Prototypes (LPs) and Learning SVs (LSVs). LPs
generates prototypes according to the original data. Then LSVs will learn the
prototypes of LPs to generate SVs. In the next epoch, the LPs will generate new
prototype set. The learned SVs of last epoch will be added to the new prototype
set and get a combined prototype set, then the LSVs will learn the combined
prototype set to generate new SVs. This procedure will repeat until the whole
learning epoches finished.

2.1 Learning Prototypes (LPs)

In this section, we will introduce the analysis of LPs. LPs is based on the com-
petitive learning, which tries to learn the prototypes to represent a local sub-
set. Given data (x1, d1), (x2, d2), · · ·, (xn, dn), prototypes (p1, d1), (p2, d2), · · ·,
(pm, dm) are learned (m is much smaller than n) to fit the density of the training
data. When a new example (xi, di) is input, we insert it to the set directly if the
class label di is new. If there exists the class di, we search the trained prototypes
to find the nearest neighbor called “pwinner” and the second nearest neighbor
called “prunner−up”, and a connection between pwinner and prunner−up is set.
The age of the connection is initialized as ‘0’ when set. If the age of one connec-
tion is larger than a predefined parameter (OldAge), it will be removed. Now if
the distance ‖xi − wp1‖ is larger than Tp1 , the new example will be inserted to
the prototype set as a new prototype. It’s also the same as “prunner−up”. If a
new example cannot become a new prototype, we update the weight of the pro-
totypes. This is shown in Algorithm 1. At the same time, some efforts are taken
to remove the prototypes caused by noise. Here, we adopt the strategy used
in [10]: after every several epochs of learning, those prototypes with only one
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same class neighbor will be removed. Also these prototypes with no topological
neighbors will be removed.

The threshold Tiof a prototype is defined as follows by within-class distance
and between-class distance. Within-class distance (Tiwithin

) means the average
distance between i and other prototypes in its neighborhood who have the same
label with i, and that is 1

Nlabeli

∑
(i,j)∈E

∧
labeli=labelj

‖pi − pj‖. Between-class
distance (Tibetween

) is the distance between i and prototypes whose label is dif-
ferent from i, and that is min(k,i)∈E

∧
labeli �=labelk ‖pi − pk‖. So the threshold is

defined by max ‖pi − pk‖labelk �=labeli ≤ Tiwithin
: (k, i) ∈ E. The threshold Ti

of a prototype is defined as the largest between-class distance that is not larger
than Tiwithin

, where the Euclidean distance is used as the metric and E is the
connection set used to store connections between prototypes. The Nlabeli is the
number of the neighbors of target prototype i.

2.2 Learning SVs (LSVs)

For incremental learning, usually the new examples have “heavier” effects than
the old ones. We need to make the old ones “costly”, or in terms of SVM, to
make the error of the previously learned SVs larger than an error of new ex-
amples. SVs are a sufficient representation of the decision hyperplane, but not
the all examples. It means that SVs are able to summarize the previous pro-
totypes in a relatively concise way. Therefore, adding previously learned SVs
to new SVM training is able to make the previous data more “costly”. That is
φ(w, ξi, ξ

∗
i ) = 1

2wT w+C(
∑

ξi∈P ξi+
∑

ξi∈SV ξ∗i ) where P is the set of prototypes
and SV is the set contains SVs. ξi is the slack variable of (xi, di). Here we need
not the use the additional parameter L in [2], for the reason that the data in
the incremental batch have no information about the previous data and the use
of L can make much larger error on old SVs. Here, for OI-SVM, the prototypes
have already made some error on the old data, thus the combination of SVs with
prototypes is enough to make the previous data more “costly”. Prototypes pro-
duced by LPs may change the original decision bound and generated prototypes
are representatives of original data. However, to what extent the obtained pro-
totypes affect the original bound is unknown. Here, we add previously learned
SVs into prototypes to train a new SVM, which alleviates the departure of new
bound decided by prototypes from original bounds.

The training process only preserve prototypes and SVs. We do not need to
store all training data. It means that OI-SVM is available for large-scale prob-
lems. With the above discussion, we describe the complete online incremental
SVM (OI-SVM) in Algorithm 1. After processing all data, we get the final SVs
for testing. In OI-SVM, besides the two parameters in SVM, the regularization
parameter C and the parameter of radial-basis-function (RBF) kernel γ, who are
often decided by the grid search, there are another two parameters introduced
by the LPs component: OldAge and λ. According to discussion in [10], the two
parameters will be determined by the users, and the generalization ability of the
algorithm are not sensitive to the newly introduced parameters.
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Algorithm 1. Online incremental SVM (OI-SVM)
1: To simulate incremental learning for off-line data, we partition the whole data into n parts. For

online data, the stream data is input to the system directly.
2: Initialize prototype set G, support vector set SV , and edge set E with ∅.
3: Load one block of data TS into memory. If G is empty, randomly choose two input data from

the training set TS, p1 and p2, and insert the two data into G. I.e., G = {p1, p2}.
4: Input a new pattern ξ = (xi, di) to the system.
5: Find the winner p1 and runner-up p2 by in set G.
6: if Nlabelxi

< 2or‖xi − wp1‖ > Tp1or‖xi − wp2‖ > Tp2 then
7: Insert ξ into set G. Go to Step(4).
8: end if
9: if (p1, p2) �∈ E then
10: E = E ∪ {(p1, p2)}
11: end if
12: age(p1 ,p2) = 0.

13: for The neighbor pi satisfies (p1, pi) ∈ E do
14: Update age(p1 ,pi) ← age(p1 ,pi) + 1

15: end for
16: Mp1 ← Mp1 + 1, η1 = 1

Mwinner
, and η2 = 1

100Mwinner
.

17: if labelξ = labelp1 then
18: Update wp1 ← wp1 + η1(ξ − wp1)

19: for The neighbor pi satisfies (p1, pi) ∈ E and labelpi
! = labelξ do

20: Update wpi
← wpi

− η2(ξ − wpi
)

21: end for
22: else
23: Update wp1 ← wp1 − η1(ξ − wp1)

24: for he neighbor pi satisfies (p1, pi) ∈ E and labelpi
= labelξ do

25: Update wpi
← wpi

+ η2(ξ − wpi
)

26: end for
27: end if
28: Delete those edges in set E whose age outstrips the parameter OldAge.
29: if The number of learned examples is the integer multiple of parameter λ. then
30: Delete the nodes pi in set G that have no neighbor node and delete the nodes pi who has

only one neighbor.
31: end if
32: if All the data in the block TS has been processed. then
33: Combine the prototype set G and the support vector set SV in new set Temp:

Temp = G
⋃

SV .
34: Train a new SVM with the set Temp, get the new support vector set SV pnew.
35: Update the old support vector set SV . Delete the old support vectors in SV and add the

support vectors in SV pnew to SV , i.e., SV =∅, SV = SV pnew.
36: Go to Step(3) to continue the learning process.
37: else
38: Go to Step(4) to continue the online learning process.
39: end if
40: if All the training data has been processed. then
41: return set SV .
42: end if

3 Experiments

In this section, we do experiments for medium-scale data optdigits, w3a, shuttle,
and ijcnn and large-scale data web, sensit vehicle (combined), and usps [11] to
test the OI-SVM. The experiments are performed on 3.0 GHz Intel Pentium
machine with 512MB RAM. LibSV M (V 2.88) [11], CV M and BV M (V 2.2) [7]
are used to make comparison with OI-SVM. ISVM results are not given here
for LibSV M has better performance than ISV M [3]. For SVM, it is required
to select C and γ ( radial-basis-function ). The parameter C is chosen from
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{2i : −5 ≤ i ≤ 5} and the parameter γ is in the range of {2j : −5 ≤ j ≤ 5} except
the data set usps. For incremental learning, the data are randomly gathered
and input into the system continually, then new examples are cooperated to
the trained learning system. And all data are divided into 10 parts arbitrarily.
Because LibSV M , CV M , and BV M cannot realize incremental learning, here
we only give batch learning results. The parameters of OI-SVM for the seven
data sets are (OldAge, λ) = (450, 450), (600, 450), (15000, 400), (3000, 500),
(500, 100), (500, 500), and (500, 400) respectively. For BV M and CV M , we set
the recommended parameter ε= 10−5 [7]. The results are presented in Table 1.

Table 1. Experimental results with the accuracy and the number of SVs: comparison

with LibSVM, CVM, and BVM

data item LibSVM CVM BVM OI-SVM OI-SVM
(batch) (batch) (batch) (batch) (incremental)

optdigits # of SV 1594 1193 2191 599 987
Accuracy(%) 98.37 96.38 96.38 97.33 97.33

w3a # of SV 2270 2118 952 458 1359
Accuracy(%) 97.85 97.81 97.88 97.40 97.56

shuttle # of SV 733 2112 2181 57 115
Accuracy(%) 99.83 99.74 99.70 99.68 99.77

ijcnn # of SV 2547 9316 5271 1057 4126
Accuracy(%) 98.54 98.37 98.38 98.60 98.22

web # of SV 4652 9889 3540 291 464
Accuracy(%) 99.32 99.07 99.04 98.98 98.95

sv(c) # of SV 30780 40595 26087 6073 7490
Accuracy(%) 83.88 83.94 82.49 82.20 82.06

usps # of SV 2178 4094 1426 170 985
Accuracy(%) 99.53 99.50 99.53 98.96 99.04

According to Table 1, for batch learning, we find that OI-SVM (b) is compara-
ble with others for learning accuracy. For all data sets, OI-SVM generates fewer
SVs than others. For incremental learning, even compared with batch learning
methods, OI-SVM (i) also gets comparable accuracy. For the number of SVs,
OI-SVM (i) gets fewest SVs for optdigits and shuttle. For w3a, many features
are zero in the training example. For OI-SVM (i), such duplicated examples will
be learned repeatedly and will lead to a little more SVs. For ijcnn, the number
of SVs generated by OI-SVM (incremental) is less than CVM and BVM, but is
greater than LibSVM. For OI-SVM, the number of SVs generated by the incre-
mental learning is often larger than the batch learning. This is because in the
incremental learning, OI-SVM works only on a subset of the training examples
once a time, and more prototypes are needed to keep more local information
and thus get global approximation. In fact, when the number of support vectors
is small compared to the size of the training data, the training speed of CV M
and BV M will be fast. However, when the size of SVs is large compared to
the size of its training data, the training speed becomes very slow. For sv(c),
the training speed of OI-SVM is much faster than BVM, because for BVM, the
learned number of SVs is 33% of training data and BVM will be very slow. For
usps, the training speed of OI-SVM is a little slower than BVM, it is because the
number of SVs for BVM is 0.5%. For web, the number of SVs for BVM is 7.1%,
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but BVM works much faster than OI-SVM. It is the same reason with w3a. For
incremental learning, OI-SVM almost obtains similar results to batch learning.
This shows that OI-SVM is able to realize incremental learning very well even
for large-scale problem.

4 Conclusions

In this paper, we proposed an online incremental SVM (OI-SVM) to deal with
large-scale problem. The proposed OI-SVM includes two parts: learning proto-
types (LPs) and learning SVs (LSVs). LPs is to learn the proper prototypes
to represent the input data, and adjust the prototypes to the concept of new
data. LSVs is to learn a new classifier by combining the prototypes representing
the data concept with previous learned SVs. OI-SVM can deal with online in-
cremental learning as well as batch learning. In the experiments, we compared
OI-SVM with typical SVM algorithms such as LibSVM, CVM, and BVM. The
experiments on incremental learning for medium-scale data, and large-scale data
show the efficiency of the proposed OI-SVM.
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Abstract. Building upon Gilbert’s convergence proof of his algorithtm to solve
the Minimum Norm Problem, we establish a framework where a much simplified
version of his proof allows us to prove the convergence of two algorithms for
solving the Nearest Point Problem for disjoint convex hulls, namely the GSK
and the MDM algorithms, as well as the convergence of the SMO algorithm for
SVMs over linearly separable two–class samples.

1 Introduction

Given a sample S = {(Xi, yi) : i = 1, . . . , N} with yi = ±1, let I± be the set
of indices of the patterns Xi belonging to each class. Writing W =

∑
i αiyiXi =∑

i∈I+
αiXi −

∑
i∈I− αiXi = W+ −W−, we can solve the Nearest Point Problem

(NPP) of finding the two closest points in the convex hulls of each class, by:

min D (α) = min 1
2‖W+ −W−‖2 = minα

1
2

∑
i

∑
j αiαjyiyjXi ·Xj

s.t.
∑

i∈I+
αi =

∑
i∈I− αi = 1, αi ≥ 0 ∀i . To do so, most of the methods proposed

in the literature are adaptations of methods for the Minimum Norm Problem (MNP) of
finding the point in a convex hull closest to the origin. Classical procedures for MNP
are the Gilbert [1] and Mitchell [2] algorithms. These two algorithms were adapted to
solve NPP as well as SVM for classification in [3] and [4] respectively. We shall call
these NPP adaptations GSK and MDM. We recall that the dual problem solved by an
SVM is

min D̃ (α) = 1
2

∑
i

∑
j αiαjyiyiXi ·Xj −

∑
i αi

s.t.
∑

i αiyi = 0, αi ≥ 0 ∀i . Convergence proofs for GSK and MDM were given
in [1] and Mitchell [2] (we are not aware of such proofs for their extensions to NPP)
and a quite general convergence proof for SMO has been given in [5]; for the linearly
separable case a much simpler SMO proof was given in [6]. In this work we propose a
unified approach for GSK, MDM and SMO that results in much simpler proofs, again
for linearly separable samples. More precisely, we will use a common framework with
three basic steps, namely: 1) To bound the distance ‖W t −W ∗‖ between the iterates
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y Predicción. The first author is kindly supported by FPU-MICINN grant AP2007–00142.
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W t and the optimal W ∗ by a quantity Δt that appears naturally in the algorithms, 2)
To show that Δtj → 0 for some subsequence tj and, therefore, that W tj →W ∗, 3) To
conclude that W t →W ∗ for the full sequence W t.

The paper is organized as follows. In section 2 we give an overview of the GSK,
MDM and SMO methods. Convergence proofs are given in section 3. Finally, section 4
offers some further discussion and pointers to future research.

2 Algorithms for Solving NPP and SVM

GSK uses at each iteration t a single updating pattern to build the new weight vector
W t+1 by updating one of the components W t

± of the current W t = W t
+−W t

− through
an appropriate convex combination with a pattern XL± of the corresponding class. For
instance, assuming we use an XLt

+
in the positive class, we have W t+1 = (1−λt)W t

++
λtXLt

+
−W t

− = W t + λt(XLt
+
−W t

+) and it is shown in [3] that the optimal λt is

λt = min
{
1, Δt

+/‖W t
+ −XLt

+
‖2
}

, (1)

where we write Δt
+ = yLt

+
W t ·(W t

+−XLt
+
). Moreover, from the expression above for

W t+1 we have ‖W t‖2 − ‖W t+1‖2 = 2λtW t · (W t
+ −XLt

+
)− (λt)2‖W t

+ −XLt
+
‖2.

Notice that ‖W t‖2−‖W t+1‖2 = 2(D(αt)−D(αt+1)) and if we take an unclipped λt

in (1), we have

D(αt)−D(αt+1) = (Δt
+)2/(2‖W t

+ −XLt
+
‖2) ≥ (Δt

+)2/(2D2) , (2)

where D = maxi,j ‖Xi−Xj‖. In this case, the norm decrease is approximately optimal
if Δt

+ is largest, for which we just choose Lt
+ as Lt

+ = arg mini∈I+ {yiW
t ·Xi}. If,

however, clipping takes place we have Δt
+ ≥ ‖W t

+ −XLt
+
‖2, which yields

D(αt)−D(αt+1) = W t · (W t
+ −XLt

+
)− ‖W t

+ −XLt
+
‖2/2 ≥ Δt

+/2 . (3)

Similar formulae hold when we choose a XL− in the negative class and the class chosen
in GSK is the one for which Δt

+ or Δt
− is largest. Once the choice is made we just write

Δt instead of Δt±; see [3] for more details.
Turning our attention to MDM, it updates at each step one of the W t

± components
of W t using now two pattern vectors XL± and XU± . For instance, if we update W t

+

using XLt
+

and XUt
+

, we will have W t
+ = W t

+ + λt(XLt
+
− XUt

+
) and, therefore,

W t+1 = W t
+ + λt(XLt

+
−XUt

+
) −W t

− = W t + λt(XLt
+
−XUt

+
). Now the optimal

λt is chosen as [4]:

λt = min
{
αt

Ut
+
, Δ

t

+/‖XUt
+
−XLt

+
‖2
}

, (4)

where this time we write Δ
t

+ = yLt
+
W t · (XUt

+
− XLt

+
). If clipping is not needed,

taking λt = Δ
t

+/‖XUt
+
− XLt

+
‖2 in (4) and arguing as done in the GSK case, we

obtain

D(αt)−D(αt+1) = (Δ
t

+)2/(2‖XUt
+
−XLt

+
‖2) ≥ (Δ

t
)2/(2D2) , (5)
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where we used ‖XUt
+
−XLt

+
‖2 ≤ D2. The D decrease is largest when Δ

t

+ is largest,

which we achieve by choosing U t
+ = argmaxi∈I+|αt

i>0 {yiW
t ·Xi} and Lt

+ as done
for GSK. We may have to clip λt at αt

Ut
+

to ensure that the new coefficient of XUt
+

does

not become negative. In this case, we obtain

D(αt)−D(αt+1) = αt
Ut

+
Δ

t

+ − (αt
Ut

+
)2‖XUt

+
−XLt

+
‖2/2 ≥ αt

Ut
+
Δ

t
/2 , (6)

since clipping occurs when Δ
t

+ ≥ αt
Ut

+
‖XUt

+
− XLt

+
‖2. Similar formulae hold when

we choose XUt
− , XLt

− in the negative class and the class finally selected is the one for

which the quantity Δ
t

± is largest [4]. Once chosen, we shall just write Δ
t
.

The SMO updates are of the form W t+1 = W t + λtyLt (XLt −XUt), or, in terms
of the α coefficients, αt+1

Lt = αt
Lt + λt, αt+1

Ut = αt
Ut − λtyUtyLt , and the other αj do

not change. An optimal λt is now chosen so that the decrease in the SVM dual function
is largest, which means [6]

λt = yLtΔ̃t/‖XUt −XLt‖2 = yLtμ , (7)

where we write now Δ̃t = W t·(XUt−XLt)−(yUt−yLt) and μ = Δ̃t/‖XUt−XLt‖2.
Here the D̃ decrease is largest when Δ̃t is largest, which can be achieved if we select
Lt = arg mini∈IL

{W t ·Xi − yi} and U t = arg maxi∈IU
{W t ·Xi − yi}, where

IL = {i : yi = 1 or yi = −1, αt
i > 0} and IU = {i : yi = 1, αt

i > 0 or yi = −1}.
As done before, we may have to clip μ as μt = min {μ, αt

Lt} if yLt = −1 and as
μt = min {μ, αt

Ut} if yUt = 1. If no clipping is required, making use of (7) yields

D̃(αt)− D̃(αt+1) = (Δ̃t)2/(2‖XUt −XLt‖2) ≥ (Δ̃t)2/(2D2) . (8)

If, however, μ is clipped at αt
Ut , then Δ̃t ≥ αt

Ut ‖XUt −XLt‖2 must hold, yielding

D̃(αt)− D̃(αt+1) = αt
UtΔ̃t − (αt

Ut)2‖XUt −XLt‖2/2 ≥ αt
UtΔ̃t/2 , (9)

while we similarly obtain D̃(αt) − D̃(αt+1) ≥ αt
LtΔ̃t/2, if μ is clipped at αt

Lt . We
refer to [6] for more details.

3 Convergence

If the algorithms described previously stop in a finite number t of iterations, the Δt,
Δ

t
and Δ̃t values must be zero, and the KKT conditions imply we are at an optimum.

Hence, in the sequel we will consider the case of an infinite number of iterations.

3.1 Convergence of GSK and MDM

We give a unified convergence proof for GSK and MDM. As a first step we show the
following.
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Proposition 1. If W ∗ is the closest vector between the positive and negative class hulls,
then the following hold

‖W t −W ∗‖2 ≤ 2Δt ≤ 2Δ
t

, (10)

‖W t −W ∗‖2 ≤ ‖W t‖2 − ‖W ∗‖2 = 2(D(αt)−D(α∗)) . (11)

Proof. A simple geometric reasoning in disjoint convex hulls shows that W t ·W ∗ ≥
‖W ∗‖2 and, therefore,

‖W t −W ∗‖2 = ‖W t‖2 −W t ·W ∗ −W t ·W ∗ + ‖W ∗‖2 ≤ ‖W t‖2 −W t ·W ∗

= ‖W t‖2 −
∑
i∈I+

α∗
i yiW

t ·Xi −
∑
i∈I−

α∗
i yiW

t ·Xi

≤ ‖W t‖2 − min
i∈I+

{
yiW

t ·Xi

}− min
i∈I−

{
yiW

t ·Xi

}
= W t ·W t

+ − min
i∈I+

{
yiW

t ·Xi

}−W t ·W t
− − min

i∈I−

{
yiW

t ·Xi

}
= Δt

+ + Δt
− ≤ 2Δt .

We show next that Δt
+ ≤ Δ

t

+ and that Δt
− ≤ Δ

t

−. In fact

Δt
+ = W t ·W t

+ − min
i∈I+

{yiW ·Xi} =
∑
i∈I+

αiyiW
t ·Xi − min

i∈I+
{yiW ·Xi}

≤ max
i∈I+|αt

i>0
{yiW ·Xi} − min

i∈I+
{yiW ·Xi} = Δ

t

+ ,

and a similar argument works for the other bound. Finally, to prove (11), reasoning as
just done at the beginning of the previous argument, we have ‖W t−W ∗‖2 ≤ ‖W t‖2−
W t ·W ∗ ≤ ‖W t‖2 − ‖W ∗‖2. ��
We show next the following.

Proposition 2. For GSK we have Δt → 0 as t → ∞. Moreover, for MDM there is a
subsequence tj such that Δ

tj → 0.

Proof. For GSK (2) and (3) imply D(αt) − D(αt+1) ≥ min{(Δt)2/(2D2), Δt/2}.
Thus, since the D(αt) sequence decreases and is always positive, it must converge and,
therefore, we must have D(αt)−D(αt+1)→ 0, so the whole Δt sequence goes to 0.

For MDM, (5) and (6) give D(αt) − D(αt+1) ≥ min{(Δt
)2/(2D2), αt

UtΔ
t
/2},

and arguing as before, the right hand side must tend to 0. Its first term applies when no
clipping is done but, arguing as in [6], it can be proved that clipping cannot occur indef-
initely after some t. Thus, the bound on (Δ

t
)2/(2D2) must apply to some subsequence

tj and, therefore, Δ
tj → 0. ��

Now we are ready to show the following.

Theorem 1. The W t updates of the GSK and MDM algorithms converge to W ∗ as t
goes to∞.
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Proof. For GSK, the result is immediate by Proposition 2 and (10).
For MDM, Proposition 2 and (10) imply that W tj → W ∗. By continuity of the

dual, D(αtj ) → D(α∗). But the sequence D(αt) decreases, so we must then have
D(αt)→ D(α∗). Finally, it follows by (11) that W t →W ∗.

3.2 Convergence of SMO

The convergence of SMO is also proved along similar lines.

Proposition 3. If W ∗ =
∑

α∗
i yiXi is the optimal SVM solution, we have

‖W t −W ∗‖2 ≤ (Δ̃t/2)

(∑
i

αt
i +
∑

i

α∗
i

)
, (12)

‖W t −W ∗‖2 ≤ 2(D̃(αt)− D̃(α∗)) . (13)

Proof. First, notice that W ∗ is a primal feasible weight vector (i.e., yi(W ∗·Xi+b∗) ≥ 1
for all i), so we have W t · W ∗ =

∑
i αt

iyiW
∗ · Xi =

∑
i αt

iyi(W ∗ · Xi + b∗) ≥∑
i αt

i . Besides, the KKT conditions imply that ‖W ∗‖2 =
∑

i α∗
i and, hence, D̃(α∗) =

‖W ∗‖2/2−∑i α∗
i = −‖W ∗‖2/2. Then

‖W t −W ∗‖2 = ‖W t‖2 − 2W t ·W ∗ + ‖W ∗‖2 ≤ ‖W t‖2 − 2
∑

i

αt
i + ‖W ∗‖2

= 2(D̃(αt)− D̃(α∗)) ,

so that (13) holds. Observe that, by the results above, we can also write

‖W t −W ∗‖2 ≤ ‖W t‖2 −
∑

i

αt
i −W t ·W ∗ +

∑
i

α∗
i . (14)

For the first two terms, we have∥∥W t
∥∥2 −∑

i

αt
i =
∑

i

αt
iyiW ·Xi −

∑
i

αt
iy

2
i =

∑
i

αt
iyi(W ·Xi − yi)

=
∑
I+

αt
i(W ·Xi − yi)−

∑
I−

αt
i(W ·Xi − yi)

≤
(

max
IU

{
W t ·Xi − yi

}−min
IL

{
W t ·Xi − yi

})∑
i

αt
i/2

= (Δ̃t/2)
∑

i

αt
i ,

where we use
∑

I+
αt

i =
∑

I− αt
i =
∑

αt
i/2. Analogously to what has just been done,

we get W t ·W ∗ −∑i α∗
i ≥ (−Δ̃t/2)

∑
i α∗

i for the last two terms. Hence, putting it
all together in (14), we arrive at (12). ��
We point out that the above argument for inequality (12) can also be applied to complete
the partial proof of Lemma 1 in [6] given there.
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Proposition 4. There is a subsequence W tj that tends to W ∗ as t→∞.

Proof. As an easy consequence of estimates (8) and (9) we get D̃(αt) − D̃(αt+1) ≥
min{(Δ̃t)2/(2D2), αt

UtΔ̃t/2, αt
LtΔ̃t/2}. The first term at the right hand side applies

when there is no clipping and, as just argued for MDM, clipping cannot go on indefi-
nitely. Thus, there must be a subsequence tj such that Δ̃tj → 0 and, by Proposition 3,
W tj →W ∗, since

∑
i αt

i can be shown to be bounded [6]. ��
Now convergence of the full W t sequence is proved just as in the MDM case, with
Proposition 4 and (13).

Theorem 2. The W t updates of the SMO algorithm converge to W ∗ as t goes to∞.

4 Conclusions and Further Work

In this work we present, for linearly separable samples, simple proofs of convergence
for the GSK and MDM algorithms for NPP, and the SMO algorithm for SVM training,
all three under a common framework. This results in much simpler proofs for GSK and
MDM than the ones in [1] and [2], and also generalize them to the NPP case. Our proof
for SMO is also simpler than the ones given in [6] and [5], but in its present form it is
only applicable to linearly–separable tasks. We are currently working on its extension
to the non–linearly separable case.
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Abstract. We propose the so-called Support Feature Machine (SFM)

as a novel approach to feature selection for classification, based on min-

imisation of the zero norm of a separating hyperplane. Thus, a classifier

with inherent feature selection capabilities is obtained within a single

training run. Results on toy examples demonstrate that this method is

able to identify relevant features very effectively.

Keywords: Support feature machine, feature selection, zero norm min-

imisation, classification.

1 Introduction

The ever increasing complexity of real-world machine learning tasks requires
more and more sophisticated methods to deal with datasets that contain only
very few relevant features but many irrelevant noise dimensions. It is well-known
that these irrelevant features will distract state-of-the-art methods, such as the
support vector machine. Thus, feature selection is often a fundamental prepro-
cessing step to achieve proper classification results, to improve runtime, and to
make the training results more interpretable.

For many machine learning tasks, maximum margin methods have been con-
firmed to be a good choice to maximise the generalisation performance [1]. But,
besides generalisation capabilities, other aspects, such as fast convergence, ex-
istence of simple error bounds, straightforward implementation, running time
requirements, or numerical stability, may be equally important.

In recent years, as complexity and dimensionality of real-world problems have
dramatically increased, two other aspects have gained more and more impor-
tance. These are sparsity and domain interpretability of the inference model.
Both are closely connected to the task of variable or feature selection. Primarily,
feature selection aims to improve or at least preserve the discriminative capabil-
ities when using fewer features than the original classifier, regression or density
estimator. In the following, we focus on feature selection for classification tasks.

Feature selection as an exhaustive search problem is in general computation-
ally intractable as the number of states in the search space increases exponen-
tially with the number of features. Therefore, all computationally feasible feature
selection techniques try to approximate the optimal feature set, e.g. by Bayesian
inference, gradient descent, genetic algorithms, or various numerical optimisation
methods.
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Commonly, these methods are divided into two classes: filter and wrapper
methods. Filter methods completely separate the feature selection and the clas-
sification task [2]. The optimal feature subset is selected in advance, i.e. filtered
out from the overall set of features without assessing the actual classifier. In
practise, one could, for example, select those features with the largest Pearson
correlation coefficients or Fisher scores before training the classifier.

Wrapper methods make use of the induction algorithm to assess the prediction
accuracy of a particular feature subset. Well-known contributions to this class
of feature selection algorithms are those of Weston et al. [3], who select those
features that minimise bounds on the leave-one-out error, and Guyon et al. [4],
who propose the so-called recursive feature elimination. Some types of support
vector machines already comprise feature selection to some extend, such as the
l1-norm SVM [5] or the VS-SSVM (Variable Selection via Sparse SVMs) [6].

In the following, we propose the so-called Support Feature Machine (SFM)
as a novel method for feature selection that is both simple and fast. To assess
its performance, we will measure and discuss various aspects of feature selection
methods, such as improvements to the test error when using only the selected
features, sparsity of the solution, or the ability to identify relevant and irrelevant
features.

The following sections are organised as follows. First, we briefly introduce
the problem of finding relevant variables by means of zero norm minimisation.
This leads to our contribution, the mathematical definition of the SFM. Using
artificial linearly separable datasets, we illustrate various aspects of the SFM
and compare the results to other feature selection methods.

We conclude with a critical discussion of the achievements and propose further
extensions to the SFM.

2 Feature Selection by Zero Norm Minimisation

We make use of the common notations used in classification and feature selection
frameworks, i.e. the training set

D = {xi, yi}ni=1

consists of feature vectors xi ∈ IRd and corresponding class labels yi ∈ {−1, +1}.
First, we assume the dataset D to be linearly separable, i.e.

∃w ∈ IRd, b ∈ IR with yi

(
wTxi + b

) ≥ 0 ∀ i and w �= 0 , (1)

where the normal vector w ∈ IRd and the bias b ∈ IR describe the separating
hyperplane except for a constant factor. Obviously, if w and b are solutions to
the inequalities, also λw and λ b solve them with λ ∈ IR+.

In general, there is no unique solution to (1). Our goal is to find a weight
vector w and a bias b which solve

minimise ‖w‖00 subject to yi

(
wTxi + b

) ≥ 0 and w �= 0 (2)



90 S. Klement and T. Martinetz

with ‖w‖00 = card {wi|wi �= 0}. Hence, solutions to (2) solve the classification
problem (1) using the least number of features. Note, that any solution can be
multiplied by a positive factor and is still a solution. Weston et al. [7] proposed
to solve the above problem with a variant of the Support Vector Machine by

minimising ‖w‖00 subject to yi

(
wTxi + b

) ≥ 1 . (3)

Indeed, as long as there exists a solution to (2) for which yi

(
wTxi + b

)
> 0

is valid for all i = 1, ..., n, solving (3) yields a solution to (2). Unfortunately, (2)
as well as (3) are NP-hard and cannot be solved in polynomial time. Therefore,
Weston et al. [7] proposed to approximate (3) by solving

minimise
d∑

j=1

ln (ε + |wj |) subject to yi

(
wTxi + b

) ≥ 1 (4)

with 0 < ε � 1. They showed that if w0 and w∗ optimise (3) and (4), respec-
tively, then

‖w∗‖00 ≤ ‖w0‖00 +O
(

1
ln ε

)
. (5)

They also showed that using the following iterative scheme at least a local min-
imum of (4) is found:

1. Set z = (1, . . . , 1).
2. Minimise |w| such that yi

(
wT(xi · z) + b

) ≥ 1.
3. Set z = z ·w.
4. Repeat until convergence.

This iterative scheme simply applies linear programming.

2.1 Support Feature Machine

Instead of modifying the SVM setting as in (3), we slightly change (2) such that
we

minimise ‖w‖00 subject to yi

(
wTxi + b

) ≥ 0 and wTu + ȳb = 1 (6)

with u = 1
n

∑n
i=1 yixi and ȳ = 1

n

∑n
i=1 yi. The second constraint excludes

w = 0, since otherwise we would obtain ȳb = 1 and yib ≥ 0, which cannot be ful-
filled for all i (we have labels +1 and−1). As long as there is a solution to (2) with
yi

(
wTxi + b

)
> 0 for at least one i ∈ {1, ..., n}, also

∑n
i=1 yi

(
wTxi + b

)
> 0 is

satisfied. Hence, solving (6) yields a solution to the ultimate problem (2).
Since we have linear constraints, for solving (6) we can employ the same

framework Weston et al. [7] used for solving their problem. Also (5) applies.
However, our experiments show that by solving

minimise
d∑

j=1

ln (ε + |wj |) subject to yi

(
wTxi + b

) ≥ 0 and wTu+ȳb = 1

with the iterative scheme
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Fig. 1. Comparison of the SFM and the method proposed by Weston et al. The top

row shows results for n = 50 data points, the bottom row for n = 200 data points

(averaged over 100 runs).

1. Set z = (1, . . . , 1).
2. Minimise |w| such that yi

(
wT(xi · z) + b

) ≥ 0 and wTu + ȳb = 1.
3. Set z = z ·w.
4. Repeat until convergence

we obtain significantly better solutions to the ultimate problem then by solving
(4). It seems that the new cost function is much less prone to local minima.

2.2 Experiments

For learning tasks, such as classification or regression, one normally assesses
a method’s performance via the k-fold cross-validation error, or via the test
error on a separate dataset. For feature selection, besides the test error, also
the number of selected features and the amount of truly relevant features are
important. Since in real-world scenarios these values are almost never known,
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we used artificial examples to compare the results of the SFM and the method
proposed by Weston. The toy examples were constructed according to Weston
et al. [7], i.e. the input data consist of 6 relevant but redundant features and 196
noise dimensions. Additionally, we required the datasets to be separable within
the 6 relevant dimensions. Figure 1 shows the results for 100 independent runs
using n = 50 and n = 200 data points. Apparently, the SFM returns both a lower
total number of features and a higher percentage of truly relevant features. The
convergence speed is also slightly better, and already after one iteration the SFM
solution is quite close to the final solution.

Next, we evaluated the generalisation performance of the SFM. Table 1 shows
mean and standard deviations in comparison to the SVM without feature selec-
tion and to the method proposed by Weston et al. For each method and training
set size, the experiment was repeated 100 times. Within each repetition 10000
data points were sampled (6 relevant, 196 noise dimensions), n data points were
used for training (n = 20, 50, 100, 200, 500) and the remaining for evaluating the
test error. Again, only linearly separable training datasets were allowed. Ob-
viously, the SFM significantly outperforms a standard SVM approach, but is
slightly worse than Weston’s method.

Table 1. Mean and standard deviation of the test error using different methods and

training set sizes for the toy example. The methods are: Standard hard-margin Support

Vector Machine (SVM), the method proposed by Weston et al. (Weston) and the

Support Feature Machine (SFM).

n SVM Weston SFM

20 28.8% (± 2.2%) 8.9% (± 8.0%) 17.5% (± 7.8%)

50 19.0% (± 1.9%) 2.7% (± 1.5%) 6.6% (± 3.7%)

100 12.2% (± 1.5%) 1.7% (± 0.7%) 3.8% (± 1.7%)

200 6.7% (± 0.9%) 1.2% (± 0.5%) 2.1% (± 0.9%)

500 3.1% (± 0.5%) 0.8% (± 0.2%) 1.1% (± 0.4%)

2.3 Implementation Issues

As with many machine learning algorithms, normalisation is an essential prepro-
cessing step also for the SFM. For all experiments, we normalised the training
datasets to zero mean and unit variance and finally scaled all vectors to have a
mean norm of one. This last step is necessary in high-dimensional scenarios to
keep the outcome of scalar products in a reasonable range. The test sets were
normalised according to the factors obtained from the corresponding training
sets.

For solving the optimisation problems, we used the MOSEK optimisation
software. To avoid numerical issues, numbers that differed by no more than a
specific implementation-dependent number — normally closely connected to the
machine epsilon — were considered to be equal.
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3 Conclusions

We proposed a novel method for combined feature selection and classification
— the so-called Support Feature Machine. Experiments on artificial as well as
real-world datasets demonstrated that the SFM can identify relevant features
very effectively and may improve the generalisation performance significantly
with respect to an SVM without feature selection. The implementation only
requires linear programming solvers and may therefore be established in various
programming environments.

So far, we focused on linear classifiers, mostly for high-dimensional low-sample
size scenarios because these scenarios seem to be the most relevant ones in prac-
tical applications, such as the analysis of microarray datasets.

In some scenarios, it is necessary to allow for nonlinear classification to achieve
proper classification performance. One might think of ways to incorporate kernels
into the SFM to allow for arbitrary class boundaries. Nevertheless, the main
focus of the SFM was to provide results that may easily be interpreted both in
terms of feature selection and classification, so nonlinearities would slacken this
demand.

In total, the results we obtained using the SFM approach are quite promising,
however, we need to justify our results on real-world datasets. In a follow-up
paper, we will show, that even an exponentially increasing number of irrelevant
features does not significantly reduce the performance of the SFM. Additionally,
we will extend the standard SFM approach to non-separable scenarios. Further
work will include experiments on more challenging real-world scenarios with
practical relevance. Finally, we seek for an iterative optimisation method to be
independent from proprietary optimisation toolboxes.
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Abstract. The environment surrounding us is inevitably uncertain; we

cannot perceive all the information necessary for making optimal de-

cision. Even in such a partially observable environment, humans can

make appropriate decision by resolving the uncertainty. During decision

making in an uncertain environment, resolving behaviors of the uncer-

tainty and optimal behaviors to best suit for the environment are often

incompatible, which is termed exploration-exploitation dilemma in the

field of machine learning. To examine how we cope with the exploration-

exploitation dilemma, in this study, we performed statistical modeling

of human behaviors when performing a partially observable maze navi-

gation task; in particular, we devised a hidden Markov model (HMM),

which incorporates inference of a hidden variable in the environment and

switching between exploration and exploitation. Our HMM-based model

well reproduced the human behaviors, suggesting the human subjects

actually performed exploration and exploitation to effectively adapt to

this uncertain environment.

1 Introduction

We, humans can make appropriate decision, even in a complicated environment
which may include various kinds of uncertainty. A typical example can be seen
when we drive a car through a crossing with bad visibility; in most cases, we can
pass through the crossing safely resolving the bad visibility by integrating vari-
ous signals coming from the environment. Although recent neuroscience studies
have revealed neural basis related to such decision making [1,2,3], more concrete
mechanisms to perform such decision making are not fully elucidated.

A decision making problem in an uncertain environment, from which all the
information necessary for making the optimal decision is not provided, can be
formulated as a partially-observable Markov decision process (POMDP) [4]. One
possible way to solve a POMDP is to use belief states, which are the sufficient
statistics of the state variables, including internal variables, of the environment.
In other words, a belief state is the integration of the agent’s observation in the
past.

During decision making in an uncertain environment, resolving behaviors of
the uncertainty and optimal behaviors to best suit for the environment are often

K. Diamantaras, W. Duch, L.S. Iliadis (Eds.): ICANN 2010, Part II, LNCS 6353, pp. 94–103, 2010.
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incompatible, which is termed exploration-exploitation dilemma in the field of
machine learning [5]. The agent should perform exploration behaviors in some
situations, or exploitation in other situations. To examine how one copes with the
exploration-exploitation dilemma, in this study, we performed statistical model-
ing of human behaviors when performing a partially observable maze navigation
task formerly devised by ourselves. Our current model is based on Bayesian
hidden Markov model (HMM), which was also used in the previous study [6],
but directly includes the mechanism of exploration and exploitation. Although
another existing study performed an fMRI study in terms of a value-based rein-
forcement learning model with exploration and exploitation [7], our model does
not assume explicitly value function. As a result, our HMM-based model well
reproduced the subjects’ behaviors, suggesting the subjects actually performed
switching between the exploration and exploitation.

2 Task

2.1 Outline

In this study, human subjects participated in a partially-observable maze navi-
gation task, whose scheme is shown in Fig.1. At the beginning of a single block,
the subjects were informed of a goal position on the 2D maze, and then tried to
reach the goal after as few trials as possible, based on partial 3D observations
which give a cue to identify the current position on the maze. On the day before
conducting the maze navigation task, the subject had joined a free exploration
task to well identify the maze structure and the mapping from locations on the
2D maze map and 3D views which can be seen at those locations. In the naviga-
tion task, we used the same maze as in the preceding free exploration task; then
we assume that the subjects were well familiar with the maze structure and the
2D-3D mapping.

2.2 The Maze Structure

The maze we used (Fig.2) consists of 9 × 9 grid points: 58 vacant squares con-
stituting paths and 23 wall squares. There is no dead-end, cross road, or wide
square area. The observation (view) is 3D and partial; at each grid point on the

Goal Presentation Goal Search

goal

observation

G

Fig. 1. A single block in the maze Fig. 2. Maze 2D structure
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maze, the subject may take either of four orientations, north-faced, east-faced,
south-faced or west-faced. A single view presents the status, wall or vacant, of
six grid points (forward, forward-left, forward-right, left, right and the current
position). There are in total seventeen possible views and they actually exist in
the used maze. Each location on the maze shares the same view with at least
other five different locations on the maze; this maze design did not allow the
subject to identify his/her position only from a single 3D view, which made the
environment uncertain.

2.3 Subjects and Operations

Eight normal human subjects (6 males and 2 females, aged 22-26, right-handed
and with normal vision) participated after giving written informed consent. They
practiced the free exploration task on the day before they performed the nav-
igation task, and we confirmed that they had sufficiently memorized the maze
structure.

In a single trial in a block, after presenting a 3D view, the subject selected
one of three possible actions, forward move, left turn and right turn, by a button
press. This action selection should be completed within 2 seconds, which defines
the maximum reaction time. If the forward move was selected, the location was
changed by one grid point to the forward direction, but the other two actions
only changed the orientation with letting the subject stay at the same grid point.
The subjects reported their actions by their left hand; forward move by a middle
finger, right turn by an index finger and left turn by a ring finger.

By using another hand, the subjects were requested to report whether the
actual observation was the same as what they had predicted. We assume that
the subject could predict the next view before it was presented. The subjects
were requested to first press the right-hand button to confirm their prediction
and then the left-hand button to select their actions, in each trial. The report by
the right hand was optional, but if the subject could not press the action button
by their left hand within a allotted time (2 sec.), it caused a miss trial and the
subject stayed at the same location with the same orientation.

3 Formulation

3.1 Optimal Agent and Assumptions on Human Model

To begin with, we modeled an ‘optimal’ agent; this agent memorizes all the past
observations and takes the ‘info-max’ action which most reduces the possibilities
of the agent location in the maze if there is any ambiguity on the position whereas
the ‘greedy’ action to follow the shortest path to the goal if there is no ambiguity.

Our basic assumption is that the subjects would like to behave as the op-
timal agent, but due to the limited reaction time, their processing should be
incomplete. A preliminary analysis has revealed that the subject’s behaviors
are actually different from those by the optimal agent. Although this partially-
observable maze was designed so that subjects can identify their locations after
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at most four (meaningful) actions starting from any location on the maze, they
often took non-optimal actions even after fifth trials. Then, we need to model the
incomplete information processing by the subjects, such to include the uncertain
(probabilistic) character of the processing, by means of a statistical model.

To get to the goal after as few trials as possible, specifying the present location
is the key. Therefore, subjects who are familiar with the maze structure were
assumed to employ two policies depending on the situation; one is an exploration
policy (to try to specify the present location), and the other is an exploitation
policy (to follow the shortest path to the goal). Although the same policies
were also implemented in the optimal agent, the exploration and exploitation by
human subjects were supposed to be incomplete.

It would be plausible to assume that each subject keeps and maintains a belief
state, sufficient statistics of unknowns, which comprises two factors: where the
subject thinks he/she is (present location estimated by the subject) on the maze
and whether the subject is confident of his/her estimation or not (confidence
for estimation). Like the optimal agent, the subject was assumed to take an
‘info-max’ behavior if he/she is not convinced of his/her position, c = 0, or
an optimal behavior if he/she is convinced, c = 1, even if those behaviors were
incomplete; this is the model of decision making by the subject. After getting the
new observation, the subject would check if his/her previous guess was correct
or not, which would make the confidence to change. Then we formulated these
processes in terms of hidden Markov model (HMM).

– Internal state xt = (st, ct)
– Present location estimated by the subject: st, real location: s∗t
– Confidence for estimation: ct

– Actual action taken by the subject: at

– Actual observation: o∗t
– Transition probability of the internal state: p(xt|xt−1, at−1, o

∗
t )

– Action selection probability (policy): p(at|xt)
– Initial belief p(x1|o∗1)
Figure 3 shows the graphical model of the HMM, which expresses the dynam-

ics of the subject’s subjective and objective states in the maze environment.

3.2 Action Selection Probability

Exploration policy. ct = 0 denotes that the subject is not certain about the
current position on the maze. The optimal strategy in such a case is to take the
‘info-max’ behavior; that is, to reduce the number of possible locations on the
maze. In typical situations to explore the maze, the subject is able to observe
the status of three new grid points by taking a forward movement, or that of
two grid points by taking a turn movement. Then the exploration is assumed as
follows.

1. If possible, the subject takes the forward movement, to get much new infor-
mation.
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Fig. 3. The graphical model of the hidden Markov model

2. If there is a wall to the forward direction but no wall to both of left-hand-
side and right-hand-side directions, the subject takes either of turn-to-left
or turn-to-right.

3. If the subject is on the L-shape corner, he/she takes the single allowable turn
action.

To represent the incompleteness of the exploration by the subjects, kexp, which
is the preference ratio of exploratory action to non-exploratory one, is introduced
so that the policy is given by

p(at|st, ct = 0) =

{
kexp/(kexpNexp + (Na −Nexp)) if at is exploratory
1/(kexpNexp + (Na −Nexp)) otherwise

(1)

Here, Na and Nexp denote the numbers of all allowable actions and exploratory
actions defined above, respectively, at st.

Exploitation policy. ct = 1 denotes that the subject is convinced of his/her
current location on the maze. Then, the optimal behavior is to follow the shortest
path to the goal. Due to the incompleteness of the subject’s exploitation process,
however, he/she may take some random actions with a probability εopt.

p(at|st, ct = 1) =

{
(1− εopt)/Nopt if at is exploitative
εopt otherwise

(2)

Here, Nopt denotes the number of optimal actions at the t-th trial. Note that
it is difficult to discriminate between exploratory actions and exploitative ac-
tions only from single actions, because some exploratory actions may also be
exploitative and vise versa.

3.3 Transition Probability

The subjects were assumed to predict the observation obtained in the next trial.
Here, ŝt and ôt denote the predicted position due to mental simulation (deter-
ministic) based on the previous estimation st−1 and the actually taken action
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at−1, and the predicted observation at the predicted position, respectively, at
the t-th trial. Due to the limited reaction time, we assume the subject would
perform mental simulation before getting a new observation at the t-th trial.

We assume that the subject reexamined his/her position estimate based on the
newly available observation; that is, if the new observation was what he/she had
expected, he/she became more confident, while if the new observation was found
to be different from what he/she had expected, he/she retried the estimation
based on the new observation but with low confidence.

More concretely, if the subject was convinced at the (t − 1)-th trial, xt−1 =
(st−1, ct−1 = 1), and there was no discrepancy between the predicted observation
and the actual observation, ôt = o∗t , the estimated location changed to ŝt with
probability 1; that is, the internal state changed to x̂t = (ŝt, ct = 1). But if not
convinced at the (t − 1)-th trial, xt−1 = (st−1, ct−1 = 0) and ôt = o∗t , he/she
remained uncertain with probability 1 − εx or became convinced with εx; that
is, xt−1 changed to x̂t = (ŝt, ct = 0) with probability 1 − εx or (ŝt, ct = 1) with
εx; the latter process represents the change of belief into a confident one.

On the other hand, if there was discrepancy between the prediction and actual,
ôt �= o∗t , the new position estimate was uniformly taken from possible positions
on the maze whose view was identical to o∗t with low confidence; that is, xt−1

changed to x̂t = (s′t, ct = 0). Here, s′t denotes any possible location whose view
is identical to o∗t .

3.4 Initial Belief

At the start point, subjects were assumed to be unconvinced of their position,
so p(c1 = 0) = 1. And p(s1) was a uniform distribution over the positions on the
maze whose observation was identical to the initial observation o∗1.

4 Estimation and Prediction

4.1 Estimation for Belief State

The incremental Bayesian estimation provides a way to estimate the belief state
[8], i.e., the filtered estimation of the subject’s internal state at the t-th trial,
based on the sequences of actions and observations by the subject before that
trial. The policy p(at|xt) was given in Section 3.2, and the state transition
p(xt|xt−1, at−1, o

∗
t ) was described in Section 3.3.

p(xt|a1:t, o
∗
1:t) =

p(at|xt)
∑

xt−1
p(xt|xt−1, at−1, o

∗
t )p(xt−1|a1:t−1, o

∗
1:t−1)

p(at|a1:t−1)
(3)

On the other hand, by using the whole sequences of actions and observations
of the subject until the end of that block, we can obtain the smoothed estimate
of the belief state, which would be more reliable than the filtered estimate. Here,
T denotes the trial length in the block.

p(xt|a1:T , o∗1:T ) = p(xt|a1:t, o
∗
1:t)
∑
xt+1

p(xt+1|xt, at, o
∗
t+1)p(xt+1|a1:T , o∗1:T )

p(xt+1|a1:t, o∗1:t)
(4)



100 M. Adomi, Y. Shikauchi, and S. Ishii

4.2 Prediction of Action

The incremental Bayesian formulation also provides the way to predict the next
action based on the past data as follows. The prediction accuracy is not only the
measure of model’s predictability (the larger, the better), but also the quantity
signifying subjective predictability of human subjects.

ât = arg max
at

p(at|a1:t−1) (5)

The concordance rate ρ between the predicted actions ât and the real actions
at is calculated as ρ = Nρ/(T − 1). Nρ is the number of trials whose actions were
well predicted, ât = at, in the block t = 1 : T − 1. When there were multiple
probable actions (given by (5)) as ât, we regarded ât = at when at corresponded
to any of those probable actions. In order to evaluate our HMM-based model, its
prediction ability was compared with that by the optimal agent. We can evaluate
the concordance rate of the optimal agent, ρopt, in a similar fashion to that of
the HMM-based model.

4.3 Parameter Estimation

According to the incremental Bayesian estimation, we automatically obtain the
marginal likelihood, which can be used for the maximum likelihood (ML) estima-
tion of the parameter ε ≡ (kexp, εopt, εx). Here, parameter estimation is crucial
because the parameter represents the character of each subject. Given a set (N
sequences) of actions and observations of the subject for parameter estimation,
bk(k = 1, . . . , N), the total marginal likelihood is given by

L(ε) =
N∏

k=1

p(bk|ε), (6)

where the marginal likelihood of a single sequence (block) p(b|ε) is simply given
as a normalization constant of the filtered posterior of the internal state at the
end of the block:

p(b|ε) = p(a1|ε)
T∏

t=2

p(at|a1:t−1|ε) (7)

The ML estimate of the parameter is given by maximizing the total marginal
likelihood. Although we can analytically obtain the ML estimate in our HMM’s
case, we simply applied the grid search heuristics: we discretized each of the
parameters, kexp, from 1 to 10 by 1, εopt and εx, from 0.1 to 1 by 0.1, evaluated
the total marginal likelihood on each of the 10×10×10 grid points, and selected
the best point that maximizes the total likelihood.

5 Results

5.1 Result of Parameter Estimation

Each subject participated in three sessions each of which consisted of 150 trials
of the navigation task. When a subject got to a goal, it was the end of a single
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block, then another block started. The subjects shared the same setting of the
task; in the corresponding block, the start and goal positions were the same over
the subjects. We performed the parameter estimation for each subject; the ML
estimate of the parameter was obtained by using the data in the sessions. The
ML estimate was mostly ε = (kexp, εopt, εx) = (10, 0.1, 0.1) or ε = (10, 0.1, 0.2),
which was found to be consistent between the subjects.

5.2 Result of Action Prediction

We calculated the concordance rate for each subject. The result is shown in Table
1, where the concordance rate ρ by our model was better than that (ρopt) by
the optimal agent for almost all the subjects. This result shows that our HMM-
based model well reproduces the subject’s action which he/she tried to take.
When calculating the concordance rate, we performed the parameter estimation
for each subject, based on the data during 2 sessions (training data) out of three
sessions. We evaluated the prediction performance of our HMM over the blocks
in the remaining one session (test data); i.e., the prediction performance is a
cross-validated one.

5.3 Result of Belief State Estimation

Figure 4 shows an example of the reproduced MAP sequence of the filtered
belief during a single block, starting from the filled circle and ending at the
star. The real path is shown in Fig. 5, where green open circles show successful
trials of the subject’s prediction. In the early part of the block in Fig. 4, our
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Fig. 4. The estimation path reproduced

by our HMM. Numbers index the tri-

als in this block. Filled circle, star, red

crosses and cyan open circles denote the

start position, the goal position, the po-

sitions estimated as ct = 0 and the posi-

tions estimated as ct = 1.
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Fig. 5. The actual path taken by the

subject. Numbers index the trials in this

block. Filled circle and star have the

same meaning as in Fig.4. Green open

circles show the positions where the sub-

ject reported that the observation was

what he/she had predicted.
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HMM estimated that the subject might have recognized his position but with
low confidence (ct = 0, red cross). As the trials proceeded, our HMM estimated
that he was confident of his position (ct = 1, cyan open circle), which shows good
agreement with the subject’s report (green open circle in Fig.5). This example
typically shows that our HMM well reproduces the subject’s internal processing
of resolving uncertainty (his/her position on the maze) in the environment, only
from the subject’s behaviors.

In order to evaluate further our model, we next calculated the concordance
rate of confidence prediction ρcon, which is the rate of the trials at which the
subjects reported their successful prediction to the trials at which the model
evaluated that the subjects were confident; i.e., true positive rate. Here, we
defined the criterion of the confidence level; if the probability maxst p(st, ct = 1)
is bigger than maxst p(st, ct = 0), we regard the subject as being confident
of his/her estimation, otherwise as uncertain. The result in Table 1 shows that
whether he/she was confident or not is well predicted by our HMM-based model.

Table 1. Action concordance rate by HMM (ρ), that by the optimal agent (ρopt) and

the true positive rate of the subjects’ confidence (ρcon)

Subject ρ(%) ρopt(%) ρcon(%)

1 85.8 77.2 71.3

2 89.5 84.0 72.2

3 92.5 82.2 71.6

4 91.4 82.4 68.1

5 88.5 75.5 62.9

6 91.6 82.9 65.9

7 91.9 93.3 75.2

8 88.2 81.7 58.7

6 Conclusion

In this study, we presented a hidden Markov model of human behaviors during
performing a partially observable maze navigation task, which directly imple-
mented switching between exploration and exploitation. The high prediction
ability of the subject’s actions and sufficient reproducibility of the subjects’
confidence suggested the plausibility of our model, that is, subjects actually per-
formed exploration and exploitation to appropriately adapt to this uncertain
environment.
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Abstract. The integration of knowledge representation, reasoning and learning
into a robust and computationally e�ective model is a key challenge in Artifi-
cial Intelligence. Temporal models are fundamental to describe the behaviour of
computing and information systems. In addition, acquiring the description of the
desired behaviour of a system is a complex task in several AI domains. In this
paper, we evaluate a neural framework capable of adapting temporal models ac-
cording to properties, and also learning through observation of examples. In this
framework, a symbolically described model is translated into a recurrent neural
network, and algorithms are proposed to integrate learning, both from examples
and from properties. In the end, the knowledge is again symbolically represented,
incorporating both initial model and learned specification, as shown by our case
study. The case study illustrates how the integration of methodologies and prin-
ciples from distinct AI areas can be relevant to build robust intelligent systems.

Keywords: Neural Symbolic Integration, Temporal Learning, Temporal Models.

1 Introduction

The integration of knowledge representation, reasoning and learning in a robust and
computationally e�ective intelligent platform is one of the key challenges in Computer
Science and Artificial Intelligence (AI) [4]. The representation and learning of tempo-
ral models in Software Engineering (SE) is an ongoing research endeavour, with sev-
eral applications widely used in industry [3,5]. Integrating these di�erent dimensions
of temporal knowledge aims not only at responding to the challenge put forward in [4],
but also at developing a clear abstract representation of dynamic systems, complement-
ing incomplete specifications with observed examples of a system’s behaviour. Further,
the availability of information about desired properties in a system allows automated
evolution of its description, optimizing the processes of specification and verification.

This paper describes a framework that robustly integrates di�erent sources of tem-
poral knowledge: (i) the symbolic knowledge model, (ii) learned observed examples
of the system’s behaviour, and (iii) an abstract description of properties to be satisfied
by the system specification. The paper builds upon principles from two recent appli-
cations of machine learning: the first consists in learning an abstract description of a

K. Diamantaras, W. Duch, L.S. Iliadis (Eds.): ICANN 2010, Part II, LNCS 6353, pp. 104–113, 2010.
c� Springer-Verlag Berlin Heidelberg 2010
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system through the observation of examples its behaviour [12]; the other consists in the
evolution of a specification through the use of examples or abstract descriptions of a
system’s desired behaviour [1]. Unifying both ideas allows reasoning and adaptation to
be integrated into several applications regarding specification of temporal models.

The paper will focus on the evaluation of the framework on a benchmark Software
Engineering case study. In the framework, symbolic knowledge is represented by a frag-
ment of a temporal logic, then computed and learned through a connectionist engine.
This leads to the construction of an e�ective, intelligent structure that can be used in
the process of development and analysis of a general class of systems. The case study
will illustrate the e�ectiveness of the framework, evaluate its performance in integrat-
ing di�erent sources of information, and its applicability to learning from examples and
properties, where reasoning and learning are used to evolve temporal models. The pa-
per is organized as follows. Section 2 contains background material. Section 3 describes
the temporal reasoning and learning framework. Section 4 discusses the case study in
detail. Section 5 concludes and discusses future work.

2 Preliminaries: Temporal Learning and Reasoning

Temporal logics have been highly successful in the representation of temporal knowl-
edge about computing systems [5]. For example, LTL (Linear Temporal Logics) and
CTL (Computation Tree Logics) are broadly used in computer science, to analyze mod-
els and properties of a system [3,5]. However, adding a temporal dimension to knowl-
edge models imposes several challenges to the learning task. Symbolic learning systems
such as Inductive Logic Programming (ILP) [11] can in principle be adapted to appli-
cation in temporal domains, but are considered too brittle for such task [10]. Neural
network learning presents itself as an alternative, where a quantitative approach is used
in the learning task, which can then be applied to temporal learning through the use
recurrent networks or by incorporating memory into the networks [8,9].

One traditional approach to build unified reasoning and learning systems is by trans-
lating knowledge from one representation to another. For instance, initial knowledge
represented by a symbolic language can be translated into a semantically equivalent
neural network. This target network can then be subject to learning through the presen-
tation of examples. In turn, one can then explain the learned knowledge by extracting
knowledge from the network into a symbolic representation [2].

Regarding temporal knowledge, the robust integration between learning and reason-
ing can be used in several ways, as in the modeling and verification of specifications. In
Black Box model checking, a symbolic machine learning algorithm is used to acquire
an abstract model of a system, and this model is then used to perform automated model
checking of the system with no knowledge about its internal structure being provided
[7]. Another interesting use of learning in SE consists in applying learning strategies to
adapt a model in order to satisfy certain properties or constraints, as done in [1] where a
temporal logic description of a model is translated into event calculus; the semantics of
the temporal operators is represented through predicates in first-order logics, allowing
the application of ILP techniques. In the case study below, we shall discuss the pros and
cons of the ILP approach in comparison with our neural network-based approach.
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3 A Framework for Learning and Reasoning

In order to implement a robust framework to describe, adapt and learn new specifica-
tions, we consider three di�erent sources of information: an initial symbolic description,
observed examples of the desired behaviour, and properties (or constraints) to be satis-
fied by the specified system. In the definition of the framework, these di�erent sources
of information can be used in the learning task (though none of them is mandatory).
This flexibility allows the framework to fulfill the requirements for Black Box checking
[7], where a set of examples illustrates how the system works without having an abstract
description of its general behaviour. For this purpose, the learning module must be able
to build an initial representation of the system from the observed examples. The model
is then subject to the presentation of properties that should be satisfied. The framework
not only identifies if the model satisfies the properties, but also adapts the model in or-
der to meet a specification. In addition, the presentation of examples and properties to
the learning engine can be e�ected simultaneously. The learning procedure we use can
be applied to a model with or without background knowledge of the system.

Consider the diagram of Fig. 1. The core of the system is defined by the learning
engine (1), which requires di�erent resources to allow the integration of the di�erent
sources of information. The initial model description (2) is converted into a neural net-
work through the use of a translation algorithm. After that, the network can be subject
to learning, considering the information given by the observed examples (3) and the
system’s properties (4). In turn, refined knowledge is extracted into a symbolic repre-
sentation (5), facilitating its analysis. In our system, knowledge is extracted in the form
of a state transition diagram, which can be converted into a logic program, if needed.

(1)
Learning Engine
(Neural Network)

(3)
Observed System

(Examples)

(5)
State Diagram

(Refined Knowledge)

(2)
Model Description
(Logic Program)

(4)
Specified
Properties

Knowledge
Extraction

Knowledge
Translation

Integrated

Learning

Fig. 1. Diagram of our proposed framework

3.1 Representing the Model

In order to represent the models, we will use a temporal logic language, similarly to [9].
In this work, we adapt their syntax for the sake of clarity. First, each atom (propositional
variable) used in the description of a model will be either an input or a state variable.
Input variables are those whose value is set externally to the model, while state variables
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have their values defined according to the model’s behaviour. To represent temporal
sequences, we use the � (next time) operator.

The logical representation can be used to generate the initial architecture of the neu-
ral network through an algorithm proposed in [6], which translates a propositional logic
program� into a correspondent neural network� . This translation consists basically in
using a hidden neuron to represent the conjunctions of literals in the body of each rule.
The input and output neurons represent atoms, where the output neurons compute the
disjunction of the rules in which the related atom appears as head. Positive assignments
to the variables are represented by positive values close to 1 and negative assignments
by values close to -1. The propagation of information through time, to allow the compu-
tation of the temporal operators, is represented through recurrent links from the output
neuron representing �� to the input neuron representing �.

Let us illustrate the integration of the di�erent representations of knowledge through
a simple example. Consider the monitor of a resource that should allocate such resource
between two processes A and B. Each process communicates with this monitor through
a signal to request the resource (Req) and a signal to release it (Rel). These signals are
considered as input variables to the monitor, that also has two state variables represent-
ing if each process has the resource allocated. In Fig. 2, we show a logic program that
illustrates how the inputs a�ect the states, and the network representing this program
generated by the translation. Below, a rule of the form �B �� B� relB means that if
relB is true and B is false at timepoint t then B should be true at timepoint t � 1.

A reqA
A ~A, relA

B reqB
B ~B, relB

A B

reqA relA reqB relB A B

Fig. 2. Representation of the monitor example

3.2 Learning and Evolving the Model

Our system allows learning from examples and specified properties. Each observed ex-
ample has values assigned to all the input variables, and to a subset of the state variables.
This allows the use of learning from examples when only some of the state variables are
observable, such as in the case where these represent the actual outputs of an observed
system. We use standard backpropagation [8], as follows. When learning from exam-
ples, the input values given by an example are applied to the corresponding input neu-
rons, together with the information about the current state. Information is propagated
forward through the network to obtain the output values, and through the network’s re-
current connection to obtain the network’s next state. If the output information is not
present (i.e. not observable), we will consider a null error for this output. Otherwise,
the error is calculated using the example and the weights are changed in the usual way.
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When learning from properties, instead of standard examples (i.e. input�output pat-
terns), the system is presented with an entire sequence of inputs I0� I1� ���, states and
next states S 0� S 1� etc. Hence, the desired output for each timepoint in the backpropaga-
tion process must be defined to allow the training of the network. For this purpose, the
framework keeps a record of active properties, as well as an index k� for each active
property�. At every timepoint t, if the current state corresponds to the initial condition
S �

0 of a property� then � is inserted into the list of active properties, and k� is set to 0.
When an input is applied, the framework verifies if it corresponds to the current position
I�k of each active property, eliminating from the list all the properties not following this
condition. When an active property ends, the state values given by the final state condi-
tion S �

n are used to define the desired output values for the learning process. In Table 1,
we can see an example of execution regarding the learning of two properties�1 and�2
shown on the left. In the table, 1 represents true and �1 represents false. Considering
that the execution starts with an empty list of active properties, we can notice how the
inputs and states a�ect this list, as well as the definition of the desired output according
to property �2. The desired output defined by the property will then be integrated with
the information from the examples (to avoid conflicts) and then used to define the actual
values applied to the network.

Table 1. Defining target output values (right) according to specified properties (left)

Properties Exec State Inputs Active Desired
�1 �2 Count A B ReqA RelA ReqB RelB Prop. Output

S 0 �B �A 1 �1 �1 1 �1 �1 �1 ��1(1)� �

I0 ReqA ReqB 2 1 �1 �1 1 �1 �1 � �

I1 ReqB��RelA ReqA��RelB 3 �1 �1 �1 �1 1 �1 ��2(1)� �

S 2 �B �A 4 �1 1 �1 �1 �1 �1 ��2(2)� ��A�

3.3 Extracting Knowledge about the Model

We use a pedagogical approach [2] to obtain a symbolic representation of the trained
network. Input and output values of the network are sampled and used to infer a gen-
eral behaviour. The samples used in this procedure can be the same used for learning,
but di�erent sets can also be considered to allow a better generalization. In the case of
learning through properties, the randomness of the input selection allows di�erent sets
of data to be applied to each training epoch; therefore, it is not necessary to create a dif-
ferent procedure to generate the examples for extraction. In this process, for each input
applied to the network, a transition � is stored containing information about the current
state S �

0 , the applied input I� , and the obtained next state S �

f . All the occurrences of

transitions � with the same S �

0 , I� and S �

f are grouped into a unique transition � �.

Extra variable count� is also used to give a more quantitative measure when analyzing
the extracted knowledge: count�

�

is the number of transitions grouped into � �.
These transitions can be shown in the form of a diagram, but also represented back

as a revised temporal logic program. In order to do so, we filter the group of transitions
to be used, according to the number of times they appear. Each remaining transition is
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then rewritten as a set of rules - one rule for each state variable. The body (right-hand
side) of all the rules representing� contains all the input and state variables, in positive
or negative form according to the assignments S � �

0 and I�
�

of � �. The head (left-hand
side) of each rule will be given by one of the variables ��, if S �

�

assigns � to true, or
��� otherwise. To allow a better understanding, this set of rules can also be simplified,
through symbolic manipulation of the logic program.

4 Validation and Experiments: Case Study

A pump system example is used in [1] as a case study to evaluate symbolic strategies
to adapt requirements according to properties. Below, we use a version of this problem
to verify representation and learning of temporal knowledge from di�erent information
sources using neural networks. The pump system monitors and controls the levels of
water in a mine to avoid the risk of overflow, through the use of three state variables:
CMet indicating a critical level of methane, HiW indicating a high level of water, and
pOn, indicating that the pump is turned on. In order to turn on and o� such indicators,
six di�erent signals are considered, as shown below in the rules representing the system:

– �CMet � CMet�� sCMetO f f
– �CMet �� sCMetOn
– �HiW � HiW;� sLoW
– �HiW �� sHiW
– �POn � POn�� tPO f f
– �POn �� tPOn

Our initial experiments consider three di�erent cases. First, in experiment a1, we
translated the knowledge described above into a network with 9 neurons in the input
layer (representing input and state variables), 6 hidden and 3 output neurons. Next, in
experiment a2, we considered learning of such relations through the presentation of a
sequence of 1000 examples, using a network without background knowledge, but with
the same distribution of neurons as in a1. Finally, in a3, we expressed such relations
as properties, and ran the framework again with a similar network. In a1 and a2, we
considered 500 epochs of 1000 presentations, and in a3 we used 50 epochs of 10,000
presentations. In the definition of the examples, we considered that only one input is
positive at each timepoint, as in [1]. On the other hand, the automatic generation of
inputs for learning properties in a3 does not have this restriction, requiring a larger
sample to get an accurate representation of the possible input configurations.

In Fig. 3, we show a state diagram for the networks before the learning process, the
chart depicting the evolution of the root mean square error (RMSE) on output during
learning, and a state diagram representing the learned knowledge after training. The
state variables CMet, HiW and POn are represented by C, H and P, respectively, in
the diagrams. In a1, the initial and final diagrams are the same since the knowledge is
already built in the network. When learning through examples only (a2), the diagrams
clearly show that new information was learned about the transitions between states.
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Fig. 3. Transition diagram before learning, error evolution and diagram after learning

However, in the learning of properties, in a3, the use of many input configurations
led to a somewhat confusing diagram. To give a better understanding of the extracted
knowledge, we converted such representation into a logic program, also to illustrate
the flexibility of our system when presenting extracted information. Below, we show a
subset of the program learned for rules regarding the next state of CMet.

– �CMet � sCMetOn�� sCMetO f f
– �CMet �� CMet� sCMetOn
– �CMet � CMet�� sCMetO f f
– ��CMet �� sCMetOn� sCMetO f f
– ��CMet �� CMet�� sCMetOn
– ��CMet � CMet� sCMetO f f

4.1 Integrating Knowledge Sources

Next, we extend the case study to illustrate the framework performance in applications
involving incremental learning and interaction between di�erent knowledge sources.
We use a state variable trP such that a positive assignment to trP at a timepoint t implies
that POn will be true at t � 1, independently of the other variables. This is represented
through a property �. Again, three di�erent cases were considered to evaluate the op-
tions on learning: in experiment b1, the network was generated by the same translation
as in a1, extended with a single extra hidden neuron and an extra input and output neu-
rons to represent trP. In experiment b2, the same extension was applied to the network
generated through learning of examples only as in a2. In the b1 and b2 cases, the net-
works were subject to learning of properties representing the trigger condition. In b3
we used a network without background knowledge to learn from the set of examples
and property � simultaneously. This network also had ten input, seven hidden and four
output neurons. In Fig. 4, we depict the evolution of RMSE in all three cases.
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Fig. 4. Error evolution when learning the property regarding trP

In these experiments, the insertion of an extra variable doubled the number of states
in the diagram, making its understanding more complex. Therefore, the extracted logic
programs provide a clearer option to analyze the learned knowledge. While the error
charts of b1 and b2 depict a good learning performance, the extracted logic programs
do not correspond to the expected behaviour: In b1, POn was always true and, in b2,
a large number of specific rules were generated, without an apparent relation to the
knowledge given to the network. Our conjecture as why this has happened is that the
original knowledge of the network fades away during the learning of the new property,
because only the information about � is given to the network during training. Hence,
we have decided to improve the framework with the possibility to reinforce the current
knowledge of the network during training, by setting the desired output value applied to
a neuron to 1 (resp. �1) when the obtained output is above a positive threshold u (resp.
below �u), and no information is given about � by the properties nor the examples.
With this modification, we ran b1 and b2 again, obtaining similar error charts, but.

Table 2. Temporal knowledge learned in b1, b2 and b3 - redundant rules omitted in b3

Experiment b1 Experiment b2 Experiment b3
�POn← tPOn �POn← tPOn,∼ tPO f f �POn← tPOn
�POn← trP �POn← trP �POn← trP

�POn← POn,∼ tPO f f �POn← POn,∼ tPO f f �POn← POn,∼ tPO f f
�¬POn←∼ trP,∼ tPOn, tPO f f �POn← POn, tPOn ...

�¬POn←∼ POn,∼ trP,∼ tPOn �¬POn←∼ trP,∼ tPOn, tPO f f �¬POn←∼ trP, tPO f f
�¬POn←∼ POn,∼ trP, tPO f f �¬POn←∼ POn,∼ trP,∼ tPOn
�¬POn←∼ POn,∼ trP,∼ tPOn

4.2 Case Study Discussion

To analyze the importance of the results shown in last section, we will compare our
framework to the system proposed in [1] that approach, where the same testbed was
used to evaluate the a purely symbolic learning technique to refine a temporal specifica-
tion. In terms of learning performance, we were able to verify that both approaches were
successful in the considered applications. Our case study gave good evidence that our
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approach is capable of learning, and that the advantages of the use of neural networks,
such as noise tolerance, can be verified for the di�erent learning scenarios.

However, a direct comparison between the results of the techniques is diÆcult due
to di�erences between their structure. The main di�erence between the approaches re-
gards the actual goal of the learning task: In symbolic techniques such as [1], learning is
applied to the task of refinement, i.e., generating a set of hypotheses capable to comple-
ment original incomplete knowledge according to the properties to be learned. In our
work, the incomplete knowledge is represented into a numeric processor (neural net-
work), that will define an actual (deterministic) transition function even to those cases
not specified in the symbolic description. In that way, the learning task will perform a
revision of this knowledge, instead of incremental refinement.

This gives to our framework a new and di�erent range of applications. Our system
is capable to deal with incorrect symbolic knowledge, instead of just incrementing an
existing incomplete specification. The experiments above shown exactly that the net-
works were capable to change the underlying transition diagram, therefore being using
the examples or properties to learn not only how to complement the original incomplete
knowledge, but also to correct errors in such description.

It is also important to consider the language used for knowledge representation, when
analyzing our framework in comparison with purely symbolic approaches. In our first
example, we can see that the learning from properties resulted in a di�erent diagram
than the one obtained from learning from examples. This happened because of the lim-
itations of our propositional logic programming language, which do not provide any
resource to represent certain relations between variables at the same time point. Other
limitation of our representation language is its deterministic nature, which might need
to be tackled depending on the focus of the application.

This approach is still clear and powerful enough to the representation of a broad set
of cases. Representation systems based on predicate logics might have more represen-
tation power, but often falls in issues like decidability and computational complexity.
When comparing with the event-calculus based system in [1], one can notice that the
di�erent representation structures reflect the very purpose of the application. While
event calculus provide powerful constructs to abduction and inductive learning, our
logic programming systems present a clear definition of input and state variables, allow-
ing a better integration with the core neural network used for the learning purposes. The
simplicity of our language, together with the capacity of the neural networks to perform
supervised learning, also caters for the possibility of learning from observed examples,
which is an important aspect towards the implementation of Black Box Checking [12].

The numeric representation of the knowledge also allows some interesting possibil-
ities. The association of numeric weights into the extracted transitions allows a prob-
abilistic approach to overcome the deterministic limitation of the representation. Also,
the incremental correction of weights in the learning process can be parameterized to
give priority to the background knowledge or to the information to be learned, accord-
ing with the configuration of the problem. In the last experiment, we have shown a
simple example of how this can be done, by changing the desired values used on back-
propagation according to the obtained output values.
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5 Conclusions

This paper outlined a framework and presented a case study for representing, adapting
and learning temporal knowledge in neural networks. The framework provides integra-
tion of di�erent knowledge sources, allowing observed examples and desired properties
to be used in the evolution of an initial temporal model, or in learning a completely new
model. A case study has shown that the framework can achieve the desired tasks with
good performance. The use a neural network caters for noise-tolerance in the learning
process, which is useful when treating di�erent sources of information.

We believe the methodology proposed in this work may serve as foundation for the
development of richer models for the analysis and evolution of computing systems.
Extensions to the formalisms used here to represent models and properties can enhance
the applicability of the framework. As further work, we plan to integrate the framework
with existing formal verification systems, such as the NuSMV model checker, and apply
it to larger-scale testbeds on both reasoning and learning tasks.
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Abstract. Developing superior artificial board-game players is a widely-

studied area of Artificial Intelligence. Among the most challenging games

is the Asian game of Go, which, despite its deceivingly simple rules, has

eluded the development of artificial expert players. In this paper we at-

tempt to tackle this challenge through a combination of two recent de-

velopments in Machine Learning. We employ Multi-Dimensional Recur-

rent Neural Networks with Long Short-Term Memory cells to handle the

multi-dimensional data of the board game in a very natural way. In order

to improve the convergence rate, as well as the ultimate performance, we

train those networks using Policy Gradients with Parameter-based Ex-

ploration, a recently developed Reinforcement Learning algorithm which

has been found to have numerous advantages over Evolution Strategies.

Our empirical results confirm the promise of this approach, and we dis-

cuss how it can be scaled up to expert-level Go players.

1 Introduction

The two-player board game Go is one of the few such games that have resisted a
panoply of attempts from Artificial Intelligence at building expert-level players.
A broad range of techniques have been used, with some recent successes based
on Monte Carlo Tree Search in combination with Reinforcement Learning (see
e.g. [1,2]). A large body of research has dealt with the problem using techniques
based on Neural Networks (see e.g. [3] for an overview), and that is also the
approach taken in this paper.

The recently developed Neural Network architecture called Multi-dimensional
Recurrent Neural Networks (MDRNN [4]) has been shown to be highly suited
to domains like board games with multi-dimensional inputs. Unlike typical flat
networks (e.g. multi-layer perceptrons), they can incorporate spacial structure as
well as symmetries in a very natural way. It has also been shown that MDRNNs
trained on small game boards can be scaled up to play well on larger game
boards, even without further training [5].

Training neural networks to play well with direct policy search (i.e. optimizing
the controller network’s parameters) can be done in a number of ways. Recent
work [5] has used state-of-the-art black-box optimization methods like CMA-
ES [6], which unfortunately does not scale well to larger numbers of weights,

K. Diamantaras, W. Duch, L.S. Iliadis (Eds.): ICANN 2010, Part II, LNCS 6353, pp. 114–123, 2010.
c© Springer-Verlag Berlin Heidelberg 2010



Multi-Dimensional Deep Memory Atari-Go Players 115

as required for more complex playing behavior. Other methods like Evolution
Strategies (ES [7]) scale better but suffer from a relatively slow convergence. We
therefore train our Go-playing networks using the novel Policy Gradients with
Parameter-based Exploration (PGPE, [8]), which have recently been shown to
be very successful at optimizing the parameters of large Neural Network con-
trollers [9]. PGPE replaces the usual explicit policy of Reinforcement Learning
with an implicit one, defined by a distribution over the parameters of the con-
troller. The fitness for each sequence only depends on one sample and is therefore
less noisy.

In section 2.1 we briefly introduce the game of Go and the simplified variant
used here. The MDRNN architectures are described in Section 2.2, and sec-
tions 2.3. Section 2.4 introduces the three algorithms used (ES, CMA-ES and
PGPE, respectively). Then, in section 3, we train MDRNNs using PGPE, CMA-
ES and ES to play Go, empirically establishing the advantages of PGPE over
ES and CMA-ES. Conclusions and an outlook on future work are presented in
Section 6.

2 Method

In this section we give the needed background on the game of Go, the Neural
Network architectures (MDRNN and MDLSTM) and the training algorithms
(ES, CMA-ES and PGPE).

2.1 Go and Capture Game

For the comparison of the different methods we are using the Capture Game,
a simplified version of the two-player board game Go, a game frequently used
to demonstrate the power of algorithms [1,11,12]. In Go, the players alternately
make a move by placing a stone on the board. They aim to capture groups of
opposing stones by enclosing them, see Figure 1 for an illustration. The goal is to
capture more stones and to surround more territory than the opponent (see [3]
for more details).

The Capture Game, also called Atari-Go or Ponnuki-Go, uses the same rules
as Go, except passing is not allowed and the goal of the game simplified: the first

Fig. 1. A typical situation in Go: the turn is with white (left), who decides to capture

a group of black stones (middle), which is then removed from the board (right)
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player who captures at least one opposing stone wins. As this goal is achieved
earlier and with less complex strategies, this variant of Go is often used for
teaching new players.

Go is very interesting in combination with MDRNNs and MDLSTMs, because
scalability is an important issue for board games [10]. The original game board
consists of 361 (19x19) fields, but it is possible to use smaller board sizes for
teaching, or to shorten the game length. As the main strategies stay the same,
it is possible to train on a small board size and then play on bigger ones. In
our case we could use small Neural Networks for the training and afterwards use
scaled versions to play on bigger boards.

2.2 Multi-Dimensional Recurrent Neural Networks

Real world data often consists of multi-dimensional data such as videos, speech
sequences or board games (as in our case). To use this data with regular Neural
Networks (NN) the data must be transformed into a vector which leads to the
loss of topological information about the inputs. Multi-dimensional Recurrent
Neural Networks (MDRNN), instead, are capable of using high-dimensional data
without this transformation. Furthermore MDRNNs can be trained on small
problem instances (e.g. board sizes) and then used on bigger ones, a process we
call scaling.

Compared to standard Recurrent Neural Networks (RNN), which can only
deal with a single (time-)dimension, MDRNNs [4] are able to handle multi-
dimensional sequences and were used successfully for vision [13], handwriting
recognition [14] and different applications of Go [5,15,10,3].

In the case of Go, the single time dimension is replaced by the two space
dimensions of the game board. It would be worthwhile to get information about
the whole board. Therefore we introduce swiping hidden layers which swipe
diagonally over the board. The four directions that arise out of the described
situation are the following: D = {↗,↘,↖,↙}.

As exemplary hidden layer we describe the layer h↗, which swipes diagonally
over the board from bottom-left to top-right, in detail. At each position (i, j) of
the board we define the activation h↗(i,j) as a function of the weighted input
in(i,j) and the weighted activations of the previous steps h↗(i−1,j) and h↗(i,j−1)

which leads to:

h↗(i,j) = f(wi ∗ in(i,j) + wh ∗ h↗(i−1,j) + wh ∗ h↗(i,j−1)) (1)

where f is a function (e.g. f = tanh). On the boundaries fixed values are used:
h↗(i,0) = h↗(0,i) = wb. An illustration of h↗ for the game Go can be found in
Figure 2. The output layer consists of the combination of all swiping directions
and could be described as following:

outi,j = g

(∑
�∈D

wo ∗ h�(i,j)

)
(2)

where g is typically the sigmoid function.
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Fig. 2. On the left hand side the schematic illustration of a MDRNN shows how the

output consists of a swiping hidden layer in one direction. The right hand side illustrates

the output (top) to the corresponding input (bottom). The brighter the square, the

lower the preference to perform the corresponding move (source [5]).

With the derived equation we have access to the whole game board. Neverthe-
less the reach of the access is limited by how fast the activations decay through
the recurrent connections. This problem could be solved by using Long Short-
Term Memory (LSTM) cells [4]. LSTMs are using gates to protect recurrent
states over the time and where used successfully in [4,3,13]. The integration of
LSTMs in MDRNNs by using swiping layers consisting of LSTM cells is called
MDLSTM [5].

2.3 Evolution Strategies

Evolution Strategies (ES) are optimization techniques which are based on the
principles of natural evolution, producing consecutive generations of individuals.
During a generation a selection method is used to select specific individuals which
form the new generation by recombination and mutation [16,17]. Individuals
can be solution candidates of any problem domain that is fully defined by a
parameter set. Neural Networks (NN) and in this case MDRNNs fall into this
class of problem domains, assuming the architecture of the NN is kept fixed, as
the behavior of the NN is fully defined by its weight matrix.

Adapting continuous paramters by adding normally distributed noise is a typ-
ical mutation method. We use for our comparisons the local mutation operator
and Covariance Matrix Adaption Evolution Strategy (CMA-ES) [6]. CMA-ES
uses a covariance matrix C ∈ R

n×n, where n is the number of parameters for
the mutation and achieves a derandomized correlated mutation. The covariance
matrix approach is only feasible in relatively low-dimensional problem domains,
because the size of the matrix grows with n2. Here again it is advantageous that
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MDRNNs are scalable and that we can train the behavior on smaller instances
of the game and scale it up to the full game size after learning.

2.4 Policy Gradients with Parameter-Based Exploration

In what follows, we briefly summarize [18], outlining the derivation that leads
to PGPE. We give a short summary of the algorithm as far as it is needed for
the rest of the paper.

In the standard Reinforcement Learning (RL) setting a reward signal at every
time step in the Markovian decision process is given. We can associate a cumu-
lative reward r with each history h by summing over the rewards at each time
step: r(h) =

∑T
t=1 rt. This makes the setting strictly episodic (natural for board

games). In this setting, the goal of RL is to find the parameters θ that maximize
the agent’s expected reward

J(θ) =
∫

H

p(h|θ)r(h)dh (3)

An obvious way to maximize J(θ) is to find ∇θJ and use it to carry out gradient
ascent. Noting that the reward for a particular history is independent of θ, and
using the standard identity ∇xy(x) = y(x)∇x log y(x), we can write

∇θJ(θ) =
∫

H

∇θp(h|θ)r(h)dh =
∫

H

p(h|θ)∇θ log p(h|θ)r(h)dh (4)

PGPE replaces the probabilistic policy commonly used in PG with a probability
distribution over the parameters θ, where ρ are the parameters determining the
distribution over θ. The expected reward with a given ρ is

J(ρ) =
∫

Θ

∫
H

p(h, θ|ρ)r(h)dhdθ. (5)

Noting that h is conditionally independent of ρ given θ, we have p(h, θ|ρ) =
p(h|θ)p(θ|ρ) and therefore ∇ρ log p(h, θ|ρ) = ∇ρ log p(θ|ρ). Substituting this into
Eq. (5) yields Eq. (6) under the notion of several conditionally independencies.

∇ρJ(ρ) =
∫

Θ

∫
H

p(h|θ)p(θ|ρ)∇ρ log p(θ|ρ)r(h)dhdθ (6)

where p(h|θ) is the probability distribution over the parameters θ and ρ are
the parameters determining the distribution over θ. Clearly, integrating over the
entire space of histories and parameters is unfeasible, and we therefore resort to
sampling methods. This is done by first choosing θ from p(θ|ρ), then running
the agent to generate h from p(h|θ):

∇ρJ(ρ) ≈ 1
N

N∑
n=1

∇ρ log p(θ|ρ)r(hn) (7)
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If we assume that ρ consists of a set of means {μi} and standard deviations {σi}
that determine an independent normal distribution for each parameter θi in θ.
some rearrangement gives the following forms for the derivative of log p(θ|ρ) with
respect to μi and σi:

∇μi log p(θ|ρ) =
(θi − μi)

σ2
i

∇σi log p(θ|ρ) =
(θi − μi)2 − σ2

i

σ3
i

, (8)

which can then be substituted into (7) to approximate the μ and σ gradients that
gives the PGPE update rules. We also used the for PGPE standard Symmetric
Sampling (SyS) and the reward normalization commonly used for PGPE. See [18]
for details.

3 Experiments

In this section we compare PGPE with ES and CMA-ES on different board
sizes and with different MDRNNs. For ES we chose a (μ, λ)-strategy where
the μ best individuals are chosen from the whole population which has size λ.
In particular, we applied local mutation and used μ = 5 and λ = 30 which
are standard values. The implementations of the Capture Game, the algorithms
and the Neural Network architectures are available in the open-source Machine
Learning library PyBrain [19].

3.1 Fitness Function

The evaluation of the individuals is realized with a Greedy Go Player, imple-
mented in Java using depth-first search. It first checks whether it can capture
and thereby defeat the opponent directly. Otherwise it tries to defend its posi-
tion, by counting the number of liberties for its groups of stones. If one of its
groups only has one liberty, and therefore he would be defeated during the next
opponents move, the Greedy Player tries to enlarge this group. As a third choice
the Greedy player uses a heuristic. Let p and q be the number of liberties of
the weakest group of the Greedy Player and the opponent Player. The Greedy
Player chooses a valid move which maximizes the sum p− q.

By reason of implementation the Greedy Player may pass. As the Capture
Game does not allow this move, we replace it with a random move instead.
Primarily this happens during games with strong opponents.

To calculate the fitness we averaged 40 games which were played against
the Greedy Player. The fitness values are scaled from -1 (individual never wins
against Greedy Player) up to +1 (individual always wins against Greedy Player).

3.2 Network Topology

With the given architectures of MDRNNs (MDLSTMs) it follows that we have 12
(52) parameters which have to be evaluated. We will give a short calculation for



120 M. Grüttner et al.

MDRNNs. As mentioned in 2.2 our network consists of four (identical) hidden
layers. The hidden layer is modeled by k neurons. Each neuron is connected
with a weight wo to the output layer and two weights wi to the input layer.
Furthermore the neurons of the hidden layer are fully connected to each other
which leads to k2 weights which we call wh. Additionally we have k weights
wb which are fixed and model the boarders of the recurrent connections. All
together we get k + 2k+ k2 + k = 4k + k2 weights. Taking into consideration the
additional weights of LSTM-cells, a similar reasoning gives us 16k +5k2 weights
for MDLSTMs. We decided to use k = 2 neurons, the smallest number that
allows for qualitatively interesting strategies, which leads to 12 (52) weights.
The decisions was taken concerning previous results (see [5]). A larger number
of neurons mostly results in a faster conversion, but increases the complexity of
the network and therefore the calculation time. However, the use of larger board
sizes would make a larger number (k = 5) of neurons more feasible.

3.3 Results

We trained MDRNNs and MDLSTMs for the board sizes 5 and 7. Furthermore
we used 12000 episodes and averaged over 10 independent runs per data point.

Fig. 3. Illustration of the four different types of networks. The plots give the fitness

for each of the 12000 episodes as well as the standard deviation and min/max-values

(average over 10 independent experiments).
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Figure 3 illustrates the results. The fitness value determines the average fitness
of a generation. As we can see PGPE mostly converges faster than ES and CMA-
ES. Primarily with the increasing of the number of parameters the advantages
of PGPE towards ES increase.

Nevertheless neither ES nor PGPE has converged within the 12000 episodes
to the maximum fitness value 1. This holds for the best individuals of each
generation, too. In our experiments the best result of a single run of PGPE
converges to 0.5 which is equivalent to a victory rate of 75% (see Figure 3
MDLSTM controller, 5x5 field). That is why ongoing learning could still improve
the results.

Furthermore the use of MDLSTMs leads to better results than MDRNNs.
This strength of MDLSTMs is accompanied by a long training time towards
MDRNNs. Our observations are similar to [4,5,3].

Another fact we could read from our resulting plots is a big standard deviation.
This observation leads to the suggestion (see section 6) that the standard meta
parameters for PGPE and ES are not optimal for this problem domain and that
meta-parameters that favor a more thorough exploration combined with longer
learning cycles should provide better and more stable results.

4 Discussion

As is common for PGPE, the results of 3.3 start off with the rather slow phase
of searching for the attractor of the global optima. This gives the PGPE curves
the typical S-shape [18]. The ES curves form the usual saturation shape, with a
faster convergence early on. However, PGPE takes over soon in the convergence
process and then converges faster and onto a higher fitness level than ES. The
resulting curve of CMA-ES does not reach the results of the other two methods.
Especially while using a game board size of 7x7 CMA-ES prematurely converges
to a low fitness value. CMA-ES seems to be to greedy for this task and thus
converges premature.

One general observation from our experiments was that the longer the episodes
and the higher the number of parameters, the more PGPE outperforms ES (in
average fitness).

For general Go and other real-world problems more episodes are necessary.
Future applications with stacked MDRNNs are possible, as suggested in [10],
and for such applications PGPE seems more appropriate than ES or CMA-ES.

In summary, we find that PGPE performs better in finding good game be-
haviors, already on the smallest scaling level. It also scales better to scenarios
with more episodes, and to higher dimensionalities of controllers.

5 Future Work

An interesting future application would be the research of the influence of
PGPE on scaling MDRNNs as well as determining the best ratio between game
board size and PGPE setup (especially using non standard meta-parameters
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like smaller step sizes for more thorough exploration and better final behavior).
Besides, PGPE could be used for relearning the scaled controllers.

As suggested for ES in [3], we could use Co-Evolution to further improve
the PGPE results. For PGPE this would mean the fitness is evaluated not only
against the Java Player but also against the best learned controller(s) so far, and
the controller defined by the mean of the current parameter set.

Furthermore, adaptively increasing the number of games per fitness evaluation
could be used to speed up learning. In the early phase of learning, 3-4 games
would be enough for an evaluation step, whereas up to 100 games might be
necessary later on, to calculate a fitness value accurate enough to distinguish
the slight changes in performance at that point.

As mentioned in section 3, the high standard deviation suggests that a higher
rate of exploration would be favorable for the overall performance and stability.
For PGPE this would correspond to decreasing the values of the two step sizes
that are normally set to αμ = 0.2 and ασ = 0.1. Not surprisingly however, this
more thorough exploration comes at the price of longer convergence time.

6 Conclusion

In this paper we have introduced different methods of Machine Learning: PGPE,
an algorithm based on a gradient based search through model parameter space,
ES and CMA-ES, based on population based search. We compared these methods
on the task of playing the Capture Game, a variant of Go, on small boards. Our
experiments allow us to conclude that PGPE is advantageous on the given task,
and also appears to scale better to larger and more difficult variants of the Go
game. This is in line with similar results for PGPE on different benchmarks [18].
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Abstract. Using local motion information data such as that obtained

from optical flow, we present a network for a multilayered segmentation

into motion regions that are governed by affine motion patterns. Using an

energy-based competitive multilayer architecture based on non-negative

activations and multiplicative update rules, we show how the network

can perform segmentation tasks that require a combination of affine es-

timation with local integration and competition constraints.

Keywords: Motion segmentation, layering, affine, competitive multi-

layer networks, multiplicative gradient descent.

1 Introduction

Motion-based segmentation and motion-based layer separation are essential steps
for the decomposition of dynamic visual scenes. The topic has been investigated
in a series of early publications by commonly either combining locally estimated
motion models [1,2] or estimating the spatial support of mixture models [3,4].
The latter frequently appears in the realm of probabilistic approaches, formu-
lating the problem in terms of maximum-likelihood of the observed data.

A common starting point of the approaches is a motion field estimation as
a preprocessing step. Subsequently, they introduce parameterized models for
describing subregions in the motion field, where almost all of these approaches
assume affine motion models. In order to consider spatial constraints, Markov
Random Fields (MRFs) are commonly used to support regions of similar motion
[5,6]. As such approaches optimize conditions in a pixels neighborhood, they do
not explicitly consider model competition at certain pixel positions.

In this paper, we used a dynamic neural network approach to combine the
spatial distribution of labels (intra-label integration) with further constraints on
inter-label competition. Such a model is motivated by previous work on compet-
itive layer models [7]. The network dynamics within this work are deterministic
and follow a gradient-descent-like update rule, updating motion region param-
eter estimation and motion region labeling in alternating steps. The dynamics
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can be implemented very efficiently as block operations on a labeling grid. Com-
pared to MRFs which rely on stochastic techniques, this deterministic relaxation
method is a computational much faster approach.

Sec. 2 introduces the network for multi-region motion segmentation in detail.
As a proof-of-concept, we present results from two motion sequences in Sec. 3.
These include the MPEG Flower Garden sequence as well as an example of a
moving hand filmed by a moving observer. In Sec. 4, we finally conclude the
paper.

2 Dynamic Neural Network for Motion Segmentation

In this paper, we start with a sequence of 2D images. For each consecutive pair
of images, an approximation of the 2D motion field in the images is obtained by
calculation of a dense optical flow in the form of velocity vectors v(p) at posi-
tions p. In our particular implementation, we use a spatiotemporally integrating,
patch-based method for calculating optical flow [8].

In this section, we introduce the main components of our motion estimation
network. In Sec. 2.1, we briefly explain the calculation of parameters for the
affine description of motion regions by applying weighted regression on a motion
field. In Sec. 2.2, we present a competitive recurrent network for dynamically
updating activations that encode the tendency of each image position to belong
to the different motion models. In Sec. 2.3, we combine both approaches within
a single energy function that drives the entire system.

2.1 Motion Fields Described by Affine Models

We assume the motion field to be composed of large spatial regions that can be
approximated by affine homographies. This is valid if the images recorded by a
camera are rectified and the 3D scene contains planar surfaces where changes in
depth between objects and camera are small compared to their distance.

In the following, we introduce image coordinates p = {px, py}T and mo-
tion vectors v = {vx, vy}T , as well as homogeneous image coordinates p̂ =
{px, py, 1}T and homogeneous motion vectors v̂ = {vx, vy, 1}T . The goal is to
find NA affine matrices Ak, where each matrix describes the motion field for
a certain region. In other words, an assumed affine homography is suitable for
describing a region of the image when a large amount of the measured motion
vectors v(p̂) can be approximated by motion vectors vAk

(p̂):

v(p̂) ≈ vAk
(p̂) = Akp̂ =

(
ak,11 ak,12 ak,13

ak,21 ak,22 ak,23

)⎛⎝px

py

1

⎞⎠ . (1)

Assuming that the motion field has been measured at Np positions pi :=
{pi,x, pi,y}T , we have vi := v(pi). Since we want to describe the entire motion
field by all NA affine models simultaneously, we introduce weight factors wi,k ≥ 0
which indicate the affiliation of a motion vector vi to an affine model Ak. For



126 J. Eggert, J. Deigmoeller, and V. Willert

fixed weight factors, and assuming the underlying parametric model of residu-
als ri,k to be Gaussian, we can formulate a cost function G({Ak}) that is the
weighted Euclidean distance between measured and expected motion:

G({Ak}) =
∑

k

Gk(Ak) =
∑

k

∑
i

wi,k‖v(p̂i)− vAk
(p̂i)||2

=
∑

k

∑
i

wi,k‖v(p̂i)−Akp̂i‖︸ ︷︷ ︸
:=ri,k

2
. (2)

For this case, a weighted linear regression can be used for the calculation of
the affine models. For each affine model Ak describing a region of the motion
field characterized by the affiliation weights wi,k, the affine parameters are then
estimated by minimizing the cost function G({Ak}):

A∗
k = arg min

Ak

G({Ak}) = argmin
Ak

Gk(Ak). (3)

The cost function gets minimal if:

∇Ak

{∑
i

wi,k[vi,x − (ak,11 pi,x + ak,12 pi,y + ak,13)]2

+
∑

i

wi,k[vi,y − (ak,21 pi,x + ak,22 pi,y + ak,23)]2
}

= 0. (4)

This in turn leads to a linear equation system in the coefficients of the Ak’s,
which can be solved analytically in a straightforward way (see Appendix).

Nevertheless, this only applies for fixed affiliation weights wi,k. If these are
given by some preprocessing step (like segmentation) we would be done. However,
we want to simultaneously estimate Ak and wi,k. The first step towards this is
to consider that the affiliation weights act as a kind of affiliation probability, i.e.
the different models are loosely coupled via their affiliations by a normalization
condition

∑
k wi,k = 1 and wi,k > 0. Furthermore, beyond the normalization

condition, we let the models Ak compete explicitly for their affiliations, i.e., a
model Ak which best describes the motion field at location pi receives a signifi-
cant affiliation weight wi,k. In the following section, the implementation of this
competition by means of a recurrent neural network is presented.

2.2 Extraction of Motion Layers with a Recurrent Neural Network

We have seen that the considerations of the previous section assumed the affil-
iation weights to be fixed or determined by external means. To make affiliation
weights compete for their models, we apply a competitive neural network which
consists of a grid-like arrangement of neurons at image positions pi with activi-
ties ai,k for all positions and all models Ak.

The network dynamics are determined by energy function E({ai,k}) of all
neuronal activities {ai,k}. It can be considered as a layered neural network with
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a fixed number of NA layers (indexed here by k = 1, ..., NA), and each layer
consisting of Np positions (indexed here by i = 1, ..., Np, but which for practical
purposes should be arranged in x and y coordinates so as to map with the input
image).

Each neuron receives two sources of input. One, hi,k, is a driving input, which
originates from outside of the network and conveys a kind of “sensory” support
for the neuron ai,k. The second is an input originating from recurrent connections
from within the network itself, i.e., from the other neurons. This input serves to
trigger a competition between the neurons on different layers, and for imposing
a spatial coupling between different positions. The energy function therefore
comprises three terms, one for the driving input (d), one for the layer competition
(l) and one for the spatial coupling term (c):

E({ai,k}) = Ed({ai,k}) + El({ai,k}) + Ec({ai,k}) = −λ1

∑
i

∑
k

hi,kai,k

+λ2
1
2

∑
i

∑
k

∑
k′

W k′
k ai,k′ai,k−λ3

1
2

∑
i

∑
i′

∑
k

Ki′
i ai,kai′,k. (5)

Subsequently, we assume a positivity constraint ai,k > 0 and hi,k > 0. The
energy function should be minimized which is the case e.g., for high activities at
those neurons with a large (positive) driving input hi,k, and which are consistent
with the layer competition and the spatial coupling conditions.

In Eq. (5), we have restricted ourselves to a layer competition term which
acts over all layers (corresponding to the motion models Ak) but exclusively on
neurons at the same position pi. This is parameterized by the kernel W k′

k , which
quantifies the competition between the activities ai,k′ and ai,k. Similarly, we use
a kernel Ki′

i to express the spatial coupling within one layer. This segregation
into inter-layer and spatial coupling is not strictly necessary so that a fully
connected network may also be used, but for the purpose presented here it is
sufficient. Both kernels W k′

k and Ki′
i are chosen to be symmetric and positive.

The structure of the neural network, including layerwise and spatial coupling is
illustrated in Fig. 1.

x

k

y

k

x

y

h i,k a i,k

K
i

i’

W k

k’

Fig. 1. Structure of the recurrent neural network. Each layer of neurons represents the

affiliation to a specific motion model through normalized activities ai,k (right). The

network is initialized by the driving input hi,k (left).
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The dynamics of the activities are motivated by standard gradient descent
considerations. We therefore obtain ai,k ∼ −∇ai,k

E with:

∇ai,k
E = −λ1hi,k + λ2

1
2

∑
k′

W k′
k ai,k′ − λ3

1
2

∑
i′

Ki′
i ai′,k . (6)

For accurate motion model separation, we would like the activities to be inter-
pretable as affiliation probabilities to different motion models. This implies that
the activities should always remain positive and they should always be normal-
ized over the layer index, so that

∑
k ai,k = 1. Neither condition is fulfilled by

dynamics according to Eq. (6).
We impose the first condition, positivity, by using a multiplicative update

rule motivated by exponentiated gradient descent and non-negative matrix fac-
torization (NMF) techniques, similar to [9]. In our case, we separate positive and
negative terms of the gradient from Eq. (6) according to:

∇ai,k
E := ∇ai,k

E+ −∇ai,k
E− (7)

and express the dynamics by the fixpoint condition:

ai,k ← ai,k

∇ai,k
E−

∇ai,k
E+

. (8)

Intuitively, as the dynamics approaches the minimum of the energy function,

∇ai,k
E+ → ∇ai,k

E− such that
∇ai,k

E−

∇ai,k
E+ → 1 and the activities approach a static

state. In addition to the advantage of positivity, the multiplicative update rule
does not depend on a step size as gradient descent does.

The second condition, having normalized activities, is not trivial to impose.
We cannot modify the activities according to Eq. (8) and then simply normalize
the activities at each time step because normalization changes the overall energy
E({ai,k}) in an unpredictable way, leading for example to a potential energy in-
crease (instead of a decrease). Instead, we can either calculate the gradient and
then modify the activities by projecting it onto the “normalized energy sub-
manifold” or we can search for dynamics that have a continuous normalization
condition built-in. The latter is the case for energy E({āi,k}) based on position-
wise (resp. columnwise) normalized activities

āi,k :=
ai,k∑
k′ ai,k′

. (9)

Now, we are searching for the dynamics of the activities that minimizes
E({āi,k}) (instead of E({ai,k})). This can be done by the multiplicative update
rule according to Eq. (8) except that activities are now normalized:

ai,k ← ai,k

∇ai,k
E−({āi,k})

∇ai,k
E+({āi,k}) . (10)

Accordingly, the derivative of the energy function changes to ∇ai,k
E({āi,k}) =∑

k′ ∇āi,k′ E({āi,k})∇ai,k
āi,k′ .
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In summary, if we apply the update rule (Eq. (10)) followed by activity nor-
malization (Eq. (9)), we get an activity dynamics that minimizes the energy
function under the constraints of positive and normalized activities.

In our implementation, we further used a layer competition kernel W k′
k :=

δ(k, k′). The detailed activity dynamics from Eq. (10) is then:

ai,k ← ai,k

λ1hi,k + λ2

∑
k′ ā2

i,k′ + λ3

∑
i′ Ki′

i āi′,k

λ1

∑
k′ hi,k′ āi,k′ + λ2 āi,k + λ3

∑
k′
∑

i′ Ki′
i āi′,k′ āi,k′

(11)

which at each update should be followed by normalization Eq. (9). Therefore,
Eq. (11) is an iterative descent towards the minimization of the energy E({āi,k}).

2.3 Combined Segregation and Affine Model Estimation

In Sec. 2.1 we explained how to estimate a number of affine models to describe
partial motion fields of an image sequence for pre-set model affiliation weights
wi,k. In Sec. 2.2 we introduced a modified recurrent, layered network to let the
affiliation weights compete for their models, triggered by the driving input hi,k.
The weights are encoded in different layers and incorporate through spatial cou-
pling constraints. In this section, we fuse the energy functions of Sec. 2.1 and
Sec. 2.2 by combining the affiliation weights and the driving input. This al-
lows iterative calculations to estimate the motion models and the best affiliation
probabilities for the models.

We assume the affiliation weights to be represented directly by the activities
of the layered network, i.e., wi,k ≡ ai,k. Since by construction the activities ai,k

remain positive and normalized if deployed according to the neuronal dynamics
from Sec. 2.2, they fulfill the conditions postulated for the weights in Sec. 2.1.

Furthermore, we assume the driving input to originate from the consideration
of how well a given model Ak serves to describe a motion flow v at the positions
pi indicated by, and weighted with, the model affiliation probabilities ai,k. Using
the considerations from Sec. 2.1, the driving input should be large when the
measured flow and the model-based flow match, in our case by using:

hi,k ∼ e−
1

2σ2 ||v(p̂i)−Akp̂i||2 . (12)

Finally, the complete energy equation becomes:

E({ai,k}, {Ak}) = −λ1

∑
i

∑
k

e−
1

2σ2 ||v(p̂i)−Akp̂i||2ai,k

+λ2
1
2

∑
i

∑
k

∑
k′

W k′
k ai,k′ai,k − λ3

∑
i

∑
i′

∑
k

Ki′
i ai,kai′,k . (13)

This energy function now has to be solved simultaneously for the models Ak

and the activities ai,k, with the additional constraints of positive and normalized
activities. We then proceed as before with gradient descent, taking

∇ai,k
E({āi,k}, {Ak}) (14)
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and
∇Ak

E({āi,k}, {Ak}) (15)

to update the activities and the models in alternating steps for fixed models
and activities, respectively. As a shortcut, during the model update according
to Eq. (15) we assume that at positions where the layer activity is large, the
corresponding model is already matching well (which is the case close to the
minimum of the energy function). This means that v(p̂i) ≈ Akp̂i and hence we
can approximate

hi,k ≈ 1− 1
2σ2
||v(p̂i)−Akp̂i||2 (16)

so that

E({āi,k}, {Ak}) ≈ −λ1Np + λ1

∑
i

∑
k

1
2σ2
||v(p̂i)− Akp̂i||2 āi,k

+λ2
1
2

∑
i

∑
k

∑
k′

W k′
k āi,k′ āi,k − λ3

∑
i

∑
i′

∑
k

Ki′
i āi,kāi′,k . (17)

Therefore, we get a contribution to the energy function from the driving input
which is identical in form to Eq. (2), and hence can be solved using Eq. (4) and
Eq. (18).

The full algorithm then reads:

1. Initialize the activities {ai,k}
2. At each time step:

(a) Get the motion vector field {vi}
(b) Calculate the models {Ak} according to Eq. (18)
(c) Calculate the driving input {hi,k} according to Eq. (12)
(d) Update the activities {ai,k} according to Eq. (11)
(e) Normalize the activities {ai,k} to 1 according to Eq. (9)
(f) While a desired energy decrease has not been reached, go to 2 (b)

3. Warp the current activities {ai,k} with the calculated affine parameters Ak

as prediction for the next time step
4. Go to step 2

The warping step (3) allows to move the activities along with the motion field,
which is very useful for temporally persistent, coherent motion. In this case, the
affiliation probabilities represented by the activities ai,k are shifted with the
stimulus, which requires less repetitions of steps 2(b)-2(f).

3 Results

Below, results of the proposed algorithm for two image sequences are presented.
The first is the well known MPEG flower garden sequence, available at e.g. [11].
It consists of several planes shifting horizontally due to a moving observer: the
tree in front moves fastest, the flower bed moves at intermediate speed and the
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house moves very slowly. To compute the driving input for the recurrent network,
motion vector fields are estimated by the method described in [8]. The second
video shows a moving hand in front of a moving background available at [10],
including a manually annotated flow field.

For both sequences, the activities of the algorithm have been initialized by
zero-mean Gaussian noise. For relaxation, 30 iterations were used for each motion
vector field, where iterations 1, 15 and 30 were plotted in Figs. 2 and 3. The first
row shows the input images and following rows each represent a motion layer.
The λs to weight the energy terms have been set to λ1 = 0.6, λ2 = 0.3 and λ3

= 0.1 for all sequences. These heuristically evaluated values represent a good
parameterization for a variety of examples.

For the flower garden sequence, the number of models was set to three. It
can be seen from the image sequence that after 15 iterations the system starts
to converge (2nd column) and already after 30 iterations all models can be
clearly separated (3rd column). As described in the previous chapter, activities
are warped here to predict the activities for the next input image (see columns
three to four). This avoids starting from the scratch for every new incoming
image.

For the hand sequence, two models were assumed to be present in the flow
field. Again, after 30 iterations the method is able to clearly separate the two
layers. For this example, the fitted vector fields are plotted into the layers. This
illustrates the close interaction between activities and affine model parameters.

Fig. 2. Layer separation for the MPEG flower garden sequence. The first row shows

the input images and the next three rows represent the layer activities. Each column

of a layer illustrates the activities for the 1st, 15th and 30th iteration step. After the

last iteration of the first input image, the activities are warped to predict activities for

the next input image as initialization.
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Fig. 3. The hand sequence, available at [10]. The first row shows the input images and

the next two rows represent the motion layers. Each column of a layer illustrates the

activities for the 1st, 15th and 30th iteration step. For each layer, the fitted vector field

is plotted as well.

4 Conclusion

We have presented a model for motion-based image segmentation into multiple
affine motion layers. In contrast to many approaches, we employ a strictly pos-
itive dynamic neural network to address the problem of gaining the affiliation
parameters for each layer. This allows us to directly combine conditions for layer
competition and spatial coherence in a single energy function.

The energy optimization for normalized, positive activities provides a com-
putationally efficient way to minimize the total energy. This allows an effective
implementation to make the system employable to practical applications.

The proposed framework makes an important contribution to interpreting and
understanding visual scenes containing rigid moving objects. The capability of
the algorithms to successfully separate motion in real-world images has been
shown for two video sequences.

As the evaluation has shown, the system provides accurate results. This in-
dicates a solid basis for more complex scenarios. Of course, in more challenging
scenarios we have to cope with less reliable measured motion. In such cases, the
regression analysis using the Euclidean norm might not suffice to satisfactorily
fit the motion models. Now, as we have shown the consistency and correct func-
tionality of the implementation, the next step is to prepare the algorithm to be
able to deal with outliers and larger uncertainties in the motion data.
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Appendix: Solution of the Weighted Regression

A∗
k =

⎛⎝a∗
k,13 a∗

k,23

a∗
k,11 a∗

k,21

a∗
k,12 a∗

k,22

⎞⎠ =

⎛⎜⎜⎜⎝
∑
i

wi,k

∑
i

wi,kpi,x

∑
i

wi,kpi,y∑
i

wi,kpi,x

∑
i

wi,kp2
i,x

∑
i

wi,kpi,xpi,y∑
i

wi,kpi,y

∑
i

wi,kpi,xpi,y

∑
i

wi,kp2
i,y

⎞⎟⎟⎟⎠
−1

⎛⎜⎜⎜⎝
∑
i

wi,kvi,x

∑
i

wi,kvi,y∑
i

wi,kpi,xvi,x

∑
i

wi,kpi,xvi,y∑
i

wi,kpi,yvi,x

∑
i

wi,kpi,yvi,y

⎞⎟⎟⎟⎠ (18)

http://people.csail.mit.edu/celiu/motionAnnotation/index.html
http://www.cs.brown.edu/~black/images.html


Selection of Training Data for Locally Recurrent
Neural Network�

Krzysztof Patan and Maciej Patan

Institute of Control and Computation Engineering University of Zielona Góra
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1 Problem Formulation

Artificial neural networks of the dynamic type provide an excellent mathematical
tool for dealing with non-linear dynamic problems. There are many application
domains where the accurate model of a process/plant plays key role. One of
the most stimulating practical examples is Fault Detection and Identification
(FDI) of industrial systems [1]. Preparation of experimental conditions in order
to collect informative measurements can be very expensive and the data acquired
form real-world system may be also very noisy, therefore using all the available
data may lead to significant systematic modelling errors.

Recently, the problem of optimal selection of input sequences in the context
of locally recurrent neural network training has been discussed by the authors in
[2,1], where the problem has been formulated in the form of the so-called mul-
tiplicative algorithm known from the optimum experimental design theory. The
main aim of the research reported here is to propose an alternative approach
for the approximated solution of resulting combinatorial optimization problem
through adaptation of very efficient algorithm of the exchange-type [3]. It as-
signs to each sequence the same frequency of its presentation what dramatically
simplifies the training process. To illustrate the delineated approach, modelling
of a tunnel furnace is presented.

The topology of the neural network considered is analogous to that of the
multi-layered feedforward one and the dynamics are reproduced by the so-called
dynamic neuron models [4,1]. The dynamic neurons replace the standard static
neurons. This network structure does not have any global feedbacks, which com-
plicate the architecture of the network and the training algorithm. Such networks
have an architecture that is somewhere inbetween a feedforward and a globally
recurrent architecture. In this paper a discrete-time dynamic network with n
time varying inputs and m outputs is discussed. The presented structure can be
viewed as a network with a single hidden layer containing v dynamic neurons as
processing elements and an output layer with linear static elements. For struc-
tural details of the network considered, the interested reader is referred to [1].
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2 Optimal Sequence Selection

Let yj = y(uj ; θ) = {y(k; θ)}Lj

k=0 denote the sequence of network responses for
the sequence of inputs uj = {u(k)}Lj

k=0 related to the consecutive time moments
k = 0, . . . , Lj < ∞ and selected from among an a priori given set of input se-
quences U = {u1, . . . , uP }. Here θ represents a p-dimensional unknown network
parameter vector which must be estimated via training process using observa-
tions of the system. The measurements related to selected input sequences are
perturbed with some additive observational noise, which is customary assumed to
be zero-mean, Gaussian and white stochastic process [5]. The optimal sequence
selection problem consist in choosing the best subset of S sequences from among
the set of P given potential ones so as to maximize the determinant of the Fisher
Information Matrix (FIM) associated with the parameters to be estimated and
constituting the lower bound of the covariance matrix for the parameter esti-
mates [2]. Introducing for each possible sequence ui (i = 1, . . . , P ) a variable vi

which takes the value 1 or 0 depending on whether a sequence is chosen or not,
the FIM in the case considered here can be written as [2]

M(v1, . . . , vP ) =
P∑

i=1

vi
1

SLi

Li∑
k=0

(
∂y(u, k; θ)

∂θ

)(
∂y(u, k; θ)

∂θ

)T
∣∣∣∣∣
θ=θ0

(1)

θ0 being a prior estimate to the unknown parameter vector θ which can be
obtained from previous experiments or alternatively some known nominal values
can be used [6,3]. Then, our design problem consist in finding a sequence v =
(v1, . . . , vN ) which maximize the criterion P(v) = log det

(
M(v)

)
s.t. vi = 0 or 1, i = 1, . . . , N and

N∑
i=1

vi = S. (2)

what constitutes a 0–1 integer programming problem. As for its approximate
solution a very efficient exchange algorithm can be easily adopted based on a
notion of so-called restricted design measures (cf. [5,3] for details) originated
from experimental design theory. In the following, a potential of its application
to the approach considered here is illustrated by the example of identification of
MIMO system.

3 Illustrative Example – Tunnel Furnace

Simulation setting. As an experimental testbed a laboratory model of tunnel
furnace has been used. It contains four electric heaters which are controlled
with the continuous input signals and four resistance detectors measuring tem-
perature gradient along the furnace chamber. The control system is based on
the industrial programmable logic controllers PACSystems RX3i produced by
GE Fanuc Intelligent Platforms and supplemented with touchpad operational
panel Quickpanel CE. As the input signals the random step functions were
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selected in order to provide the persistent excitation of the object. The system
to be modelled has three inputs (the fourth input is reserved for the diagnostic
purposes) and four outputs. In order to model the tunnel furnace the MIMO
representation was decomposed into four MISO models. The structure of each
neural network model was selected arbitrarily and had the following structure:
three inputs, three IIR neurons with second order filters and hyperbolic tangent
activation functions, and one linear output neuron. For identifiability purposes
the feedforward filter parameter b0 for each hidden neuron is fixed to the value of
1[2]. Firstly, each network was trained in a classical way. Training set contained
500 samples and the training process was carried out off-line for 100 steps using
the Levenberg-Marquardt (LM) algorithm. At the second stage of the training
process the learning data were split into 60 time sequences, containing 50 con-
secutive samples each. The design purpose was to choose from this set of all
learning patterns the most informative sequences (in the sense of D-optimality).

Results. The modelling quality in the form of Sum of Squared Errors (SSE) cal-
culated for each initially trained neural model using the testing set containing
3000 samples are presented in the first column of Table 1. It is obvious that
modelling results are not satisfactory with exception of the neural network mod-
elling the 4th output of the system. To achieve more reliable models, the training
was continued in three ways: (i) with training sequences selected randomly, (ii)
with training sequences selected using the multiplicative algorithm [2], (iii) with
training sequences selected using the proposed method.

Table 1. Quality of neural models

Model Initial Random Optimal design
model design multiplicative exchange

output 1 34.44 2.83 1.93 1.81

output 2 11.79 3.69 2.6 1.55

output 3 34.78 5.96 0.8658 1.89

output 4 0.37 0.093 0.064 0.065

For each neural model,
the multiplicative algorithm
selected from 9 to 11 se-
quences out of 60 as the most
informative. In turn, the ex-
change algorithm selected 10
sequences out of 60 as the
most informative. In this al-

gorithm, the number of sequences to be selected is the user defined, but 10 se-
quences seems to be a good choice taking into account the number of sequences
selected by the multiplicative method. Analysing the selected sequences one can
say that in most cases the both optimum experimental design procedures selected
the similar input sequences but the main difference is its presentation frequency.
The multiplicative procedure assigns to each sequence the weight showing how
frequently this sequence should be presented [2]. The proposed exchange proce-
dure assigns to each sequence the weight of the same value which means that
each sequence is presented only once during training.

In the case of the multiplicative algorithm, for a selected design, each distinct
sequence is replicated proportionally to its weight in the design with total num-
ber of replications assumed to be P = 20. It is important to say that sequences
are presented to the neural network in a random order. The training procedure
was repeated 100 times and the modelling quality, in the form of SSE calculated
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using 3000 testing samples, for the best achieved models are presented in the
fourth column of Table 1.

In the case of the exchange algorithm, for a selected design, each distinct
sequence is presented only once, but sequences were presented to the neural
network in a random order. The training procedure was repeated 100 times and
the modelling quality, in the form of SSE calculated using 3000 testing samples,
for the best achieved models are presented in the fifth column of Table 1. The
exchange algorithm achieved the comparable results for the first and fourth
system output, better results for the second output, and worser for the third.
However, it should be pointed out that taking into account the idea behind the
methods, the multiplicative procedure should generate slightly better results on
the wider number of problems. On the other hand the exchange algorithm is quite
easy and fast procedure. Analysing the running time of both planning methods
one can conclude that the proposed exchange method works approximately thirty
five time faster than the multiplicative one. Tests were performed by repetition
of an optimal design algorithm 100 times and the running time was averaged. For
the multiplicative algorithm the averaged running time was equal to 0.1855sec.
and for the exchange one 0.0052sec. (PC Core2Duo T7700, 4GB RAM).

In the case of the random design the training sequences were selected randomly
from all available with total number of presentations equal to P = 20. The
training procedure was repeated 100 times and the modelling quality, in the
form of SSE calculated using 3000 testing samples, for the best achieved models
are presented in the third column of Table 1. Using random designs, the better
modelling quality was obtained contrary to the classical training. It is caused
by the fact that such a way of training sequences presentation is something
inbetween the cross-validation and bootstrap techniques. However, comparing
results achieved using random designs with those achieved using optimal designs
one can see that the better results are obtained using the latter, especially for
the case of the third output of the system.
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Abstract. This paper is concerned with the image reconstruction from

projections problem. The presented paper describes a reconstruction ap-

proach based on recurrent neural network. The structure of this net-

work is designed taking into account the probabilistic nature of distortion

obesrved in x-ray computed tomography. The reconstruction process is

performed using in this way constructed neural network solving the op-

timization problem. Computer experiments show that the appropriately

designed recurrent neural network is able to reconstruct an image with

better quality in comparison to the standart analytical reconstruction

algorithm.

Keywords: image reconstruction from projections, neural networks.

1 Introduction

The basic problem arising in X-ray computed tomography (CT) is image recon-
struction from projections, which are obtained using a x-ray scanner of a given
geometry (in this paper, a solution for tomography with parallel beam geometry
is presented). The most popular reconstruction methods are analytical recon-
struction algorithms based on convolution and back-projection operations. The
algebraic reconstruction technique (ART) was in the past extensivelly explored
and are recently applied in practice [5].

In present paper an analytical approach to the reconstruction problem will
be presented based on a recurrent neural network [1], [2]. In our reconstruction
algorithm a recurrent neural network [3] is proposed to design the reconstruction
algorithm.

In the recent investigations on the image reconstruction from projections prob-
lem [5], the 3-Dimensional statistical modeling for image quality improvement
in cone-beam helical computed tomography is strong considered. We take into
considerations this issue in our paper too. The structure of the used in our re-
construction algorithm neural network derives from the error measure imposed
on reconstruction process. This measure strongly depends on statistical distribu-
tion of the registred signals in CT scanner. We propose an adjusted to statistical
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conditions in CT form of error measure and we used it to design recurrent neural
network applied to reconstruct image from projections.

2 Formulation of Statistical Reconstruction Problem

If we examine a sample of material (such as the human body) using x-rays, we
may write

p (s, α) = ln
(

n0

ns,α

)
, (1)

where: n0 is the x-ray intensity emmited by tube (we suppose that n0 is the same
for all projections); ns,α is the x-ray intensity after passing through a distance U.

In literature, it is mostly assumed that N is represented by a Poisson-
distributed random variable what means that we will register by detector a
ns,α number of the x-ray photons with following probability:

P (N = ns,α) =
n∗

s,α
ns,α

ns,α!
e−n∗

s,α , (2)

where n∗
s,α is an expected value of N .

In x-ray computed tomography is often used following log form of probability
described by (2), and after using of the Stirling’s approximation of lnns,α! for
n >> 0, we obtain

LOG1 (ns,α) = ns,α ln
n∗

s,α

ns,α
+ ns,α − n∗

s,α. (3)

The x-ray computed tomography belongs to the transmission tomography group
and therefore we have to take into account definition (1) in relation (3). This
way we can derive following formula for evaluation of error in transmission to-
mography:

LOG2 (p (s, α)) = −1
2
e−p(s,α) (p∗ (s, α)− p (s, α))2 , (4)

where

p∗ (s, α) = ln
(

n0

n∗
s,α

)
(5)

can be interpreted as expected value of the projection measurment.
In the presented method we take into consideration the discrete form of recon-

structed image and we approximate the 2-D convolution using two finite sums of
ranges [1, . . . , I] and [1, . . . , J]. One can formulate relation between the original
and the blurred image as follows

ˆ̃μ (i, j) �

∑
ī

∑
j̄

μ̂ (̄ij̄) · hΔi,Δj , (6)
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where

hΔi,Δj = Δp
α (Δs)

2 ·
∑
ψgf

Î (|i− ī|Δs cosψΔp
α + |j − j̄|Δs sinψΔp

α) . (7)

Equation (6) defines the 2D discrete aproximate reconstruction problem.
We can reformulate equation (4) in following way

LOG3 (pΣ (i, j)) = −1
2

exp (−pΣ (i, j)) (p∗Σ (i, j)− pΣ (i, j))2 . (8)

The loss function L3 from relation (8) takes into account anly one pixel from
reconstructed image. For all I·J pixels above measure could be led to the following
form:

LOG4 = −1
2

I∑
i=1

J∑
j=1

exp
(
−ˆ̃μ (i, j)

)
(eij)

2
, (9)

where:
eij =

∑
ī

∑
j̄

μ̂ (̄i, j̄) · hΔi,Δj − ˆ̃μ (i, j) . (10)

It should be noted that we will assign in further considerations μ̂ (̄i, j̄) to expected
value of attenuation coefficients μ̂∗ (̄i, j̄).

Function (9) will be a basic point for the formulation of the new neural re-
construction method.

3 Experimental Results

The size of the processed image was fixed at 129× 129 pixels, which determines
the number of neurons in each layer of the net. Before the reconstruction process
using a recurrent neural network is started, it is necessary to calculate coefficients
hīj̄ using equation (7).

It is very convenient during the computer simulations to construct a mathe-
matical model of the projected object, a so-called phantom, to obtain fan-beam
projections. We adopted the well-known Shepp-Logan phantom of the head to
our experiments. Such a kind of phantom for parallel beam acquisition was used
in many papers, for example [4]. A view of the mathematical model of a phantom
is depicted in Table 1a.

The reconstructed image has been evaluated by standard error measures:
MSE, where μ (x, y) is the original image of the Shepp-Logan mathematical
phantom, in the presence of noise with Gaussian probability distribution with the
mean p0 and the variance σ2 (in our simulations we set p0 = 0 and σ2 = 0.0025).
Table 1 presents the obtained results of the computer simulations (obtained after
30000 iterations in the case of neural network algorithms).
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Table 1. View of the images (window: C=1.02, W=0.11): a) original image b) recon-

structed image using standard convolution/back-projection method with rebinning and

Shepp-Logan kernel; c) reconstructed image using neural network algorithm described

in this paper

a) b) c)

Image

MSE —– 0,012347 0.011003

4 Conclusions

The performed simulations showed a convergence of the image reconstruction
algorithm based on the statistically tailored recurrent neural networks described
in this work. Described in this paper algorithm overperforms standard recon-
struction methods in the sense of the mean square error measure.
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Abstract. This study regards metaphor generation as a process where

an expression consisting of a target (A) is modified by certain features

to become a metaphorical expression of the form “target (A) like vehicle

(B)”. A computational system consisting of a metaphor generation pro-

cess and a metaphor evaluation process is developed. In the metaphor

generation process, a metaphor generation model [1] outputs candidate

nouns for vehicles from input expressions. In the metaphor evaluation

process, the candidate nouns are evaluated based on the similarities be-

tween the meanings of metaphors including the candidate nouns and the

meaning of the input expression.

1 Introduction

The purpose of this study is to construct a computational system that generates
metaphors of the form “A (target) like B (vehicle)” from the features of the tar-
get based on statistical language analysis and that incorporates an evaluation
mechanism. Some computational models of metaphor generation using a corpus
have been developed [2][3][1]. For instance, Kitada and Hagiwara[2] constructed
a figurative composition support system including a model of metaphor gener-
ation based on an electronic dictionary. In contrast, Abe, Sakamoto and Nak-
agawa’s model[3] is based on the results of statistical language analysis, which
is more objective than existing dictionaries that must be compiled through the
considerable efforts of language professionals. Moreover, Terai and Nakagawa [1]
constructed a model that incorporates the dynamic interaction among features
using the statistical language analysis.

The earlier models based on a corpus can output candidate nouns from the
inputs for the target and its features that are represented by adjectives or verbs.
However, the models do not have a mechanism of evaluating the candidate nouns.
Abe, et al.’s model and Terai and Nakagawa’s model do not evaluate their out-
puts. Kitada and Hagiwara’s model[2] is a support system for metaphorical com-
position. The system outputs candidate nouns for the vehicle and features that
are represented by the metaphor including the candidate noun for the vehicle.
� This research is supported by MEXT’s program “Promotion of Environmental Im-

provement for Independence of Young Researchers” under the Special Coordination
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Users are responsible for the evaluation and selection of the candidate nouns by
referring to the presented features.

Sako, Nakamura and Yoshida[4] constructed a computational model of
metaphor generation based on a psychological experiment. The model does not
represent the dynamic interaction among features and is not able to technically
cover all general metaphors because the model is based on a psychological ex-
periment. However, the model has an advantage over the previous models based
on corpus[2][3][1]. The advantage lies in the fact that it has an evaluation mech-
anism. The model technically consists of a metaphor generation process and a
metaphor evaluation process. In the metaphor generation process, the model
outputs candidate nouns for the vehicle. In the subsequent metaphor evaluation
process, first, each similarity between the target and each candidate noun is
computed. Next, the candidate nouns are evaluated based on these similarities.
From a cognitive point of view, it is important to evaluate the candidates for
the vehicle, in order to generate metaphorical expressions that evoke a com-
mon view between speakers and listeners. However, in the metaphor evaluation
process, their model does not evaluate the meaning represented by the gener-
ated metaphorical expression, but rather it evaluates the figurativeness of the
generated metaphorical expression.

The present study implements an evaluation mechanism within the model
proposed by Terai and Nakagawa[1], which represents the dynamic interaction
among features based on statistical language analysis. Thus, the newly proposed
system has two processes: a metaphor generation process and a metaphor eval-
uation process. In the metaphor generation process, the metaphor generation
model[1] outputs candidate nouns for the vehicles from the inputs for the target
and its features that are represented by adjectives or verbs. In the metaphor
evaluation process, first, the meaning of the metaphor including the candidate
noun as the vehicle and the meaning of the expression consisting of the inputs
for the target and its features are computed. Next, the similarities between the
meaning of the metaphor and the meaning of the input expression are computed
and the candidate nouns are evaluated based on these similarities. Thus, the
metaphor that is most similar to the input expression is output as the most
adequate metaphor.

2 A Computational System of Metaphor Generation

2.1 Knowledge Structure Based on Statistical Language Analysis

The metaphor generation system is constructed using a knowledge structure
based on a statistical language analysis[5], which was also used in previous
studies[3][1]. The statistical language analysis[5] estimates latent classes among
nouns and adjectives (or verbs) as a knowledge structure using four kinds of
frequency data extracted for adjective-noun modifications (Adj) and three kinds
of verb-noun modifications: noun(subject)-verb (S-V), verb-noun(modification)
(V-M), and verb-noun(object) (V-O). These frequency data are extracted from
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the Japanese newspaper for the period 1993-2002. The statistical method as-
sumes that P (nr

i , a
r
j) (r refers to the kind of data set) can be computed using

the following formula(1):

P (nr
i , a

r
j) =

∑
k

P (nr
i |cr

k)P (ar
j |cr

k)P (cr
k), (1)

where cr
k indicates the kth latent class assumed within this method for the r

type of modification data. The parameters (P (nr
i |cr

k), P (ar
j |cr

k), and P (cr
k)) are

estimated using the EM algorithm. The statistical language analysis is applied to
each set of co-occurrence data fixing the number of latent classes at 200. The con-
ditional probabilities, P (cr

k|nr
i ) and P (cr

k|ar
j), are computed using Bayes’ theory.

The 18,142 noun types (n∗
h) that are common to all four types of modification

data and the features are represented as vectors using the following formula,

Vp(n∗
h) = P (cr

k|n∗
h), (2)

Vp(ar
j) =

{
P (cr

k|ar
j)

0 else,
(3)

where Vp(n∗
h) indicates the pth component of the vector that corresponds to the

noun n∗
h. p refers to the successive number of latent classes extracted from the

four data sets. When 1≤ p ≤200, r indicates the “Adj” modification and k = p,
when 201≤ p ≤400, r indicates the “S-V” modification and k = p − 200, when
401≤ p ≤600, r indicates the “V-M” modification and k = p − 400, and when
600≤ p ≤800, r indicates the “V-O” modification and k = p− 600.

2.2 The Metaphor Generation Process

The metaphor generation process is realized using the metaphor generation
model[1]. The model outputs candidate nouns for the vehicles from inputs con-
sisting of the target and its features that are represented by adjectives or verbs.
The model consists of three layers: an input layer, a hidden layer, and an output
layer. The input layer consists of feature nodes, which each indicating either an
adjective or a verb. Each feature node relating to the target has mutual and
symmetric connections with the other feature nodes relating to the target. The
mutual connections represent the dynamic interaction among features. The hid-
den layer consists of nodes which indicate the latent classes estimated using the
statistical language analysis. The output layer consists of noun nodes. Sets of
input expressions, such as “ar1

j1
- n∗

h”,“ar2
j2

- n∗
h”, are input into the model. The

model outputs each noun’s adequacy for the vehicle, which represents a set of
input expressions, such as “n∗

h (target) like B (vehicle)”.

2.3 The Metaphor Evaluation Process

In the metaphor evaluation process, the meanings of the generated metaphorical
expressions and the meaning of the expression consist of the inputs for the target
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and its features are computed, and the candidate nouns are evaluated based on
the similarities between the meaning of the metaphor and the meaning of the in-
put expression. These are estimated based on Kintsch’s predication algorithm[6].
This algorithm can be used to estimate the meaning vectors of a metaphorical
expression and a literal expression using different parameter values. Thus, in
this process, the meaning vector of a metaphor including candidate noun and
the meaning vector of a set of input literal expressions are computed. Then, the
metaphor including the candidate nouns are evaluated based on the similarities
between these vectors.

Estimating the Meaning of the Metaphor Expression. The meaning of
the metaphor consisting of the target and the candidate vehicle is estimated using
the meaning vectors. This algorithm represents the class inclusion theory which
explains metaphor understanding in terms of class-inclusion statements, where
a target is regarded as a member of an ad hoc category of which the vehicle is
a prototypical member[7]. For example, in comprehending the metaphor “Hope
like glim”, the target “hope” can be regarded as belonging to a “transient”
category that could be typically represented by a vehicle such as “glim”. First,
the semantic neighborhood (N(nh)) of a vehicle of size Snm is computed on
the basis of the similarity to the vehicle, which is represented by the cosine of
the angles between the meaning vectors. Next, Sm nouns are selected from the
semantic neighborhood (N(nh)) of the vehicle on the basis of their similarity to
the target. Finally, a vector (V (M)) is computed as the centroid of the meaning
vectors for the target, the vehicle and the selected Sm nouns. The computed
vector (V (M)) indicates the assigned meaning of the target as a member of the
ad-hoc category of the vehicle in the metaphor M . The category consisting of
the vehicle and the selected Sm nouns is regarded as an ad hoc category of which
the vehicle is a prototypical member according to class inclusion theory[7].

Estimating the Meaning of the Input Expression. The meaning of the
expression consisting of the inputs for the target and its features, which is called
as the input expression, is also estimated. First, the semantic neighborhood
(N(aru

ju
)) of a feature of size Snl is computed on the basis of the similarity to

the feature, which is represented by the cosine of the angles between feature
vectors. Next, Sl features are selected from the semantic neighborhood (N(aru

ju
))

of the feature on the basis of their similarity to the target. Finally, a vector
(V (L)) is computed as the centroid of the meaning vectors for the target, the
vehicle and the selected Sl features. The computed vector (V (L)) indicates the
meaning of the target, which is modified using the input features as the lateral
expression L.

2.4 Result of the Simulation

In this study1, the evaluation model simulates using the parameters Snm = 50,
Sm = 3, Snl = 10, Sl = 3. It is arranged that the value of Snm is higher than
1 The metaphor generation model[1] simulates using the parameters α = ln(10), β =

0.1, γ = 10.
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Table 1. The results of the metaphor evaluation process for the results of the metaphor

generation model with interaction and for the model without interaction (similar-

ity:ranking in the generation process)

“transient hope”, “hope disappear”

the model with an interaction the model without an interaction

1 pin money (0.6549:10) delight (0.5417:8)

2 light bulb (0.6344:9) conviction (0.5123:5)

3 glim (0.5963:4) interest (0.6552:2)

4 neon (0.5914:6) question (0.4889:4)

5 illuminations (0.5833:5) motivation (0.4781:6)

6 lamp (0.5627:3) requirement (0.4455:9)

7 celebratory drink (0.5378:2) disposition (0.5645:10)

8 candle (0.5144:8) request (0.6538:3)

9 afterglow (0.3934:7) afterglow (0.5928:7)

10 red light (0.3532:1) red light (0.5646:1)

that of Snl, because it was been reported that the simulation of metaphorical
expressions requires a larger semantic neighborhood than literal expressions[6].
The similarity between the metaphorical and input expressions is represented
by the cosine of the angles between the vectors of the metaphorical expression
(V (M)) and of the input expression (V (L)). Each similarity between the input
target and each candidate noun is computed. The higher the similarity of the
candidate noun is, the more adequate the candidate noun is for the vehicle. The
results are shown in Table1.

A psychological experiment was conducted in order to verify these results. In
the psychological experiment, 14 graduate students were presented with the in-
put set of “transient hope” and “hope disappear”. They were asked to answer the
vehicle in the metaphor “hope like B” using a noun. The three nouns responded
as the vehicle by more than two people were “candle” (by 4 people), “glim” (by
3 people) and “bubble” (by 3 people). The metaphor generation model with in-
teraction estimates “candle” and “glim” among the top 10 candidate nouns but
the model without interaction does not. “Glim” is the fourth candidate noun
for the metaphor generation process is emphasized as the third candidate noun
in the metaphor evaluation process. It can be considered that “red light” is not
so transient and so is less adequate for the vehicle than the other candidate
nouns. However, it is estimated as the most adequate candidate in the metaphor
generation process. In the metaphor evaluation process, it is estimated as the
tenth candidate. This result indicates the necessity of the metaphor evaluation
process. Furthermore, the similarities of the candidates from the model without
interaction are less than those from the model with interaction. The results of the
evaluation process indicate that the metaphor generation model with interaction
performs better simulations than the model without interaction.
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3 Discussion

In this study, a computational system of metaphor generation incorporating an
evaluation mechanism was constructed based on data obtained through a sta-
tistical language analysis[5] using a previous model[1]. Although a noun, which
does not represent the image of the input feature, can be estimated as the most
adequate candidate within the metaphor generation process, the noun may be
estimated as a less than adequate candidate within the evaluation process. In
addition, the results of the psychological experiment support the result of the
system using the metaphor generation model with interaction[1]. However, the
psychological experiment was conducted with only one input expression. In or-
der to examine the more general validity of the system, an experiment should
be conducted with a wider range of expression sets. And, it needs to examine an
effect of the parameter values on results. In addition, although the participants
did not respond with “pin money” for the vehicle, the system output the original
metaphor “hope like pin money” as the most adequate metaphor for “transient
hope” and “hope disappears”. That suggests that the system has the potential
to generate more original metaphors than humans.
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Abstract We shed light on the key ingredients of reservoir computing

and analyze the contribution of the network dynamics to the spatial en-

coding of inputs. Therefore, we introduce attractor-based reservoir net-

works for processing of static patterns and compare their performance

and encoding capabilities with a related feedforward approach. We show

that the network dynamics improve the nonlinear encoding of inputs in

the reservoir state which can increase the task-specific performance.

Keywords: reservoir computing, extreme learning machine, static pat-

tern recognition.

1 Introduction

Reservoir computing (RC), a well-

Fig. 1. Key ingredients of RC

established paradigm to train re-
current neural networks, is based
on the idea to restrict learning to
a perceptron-like read-out layer,
while the hidden reservoir network
is initialized with random connec-
tion strengths and remains fixed.
The latter can be understood as
a “random, temporal and nonlin-
ear kernel” [1] providing a suit-
able mixture of both spatial and
temporal encoding of the input data in the network’s hidden state space. This
mixture is based upon three key ingredients illustrated in Fig. 1: (i) the projec-
tion into a high dimensional state space, (ii) the nonlinearity of the approach and
(iii) the recurrent connections in the reservoir. On the one hand, the advantages
of a nonlinear projection into a high dimensional space are beyond controversy:
so-called kernel expansions rely on the concept of a nonlinear transformation of
the original data into a high dimensional feature space and the subsequent use of
a simple, mostly linear, model. On the other hand, the recurrent connections im-
plement a short-term memory by means of transient network states. Due to this
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short-term memory, reservoir networks are typically utilized for temporal pat-
tern processing such as time-series prediction, classification and generation [2]. In
principle, short term memory can also be implemented in a simpler fashion, e.g.
by an explicit delay-line. But we point out that the combination of spatial and
temporal encoding makes the reservoir approach powerful and can explain the
impressive performance on various tasks [3, 4]. It remains nevertheless unclear
how the network dynamics influence the spatial encoding of inputs.

Our hypothesis is that the dynamics of the reservoir network enhances the
spatial encoding of static inputs by means of a more nonlinear representation,
which consequently improves the task-specific performance. Moreover, we expect
an improved performance when applying larger reservoirs, i.e. when using an in-
creased dimensionality of the nonlinear feature expansion. We systematically
test the contribution of the network dynamics to the spatial encoding indepen-
dently from its temporal effects by using attractor-based computation and by
considering purely static input patterns, A statistical analysis of the distribu-
tion of the network’s attractor states allows to access the qualitative difference of
the encoding caused by the network’s recurrence indepently of the task-specific
performance.

2 Attractor-Based Computation with Reservoir Networks

We consider the three-layered network architecture depicted in Fig. 2, which
comprises a recurrent hidden layer (reservoir) with a large set of nonlinear neu-
rons. The input, reservoir and output neurons are denoted by x ∈ �D, h ∈ �N

and y ∈ �C , respectively. The reservoir state is governed by discrete dynamics

h(t + 1) = f
(
Winp x(t) + Wres h(t)

)
, (1)

where the activation functions fi are applied componentwise. The reservoir neu-
rons have sigmoidal activation functions such as fi(x) = tanh(x), whereas the
output layer consists of linear neurons, i.e. y(t) = Wout h(t).

Learning in reservoir networks is restricted to the read-out weights Wout. All
other weights are randomly initialized and remain fixed. In order to infer a de-
sired input-to-output mapping from a set of training examples (xT

k ,yT
k )k=1,...,K ,

the read-out weights Wout are adapted such that the mean square error is
minimized. In this paper, we use ridge regression: For all inputs x1, . . . ,xK

we collect the corresponding reservoir states hk as well as the desired output
targets yk column-wise in a reservoir state matrix H ∈ �N×K and a tar-
get matrix Y ∈ �C×K , respectively. The optimal read-out weights are de-
termined by the least squares solution with a regularization factor α ≥ 0:
Wout = YHT

(
HHT + α1

)−1.
The described network architecture in combination with the offline training by

regression is often referred to as echo state network (ESN) [2]. The potential of
the ESN approach depends on the quality of the input encoding in the reservoir.
To adress that issue, Jaeger proposed to use weights drawn from a uniform
distribution in [−a, a], where often a sparsely connected reservoir is preferred.
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Fig. 2. Reservoir network

Algorithm1. Convergence algorithm

Require: get external input xk

1: while Δh > δ and t < tmax do
2: apply external input x(t) = xk

3: execute network iteration (1)

4: compute state change

Δh = ||h(t) − h(t − 1)||2
5: t= t+1

6: end while

In addtion, the reservoir weight matrix Wres is scaled to have a certain spectral
radius λmax. There are two basic parameters involved in this procedure: the
reservoir’s weight connectivity or density 0 ≤ ρ ≤ 1 and the spectral radius
λmax, which is the largest absolute eigenvalue of Wres.

In this paper, an attractor-based variant of the echo state approach is used,
i.e. we map the inputs xk to the reservoir’s related attractor states h̄k: The
input neurons are clamped to the input pattern xk until the network state
change Δh = ||h(t + 1) − h(t)||2 approaches zero. This procedure is condensed
in Alg. 1. As a prerequisite it must hold that the network always converges to a
fix point attractor, which is related to a scaling of the reservoir’s weights such
that λmax < 1. The resulting attractor states H̄ are used for training.

Note that an ESN with a spectral radius λmax =0 or with zero reservoir con-
nectivity (ρ=0) has no recurrent connections at all. Then, the ESN degenerates
to a feedforward network with randomly initialized weights. In [5], this special
case of RC has been called extreme learning machine (ELM). As our intention
is to investigate the role of the recurrent reservoir connections, this feedforward
approach obviously is the non-recurrent baseline of our recurrent model and we
present all results in comparison to this non-dynamic model.

3 Key Ingredients of Reservoir Computing

We investigate the influence of the key ingredients of RC on the network per-
formance for several data sets (Tab. 1) in a static pattern recognition scenario.
Except for Wine, all data sets are not linearly seperable and constitute nontriv-
ial classification tasks. The introduced models are used for classification of each
data set. We represent class labels c as a 1-of-C coding in the target vector y
such that yc =1 and yi =−1 ∀i �=c. For classification of a specific input pattern,
we apply Alg. 1 and then determine the estimated class label ĉ from the network
output y according to ĉ = arg maxi yi. All results are obtained by either parti-
tioning the data into several cross-validation sets or using an existing partition
of the data into training and test set and are averaged over 100 different network
initializations. We use normalized data in the range [−1, 1].
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Role of Reservoir Size and Nonlinearity
Fig. 3 shows the impact of the reser-
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Fig. 3. Classification performance depend-

ing on the reservoir size N

voir size to the network’s recognition
rate for a fully connected reservoir,
i.e. ρ = 1.0, with λmax = 0.9 and α
as in Tab. 1. The number of correctly
classified samples increases strongly
with the number of hidden neurons.
On the one hand, this result shows
that the projection of the input into a
high-dimensional network state space
is crucial for the reservoir approach:
The performance of very small reser-
voir networks degrates to the perfor-
mance of a linear model (LM). We
observe also a saturation of the per-
formance for large reservoir sizes. It
seems that the random projection can
not improve the separability of inputs in the network state space anymore. On
the other hand, note that the nonlinear activation functions of the reservoir neu-
rons are crucial as well: Consider an ELM with linear activation functions, then
the inputs are only transformed linearly in a high dimensional representation.
Hence, the read-out layer can only read from a linear transformation of the input
and the classification performance is thus not affected by the dimensionality of
that representation. Consequently, the combination of a random expansion and
the non-linear activation functions is essential.

Role of Reservoir Dynamics
In this section, we focus on the role
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Fig. 4. Recognition rate for the Iris data

set depending on λmax and ρ

of reservoir dynamics and restrict our
studies on the Iris data set. We vary
both the spectral radius λmax of the
reservoir matrix Wres and the den-
sity ρ for a fixed reservoir size of
N = 50. Note again that we obtain
an ELM for λmax = 0 or ρ = 0.
Fig. 4 reveals that for recurrent net-
works the recognition rate increases
significantly with the spectral radius
λmax and surpasses the performance
of the non-recurrent networks with
the same parameter configuration. In-
terestingly enough, this is not true for the weight density in the reservoir: adding
more than 10% connections inbetween the hidden neurons has only marginal im-
pact on the classification performance, i.e. two many connections neither improve
nor detoriate the performance. Note that there is a trade-off in an increased
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number of iterations the network needs for settling in a stable state, which cor-
relates with the spectral radius λmax.

4 On the Distribution of Attractor States

We give a possible explanation for the
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Fig. 5. Normalized cumulative energy con-

tent g(D) of the first D PCs

improved performance caused by the
recurrent connections. Our hypothe-
sis is that these connections spread
out the network’s attractors to a
spatially broader distribution than a
non-recurrent approach is capable of,
which results in an increasingly non-
linear hidden representation of the
network’s inputs. Because we per-
form linear readout, it is reasonable
to analyse the encoding H̄ by linear
methods, namely PCA. Given the di-
mension D of the data, we expect the
hidden representation to encode the input information with a significantly higher
number of relevant principle components (PCs). Therefore, we calculate the shift
of information or energy content from the first D PCs to the remaining N−D
PCs. Let λ1 ≥ . . . ≥ λN ≥ 0 be the eigenvalues of the covariance matrix Cov(H̄).
We calculate the normalized cumulative energy content of the first D PCs by
g(D) = (

∑D
i=1 λi)/(

∑N
i=1 λi), which measures the relevance of the first D PCs.

The case of g(D) < 1 implicates a shift of the input information to additional
PCs, because the encoded data then spans a space with more than D latent
dimensions. If g(D) = 1, no information content shift occurs, which is true for
any linear transformation of data.

Fig. 5 reveals that both approaches are able to encode the input data with
more than D latent dimensions. In the case of an ELM, the information content
shift is solely caused by its nonlinear activation functions. For recurrent networks,
we observe the forecasted effect: The cumulative energy content g(D) of the first
D PCs of the attractor distribution is significantly lower for reservoir networks
than for ELMs. That is, a reservoir network redistributes more of the existing
information in the input data onto the remaining N −D PCs than the feedword
approach. This effect, cuased by the recurrent connections, shows the enhanced
spatial encoding of inputs in reservoir networks and can explain the improved
performance (cf. Fig. 4).

We remark that the introduced measure g(D) does not strictly correlate with
the task-specific performance. Although the ESN reassigns a greater amount of
information content on the last N −D PCs than the ELM (cf. Fig. 5), this does
not improve the generalization performance for every data set (cf. Tab. 1).
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Table 1. Mean classification rates with standard deviations

data set classification rate [%] network
properties (L-fold cross-validation) properties

D C K L LM ELM ESN N a α

Iris [6] 4 3 150 10 83.3 88.9 ± 0.7 92.7 ± 2.1 50 0.5 0.001
Ecoli [6] 7 8 336 8 84.2 86.6 ± 0.5 86.4 ± 0.6 50 0.5 0.001
Olive [7] 8 9 572 11 82.7 95.3 ± 0.5 95.0 ± 0.7 50 0.5 0.001
Wine [6] 13 3 178 2 97.7 97.6 ± 0.7 96.9 ± 1.0 50 0.5 0.1

Optdigits [6] 64 10 5620 - 92.0 95.9 ± 0.4 95.8 ± 0.4 200 0.1 0.001
Statlog Shuttle [6] 9 7 58000 - 89.1 98.1 ± 0.2 99.2 ± 0.2 100 0.5 0.001

5 Conclusion

We present an attractor-based implementation of the reservoir network approach
for processing of static patterns. In order to investigate the effect of recurrence
on the spatial input encoding, we systematically vary the respective network pa-
rameters and compare the recurrent reservoir approach to a related feedforward
network. The reservoir dynamics result in an increased nonlinear representation
of the input patterns in the network’s attractor states which can be advanta-
geous for the separability of patterns in terms of static pattern recognition. In
temporal tasks that also require a suitable spatial encoding, the mixed spatio-
temporal representation of inputs is crucial for the functioning of the reservoir
approach. Incorporating the results reported in [3, 4], we conclude that the spa-
tial representation is not detoriated by the temporal component.
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Abstract. In this paper, we propose a novel approach for action classifi-

cation in soccer videos using a recurrent neural network scheme. Thereby,

we extract from each video action at each timestep a set of features

which describe both the visual content (by the mean of a BoW ap-

proach) and the dominant motion (with a key point based approach).

A Long Short-Term Memory-based Recurrent Neural Network is then

trained to classify each video sequence considering the temporal evo-

lution of the features for each timestep. Experimental results on the

MICC-Soccer-Actions-4 database show that the proposed approach out-

performs classification methods of related works (with a classification

rate of 77 %), and that the combination of the two features (BoW and

dominant motion) leads to a classification rate of 92 %.

1 Introduction

Automatic video indexing becomes one of the major challenges in the field of in-
formation systems. Thus, more and more works focus on automatic extraction of
high-level informations from videos to describe their semantic content. “Event-
based” and “Action-based” classification methods are therefore progressively re-
placing low-level-based ones, in many applications (closed-circuit television, TV
programs structuration...). Especially, sport videos are particularly interesting
contents due to their high commercial potential. Several works have dealt with
this problem, and can be separated into two main categories. The first one [1]
tends to classify sports actions with semantically low-level labels, without us-
ing a priori information about the studied sport. On the opposite, the second
one [2] extracts high-level semantic information from the sport actions and are
domain knowledge-based. Recently, Ballan et al. [3] have proposed a generic
approach which is able to semantically classify soccer actions without using a
priori information, by relying only on visual content analysis. This approach was
experimented on the MICC-Soccer-Actions-4 database [3], which contains four
action classes : Shot-on-goal, Placed-kick, Throw-in and Goal-kick. Ballan et al.
obtained classification rates of 52, 75 % with a k-NN classifier and 73, 25 % with
a SVM-based one.
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However, most existing methods make little use of the temporal information
of the video sequence. In particular, the evolution of shape over time is not
treated. In this paper, we advocate the use of learning machines adapted for
sequential data. In this context, Long Short-Term Memory Recurrent Neural
Networks [4] are a particular type of recurrent neural networks that are well-
suited for sequence processing due to their ability to consider the context.

In this paper, we propose an LSTM-RNN scheme to classify soccer actions
of the MICC-Soccer-Actions-4 database [3] using both visual and motion con-
tents. The next section describes the outline of the proposed approach. Then,
we present in Sect. 3 the visual and dominant motion features that will be used
to fed the classifier. LSTM-RNN fundamentals and used architecture will be
outlined in Sect. 4, focusing on their abilities to classify sequences. Finally, ex-
perimental results, carried out on the MICC-Soccer-Actions-4 database, will be
presented in Sect. 5.

2 Proposed Approach

The outline of the proposed approach is shown in Fig. 1. The aim is to classify
soccer video sequences that are represented by a sequence of descriptors (one
descriptor per image) corresponding to a set of features. The choice of those fea-
tures is crucial for the successful classification (see Sect. 3). A Recurrent Neural
Network (RNN) containing Long Short-Term Memory [4] (LSTM) neurons is
trained to categorize each action type based on the temporal evolution of the
descriptors. To that aim, descriptors are presented to the neural network (one
descriptor per timestep) which makes a final decision based on the accumulation
of several individual decisions (see Sect. 4).

Fig. 1. Proposed classification scheme

3 Feature Extraction for Action Representation

We have chosen to describe the content of the video sequences by considering
both their visual aspect, characterizing the objects appearance, and the motion
present in the scene.
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3.1 Visual Content Representation: A Bag of Words Approach

Bag of words (BoW) are widely used models in image processing, and particularly
in object recognition. The main idea is to represent an image by means of an
histogram of visual words, corresponding each to a set of local features extracted
from the image. In most cases, these features are SIFT descriptors [5].

In the proposed work, the appearance part of our descriptor is inspired by
the work of Ballan et al. [3] where a video is represented by means of a sequence
of visual BoW (one BoW per frame). To that aim, we generate a codebook of
30 words (empirical choice) resulting of a K-means classification applied to a
large number of images extracted from the database. Then, for each video we
associate a sequence of descriptors (one per image) having the same size as the
codebook and containing values that encode the occurrence frequency of words
present in the sequence. Such a representation allows us to take into account
the visual content relative to the scene and also to modelize transitions between
images by means of the appearance and the disappearance of words.

3.2 A SIFT-Based Approach for Dominant Motion Estimation

In addition to the appearance descriptor described above, we propose to intro-
duce another feature, that we called dominant motion, to describe the movement
represented by the largest number of elements of the scene. Obviously, for a sport
video with a global view of the playing field (which is the case of all actions of
the database MICC-Soccer-Actions-4 ), the dominant motion is assumed to be
the one related to the camera. We made the assumption that the camera’s move-
ment is affine, which is generally true. The idea is then to estimate the affine
transformation T between an image It at time t and an image It+1 at time t+1.

To that aim, we tend to match SIFT points extracted from each two successive
frames of the video. A Kd-tree algorithm is used to accelerate the nearest neigh-
bor search process. We reject the interest points corresponding to the TV logos
which tend to impose a null motion. Thus, we perform a pre-processing step,
inspired by the work in [6], which consists in detecting and blurring these logos.
Once SIFT matches are computed, we robustly estimate the affine transforma-
tion while ignoring outliers (e.g. moving players) using the RANSAC algorithm
[7], aiming at only preserving matches corresponding to the dominant motion.

4 Action Classification Using LSTM-RNN

Once the descriptors presented in the previous section are calculated, image by
image, for each feature (bag of visual words and dominant motion), the next step
consists in using them to classify the actions of the video sequences. We propose
to use a particular recurrent neural network classifier, namely Long Short-Term
Memory, in order to take benefits of its ability to use the temporal evolution of
the descriptors for classification.
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4.1 Long Short-Term Memory Recurrent Neural Networks

Recurrent Neural Networks (RNN) are a particular category of Artificial Neural
Networks which can remember previous inputs and use them to influence the
network output. This can be done by the use of recurrent connections in the
hidden layers. Nevertheless, even if they are able to learn tasks which involve
short time lags between inputs and corresponding teacher signals, this short-term
memory becomes insufficient when dealing with long sequence processing.

The Long Short-Term Memory (LSTM) recurrent architecture was introduced
by Schmidhuber et al. [4] in order to provide remedies for the RNN’s problem
of exponential error decay. This is achieved by adding a special node, namely
constant error carousel (CEC), that allows for constant error signal propagation
through time. The second key idea is the use of multiplicative gates to control
the access to the CEC.

LSTM have been tested in many applications (CSL learning, music improvi-
sation, phoneme classification...) and generally outperformed existant methods.
LSTM have also been used in [8] to structure tennis videos by modelizing tran-
sitions between shots, but without analysing their content. In this paper we
propose to give as input to the LSTM the extracted features presented in sec-
tion 3 at each timestep, and train the LSTM network to classify the sport’s video
sequences.

4.2 Network Architecture and Training

In our experiments, we used a recurrent neural network architecture with one
hidden layer of LSTM-cells. The input layer has a variable size depending on
which features are set as input (see Sect. 5). For the output layer, we used the
softmax activation function, which is standard for 1 out of K classification tasks
[9]. The softmax function ensures that the network outputs are all between 0 and
1, and that their sum is equal to 1 at every timestep. These outputs can then be
interpreted as the posterior probabilities of the actions at a given timestep, given
all the inputs up to the current one. Finally, the hidden layer contains several one-
cell unidirectional LSTM neurons fully inter-connected and fully connected to
the rest of the network. We have tested several configuration of networks, varying
the number of hidden LSTM, and verified that a large number of memory blocks
leads to overfitting, and the opposite leads to divergence. Thus, a configuration
of 150 LSTM was found to be a good compromise for this classification task. This
architecture corresponds to about 105 trainable weights depending on the input
size. The network was trained with Online-BPTT with learning rate = 10−4

and momentum = 0.9.

5 Experimental Results

All the experiments presented in this paper were carried out on the MICC-
Soccer-Actions-4 dataset [3] with a 3-fold cross validation scheme. In order to
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Table 1. Summary of obtained results

Classification rate

BoW + k-NN [3] 52,75 %

BoW + SVM [3] 73,25 %

BoW + LSTM-RNN 76 %

Dominant motion + LSTM-RNN 77 %

BoW + dominant motion + LSTM-RNN 92 %

study the neural classifier’s efficiency and to compare to those used in [3], we
have learnt such a network taking as input only the BoW descriptors. The code-
book described in subsection 3.1 was used to calculate visual word frequency
histograms, retaining 30 entries that we use as input of the network. Classifica-
tion results are reported in table 1, and compared to those presented in [3]. We
also present the confusion matrix in Fig. 2-(a).

Table 1 shows that the neural classification scheme largely outperforms the
k-NN-based approach and gives better results than the SVM-based one. We
have then tested the contribution of the dominant motion descriptors using a
network with only 6 inputs (see subsection 3.2). The confusion matrix relative to
the classification results is shown in Fig. 2-(b). Results are comparable to those
obtained by the BoW-based approach - this is a surprisingly good result given
that only camera motion information has been used without any appearance
information or local (player) motion.

Furthermore, Fig. 2-(a,b) shows that informations provided by the visual ap-
pearance and the dominant motion are complementary. Indeed, the dominant
motion-based approach is particularly suited for the classes throw-in and shot-
on-goal because of the representative camera motion existing in these actions
(non-moving camera for the first and zoom on the goal-keeper at the end of
the action for the last). On the other hand, the classes goal-kick and placed-kick
present highly similar camera movements but distinct characteristic visual words
apparition’s order.

Fig. 2. Confusion matrices : (a) - BoW-based approach (b) - Dominant motion-based

approach (c) - Combination of the BoW and the dominant motion
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Therefore, we propose to combine both informations and train a network with
an input layer’s size of 36 (which corresponds to the concatenation of the dom-
inant motion and the BoW). This network enables us to reach a classification
rate of 92 % (see table 1 and Fig. 2-(c)), which outperforms the results corre-
sponding to the use of only one type of features, and is, to our knowledge, the
best published result on the MICC-Soccer-Actions-4 dataset.

6 Conclusion and Future Work

In this paper, we have presented a recurrent neural scheme for soccer actions clas-
sification by considering both visual and dominant motion aspects. Experimen-
tal results (see table 1) on the MICC-Soccer-Actions-4 database show that the
LSTM-RNN proposed approach is superior, for this application, to SVM-based
and k-NN-based ones. Furthermore, we have demonstrated that camera motion
descriptors contain as many discriminant information as visual ones (reaching a
classification rate of 77 %). We have also shown that the combination of the two
information leads to a classification rate of 92 %, which is the best published re-
sult on this dataset. More generally, we have demonstrated that LSTM-RNN are
able to learn to classify variable length video sequences taking as input features
of different nature automatically extracted from the video.

As future work, we plan to verify the genericity of the approach by testing it
on other, more-complex video databases. We also plan to jointly learn feature
extractors and classification network using a Convolutional Neural Network-
LSTM approach.
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Abstract. In this study a combination of both the Hebbian-based and reinforce-
ment learning rule is presented. The concept permits the Hebbian rules to update
the values of the synaptic parameters using both the value and the sign supplied
by a reward value at any time instant. The latter is calculated as the distance be-
tween the output of the network and a reference signal. The network is a spiking
neural network with spike-timing-dependent synapses. It is tested to learn the
XOR computations on a temporally-coded basis. Results show that the network
is able to capture the required dynamics and that the proposed framework can
reveal indeed an integrated version of both Hebbian and reinforcement learning.
This supports adopting the introduced approach for intuitive signal processing
and computations.

Keywords: Hebbian learning, reinforcement learning, spike-time dependent
synapses.

1 Introduction

Learning in neural networks can be achieved by two main different strategies, namely
supervised and unsupervised training [1]. Unsupervised learning is guided by correla-
tions in the inputs to the network. This training strategy has been widely applied to
models of, for example, associative memory and self-organizing maps [1]. From a neu-
robiological point of view, some methods for unsupervised learning have been relatively
successful in that they offer an efficient learning strategy and incorporate biologically
plausible principles for synaptic modification [2]. Donald Hebb in 1949 [3] postulated
that the modifications in the synaptic transmission efficacy are driven by the correlations
in the firing activity of the pre- and postsynaptic neurons as described in [2]. One of the
attractive models in this regard is the Bienenstock-Cooper-Munro (BCM) model for the
development of orientation selective cells in the visual system. The Hebbian learning
rule of this model has received considerable support from experiments on long-term
potentiation (LTP) and long-term depression (LTD) [4]. Many studies investigated in
more details how the hebbian-based learning algorithms can be applied to empower
the performance of the artificial neural networks and especially of those realizing the
spike-timing dependent activity, see [5,6] for recent reviews. For example, a correla-
tion based hebbian learning rule for spiking neurons was presented in [7] revealing
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that correlations between input and output discharges tend to stabilize. In [8] a biolog-
ically plausible learning algorithm for multilayer neural networks was studied and it
was shown that it enabled the learning of exclusive-Or (XOR) problem without back-
propagation with significant robustness against noise. In [9] it was shown that applying
both Hebbian and anti-Hebbian rules in a recurrent network that realizes of spike-time
dependent plasticity (STDP) leads to approximate convergence of the synaptic weights.
These studies were theoretically focused on the computational properties of Hebbian
STDP, thus they have illustrated its function in neural homeostasis, supervised and un-
supervised learning.

Notably, the theoretical results described in [10] reported that under certain condi-
tions, Hebbian STDP minimizes the postsynaptic neurons variability to a given presy-
naptic input and anti-Hebbian STDP maximizes this variability. This kind of influence
of Hebbian/anti-Hebbian STDP on variability has also been observed at a network level
in simulations as in [4] which were done to probe the experimentally observed neural
dynamics while learning. By having Hebbian STDP when the network receives positive
reward, the variability of the output is reduced, and the network could work the partic-
ular configuration that led to positive reward. By having anti-Hebbian STDP when the
network receives negative reward, the variability of the networks behavior is increased,
and it could thus test various behaviors until it finds one that leads to positive reward.
This analysis is conceptually similar to the widely established concepts of reinforce-
ment learning (Rl) which is observed in animal behavior as well, see e.g. [11]. In Rl, a
sensory cue is presented to a network, which subsequently gives rise to an output pattern
and, as a consequence of this response, a reinforcing feedback from the environment.
Rl is, generally, a proven tool for developing an intelligent agent without a teacher (or a
supervisor) and without a teaching set [11], in which a reward signal is generated from
the interaction with the environment and considered to be the source of supervision, i.e.
it represents the teacher in the classical supervised-learning sense.

Although the concept of combining both Hebbian approach and Rl has been not
adequately investigated yet, there are some studies that tried to probe the tenability of
such integration. For example, in [12] the ability to reduce the required learning steps
for certain task in comparison to applying Rl alone was investigated. The task, however,
was relatively not well defined to be used for general machine learning regimes. Another
study applied the Rl rules to the spike-response-model (SRM) was introduced in [13].
The Hebbian approach was tackled by adding a Hebbian term to the Rl rule. The latter
study was directed as well to investigate the influence on the number of learning steps.
It is still tempting to ensure whether the Hebbian/anti-Hebbian modulation of STDP
with a reward signal can lead to Rl especially for biologically plausible synaptic and
neuronal representation that realizes the aspects of temporal dynamics.

Thus, we propose here an introductory framework integrating the concepts of both
Hebbian/anti-Hebbian and Rl while explicitly using plausible biological neuronal and
synaptic representations. To illustrate this, learning the XOR computations is chosen.
The biologically plausible neural representations comprises: a) Synaptic representation:
one of the well established spike-timing-dependent deterministic synaptic models pro-
posed in [14]; and b) Neuronal representation: leaky Integrate-and-fire neuronal model
(IAF) (simulation details are mentioned in section 4). Although other studies have
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already investigated the issue of either Hebbian or Rl learning in spiking networks
using different approaches e.g. [4,15,16,17,13], up to our knowledge this is the first
trial to develop the combined Hebbian and Rl framework for the mentioned neural rep-
resentations. The approach discussed here is inspired from the learning algorithm for
stochastic synapses that we have introduced in [18,19]. Here, it is not intended to intro-
duce a novel network-based solution for the XOR problem, however the XOR task is
chosen as a classic benchmark problem for learning algorithms. Considering that both
Hebbian and Rl are believed to be inherited from the biological neural systems, it makes
the biological plausibility of the network components a main aspect here keeping ma-
chine learning as a main target. Hence, the core objective in this study is to propose an
appropriate, but yet simple, learning algorithm which implements both Hebbian- and
Rl rules for networks with spike-timing-dependent components, i.e. realizing temporal
coding.

2 The Model

Neurons are modeled as leaky-IAF neurons usually used in such type of simulations
[14]. Each neuron is described by its voltage membrane potential V , that follows these
dynamics:

τV
dV
dt

= Vrest−V + Epsp, (1)

where τV is the membrane time constant set at 20 msec, and Epsp is the total observed
Excitatory postsynaptic potential from all pre-synaptic terminals. When V (t) ≥ Vth, a
spike is generated and V (t+) := Vrest; where Vrest = 0 mV and Vth = 50mV. Equation 1
is implemented as discrete form introduced by [20] (Please refer to the articles [21,20]
for the derivation).

As for the synaptic dynamics, the well-established phenomenological model from
Markram et al. [14] for fast synaptic dynamics is used. In particular, synaptic short-
term dynamics were determined by the available synaptic efficacy, R, and a utilization
variable, u, which followed the recursive relationship. The mathematical formulations
of the model could be expressed as follow (For a better review please refer to [22]):

u(n + 1) = u(n)e
−Δt
τ f ac +USE(1−u(n)e

−Δt
τ f ac ) (2)

R(n + 1) = R(n)(1−u(n + 1))e
−Δt
τrec + 1− e

−Δt
τrec (3)

USE is the resting relative amount of synaptic efficacy used per synaptic pulse; and τrec

and τ f ac are the recovery (from depression) and facilitation time constants for synaptic
efficacy. Δt is the time difference between the occurrence of the two last action poten-
tials. Let u(n) ·R(n) is the response viewed, in an abstract way, as postsynaptic current
(PSC); then, Epsp is expressed as Epsp(n) = A · u(n) ·R(n), where A can be viewed as
a coupling resistance to the postsynaptic neuron; or it represents the classical synaptic
weight. In this synaptic short-term depression, a rise in the presynaptic firing rate causes
a transient of synaptic current, which falls off over time according to the equations given
above [14].
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3 Learning Rule

3.1 Parameter Update Rule

The Hebbian-based learning concept used in this study was discussed in [20] show-
ing how both the timing parameters and constants of a model can be updated (trained)
based on the spiking activity of pre- and postsynaptic neurons. Specifically, the dynam-
ics of synaptic or neuronal activities are governed through the contribution of electro-
chemical mechanisms. Each of them is represented via a parameter, m; e.g. τ f ac or USE

in equation 2. Each mechanism m could contribute to either excitatory or inhibitory
regime in the synaptic action; and according to the pre- and postsynaptic activity, the
value of m is either increased or decreased following the Hebbian rule [20]. The update
of the contribution values of a parameter, m, following the Hebbian rule, in general,
reads [20]:

mnew = (1 + η)mcurrent, (4)

where |η|< 1 is the learning rate set at 0.01. An arbitrarily chosen sign for the learning
rate is set for each parameter. In this study, the training algorithm is restricted, arbitrar-
ily, to the synaptic parameters: USE , τ f ac, τrec and A; their initial values are 0.1, 1.15
sec, 0.05 sec and 0.001 respectively.

The realization of the Hebbian rule in eq. 4 reads [21,20]: the values of parameters
contributing to the excitatory mechanisms are increased and the contribution of the
inhibitory mechanism are decreased when a spike at the pre-synaptic neuron induce a
desired spike at the post-synaptic neuron. The term desired here refers to a correct hit.
If the pre-synaptic spike does not induce a post-synaptic spike, and no spike is expected
the process is flipped. The Anti-Hebbian rules are the inverse process of the Hebbian
process [20,18]. Whether the spike is desired or not is judged by comparing to another
reference signal. So far, it is supervised learning in full sense.

Concerning Rl, it uses a reward signal, K, applied to the eligible synapses to update
their parameters. The update process is also meant to change the values of the parame-
ters controlling the process. However, in the proposed approach here, the reward signal
is used to both flip the direction and accelerate/decelerate the update process. Thus, on
episodic basis (after each simulation run), the sign of the reward value is actually used
to alter the direction of the change in the parameter value, either to increase or to de-
crease the value of the tunned parameter. The value of the reward is used to alter the
learning rate. Thus, the learning update rule is rewritten [18]:

mnew = (1 + η ·K)mcurrent (5)

K can reverse the direction of the updating process of the parameters since it is a signed
value, and can in both directions either accelerate or decelerate the learning process.

3.2 The Reward Signal

It was described in [18,23], how a reward signal (or a feedback parameter), K, can
be derived to represent the progress in a desired performance. Accordingly, it can be
used to control the direction and the speed of the learning process. Specifically, it is
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the time derivative of the observed distance, D, between the reference signal, f (t), and
the current network output, g(t). Thus, the reward signal via the feedback parameter K
reads:

K ≡ ΔD( f , g)
Δtsimulation

(6)

The latter time derivative is observed on an episodic basis, i.e. after each simulation run,
and not along each simulation run, as in equation 8. As for this distance measure, in [5]
a method was proposed to calculate the difference between an output spike pattern and
a correct reference one by subtracting the Gaussian filtered versions of both trains from
each other. In [24], van Rossum proposed an algorithm, which we use here, to calculate
the distance between two train of spikes. This dimensionless distance calculates the
dissimilarity between two spike trains by filtering both spikes trains with exponential
filter, and calculating the integrated squared difference of the two trains. By definition,
two exact patterns will give the minimum allowed distance of zero. The latter approach
is more widely used in the literature that encouraged us to use it here. Hence, D reads:

D( f , g) =
1
τc

∫ ∞

0
[ f (t)−g(t)]2dt, (7)

where τc is time decay constant of the exponential filter. It controls the extent of the
effect of each spike on the total spike train, here set at 15 msec. f (t) and g(t) are
reference and output signals respectively. Thus, the reward signal is the difference in
the observed distance D from the current run and the previous one; expressed as:

K = µ (Dcurrent−Dprevious) (8)

µ is a scaling factor to match the order value of K to the order of the parameter under
training.

For Rl, one issue then remains which is eligibility. Eligibility denotes a synapse that
has contributed to obtain either the reward or the punishment [11]. Alternatively, the
eligibility traces are those values used to tune the value of the reward signal applied to
each synapse depending on its activity and location in the network. These traces could
be either analytically derived as in [17,10,5] or phenomenologically as in [11,25,26].
The latter approach is the one that is adopted here. In general, this approach depends on
the logical understanding of the flow of information within the network. In other words,
for a series of neuronal activities, not all synapses of the neural network are contributing
to the rewarding. In the study in hands, it is arbitrarily chosen to allow only the forward
synaptic connections between the input neurons and the hidden neurons to be learned,
Fig. 1. This choice is based on personal observations and other studies [18,19].

Remark, the introduced learning algorithm here performs a kind of gradient descent,
that implicitly optimizes a cost function (or an error function) in a heuristic way. This
cost/error function is the distance between the reference and output signals.

4 Simulation and Results

We use a network setup similar in structure to the one used in [17,10] as shown in the
lower part of Fig. 1. There are two input neurons N1 and N2. The input is a set of 600
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Fig. 1. Schematic of network setup and simulation. The input to the network is fed also to an XOR
gate to get the reference signal. The details of binning input/output signals are omitted from this
illustration for clarity. Dashed arrows represent those synaptic connections allowed for learning.
The distance here refers to the calculated distance according to eq. 7.

Poisson distributed trains of spikes with total epoch of 200 msec at 1 msec discretization
each. This set is arranged in two subsets, each for one input neuron. These input neurons
take two different Poisson distributed input trains from the two subsets per simulation
run. The first results are done with a hidden layer of only 4 neurons. The network has
one output neuron, i.e. the network size is N = 7 neurons1. The input and output are
temporally coded (or binned) with a time window of certain width, W taken, first, to be
5 msec. Within each time window, having one or more spikes is interpreted as having
digital one (Hi) otherwise it is zero (Low). Thus for a signal of length L msec that is
binned with W msec window, the input and output signals are mapped to shorter digital
signals with length L/W . In other words, signal f (t) with 200 msec epoch is mapped
to a digital version F(T ) that is 40 steps long. An actual XOR output is calculated for
the same digital input signals, as in the upper part of Fig. 1 to be the reference signal.
The distance D between the two digital representations of reference signal and network
output is calculated per simulation run. As for another indicator for the performance of
the network, we use the max. cross correlation coefficient, X , between the Gaussian-
filtered versions of F and G, where F and G are the digital versions of the reference and
the output signals respectively.

It should be pointed out here that the normal evaluation method of the results, by
counting the correct hits of ones and zeros [17,10], seems from our point of view not
applicable to our case. The timing of occurrence of input spikes is solely the input fea-
ture to the network, since both neuronal and synaptic representation here implement
temporal dynamics [22]. Comparing only the counts (hit rates) of the occurrences of
ones and zeros in the output and reference signal suppresses all the temporal infor-
mation and eliminate the involvement of the STDP realized by the synaptic dynamics.
Thus, we used the distance between the two digital signals and the coefficient of cross-
correlation between them since both measures are directly dependent on the temporal
information within the signals.

In Fig. 2 the performance of the learning algorithm in case of 4 neurons in the hidden
layer (N = 7) and time window of 5 msec is illustrated. Fig. 2(a) shows the progress in

1 The minimum number of perceptrons required to solve the XOR problem is 5 units.
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Fig. 2. a) Simulation results in case of 7 neurons in the hidden layer, at window set to 5 msec:
a) Distance between the reference and the output signal, D as in eq. 7. b) Max. cross correlation
coefficient observed between the reference and the output signal.

terms of the distance measure between the digital versions of the reference and output
signals, D(F,G). The value of the distance, started at about 25, experiences an over-
all decay over time; The mean value over the last 50 simulation runs in the observed
distance is 4.98 ± 4.15. The second indicator of performance of the network, X (F,G),
between the same two signals is shown in Fig. 2(b). Here, the value is climbing up
with learning. The mean value over the last 50 simulation runs is 91.6% ± 5.9. The
time evolution of two trained parameters is illustrated in Fig. 3(a). In case of 7 neurons
in the hidden layer (N =10), D(F,G) and X (F,G) are 3.21 ± 2.33 and 93.09%±3.0
respectively.

Relatively larger networks with 13, 17 and 20 neurons in hidden layer (N = 16,
20 and 23 respectively) are also investigated. The enhancement in the performance is
observed in terms of X (F,G) to be with an overall improvement of 1%, 1.3% and 1.7%
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Fig. 3. a) Evolution of the trained parameters USE and τrec over time. b) Simulation results in
case of 7 neurons in the hidden layer, at window set to 4 msec. Upper Panel: the observed dis-
tance between the reference and the output signal, while the Lower Panel: Max. cross correlation
coefficient observed between the reference and the output signal.
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respectively. The effect of changing the time window is also investigated. In Fig. 3(b)
both performance measures are illustrated for window value of 4 msec. The mean values
at different binning window settings (4, 5 and 7 msec) are summarized in table 1. In case
of 4 and 7 msec window, the epoch of the input signals are changed in order to get a
final digital version of 40 steps long; i.e. the input signal length is changed to be 160
and 280 msec respectively.

Table 1. Summary of performance measures, Distance and coefficient of cross correlation, for
the network with 7 neurons in the hidden layers for different window values. Both measure are
given as the mean value over the last 50 simulation runs.

Window Distance Max. cross-correl. coeff.
W D(F,G) X (F,G)(%)
4 msec 4.63 ± 5.12 89.50 ± 6.01
5 msec 3.21 ± 2.33 93.09 ± 3.04
7 msec 6.83 ± 5.41 94.42 ± 3.01

5 Discussion

Developing this framework was basically motivated by the need for both a proper and
simple learning algorithm for the spiking networks that utilize spike-timing dependent
synapses. In these networks, the synapses are not represented as weighting factors.
Hence, altering the synaptic response via the classical back-propagation or the δ-rule is
not appropriate [10]. Moreover, the analytical derivation, for example, in [17] and other
similar studies are based, for certain extent, on the assumption that the neurotransmitter
(Nt) release is independent of the spike generation process at any particular time. Al-
though this is not wrong as an assumption, it limits the application of their techniques
to be extended for the stochastic synaptic models, in which the probabilistic nature of
the Nt is only responsible for the spike generation.

The results reported here show that the introduced framework enabled the network
to perform the XOR computations at the basic network size of 7 neuron at 4 msec
binning window. The model still performs well with larger networks and at different
binning time-windows. The results with larger networks show slight enhancement on
the performance. We believe that a much better enhancement in the performance shall
be accomplished by the introduction of feedback connections within the network. More-
over, the network proposed here uses purely excitatory connections. Therefore, realizing
both feedback connections and inhibitory ones within the network shall raise the per-
formance of the network in general [9] which is left for a further study. Comparing our
results to those reported e.g. in [10] as the count of correct hits may be still investigated
in a further study, although, considering the temporal dynamics in the output represents
a key issue that distinguish the framework presented in this study from former ones.
The output of the network in our case is highly characterized by its temporal features.

We believe that the approach presented here is more useful in such cases where the
use of stochastic and biological plausible representations is needed [18]. The results
support using our approach for tasks that require intuitively signal processing and com-
putational capabilities. Moreover, since the results confirm that the proposed framework
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can indeed lead to Rl, the concept of integrating the Hebbian-rules and the Rl for the
utilized neural representations agrees, thus, with the remarks discussed in [4]; these re-
marks indicated that the bidirectional dependence of synaptic plasticity, in general, on
the synaptic resources (Neurotransmitter and/or calcium), which observed in biological
synapses, represents a kind of combined supervised and unsupervised learning. This
sheds more light on the importance of developing Rl frameworks that can specifically
”teach” the internal neuronal/synaptic dynamics according to predefined inputs/outputs
combinations. Considering the simple mathematical implementation of the update rule
and calculation of the reward signal values, this framework can used as an online adap-
tive scheme for controlling the network performance assuming availability of the refer-
ence signal.

This study is an introductory case to be followed in order to extend the presented
approach and investigate it with larger networks that may comprises multi layers. Also
the use of other neuronal and synaptic representation still represent a coming task to
be tackled. Besides, the algorithm has not been proven to be optimal in the sense of
learning speed or convergence to minimal error, it may be amenable to improvement.

6 Conclusion

In this study a phenomenological online learning rule is presented. It is based on the
Hebbian/anti-Hebbian basics of updating the values of the parameters affecting the neu-
ral dynamics. It is controlled via an episodic reward signal derived from the comparison
between the output of the network and a reference signal. Since both Hebbian and Rl are
believed to be inherited from the biological neural systems, the biological plausibility of
the approach is a main aspect in this study considering machine learning as a main tar-
get. In other words and within the class of error-driven learning models that have some
probability of being neurobiologically relevant, our approach then presents an alterna-
tive to classical reinforcement learning, which relies on the controversial assumption
of a diffusible reinforcement signal. As such, it brings models for reinforcement learn-
ing closer to plausible models of unsupervised learning while realizing the Hebbian
perspectives.
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Abstract. This paper presents a new probabilistic neural network model, called
IPNN (for Incremental Probabilistic Neural Network), which is able to learn
continuously probability distributions from data flows. The proposed model is
inspired by the Specht’s general regression neural network, but have several im-
provements which makes it more suitable to be used on-line in and robotic tasks.
Moreover, IPNN is able to automatically define the network structure in an incre-
mental way, with new units added whenever necessary to represent new training
data. The performed experiments shows that IPNN is very useful in regression
and reinforcement learning tasks.

Keywords: Probabilistic neural networks, General regression neural networks,
Incremental learning, Gaussian mixture models, Reinforcement learning.

1 Introduction

Probabilistic neural network (PNN) [1, 2] is a feed-forward artificial neural network
(ANN) based on the Bayes strategy for decision making and on nonparametric esti-
mators of conditional probability density functions (pdf). Its most important advantage
over other ANN models is that the training is easy and instantaneous. In fact, in a PNN
learning occurs after a single presentation of each pattern (the procedure is not iterative),
and new information can be used whenever it becomes available. Another advantage of
PNN is that it is guaranteed to asymptotically approach the Bayes’ optimal decision
surface provided that the class pdf’s are smooth and continuous [3].

The main limitation of the original PNN architecture proposed by Specht [1, 2] is
that it requires a separate neuron for each training pattern, which makes the compu-
tation very slow for large databases requiring a large amount of space in memory. To
avoid this limitation, in [4] a clustering algorithm based on stochastic gradient descent
is proposed to find a reduced set of representative exemplars to be used as the nodes
for PNN. Unfortunately, the solution proposed in [4] requires labeled training sam-
ples, which can only be applied for classifying data. For the general regression neural
network (GRNN) [5], which is the probabilistic network model used for estimation
of continuous variables, the Traven’s algorithm is not directly applicable. Moreover, it
uses radially symmetric pdf’s, i.e., covariance matrices of the form C = σ2I (where
σ is a smoothing parameter and I is the identity matrix), which according to [6] is not
robust with respect to affine transformations of the feature space and requires a careful
adjustment of the smoothing parameter σ.
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In [7] the Tråvén’s work is extended so that no constraints are imposed on the covari-
ance structure of the mixture components (pattern units). However, in this algorithm the
number of mixture components is assumed to be fixed, which prevents its use in contin-
uous learning tasks. Although other algorithms have been proposed to automatically set
the mixture components of both PNN and GRNN [3, 8–11], most of them are based on
off-line methods (e.g. the EM algorithm [12]), which requires that the complete training
set is previously known and fixed [13]. For on-line applications, in which learning must
occur continuously (e.g. mobile robotics [14]), these algorithms are not very useful.

In this paper a new probabilistic neural network model, called IPNN (for Incremental
Probabilistic Neural Network), is proposed. It is based on the Specht’s GRNN model
[5], but have several improvements which makes it more suitable to be used in on-line
applications operating in stochastic environments. The main advantages of IPNN over
other probabilistic models are:

– IPNN does not require a separate neuron for each training pattern;
– The number of pattern units is not limited nor fixed (new units are incrementally

added when necessary);
– Full covariance matrices are used in the pattern units;
– The pattern units are continuously adjusted to fit the distributions of the input data;
– The learning algorithm operates in an on-line and continuous way without requiring

that the complete training set be previously known and/or fixed (each training data
can be immediately used and discarded);

– It is not necessary any normalization of the input data.

The rest of this paper is organized as follows. Section 2 describes the proposed model
in details. Section 3 presents some experiments involving reinforcement learning and
regression tasks. Finally, Section 4 provides some final remarks and perspectives.

2 Incremental Probabilistic Neural Network

This section describes the new probabilistic neural network proposed in this paper,
called IPNN. It is based on Specht’s PNN [2] and GRNN [5] models, but has sev-
eral improvements which makes it more adequate to be used in on-line and continuous
learning tasks. Figure 1 shows a diagram of the IPNN model. Its structure is similar to
the RBF network [15], but the learning algorithm (Subsection 2.1) is quite different.

As other neural network models, the first layer of IPNN has just distribution units, but
unlike GRNN and PNN in the proposed model it is not necessary to normalize the input
variables (in Specht’s models this is necessary because the kernels have the same width
in each direction). The second layer, composed by probabilistic neurons (called pattern
units in the Specht’s model), is implemented using multivariate Gaussian distributions,
i.e., the component densities p(x|j) are computed through:

p(x|j) =
1

(2π)D/2
√|Cj |

exp
{
−1

2
(x− µj)T C−1

j (x − µj)
}

(1)

where x is an input data vector, D is the dimensionality of x (number of input variables),
µj is the mean and Cj is the covariance matrix of the jth pattern unit. The third layer,
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Fig. 1. Diagram of the IPNN model

which has always the same size of the pattern layer, computes the posterior probability
p(j|x) for each unit j using the Bayes rule:

p(j|x) =
p(x|j) p(j)∑M

q=1 p(x|q) p(q)
(2)

where is p(j) is the prior probability of j. The dotted lines in Figure 1 represent in-
hibitory connections used for normalization in (2). The fourth layer computes the actual
network output y through:

y =
M∑

j=1

wj p(j|x) (3)

where M is the current number of pattern units. Although Figure 1 shows just one
unit in the output layer, IPNN can have an arbitrary number of outputs (i.e., y can be
a vector). As described above, in IPNN the number of pattern units is not predefined
or fixed. Moreover, it uses non-restricted, full multivariate covariance matrices in the
pattern units. These improvements are possible because IPNN uses a new learning al-
gorithm, described in the next subsection, which is able to incrementally learn Gaussian
mixture models in an on-line and continuous way.

2.1 Learning Algorithm

This subsections presents a detailed description of the learning algorithm used by IPNN,
which is based on our previous work in statistical learning [16]. Like other supervised
ANN models, IPNN has two operation modes, called learning and regression. But un-
like most part of these models, in IPNN these operations don’t need to occur separately,
i.e., the learning and regression tasks can be intercalated. In fact, even with just one
training pattern the neural network can be used in the regression mode (IPNN can im-
mediately use the acquired knowledge), and the estimates become more precise as more
training data arrive. Moreover, the learning process can occur perpetually, i.e., the neu-
ral network can always be updated as new input data arrive.

Initially the IPNN network has no units in the pattern layer. When the first training
data vector arrives, the first pattern unit is created centered on this input vector, i.e., the
distribution parameters are initialized through:

µ1 = x1; C1 = σ2
iniI; w1 = d1; p(1) = 1; sp1 = 1,
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where σini is a configuration parameter which defines the initial radius of C (the pdf is
initially circular but it changes to reflect the actual data distribution as new input data
arrive), d1 is the desired output received at time t = 1, p(1) is the prior probability
of the first unit and sp is an accumulator which stores the summation of the posterior
probabilities p(j|x) (it is required that

∑M
j=1 spj = 1):

spj =
∑T

t=1 p(j|xt) (4)

where T is the current time instant of and xt is the input vector received at time t. To
avoid an eventual saturation of spj it is periodically restarted to a fraction γ of its value:

if (
∑M

q=1 spq) ≥ spmax then spj = γspj, ∀j

where spmax can be a huge value (e.g. spmax = 1032). It is important to say that a
normalization unit is created whenever a new unit is added to the pattern layer, i.e.,
both layers have always the same size.

When a new training vector arrives, the pattern layer is activated and the component
densities p(x|j) of each unit j are computed using Equation 1. The algorithm then
decides if it is necessary to create a new component for the current data point xt based
on the posterior probabilities p(x|j) of component membership according to the test:

p(x|j) <
τnov

(2π)D/2
√|Cj |

, ∀j (5)

where τnov is a configuration parameter which specifies a minimum value for the ac-
ceptable likelihood. If (5) returns true, the new input vector x is not considered as a
member of any existing component. In this case, a new unit k is created centered on xt:

µk = xt; Ck = σ2
iniI; wj = dt; p(k) =

(∑M
j=1 spj

)−1

; spk = 1.

After this, the prior probabilities of all j units are adjusted to sum one through

p(j) =
p(j)∑M

q=1 p(q)
(6)

Otherwise (if Equation 5 returns false for at least one unit), the existing mixture
model is updated using the following recursive equations:

spnew
j = spold

j + p(j|x) (7)

µj = µold
j +

p(j|x)
spnew

j

(x− µj) (8)

Cj = Cold
j − (µj − µold

j )(µj − µold
j )T +

p(j|x)
spnew

j

[
(x− µj)(x− µj)T −Cold

j

]
(9)

p(j) =
spnew

j∑M
q=1 spnew

q

(10)
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where p(j|x) is the posterior probability computed by (2) and µold
j refers to the value

of µj at time t−1 (i.e., before updating). Finally, the output weight wj is updated using
the desired output dt:

wj = wj +
p(j|x)
spnew

j

(dt − wj) (11)

The learning algorithm used by IPNN has just two configuration parameters, the
initial radius σini and the novelty parameter τnov. The initial radius is similar to the
Traven’s smoothing parameter [1], but in IPNN σini defines just the initial radius of
the pdf’s (their size and shape rapidly change as new training data arrive) and thus is
not critical. The only requirement for σini is to be large enough to avoid singularities.
In our experiments, described in the next section, we made σini an arbitrary fraction
(10%) of the range of the input data, i.e.: σini = (xmax − xmin)/10.

The τnov parameter, on the other hand, is more critical and must be defined carefully.
It indicates how distant x must be from µj to be consider a non-member of j. For
instance, τnov = 0.01 indicates that p(x|j) must be lower than one percent of the
Gaussian height (probability in the center of the Gaussian) for x be considered a non-
member of j. If τnov < 0.01, few pattern units will be created and the regression will
be coarse. If τnov > 0.01, more pattern units will be created and consequently the
regression will be more precise. In the limit, if τnov = 1 one unit per training pattern
will be created, which corresponds to the Traven’s model [5] but using multivariate
Gaussian kernels. Next section describes some experiments performed to evaluate the
proposed model in regression tasks.

2.2 Reinforcement Learning

Traditional reinforcement learning (RL) techniques (e.g., Q-learning and Sarsa) gen-
erally assume that states and actions are discrete, which seldom occurs in real mobile
robot applications, by instance [17]. To allow continuous states and actions in RL ap-
plications without discretization it is necessary to use function approximators like MLP
[18] or RBF [19, 20] neural networks. According to [21], for a function approximator
to be used successfully in reinforcement learning tasks (i.e., for it to converge to a good
solution) it must be: (i) incremental (it should not have to wait until a large batch of data
points arrives to start the learning process); (ii) aggressive (it should be capable of pro-
ducing reasonable predictions based on only a few training points); (iii) non-destructive
(it should not be subject to destructive interference or “forgetting” past values); and
(iv) must provide confidence estimates of its own predictions. Thus, according with this
principles IPNN is very adequate to reinforcement tasks, i.e., it satisfies all the require-
ments described above.

Implementing a reinforcement learning algorithm using IPNN may be straightfor-
ward – we just need to use the state and action vectors as inputs and the Q value as out-
put in the IPNN network. Unfortunately, using this strategy the action selection process
becomes a general optimization problem far from trivial [21]. We considered that states
are conditionally independent from the actions, which simplifies the covariance matri-
ces and allows an efficient action selection mechanism, as will be described bellow.
This was implemented in the proposed model using two separate covariance matrices
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for states Cs and actions Ca (and the corresponding xs, xa, µs
j and µa

j as well), and
the posterior probabilities p(j|x) are computed during learning by:

p(j|x) =
p(xs|j) p(xa|j) p(j)∑M

q=1 p(xs|q) p(xa|q) p(q)
(12)

where p(xs|j) and p(xa|j) are computed by (1) using Cs
j and Ca

j , respectively. To find
out the best action for the current state s the posterior probability p(j|x) is computed
using only p(xs|j) (this is possible because state and actions are treated as conditionally
independent) and the best action a∗ is estimated for the current state using the maximum
likelihood hypothesis j∗ = maxj p(j|xs), i.e., a∗ = µa

j∗ .
To allow exploration in the proposed model the actions are selected randomly using

a Gaussian distribution with mean µa
j∗ and covariance matrix Ca

j∗ , which enables high
exploration rates in the beginning of the learning process (when the Gaussian distribu-
tions are larger) and this exploration is reduced when the confidence estimates become
stronger. Therefore, this action selection mechanism does not require any optimization
technique, which makes the algorithm very fast. Moreover, it allows an exploration
strategy based on statistical principles which does not require ad-hoc parameters.

In [19, 22] another algorithm is presented, called continuous actor-critic, which also
uses Gaussian units in the hidden layer (it uses normalized RBF networks). But unlike
IPNN, in [19, 22] the Gaussian units are previously configured and maintained fixed
during the learning process. Next section describes some experiments performed to
evaluate the proposed model in regression and reinforcement learning tasks.

3 Experiments

This section describes the experiments performed to evaluate with the proposed model
in regression and reinforcement learning tasks. The configuration parameters used in
these experiments are τnov = 0.01 and σini = (xmax − xmin)/10. It is important to
say that no exhaustive search was performed to optimize these parameters.

3.1 Estimating the Outputs of a Complex Plant

In the first experiment the regression technique needs to identify a complex plant, orig-
inally introduced in [23] for the control of nonlinear dynamical systems using back-
propagation neural networks, described by:

u(k) =
{

sin(2πk/250) if k ≤ 500
0.8 sin(2πk/250) + 0.2sin(2πk/25) if k > 500

where k is an integer value in the interval [1, 1000] (i.e., 1000 training samples were
used). This plant was also used in [5] to highlight the GRNN advantages over other
ANN models. Figure 2(a) shows the results obtained in this experiment. In this figure,
the training samples are shown using red dots, and the output estimated by IPNN is
shown using a blue line. The normalizaed root mean square (NRMS) error obtained in
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(a) Complex plant (b) Pendulum swing up task

Fig. 2. Results obtained by IPNN in regression and reinforcement learning tasks

this experiment was 0.0325, and 43 units were added during the learning process. The
time needed to perform the learning process was 0.11 seconds in a typical computer1.

Comparing these results with those presented in [5], it can be noticed that IPNN is
able to obtain a similar performance (although in [5] the NRMS error is not informed)
using less pattern units than the GRNN model (the Specht’s GRNN model would create
one pattern unit for each training data, i.e., 1000 pattern units). Moreover, the IPNN
learning process was completely on-line and incremental, not requiring the selection of
specific patterns for training.

3.2 A Reinforcement Learning Task

In the next experiment the proposed model was used to control a pendulum with limited
torque using reinforcement learning. The dynamics of the pendulum are given by θ̇ = ω
and ml2ω̇ = −μω + mgl sin θ + μ [19], where θ is the pendulum angle and θ̇ is the
angular velocity. The physical parameters are mass m = 1, pendulum length l = 1,
gravity constant g = 9.81, time step Δt = 0.02 and maximum torque Tmax = 5.0.
The reward is given by the height of the tip of the pendulum, R(x) = cosθ, and the
discount factor is γ = 0.9. Each episode starts from an initial state x(0) = (θ(0), 0),
where θ(0) is selected randomly in [−π, π]. An episode lasted for 20 seconds unless
the pendulum is over-rotated (|θ| > 5π). These parameters are the same used in [19]
for the continuous actor-critic. Due to the stochastic nature of the RL action selection
mechanism, this experiment was repeated 50 times using different random seeds, and
the mean of the obtained results is shown in Figure 2(b).

In Figure 2(b) the x axis represents the learning episode, and the y axis represents the
time in which the pendulum stayed up (tup)i.e., when |θ| < π/4 (this is the same evalu-
ation criteria used in [19]). The red line in Figure 2(b) represents the mean and the blue
lines represent the 95% confidence interval of the obtained results. Comparing these
results with those presented in [19] it can be noticed that our model has a performance

1 All experiments were executed in a Dell Optiplex 755 computer, Intel(R) Core(TM)2 Duo
CPU 2.33GHz processor and 1.95GB of RAM.
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slightly superior of the Doya’s continuous actor-critic, without requiring any previous
configuration of the radial basis functions. The average number of probabilistic units
added by IPNN was 109.41.

3.3 Predicting the Motor Actions in a Robotic Task

As a final example, the proposed model was used to compute the desired speeds for a
mobile robot following the walls of the environment shown in Figure 3(a) (this envi-
ronment was originally used in [24]), where the squares represent the robot trajectory
(each color represents the most active pattern unit at each time) and the black arrow
shows the robot starting position and direction. This experiment is relevant because in
most mobile robot control tasks it is not possible to predict all situations that may occur
in the real world, an thus the mobile robot needs to learn from experience while it is in-
teracting with the environment. Moreover, for a mobile robot to adapt to new situations
the learning process must occur continuously.

In this experiment, the input data consist of a sequence of 4 continuous values
(s1, s2, s3, s4) corresponding to the readings of a sonar array located at the left/right
side (s1, s4) and at −10◦/ +10◦ from the front (s2, s3) of a robot, generated using
the Pioneer 3-DX simulator software ARCOS (Advanced Robot Control & Operations
Software). The output data correspond to the speeds to be applied to the right (v1)
and left (v2) motors of the mobile robot. In these experiments, the robot was manually
controlled to perform one loop in the environment shown in Figure 3(a), and the task
consists in predicting the next motor actions at each time t.

Figure 3(b) shows the results obtained in this experiment, where the x axis corre-
sponds to the simulation time t in seconds and the y axis corresponds to the difference
between the right and left speeds, i.e., yd(t) = v1 − v2. A positive value in yd(t) corre-
sponds to a left turn in the robot trajectory and a negative value corresponds to a right
turn. The red line in Figure 3(b) represents the desired yd(t) values and the blue line
represents the difference between the IPNN outputs, i.e.: yo(t) = y1 - y2. It is important
to say that the IPNN used in this experiment has really two outputs, i.e., the difference
yo(t) was used in Figure 3(b) just for visualization purposes.

(a) Active components in the trajectory (b) difference between the speeds

Fig. 3. Results obtained in the robotic task (NRMS = 0.050373)
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It can be noticed in Figure 3(b) that IPNN was able to approximate the desired out-
put with reasonable accuracy (the NRMS error was 0.050373) using few probabilistic
units (just seven) and no memory of past perceptions and actions (e.g., recurrent con-
nections). The main differences between yd(t) and yo(t) are in the extremes, i.e., the
approximation performed by IPNN is smoother than the target function.

Another interesting feature which can be noticed from this experiment is that IPNN
is able to create useful representations in the pattern and normalization layers. This can
be observed in Figure 3(a), where the colors in the robot’s trajectory represent the units
with the highest posterior probability p(x|j) (i.e., the so called maximum likelihood
hypothesis). It can be noticed in Figure 3(a) that the pattern units are related to some
persistent “concepts” like wall at right (1: red), corridor (2: blue), curve at left (4:
cyan), curve at right (6: green) and so on. The lower band in Figure 3(b) also shows
the maximum likelihood hypothesis at each time step, which stands out the network
outputs produced by each probabilistic unit.

4 Conclusion

In this paper a new probabilistic neural network model, called IPNN (for Incremental
Probabilistic Neural Network), is proposed. This proposed model, which can be con-
sidered an improved version of the Specht’s general regression neural network (GRNN)
[5], is able to perform regression tasks in an incremental and continuous way. Moreover,
it uses full multivariate Gaussian probability density functions (pdf) in the probabilis-
tic units, which allows more precise approximations using less artificial neurons in the
pattern layer. The experiments performed using the proposed model show that IPNN
can be successfully used in function approximation and reinforcement learning tasks.
Besides, the learning process occurs in an on-line and incremental way without requir-
ing that the complete training set is previously known and fixed. This is necessary if
the neural network has to be used in continuous learning tasks as in robotic control in
unexplored environments. Future developments will use the proposed model in control
and learning tasks using a real Pioneer 3-DX mobile robot.
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Abstract. We present a biologically inspired neural network model of visual 
orienting (using saccadic eye movements) in which targets are preferentially se-
lected according to their reward value. Internal representations of visual fea-
tures that guide saccades are developed in a self-organised map whose plasticity 
is modulated under reward. In this way, only those features relevant for acquir-
ing rewarding targets are generated.  As well as guiding the formation of feature 
representations, rewarding stimuli are stored in a working memory and bias fu-
ture saccade generation.  In addition, a reward prediction error is used to initiate 
retraining of the self-organised map to generate more efficient representations 
of the features when necessary. 

Keywords: saccade, oculomotor system, visual search, action selection, system 
model, self-organised map, internal representation, saliency. 

1   Introduction 

Artificial behaving systems must address a number of problems related to action se-
lection and the organisation of knowledge. In particular, we are interested in estab-
lishing how an agent can develop useful internal representations of world-related in-
formation acquired via sensory inputs and potential rewards associated with various 
actions; how it can use this information to decide what action to perform next and 
how can it alter its strategies to adapt to changing circumstances in the outside world?  
Previous models, which address the learning of internal representations of the behav-
ioural context in which actions take place, include the models of Dominey [1], Cisek 
[2] and Wilimzig et al. [3]. 

We address these issues within the context of a visual search task. A virtual eye 
explores a 2D scene containing a large number of cues by foveating to one cue at a 
time (Fig. 1). At any point in time, the retinal image contains many cues, and the sys-
tem must determine which of these cues will become the next target. Some cues are 
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associated with a reward, though the rewarding cues may change over time, and the 
task is to learn which categories of cue are rewarding and to foveate to them as often 
as possible. 

 

 
 

Fig. 1. Schematic of the experiment: the retina views a section of the world image at any point 
in time, making saccades so that a cue always falls on the centre of the fovea (solid 
black arrow).  The target of the saccade may be rewarding, which trains a short term memory 
and biases the eye to search for similar cues. 

 
The system model is broadly inspired by the visual pathways for saccade genera-

tion in the mammalian brain.  In the model, low-level feature extraction is followed 
by a split in processing between two streams: a colour-sensitive ‘what’ pathway 
which subserves feature and object detection and a monochromatic ‘where’ pathway 
which subserves spatial processing. This scheme is related to that for biological visual 
processing, in which simple features are first extracted in visual area 1 (V1): these 
signals are then passed to a dorsal stream devoted largely to spatial (and motion) 
processing, and a ventral stream which largely subserves feature recognition (which 
may include a colour dimension) culminating in object identification in inferotempo-
ral cortex (IT) [4]. In the primate brain, neuronal tunings in the dorsal stream show a 
retinotopic organisation [5][6] and there is evidence for topographic organisation of 
neuronal responses in IT such that neurons which respond to similar features are lo-
cated close together in cortex [7].  We deploy similar signal representations in our 
model. There is also evidence that information from both ventral and dorsal streams is 
combined into a variety of salience maps (for example, in frontal eye fields) which 
represent candidate targets for saccades. The competition between these possible tar-
gets is resolved in looped circuits through the basal ganglia before the signal is ex-
pressed in the superior colliculus which, in turn, drives saccades via the saccadic gen-
erator in brainstem [8]. Behaviourally relevant information is maintained in pre-
frontal working memory [9] and there are several processes devoted to biasing sac-
cades from previous targets under so-called inhibition of return (IOR) [10].  

In our model, the action selection problem is addressed through a saliency map that 
combines bottom-up processing of sensory cues with an IOR mechanism and top-down 
memory signals that bias saccades towards features that are expected to be rewarding. 
The model has two novel features: firstly, sensory cues are internally represented in a 
self-organised map (SOM) of feature space and a working memory of rewarding cues 
is topographically projected onto this map.  Secondly, we bias the development of the 

Eye   Cue at the centre 
of the fovea 

Section seen  
by the retina 
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SOM with a reward prediction error signal.  The development of the SOM is thus 
modulated to facilitate the efficient allocation of limited computational resources to-
wards resolving uncertainty in the predicted reward associated with cues.   

In the next section, the operation of the model will be overviewed. Implementation 
details will be given in Section 3. Section 4 contains results of simulations and discus-
sion of these results. Conclusions are presented in Section 5. 

2   Model Overview 

The overview of the model is presented in Fig. 2. The world image SW is composed of 
a large number of colour cues on a black background. The retina contains a sub-
window of the world image, as determined by the gaze coordinates. The retinal image 
is split into the luminance channel RL which is processed in the retinotopic space 
(‘where’ pathway) and three colour channels RR, RG, RB

, which together form a reti-
notopic feature vectors C and are further processed in the feature space (‘what’ path-
way). It should be noted that we chose to operate with colour cues for simplicity, but 
retinotopic maps of other features (e.g. orientations etc.) could be considered. 

 

 
 

Fig. 2. Schematic of the neural network:  the retinal image is divided into feature-based and 
retinotopic channels. See text for details. 

The feature vectors C from each retinal location are classified using a self-organised 
map W, and results are pooled into a feature map FR which develops an internal repre-
sentation of the observed stimuli.  A small number of nodes are used in the SOM in 
order to force the inputs to compete for representation on the map. The SOM can reor-
ganise and its plasticity is modulated by the reward signals, so that behaviourally rele-
vant features are given more precise representations. The balance between the stability 
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and adaptability of the representation is determined by the overall success of the sys-
tem in predicting the reward associated with various cues.  

In the task, a reward is given for making saccades to cues of some determined col-
ours. A working memory (FM) is topographically mapped onto FR and activity in this 
layer represents reward expectation for a feature at the corresponding location in the 
FR. The feature saliency map FS is developed combining bottom-up classification of 
features in the scene by FR and top-down memory of rewarding features FM.  The FF 
layer “sharpens” the activity of the FS layer such that the activity of the most active 
units is increased.  The “sharpened” feature saliency FF is then transformed back to 
the retinotopic coordinate frame, providing a map RF, which associates the reward 
expectation assigned to the features with their locations. 

The visual saliency map RS is formed by combining the feature-based saliency 
map RF, a bottom-up cue-background separation map RTh (obtained in the ‘what’ 
pathway from the luminance map RL) and inhibition of return map RIOR. The activity 
in the visual saliency map RS represents the reward anticipation at a given cue loca-
tion. Competition between locations is resolved stochastically and the next saccadic 
target (RW) is determined. The saccadic target is classified by the self-organised map 
(FW), and if a saccade is made to a rewarding target, the activity in the corresponding 
location in FM is increased. If a target is unrewarding, then the activity in that region 
of FM is reduced.  

After a saccade has been made, the target location is activated on a world-centric SIOR 
map which prevents the eye from returning to that position for a short period of time. 

3   Implementation Details 

In the first stage of processing, previously visited locations are inhibited by using cur-
rent gaze coordinate information to map the spatial inhibition field (SIOR) onto reti-
notopic coordinates (RIOR). The inhibition of return world map SIOR

 contains traces of 
previously visited locations. After a saccade is made, the activity in SIOR is increased 
with a Gaussian profile centred at the target location.  SIOR is implemented as a leaky 
integrator and the activity decays over time. 

The feature map FR represents the retinotopic RGB vectors of C on a self-organising 
2D map.  The function of the FR layer is to pool the feature classification results across 
a retinotopic array of shared-weight SOM classifiers. As in the classical SOM [12], the 
neurons of the FR layer are tuned to preferred input vectors (W).  For each retinal loca-
tion i, the best matching unit (BMU) is calculated as the location j in the SOM with the 
shortest distance between its preferred vector Wj and the feature vector Ci. The results 
are pooled across the retina so that the activity of neuron at location j in FR is equal to 
1 if a feature is present and 0 if a feature is not present in the visual scene, regardless of 
how many retinotopic locations activate the point j in the SOM: 
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The activity of the feature saliency map FS

 is calculated as the summation of the ac-
tivities of the feature memory FM and the FR layer: 
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RMS FFF +=  (2) 

The FS activity is then mapped back to retinotopic space as RF

, such that the 
strength of a feature in FS is reflected in the retinotopic locations at which this feature 
is present: 
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The top-down modulatory activity (RF) is combined with the bottom-up cue seg-
mentation (thresholded luminance activity RTh) and the previously inhibited locations 
(RIOR) to form the combined retinotopic saliency map RS: 

( )TH −= LTh RR  
(4) 
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1
1(  (5) 

where T is the luminance threshold and H is the Heaviside step function. To imple-
ment stochastic competition, the saliency (RS) is multiplied by an array of white noise 
(N) and the maximum activity is selected as the target location x for the next saccade: 
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In the next stage, the weights W of the SOM layer are trained.  The winning unit k 
corresponding to the feature vector at saccade target x is located in the map space by 
calculating the BMU: 

{ }jx
j
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If a cue is rewarding (r = 1), some activity is introduced to the location surround-
ing k in the learning layer FM while if a cue is unrewarding, (r = 0) the activity at the 
point k is reduced: 
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where G is a Gaussian function in map space centred on neuron k with amplitude A = 1, 
spread σL = 0.25 and B = 0.25. 

The SOM weights are modified such that the distance between each weight Wj and 
the input vector of the winning unit Cx is reduced.  The degree to which a weight is 
modified ΔWj decreases as a Gaussian function of the topographic distance from the 
BMU in the map space.  The strength of the change is modulated by the learning rate αt: 

),,( tjxtj kjG σα WCW −=Δ   (9) 

where G is a Gaussian function of constant area.  The SOM weights are initialised 
with very small values. In the classical SOM global organisation is generated across 
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the map by constantly decreasing values of αt and σt over time.  This slowly ‘freezes’ 
the weights across the map and allows increasingly finer details to be represented on 
the SOM [12]. 

Since the stimuli and rewards may change over time, we introduce in our model a 
feature that allows the SOM weights to become plastic again.  If the network is unable 
to predict rewards with sufficient success, we should assume that the internal repre-
sentation of that stimulus is not sufficiently resolved on the SOM and that it may be 
useful to ‘unfreeze’ the SOM weights and to attempt to generate a new representation 
of the stimulus. The values of αt and σt are thus modulated by the reward history, in 
the following way: 

The reward prediction error δ is a measure of the surprise when an expected reward 
is undelivered or a reward is received from an unexpected source.  It is defined as the 
absolute value of the difference between the received reward r and the expected reward, 
represented by the activity of the winning neuron in the working memory layer Fk

M:   

M
kFrr −=)(δ  (10) 

A non-linear function of the reward prediction error is integrated over time with a 
leaky neuron of output ξ: 
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where θ was equal to 0.1, and g is the leak rate, which was equal to 0.05.  
If the value of ξ exceeds a predefined threshold, which occurs at a time tth, the vari-

ables ξ, α t and σ t are reset to their initial values of 0, α0 and σ0. The values of αt and 
σt decrease linearly with decay rate λ after reset time tth. 

{ } { }εσλσαλα ,)(max,0,)(max 00 +−−=+−−= thttht tttt  (12) 

and ε is a small positive number (1E-5 in this paper) which prevents σt from decreas-
ing to zero.  The time course of the variables associated with the modulation of the 
SOM during a typical experiment is shown Figure 3. 

 

 

A 

D B 

C 

 

Fig. 3. Representation of the modulation of αt and σ t in the neural network.  A) δ is the reward 
prediction error; B) y is a non-linear function of the error, which filters out small errors.  C) ξ is 
the leaky integration of y, in which the dashed line marks the threshold.  D) σt/σ0, αt/α0 are the 
modulated learning parameters. 
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4   Results 

The model was implemented on a desktop PC in APRON software, a tool for imple-
menting neural simulations on massively parallel processor arrays [13]. In the first 
experiment, we test the performance of the working memory during a rewarding 
search task with static SOMs. In the second experiment we examine the effective-
ness of the reward-modulated SOM in adapting to a changing reward scenario.  In 
both cases, experiments ran for 10000 time steps, with 10 trials per experiment.  The 
world image is of dimensions 256 x 256 pixels and contains 256 2 x 2 pixel colour 
cues.  The squares were chosen from a set of 64 distinct colours and each colour ap-
pears in the world image at four locations.  The positions of the cues are random and 
repeated across trials, and the colours are randomly assigned to the cue positions at 
the beginning of each trial.  The retina views a 128 x 128 pixel region of the world, 
in which the mean number of cues on the retina at any time is 46.0, with a standard 
deviation of 14.3. 

4.1   Experiment I 

In the first experiment, SOMs were trained for 200000 steps with constant linear de-
cay throughout, and α0 and σ0 values of 0.02 and 0.05 respectively.  A new SOM was 
generated for each trial and no rewards were given in the control experiment.  The 
same SOMs were used during the experiment and the control stages and the SOM did 
not develop during either the experiment or the control. 

There were four different reward epochs in the experiment, each lasting for 2500 
time steps.  For the first 2500 steps, a reward was presented for foveating to a single 
orange cue (RGB = {1, .85, 0}).  For the second epoch, a reward was presented for 
foveating to one of two green cues (RGB = {0, 1, 0.07} or RGB = {0, 1, 0.17}).  For 
the third epoch, a reward was present for foveations to one blue cue 
(RGB = {0, 0.24, 1}).  Finally, for the fourth epoch, rewards were given for foveating 
to one of two magenta cues (RGB = {1, 0, 0.73} or RGB = {1, 0, 0.64}). 

Figure 4(A, B) shows the number of saccades made to each colour in this experi-
ment.  In the case with working memory (Fig. 4B), saccades were preferentially made 
to rewarding cues. 

 
A 

 

B 

 

C 

 

Fig. 4. The y axis represents the total number of saccades across 10000 time steps to each pos-
sible colour with A) no working memory, B) working memory & static SOM and C) working 
memory & modulated SOM 

 



 Using Reinforcement Learning to Guide the Development 187 

Figure 5 (A, B) shows the number of saccades made to each colour in time bins of 
100 steps.  In the case with working memory (Fig. 5B), saccades were biased towards 
the rewarding cues, and cues which were similar.  In the case without working mem-
ory (Fig. 5A), the system had no significant preference for any cue colour. 

 
A 

 

B 

 

C 

 

Fig. 5. The system learned to distinguish between the rewarding and the unrewarding cues. In 
the control experiment the rate of detection was approximately the same for all colours. The 
pixel values represent the average across 10 trials. A) No working memory, B) working mem-
ory & static SOM and C) working memory & modulated SOM. 

4.2   Experiment II 

In the second experiment, we investigated the effect of modulating the learning rate αt 
and influence σ t online.  The results from experiment I are used as the control for this 
experiment.  Figure 4(C) shows the number of saccades made to each cue type in this 
experiment. The modulated SOM was far more successful at creating a useful repre-
sentation of the rewarding cues than the static SOM and it shows much better dis-
crimination between rewarding and unrewarding stimuli. Far fewer saccades were 
being made to unrewarding objects when compared with the control, as is clear from 
the broadness of the peaks in Fig. 4(B, C).  This result is to be expected as the modu-
lated SOM is able to re-train when the rewarding colour changes, allowing the net-
work to re-deploy its limited resources to address the new scenario. 

 

  

Fig. 6. The total number of rewards received over 
time. The error bars mark one standard deviation 
across 10 trials. For clarity, every 250th point is 
plotted. 

Fig. 7. Number of saccades to each colour 
plotted against the distance between a cue 
and a reward in RGB space normalised by 
the number of cues per bin 
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Figure 5(C) shows the number of saccades made to each colour in time bins of 100 
steps.  Again, the peaks are more intense and more tightly tuned around the rewarding 
cues. 

When rewarding cues were present on the retinal image, saccades were preferen-
tially made to the rewarding cues during each epoch.  Results from the static SOM 
were similar to those from the modulated SOM, though the static SOM had more dif-
ficulty in resolving between rewarding and unrewarding cues. Figure 6 shows the 
cumulative number of rewards received over time.  The modulated model proved far 
more effective at finding rewarding cues than the static model. 

For both experiments, we investigated the mean number of times a saccade was 
made to a cue as a function of cue distance from the reward in RGB space (Fig. 7).  
Distances between cue and reward were assigned to 10 bins and the number of cues 
per bin was counted.  The number of saccades per bin was normalised by the number 
of different cues that were assigned to each distance bin. In the modulated SOM, sac-
cades are more tightly tuned towards rewarding units. 

5   Conclusions 

We have presented a neural network model of working memory on a self-organised 
feature map as a solution to an action selection problem.  The model contains the 
novel features of a) generating internal representations of stimuli and reward expecta-
tion values for different cues and b) using a reward prediction error to remap the SOM 
when the rewarding stimuli are not sufficiently resolved. 

This model is an example of a self-organised map being implemented as part of a 
larger dynamic neural network system.  Rewarding features are learned as activity in 
the working memory, which is topographically projected onto a self-organised feature 
map.  The working memory biases the system towards saccadic targets which are ex-
pected to be rewarding. 

By purposely limiting computational resources (restricting the number of nodes in 
the SOM) we addressed the issue of efficient internal representations of the feature 
space. The feature maps adapt and self-reorganise to make the model more effective 
at recognising behaviourally relevant stimuli. 

We have demonstrated that the model successfully learns to search for rewarding 
stimuli, and that the search performance is improved through the action of the modu-
lated SOM. 
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Abstract. We propose a new approach for reinforcement learning in

problems with continuous actions. Actions are sampled by means of a

diffusion tree, which generates samples in the continuous action space

and organizes them in a hierarchical tree structure. In this tree, each

subtree holds a subset of the action samples and thus holds knowledge

about a subregion of the action space. Additionally, we store the expected

long-term return of the samples of a subtree in the subtree’s root. Thus,

the diffusion tree integrates both, a sampling technique and a means

for representing acquired knowledge in a hierarchical fashion. Sampling

of new action samples is done by recursively walking down the tree.

Thus, information about subregions stored in the roots of all subtrees

of a branching point can be used to direct the search and to generate

new samples in promising regions. This facilitates control of the sample

distribution, which allows for informed sampling based on the acquired

knowledge, e.g. the expected return of a region in the action space. In

simulation experiments, we show how this can be used conceptually for

exploring the state-action space efficiently.

Keywords: reinforcement learning, continuous action space, action

sampling, diffusion tree, hierarchical representation.

1 Introduction

Reinforcement learning in continuous domains is an area of active research. Con-
ventional algorithms are only proven to work well in environments where action
space and state space are both discrete [1]. To extend those algorithms to con-
tinuous domains a common approach is to discretize the state space and the
action space and apply discrete algorithms [2]. This, however, usually reduces
the performance of the approaches [3]. One major issue when applying rein-
forcement learning to continuous domains is the lack of techniques to represent
and update knowledge over continuous domains efficiently. Several successful ap-
proaches have been proposed that represent knowledge by means of parametric
function approximators [3] or sample-based density estimation.
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In this work, we present a novel approach to reinforcement learning in con-
tinuous action spaces, based on action sampling. In action-sampling-based ap-
proaches, the agent stores knowledge by means of a set of discrete samples,
which are generated successively by a certain technique, one per learning step,
and executed and evaluated thereafter by the agent. To store knowledge effi-
ciently, those samples have to be concentrated on regions with high interest.
Therefore, the sampling-technique has to use the knowledge acquired so far, to
make the sampling process as informed as possible. In our approach, actions are
sampled by means of a diffusion tree, which organizes samples from a continuous
space and knowledge about the underlying domain in a hierarchical structure.
Higher levels in the hierarchy represent knowledge about bigger regions in the
action space. Evaluation of knowledge is done by recursively walking the tree
from its root to its leaves. In a balanced tree, evaluation therefore is efficient.
While walking down the tree, the stored knowledge is used to control the sample
distribution. In this paper, we only outline the theoretical concept and validate
it in a proof-of-concept manner. Further research has to be done to proof the
full validity of the approach for real-world applications.

This paper is organized as follows. Section 2 briefly introduces the state of
the art in sampling-based approaches to reinforcement learning. As a basis of
our approach the Dirichlet Diffusion Tree is introduced in section 3. Our pro-
posed algorithm is described in section 4. Section 5 shows results of two simple
experiments conducted to conceptually validate our approach. Conclusions and
an outlook to future work are stated in section 6.

2 State of the Art

Much research has been done in the field of reinforcement learning in continuous
domains. In this section, we will outline a few techniques, strongly related to
our proposed approach. Our algorithm belongs to the group of sampling-based
approaches. Algorithms of that group typically represent knowledge by means
of samples drawn from the underlying domain.

In [4] an approach is presented that extends the traditional dynamic program-
ming to continuous action domains. However, the state space remains discrete.
Values for states are stored in a table, one value per state. The policy is also
represented as a table, where for every state an action is stored. Multilinear in-
terpolation is used to compute values in the continuous state domain. In every
iteration of the presented algorithm, a sweep through the whole state space is
done where for every state a new action and a new value is computed. Therefore,
an action is being sampled uniformly for every state. If the action is better than
the previously stored one w.r.t. the expected return, the old action is discarded
and the new one is stored instead. Unfortunately, this approach is not suited
for real-time exploration and learning, due to the computational cost for the
sweeps. Also sampling actions uniformly does not incorporate any knowledge
about promising actions for a state seen so far and, thus, is inefficient for fast
exploration. In [5,6] the idea of sampling actions is extended to a so-called tree-
based sampling approach. For a state, a set of action samples is drawn. For every
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action the resulting successor state is simulated. In that simulated state again a
set of action samples is drawn and again the next state is evaluated. That way
a look-ahead tree is built. Based on that tree the expected long-term return of
an action in the current state can be estimated. For this approach a generative
process model is required, which narrows the applicability in practice. In [7] a
sampling-based actor-critic approach is presented which operates on a discrete
state space. For every state a set of action samples is maintained. With every
action sample an importance weight is associated. Together, all samples for a
state approximate a probability density function (PDF) over the continuous ac-
tion space for that state. New action samples are drawn from that distribution
by means of importance sampling. The weight of a sample is set proportional
to the expected return of that action. Therefore, the approximated PDF has
high values where actions are promising w.r.t. the expected return and thus are
sampled and executed more often.

3 Mathematical Foundations

In this section, the necessary mathematical foundations will be introduced. We
start with a brief definition of our notation for reinforcement learning and then
introduce the formalism of the Dirichlet Diffusion Tree, which serves as a basis
for our approach.

Reinforcement Learning: Our proposed approach is based on the idea of Q-
Learning [1], a well known approach to reinforcement learning. The reader is
assumed to be fairly familiar with this topic. We refer to [8] for a good and
comprehensive introduction. In the following our notation of Q-Learning will be
defined. The state of the agent will be denoted by s ∈ S, actions will be assumed
to be equal for all states and will be noted by a ∈ A. The reward function is
given by by r = r(s, a) : S × A → R. Estimated action-values are defined by
Q̂(s, a) = r(s, a) + γ V̂ (s′). Where V̂ is the estimated state value and γ is the
discounting factor.

Dirichlet Diffusion Tree: Our approach is based on the idea of the Dirichlet
Diffusion Tree (DDT) introduced in [9], in particular on the construction of such
a tree, which will be outlined in the following (see Fig. 3. In a DDT samples
are generated sequentially, each one by a stochastic diffusion process of duration
t = D. The time evolution of a sample i is represented by a random variable
Xi(t) with t ∈ [0, D]. The start location of the first sample is set to X1(0) = 0.
The location of the sample an infinitesimal time step dt later is determined by
X1(t + dt) = X1(t) + N(t), where N(t) is multivariate Gaussian with zero mean
and covariance σ2Idt. The values N(t) for distinct values of t are i.i.d., thus the
time evolution of X1(t) is a Gaussian process. Lets call the so generated path X1

(see Fig. 1(a)). For the second sample the start point of the new diffusion process,
the path X2, is set to the start point of the first one, hence X2(0) = X1(0). The
second sample then shares the path of the first sample up to a randomly sampled
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(a) First path X1.
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(b) Second path X2.
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(c) Third path X3.

Fig. 1. Evolution of a Dirichlet Diffusion Tree for three successively sampled paths

with a length of D = 7. The first path (left) is sampled by accumulation of gaussian

increments. The second path (middle) diverges from the first at time t = 3. The third

path (right) shares the first part with the first path then goes along the second path

and diverges at time t = 5.

divergence time Td, where it diverges from the first path and goes its own way,
which is again determined by a Gaussian process (see Fig. 1(b)). Thus for t ≤ Td

the paths are the same and for t > Td they are different. Td is a random variable
and is determined by a divergence function a(t). The probability of diverging
in the next infinitesimal interval dt is given by p(Td ∈ [t, t + dt])dt = a(t)dt,
where a(t) is an arbitrary monotonically increasing divergence function (see [9]
for details). As a result the probability of divergence increases monotonically
in time during the diffusion process. Lets assume X2 diverged from X2 at time
Td = t0 = 3.

Now the third path X3 is being sampled. Lets assume, the point of divergence
of the third path is t1 > t0, i.e. X3 diverges later the X2 did and X1(t) =
X2(t) = X3(t) for t ∈ [0, t0],. Thus, when the process reaches t0 = 3 a decision
has to be made whether it should follow X1 or X2 until it diverges at t = t1 = 5
(see Fig. 1(c)). This decision is done by randomly choosing from one of the
branching paths with probability proportional to the number of previous times
the respective path was chosen. Thus paths that have often been chosen before,
are more likely to be chosen again. The concept of preferring what has been
chosen before is called reinforcement of past events by [9] and is one of the main
reasons which motivates the use of the DDT in our work. [9] further introduces
an additional way to implement this concept by reducing the probability of
divergence from a path Xi proportional to the number of times the path has
been travelled before. Thus it is less likely to diverge from a path that has been
used by many samples before.

After generating N paths X1, . . . , XN , the values X1(D), . . . , XN(D) repre-
sent the set of samples generated if the DDT is viewed as a black-box sampling
technique. We call those values final samples, as they are the final outcome of
each diffusion process.
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4 Our Algorithm

The algorithm proposed here borrows heavily from the idea of the diffusion
tree and thus is called DT-Learning, where DT stands for diffusion tree. Like
most other sampling-based approaches it operates on a discrete state space S =
{si}i=1,...,Ns . To represent values and actions, we maintain a diffusion tree for
every state, where the domain of the samples is the action space of the agent. The
following paragraph introduces the structural elements that make up a diffusion
tree as used in our approach.

Structural Elements of Our Diffusion Tree: Unlike the continuous notion of
the diffusion tree as presented in [9], the paths of our diffsion tree are dis-
crete in time and consist of a sequence of concrete samples of the diffusion
process, which we further call nodes. Further, we extend the notion of the dif-
fusion tree by a structural element called segment, which comprises the set of
nodes from one divergence point to another (see Fig. 2).

a

1

2
3

5
4

Fig. 2. Abstraction of a diffusion tree

(left) to a tree of segments (right).
Nodes in the diffusion tree make up a

segment (ellipses). The segments them-

selves form a tree (right). Segment 1 is

the root segment, segments 3,4, and 5

are leaf segments. The rectangular leaf

nodes (left) are the final action sam-

ples, placed continuously in the action

space.

Let c be a segment and let c[i] be the i-th
node of c. That way, the segments them-
selves comprise a tree structure, where a
segment has one parent segment and ar-
bitrarily many child segments. One par-
ticular segment has no parent segment
and is called the root segment. Segments
without child segments are called leaf seg-
ments. The last node of a leaf segment is
also a leaf node of the entire tree. In or-
der to ease notation we will use a func-
tional notation for attributes of an entity
(a tree, a segment, or a node) in the fol-
lowing. Let rt(s) be the root segment of
the tree of state s. Let pa(c) be the par-
ent segment of a segment c and let ch(c)
be the set of child segments of segment c.
In case c is a leaf segment, ch(c) = ∅. Let
further leaf(c) denote the last node of a
segment c. If c is a leaf segment, leaf(c)
is also leaf node of the tree. A leaf node
of the tree represents a final sample from
the underlying domain. All intermediate
nodes of all segments in the tree are just
a byproduct of the sampling and have no particular use. Put differently, if we
interpret the diffusion tree as a black-box sampling mechanism which just gener-
ates samples in the action space, we would only see the final samples represented
by the leaf nodes. The remaining tree structure would be hidden in the box.
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Hierarchical Representation of Knowledge: Besides the structural relations, sev-
eral elements carry further information as attributes. The attribute counter(c)
counts the number of paths that share the segment c, i.e. the number of paths
that went c before they diverged and went their own way. The attribute val(c)
carries the q-value of a segment. The q-value of a segment is our way of rep-
resenting the estimated long-term return of a state or state-action pair and is
defined recursively as follows. The value of a leaf segment c of the tree in state s
is val(c) = Q̂(s, a), where a = leaf(c) is the final action sample of the segment.
The quantity Q̂(s, a) is the estimated long term return, when executing action
a in state s and is obtained in the real-time run when the agent enters the re-
sulting successor state s′ and is given by Q̂(s, a) = r(s, a) + γV̂ (s′). The value
of a non-leaf segment c is defined by the maximum value over all it’s children.
By applying this rule recursively bottom-up the value of root segment of state
s becomes the maximum value of all action samples generated by the diffusion
tree in that state and thus val(rt(s)) = V̂ (s) is the expected long term return
for state s when acting greedy, i.e. always executing the action that maximizes
expected long-term return.

Controlled Exploration by Informed Sampling: In order to direct our search for
good action samples we need to control our action sampling process. We do
this by controlling the divergence time and by controlling the choice of path
to go at a divergence point. For the first one, we use the approach from the
original DDT, which is decreasing the probability of divergence from a segment
c with increasing counter counter(c). This way we implement the principle of
reinforcement of past events. For the latter one, we will describe our approach
in the following.

The information available at a branching point leaf(c) is the set of children c′

of the segment c and all information those children are attributed with, in partic-
ular each one’s val(c′), which represents the expected action-value of the region
covered by the subtree of c′. Based on that information, we can make a decision
about which path to choose in numerous ways, each with different effects on the
resulting sample distribution. The original heuristics of [9] is to randomly choose
a child with probability proportional to the child’s counter. This heuristic re-
sults in an accumulation of samples in regions where already many samples are,
because counters of segments leading to those regions are high. However, to fa-
cilitate efficient exploration we wish to accumulate samples in regions with high
expected long-term return instead. A straight forward approach to implement
this idea is to deterministically choose the child with the maximum value. This
will ultimately lead to accumulation of samples in regions with high expected
long-term return. However, this statement is only valid, if the tree has ’seen’
values in all promising regions of the underlying domain, i.e. it has some sam-
ples evenly distributed over the underlying domain. If we choose this heuristic
right from the start of the learning process, the tree will concentrate its samples
to local optima it encounters in the first few sampling steps. A common way to
circumvent this issue in conventional approaches is to choose actions randomly at
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the beginning of the learning process which accounts for the uncertainty of knowl-
edge about the utility of the actions and to increase the trust on the knowledge
obtained by decreasing the random proportion in decision making over time. To
implement this idea we use Boltzmann Selection, where the probability of choos-
ing a child is given by pc = exp (val(c)/τ) /

∑
c′∈ch(pa(c)) exp (val(c′)/τ). Thus,

at the beginning of the learning process we set τ to a high value to account for
the uncertainty of knowledge. Choices will be made purely randomly and final
samples will be evenly spread over the action space. Over time we decrease τ , and
thus the choice will be increasingly deterministic to account for the increasing
certainty of the acquired knowledge about high expected return.

Algorithmic Description: Algorithm 1 shows the pseudocode of our approach.
Knowledge is acquired by incrementally building diffusion trees in the states.
Every time the agent visits a state, it generates a new path (line 2) in the
diffusion tree and thereby samples an action a to be executed. In the beginning

Algorithm 1. DT LEARNING(s).
1: repeat
2: c ← SAMPLE PATH(s)
3: a ← leaf(c)
4: execute a, observe result state s′ and reward r
5: PROPAGATE UP (c, r, val(rt(s′)))
6: s ← s′

7: until s is goal state

procedure SAMPLE PATH(s)

8: if rt(s) = 0 then
9: rt(s) ← sample new segment starting at t=0 and a=0

10: return rt(s)
11: else
12: c ← rt(s)
13: loop
14: d ← sample divergence time ∈ [start(c),D] // with start(·) ≡ start time

15: if d ≤ end(c) then // with end(·) ≡ end time

16: c′ ← sample new segment starting at t=d and a=c[d]

17: pa(c′) ← (c) and ch(c) ← ch(c) ∪ {c′}
18: return c′

19: else if d > end(c) then
20: c ← choose child c′ ∈ ch(c) by Boltzmann Selection

procedure PROPAGATE UP (c, r, v)

21: val(c) ← r + γ · v
22: repeat
23: c ← pa(c);
24: e ← r + γ v − val(c)
25: if e > 0 then
26: val(c) ← val(c) + α e // with α ≡ learning rate

27: until c has no parent
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of a run the diffusion trees in all states are empty, i.e. they have no path. On
the first visit of a state s the agent generates the first path, which will be the
first segment c of the tree in s and thus rt(s) = c (line 9). The leaf node of c
represents the final action sample a and thus leaf(rt(s)) = a (line 3). The agent
will now execute a leading into state s′, observe the reward r(s, a) (line 4) and
update the value of the three in s (line 5) by first setting the value of c according
to value update equation (line 21) and then recursively updating the value of
the parents (line 22). When entering a state with a tree that has at least one
segment, we walk down the tree by sampling a divergence time (line 14) and
choosing between children (line 20) until divergence (line 15). Figure 3 shows a
run of an agent in a world with two states and two actions.
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Fig. 3. Successive sampling of paths. The upper part of each figure shows the state

transition graph of a simple abstract world with two discrete states and two discrete

actions, where the current state is painted with a thick line width. Below the states

A and B the diffusion trees of those states are shown. The interval lines below the

trees illustrate the mapping from continuous action samples to the two discrete actions

utilized in the selected exemplary application.

5 Experiments

In order to validate our approach we conducted two experiments in simulation.
The experiments serve to validate the value of informed sampling against un-
informed sampling. Therefore we compare two algorithms, DT-Learning (DTL)
and a simple random scheme we call Random Sampling Q-Learning (RSQL). In
RSQL, with probability ν an action-sample is drawn uniformly in every state
and kept in case its resulting estimated return is greater than the return of the
best action-sample kept so far for that state. With probability 1 − ν the best
action obtained so far is executed. The parameter ν is set to a value near one
at the beginning and is decreased over time to account for the uncertainty of
knowledge in the beginning. Thus, RSQL is the simplest sampling scheme possi-
ble as it is as uninformative as possible while still fulfilling all necessities of the
Q-learning framework.

The task in the first experiment is to find the shortest path from a start
location to a goal location in a grid world. The states space consists of the two-
dimensional locations in the grid. The actions a′ in a gridworld consist of the five
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Fig. 4. Performance of the algorithms DT-Learning (DTL), RSQ-Learning (RSQL),

and Q-Learning (QL) on the two test tasks to reach a goal cell (left) and to stabilize

a pendulum (right)

choices to go up, down, west, east and to stay, i.e. a′ ∈ {0, . . . , 4}. To apply the
action-continuous approaches, their continuous outputs a ∈ [0, 5] are mapped
to those five actions by a′ = &a'. The agent receives a positive reward when it
enters the goal cell and a negative one, when it bumps into a wall. We chose
this discrete world, because it is simple and facilitates easy analysis of the key
properties of our algorithm. We evaluated the average number of steps until the
agent reaches the goal point during a number of successive learning episodes,
where the agent keeps its knowledge over the different episodes. Figure 4 (left)
shows the results, averaged over 10 trials each. We applied Q-learning (QL) in
its original action-discrete fashion, to serve as a base line for comparison. As
can be seen the convergence of both sampling-based algorithms is worse than
Q-learning. This is because Q-Learning, working with the five discrete actions,
is naturally the best fit for this task. The convergence of DTL is better than the
one of RSQL, due to DTL sampling more actions in regions with high expected
return, whereas RSQL acts ignorant about the knowledge obtained earlier and
thus generates samples that lead into walls with relatively high probability.

In a second experiment we tested our algorithm on the task to stabilize a
pendulum in an upright position. To ease the task, the starting position for every
episode is the upright position. During an episode the number of steps is counted
until pendulum crosses the horizontal position. The two-dimensional state space,
consisting of angle φ ∈ [0, 2π] and angular velocity ω ∈ [−10 rad

s , 10 rad
s ], was

discretized into 41 equally sized intervals per dimension. The action space was
the angular acceleration A = [−10 Nm, 10 Nm]. Figure 4 (right) shows the
results of the two algorithms RSQL and DTL. As can be seen DT-Learning
converges slightly faster. Again, this is due to the more efficient exploration
resulting from controlled sampling of actions in regions with higher expected
return. We omitted Q-Learning here, because the necessary discretization of the
action space would render the results incomparable.
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6 Conclusion

In this work we presented an approach for reinforcement learning with continu-
ous actions. We were able to show the benefits of informed sampling of actions by
efficiently using hierarchically structured knowledge about values of the actions
space. The computational cost of sampling an action is of logarithmic order in
the number of action samples, as is typical for tree-based approaches. In com-
parison to a very simple, uninformed sampling scheme our approach showed
better convergence rates. However, some open issues remain. Due to the dis-
cretization of the state space, there is a discontinuity in the value of a particular
action between two states. This could be handled by an interpolation between
two trees. Another issue concerns the aging of information in unused parts of
the trees. Because memory requirements for our approach are relatively high, a
technique must be found to prune subtrees based on the utility of their contained
information. These issues will be subject to further research.
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Abstract. We discuss the use of Ordinal Conditional Functions (OCF)

in the context of Reinforcement Learning while introducing a new revi-

sion operator for conditional information. The proposed method is com-

pared to the state-of-the-art method in a small Reinforcement Learning

application with added futile information, where generalization proves

to be advantageous.

1 Introduction

An autonomous learning system tries to figure out which actions are beneficial
and which have to be avoided. Starting with three system requirements we de-
veloped the work described in this paper. These requirements are the following.

First, an autonomous learning system should be able to learn from experience.
It should have some kind of memory that, e.g., enables it to decide not to fall over
a cliff again in case it proved harmful the last time. A widely adopted approach
to incorporate such a property is given by Reinforcement Learning (RL) [10].

Second, the system should generate a representation of its belief that allows
further reasoning. In this area Belief Revision (BR) techniques can be found.
We will examine the usefulness of Ordinal Conditional Functions (OCF) [4,7] in
this work.

Third, and most important, we want both mentioned approaches to benefit
from each other. This kind of mixture of low-level learning-by-doing and high
level deduction abilities is called a two-level learning approach. Psychological
findings [6] indicate that such two-level learning principles can explain some of
the human learning abilities. While humans are able to learn both, in a top-down
and bottom-up way[9], we will focus on the bottom-up part only.

A combination of RL and BR has been proposed recently [5], influenced by
[8] and [11]. In this work, we will shed light onto a rather small but important
detail of this approach.

2 Reinforcement Learning and OCF

In Reinforcement Learning, we have a set of states S, a set of actions A, a
transition function δ : S×A→ S, and a reward function r : S×A→ R. Belief
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about good and poor actions is learned by applying a learning scheme, in this
case we use Q-learning. The experience is captured in the Q(uality)-function,
that assigns an expected reward to each state-action-pair. One can interpret the
Q-function in such a way, that an action A is believed to be best, if it has the
highest Q(S, A) value for a given state S. This is where we establish a connection
to the high-level belief using BR.

BR is a theory of maintaining a belief base in such a way, that the current
belief is reflected in a consistent manner (cf. [2] and [1]). We model our belief
base κ as an OCF. This is a ranking function that maintains a list of all models,
which are propositional information in the form of conjunctions. The models the
system believes in are set to rank 0, while all ranks greater than 0 reflect an
increasing disbelief. We denote the rank an OCF κ assigns to a model M as
κ(M). By convention, contradictions shall have the rank ∞.

However, during the exploration the information gathered and the information
needed is in the form of conditionals, not conjunctions. To check, whether an
OCF believes a conditional, it is sufficient to compute the belief ranks r1 =
κ(SA) and r2 = κ(SA). If r1 < r2, the conditional is believed.

More difficult then querying the belief base, is its update, called revision. The
revision operator is “∗”.

Conditionals in BR are usually denoted as (A|S), where S is the antecedent
and A the consequent. The meaning of (A|S) is not exactly the same as S ⇒ A
[4]. The latter means that S implicates A irrespective of the values of other
variables. In contrast, (A|S) expresses that A is believed if κ is conditioned with
S and S alone. In contrast, a revision (κ ∗ (ST )) may not result in A being
believed.

The revision described in [5], conforms to (κ ∗ (A|S)). The new revision we
introduce is (κ ∗ (S ⇒ A)). It needs a new operator κ[A], which shall return the
highest disbelief among all models of A. (κ ∗ (S ⇒ A)) is defined as follows:

If κ(SA) < κ(SA), do nothing. If κ(SA) ≥ κ(SA), then the OCF κ′ derived
from κ by rearranging the models using

∀M ∈M : κ′(M) := (κ ∗ (S ⇒ A))(M)

=

{
κ(M)− κ(S ⇒ A), if M is a model of S ⇒ A

κ[SA] + 1− κ(S ⇒ A) + κ(M)− κ(SA), if M is a model of SA
(1)

will result in κ′(SA) < κ′(SA). Consequently, κ′ expresses the belief in S ⇒ A.
Concerning the insurance of actual belief, this method works just as good as

(κ ∗ (A|S)), but introduces greater changes. The justification for these changes
is its behavior toward sequences of belief changes, especially in the context of
multi-valued logic, where (κ ∗ (A|S)) fails to produce consistent results when
considering negation and generalization.

3 Application

We examine the effect of the proposed algorithm in a cliff-walk gridworld [10]
(Figure 2). For this application, three cases are examined, which are plain
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Q-learning, OCF-augmented Q-learning with application of (κ ∗ (A|S)), and
OCF-augmented Q-learning with application of (κ ∗ (S ⇒ A)). An OCF-
augmented Q-learner is a Q-learner that has conditionals extracted from its
Q-Table. These conditionals revise the learner’s OCF and this OCF acts as a
filter for the choice of actions afterwards. Figure 1 shows this architecture.

We add futile information to model the case where the agent perceives prop-
erties of its environment that are not helpful with regard to its goal. The OCF-
augmented Q-learners are expected to be able to generalize and therefore identify
the futile information. The generalization is performed in the same way as in [5]
by counting the pattern frequency. The general idea is to keep track of how often
sub-patterns of antecedents are used in the context of particular consequents. If
they occur frequently enough, we revise the OCF with the sub-pattern instead
of the complete state description. The state description is also adopted from [5],
where a qualitative description is used which consists of the relative position
of the agent towards the goal (north, south, east, west) and a distance (near,
middle, far) amended with information on adjacent obstacles. Reaching the goal
triggers a reward of 100, getting closer towards it is rewarded with 0.5. Stepping
into the chasm is punished by −10, every other step gets a −1. After 100 steps
the episode is forced to end. The results are depicted in Figure 3. It is evident
that a revision with (κ∗(S ⇒ A))clearly outperforms a revision with (κ∗(A|S)).
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The latter is worse than a plain Q-learner and even seems to deteriorate over
time. An explanation for this may lie in the fact that the OCF gets contaminated
by harmful conditionals. However, this has not been examined in this work.

4 Conclusion

There are some questions left open. Clearly, the use of an OCF speeds up the
learning process (measured in the number of episodes). However, the role of futile
information has to be examined in more detail. The performance of the proposed
method surpasses the plain Q-learner’s. Since off-policy learning usually shows a
worse performance than on-policy learning, OCF-augmentation could be a way
to ease this weakness. Finally, it may be interesting to examine the use of an
OCF directly as a Q-function to create a Relational Reinforcement Learning
system[3].
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Abstract. Our ultimate goal is to realize artificial agents, which can be taught
and can behave appropriately in volatile environments. Supervised reinforcement
learning (SRL) will play a crucial role in this endeavor as SRL enables agents
to function in situations that partly deviate from what has been taught. Currently
reinforcement learning (RL) is typically implemented for single tasks, which re-
stricts teaching plural behavioral sequences. Herein we introduce a SRL scheme,
which exploits explicit state-action lists to facilitate reuse of learned behavioral
sequences. By combining the constructed learning system with a standard RL al-
gorithm, the system could solve a problem in one-shot for the supervised portions
and use RL to compensate for the unsupervised portions.

Future robots/agents are expected to support humans in a multitude of environments.
On-line learning systems will be necessary to achieve user specific behavior/dialog con-
trols because real situations are diverse and volatile. In order to adapt to user’s situa-
tions, learning from user’s instructions seem to be effective for humans, however, it
may often be incorrect and inappropriate for machines. Moreover, just recalling learned
behavioral sequences in response to user’s demands is inefficient in real diverse envi-
ronments. In order to achieve those final goals, this paper focuses on one type of learn-
ing problem as a first step, called simple partially supervised tasks (SPSTs). A SPST
requires a learning agent to reach several specified target states by performing sequen-
tial behaviors acquired through explicit supervision by others as well as trial-and-error
learning by itself. Each supervised behavioral sequence is simple, and we expect the
agent to acquire the supervised sequence in one-shot. Figure 1 depicts the test set for
SPST. In this test, supervision is executed in an interactive manner, so when the agent
observes a state, a proper action is suggested for each step. Episodes A, B, and C are
exhibited to the agent in a stepwise fashion, and the agent is taught that these patterns
are good sequences. Additionally, the agent learns episode D is a bad example by in-
teractive supervision. These episodes are taught to a learning agent only once. Next the
agent should attain the indicated problems by executing proper behavior. For example,
in the case of problem 1, the agent should perform behaviors of episode B after those
of episode A. Although systems that test this via an appropriate search method may be
implemented, they tend to be insufficient. A satisfactory system should coincide with
behavioral learning without supervision. Otherwise, it is difficult to maintain consis-
tencies between behaviors learned with supervision from those without supervision.
Moreover, situations during problems can differ from those during supervision. The
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actual transitions of the problems might be changed from deterministic to probabilis-
tic. Additionally, part of the sequence can vary from supervised ones; thus, the system
should be complemented by trial-and-error learning.

Reinforcement learning (RL) [1] actualizes unsupervised behavioral learning
through trial-and-error. RL consists of two aspects: statistical evaluation of past be-
haviors based on reward signals and behavior generation with respect to the evaluation
results. It is possible to complement behavior generation by combining it with super-
vised methods, which we call supervised reinforcement learning (SRL). RL and SRL
are, however, typically implemented for single tasks, which has difficulties learning plu-
ral behavior sequences necessary for multi-targeted tasks. In RL and SRL, a device to
distinguish between problem 1 and problem 2 in Figure 1 does not exist. Future agents
should behave by corresponding to user’s demands. A mechanism, which enables an
artificial agent to memorize behavioral sequences in a form that facilitates reuse, is
needed to evaluate memorized behaviors and autonomously modify them. Intrinsically
motivated reinforcement learning (IMRL) studies [2] represent acquired skills of agents
by virtue of options [3]. IMRL studies have suggested a method to acquire options by
introducing intrinsic motivations where specified salient events are temporal motiva-
tions to acquire and modify new options. Because options are not aimed at supervised
learning, applying them to SRL is not straightforward.

Herein we propose to decompose value functions of RL in accordance with search
techniques such as the best-first search method [4]. Our algorithm works as an auxiliary
device to supplement RL. In addition, RL usually takes a long time to learn because its
premise is only trial-and-error learning. Thus, we aim to realize effective combinations
of RL and supervision to achieve one-shot learning with supervision. Our aim is not
to solve static problems rather to tackle dynamic and volatile environments. Then, we
do not stick to theoretical optimal solutions, rather we aim at constructing a practical
algorithm which may achieve sub-optimal or appropriate solutions.
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1 Decomposition of Expected Rewards by Targets

We postulate that the Markov decision process (MDP) consists of a fixed observable
state space S and a fixed action set A. We assume sparse reward functions where the
learning system receives non-zero rewards only at the end of sequential episodes be-
cause these types of sparse rewards are tractable to design in practical applications. For
these conditions, the expected future rewards under a policy π become:

Rπ(st, at) = Eπ [γk−1rt+k|st, at] (0 < γ < 1), (1)

where rt+k is a reward value at the end of an episode and the t + k is the time at the
end of an episode. γ is the discount rate, st is an observed state s ∈ S at time t, and at

is the selected action a ∈ A at time t. In MDP, equation (1) can be decomposed into:

Rπ
(st, at) =

∑
γk−1rt+k

γk−1rt+kP π
(γk−1rt+k|st, at)

=
∑

(S,A,S′)

Eπ
S,A,S′ [γk−1rt+k|st, at],

(2)

We denote the tuple (st+k−1, at+k−1, st+k) as (S, A, S′), which consists of a state-
action pair that occurs before observing a targeted state and the target state st+k.
Eπ

S,A,S′[γk−1rt+k|st, at] is a partial expected reward decomposed by (S, A, S′). Equa-
tion (2) indicates that each state-action pair (si, aj) can be grouped by each (S, A, S′).
Hence, we named our algorithm ‘RL-SAS’. Each grouping is called an ‘SAS list’. Each
state-action pair (si, aj) is allowed to be a member of several SAS lists. The expected
reward Rπ(st, at) is obtained by adding all Eπ

S,A,S′[γk−1rt+k|st, at].
We simplify equation (2) by assuming that P π(k|rt+k, st, at) ∼ P π(k|st, at), where

P π(k|·) is the probability that an episode terminates at time step t + k. Then we can
calculate equation (2) by multiplying two expectations:

Eπ
S,A,S′[γk−1rt+k|st, at] ∼ E[rt+k|S, A, S′] · Eπ

S,A,S′[γk−1|st, at], (3)

where
E[rt+k|S, A, S′] =

∑
rt+k

rt+kP (rt+k|S, A, S′), (4)

and, to simplify implementation, P π(k|st, at) and P π(S, A, S′|st, at) are assumed to
be independent. Then

Eπ
S,A,S′[γk−1|st, at] =

∑
k

γk−1P π(k, S, A, S′|st, at). (5)

Figure 2(b) shows the schematic diagram of an SAS list. Each episodic transition (Fig-
ure 2(a)) is transferred into the form of a SAS list with the above estimated averages.
Moving averages (MAs) are utilized to estimate the averages described in equations (4)
and (5). A simple moving average (SMA) is the partial average of the previous n data
points. The number n should be a small value like 10 so that the system can be changed
in accordance with a volatile environment. To achieve specified targets, better actions
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from experienced sequential actions represented by each SAS list and combination of
them must be searched (Figure 2(c)). We employ the best-first search method [4], which
can search the best combinations of SAS lists in the expected future rewards to achieve
specified targets. The expected rewards of the combinations are roughly estimated from
ma[r|S, A, S′] and maSAS′ [γ|s, a] as:

mas′a′s′′ [γ|s, a]ma[r|s′, a′, s′′]+
mas′a′s′′ [γ|s, a]mas′′′a′′′s′′′′ [γ|s′′, a′′]×ma[r|s′′′, a′′′, s′′′′] + · · · . (6)

Although these estimates of the combined expected reward may not be guaranteed as a
normative value function, the aim is to let the system attend to a suggested action with
plausible estimations along a search path.

2 Simulation Results

This section describes empirical evaluations of our proposed model using partially su-
pervised tasks described in Figure 1. Herein, we combine RL-SAS with the SARSA(λ)
algorithm. Because SARSA is on-policy learning, we anticipated that learning would
follow the supervised sequences. We demonstrate an efficiency of RL-SAS as an auxil-
iary system for RL by comparing our constructed model RL-SAS+SARSA(λ) with sin-
gle SARSA(λ). This algorithm is denoted RL-SAS+SARSA(λ). We set up the RL-SAS
algorithm as an auxiliary device to RL. Thus, RL-SAS indirectly affects RL through
action selections and does not disturb RL itself. If an effective supervision is given, the
system selects a supervised action. Otherwise, RL-SAS affects the consequence. If a
valid goal state is provided, then best-first search [4] is executed to find a path from
the state to the provided goal state. The algorithm searches a path to the specified goal
with the best combinations of expected rewards calculated by equation (6). If the search
succeeds, the system modifies the action-value so that the action selector likely selects
the action to follow the identified path. This search is repeatedly executed in each step,
even if the perfect path to the goal is found. This repetition ensures the system functions
in probabilistic transitions and even uncertain consequences. The softmax action selec-
tion rule is engaged in to decide the action. We also implemented a mechanism that
autonomously acquires SAS lists. When the agent earns a non-zero reward rt+1, the
system searches the already acquired SAS lists, which contains the target state-action as
(S, A, S′) = (st, at, st+1). If none of the SAS lists contain the target state-action tuple
(st, at, st+1), then the system generates an SAS list targeting (st, at, st+1) and copies
some state-action pairs to the list. If the system finds an SAS list where (S, A, S′) is
(st, at, st+1), the system tries to extend the corresponding list.

Based on Figure 1, we conducted a test, which consisted of 20 trials. The first four
trials were supervised. In the first trial, the agent was taught episode A in Figure 1
in a stepwise manner. The initial state was s0 and all the actions were selected by a
supervisor until the learning agent reached state s3. Simultaneously, the agent received
a positive reward r = 1. Similarly, episodes B and C were presented in the second
and third trials, respectively. In the forth trial, episode D was taught to the agent with a
negative reward r = −1. The next sixteen trials were problem trials. In the fifth trial,



208 J. Takeuchi and H. Tsujino

(a)

Supervised Problem

50

40

30

20

10

0

St
ep

s

A B C D 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2

Trials

 SARSA(0.1)
 SARSA(0.5)
 RL-SAS+

          SARSA(0.5)

(b)

Supervised Problem

100

80

60

40

20

0

St
ep

s

A B C D 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2

Trials

 SARSA(0.1)
 SARSA(0.5)
 RL-SAS

        +SARSA(0.5)

(c)

Supervised Problem

100

80

60

40

20

0

St
ep

s

A B C D 1' 2 1' 2 1' 2 1' 2 1' 2 1' 2 1' 2 1' 2

Trials

 SARSA(0.1)
 SARSA(0.5)
 RL-SAS

        +SARSA(0.5)

(d)

Supervised Problem

100

80

60

40

20

0

St
ep

s

A B C D 1' 2 1' 2 1' 2 1' 2 1' 2 1' 2 1' 2 1' 2

Trials

 SARSA(0.1)
 SARSA(0.5)
 RL-SAS

         +SARSA(0.5)

Fig. 3. Averaged performances of partially supervised tasks. Ordinate indicates the number of
steps to earn a positive reward within a fixed time. Abscissa indicates the number of trials the
agent attempted in each set. ‘SARSA’ is the result of the SARSA algorithm and the figures in
parentheses are λ values. RL-SAS+SARSA(0.5) is the result of our proposed learning model.

the agent was to solve problem 1 within a fixed number of steps. The next trial (the
sixth) was problem 2. Alternately these problem trials were repeated until the 20th trial.
In these problem trials, the agent received a positive reward r = 1 when it successfully
achieved the specified target. Similar to episode D, if the agent chose the transition from
s4 to s7 during the trials for problelm 1, the agent earned a negative reward r = −1. In
the trials of problem 2, the agent could not directly transit from s4 to s7.

Figure 3(a) shows the average performances of the above test. These data were av-
eraged over 1000 trial sets. SARSA(0.1) rarely achieved each target within 50 steps
in the problem trials, whereas, the result of SARSA(0.5) tended to learn only problem
1, which seemed to depend on the order of the trials and learning steps. It is difficult
to adjust parameters for a single SARSA(λ) to accomplish these tests. For example,
if the maximum number of steps for each trial was set to 100, SARSA(λ) repeatedly
relearned each problem in each trial and never converged for both problems. On the
other hand, our proposed model RL-SAS+SARSA(0.5) repeatedly achieved each spec-
ified target with a minimum steps (six) without errors. Additionally, we investigated the
performances in a probabilistic environment. Only in the problem trials were the tran-
sitions changed into probabilistic ones where the probability of each transition was set
to 0.8. If the agent failed to transit to the next step, the state turned into the initial state
s0. RL-SAS could appropriately guide the learning agent to each specified target, as
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shown in Figure 3(b). Only the case of RL-SAS+SARSA(0.5) achieved problem trials
with the ideal minimum steps without choosing incorrect actions. RL-SAS explicitly
treats specified target states in decisions to select actions, which enables one-shot learn-
ing. For SARSA(λ), standard RL lacks a device to exploit the information of expressly
provided targets. Hence, RL must repeat trial-and-error learning every time, which can
be an obstacle for multi targeted tasks that are more realistic in practical applications.
Here, we just try to show that RL-SAS can suppress an aversive effects of RL and can
exploit the provided target states.

Nonetheless, RL is an efficient learning algorithm to determine proper actions
through trial-and-error. Figure 3(c) depicts the case of a deterministic transition ,which
contains partially unknown transitions. In the problem 1 trial, if the agent chose action
a2 at state s1, it transited to s7 instead of s2. Afterwards, the agent had to choose ac-
tion a3 to transit to s3. Because this transition was not taught in advance, the agent
must acquire the correct behavioral pattern through trial-and-error. In the figure, this
problem is denoted by 1′. The problem 2 trial did not differ from the original one.
Only RL-SAS+SARSA(0.5) exhibited a tendency to converge. Figure 3(d) are the re-
sults of mixed conditions with (b) and (c). Hence, the transitions were probabilistic and
partially unknown. Thus, RL-SAS enables RL to function in multi-targeted tasks with
supervision.

3 Conclusion

RL-SAS combined with SARSA(λ) could learn several deviated versions of problems
depicted in Figure 1, which we call SPST. For sequence portions supervised in ad-
vance, RL-SAS maintained sustained action selections. RL depended on learning con-
ditions, including supervising orders, trial orders, and even the number of maximum
steps. RL-SAS suppressed such adverse effects of trial-and-error learning. Additionally
RL-SAS+SARSA(λ) was effective in the problems including probabilistic and partially
unsupervised ones, where the conditions were different from those which were super-
vised. Our aim is not to solve static problems rather to tackle dynamic and volatile en-
vironments. Rather we require the learning system that is able to function in changing
environments. RL-SAS enables the immediate combinations experienced sequential be-
haviors and one-shot learning. We conclude that the proposed combined system has the
potential to be applied to future robots/agents behaving in volatile real environments.
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Abstract. We present a model of bird song production in which the motor con-
trol pathway is modeled by a trainable network of oscillators and the Anterior 
Forebrain Pathway (AFP) is modeled as a stochastic system. We hypothesize  
1) that the songbird learns only evaluations of songs during the sensory phase; 
2) that the AFP plays a role analogous to the Explorer, a key component in Re-
inforcement Learning (RL); 3) the motor pathway learns the song by combining 
the evaluations (Value information) stored from the sensory phase, and the ex-
ploratory inputs from the AFP in a temporal stage-wise manner. Model per-
formance from real birdsong samples is presented.  

Keywords: Birdsong, reinforcement learning, chunking, actor-critic-explorer 
schema, central pattern generators, Anterior Forebrain Pathway(AFP). 

1   Introduction 

The process of song learning in birds shares many similarities with that of human 
speech learning [1]. Hence it is a potential model system for investigating the mecha-
nisms of motor skill acquisition and the role of various brain regions in the same. 
Song learning in birds takes place in three stages: the sensory stage, during which the 
birds listens to and memorizes the song, the sensori-motor stage, when the bird learns 
the memorized song by self-feedback and the crystallized stage, when the bird has 
developed a stable song matching that of the tutor. 

1.1   Neuroanatomy of Birdsong 

Fig. 1 shows the neural pathways in the birdbrain involved in song learning. There are 
two major pathways involved in the song learning process: the Motor Pathway and 
the Anterior Forebrain Pathway (AFP), an avian analogue of mammalian basal gan-
glia. AFP consists of 3  major sets of nuclei - Area X, Dorso-Lateral Thalamus 
(DLM) and Lateral Magnocellular Nucleus of the Anterior Neostriatum (LMAN). 
Motor Pathway runs between two nuclei – the HVC and the Robust nucleus of the 
Archistriatum (RA). It also receives dense dopaminergic projections from the mid-
brain region called the Ventral Tegmental Area (VTA). HVC receives inputs from the 
auditory system (Field L) and sends glutamatergic projections to the RA and Area X, 
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a region of the AFP. The RA has two different sets of motor neurons innervating the 
syringeal muscles and the respiratory muscles. Lesioning studies [2] suggest that song 
learning can be described within the Reinforcement Learning (RL) framework and the 
AFP probably plays the role of the explorer [3].  

 

 

Fig. 1. Neuroanatomy of Birdsong.AFP- Anterior Forebrain Pathway,RA- Robust nucleus of 
the Archistriatum, DLM- Dorso-Lateral Thalamus, LMAN - Lateral Magnocellular Nucleus of 
the Anterior Neostriatum, VTA – Ventral Tegmental Area, Glu- Glutamate, GABA – Gamma-
Amino-Butyric Acid, DA –Dopamine (Lines ending with circles indicate inhibitory connec-
tions, lines ending with squares indicate dopaminergic connections,arrows indicate excitatory 
connections) 

1.2   Previous Models 

Accordingly several RL-based computational models of song learning have been pro-
posed. In [4], the AFP stores in it a ‘song template’ which it compares with the bird’s 
own song to adaptively train the song bird. The synaptic perturbations were provided 
by LMAN in the AFP. Doupe et al [5] proposed a model based on the ‘AFP compari-
son hypothesis’ in which the AFP evaluates the birdsong by producing a prediction of 
the feedback of the syllable, the ‘efference copy’. Seung et al [6] proposed a spiking 
neuron model involving the motor pathway and the LMAN nuclei. These models have 
focused on elucidating the role of various regions within the song system with a spe-
cific function during the song learning process. Yet the role of dopamine in the learn-
ing process has not been considered by these models. Considering the fact that the AFP 
functions in a manner analogous to the BG in humans, it would be interesting to under-
stand the exact role of dopamine in the AFP during learning. In our model, this has 
been modeled as a Temporal Difference error in the RL framework. 

2   Model Description 

We propose a model of song learning based on reinforcement learning where the  
HVC – RA system is modeled by 2 sets of Hopf oscillators, which act as Central Pat-
tern Generator (CPG) circuits. The AFP is modeled as a random noise source, which 
perturbs the output of the oscillatory networks. The outputs of the two networks, with 
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the noise added from the AFP, are fed to the model of the bird vocal organ, the syrinx. 
The output of the syrinx in turn is fed to a vocal filter which plays the role of analogous 
to the bird’s beak.  

Figure 2 gives a broad overview of the proposed model. 
 

Fig. 2. The Actor-Critic-Explorer schema of the proposed model with the various components. 
AFP- Anterior Forebrain Pathway. For explanation of the notations refer text. 

2.1   The Motor Pathway Model 

We use a network of Hopf oscillators to model the motor pathway [7]. During the 
training process, the learning signal is fed as a forcing function to each of the oscilla-
tors in the network. 

The governing equations for the variables of the oscillators are given as: 
 
                        

 
 
 
 
 
 
 
 
 
where, µ is a parameter that controls the amplitude of oscillations, ω is the intrinsic 
frequency of the oscillators, є  is a coupling constant and γ is the learning rate, α de-
notes the weights of the oscillators, α0 denotes the baseline values of the weights and x 
and y denote the state variables of the oscillator. Eqns. (1,2) denote oscillator dynam-
ics, eqns. (3,4,5) denote learning dynamics of the parameters ω, α and α0. Note that 

    (1) 

    (2) 

      (3) 

   (4) 

   (5) 

d x 2= γ ( μ - r ) x - ω y + ε F ( t ) .      
d t

d y 2= γ ( μ - r ) y - ω x .
d t

d ω y
= - ε η ( ) F ( t ) .

d t r

d α
= η x ( t ) F ( t ) .              

d t

d α 0 = η c F ( t ) .              1d t
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the learning described above is a supervised form of learning. In the present model, 
the above learning mechanism is reformulated as a RL mechanism. 

We use the above two- network model to simulate the outputs from the motor path-
way to the syringeal and respiratory muscles. The outputs of the two oscillatory net-
works are: 

0 1 11

n
v (t)= α x α ci ii= 1

.+∑  (6) 

02 22

n
v (t)= α x α ci ii=1

.+∑  (7) 

2.2   The Anterior Forebrain Pathway in the Model 

We propose that the AFP plays the role of an ‘explorer’ in the Reinforcement learning 
framework. This pathway serves as the source of chaotic perturbations to the motor 
pathway. This is evident from the remodelling of the LMAN-RA synapses observed 
during song learning [8] and the reduced variability in the song following LMAN 
lesions [2]. At the onset of learning, the LMAN-RA projections are diffuse and the 
bird produces highly variable notes (subsong). During the process of learning, refine-
ment of LMAN-RA synapses takes place (plastic song) and at the end of crystallised 
song phase, the number of LMAN-RA synapses decreases substantially. The output of 
AFP to RA is modeled by a two-dimensional random vector, where each component 
is a random variable with mean 0 and standard deviation 0.25. The outputs of RA 

(v(t)) and LMAN ( iζ ) are combined and given as input to the vocal organ: 

u(t)= v(t)+( )ζ.χ  (8) 

The term χ  controls the exploratory drive to the oscillatory networks. This in turn is 

controlled by a variable δ, which denotes the Temporal Difference (TD) error term in 
the RL framework [4], given by 

tanh( . ( ) ( ))s e t err tavgδ = −  (9) 

where, s is a constant, eavg(t) is the average error of the previous training stage and 
err(t) is the current error.  

2.3   The Respiratory System and Syrinx Model 

The respiratory system and syrinx module used in the present model is modeled after 
[9]. Equations are omitted for reasons of space. 

2.4   The Vocal Filter Model 

The output of syrinx module is fed to a vocal filter model, which is modeled after [9]. 
Equations of the model are omitted for reasons of space.   



214 M. Manaithunai, S. Chakravarthy, and R. Balaraman 

2.5   Training Algorithm 

The model is trained in a temporal stage-wise manner. The signal received by the mo-
tor system is processed by dividing the signal into smaller segments. Each segment is 
processed based on the goodness of fit of the previous segment. This kind of segmenta-
tion process, referred to as ‘chunking’ of sensory information, has been observed to 
occur in the case of performing a sequential visuomotor task. [10]. In the model, train-
ing is done by comparing the instantaneous error in the system’s output with the aver-
age error over the previous segment using a TD learning algorithm. Training is per-
formed if the TD error at a given instant is lesser than that of the previous trained seg-
ment. The error is computed as a weighted average of errors in the peak frequency, 
peak amplitude and baseline values of the signal over a small time window. 

3   Results 

The model was tested on two different zebra finch song syllables. The results of one 
of the syllables is shown in Figure 3. 

 

 
 

            
                         

 
                                          

 
 
 

 
 
 
 
Fig. 3. (a) Sound pressure waveforms (normalised) of a birdsong syllable (left) and the recon-
structed waveform obtained from the model( right).(b) Power spectrums of an actual birdsong 
syllable and the reconstructed waveform obtained from the model are shown below.(c) The 
error plot for the different stages in the training is shown. The solid line indicates the first stage 
of training where the error is the weighted average of errors in the peak frequency, peak ampli-
tude and baseline values of the signal over a small time window. The dashed line indicates the 
second stage training where the error is the average value of instantaneous error over a small 
time window.   
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4   Discussion 

Our model of song learning was constructed on the premise of error-driven learning 
observed in real zebra finches. According to our model, song learning proceeds in a 
stage-wise manner, similar to the chunking mechanism observed in humans. The 
precise mechanism for song learning is not known. It was observed that different 
juvenile birds exposed to the same tutor song learnt the song by using different strate-
gies [11]. Of considerable importance is also the fact that, in humans, this kind of 
chunking in information processing is thought to be mediated by the basal ganglia 
[12], which in our avian model corresponds to the AFP. It would be interesting to 
observe by further experiments, the exact role of the AFP in vocal learning, which 
would help us get closer to the understanding of basal ganglia function in general. 
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Abstract. A computational model of the Basal Ganglia and the Hippocampus 
as key players in solving a navigation task is presented. The roles played by the 
above-mentioned neural substrates in navigation are demonstrated by an explo-
ration task performed by a model rat in a simulated Morris Water Maze. To 
highlight the role of hippocampus in navigation, the agent is made to adopt a 
context-based navigation strategy. To demonstrate the role of BG in navigation, 
the agent is made to adopt a visual cue-based navigation strategy. The models 
are developed based on “actor-critic” architecture and trained using reinforce-
ment learning. The above two models are integrated into a complete model 
which incorporates the above two forms of navigation.  

Keywords: basal ganglia, hippocampus, navigation, reinforcement learning, 
dopamine, temporal difference learning, actor, critic. 

1   Introduction 

Animals follow a variety of strategies to find their way around in the environment [1]. 
For example, when the goal location is signaled by a visible cue, the animal adopts a 
type of strategy known as the cue-based navigation which is thought to be subserved 
by the Basal Ganglia (BG). In other cases, animals navigate by an internal spatial 
model of the environment. This type of navigation, known as the place-based naviga-
tion, is subserved by the hippocampus. Navigation is controlled by both wander-
ing/searching and goal-directed movements. A model of navigation must include a 
component with stochastic dynamics (corresponding to wandering movements) and 
another component, which guides the agent towards the goal using a certain “sali-
ence” function. An abstract integrated model of spatial navigation involves both BG 
and hippocampus, but in a lumped form in [2]. We present an integrated model of 
spatial navigation involving both BG and hippocampus, in which the role of the indi-
rect pathway of BG in exploratory behavior is highlighted.  

2   A Model to Demonstrate the Role of BG in Navigation 

The model developed (Fig.1) is based on “actor-critic” architecture [4] of Reinforce-
ment Learning (RL). The Motor Cortex (MC) serves as the Actor and the striatum as 
the Critic. The BG is perceived to have two competing elements: a movement facili-
tating mechanism mediated by the direct (striatum  GPi) pathway and a movement  
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Fig. 1. Architecture of the model developed to demonstrate the role of BG in navigation 

inhibiting mechanism mediated by the indirect (striatum  GPe  STN  GPi) 
pathway. The relative activity of the two pathways is controlled by dopamine signal 
of the SNc. Experiments in [3] have suggested a link between activities of mesen-
cephalic dopaminergic neurons and a quantity from Reinforcement Learning known 
as Temporal Difference error (TD error). Thus the general consensus in BG modeling 
literature regarding correspondence between RL components and BG nuclei is as 
follows: MC  Actor, Striatum  Critic, DA signal  TD error. Another major 
component in RL machinery is the Explorer, which explores the space of possible 
actions and discovers rewarding actions. In [5] it was hypothesized that the indirect 
pathway is the Explorer within BG, which is adopted in the present model.  

In the present model, a rat is made to search for a visible platform (cue-based) and 
an invisible platform (place-based with context) in a simulated Morris Water Maze. 
Spatial context is provided by poles of various heights, placed around the pool. The 
height of retinal image of each pole, which lies within the visual field of the model 
rat, is calculated according to Eqn (1). 

   _    /  ( )ret ht ht rad d× × = λ                                         (1) 

where _ret ht  is the height of the retinal image of each pole viewed by the model rat, 

ht is the height of each pole, λ  is a constant, rad is the radius of the pool and d is the 
distance between the model rat and the pole. 

This visual input is presented to both MC and BG, both of which produce outputs 
contributing to the rat’s next move as described in Eqn (2).  

        actor BGg tanh ( g + g ) = α   β                                                 (2) 

where g is the final output which controls the movement of the model rat, α  and β  

are the weighting factors for MC output and BG output respectively and actorg and 

BGg  are the outputs of the MC  and BG respectively. 

Mesencephalic dopamine neurons are activated when an animal receives rewarding 
stimuli from the environment.  Dopamine release is further classified in terms of the 
time-scale at which the release occurs. Phasic dopamine release is a transient phe-
nomenon. The TD error, which represents phasic dopamine in the model, stands for 
the difference between the total actual reward and the total predicted future reward 
(Eqn (3)). This signal is used to reinforce actions that yield reward and attenuate those 
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that lead to unrewarding situations. RL is thought to be supported by BG with dopa-
mine playing the role of TD error. 

   ( ) ( 1) ( )v t v t r t  δ = γ − − +           (3) 

where δ  is the temporal difference in Value, γ  is a constant discounting factor, 

( )v t is the Value of the current position, ( 1)v t − is the Value of the previous position 

and ( )r t is the reward received at the present instant of time. 

Tonic dopamine, which refers to the sustained, "background" dopamine release, is 
calculated in the model according to Eqn (4). 

    2) ( ) ( 1) ( 2) ...r t t t tδ γδ γ δ( = + − + − +                              (4) 

where )r t(  is the tonic dopamine level at time t ,δ ’s the TD errors at the different 

time instants and γ  the discounting factor. 

The BG pathways (DP and IP) are modeled as a function of both, δ and r . When 
δ  is positive and high, exploitation behavior (following the Value gradient) is re-
quired and not exploration (search for new directions). In this scenario, DP response 
should be high. If δ is negative and high in magnitude, the direction of navigation 
should be reverted. Hence, DP response is modeled as a tanh (.) function of δ  (Eqn 
(5)). If δ is low, it indicates that the rat is away from the goal. In this situation, more 
of exploratory behavior is required. Hence, IP response is modeled as a Gaussian 

function ofδ , with the mean at 0 (Eqn (6)). When r  value is high, indicating that the 
rat has almost reached the goal, neither DP nor IP response should be selected. In-
stead, the final output should be dominated by the MC output. Hence, IP and DP 

responses are modeled as exponentially decreasing functions of r  (Eqns (5) and (6)). 
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( ) ( ) ( )bg dp ipy t y t y t = +                            (7) 
            

where dpy  is the output of the direct pathway, ipy  the output of the indirect pathway, 

ψ  a noise term arising out of IP, λ  a constant, σ  the standard deviation of the 

Gaussian used to compute the response of the indirect pathway. 
The Critic is modeled as a multilayer perceptron (MLP) with a single hidden layer 

consisting of 30 sigmoidal neurons. The input layer of the MLP receives external 
visual input in the form of a view vector of size 8x1. The training of the MLP for the 
Critic is done as in Eqns (8-13). 

  f f
c cjk j kw xηδ=                (8)         

f f
c cj jb ηδ= −                      (9)                     

   s s
c c cj jw yηδ=              (10)         s s

c cb ηδ= −       (11) 

   =  s
cδ δ               (12)       =   f s s

c c cj jwδ δ           (13) 

where f
cW is the set of weights between the input layer and the hidden layer in the 

Critic network, s
cW the set of weights between the hidden layer and the output layer, 
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 f
c jkw  and s

c jw  weight updates, f
c jb and s

cb bias updates, η  the learning rate, 

 f
c jδ and  s

cδ the back-propagation errors, δ the TD error, kx the view vector, c jy  

Critic’s hidden layer output. 
The output layer comprises a single neuron which indicates the Value at each posi-

tion calculated as the output of the MLP using Eqns (14) and (15).            
 

( )f f
c c cj jk k j

k
y tanh w x b= −∑                 (14)     

s s
t c c cj j

j
v w y b= −∑        (15) 

 

The Critic network thus maps a view in the input space to a measure of how good 
the current position of the model rat is with respect to the goal (Value of the current 
position in the pool). Training of the Critic is performed in a progressive manner 
starting with a small circular ring around the platform region during the initial training 
cycles and proceeding gradually to include the entire space. The discount factor ( γ ) 

is gradually increased with training to obtain a gradually expanding Value profile. 
The Actor is modeled as a MLP with a single hidden layer consisting of 100 sig-

moidal neurons. The visual input and perturbations to motor cortex from BG, in com-
bination with TD error are used to train the Actor as in Eqns (16-21).  

  f f
a ajk j kw xηδ=              (16)   

f f
a aj jb ηδ= −      (17) 

   s s
a a ajl l jw yηδ=             (18)    s s

a al lb ηδ= −       (19) 

   =   s
a bgl lyδ δ              (20)  =   f s s

a a aj jl l
l

wδ δ∑      (21) 

The output layer comprises 2 neurons which encode directions ( x and y) of 
movement. The MC’s output i.e. its contribution to the rat’s transition to the next 
position, is calculated using the Eqns (22) and (23).    

( )f f
a a aj jk k j

k
y tanh w x b= −∑            (22) s s

act a a al jl jl l
j

y w y b= −∑      (23) 

Reward-based learning is implemented to train the MC as follows. If the rat acciden-
tally bumps into the platform, thanks to its wandering movements, it receives a reward. 
Similarly, if the rat hits the wall of the pool, it receives a punishment. Elsewhere, the 
rat wanders freely receiving neither reward nor punishment.  

3   An Integrated Model for Navigation 

The integrated model developed (Fig. 2) includes two modules: one for place-based 
strategy and another for cue-based strategy, competing with each other to assist naviga-
tion. Spatially selective “place cells” in CA1/CA3 region of hippocampus contribute to 
the formation of a cognitive map of space [6]. Hence, involving the hippocampus be-
comes essential in context-based navigation. A Self-organized Map in cascade with a 
Continuous Attractor Neural Network is used to model the hippocampus [7]. Stimulus-
response is based on associating a sensory cue to a specific response. In cue-based 
module, visual input is based on the visible platform. In the place-based module, visual 
input is based on the spatial context, of the poles surrounding the pool.  The integrated 
model includes two Actor networks, two Critic networks, two Explorers and two TD  
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Fig. 2. Architecture of the integrated model that adopts both navigation strategies 

error signals, one for each of the modules. At any given instant, of the two systems, the 
system which has higher Value is selected for guiding navigation. 

An experimental training and evaluation procedure for simultaneous learning by 
both modules has been devised [8]. Rats are trained for 9 days, interleaving trials in 
the visible and hidden versions of the water maze. Along similar lines, the interleav-
ing training procedure (as in Table 1) is followed in the model also where 1 day is 
equivalent to 200 training cycles. 

Table 1. Comparison of performance in experiment and simulation during training phase 

Day of the 
training 
phase 

 
Training procedure 

Result in 
experiment 

(escape 
latency in 
seconds) 

γ in 

the 
model 

Model 
result 

(escape 
latency in 
seconds) 

Day1 Critic of cue-based module trained 19 0.3 8.70 
Day2 Critic of cue-based module trained 9 0.7 5.00 
Day3 Critic of place-based module trained 20 0.3 13.33 
Day4 Actor of cue-based module trained 5 - 4.25 
Day5 Actor of cue-based module trained 3 - 2.77 
Day6 Critic of place-based module trained 17 0.7 6.67 
Day7 Actor of cue-based module trained 3 - 2.20 
Day8 Actor of place-based module trained 21 - 7.71 
Day9 Actor of place-based module trained 3 - 2.50 

 
Cue-based and place-based modules compete to drive navigation. When the model 

rat selects context-based response, it is directed towards the location of the platform 
occupied during training phase, forming a clutter of trajectories (Fig. 3a). When it 
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exhibits cue-based response, it proceeds towards the visible platform which is now in 
a new location (Fig. 3b).  
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Fig. 3. (a)Trajectories of the model rat when place-based response is dominant; (b) Trajectories 
of the model rat when place-based response is dominant 

4   Conclusions 

The models developed bring to light the nuances in the roles played by the BG and 
Hippocampus in different navigation strategies. They highlight the role of the Basal 
Ganglia in reward-based learning, action selection and exploratory behavior and that 
of the Hippocampus in spatial representation. In a real life scenario, an animal uses 
both stimulus-response strategy and context information to solve navigation tasks. 
The role of the Indirect Pathway of the Basal Ganglia which is proposed to be the 
neural substrate for exploratory behavior is demonstrated in the models developed. 
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Abstract. In this paper we present a Reinforcement Learning (RL) ap-

proach with the capability to train neural adaptive controllers for com-

plex control problems without expensive online exploration. The basis

of the neural controller is a Neural fitted Q-Iteration (NFQ). This net-

work is trained with data from the example set enriched with artificial

data. With this training scheme, unlike most other existing approaches,

the controller is able to learn offline on observed training data of an

already closed-loop controlled process with often sparse and uninforma-

tive training samples. The suggested neural controller is evaluated on

a modified and advanced cartpole simulator and a combustion control

of a real waste-incineration plant and can successfully demonstrate its

superiority.

Keywords:NeuralControl, AdaptiveControl, Exploration-Exploitation.

1 Introduction

In the area of industrial process control most problems are still solved via con-
ventional solutions from the field of control engineering. The problem with such
conventional systems is that they are not able to adapt to changes of the systems
to be controlled. In case of a change, the expert who designed the controller has
to adapt the parameters of the controller again. For the described problem, it
is desirable to use a self-learning controller which is able to adapt to changing
dynamics.

Several approaches with learning controllers for unknown processes have been
published in recent years. Examples are Reinforcement Learning (RL) Systems
such as Q-Learning ([1]), Neural-fitted Q-Iteration (NFQ, [2], [3]) or Bayesian
RL ([4], [5]) . Unfortunately, most of the RL-approaches rely on the assumption
that it is possible to learn the optimal policy online and/or to explore different
strategies for industrial control problems, such as the control of a waste incinera-
tion plant, this assumption is not realistic. An online learning phase of an agent

K. Diamantaras, W. Duch, L.S. Iliadis (Eds.): ICANN 2010, Part II, LNCS 6353, pp. 222–227, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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with an inefficient or too explorative strategy at the beginning could commit
serious damage to the plant. That means the learning process has to be done
completly offline based on observed data. To complicate matters further, the
observed data is taken from a closed-loop process where the acting controller is
a conventional system which reacts with exactly the same action every time it
observes the same state (see Fig. 1). This results in training data less informative
than from real exploration periods and causes serious problems for the training
of self-learning function approximators. To the best knowledge of the authors,
no RL-approach has been published so far which is able to control the key el-
ements of an industrial combustion process due to the charges and restrictions
concerning exploration and training data mentioned above.

Fig. 1. Left: Training data set with the state s and control force u from a process

controlled by a PI-Controller. Right: Action histogram at the state s = 0.4 (black boxes)

and two possible reward estimations (black and lightgrey lines). Due to the unbalanced

distribution of examples in the action space, neural networks can approximate very

different reward functions for non-observed actions. Both reward functions would show

the same approximation error but cause completly different agent policies.

In this paper, we present an RL-system which meets the demands of the de-
scribed combustion control systems. The basis of our approach is a NFQ network
as presented in [2]. We use the capability of the NFQ to add artificial data-points
to the training set to ensure a correct learning of a good policy despite of the
less informative nature of the observed data.

2 Problem Description and Experimental Setup

2.1 Application Domain

In a waste incineration plant the system dynamics are very complex and only
partially known. Due to the changing process dynamics most existing control
systems are set to cope with all appearing dynamics in general. This solution
passes up chances to optimize the combustion for each single process dynamic.
Therefore, an adaptive self-learning controller could significantly improve the
combustion control.
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We applied our controller to a plant with a forward-acting reciprocating grate
(see Fig. 2). The stirring of the firebed by the movement of the grates is the main
factor for the intensity of the combustion process and is the actuating variable
of our controller.

Fig. 2. Waste incineration plant. The feeder plunger brings the waste upon the com-

bustion grate with the speed vf . Air with the mass ma is blown into the combustion

zone. The grate elements are locomotive with the speed vg.

2.2 Cartpole-Simulator

The cartpole problem is frequently used as a benchmark for RL solutions [3].
In order to take characteristic demands of a combustion process, like aforemen-
tioned changes of the system dynamics into consideration the simulator split the
simulation into three sequent phases. In every phase, the parameters of the cart
and so the dynamics of the system are slightly different. Only the mass of the
cart (5.0kg) and the gravity (9.81 m

s2 ) are unchanged. The following table lists
the parameters of the cart simulator for every phase:

Parameter Phase 1 Phase 2 Phase 3
Mass Pole (mp) 2.0kg 2.0kg 2.5kg
Pole Length (lp) 1.0m 1.0m 0.75m
max. Random Force (Fr) 1.0N 1.0N 1.0N

Since the focus of this paper lies on training a neural controller which could
observe only data from an already controlled process, our simulator also utilizes a
conventional PID-controller for controlling the actions of the cart. The maximum
Control Force was limited to 5.0N for the NFQ and the PID-Controller.

3 Algorithm

Our approach aims at training an adaptive controller for an already controlled
closed loop process which is

1. not worse than the existing controller,
2. shows a behaviour similar to the old controller
3. but is able to adapt to changes of the process dynamics.
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The problem with data observed from a process which is controlled by a conven-
tional deterministic controller is shown in Fig. 1. To each state s the controller
only chooses very few different actions from the possible pool of actions a. A func-
tion approximator, which approximates the reward for the whole action space
can calculate very different values for the reward of actions not observed without
an increase of the training error (see Fig. 1).The policy choosen by such a net
would be very different to the policy of the old controller which is very critical
for a serious industrial application.

So, the basic idea of our approach is to label those actions which have not yet
been observed with a low reward without worsening the approximation of ob-
served actions and the generalisation-capabilities of the network for not observed
states.

NFQ as presented in [2] requires only very few parameters which can influence
the training process and have to be optimised, and offers the possibility to insert
artificial data into the training set in a very elegant and simple way. An artifical
point is a tuple (s, a, f, Q) consisting the state s, action a and Q-Value Q. A
flag f is used to signal the artifical state. We identify non-observed actions by
histogramms build over clusters in the state space of the observed dataset (see
Fig. 1). The insertion of the artificial data and the training of the NFQ is done
as follows:

1. Input = exampleset X where xi = (s, a, s′, Q), xi ∈ X , i = 1..n
2. Cluster X into m cluster C depending on the state s, Ci = (SCi , ACi , S′

Ci
,

QCi), Ci ∈ C, where SCi , ACi , S′
Ci

and QCi are sets of all s, a, s′ and Q in
the cluster Ci

3. For every Ci build a histogram with k bins of actions ACi appearing
4. If there are action bins with no examples, insert new examples xnew into the

exampleset X where xnew = (snew, anew, f, Qnew)
snew = 1

l

∑l
i=1 si, si ∈ SC , l = |SC |

anew = action value of the empty histogram bin
f = binary flag to label as artificial data
Qnew = min(QCi) − Qoffset; Qoffset = Reward-Offset to penalize non-
observed actions

5. Train NFQ as described in [2] with the new exampleset Xnew

By this algorithm, artificial examples with lower reward are created for all non-
observed actions in observed states. This prevents that a function approximator
estimates high rewards for such actions, and the policy of the trained agent does
not choose them. The number of the artificial data points inserted at a certain
state depends on the number of already observed data points in that state. This
is important because the lower reward of the artificial points is used to decrease
the value of unobserved actions, but should not change the value of a state
compared to the value of other states. If a sufficient number of new samples is
collected, the agent is retrained with the new data. So the adaptive nature of
the controller to changes of the process dynamics is realised.
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4 Experimental Evaluation of the Approach

The experiments on a real combustion process were executed on a waste incin-
eration plant in Germany with a steam production of 30 t/h. The new NFQ-
controller was trained with seven days of data observed from the conventional
controllers. After training, the NFQ was tested on the plant. The test phase
covered eight days which were split between the NFQ and the PID-controllers.
Both controllers acted with a clock of five seconds which results in 17,280 actions
per day. The achieved experimental results are as follows:

Controller ØCD Steam Max(CD Steam) ØCO ØNOx
PID-Controller 1.61% 22.2% 12.77 87.06
NFQ with art.data 1.45% 16.1% 11.21 86.95
NFQ without art.data canceled (>10%) canceled (>25%) canceled canceled

CD is the abbreviation for control deviation and is specified in % of the
total amount of steam production. The emissions of carbon monoxide (CO)
and nitrogen oxide (NOx) were measured in mg/Nm3. The NFQ which was
trained with additional data achieved a better control deviation and reduced
noxious gases better than the classical PID-controller. A comparison with a
NFQ-Controller without insertion of artificial data had to be canceled after a
while because the policy of the NFQ without artificial data was not similar to
the policy of the old controller and caused a continuous control deviation of more
than 15%. This dangerous policy was the result of a wrong reward approximation
as it was shown in Fig. 1.

The cartpole simulator was configured as described in section 2.2. At first the
cartpole was controlled by a PID-Controller. 3,000 samples of this experiment
were recorded as training samples for the improved NFQ training described in
section 3. We inserted 4 virtual points for non-observed actions per real data
point. After training, we created two instances of the cartpole simulator. Both
instances received the same sequence of random forces affecting the pole. One
of the instances was controlled by the PID the other one was controlled by
the improved NFQ. Both instances were simulated for 15,000 steps, and each
experiment was repeated 10 times with different random sequences:

Controller Balancing steps ØControl error SD Control error
PID-Controller 15,000 0.0739 0.0015
NFQ without art.data 5 1.5707 0.0001
NFQ with art.data 15,000 0.0575 0.0018

The NFQ without artificial samples in the training set was not able to balance
the pole for more than 5 steps. Contrary, the NFQ with artificial samples was
able to balance the pole and had a lower control error than the conventional
PID-controller.

As we explained in section 1, the main advantage of a self-learning conroller
is its ability to adapt itself to the process. For the next experiment we collected
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a data set of 3,000 samples from the runtime of the PID-controller and 3,000
samples of the runtime of the NFQ-controller described above. With this data
we trained a new NFQ. The results are as follows:

Controller Balancing steps ØControl error SD Control error
PID-Controller 15,000 0.0735 0.0014
NFQ with art.data 15,000 0.0469 0.0010

While the results of the PID-controller are the same as in the first experiment,
the NFQ-controller was able to improve its result from the first test by 19%. It
should be explicitely mentioned, that all results were achieved without explicit
exploration phases, all controllers were run in exploitation mode the whole time.

5 Conclusion and Outlook

The paper presents a new approach to train neural controllers with data from
closed loop processes without exploration. Through the insertion of virtual points
with state-depending Q-Values, neural controllers were able to control processes.
The same controllers failed if no virtual points were inserted. The new approach
offers the possibility to replace conventional controllers through neural adaptive
controllers without expensive exploration phases.

Our further research is supposed to concentrate on increasing the applicability
of the controller. The possibility to insert artificial data to the training set could
allow us to influence the controller in many ways. Expert knowledge about very
rare special states and the right control-action could be integrated into the con-
trollers. Such knowledge is extremly valuable because rare special states might
not be observed in the example set and the desired policy for these states may
differ from the normal policy observed in common states.
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Abstract. Continuous exposure to nicotine causes behavioral choice to

be modified by dopamine to become rigid, resulting in addiction. In this

work, a computational model for nicotine addiction is proposed and the

proposed model captures the effect of continuous nicotine exposure in be-

coming addict through reinforcement learning. The computational model

is composed of three subsystems each corresponding to neural substrates

taking part in nicotine addiction and these subsystems are realized by

nonlinear dynamical systems. Even though the model is sufficient in ac-

quiring addiction, it needs to be further developed to give a better ex-

planation for the process responsible in turning a random choice into a

compulsive behavior.

Keywords: computational model, dynamic system, nicotine addiction,

reinforcement learning.

1 Introduction

The value of an experience or an action is imposed by the reward gained after-
wards. An action inducing a greater reward is sensed as a better action, and thus
rewarding it is repeated frequently [1]. In the case of addiction, the abusive sub-
stance (nicotine, drugs, etc.) has a greater value in the brain than other forms
of reward imposing actions. It is believed that some persistent modifications in
the synaptic plasticity is the cause of addiction, thus we can define addiction as a
disorder in the mesolimbic system which modifies responses of rewarding actions.
Mislead by overemphasized reward sensations addicts compulsively seek the ob-
ject of their addiction. As the reward mechanism has persistently changed, addicts
are usually not completely cured and relapse into drug use after treatment [2].

The two main approaches in explaining addiction are the opponent process
theory and reward related learning [3,4,5]. Using reinforcement learning theory,
addiction is explained as the cumulative result obtained by the administration
of a drug as a positive reinforcer [5,6,7]. The opponent-process theory of motiva-
tion [3] is used to explain the conditioning principles leading to pleasurable and
compulsive activity. According to this model, emotions are paired and when one
emotion in a pair is experienced, the other is suppressed. In [8], these two ap-
proaches are considered together in deriving a computational model for nicotine
addiction.

K. Diamantaras, W. Duch, L.S. Iliadis (Eds.): ICANN 2010, Part II, LNCS 6353, pp. 228–233, 2010.
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The hypothesis we considered in this work claims that nicotine addiction is
a transition from impulsive behavior to compulsive behavior developed through
reinforcement learning. While developing the model considering this view, neu-
ral substrates taking part in cognitive processes related to addiction as action
selection and value evaluation is considered like in [9]. The proposed model is
simulated with an m-file created in MATLAB.

2 The Proposed Model for Nicotine Addiction

Nicotine addiction, as with all other kinds of abusive substance addictions, devel-
ops with the malfunctioning of the reward mechanism. Nicotine effects the VTA
DA signaling, which in turn modify the glutamatergic processes responsible in
learning. The behavioral choices depend on the learned situations, in nicotine
addiction this choice is in favor of obtaining more nicotine. Continuous exposure
to nicotine causes behavioral choice modified by DA to become rigid, resulting
in addiction. The proposed model captures this property through reinforcement
learning which adapts a parameter that denotes the effect of VTA DA signaling
on action selection.

2.1 Implementation of the Model

The model has two parts: a DA signaling module which is triggered by nicotine
presence and an action-selection module (Figure 1). A-S module is a well-studied
cortex-basal ganglia-thalamus dynamical system [10,11,12,9]. The DA signaling
module is composed of an action evaluation part, the operation of which is based
on the presence of nicotine and a value assignment part which calculates the
rewards assigned to the actions and expectation error. The DA signaling module
drives the A-S loop with the representation of hedonic value of the previous
actions.

Fig. 1. The main blocks of the nicotine addiction model

As in [8] the effect of DA is demonstrated by a DA module which is repre-
sented by a difference equation in order to model the dynamic behavior of the
process (1):

uDA(k + 1) = uDA(k) + μDA(−uDA(k) + sDA(ri, Ni)) (1)
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The activation function sDA is a sigmoidal function given as (2):

sDA(ri, Ni) = 0.5(1 + tanh(Ni ∗ ri− θDA)) (2)

Ni is nicotine uptaking represented by the product of the values of n and s
signals when nicotine injection stops (Appendix 1). θDA is the threshold setting
the minimum tonic DA. We took θDA=0.01. ri is the reward signal initiated by
nicotine taking. μDA is the learning rate in the DA subsystem.

The action-selection module used here is acquired from [10,9] which is ex-
pressed with the following equations where premotor (pm) and motor (m) loops
model the cortex-basal ganglia-thalamus (C-BG-TH) loops (3, 4, 5).

ppm(k + 1) = f(λppm(k) + mpm(k) + WcpmI(k))
mpm(k + 1) = f(ppm(k)− dpm(k))
rpm(k + 1) = Wrpmf(ppm(k)) (3)
npm(k + 1) = f(ppm(k))
dpm(k + 1) = f(Wdpmnpm(k)− rpm(k))

pm(k + 1) = f(λpm(k) + mm(k) + βppm + noise)
mm(k + 1) = f(pm(k)− dm(k))
rm(k + 1) = Wrmf(pm(k)) (4)
nm(k + 1) = f(pm(k))
dm(k + 1) = f(Wdmnm(k)− rm(k))

f = 0.5(1 + tanh(a(x− 0.45))) (5)

Wdpm/m
adds the diffusive effect of subthalamic nucleus and is a symmetrical ma-

trix. The diagonal matrix Wrpm represents the effect of ventral striatum (nucleus
accumbens) on dorsal striatum (caudate nucleus and putamen). The representa-
tion of stimulus is formed by the matrix Wcpm . The adaptation of weights Wcpm

and Wrpm is done as below (6):

Wcpm(k + 1) = Wcpm(k) + ηcδ(k)pm(k)I(k)
′′

(6)
Wrpm(k + 1) = Wrpm(k) +

ηr((UDA + Ni)(UDA − θwDA)
′′
(pm(k)− θ))

′′
f(pm(k))rm(k)

The factors are the phasic DA activitiy UDA, running average of 10 steps
denoted as in [8] by UDA. Wrpm is calculated only after the reward signal ri
becomes greater than 0.5. Thresholds for UDA and pm, respectively, are θDA

and θ, and are taken as 0.1 times their respective signal. The learning rate η is
taken as 0.1. The variable δ represents the error in expectation and is calculated
as (7):

δ(k) = ri(k) + μV (k + 1)− V (k) (7)
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The evaluation of the action selection based on the cortex input and the
corresponding reward is given as the value signal (8):

V (k) = (Wv + base)I(k) (8)

Here, Wv is a row vector and the term base is a row vector with identical
entries. I(k) corresponds to input, which in this case is the action performed as
a result of (3, 4, 5), and corresponds to “smoke” or “not smoke”. An expectation
signal based on the value signal is generated which, together with ri, gives rise
to the error δ. The error signal represents the modulating role of the neurotrans-
mitters and modulates the behavior of dorsal striatum stream via Wrpm . The
error signal strengthens the representation of the input via Wcpm and updates
the value of stimuli via Wv are as below (9):

Wv(k + 1) = Wv(k) + ηvδ(k)I(k)
′

(9)

2.2 The Simulation Results

To measure the performance of the proposed model, the response to nicotine
uptaking is considered. At the beginning reward value is very small (like 0.01).
Each time the selected action is smoking, ri is multiplied by 2 until ri=1.

The action selected by the A-S module is determined by calculating the solu-
tion of pm. The value function and the error function are calculated, and using
these calculations the weight matrices Wcpm , Wrpm , and Wv are updated. The
simulation stops if the smoking action is selected successively for 20 times in a
given time frame. After numerous trials, it is observed that 20 successive smok-
ing decisions are enough for the system to be considered as a model of an addict.
Otherwise, it is decided that addiction is not established.

The parameter values used in the simulation are λ=0.5, β=0.03, a=3,
μDA=0.1, ηc=0.1, ηv=0.1, ηr=0.1 and base is 0.2. The initial values of the
weight matrices Wc and Wv are generated randomly with small positive real
numbers. The initial value of the diagonal matrix Wrpm is ones. During the up-
dating phase the matrix values Wcpm and Wrpm are normalized. The matrices
Wdpm/m

and Wrm are composed of 0.5’s and they are constant. The noise signal
is generated as a very small random number. The action outputs are coded as
[1 0]’ for smoking, [0 1]’ for nonsmoking, and [1 1]’ for indecisive behaviors.

In 20 of the 50 successive runs the model completed the task of becoming an
addict. The average number of trials to become addict is 346 out of 1000 trials,
with a standard deviation of 265.7671. The final matrices for a successful trial
are given as follows (10):

Wrpm =
[

1
0.6179

]
, Wcpm =

[
0.8569 0.2965
0.16 −0.4331

]
(10)

The expectation error signals for two different cases are given in Figure 2. δ
remains constant if the same choice is made successively, and changes otherwise.
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Fig. 2. Reinforcement error signal δ when addiction is a) set up b) not set up

3 Discussion and Conclusion

Our work proposes a cortico-striato-thalamic A-S circuit driven by the effects
of nicotine uptaking as a model for nicotine addiction. The A-S circuit has two
components: an action selection component corresponds to the dorsal stream
which simulates behavioral choices, and the other component corresponds to the
ventral stream which simulate the evaluation of the action choices and modulates
the action selection. The A-S circuit utilizes a competitive learning which is
modified with the VTA DA signaling affected by the nicotine. While the structure
of the A-S circuit is interconnected nonlinear dynamical systems corresponding
to premotor and motor loops, the modification is realized changing a parameter
in premotor loop. While in [8], the A-S module is a winner-take-all system, in
this work a dynamical system triggered by previous actions, and their evaluation
is utilized for A-S. Furthermore, the n-s-c circuit used here is novel. Thus, the
system proposed in [10,9] for A-S is enhanced in this work for a more complicated
process where reward has more importance on the overall process.

The aim in this work is to support the idea that addiction develops as a form of
goal-directed behavior, and therefore the interaction of cortico-striato-thalamic
action selection loops have an important role in the development of addiction.
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Appendix 1

Initial values of n, s, and c are all 0.1. Parameters used in equations are as
follows: θn=0.6, θs=0.7, θc=0.7, βs=0.4, βc=0.4. nicotine level is taken as 0.3 if
k is less than 500, 0 otherwise. Rates used in the equations are μ=0.1, τn=0.25,
τs=1, τc=2.

Activation functions (11):

αn(k) = 0.5(1 + tanh(nicotine− θn))
αs(k) = 0.5(1 + tanh(n(k)− θs)) (11)
αc(k) = 0.5(1 + tanh(s(k)− θc))
βn(k) = 0.5(1 + tanh(c(k) − θn))

Dynamic equations of n, s, and c (12):

n(k + 1) = n(k) + μ(1/τn)[−βn(k)c(k) + αn(k)(1− n(k)c(k))]
s(k + 1) = s(k) + μ(1/τs)[−βss(k) + αs(k)(1− s(k))] (12)
c(k + 1) = c(k) + μ(1/τc)[−βcc(k) + αc(k)(1− c(k))]

http://www.peele.net/lib/moa3.html
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Abstract. Trajectory formation is one of the basic functions of the neuromotor 
controller. In particular, reaching, avoiding, controlling impacts (hitting), draw-
ing, dancing and imitating are motion paradigms that result in formation of spa-
tiotemporal trajectories of different degrees of complexity. Transferring some 
of these skills to humanoids allows us to understand how we ourselves learn, 
store and importantly, generalize motor behavior (to new contexts). Using the 
playful scenario of teaching baby humanoid iCub to ‘draw’, the essential set of 
transformations necessary to enable the student to ‘swiftly’ enact a teachers 
demonstration are investigated in this paper. A crucial feature in the proposed 
architecture is that, what iCub learns to imitate is not the teachers ‘end effector 
trajectories’ but rather their ‘shapes’. The resulting advantages are numerous. 
The extracted ‘Shape’ being a high level representation of the teachers move-
ment, endows the learnt action natural invariance wrt scale, location, orientation 
and the end effector used in its creation (ex. it becomes possible to draw a circle 
on a piece of paper or run a circle in a football field based on the internal body 
model to which the learnt attractor is coupled). The first few scribbles generated 
by iCub while learning to draw primitive shapes being taught to it are pre-
sented. Finally, teaching iCub to draw opens new avenues for iCub to both 
gradually build its mental concepts of things (a star, house, moon, face etc) and 
begin to communicate with the human partner in one of the most predominant 
ways humans communicate i.e. by writing. 
Keywords: Shape, Imitation, iCub, Passive Motion Paradigm, Catastrophe theory. 

1   Introduction 

Behind all our incessant perception-actions underlies the core cognitive faculty of 
‘perceiving and synthesizing’ shape. Perceiving affordances of objects in the envi-
ronment for example a cylinder, a ball, etc, or performing movements ourselves, 
shaping ones fingers while manipulating objects, reading, drawing or imitating are 
some examples. Surprisingly, it is not easy to define ‘shape’ quantitatively or even 
express it in mensurational quantities. Vaguely, shape is the core information in any 
object/action that survives the effects of changes in location, scale, orientation, end 
effectors/bodies used in its creation, and even minor structural injury. It is infact this 
invariance that makes the abstract notion of ‘shape’ a crucial information in all our 
sensorimotor interactions. How do humans effortlessly perceive and synthesize 
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‘shape’ during their daily activities and what are the essential set of computational 
transformations that would enable humanoids to do the same? In this paper, we de-
scribe our attempts to understand this multidimensional problem using the scenario of 
teaching baby humanoid iCub to draw shapes on a drawing board after observing a 
demonstration and aided by a series of self evaluations of its performance. 

It is quite evident that scenario of iCub learning to draw a trajectory after observing 
a teachers demonstration embeds the central loop of imitation i.e transformation from 
the visual perception of a teacher to motor commands of a student. The social, cul-
tural and cognitive implications of imitation are well documented in literature today 
[9, 11-12]. In the recent years, a number of interesting computational approaches like 
direct policy learning, model based learning, learning attractor landscapes using dy-
namical systems [4] have been proposed to tackle parts of the imitation learning prob-
lem [12]. Based on the fact that usually a teacher’s demonstration provides a rather 
limited amount of data, best described as “sample trajectories”, various projects inves-
tigated how a stable policy can be instantiated from such small amount of informa-
tion. The major advancement in these schemes was that the demonstration is used just 
as a starting point to further learn the task by self improvement. In most cases, dem-
onstrations were usually recorded using marker based optical recording and then ei-
ther spline based techniques or dynamical systems were used to approximate the tra-
jectories. Compared to spline based techniques, the dynamical systems based ap-
proach have the advantage of being temporally invariant (because splines are explic-
itly parameterized in time) and naturally resistant to perturbations. The approach has 
been has been successfully applied in different imitation scenarios like learning the 
kendama game, tennis stokes, drumming, generating movement sequences with an 
anthropomorphic robot [2]. 

The approach proposed in this paper is also based on nonlinear attractor dynamics 
and has the flavour of self improvement, temporal invariance (through terminal attrac-
tor dynamics [15]) and generalization to novel task specific constraints. However, we 
also go beyond this in the sense that what iCub learns to imitate is the ‘Shape’ a rather 
high level invariant representation extracted from the demonstration. It is independent 
of scale, location, orientation, time and also the end effector/body chain that creates it 
(for example, we may draw a circle on a piece of paper or run a circle in a football 
field). The eyes of iCub are the only source of gathering information about the dem-
onstration. No additional optical marker equipments recording all joint angles of the 
teacher are employed. In any case, very use of joint information for motion approxi-
mation/generation makes it difficult to generalize the learnt action to a different body 
chain, which is possible from the high level action representations acquired using our 
approach. Figure 1 shows the high level information flows between different sub 
modules in the loop starting from the teachers demonstration and culminating in iCub 
learning to perform the same. The perceptual subsystems are shown in pink back-
ground, the motor subsystems in blue and learning modules in green. Section 2 briefly 
summarizes the perceptual modules that ultimately lead to the creation of a motor 
goal in iCub’s brain. Section 3 and 4 focus on the central issue of this paper about 
how iCub learns to realize this motor goal (i.e. imitate the teachers’ performance), 
along with experimental results. A brief discussion concludes. 
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Fig. 1. Shows the overall high level information flows in the proposed architecture, beginning 
with the demonstration to iCub (for example a ‘C’). A preprocessing phase extracts the teachers 
end effector trajectory from the demonstration. This is followed by characterization of the 
‘shape’ of the extracted trajectory using Catastrophe theory [13-14], that leads to the creation of 
an abstract visual program (AVP). Since the AVP is created out of visual information coming 
from the two cameras, it is represented in camera plane coordinates. Firstly we need to recon-
struct this information to iCub’s ego centric frame of reference. Other necessary task specific 
constraints (like, prescription of scale, end effector/body chain involved in the motor action etc) 
are also applied at this phase. In this way, the context independent AVP is transformed into a 
concrete motor goal for iCub to realize. CMG forms the input of the virtual trajectory genera-
tion system (VTGS) that synthesizes different virtual trajectories by pseudo randomly exploring 
the space of virtual stiffness (K) and timing (TBG). These virtual trajectories act as attractors 
and can be coupled to the relevant internal body model of iCub to synthesize the motor com-
mands for action generation (using Passive Motion Paradigm [5]). In the experiments presented 
in this paper, the torso-left arm-paint brush chain of iCub is employed. Analysis of the forward 
model output once again using catastrophe theory extracts the ‘shape’ of the self generated 
movement. This is called as the Abstract motor program. Abstract visual and motor information 
can now be directly compared to self evaluate a score of performance. A learning loop follows. 

2   Extracting the ‘Shape’ of a Visually Observed End Effector 
Movements (of Self and Others) 

As seen in figure 1, the stimulus to begin with is the teacher’s demonstration. This 
demonstration is usually composed of a sequence of strokes, each stroke tracing a 
finite, continuous line segment inside the visual workspace of both cameras. These 
strokes are created using a green pen i.e. the optical marker iCub track. The captured 
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video of the demonstration undergoes a preprocessing stage, where the location of the 
marker in each frame (for both camera outputs) is detected using a simple colour 
segmentation module. If there are N frames in the captured demonstration, the infor-
mation at the end of the pre-processing phase is organized in the form of a Nx4 ma-
trix, Nth row containing the detected location of the marker (Uleft,Vleft ,Uright,Vright) in 
the left and right cameras during the Nth frame. In this way the complete trajectory 
traced by the teacher (as observed in the camera plane coordinates) is extracted. The 
next stage is to create a abstract high level representation of this trajectory, by extract-
ing its shape. A systematic treatment of the problem of shape can be found in a branch 
of mathematics known as Catastrophe theory (CT) originally proposed in late 1960’s 
by French mathematician Rene Thom, further developed by Zeeman[14], Gilmore[3] 
among others and applied to a range of problems in engineering and physics. Accord-
ing to CT the overall shape of a smooth function, f(x), is determined by special local 
features like ‘‘peaks’’, ‘‘valleys’’ etc called as critical points (CP). When all the CP 
of a function is known, we know its global shape. Further developing CT, [1] have 
shown that following 12 CP’s (pictorially shown in figure 2a) are sufficient to charac-
terize the shape of any line diagram: Interior Point, End Point, Bump (i.e maxima or 
minima), Cusp, Dot, Cross, Contact, Star, Angle, Wiggle, T and Peck. These 12 criti-
cal points, found in many of the worlds scripts, can be computed very easily using 
simple mathematical operations [1]. In this way the shape of the trajectory demon-
strated by the teacher can be described using a set of critical points that describe its 
‘essence’. For example, the essence of the shape ‘C’ of figure 1, is the presence of a 
bump (maxima) in between the start and end points. As shown in figure 2b, for any 
complex trajectory, the shape description takes the form of a graph with different CP 
at the graph nodes.  

 

 
Fig. 2. (a) Pictorially illustrates the 12 primitive shape critical points derived in [1] using catas-
trophe theory. (b) Shows the extracted shape descriptors for four demonstrated trajectories. 

By extracting the shape descriptors, we have effectively reduced the complete 
demonstrated trajectory to a small set of critical points (their type and location in 
camera plane coordinates). We call this compact representation as the abstract visual 
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program (AVP). AVP may be thought as a high level visual goal created in iCub’s 
brain after perceiving the teachers demonstration. To facilitate any action generation 
to take place, this visual goal must be transformed into an appropriate motor goal in 
iCub’s egocentric space. To achieve this, we have to transform location of the shape 
critical points computed in the image planes of the two cameras (Uleft, Vleft , Uright, 
Vright) into corresponding points in the iCub’s egocentric space (x,y,z) by a process of 
3D reconstruction. Of course the ‘type’ of the CP is conserved i.e a bump/maxima 
still remains a bump, a cross is still a cross in any coordinate frame. Reconstruction is 
achieved using Direct Linear Transform (Shapiro, 1978) based stereo camera calibra-
tion and 3D reconstruction system [8] already functional in iCub [5-6]. The set of 
transformations leading to the formation of the Concrete motor goal is pictorially 
shown in figure 3.  Also note that since critical points analysis using CT can be used 
to extract shapes of trajectories in general, the same module is reused to extract the 
shape of iCub’s end effector trajectory (as predicted by the forward model) during 
action generation process.  This is called as the abstract motor program (AMP). Since 
AMP and CMG contain shape description (and also in the same frame of reference), 
they can directly be compared to evaluate performance and trigger learning in the 
right direction.   

 
Fig. 3. Pictorially shows the set of transformations leading to the formation of concrete motor 
goal. 

3   Virtual Trajectory Synthesis and Learning to Shape 

The CMG basically consists of a discrete set of critical points (their location in iCub’s 
ego centric space and type), that describe in abstract terms the ‘shape’ iCub must now 
create itself. For example, the CMG of the shape ‘U’ (figure 3) has three CP’s (2 end 
points ‘E’, and one bump ‘B’ in between them). Given any two points in space, an infi-
nite number of trajectories can be shaped passing through them. How can iCub learn to 
synthesize a continuous trajectory similar to the demonstrated shape using a discrete set 
of critical points in the CMG? In this section we seek to answer this question. 

The first step in this direction is the synthesis of virtual trajectory between the 
shape critical points in the CMG. Synthesized virtual trajectories do not really exist in 
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space and must not be confused with the actual shapes drawn by iCub. Instead, they 
act as attractors and play a significant role in the generation of the motor action that 
creates the shape. Let Xiniϵ(x,y,z) be the initial condition i.e. the point in space from 
where the creation of shape is expected to commence (usually initial condition will be 
one of the end points in CMG). If there are N CP’s in the CMG, the spatiotemporal 
evolution of virtual trajectory (x,y,z,t) is equivalent to integrating a non-linear diffe-
rential equation that takes the following form: 

 

 
 

         (1)
  

 
 
 
 
Intuitively, as seen in figure 4, we may visualize Xini as connected to all the shape 

CP’s in the CMG by means of virtual springs and hence being attracted by the force 
fields generated by them FCP=KCP(xCP-xini). The strength of these attractive force 
fields depends on: 1) the virtual stiffness ‘Ki’ of the spring and 2) time varying modu-
latory signals γi(t) generated by their respective time base generators (TBG), that 
basically weigh the influence of different CP’s through time. Note that he function 
γ(t) implements the terminal attractor dynamics [15], a mechanism to control the 
timing of the relaxation of a dynamical system to equilibrium. The function ξ(t) is a 
minimum jerk time base generator . The virtual trajectory is the set of equilibrium 
points created during the evolution Xini through time, under the influence of the net 
attractive field generated by different CP’s. Further, by simulating the dynamics of 
equation 1, with different values of K and γ, a wide range of virtual trajectories can be 
obtained passing through the CP’s. Inversely, learning to ‘shape’ translates into the 
problem of learning the right set of virtual stiffness and timing such that the ‘Shape’ 
of the trajectory created by iCub correlates with the shape description in CMG. 

 

 

Fig. 4. Intuitively, we may visualize Xini  as connected to all the shape CP’s in the CMG by 
means of virtual springs. The attractive fields exerted by different CP’s at different instances of 
time is a function of the virtual stiffness (k) and the timing signal γ of the time base generator. 
The virtual trajectory is the set of equilibrium points created during the evolution Xini through 
time, under the influence of the net attractive field generated by different CP’s. For different 
sets of K and γ we get different virtual trajectories. 
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The site of learning i.e virtual stiffness matrix ‘K’ of equation 1 are basically open 
parameters (positive definite). One may intuitively imagine the procedure of estimat-
ing the correct values of ‘K’ analogous to a manual eye testing scenario, where the 
optician is faced with the problem of estimating the right optical power of the eye 
glasses necessary for a patient. Just by exploring a fixed range of test lenses, and 
aided by the feedback of the patient, the optician is able to quickly estimate the diop-
tric value of the lens required for the patient. Since this procedure is mainly pseudo-
random exploration, questions regarding convergence and fast learning are critical. 
The answer lies in inherent modularity in our architecture. Once iCub learns to draw 
the 12 shape primitives of figure 2a, it can exploit this motor knowledge to compose 
more complex shapes (that can be described as combinations of these primitive shape 
features as in figure 2b). Moreover, using a bump, cusp and straight line all other 
primitives of 2a can be created (example, peck is a composition of straight line and 
cusp and so on). Hence once iCub learns to draw a straight line, bump and cusp it can 
exploit this motor knowledge to draw the other shape primitives, and this can be fur-
ther exploited during the creation of more complex line diagrams.  

Considering that the behaviour of neuromuscular system is predominantly spring 
like, we consider only symmetric stiffness matrix K, with all non diagonal elements 
zero (In other words, the resulting vector fields have zero curl). Regarding straight 
lines, it is well known that human reaching movements follow straight line trajecto-
ries with a bell shaped velocity profile. This can be achieved in the VTGS by keeping 
components of matrix K equal in equation 1 (Kxx=Kyy=Kzz). More curved trajectories 
can be obtained otherwise. Figure 5 shows some of the virtual trajectories generated 
by titillating the components of the K matrix numerically from 1-9 and simulating the 
dynamics of equation 1. As seen, a gamut of shapes, most importantly cusps and 
bumps can be synthesized by exploring this small range itself. Essentially what mat-
ters is not the individual values of the components, but the balance between them 
which goes on to shape the net attractive force field to the CP. Once iCub learns to 
draw straight lines, bumps and cusps, it can exploit this motor knowledge to learn the 
other primitives, and through ‘composition’ any complex shape. 

 

 

Fig. 5. Top Panel shows the range of virtual trajectories synthesized while learning do draw a 
‘C’, with the best solution highlighted. Bottom panel shows other goal shapes learnt. All these 
shapes can be created by pseudo randomly titillating the components of the matrix K in the 
fixed range of  1-9. 
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4   Motor Command Synthesis: Coupled Interactions between the 
Virtual Trajectory and Internal Body Model 

In this section, we deal with the final problem of motor command synthesis, that will 
ultimately transform the learnt virtual trajectory into a real trajectory created by iCub. 
We use the passive motion paradigm (PMP) based forward/inverse model for upper 
body coordination of iCub (figure 6) in the action generation phase [5-6]. This inter-
face between the virtual trajectory and the PMP based iCub internal body model is 
similar to the coordination of the movements of a puppet, virtual trajectory playing 
the role of the puppeteer. As the strings pull the finger tip of the puppet to the target, 
the rest of the body elastically reconfigures to achieve a posture that is necessary to 
position the end effector to the target. If motor commands (trajectory of joint angles) 
derived by this process of relaxation is actively fed to the actuators, iCub will physi-
cally create the shape (hence transforming the virtual trajectory into a real trajectory). 
This is the central hypothesis behind the VTGS-PMP coupling. The evolving virtual 
trajectory generates an attractive force field F=K(xVT-x) applied at the end effector, 
hence leading the end effector to track it (figure 7, top left panel). This field is 
mapped from the extrinsic to the intrinsic space by means of the mapping T=JTF that 
yields an attractive torque field in the intrinsic space (J is the Jacobian matrix of the 
kinematic transformation). The total torque field induces a coordinated motion of all  
 

 

 

Fig. 6. The PMP Forward/Inverse model for iCub upper body coordination. The torso/left arm 
chain is used in the iCub drawing experiments (Panel A), hence the right arm chain is deacti-
vated. The evolving virtual trajectory acts as an attractor to the PMP system and triggers the 
synthesis of motor commands (This process is analogous to the coordinating a puppet, the VT 
serving the role of the puppeteer). Panel C shows the scanned image of drawings of iCub while 
learning to draw a ‘U’. 
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the joints in the intrinsic space according to an admittance matrix A. The motion of 
the joints now, determines the motion of the end-effector according to the following 
relationship: . Ultimately, the motion of the kinematic chain evoked by the 

evolving VT is equivalent to integrating non-linear differential equations that, in the 
simplest case in which there are no additional constraints, takes the following form: 

           (2) 
At the end of the PMP relaxation, we get two trajectories, a trajectory of joint an-

gles (10 DoF (3 torso and 7 left arm) X 3000 iterations in time) and the end effector 
trajectory (predicted forward model output as a consequence of the motor commands, 
which is used for monitoring and performance evaluation). As seen in the results of 
figure 7, when the motor commands are buffered to the actuators, iCub creates the 
shape, hence transforming the virtual trajectory into a real trajectory (drawn by it).  

 

 
 

(a) Top left panel shows both the learnt virtual trajectory (attractor) and iCub’s end effector 
trajectory (predicted forward model output) as a result of the motor commands derived using 
PMP (10 DoF torso/left arm chain X 3000 iterations in time). Bottom left panel shows iCub 
drawing the shape. The drawing were created on a drawing board, with paper attached to a 
layer of soft foam. The foam and the bristles of the paint brush provide natural compliance and 
allow safe interaction. 
 

 
(b) The first ‘scribbles’  

Fig. 7. 
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5   Discussion 

Using the scenario of gradually teaching iCub to draw, a minimal architecture that 
intricately couples the complementary operations of shape perception/synthesis in the 
framework of a ‘teacher-learner’ environment was presented in this article. The pro-
posed action-perception loop also encompasses the central loop of imitation (specifi-
cally, end effector trajectories), with the difference that what iCub learns is not to 
reproduce a mere trajectory in 3D space by means of a specific end-effector but, more 
generally, to produce an infinite family of ‘shapes’ in any scale, in any position, using 
any possible end-effector/body part. We showed that by simulating the dynamics of 
VTGS using a fixed range of virtual stiffness’ a diversity of shapes, mainly the primi-
tives (derived using CT) can be synthesized. Since complex shapes can be efficiently 
‘decomposed’ into combinations of primitive shapes (using CT), inversely the actions 
needed to synthesize them can ‘composed’ using combinations of the corresponding 
‘learnt’ primitive actions. Ongoing experiments clearly show that motor knowledge 
gained while learning a ‘C’ and ‘U’ can be systematically exploited while learning to 
draw a ‘S’ and so on. Thus, there is a delicate balance between exploration and com-
positionality, the former dominating during the initial phases to learn the basics, the 
later dominating during the synthesis of more complex shapes. Finally, teaching iCub 
to draw opens new avenues for iCub to both gradually build its mental concepts of 
things (a star, house, moon, face etc) and begin to communicate with the human part-
ner in one of the most predominant ways humans communicate i.e. by writing. 

Acknowledgments. The research presented in this article is being conducted under 
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Abstract. This work explores the neuronal synchronisation and phase

information dynamics of an enhanced version of the widely used Ku-

ramoto model of phase interacting oscillators. The framework is applied

to a simulated robotic agent engaged in a minimally cognitive bench-

mark task. The outcomes of this research contribute not only to uncover

the role of neuronal synchronisation and phase information in the gener-

ation of cognitive behaviours but also to the understanding of oscillatory

properties in neural networks.

1 Introduction

There is increasingly evidence that cognitive processes have a close non-trivial
relationship to neural rhythms and oscillations [1]. The importance of consider-
ing temporal relations among groups of neurons, either by external influences or
sustained by internal mechanisms, has been stressed by various researchers [2–4].
Varela et. al.[5] point out that the phase relationships and synchronisation of
brain signals would contain a great deal of information on the temporal structure
of neural signals, a key factor when analysing communication and information
processing in neuronal assemblies [6, 7]. Other authors have emphasized the rela-
tionship between phase information and memory formation and retrieval [8–10].

This work explores the neuronal synchronisation and phase information dy-
namics of a simulated robotic agent engaged in minimally cognitive tasks [11–15].
Basically, two aspects of an active categorical perception task [11, 14, 15] will be
studied: (1) the impact of different neural network temporal dynamics and (2)
the effect of different phase sensitivity functions on the synchronisation patterns
and phase dynamics observed in the neural network. Although there has been
much work on coupled oscillator based control of complex motor behaviours, par-
ticularly locomotion [16], to date there has been very little research on the wider
issues of temporal dynamics in the generation of embodied cognitive behaviours.

The Kuramoto model of coupled oscillators [17] allows for easy inspection of
the phase evolution and frequency of each of its elements and is well known for
its suitability to investigate large populations of biological oscillators [18, 19].

K. Diamantaras, W. Duch, L.S. Iliadis (Eds.): ICANN 2010, Part II, LNCS 6353, pp. 245–255, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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Moreover, it can resemble the behaviour of groups of neurons instead of focus-
ing on single neuron activations [20]. Based on Moioli et. al. [21], who applied
evolved instances of the Kuramoto model to the generation of minimally cogni-
tive behaviours, the framework used in this paper is an extended version of the
model which differs from the original by incorporating a mechanism inspired by
the Hebbian theory of synaptic plasticity [22, 23], where the phase differences
of each pair of nodes represent their mutual activity, and by considering exter-
nal inputs. This mechanism was introduced to allow neuronal oscillators with
different natural frequencies to recruit and compete for coherence with other
oscillators in the neural network [24].

Section 2 defines the model; section 3 describes the experiments and their im-
plementation procedures; section 4 shows the results and provide some analysis
and section 5 presents the conclusions and proposes further work.

2 The Extended Kuramoto Model

The Kuramoto model is represented by a lattice of coupled oscillators, each with
a possible different natural frequency drawn from some distribution, modulated
according to a function that depicts their sensitivity to the phase of other nodes
(more specifically, the sine function is used). Although apparently simple, it
can generate a large variety of synchronisation patterns with dynamics that can
easily scale up in complexity [18]. It has the form of Equation 1:

dθi

dt
= ωi +

1
N

N∑
j=1

Kijsin(θj − θi) (1)

where θi is the phase of the ith oscillator, ωi is the natural frequency of the
ith oscillator, Kij is the coupling factor between nodes i and j and N is the
total number of oscillators. If the frequency of any two given nodes i and j
(i, j = 1, 2...n) are equal, i.e. dθi − dθj = 0 or θi − θj = constant, the model is
said to be globally synchronised.

We have extended the model by incorporating a phase-based plasticity rule,
similar to a Hebbian learning rule, to govern Kij (Equation 2).

dKij

dt
= ε [αcos(θi − θj)−Kij ] (2)

where: ε is a learning rate, α is a learning enhancement factor.
It is clear from Equation 2 that nodes with similar phases tend to increase

their coupling whereas out-of-phase nodes tend to have it decreased. Therefore
the activity of the nodes has a strong influence on the unfolding dynamics of the
model. The importance of this property in mimicking brain related dynamics
relies in the fact that different neuronal blocks could dynamically arise, synchro-
nise and influence other blocks, culminating in different cortical areas flexibly
establishing communication channels depending on their temporal activity [1].
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(a) (b)

Fig. 1. (a) Network architecture. (b) Experiments 1 and 2 scenario.

The framework implemented to control a simulated robotic agent is composed
of a set of fully-connected oscillators, some with connections to the robot’s sen-
sors. The frequency of each node is the sum of its natural frequency of oscillation,
wi, and the value of the sensory input related to that node (0 if there is no in-
put to it), scaled by a factor zi. The natural frequency wi can be associated
with the natural firing rate of a neuron or a group of neurons, and the sensory
inputs mediated by zi alters its oscillatory behaviour according to environmen-
tal interactions, thus improving the flexibility of the model to study neuronal
synchronisation [20] within a behavioural context.

At each iteration the phase differences from a given node to all other nodes
are calculated following Equation 1 (modified as described in the previous para-
graph). A phase-sensitivity function f(φ) is then applied to each of the phase
differences φij from nodes that are connected to sensors. The modified phase
differences are then linearly combined by an output weight matrix, W , resulting
in two signals that will command the left and right motors of the agent (Figure
1). Therefore, there are n inputs to n corresponding nodes in the network of size
N , with Cn,2 phase differences, φij , being multiplied by a Cn,2×2 matrix, W . In
this way, the phase dynamics and the environmental input to the robotic agent
will determine its behaviour. It is important to stress that nodes that receive
no input participate in the overall dynamics of the network, hence their natu-
ral activity can modulate the global activity of the network. The next section
presents the experimental set-up.

3 Methods

In the first experiment an active categorical perception task is performed [11].
It consists of a circular robotic agent constrained to move in 1D (horizontally)
along the bottom of a 250× 200 rectangular environment (Figure 1). The agent
is required to distinguish between circular and square objects that are dropped
from the top of the environment by moving towards the circles and avoiding
the squares. The robot has 7 ray sensors, symmetrically displaced in relation to
the central ray in intervals of ±π/12 radians, and two motors (for left and right
movement). An intersection between each sensory ray and an object reflects a
reading between 0 and 10, 0 when the ray length is greater than 200 units and
10 when the ray length is 0. In all experiments, there is a saturation of the sen-
sors (they are clamped) when their value is above 9. The square’s diagonal, the
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Fig. 2. The generalisation performance of the agent over 100 aleatory runs for t = 1

(a), t = 36 (evolved) (b) and t = 1 (evolved) and f(φ) = φ (c). The red colour refers

to the circle catch behaviour and the blue colour to the square avoidance behaviour.

robotic agent and the circle’s radius all measure 15 units. At the beginning of
each trial, a circle or a square is dropped from the top at a random horizontal
position within a maximum of 50 units from the agent, and moves vertically with
a velocity of 3 units/step. This experiment also investigates different temporal
dynamics between the network and the agent’s actuators, i.e. how the perfor-
mance and synchronisation patterns are affected when one varies the number of
time steps Equation 1 is updated before the phase-differences are used to cal-
culate the motor output. The second experiment studies how the choice of the
phase-sensitivity function f(φ) alters the phase dynamics of the network and in
consequence the behaviour displayed by the agent.

A genetic algorithm is used to determine the parameters of the system: the
frequency of each node wi ∈ [0, 10], the input weights zi ∈ [0, 3], the matrix
Wn,2 with elements in the interval [−2, 2], a motor output weight s ∈ [0, 10],
the learning rate ε ∈ [0, 10], the learning enhancement factor α ∈ [0, 10] and
the network update time t ∈ [1, 50]. For both experiments, a network with 15
nodes (out of which 7 are connected to the agent’s sensors) is used, resulting in
a genotype of length 68.

The network’s genotype consists of an array of integer variables lying in the
range [0, 999] which are mapped to the system’s parameters. For all the exper-
iments in this paper, a distributed GA was used with a population size of 49,
arranged in a 7× 7 grid. A generation is defined as 100 breeding events and the
evolutionary algorithm runs for a maximum of 150 generations. There are two
mutation operators: the first operator is applied to 20% of the gene and produces
a change at each locus by an amount within the [−10, +10] range according to
a uniform distribution. The second mutation operator has a probability of 10%
and is applied to 40% of the genotype, replacing a randomly chosen gene locus
by a new value within the [0, 999] range in a uniform distribution. For further
details about the genetic algorithm, the reader should refer to [25].

For both experiments, an evolutionary run corresponds to 28 trials with ran-
domly chosen objects (circles or squares), starting at a uniformly distributed
horizontal offset in the interval of ±50 units from the robotic agent. Fitness
is defined as the robotic agent’s ability to catch circles and avoid squares, and
is calculated according to the following equation: fitness =

∑N
i=1 ifi/

∑N
i=1 i,
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where fi is the ith value in a descending ordered vector F1,N , and is given by
1−di, in the case of a circle, or by di in the case of a square. di is the horizontal
distance from the robotic agent to the object at the end of the ith trial (when the
object reaches the bottom of the scenario), limited to 50 and normalized between
0 and 1. Therefore, a robotic agent with good fitness maximizes its distance from
squares and minimizes its distance from circles. Notice that the fitness function
pressures for a good performance in all trials in a given evolutionary run, instead
of just averaging the performance of each trial.

In the first experiment, two sets of results are obtained: for the parameter
t fixed at 1 and for t evolved between 1 and 50, reflecting a single or multiple
network update for every motor update. In this first case, f(φ) = sin(φ). In
the second experiment, t is evolved and the first experiment is replicated using
two possible phase-sensitivity functions: f(φ) = cos(φ) and f(φ) = φ. The next
section presents the results, considering the highest fitness individual evolved.

4 Results

4.1 Experiment 1

The evolved individuals for the first case (t = 1) will be henceforth called “type
1 agents” and the ones in the second case (t evolved) will be called “type 2
agents”. The training fitness of the best individual in the first (second) case was
0.96 (0.91) out of 1.00, and the generalisation fitness over 100 random runs was
0.90 (0.90), which resemble the results that are found in the literature for this
task [11, 15]. Figures 2(a) and 2(b) present the resulting behaviour of the agent
in the generalisation scenario.

Notice that the circle catch and square avoidance behaviours of type 1 and
2 agents in the first 15 iterations are almost the same, and from this moment
on they start to centralize circles and move away from squares. The horizontal
separation from objects in type 1 agents vary much more than the trajectories
displayed by type 2 agents. In the latter case, the distinction in strategies is
clearer: the agent tends to move itself to the right-side of falling objects (hence
a positive value for the horizontal separation), gets closer to the objects from
iterations 20 to 60 when it finally seems to discriminate between the two dif-
ferent shapes, continuing its movement to the right-side of the object if it is a
square or minimizing the horizontal distance if it is a circle. This behaviour has
been observed before by Izquierdo [14] and justified by the asymmetric nature
of the neural controller, i.e. the neural connection weights and other network
parameters are not symmetric in relation to the robotic agent’s body.

Consider the centre graphic of the top part of Figure 3(a). In the beginning
of the task, as the agent is far from falling objects, the inputs are almost zero
and the nodes seem to be converging to a common frequency until iteration 20.
At this time, the sensory readings start to increase (the object is closer) and
due to the mutual influence of the nodes the network starts to oscillate in a
less coherent way. Notice the change in the phase dynamics (rightmost graphic),
which becomes less smooth. This variation in the phase dynamics will determine
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Fig. 3. Agent’s internal and external dynamics for t = 1 (a) and t = 36 (evolved)

(b). The top three graphics of each figure refer to the circle catch behaviour and the

bottom ones to the square avoidance behaviour. The leftmost illustrates the horizontal

coordinate of the agent and the object, the middle one shows the frequency of each

node of the network as the task progresses (colour lines for nodes with inputs, dashed

lines otherwise) and the rightmost ones present the 21 (C7,2) possible phase differences.

the approaching the circle behaviour of the agent and also change the nodes’
relationship by changing the coupling dynamics. This can be seen in Figure 4(b).
The bottom part of Figure 3(a), which reflects the square avoidance behaviour,
can be explained by the same reasoning above, but taking into account that the
agent moves away from the object and therefore the sensory readings tend to
vanish, leading to a much smoother frequency, phase and coupling dynamics.

Figures 3(b) and 4(b) present the results for type 2 agents. In both task
scenarios, the network presents a much stronger synchronisation since the first
iterations, leading to more stable phase and coupling dynamics until near itera-
tion 30. The robotic agent’s motors speed, dictated by the phase differences and
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Fig. 4. (a) Detailed behaviour of the agent’s internal and external dynamics for

t = 1(evolved) and f(φ) = φ. (b) coupling dynamics, with each pair in each column

representing the scenarios of Figures 3(a), 3(b) and 4(a), respectively.

the output matrix W , stabilize in a constant value (leftmost graphics). If a sen-
sory reading increases, the corresponding frequency of the node it is connected to
changes, and the different phase dynamics (rightmost part of the graphics) will
possibly reduce the coupling strength, reducing at the first moment the influ-
ence of that node in the overall behaviour of the network. The conclusion is that
the ongoing activity of the network combined with the effects of the modulation
caused by external stimulus will determine the agent’s behaviour.

Figure 5 shows the detailed sensory input, the motor output, and the fre-
quency of each node. In the top two graphics the sensory input tends to saturate
as the robotic agent gets closer to the circle but the frequency of each node has a
completely different behaviour. In the beginning of the task, the network rapidly
synchronises. As the sensory input starts to increase (due to the circle getting
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nodes 8 to 15

Fig. 5. Sensory input and the motor output, and the frequency of each node (upper

two graphics refer to circle catch, bottom two for square avoidance, respectively) for

the Experiment 1, t = 36 (evolved)

closer to the agent), the mean frequency of oscillation changes, but all nodes
remain synchronised until near iteration 30, when nodes 5 (yellow) and 7 (ma-
genta) desynchronise and oscillate with different frequencies. One of the reasons
this is possible is that the couplings are dynamic, thus adding flexibility to the
network. Also, notice that not all nodes can “escape” the entrained oscillatory
state of the network, it will depend on the initial values of the node’s parameters
and the sensory input. The nodes without sensory input (8 in total) reinforce
the synchrony, as if they were one oscillator with strong couplings to the others.

Turn to the bottom two graphics now, related to square avoidance. Between
iterations 30 and 60 there is a clear variation in the sensory readings of nodes
6 (cyan) and 7 (magenta), but the correspondent oscillatory behaviour of the
network changes in a different way, stressing the importance of the ongoing
activity of the other nodes. At the end of the trial, with no sensory stimulation,
a global synchronisation behaviour is obtained.

4.2 Experiment 2

In this experiment, the objective is to investigate the impact of different cou-
plings between the oscillatory network and the agent’s motors. In Experiment 1,
the phase sensitivity function was f(φ) = sin(φ). The functions now investigated
are f(φ) = cos(φ) and f(φ) = φ. Everything else is exactly the same.

Evolved agents with good performance could not be obtained using f(φ) =
cos(φ) - the maximum fitness was 0.78. For the second case (f(φ) = φ), agents
with good performance were obtained. The training fitness for the best evolved
individual was 0.97 out of 1.00, and the generalisation fitness over 100 random
runs was 0.91. Figure 2(c) illustrates the generalisation test. Notice that the
agent’s behaviour is completely different from the one displayed in Experiment 1.
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It tends to centralize with both circles and squares, and near iteration 55 the
discrimination seems to be made, with agents continuing to centre on circles
and moving away from squares. It is interesting to see the symmetrical nature of
the solutions, specially when comparing with the results of the first experiment.
Izquierdo [14] obtained similar results for Experiment 1 using a non-symmetrical
artificial neural network and a similar result for Experiment 2 using a symmet-
rical one. However, in this paper both experiments employ a network with con-
nection strengths that depend on the ongoing activity of the network and the
environment, hence no pre-determined structure is forced. A possible conclusion
is that the oscillatory activity in the network is influenced by the way the agent’s
“mind” and “body” are coupled, and not only by the environment.

Analysing Figure 4(a), the synchronisation of the nodes is once more observed,
attaining almost complete entrainment near iteration 20. The external stimulus
changes the response of some nodes, but most of them remain synchronised
during the whole task time. This results in smoother phase dynamics, which
also lead to a more stable coupling dynamics (Figure 4(b)).

5 Conclusion and Future Work

This work explores the neural synchronisation and phase information dynamics
of a simulated robotic agent engaged in minimally cognitive tasks. It extends
previous work [21] by adding more nodes to the network and including mecha-
nisms of synaptic plasticity. The objective is to analyse the impact of different
neural network temporal dynamics and the effect of different phase sensitivity
functions on the synchronisation patterns and phase dynamics observed.

The main contribution of the work is to demonstrate that an enhanced ver-
sion of a widely used model of phase interacting oscillators, the Kuramoto model,
is able to generate interesting embodied behaviours in a benchmark task. The
inclusion of synaptic plasticity adds flexibility to the model. The couplings in
the network are now not predetermined but established through the interac-
tions of the nodes, which could unveil important emergent processes given that
the values of these couplings directly influence the oscillatory behaviour of the
model [18]. Specifically, the results showed how the external stimulus modulate
the ongoing activity of individual neurons which in turn affect the strength of
their synaptic connections, restructuring their mutual interaction and the phase
dynamics which control the agent. Internally generated brain activity, regardless
of environmental inputs, is stressed by Engel et.al.[4] as one of the key elements
in cognitive processes.

Therefore, by exploring a simulated brain/body/environment system, the
framework could provide insights on the role of neuronal synchronisation and
phase information in the generation of cognitive behaviours. Understanding it
could shed light into many different research areas, from the comprehension of
the role of oscillatory properties in some diseases (e.g. Parkinson) [5] to the
establishment of new parallel computing architectures [26].

Future work would include: investigate the impact and robustness of the model
to different initial conditions for the phase and coupling values; gain further
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insights into how nodes are recruited and cooperate in different neuronal as-
semblies; based on theoretic predictions [18], calculate and fix the value of the
coupling parameter so that the neuronal network is restrained to operate in a
metastable zone, studying the resulting dynamics in a more biologically plausible
neural network [27].
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Abstract. This paper introduces a model for associative learning com-

bining both linguistic and behavior modalities. The model consists of

language and behavior modules both implemented by a hierarchical dy-

namic network model and interacting densely through hub-like neurons,

the so-called parametric biases (PB). By implementing this model for

a humanoid robot with the task of manipulating multiple objects, the

robot was tutored to associate sentences of two different grammatical

types with corresponding sensory-motor schemata. The first type was a

verb followed by an objective noun such as “hold red” or “hit blue”; the

second was a verb followed by an objective noun and further followed by

an adverb phrase such as “Put red on blue”. Our analysis of the results

of a learning experiment showed that two clusters corresponding to these

two types of grammatical sentences appear in the PB activity space, such

that a specific micro structure is organized for each cluster.

1 Introduction

Compositionality, meaning that a whole can be constituted by reusable parts, is
one of the essential human cognitive characteristics [1]. In linguistic processing,
diversity of meaning can be generated by combining words by following gram-
matical rules and semantic constraints. Moreover, diversity in spoken words is
originated from compositions through multiple levels from segments to sylla-
bles and syllables to lexicons. In the action generation, complex actions can be
generated diversely by combining behavior primitives [2]. Both of these compo-
sitional systems of language and action have been considered to be organized
with specific hierarchy in neuronal anatomy.

In conventional neuroscience, these two types of compositional processing con-
cerned with language and action have been treated as independent processes.
Recently, however, some researchers have examined these two functions by uti-
lizing various brain imaging techniques including fMRI, PET and EEG, and
their results have begun to suggest that there are certain dependency between
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the two. Hauk etal [3] showed in their functional MRI experiment that reading
action related words with different end effectors, such as “Lick”, “Pick” and
“Kick”, evoked neural activities in the motor areas those overlap with the local
areas responsible for generating motor movements in the face, arm and leg, re-
spectively. This result, as well as [4], suggest that understanding action related
words or sentences may require specific motor circuits responsible for generating
those actions and, therefore, brain functions for language and actions might be
organized as interdependent.

If everyday experience of speech and its corresponding sensory-motor signals
tend to overlap during infant development, synaptic connectivity between the
two circuits can be reinforced by Hebbian learning, as discussed by Pulvemuller
[5]. This suggests the possibility that meaning and concepts of words and sen-
tences can be acquired as associated with the related sensory-motor experiences,
as discussed in the usage-based approach [6] in Cognitive Linguistics. Sugita and
Tani [7] conducted a synthetic neuro-robotics study to examine the idea of the
usage-based approach. They proposed a connectionist architecture which con-
sisted of a linguistic recurrent neural network (RNN) [8] module and an action
(RNN) module which interact via associative learning of proto-language and ac-
tions of robots. The results of the robot learning experiment showed that the
robot can acquire a set of action related concepts by self-organizing certain com-
positional structure related to verbs and object nouns.

The current paper introduces a trial to extend the aforementioned study [7,9].
The main motivation is to introduce a functional hierarchy for both the linguis-
tic and behavioral modalities by employing a dynamic neural network model,
the so-called the multiple timescale RNN (MTRNN) developed by our group
[10,11,12]. It was expected that the behavioral modality could have a functional
hierarchy where behavior primitives are acquired in a lower level with a fast
dynamics network and the action compositions do in a higher level with a slow
dynamics network [10]. Also the linguistic modality could be developed with or-
ganizing hierarchy consisting of the alphabetical level, the lexical level and the
sentence level, by utilizing time scale differences at each level of the network[9].
The processes for these two modalities could be associated by a similar scheme
as the PB binding described in [7]. In the current task setting, a humanoid robot
learns a set of multiple object manipulation behaviors associated with command
sentences. The sentences are comprised of two classes of grammars where one
type of sentence is organized as verbs followed by object nouns, such as “Hold
Object-A”. The other type consists of verbs followed by object nouns, further fol-
lowed by adverbial phrases, such as “Put Object-A on Object-B”. These actions
are more complex than those described in [7], because these require adequate
visual attention to be paid to the objects, as well as their sequential shifts.
The current study examines what sorts of internal representations can be self-
organized as a consequence of associative learning of these classes of sentences
and the corresponding actions accompanied by visual attention shifts.
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2 Model

2.1 Brain Model

We propose a model inspired by brain function, in which the three cognitive func-
tions of speech comprehension, action generation and visual attention switching
are integrated via their mutual interactions. Firstly, the action generation path-
way is considered. In [13,11], we hypothesized that the inferior parietal lobe
(IPL) may play the role of a sensory forward model for given action programs,
as suggested by recent neuro-physiological evidences [14]. This means that the
IPL may predicts the coming visuo-proprioceptive sensation flow which is asso-
ciated with action plans provided from the frontal cortex. For example, when
the frontal cortex sends an abstract action plan to the IPL for grasping a mug in
front of us, the sensory forward model predicts how our arm and hand postures
would change in time, how our hands reaching for the mug would be visually
perceived and how the tactile stimulus of touching the mug would arise.

Skilled behaviors of acting toward objects, such as manual object manipula-
tions, require adequate timing of visual attention shifts to the target objects.
Here, we consider a functional hierarchy where an abstract plan for a visual at-
tention shift is generated in the frontal eye field (FEF) [15] and the exact eye
saccadic movement to achieve the attention shift is generated in the intraparietal
sulcus (IPS) [16] in the downstream. The current model assumes that the FEF
predicts sequences of shifts of visual attention to particular objects for given
action programs and the IPS generates eye movements to the attended objects
by following our prior model [17].

Although it has been considered that speech comprehension is performed in
Wernicke’s area in the temporal cortex, recent evidence [18] has shown that
Broca’s area in the inferior frontal gyrus, which is considered to be responsible
for speech generation, actively participates in the process. Also, Tettamanti etal
[4] showed that listening to action related sentences evokes activations spread-
ing from Broca’s area to specific premotor and motor cortex regions which are
considered to be topographically responsible for generating the corresponding
motor activities expressed in the sentences. Here, we could draw a hypothesis
from these evidences that listening action related sentences could evoke a cor-
responding activation in the Broca’s area, which can lead to regeneration of
neuronal activities in two ways simultaneously. One is an activation in the pre-
motor and motor cortices which generates the corresponding motor imagery and
the other is an activation in Wernicke’s area to generate the auditory imagery.

The core part of our hypothesis for speech comprehension is that streams
of auditory signals might be recognized by inferring the corresponding neural
activation patterns in Broca’s area, which can regenerate them via a forward
model assumed in Broca’s area. Furthermore, it is speculated that the forward
model is constituted hierarchically by the Broca’s area responsible for sentence
level, the MTG for lexical level and the STG for phonetic level.

Finally, our basic idea of integrating three neural processing systems of speech
comprehension, visual attention and action generation is overviewed. Because all
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of these neural processing systems seem to constitute a functional hierarchy by
connecting different local networks, we propose to model each of them by the
MTRNN. Then these three neural processes are integrated with Broca’s area as
a “hub” to connect these three neural pathways as shown in Fig. 1. For given
speech inputs in the STG as targets, the speech comprehension system, consist-
ing of Broca’s area, the MTG and the STG, attempt to reconstruct them in their
forward computation (depicted by a blue arrow) by inferring adequate activation
patterns in Broca’s area (depicted by a red dotted arrow). Then, the obtained
activation patterns in Broca’s area initiate forward computation in the two path-
ways for the visual attention and action generation. In the visual attention sys-
tem, the FEF generates predictive sequences of attention shifts from one object
to another in the workspace and the IPS generates the corresponding eye saccadic
motion while the premotor generates predictive sequences of shifts of behavior
primitives and the IPL generates a detailed prediction of the visuo-proprioceptive
flow. The prediction of posture changes over time is utilized to compute the nec-
essary motor commands in the motor cortex to achieve the change.

2.2 The Computational Model

Overview. As described in the previous section, the architecture is based on
our prior proposed MTRNN model[10]. In the current study, as shown in Fig.
1, the whole network consists of the behavior module network on the right-hand
side, the linguistic module network on the left-hand side and the binding net-
work which may correspond to Broca’s area in human brains in the upper part.
The binding network contains parametric bias (PB) neurons[7]. The idea is that
specific static vector values of the PB map to the generation of a linguistic tem-
poral pattern in the linguistic network and a corresponding behavioral temporal
pattern in the behavior network as a generative model.

The behavior network learns to generate two types of sequence patterns, one
for proprioception, in terms of the arm posture pt and the other for so-called
visual attention commands at. The behavior network outputs the attention com-
mand, with a specific color category, to the visual attention module. Then, the
visual attention module searches for an object of the specified color in the reti-
nal image (see a detailed implementation in [17]). Then, the camera head of the
robot moves to target the attended object by means of a hand-coded program.
The current angle position of the camera head vt is fed into the input of the
behavior network. In summary, the behavior network predicts the color of the
object to be attended to next, and it receives the relative position of the attended
object in terms of camera head angle positions. At the same time the network
predicts how the arm posture changes in time with the received sensation of the
relative position of the currently attended object.

The linguistic network learns to generate alphabetic sequences lt for command
sentences. It can generate sequences autonomously with a closed-loop operation
in which the input of the current alphabet lt is obtained from its prediction
in the previous step instead of the one given externally. The behavior network
can be operated only with the open-loop with receiving the external input vt

representing the relational position of the attended object.
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Fig. 1. MTRNN Model with Robot Platform

The current model is adopted for a robot task which proceeds with a linguistic
phase followed by a behavior phase. In the linguistic phase, the robot receives an
alphabetic command sequence without moving, and infers the PB values, as will
be detailed later. Then the robot starts to move with the acquired PB values
in the following behavioral phase. A associative training is conducted for each
pair of alphabetic sequences (a command sentence) and a behavior sequence. The
behavior training sequence corresponding to each command sentence is generated
by guiding the arm posture associated with the visual attention command at
each time step. A set of command sentences and their corresponding behavior
sequences can be associated by determining a specific PB value for each pair.
The delta errors generated in both module networks during association learning
were propagated through both networks to the PB units in the binding network.
The PB values responsible for each associative pair in the training sequences
are updated by utilizing this delta error, while the optimal synaptic weights for
minimizing the learning errors for all training pairs are searched.

After the learning for all pairs converges with respect to minimization of the
training error, the robot is tested as follows. A command sentence in terms
of alphabetic sequence is shown to the linguistic network as the target to be
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recognized. This can be done by reconstructing the target sequence by inferring
an optimal PB value by back-propagating the error between the target sequence
and the regenerated one. Once the PB value is determined, the robot is operated
by the behavior network with setting the obtained PB value into the neural units
in the binding network.

Mathematical Detail. The current model consists of seven groups of neural
units as shown in Fig. 1, namely linguistic input-output units (IOl), behavioral
input-output units (IOb), linguistic fast context units (CFl), behavioral fast
context units (CFb), linguistic slow context units (CSl), behavioral slow context
units (CSb) and binding units (PB).

The activation value of the i-th neural unit at time step t is calculated as
follows.

yt,i =

{
exp(ut,i)∑

j∈IO exp(ut,j) , (i ∈ IO)
1

1+exp(−ut,i)
, (i /∈ IO)

(1)

ut,i =

⎧⎪⎨⎪⎩
0, (t = 0 ∧ i /∈ PB)
PBi, (t = 0 ∧ i ∈ PB)
(1− 1

τi
)ut−1,i + 1

τi

∑
j∈Iall

wijxt,j , (otherwise)
(2)

xt,j = yt−1,j (3)

ut,i : internal state of the i-th unit at time step t

PBi : neural activation of binding units (PB value)
τi : time constant of i-th unit

wij : connection weight from j-th unit to i-th unit
xj,t : input from j-th unit at time step t

The number of neural units and the time constant are shown in Fig. 1. The
time constant of the binding network is set to a large value so that the neural
activation of binding units can be considered as static vector values like PB.

Connection weights and the PB value are adjusted using the Back Propagation
Through Time (BPTT) algorithm, as follows.

w
(n+1)
ij = wn

ij − η
∂E

∂wij
= wn

ij −
η

τi

∑
t

xt,j
∂E

∂ut,i
(4)

PB
(n+1)
i = PBn

i − α
∂E

∂PBi
= PBn

i − α
∂E

∂u0,i
(5)

E =
∑

t

∑
i∈IO

y∗
t,ilog(

y∗
t,i

yt,i
) (6)

∂E

∂ut,i
=

{
yt,i − y∗

t,i + (1− 1
τi

) ∂E
∂ut+1,i

(i ∈ IO)

yt,i(1− yt,i)
∑

k∈IO
wki

τk

∂E
∂ut+1,k

+ (1− 1
τi

) ∂E
∂ut+1,i

(otherwise)
(7)
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n : iteration number in the updating process

E : prediction error

y∗
t,i : value of the current training sequence for the i-th neural unit at time step t

η, α : learningrate

The PB values are determined for each training sequence independently whereas
the connection weights apply to all sequences. To recognize a linguistic sequence
after associative learning, the PB value corresponding to a given alphabetic
command sequence is searched for using BPTT with fixed connection weights.

3 Experiment

3.1 Task Design

A small humanoid robot as shown in Fig. 1 was used as the experimental plat-
form. The robot was fixed to a chair, and a table was set in front of the robot.
The robot was supposed to associate a set of alphabetic sequences of two dif-
ferent grammatical types to corresponding behavioral sequence. The first type
(Type-1) was a verb followed by an objective noun where the verb could assume
the two words “hold” and “up-down” and the objective nouns of “red”, “blue”
and “green”. This generates six sentences. The other type (Type-2) was a verb
followed by an objective noun, further followed by an adverbial phrase. In this
type the verb was just one word, namely, “put”, and both objective nouns and
adverbs could assume three words of “red”, “blue” and “green”. This generates
six sentences. For each action, the robot was tutored three times by changing the
initial position of the object to be 4cm to the left of the original position, at the
original position and 4cm to the right of original one, for the purpose of gaining
a generalization of object manipulation behavior. Each action was tutored in
every possible combination of object position (left, center and right) and color
of the object (red, blue and green). In total, there were 18 behavior sequences
for Type-1 and 54 for Type-2.

3.2 Results

After training, the robot was tested to see whether it could recognize all 12
linguistic command sentences and generate the corresponding behavior with dif-
ferent object position situations (left, center and right). Recognition was done
by searching for optimal PB values. The search calculation was iterated 2000
times with α = 0.2 for each linguistic command sentence. The performance was
scored in terms of the success rate across all trials. It was considered that a
trial was successful if the robot was able to generate a corresponding behavior
sequence with the obtained PB values. As the results, it was confirmed that the
robot was able to generate the correct behavior with an 82% success rate. It was
further confirmed that the robot could recognize all the 12 sentences, because it
was able to generate the correct behavior for at least one specific object position
case, for each command sentence.
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Fig. 2 shows two examples of the time development of sequences. Here it can
be seen that the fast context profile contains more complex patterns, as compared
to those in the slow context for both the linguistic and behavior networks.
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Fig. 2. Examples of sequences generated with obtained PB values. (a) shows the “Up

Down Red” and (b) shows the “Put Red on Green” case. Vertical dashed lines indicate

the onset of the behavioral phase. The first row shows an alphabetic sequence of the

representative four characters (“silence”, “d”, “n” and “o”). The second and third rows

show activations of fast and slow context units in the linguistic network. The fourth

row shows the joint angles of the right arm of the robot. The fifth row shows the

visual attention commands corresponding to “home”, “red”, “blue” and “green”. The

sixth and seventh rows show activations of fast and slow context units in the behavior

network.

4 Analysis

We applied principal component analysis to visualize the structure of the PB
space. Fig. 3 shows the 1st and 2nd principal components of the neural activation
of binding units (PB). It can be observed that there are two clusters corresponding
to Type-1 and Type-2 sentences. The cluster for Type-1 sentences shows that the
compositional structure of two verbs multiplied by three objective nouns appears
in a two dimensional grid which is similar to the structure observed in our previ-
ous study[7]. On the other hand, no systematic structures can be found for Type-2
although the mapping from these sentences to actions was successfully generated,
but without the formation of a generalized representation.
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Fig. 3. The PB space. The dimensions are reduced from 5 to 2 by PCA. The sentences

are clustered, based on their grammatical structure.

5 Conclusion

In this paper, we reported on the integrative learning of linguistic and behavioral
sequences by the MTRNN. We trained the model with a set of linguistic and
behavioral sequences. As a result of our experiment, we found that the model
was able to acquire the capability to recognize linguistic sentences and to gen-
erate corresponding behavioral sequence patterns. Our analysis showed that the
compositional structure could be self-organized for Type-1 sentences, but not for
Type-2.

Two possible reasons to account for this result may be as follows. One possi-
bility is that the PB space cannot embed two distinct compositional structures,
i.e. Type-1 and Type-2 simultaneously. The other possibility is that the number
of examples for learning of Type-2 structures was too low to achieve general-
ization, as Type-2 was trained only with one verb case of “put”, in the current
study. A future study will examine these possibilities and also will pursue scaling
of the system in terms of the number of words, diversity of grammar types and
behavior complexity.
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Abstract. A synthesis of a sliding mode control law, for a robot arm,

based on the robot model with a positive definite inertia matrix, identi-

fied with an artificial neural network, is presented. The structure of the

neural network resemble a Lagrange-Euler mathematical model of the

robot, and identifies the positive definite inertia matrix. A design of the

neural model is based on the Cholesky decomposition of the identified

inertia matrix.

Keywords: Sliding mode control, Robot control, Neural networks.

1 Introduction

A mathematical model of the robot, in a form of Lagrange-Euler equations,
is useful for the design of the advanced robot control systems. A structure of
nonlinear model is known, but it requires the knowledge of exact values of robot
kinematical and dynamical parameters, which are hard to obtain [4]. Therefore
its calculation is difficult.

There is a growing interest in the identification of the robot model, using the
artificial neural networks (ANNs) [8,11,15]. Their advantages are: an approxima-
tion of the multivariable nonlinear functions, an easy adaptation of the model
parameters and a very rapid calculation of the model equations, which are useful
for a real time control. Designing ANN does not require an exact knowledge of
the functions, and the physical parameters that describe the model, but only
values of the model variables, i.e., generalized coordinates and control signals.

However, there are some drawbacks of this approach. Usually, the structure of
ANN does not satisfy the very strict properties of the robot mathematical model.
The most important is a positive definiteness of an identified inertia matrix. Lack
of this property can result, e.g., in unstable control system. Recently [15], we
proposed a new design method of the ANN structure based on the Cholesky
decomposition [5], which guarantee the identification of the positive definite
inertia matrix.

In the article, there is presented the synthesis of the robot sliding mode con-
trol (SMC) algorithm, based on the mathematical model, with positive definite
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c© Springer-Verlag Berlin Heidelberg 2010
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inertia matrix identified by ANN [7,12]. The SMC algorithm was chosen, because
according to [1,3,6,7,12] it is robust to the model uncertainties and disturbances.

The article is organized as follows. In section 2, discrete time robot mathe-
matical model in the form of the Lagrange-Euler equations, is given. Then, in
section 3, the properties of the robot inertia matrix are described. Section 4 in-
troduces the artificial neural network (ANN) for the identification of the robot
mathematical model, with positive definite inertia matrix, based on Cholesky
decomposition. Next, in section 5, there is presented synthesis of ANN robot
model and sliding mode control algorithm (SMC-ANN). Section 6 describes re-
sults obtained during computer simulations of the control of 2 degree of freedom
robot arm using SMC-ANN controller. Finally, in section 7, concluding remarks
are given.

2 Discrete Time Robot Model

A discrete time model of the robot, with n degrees of freedom, based on Lagrange-
Euler equations, can be presented as follows [9]

M(q, k)γ(q, k + 1) + P (q, k) = τ(k) , (1)

where

γ(q, k + 1) = [γi(q, k + 1)]n =
q(k + 1)− 2q(k) + q(k − 1)

T 2
p

, (2)

P (q, k) = V (q, k) + G(q, k) (3)

and q(k) = [qi(k)]n is a vector of the generalized joint coordinates, M(q, k) =
[mi,j(q, k)]n×n is a robot inertia matrix, V (q, k) = [vi(q, k)]n is a vector of Cori-
olis and centrifugal forces, G(q, k) = [gi(q, k)]n is a vector of a gravity forces,
τ(k) = [τi(k)]n is a vector of control signals, k is a discrete time, Tp is a sampling
period (t = kTp).

3 Properties of the Robot Model

There are specific properties [2,8,9,14] of the robot mathematical model

Property 1. The inertia matrix is symmetrical

M(q, k) = MT (q, k) . (4)

Property 2. The inertia matrix is positive definite.

∀x ∈ Rn, x �= 0 : xT M(q, k)x > 0 , (5)

det[M(q, k)] �= 0 . (6)
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Property 3. Each element of the inertia matrix [mi,j(q, k)]n×n depends on
n > min(i, j) joint coordinates

mi,j(q, k) = f(qmin(i,j)+1(k), ..., qn(k)) . (7)

Properties 1 and 2 can be used for the design of the inertia matrix identification
method [15]. Property 3 defines the set of the generalized coordinates, that
influence each element of the inertia matrix. Especially, the element mn,n(q, k)
does not depend on the joint coordinates, and has a constant value.

4 Artificial Neural Network Robot Model

In the robot model (1), the unknown nonlinear elements of M(q, k) and P (q, k)
should be identified. For their identification a feed-forward ANN can be used.

Let us describe ANN model for the identification of the model (1). We have
assumed, that the inputs to ANN are q(k−1), q(k) and γ(q, k+1). The output of
ANN is vector τ(k). ANN preserves the multiple-input-multiple-output structure
(MIMO) of the robot model. Each element of M(q, k) and P (q, k) is identified
by the distinct subnetwork. Inputs to each subnetwork are determined by Prop-
erty 3 (7). Identified matrices are denoted as MNN(q, k) = [mNNi,j(q, k)]n×n,
PNN(q, k) = [pNNi(q, k)]n. Elements mi,j(q, k) = mj,i(q, k), i �= j are identified
by one subnetwork. Therefore, the identified estimate MNN(q, k) of the inertia
matrix is symmetrical.

Fig. 1 shows a structure of a proposed ANN for the identification of the robot
with 2 degrees of freedom, and the symmetrical, positive definite inertia matrix.
In all nonlinear layers, neurons are described by a nonlinear activation function,
e.g., sigmoidal

y = fNL(z) = tansig(z) . (8)

In linear layers, neurons are described by a linear activation function

y = fL(z) = z , (9)

where z =
∑L

i=1 wizi + b, L is a number of neuron inputs, wi is a weight of the
i-th input to neuron, zi i-th is an input to neuron, b is a threshold offset.

The performance function of ANN was chosen as a mean squared error

J =
1
N

N∑
k=1

2∑
i=1

[τi(k)− τNNi(k)]2 . (10)

The element mNN2,2(q, k) is identified using the one layer subnetwork, with
the one neuron described by linear activation function (9), as it is presented in
Fig. 1, and has a constant value after the identification process.

The elements on the diagonal of the identified matrix MNN(q, k) are calculated
as follows [15]

mNN2,2(q, k) = m̂2
NN2,2(q, k) + f2 , (11)
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mNN1,1(q, k) = m̂2
NN1,1(q, k) +

m2
NN1,2(q, k)

mNN2,2(q, k)
+ f1 , (12)

where fi = const, fi > 0 are chosen arbitrarily, m̂NNi,i(q, k) is the output of the
subnetwork identifying the element ml,l(q, k), i = 1, 2.

The decomposition of positive definite inertia matrix, and calculation of the
boundaries of its diagonal elements, are described in detail in [15].

5 Application of Artificial Neural Network Model in
Sliding Mode Control of Robot

For the robot let us denote

x̃i(k) =
[

qi(k − 1)− qri(k − 1)
qi(k)− qri(k)

]
, (13)

where qri(k) is the reference generalized coordinate in joint i.
The synthesis of SMC control law, and presented ANN model of the robot

can be, according to [11], described by the equation

τ(k) = PNN(q, k) + T−2
p MNN(q, k)[qr(k + 1)− 2q(k) + q(k − 1) + τsl(k)] , (14)

where:
τsl(k) = [τsli(k)]n , (15)

τsli(k) = −(ΛiBi)−1Ψi , (16)

and
Ψi = Tpκisat[si(x̃i, k)] + Tpεisi(x̃i, k)− si(x̃i, k) + ΛiAix̃i(k) (17)

Ai =
[
0 1
0 0

]
, Bi =

[
0
1

]
, Ci =

[
0 1
]

, (18)

Λi =
[
λi 1

]
. (19)

The switching function in (17) is in the form [6]

si(x̃i, k) = Λix̃i(k) , (20)

The saturation function in (16) is calculated as follows

sat(si[x̃i(k)]) =

⎧⎨⎩
+1 if si[x̃i(k)] > δi

si[x̃i(k)]
δi

if |si[x̃i(k)]| ≤ |δi|
−1 if si[x̃i(k)] < −δi

, (21)

where δi > 0, i = 1, . . . , n is a switching boundary in joint i.
The saturation function eliminates the high frequency oscillations called chat-

tering [3,13], that is typical for the standard SMC control system.
To obtain the stable performance of the sliding mode control system, its pa-

rameters should be chosen as follows [11] κi > 0, εi > 0, 1 − Tpεi > 0, |λi| < 1,
δi > 0, i = 1 . . . n.
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Fig. 1. A neural network for the identification of the mathematical model of robot with

2 degrees of freedom
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6 Experiments and Results

In order to verify the proposed SMC controller with ANN robot model (SMC-
ANN), we have calculated an example of the control of the robot with 2 degrees
of freedom [2,11]. The physical parameters of the robot are gathered in Table 1
and the robot is shown in Fig. 2.

Table 1. Physical parameters of the robot with 2 degrees of freedom assigned according

to the Denavitt-Hartenberg notation [9,14]

Link i αi[
◦] ai[m] θi[

◦] di[m]

1 0 2.0 q1 0

2 0 0.8 q2 0

M[kg] rx[m] ry[m] rz[m]

1 22 -1.0 0 0

2 16 -0.4 0 0

Ixx[kg · m2] Iyy[kg · m2] Izz[kg · m2] Jxy, Jyz, Jxz[kg · m2]

1 0 22.00 22.00 0

2 0 2.56 2.56 0

m1

m2

q1

q2

y0

x0

y1
x1

y2

x2

z0

z1

z2

a1

a2

Fig. 2. Robot with 2 degrees of freedom, with coordinate systems set according to the

Denavit - Hartenberg notation spong:robot,siciliano:handbook

For calculation of the training and testing data, a reference trajectory for
every joint was set, according to the following formula

qri(k) =
3∑

j=1

ai,jcos(�i,jkTp + ϕi,j), i = 1, 2 , (22)

The values of ai,j , �i,j and ϕi,j , different for the training and testing trajec-
tories, are given in Table 2.
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Table 2. The parameters of the training and testing trajectories

Link i ai1[
◦] ai2[

◦] ai3[
◦] i1[

◦
s
] i2[

◦
s
] i3[

◦
s
] ϕi1[

◦] ϕi2[
◦] ϕi3[

◦]

Link 1, training 110 23 47 37 5 8 127 77 54

Link 2, training 30 26 124 30 5 15 97 27 125

Link 1, testing 61 92 27 38 6 6 89 161 147

Link 2, testing 104 55 21 29 6 15 52 61 96

Values of SMC-ANN controller parameters, used for the simulations, are gath-
ered in Table 3.

Table 3. Parameters of the SMC-ANN controller for the robot with 2 degrees of

freedom

λi κi δi[
◦] εi[

1
s
]

Link 1 -0.98 5 5 0.2

Link 2 -0.98 5 5 0.2

For identification experiment, a time interval T = 100[sec] was chosen, with
a sampling time Tp = 0.01[sec]. The robot was simulated with given training
trajectory, and SMC controller based on the ideal robot model. Therefore, there
were N = 10000 training data samples - each sample consisted values of q(k),
q(k − 1), γ(q, k + 1) and τ(k).

ANN model of the robot was trained off-line, with the known training data,
to identify the model coefficients. Elements m1,1(q, k), m1,2(q, k) = m2,1(q, k) of
the robot mathematical model were identified by the subnetworks containing 1
nonlinear hidden layer with 2 neurons, and 1 linear output layer with 1 neuron, as
it is given in Fig. 1. ANN was trained using the backpropagation method, and
the Levenberg-Marquardt method, to update weights in all layers [10]. There
were 50 training iterations. Bounding constants in (11) and (12) were chosen
arbitrarily, as

fi = 0.001, i = 1, 2 . (23)

Identified inertia matrix was always positive definite. After identification, the
robot with SMC-ANN control system, moving along the reference trajectory,
was simulated. At first, as the reference trajectory, the training trajectory was
chosen. Next, as the reference trajectory, the testing trajectory was chosen, which
parameters are gathered in Table 2. During testing, the time interval was T =
100[sec], and the sampling time was Tp = 0.01[sec].

For the evaluation of SMC-ANN control system of the robot, the average
absolute position control error of generalized joint coordinate was calculated as
follows

eavqi =
∑N

k=1 |qri(k)− qi(k)|
N

, i = 1, 2 , (24)

Obtained values of the error (24), for training and testing trajectories, are pre-
sented in Table 4. In Fig. 3, there are presented reference testing trajectories,
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Table 4. The values of the average absolute position control errors of generalized joint

coordinates (24), for the robot with SMC-ANN controller

Training trajectory Testing trajectory

eavq1[rad] eavq2[rad] eavq1[rad] eavq2[rad]

0.09 0.12 0.20 0.33

Fig. 3. Trajectories in each joint obtained during the simulation of the robot with

SMC-ANN controller (dashed line), and reference trajectories (solid line), for testing

data
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and trajectories obtained for the robot with SMC-ANN controller with identified
symmetrical, positive definite inertia matrix.

Obtained results, gathered in Table 4 and presented in Fig. 3, indicate that
values of errors (24) can be still too big for some applications. However, presented
method has significant properties: the neural network model has the structure
that resembles the structure of the Lagrange-Euler equations, it is easy to im-
plement, and does not require exact knowledge of the robot physical parameters.
Moreover, the identified inertia matrix is positive definite, which is a key feature
to design stable control system of the robot.

7 Concluding Remarks

This paper presents the synthesis of the sliding mode control system for the
robotic manipulator, with structural model of the robot identified by the ar-
tificial neural network. Proposed artificial neural network model fulfills strict
properties of the mathematical model of the robot, especially, the symmetry
and the positive definiteness of the identified inertia matrix. The proposed, new
method of the neural network design, is based on the conditions that are calcu-
lated using Cholesky decomposition of the estimated inertia matrix. Preliminary
experimental results show, that the proposed control system is stable and can
be used to control the 2 degree of freedom robot arm, with unknown physical
parameters.
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Abstract. This paper presents a hardware implementation of a con-

troller to generate adaptive gait patterns for quadruped robots inspired

by biological Central Pattern Generators (CPGs). The basic CPGs are

modeled as non-linear oscillators which are connected one to each other

through coupling parameters that can be modified for different gaits.

The proposed implementation is based on an specific digital module for

CPGs attached to a soft-core processor so as to provide an integrated

and flexible embedded system. The system is implemented on a Field

Programmable Gate Array (FPGA) device providing a compact and low

power consumption solution for generating periodic rhythmic patterns

in robot control applications. Experimental results show that the pro-

posed implementation is able to generate suitable gait patterns, such as

walking, trotting, and galloping.

1 Introduction

The design of locomotion control systems of legged robots is a challenge that has
been partially solved. In the literature, broadly, there are two main approaches
to the design of locomotion control systems, the mathematical model-based and
the biologically inspired approach. In the former, to move a leg in a desired
trajectory, the joint angles are calculated in advance, by using a mathematical
model that incorporates both robot and environment parameters, to produce
a sequence of actions algorithmically scheduled [1]. The second approach uses
CPGs which are supposed to play an important role in locomotion. CPGs are
comprised of neural oscillators located in the spine of vertebrates and in the
segmental ganglia of invertebrates [2]. CPGs are often modeled as oscillators
that have mutually coupled excitatory and inhibitory neurons, following a regular
structure. The CPGs have the ability to automatically generate complex control
signals for the coordination of muscles during rhythmic movements, such as
walking, running, swimming and flying [3].

The CPG-based approach for the design of locomotion control systems has
several advantages. Due to the limit cycle behavior of neural oscillators, i.e.
to produce stable rhythmic patterns, the system rapidly returns to its normal
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rhythmic behavior after transient perturbations of the state variables. This pro-
vides robustness against perturbations. As a result of the natural synchroniza-
tion and coordination of CPGs, the amount of computations is reduced. The
synaptic plasticity of interconnections and feedback signals, used to integrate
sensory information, allow CPGs to produce flexible locomotion in unknown
environments [4,5]. However, one of the main disadvantages of CPGs is that
their parameters have to be tailored for specific applications, and there are few
methodologies to generate the rhythmic signals. The parameters are usually
tuned either by trial and error method or by some optimization algorithms, ge-
netic algorithms for example. These methodologies are still insufficient to tune
the parameters for generating a periodic signal with a specific shape [6].

To address some of the future challenges for robotics, the miniaturization of
walking, running and flying robots will be needed, so as to look for real-time
adaptability of robots to the environment. These technologies will require small,
low-cost, power efficient and adaptive controllers which might greatly benefit
from custom bio-inspired hardware. Currently, some researches have used CPG-
based locomotion control systems in robots. For example, CPG models have been
used for controlling swimming robots, such as a salamander robot [7] and a tur-
tle robot [8]. CPGs also have been used on quadrupeds, hexapods and octopods
robots [9,10]. Control systems for quadruped robots using CPGs have been ex-
plored by Hiroshi Kimura et al. [11]. Authors have developed a quadruped walk-
ing robot capable of adapting to irregular terrain using the Matsuoka oscillator.
Other works on CPGs in quadruped robots can be found in Billard et al. [12]
and Shan et al. [13]. Many of these applications have been developed using ded-
icated hardware, both analog and digital [11,12,13]. On one hand, CPGs have
been implemented using microprocessors providing high accuracy and flexibility
but those systems consume high power and occupy a large area restricting their
utility in embedded applications. On the other hand, analog circuits have been
already proposed, being computation and power efficient but they usually lack
flexibility and dynamics and they involve large design cycles.

In this paper an FPGA-based hardware implementation to generate different
gaits for quadruped robots is presented, based on established principles of loco-
motion that mimics the features of biological CPGs. A custom implementation
of the Van Der Pol CPG attached to a Xilinx microblaze processor is presented
and discussed. Potentially, this approach might provide modular control circuits
that are adaptable and able to generate complex, coordinated movements. The
goal of this implementation is to show the feasibility of self-contained locomotion
solutions using modular, adaptable and compact modules with a higher degree
of programmability to scale up to legged robots with high degrees of freedom.

2 CPG-Based Locomotion

2.1 Quadruped Gaits

Animal locomotion employs different periodic patterns known as animal gaits.
Researchers have established that gaits possess certain symmetries and have
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Fig. 1. Typical gait patterns in quadruped locomotion and their relative phases be-

tween the limbs

modeled the gaits of quadrupeds by a system of coupled cells where each cell is
composed of a set of neurons directly responsible to synchronize the movement
of their limbs. A simplified mathematical model of CPG-based locomotion con-
sists of using one cell per limb and replacing each cell by a nonlinear oscillator.
Thus, quadruped gaits are modeled by coupling four nonlinear oscillators, and
by changing the coupling strength, it is possible to reproduce rhythmic locomo-
tion patterns. In rhythmic movements of animals, a transition of the rhythmic
movements is often observed. As a typical example, horses choose different loco-
motive patterns in accordance with their needs, locomotive speeds or the rate of
energy consumption. In addition, each gait pattern is characterized by relative
phase among the limbs [14]. Figure 1 shows the typical horse gait patterns and
its relative phases between the limbs. Here, LF, LH, RF, and RH stand for left
forelimb, left hindlimb, right forelimb, and right hindlimb, respectively.

2.2 Basic CPG Model

There are several models for neural oscillators to model the basic CPG to control
a limb, such as Amari-Hopfield model [15], Matsuoka model [12] and Van De Pol
model [16]. In this work, the basic cell is modeled by a Van Der Pol (VDP)
oscillator which is a relaxation oscillator governed by a second-order differential
equation (equation 1):

ẍ− α(p2 − x2)ẋ + ω2x = 0 (1)

where x is the output signal from the oscillator, α, p and ω are the parameters
that tune the properties of oscillators. In general terms, α affects the shape of
the waveform, the amplitude of x depends largely on the parameter p. When
the amplitude parameter p is fixed, the output frequency is highly dependent on
the parameter ω. However, a variation of parameter p can slightly change the
frequency of the signal, and α also can influence the output frequency. Actually,
the VDP equation satisfies the Linard’s theorem ensuring that there is a stable
limit cycle in the phase space. Using the Linard’s transformation, equation 1 can
be rewritten as:

ẋ = y
ẏ = α(p2 − x2)y + ω2x

(2)
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2.3 Quadruped CPG Network

In this work, the locomotion control system of a quadruped is modeled as a
network of four VDP oscillators as shown in the figure 2a as suggested in most
works reported in the literature [4,11]. Each oscillator controls the movement of a
single limb. Within the CPG network, oscillators are mutually forced to oscillate
in the same period and with a fixed phase difference. The mutual interaction
among the VDP oscillators in the network produces a gait. By changing the phase
difference between the oscillators, changing the coupling weights, it is posible to
generate the three basic gaits. Figures 2b to 2d, present the configurations of
the network that generate periodic rhythmic patterns corresponding to each gait
(walk, trot, gallop).

The dynamics of the ith coupled oscillator in the network is given by:

ẍc + α(p2
c − x2

cj)ẋc − ω2xcj = 0 (3)

For i = 1, 2, 3, 4 , where xc is the output signal from oscillator, xcj denotes
the coupling contribution of its neighbors given by the equation 4:

xcj =
∑

j

λcjxj (4)

Where λcj is the coupling weight that represents the strength of jth oscillator
over the current oscillator. The generation of the respective gaits depends on the
values of the system parameters.

3 Digital Hardware Implementation

In this section, we describe the architecture of the CPG controller for inter-
limb coordination in quadruped locomotion. First, the design considerations for
the implementation are presented. Next, the basic Van Der Pol Oscillator that
constitute a part of the CPG network is given. Finally, the architecture of the
complete system is described.

(a) (b) (c) (d)

Fig. 2. (a) General CPG network. (b)-(c) Functional configurations corresponding to

the typical gaits patterns. Black and white dots represent excitatory and inhibitory

connections, respectively.
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3.1 Design Considerations

The Van Der Pol oscillator is suitable for CPG implementation as a digital
circuit, however two main factors for an efficient and flexible FPGA-based im-
plementation should be taken into account: a) arithmetic representation, CPG
computations when implemented in general microprocessor-based systems use
floating point arithmetic. An approach for embedded implementations is the use
of 2s complement fixed point representation with a dedicated wordlength that
better matches the FPGA computational resources and that saves further silicon
area at the cost of precision, and b)efficiency and flexibility, embedded hard pro-
cessor cores or configurable soft processors developed by FPGA vendors add the
software programmability of optimized processors to the fine grain parallelism
of custom logic on a single chip [17]. In the field of neural processing, several
applications mix real-time or low-power constraints with a need for flexibility,
so that FPGAs appear as a well-fitted implementation solution.

Most of the previous hardware implementation of CPGs are capable of gener-
ating sustained oscillations similar to the biological CPGs, however, quite a few
have addressed the problem of embedding several gaits and performing transi-
tions between them. One important design consideration in this paper, is that
the FPGA-based implementation should be a platform well suited to explore re-
configurable behavior and dynamics, i.e., the platform can be switched between
multiple output patterns through the application of external inputs.

3.2 Module of Van Der Pol Oscillator

From analysis of equation 2, three basic operations were used: addition, subtrac-
tion and multiplication. Thus, one block for each operation was implemented
with 2’s complement fixed-point arithmetic representation. Figure 3a shows a
simplified block diagram of the proposed digital architecture for the discretized
VDP equation. In the first stage, the value of Xci is calculated: this value de-
pends on the Xc-neighbors and the coupling weight values. This stage uses four
multipliers and one adder. The square values of p, Xci and ω are calculated in
the second stage, it uses three multipliers. In the third stage, the values of α ∗ yc

and p2−Xci are calculated, one multiplier and a subtracter are used. The fourth
stage computes the values of α ∗ yc ∗ (p2 − Xci) and ω2 ∗ Xci. This stage uses
two multipliers. For the integration stage, the numerical method of Euler was
implemented by using two shift registers and two adders. The integration factor
is implemented by a shift register, which shifts six positions the values of ẏc and
ẋc to provide an integration factor of 1/64. The block labeled as Reg stands for
accumulators that hold the internal state of the VPD oscillators. Finally, the
values yc and xc are obtained.

The size word for each block was 18-bit fixed point representation with 11-
bit for the integer part and 7-bit for the fractional part. Figure 3b shows the
amplitude average error using different precisions for the fractional part. The
errors were obtained from the hardware implementation. In figure 3b, it can
be appreciated that the average error decreases as the resolution of the input
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(a)

(b)

Fig. 3. (a) Digital hardware architecture for the Van Der Pol oscillator (b) Average

error as a function of the bit precision used in the basic blocks

variables is incremented. This reduction is not linear, and the graphic shows a
point where such reduction is not significant. Seven bits were chosen as a good
compromise for average error and implementation resources.

3.3 Quadruped Gait Network Architecture

In the CPG model for quadruped locomotion all basic VDP oscillators are inter-
connected, as shown on figure 2a, through the connection weights (λij). In order
to overcome the partial lack of flexibility of the CPG digital architecture, it has
been attached as a specialized coprocessor to a microblaze processor following an
embedded system design approach so as to provide a high level interface layer for
application development. A bank of registers is used to provide communication
channels to an embedded processor. The bank has twenty-three registers and
it receives the input parameters from microblaze, α, p2, ω2, λij and the initial
values of each oscillator. The architecture sends output data to specific FPGA
pins. Figure 4 shows a simplified block diagram of the VPD network interfacing
scheme to the bank registers and the microblaze processor.
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Fig. 4. Complete architecture for embedded implementation of a CPG-based

quadruped locomotion controller

4 Implementation Results

The CPG digital architecture has been modeled using the Very High Speed Inte-
grated Circuits Hardware Description Language (VHDL) and Python was used
for the implementation and simulation software. The CPG module has been at-
tached as a slave coprocessor to the microblaze soft-processor using the PLB bus
and a set of wrapping libraries according to the Xilinx design flow for embedded
systems. The system has been synthesized using ISE Foundation and EDK tools
from Xilinx targeted to a Spartan-3E device. To test the hardware implementa-
tion, a C-based application was developed on the microblaze to set the values of
the parameters in the hardware digital implementation. The implementation was
validated in two ways. The first one, the results were sent to the host computer
through serial connection to visualize the waveforms generated by the module.
Then, the hardware waveforms were compared with the software waveforms. In
the second way, results were sent to digital-analog converter (DAC) and the
output signal from DAC was visualized on a oscilloscope. Figure 5 shows, the
periodic rhythmic patterns corresponding to the gaits (walk, trot, gallop) gener-
ated by hardware implementation. The values of weight matrix to configure the
CPG network are shown in table 1. The initial values, x0 = 1, x1 = 1, x2 = 1,
x3 = 1, y0 = y1 = y2 = y3 = 0, α = 1, p2 = 2, ω2 = 20 were used. The values
were calculated experimentally with a software implementation. Figure 5d shows
the patterns for two gaits, walk and trot, and the transitions between them. The
phase attractors for one VDP oscillator during walking and trotting, are shown
in figures 5e and 5f. The phase attractor figures show the adaptability process
until the stable cycle in the oscillator is reachieved. The time to reach the stable
cycle is around 2 seconds.

The system was synthesized to a Spartan-3E device using Xilinx ISE and
EDK tools and tested in the Spartan-3E starter kit development board. Table 2
shows a summary of the FPGA resource utilization of the network architecture.
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(a) Walk (b) Trot

(c) Gallop (d) Transitions between gaits: walk to trot

(e) Walk phase (f) Trot phase

Fig. 5. Three basic gaits and transition between walking and trotting
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Table 1. Weight matrix to configure the CPG network

Gait Walk Trot Gallop

Weight

⎛⎜⎜⎝
1.0 −0.2 −0.2 −0.2
−0.2 1.0 −0.2 −0.2
−0.2 −0.2 1.0 −0.2
−0.2 −0.2 −0.2 1.0

⎞⎟⎟⎠
⎛⎜⎜⎝

1.0 −0.2 0.2 −0.2
−0.2 1.0 −0.2 0.2
0.2 −0.2 1.0 −0.2
−0.2 0.2 −0.2 1.0

⎞⎟⎟⎠
⎛⎜⎜⎝

1.0 0.2 −0.2 −0.2
−0.2 1.0 0.2 −0.2
−0.2 −0.2 1.0 0.2
0.2 −0.2 −0.2 1.0

⎞⎟⎟⎠

Table 2. Hardware utilization for implementation of the CPG control for a quadruped

targeted to a Xilinx XC3S500e-5fg320 device

Resource LTUs Flip-Flops Slices Embedded

multipliers

Maximum clock fre-

quency

Utilization 375 144 221 20 28 MHz

5 Conclusions and Future Work

This work has presented a hardware digital implementation for Central Pattern
Generator suitable for locomotion control of quadruped robots. The implemen-
tation takes advantage of the distributed processing of FPGA computational
resources. The presented examples show that the measured waveforms from the
FPGA-based implementation agree with the numerical simulations. The archi-
tecture of the elemental Van Der Pol oscillator was designed and attached as
a co-processor to microblaze processor. The implementation provides flexibility
to generate different rhythmic patterns, at runtime, suitable for adaptable loco-
motion and the implementation is scalable to larger networks. The microblaze,
allow us to propose an strategy for both generation and control of the gaits, and
it is suitable to explore the design with dynamic reconfiguration in the FPGA.

Future work will focus on: (a) explore larger networks for a complete loco-
motion controller and embedding more diverse transitions (b) incorporate the
feedback from the robot body to improve the generation of patterns, (c) integrate
visual perception information to adapt the locomotion control in an unknown en-
vironment and (d) to scale up the present approach to legged robots with several
degrees of freedom to generate complex rhythmic movements and behaviors.
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Abstract. This paper addresses the Trajectory Tracking Problem for the 
Wheeled Mobile Robot, which is a nonlinear system. The trajectory tracking 
control problem is solved using the sliding mode control. In this paper the Evo-
lution Strategy is investigated in order to obtain the best values for the sliding 
mode control law parameters. The performances of the control law with the op-
timum parameters are analyzed. The conclusions are based on the simulation 
results.  

Keywords: Sliding Mode Control, Trajectory Tracking, Evolution Strategy. 

1   Introduction 

To solve the trajectory tracking problem for a Wheeled Mobile Robot (WMR) it is 
used a nonlinear model [1]: 

( ) utxbtxfx n ⋅+= ),(),(  (1) 

where x is the state variable; ( ) ( )],,,,[ 1−= nn xxxxx … ; ( )nx  is the nth-order derivative 

of x; f is a nonlinear function; b is the gain and u is the control input. 
The design of a variable structure control (VSC) [2] for a nonlinear system implies 

two steps: (1). "reaching mode" or nonsliding mode; (2). sliding mode. 
For the reaching mode, the desired response usually is to reach the switching mani-

fold s, described by: 

0)( =⋅= xcxs T  (2) 

in finite time with small overshoot with respect to the switching manifold. 
The distance between the state trajectory and the switching manifold, s is stated as: 
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where x~  is the tracking error and λ  is a strictly positive constant which determines 
the closed-loop bandwidth. For example, if n = 2, 

xxs ~~ ⋅+= λ  (4) 

Hence the corresponding switching manifold is: 

0)( =ts  (5) 

For a system having m inputs, m switching functions are needed. 
It is proved that the most important virtue of the VSC systems is robustness. Proper 

design of the switching functions for a VSC system ensures the asymptotic stability. 
A number of design criteria exist for this purpose [3],[4]. 

Sliding Mode is also known to possess merits such as the invariance to parametric 
uncertainties. Dynamic characteristics of the reaching mode are very important, and 
this type of control suffers from the chattering phenomenon which is due to high 
frequency switching over discontinuity of the control signal.  

The parameters of the control laws have to be positive, and their values influence 
the reaching rate and the chattering. The values of these parameters are not specified 
in the literature. In this paper the optimal values for these parameters will be searched.  

The process of optimization gained great importance in many real life engineering 
problems. Many optimization methods were proposed in literature. Evolution Strategy 
(ES) [5], [6] is an evolutionary algorithm that is known to be simple and has an excel-
lent global search feature. The ES is presented in Section 2. Section 3 is dedicated to 
the Trajectory Tracking Problem for the Wheeled Mobile Robot. This problem is 
solved within the Sliding Mode approach and the result is the sliding-mode trajectory-
tracking controller. The parameters pi and qi of the control law are not specified in the 
literature. In Section 4 Evolution strategy is used to determine the optimal values of 
the control law parameters in order to ensure maximum possible reaching rate of the 
switching manifold and minimum chattering and the results obtained are presented. 
Section 5 is dedicated to experimental results. Section 6 is dedicated to the conclusion 
and future work directions. 

2   Evolutionary Strategies 

In the case of evolutionary computation, there are four historical paradigms that have 
served as the basis for much of the activity of the field: genetic algorithms [7], genetic 
programming [8], evolutionary strategies [5], and evolutionary programming [9]. The 
basic differences between the paradigms lie in the nature of the representation 
schemes, the reproduction operators and selection methods. Evolution strategy (ES) 
was created in the early 1960s and developed further along the 70s [5], [6]. 

The basic version of evolution strategies uses just mutation and selection as search 
operators. The operators are applied in a loop. An iteration of the loop is called a 
generation. The sequence of generations is continued a set number of times, or until a 
stop criterion is met. 

As far as real-valued search spaces are concerned, in the ES mutation is usually 
performed by adding a normally distributed random value to each solution compo-
nent. The step size or mutation strength is often governed by adaptation.  



288 A. Serbencu, A.E. Serbencu, and D.C. Cernega 

The selection in evolution strategies is deterministic and based on the fitness rank-
ings. The simplest ES operates on a population of size two: the current point (parent) 
and the result of its mutation. Only if the mutant's fitness is at least as good as the 
parent one, it becomes the parent of the next generation. Otherwise the mutant is 
disregarded. This is a (1 + 1)-ES. More generally, λ mutants can be generated and 
compete with the parent, called (1 + λ)-ES. In a (1, λ)-ES the best mutant becomes the 
parent of the next generation while the current parent is always disregarded. Contem-
porary versions of evolution strategy often use a population of μ parents and also 
recombination as an additional operator (called (μ/ρ+, λ)-ES) [10]. Using a population 
of solutions, make ESs less prone to convergence in local optima. 

The evolution strategies implementation, that is used, operate on populations P of 
individuals a. An individual ak with index k comprises not only the specific object 
parameter set (or vector) yk and its objective function value Fk := F(yk), but also a set 
of endogenous and evolvable strategy parameters sk, ak = (yk , sk, F(yk)). 

The endogenous strategy parameters are used to control certain statistical proper-
ties of the mutation operator. Endogenous strategy parameters can evolve during the 
evolution process and are needed in self-adaptive ES [11]. 

 Within one ES generation step, λ offspring individuals 
la~  (note, the tilde is used to 

mark complete offspring) are generated from the set of μ parent individuals am. That 
is, the size λ of the offspring population Po is usually not equal to the size μ of the 
parent population Pp. The strategy-specific parameters μ and λ as well as ρ (the mix-
ing number, see below) are called “exogenous strategy parameters” which are kept 
constant during the evolution run. 

The way the offspring population is generated is expressed by the (μ/ρ +, λ) nota-
tion. The ρ refers to the number of parents involved in the procreation of one off-
spring (mixing number).  

Selection is the opposite of the variation operators (mutation and recombination). It 
gives the evolution a direction. In the selection step, a new parental population at  
(g + 1) is obtained by a deterministic process guaranteeing that only the μ best indi-
viduals from the selection pool of generation (g) are transferred into Pp(g+1). 

There are two versions of selection technique, depending on whether or not the pa-
rental population at (g) is included in this process, i.e., plus selection, denoted by  
(μ + λ), and comma selection, denoted by (μ, λ), respectively. In the case of (μ, λ) 
selection, only the λ newly generated offspring individuals, i.e. the Po(g) population, 
define the selection pool. The plus selection takes the old parents into account. Plus 
selection is elitist because it guarantees the survival of the best individual found so far 
an infinitely long time-span. 

The mutation operator is the primary source of genetic variation. It is usually a ba-
sic variation operator in ES, which assures the search space exploration. 

Considering the Nℜ  search space and given the standard deviation σ (mutation 
strength) as the only endogenous strategy parameter s, the mutation yields  

 zyy +=~  (6) 

with z := σ(N1(0, 1), . . . ,NN(0, 1)) (7) 

where the Ni(0,1) are  random samples from the standard normal distribution. 
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There are two standard classes of recombination used in ES: “discrete recombina-
tion” and the “intermediate recombination”. 

Given a parental vector a = (a1, . . . , aD) (object or strategy parameter vector), the 
dominant ρ recombination produces a recombinant r = (r1, . . . , rD) by coordinate wise 
random selection from the ρ corresponding coordinate values of the parent family 

(r)k = (amk)k, with mk = Random{1, . , ρ} (8) 

The intermediate recombination simply calculates the center of mass (centroid) of 
the ρ parent vectors 

∑
=

=
ρ

ρ 1

)(
1

)(
m

kmk ar  (9) 

The adaptation of strategy parameters control the statistical properties of the of the 
mutation operators. It is used the1/5thrule for controlling the mutation strength [12]. 

3   Trajectory Tracking Problem 

In this paper the model used for the controlled robot is a 2-order MIMO (Multiply 
Input Multiply Output) nonlinear system that is "linear in control". The model used is: 

utxxBtxxfx ⋅+= ),,(),,(  (10) 

where [ ]nxxxx ,,, 21= , nx ℜ∈ , f is a vector of nonlinear functions, f∈L n
2 , B is a 

matrix of gains, nnB ×ℜ∈ ; ( ) 0det ≠B ; nu ℜ∈  is the control vector. The control law is: 

),,( txxpu =  (11) 

For the 2nd-order MIMO nonlinear system having the model shown in (11) 
efficient sliding mode control can be achieved via the following stages (see Fig. 1): 

1st reaching phase motion; during this stage the trajectory is attracted towards the 
switching manifold (if the reaching condition is satisfied); characterized by 

 0~,0~,0 ≠≠≠ iii xxs  (12) 

2nd sliding mode motion; during this stage the trajectory stays on the switching 
manifold, i.e. 

 0~,0~,0 ≠≠= iii xxs  (13) 

3rd steady state; during this stage both the state variable and the state velocity will 
converge to the steady state value, therefore: 
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The reaching law is a differential equation which specifies the dynamics of a switch-
ing function s(x). The differential equation of an asymptotically stable s(x), is itself a 
reaching condition. In addition, by the choice of the parameters in the differential equa-
tion, the dynamic quality of the VSC system in the reaching mode can be controlled. 
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Fig. 1. Phase-Plane Diagram for the concept 
of 3-Stages approach 

Fig. 2. WMR model and symbols 

Gao and Hung [2] proposed a reaching law which directly specifies the dynamics 
of the switching surface by the differential equation 

 )h(sPsgn(s)Qs ⋅−⋅−=  (15) 

where  [ ] ,0,,,, 21 >= in qqqqdiagQ [ ] nippppdiagP in ,...,1,0,,,, 21 =>=  

and ( ) ],,,[ 21
T

n )ssgn()ssgn()ssgn(ssgn =  

T
nn shshshsh )](,),(),([)( 2211= ; 0)( >⋅ shs ii

; .0)0( =ih  

In this paper, a constant plus proportional rate reaching law proposed in [2] is in-
vestigated to control the mobile robot: 

 ( ) sPs ⋅−⋅−= ssgnQ  (16) 

Clearly, by using the proportional rate term sP ⋅− , the state is forced to approach 
the switching manifolds faster when s is large. The purpose of the trajectory tracking 
is to control the non-holonomic WMR to follow a desired trajectory, with a given 
orientation relatively to the path tangent, even when different disturbances exist. In 
the case of trajectory-tracking the path is to be followed under time constraints. The 
path has an associated velocity profile, with each point of the trajectory embedding 
spatiotemporal information that is to be satisfied by the WMR along the path. Trajec-
tory tracking is formulated as having the WMR following a virtual target WMR 
which is assumed to move exactly along the path with specified velocity profile. 

3.1   Kinematic Model of a WMR 

Fig. 2 shown a WMR with two diametrically opposed drive wheels (radius R) and 
free-wheeling castors (not considered in the kinematic models). Pr is the origin of the 
robot coordinates system. 2L is the length of the axis between the drive wheels. ωR 
and ωL are the angular velocities of the right and left wheels. Let the pose of the mo-
bile robot be defined by the vector, T

rrrr yxq ][ θ=  where T
rr yx ][  denotes the robot 

position on the plane and θr the heading angle with respect to the x-axis. In addition, 
vr denotes the linear velocity of the robot, and ωr the angular velocity around the ver-
tical axis. For a unicycle WMR rolling on a horizontal plane without slipping, the 
kinematic model can be expressed by: 
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which represents a nonlinear system. 
Controllability of the system (17) is easily checked using the Lie algebra rank con-

dition for nonlinear systems. However, the Taylor linearization of the system about 
the origin is not controllable, thus excluding the application of classical linear design 
approaches. 

3.2   Trajectory-Tracking 

Without loss of generality, it can be assumed that the desired trajectory 
T

dddd ttytxtq )]()()([)( θ=  is generated by a virtual unicycle mobile robot (Fig. 3). 

The kinematic relationship between the virtual configuration qd(t) and the correspond-
ing desired velocity inputs T

dd ttv )]()([ ω  is analogue with (17): 
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Fig. 3. Lateral, longitudinal and orientation errors (trajectory-tracking) 

When a real robot is controlled to move on a desired path it exhibits some tracking 
error. This tracking error, expressed in terms of the robot coordinate system, as shown 
in Fig. 3, is given by 
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Consequently one gets the error dynamics for trajectory tracking as 
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3.3   Sliding-Mode Trajectory-Tracking Control 

Uncertainties which exist in real mobile robot applications degrade the control per-
formance significantly, and accordingly, need to be compensated. In this section, it is 
proposed a sliding-mode trajectory-tracking (SM-TT) controller, in Cartesian space, 
where trajectory-tracking is achieved even in the presence of large initial pose errors 
and disturbances. 

Let us define the sliding surface Tsss ][ 21=  as 

ee xkxs ⋅+= 11 ; eeee ysgnkykys θ⋅⋅+⋅+= )(022  (21) 

where k0, k1, k2 are positive constant parameters, xe, ye and θe are the trajectory track-
ing errors defined in (19). 

If s1 converges to zero, trivially xe converges to zero. If s2 converges to zero, in 
steady-state it becomes

eeeee ysignkyky θ⋅⋅−⋅−= )(0
. 

For 00 >⇒< ee yy if only if 
eeykk θ/20 ⋅< . 

For 00 <⇒> ee yy  if only if eeykk θ/20 ⋅< . Finally, it can be known from s2 

that convergence of ye and ey  leads to convergence of θe to zero. From the time de-

rivative of (21) and using the reaching laws defined in (16), yields: 

( ) 1spssgnqxkxs 111e1e1 ⋅−⋅−=⋅+=  

( ) ( ) 2222022 spssgnqysgnkykys eeee ⋅−⋅−=⋅⋅+⋅+= θ  

(22) 

From (19), (20) and (22), and after some mathematical manipulation, the output 
commands of the sliding-mode trajectory-tracking controller result: 
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Let us define 2/V ssT ⋅⋅=  as a Lyapunov function candidate, therefore its time 
derivative is

 

s2pspsQs))sgn(spsq(s

))ssgn(psq(sssss

211
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+⋅−⋅−⋅=⋅+⋅=V  (24) 

For V  to be negative semi-definite, it is sufficient to choose qi and pi such that qi, 
pi ≥ 0. But the optima values for qi, pi ≥ 0 will be determined in the next section. 

The signum functions in the control laws were replaced by saturation functions, to 
reduce the chattering phenomenon [1], 
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where constant factor φ defines the thickness of the boundary layer. 
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4   Sliding Mode Controller Parameters Evaluated with ES 

Solving the Trajectory Tracking Problem with a SMC, leads to the reaching laws (23). 
In literature, the parameters q1, q2, p1 and p2 are usual determined through experi-
ments [13] and have great impact on the performance of the controller. q1, q2 influ-
ence the rate at which the switching variable s(x) reach the switching manifold S. 
Parameters p1, p2 force the state x to approach the switching manifolds faster when s 
is large. Choosing parameters through experiments only depends on experience or 
repeated debugging. 

In this paper the parameters of the Sliding Mode Controller are selected using the 
Evolutionary Strategies (ES). The advantages of ES are: simplicity and an excellent 
global search feature, proven in other parameters training problems [14], [15], [16]. 
The optimization algorithm is working off-line. The results of the algorithm are the P 
and Q parameters of the reaching law implemented in the Sliding Mode Controller. 
The parameters found by ES can be used in real-time implementation of SM-TT con-
troller on PatrolBot Robot. 

The objective function used in ES takes into account both the speed of reaching 
manifolds and the amplitude of the chattering. This is accomplished using the sum of 
root mean square of the two errors xe and ye (19). The evaluation of every set of pa-
rameters is achieved after running a numerical simulation of the SM-TT control struc-
ture implemented in a Matlab Simulink schema that contains the model of the robot. 

The horizon of simulation and initial conditions are chosen to allow a correct com-
parison between sets of parameters. The step of simulation is selected according to the 
one used to control the PatrolBot. 

5   Experimental Results 

Based on the above analysis, mathematical simulation software MATLAB was used 
to accomplish the experiment simulation study. 

The mobile robot PatrolBot used in simulation is assumed to have the same struc-
ture as in Fig. 2. Parameter values of the PatrolBot are: mass of the robot body 46 
[Kg], radius of the drive wheel 0.095 [m], and distance between wheels 0.48 [m]. The 
parameters of sliding modes were held constant during the experiments:  
k1 = 0.75, k2 = 3.75, and k0 = 2.5; and the desired trajectory is given by vd = 0.5 [m/s], 
ωd = 0 [rad/s].  

The experiments were done on the robot with the initial error (xe = -0.5 [m], ye= -
0.5 [m], θe = 0 [deg]) and used the reaching law (16). 

Settings, used in Matlab implementation of ES algorithm are: the size of the parent 
population is μ = 20; the size λ of the offspring population λ=1; the number of parents 
involved in the procreation of one offspring ρ=4; maximal number of generation 30. 
The criterion function used for solution evaluation are the sum of root mean square 
(RMS) of the two errors longitudinal - xe and lateral - ye. RMS error is an old, proven 
measure of control and quality. RMS can be expressed as ( ) NixRMS ∑= )(2 . 

Taking into account that parameters must be positive and large value can causes 
chattering, the search interval for each SM parameters was selected to be [0.01 5]. 
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Fig. 4. The evolution of best value found by 
ES of the criterion function 

Fig. 5. Simulated trajectory with the parame-
ters value found by ES. Experimental SM-TT 
control starting from an initial error state
(xe(0) = -0.5, ye(0) = -0.5, θe(0) = 0). 

  

Fig. 6. Longitudinal, lateral and orientation 
errors for experimental SM-TT control 

Fig. 7. Sliding surface for SM-TT controller 

 
In Fig. 4 the evolution of criterion function best value found by ES is presented. Note 

that a number of 30 generation are sufficient to find a good set of values of parameters. 
The parameter values for the considered PatrolBot, found by ES are q1=0.3312, 

q2=0.0340, p1=1.0599 and p2=4.9295. 
In Fig. 5 and 6, the simulation results for the case of optimised parameters are 

presented. 
In Fig. 7 the two sliding manifolds are represented. In Fig. 7 one can also see the 

value of the reaching time. 

6   Conclusion 

The paper proposed an efficient method to determine the optimum set of parameters 
for the sliding mode controller. The Evolution Strategy proved to be adequate for this 
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problem because it eliminates the need for repeated simulations in order to find a 
satisfactory set of parameters. 

The tests have proven that this optimization technique is efficient for the problem 
to be solved. A very good solution without chattering was found in a quite acceptable 
time interval and number of iterations. 

The search of the optimum values for the sliding mode trajectory tracking control 
laws parameters was done in order to use, in the future, such optimum parameters into 
a supervised control structure having the ability to switch between different controllers. 
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Abstract. This paper presents a novel Topological Map of Place Cells model 
for autonomous robots. In such a model the robot acquires and stores percep-
tions using a basic memory provided by our proposed growing self-organizing 
map. Context sensitive cells aim to obtain Place Cells whose activation is de-
pendent on a remembrance process that fires the recollection of stored memo-
ries from current robot perceptions. The map is a graph of interconnected and 
topologically organized Place Cells. The robots notion of localization is primary 
guided by the recollection process, while vestibular stimuli estimates and a his-
toric of lastly visited places disambiguate conflicting simultaneously activated 
Place Cells. The results are promising. 

Keywords: Autonomous Robots, Place Cells, Self-Organizing Maps. 

1   Introduction 

After sensing the environment, an animal can determine its position and the appro-
priated actions in its memory [1]. Physiological studies identified three different neur-
al substrates as the basis behind the animal navigation skills: (i) Place Cells [2] whose 
activity is related with the animal position in the environment; (ii) Head Direction 
Cells (HDC) [3], to integrate visual perceptions and vestibular information about 
direction changes to yield a notion of direction; and (iii) Grid Cells [4], to produce a 
local environment representation coupled with the azimuthal plane. The stored con-
tent of the substrates is commonly referred as a cognitive map describing the known 
environment [5]. Naturally, the stored knowledge is related with the individual per-
ceptive capacities and experiences [6]. 

In this paper we consider an autonomous robot within an unknown environment. 
The robot navigates exploring its environment while produces an artificial cognitive 
map starting from its perceptions. An artificial cognitive map should handle place 
recognition, orientation, anticipation and planning. Such a map could store coordi-
nates in a Cartesian system; positional relations between objects and places; or high 
level concepts as landmarks. Commonly, a Topological Map is constructed employ-
ing the concept of place, a distinctive and remarkable location in the environment 
whose recognition supplies the robot with a localization notion [7]. Then, we propose 
a new cognitive model for artificial cognitive processes, such model is composed by 
four layers having different purposes or functions: (1) perception and vestibular  
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systems; (2) basic memory; (3) context mapping; and (4) high cognitive process. 
Thereafter, we used it together with the concept of Place Cells to develop a new To-
pological Map Model, which is a graph mapping the basic memory content into con-
texts describing places in the world. Estimates in a Cartesian coordinate system are 
used to get topological organization. However, self-localization occurs by place rec-
ognition as a result of a remembrance process of environment characteristics. 

Section 2 presents and discusses the proposed model while considering its compo-
nents and their respective backgrounds and the cognitive process that they realize. 
The results are presented and discussed in the Section 3. Our conclusions and remarks 
are presented on Section 4. 

2   The Proposed Model 

We have considered a robot immersed into a 3D environment composed by structures 
as rooms, corridors, stairways and passages. The body of a robot is a box of edges ( , 

, ) corresponding to width, height and length. The robot is equipped with six laser 
sensors, one in each face. Each sensor is capable of sweeping 180º in intervals of 1º 
and it can rotate 180º around an axis that is orthogonal to the face. We simulate the 
robot and its environment using OGRE 3D graphics engine [8]. 

2.1   The Cognitive Model 

Jean Piaget theory of cognitive development has four stages of a hierarchical process 
for acquisition of knowledge and skills [6]. Other cognitive processes were consi-
dered modular with respect to the processed information [9] or the neural substrates in 
which they operate [2], [3], [4]. Other evidences [10], [11] suggest the existence of 
transversal cognitive processes using the output from other processes to produce more 
elaborated results. 

To reproduce animal behaviors, a computational model needs to cope with the fea-
tures above. Pioneers models, [12], [13], [14] tried it, however, they succeed partially. 
Our cognitive model aims to support proposition and development of biologically 
inspired computational models. 

The first layer of our model (Fig. 1) works with basic perceptive processes related 
with acquisition and representation of information from the sensorial flows. The 
second layer produces the concept of memory, storing and indexing the information  
 
 

Fig. 1. The proposed cognitive model composed by hierarchical layers. Computational modules 
realizing specific tasks are defined across the layered structure. 

1) Perceptive 

2) Basic Memory

4) High Cognitive Process

3) Context Mapping

Módule I Módule II Módule N

Module III

Module IV
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produced by the first layer. The third layer is composed of maps binding the stored 
memories and sensorial information to form contexts, therefore, acting as an elabo-
rated memory. The last layer uses the sensorial information with the stored knowledge 
and memories producing inferences, actions and behaviors. 

2.2   The Basic Memory and Encoding Perceptions 

We have defined the basic memory as neural substrates able to cluster and organize 
memories to represent perceptions without associating them with any special mean-
ing. To obtain this artificial basic memory, the Growing Self-Organizing Surface Map 
(GSOSM) [15], [16] was employed. The GSOSM map is composed of interconnected 
nodes, each one storing a model vector that represents perceptions within a receptive 
field. GSOSM learns the input space topology producing a map covering all regions 
where the density probability function is positive. Some GSOSM characteristics make 
it a suitable choice to form the neural substrate: (i) no cycle counters; (ii) no error 
accumulators; (iii) incremental, fast and robust mapping; (iv) ability for indexed reco-
vering of activated memories; and (v) granularity controlled by a single parameter. 

GSOSM was originally proposed as a tool for surface reconstruction [15], [16] and 
then to act as a basic memory. We defined an activation function to determine the 
similarity between the current perception and the stored memories. This extended 
model, called Growing Topology Learning Self-Organizing Map (GTLSOM) is not 
grounded to a specific context. The memory activations are calculated as: 

2  (1) 

where  is the stored model vector;  is the vector of current perception; ·  is the 
Euclidean distance; and  is the radius of receptive field of nodes. 

The robot acquires information about the local environment layout using its lateral 
sensor devices. Then, we merged the readings in a circular bitmap image. To obtain 
translation invariance, the resultant image is repositioned considering its center of 
mass as image center. Then the perception vector was constructed with the first ten 
Zernike moments [17] of order greater than zero. Therefore, the perception vector is 
substantially lighter than the vectors of sensor readings. Moreover, the moments of 
Zernike present rotation invariance characteristic, allowing direct comparison be-
tween two geometric forms, without alignment to the beginning point. 

Our topological map model needs three sets of parameters. The first one, for the 
basic memory, is composed by the GSOSM parameter set [16], being  the main 
of them. This parameter specifies the memory granularity controlling its capacity of 
generalization and differentiation between perceptions. The second parameter set is 
employed into the process of perceptions encoding. They are: 

 

•  – circular image radius to plot the contour; 
•  – the dimensionality of perception vector; 
•  – maximum depth of sensor readings; 
•  – a logic value concerning translation invariance. 
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The last parameter set controls the topological map formation:  
 

•  – the weight of each flow of perceptions, its value is one by default, 
however, it needs to be set if more of one perceptive flow is defined; 

•  – the expected radius of the receptive field of Place Cells into the topo-
logical map; 

•  – threshold of activation that fires the insertion of a new Place Cell; 
•  – learning rate of the synapses linking memories to the Places Cells. 
•  – the minimal activation required for the Place Cell that gives the notion 

of localization; 

2.3   Place Cells 

Each Place Cell refers to a place in the environment and to a set , … , , …  of 
memories that are simultaneously activated forming a context. 

Determining the Place Cells Activity: The incoming perceptions trigger the stored 
memories recall which is activated by (1). New cells have only some associated 
memories, and then their activations are maintained by vestibular information of dis-
placement and direction changes. Moreover, in a local context the accumulation of 
integration errors could be considered as despicable. Therefore, using an integration 
system, the expected vestibular activation can be determined: 

2  (2) 

where  is the estimated vestibular activation of a new cell ;  is the estimated 
distance between the robot’s actual position and that defining the center of the cell 
receptive field. 

When the robot moves in the environment, it transfers itself from the receptive field 
of the current reference cell to the receptive field of another Place Cell. The incoming 
perceptions induce the activation and recovering of stored memories, and then Place 
Cells work as an associative memory linking places and perceptions. The recall of 
stored memories fires the Place Cell activation, a function of memories, , . . . , , … , activated by the perceptions coming from the -th perceptive flow .  ∑ . .∑ , 1∑ ,  (3) 

where  is the activation of the Place Cell ;  is the weight of the perceptive 
flow ;  is the intensity of the signal emitted by the link between the recollected 
memory  and the Place Cell;  is a measure of the perception singularity and ∑ ,  
is the counted places associated to the recollected memory . 

The Place Cell activation needs a strategy to incorporate the vestibular information. 
When a cell  wins a competition to be the reference cell for the notion of localiza-
tion, the robot position is registered. Thereafter, the vestibular estimates of movement 
and direction changes forms a residual activation factor ( ) which is calculated 
using (2) and setting  as the estimated displacement. 
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If the robot moves towards the direction of Place Cell growth, the vestibular esti-
mates are reinitialized, otherwise the residual activation factor is employed to cali-
brate it. To the cell , the current notion of localization, the residual activation is:  , … , ·  (4) 

where  is the residual activation of cell ;  is the time in which  won the com-
petition and  is the last time and before the present one. 

The activation of the cell ς  for the current time t ( 1) is determined by (5) 
and by (6) for the other cells.   , … ,   (5) 

      ··  (6) 

Equations (5) and (6) define an iterative process with memory, in which the cell 
activation propagates over the time. Moreover, action of body rotation could produce 
different perspectives to sensor devices without affect the activity of cell ς .  

Inserting Place Cells: The insertion of a new Place Cell obeys the criterion of a min-
imum distance,  2 , between centers of receptive fields. 

The distance  between the robot current position and the center of  can be esti-
mated from its current activation. Then, a new cell should be inserted when 0,135 for  2 . After creating a new Place Cell, a connection is in-
serted between it and the cell  and the new cell, , becomes the reference cell for 
the notion of localization. 

While moving in its environment the robot maintains a list  of recollected memo-
ry sets. Such recollections should be linked to Place Cells forming contexts to place 
recognitions if the robot visits them again. 

Swapping the Notion of Localization: The swapping of the reference point between 
Place Cells is a local competition defined by a function of the Place Cells activation 
and needs to satisfy three conditions: (i) the activation of candidate cell is larger than 
a threshold  ( ); (ii) the activation of candidate cell is larger than that of the 
actual reference cell ( ); and (iii) the candidate cell  is directly accessible 
starting from the current reference cell . 

Considering the Equation 2, if the robot moves beyond a circle of radius  the 
activation of cell  should becomes smaller than 0.6, which is the recommended 
value for parameter . The second condition is directly verifiable considering the list 
of candidate cells. The third condition involves remembering the list of visited places 
and reasoning considering the cognitive map. Therefore, the cognitive map should 
have shown some spatial organization. When creating the place cells, we used Carte-
sian estimates to bring topological organization to the map. 

Merging Place Cells: The insertion of Place cells is made considering the estimated 
distance of robot to the current reference cell. Hence, it is possible that the center of 
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the inserted cell is within the receptive field of another cell. The Equation 2 suggests 
that the merging process should be fired even when two cells presents activation le-
vels larger than . However, places at different locations could be perceived as similar 
considering the robot’s perception constraints. Then, the same three conditions ap-
plied to allow the swapping of reference cell are used here. 

2.4   Building a Cognitive Topological Map of Environment 

To produce a cognitive topological map of the environment, the robot acquires and 
organizes knowledge associating it to places. This process is composed of at least four 
steps: (i) acquisition and storage of perceptions about the environment; (ii) recovery 
of stored knowledge starting from the current perceptions; (iii) Association of stored 
knowledge with Place Cells; and (iv) organization of the Place Cells to produce an 
Extended Topological Map (Fig. 2 (i)). 
 

 
 

(i) (ii) 

Fig. 2. Structure of Topological Map Model: i) Diagram of blocks of the cognitive process; ii) 
Structure of the map: a) Basic memory of perceptions and its activation in gray levels; b) the 
basic layout of the environment; c) The Place Cells Map and its activation in gray levels as a 
function of activated memories; and d) the robot. 

The first step is a process located at the first layer of our cognitive model, as de-
scribed early. The subsystem of estimates is also a process located at that first layer 
and was assumed as ready. The second step uses a basic memory (Subsection 2.2) 
where the flow of perceptions induces the recollection of memories whose activations 
are propagated to Place Cells through synapses or links (Fig. 2 (ii)).  

The third step produces a mapping selecting and linking recollected memories with 
places. This is a cognitive process located at the third layer of our cognitive model. 
Finally, the fourth step produces an Extended Topological Map  creating and 
connecting Place Cells while using the estimates to organize it in an oriented graph. 
The algorithm of this process is the following: 

 

1. For each sensor flow  

• Construct a set of perceptions ; 

• Present  to the basic memory , determining the set 
 of activated memories  

End_For; 
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2. If  

• Create a new Place cell linking the memories in  to 
it; 

• Go to Step 1; 
3. Insert  at the end of the list of recollected memories; , ,  (7) 

where  is the list;  is the set of recollected memo-
ries at current position;  is the activation level of 

the actual Place Cell; and x, y, z  is the estimated  
position of . 

4. Determine the set  of the Place Cells activated by the 
memories; 
4.1. If the current reference cell  is not in , add it; 

5. Determine the activation level of  and of the other 
Place Cells , as Equations (5) and (6); 

6. Run the merging operator considering the cell  and each 
other cell ; 
6.1. If success, go to Step 1; 

7. Run the operator of Localization Notion swap, considering 
the cell  and each other cell ; 
7.1. If success, go to Step 1; 

8. If  
8.1. Run the operator of insertion of a new Place Cell; 

9. Go to Step 1; 
10. End. 

3   Simulations and Results 

In this Section we present and discuss the results considering the robot navigating in a 
plane in a 3D environment. 

Setup: These results were obtained in a simulated 3D environment employing virtual 
reality techniques. The dimensions of robot body were 32 , 21 ,  21  
( =units of length) and its linear velocity was 2 ⁄  and 2 ⁄  for 
body rotations. The parameters values for the laser sensor system were 180°; 
step of sweep, 10°; max depth 800  and rotation sweep 0°. The 
basic memory parameters were 10;  10, 20, 40, 60  80; 0.005; 0,25; 0,342; and the edges of KD-Tree hypercube were set 
to 3 . The perceptive flow  was for 400, 200, . The 
Topological Map algorithm parameters were 1,0; 10, 20 and 30; 0,6; 0,1; and 0,5. Therefore, combining the values of parameters 

 of the basic memory and of Topological Map, we had fifteen test cases. 
 

Results: The results are presented in Table 1, where “ ” stands for the parameter 
 of basic memory of perceptions and “ ” stands for the value of  for our 

Topological Map. The columns inform the maximum, minimum and average distance 
between the robot and the reference cell, the standard deviations are given in the respec-
tive columns SD.  
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The mean values are calculated considering each time instant, whereas the values be-
fore the swap consider only the instants immediately before the trade of reference cell. 
The column “Max” of first group reveals some reference cells remaining active even if 
the robot runs beyond its expected receptive field, indicating a larger area perceived as 
similar. However, the column “Avg” and “SD” shows a mean value within the cell 
receptive field. Moreover, the second group shows that the swap between reference 
cells occurs next to the areas where their receptive fields collide. However, SD values 
indicate that the process does not converge to a unique distance because the swap is 
controlled by the place recognition instead of the distance estimation. 

Table 1. Distance between the robot and the reference cell 

  

The mean values Before swap of reference cell 

Min. Max. Avg. SD. Min. Max. Avg. SD. 

10 
10 0.0 66.8 11.3 7.0 0.3 19.9 13.0 4.8 
20 0.0 109.6 25.0 13.6 0.2 39.9 25.0 10.0 
30 0.0 148.7 31.4 19.8 1.2 59.9 37.6 15.1 

20 
10 0.0 65.1 12.5 6.8 0.2 19.9 14.3 4.6 
20 0.0 92.8 22.8 13.2 0.7 39.9 27.1 9.8 
30 0.0 126.5 32.3 18.4 2.2 59.9 41.0 14.3 

40 
10 0.0 99.8 13.5 8.3 0.1 19.9 14.4 4.6 
20 0.0 100.9 26.5 14.9 0.7 39.9 28.2 9.5 
30 0.0 155.7 36.0 20.3 1.1 59.9 41.9 14.5 

60 
10 0.0 157.3 15.6 11.1 0.4 19.9 14.9 4.6 
20 0.0 150.4 25.9 15.6 1.4 39.9 28.7 9.6 
30 0.0 159.8 38.7 23.9 0.2 59.9 42.1 15.0 

80 
10 0.0 239.6 19.7 20.2 0.7 19.9 15.1 4.6 
20 0.0 242.3 28.7 18.9 0.7 39.9 29.3 9.7 
30 0.0 201.5 41.6 25.9 0.5 59.9 42.2 14.8 

 

The Visual inspection (Fig. 3) shows that the cognitive topological map covers the 
environment area visited by the robot. Note that the reference Place Cell is partially 
hidden by the body of robot. Also note the three circled groups of Place Cells, these 
cells shown activity for the current perceptions. Nonetheless, our algorithm was suc-
cessful in choosing the correct one. 

Table 2 shows the Place Cell distribution considering the distance between each 
cell and the respective closest neighbor. Note that for 10 we have a lot of inter-
secting cells because the basic memory is fine grained hindering the place recognition 
and therefore facilitating the insertion of new cells. The best results were obtained 
using 20  and 40 as shown the fourth and fifth columns. Whereas, 
using 60  and 80 increases the receptive field of Place Cells because 
a lot of perceptions are grouped into each memory cell. Then the robot recognizes a 
place considering only coarse features. 

The singularity of a memory is a measure defined as the inverse of the number of 
associated Place Cells. 1∑ ,  (8) 

where  is the singularity measure and the term ,  is used to denote a synapse 
between a memory  and a Place Cell . 
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Fig. 3. Cognitive Topological map of Place Cells constructed by the robot while wandering into 
its environment using  and . 

Table 2. Distance between Place cells 

  

Intervals in terms of  ; .  … ;  … ; .  … ;  … ; .  , ; …  

10 10 37.0 % 41.1 % 15.3 % 5.3 % 1.1 % 0.3 % 
 20 26.1 % 25.5 % 18.3 % 22.2 % 7.8 % 0.0 % 
 30 17.2 % 27.6 % 6.9 % 24.1 % 22.4 % 1.7 % 

20 
10 6.0 % 16.1 % 13.3 % 44.0 % 19.8 % 0.8 % 
20 4.1 % 0.0 % 5.1 % 53.1 % 36.7 % 1.0 % 
30 0.0 % 0.0 % 0.0 % 66.0 % 31.9 % 2.1 % 

40 
10 2.5 % 6.0 % 4.4 % 49.7 % 34.0 % 3.5 % 
20 0.0 % 0.0 % 2.2 % 62.9 % 33.7 % 1.1 % 
30 0.0 % 0.0 % 0.0 % 54.3 % 43.5 % 2.2 % 

60 
10 6.1 % 11.3 % 12.8 % 39.3 % 26.5 % 4.0 % 
20 2.2 % 6.7 % 5.6 % 44.9 % 37.1 % 3.4 % 
30 0.0 % 0.0 % 0.0 % 32.6 % 67.4 % 0.0 % 

80 
10 1.4 % 13.1 % 6.4 % 40.3 % 32.2 % 6.7 % 
20 0.0 % 14.9 % 5.7 % 35.6 % 39.1 % 4.6 % 
30 8.7 % 6.5 % 0.0 % 39.1 % 43.5 % 2.2 % 

 
Table 3 report statistics of memories singularity considering  and . 
The columns show the number of nodes into the basic memory; the minimum, 

maximum and mean singularity values; the percentage of memories whose singularity 
measure is larger than the average; the median value, the percentage of memories 
whose singularity measure is larger than it; and the standard deviation of calculated 
singularities. The values in Table III are coherent with our previous observation.  
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There is inverse relation between the basic memory granularity and the recognition 
capacity for a place starting from the current perceptions. 

Table 3. Sigularity Measures of Place cells 

Singularity = Memories X Associated Place Cells 

  total min max mean %>mean median %>median SD 

 10 24.935 0.100 1.00 0.847 72.46 1.00 - 0.253 
10 20 24.829 0.167 1.00 0.873 76.13 1.00 - 0.230 
 30 25.855 0.200 1.00 0.894 79.45 1.00 - 0.169 
 10 5.873 0.030 1.00 0.594 38.02 0.50 38.02 0.337 
20 20 6.179 0.059 1.00 0.630 40.08 0.50 40.08 0.317 
 30 5.923 0.059 1.00 0.652 41.83 0.50 32.04 0.308 
 10 734 0.006 1.00 0.446 43.18 0.33 57.49 0.336 
40 20 736 0.016 1.00 0.481 48.37 0.33 65.35 0.320 
 30 731 0.029 1.00 0.511 26.26 0.50 26.26 0.315 
 10 200 0.004 1.00 0.388 38.50 0.25 48.50 0.323 
60 20 198 0.015 1.00 0.421 39.39 0.33 55.05 0.313 
 30 190 0.026 1.00 0.434 43.68 0.33 66.84 0.283 
 10 79 0.004 1.00 0.321 35.443 0.20 48.10 0.311 
80 20 78 0.012 1.00 0.350 35.897 0.33 55.13 0.242 
 30 76 0.022 1.00 0.390 39.47 0.33 51.31 0.289 

4   Conclusions 

We have presented a new model of Cognitive Topological Map of Environment. We 
also detailed our approach considering its basic elements and operators. Finally, we 
have presented and discussed the obtained results. Now we argue that the main inter-
esting characteristic of our model is its biological inspiration and functional plausibili-
ty. In our model, the robot acquires knowledge about objects in their environment. 
The stored knowledge reflects the mode as the robot perceives the environment start-
ing from its sensor systems. Moreover, the process of place recognition is a function 
of recollections fired by its current perceptions. Our proposed model is very simple 
and does not have special or complex processes to construct its operators.  
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Abstract. In this paper a hybrid control structure to control a multi-robot forma-
tion is proposed. The hybrid control structure consists of two control levels: the 
discrete control level and the continuous control level. The discrete control level 
ensures the supervisory control and the continuous control level ensures the tra-
jectory tracking control. The trajectory tracking problem is solved using the slid-
ing mode control. The syntheses of the supervisor and of the sliding mode con-
trollers for each discrete state are presented. Simulation example is used to 
evaluate the sliding-mode algorithm and to show the application of the algorithm 
in practice. The controller is simply structured and easy to implement.  

Keywords: Hybrid control, Sliding-mode control, Multi-robot formation control. 

1   Introduction 

The multi robots systems is an important robotics research field. Such systems are of 
interest for many reasons; tasks could be too complex for a simple robot to accom-
plish; using several simple robots can be easier, cheaper and more flexible than a 
single powerful robot [1], [2], [3], [4]. 

Formation control has been one of the important research topics in multiple robot 
systems as it is applicable to many areas such as geographical exploration, rescue 
operations, surveillance, mine sweeping, and transportation. Different approaches 
have been developed recently, for example, behavior-based control, LQ control, vis-
ual servoing control, Lyapunov-based control, input and output feedback linearization 
control, graph theory, and nonlinear control. 

In leader-follower formation control, the most widely used control technique is 
feedback linearization based on the kinematics model of the system.  

In this study the hybrid leader-follower robot formation control is considered. The 
referenced robot is called leader, and the robot following it, is called follower. Thus, 
there are many pairs of leaders and followers and complex formations can be 
achieved by controlling relative positions of these pairs of robots respectively. This 
approach is characterized by simplicity, reliability and no need for global knowledge 
and computation. 

The hybrid control structure consists of two levels: the discrete control level im-
plementing the supervisory control, and the numerical control level using a sliding-
mode controller to solve the trajectory tracking problem. 
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To control a multi-robot formation as a discrete event system means to follow a de-
sired behavior described through the imposed constraints. The desired behavior is 
modeled as discrete event system for the entire formation and a supervisor is designed 
to achieve this behavior. The approach used to design the supervisor is proposed in 
[5], and in [6]. 

The discrete control level is coupled with the numerical control level and it detects 
the functioning situations. Each functioning situation is a discrete state. Each discrete 
state is characterized with a continuous model as shown in [7]. For each of the situa-
tions detected at the discrete event level the appropriate continuous model is selected 
together with the corresponding continuous controller. For each discrete state the 
references of the corresponding continuous controllers are also established. 

The model for a hybrid automaton (HA), is defined with: 

( )1 2 3 0, , , , , , , fHA X Q Q Qμ μ μ= Σ
                                           

(1) 

where: X is the vector space of the system state x, the continuous state vector of the 

system, denoted by [ ]1...
T

nx x x X= ∈ , supposed to be continuous observable vector;  

Q the set of discrete states corresponding to all the possible phases, Q = {qi, i=1…m}; 
the hybrid state of the system is defined within the pair (x, l)∈X x Q; μ1 is the set of the 
m vector fields associated to each discrete phase; μ2 is the set of the constraints associ-
ated to each discrete phase; Σ is the set of the events; μ3 is the set of functions associ-
ated with the events; Q0 is the set of the initial states and Qf is the set of final sates. 

In the next section the hybrid control system is presented. The discrete dynamic 
event system model for the multi-robot formation is obtained. The supervisor to en-
sure the desired behavior of the system is designed. The continuous models for each 
discrete state are also presented. 

The wheeled mobile robot is a nonlinear system. The continuous control level is 
dedicated to the trajectory tracking control [8] - [12]. The trajectory tracking control 
problem is solved using the sliding mode control. In the Section 4 this problem is 
solved and the control laws together with the references for the discrete states are 
obtained. Section 5 is dedicated to the results obtained after implementing this hybrid 
structure. 

2   The Hybrid Control Structure 

The hybrid control structure proposed in this paper is shown in Fig.1. 
To control the multi-robot formation as a discrete event system leads to a supervisor 

design. The discrete event model used is the automaton called G, defined as follows: 

G = (Q, Σ, δ, q0, Qm)                                                 (2) 

where Q is the set of the discrete states physically possible of the system, Σ is the set 
of all the events, δ is the transition function of the automaton, q0 is the initial state and 
Qm is the set of the marked states of the system. The events in the follow the leader-
formation are from two distinctive categories: Σu is the set of the uncontrollable 
events and Σc is the controllable events set. The controllable events are subject of the  
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Fig. 1. Hybrid Control Structure     Fig. 2. The sensitivity sphere of robot 

control action and these events can be enabled and disabled at any time i.e. from any 
state. The uncontrollable events cannot be enabled or disabled by the control action. 

Supervisory control for this discrete event system has the objective to ensure the 
desired behavior of the follower robot according to some constraints imposed.  

The supervisor design for this problem is based on sonar data. The sensitivity 
sphere is a concept defined in order to establish the smallest distance equal to the 
length of the follower robot in order to avoid collision with the leader or with other 
obstacles. The sensitivity sphere is represented in Fig. 2.  

The analysis of the robot motion according to the defined sensitivity sphere, for 
this problem generates seven cases: 

 

-Case 1: the sonar 3 and 4 detect an object inside the sensitivity sphere and the ro-
bot will receive references to move ahead; 

-Case2: sonar 2 and 3 detect an object inside the sensitivity sphere and the supervi-
sor generates references for the robot motion the constant distance d and the angle α; 

- case3: sonar 4 and 5 detect an object inside the sensitivity sphere and the supervi-
sor generates references for the robot motion the constant distance d and the angle -α; 

-Case4: sonar 1 and 2 detect an object inside the sensitivity sphere and the supervi-
sor generates references for the robot motion the constant distance d and the angle 2α; 

-Cas5: sonar 5 and 6 detect an object inside the sensitivity sphere and the supervisor 
generates references for the robot motion the constant distance d and the angle -2α; 

-Case6: any sonar detects an object inside the sensitivity sphere closer then the 
minimum allowed distance and the supervisor generates references for the robot to 
stop; 

-Case7: no sonar pair detects an object and the supervisor generates references for 
the robot circular motion in order to search the leader. 

 

These cases are generating the discrete states set, Q, of the automaton G, model of 
the process defined in (2). 

The objective of the supervisory control for the follower is to track the leader when 
in the environment there are some unknown obstacles identified within the sensitivity 
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sphere, or another leader appears inside the sensitivity zone. The discrete events gen-
erating discrete state transitions in this system are: 

 

 - Σc = { ec0, ec1, ec2, ec3, ec4}, where ec0 - the start command, ec1 - the distance es-
tablished between the two robots is respected, ec2 – start the distance evaluation, ec3 – 
command the robot movement with speed references inside the established limits, ec4 
- the sonar data are valid; 

-  Σu = {e1, eu1, eu2, eu3, eu4}, where e1 - end initialization, eu1 - an obstacle appeared 
in the interior of the sensitivity sphere, eu2 the leader is lost, eu3 reading errors from 
sonar detected, eu4 another leader appeared inside the sensitivity sphere.  

The discrete state set, Q contains the states defined as follows: q1 robot initializa-
tion; q2 sonar reading; q3 nearest limit verification for all the sonar; q4 data analysis 
from sonar 3 and 4; q5 trajectory tracking algorithm for case 1, q6 movement accord-
ing to case1 references, q7 data analysis from sonar 2 and 3, q8 trajectory tracking 
algorithm for case 2, q9 movement according to case2 references; q10 data analysis 
from sonar 4 and 5; q11 trajectory tracking algorithm for case 3; q12 movement accord-
ing to case3 references; q13 data analysis from sonar 1 and 2, q14 trajectory tracking 
algorithm for case 4, q15 movement according to case4 references, q16 data analysis 
from sonar 5 and 6, q17 trajectory tracking algorithm for case 5, q18 movement accord-
ing to case5 references, q19 180 degrees rotation, q20 STOP, q21 corresponds to the 
situation when an obstacle appears inside the sensitivity sphere during the movement 
corresponding to one the states q6, q9, q12, q15, q18; this state provides the supervisor 
the ability to avoid collisions, q22 is the state to be avoided with the supervisor con-
trol: the collision state. 

The transition function, δ, of the automaton is represented in figure 3. 
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Fig. 3. The automaton G, model of the discrete event system 

3   Leader-Following Formation Models 

Figure 4 is a leader-following control model where the formation pattern is specified 
by the separate distance d and the relative bearing ψ for two robots r1 and r2. The 
desired formation pattern can be defined as the desired separate distance dd and the 
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relative bearing ψd. The follower r2 regulates the formation state errors of the separate 
distance and the relative bearing through its speed control signals ur2 = [vxr2 ωr2]

T. 
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The relative distance between the leader and the follower robot is denoted as d, the 
separation bearing angle is ψ, and they are given by: 
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The formation control can be investigated by modeling the formation state error as 
follows [13]: 
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where: [ ]Tririri vu ω= , 21 rr θθφ −= and l is the distance between the robot position 

(xr2, yr2) and the robot hand position (xc2, yc2) as shown in Fig. 4.  

 

Fig. 4. Leader-following formation models 
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4   Sliding-Mode Controller Design 

In a leader-follower configuration, with the leader’s position given and once the  
follower’s relative distance and angle with respect to the leader are known, the fol-
lower’s position can be determined. To use the leader-following approach, it is as-
sumed that the angular and linear velocities of the leader are known. In order to 
achieve and maintain the desired formation between the leader and follower, it is only 
need to control the follower’s angular and linear velocities to achieve the relative 
distance and angle between them as specified. Therefore, the leader-following based 
mobile robot formation control can be considered as an extension of the tracking 
control problem of the nonholonomic mobile robot. 

A practical form of reaching the control law (proposed by Gao and Hung [14]) is 
defined as: 

.2,1,0,),sgn( =>⋅−⋅−= iqpsqsps iiiiiii                             (7) 

By adding the proportional rate term – pi⋅si, the state is forced to approach the switch-
ing manifolds faster when si is large. It can be shown that the reaching time for x to 
move from an initial state x0 to the switching manifold si is finite, and is given by 

i

iii

i
i q

qsp

p
t

+
⋅= ln

1
. A new design of sliding surface is proposed, such that dis-

tance between the leader and the follower robot, d, and the separation bearing angle, 
ψ, are internally coupled with each other in a sliding surface leading to convergence 
of both variables. For that purpose the following sliding surfaces is proposed: 

dkds d

~~
1 ⋅+= ;              φψψψ ψ ⋅⋅+⋅+= )~sgn(~~

02 kks
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where k0, kd and kψ are positive constant parameters and φψ ,~,
~
d  are defined by (3). 

If s1 converge to zero, trivially d
~

 converge to zero. If s2 converge to zero, in 

steady-state it becomes ( ) φψψψ ψ ⋅⋅−⋅−= ~sgn~~
0kk . Since φ  is always bounded, the 

following relationship between ψ~  and ψ~  holds: IF 0~0~ >⇒< ψψ  and IF 

0~0~ <⇒> ψψ . 

From the time derivative of (8) and using the reaching law defined in (7) yields: 
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After some mathematical manipulation, one can achieve: 
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where 
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The sgn functions in the sliding surface were replaced by saturation functions, to 
reduce the chattering phenomenon [15]. 

5   Simulation Results 

In this section, some simulation results are presented to validate the proposed control 
law. To show the effectiveness of the proposed sliding mode control law numerically, 
experiments were carried out on the multi-robot formation control problem. 

High-level control algorithms (including desired motion generation) are written in 
C++ and run with a sampling time of Ts = 100 ms on a embedded PC, which also 
provides a user interface with real-time visualization and a simulation environment. 

All the simulations were made using the MobileSim. MobileSim is a software for 
simulating MobileRobots’ platforms and their environments, for debugging and ex-
perimentation with ARIA. The ARIA software can be used to control the mobile 
robots like Pionner, PatrolBot, PeopleBot, Seekur etc. ARIA (Advanced Robot Inter-
face for Applications) it is an object-oriented Applications Programming Interface 
(API), written in C++ and intended for the creation of intelligent high-level client-side 
software. 

Figure 5 shows a block diagram of the proposed sliding-mode controller. 

 

Fig. 5. Block diagram 
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are sent to the power modules of the follower mobile robot, and encoder measures NR 
and NL are received in the robots pose estimator for odometric computations. 

Two simulation experiments were carried out to evaluate the performance of the 
sliding mode controller presented in Section 4. The first simulation refers to the case 
of circular trajectory (vr1 = 0.4 [m/s] and wr1 = 0.1 [rad/s]). The initial conditions of 
the leader and the follower are, xr1(0) = 0 , yr1(0) = 0, θr1(0) = 0, xr2(0) = -1, yr2(0) = -
1, θr1(0) = 0, dd = 1 [m], ψd = 135[deg] (see Fig. 6). 

In the second simulation the leader robot execute a linear trajectory but with a non-
zero initial orientation (θr1 = 45 [deg]). The initial conditions of the leader and the 
follower in this second case are, xr1(0) = 0, yr1(0) = 0, θr1(0) = pi/4, xr2(0) = -1, yr2(0) = 
-1, θr2(0) = 0, dd = 1 [m], ψd = 120 [deg] (see Fig. 6). 

The good performance for controlling the formation with the developed control 

law can be observed from Figs. 6 - 9. The outputs of the formation system ( d
~

and ψ~ ) 

asymptotically converge to zero, as shown in Figs. 8 and 9. 

 

     

Fig. 6. Simulation results using Aria and MobileSim software (case I and II) 

 

Fig. 7. Sliding surfaces s1 and s2 for case I and II 
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Fig. 8. Separate distance ( d
~

) for case I and II 

 

Fig. 9. Relative bearing (ψ~ ) for case I and II 

6   Conclusions 

In this study a hybrid control structure to control a multi-robot formation is proposed. 
The hybrid control structure consists of two control levels: the discrete control level 
and the continuous control level. The discrete control level ensures the supervisory 
control and the continuous control level ensures the trajectory tracking control. 

The desired formation, defined by two parameters (a distance and an orientation 
function) is allowed to vary in time. The effectiveness of the proposed designs have 
validated via simulation experiments. 

Simulation example is used to evaluate the sliding-mode algorithm and to show the 
application of the algorithm in practice. The controller is simply structured and easy 
to implement. From the simulation results, it is concluded that the proposed strategy 
achieves the effectiveness of desired performance. 

Future research lines include the experimental validation of our control scheme 
and the extension of our results to skid-steering mobile robots. For the sake of 
simplicity in the present paper a single-leader, single follower formation has been 
considered. Future investigations will cover the more general case of multi leader, 
multi-follower formations. 
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From Conditioning of a Non Specific Sensor to
Emotional Regulation of Behavior

Cyril Hasson and Philippe Gaussier
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ETIS laboratory UMR 8051, F-95000

Abstract. Inspired by the emotional conditionings performed by the

amygdala, we describe a simulated neural network able to learn the mean-

ing of a previously neutral stimulation. A robot using this neural network

can learn the conditioning of a non specific sensor activated by the ex-

perimentator and its internal state of pain or pleasure. This biologically

inspired adaptative and natural way to interact with the robot is tested

with a mobile robot learning navigation tasks in a real environment.

1 Introduction

This study focuses on the interest of an adaptative and biologically plausible
neural network used to interact with a robot in a non predifined but meaning-
full way. The ability to give a meaning to a non specific stimulation is used
by the robot as a source of information to improve its behavior. This learning
by interaction mechanism is congruent with neurobiological studies of emotional
conditioning. A large number of studies have shown the implication of the amyg-
dala in emotional conditioning [13] and specifically for both aversive [6, 9] and
appetitive [5,4] emotionally conditioned behaviors. Anatomical studies [18] have
also shown that the amygdala afferent neural pathways are carrying information
for both aversive and appetitive events. The main role of amygdala is to give a
positive or negative emotional valence to incoming stimulations [17]. Among the
many functions of these emotional conditionings, one is to use them to regulate
neuromodulation of learning. Computational models of these mechanisms can be
found in [2, 14]. If the robot is able to express its positive or negative emotional
internal state, interactions with the experimentator can teach it the meaning of
the stimulation of a sensor through classical conditioning [21,20,19]. Later acti-
vation of this sensor can then be used as an external source of positive or negative
rewards [3, 8]. Our aim is to illustrate the potential of this interactive learning
neural network in situations of interaction between the robot and the human. In
homing tasks, the robot can easily get lost when moving outside the attraction
basin build around the goal. Though, conditioning a non specific sensor to the
expression of an internal state of pain or pleasure allows the experimentator to
reinforce (positively or negatively) the robot’s behavior interactively and teach
it to reach the goal. Figure 1 shows the robot and its environment. Section 2 de-
scribes the robot sensorimotor navigation and motivation system. Results from

K. Diamantaras, W. Duch, L.S. Iliadis (Eds.): ICANN 2010, Part II, LNCS 6353, pp. 317–326, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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Fig. 1. The experimental set-up. The environment is a 6m x 8m area. The robot is a

Robulab 10 from Robosoft with a 360 degree pan camera and a magnetic compass.

robotic experiments with traditional supervised learning are shown in section 3.
Section 4 describes how to give a meaning to a non specific sensor. Results from
robotic experiments with interactive learning using the conditioning of the non
specific sensor are shown in section 5. Section 6 contains the discussion.

2 Motivated Sensorimotor Navigation

Following the animat appraoch [7], the robot is viewed as an animal motivated
to survive by fullfilling its needs [16]. The robot must maintain a set of artificial
physiological variables inside safe levels. It has to find in its environment the
simulated resource corresponding to its active motivation. When one of these
variables gets too low, a pain signal is produced and expressed on a display screen
as a corresponding iconic face. Similarly, when the robot finds and consumes a
resource it was looking for, a pleasure signal is produced and expressed. The
navigation architecture is based on sensorimotor visuo-motor learning [11, 12]
inspired by neurobiological models of rodent visual navigation [10,15]. The robot
has to manage raw sensory inputs to construct real environment place cells.

Synthetic physiology and motivational system: A synthetic physiology
simulates the physiological variables dynamical evolution (e.g. food level). These
variables levels decrease with time (as the robot consumes its internal resources)
and increase by recolting the corresponding simulated resource. Figure 2 de-
scribes this system. A low-level drive system reacts to the physiological state
perception e.g. as food level gets low, hunger drive gets high. A distinction is
made between the inner drives, drives as they are computed directly from the
physiological variables levels, and integrated drives, temporal integration of the
inner drives. The integrated drives offer the possibility to modulate drives ac-
cording to higher order sources of information without manipulating the physio-
logical state of the system. The most active drive dictates the robot’s behaviour.
When a needed resource is detected, the corresponding physiological variable
level increases and the temporal integration of the corresponding drive is reset
to 0. A pain signal (equation 1) is produced if the level of one physiological vari-
able is critically low (below a definite threshold). A pleasure signal (equation 2)
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Fig. 2. Physiological variables levels decrease with time. Inner drives are the comple-

mentary values of physiological variables levels. Integrated drives can be manipulated

whitout affecting the inner states of the system and the expressed drive is the most ac-

tive integrated drive. Pain results from the criticaly low level of a physiological variable

and pleasure from the satisfaction of an active drive.

is produced when consumption of a resource satisfies a physiological need. A dis-
play interface, allows the robot to express visually, via prototypical expressions
of anger and joy, its internal state of pain and pleasure.

Pain =
{

1 if PVn(t) < pain threshold
0 otherwise

(1)

Pleasure =
{

1 if Rdetect ∗ ωrd + Dr ∗ ωwd > pleasure threshold
0 otherwise

(2)

PVn(t) is the level of the physiological variable n at time t .The pain threshold
is a fixed low value. Rdetect equals 1 when the resource R is detected and Dr

equals 1 when the drive corresponding to resource R is active. Pleasure thresh-
old is higher than both ωrd (connection weight from resource detection) and ωwd

(connection weight from the winner drive) acting as an ”AND” operator.

Visual navigation: The visual system is a simulated neural network able to
characterize different places of the environment learning place cells [15] i.e. neu-
rons that code information about a constellation of local views (visual cues) and
their azimuths from of a specific place in that environment [12]. Place cells ac-
tivity depend on the recognition levels of these visual cues and of their locations.
A place cell will then be more and more active as the robot gets closer to its
learning location. Associative learning allows sensorimotor learning (place-action
groups on figure 3). Place cells are associated with the goal direction to build a
visual attraction bassin around the goal. Due to the generalization property of
place cells, only a few place cells are necessary to construct an attraction basin.
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Fig. 3. Sensorimotor visual navigation : a visual place cell is constructed from recogni-

tion of a specific landmarks-azimuths pattern and an action (a direction) is associated

to it. When one neuron of the Place-Action group receives a neuromodulation from the

reward (positive reward in this example), it learns the association between the current

robot location and its direction. The positive conditioning group activates the learned

direction while the negative conditioning inhibits the learned direction.

3 Robotic Experiments: Results and Limitations of the
Supervised Learning

The environment contains one simulated resource (specific color on the ground). A
supervised procedure allows the robot to learn sensorimotor associations
(place-actions) around the resource. If the action associated with each place cell is
a movement in direction of the resource, an attraction basin is constructed. As long
as the robot is in the attraction basin, it can discriminate correctly the different
learned places and its actions will lead it to the resource. However, if the robot is
too far away from the resource it needs and thus from the associated learnedplaces,
it is not able to discriminate them correctly. Figure 4 shows the robot trajectories.
When it is placed inside the attraction basin, the robot reachs the resource. When
it is placed too far away from the places it has learned, the robot is lost. Being lost,
the robot navigation is similar to a random navigation. The robot thus needs a
mecanism to extend the frontiers of the attraction basin it has learned.

4 Learning a Reinforcement Signal via Stimulation of a
Non-specific Sensor

Looking at the robot performing its task, the experimentator is able to evaluate
if the robot is doing well or badly i.e. going toward or away from the needed
resource. While the robot is lost, reinforcing its actions positively when it is
heading toward its goal or negatively otherwise, is a natural, interactive and
less constraintfull way to teach the robot to perform a given task than totally
supervised learning. But in order to do so, the robot has to learn what is a
positive or a negative reinforcement. Our objective is to show that the robot can
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Fig. 4. Trajectories of the robot. Place-action associations are learned 0.8 meter from

the goal and the attraction basin is approximately 4 meters wide. When the robot

is inside its attraction basins, it successfully navigates toward its goal. Outside the

attraction basin the robot is lost. Even with this raw strategy, the robot sometimes

reachs the attraction basin (by mere chance) and then converges toward its goal. These

trajectories are obtained via infra red video tracking.

learn the meaning of an initially non specific sensor (NSS) stimulation through
stimulus-stimulus conditionings similar to those performed by the baso-lateral
amygdala. Because the robot has the ability to express its internal states of
pain and pleasure, the experimentator disposes of the information needed to
teach the robot to associate consistently a non-specific sensor stimulation to
its internal state of pain or pleasure. The robot learns the association between
this stimulation and its internal state making the sensor a specific one through
interactive associative learning. The sensor is said to be non specific because
the experimentator is entirely free to choose to which internal state he wants to
associate the sensor. After this learning has been made, the robot can use this
stimulation to reinforce accordingly its behaviors. This learned reinforcement
signal can be used to perform an interactive semi-supervised learning in case
the robot is lost and cannot use its supervised learned attraction basin to reach
the resource. Figure 5 shows the neural network used to enable this learning.
A conditioning neuron functionning with the Widrow and Hoff learning rule,
the least mean square learning rule [21], uses the difference between its output
and the desired output to compute the amount by which the connexions weights
have to be changed (weight adaptation due to learning). In our case, conditioning
neurons using the least mean square rule learn (equation 3) to predict the pain
and pleasure signals from the NSS activity :

Δw = ε ∗ S(Sd− S) (3)

Δw is the difference between the old and the new weight, ε is the learning rate
(neuromodulation of the neurons), S is the output (of the conditioning neurons)
and Sd the desired output (the pain or pleasure signal). As shown in figure 6,
the reward signal associated with the sensor activation is the difference between
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Fig. 5. NSS conditioning : neural network used to learn the association of the sensor

stimulation and the robot internal state. In this example, a needed resource is detected

and a pleasure signal is thus produced (the active drive will then change) The NSS

sensor is activated. The robot learns the conditioning of the sensor to its internal

pleasure state. The generated reward is used as an AcH neuromodulation signal to

control learning of the sensorimotor navigation.

Fig. 6. Adaptative learning of how to give a meaning to the NSS (in terms of positive

or negative reward). We first conditioned the NSS to predict the robot’s pleasure state.

Then, the NSS is activated during the robot’s pain expressed state. The pleasure con-

ditioning is quickly forgotten while the conditioning between the NSS and the robot’s

pain expressed state is learned. The NSS now produces a negative reward.

positive and negative (associated with pleasure and pain) predicted rewards.
This network learns only when the conditionnal stimulus is present (stimulation
of the sensor). The learning control of this network is designed such as when
the inconditionnal stimulus is present (the internal state of pain or pleasure),
the associated conditioning network learns fast (ε = 1) and in absence of the
inconditionnal stimulus, the associated conditioning neuron learns slowly (ε =
0.01). Furthermore, when one inconditional stimulus is present (e.g. pain), the
conditioning neuron associated to the other inconditional stimulus (pleasure)
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also learns (ε = 0.1). This enables this network to learn fast, to forget slowly
without any new conditioning and to forget fast in case of a new conditioning.
This gives flexibility to this network, allowing the online reconditioning of the
NSS from one internal signal to the other. Someone interacting with the robot
can teach it the association of two different kinds of reinforcement with the NSS.
If the NSS is associated with the pleasure signal expressed by the robot, activation
of the sensor gives the robot a positive reinforcement signal. When the robot is lost
but is heading toward its goal, activation of the sensor allows the robot to learn
visually where it is (visual place cell learning) and associate this perception with
its current direction (place-action R+). If however the sensor is associated with
the pain signal, activation of the sensor gives the robot a negative reinforcement
signal and the robot learns a place cell and associates it with the inhibition of its
current direction (place-action R-).

5 Robotic Experiments: Learning Interactively to Reach
a Goal When the Robot Is Lost

In the following experiments, the robot uses the attraction basin learned in
the first experiment. The robot was first trained to associate the NSS with the
pleasure signal and thus using it as a source of positive rewards. If the robot
seems lost, the experimentator stimulates the sensor whenever he judges the
robot’s behavior as being the right one. Figure 7 shows the robot trajectories.
All trajectories are obtained by infra red video tracking.This interactive learning
allows to enlarge to attraction basin around the goal. The robot is now able to
reach the goal from farther distances. The robot was then trained to associate the
NSS with the pain signal and thus using it as a source of negative rewards. If the
robot seems lost, the experimentator stimulates the sensor whenever he judges
the robot’s behavior as being wrong. Figure 8 shows the robot trajectories.

Fig. 7. Trajectories of the robot when it is lost but learns interactively to reach its

goal. The robot is placed outside the attraction basin and the sensor is associated with

the robot’s positive emotional state. When the robot behavior is considered as being

”good” (e.g. heading toward the attraction basin around the goal), stimulation of the

sensor allows the robot to reinforce the current direction.
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Fig. 8. Trajectories of the robot when it is lost but learns interactively to reach its

goal. The robot is placed outside the attraction basin and the sensor is associated

with the robot’s negative emotional state. When the robot behavior is considered as

being ”bad”, stimulation of the sensor allows the robot to learn to inhibit the current

direction. Eventually, and by elimination, the robot will head for the attraction basin.

6 Conclusions and Perspectives

Robotic experiments are a way to test psychological or neurobiological mod-
els. In particular, models of emotional conditionings. The NSS conditioning is
inspired by the way baso-lateral amygdala performs stimulus-stimulus condition-
ings. Figure 9 shows how the robotic control architecture presented in this paper
can be understood in terms of a network of cerebral structures. Pain and ple-
saure signal are constructed from the robot physiological state (hypothalamus).
The baso-lateral amygdala learns stimulus-stimulus associations i.e. it learns the
conditioning of the NSS perception by the pain or pleasure signals. The ventral
tegmental area receives connections from the amygdala and send neuromodula-
tion connections to the amygdala (conditioning learning), the parahippocampus
(landmarks-azimuths learning), the enthorinal cortex (place cells learning) and
the nucleus accubens (sensorimotor learning). Furthermore, these experiments
showed how someone interacting with a robot could use information displayed by
this one about its internal state to teach it the meaning of an otherwise neutral
stimulation. The experimentator is able to make the conditioning of any kind of
non specific sensor to any kind of the robot’s expressed internal state. Different
stimulations could then be associated with different robot internal states. One
stimulation could also be associated with a combination of expressed internal
states. Furthermore, these conditionings allow a very easy and natural way to
interact with the robot and to assist its learning.

In this experiment, we used simplified versions of joy and anger expressions to
express the pleasure and pain signals. But as the signals to express become more
abundant or if the realism and complexisity constraints increase, the simplifica-
tion we used (pleasure equals joy and pain equals anger) becomes an issue of its
own. A very promising future development of this architecture would be to give
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Fig. 9. The robot control architecture can be understood as a network involving the

following cerebral structures : inner perception of physiological variables are done by the

hypothalamus. The baso lateral amygdala learns the conditioning of the NSS with pain

or pleasure signals. The ventral tegmental area neuromodulates this conditioning as

well as the visual place cell learning. From the parahippocampus (landmark-azimuths)

to the enthorinal cortex (place cells). This conditioned signal is used as a reward to

control the learning of sensorimotor associations in the nucleus accumbens which are

finally used for motor control.

the robot the ability to monitor its progress toward its goals via predictions of its
goals through its different perceptions (mainly visual and proprioceptive). Being
able to evaluate its behaviors according to its goal should be one of the major
source of information to bootstrap the development of emotional behaviors and
thus of a greater autonomy. But even if a self monitoring system coupled with
a reinforcement learning mechanism is sufficient to discover and learn a solu-
tion [1], the interaction with the human in a non predefined way allows the use
of the same sensor in different ways a thus speed up learning. In future studies,
we plan to test the interactions between the interactive emotional signals (via a
non specific sensor and/or via emotional facial expressions recognition) and the
robot’s own emotional state issued from its automonitoring abilities.
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Abstract. In this paper we present a neural network approach to solving the 
problem of a robot agent (Mazebot) navigating in and creating a topological 
map of a reconfigurable maze. The robotics system used is based on an SRV-1 
Robot extended both in hardware and software to accomplish the task. The 
main algorithm of the system is vision based, requiring only a single camera 
and a dead reckoning sensor. For the purposes of our algorithm a database of 
images from various maze configurations has been created. Neural Networks 
are utilized to train the agent at first and later to analyze features extracted from 
the images and enable agent navigation inside the maze. The advantage of our 
approach lies in the minimal number of sensors required by the robot agent to 
achieve success in its task. 

Keywords: Robotics, neural networks, machine vision, machine learning. 

1   Introduction 

The problem of a robot correctly navigating inside different kinds of environments 
has been thoroughly investigated and many different approaches have been shown to 
work. Each approach depends on a number of factors such as the complexity of the 
environment itself and the robot’s sensing and processing capabilities. Robots with a 
wide array of sensors have been used to provide a complete view of the environment 
by fusing input from their various sensors [1], [2]. Furthermore many algorithms have 
been developed for navigation using vision, either by itself or by combining image 
data with input from additional sensors to achieve correct movement. 

In this paper we tackle this problem by restricting our robot (Mazebot) to a particu-
lar environment, a reconfigurable maze, and by utilizing mainly visual processing 
algorithms, based on neural networks, to achieve movement inside the maze. Our 
main goal was to create a robotics system that would achieve navigation by using a 
single camera as its main visual sensor and some kind of odometry sensor for dead-
reckoning giving additional feedback to the robot. In comparison to other approaches 
existing in the literature, we set out to show that this problem can be accurately tack-
led by a small and lightweight vision-based platform, both in size and processing 
capabilities. The objectives that we set out to accomplish were: 
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• Use of a lightweight platform: Accomplish all of the above without using 
any other sensor except the camera, thus focusing only on visual processing. 
Furthermore a requirement we set in our problem definition was that the ro-
bot’s platform should be lightweight as far as processing and sensing capabili-
ties are concerned. 

• Accuracy of the robot’s movement: The width of each maze corridor has 
been determined so as to just fit the robot, restricting in effect the movement 
choices the robot has in its disposal to correctly move inside the maze. This 
provides it with a challenge to coordinate its movements with great accuracy 
so it can traverse the maze correctly. 

• Intelligent visual processing: To add additional hindrances to the robot’s task 
the maze has been constructed so that there is not a clear difference in color 
between the corridors’ floor and the walls. Because of that it is harder to dif-
ferentiate between different objects of its environment and provide an addi-
tional challenge to the task at hand. As a result the machine vision algorithm 
becomes more reliable. 

 

Creating a lightweight platform was one of our objectives because the robot is used as 
a teaching tool in the context of an Artificial Intelligence lab course [3]. The robotic 
platform which we developed to tackle the maze problem is based on the SRV-1 Ro-
bot by Surveyor Corporation [9]. That particular robot fit very well with our demand 
for a lightweight platform based around a single camera sensor. It has a 500MHZ 
blackfin processor which allows for the implementation of visual processing algo-
rithms in real time. That processing power combined with the camera, long battery 
life and the option for Wi-Fi access to the robot, rendered the SRV-1 as the perfect 
foundation for our robotic platform. 

In order to overcome a number of shortcomings of SRV-1, we made the following 
extensions to it:  

 

• a software FPU emulation library for floating point arithmetic needed for the 
calculations of the neural networks,  

• a dead reckoning sensor interface unit, which helps in the estimation of the 
distance travelled by the robot.  

• a remote user interface to be able to control the robot and train the neural 
networks through a remote PC and  

• customized firmware to coordinate all functions needed. 
 

We have created a reconfigurable maze (see Fig. 1) to serve as the environment our 
robot will function in. The goal of the robot is to find the exit of the maze while at the 
same time treating the maze as a graph that it is trying to map. The graph of the maze 
serves as the topological map of our environment with corridors representing the 
edges and crossroads and dead ends acting as the graph’s nodes. Each time a new 
maze is configured the robot can be dynamically ordered to traverse the maze in many 
different ways by being provided a new search algorithm each time. This provides the 
students of the Artificial Intelligence lab course with a way to visualize their algo-
rithms in a tangible real-world environment. 
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Fig. 1. Exploring the maze and creating a topological map 

2   The Algorithm for Maze Navigation and Topological Map 
Creation 

The problem of navigating inside an environment is not a new one in the field of 
robotics and computer vision. A lot of work has been done in the field with most of it 
falling under the category of Simultaneous Localization And Mapping algorithms 
(SLAM).  

Various SLAM-based implementations for robots exist such as in the work of Mi-
chael Montemerlo et.al. [4] who utilize the SIFT algorithm combined with stereo 
vision. In our approach instead of geographical mapping which tends to be error-
prone, memory and processing power demanding and as such would contradict our 
objective for a lightweight robotic platform, we use topological mapping of the envi-
ronment. An example of using a topological map to create a view of the environment 
inside a robot can be seen in [5].  

Moreover since one of the objectives we set for our robotic platform was that it 
would be used as an educational tool we needed a testing environment that would be 
limited and reconfigurable so that it could be easily used by our students. To that end 
we chose a reconfigurable maze. Many good examples of maze-like environments 
exist in robotics literature [8]. 

In our case, the maze is treated as a graph and the robot will map it as such and 
treat the finding of an exit as a graph search problem. More specifically each cross-
road or dead end represents a node in the graph, while the corridors of the maze repre-
sent the edges which link the nodes (Fig. 1). In that way, the maze can act as a visu-
alization of various graphs, limited only by its dimensions and the way the walls con-
nect to one another. The robot can then proceed to search for a solution to the maze 
knowing its starting node and its goal node, using various graph search algorithms, 
such as Breadth first, Depth First, A* and others. 

As far as the navigation algorithm is concerned a database of images from various 
maze configurations has been created. Feature extraction is performed on these im-
ages in the form of edge detection and subsequently these features are used to train 
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the robot’s neural networks. When the robot is left alone to traverse the maze, input 
from the camera and the dead reckoning sensor pass through the trained neural nets 
and decide what the robot actually sees in its environment and how it should act. 

The visual processing algorithm for maze navigation has to go through two stages. 
During the first stage, we obtain a collection of images from the maze environment, 
and associate each of them with specific output corresponding to certain goals that the 
robot should learn. These will make up the initial training sets for the neural networks 
that will run on the robot. When we tested the algorithm the robot was left alone in 
the maze gathering images which were later associated with a set of goals. 

Having an image database prepared the training of the neural networks can begin. 
The neural networks were trained in a host computer since it would be possible but 
very impractical to do it in the robot itself. The neural networks are multi-layer per-
ceptrons trained with the back propagation algorithm and all the usual parameters 
including momentum. Four different neural networks were created in order for the 
robot to function properly inside the maze: 

 

1. Left and right opening: The job of these neural networks is to detect openings 
in the walls on the right and left of the robot, thus allowing the robot to map the 
maze correctly and follow new routes inside it. 

2. Movement/Halt: This neural network combines input from both the camera and 
the optical sensor to give an estimation regarding the distance travelled and to 
inform the robot when it should check for possible openings in the maze. 

3. Wall: This neural network reads the current camera frame along with measure-
ments from the laser pointers and reaches a decision as to whether there is a wall 
ahead of the robot or not. 

4. Orientation: The orientation neural network’s job was by far the most challeng-
ing. It reads frames from the camera and decides if the robot is properly oriented 
in the maze’s corridor. If it is not looking straight, it can decide the movement 
needed to correct its orientation and get back on track. 

 

Training the neural networks with a set of images the robot learns about a few differ-
ent configurations of the maze and is later able to generalize in any possible maze that 
it is put in. The neural networks do not process raw images but instead canny’s edge 
detection algorithm is applied to the images so that we can perform some form of 
feature extraction. It is these feature extracted images that are later used in the neural 
networks. As far as the edge detection algorithm is concerned we made a few minor 
modifications to the original canny algorithm, such as using a reduced sobel mask, to 
achieve real time edge detection of the camera’s frames. 

The training of the neural networks required a considerable number of experiments 
as far as training parameters were concerned. Furthermore the camera frames contain 
noise, in the form of unwanted information that can only disrupt the decision process. 
To solve this problem image masks were used in the training of each network so that 
only a part of the image would be read for both training and recalling the neural net-
work at hand. Experiments were conducted to figure out which parts of the image are 
more useful for each network making sure at the same time that no useful information 
is kept out of the image mask. 

During the second stage, the algorithm realizes the actual movement inside the 
maze combining all of the above. As can be seen through the algorithm’s activity  
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Fig. 2. Activity diagram of the algorithm for navigation inside the maze 

diagram (Fig. 2), the robot moves continuously while reading input from the optical 
sensor to get an estimate about its current position. The optical sensor values along 
with images from the maze are filtered by the “Movement/Halt” network. This net-
work’s output determines whether the robot should stop to check for openings. 

When it is time to check for exits in either side of the maze’s corridors the robot 
stops momentarily to check for exits. After checking for exits, the “orientation net-
work” is recalled to determine whether the robot’s orientation is correct and if it is 
looking straight inside the corridor or if corrective movements need to be done. 

Subsequently the “openings networks” are recalled and inform the robot if there is 
any opening that it should add in the topological map of the maze. Then the “wall 
network” along with distance values estimated by the laser pointer’s position in the 
image frame determines if there is a wall in front of the robot and provides us with a 
distance measurement. This serves the purpose of deciding if going straight ahead is 
an option or not. 

Finally by consulting the algorithm that has been dynamically uploaded to the ro-
bot a goal check is performed to assert if we have reached the goal or not and then 
movement continues towards the direction that the algorithm determines. 

By navigating inside the maze in this way the robot creates a topological map of the 
maze. New openings add new edges to the map while new crossroads and any dead 
ends that the robot comes across become new nodes in the topological map of the 
maze. An illustration of this can be seen in Fig. 2 where the robot creates a topological 
map of the maze while trying to find the exit using the A* graph search algorithm. 
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3   Conclusions 

We presented in this paper a vision-based system via which a reconfigurable maze 
can be accurately navigated by a lightweight robot agent. The robot’s movement in-
side its environment was accurate despite the presented environment related handi-
caps, thanks to the neural networks based machine vision system that the robot used. 
Moreover the robot was capable of executing search algorithms dynamically uploaded 
to it and as such accomplished the role of a teaching assistant to students, by visually 
displaying the graph search algorithms taught in the class. 

Our robotic platform proved to be a success because once properly calibrated and 
trained from a number of different maze configurations, was able to function correctly 
in many other new maze configurations. The robot was thoroughly tested and was 
able to generalize in many different lighting conditions and maze layouts. It suc-
ceeded, having never before functioned in many of those conditions and without the 
need to retrain any of the neural networks, used for machine vision and navigation. A 
number of test cases together with their video recordings can be seen in MazeBot 
project web page (http://www.realintelligence.net). 
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Abstract. In this paper, we propose a new information-theoretic method

to simplify and unify learning methods in one framework. The new method

is called ”supposed maximum information,” which is used to produce hu-

manly comprehensible internal representations supposing that informa-

tion is already maximized before learning. The new learning method is

composed of three stages. First, without information on input variables,

a competitive network is trained. Second, with supposed maximum infor-

mation on input variables, the importance of the variables is estimated by

measuring mutual information between competitive units and input pat-

terns. Finally, with the estimated importance of input variables, the com-

petitive network is retrained to take into account the importance of input

variables. The method is applied not to pure competitive learning but to

self-organizing maps, because it is easy to demonstrate how well the new

method can produce more explicit internal representation intuitively. We

applied the method to the well-known SPECT heart data of the machine

learning database. We succeeded in producing more comprehensible class

boundaries on the U-matrices than did the conventional SOM. In addi-

tion, quantization and topographic errors produced by our method were

not larger than those by the conventional SOM.

Keywords: Competitive learning, self-organizing maps, interpretation,

information maximization.

1 Introduction

In this paper, we propose a new type of information-theoretic method to pro-
duce humanly interpretable representations by maximizing information in input
units as well as competitive units. The main characteristics of the new method
lie in simplification and unification. First, the method is proposed to simplify
the computation of information maximization. In this method, we suppose that
information is already maximized before learning. Then, we try to examine what
kinds of configuration change can be observed by this supposed maximum in-
formation. This is the reason why we call this method ”supposed maximum
information.” Now, information-theoretic methods have been applied to neural
networks as well as machine learning, because the information-theoretic meth-
ods have made it possible to deal with higher-order statistics and non-linear
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problems [1]. Thus, there have been many attempts to formulate learning pro-
cesses from the information-theoretic points of view [2], [3], [4]. However, one of
the major problems of the information-theoretic methods lies in the computa-
tional complexity of computing entropy, information and mutual information for
learning. Though many computationally feasible methods have been proposed
[5], [6], the problem of computational complexity still remain unsolved from our
point of view. The supposed maximum information is introduced to overcome
the problem, because information to be maximized is supposed to be maximized
before learning.

Second, we can see several computational methods in a more unified way, be-
cause some methods seem to use this supposed maximum information, though
implicitly. Let us take two examples, namely, competitive learning and feature
selection. In competitive learning [7], one of the main jobs is to determine a
winner by computing distances between input patterns and connection weights.
Then, connection weights to the winner with the minimum distance are updated
in competitive learning, or the winner with its neighbors in the self-organizing
maps [8] must be updated. This winner-take-all algorithm is considered to be
one realization of supposed maximum information in our context. This is be-
cause in our definition, in a maximum information state, only one competitive
unit fires, while all the other competitive units cease to do. Second, the feature
selection can be considered to be a method to suppose maximum information,
though not so explicitly as in competitive learning. Feature selection have played
important roles to improve the performance [9]. Basically, in the feature selec-
tion, the number of important variables should be reduced as much as possible
with the same precision in errors. In our term, the feature selection correspond
to information maximization of input variables. As the information is larger,
the number of input variables should be smaller. Thus, it is possible to suppose
maximum information in feature selection, meaning that the minimum number
of features is already detected. Thus, in our framework, feature selection and
competitive learning can be considered and implemented in a framework of the
supposed maximum information.

2 Theory and Computational Methods

Figure 1 shows a schematic diagram of our method. In the competitive layer in
Figure 1(a), the supposed maximum information is realized by the conventional
winner-take-all algorithm. In the input layer in Figure 1(b), the new method is
composed of three stages. In the first stage, minimum information is supposed
in Figure 1(1). On the other hand, maximum information is supposed in the
second and third stage in Figure 1(2) and (3).

2.1 First Stage: Minimum Information Learning

In Figure 1(0), we have an network architecture at the initial stage, where xs
k,

wjk and vs
j denote the kth element of L input units for the sth input pattern of
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L input units
and S input patterns

M competitive
units

p (k)=1/L1

p (k)=1 or 02

p (k)=1 or 03

q (k) (estimated)2

p (k)=1/L0
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(a) Supposed maximum information
for the winner-take-all

(b) Supposed maximum information
for input units or variables

(1) First stage

(2) Second stage

(3) Third stage

(0) Initial stage

Minimum
information
learning

Maximum
information
learning

Supposed
maximum
information

Maximum
information
relearning

Initial state

Initial state

Initial state

Fig. 1. A schematic diagram of three types of information-theoretic learning, namely,

minimum information learning (1), maximum information learning (2) and maximum

information relearning (3)

S input patterns, connection weights from the kth input unit to the jth unit of
M competitive units and the jth competitive unit output, respectively. At the
initial stage, shown in Figure 1(0), no information on input units or variables is
supposed to be given, and the firing probabilities p0(k) of the kth input unit are
supposed to be equi-probable, namely, p0(k) = 1/L. Note that the number zero
denotes the specific stage of learning, and without this number, the probability
is considered to be a general one.

Figure 1(1) shows the first stage of learning with supposed minimum infor-
mation. As already mentioned, let us suppose that p0(k) and p1(k) represent
the supposed firing probabilities of the kth input unit at the initial stage and at
the first stage, respectively. The supposed information SI1, presuming that no
information on input variables exists, is defined by the difference between these
two probabilities

SI1 =
L∑

k=1

p1(k) log
p1(k)
p0(k)

. (1)

This supposed information is zero, namely, minimum information learning. In the
minimum information learning, no information exists with respect to input vari-
ables, meaning that p1(k) is equal to the initial probability p0(k). For learning,
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we use the conventional SOM with the batch type learning1. In the batch learn-
ing, all input patterns must be given before weight update procedures. In each
training step, the data set is partitioned according to the Voronoi regions of map
vectors. To obtain update rules, we must select the best matching unit (BMU),
denoted by c:

c = argminj

L∑
k=1

p1(k)(xs
k − wjk)2. (2)

As shown in Figure 1(a), the winner-take-all algorithm is considered to be a
realization of supposed maximum information.

2.2 Second Stage: Maximum Information Learning

At the second stage of maximum information learning in Figure 1(2), information
on input variables is supposed to be maximized. In a maximum information
state, one input unit, for example, the tth unit, is turned on, while all the other
units should be off. Thus, we have firing probabilities when the tth input unit is
turned on,

p2(k; t) =
{

1, if k = t;
0, otherwise.

When the information on input variables is supposed to be maximized, the sup-
posed information at the second stage of learning is defined by

SI2(t) =
L∑

k=1

p2(k; t) log
p2(k; t)
p0(k)

= log L. (3)

We should now examine how this supposed maximum information affects a pro-
cess of competition. Now, the distance between input patterns and connection
weights, when focusing upon the tth input unit, is computed by

ds
j(t) =

L∑
k=1

p2(k; t)(xs
k − wjk)2. (4)

By using this equation, we have competitive unit outputs for the tth input unit

vs
j (t, σ) = exp

(
−
∑L

k=1 p2(k; t)(xs
k − wjk)2

2σ2

)
. (5)

Normalizing these outputs, we have

p(j | s; t, σ) =
vs

j (t, σ)∑M
m=1 vs

m(t, σ)
. (6)

1 This is a default learning method in the SOM toolbox [10] used in this paper.
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The firing probability of the jth competitive unit is defined by

p(j; t, σ) =
S∑

s=1

p(s)p(j | s; t, σ). (7)

By using these probabilities, we have mutual information MI2 when the tth
input unit is turned on:

MI2(t; σ) =
S∑

s=1

M∑
j=1

p(s)p(j | s; t, σ) log
p(j | s; t, σ)
p(j; t, σ)

. (8)

This mutual information shows how well an input unit contributes to a process
of competition among competitive units [11]. As this mutual information gets
larger, the tth input variable plays a more essential role in realizing competitive
processes, and the variable should be considered to be important in competition.

We approximate the actual firing probabilities of input units by this mutual
information, and we have

q2(t; σ) ≈ MI2(t; σ)∑L
l=1 MI2(l; σ)

. (9)

Then, using these estimated firing probabilities, q2(t; σ), the estimated informa-
tion can defined by

EI2(σ) =
L∑

k=1

q2(k; σ) log
q2(k; σ)
p0(k)

. (10)

This estimated information, EI2, is dependent on the spread parameter σ. Sup-
pose that the spread parameter σ∗ can give maximum estimated information,
then we have the final estimated firing probability at the second stage

q2(k) = q2(k; σ∗), (11)

and the estimated information

EI2 = EI2(σ∗). (12)

2.3 Third Stage: Maximum Information Relearning

In the maximum information relearning in Figure 1(3), by obtained estimated fir-
ing probabilities q2(k) with maximum estimated information, competitive learn-
ing is again applied to get the final firing probability of input units. Now, using
the estimated firing probabilities obtained by the previous maximum information
learning, the final winner can be determined by

c = argminj

L∑
k=1

q2(k)(xs
k − wjk)2. (13)
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Then, we compute new connection weights and estimated information MI3 by
the same equation (8). Then, the final firing probabilities are defined by

q3(k) =
MI3(k)∑L
l=1 MI3(l)

. (14)

We use the optimal spread parameter σ∗ to shorten the computational time,
because little change can be observed even if we search for an optimal spread
parameter value again. Then, the final estimated information is

EI3 =
L∑

k=1

q3(k) log
q3(k)
p0(k)

. (15)

3 Results and Discussion

For easy comparison, we use the conventional SOM2 with the well-known data
of the SPECT heart data3. The data shows the diagnosing of cardiac Single
Proton Emission Computed Tomography (SPECT) images. Each of the patients
is classified into two categories: normal(0) and abnormal(1). The number of input
patterns is 80, with 22 input variables. The data were normalized for their values
to range between zero and one. To evaluate the performance of competitive
networks, we used the quantization and topographic errors. The quantization
error is simply the average distance from each data vector to its BMU [12].
The topographic error is the percentage of data vectors for which the BMU and
the second-BMU are not neighboring units [13]. The reason why we used these
classic measures for evaluation for networks is that the importance is on the easy
reproduction of our results presented in this paper. In all experimental results,
information on input variables was increased as much as possible by changing the
spread parameter σ. Learning was considered to be finished when the absolute
difference between the information at two successive learning stages was less
than 0.001.

Figure 2(a) shows the estimated information EI2 at the second stage and EI3

at the third stage. Both types of information increase gradually as the spread
parameter is increased from 0.1 to 2.3(final). The estimated information EI2

at the second stage reaches its maximum value of 0.090, while the estimated
information EI3 is further increased and reaches its maximum value of 0.145.
Figure 2(b) shows quantization errors by the SOM in green, at the second stage
in blue and at the third stage in red. The quantization error by the conventional
SOM is 0.242. At the second stage, the quantization error is decreased to 0.231,
while at the third stage, the quantization error is further decreased to 0.225
(σ = 0.9). Figure 2(c) shows topographic errors by the SOM in green, at the

2 We used SOM Toolbox 2.0, February 11th, 2000 by Juha Vesanto

http://www.cis.hut.fi/projects/somtoolbox/. No special options were used for

easy reproduction.
3 http://www1.ics.uci.edu/ mlearn/MLRepository.html
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Fig. 2. Estimated information for input units (a), quantization errors (b) and topo-

graphic errors (c) for the SPECT heart problem

second stage in blue and at the third stage in red. As can be seen in the figure,
the topographic error by the SOM is zero. On the other hand, at the second
stage, the error is increased to 0.038, and the error at the third stage is slightly
decreased to 0.025 at the end of learning. However, when the parameter σ is 0.7,
the topographic error at the second stage becomes zero. In addition, when the
parameter σ is 0.2 to 0.4, the topographic error also becomes zero at the third
stage of learning. Though we need to take appropriate values of the parameter,
the topographic errors can be reduced to zero.

Figure 3 shows the estimated firing probabilities q3(k) when the spread pa-
rameter is increased from 0.1 (a) to 2.3 (b). As can be seen in Figure 3(a),
when the spread parameter is 0.1, the firing probabilities are almost flat, and no
characteristics can be seen. When the spread parameter is increased to 2.4 (b),
several input variables, for example, variables No. 1, No. 5, No.10 and No.13
show larger values. Figure 4 shows U-matrices (1) and labels (2) obtained by
the SOM (a) and when the spread parameter is increased from 0.1(b) to 2.4 (f).
Figure 4(a) shows a U-matrix and labels obtained by the conventional SOM.
The higher values are seen on the lower part of the U-matrix. When the spread
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parameter is 0.1, the same kinds of higher values can be seen on the lower side
of the map in Figure 4(b). When the spread parameter is increased to 0.5 (c), a
warmer-colored and clear boundary on the diagonal position can be seen. This
boundary continues to exist as the spread parameter is increased from 1.0 (d) to
2.3 (f). This diagonal property is more accentuated when the spread parameter
is increased from 0.5 to 2.3.

We can summarize those experimental results by the following three points.
First, as the information on input variables is increased, quantization errors are
gradually decreased, while topographic errors are inversely increased. Thus, we
need to take the appropriate values of the parameter for better topographic
errors. Second, estimated firing probabilities at the third stage are gradually
expanded, and stable probabilities can be obtained. Third, on the U-matrices,
gradually, clear boundaries on the diagonal position, which reflect the charac-
teristics of the most important input variable, appear.

4 Conclusion

In this paper, we have proposed a new type of information-theoretic method that
aims to simplify the computation of information and at the same time to unify
several methods independently developed in neural networks. The simplification
is possible by supposing that information on input variables is already maxi-
mized. With this supposed maximum information, we try to examine what kind
of change a network has in the course of learning. The unification is also realized
by supposing that information is already maximized before learning. The exam-
ples in this paper are the winner-take-all algorithm and feature selection to be
seen in the same framework. Thus, we have the possibility to unify the winner-
take-all and the variable selection in one framework. We applied the method to
the well-known data set, namely, the SPECT heart data of the machine learn-
ing database. We have shown that information on input variables is increased
and finally saturated as the spread parameter σ is increased. The quantization
errors decrease as the information is increased. However, the topographic errors
are not necessarily decreased as the information is increased. Final U-matrices
show much clearer class boundaries that reflect the properties of the connection
weights into the important input variables.

Though our method is restricted to competitive learning and the determi-
nation of the spread parameter should be made clearer, our method certainly
shows the possibility of being a new information-theoretic method that includes
information content on various components in a network.
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Abstract. In this paper a new method based on the self-organizing

map (SOM) is proposed to track and identify changes in the dynamic

behaviour of a physical process. In a first stage, a SOM is trained on

a parameter space composed of the coefficients of local dynamic models

estimated around different operating points of the process. On execution,

new models estimated from process data are compared against the stored

models in the SOM to yield residual models that contain relevant infor-

mation about the changes in the process dynamics. This information can

be efficiently represented using time-frequency visualizations, that reveal

unseen patterns in the frequency response and hide those that can be

explained by the model.

Keywords: Self-organizingmaps,datavisualization,processmonitoring.

1 Introduction

Knowledge about the process behaviour is a key factor in today’s industry. Pre-
cise and timely knowledge about its condition is crucial in order to take actions to
improve productivity and quality. Fault detection and identification in large and
complex industrial processes is often an unsupervised problem. In most cases,
the overwhelming number of factors that intervene in a fault make it virtually
impossible to build models or even gather data of all possible faults, and the
only available models or data about the process describe it under normal work-
ing conditions. The problem of fault detection and identification on the basis
of the knowledge of the process under normal conditions is closely related to
novelty detection, that is the identification of new or unknown data or signal
that a machine learning system is not aware of during training [8,9]. The nov-
elty detection problem conceptually involves finding states that lie significantly
outside the kernel of the joint probability density function defined by known
states. This joint pdf embodies geometric relationships among the process vari-
ables x1, · · · , xn and, in fact, can be considered a model of the process under
normal conditions.
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Despite this approach is rather general, when the variables xi describe process
measurements instead of process behaviours, only inherently static relationships
are considered, which do not have into account possible dynamical relationships.
When two (or more) variables xi and xj are dynamically related –e.g. input force
and output position in a spring-damp-mass system–, the relationships, usually
described by a differential equation, also depend on time, and the “static model”
is no longer valid to detect novel states.

A classical method to consider dynamic processes is the model based approach
[3]. It consists in the detection of faults in the processes, actuators and sensors by
using the dependencies between different measurable signals. These dependencies
are expressed by mathematical process models [4,5]. The model based approach,
largely used in fault detection and identification literature, is rooted on the idea
of analytical redundancy, that is based on comparing the process to a “copy”
of it (in this case, an analytical model) that is supposed to behave in the same
manner as the original process. Any differences between the actual process and
its copy reveal, in consequence, potential faulty behaviours. However, one key
factor of this class of methods is the availability of a model that explains the
process dynamics. Sometimes models are not available or difficult to obtain; also,
the process may be multimodal and show many different dynamic behaviours.
In those cases automated learning processes may become competitive and less
time-consuming to obtain models of the process.

In this work we propose a method to detect novel dynamic behaviours of the
process based on the so called maps of dynamics [2] consisting of a combina-
tion of least squares (LS) system identification and self organizing maps to store
models describing all the different dynamic behaviours shown by the process
on a training set. After the learning process, the current process dynamics is
compared to the best matching model to produce a residual model. This residual
model allows to detect changes in the dynamic behaviour but also provides qual-
itative information regarding the nature of the change that has taken place; this
information can be efficiently visualized by means of a time-frequency represen-
tation that highlights only the frequencies that suffer changes as well as the time
when they happen. This paper is organized as follows. In section 2 a brief state
of the art of methods to consider dynamics in the SOM is presented followed
by a description of the proposed method. In section 3 experimental results with
real data are presented for two industrial scale systems, namely, a liquid level
control system with modified conditions in the base area of the tank and the
visualization of faulty vibration patterns due to chatter effect on a cold rolling
mill. Finally section 4 includes a general discussion and concludes the paper.

2 Modeling of Dynamics Using SOM on a Parameter
Space

In its basic form, the original SOM algorithm is a nonlinear ordered smooth
mapping of high dimensional data on a regular low dimensional array [7]. The
SOM adapts a low dimensional lattice of codebook vectors to the input dataset
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preserving at the same time a previously defined topology for the lattice. What
the SOM actually learns is a static model capturing the geometrical relation-
ships of data in the input space, that does not consider temporal sequences or
dynamic relationships. However, it can also be used to model the process dy-
namics. Several authors have proposed variants of the SOM to learn dynamic
behaviour of signals and processes. In [6] Kohonen already describes the operator
maps as an extension of the SOM that considers local dynamic models on each
unit. In [10], a procedure for learning dynamics is described based on training the
SOM in a embedded signal space and learning local linear models for each unit
from process data close to it. Some architectures, such as the VQTAM, include
short term memory to the SOM by considering vectors of time delayed versions
of inputs and outputs [1]. Another approach to store dynamics in the SOM is
to make it operate in a space of parameters –typically coefficients of dynamic
models– so that the SOM builds an ordered map of all dynamic behaviours that
can be used for visualization or further retrieval [2]. The proposed method in
this paper, rooted in this latter method, is accomplished in four stages: selection
of the parametric model structure, system identification of all dynamic states,
mapping the dynamics using a SOM and finally retrieval of the best dynamic
model and comparison to the current estimated model for further visualization.
A description of these stages is done in next subsections.

2.1 Selection of a Parametric Model

Let {u(k)} and {y(k)} be input and ouput sequences of a given process that are
supposed to be dynamically related by the parametric model y(k) = f(ϕ(k),p),
where p = [p1, · · · , pp]T is a parameter vector and ϕ(k) = [y(k − 1), · · · , y(k −
n), u(k), · · · , u(k − m)]T is a data vector. Depending on the choice of function
f(., .), the data vector ϕ(k) and the parameter vector p, different model types
(ARX, NARX, etc.) and orders can be considered. In this paper we shall choose
ARX(n,m) models

y(k) = a1y(k − 1) + · · ·any(k − n) + b0u(k) + · · ·+ bmu(k −m) (1)

which corresponds to the following linear model y(k) = fL(ϕ(k),p) = pT ϕ(k).
This particular case corresponds to an LTI (linear time invariant) model that is
equivalent to the following transfer function representation

G(z,p) def=
b0 + b1z

−1 + · · · bmz−m

1− a1z−1 − · · · − anz−n
(2)

being ϕ(k) = [y(k − 1), · · · , y(k − n), u(k), · · · , u(k −m)]T the data vector and
p = [a1, · · · , an, b0, b1, · · · bm]T the parameter vector, which defines the transfer
function. While this model is simple, it may describe a rather general class
of nonlinear global behaviours of the process as an aggregation of local linear
models, and at the same time it brings insight to engineers and domain experts,
since it allows to exploit the wealth of analysis tools and descriptors available
for linear systems commonly used in engineering.
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2.2 Identification Stage

The available process data can be subdivided into N subsets containing the
output and the data vector at different values of k contained in an index set Ij

{y(k), ϕ(k)}k∈Ij , j = 1, · · ·N (3)

Each subset should ideally include process data with similar dynamics. For in-
stance a kmeans or another SOM with N units can be trained to cluster the
space of variables that define the dynamic state –typically, the operating point–
and choose

Ij = {all k such that ‖xk −mj‖ < ε}
where x is the the process operating point at sample k and mj is the j-th
codebook vector of the SOM or kmeans algorithm.

When the process dynamics change slowly, however, a simpler and practical
way to build subsets is to use overlapped windows of length n of the data Ij =
{kj − n + 1, kj − n + 2, · · · , kj}.

Once the subsets are defined, a system identification can be carried out on
each subset using any optimization technique –e.g. a least squares– to produce
a parameter set P = {p(1), · · · ,p(N)} with N points in a parameter space R

p,
such that the cost function

J =
∑
k∈Ij

‖y(k)− f(ϕ(k),p(k))‖2 (4)

is minimized.

2.3 SOM Projection Stage

In this stage, a SOM is trained in the parameter space, using the data set P
obtained in the previous stage. After training, the codebook vector mi of the
SOM unit i contains the parameters of a dynamic model whose behaviour can
be reproduced using

y(k) = f(ϕ(k),mi) (5)

In consequence, the SOM stores all the dynamic behaviours of the process iden-
tified in the previous stage, allowing for visualization of dynamic features, as
shown in [2] or, as it will be shown here, to compare the current dynamic be-
haviour with the stored dynamic behaviours and yield a residual dynamic model
that can be visualized.

2.4 Visualization of Changes in Dynamic Behaviour

Let’s consider a set of process data {y(k), ϕ(k)}k∈Wk
obtained in a window

Wk = {k − n + 1, · · · , k}. Using the same identification technique as in the
identification stage on this data set, a vector of model parameters p(k) can be



Visualization of Changes in Process Dynamics 347

estimated. From this vector, the best matching unit mc(k) of the SOM can be
obtained, such that c(k) = arg mini{‖p(k)−mi‖}.

Since the current and estimated models of the process dynamics are available,
a residual model can be defined by comparing both models in a proper way, look-
ing forward to maximize insightfulness. A powerful way to visualize differences
between both models is to use the frequency domain

R(ejθ, k) =
G(ejθ ,p(k))
G(ejθ ,mc(k))

(6)

where R(ejθ, k) is the residual frequency response for window Wk. Since residual
models can be typically obtained in a sequential way for overlapping windows
Wk, a residual spectrogram can be defined in a straightforward way, providing a
time-frequency description of process changes by making a color image represen-
tation of a matrix whose columns contain the frequency response of the residual
model. Using a logarithmic representation in decibels (dB) –usually more conve-
nient in typical engineering applications– at sample k during the execution with
test data, k-th column would be,

20 log10

∣∣∣∣ G(ejθ ,p(k))
G(ejθ ,mc(k))

∣∣∣∣ = 20 log10

∣∣R(ejθ, k)
∣∣

3 Results

3.1 Tank Level Control Dynamics

The proposed method was applied to real data from an industrial scale plant com-
posed of 4 tanks, two pumps and three-way valves that allow to derive fluid to any
of the tanks. A liquid level control system in one of the tanks was subject to dif-
ferent dynamic conditions by changing the base area of the tank. The liquid level
dynamics can be described by the following ordinary differential equation (ODE),

Ab
dh(t)

dt
= qin(t)−Ac

√
2gh(t) (7)

where Ab is the base area of the prismatic tank, and Ac is the section of the
sink conduct. It can be easily shown that changes in Ab (due, for instance to the
presence of objects inside the tank) lead to changes in the tank dynamics. In
our experiment the liquid level in the tank was controlled using a proportional-
integral (PI) control law, where the error signal e(t) = r(t)−h(t) is the difference
between the setpoint value r(t) and the actual liquid level h(t) –see Fig. 1. The
closed loop control system was made to work under 6 different conditions varying
Ab as shown in table, by introducing different objects inside the tank.

In order to describe the dynamics of the feedback system –relating the level
reference r and the liquid level h–, that includes the PI control law and the
changing tank dynamics, a second order model was considered
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Ab
dh(t)

dt
= qin(t) − Ac

√
2gh(t)qin(t) = Kp +

1
Ti

∫ t

0

e(t)dt
e(t)r(t) qin(t) h(t)+

−

Tank level dynamics
PI control law

changing
parameter

G(z,p)

Fig. 1. Block diagram of the tank level control system

Table 1. The 6 conditions produced by changing the base area of the tank

Condition base area description

1 Ab = 389.16 cm2 (no objects)

2 Ab = 332.61 cm2 (two small cilindric objects)

3 Ab = 332.61 cm2 (two small cilindric objects)

4 Ab = 282.35 cm2 (a large cilindric object + 2 small cilindric objects)

5 Ab = 343.80 cm2 (a large cilindric object)

6 Ab = 389.16 cm2 (no objects)

G(z,p) =
b0 + b1z

−1 + b2z
−2

1− a1z−1 − a2z−2
(8)

Data acquisition of the reference r(k) and the liquid level h(k) was done at a
rate of 8 samples per second. To build the parameter space, windows Wk with
a length n = 500 samples were regularly taken at intervals of 20 samples, a
standard LS identification was used to obtain the parameters.

To learn the process dynamics, parameter data were divided into two sets: a
training set including data of conditions 1 and 2 (ranging from t = 0 to t = 45
min.), that will be considered “normal” and a test set including conditions 3, 4,
5 and 6 (from t = 45 min. to the end of the experiment), that includes “normal”
dynamic states (conditions 3 and 6) as well as “novel” dynamic states (4 and 5).

A 35 × 35 SOM was trained on the parameters estimated from training set,
using ±1 normalization and the batch algorithm with 10 epochs and a gaussian
neighborhood with a width σ monotonically decreasing from 11.66 (1

3 of the grid
size) to 1.2. Finally, the residual spectrogram was built on a logarithmic scale
as shown in previous section. The residual spectrogram is displayed with the
original spectrogram for comparison in Fig. 3.
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Fig. 2. Reference level, r(t), and actual level, h(t), expressed in % of the total tank

height (note a different dynamic behaviour approximately between 70 and 110 min.)

Fig. 3. Residuals of the dynamic conditions in tank level control system. Training set

contains process in conditions 1 and 2. It can be seen how similar conditions (3 and 6)

yield small residuals while conditions 4 and 5 show up the differences in the frequency

response.

3.2 Isolation of Chatter Effect in Vibration Data of a Rolling Mill

The proposed method was also applied to isolate the chatter effect (unusual vi-
bration mode) in a cold rolling mill. It was applied to data from a 969mm width
coil rolled in a 5−stand cold rolling mill to isolate unseen vibration patterns in
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Fig. 4. Force vibration residuals in a cold rolling mill during a chattered coil

the roll force F5(t) at stand 5, with respect to a training set on which the mill
run under normal conditions.

Data of the experiment were acquired using a data acquisition board at a
sample rate of 5000Hz and were decimated by a ratio 1:10 down to a final 500
Hz sample rate. Data were divided into overlapped windows Wj of length 1000
each, displaced by 10 samples. An AR(110) model,

F5(k) = a1F5(k − 1) + · · ·+ a110F5(k − 110) + ε (9)

was chosen to describe the spectral content of the roll forces on the basis of
the level of detail (number of main harmonics) required to define the spectral
envelope of the forces. The AR(110) model was estimated for each window Wj ,
on the training set as well as on a test set, using a standard LS parameter fit
of eq. (9) within each window, to obtain each parameter vector p(j). A 30× 30
SOM was trained on the parameter space spanned by a training set containing
samples 7000 to 8889, using the batch algorithm with a gaussian neighborhood
for a width factor σ decreasing from 10 to 0.7.

The residual spectrogram of Fig. 4 was obtained as described in the previous
sections, based on the model trained with data from samples 7000 to 8889. As
seen, it highlights only the novelties (time and frequency), and hides “known”
spectral patterns making them appear on white color.
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Fig. 5. Plot of the residual spectra at four different time instants (columns of the

residuals spectrogram). The third one corresponds to sample 6700, when chatter occurs.

4 Conclusion

In this paper a novel method to visualize changes in the dynamic response of
process has been proposed. The method is rooted on the idea of maps of dynam-
ics, where the self-organizing map is used to learn and map all local dynamic
behaviours of the process present in a training data set, and allows to display qual-
itative information on changes in the dynamic response by means of comparison
between the closest stored dynamic model and the current model, following there-
fore a model based approach. The proposed method not only provides a way to
detect the presence of changes, but also gives qualitative information about the
nature of the change, showing the affected frequencies. All this information may
be efficiently displayed in a time-frequency plot (residual spectrogram) that hides
known frequency patterns and shows up novel spectral patterns and the time in-
stant where the changes appeared. The idea is shown on two real data examples:
tank level control dynamics and visualization of chatter in a cold rolling mill.

The method can be potentially used in many other ways, admitting a number
of possible variations such as using local nonlinear models or developing alter-
native visualizations such as time-time plots (using e.g. impulse responses of the
residual models instead of frequency responses) or plotting meaningful features
from the residual models selected on the basis of the problem domain.
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Abstract. Dynamical system theory offers approaches towards cognitive model-
ing and computation inspired by self-organization and pattern formation in open 
systems operating far from thermodynamical equilibrium. In this spirit we pro-
pose a functional architecture for the emergence of complex functions such as 
sequential motor behaviors. We model elementary functions as Structured Flows 
on Manifolds (SFM) that provide an unambiguous deterministic description of 
the functional dynamics, while still remaining compatible with the intrinsically 
low dimensionality of elementary behaviors. Pattern competition processes (op-
erating on a hierarchy of time scales) provide the means to compose complex 
functions out of simpler constituent ones. Our underlying hypothesis is that 
complex functions can be decomposed in functional modes (simpler building 
blocks). Simulations of generating cursive handwriting provide proof of concept 
and suggest exciting avenues towards extending the current framework to other 
human functions including learning and language. 

Keywords: cognitive architectures, function, phase flow, self-organization, pat-
tern formation, non-linear dynamics. 

1   Introduction 

It is a common assumption in cognitive modeling and Artificial Intelligence that human 
function is constituted in a structured manner (even if that structure is as complex as 
irregular behavior [1,2] or of a purely statistical nature [3,4]. Complex functions  
are often characterized by the repetition of invariant patterns such as in dancing, musical 
performance and language related functions including speech, writing and typing. In all 
these cases, dancing figures, musical notes, elementary conceptual schemas, phonemes, 
graphemes or keyboard pressings combine to form complex sequences in time. To un-
derstand the organization of a complex sequence, the two traditional approaches, sym-
bolic dynamics and connectionism, define functional units as well as a set of  
operations on them, commonly referred to as “computation”. In symbolic dynamics 
information is represented explicitly as organized symbols and computation  
takes the form of syntactic rules combining them [5]. In connectionist models  
on the other hand, patterns of activation, distributed across the nodes of large  
networks, allow for parallel computations [6]. Moreover, hybrid cognitive architectures 
involving symbolic knowledge representation with connectionist learning algorithms 
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have also been proposed [7].  It is a common theme, however, that in all but a few cases 
[2,8,9], functional units are considered as static patterns or “states”. Even when a dy-
namical process is modeled and dealt with in real time (see the broad literature of recur-
rent neural networks [10,11,12]), it is eventually broken into a succession of discrete 
states (encoding past context) and treated as such. 

 

 

Fig. 1. The word “flow” is generated by the functional architecture. From top to bottom: (a) 
workspace output: the trajectory on the plane x-y, (b) time series of the slow sequential dynam-
ics ξ1-4 (different line styles are used to distinguish among the four functional modes used), (c) 
functional dynamics: the trajectory in the 3-dimensional phase (state) space spanned by ux, uy 
and uz, and the respective time series, and (d) the control signal I. 

 
 

In contrast our here proposed approach is based upon the time structure of complex 
human function. We propose that complex functional sequences can be decomposed 
in a dynamical repertoire of functional modes, namely elementary processes (as op-
posed to static states) that play the role of functional units. Additional processes oper-
ating in different characteristic time scales use the latter ones as building blocks of 
more complex functions. Thus, computation emerges in a self-organized manner. The 
ensemble of subsystems, acting upon two different time scales, defines a functional 
architecture allowing for novel forms of biologically inspired computation. 

Potential applications of the here proposed functional architecture may be found 
in motor control where complex movements are composed of elementary building 
blocks called motor programs [13] or movement primitives [14,15]. Production and 
comprehension of speech perception in terms of syllables [16,17] or language in 
terms of basic conceptual schemas [18,19] may serve as another promising field for 
application. Here we illustrate the basic functional principles in the context of  
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sequential motor behavior because movements constitute dynamical phenomena eas-
ily open to observation. 

In the following we present the mathematical framework of Structured Flows on 
Manifolds and then introduce the functional architecture in section 2. In section 3 we 
demonstrate an application in cursive handwriting as a proof of concept providing the 
respective computer simulations. Finally, in section 4 we discuss several potential 
extensions with respect to neural coding, learning, embodied intelligence and analog 
biological inspired computation.       

1.1   Structured Flows on Manifolds (SFMs) 

We model functional modes as Structured Flows on Manifolds (SFM) that have only 
recently been proposed [20,21] as a general framework for understanding functional 
dynamics. Such is accomplished through a fast adiabatic contraction from an inher-
ently high dimensional space to a functionally relevant subset of the phase (state) 
space, the so-called manifold. On the manifold a phase flow is prescribed and a dy-
namics evolves for the duration of a specific functional mode. This behavior is 
mathematically expressed as: 

{ } { }( ) { } { }( )
{ } { }( )

  

i i j i i j

j j i j

N M

u g u , s u f u , s

s s h u , s
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= − +

∈ ∈

 , (1) 

where the value of the so called “smallness” parameter μ is constrained as in 0<μ«1, 
the function g(.) defines the manifold, the function f(.) describes the subsequent flow 
on it and h(.) the fast variable dynamics that approaches the manifold. The choice for 
a small value of μ will ensure that the phase flow dynamics is slow in comparison to 
the dynamics collapsing on the manifold. The flow can be constrained on the mani-
fold by choosing an appropriate attractive function g(.).  

Such a theoretical framework makes reference to the literature of Synergetics [22] 
and the related research program in behavioral and cognitive neuroscience, namely 
Coordination Dynamics [1,23]. The former considers the brain as an open multicom-
ponent system that interacts with its environment and is free to exchange matter and 
energy. In the proximity of instabilities (determined by critical values of control pa-
rameters) the dynamics is separated into fast stable and slow variables. The fast vari-
ables can be adiabatically eliminated by expressing their dynamics as a function of the 
slow variables. Thus, reduced descriptions can be derived for the collective dynamics, 
described by only a few so-called order parameters. Accordingly, the field of Coordi-
nation Dynamics searches for low-dimensional patterns emerging in brain function 
(and human behavior as well) as a result of the tendencies of the brain regions to seg-
regate and integrate based on functional requirements. 

However, adiabatic elimination is based on center manifold theory [24], which is a 
local theory as well as valid only around instabilities. Instead, we require that systems 
of the form of equations (1) contain an inertial manifold [25], a global structure used 
in cases of reduction of infinite dimensional dynamical systems to finite dimensional 
spaces. Systems exhibiting inertial manifolds are dealt with on a case by case basis.  
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1.2   Phase Flows  

The SFM framework allows us to model a dynamical repertoire of functional modes 
that we assume to be available to an agent. At each time moment the dynamics of an 
agent’s function is dominated by a specific functional mode, that is, it evolves on a 
manifold that is of a much lower dimension than the original functional space and it is 
described by a structured phase flow (function f(.) of equations (1)) to which we focus 
in the following.  

In a quantitative manner, phase flows determine unambiguously the evolution of a 
dynamical process in the phase (state) space of an autonomous, deterministic and time 
continuous system. Thus, from a computational perspective, they can be considered as 
general forms of computational elements; the vector field describing a phase flow 
establishes causal relationships among the states of the system by assigning at each 
state a vector determining the next state. 

On the other hand, the phase flow topology uniquely determines a system’s quali-
tative behaviour. In other words, phase flow topologies encode the invariant features 
of a dynamical process relative to quantitative variation, thus identifying all func-
tional possibilities within a class in a model-independent manner. This means that 
stability properties or the effect of a small enough perturbation are also encoded. This 
is an advantage rarely found in other types of functional or computational units, 
which would correspond to single states or (in the best of cases) to single solutions 
(trajectories in the phase space) of a phase flow. Consequently, the information con-
tained in phase flows is much greater. 

In planar systems (systems of two dimensions), common phase flow topologies are 
the ones that include point attractors and limit cycles that can be used to model dis-
crete and rhythmic functions respectively, as well as separatrices. The latter ones are 
structures that locally divide the phase flow into opposing directions, and thus, endow 
phase flows with threshold properties and multistability [26].  

Phase flows have been used in the past to model patterns of behavioural and sen-
sorimotor coordination [26,27] that led to counter-intuitive predictions such us the 
ones on false starts  [28]. Huys et al. [29] used the class formation properties of 
phase flows topologies to establish a taxonomy between discrete and rhythmic 
movements. 

In short, SFMs provide functional modes with properties such as low-
dimensionality, class-defining invariance together with within class variation and ex-
ecutive stability (i.e. the maintenance of performance in the presence of perturbations). 
Another such property, essential for the emergence of complex function, is assem-
blability, i.e. the notion that functional modes can be assembled and embedded into a 
larger functional organization.   

2   Functional Architectures 

Once functional modes are identified as SFMs, there is still need for mechanisms to 
operate on them in order that complex function or computation emerges. We assume 
that at each time moment a single SFM dominates the dynamics of an agent’s func-
tion. This SFM is given as a linear combination of all SFMs available in the dynami-
cal repertoire of the agent: 
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where u is the state vector and fi(.) is the vector field of the i-th SFM, F(.) denotes the 
vector field of the expressed SFM as a function of time t. The wis (wi∈[0,1]) act as 
weighting coefficients for the i-th SFM and generally operate on a slower time scale 
than that of the SFMs (except for fast transitions between SFMs that lead to a fast 
contraction on the respective manifold). That is, they ‘select’ a particular component 
flow fj (when wj=1 and all other wi=0, for i≠j) during its activation phase. 

Apart from the slow dynamics that changes the (expressed) flow topology, the ar-
chitecture also provides for the optional involvement of a control signal that leaves 
the flow unaffected, namely an instantaneous one, I, that resembles a meaningful  
perturbation. This signal can temporarily set the system in a desired state or, when 
combined with phase flows comprising separatrices, may change the dynamics of a 
functional mode (by, for instance, initiating a process [29]). The functional architec-
ture, thus, combines invariant features (the SFM) with those that are variable across 
repeated instances of a functional mode’s appearance in an agent’s behavior. Perdikis 
& Jirsa  [30] provide computational evidence on the efficiency of a control scheme 
like the one described here. 

In summary, the ensemble of subsystems (fi(u), wi, I) operating on distinct time 
scales (TI«Tu«Tw), constitutes the proposed functional architecture (see  [31,32] for 
other time hierarchies in brain and cognitive function). In the following subsections we 
show how the ξi dynamics controlling the wi can be designed to organize functional 
modes so that more complex functions emerge, such as sequential motor behavior.  

2.1   Functional Mode Competition  

Since, we require that SFMs activations do not overlap, we implement a “winner-
take-all competition” (WTA) for the ξi dynamics:   
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where Tξ is a time constant ensuring that the competition will evolve fast, λi controls 
the availability of a functional mode to take part in the competition and Ci its outcome.  

Thus, functional modes are organized by mutual relationships of competition. Such 
a functional mode decomposition based on a competition scheme follows previous 
work on the Synergetic Computer [33], which, in turn, is inspired by the physics of 
pattern formation in non-equilibrium systems. At the same time, it is well established 
in the literature of biological inspired computation [34]. An alternative could be the 
winner-less competition principle based on transient heteroclinic sequences [9]. 

2.2   Sequential Dynamics  

In order to model sequential behavior, additional “circuitry” is required to activate the 
functional modes taking part in the sequence, one after the other and with the correct 
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timing. This is achieved by designing suitable dynamics for the λj parameters that de-
termine which functional modes are going to be available for the competition at each 
stage of the sequence as well as the duration of activation of every one of them. In 
addition, the Cj parameters decide about which functional mode will win the competi-
tion at each such stage, and thus, the specific order of the sequence. The index j de-
notes the subset I of M functional modes that participate in the sequence out of a rep-
ertoire of total N modes, indicating also the order of activation.  

Thus, parallel representations of the sequence (encoded in the arrays of λj and Cj 
parameters) are combined with serial processes of WTA competition at each stage of 
it. Such an organization makes reference to the well established Competitive Queuing 
models of sequential behavior [35].  

3   Implementation of Cursive Handwriting 

We demonstrate as proof of concept the application of the functional architecture on a 
characteristic example of sequential motor behavior, namely handwriting. Here func-
tional modes correspond to characters modeled as 3-dimensional SFMs. The mani-
fold, a cylindrical spiral along the ux axis, is chosen to be common for all characters 
for implementation reasons, without loss of generality. Thus, the general form of the 
functional dynamics (exemplifying equation (2)) is: 
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where R is the radius of the manifold and I is chosen as a function of position and 
velocity on the uy axis, thus, constituting the functional architecture a completely 
autonomous system. uy and uz obey excitator-like dynamics, first proposed as a unify-
ing framework for rhythmic and discrete movements  [26]: depending on whether 
fz

limcycl(uy,uz)=μe(-uy), fz
mono(uy,uz)=μe(-uy±R), or fz

bi(uy,uz)=μe(-uz),  the system exhibits a 
limit cycle (rhythmic behavior), a point attractor with a separatrix (monostable system 
with threshold properties) or two point attractors with a separatrix between them 
(bistable system) respectively. In any case, a second “smallness” parameter μe guaran-
tees the time scale separation that is necessary for the threshold properties of Excitator 
systems. In its turn, the form of fxi(.) yields the desired letter shapes. The modeling 
strategy constitutes modulating the velocity on the ux axis by the position and velocity 
on the uy axis. Of course such modeling of the handwriting functional dynamics is 
completely arbitrary and far from biological realism. However, our present purpose is 
to demonstrate the functional architecture, which is compatible with any phase flow 
choice. The actual phase flows constituting a character should be determined based on 
real experimental data. Finally, the functional dynamics (properly scaled and after a 
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baseline is chosen for each character) drive the dynamics on the handwriting work-
space, that is, the plane x-y. 

Figure 1 demonstrates a simulation of the ‘handwritten’ word “flow” generated by 
the functional architecture. The system settles on a high dimensional attractor after a 
short transient. Monostable flows are used to generate letters “f”, “l” and “o” and a 
limit cycle one for “w”. “f” is initiated with the appropriate initial conditions, while 
the control signal I triggers one cycle per stimulus for letters “l” and “o”.  

4   Discussion 

We proposed a functional architecture based on two main subsystems operating in 
distinct time scales: a dynamical repertoire of functional modes modeled as SFMs and 
slower additional mechanisms organizing them, based on the principle of winner-
take-all competition.  

We demonstrated how the appropriate choice of the functional “circuitry” within 
the available dynamical repertoire can lead to the emergence of more complex func-
tions such as sequential motor behavior. At this point, we would like to stress the fact 
that different kinds of such “circuitries” among the functional modes could be de-
signed to prescribe numerous other types of causal relationships between them (apart 
from the above described sequential one). Thus, a variety of functional architectures 
can emerge, even conditional ones, mimicking the IF-THEN rules found in traditional 
Artificial Intelligence. Moreover, a hierarchy of multiple levels of such functional 
architectures could be designed in order to account for a repertoire of even more 
complex functions necessary to model higher cognitive functions like language.  

The here proposed theoretical framework also suggests that different processes of 
adaptation or learning are required for complex function to emerge. The acquisition of 
an initial repertoire of elementary functions would be followed by processes con-
structing various functional architectures to account for complex behaviors. At the 
same time, the initial repertoire could be extended with new functional modes by 
composition of existing ones (for instance through fusion or concatenation). The latter 
mechanism could provide us with the means to model phenomena found in cognitive 
linguistics literature such as conceptual metaphors and blends [18,19]. 

By modeling functional units as dynamical processes instead of states, an attempt 
to naturalize human function without undesired reductions with respect to its com-
plexity may be possible. Moreover, the hierarchy of time scales as a principle of or-
ganization conciliates continuous dynamics with the “discrete” nature of a repertoire 
of distinct functional modes.  

Thanks to these choices the here proposed framework is also compatible with em-
bodied intelligence approaches, since functional modes may correspond to patterns of 
closed sensorimotor loops or human-environment interactions. In this case they would 
result out of a process of pattern formation in the structurally coupled [36] agent-
environment systems in an autonomous self-organized manner. 

Finally, in [21] the foundations are laid for coding SFMs in distributed networks  
like ones of firing rate neural populations, thus, addressing the problem of the structure-
function dipole (see Figure 2 for some preliminary results). From a computational  
perspective, this could lead to a novel paradigm of analog biologically inspired compu-
tation with possible materializations in integrated circuits such as VLSI. 
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Fig. 2. Neural coding of SFMs:  A network of 200 firing rate neural populations is simulated 
with Gaussian noise for 600 ms. The network engages in different two dimensional phase flows 
(from left to right limit cycle, monostable and bistable) in subsequent 200 ms segments. At the 
top, a spatio-temporal plot of each neural population firing rate activity (vertical axis in color 
coding) in time (horizontal axis) is displayed. There are distinct spatio-temporal patterns corre-
sponding to the SFMs produced by the network. The three pairs of plots at the bottom demon-
strate the result of principal components analysis of the network activity for the different SFMs. 
Each one is comprised of a single trajectory time series plot (first two components) on the left, 
and a plot of 200 phase space trajectories starting from different initial conditions (first three 
components) on the right. In the latter plots, it can be viewed that the network dynamics col-
lapses to two dimensional manifolds and exhibits structured phase flows on them. 
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Abstract. We introduce a tactic for single-trial (ST) analysis that incorporates, 
in the study of saccades, the experimental control of a behavioural variable 
within the standard paradigm of a repeated execution of a single task. The ubiq-
uitous ST-variability in brain imaging recordings is turned, here, to an addi-
tional informative dimension that can be exploited to gain further understanding 
of brain’s function mechanisms.        

Our approach builds over a self-organizing neural network (SON) that can 
efficiently learn and parameterise the variability in the patterning of electro-
oculographic (EOG) signals. In a second stage, the STs of encephalographic ac-
tivity are organized accordingly and the observed variations in the EOG signals 
are associated with specific brain activations. Finally, complex network analysis 
is employed as a means to characterize the ST-variability based on modes of 
functional connectivity.    

Using EEG data from a Go/No-Go paradigm, we demonstrate that the spon-
taneous variations in the execution of a saccade can open a window on the role 
of different brain regions for ocular movements. 

Keywords: EEG, EOG, Neural-Gas, phase-locking, network-metrics. 

1   Introduction 

There is nowadays a vast variety of experimental techniques applicable for studying 
the nervous system, based on diverse instrumentations, with which various brain theo-
ries can be brought under test. Usually, neuroscience research proceeds in either of 
the two following ways: i) the controlled experimental approach and ii) the empirical 
approach [1]. In the first case, an experiment is conducted for the purpose of deter-
mining the effect of a single variable of interest  (like stimulus color) on a particular 
system. The influence of all other variables (attention, habituation etc.) is attempted to 
                                                           
* Corresponding author. 
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kept at minimum via appropriate manipulations. On the other hand, the empirical 
method is based on the collection of a large amount of related data which need, later, 
to be processed efficiently and sorted accordingly.  Data analysis needs to be adjusted 
not only with respect to the particular recording technique, but also with respect to 
either of the two experimental approaches. The spirit of regression dominates the 
analysis of data from controlled experiments, while the notion of classification 
(mostly in its unsupervised flavor) dominates the empirical studies.  

Within the previous experimental manipulations, the extremely popular paradigm 
of event-related responses is included as well. A particular task (e.g. finger move-
ment, target detection) is repeatedly performed by the subject with the aim of collect-
ing sufficient number of relevant traces of brain activity. The recorded signals, after 
time-alignment, are processed by averaging so as to diminish the ongoing activity 
(including spontaneous brain activity) and reveal the task-related component of the 
signals. In principle, event-related paradigms belong to the category of controlled 
experiments. However, a thorough study of (a large collection of) actual data can 
demonstrate the phenomenon of ‘ST-variability’, which is usually attributed to the 
non-stationary character of brain and calls for adopting methodologies designed for 
analyzing data from empirical studies.  In a series of previous publications [2]-[5], we 
experimented with the idea that ST-variability can be treated as a useful signal. The 
justification was based on the simplest experimental set-up, this of collecting multiple 
ST-responses during identical sensory stimulation in humans. We have therefore 
introduced suitable signal-analytic algorithms to manipulate the involved variations in 
order to gain insights into the brain mechanisms and probe functional associations 
between different brain areas. In the present study we extend the above consideration 
in the case of event-related responses, by introducing the concept that the (originally) 
unduly variations in the performance of a task can be exploited in order to test the role 
of different brain activations. 

Saccade-related activity has been explored in many previous neuroscientific stud-
ies [6]-[9], with the involved experiments adopting both the empirical and controlled 
experimental approaches. It is the scope of this work to introduce a hybrid methodol-
ogy that works with saccade-related data from a standard EEG experiment where the 
subject had to execute the movement as fast as possible. First, the EOG signals are 
grouped, by means of Neural-Gas network, according to the velocity patterning of the 
executed movement. This partition (into slow, fast and very-fast movements) is then 
transferred to brain signals in order to detect the temporal modulations of a complex 
scheme with which the brain controls the response to the external stimulus (the visual 
cue for the movement). Finally, functionally connectivity analysis is performed -
independently for each group of STs- based on a phase-locking estimator that associ-
ates a functional dependence value to every edge in a graph built over all the placed 
electrodes. 

The rest of the paper is structured as follows. Section 2 has an introductory purpose 
and reviews shortly well-established knowledge about presaccadic brain activity.  
Section 3 includes a short description of the available data. Section 4 provides a de-
tailed description of our methodology and Section 5 reports on the new experimental 
findings.  
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2   Background 

Preparing a movement is a complex process. It involves different sensory-motor 
transformations in the human brain before the movement is finally executed. There 
has been extensive research of how the central nervous system controls voluntary 
action. Although today we have a reasonable understanding of the different stages 
involved in this complex process, some aspects are still not clear. In order to perform 
a movement, position and the velocity vector (including direction and speed) need to 
be calculated. Previous research [10] on the encoding of kinematic parameters in the 
motor cortex while primates performed arm movements showed a direct relationship 
between kinematics and neural activity over the motor cortex. Many studies later on 
have confirmed these findings and revealed new aspects of this relationship. How-
ever, little is known about the relationship of brain activity to the kinematics of eye 
movements. We know from previous EEG studies that brain activity preceding an eye 
movement is similar to the one preceding finger movements [11],[12]. Here, we ex-
amine the dependence of saccade velocity on preceding brain activity as recorded 
with EEG.  

3   Experimental Data  

3.1   Experiment Description 

In order to explore the relationship between EEG activity and saccadic eye movement, 
a Go/No-Go experimental design was adopted (See Fig.1). According to the color of 
the fixation cross, the subject had either to make a saccade (green cross), or ignore (red 
cross) the lateral target and keep fixating at the center. In the beginning of a trial, a 
white cross comes on. Then the color of the cross changes (red/green) and at the same 
time a lateral target (left/right) appears. The subject has to keep fixation on the colored 
cross. When the color of the cross becomes white again (Go signal), the subject has to 
make a saccade to the target if the color of the cross was green, or keep fixation ignor-
ing the target otherwise (i.e. in case of a red cross). The last frame (empty frame) pro-
vides a relaxation period during which the subject can blink, rest, etc.  

 

Fig. 1. The different periods in the time course of a  single trial 
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Every subject attended 7 to 9 runs and each run consisted of 40 trials. (20 for Go, 
20 for No-Go condition). The duration of each trial was 8 seconds. The EEG signals 
were recorded via 64 electrodes, which were placed according to the international 10-
20 electrode position classification system. The EOG signals were simultaneously 
recorded through two pairs of electrodes attached to the top-bottom side and right-left 
side of the right eye (vertical and horizontal EOG). All data were sampled at 1024Hz.  

3.2   EEG Processing and Artifact Rejection 

The raw EEG data were filtered by a high-pass filter (cut-off 0.16Hz) and by a low-
pass filter (cut-off 100 Hz). The data were further processed so as to, first, remove 
‘outlying’ trials and, then to enhance the SNR in the remaining ones. Since oculo-
graphic noise was prevalent in our EEG data (due to the nature of the experiment), we 
applied the recently introduced (a simple, robust and fully automatic technique) re-
gression-based EOG reduction method [13], which suppresses the fast and slow 
EOG-related artifacts of the multichannel EEG data.  

4   Methodology 

A flowchart of the (main steps of the) introduced methodology is provided in Fig.2.  
In a nutshell, Neural-Gas algorithm splits the EEG STs into different groups based on 
the corresponding velocity profiles of the EOG-signals. For each group, we measure 
(across trials) the phase locking value for every possible pair of EEG channels. In this 
way a graph representation of brain-connectivity is formed, in which nodes corre-
sponds to electrodes. The obtained graph is characterized via a local network metric, 
which expresses the segregation and evaluates communication efficiency among the 
nodes. This characterization is repeated for different time segments of EEG data, and 
presented in a time-dependent topographic format that facilitates the recognition of 
brain regions with activation that relates causally with the forthcoming saccade.  

4.1   Saccadic Onset Detection and  ST-Data Collection  

In order to extract segments of brain activity related with the saccade initiation, the 
saccadic movement onset had to be, first, detected based on the horizontal EOG sig-
nal. Position-variance and velocity-based methods [14] are among the most popular 
techniques, utilizing the sharp increase/decrease of the EOG signal during eye move-
ment. Marple-Horvat et al. [15] suggested a technique with a linked double window 
applied to an approximation of the first derivative of the EOG position, which yielded 
fine identification rates to our data and therefore adopted in this study.  

Since the above onset detection technique, occasionally, produced false positives, 
we incorporated an outlier-detection step just after the onset detection. Based on the 
onset latencies, a set of EOG signal-segments were first extracted and then fed to an 
artifact rejection technique [16]. This technique uses signal morphology to compare 
every segment against each other and then realizes reduced-ordering of the involved 
EOG-patterns in order to enable the removal of outliers (i.e. segment wrongly recog-
nized as containing saccadic onset). The remaining EOG-segments formed the en-
semble of EOG-STs. The corresponding EEG-segments, extracted from the concur-
rently recorded multichannel signal, formed the ensemble of EEG-STs.  
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Fig. 2. Flowchart of the main steps 

4.2   Grouping STs with Neural-Gas acting on EOG-Velocity Patterns  

In an attempt to link the behavioral response (saccade) with the initiating brain activ-
ity, we treat the EOG-segments (from the saccade onset and before) as a set of multi-
variate patterns. The inherent variations in this set are leaned by means of Neural-Gas 
network and parameterized in a parsimonious and intelligible way. This included the 
formation of different groups of EOG-segments, which are sorted according to rele-
vant semantics (that are of interest for the particular study of presaccadic brain activ-
ity). Having in mind that oculographic signals are indicative about the velocity of a 
saccade, we choose to associate with the EOG-segments the corresponding velocity 
patterns. This can be thought as a feature-extraction step, with which the subsequent 
learning algorithm is guided to focus on the important aspects of EOG variations. 
Hence, the N segments of EOG-signals are associated with {Xi}, i=1,2,…N  , i.e. with 
vectors having as coordinates the estimates of saccade velocity at successive latencies 
(before the detected onset).  

Neural-Gas network is then employed to accomplish the learning task, i.e. to or-
ganize the saccades based on their velocity profiles. This algorithm is an artificial 
neural network model, which converges efficiently to a small, user-defined number 
k<N of codebook vectors, using a stochastic gradient descent procedure with a “soft-
max” adaptation rule that minimizes the average distortion error [17]. Following the 
procedure described in [3], the computed code vectors are then assigned ranks based 

on their MST graph. Finally, the ordered code vectors kjO p
j ,...,2,1=ℜ∈ were 

used in a simple encoding scheme: the nearest code vector was assigned to each Xi. 
This procedure divides the data manifold V ∈ Rp

 into k Voronoi-regions. 
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From a more practical point of view, the bulk of information contained in the data  
is represented, in a parsimonious way, by a (Nxk) partition matrix U, with elements uij 
such that 
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The derived grouping (estimated for EOG-signals) is applied to the corresponding 
EEG-STs. In this way, groups of multichannel data are emerging which can be com-
pared in order to understand what was the leading cause of the observed variability 
(i.e. in the patterning of saccade velocity).         

The previous steps are exemplified, via Fig.3, in the case of a subject with 58 trials 
of left saccades. Neural-Gas algorithm was executed using the approximation of the 
first derivative of the EOG signal (previously used for detecting the onset [15]). The 
input vectors consisted of 100 samples before the movement onset and 100 after it.  
Using k=3, we ended up with three groups (containing 18,14,26 trials respectively), 
which can easily identified as SLOW, FAST and VERY FAST  saccades (see Fig.3a). 
By grouping the EEG-STs accordingly and deriving within-group averages, we can 
provide prototypes of brain activation (see Fig.3b).      

 

 

Fig. 3. a) Codebook vectors for left saccade velocity profiles. b) Prototypical EEG activity (in 
beta band), recorded at C2 electrode, for each saccade group. 

4.3   Between-Groups Comparison of Brain Dynamics  

With the scope of identifying the leading causes of the observed variation in behavior,   
the k-groups of EEG-STs can be contrasted for time-intervals well before the saccade 
onset.  There is a multitude of methods with which the spatiotemporal brain dynamics 
can be compared based on the corresponding ST-segments of multichannel EEG-data.   
Spectral characterization, topography of signal activations, event-related synchroniza-
tion/desynchronization (ERS/ERD) are the most popular approaches to proceed with. 
However, after experimenting with them, we realized that the most striking between-
groups explanations could be provided via a complex-network approach, which em-
phasized neural synchrony and is summarized as follows       

 



368 K. Bozas et al. 

(i) First, an estimator of phase synchrony (known as Phase Locking Value (PLV)   [18]) 
is applied (using signals filtered within a particular frequency band) to every possible 
pair of electrodes and for different time windows. The computed estimates were 
tabulated, for each group of STs independently, in time-series of [64x64] matrices (in 
which an entry conveys the strength of functional connection between a particular 
electrode pair). Such a matrix has a natural graph representation, called hereafter as 
functional connectivity graph (FCG), with nodes being the recording sites and edges 
the in-between links weighted by the tabulated values. The PLV was employed  suc-
cessively between 150ms before the eye movement onset and 25ms after it with a 
time window of 50ms and 5ms time step, producing 25 FCG snapshots in total. 

(ii) Each of the formed FCGs is then characterized based on a network metric called  
local  efficiency.    

(iii) Finally, The k groups of EEG-STs are compared -in a time dependent manner- 
regarding network-properties.    

 

The employed PLV is known to quantify the frequency-specific synchronization 
between two neuroelectric signals. Hence, with the adopted procedure the role of 
neural synchrony (as a putative mechanism for long-range neural integration) is ex-
plored during saccade planning till movement initiation. For each trial n, n=1 ,..., Nk, 
(in the k-th group) the phase φ(t,n) is extracted for all latencies t. The phase locking 
value (PLV) is defined at time instant t as the average value: 

∑
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where θ(t, n) is the phase difference φ1(t, n) - φ2(t, n) between the signals (filtered 
within a particular frequency range) corresponding to a pair of electrodes. PLV meas-
ures the inter-trial variability of this phase difference at t. If the phase difference var-
ies little across the trials, PLV is close to 1; otherwise is close to 0. Usually, the above 
quantity is integrated over successive latencies so as to achieve a more robust meas-
urement. In our implementation, the EEG signals are filtered within known frequency 
bands (e.g. α-waves, γ-oscillations ) and the latency-dependent PLV values  are aver-
aged over particular time periods before using them as weights for the FCGs. 

To characterize each FCG, we measure its local efficiency [19]. This metric is known 
to express how efficiently information is exchanged over the network. By using effi-
ciency, brain neural network is seen as system that is both globally and locally efficient. 
The local efficiency Eloc reveals how much the system is fault tolerant, thus it shows how 
efficient the communication is between the first neighbors of i when i is removed: 

We can characterize the local properties of FCG by evaluating for each vertex i the 
efficiency of its Gi , the subgraph of the neighbors of i. We define the local efficiency 
as the average of all individual efficiencies: 
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where ki corresponds to the total number of neighbors of the current node, M is the  
set  of  all  nodes  in  the  network  and  d  keeps  the  shortest  absolute  path  length  
between  every  possible  pair  in  the  neighborhood  of  the  current  node. 
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5   Results 

Our experimentations with the previously described characterization of frequency-
dependent, time-varying functional connectivity graphs, revealed that Beta band  
(13-30Hz) was the frequency channel that provided the best explanation about the  
formation of different saccades-groups (slow, fast, very fast). This finding fits well 
with the widely-known involvement  of  high-frequency  EEG  activations  during  
saccade  generation [7],[8],[20].   

The visualization of the results, as a time-series of topographic maps, from the 
network analysis (restricted within beta-band) enabled us to track differences during 
the generation of different groups of saccades and draw conclusions about the local 
exchange of information in a time-dependent manner (See Fig. 4). These snapshots of 
brain connectivity clearly indicate that brain’s self-organization tendencies should be 
pursuit within the domain of inter-areal interactions as well (i.e. apart of the signal 
domain). The thorough examination of the topographies included in Fig.4 facilitates 
the following observations.  

 

Fig. 4. Successive topographies of channelwise local network efficiency (Gi) during prepara-
tion for right/left  saccade (up/down). Time 0 ms corresponds to saccade onset. 
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In both left and right saccade, there is contralateral activity emerging before the 
eye movement onset (0ms) in centro-parietal, parietal  and  occipital  brain  areas. The 
results suggest that brain activity just before a saccade is modulated by saccade veloc-
ity. The differences were located mainly over parietal cortex. It is well known that 
posterior parietal cortex is a crucial interface between the motor and perceptual sys-
tem in mediating sensory-motor transformations [8]. An eye-movement  related re-
gion within the intraparietal sulcus (IPS) of the posterior parietal cortex sometimes 
referred to as the “parietal eye filed”.  

Of great importance is the inter-group comparison that reveals temporal differences 
following the grouping of saccades according to velocity. In SLOW saccades, infor-
mation exchange begins -10ms before onset, while in FAST and VERY FAST sac-
cades, starts earlier (-50ms). Interestingly, in the case of VERY FAST saccades, this 
exchange is apparently greater. 

6   Conclusions 

We have introduced a ST-analysis framework for characterizing brain’s self-
organization in terms of functional connectivity and network properties during the 
execution of saccades. It can offer novel knowledge about the coding of kinematic 
parameters related to eye movements. Neural-gas recognizes the different variations 
of the performed task and network analysis provides their explanations. The method-
ology is applicable to other cognitive tasks as well, while can be further advanced via 
affirmative randomization tests.  Furthermore, it can be used to study the neural activ-
ity related to the kinematics of arm movements in order to drive neural prostheses. 
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Abstract. In this paper, we will apply, to the task of detecting web

spam, a combination of the best of its breed algorithms for processing

graph domain input data, namely, probability mapping graph self orga-

nizing maps and graph neural networks. The two connectionist models

are organized into a layered architecture, consisting of a mixture of un-

supervised and supervised learning methods. It is found that the results

of this layered architecture approach are comparable to the best results

obtained so far by others using very different approaches.
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1 Introduction

The term Web spam refers to the results of the activities directed towards mis-
leading search engines [1] in believing that a particular Web page has a high
authority value on a particular query while in actual fact the Web page may
contain little relevant information. In the past decade, these types of activities
have increased dramatically as a consequence of the growing popularity of Inter-
net search and the importance of being among the top ranked pages by popular
search engines1. Search engines sort the URLs returned in response to a user
query on the basis of a score that is usually composed of two parts: a measure
of the relevance of the page content with respect to the query (e.g., see [2]) and
a measure of the importance of the page that is obtained using its connectivity
(e.g., Google’s PageRank [3,4]). In general, spam techniques can be classified
into content based or link based spam, according to whether their focus is on
the former or on the latter measure, respectively [5].

In this paper, we present a spam detection approach based on a layered archi-
tecture, consisting of unsupervised and supervised learning methods. The reason
why such a methodology would work is based on the following intuition: given a
1 It is known that most people would only look at the top ranked pages returned on

the first page of an Internet search. Being top ranked pages hence would increase

the exposure or visibility to readers.
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set of training examples, if we first run, say, an unsupervised learning algorithm
through part or all of the training samples; this will group the training samples
together to form clusters. These clusters would be formed based on the “natural”
inclination according to the similarity of the features. On the other hand, the
distribution of the patterns in cluster may be very complex and, if a supervi-
sion is available, the training samples within the same cluster could belong to
a number of classes in an interlocking manner, like a Swiss roll. However, if we
use a supervised training algorithm on the results of the unsupervised training,
we can learn the classification of the clusters more effectively. If this process is
repeated a number of times through layers, the approach could produce very
respectable results. This compares with the “hard work” which a supervised
learning approach would need to do, if there is no pre-screening using the un-
supervised approach first, as the supervised approach will need to attempt to
“unravel” the intricate interlocking classes from “raw” data. To the best of our
knowledge, nobody has ever proved that such an approach would work. How-
ever, from practical experience, it is found that this approach often works well,
especially in cases where the mapping from clusters to classes is complex (like
having many interlocking clusters of different classes).

In this paper, we propose to follow this methodology in processing graph input
domains. Here we use two best of its breed algorithms: for supervised learning,
we use the Graph Neural Networks (GNNs) [6] and for unsupervised learning,
we use Probability Mapping Graph Self Organizing Maps (PM–GraphSOMs)
[7]. These models are particularly suited for this task, since the Web is naturally
represented by a graph, where the nodes stand for the pages, the edges denote
the hyperlinks, and the labels contain features of the pages and the hyperlinks.
This approach can deal, at the same time, with both the content based and the
link based spams.

We will apply this methodology to a common benchmark problem for web
spam detection, namely, WEBSPAM-UK2006 dataset. It is found that the com-
bined approach produced results which are comparable to the best results ob-
tained so far on this dataset by others.

The paper is organized as it follows. In Section 2, we will review briefly the
GNN and the PM–GraphSOM models. In Section 3, the proposed approach
is discussed, while Section 4 describes the experimental results. Finally, some
conclusions are drawn in Section 5.

2 GNNs and PM–GraphSOMs

In this section, we will give a very brief description of the concepts underling
the Probability Mapping Graph Self Organizing Maps (PM–GraphSOMs), and
the Graph Neural Networks (GNNs). We will refer the readers to the original
papers [6,7,8] for more details.

In the following, a graph G is a pair (N ,E), where N is a set of nodes (or
vertices), and E ⊆ {(u, v)|u, v ∈ N} is a set of edges (or arcs) between nodes. For
the sake of simplicity, we will assume that the considered graphs are undirected,
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i.e., (u, v) = (v, u) holds for every edge (u, v). Nodes and edges may have labels,
that describe the features of the object represented by a node and the features
related to the relationships between objects/nodes, respectively.

2.1 The General Framework

GNNs and PM–GraphSOMs belong to a class of connectionist models that have
been designed to directly process graphs. Those approaches, which include, for
instance, Recursive Neural Networks [9] and SOM for Structured Data [10], are
based on the same underling idea. A graph represents a set of objects/concepts
(the nodes) and their relationships (the edges). For each node n, a state xn ∈ IRs

is specified, which stores a representation of the corresponding object. Moreover,
since every concept is naturally defined by its features and the related concepts,
we can assume that xn depends on the information contained in the neighbor-
hood of n (see Fig. 1). Formally, such a dependence is defined by a parametric
function fw, called a local transition function:

xn = fw(ln, lco[n], xne[n], lne[n]) , (1)

where ln, lco[n], xne[n], lne[n] are respectively the label of n, the labels of its
edges, and the states and the labels of the nodes in the neighborhood of n. An
output on may also be defined, which depends on the node state and the node
label, according to a parametric local output function gw:

on = gw(xn, ln) . (2)

Thus, Eqs. (1) and (2) specify a parametric model that computes an output
on = ϕw(G, n) for any node n of the graph G, considering all the data in G.
Interestingly, it was proved that, under some mild assumptions, a very large
class of continuous functions on graphs can be approximated in probability, up
to any degree of precision, by this model [8].
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Fig. 1. On the left, a graph and the neighborhood of the node with label l2. On the

right, the encoding network corresponding to the graph.
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Such a framework can be used either for supervised or unsupervised learning.
In the supervised case, the training set L is defined as L = {(Gi, ni,j , tni,j )
| 1 ≤ i ≤ p, 1 ≤ j ≤ qi}, where each triple (Gi, ni,j , tni,j ) denotes a graph Gi,
one of its nodes ni,j and the desired output at that node, tni,j , while p is the
number of graphs in L, and qi is the number of supervised nodes2 in graph Gi.
The goal of learning is to estimate the parameters w so that ϕw approximates
the targets on the supervised nodes, which can be obtained by minimizing a
quadratic error criterion ew =

∑p
i=1

∑qi

j=1(tni,j − ϕw(Gi, ni,j))2.
On the other hand, in the unsupervised case, the training set L does not

have targets and the purpose of the learning is to cluster the objects repre-
sented in L. Thus, the parameters w are adapted so that ϕw(Gi, ni,j) is close
to ϕw(Gk, nk,s), if the objects represented by ni,j and nk,s are similar, and,
ϕw(Gi, ni,j) is far from ϕw(Gk, nk,s), if the two objects are different.

2.2 GNN and PM–GraphSOM Peculiarities

GNNs and PM–GraphSOMs implement Eqs. (1) and (2) with several differences
and peculiarities, the most important of which is the learning framework: the
GNN is a supervised model, while the PM–GraphSOM is unsupervised. The
other differences are reviewed in the following.

The transition and the output function implementation. In GNNs, both
fw and gw are implemented by multilayered static neural networks. In this way,
Eqs. (1) and (2) define a neural network, called encoding network (Fig. 1). The
encoding network is obtained by substituting all the nodes of G with f–units,
which compute the function fwn

. The f–units are connected according to the
graph topology and calculate the states locally at each node. For the nodes where
the output has to be computed, the f–unit is also connected to a g–unit, that
implements the output function gwn .

In PM–GraphSOMs, the transition function fw is based on a Self–Organizing
Map (SOM) [11]. Intuitively, the state xn of each node n stores the activation
levels achieved by the neurons of the SOM and the transition function produces
such a state using the node label ln and a vector yn, which contains a summariza-
tion of the statistical distribution of the winning codebooks in the neighborhood
of n. The vector yn = [yn,1, . . . , yn,s], whose dimension equals the number of

neurons in the SOM, is defined by yn,i =
∑

u∈ne[n]

∑s
j=1

e
−‖c(i)−c(ku )‖2

2σ(t)2√
2πσ(t)

, where
c(i) denotes the coordinates of the neuron i and c(ku) the coordinates of the win-
ning neuron of the SOM at node u, while σ is a function that decreases towards
0 as the training time t increases. Moreover, the output function gw is a simple
map that extracts from the state xn the coordinates of the winning neuron.

The computation of the states. Note that the states xn in Eq. (1) are de-
fined recursively and cannot be computed directly. The states can be calculated
2 The supervised nodes are those for which a desired target exists. In general, the

supervision can be on all the nodes or on a subset.
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iteratively by the dynamical system xn(t) = fw(ln, xch[n](t − 1), lch[n]), which
describes the behavior of the encoding networks when its units are repeatedly
activated. However, such a procedure computes a solution of Eq. (1) only if the
dynamical system converges to a stable point. With respect to such a problem,
GNNs and PM–GraphSOMs adopts different approaches. PM–GraphSOMs dis-
regard the problem and iterate the dynamical system for a predefined number of
times. On the other hand, in GNNs, a penalty term, which forces the dynamical
system to be contractive [12], is added to the error function. In this way, it is
ensured that Eq. (1) has a unique solution and, at the same time, that the above
dynamical system converges exponentially to the desired solution.

The learning algorithm. In both models, each epoch of the training procedure
consists of two steps: (1) first the states are computed; (2) then the parameters
are adapted. The epochs are repeated until a desired stop criterion is satisfied.

GNNs carry out step (2) according to a gradient descent strategy. The gra-
dient is computed by a combination of the BackPropagation Through Structure
algorithm, adopted by Recursive Neural Networks [9], and the Almeida–Pineda
algorithm [13,14], while the parameters are updated using resilient backpropa-
gation [15]. Similarly, PM–GraphSOMs adopt for step (2) a modified version of
the original SOM learning algorithm, where the SOM is trained on a learning
set consisting of all the input patterns constructed at different nodes.

3 A Layered Architecture for Web Spam Detection

Web Spam Detection can be considered a classification problem in a graph do-
main. In fact, the Web can be naturally represented as a graph in which the nodes
stand for the pages, the labels attached to the nodes represent information about
the page contents and the links between the pages denote the hyperlinks. Thus,
we can predict which pages contain spam by using a machine learning technique
that can process graphs and can learn by examples to classify their nodes.

The model we have adopted is a layered architecture in which unsupervised
and supervised learning approaches are deployed. Given a set of training samples
(in this case, graphs representing a portion of the Web), the classification of
these training samples are known, i.e. if it is a spam site, or a non-spam site. We
will first use unsupervised learning approach to cluster the training samples into
clusters. Now as the input domain is a graph, hence it makes sense to use a best of
breed algorithm which can handle graph domain inputs. In this case, we propose
to use the PM–GraphSOM approach. This would produce a low dimensional
display space which shows how the training samples are clustered together. Then,
as the input in this case is still in a graph format (the display space shows clusters
of various sizes on a low dimensional space) with known classifications for each
cluster, we can apply a supervised learning technique to classify these clusters.
Graph Neural Network (GNN) is a best of its breed algorithm which is capable
of handling graph inputs with known output classifications.

Why would such a approach work? Intuitively for a spam web page to work,
it must be in some sense close to the normal web pages. In other words, they
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Fig. 2. The layered architecture proposed in this paper

“masquerade” as a normal web page3 Thus, it is expected that such a complex
classification problem would be best handled using the layered architecture pro-
posed in this paper in which the input features are first clustered together using
an unsupervised approach. In our case, we further use the outputs of a feedfor-
ward neural network together with the outputs of the unsupervised approach.
These then serve as inputs to a GNN. The GNN can be run once or a number
of times (a number of layers of GNNs).

Following this idea, the graph is processed by layers of different kinds of
networks, including common feedforward neural networks, PM–GraphSOMs and
GNNs. The architecture that achieved the best performance in the experiments
is depicted in Fig 2.

1. The node labels ln of the original graph G0 are processed by a three layered
feedforward neural network (FNN), whose goal is to classify the information
contained in the pages without considering the Web connectivity.

2. The PM–GraphSOM, whose goal is to extract more condensed information
from the inputs, is feded on the original graph G0.

3. For each graph G0, a new graph G1 is constructed by replacing the original
labels with a concatenation of the outputs produced by the FNN and the
PM–GraphSOM. Formally, the label l1n of node n in G1 is l1n = [oFNN

n , oPM
n ],

where oFNN
n , oPM

n are the outputs of the FNN and the PM–GraphSOM,
respectively. The graphs G1 are processed by a GNN (GNN1 in Fig 2) the
goal of which is to obtain a preliminary classification of the nodes.

4. For each G1, a new graph G2 is constructed having the some connectivity
of G1, but whose labels are replaced by the outputs of GNN1: l2n = oGNN1

n

holds, where oGNN1
n is the output of the GNN1. The final predictions are

computed by a GNN (GNN2 in Fig 2) that takes in input the graph G2.

The learning is carried out layer by layer. Thus, the PM–GraphSOM is trained
on the original learning set, disregarding the targets. The FNN is trained on a
learning set consisting of pairs (ln, tn), where tn is the original target of node n.
Finally, the learning set of the GNNs contains triples (Gk

i , ni,j , tni,j ) that differ

3 Interestingly, in [16], the authors plotted the dataset WEBSPAM-UK2006, which

contains a Yahoo crawling and is used in this paper for the experiments. The plot

confirms the intuition that the spam pages are well surrounded by normal pages.
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from the original ones only for the graph which is replaced by G1
i , in step 3, and

G2
i , in step 4.

4 Experimental Results

The proposed approach was assessed on the WEBSPAM–UK2006 dataset [16], a
publicly available benchmark introduced, in 2007, by the Web Spam Challenge
and the Adversarial Information Retrieval on the Web (AIRWeb) workshop.
Such a collection of pages was particularly suitable for our purposes, since it is
large and it has been used by other research teams. Moreover, the dataset comes
with a predefined splitting into a train set and a test set and it includes a set of
precomputed features, which simplifies the preprocessing procedure4.

The benchmark is based on a crawl of the .uk domain, carried out in May
2006 and it includes 77.9 million pages and over 3 billion links in about 11,400
hosts. The collection was tagged at the host level by a group of volunteers. The
assessors labeled 2725 hosts as “normal”, “borderline” or “spam”.

The dataset contains precomputed features about the hyperlinks and the host
contents. The link–based features consist of 41 items and include, for example,
the in–degree, the out–degree, the PageRank [3] and the TrustRank [17] of the
host home page. The 23 content–based features include several statistical values
measuring the distribution of words in the host pages as, for instance, the pre-
cision and the recall of the words in a page with respect to the q most frequent
terms from a query log, where q = 100, 200, 500, 1000, respectively.

In this experimentation, the GNN transition and output functions were im-
plemented by three layered (one hidden layer) static networks with 5 hidden
neurons using sigmoidal activation functions. The state dimension was set to
2. Similarly, the FNN network was a three layered static network with 20 hid-
den neurons. The PM–GraphSOM adopted a SOM whose units were arranged in
50×80 lattice. The GNNs and the FNNs were trained for 1, 000 epochs, updating
the gradient with resilient backpropagation mechanisms.

Those parameters, were selected as a result of a set of preliminary experiments
and heuristics that for space reasons cannot be completely discussed here. A first
set of experiments was used to find the best architecture using only the training
dataset. For instance, Table 1 displays the performance, measured using precision
and f–measure, achieved by a simple GNN (not a layered architecture) that is
fed with graphs, the labels of which have different combinations of the following
features: the link–based features (link), the content–based features (content)
and the coordinates of the winning neurons in a PM–GraphSOM (PM–G). The
results suggest that without a layered architecture, the features in rows 2, 3, 4
respectively show comparable performances, whereas using only the link–based
features the performance is slightly lower, but not by far though.

4 It is worth mentioning that, due to the large number of pages involved, the compu-

tation of several features requires a huge amount of computation time and human

effort.
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Table 1. The performance of a simple GNN with graphs having different labels

Node labels Accuracy F-measure

Link 80.65% 0.428

Link + PM–G 87.63% 0.576

Link + Content 88.52% 0.579

Link + Content +PM–G 88.18% 0.575

Table 2. The Results obtained using different architectures

Layer 0 Layer 1 Layer 2 Accuracy F-measure ROC AUC

FNN 78.39% 0.4773 0.8602

GNN 90.87% 0.4081 0.7913

FNN, PM–G GNN 91.24% 0.5890 0.9236

GNN GNN 90.70% 0.4400 0.8103

FNN, PM–G, Autoass GNN 90.60% 0.5308 0.8701

Autoass GNN 91.04% 0.4173 0.8070

FNN, PM–G GNN GNN 92.94% 0.6324 0.9362

Another set of experiments was conducted to evaluate different layered ar-
chitectures and some of the results are shown in Table 2. Each row displays an
architecture. The first three columns describes the models5 used in the layers: for
instance, the results using the architecture shown in Fig. 2 are displayed in the
last row. The last three columns show the accuracy, the f–measure and the area
under the receiving operating characteristic curve (ROC AUC). The networks of
layer 0 take in input graphs with both link–based and content–based features,
whereas the models in other layers take in input graphs where the original labels
have been replaced by the outputs provided by the previous layer. A compari-
son of the architectures6 suggests that the deeper ones are those with a better
performance, even if it is not possible to define a general rule, probably because
the architectures mix models with completely different characteristics.

Moreover, the architecture achieving the best result in Table 2, i.e., the one in
the last row and depicted in Fig. 2, was evaluated also on the original splitting
of the benchmark and compared with the other teams that participated in the
challenge. Table 3 shows that our approach equals the best f–measure and it
obtains the second best ROC AUC. Interestingly, the other participants have
used ad hoc features and have exploited algorithms which may depend on the

5 The considered models include also an autoassociator network, the output of which

is the difference between the input and the output.
6 Interestingly, the differences between the architectures are clearer by observing the

ROC AUC and the f–measure, than the accuracy measure. Actually, the possible

accuracy results are restricted to a small range, because the dataset is unbalanced

(it contains few spam pages compared with the number of non–spam pages) and

even a very simple predictor can achieve a very high accuracy by classifying every

page as non–spam.
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Table 3. Web Spam Challenge 2007 results

Team F–Measure ROC AUC

Benczúr et al. 0.91 0.93

Filoche et al. 0.88 0.93

Geng et al. 0.87 0.93

Abou et al. 0.81 0.80

Fetterly et al. 0.79 –

Cormack 0.67 0.96

Proposed approach 0.9169 0.9301

selected features. On the other hand, the proposed method uses the original fea-
tures of dataset and no attempt has been made to optimize them. Moreover, the
involved machine learning algorithms are general purpose ones and can be used
elsewhere without conceptual changes. Those facts suggest that the presented
approach is more flexible and it can be more easily extended to process different
features or to face similar tasks based on the Web graph.

Finally, it is also worth to mention that, while the training is computational
expensive, the test phase of the proposed architecture require a linear time w.r.t.
the number of nodes in the graph [6], which allows to apply such an approach
also on relatively large datasets.

5 Conclusions

In this paper, we have introduced a layered architecture combining an unsuper-
vised and a supervised approach in the processing of graph domain inputs. This
approach has been applied on a common web spam detection benchmark. It is
shown, through various experiments, that the layered method obtained results
which are comparable to the best results achieved using other approaches. It is
matter of further research a wider experimentation and a theoretical analysis of
the properties of the proposed architecture.
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Abstract. Rapid evolution of wireless communications, especially in terms of 
managing and allocating the scarce, radio spectrum in the highly varying and 
disparate modern environments asks for a technology for its intelligent han-
dling. Cognitive radio systems (CRSs) have been proposed as one. A typical 
CRS implements a so called “cognition cycle”, during which it senses its envi-
ronment, evaluates a set of candidate radio configurations to operate with and 
finally decides and adjusts its operating parameters expecting to move the radio 
toward an optimized operational state. As the process is often proved to be 
rather arduous and time consuming, learning mechanisms that are capable of 
exploiting measurements sensed from the environment, gathered experience and 
stored knowledge can be judged as rather beneficial in terms of speeding it up. 
Framed within this statement, this paper introduces and evaluates a mechanism 
which is based on a well-known unsupervised learning technique, called Self-
Organizing maps (SOM), and is used for assisting a CRS to predict the bit-rate 
that can be obtained, when it senses specific input data from its environment, 
such as Received Signal Strength Identification (RSSI), number of input/output 
packets etc. Results show that the proposed method is successful up to a percent 
of 75.4%. 

Keywords: Cognitive Radio Systems (CRS), Cognition Cycle, Learning, Self-
Organizing Maps (SOMs). 

1   Introduction 

Each wireless communication needs its different piece of a specific limited natural 
source, the electromagnetic radio spectrum, whose current static assignment often 
leads to its underutilization. Accordingly, the deployment of a technology which will 
have the ability to exploit the underutilized frequency bands is needed. 

Cognitive radio systems have been proposed as a promising technology for this 
cause [1] [2] due to their ability to adjust their function according to the external, 
environmental stimuli, the demands of the users/applications and their past experi-
ence. Based on this ability, future cognitive systems will be able to change their pa-
rameters (carrier frequency, radio access technology, transmit power, modulation type 
etc), observe the results and decide which is the best combination of those parameters 
in order to get into a better operational state. So, in terms of flexible spectrum  
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management concept, use of cognitive systems will allow the use of a spectrum band 
in different radio access technologies (RATs) [3], [4]. 

A typical cognitive operation consists of three cooperative phases (Fig. 2) [2] [3]. 
During, the first phase, known as radio scene analysis, the system takes measurements 
from the environment (e.g. conditions related to interference) and explores of differ-
ent configurations. In the 2nd phase, channel estimation and predictive modeling, the 
output of the 1st phase is used for discovering the capabilities of each candidate con-
figuration, wherein past experience of the system may also be used. Finally, in the last 
phase, known as “configuration selection”, the system adjusts its operation parameters 
according to its selected best configuration. In particular during the 2nd phase of the 
cognition cycle, numerous candidate configurations for the CRS need to be evaluated. 
This is proved to be a very arduous and time-consuming task, which can be relaxed 
by using learning mechanisms. 

Supervised learning through neural networks-based schemes have been used re-
cently in [4] [5]. Bayesian networks have been also used in [3]. Our proposal is an 
unsupervised neural network technique called Self-Organizing Maps (SOMs). SOM is 
a technique for representation and classification of multidimensional data into 2D 
maps. These maps consist of rectangular or hexagonal cells on a regular grid and 
according to the technique; each data sample correlates with one cell/neuron of the 
map in order to be closest to those who are most like it. In this term, the created map 
represents the similarity of the data and their classification. Due to their ability, SOMs 
are very popular in data mining problems such as identification of illicit drugs [6], 
chemical analysis [7], document collections [8], speech recognition [9], identification 
of a cancer cell gene [10], hematopoietic differentiation [11] and more. In our case we 
examined the possibility of connecting parameters observed during a configuration, 
such as noise, received signal strength Indication (RSSI), errors (input and output), 
packets (received and sent) and Bytes (received and sent) with an anticipated QoS 
metric namely the bitrate that can be achieved under the configuration in question.  

Finally, in order to validate the technique, we have setup and executed a program 
by using MATLAB SOM toolbox. The developed SOMs are trained with measure-
ments that have taken place in a real working environment within our University 
premises. The method exhibits a satisfactory capability of predicting the achieved 
bitrate when facing both known and unknown exemplars (combinations of monitored 
parameters given a configuration).  

The rest of the paper is structured as follows: a review of SOM technique and a 
short analysis of our proposal are presented in section 2. Section 3 presents the results 
of our test cases, including a comparison of different versions of our program (section 
3.1), the choice of the variables of the input data samples (section 3.2), different cases 
which include different number of data samples (section 3.3) and different evaluating 
scenarios with different parameters of SOM technique (section 3.4). Finally, the paper 
is concluded in section 4. 

2   Self-Organizing Maps (SOMs) and Contribution 

SOM, introduced by [12], is a type of neural network that belongs to the set of unsu-
pervised learning techniques. An overview of its theoretical foundation may be found 
in [13]. It is a technique for representation and classification of multidimensional data 
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into 2D maps. These maps consist of cells, whose shape is rectangular or hexagonal, 
on a regular grid. According to the technique, each data sample correlates with one 
cell/neuron of the map, called Best Matching Unit (BMU). The process during which 
the BMU and a neighborhood around it stretch towards the inserted data sample  
(Fig. 1) is called SOM training and results in an ordered SOM map where similar data 
samples are close. In this term, the created map represents the similarity of the data 
and their classification. 

Two different training algorithms are used for SOM training: the sequential and the 
batch training algorithm. In the first algorithm each data sample is inserted in the 
training process individually, thus affecting its own best matching unit (BMU) and a 
neighborhood around it. In the 2nd algorithm, all data samples are inserted together in 
the process and eventually affect their BMUs and neighbors in parallel. 

  

Fig. 1. The inserted data sample x affects its 
BMU and its neighborhood. The solid and dash-
doted lines correspond to the situation before 
and after the input of the data sample [14] 

Fig. 2. Simplified representation of cognitive 
radio cycle [2] 

 

As mentioned in section 1, we will examine the possibility of connecting parame-
ters observed during a configuration, such as noise, received signal strength Indication 
(RSSI), errors (input and output), packets (received and sent) and Bytes (received and 
sent) with one QoS metric, the bitrate in order to predict it. This is done by using the 
unsupervised training technique of SOM. However, as also mentioned in section 1, 
SOM is a technique for representation and classification of multidimensional data into 
2D maps. So how could it be useful in our case?  

To begin with, measurements that have taken place in a real working environment 
within the premises of our University were used to create different data files. Each file 
comprised a different test case including different combinations of our parameters. 
Each column, apart from the last one, referred to a different parameter of the data 
sample while each row corresponded to one different data sample (see Fig. 3). Finally, 
the last column of the data file was the measured value of the bitrate which was re-
lated to the data sample and was taking part only for distinguishing them. It is essen-
tial to mention that no normalization of the data samples has taken place. 

In the sequence the created data file and SOM toolbox v.2 of MATLAB [14] were 
used to train the SOM. For facilitating the analysis, SOM toolbox offers the ability to 
use labels in order to distinguish the data samples. In our case, each label corresponds to 
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the measured value of the bitrate of the data sample. However, the fact that more than 
one data samples may have the same BMU (mc) leads to the fact that each cell of the 
map may have more than one labels appearing more than once. As SOM toolbox offers 
enough different ways for labeling the map, we used three of them ending up with three 
different versions of our program. The first way (VOTE) is to put on each cell only the 
most frequently appearing label, the second one (ADD1) is to put all labels while the 
third one (FREQ) is to put all labels, like in case of ADD1, but in descending order with 
respect to their appearance frequency and followed by the number of appearances.  

 
 

Fig. 3. Matlab Data File: the number of the first line 
refers to the number of the parameters of the 
configuration, here equal to 5 (RSSI, Input PacKeTS, 
Output PacKeTS, Input BYTES, Output BYTES), 
and the last column refers to the bitrate which was 
used as label. Each line is a data sample and each 
column is a different parameter of the configuration. 

Fig. 4. Labeled SOM when using the 
FREQ version 

At this point, the output of our program is a labeled SOM map (Fig. 4) and our 
program may represent a new data sample on the map but cannot predict its bitrate. In 
order to train our program how to predict the bitrate of a data sample we transformed 
our visualization into mathematical functions. According to the ability of SOM tech-
nique cells which have the same bitrate are expected to comprise a cluster whose 
center may be calculated by the equations  

n

i i
i

x w x n=∑
         

(1)             and  
n

i i
i

y w y n=∑          (2), 

where n is the number of cells which belong to the cluster, xi and yi are the co-
ordinates of the cell i and wi is the weight according to which the cell i participates to 
the calculation. In the first two versions (VOTE, ADD1) wi is always set equal to 1 
while in the last version wi is set to be calculated by the following function:  

iw k r=
                                                        (3), 

where k is the number of instances of the specific bitrate in the cell i and r is the sum 
of the instances of all bitrates of the cell. 
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In order to define the bitrate of a data sample we need to find to which cluster the 
BMU of the data sample belongs. The BMU is set to belong to the cluster that its 
center is closest according to the Euclidean Distance. The bitrate of the data sample 
will be the one that represents the cluster. Finally, for evaluating our process and 
reaching conclusions our program is able to compare the predicted values of the bi-
trate of each data sample with its real measured value. 

3   Test Cases and Results 

A number of test cases that correspond to variations of input parameters of the pro-
posed method have been set up in order to reach useful conclusions. In particular, the 
focus is placed on exploring the following: a) which the best choice between the three 
versions of the method (VOTE, ADD1 and FREQ) is, b) what variables of our data 
samples are going to be used, c) how many data samples are needed for the training 
phase and d) what the training algorithm and the values of its parameters should be. 
For evaluation and comparison reasons, the higher the percent of the correct predic-
tion is, the better the choice. As a result, the metric used was the number of data sam-
ples whose bitrate was correctly predicted (expressed in percent). The different test 
cases are presented and compared to each other below. 

3.1   Comparison of the Labelling Versions 

Having analyzed the three versions, we need to compare them in order to use the best 
one according to their results. As mentioned above, the VOTE version uses only the 
most frequently appeared label when calculating the centres of the clusters. In this 
case, it is possible that a label doesn’t appear in the created SOM even if it has been 
used as label in a data sample. As a result, labels with fewer instances may not appear 
in the created SOM. This causes the elimination of one or more clusters as there is no 
centre of them. In addition to the above, the program terminates a little after the calcu-
lation of the centres as according to its programming it needs all four centres. Finally, 
even if the program wouldn’t stop, the data, which are used for evaluation and belong 
to the eliminated cluster, would be correlated with a wrong label and cluster. 

Trying to find a solution to the existing problem of VOTE version, ADD1 version 
was created. In ADD1 version, all possible labels of each cell participate equally 
independently of their instances. We executed both versions using same data files in 
both training and evaluating phases. The result of the tests led to the conclusion that 
ADD1 version solved the problem of VOTE version but, in cases where VOTE ver-
sion worked properly, ADD1 version had lower percent of correct predictions.  

The above conclusion led us in a new version, the FREQ version. Contrarily to 
ADD1 version, labels participate in the calculation of the centres of the clusters un-
equally as a weighted average of their frequency. Having created this version all that 
was left to be done was its comparison with the VOTE and ADD1 versions. In order 
to do so, we executed all versions using the same data files in both training and evalu-
ating phase. It is worth mentioning that in all three versions the training parameters 
were the same. The results of FREQ version were all better (with higher percent of 
correct predictions of the bitrate) and thus FREQ version is the one that was used in 
the rest of the experiments.  
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3.2   Selection of the Variables of a Data Sample 

The next step of our research concerned the variables of the data samples that suit 
better for predicting the bitrate. In order to do so we created many different cases and 
used the FREQ version of our program and the same training variables. These cases 
used different data files for both training and evaluation phases. The difference be-
tween them lied in the number and the type of the variables of the data samples. 

At the created cases there were 9 variables of a data sample that were used in dif-
ferent combinations, namely: noise, RSSI (Received Signal Strength Identifier), num-
ber of input and output packets, number of input and output error, number of input 
and output bytes and bitrate. 

Comparing these cases we concluded the following: 
 

 The result does not depend on the fact that data samples are or are not or-
dered according to the bitrate. The results in both cases are the same.  

 The existence or not of bitrate as variable of the data sample does not influ-
ence the results always in the same way. In some cases the result was re-
duced while in other cases it was increased. Moreover, the highest percent of 
correct predictions was not one of these whose data file contained the bitrate 
as a variable. 

 Finally, the case with the highest percent of correct predictions, equal to 71.4%, 
was the one whose variables were the number of input and output packets and 
RSSI. Those variables are the ones that are used in the rest of our paper. 

3.3   Selection of the Number of Data Samples 

Having selected the variables of a data sample, we needed to decide the number of 
data samples to participate in the training process of SOM. In order to do so we cre-
ated cases which included the variables in which we resulted from the analysis in 
section 3.2 (number of input and output packets and RSSI) but different number of 
data samples. For taking results we used once more the same training parameters and 
the FREQ version.  

According to the results, the number of data samples affected the results of our 
predictions but not always in the same direction. These results are depicted in the 
following Fig. 5: 
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Fig. 5. Diagram of the percent of correct predictions of the bitrate according to the number of 
the used data samples 
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Finally, the maximum result was 73.6% and appeared when the number of data 
samples was 617. This number was also the number of the data samples which com-
prised our cases for the rest of our tests. 

3.4   Selection of the Training Algorithm and its Parameters 

Our next concern was to decide between the two training algorithms and finding the 
most suitable values for their parameters. In order to make such a decision we firstly 
defined the most suitable values for each training algorithm separately and then we 
compared them to each other.  

In order to decide which were the most suitable values for the parameters of the 
batch training algorithm we tried different test cases changing only one parameter at a 
time. The parameters were tested randomly. Comparing the results it was obvious that 
the best choice in the case of batch training algorithm is shown in Table 1: 

Table 1. Values of the parameters for the batch training algorithm 

Neighborhood function: Gaussian 
Rough Phase Fine-tuning Phase 

Initial radius 5 Initial radius 1 
Final radius 1 Final radius 1 
Training length 6 Training length 48 

 
Fig. 6 depicts the diagram of the predicted values of the bitrate, the diagram of the 

real measured values of the bitrate and a comparison among the two above in case of 
batch training algorithm. 
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Fig. 6. Batch Training Algorithm: Diagram of the predicted bitrate, Diagram of the measured 
bitrate and a Comparison of the above. The symbol * depicts only the data samples which have 
different predicted and real values. 
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In case of sequential training algorithm, we created different test cases as well. Al-
though the technique was the same it’s worth mentioning an important difference: in 
sequential training algorithm the samples do not enter the training phase at the same 
time. As a result, the order that they enter the system leads to different results. In 
order to avoid such a situation we selected the entrance of the samples to be ordered 
according to the data file.  

Finally, the best set of values for the sequential training algorithm is shown on Table 2: 

Table 2. Values of the parameters for the sequential training algorithm 

Neighborhood function: Gaussian 
Length type: epochs 

Learning function: inv 
rough phase Fine-tuning phase 

Initial radius  3 Initial radius  1 
Final radius 1 Final radius 1 
Training length 4 Training length 21 
Initial alpha 0.5 Initial alpha 0.05 

 
As previously, a diagram of the predicted bitrate, a diagram of the measured bitrate 

and a comparison of the above diagrams is depicted in Fig. 7. 
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Fig. 7. Sequential Training Algorithm: Diagram of the predicted bitrate, Diagram of the meas-
ured bitrate and a Comparison of the above. The symbol * depicts only the data samples which 
have different predicted and real values. 

The comparison of the set of the values of the batch training algorithm with the one 
of the sequential training algorithm reveals that the first result, equal to 74.4%, is a 
little lower than the second one, equal to 75.4%, giving the impression that the best 
choice is the sequential training algorithm. However, the time that is needed to com-
plete the training phase of the SOM is sometimes crucial so we measured it as well. 
According to the program, batch training algorithm is quicker, requiring about 3 to 4 
seconds to complete the training phase while sequential one requires about the double 
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time (7-8 seconds). As a result, and because of the fact that the difference between the 
two results is rather small, the choice between the two algorithms is subjective and 
depends on the existence of the requirement of a quick training or not. 

4   Conclusions 

Rapid evolution of wireless communications demands the use of systems capable of 
intelligently adapting to the highly varying and disparate modern environments. In 
these terms, Cognitive Radio Systems have been a very promising technology but the 
cognition process, which they utilize in order to monitor, evaluate and select a radio 
configuration to operate with, is often time-consuming, thus leading to the necessity 
of a learning technique for speeding it up. In this paper we used an unsupervised lean-
ing technique, Self-Organizing Map, in order to train a CRS to predict the bitrate that 
can be achieved under a combination of parameters obtained as a result of a specific 
radio configuration and based on its past experience. Going through numerous test 
cases we achieved to predict correctly the bitrate at 75.4% of the tested data samples. 
Such a method is expected to assist CRS to choose among the different candidate 
configurations by taking into account the predictions of the bitrate that can be 
achieved. 
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Abstract. Self-organizing maps have been extensively used for visualization of
industrial processes. Nevertheless, most of these approaches lack insight about
the dynamic behavior. Recently, an approach to define visualizable maps of dy-
namics from data has been proposed. We propose the application of this approach
to single-input single-output processes by defining several maps related to rele-
vant features in the time-response analysis. This features are commonly used in
control engineering. We show that these maps are intuitive and consistent tools
for knowledge discovery and validation. They also provide a general overview of
the process behavior and can be used along with other previously defined maps
for process analysis and monitoring.

Keywords: Self-organizing map, visualization, dynamics, industrial processes.

1 Introduction

In industry applications, data acquisition allows to gather huge volumes of data from a
large number of variables. This has favored the application of methods [1] that, by means
of the analysis of process data, lead to models of industrial processes. These techniques
can be considered within the scope of data mining and knowledge discovery. A powerful
approach in this context is visual data mining [2], i.e., the transformation of data into
visual representations that enable a better understanding of the process. This paradigm
has been successfully applied to fault and novelty detection, discovery of dependencies
or recognition of process conditions from incomplete knowledge [3]. One relevant ap-
proach for data visualization is dimensionality reduction, which aims at finding low-
dimensional structures that preserve the most important information in data. These un-
supervised methods perform a selection or transformation of the set of variables that pro-
duces a better representation of relevant features on the low-dimensional display. Many
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dimensionality reduction techniques have been proposed in the literature, e.g., Princi-
pal Component Analysis (PCA) and its nonlinear extensions, multi-dimensional scal-
ing (MDS) methods, or nonlinear algorithms such as Isomap, Laplacian Eigenmaps or
Stochastic Neighbor Embedding [4].

A powerful technique for this purpose is the Self-Organizing Map (SOM) [5]. SOM
algorithm defines, in an unsupervised way, a projection from a high-dimensional input
space onto a regular lattice defined on a low-dimensional space (usually 2D). The re-
sulting projection captures the underlying low-dimensional structure in the input data
and, at the same time, preserves the topology defined by the lattice. This feature makes
SOM a powerful tool for data visualization, with many applications in industrial pro-
cess analysis and supervision [6]. For instance, applications were described in pulp and
paper and in steel industry, [7] or chemical plants, [8]. These applications are mostly
focused on the static analysis of process variables, with the exception of a few works
addressing the dynamical analysis of the projected state trajectory [9,10].

Knowledge about the dynamic behavior of the systems is a key issue and there is
a need for evidence-based techniques to visualize the dynamics of the processes. The
potential of SOM to analyze dynamic behaviors has been explored in some works, ad-
dressing topics such as modeling [11] and visualization [12]. This latter work proposed
the exploratory analysis of dynamic features in an exhaustive way, including relation-
ships between the process operating point, defined by a set of process variables, and
its dynamic state, defined by a set of parameters. For that purpose, the authors defined
the maps of dynamics, which allow to visualize different features associated to local
parametric models described in terms of transfer functions or even nonlinear dynam-
ical models. These maps are consistent with the component planes, so it is possible
to directly search for links between the process operating point and its local dynami-
cal behavior. Some visualizations proposed in the aforementioned work [12] were the
parameter component planes, the frequency response maps or the gain maps.

However, the study and application of this technique has still been very limited and
new visualizations should be designed to help in the analysis and monitoring of indus-
trial processes. It would be particularly useful to apply this procedure to support com-
mon tasks of a control engineer, such as obtaining the time response of a system. The
aim, in this case, would be to define visualization maps concerning the most common
dynamic features used in the analysis and monitoring of SISO systems. We rely in the
hypothesis that these maps are useful for a better understanding of industrial processes
and helpful for their further analysis or monitoring.

This rest paper is organized as follows. Section 2.1 describes the method to create
the proposed visualization maps. In section 2.3, visualization maps for support of the
time-response analysis of second-order systems are proposed. Section 3 describes the
experiments designed to test the suitability of these maps and the results obtained. Fi-
nally, in section 4, we present the conclusions drawn from the experimental results.

2 Maps of Dynamics

2.1 Description of the Technique

The basic idea behind the maps of dynamics is to apply a dimensionality reduction
mapping on a space of parameters that describe different dynamic models, generally
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obtained from a previous system identification stage. Let us consider a parametric
model

y(k) = f(ϕ(k),p) (1)

where the data vector ϕ(k) = [y(k−1), · · · , y(k−n), u(k), · · · , u(k−m)]T contains
input-output data known at sample k and p = [p1, · · · , pp]T is a vector with the model
parameters. To build the set of parameter vectors, the whole set of input-output data
pairs {y(k), ϕ(k)} including the output at sample k, y(k), may be subdivided into N
subsets for different values of k contained in an index set Ij

{y(k), ϕ(k)}k∈Ij j = 1 · · ·N (2)

The subsets can be defined in different ways, according to the identification procedure
or using a clustering algorithm such as the SOM on the signal space [13] or in a space
of user-selected variables. Then, a parameter vector can be obtained from each subset
using an optimization algorithm, such as least squares if the model is linear, that pro-
duces a parameter set {p(1), · · · ,p(N)} with N points in a parameter space R

p, each
of which defines a single dynamical model.

Alternatively, a vector x = (x1, · · · , xn)T of descriptive variables defining the op-
erating point of the process can be obtained from each subset, to compose an extended
parameter vector q = [pT ,xT ]T . This vector could also include time if a nonstationary
behavior is to be analyzed. That results in a joint space that combines both dynamic
parameters and process variables that are known (or assumed) to define different local
dynamic behaviors. These variables are often selected on the basis of prior knowledge
or hypotheses. They allow to link dynamic visualizations and the process working point.

Since the main objective is to obtain ordered visual representations of parametric
models, a projection of these data is done by means of the SOM. Once trained, each
prototype vector mi of the SOM contains a set of model parameters pi that describe
the local dynamics of the process and a set of variables xi that define its working point.

Let us define d = [d1, · · · , dm]T as the vector of dynamic features that are interest-
ing for possible representation. Since these features express properties of the dynamic
behavior, they will depend on the parameters p of the model, d = g(p), which is avail-
able on each prototype vector mi. Therefore, it is possible to compute the value of each
feature di for every SOM unit. A typical approach to represent the feature associates a
color level to each 2D position gi in the grid, depending on the magnitude of the prop-
erty. This way, local dynamic behavior can be represented consistently with classical
SOM-based maps.

In short, similar behaviors are grouped into regions in an ordered and comprehensive
visualization of system dynamics. Since dynamic features have a physical insight, the
maps of dynamics provide qualitative information about many aspects of the process
behavior. It is possible to establish a synergy between advanced data visualization tools
and control engineering concepts that opens a broad horizon for monitoring and ex-
ploratory analysis of process dynamics. It enables the analysis of local dynamic modes
in nonlinear and/or non-stationary processes and the exploration of the factors with
influence on changes of dynamics. Also, intuitive and standardized maps are advanta-
geous, since only expertise in control engineering is required for its interpretation.
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2.2 Distance in the Extended Parameter Space

In the previous work, Euclidean distance was used as the measure in the input space.
Although it is the simpler choice, it could be argued that its application is not justified.
There are more suitable measures for certain types of parametric models. For instance,
cepstral distance have been proposed as a distance between ARMA models [14] and,
therefore, it is applicable for discrete-time transfer functions. Nevertheless, research on
time series data mining suggest that the results provided with such a technique might,
in some cases, be even worse than with Euclidean distance [15].

In this study, the extended parameter space is composed of real variables and param-
eters of continuous transfer functions. Some preliminary tests with simple distances,
such as Euclidean distance on normalized and unnormalized data, correlation and co-
sine distance, showed almost identical results regardless of the orientation of the maps.
In the rest of this paper, Euclidean distance on normalized data will be used.

2.3 Definition of Maps of Dynamics for Time-Response Analysis

During the analysis and design, control engineers manage, on a regular basis, several
well-known features associated to the system response [16]. Among them, the ones
linked to the behavior of second-order systems are especially relevant, because they
approximate the response of many important systems.

Second-order systems are described by the following transfer function

G(s) =
Kω2

n

s2 + 2 · ζ · ωn · s + ω2
n

, (3)

where K represents the gain, ζ is the damping ratio and ωn the undamped natural
frequency. These parameters define the position of the poles and, therefore, the transient
response and stability of the system. Other meaningful features can be computed from
the response to a unit-step input, such as the rise time, the peak time, the maximum
overshoot and the rise time. Maps of dynamics for those features can then be very
useful for analysis and monitoring.

Let us describe a trivial example of the way that using maps of dynamics for find-
ing correlations between dynamical parameters can serve that purpose. Given a certain

(a) Second-order system. (b) Second-order systems with additional pole and
zero.

Fig. 1. Trivial example of the application of maps of dynamics for time-response analysis
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second-order system, a correlation between the increase of the damping coefficient and
the decrease of the overshoot can be seen in the maps in Fig. 1(a). There it is clearly
visible that the transition from blue zones to red zones in the damping coefficient map
corresponds with the transition from red to blue in the overshoot map. Likewise, there
is a correlation between the natural frequency and the rise time. In the maps of Fig. 1(b)
we can see maps of overshoot and rise time of a second-order system with one addi-
tional pole and a second-order system with one real and negative additional zero.

If we compare these maps with the position of the corresponding pole in the complex
map, it can be easily inferred that values of the pole near the origin (blue zones) corre-
spond with zones where overshoot tends to disappear. In these areas, the pole becomes
dominant and determines the system dynamics. However, as the pole moves away from
the origin, its influence is smaller. The effect of the additional zero is the opposite, since
values close to zero make the overshoot increase and shorten the rise time.

In the next section, experiments to test the usefulness of the approach in a real envi-
ronment are described and discussed.

3 Experiments and Results

The purpose of the experiments is to check whether the proposed maps let the ana-
lyst extract relevant information about the dynamic behavior of a real process, detect
correlations or recognize different regions. Prior knowledge is useful for evaluation of
the conclusions drawn from the visual inspection of the maps, i.e., assessment will be
based in the significance and coherence of the maps. Thus, two experiments are pro-
posed. The first one test maps created from a physical model, whereas the second one
addresses the generation of maps from sampled data of a real system. Both of them are
closely related, since the model for the first experiment is a simplification of the system
used for the second one.

We perform an agglomerative clustering of the SOM [17] to generate an additional
map that shows the grouping of dynamic behaviors with similar characteristics. The
step response of the centroids is also plotted. Single, complete, group average, centroid
and Ward’s linkages are considered [18]. Davies-Bouldin (DB) is the cluster validity
index used to select, among those linkages, the one that maximizes the distance between
clusters and minimizes the distance from the centroid to other points within the cluster
[18]. For both test cases, centroid linkage was the one that obtained better results.

The first test case uses the simulated measurements of a closed-loop level con-
trol system on a tank. The schema is depicted in Fig. 2. The controller measures the
tank level and operates the pump in order to maintain the setpoint. The maps of time-
response features (gain, settling time, peak time, overshoot, rise time, damping coeffi-
cient and natural frequency), defined in section 2.3, are visualized.

The variables involved in this model are input and output flows qi(t) and qo(t), tank
level h(t), tank and output areas A and a, pump speed b(t), pump constant k, controller
constants k′ and ki and acceleration due to gravity g. The system is modeled by the
mass balance and Bernoulli equations and linearized around h0:

AΔ
dh

dt
= kγΔb − ag√

2gh0
Δh, (4)



Application of SOM-Based Visualization Maps 397

Controller

qi

h(t)
qo

γ

A

b(t)

Fig. 2. Level control model

After computing its Laplace transform and applying a closed-loop control with a
proportional-integral ISA controller, the equation becomes

G(s) =
k′kγ(s + ki)

As2 + (a
√

g
2h0

+ k′kγ)s + k′kkiγ
. (5)

The tank area is fixed as 0.04m2, whereas the output area as 0.001m2 and the pump
constant as 4.55 · 10−6m3/sV .

The input data for SOM is composed of 480 equilibrium points, obtained by combin-
ing 24 levels and 20 valve openings, and their respective dynamic behaviors, computed
directly from the equations. Its dimensionality is 7 and includes the valve opening and
level as the relevant variables and the coefficients of a second-order transfer function
with one zero as dynamical parameters. The normalized input set is used for batch train-
ing of a standard SOM with 20×24 units and decreasing Gaussian neighborhood along
100 epochs. Normalization is even more advisable than usual, because it is necessary
to avoid, as much as possible, changes in the dynamical parameters that may lead to a
completely different interpretation of dynamics. For the same reason, map dimensions
are selected to minimize distortion of input data. After training, the maps of dynamics
are created from the denormalized codebook vectors in such a way that every posi-
tion gi is linked to the corresponding value of feature ki, which is a function of pmi .
Component maps of the relevant variables, xmi , are computed.

The component planes of level (Fig. 3(a)) and valve opening (Fig. 3(b)) variables
make it possible to link local dynamic behaviors with operating points. Indeed, the
settling time map (Fig. 3(c)) shows an evident correlation with the level. This can be
explained intuitively by the fact that the tank drains faster when the level is higher. On
the other hand, the peak time map (Fig. 3(e)) and the rise time map (Fig. 3(f)) show
certain relationship with both level and valve opening. Their values rise moderately for
small values of the opening variable and more drastically when level is also low. The
system is slower because a decrease of level and valve opening implies also a increase
in the damping coefficient (Fig. 3(i)) and, therefore, a decrease of maximum overshoot
(Fig. 3(d)), Natural frequency (Fig. 3(h)) is correlated with valve opening and gain
(Fig. 3(g)), as expected, equals one along the whole operating range.
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Fig. 3. Component planes and maps of dynamics for the mathematical model

The second experiment uses also a closed-loop level control system, but this time
a real industrial process is sampled. The system used for this test is a 4-variable indus-
trial scale model (see Fig. 4(a)), which consists of a main and two auxiliary circuits
and has 4 controllable variables. The main circuit is the one that will be used for the
experiment and comprises two cascading tanks with 10 and 15.5 liters each, a centrifu-
gal pump with variable frequency drive that provides a supply flow of up to 22 l/m, a
pneumatic valve, a drain electrovalve and sensors for the control loops associated to
the variables. The implemented strategy controls filling of the upper tank in the process
circuit. The mathematic model used in the previous experiment could be seen as a very
simplified model of this system. The network infrastructure of the Remote Laboratory
of Automatic Control at Univ. of León was used to easily perform control, data acqui-
sition, storage and recovery. A distributed control system (Opto SNAP B3000-ENET)
was used to implement the control strategy, whereas Matlab was used for data analysis.

(a) 4-variable system. (b) Fragment of setpoint and level signals.

Fig. 4. 4-variable industrial scale model
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Again, the controlled variable is level, measured by means of an ultrasonic sensor,
whereas the input is the speed (%) of the variable speed drive. The tank has a volume of
10 liters and a small capacitance, because the drain electrovalve is opened all the time.
For that reason, it is difficult to maintain the level. A pneumatic supply valve modifies
the input flow. Diameter of supply and drainage pipes is 25mm. Therefore, tank empties
very fast and turbulence appear. The loop is closed to stabilize the system with an ISA
proportional-integral controller, as in the previous experiment.

In order to obtain valid models around several operating points, the system is ex-
cited with different initial values of level and valve opening and, therefore, a step-wise
staircase-shaped identification is performed (see Fig. 4(b)) . The equilibrium point of
level is increased in 15% steps and later decreased and this process is repeated for dif-
ferent valve openings. A pseudo-random binary sequence (PRBS signal) with levels
+2.5 y −2.5 [19] is used to maintain persistent excitation in each step, once the level
has been stabilized in the equilibrium point.

Data are acquired by means of the aforementioned network infrastructure with a sam-
pling period of 125ms and stored in a database from which they are recovered later for
their analysis. Preprocessing includes removal of erroneous data and centering. In each
step, data are divided in training and validation sets, so that a fitting metric of the model
can be computed. The model of the process between setpoint and output is obtained for
each step by means of a direct identification of the continuous transfer function. This
direct identification uses a parameter estimation method, based on prediction error min-
imization, that exploits the prior knowledge about the system and is available in Matlab
[19]. Therefore, the result of the system identification procedure is a set of 60 models,
specifically underdamped transfer functions with two poles and one zero. The fitting to
validation data is computed as fit(%) = 1 − 100 · ‖y − ŷ‖/‖y − y‖, where ŷ is the
identified output, y is the mean and its value is acceptable: 86.51%.

Fig. 5. Component planes and maps of dynamics for the real industrial plant
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The data set has 60 7-dimensional vectors (level, valve opening and coefficients of
the transfer function around the equilibrium point). Again, time-response features are
the target of the visualization. The data set is normalized and a 7 × 8 SOM is trained
with a standard batch algorithm of 100 epochs. Neighborhood is Gaussian and decreas-
ing over time. In this case, the dimension of the map also aims at minimizing distortion.
After training, the maps of dynamics, obtained from the denormalized codebook vec-
tors, are visualized. So are the component planes of tank level (Fig. 5(a)) and valve
opening (Fig. 5(b)), with the aim of looking for correlations with the dynamic behavior.
As in the previous experiment, gain stays approximately constant in all the operating
points, as expected, so it is not shown. In this experiment, visual inspection clearly
shows that valve opening is the variable that decides the behavior of the system to a
larger extent. For small values, i.e., when valve is partially closed, settling (Fig. 5(c)),
peak (Fig. 5(e)) and rise (Fig. 3(f)) times are higher. So, in general, the system is slower
when the valve opening is small. The interpretation is quite intuitive, since it takes
longer to reach the setpoint with a reduced supply of liquid. Apart from making the sys-
tem slower, small valve opening makes the system more oscillatory, causing a decrease
of the damping coefficient (Fig. 5(h)) and an increase of overshoot (Fig. 5(d)). Natural
frequency (Fig. 5(g)) decreases in this case. The influence of level is clearly smaller.

4 Conclusions

The results obtained in the experiments show again that the maps of dynamics are useful
for knowledge discovery or model validation of the process behavior. They provide a
comprehensive visualization that spans the whole range of operating points. The user
can also establish a visual comparison among the dynamic features or between these
and the variables that define the operating point. This allows the analyst to gain deep
insight on the correlations that exist in the process. They are also consistent with other
existing SOM efforts in the area of industrial process visualizations.

The proposed maps of the time response provide a general and intuitive overview of
the process behavior. This allows the engineer to distinguish what areas and variable
ranges show up a proper dynamic behavior for the purposes of control or, alternatively,
which of these areas require further in-depth analysis. However, as in any data-based
technique, the quality of the visualization or modeling depends on the quality of data
and its use as support or alternative to analytic models must be carefully evaluated in
terms of the availability, quality and cost of process data.

Future work should be oriented to integrate the multiple local linear models approach
with this approach and let the process variables be the only input data for training. Also,
other dynamic features of great importance in system analysis should give rise to new
maps of dynamics. Finally, further efforts in the development of similar techniques for
on-line monitoring must be made.
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Abstract. A novel self-organising map (SOM) algorithm based on the snap-
drift neural network (SDSOM) is proposed.  The modal learning algorithm de-
ploys a combination of the snap-drift modes; fuzzy AND (or Min) learning 
(snap), and Learning Vector Quantisation (drift).  The performance of the algo-
rithm is tested on several well known data sets and compared with the tradi-
tional Kohonen SOM algorithm.  It is found that the snap mode makes the 
learning in SDSOM faster than the Kohonen SOM, and that it leads to the for-
mation of more compact maps.  When using the maps for classification, 
SDSOM gives better performance, based on labelled winning nodes, than Ko-
honen SOM on a variety of data sets.  

Keywords: Neural networks, Self-organising Map, Snap-drift, modal learning, 
unsupervised Learning. 

1   Introduction 

The standard snap drift neural network (SDNN) algorithm [1-5] has proved invaluable 
for continuous learning in many diverse applications.  It is essentially a simple modal 
learning method, which swaps periodically between the two learning modes (snap and 
drift).  The unsupervised snap drift algorithm has previously been successfully ap-
plied in several domains including the analysis and interpretation of data representing 
interactions between trainee computer network managers and a simulated network 
management system [2], where it helped to identify patterns of the user behaviour. It 
has also been used in feature discovery and clustering of speech waveforms recorded 
from non-stammering and stammering speakers [3].  Phonetically meaningful proper-
ties of non-stammering and stammering speech were discovered, and rapid automatic 
classification into stammering and non stammering speech was found to be possible. 
Most recently, snap-drift has been successfully applied to categorising student re-
sponses to multiple choice questions in a virtual learning context [5].  In this work, 
SDNN is deployed in a self-organising map, to ascertain whether the advantages of 
snap-drift over LVQ alone (drift, without snap) transfer into the formation of topo-
logical maps.  We are interested in processing speed, classification performance and 
data visualisation (the shape of the resultant maps). 

The self-organising feature map algorithm developed by Kohonen[6] has been used 
widely in clustering analysis and visualization of high-dimensional data [7]. The 
SOMs can be also used for pattern classification by applying fine tuning of the map 
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with LVQ learning algorithms [8, 9, 10].  The Kohonen feature map was inspired by 
the idea that self-organising maps resemble the topologically organised maps found in 
the cortices of the brain [11].  The Kohonen SOM algorithm is based on unsupervised 
learning realised by finding the best matching node (the winner) on the map to the 
input vector and adapting the weights of the winner and the topological neighbour-
hood nodes.  After the training finishes each node on the map identifies a particular 
input vector and the organisation of the map reflects the original organisation of the 
input data.  

2   Snap-Drift Self-Organising Map 

2.1   Snap-Drift Algorithm 

Snap-drift learning uses a combination of fuzzy AND (or MIN) learning (snap), and 
Learning Vector Quantisation (drift) [10]. Abstractly speaking, the Snap-Drift algo-
rithm can be expressed as: 

Snap-Drift = α(Snap) + (1-α )(drift)                                   (1) 

              

The weights are updated using the following: 

wji
(new) = α(I ∩ wji

(old)) + (1-α )(wji
(old) + β (I – wji

(old))) (2) 

where wji = weights vectors; I = binary input vectors,  and β  = the drift speed con-
stant. When α = 1, fast, minimalist (snap) learning is invoked:  

wji
(new) = I ∩ wji

(old) (3) 

This works for binary data, otherwise equation (3) becomes the fuzzy AND of weight 
with data, Min(I ,wji

(old)).  Consequently, Snap encodes, within the weights, the com-
mon elements of all patterns that activate the node (neuron) for learning. 

In contrast, when α = 0, (2) simplifies to: 

wji
(new) = wji

(old) + β (I – wji
(old)) (4) 

which implements a simple form of clustering (drift) or LVQ, at a speed determined 
by β. Finally, in the case of either snap or drift, weights are normalized: 

wji
(new) = wji

(new) / | wji
(new)| (5) 

The snap and drift modes provide complementary features. Snap capturing the 
common elements of the group of patterns as represented by the minimum values on 
each input dimension, whereas drift captures the average values of the group of pat-
terns. Snap also has the effect of contribution to rapid convergence. 
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2.2 SDSOM 

We present a new version of Self-organising Map, which combines SOM with the 
snap-drift algorithm. The SDSOM has the same architecture (Fig.1) as a standard 
SOM, with a layer of input nodes connecting to the self organising map layer.  A 
shrinking neighbourhood is used during training, as in SOM, with the weight vector 
of each neighbour of the winning node being adapted according to the input pattern.  
The key difference in SDSOM is the weight update, which consists of either snap 
(min of input and weight) or drift (LVQ, as in SOM).  The following steps illustrate 
the SDSOM algorithm: 

 

Input Layer SOM Layer 

 

Fig. 1. SOM architecture 

Step 1: Initialize parameters: α = 1 (equation (1)) 
    Set size of the SOM layer map. 
    Initialize neighborhood size. 
    Initialize weights between input and SOM layer with the values of randomly        
    selected input patterns. 
    Normalize weights. 
    Initialize learning rate β for drift mode  
    Initialize maximum number of epochs 

Step 2: For each epoch (t)  
             Swap the value of α to 1 or 0 

   Step 2.1: For each input pattern 
Step 2.1.1: Find the winning node in SOM with the largest net input 
Step 2.1.2: Update weights of the wining node and its neighbour nodes   
according to the current learning mode (equation (2)) 
Step 2.1.3 Normalize weights (equation (5)) 

  Step 2.2: Decrease the neighborhood size with 1 
Step 3: Terminate when maximum number of epochs is reached  
Step 4: Evaluate the results by labelling SOM layer nodes  
 
The shaded nodes in Fig. 1 represent different classes or labels. Nodes receive the 
class label of the majority of the patterns for which they win. There is generally a 
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tendency for neighbouring nodes to have the same class, given the nature of SOMs, 
but this is not forced by the labelling algorithm. 

3   Experiments and Results 

3.1   Data Sets  

A range of data sets are chosen, presenting a variety of learning challenges.  They 
vary in terms of the number of input variables, the number of classes, and the level of 
separability of the classes.  Since they are all known and freely available they provide 
useful benchmark comparators, not only with SOM, but with a number of other neural 
computing and other machine learning techniques.   

The Animal data set is artificial and consists of 16 animals described by 13 attrib-
utes such as size, number of legs etc. [7].  The 16 animals are grouped into three 
classes (the first one represents bird, the second represents carnivore and the third 
represents herbivore). 

The Iris data set has three classes setosa, virsicolor and virginica [12, 13].  The iris 
data has 150 patterns, each with 4 attributes. The class distribution is 33.3% for each 
of 3 classes. One of the classes is linearly separable from the other two, and the two 
are linearly inseparable from each other.  

The Wine data set is the result of a chemical analysis of wines grown in the same 
region in Italy but derived from three different cultivars [14]. The analysis determines 
the quantities of 13 constituents (input variables) found in each of the three types of 
wines. There are 178 patterns with the following distribution: class 1 -  59, class 2 – 
71, class 3 – 48. 

The Ecoli data set contains 336 patterns with 7 attributes and 8 classes, which are 
the ‘localization sites’, distributed as follows [15]: 
  cp  (cytoplasm)                                       143 
  im  (inner membrane without signal sequence)             77                
  pp  (perisplasm)                                                     52 
  imU (inner membrane, uncleavable signal sequence)   35 
  om  (outer membrane)                                                 20 
  omL (outer membrane lipoprotein)                                 5 
  imL (inner membrane lipoprotein)                                  2 
  imS (inner membrane, cleavable signal sequence)          2 

3.2   Results  

In the experiments, 20% selections of the patterns of each data set are allocated for 
testing and the remaining 80% form the training set.  For each run the training and 
testing patterns are selected at random from the entire data set .  SOM is trained for 
500 epochs and SDSOM for 200 epochs. This is long enough for the maps to be stable 
in all cases. 

In order to perform a labelling of nodes for the purposes of classification the num-
ber of patterns for which the node wins is accumulated for each class and for each 
node. The majority class, with the highest number of patterns, becomes the class label 
of that node. The training classification score is the percentage of patterns categorised 
by nodes of the correct class. The training class labels are retained for use in testing.  
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Table 1.  Mean % correct classification for train and test sets based on 5 runs.  Standard devia-
tion given in the brackets  

Method/Data set Animals Iris Wine Ecoli 
SDSOM train 100 (0) 100 (0) 100 (0) 96.2 (0.8) 
 test 100 (0) 99.4 (1.3) 92.6 (1.3) 84.6 (2.5) 
Kohonen 
SOM 

train 100 (0) 100 (0) 100 (0) 100 (0) 

 test 100 (0) 95 (3.1) 86 (6.3) 81 (2.1) 

 
The percentage of correct classifications is the percentage of patterns for which the 
winning node has the same class label as the class of the pattern. Nodes in the map 
that by the end of training have not associated patterns for which they win are not 
labelled.  During testing, if a winning node is unlabelled (which is rare) then the most 
active labelled node provides the class (correct or incorrect). Each test consists of 5 
repeat trainings of the data, with the training set being randomly selected from the 
whole data set in each case. The maps formed are very similar for each of the repeat 
trainings, and the classification results presented are the averages for the 5 results. 
The standard deviations across the 5 tests are also presented in table 1 and for 
SDSOM it is only about 1%. 

The Animal data (the maps in Fig. 2) presents a relatively easy classification task 
because each pattern differs quite significantly, therefore it is a simple challenge for 
any method to separate or classify them individually without the need for generalised 
rules.  Both SOM and SDSOM perform well.  There is however an important qualita-
tive difference between the two results, as Fig. 2a and Fig. 2b clearly shows.  SDSOM 
has projected the classes onto the map in a linearly separable fashion; two straight 
lines can separate the three animal classes on the map.  This is not possible in the 
SOM, which mixes the herbivores and carnivores to a greater extent. The snap mode 
finds some common elements that are specific to herbivores that are not based on the 
overall similarity of herbivores across all dimensions, which is the limitation of LVQ, 
or any method that calculates overall similarity. 

 

Fig. 2a. SDSOM 10x10 applied to Animal 
Data set  + (bird)   o (carnivore)  * (herbivore ) 

Fig. 2b. SOM 10x10 applied to Animal Data 
set  + (bird)   o (carnivore)  * (herbivore ) 
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The Iris maps differ substantially between SOM and SDSOM.  The SOM map pre-
sents a widely dispersed set of points.  They are nonetheless in clear regions associ-
ated with the three classes.  However, the lines between classes in the map are curved 
with several changes of direction and there is no margin between the classes, even in 
the case of the linearly separable classes.  In the SDSOM map, the margin between 
setosa and the other two classes is significant, and the linearly inseparable verginica is 
more tightly grouped than in SOM.  These factors give a classification advantage to 
SDSOM of 99% as opposed to 95%, and the t test (t=2.92, p=0.05) indicates a 95% 
probability of this 4% difference being statistically significant. 

 

Fig. 3a. SDSOM 50x50 applied to Iris Data 
set o (verisicolor)  + (setosa)  * (virginica ) 

Fig. 3b. SOM 50x50 applied to Iris Data set 
+ (setosa)  o (verisicolor)  * (virginica )  

 

Fig. 4a. SDSOM 50x50 applied to Wine 
Data set  + (class 1)   o (class 2)  * (class 3 ). 

Fig. 4b. SOM 50x50 applied to Wine Data 
set  + (class 1)   o (class 2)  * (class 3 ).  

 
The average separation on the Wine data map of the classes is larger in SDSOM, 

and the classification is 92.6% as opposed to 86% with SOM, a result that is 90% 
likely to be statistically significant (t=2.27, p=0.1). 
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Fig. 5a. SDSOM 50x50 applied to Ecoli 
Data set  + (class 1)   o (class 2) * (class 3 ). 

Fig. 5b. SOM 50x50 applied to Ecoli Data 
set  + (class 1)   o (class 2) * (class 3 ). 

 
The Ecoli data set has 8 classes but only 3 are given on the pictures above. The 

E.coli data is clearly a challenging problem, with a range of methods achieving  81% 
correct classification, for example using an ad hoc structured probability model, a 
binary decision tree, or a Bayesian classifier [15].  Similarly, SOM based classifica-
tion yields 81%. SDSOM achieves 84.6%, with a t test indicating 95% confidence 
(t=2.45, p=0.05) of the improvement over SOM being statistically significant. 

4   Conclusion 

In this work a method for using the snap-drift principle in the training of a Self 
Organinzing Map is considered. The resulting algorithm is called snap-drift SOM 
(SDSOM). SOM is useful for data visualisation and to some extent for classifica-
tion.  SDSOM explores whether some advantages of the modal combination of 
LVQ and min learning that has been effective elsewhere with snap-drift can be 
successfully transferred into SOMs.  SDSOM requires fewer epochs than the origi-
nal SOM because snap is a rapidly convergent form of adaptation, but we also see 
that there are differences both in terms of the maps that are formed and the classi-
fication results obtained from the maps.  Snap-drift creates tighter groupings 
within the map and typically wider margins between groupings, and where those 
groupings correspond to classes this supports more effective classification. Be-
cause snap modifies drift by minimising or removing dimensions in weight space, 
fewer input variables are represented in the weight vectors than in LVQ and the 
feature gradient across the SD Self-organising Map is steeper than in SOM. Con-
sequently, the map class-regions are more compact in SDSOM. When compactness 
is measured as the average proportion of the map space covered by the outline of 
the class groupings, the SDSOMs are about 30% more compact than the SOMs. 
The groupings are also more widely separated. The average distance between the 
centroids of groupings in the SDSOMs is 35% of the maximum possible separa-
tion, compared to 20% in SOMs. 
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Abstract. The capability of Self-Organizing Maps (SOM) to visualize high- 
dimensional data is well known. The presented work concerns a SOM based di-
agnostic system architecture for the monitoring of fault evolution in bearings. 
Bearings form an essential part of rotating machinery and their failure is one of 
the most common causes of machine breakdowns. A SOM based approach has 
been used to map time series of feature data produced by acceleration sensors in 
order to capture the process dynamics. The fusion of specific features and the 
introduction of new features related to fault severity can enable the monitoring 
of fault evolution. The evolution of system states showing the bearing health 
trend has been shown to warn of impeding failure.  

Keywords: self-organizing maps, bearing faults, feature fusion, condition 
monitoring, fault evolution. 

1   Introduction 

The bearing is at the heart of rotating machinery which plays a very important role in 
industrial applications and is mainly used to support the axle in rotating machinery. 
Their failure during practical operation can lead to machine breakdown. Accordingly, 
in order to increase reliability and reduce loss of production, condition monitoring of 
bearings has become important in recent years. The use of vibration signals is quite 
common in the field of condition monitoring and fault diagnosis of bearings [1]. A 
comprehensive review on techniques that are used for condition-based rotating ma-
chinery prognostics is given in [10]. 

There is a large body of literature on different usage of signal processing tech-
niques to detect faults in rolling element bearings. To make mention of a few, Fast 
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Fourier Transform, Wigner–Ville distribution [2], wavelets [3] are classic signal 
processing methods. Newly introduced signal processing techniques include spectral 
kurtosis [4] and cyclostationary analysis [5]. Intelligent techniques like SOM and 
multilayer perceptrons have been used for residual life prediction [9]. 

2   Diagnosis of Faults in Rotating Machinery 

The use of vibration signals is quite common in the field of condition monitoring of 
rotating machinery. These signals can also be used to detect the incipient failures of 
the machine components, through an on-line monitoring system, reducing the possi-
bility of catastrophic damage and the down time.  

The Self-Organizing Map also called SOM [6] is a neural network that maps sig-
nals from a high-dimensional space into a one- or two-dimensional discrete lattice of 
neuron units. This study shows how the measurements obtained for a faulty bearing 
can be mapped into a two dimensional state SOM and the temporal evolution of states 
can form a trajectory that can be plotted on SOM, in order to visualize the system 
trend and give an indication about the health status of the bearing.  

The data were obtained from the web database of the Bearing Data Center [7]. 
Three types of fault conditions were accounted for simulating fault development for 
faults appearing on the same bearing; normal bearing; bearings with a fault width of 
0.007 inches and fault width of 0.021 inches at the inner raceway. In the current paper 
the main objective was the assessment of the severity of the fault. Previous work with 
the other datasets from the same database has focused on the discrimination of differ-
ent types of faults depending on their position on the bearing [11]. 

3   SOM Approach for Monitoring Fault Evolution 

Feature extraction was performed using two features, Kurtosis and a newly proposed 
feature consisting of the line integral of the acceleration signal. The introduction of 
the line integral feature as presented in Eq (2) is justified from the ability of such a 
feature to represent frequency changes in the signal. The Kurtosis is the fourth mo-
ment about the mean normalized with variance and it is given by Eq (1): 
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The proposed line integral feature for a sliding window of N sampling points is given 
by Eq (2): 
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Where N is the number of sample points (equal to 500 for the training set) in the win-
dow used to calculate Kurtosis and Ts is the sampling period.  
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The feature vectors are then fed to the SOM for training. To test the effectiveness 
of SOM, several snapshots of data corresponding to a fault evolution in a similar 
bearing but at different horsepower of 1 Hp were used to test the generalization of the 
SOM. The methodology was implemented by using the SOM Toolbox for Matlab [8]. 

4   Results and Discussion 

For the experiments in this paper a map size of 4x67 was used. This specific SOM 
shape has been selected because it enables the mapping of feature combinations cor-
responding to fault evolution in a way that different fault classes form distinct zones 
on the SOM. Following a voting procedure for label allocation, Fig. 1(a) shows clear 
clusters on the SOM with associated classes corresponding to fault evolution.  

 

    
(a) (b) (c) (d) 

 
Fig. 1. Different manifestations of the features are shown: 

 

(a) Assigned labels corresponding to different fault widths (0: no fault, 1: width 0.007 inches, 2: 
width 0.021 inches).  
(b) Component map corresponding to Kurtosis with darker areas corresponding to lower rela-
tive values.  
(c) Component map corresponding to Line integral with darker areas corresponding to lower 
relative values.  
(d) Formation of trajectories for 30 data vectors for testing the correct classification of faults. 
All faults have been assigned to clusters having the same class as the real fault 

 
The component maps in Figs. 1(b) and 1(c) show the distribution of Kurtosis and 

line integral values respectively for the units of the SOM. The distribution of Kurtosis 
as shown in Fig. 1(b) indicates a sensitivity of Kurtosis to minor faults compared to 
normal bearings and larger faults (of 0.021 inches width). On the other hand the pro-
posed feature of the line integral is more sensitive to extended faults as shown in Fig. 
1(c). The fusion (by concatenation) of the features resulted in a more accurate separa-
tion of classes related to fault extent. This is evident from the mapping of fault classes 
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in the SOM representation which shows the labels of each SOM unit in Fig. 1(a). The 
testing of the SOM with fault data from a similar bearing running at a power of 1 Hp 
shows that the 30 testing samples form a trajectory in Fig. 1(d) that falls by 100% in 
the correct corresponding classes indicating normal and faulty conditions.  

5   Conclusions 

It has been shown that the SOM can be used to detect faults in roller bearings and 
assess the severity of the faults, and can therefore prove to be a powerful tool for 
bearing health monitoring especially regarding monitoring of fault evolution. Differ-
ent stages of fault evolution may be indicated by a collective response of several fea-
tures, which may not be obvious by just looking at the data using other diagnostic 
techniques. It is planned that this work be extended to include more real data, differ-
ent features and spall sizes for bearings in gearboxes or other machines. 
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Abstract. One way to handle the perception of images that change in

position (or size, orientation or deformation) is to invoke rapidly changing

fiber projections to project images into a fixed format in a higher cortical

area. We propose here a model for the ontogenesis of the necessary control

structures. For simplicity we limit ourselves to fiber projections between

two one-dimensional chains of units. Our system is a direct extension of a

mathematical model [1] for the ontogenesis of retinotopy. Our computer

experiments are guided by stability analysis and show the establishment

of multiple topographic mappings implementing different translations,

each projection associated with a single control unit. The model relies

on neural signals with appropriate correlation structure, signals that can

be generated by the network as spontaneous noise, so that the proposed

mechanism could act prenatally.

1 Introduction

When we visually inspect an object, its images on our retina change quickly with
motions of the eye and of the object itself, and a challenge to understanding
visual perception is to cope with these image transformations. There are mainly
two approaches to achieve invariance. One solution is to extract and compare
features that are invariant to transformations [2,3,4]. Because it neglects explicit
representation of relations, this approach is difficult to handle, for instance,
cluttered scenes with multiple objects. In addition, learning high-order features
has been achieved only for restricted object classes. General learning is still an
unsolved problem.

The other solution that has repeatedly been proposed is based on rapidly switch-
ing fiber projections [5,6,7,8,9]. These have to be controlled by specialized units
able to gate connections [7,8,9,10], an idea similar to bilinear formulations [11].
There has not been much work on how these transformation representations are
developed or learned. A few systems have demonstrated the possibility of learning
from images that undergo transformations [12,13]. We are interested in the ques-
tion whether they can be developed before eye opening. Studies on prenatal devel-
opment have mainly focused on the formation of topographic mappings between
brain areas. One of the most studied problems is retinotopy, the development of a
single ordered projection between retina and tectum [14,1,15].
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In this paper, we study the development of multiple mappings, each of which
representing a different transformation parameter. Our model is guided by a
system for the ontogenesis of fixed retinotopic mappings [1], which we call the
Häussler system and describe briefly in section 2. Section 3 presents our extended
system for the development of multiple mappings with linear analysis. Simulation
results are given in section 4, and section 5 concludes.

2 The Häussler System for Retinotopy

The Häussler system for the ontogenesis of retinotopy [1] describes the estab-
lishment of an ordered projection between retina and tectum, each modelled
as a closed one-dimensional chain of N elements. The projection between the
two domains is represented by a set of links (τ, ρ), where τ and ρ are points in
the tectum and retina, respectively. The weight wτρ of link (τ, ρ) indicates the
strength with which τ and ρ are connected, with a value zero representing the
absence of a connection. The set of all links forms a mapping W = (wτρ).

The Häussler system is described by the set of N × N differential equations:

ẇτρ = fτρ(W ) − wτρBτρ(f(W )) (1)

where the growth term fτρ(W ) of link wτρ expresses the cooperation from all
its neighbors, and α is a non-negative synaptic formation rate: fτρ(W ) = α +
wτρ

∑
τ ′,ρ′ C(τ, τ ′, ρ, ρ′)wτ ′ρ′ .

The coupling function C(τ, τ ′, ρ, ρ′), a monotonically falling function of both
|τ − τ ′| and |ρ − ρ′|, describes the mutual cooperative support that link (τ, ρ)
receives from its neighbors (τ ′, ρ′). The derivation of the C function from signal
correlations in retina and tectum can be found in [16]. The second term in (1)
describes convergent and divergent competition between synapses and has the
form Bτρ(X) = 1

2N

(∑
τ ′ Xτ ′ρ +

∑
ρ′ Xτρ′

)
.

An analytical treatment of the system was also provided in [1]. There it was
shown that starting from around W = 1 (the matrix in which all entries are equal
to 1), the system (1) reaches as final state in the form of a diagonal matrix, that
is, a precise topographic mapping. Due to periodic boundary conditions (retina
and tectum both being circularly closed chains), any of N mappings, related by
cyclic permutation (translation) in either retina or tectum, can be reached as final
state, the symmetry between them being broken spontaneously by the system.

3 The Formation of Multiple Topographic Mappings

3.1 System Description

Here we describe the ontogenesis of a system composed again of two cyclic chains
of N units. This time, we aim, however, at the development of M different
topographic mappings that are related by relative translation. These mappings
are to be installed under the control of M units that form a third cyclic chain.
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The basis for this functionality are 3-way connections wτρσ, by which an active
control unit σ activates a topographic mapping between the chains with index
τ and ρ. The purpose of our system is to organize these 3-way connections. For
a preliminary report on a related system see [17].

Our system is a straightforward generalization of the original Häussler system,
which is the special case for M = 1:

ẇτρσ = fτρσ(W ) − wτρσBτρσ(f(W )), (2)

fτρσ(W ) = α + wτρσ

∑
τ ′,ρ′,σ′

C(τ, τ ′, ρ, ρ′, σ, σ′)wτ ′ρ′σ′ , (3)

B(X) =
1
3

⎛⎝ 1
N

∑
τ ′

Xτ ′ρσ +
1
N

∑
ρ′

Xτρ′σ +
1
M

∑
σ′

Xτρσ′

⎞⎠ . (4)

C again is a cooperative coupling function, which we assume (as before) to be
normalized to sum 1. Fig. 1 shows an example of the C function modelled by a
3D separable Gaussian C(τ, τ ′, ρ, ρ′, σ, σ′) = Cτ (τ − τ ′)Cρ(ρ − ρ′)Cσ(σ − σ′).

C σ−section
C τ−section C ρ−section

Fig. 1. An example of coupling function C, a 3D separable Gaussian. The size and

standard deviation in dimensions τ, ρ, σ are (13, 2), (13, 2), (9, 1.3), respectively. Shown

are 3 sections of the 3D function (a section ξ (ξ = σ, τ, ρ) keeps the ξ-dimension

constant at ξ′ = ξ while plotting the other two dimensions).

3.2 Linear Analysis

As in the Häussler system under periodic boundary conditions, the homogeneous
state W0 = 1 (i.e., the 3D matrix with all entries equal 1) is a fixed point
of the system. Analysis is performed around W0, by introducing the deviation
V = W − W0 as a new variable. The system is then

V̇ = L(V ) + Q(V ) + K(V ),

where L(V ), Q(V ), K(V ) are linear, quadratic, and cubic terms, respectively. In
particular, the linear term has the form

L(V ) = −αV + C(V ) − B(V ) − B(C(V )). (5)

We analyze the system based on the expansion of the system state V in terms
of eigenfunctions (“modes”) of the linear term (5). The eigenfunctions are the
complex exponentials
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eklm(τ, ρ, σ) = exp(i
2π

N
(kτ + lρ) + i

2π

M
(mσ)), (6)

for k, l ∈ ZN and m ∈ ZM .
The corresponding eigenvalues are

λklm =

⎧⎪⎪⎨⎪⎪⎩
−α − 1, k = l = m = 0
−α + (γklm − 1)/3 − 2/3, one of k, l, m nonzero, the others zero

−α + 2(γklm − 1)/3 − 1/3, two of k, l, m nonzero, the third zero

−α + γklm, all k, l, m nonzero

(7)

where γklm is the eigenvalue of the C function for mode eklm.
If we assume the C function to be symmetric, Cξ(ξ − ξ′) = Cξ(ξ′ − ξ) for

ξ = σ, τ, ρ, the eight modes with the largest eigenvalues are e±1±1±1 (“princi-
pal modes”), all having the same eigenvalue λ = −α + γ±1±1±1. The control
parameter α can be set such that λ is the only positive eigenvalue, leading to
the growth of the principal modes only. With that parameter, the eigenvalues of
all other modes (“ancillary modes”) will be negative, so that the amplitudes of
these modes will, in the absence of non-linear interactions, decay to 0.

The principal mode that is favored in the initial condition is the pattern that
dominates the linear regime of the dynamics. In each layer spanned by two of
the variables τ, ρ, σ the principal modes have the form of a broad diagonal whose
position shifts continuously under variation of the third index.

Outside of the linear regime, that is, for final amplitudes in V , nonlinearities
take effect, and the principal modes excite higher frequency modes of the same
orientation and phase. In the end, all excited modes contribute to a narrow
diagonal. Rather than giving the detailed analysis, we numerically integrate the
system and show the results in the next section.

4 Experiments

We here present the simulations of a system with N = 16 and M = 5 or M =
16. The dynamics of the system described in equation (2) is simulated using
the fourth-order Runge-Kutta method and starting from an initial state that
is close to the stationary state W0 = 1 (each link being perturbed by additive
independent random deviations uniformly distributed in the interval (0, 0.1)).
For the control parameter α we assume the values 0.5 (for M = 16) and 0.3 (for
M = 5). The cooperative function C is a 3D separable Gaussian with standard
deviation equals 1 in dimensions τ and ρ, whereas in dimension σ the value is
either (a) 0.67 for M = 5, or (b) 1 for M = 16.

Final states are shown in Fig. 2. In the case (a) of M = 5 the final state has
the form of a diagonal that is a few units wide and the position of which changes
progressively with the index σ, in the case (b) with M = 16 the diagonal is one
unit wide, again progressing regularly with σ.
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(a)

(b)

Fig. 2. Topographic mappings formed. N = 16. (a) M = 5, and (b) M = 16.

5 Conclusion and Discussion

We have presented a model for the ontogenesis of multiple topographic fiber
projections between two one-dimensional chains of units, each projection imple-
menting one translation parameter. The model only needs correlated noise as
input, so the proposed mechanism could act prenatally. Our system is a math-
ematical idealization which would have to be expanded and modified in various
directions to be directly applicable to the biological case or to computer vi-
sion. In comparison to realistic models, the autonomously self-organizing system
presented in this paper has the advantage of permitting rigorous mathematical
analysis.

One direction of expansion is to invariance in other transformation parameters
such as orientation and scale. This generalization has one complication. Mutually
overlapping transformations, which necessarily share point-to-point links, cannot
be straight-forwardly organized with the current approach, in which the domains
of different control units compete with each other. For a possible solution see
[18]. A more systematic treatment is to expand point-to-point links to include
orientation and scale of feature detectors. Correspondingly, also the control space
will have to be expanded (where it may be hoped that that space can be covered
by a combination of control units in low-dimensional subspaces, combining their
control multiplicatively). This inclusion of feature specificity in the projections
may solve the above problem of link-wise collision of projections for different
scale and orientation, in that links avoid overlap in terms of feature specificity
when they overlap in terms of position. When successful, the expansion to two-
dimensional case without periodic boundary conditions is straightforward. These
and other extensions will have to be the subject of future work.
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Abstract. This paper investigates the ability of STRAGEN to con-

struct state trajectories so as to control the locomotion of legged robots.

STRAGEN is a model of a self-organized artificial neural network which

has a variable topology. Two scenarios are developed: one for checking the

behavior of STRAGEN vis-à-vis noisy data and other to test the ability

of STRAGEN to construct states belonging to different trajectories.

Keywords: Central Pattern Generator, Self-Organizing Map.

1 Introduction

The control of locomotion and the reproduction of a certain gait, in a robot in
which the lower limbs have multiple degrees of freedom, is a complex problem
[1]. Some of the most common approaches [2,3,4,5,6] used to solve this problem
are related to the CPG (Central Pattern Generator). From the biological point
of view, a CPG is a neural circuit, found in vertebrates, capable of producing
rhythmic neural signals without receiving rhythmic stimuli. During locomotion
neural oscillators produce periodic discharges of nerve impulses that activate
the motor neurons, thus producing sequences that alternate between flexion and
extension in various muscles of a limb.

To control the gait of legged robots, Ijspeert et al [3,7] drew up a biologically
inspired model in which the behavior of CPG is described by a set of systems
of coupled non-linear oscillators. Arena et al [5] employed Cellular Nonlinear
Networks to play the role of the CPG. These CPG models, based on systems of
differential equations, demand adjusting a set of parameters or even modifying
these equations so as to produce a desired gait. Such a setting up is based on
evolutionary algorithms [7], reinforcement learning [2], or on a specific method-
ology for adjusting these parameters [5]. This cited models generate a particular
gait in accordance with their pre-determined equations and parameters.

STRAGEN (State Trajectories Generator) is able to control the robot based
on postures that describe a gait regardless of the approach used to generate these
state trajectories. STRAGEN is a self-organizing map with a variable topol-
ogy able to generate state trajectories [8]. This article investigates the ability of
STRAGEN to construct state trajectories for to control the gait of legged robots.
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STRAGEN constructs trajectories from a set of posture points by differentiat-
ing trajectories with different velocities, autonomously. Therefore, two scenarios
were developed: the first tackles the ability of STRAGEN to deal with noisy
data and the second checks if STRAGEN constructs states belonging to differ-
ent trajectories, i.e. constructs different gaits. In addition, this article makes a
parametric study of STRAGEN vis-à-vis these scenarios. STRAGEN can con-
struct state trajectories from a databases of individual postures in which it
establishes the temporal sequence of states through the determination of states
neighborhood, controlling the robot gait. The previous models are limited to
generating a particular gait in accordance with their pre-determined equations
and parameters.

Section 2 describes STRAGEN. Experiments are shown in Section 3. Finally
some conclusions are drawn in Section 4.

2 STRAGEN

STRAGEN [8] has a Training Phase to represent the topology of the solution
space and to adapt itself while it receives examples from a given set of data.
The objective of the Trajectory Generation Phase is to find the best trajectory
of a set of states, according to a given criterion. The trajectory is generated
by a diffusion algorithm that propagates energy from a final point through the
network until it reaches an initial point.

2.1 STRAGEN Algorithm

In order to train STRAGEN, consider C the set of connections between these
nodes, ξ a sample input, w the vector of weights. Initialize set A with two nodes
n1 and n2 placed in wn1 and wn2 , in R

D, representing two random patterns of
the data set, where D is the dimension of the input data, thus A = {n1, n2}.

The vector of weights w may contain heterogeneous information, divided into
m groups with elements belonging to one and the same domain. Two groups of
these m groups have greater importance in the algorithm: the group vζused to
calculate the activity of the neuron and the group vη used to create the network
neighborhood. The vector of weights is w = [v1...vζ ...vη...vm]T .

The training algorithm of STRAGEN is presented below:

1. Present a sample ξ = [v1...vζ ...vη...vm]T to the network;
2. For each weight vector in the network, calculate the Euclidean distance to

the input stimulus ‖ξ(t)η −ws1,η‖, determine the nearest s1 and the second
nearest unit to the input sample s2 according to the criterion of the chosen
neighborhood, in which ξ(t)η is the group vη;

3. Update the number of wins of the winner;
4. Enter a new connection between s1 and s2, if they do not yet exist;
5. Calculate the activity of the input stimulus ξ in relation to the winner node

(s1) for each subgroup of the activity group vζ ;
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6. If the activity of any subgroup of vζ is less than a threshold established for
this subgroup, then add a new node in the exact location of the example
input;

7. If no new node is inserted in the previous step (6), update all elements vi of
the vector of weights of the winner node s1;

8. Calculate the average size μ and the standard deviation σs of all the con-
nections k = |Ns1 | emanating from the winner node s1; where |Ns1 | is the
number of neighbors of s1, e i ∈ Ns1 .

9. If |Ns1 | > 2 , remove all the connections from the set C for which: Dst(s1, ni)
> μ + 0.8 ∗ σs, i ∈ Ns1 .

10. Remove all nodes without neighbors: |Ns1 | = 0.
11. Repeat all the steps from step 1 until a maximum number of iterations, or

some other stopping criterion has been reached.

A trajectory between two states is yield according to a function of energy propa-
gation in the network. The target node has an assigned energy value of 1.0. The
energy flows through the network iteratively, from neighbor to neighbor until
it reaches node representing the initial state. A cyclical trajectory comprises a
set P of control states that are processed in pairs to form the sub-trajectories
that make up the cyclical trajectory. The control states P = {p1, p2, ..., pn}, are
processed as follows:

1. Repeat for i from 1 to n − 1:
(a) Run the algorithm for generating the trajectory passing pi as the target

and pi+1 as the starting point;
(b) Save the trajectory between pi and pi+1;

3 Experiments

The experiments investigate the ability of STRAGEN to reproduce a certain gait
from the positions generated for the robot. The robot used in the experiments
has six limbs, each with three degrees of freedom, i.e. three joints. Of these three
joints, two remained free and the most extreme joint remains with its angle set
at 100 degrees, which comes to a total of 12 variables controlled by the system.

Three databases were used to perform the experiments and represented three
different gaits: wave, medium and trot, for speeds of slow, moderate and fast
respectively. These bases were generated from the model by Arena et al. [5]. This
model was implemented in C++ programming language and validated with the
results shown in [5] and with the help of the Gazebo simulator [9] which was
made suitable for the simulation of dynamic and outdoor environments. These
databases contain the postures of the robot during the execution of a particular
gait for complete step, states being collected every 330 milliseconds. A posture
is defined by the angular position of the 12 free joints of the robot.
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3.1 Noise

This stage of the experiment tests the ability of STRAGEN to deal with noisy
data. Out of the three original databases, nine new databases were created, so for
each gait three databases were prepared, one for each noise level. The noise was
generated with a Gaussian function with a mean of 0 and a standard deviation
of 0.001, 0.01 and 0.1 applied to the original data (Table 1). The STRAGEN
set-up was: the pruning parameter was set to 0.8; the motor babbling procedure
was not used; three control points, each chosen for each third of the total of
training samples; the initial learning rate was 0.1 and the final one 0.001; the
maximum number of victories for the winner neuron was 40; the neighborhood
and activity group were taken as the entire vector of characteristics; there was no
subgroup of activity. The stopping criterion of the training was for the number
of connections in the network not to increase after 300 iterations.

Table 1. Experimental Setup for the three Gaits

Setup Gait Noise Activity Threshold Dynamic Time Warping

1 Wave 0.001 0.900 6.0103 × 10−6

2 Wave 0.010 0.890 5.5686 × 10−4

3 Wave 0.100 0.460 1.6560 × 10−1

4 Medium 0.001 0.540 7.0740 × 10−6

5 Medium 0.010 0.550 6.6158 × 10−4

6 Medium 0.100 0.465 1.9200 × 10−1

7 Fast 0.001 0.700 4.3887 × 10−6

8 Fast 0.010 0.660 3.2041 × 10−3

9 Fast 0.100 0.480 1.8443 × 10−1

Algorithm DTW (Dynamic Time Warping) [10] was used to make the com-
parison between the trajectories generated by STRAGEN from noisy data and
the original noise-free trajectories. Each scenario was run 30 times, the results
(Figure 1) were generated for a free joint. The noise of 0.1 is high enough to
mix two samples that were previously represented by different neurons. Thus,
the activation threshold needed to be reduced so that each neuron represented
a larger region of space. Consequently fewer neurons come to represent a tra-
jectory, implying there was a reduction in the quality of the resulting trajectory
(Table 1).

In all situations, STRAGEN managed to recover the original trajectory. Par-
ticularly in the situations where the noise applied was higher (0.1), lines 3, 6
and 9 of Table 1, STRAGEN managed to recover the original trajectory sat-
isfactorily. With a noise level of 0.01 and 0.001, the trajectories generated by
STRAGEN were very similar to the originals (Table 1).
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Fig. 1. Results for the highest levels of noise, gaussian noise with standard deviation

(a) 0.01 in medium gait and (b) 0.1 in wave gait

3.2 Three Gaits one Data Base

At this stage of the experiment, the data for the three gaits were stored in one
database at random, with no information on the sequences of the states in each
trajectory. STRAGEN generated each of the three trajectories from the points
stored. STRAGEN parameters are the same as in Section 3.1, except for the ac-
tivation threshold, set to 0.65. We ran STRAGEN 30 times, and in all of them, it
generated the three trajectories completely. Probably two factors contributed to
the success of STRAGEN: the high dimensionality of the samples with discrim-
inating information; and the capture of the distinct way the postures, expressed
by the values of joint angles, vary for each gait. Therefore STRAGEN presented
a crucial emergent property: a different synchronism between limbs for differ-
ent gaits. Figure 2 illustrates the relationship of proximity between the neurons
resulting at the end of training by STRAGEN.

Fig. 2. Each node in the graph represents one STRAGEN neuron, thus a state. The

figure shows the three gaits.
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4 Conclusion

This article dealt with a model of Self-Organizing Map of variable topology that
can generate state trajectories, STRAGEN, which was applied to the problem
of controlling the locomotion of legged robots. The most notable contribution of
STRAGEN is its ability to construct any kind of state trajectory and from this
trajectory to control the robot gait. Each one of the trajectories is constructed
autonomously by STRAGEN from the set of postures, which may be noisy or be-
longs to different gaits. During the experiments, to build any kind of trajectories
only the activity threshold needs to be determined.

Two interesting issues to be investigated in the future are: the creation of a
mechanism for transition between gaits, and the automatic adjustment of the
activity threshold for a desired trajectory.
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Abstract. The Self-Organising Map (SOM) is a well-known neural-

network model that has successfully been used as a data analysis tool in

many different domains. The SOM provides a topology-preserving map-

ping from a high-dimensional input space to a lower-dimensional output

space, a convenient interface to the data. However, the real power of this

model can only be utilised with sophisticated visualisations that provide

a powerful tool-set for exploring and understanding the characteristics of

the underlying data. We thus present a novel visualisation technique that

is able to illustrate the structure inherent in the data. The method builds

on minimum spanning trees as a graph of similar data items, which is

subsequently visualised on top of the SOM grid.

1 Introduction

The Self-Organising Map [2] (SOM) is a prominent tool for data analysis and
mining tasks. It’s main characteristic is a topology-preserving mapping (vector
projection) from a high-dimensional input to a lower-dimensional output space.
The output space is often a two-dimensional, rectangular lattice of nodes, which
offers a convenient platform for plotting the topology of the high dimensional
data for subsequent analysis tasks.

However, to fully exploit the potential of SOMs for data analysis and mining,
it has to be combined with visualisations that additionally uncover the properties
of the map and underlying data, e.g. cluster boundaries and densities. In this
paper, we thus propose a novel technique that is able to visualise the similarity
relationships. It is based on constructing a minimum spanning tree, which is then
visualised on the SOM grid. This visualisation indicates, by connections across
the map, which parts of the SOM are similar, and thus can uncover groups or
clusters of related areas on the map. We compare this novel method with earlier
visualisation techniques, and evaluate the benefits of the new method.

The remainder of this paper is organised as follows. Section 2 gives an overview
on the SOM and its visualisations. Section 3 then introduces the concept of
minimum spanning trees, and details how they can be applied to Self-Organising
Maps. In Section 4, we present an experimental evaluation of the method on two
benchmark datasets. Finally, Section 5 provides a conclusion.
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2 Self-Organising Map and Visualisations

The SOM performs both a vector quantisation, i.e. finding prototypical represen-
tatives in the data, similar to k-Means clustering, as well as a vector projection,
i.e. a reduction of dimensionality. The SOM projection is, as faithfully as pos-
sible, preserving the topology of the input data, i.e. items located close to each
other in input space will also be mapped close to each other on the map, while
items distant in the input space will be mapped to different regions of the SOM.

The SOM consists of a grid of nodes (or units), each being associated with a
model vector in input space. The grid (or lattice) is usually two-dimensional, due
to the convenience of visualising two dimensions and the analogy to conventional
maps. The nodes are commonly arranged in rectangular or hexagonal structures.
The model vector of node i is denoted as mi = [mi1, mi2, ...min]T ∈ �n, and is
of the same dimensionality as the input vectors xi = [xi1, xi2, ...xin]T ∈ �n.

After initialisation of the model vectors, the map is trained to optimally de-
scribe the domain of observations. This process consists of a number of iterations
of two steps. First, a vector x of the input patterns is randomly selected. The
node with the model vector most similar to x is computed, and referred to as
winner or best matching unit (BMU) c.

In the second step, the SOM is learning from the input sample to improve
the mapping, i.e. some model vectors mi of the SOM are adapted, by moving
them towards x. The degree of this adaptation is influenced by two factors. The
learning rate α determines how much a vector is adapted, and should be a time-
decreasing function. The neighbourhood function hci is typically designed to be
symmetric around the BMU, with a radius σ; its task is to impose a spatial
structure on the amount of model vector adaptation.

As noted earlier, the SOM grid itself does not reveal much information about
the relationships inherent to the data, besides their location on the map. A set
of visualisation techniques uncovering more of the data and map structure has
thus been developed. They are generally superimposed on the SOM, focusing on
different aspects of the data.

Some methods rely solely on the model-vectors. Among them, Component
Planes are projections of single dimensions of the model vectors mi. With in-
creasing dimensionality, however, it becomes more difficult to perceive important
information from the many illustrations. The U-Matrix [7] shows local cluster
boundaries by depicting pair-wise distances of neighbouring model vectors. The
Gradient Field [4] has some similarity with the U-Matrix, but applies smooth-
ing over a broader neighbourhood. It uses a vector field style of representation,
where each arrow points to its closest cluster centre.

A second category of techniques take into account the data distribution on
the map. Labelling techniques plot the names and categories of data samples. Hit
histograms show how many data samples are mapped to a unit (c.f. the textual
markers in Figure 1, where units with no marker contain no data inputs, and
are so-called interpolation units). More sophisticated methods include Smoothed
Data Histograms [3], which show data densities by mapping each data sample to
a number of map units. The P-Matrix [6] depicts the number of samples that lie
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within a sphere of a certain radius around the model vectors. The density-graph
method [5] shows the density of the dataset on the map. It also indicates clusters
that are close to each other in the input space, but further apart on the map,
i.e. topology violations. The graph is computed in input space, and consists of a
set of edges connecting data samples which are ’close’ to each other. Closeness
can be fined based on a k-nearest neighbours scheme, where edges are created
to the k closest peers of each data sample. A second approach connects samples
with a pairwise distance below a threshold value r, i.e. the samples within the
hyper-sphere of radius r. The parameters k and r thus determine the density of
the resulting graph. To visualise the graph, all samples are projected onto the
SOM grid, and connecting lines between two nodes are drawn if there is an edge
between any of the vertices mapped on those two nodes.

3 Minimum Spanning Tree Visualisation

A spanning tree is a sub-graph of a connected, undirected graph. More precisely,
it is a tree, i.e. a graph without cycles, that connects all the vertices together. A
graph can have several different spanning trees. By assigning a weight to each
edge, one can compute an overall weight of a spanning tree. A minimum spanning
tree is then a spanning tree with the minimum weight of all spanning trees.

The weights assigned to the edges often denote how unfavourable a connection
is. A Minimum Spanning Trees then represents a sub-graph which indicates a
favoured set of edges on the graph. Applied to SOMs, a Minimum Spanning Tree
can be used to connect similar nodes with each other, and can thus visualise
related nodes on the map. A graph on the SOM can be defined by using either
the input data samples or the SOM nodes as vertices. The weights of the edges
are computed by a distance metric between the vectors of the vertices, i.e. the
input vectors or the model vectors, respectively.

When constructing the MST with the SOM nodes, it can be visualised by
connecting lines between the two nodes that represent the vertices in each edge
of the MST. When using the input data samples, first the best-matching-unit of
each of the vertices is computed, and then again these two nodes are connected by
a line. An illustration of these two visualisation technique is given in Figure 1(a)
and 1(b). It can be observed that in both versions, sub-groups emerge.

The tree, by definition, fully connects all vertices, which, at first glance, makes
it more difficult to spot the clusters. In Figure 1, this is especially the case when
using the SOM nodes as vertices. Thus, a slight modification of the visualisation
indicates the weights of the edges via the line thickness. We define the thickness
as inverse proportional to the distance of the two nodes, i.e. to the weight of the
edge, normalised by the maximum distance in the tree. Therefore, edges in the tree
between very similar vertices are indicated by thick lines, while thin lines indicate
a large distance. This approach is illustrated in Figure 1(c) and 1(d). It can be
observed that the clusters are now visually much more separated than before.
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(a) SOM node vertices (b) Input data vertices

(c) SOM node vertices, weighted (d) Input data vertices, weighted

Fig. 1. MST visualisation, two sources of vertices (Iris dataset, 10x10 nodes)

4 Experimental Evaluation

We evaluate our visualisation method by applying it to two benchmark datasets.
The first is the Iris dataset [1], a well-known reference dataset, describing three
kinds of Iris flowers by four features: sepal length, sepal width, petal length, and
petal width. The classes contain 50 samples each. One class is linearly separable
from the remaining two, which in turn are not linearly separable from each
other. This separation can be easily seen in the MST visualisation in Figure 1.
Connections concentrate within the one separable class in the lower-left corner,
and the two other classes in the rest of the map. Only one connection cuts across
the boundary, as an implication of the full connectivity of the MST. Applying
the line-thickness weighting clearly reveals the separation.

A comparison to the density graph is given in Figure 2. With a k value of
1, both visualisation reveal similar information. The MST visualisation seems
clearer when it comes to within cluster relations, e.g. in the upper-right area.
With a k of 1, the density graph doesn’t indicate the relations between the
many nodes that form small sub-graphs with one other node. With higher k, the
display of local relations is traded for a better display of the cluster density.

In the display of the MST visualisation based on the model vectors of the
SOM, the separation is not so apparent. While the MST considers all vertices,
in a SOM, as mentioned earlier, there is often a number of nodes that do not
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(a) k=1 (b) k=5 (c) k=10

Fig. 2. Density Neighbourhood Graph on Iris Dataset (10x10 nodes)

(a) Small map (10x10 nodes) (b) Large map (18x12 nodes)

Fig. 3. MST visualisation on Iris dataset, SOM node vertices, weighted lines, no inter-

polation nodes

hold any data samples, but serve as interpolation units along cluster boundaries.
The model vectors of these nodes are located in an area in the input space that is
either very sparsely populated, or not populated at all. To alleviate this problem,
the user can select a mode that skips these interpolation nodes. Illustrations of
the previously mentioned map, and a larger map, are given in Figure 3. Applying
this filtering technique, the cluster structure is now more clearly visualised.

The second dataset is artificially created1, to demonstrate how a data analysis
method deals with clusters of different densities and shapes when these different
characteristics are present in the same dataset. It consists of ten sub-datasets
that are placed in a 10-dimensional space; some of the subsets live in spaces of
lower dimensions. Figure 4 shows the visualisations of this dataset: (a) depicts
the SOM nodes based MST visualisation, with weighted line thickness. As in this
map the number of interpolation nodes is very high, only the variant skipping
interpolation nodes yields a clear illustration. The MST on the input data is
given in (b), compared to the neighbourhood density graph in (c). The two
variants of the MST visualisation show very similar structures, with just minor
differences. Compared to the density graph, the MST visualisation better depicts
the relation between the subsets in the centre and upper-right corner.

1 The dataset can be obtained at http://www.ifs.tuwien.ac.at/dm/dataSets.html

http://www.ifs.tuwien.ac.at/dm/dataSets.html
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(a) SOM node vertices (b) Input data vertices (c) Density Graph, k=10

Fig. 4. Visualisations of the artificial dataset: MST (a), (b) and density graph (c)

5 Conclusions

We presented a visualisation technique for Self-Organising Maps based on Min-
imum Spanning Trees. The method is able to reveal groups of similar items,
based on graphs built either of the input data, or the SOM nodes.

We evaluated the visualisation, and compared it to the density graph method,
and found it to reveal similar information. The visualisation is not dependent on
a specific user parameter, which is beneficial for novice users. The method oper-
ating on the SOM node vertices generally has lower computation time than the
density graph method, as the number of nodes in a SOM is generally a magnitude
smaller than the number of data samples. This variant can also be computed
when the training data is not available. The visualisation can be superimposed
on other techniques, such as the U-Matrix or Smoothed Data Histograms, which
enables the display of various types of different information at once, without
having to compare different figures.
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Abstract. In this paper, we consider how to represent world knowledge

using the self-organizing map (SOM), how to use a simple recurrent

network (SRN) to device sentence comprehension, and how to use the

SOM output space to represent situations and facilitate grounded logical

reasoning.

1 Introduction

The self-organizing map (SOM) is a well known neural network algorithm. The
map is typically a 2-dimensional array, the nodes of which become specifically
tuned to various input signal patterns or classes of patterns in an orderly fashion
[1]. The SOM provides a means for modeling concept formation and symbol
grounding [2,3]. It also can be used for implicit representation of conceptual
hierarchies [1]. In this paper, we focus on the question how to conduct basic
logical reasoning within the SOM framework. Moreover, we wish to connect
the level of representing knowledge propositionally with its representation in the
form of natural language sentences. The framework would also allow multimodal
grounding of the knowledge (see e.g. [4]) but we do not address the issue here.

In a related work, Duch has provided an overall view and motivation on neu-
rocognitive modeling of linguistic processing [5]. In relation to conceptual mod-
eling, he states that each node in a neurally plausible semantic network is a
neural circuit, with similarities and associations between concepts resulting from
sharing some common elements or mutual activations that are responsible for
semantic priming [5]. Consistent with this line of thought, Miikkulainen devel-
oped already some time ago a system for story comprehension using the SOM
as a conceptual memory [6]. Later, the model has been extended to include re-
current processing of sentence structures [7]. In a recent work, Mayberry and
Miikkulainen have introduced a new connectionist model called InSomNet [8].
Their results show that InSomNet learns to represent semantic dependencies
accurately and generalizes to novel structures. The InSomNet system interprets
sentences nonmonotonically, generating expectations and revising them, priming
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future inputs based on semantics, and properly coactivating multiple interpre-
tations of expressions [8].

Frank has presented a model in which basic logical operations can be repre-
sented as a certain kind of Venn diagram manipulations on the SOM surface [9].
Our current work is closely related to Frank’s approach. We verify his experimen-
tal results, provide some extensions, and build further the underlying theoretical
framework. Starting with a model basically focused in the use of self-organizing
maps to carry out knowledge representation based on the comprehension of sit-
uations from a story created from the combination of basic propositions and the
study about how to extract inferences from this representation [10], Frank adds
a sentence comprehension model [11,9] based on a microlanguage that intends
to learn how to relate a set of input sentences with the microworld situations
represented onto a SOM map, and accomplish some kind of abstraction learning
in the sentence comprehension.

As the main objectives in this paper, we consider how to represent proposi-
tionally defined situations using the SOM, how to represent the processing and
structural representation of related sentences using recurrent neural networks,
and how to evaluate the comprehensibility of the sentences in the framework of
this methodology. We also consider how logical reasoning can be conducted using
the SOM output space as grounding for the propositional elements. We present
the underlying theory and methodology as well as an illuminative experiment.

2 Methods

The objective of this work is threefold: (1) to represent world knowledge using
the self-organizing map (SOM), (2) to use a simple recurrent network (SRN)
to device sentence comprehension, and (3) to use the output space to represent
situations and facilitate grounded logical reasoning. We will apply set theory and
fuzzy set theory [12], clause logic, neural networks (specifically simple recurrent
neural networks [13] and the self-organizing map [1]).

The degree of fit between an input value and a particular prototype in the
SOM is interpreted as an membership value in the fuzzy set theory. We also
assume that the proportional size of the distribution on the map related to
a specific input approximates the probability of this input. Furthermore, we
assume that the distributions on the map can be interpreted as fuzzy Venn
diagrams allowing for basic set-theoretic operations (see e.g. [14]). Venn diagrams
show possible logical relations among a finite collection of sets.

Simple recurrent network is a variant multilayer perceptrons. In a simple
recurrent network, a set of context units is added to the three-layer network. The
connections from the hidden layer to context units allow the network to model
time-dependent phenomena and perform tasks like sequence prediction. [13]

2.1 World Knowledge Representation

In order to implement world knowledge, we shall begin by constructing a defined
microworld framework in which a set of situations takes place. After defining the
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Table 1. Examples of the basic events in the microworld

No. Name Meaning

1 70s In the 70s decade.

2 80s In the 80s decade.

3 lcSuccess LC gets success.

.. ... ...

15 bdHome BD is at the home country.

16 bdEurope BD is in Europe.

17 accompanied He is/they are accompanied.

microworld and its constraints, we explain how the microworld knowledge can
be represented by means of the help of the Self-Organizing Maps.

Following the model presented in [10], the knowledge of a microworld is learned
implicitly by means of training a set of example situations that fulfill the mi-
croworld definition; each one of them is created from combining the events such
as presented in Table 1. Thus, the SOM output of the model is expected to
reflect the inherent regularities, constraints and the a priori probabilities of oc-
currences of the concrete events within the microworld. This serves as a kind of
“experience” the system has after being trained with a set of microworld example
situations.

After training, a situation in the microworld is represented by a high-dimen-
sional vector of n = 150 components (a SOM map). This implementation in
which a situation is contained in a vector of fixed size of n elements allows a
representation in which n is independent of the size of the example set, although,
at the same time, by reducing the dimensionality from k, size of the example
set, 227 in this case, to n = 150, some of the information contained in the
previous example situations set may be lost. A situation vector is in the form
s(p) = (s1(p), s2(p), ..., sn(p)), where every si(p) has a value between 0 and 1
for every event p (p can, in fact, be any combination of events) that indicates
the extent to which the component, or more precisely, the cell in the SOM, is a
part of the representation of p ([9]). As it can be observed in Fig. 1, the pattern
representing ”lcHome” overlaps with the pattern in which ”lcWrites”, showing
that if LC is writing a book, LC is at the home country.

In general, a situation can be represented on a map so that it is possible to
obtain the probability of occurrence of such situation and any combination of

Fig. 1. A subset of the component planes of a situation map
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Fig. 2. Basic logical reasoning at the SOM output level

situations by means of fuzzy set theory. Taking the example shown in Fig. 2
where p and q are situations with a probability of 0.5 each one in the microworld
and taking into account the equations si(¬p) = 1−si(p) and si(p∧q) = si(p)si(q)
every logical combination of situations can be represented.

Since there is no one-to-one correspondence between propositions and dimen-
sions in the taken representation of situations, we use belief values in order to
figure out the results that are given as situation vectors. Let X = (x1, x2, ..., xn)
be a situation vector, with n as the number of situation-space dimensions. As a
result of training the SOM, the probability (the probability estimate is approxi-
mated) that situation X occurs in the microworld equals the fraction of the map
it covers ([9]). The belief values τ for a situation X and for a situation p in X
are defined as:

τ(X) =
1
n

Σixi. τ(p|X) =
Σisi(p)xi

Σixi
. (1)

2.2 Sentence Comprehension

Next, we convert sentences from a microlanguage to the representation of the
corresponding microworld situation.

The microlanguage used in the experiments consists of 13 words: LC, BD,
and, is, gets success, fails, performs concert, writes book, records CD, at home,
in Europe, single, accompanied. With these words and following the rules of the
grammar in Table 2, 396 different sentences can be obtained by associating each
of them with a microworld situation.

Microlanguage sentences are transformed into situational vector representa-
tions by training a simple recurrent neural network [13]. The input layer of the
network consists of 13 units, one for each word in the microlanguage. The hidden
layer has 50 units and the output layer 150 units, one for each dimension of the
situational space.

The words of a sentence are processed one-by-one, so only one of the input
units is active at any moment. This way, the output of the network can be
observed at any moment and it is possible to analyze how the representation of
the situations gets defined as the sentence gets completed.

Belief values are useful in measuring the performance of the model after the
network has been trained. The belief value of a situation X(p), represented by
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Table 2. Grammar of the microlanguage

S → NP VP

NP → LC | BD | LC and BD | BD and LC

VP → Action [Place | and is State | and Result]

→ is Place [and Action | and State | and Result]

→ is State [and Action | Place | and Result]

→ Result [and Action | Place | and is State]

Action → writes book | performs concert | records CD

Place → at home | in Europe | at home and in Europe | in Europe and at home

State → single | accompanied

Result → gets success | fails

the output for a certain sentence, should be larger than the a priori belief value
of the situation p corresponding to that sentence:

compr(p) =
τ(p|X(p)) − τ(p)

τ(p|p) − τ(p)
. (2)

When τ(p|X(p)) > τ(p), the comprehension score is higher than 0 and the
network reflects a comprehension of the sentence, having the ideal case when
τ(p|X(p)) = τ(p|p), and the score is 1. On the other hand, when the score is
negative the network is misunderstanding the sentence and there is no compre-
hension when the result equals 0.

3 Experiments

In the following, we describe the experiments conducted in this work including
both the formation of the self-organizing map of the situations and simple recur-
rent network model of the sentences describing the situations in a microworld.

The example situations set constitutes the input of the SOM and consists
of 227 example situations that follow the microworld constraints so that every
situation in this set is obtained by one or more propositions combined. Each of
the input example situations is a vector μ = (μ1, μ2, ..., μm), m = 17, which is
the number of events in the microworld, so that a component μi is equal to 1 if
it is the case of the example situation or 0 if it is not.

The SRN network is trained with a set of 368 sentences that are presented
to the network randomly. The rest of the sentences are not trained and they
are used as a test set. After training and calculating the comprehension scores
for the sentences present in the training set, the percentage of comprehended
sentences is 89.7% and the mean of the score is 0.3931. In the other hand, a set
of 20 sentences not presented to the network during the training but referring
to situations in the microworld that were already present in the training set are
considered as well, obtaining a score mean of 0.3330 within the 18 of the 20
sentences that were comprehended. Finally, a set of 8 sentences not presented
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describing new situations resulted in a score mean of 0.3799 and 7 of this set of
8 sentences had a comprehension score above 0. Furthermore, the results show
how the short sentences lead to higher comprehension scores than the long ones.

4 Conclusions

In this paper, we have described an approach which enables representation of
situations in a microworld using the self-organizing map algorithm and process-
ing of sentences that describe the situations using simple recurrent network. We
have also considered how to conduct basic logical reasoning at the output level
of the self-organizing map in a Venn diagram like manner. The approach seems
to facilitate well a grounded approach for modeling story comprehension. The
present study is based on a microworld in which the number of different sit-
uations and sentences is small. Future research is needed to test how well the
methodology scales up to large real-world applications.
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Abstract. We propose an on-line action-dependent heuristic dynamic pro-
gramming approach based on recurrent neural network architecture – Echo state 
network (ESN) – as critic network within the frame of adaptive critic design 
(ACD), to be used for adaptive control. Here it is applied to the optimization of 
a complex nonlinear process for production of a biodegradable polymer, briefly 
called PHB. The on-line procedure for simultaneous critic training and process 
optimization is tested in the absence and presence of measurement noise. In 
both cases the optimization procedure succeeded in increasing the productivity 
and in proper training of the adaptive critic network at the same time. 

Keywords: Adaptive critic design, Action dependent heuristic dynamic pro-
gramming, Echo state network, PHB production process. 

1   Introduction 

Reinforcement learning (RL) is introduced as a method of artificial neural network 
training “by experience”, rather than “by examples”. Created initially to mimic animal 
behavior in an attempt to explain Pavlovian conditioning, RL is also recognized as an 
approximation of Bellman’s dynamic programming method [1] that is well known in 
the control community. During the last thirty years theoretical developments in this 
field (a very exhaustive retrospective can be found in [9]) have lead to methodologies 
known as neuro-dynamic programming [2] and adaptive critic designs (ACD) [13] 
also commonly known as Adaptive Dynamic Programming. The core of the methods 
is the approximation of Bellman’s equation or value function (which is the discounted 
sum of future rewards) using neural networks (also called “heuristic adaptive critic”). 
Having such well-trained critic networks allows solving dynamic programming or RL 
tasks in a forward manner. Different training schemes for adaptive critic design de-
pend on the presence or absence of a model of the environment [13]. In both cases the 
critic’s training is done using temporal difference (TD) error [20] thereby mimicking 
the brain’s ability to learn how to predict future outcomes on the basis of previous 
experience without awaiting the final results of future actions. The key component of 
ACD training and solving the task of behavioral optimization is the backpropagation 
method essentially based on the chain rule of derivative calculation [22]. 
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Usually the critic is trained off-line since it needs a collection of a variety of data 
from the beginning to the end of several process runs. Combination between off-line 
and on-line learning is also considered [15]. True on-line applications of ACD ap-
proaches, however, need very fast training algorithms [16]. In highly non-linear envi-
ronments the necessity for additional feedback connections arises, which further com-
plicates the on-line training. In such cases the application of backpropagation trough 
time (BPTT) [22] is an alternative. However, it is impossible to be used in an on-line 
mode. Instead of that the Extended Kalman Filter (EKF) method [4] is usually ap-
plied, which is more complicated and resource demanding. Hence it is crucial to work 
towards finding simply trainable recurrent network structures for ACD schemes. 

The recently proposed ESN structure [4, 5, 10] incorporates a dynamic reservoir 
generated randomly and easily trainable output neurons. The less complex and much 
faster Recursive Least Square method (RLS) [4] can be applied for their on-line train-
ing. Moreover, the derivative calculation with respect to the ESN inputs (that is 
needed for gradient descent), requires much less computational effort, because of the 
ESN structure that naturally separates the reservoir from its input and output connec-
tions. In our previous investigations we applied this approach to a robot control task 
for obstacle avoidance [8]. Two approaches to ESN training were investigated: with 
and without initial intrinsic plasticity (IP) adjustment of the reservoir connectivity as 
it was proposed in [8]. The results definitely showed that initial IP adjustment im-
proved the stability of further ESN on-line training and that ESNs are a good candi-
date for an on-line trainable critic network.  

In the present work on-line training of ESN critic for solving the optimization task 
of a complex nonlinear process of biopolymer production is further investigated. 
There are examples of ACD applications to re-optimization of a biotechnological 
process [3] but the critic network was trained off-line using sufficiently rich data. In 
our present work the training and optimization procedures are applied on-line, order-
ing a cycle of critic training with an optimization cycle one after another. Two cases 
are investigated: one without noise in state variable measurement and one with 1% 
measurement noise. In both cases the critic is able to cope with the process behavior 
and to predict future outcomes sufficiently accurate so that its predictions can be used 
for further optimization. In both cases the increase of productivity is bigger and the 
number of training cycles is significantly smaller in comparison to results obtained in 
[6] where the critic was a backpropagation network without recurrent connections. 

2   Problem Statement 

2.1   ACD Approach 

The ACD approach also called neural dynamic programming or heuristic dynamic 
programming [2, 13] is an approximation of the classical dynamic programming in 
which the Bellman equation is approximated by a neural network that is then used to 
predict the future utility function to be minimized by adjusting control actions. The 
scheme for on-line training of ACD without known process model (that is analog to 
the RL task) is given on Figure 1 below. 
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Fig. 1. ACD scheme (adopted from [18]). Dashed lines represent the training cycle. 

The vector R(k) represents the object state vector, u(k) is the control variable, r(k) 
is the binary reinforcement signal that indicates “success=0” or “failure=-1” of the 
present control strategy. The critic NN has to be trained to predict the utility function 
U(k) by approximating Bellman’s equation as follows: 

( ) ( )( ) ( ) ( )( )∑
=

=
k

t
tutRUtkukRJ

0
,, γ  (1) 

where γ is discount factor taking values between 0 and 1. 
In [18] both neural networks (action and critic) are trained by backpropagation us-

ing the following errors to be minimized: 

( ) ( ) ( ) ( )( )krkJkJkce −−−= 1γ  (2) 

for the critic network and 

( ) ( ) ( )kUkJkae −=  (3) 

for the action network. 

2.2   Echo State Networks 

ESNs are a kind of recurrent neural networks that arise from so called “reservoir 
computing approaches” [10]. The basic ESN structure is shown in Figure 2 below. 

 

Reservoir 

outWinW

kX

resW
ku ky

 

Fig. 2. Echo state network structure  
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The ESN output vector y(k) for the current time instance k is usually a linear func-
tion of its input and current state 

( ) ( ) ( )[ ]⎟
⎠
⎞⎜

⎝
⎛= kXkuoutWoutfky ,  (4) 

Here, u(k) is a vector of network inputs and X(k) a vector composed of the reser-

voir neuron states; fout is a linear function (usually the identity), Wout is a trainable 
)( Xnunyn +×  matrix (here ny, nu and nX are the sizes of the corresponding vectors 

y, u and X). The neurons in the reservoir have a simple sigmoid output function fres 
(usually tanh) that depends on both the ESN input u(k) and the previous reservoir 
state X(k-1): 

( ) ( ) ( )⎟
⎠
⎞⎜

⎝
⎛ −+= 1kXresWkuinWresfkX  (5) 

Win and Wres are Xnun ×  and XnXn ×  matrices that are randomly generated and 

are not trainable. There are different approaches for reservoir parameter production 
[10]. A recent approach used in the present investigation is proposed in [17]. It is 
called intrinsic plasticity (IP) and suggests initial adjustment of these matrices, aiming 
at increasing the entropy of the reservoir neurons outputs. 

ESN training can be done in an off-line or an on-line mode. For on-line training, 
the RLS algorithm [5] was proposed. It is claimed that it converges fast and it is less 
computationally expensive in comparison to BPTT-EKF methods [14]. 

Another useful property of ESNs is the simplified calculation of derivatives of its 
output with respect to its inputs (needed further for action network training) due to 
separation of the reservoir from the readout. 

Indeed, the partial derivative of y(k) with respect to the input vector u(k) depends 
only on the input and output weights and on the current reservoir’s state. In compari-
son to typical layered neural networks with feedback connections there is no need to 
account for the structure of the internal reservoir. Hence the ESN structure allows 
faster and easier calculation of "ordered" derivatives [22] on-line. 

2.3   PHB Production Process  

The object under consideration here (PHB production process) is a kind of mixed 
culture cultivation biotechnological process. Mixed culture systems are quite common 
in nature: the human body, waste water treatment, ecosystems are some well known 
examples. In such systems one microorganism assimilates substrate A and converts it 
to metabolite B which is converted by another microorganism to metabolite C. Since 
the change in culture conditions affects all microorganisms differently it is difficult to 
control them in an optimal way. That is why they are extremely difficult for dynamic 
analysis and control strategies in typical industrial applications. Subject of our opti-
mization here is a mixed culture system where sugars (glucose) are converted to lac-
tate by the microorganism L. delbrueckii and then the lactate is converted to PHB 
(poly-β-hydroxybutyrate) by the microorganism R. euthropha. The main product 
obtained – PHB – is a biodegradable polymer used as thermoplastic in food and drug 
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industry. The main purpose of the process control strategy is to maximize the final 
product of the process (PHB) accounting for the needs and mutual relations of both 
microorganisms in the culture. By now several approaches to this problem are known. 
In [21] quite a complete mathematical model of the process has been developed and 
different control strategies were exploited separately or in combination. Several intel-
ligent control approaches are also applied to this process: optimization of the glucose 
and ammonium time profiles is done using neural networks for process model and 
feed-back controller in [11]; based on the available expert information about the 
proper process control strategies three fuzzy rule-bases for the time profiles of the 
three main control variables (dissolved oxygen, glucose and nitrogen source concen-
trations) are synthesized in [7]; in [12] genetic algorithm optimization is applied for 
the same purpose; in [6] the ACD approach using layered critic architecture without 
feedback was applied to synthesis of glucose concentration optimal time profile, but it 
is reported to suffer from very slow convergence. 

The PHB production process was modeled by a system with seven nonlinear ordi-
nary differential equations details of which can be found in previous works [7, 21]. In 
present study the aim was to optimize set point time profiles of all three variables 
used as control inputs - dissolved oxygen (DO*), glucose (S*) and nitrogen source (N*) 
concentrations. The previously developed model is used as process simulator as it is 
difficult to make multiple real on-line experiments with such kind of processes. 

3   Results and Discussion  

In the present investigation the action dependent heuristic dynamic programming is 
applied. The main goal is to maximize the process outcome, i.e. the target product 
PHB (denoted by Q here) by the end of the process. The utility function is: 

( ) ( ) ( )∑
=

=
k

t
tVtQkU

0
 (6) 

The reinforcement signal indicates the failure (r(k)=-1) when the working volume 
V of the bioreactor is filled over its limit (3.5 liters). Otherwise r(k)=0. 

Vector R(k) includes all the main process state variables, i.e.: 

( ) ( ) ( ) ( ) ( ) ( ) ( )( )kQkNkXkPkSkXkR ,,2,,,1=  (7) 

where X1 and X2 denote concentrations of two microorganisms and P – the interme-

diate metabolite (lactate) concentration The control vector is created by the three 
optimized set points: 

( ) ( ) ( ) ( )( )kDOkNkSku *** ,,=  (8) 

We suppose that the all concentration controllers work properly and are able to fol-
low their set points. The applied control scheme is described in more detail in [7, 21]. 
The on-line critic training and optimization algorithm in program-like code is shown 
below: 
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γ=0 
initialize ESN and other variables 
start training cycles 
 for t=0 to tf 

  simulate the process state variables 
  if it is critic training cycle 
   if it is first critic training cycle 
    do IP improvement of ESN critic network 
   else 
    train ESN critic network 
   end 
  else it is action training cycle 
   use ESN critic to predict utility function 
   do optimization of three set point profiles 
  end 
 end 
 if the action training cycle is just finished 
  increase γ 
  switch to critic training cycle 
 else 
  switch to action training cycle 
 end 
end 

 
For the ESN critic training and simulation a Matlab toolbox from [19] with our im-

provements for IP training as in [17] was used. The critic network has 9 inputs, 10 
reservoir neurons and 1 output. The reservoir neurons have tanh output function. 
Instead of a complex action network here we have only time profiles of the set points 
of the sugar, nitrogen and dissolved oxygen concentrations that have to be adjusted 
during the training phase. The initial set point profiles were taken from [7]. The train-
ing procedure is the same described in section 2. After every action training iteration 
parameter γ is increased by 0.001 and its final value after 1000 iterations is 0.5. 

Figure 3 presents the initial and trained time profiles of all three variables set 
points as well as the initial and final product outcome for two training procedures 
(with and without noise). The achieved increase of the final product concentration is 
summarized in Table 1. The table also compares these results with those from previ-
ous work [6] where backpropagation network critic without feedback connections was 
used. In [6] it was noticed that the MLP critic is unable to learn precisely to predict 
the future outcomes on-line. In fact the optimization procedure works more like sim-
ple BPTT gradient optimization and hence is very slow. This is mainly because the 
RL approach developed in [18] is intended for cases where the punish/reward signal is 
received at the end of the process. However the more common dynamic programming 
approach must be able to solve true optimization tasks with utility functions that ac-
cumulate intermediate rewards too (as in the case considered here). The number of 
iterations needed in the case of ESN critic is considerably lower having in mind that 
in [6] for each time step and hence for each training data point the critic training pro-
cedure is repeated several times (according to the algorithm in [18]). In contrast, the 
ESN critic was just trained after the first iteration and without repeating of training  
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Fig. 3. Optimization results for: (a) sugar’s concentration set point profiles; (b) nitrogen source 
concentration set point profiles; (c) dissolved oxygen concentration set point profiles; (d) prod-
uct concentration. 

data points. The product outcome is increased significantly in the case of optimization 
procedure using ESN critic and without measurement noise but even in the case of 
1% measurement noise the optimization procedure with ESN critic network still out-
performs the procedure in [6]. 

Table 1. Comparison of product outcome after optimization and needed iterations number 

 g/l % increased iterations needed 
initial outcome 4.06 --  
in [6] 4.15 2.13 over 3000 
without noise 4.64 14.28 1000 
with 1% noise 4.22 3.92 1000 

 
Figures 4 and 5 present the critic training results after first iteration and at the end 

of iterations. The mean square errors in both cases are summarized in Table 2. As can 
be seen from the figures, at first iteration the ESN critic is trained almost perfectly 
even in the presence of measurement noise – result that is hard to be achieved on-line. 
Even after 1000 iterations and simultaneous optimization that changes control vari-
ables and hence the overall process state variables behavior, the ESN critic still copes 
with on-line training well enough to be used for optimization purposes. 
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Fig. 4. Critic training without noise: (a) critic output after first iteration; (b) critic output at the 
end of learning 
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Fig. 5. Critic training with 1% noise: (a) critic output after first iteration; (b) critic output at the 
end of learning 

Table 2.  ESN critic’s training mean square errors 

 After first training iteration At the end of training 
without noise 4.5512*10-5 9.3449*10-4 
with 1% noise 3.1805*10-4 0.012 

4   Conclusions  

In the present paper an ACD optimization approach with ESN critic is tested by simu-
lations on optimization of a complex nonlinear system - a bioprocess for biopolymer 
production. It is shown that the proposed training procedure of ESN critic – a combi-
nation between initial IP training of the reservoir and RLS for the reservoir readout at 
the next iterations – is able to learn to predict future outcomes and to optimize the 
process simultaneously. The approach also demonstrated measurement data noise 
tolerance. The comparison with previous attempts to optimize the same process using 
ACD with backpropagation critic [6] definitely confirmed the superiority of the ESN 
critic in the ACD scheme. 
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The presented initial tests of the proposed new combination of ACD with ESN 
critic open a new direction of work that could allow true on-line critic training in 
ACD schemes thus revealing a promising area of investigations towards its real-time 
embedded application of adaptive control of complex nonlinear real-world systems. 
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Abstract. Optical data communication systems are prone to a variety of proc-
esses that modify the transmitted signal, and contribute errors in the determina-
tion of 1s from 0s.  This is a difficult, and commercially important, problem to 
solve.  Errors must be detected and corrected at high speed, and the classifier 
must be very accurate; ideally it should also be tunable to the characteristics of 
individual communication links.  We show that simple single layer neural net-
works may be used to address these problems, and examine how different input 
representations affect the accuracy of bit error correction.  Our results lead us to 
conclude that a system based on these principles can perform at least as well as 
an existing non-trainable error correction system, whilst being tunable to suit 
the individual characteristics of different communication links. 

Keywords: Error correction, classification, optical communication, adaptive 
signal processing. 

1   Introduction 

Fibre-optic data links are near ubiquitous in high-speed and long-distance data com-
munications.  Links of this type are subject to a combination of random processes and 
deterministic or quasi-deterministic effects, all of which can serve to degrade their 
performance [1].  Some of these arise as a result of the properties of the materials and 
equipment used, whilst others are a consequence of the design of the communication 
system and the regime under which it operates.  Each installed fibre-optic link has a 
set of individual specific transmission impairments all its own: a characteristic signa-
ture of corruptions and distortions it applies to the transmitted signal, and an individ-
ual pattern of errors it introduces into the digital data stream. 

A system that can repair some of these distortions by post-processing the received 
signal, or that can separate line-specific distortions from non-recoverable errors, is 
potentially of great value.  It has already been shown that overall system performance 
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can be improved by employing a variety of post-processing techniques, such as tune-
able dispersion compensation and electronic equalization (see [2-5] and references 
given in those sources).  Post-processing techniques can be applied to signals in the 
optical domain and in the electrical domain (after conversion of the signal into an 
electric current). The use of electronic signal processing for amelioration of transmis-
sion impairments is attractive, and has become popular due to recent advances in 
high-speed electronics.  A system that can be adapted to the characteristics of differ-
ent data links, as proposed here, is of even greater value, as it may be tuned to give 
the best results for an individual link, and re-tuned as its characteristics change, which 
inevitably happens over time. 

In this ongoing project we have applied machine learning techniques to the prob-
lem of adaptive signal post-processing in optical data communication systems.  To the 
best of our knowledge this is the first project in which such techniques have been 
applied to this particular problem, although neural networks have been applied to the 
analysis of performance in an optical channel [6]. 

In earlier work [7] we have demonstrated the feasibility of bit-error-rate improve-
ment by adaptive post-processing of received electrical signals.  Here we considerably 
extend our analysis.  We use a much bigger data set, with data drawn from two differ-
ent channels.  We also use data in which the error rate, using energy thresholding, is 
much higher than before.  This gives our classifier a more challenging task, with more 
errors to identify. 

2   Background 

Optical data communications rely on the modulation of a visible-light or infra-red 
carrier wave to transmit a digital data stream over a fibre-optic link.  There are a 
number of different schemes for modulating a carrier wave, but in this work we as-
sume the simplest form of Amplitude Shift Keying, in which a 1 is represented by the 
light source being on, and a 0 is represented by the light source being off [1] (unsur-
prisingly this is known as On Off Keying).  At the receiving end the light is converted 
into an analogue electrical signal by a photodiode, typically after some filtering. 

In order to correctly reproduce the digital signal that is sent along the link the re-
ceived signal is compared with a decision threshold, allowing discrimination between 
logical 1s and 0s.  There are several ways that this can be done: for example the out-
put current may be examined at an optimized sample point within the time slot for 
transmitting a single bit, or the current may be integrated over some time interval and 
this value may be used for comparison purposes.  The precise method employed de-
pends on the design of the receiver. 

Here we assume that the classification is performed using current integrated over 
the entire time taken to transmit a single bit.  Note that the approach we propose and 
describe here is generic and can be adapted to any receiver design.  To minimize the 
bit-error-rate, we propose a method that permits the receiver to be adjusted to cope 
with the specific transmission impairments for a given link.  This is achieved by ap-
plying learning algorithms based on the analysis of sampled currents within bit time 
slots and adaptive correction of the decisions taking into account accumulated infor-
mation gained from analysis of the signal waveforms. 
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3   Description of the Data  

The data used in these experiments is derived from a simulation of a multiplexed 
optical communications link carrying data bits on five parallel channels.  On Off 
Keying is used to encode the bits for transmission, and the data values are a series of 
floating point numbers, each representing the amplitude of the signal received at a 
specific point in time. 

In this work we use data from two of the five channels, which we refer to as Chan-
nel 1 and Channel 2.  Each channel has its own characteristics and here we do not mix 
the two data sets.  Each data set consists of a sequence of samples representing 
114,681 transmitted bits.  It is worth noting that Channel 2 is not segmented in a 
manner that aligns well with the original bit boundaries, and hence may be harder to 
decode (see Figure 5). 

Each bit in the original signal is represented by a waveform, captured as a sequence 
of 32 floating point numbers: the signal amplitude at each of 32 equally spaced sam-
ple points during a single bit time slot.  The waveform representing a sequence of 5 
consecutive bits is shown in Figure 1. As already explained, a bit may be classified 
according the cumulative amplitude of the light wave.  For each of the simulated light 
pulses in our data we know the original bit that it represents.  Therefore the data con-
sists of 32-ary vectors each with a corresponding binary label. 

 

Fig. 1. An example of the intensity pattern for a stream of 5 bits - 0 1 0 0 1 

Figure 2 gives an example of a bit that is misclassified.  The middle bit of the se-
quence is a 0 but is identified from its cumulative amplitude (henceforth referred to as 
its energy) as a 1.  This is due to the presence of two 1's on either side and to jitter.  It 
would be difficult for any classifier to rectify this error. 

However there are other cases that can be readily identified by the human eye, and 
so may be amenable to automatic identification.  Figure 3 illustrates an example 
where a misclassification occurs, even though the bit pattern seems obvious to the 
human observer.  The central bit is misclassified as a zero based on its energy. 
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Fig. 2. An example of a difficult error to identify. The middle bit is meant to be a 0, but jitter 
has rendered it very hard to see. 

 

Fig. 3. The peak amplitude of the central bit is low, and it is classified as a zero from its energy.  
To the human eye it is ‘obvious’ that it should be classified as a 1 

3.1   Representation of the Data 

The raw data may be pre-processed in a number of different ways before presenting it 
to the classifier.  A single bit may be represented as a 32-ary vector (referred to here 
as the Waveform-1 representation), or as a single cumulative amplitude value (the sum 
of the 32 values, referred to as the Energy-1 representation).  In order to improve 
classification accuracy we may also want to use information that may be present in 
adjacent bits.  We thus create windowed input representations, in which values repre-
senting 3 contiguous bits are concatenated together, with the target output being the 
label of the central bit.  The simplest approach (referred to as Waveform-3) is to use a 
96-ary vector made up of the raw values for three consecutive bits.  An alternative 
(referred to here as Energy-3) is to construct a vector comprising 3 consecutive  
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Table 1. The different data representations employed 

Name Arity Description 

Energy-1 1 The energy of the target bit 

Energy-3 3 The energy of the target bit and one bit either side 

Waveform-1 32 The waveform of the target bit 

Waveform-3 96 
The waveform of the target bit and the waveforms of the bits 

on either side 

E-W-E 34 
The waveform of the target bit together with the energy of the 

bit on either side 

 
energy values. The third such representation we have used (referred to as E-W-E) 
employs a 34-ary vector, made up of the 32-ary vector of the bit being classified and 
the energy values of the bits either side of it in the data stream.  Table 1 gives a sum-
mary of all the different data sets. 

3.2   Setting the Threshold 

In order to find an optimum energy threshold for each channel we conduct a simple 
search for the value that produces the lowest bit error rate across the whole data 
stream for that channel.  Due to the aforementioned misalignment in Channel 2 its 
error rate is much higher than that of Channel 1, with around a quarter of the bits 
being misclassified from their energy.  In order to facilitate an analysis of the data we 
use the optimal threshold to divide it into two disjoint subsets: those bits that are cor-
rectly classified by comparing their Energy-1 value with the optimum threshold for 
the channel in question, and those that are mis-classified.  We call these two subsets 
the easy and hard bits. 

3.3   Visualization Using Principal Component Analysis (PCA) 

As each data point is a 32-ary vector of floating-point numbers it must be projected 
onto a lower dimensional space for visualization purposes.  We use PCA to produce a 
linear projection onto a 2 dimensional space that preserves as much of the variance in 
the data as possible.  Figure 4 shows this projection for the Channel 2 data set. 

In this projection there is a roughly linear separation between the patterns classified 
as 0 and as 1.  This is an expected consequence of using a threshold.  The separation 
is not an exact straight line because the thresholding takes place in a different data 
space to the data in the projection.  The distribution of the hard cases is interesting.  In 
the left hand side of the projection (which contains the easy zeroes) the hard ones 
occupy a distinct area – on the lower side and near the boundary, whereas the hard 
zeroes occupy the higher area on the other side of the boundary.  A substantial pro-
portion of the hard bits are spatially separable from the easy bits with which they are 
being confused, suggesting that a trainable classifier may be of use. 
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Fig. 4. Projection of the Channel 2 data into a 2-D space based on PCA.  The upper plot shows 
just the easy bits and the lower plot shows the data for all bits. 

4   Classifier Used 

The classifiers employed in an optical data communications system need to be very 
fast under normal operating conditions.  Simplicity is therefore a virtue.  The main 
classifier we use in this work is a simple single layer neural network (SLN), compris-
ing a single artificial neuron with a weighted input for each feature in the data vector.  
The SLN’s weight vector can therefore be thought of as a vector in the input space, 
and the decision boundary for the classifier is a hyperplane in the input space that is 
normal to the weight vector.  Training the SLN is an iterative process of modifying the 
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position of the decision boundary by modifying the weight vector, in an attempt to 
find the best solution to the problem of classifying input vectors into 1s and 0s.  This 
is a simple, convex optimization problem.  For the purposes of this work we use an 
SLN implemented using the NetLab toolbox for MatLab [8].  However, in an optical 
telecommunications system the classifier will have to function with great speed, and 
therefore will need to be implemented in hardware (probably using analogue devices); 
simplicity is therefore a virtue. 

5   Experiments 

As the two channels have different characteristics they are treated separately.  For 
each channel the bit stream is divided into a training set and a test set.  As is normally 
the case it is sensible to validate the selection of the test set by choosing different 
training/test sets and then to report the mean accuracy across the different test sets.  
To this end we perform 10-fold cross-validation of the test set selection. 

We segment the data into 10 test sets. In the first data set (Channel 1) each distinct 
segment has 10,831 easy cases and 637 hard ones.  We therefore construct 10 differ-
ent training set / test set pairs. Hence each training set includes 103,212 cases and 
each test set has 11,468 cases in total.  In each case an SLN is trained on the training 
set and then tested on the corresponding test set.   

For the Energy-1 data set we do not perform cross validation, but simply set the 
threshold that gives the best result over the whole data set, which can be done deter-
ministically (see Figure 1), this represents the baseline performance. 

5.1   Results for Channel 1 

The results reported here are therefore (with the exception of Energy-1) evaluations 
on averages over the 10 different test sets.  The main results are given in Table 2. 

Table 2. The results for Channel 1 

Datasets Mean Accuracy ± Standard Deviation (%) Error Rate (%) 
Energy-1 94.45 5.05 
Energy-3 97.37 ± 0.13 2.63 

Waveform-1 98.30 ± 0.12 1.70 
Waveform-3 98.97 ± 0.13 1.03 

E-W-E 98.36 ± 0.11 1.64 

 
These results are in accord with our earlier results on smaller data sets.  We observe: 

 

• The addition of the energy of the adjacent bit either side of the target bit  
(Energy-3) almost halves the baseline error rate. 

• Waveform-3 gives best performance, reducing the original error rate by nearly four 
fifths. 

• The more information the classifier is given (the arity of the data) the better is the 
performance.  This suggests that all the information used here is useful. 
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5.2   Results for Channel 2 

The results for Channel 2 are interesting. The main results are given in Table 3. 

Table 3. The results for Channel 2 

Datasets Mean Accuracy ± Standard Deviation (%) Error Rate (%) 
Energy-1 74.30 25.70 
Energy-3 87.00 ± 0.24 13.00 

Waveform-1 98.15 ± 0.08 1.85 
Waveform-3 98.85 ± 0.12 1.15 

E-W-E 98.24 ± 0.09 1.76 
 

These results here are more dramatic.  We observe: 
 

• The addition of the energy of the bit either side of the target bit (Energy-3) again 
almost halves the error rate. 

• Waveform-3 again gives best performance, significantly reducing the original error 
rate.  In fact the performance is returned to one that is similar to Channel 1, even 
though this is a much noisier channel.   

• The more information the classifier is given the better is the performance. 
• The neural network manages to overcome the alignment problem by using a weighted 

sum of the inputs rather than just a straightforward sum, as used by the thresholder. 

 

 

Fig. 5. Examples of bits correctly classified by both neural network and the thresholder (blue), 
by the Neural network but not the thresholder (red) and by neither (green) 
 



456 S. Hunt et al. 

 

To give a visualization of what is happening Figure 5 shows some instances of the 5 
bit sequence 10100, where the middle bit is being classified.  This is data from Chan-
nel 2 and the misalignment of the waveform is evident – it is shifted to the left by 
about half a bit width.  In blue there are 50 instances of bits correctly classified by 
both the thresholder and the neural network, 5 instances, in red, where the thresholder 
is incorrect but the neural network is able to classify it correctly and in green 5 in-
stances that neither classifier could correct.  The neural network has learnt the shape 
of a wave representing a one and is able to use this to correct the red bits. 

6   Discussion 

Fast and accurate signal post-processing in optical data communications systems is a 
challenging problem with commercial relevance.  The challenge from a computational 
standpoint to provide a classifier that is sufficiently accurate to reduce bit error rates 
and fast enough to operate in real time.  As a consequence we have restricted our 
investigation to an SLN employing input representations that are simple to obtain 
from a ‘raw’ sampled data stream.  On the large data sets analyzed here we have 
shown we can reduce the error rate by about 80% on a channel where the original 
error rate was about 5%.  But on the channel where misalignment caused the baseline 
error rate to be 25% we could eliminate almost all of these errors and return the error 
rate to just over 1%.   

A further benefit of the method proposed here is that the weight vector of an SLN 
is trainable, so an individual classifier can be tuned to fit the characteristics of a spe-
cific fibre-optic link, and a new weight vector can be found each time the characteris-
tics of the link change sufficiently that the bit error rate rises above an acceptable 
level.  This may be achieved by re-tuning an adjustable classifier in place, or simply 
by replacing an existing classifier with a new one that performs better. 
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Abstract. Classification systems meant to operate in non-stationary environ-
ments are requested to adapt when the process generating the observed data 
changes. A particularly effective form of adaptation in the abrupt perturbation 
case suggests to release the obsolete knowledge base of the classifier (or train-
ing set), and consider novel samples to configure the new classification model. 
In this direction, we propose an adaptive classifier based on a change detection 
test used both for detecting changes in the process and identifying the new 
training set (and, then, the new classifier). A key point of the proposed solution 
is that no assumptions are made about the distribution of the process generating 
the data. Experimental results show that the proposed adaptive classification 
system is particularly effective in situations where the process generating the 
data evolves through a sequence of abrupt changes. 

Keywords: Adaptive Classifiers, Change Detection Tests.  

1   Introduction 

In the real world, data coming from industrial or environmental processes change 
their statistical behavior over time due to thermal drifts, aging effects, transient and 
permanent faults. This evolutionary nature is particularly evident in sensors subject to 
stress such as in X-ray detectors (due to the invasive nature of the radiation), elec-
tronic noses (due to thermal and humidity effects, as well as degradation of the active 
film) and monitoring system working in harsh environments (e.g., presence of water, 
dust, etc). Whenever a change occurs subsequent data violate that stationary hypothe-
sis traditionally assumed in the design of the application solution, here assumed to 
contain a classifier. As a consequence, the classifier accuracy degrades, possibly im-
pairing the quality of service of the application.  

The need to deal with nonstationary conditions or concept drift [1][2] led to the de-
velopment of classification systems able to adapt their knowledge base (i.e., training 
set) and in turn their parameters or model family to track the process evolution. In 
particular, [3] suggests the “instance selection” approach to trade-off accuracy and 
computational complexity. There, classifiers provide a classification value of a given 
input by relying on a subset of the knowledge base representing the current state of 
the process. In the same direction, FLORA and FLORA2 [4] suggest to remove a 
fixed 20% of the training samples (e.g., the oldest training pairs) from the knowledge 
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base when a change is suspected (i.e., when the accuracy of the classifier decreases 
below a user-defined threshold). Differently, [5] suggests to adapt the knowledge base 
over the last samples which are assumed to contain supervised patterns. 

A different and effective approach is proposed in [7] where the Just-in-Time (JIT) 
adaptive classifier integrates a change detection test to detect the change and an adap-
tive knowledge management phase removes obsolete training samples and inserts 
fresh ones.  A soft version extends JIT classifiers to address the smooth drift case [8].  

JIT classifiers consider the CI-CUSUM [6] test both to assess the stationary hy-
pothesis and identify the training samples relevant to the classifier. Recently, a novel 
change detection test based on the Intersection of Confidence Intervals rule (ICI) has 
been proposed in [9]. The test appears to be very promising as it guarantees a higher 
detection ability with lower detection latency and a contained computational com-
plexity compared to the CI-CUSUM test. Moreover, the ICI test revealed to be very 
reliable in critical situations where only a reduced data set is available to configure 
the test. Whichever test we consider to detect the change, a mechanism to automati-
cally update the test and the training set after each change detection is required. 

This work provides such a mechanism by presenting a change-detection refinement 
procedure that adaptively identifies, once a change has been detected, the data subset 
representing the new process state. The novelty of the proposed approach resides in 
the change-detection refinement procedure which identifies the training subsequence 
coherent with the current state of the process. The joint use of an adaptive classifier 
and the change detection test allows us for improving the accuracy in stationary con-
ditions and promptly reacting to abrupt changes in non-stationary ones. 

The structure of the paper is as follows. Section 2 introduces the change-detection 
refinement procedure. The ICI-based JIT adaptive classifier dealing with both station-
ary and nonstationary situations is presented in Section 3. Experimental results are 
finally given in Section 4. 

2   Adaptation via Change Detection Test 

Let ,: dX d→ ∈  be a stochastic process generating data from two different 

classes of unknown pdf. Denote by { ( ), 1, , }T x t t TO = = …  the sequence of data (ob-

servations) measured up to time T , and assume that the data are independent realiza-
tions of X . Assume also that the initial 0T  observations have been generated in a 

stationary condition, and that the classification system uses 
0TO observations as train-

ing set. Since the focus is on abrupt changes, we assume that, after time 0T , the proc-

ess X  either does not change or evolves through a sequence of stationary states 
(whose change times need to be detected with a suitable test).  

2.1   Detecting Changes Using the ICI rule 

The change detection tests presented in [9] require a preliminary feature extraction 
followed by a statistical technique, the Intersection of Confidence Intervals (ICI) rule 
[11], [12] to assess the process stationarity.  

At first we compute the sample mean and the sample variance over non overlap-
ping subsequences of ν  observations. Thanks to the Central Limit Theorem and to an 
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ad-hoc transformation of the sample variance suggested in [13] both features jz are 

Gaussian distributed  

 ( )2~ ( ), , 1, , / , 1,2 ,( )j j js sz Ts jμ σ ν= … =N  (1) 

where s indicates the subsequence index and j  is the feature index. The ICI rule, com-

bined with a polynomial smoothing operator applied to ,{ ( )}sjz s  is then used to identify 

possible changes in jμ  (i.e., the expected values for the sample mean and the trans-

formed sample variance) and, in turn, in the stationarity of X . Experiments show that 
the ICI change detection test outperforms state-of-the-art solutions both in terms of 
reliability and computational complexity [9]. A relevant characteristic of this test is that 
it relies only on the tuning parameter 0,Γ >  which does not depend on the change. 

2.2   Change-Detection Refinement Procedure 

Figure 1 a) shows the average Detection Latency (DL), measured as the number of 
observations required to detect an occurred change, over * ,T the time instant where the 
change occurs. It comes out that the later the change occurs, the larger is the number of 
observations (generated in the novel status of X ) needed to detect it with the ICI detec-
tion test. Of course, this is an undesirable behavior which needs to be addressed to make 
the test effective in the long run. Such delays cannot be analytically compensated during 
an on-line data analysis, as they depend on the pdf of X  before and after the change. 
Moreover, Figure 1 a) suggests that, once the change has been detected, the estimate of 

*T can be improved by executing the ICI change detection on shorter observation se-
quences. This is the motivating idea of the change-detection refinement procedure, 
which is briefly described in the following and detailed in Algorithm 1. 

 

 

Fig. 1. Detection Latency (DL) as a function of process change time *T : data are processed in 
subsequences of 20ν =  observations, 2,Γ =  and the stationary state is ~ ( , )X μ σN . Each 
curve represents changes in the process obtained by increasing μ of , ,2 3σ σ σ . Results have 
been averaged over 500 executions.  a) The ICI change detection test (i.e., DL considering T̂ ); 
b) the output of refined procedure (i.e., DL considering refinedT ). 
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Algorithm 1. Change-detection refinement procedure 

1. Let T̂  be the ICI change detection test output; 

2. Compute 1 0 0
ˆ( ) /T TT T λ−= + ; 

3. 1i = ; continue = true; 

4. while  (continue == true){ 

5.      Apply ICI change detection test to 0[0, ] [ ]ˆ,iT T T∪ ; let îT be the result; 

6.      Compute 1 ( ˆ ) /i i iT TT T λ+ −= + ; 

7.      If ( 1, ,min({ }ˆ )j j iT = … < 1iT +  ) 

8.              continue = false; } 

9. Define 1, ,min({ } )ˆ
refined j j iT T = …= ; (Define 0

ˆT T= ). 

 
Whenever the ICI change detection test reveals a process change in T̂ , the refine-

ment procedure analyzes the previous observations to identify a more accurate esti-

mate of the change time *T . Operatively, the analyzed interval 0[ , ]ˆT T  is split in two 

intervals 0 1[ , ]T T  and 1,[ ]ˆT T  whose lengths are determined by the parameter 1λ >  

(line 2), and then the ICI change detection test is run on 0 1
ˆ[[0, ]] ,TT T∪  (line 5) pro-

viding (a possible) detection 1̂T . This is considered a more accurate estimate of *T , 

as the test operates on a shorter sequence w.r.t. the former detection.  The procedure is 

then iterated by further splitting 1[ , ]ˆT T  (line 6), until the earliest detection is reached 

by the leftmost interval bound (line 7).  An illustrative example of the change-
detection refinement procedure is shown in Figure 2.  

 

Fig. 2. Change-detection refinement procedure: an example with 2.λ =  Initially (first line) a 

change is detected in ˆ,T  and the refinement starts by computing 1T . The test is thus executed 

on 0 1
ˆ[[0, ]] ,TT T∪ , resulting in a detection  at 1T̂ (second line). This procedure is iterated com-

puting 2T and running the ICI change detection test on 0 2
ˆ[[0, ]] ,TT T∪ . The procedure is termi-

nated when 3 2 ( min{ˆ ˆ })jT T T> = . The output is 2
ˆ

refinedT T= , and 2[ ], ˆT T is assumed to be gener-

ated by X in the novel (stationary) state. 
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Note that this procedure provides the estimate refinedT of *T which is expected to be 

less affected by the systematic delays shown in Figure 1 a). It comes out that the  
observation interval 0,[ ]refined TT  can be considered as being generated by X in the new 

stationary state. Figure 1 b) shows that the change-detection refinement procedure 
effectively reduces DL when *T increases.  

3   ICI-Based Adaptive Classifier 

The joint use of the ICI change detection test [9] and the change-detection refinement 
procedure allows us for devising a novel classification system following the philoso-
phy of the JIT soft adaptive classifier delineated in [7]. Similarly to the JIT soft classi-
fier, classification is performed with a k-NN classifier, while stationarity of X is moni-
tored through the ICI change detection test.  

 
Algorithm 2. ICI-based adaptive classifier (x) 

1. { }0 01,..,I T= , { }0 0( ( ), ( )), ;Z x t y t t I= ∈  

2. estimate  k
 
 by means of LOO on 0 ;Z  

3. configure the ICI change detection test using 
0
;TO  

4. 0 1;t T= +  

5. while (1) {  

6.      if (new knowledge on )(tx  is available) { 

7.           1 { };t tI I t− ∪=  

8.           { }1 ( ( ), ( )) ;t tZ Z x t y t−= ∪  

9.            update k  using Equation (3) of [7]. } 

10.      else { 

11.           1 ;t tI I −=  

12.           1 ;t tZ Z −= } 

13.      if (ICI test ( )( )x t  == “ X is NOT stationary”) { 

14.            run the change-detection refinement procedure (Algorithm 1);  
15.            configure the ICI change detection test using 0 ];,[ refined TT   

16.            set { }, ;t t refinedI t I t T= ∈ >  

17.            set { }( ( ), ( )), ;t tZ x t y t t I= ∈  

18.            estimate k  by means of LOO on ;tZ } 

19.      classify ( )x t  using ( )( ), , tk NN x t k Z− ;  

20.      1;}t t= +    
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The proposed ICI-based adaptive classifier is presented in Algorithm 2. More in de-
tail, the sequence {( ( ), ( )), }T TZ x t y t t I∈=  consists of all the supervised couples 

( ( ), ( ))x t y t  available and TI  contains their observation time instants. Define  

0 0{1, , }I T…= so that  0 0{( ( ), ( )), }Z x t t t t I∈=  is used as the initial training set for both 

the k-NN and the ICI change detection test (line 1). In particular, the initial value of k 
is estimated by means of the Leave-One-Out (LOO) technique (line 2), while the ICI 
change detection test is configured on the initial training set 

0TO (line 3).  

After the initial configuration phase, the algorithm works on-line by classifying up-
coming samples and by introducing, whenever available, new supervised data 
( ( ), ( ))x t y t  into the knowledge base of the classifier. In this case (line 6), the algorithm 

stores the time instant t when the sample has been received (line 7), it includes the 
pair ( ( ), ( ))x t y t  in the knowledge base of the classifier (line 8) and updates the parame-

ter k according to Equation (3) of [7] (line 9). In stationary conditions, the classifica-
tion accuracy can be always increased by introducing additional supervised samples 
during the operational life [10]. When )(tx  carries no additional information, tI and 

tZ are not updated (lines 11-12) and )(tx  is classified (line 19). 

When the ICI change detection test does not identify changes in the data generating 
process, the current sample )(tx  is simply classified by the k-NN classifier (line 19) by 

using the current knowledge base tZ , and the current value of k . On the contrary, when 

the test detects a variation in the subsequence containing ( )x t  (line 13), the change-

detection refinement procedure is executed (line 14) and produces refinedT . The change 

detection test is then reconfigured on the sequence ,[ ]refined tT (line15), which is seen as 

generated by X in the novel status. This information is then exploited to remove the train-
ing samples that have been acquired before refinedT  both from tI  and from tZ  (lines 16-

17). This is the main difference w.r.t. the JIT adaptive classifiers presented in [7] and [8] 
where the window size was either a-priori fixed by the user (as in [7]) or adapted to keep 
only those training samples that have been acquired in a state of the process compatible 
with the current one. The new value of k is then estimated by means of the LOO technique 
(line 18). Finally, ( )x t  is classified by relying on the updated knowledge base (line 19). 

 

Fig. 3. An example of dataset for Application D2 
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4   Experiments 

The performance of the proposed adaptive classification system has been compared 
with those of JIT [7] and JIT soft [8] when classifying both synthetically generated 
data (Application D1), and measurements coming from photodiodes (Application D2). 

Application D1 contains three classification datasets each of which presenting a 
change in stationarity: abrupt, transient, stairs. A dataset is composed by 200 se-
quences of 12000 real-valued observations drawn from two equiprobable Gaussian-
distributed classes ),( 10 ωω  that, in the initial stationary state, are distributed as 

0( | ) (0,3) ,p x Nω =  and 1( | ) (4,3).p x Nω =  In the abrupt dataset, a change occurring 

at observation 6001 increases the mean of both classes by 15. In the transient dataset, 
the mean of both classes increases by 3 at observation 4001 and then returns to the 
original values at observation 8001. The stairs dataset is characterized by a concate-
nation of changes at observations 3001, 6001 and 9001, each one increasing of 6 the 
classes’ mean.  

Application D2 refers to a dataset composed of 28 sequences of measurements taken 
from couples of photodiode sensors. Each sequence is composed of 12000 16-bit 
measurements (6000 per sensor). We tested the algorithms by classifying the observa-
tions according to the sensor. An example of such a sequence is shown in Figure 3. 

The effectiveness of the three classifiers is measured by the classification error at 
time ,t  which corresponds to the percentage of correct classification of ( )x t  com-

puted over the whole dataset. Figure 4 shows these percentages averaged over a win-
dow of the 200 previous values.  

We impose a minimum training set of 80 observations for the ICI-based classifier. 
The JIT soft has been configured with a minimum training set size of 80 observations 
for the classifier and 400 for the test (as required in [8]), while the JIT requires 400 
observations both for the classifier and the test (as stated in [7]).   

The length of the initial training set is set to 0 500T =  samples; after time 0T we 

provide each classifier with 1 supervised observation out of 5 to update the knowledge 
base. We set 2Γ =  in the ICI change detection test and 3refinementΓ =  in the change-

detection refinement procedure to reduce the false positives when the test is repeated 
several times. In the change-detection refinement procedure we also set 2.λ =  

Plots of Figure 4 show a comparison among the classification errors of the three 
considered classifiers. In stationary conditions (i.e. before the change), the classifica-
tion error typically decreases thanks to the introduction of additional supervised sam-
ples. Thus, any detection (false positive) results in an unnecessary removal of up-to-
date training samples, which may significantly reduce the classification accuracy. In 
particular, the JIT soft shows the highest classification error due to the fact that false 
positives significantly reduce the training set size (this effect is less evident in JIT 
since, after a change is detected, the training set  is composed of at least 400 samples). 
On the contrary, the ICI-based classifier guarantees a lower classification error since, 
as stated in [9], the ICI change detection test is more robust to false positives than  
CI-CUSUM.  
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Fig. 4. Experimental results on applications D1 and D2. The classification error has been aver-
aged over a window of 200 values 

In nonstationary conditions (i.e., an abrupt change occurs in the data generating 
process), the ICI-based classifier shows the lowest classification error thanks both to 
the prompter detection provided by the ICI test [9] and the change-detection refine-
ment procedure, which identifies a timely knowledge base subset of observations 
representative of the new status. We emphasize that the ICI-based classifier provides 
an adaptive training set evolving with the process and the occurring changes, whereas 
in JIT classifiers the CI-CUSUM test is configured with a fixed window containing 
the last 400 observations. This latter, after an abrupt change, might then contain  
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samples not coherent with the current state of the process and, hence, produce a loss 
in classification accuracy, as presented in Figure 4 (Abrupt). 

When the nonstationary behavior is characterized by a sequence of abrupt changes 
(the transient and stairs datasets in Figures 4 (Transient and Faults)), the improvement 
provided by the ICI-based classifier is even more evident: after the first change, the 
ICI-based classifier successfully adapts both the classifier and the test to the novel 
operating conditions and thus the test is ready to detect further changes. Conversely, 
after the first change, the JIT and the JIT soft cannot successfully adapt to the novel 
operating conditions and this affects the detection abilities on subsequent states. It is 
interesting to note that, in the transient dataset, the JIT classifier outperforms JIT soft 
and this is justified by the fact that the obsolete knowledge may still be present in the 
training set and the test configuration after the first detection. 

Experiments run on photodiode sensor data Figure 4 (Sensor Measurements), shows 
classification errors in line with the stairs synthetically generated datasets. 

5   Conclusions 

The paper suggests an ICI adaptive classifier able to effectively react to abrupt 
changes in an unknown data generating process. The novel content is the definition of 
the change-detection refinement procedure that allows the integration of the ICI–
based change detection test within the JIT framework. Such a procedure provides an 
effective way to identify, in nonstationary conditions, the training samples coherent 
with the current state of the process that can be used to configure the test and to up-
date the knowledge base of the classifier. 

Experimental results show that the proposed classification system provides higher 
classification accuracy than the traditional JIT and the JIT soft adaptive classifiers on 
both synthetically generated sequences, and light sensor measurements presenting 
abrupt perturbations. 
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Abstract. This paper proposes a graph based Semi-Supervised Learning (SSL)
approach by constructing a graph using a metric learning technique. It is impor-
tant for SSL with a graph to calculate a good distance metric, which is crucial for
many high-dimensional data sets, such as image classification. In this paper, we
construct the similarity affinity matrix (graph) with the metric optimized by using
Adaptive Metric Learning (AML) which performs clustering and distance metric
learning simultaneously. Experimental results on real-world datasets show that
the proposed algorithm is significantly better than graph based SSL algorithms
in terms of classification accuracy, and AML gives a good distance metric to cal-
culate the similarity of the graph. In eight benchmark datasets, 1 to 11 percent is
attributed to the improvement of classification accuracy of state of the art graph
based approaches.

1 Introduction

Semi-supervised learning, typically transductive learning, deals with classification tasks
through utilizing both labeled and unlabeled examples [1]. Semi-supervised learning
(SSL) has proved effective in a lot of practical classification tasks, since it is often
easy to obtain unlabeled data and labeled data are very scarce. Among current research
on semi-supervised classification, Transductive Support Vector Machines (TSVMs) [2]
aim to optimize the margins of unlabeled examples as well as labeled samples. TSVMs
implemented the low density separation assumption (cluster assumption) by pushing
away from samples. These methods assume that most of the data, both labeled and
unlabeled, should be far away from the decision boundary of the target classes.

Numerous semi-supervised learning methods such as [3,4,5,6,7] use graph-based
approaches. These approaches make the manifold assumption that most of data lie on
a low-dimensional manifold in the input space. The advantage of a graph approach
is that we can use any similarity criteria. This paper focuses on the improvement of
the semi-supervised classification (SSC) performance of graph based approaches. The
classification performance depends on the similarity measure of the graph. The weights
of edges are defined locally in a pair-wise parametric form using functions that are
essentially based on a distance metric such as radial basis functions (RBF).

In this paper, we propose an approach that constructs graphs based on a distance
metric optimized by the metric learning approach. In our approach, a semi-supervised
metric learning approach is used to optimize the distance between nodes (edges of the
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graph). We use the Adaptive Metric Learning (AML) approach [8] for this purpose. The
key idea in AML is to integrate metric learning and clustering in a joint framework so
that the separability of the data is maximized in the low-dimensional space. We also
use Robust Multi-class Graph Transaction (RMGT) [7] as a graph based SSL method.
In RMGT a nonparametric algorithm is used to learn the entire adjacency matrix of
a symmetry-favored k-NN graph. The nonparametric algorithm makes the constructed
graph highly robust to noisy samples and capable of approximating underlying clusters.

The contribution of this paper is to show that a SSC approach based on construct-
ing of a graph by AML is effective for semi-supervised classification of real data. We
report that the SSC approach by constructing a graph based on AML gives good semi-
supervised classification performance. Experimental results on eight real-world datasets
show that RGMT with AML is significantly better than RGMT algorithms and state-of-
the-art graph based approaches in terms of classification accuracy.

2 Related Work

This research is mainly related to two groups of research. One is the graph based semi-
supervised classification approach. The other is distance metric learning research in
machine learning. We briefly review some state-of-the-art of research.

There is much research for graph based semi-supervised classification. These tech-
niques can be found in the comprehensive survey [9]. Well known graph based approach
using the traditional k-NN graph are the Local and Global Consistency method [5] and
the Gaussian Field and Harmonic Function [1]. [7] proposed the nonparametric algo-
rithm that made the constructed graph highly robust to noisy samples and was capable
of approximating underlying submanifolds or clusters. Experimental results in [7] show
RMGT is significantly better than the graph-based semi-supervised learning algorithms
including in [1,5]. In [7], radial basis functions based on Euclidean distance are used.
On the other hand, our approach gives higher classification accuracy by using the dis-
tance which is optimized by metric learning for the radial basis function.

The other major group of related works is distance metric learning research in ma-
chine learning, which can be classified into three major categories, supervised dis-
tance metric learning [10,11], unsupervised distance metric learning [12,13,14] and
semi-supervised distance metric learning [8,15]. In this paper, we focus on a semi-
supervised classification task by using a large amount of unlabeled data. Thus we use
semi-supervised distance metric learning approaches or unsupervised distance metric
learning approaches to implement our proposed method.

These metric learning algorithms project observed data onto a low-dimensional man-
ifold. However, the projection may not correlate with a particular classification task. In
[8], Ye et.al proposed an Adaptive Metric Learning algorithm (AML), which performs
clustering and distance metric learning simultaneously. AML projects the data onto a
low-dimensional manifold, where the separability of the data is maximized. Ye et.al
proposed AML as a clustering and semi-supervised clustering approach. On the other
side, we use AML to optimize the distance metric of the graph. We show that graph
construction based on AML improves semi-supervised classification accuracy.
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3 Proposed Approach

In this section, we explain the algorithm of proposed approach. The concept of the
proposed approach is described in Figure 1.
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Fig. 1. Proposed semi-supervised classification framework

3.1 Adaptive Metric Learning for Initialization Graph

Let X denote a data set with n samples, {xj}n
j=1 ∈ R

m. By using linear transformation
G ∈ R

m×l, each xi in the m-dimensional space is mapped to a vector x̂i in the l-
dimensional space: G : xi ∈ R

m → x̂i = GT xi ∈ R
l (l < m).

We use orthogonal transformations for G : GT G = Il as in [8]. Il is an identity
matrix of size l. The distance measure is defined as the Mahalanobis distance measure :

dM (x̂i, x̂j) =
√

(x̂i − x̂j)T Σ̂−1(x̂i − x̂j) (1)

where Σ̂ is the covariance matrix as follows:

Σ̂ =
1
n

n∑
i=1

GT (xi − μ)(xi − μ)T G + λGT ImG (2)

where λ > 0 is a regularization parameter. By using this new distance measure (Equation
(1)), K-means clustering is applied to assign {x̂i}n

i=1 in K disjoint clusters, {Cj}K
j=1

which minimizes the Sum of Squared Error (SSE). The minimization problem of the
SSE is transformed to the maximization problem of Sum of Squared Intra-cluster Error
(SSIE). SSIE can be formulated as follows:

SSIE({Cj}K
j=1) =

1
n

tr(LT XT G(Σ̂)−1GT XL). (3)
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where tr() stands for the matrix trace operator. Let L ∈ R
n×K be the cluster indicator

matrix defined as follows:

F = {fi,j}n×K , where fi,j = 1, iff xi ∈ Cj

L = F (FT F )−
1
2 . (4)

The maximization problem is solved in the EM framework which updates G and L
iteratively to find a local optimal solution. The adaptive metric learning problem can be
formulated to maximize SSIE. For a given transformation matrix G, the maximization
problem specified in Equation (3) reduces to the maximization of tr(LT K̃L). This
is equivalent to a kernel K-means problem [16] with K̃as the kernel. For a given L,
we can compute the optimal G, by computing the QR decomposition of the matrix
Σ−1XLLTXT . G consists of the first lp eigenvectors of the matrix Σ−1XLLTXT .
The algorithm of AML is presented in Table 1.

Table 1. Algorithm 1:Adaptive Metric Learning

Input: X, K, lp
Output: G, L

Step 1. Use constrained K-means to obtain the initial weighted cluster indicator matrix L by
using labeled and unlabeled data.

Step 2. Compute the optimal G by using QR decomposition. Obtain G composed of first lp
eigenvectors of the matrix Σ−1XLLT XT .

Step 3. Update L by running constrained Kernel K-means [16].
Step 4. Repeat (Step 2.) and (Step 3.) for the trace of Equation (3) is increasing. When the trace

converges or decrease, iteration of the algorithm is stopped.

In K-means (Step 1.) and the kernel K-means (Step 3.), we perform constraint clus-
tering [17] by using labeled data. Details of the algorithm and its theorem are described
elsewhere in the literature [8].

3.2 Graph Based Semi-Supervised Classification

We use Robust Multi-class Transductive Learning [7] for semi-supervised classification.
In this approach, we first construct a symmetry-favored k-NN graph. We use G which
is optimized by AML for calculation of the similarity between nodes of symmetry-
favored k-NN graph. Secondly, a nonparametric algorithm is used to learn the entire
adjacency matrix of a symmetry-favored k-NN graph. Thirdly, to address multi-class
semi-supervised classification, label propagation is formulated on the learned graph.

Graph Construction by AML. Let us start by defining an asymmetric n × n matrix:

Ai,j =

{
exp(− dM(x̂i,x̂j)

2

σ2 ), if j ∈ Ni

0, otherwise
(5)
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Ni saves the indexes of k nearest neighbors of point xi. Here, we use the orthogonal
transformation matrix G of m × lp dimensions, where lp ≥ K − 1. We use lp eigen-
vectors for G for the following reason. Although, G is composed of the first K − 1
eigenvectors in the original AML algorithm [8], when the distance metric is not ap-
proximated in the first K − 1 eigenvectors, we need more eigenvectors to give an good
distance metric for the classification of data. We find that optimal lp differs depending
on the kind of input data. We do not use the fixed value K−1 to calculate the similarity
A, but propose an approach to estimate the parameter lp automatically.

The parameter σ is empirically estimated by σ =
∑n

i=1 dM (xi, xik) where xik is the
k-th nearest neighbor of xi. Based on matrix A, we can define the weighted adjacency
matrix W : W = A + AT . Note that in this case the requirement Wii = 0 is satisfied
automatically since there is no self-loop edge [18].

Learning of adjacency matrix W. Suppose a pair set:

T = {(i, j)|i = j) or xi and xj are differently labeled}
and define its matrix form.

Ti,j =

{
1, if (i, j) ∈ T
0, otherwise

(6)

In the RMGT algorithm, only the differently labeled relationships are employed. Learn-
ing doubly-stochastic W subject to differently labeled information is formulated as
follows,

min G(W) =
1
2
‖ W − W0 ‖2

F

s.t.
∑

(ij)∈T
Wij = 0,W1 = 1,W = WT ,W ≥ 0, (7)

where ‖ . ‖F stands for the Frobenius norm. Equation (7) falls into an instance of
quadratic programming (QP). In order to solve the problem, we can obtain

W∗ = Wm − (tm +
21T Tμm

| T | ) + μm1T + 1μmT

Wm+1 = �W∗≥0, (8)

where the operator �W0≥0 zeros out all negative entries of W∗, and |T | = n + l2 −
ΣK

k=1l
2
k. In Equation (8), tm and μm are described in [7].

Multi-Class Label Propagation. Consider the first l samples as labeled and the re-
maining u = n − l ones as unlabeled. Graph Laplacian as L = D − W, where
D ∈ R

n×n is a diagonal degree matrix such that Dii =
∑n

j=1 Wij . Given the multi-
class labeled data (xi,Yi)l

i=1, we aim to learn a class assignment Fi ∈ R
1×K for each

unlabeled data point xi (i = l + 1, . . . , n). In matrix form, the global classification
result is obtained by F = [FT

l ,FT
u ] ∈ R

n×K in which Fl = Yl is the known class
assignment and Fu ∈ R

u×K is the target variable. Note that Fu is in a soft range of the
hard label values 0 and 1.
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A cost function under the multi class setting is as follows:

Q(F) =
K∑

k=1

FT
.kLF.k = tr(FT LF) (9)

Let L =
[

Lll Llu

Lul Luu

]
and 1l and 1u be l− and u−dimensional 1−entry vectors. The

minimization problem of Q is as follows:

minQ(Fu) = tr(FT
u LuuFu) + 2tr(FT

u LulYl)
s.t.Fu1c = 1u,FT

u 1u = nω − YT
l 1l. (10)

Finally, Fu such that minimize Q is obtained as follows:

Fu = F0
u +

L−1
uu1u

1T
u L−1

uu1u

(nωT − 1T
l Yl − 1T

u F0
u), (11)

where F0
u = −L−1

uuLulYlis just the multi-class version of the harmonic function pro-
posed in [6], ω is the class posterior probability vector and all factors are equal to 1/K .
Details of the algorithm and its theorem are described in the literature [7].

Estimating the Number of Dimensions lp. To estimate the number of dimensions lp
of G, an appropriate criterion is required to measure the quality of the resultant lp. To
find a specific number of lp, we compute SSIE (Equation (3)).

We search the specific number of l∗p, such that the corresponding SSIE is maxi-
mized. The search range of value lp is described in the next equation.

lp = K − 1 + (m − K + 1)
p

pmax
, where p = (0, . . . , pmax) (12)

We set pmax as 4 in the following experiment. We summarize the proposed SSC algo-
rithm in Figure 2.

4 Experiments

In this section, several experiments were performed to test our algorithm in comparison
with baseline approach: RMGT, AML (Constraint clustering version). We compared
all algorithms on eight benchmark data sets, including Iris, Glass, Letter (a-d), Soy-
bean Large (Soybean), Segment, and Wine from UCI Machine Learning Repository
[19] and two image data sets: USPS handwritten data and Yale Face B (YaleFaceB).
In addition, we compared proposed approaches with state-of-the-art graph-based semi-
supervised learning approaches by referring to the experimental result in [7] on USPS
handwritten data.

For YaleFaceB data, we reduced image size from 648*480 to 40*30. For Soybean
Large data, instances with an unknown value are removed. For Letter data, the first 4
letters ga, b, c, dh were selected. The details of the data set are described in Fig.3
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Table 2. Algorithm 2:SSC with Graph based on AML

Input: X, K, Yl

Output: Yu

Step 1. Perform AML upon a set of all data points and obtain G of m × lp.
Step 2. Repeat Step 1. with changing dimension lp of G to find the special parameter l∗p.
Step 3. Construct a k-NN symmetry Graph by using the optimized metric dM (x̂i, x̂j).
Step 4. Learn the adjacency matrix W by running the procedure in Section (3.2).
Step 5. Compute graph Laplacian L from W. Use graph Laplacian L and the known class as-

signment Yl to propagate label information to the unlabeled data with Equation (11).

Table 3. Data sets used in our experiment

Data set Dimension Instance Class
Iris 4 150 3

Glass 6 214 6
Letter 16 3096 4

Segment 19 2310 7
Soybean 35 562 15

USPS 256 2007 10
Wine 13 178 3

Yale Face B 1200 5850 10

4.1 Experimental Setting

We randomly chose labeled samples such that they contain at least one labeled sample
for each class. We performed 30 trials with the changing labeled dataset, and calculated
the error rates for the proposed approach, RMGT, and AML. For the baseline algorithm
RMGT, we used RMGT with nonparametric adjacency matrix learning to compare ap-
proaches. We denote them as RMGT(W).

We carried out two versions of the proposed approach: without and with estimation
of lp in Section 3.2. We denote this as Proposed (No Est.) and Proposed (Est.), respec-
tively. Proposed (No Est.) performed RMGT with graph construction by using G which
is composed of K−1 eigenvectors. To compare all method fairly, k of k-NN graph was
set as 20 in both RMGT(W) and our approach and λ of the parameter of AML was set
as 100 in both AML and our approach.

4.2 Experimental Results

By using the USPS dataset, experimental results of graph based algorithms are de-
scribed in [7]. We referred to the experimental results in [7] and compare the proposed
approach with the referred algorithms. We describe the experimental results of the other
seven datasets in the next section.

Experimental Results with USPS dataset. SSC experiments are performed by setting
of the number of labeled samples [20, 40, 60, 80, 100] in USPS dataset. We denote these
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Table 4. Average classification error rates on USPS

Error Rate (%) 20 labels 100 labels
LGC∗[5] 33.10±5.40 17.23±1.29
SGT∗[4] 30.37±5.48 15.79±1.33
QC∗[1] 34.24±5.18 18.77±1.22

GFHF∗[1] 57.28±7.81 22.04±2.64
GFHF+CMN∗[6] 32.31±5.41 17.07±1.89

LapRLS∗[3] 37.22±5.28 17.68±1.86

AML [8] 28.90 ±3.57 28.60± 1.30
RMGT(W) 22.53± 4.49 12.18 ± 1.54

(RMGT(W)∗)[7] (22.52±5.08) (12.20±0.86)
Proposed (No Est.) 27.57± 5.46 17.82 ± 1.32

Proposed (Est.) 21.29±4.56 10.94± 1.39

methods as RMGT(W)∗, LGC∗, SGT∗, QC∗, GFHF∗, GFHF+CMN∗, LapRLS∗. These
algorithms are Local and Global Consistency (LGC) [5], Quadratic Criterion (QC) [1],
Gaussian Fields and Harmonic Functions (GFHF) plus the post-processing: Class Mass
Normalization (CMN) [6], Laplacian Regularized Least Squares (LapRLS) [3], and
Superposable Graph Transduction (SGT) [4].

Table 4 shows the results with 20 and 100 labeled samples. We denote the referred
methods and it’s results as (Method name)∗ in the table. The table shows that the result
of RMGT(W) which we implement is equal to RMGT(W)∗ obtained in [7]. We ob-
serve that the proposed approach with estimation of lp is superior to the other methods,
which demonstrates that the graph construction based on metric learning and the graph
learning technique improves semi-supervised classification performance.

We calculated the error rates for the proposed approach, RMGT, and AML with
the number of labeled samples increasing from 20 to 100. The results are displayed
in Fig.2. Again, we observe that the proposed approach is significantly superior to the
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other methods, which demonstrates that the graph construction based on AML improves
graph-based semi-supervised classification performance.

Experimental results of the other seven datasets. SSC is performed by using the
other seven datasets and it is performed in the two cases where labeled data is few
(6 to 20) or many (50 or 100). The results are displayed in Table 5. We can observe from
the table that in terms of accuracy, the proposed approach with estimating lp improves
RMGT(W) on 4 data sets under the condition that labeled data is few and 5 data sets
under the condition that labeled data is many. We can also observe that the proposed
approach does not improve RMGT(W) on Soybean data sets and makes SSC accuracy
of RMGT(W) worse on the Glass dataset.

From Table 5, RMGT(W) has a high classification accuracy on the Glass dataset and
the accuracy is much better than that of AML. In this case, the graph based on AML
makes the accuracy worse. From this result, construction the graph based on AML
improves SSC accuracy under the condition that the classification accuracy of AML is
high, or that of RMGT is low.

4.3 Discussion of lp Estimation

From Table 5, the proposed approach using an lp estimation is superior to the approach
without estimating it in five datasets except Glass and Yale B. To discuss how the esti-
mation of lp depend on classification accuracy, we calculate the classification accuracy
by varying p of Equation (12).

Figure 3 and Figure 4 show different values of the SSIE or error rate by varying
the number of p on Wine and Yale Face B datasets. As we can see from Figure 3, the

Table 5. Average classification error rates with a few labeled data

Error Rate (%) Iris Glass
6 labels 50 labels 12 labels 50 labels

AML 13.05±13.37 4.39±1.75 29.55±5.35 17.96±5.15
RMGT(W) 12.45±5.12 2.85±1.75 16.93±5.54 5.26±2.98

Proposed (No Est.) 8.50±10.50 7.08±7.88 18.67±6.94 7.52±3.67
Proposed (Est.) 6.29±4.20 2.48±0.99 18.52±5.29 7.96±2.82

Error Rate (%) Letter Segment
8labels 100 labels 14 labels 100 labels

AML 45.23±14.90 34.16±0.22 55.37±8.17 50.18±13.59
RMGT(W) 28.52±2.97 10.26±2.51 29.45±5.10 18.69±8.35

Proposed (No Est.) 48.86±8.30 35.07±6.20 25.69±5.82 18.30±7.14
Proposed (Est.) 28.48±3.00 10.08±2.49 23.50±4.67 16.12±5.23

Error Rate (%) Soybean Wine Yale Face B
30labels 100labels 6 labels 50labels 20 labels 100labels

AML 50.86±11.06 46.48±9.64 52.41±22.38 25.01±4.81 11.40±4.10 0.27±0.46
RMGT(W) 28.52±2.97 13.06±2.27 29.51±2.86 22.47±2.28 13.04±8.08 0.26±0.56

Proposed (No Est.) 34.97±4.0 17.40±2.62 34.51±5.25 24.52±4.98 1.82±4.17 0.25±0.34
Proposed (Est.) 28.48±3.00 13.02±2.28 21.91±5.57 10.93±3.51 3.05±4.52 0.25±0.34
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maximum value of SSIE and the minimum value of error rate are achieved when the
value of p is equal to five. The result shows that searching a specific number of l∗p which
maximizes SSIE gives the best classification accuracy in the Wine dataset. The results
of Iris, Letter, Soybean,and Segment indicated a similar tendency with the result of
Wine.

On the other hand, as we can see from the Figure 4, the maximum value of SSIE
and the minimum value of error rate are achieved when the values of p are different.
The result of USPS and Glass indicated a similar tendency with the result of Yale Face
B. The lp estimating approach does not always give the best classification accuracy. In
future work, we have to discuss the approach to estimate lp.

4.4 Future Work

The experimental result shows that graph construction by using metric learning im-
proves the classification performance. In this paper, though we use RMGT for a graph
based SSC algorithm and the AML to optimize distance metric of data, we can connect
any graph approach and metric learning approach.

Our final goal is to implement the SSC algorithm for high dimensional structure data
such a time-series data, scene image data and power point slide data including image
and text data. To realize this, we try to implement various combination algorithms on
each graph based SSC approach and each metric learning approach, and test what kind
of the combination algorithm is effective for the classification task.

5 Conclusion

This paper proposed the SSC algorithm based on graph construction by AML. We re-
ported that the proposed graph based approach, implemented by constructing a graph
based on AML gave good semi-supervised classification performance. Experimental re-
sults on real-world datasets showed that the proposed approach was significantly better
than comparative algorithms in terms of classification accuracy.



478 S. Okada and T. Nishida

References

1. Chapelle, O., Scholkopf, B., Zien, A.: Semi-supervised learning. MIT Press, Cambridge
(2006)

2. Joachims, T.: Transductive inference for text classifcation using support vector machines. In:
Proc. ICML (1999)

3. Belkin, M., Niyogi, P., Sindhwani, V.: Manifold regularization: A geometric framework for
learning from labeled and unlabeled examples. The Journal of Machine Learning Research 7,
2434 (2006)

4. Wang, J., Chang, S., Zhou, X., Wong, S.: Active microscopic cellular image annotation by su-
perposable graph transduction with imbalanced labels. In: Proc. IEEE Conference on CVPR
(2008)

5. Zhou, D., Bousquet, O., Lal, T., Weston, J., Schökopf, B.: Learning with local and global
consistency. In: NIPS 2004, pp. 595–602. The MIT Press, Cambridge (2004)

6. Zhu, X., Ghahramani, Z., Lafferty, J.: Semi-supervised learning using Gaussian fields and
harmonic functions. In: Proc. ICML, vol. 20, p. 912 (2003)

7. Liu, W., Chang, S.F.: Robust multi-class transductive learning with graphs. In: Proc. IEEE
Conference on CVPR, pp. 381–388 (2009)

8. Ye, J., Zhao, Z., Liu, H.: Adaptive distance metric learning for clustering. In: Proc. IEEE
Conference on CVPR (2007)

9. Zhu, X.: Semi-supervised learning literature survey. Technical report, Computer Science,
University of Wisconsin-Madison (2006)

10. Globerson, A., Roweis, S.: Metric learning by collapsing classes. Advances in Neural Infor-
mation Processing Systems 18, 451 (2006)

11. Goldberger, J., Roweis, S., Hinton, G., Salakhutdinov, R.: Neighbourhood components anal-
ysis. In: Advances in Neural Information Processing Systems, pp. 513–520 (2004)

12. Fukunaga, K.: Introduction to statistical pattern recognition. Academic Press, New York
(1990)

13. Tenenbaum, J., Silva, V., Langford, J.: A global geometric framework for nonlinear dimen-
sionality reduction. Science 290(5500), 2319 (2000)

14. Roweis, S.T., Saul, L.K.: Nonlinear dimensionality reduction by locally linear embedding.
SCIENCE 290, 2323–2326 (2000)

15. Zha, Z.J., Mei, T., Wang, M., Wang, Z., Hua, X.S.: In: Proc. International Joint Conferences
on Artificial Intelligence (IJCAI)

16. Dhillon, I., Guan, Y., Kulis, B.: Kernel k-means: spectral clustering and normalized cuts. In:
Proceedings of ACM SIGKDD, p. 556. ACM, New York (2004)

17. Wagstaff, K., Cardie, C., Rogers, S., Schrodl, S.: Constrained k-means clustering with back-
ground knowledge. In: Proc. ICML, pp. 577–584 (2001)

18. Zhou, D., Bousquet, O., Lal, T., Weston, J., Schölkopf, B.: Semi-supervised learning by
maximizing smoothness. J. of Mach. Learn. Research (2004)

19. Blake, C., Merz, C.: UCI repository of machine learning databases (1998)



K. Diamantaras, W. Duch, L.S. Iliadis (Eds.): ICANN 2010, Part II, LNCS 6353, pp. 479–485, 2010.  
© Springer-Verlag Berlin Heidelberg 2010 

Genetically Tuned Controller of an Adaptive Cruise 
Control for Urban Traffic Based on Ultrasounds 

Luciano Alonso1, Juan Pérez-Oria1, Mónica Fernández1, Cristina Rodríguez1,  
Jesús Arce1, Manuel Ibarra1, and Víctor Ordoñez1 

1 Electronic Technology, Systems Engineering and Automatics Department, University of 
Cantabria, Santander, Spain  

{alonso,oria,monica,cristina,arce,ordonez}@teisa.unican.es 

Abstract. Currently, Adaptive Cruise Controls on the market can only run at 
high speeds and distances. This makes them useless in urban traffic, where most 
traffic accidents occur. In the present work, a controller for an adaptive cruise 
control (ACC) system for urban traffic based on ultrasonic sensors is optimized 
using Genetic Algorithms. The use of ultrasonic sensors limits their operating 
range to distances and speeds typical of urban traffic. The proposed system uses 
the distance between vehicles as measured by the ultrasonic sensor to estimate 
the relative velocity and acceleration, thus requiring no interaction with the 
electronics of the car, except for the actuation on acceleration and braking sys-
tems. The system is capable of acting on the acceleration and braking systems 
throughout all its operating range, thereby constituting an additional emergency 
braking system. With this system both comfort and safety are improved. 

Keywords: Genetic Algorithms, Artificial Intelligence, Adaptive Cruise Con-
trol, Automatic Control, Ultrasonic Transducers. 

1   Introduction 

In this paper, a linear controller for the speed and distance to the vehicle ahead is 
proposed, an Adaptive Cruise Control plus an Emergency Braking system, using 
ultrasonic sensors. The advantages of ultrasonic sensor are their low cost and their 
capability to detect pedestrians on the road. 

The use of ultrasonic sensors limits the distance range to a few tens of meters due to 
the high attenuation of acoustic waves in air, and the low response time due to the 
speed of sound. In addition, atmospheric conditions like changes in temperature and 
humidity along with the wind and turbulence, may adversely affect its operation [1]. 
Despite this, the results of this and previous works of the authors indicate that this 
system would be used for this purpose in urban traffic [2]. 

The controlled system is highly non-linear, and a Genetic Algorithm is used for tuning 
of the controller to minimize the distance with the preceding vehicle avoiding collisions. 

2   Mathematical Model of the Longitudinal Dynamics 

To verify the operation of the control system, a mathematical model of the longitudi-
nal dynamics of the vehicle has been used [3]. In the range of distances and relative  
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Fig. 1. Block diagram of the mathematical model of longitudinal vehicle dynamics 

 
speeds typical of urban traffic, the lateral and vertical forces are negligible. The block 
diagram of the model is shown in Figure 1. The inputs to the system are the actions on 
the accelerator and brake with values between 0 and 100, wind speed and road gradi-
ent. The output is the speed of the vehicle. In this work wind speed and road gradient 
are assumed both zero. Likewise, a dry tarmac is considered, which influences the 
friction between tire and road [4]. Using this model the control system could be easily 
modified to take into account the road conditions. Several simulations of different 
acceleration and braking maneuvers have been carried out, and the results have been 
compared with experimental data provided by manufacturers of vehicles with similar 
features, allowing confirming their validity. 

3   Speed vs. Braking Distance 

Several parameters affect the braking distance: initial speed, driver's reaction time 
(between 0.75 and 1 second), state of the road, or visibility. An automatic system 
based on ultrasonic sensors as proposed would reduce this distance by eliminating the 
problem of visibility and the driver's reaction time, allowing moving at shorter dis-
tances while maintaining or even increasing security by preventing human error. The 
safe distance would be reduced to the vehicle's braking distance. 

In order to obtain the relationship between vehicle speed and braking distance, 
several simulations can be performed at different initial velocities, and adjust the 
results by a curve. However, in this work a mathematical relationship is obtained from 
a physical point of view. Considering that during the braking action the only present 
forces are the frictions of tires on the road neglecting aerodynamic drag, from the 
kinematical equation of uniformly accelerated motion, it is obtained for the braking 
distance ds: 
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Fig. 2. Braking distance versus initial speed obtained by simulation and by the theoretical 
expression (1). 
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g being the acceleration due to gravity, v0 the initial speed, and μ the coefficient of 
friction between tire and road considering that is close to one [4] on a dry tarmac. 
Figure 2 shows the difference between expression (1) and braking distances obtained 
by simulation for initial speeds between 0 and 120 km/h (maximum allowed in 
Spain). As shown, at low speeds the results are very similar, but for increasing speeds, 
the simulation provides smaller distances. This is because the expression (1) does not 
take into account factors such as aerodynamic drag, especially important at high 
speeds, as mentioned above. 

4   Ultrasonic System 

For measuring the separation distance between vehicles, an ultrasonic system based 
on a emitter-receiver transducer of 43 kHz has been used. The time elapsed since the 
emission until receiving the echo is measured (time of flight). This time is propor-
tional to the distance between vehicles, related both quantities by the speed of sound, 
which depends on the temperature, relative humidity and wind speed [1, 2]. When the 
distance is greater than 12 m. or there is no vehicle in front, the ultrasonic system 
reports a fixed distance of this value, preventing in this form an uncontrolled accelera-
tion (the braking distance at 50 km/h is about 11 m.). The process is repeated each 0.2 
seconds, enough for obtaining and processing the ultrasonic signal, but could be re-
duced improving the performance of the system. The relative speed and relative ac-
celeration are estimated from consecutive measurements of the distance. 

5   Control System 

This work proposes a control system which aims to minimize the difference between 
the separation distance and the braking distance at the current speed. The principal 
advantage of the proposed system over actual systems is that only the relative distance 
provided by the ultrasonic system is used for the control, reducing the interaction with 
the vehicle to the actions on the accelerator and on the brake. Because the absolute 
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speed is not used by the controller, it is necessary an offline tuning using a mathe-
matical model, or the data of braking distance at different speeds provided by manu-
facturers. Control law implemented by the system is as follows: 
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v being the control action (bounded between -100 and 100), d the relative distance, s 
the relative speed and a the relative acceleration. kd, ks and ka are constants of propor-
tionality, which must be determined with the aim to get the objective above men-
tioned. ac and br are the actions on the accelerator and the brake. 

Figure 3 shows the block diagram used for simulation of the control system. It can 
be seen the controlled rear vehicle, the ultrasonic system which performs sampling of 
the relative distance, the controller and the vehicle in front. Also can be seen one 
block that provides the security distance and one block that calculates the cost func-
tion that we want to minimize, which in turn is given by the expression: 

dt
dd

T
J

T
s∫ ⎟
⎠
⎞

⎜
⎝
⎛ −=

0

2

10

1  (3) 

T being the total time simulated. This cost function depends on the result of a simula-
tion of a complex non-linear system, which makes necessary a special optimization 
method. A Genetic Algorithm is used in this work. 

 

Fig. 3. Block diagram used for the simulation of control system 

6   Genetic Optimization of the Controller 

As it is well known, Genetic Algorithms (GA) came in the 70s [5], so called because 
they are inspired by the evolution of species and genetic and molecular basis. The 
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function of a GA is to find the optimum (maximum or minimum) of an arbitrarily 
complex function of several variables, based on probability. In GA an initial random 
population of candidate solutions to an optimization problem, called individuals or 
chromosomes, evolves toward better solutions. Traditionally, solutions are repre-
sented as binary strings, but other encodings are also possible. At each iteration or 
generation, the fitness value of every individual in the population is evaluated. The 
fitness function is problem dependent, and measures the quality of the candidate solu-
tions. Then several individuals are randomly selected from the current population, 
with a probability according to their fitness, and randomly recombined and mutated to 
form a new population. The new population is then used in the next iteration. Usually, 
the algorithm terminates when either a maximum number of generations has been 
produced, or a fitness level has been reached. 

This paper seeks the control law that minimizes the cost function of expression (3) 
when the preceding vehicle performs random steps (ideal) of acceleration and decel-
eration. An individual is an array [kd, ks, ka] of real values called genes. An initial 
population of 20 individuals in the range [0, 20] x [0, 20] x [0, 20] is randomly cre-
ated. The fitness of each individual f(xi) is its position in a list ordered from highest to 
lowest cost. The probability of each individual to be selected for crossover is propor-
tional to its fitness according to the expression (4). An array of cumulative probabili-
ties is created from the probabilities of each individual. 
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To select an individual for crossover, a random number is generated. The interval in 
the array of cumulative probability to which this number belongs indicates the se-
lected individual. By this method, two parents are randomly selected from the popula-
tion. Then a random number is generated and compared with the probability of cross-
over, which is selected to be 0.8. If this number is greater than the probability of 
crossover the selected individuals move on to the next generation without crossing. 
But if the number is less than the probability of crossover, selected individuals are 
crossed to generate two new individuals according to the following expressions: 
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where α is an array of three random numbers, each one affecting to a gene. The sub-
script indicates the individual and the superscript indicates the generation.  

Then, for each offspring a new random number is generated and compared with 
the probability of mutation, which is selected to be 0.2. If this number is greater 
than the probability of mutation, the offspring is passed to the next generation with-
out mutation. But if the number is less than the probability of mutation, the off-
spring is mutated by adding a random number to each gene, and then passed to the 
next population.  
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At each generation, the individual with better fitness passes directly to the next gen-
eration (elitism). To complete the population of the next generation, repeatedly apply the 
operators of selection, crossover and mutation. Then the new population replaces the 
previous one and the process begins again. The algorithm terminates after 50 generations. 

The convergence of the algorithm can be seen in Figure 4, in which both the mini-
mum cost and the average cost for each generation are shown. The values of kd, ks and 
ka for the best individual obtained are 1.145, 10.823 and 0.454 respectively, and the 
minimum cost J is 0.061. 

 

 

Fig. 4. Minimum (left) and mean (right) cost for each generation 

7   Results 

Figure 5 shows the simulation for the best individual found. In the graph above the 
relative distance between vehicles and the safety distance for actual speed can be 
seen. The relative distance is always lightly greater than the safety distance, and is 
adapted to the speed of vehicles. 

 

Fig. 5. Top: distance between vehicles and braking distance. Centre: speed of both vehicles. 
Bottom: actions on the accelerator and the brake. 
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In the central graph the speed of both vehicles are observed. Vehicle in front real-
izes ideal steps of acceleration and brake, and the rear vehicle adjusts its speed at the 
speed of the vehicle ahead. Finally, in the bottom graph actions on the accelerator and 
brake are represented.  

To verify performance under more realistic conditions a new simulation has been 
carried out, in which the leading vehicle accelerates and brakes smoothly. Figure 6 
presents the results of this simulation. As can be seen, the controlled vehicle is capa-
ble of adjusting its speed and the separation distance to the vehicle ahead. This indi-
cates a good behaviour of the vehicle to circulate in urban traffic conditions, using the 
genetically tuned controller. The system presented would improve driving comfort 
and enhance the vehicle's active safety, preventing accidents or minimizing potential 
damage to other vehicles, and what is more important to pedestrians. 

 
Fig. 6. Results of the simulation for the best individual and realistic acceleration and brake 
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Abstract. We propose a novel method for fusing different classifiers

outputs. Our approach, called Context Extraction for Local Fusion with

Neural Networks (CELF-NN), is a local approach that adapts Artificial

Neural Network fusion method to different regions of the feature space.

It is based on a novel objective function that combines context identifi-

cation and multi-algorithm fusion criteria into a joint objective function.

This objective function is defined and optimized to produce contexts as

compact clusters via unsupervised clustering. Optimization of the ob-

jective function also provide an optimal local Neural Network for fusion

within each context. Our initial experiments on semantic video index-

ing have indicated that the proposed fusion approach outperforms all

individual classifiers and the global Neural Network fusion method.

Keywords: Neural Networks, Classifier fusion, Local fusion, Clustering,

Classification.

1 Introduction

For complex detection and classification problems involving data with large intra-
class variations and noisy inputs, perfect solutions are difficult to achieve, and
no single source of information can provide a satisfactory solution. As a result,
combination of multiple classifiers (or multiple experts) is playing an increasing
role in solving these complex problems [1,2,3], and has proven to be a viable
alternative to using a single classifier. Classifier combination is mostly a heuristic
approach and is based on the idea that classifiers with different methodologies or
different features can have complementary information. Thus, if these classifiers
cooperate, group decisions should be able to take advantages of the strengths
of the individual classifiers, overcome their weaknesses, and achieve a higher
accuracy than any individual’s.

Methods for combining multiple classifiers can be classified into two main
categories: global methods and local methods. Global methods assign a degree of
worthiness, that is averaged over the entire training data, to each classifier. Local
methods, on the other hand, adapt the classifiers’ worthiness to different data
subspaces. Intuitively, the use of data-dependent weights, when learned properly,
provides higher classification accuracy. This approach requires partitioning the
input samples into regions during the training phase [3,4,5]. Then, the best
classifier for each region is identified and is designated as the expert for this
region [6].

K. Diamantaras, W. Duch, L.S. Iliadis (Eds.): ICANN 2010, Part II, LNCS 6353, pp. 486–491, 2010.
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In [7], we proposed a generic framework for context-dependent fusion, called
Context Extraction for Local Fusion (CELF), that jointly optimizes the parti-
tioning of the feature space and the fusion of the classifiers. CELF uses a simple
linear aggregation to assign fusion weights to the individual classifiers. This may
not be the optimal way to combine the algorithms within each context. In this
paper, we generalize CELF to use non linear aggregation. In particular, we pro-
pose using local Neural Networks that are adapted to different contexts.

The rest of this paper is organized as follows. The proposed algorithm, called
CELF-NN, is presented in Section 2. Section 3 presents the experimental results
on a video data collection. Finally, we provide the conclusions in Section 4.

2 Local Fusion with Neural Networks

Given N training observations with desired output T = {tj |j = 1, . . . , N} that
were processed by K algorithms. Each algorithm k extracts its own feature
set, X k = {xk

j |j = 1, . . . , N}, and generates confidence values, Yk = {ykj|j =
1, . . . , N}. The K feature sets are then concatenated to generate one global
descriptor, X =

⋃K
k=1 X k =

{
xj = [x1

j , ...,x
K
j ]|j = 1, ..., N

}
.

Fig. 1 displays the architecture of the proposed approach called CELF-NN.
This figure highlights the two main components of the training phase, namely,

Fig. 1. Architecture of the proposed CELF-NN
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context extraction and decision fusion. The context extraction step uses both the
features extracted by various algorithms to partition the training input samples
into C different contexts, i.e, each training sample j is assigned to each context j
with a fuzzy membership uij . The decision fusion step uses the confidence values
assigned by the individual algorithms to adapt a two-layers Neural Network to
each context. Each network has K input (the K classifiers’ decision), L hidden
neurons in the hidden layer, and one output. In the following, f is the activation
function. vkli is the weight that connects the kth input to the lth neuron (of
the hidden layer) of the ith Neural Network. ωil is the weight that connects the
lth neuron to the output of the ith Neural Network. xlij is the output of the
lth neuron (of the hidden layer) in the ith Neural Network for the sample j.
And oij is the output of the ith Neural Network for the sample j. Finally, the
final output oj , for the sample j, is the weighted aggregation of the C Neural
Networks’ output, i.e.,

oj =
C∑

i=1

uijoij . (1)

CELF-NN partitions the feature space and learns the weights of the different
Neural Networks simultaneously by optimizing the following objective function.

JNN =
N∑

j=1

C∑
i=1

um
ij‖xj − ci‖2 + α

N∑
j=1

C∑
i=1

um
ij (oij − tj)2, (2)

subject to
C∑

i=1

uij = 1 ∀j, and uij ∈ [0, 1] ∀i, j. (3)

The first term in (2) is the objective function of the Fuzzy C-Means (FCM)
algorithm [8]. It seeks to partition the N samples into C clusters, and represent
each cluster by a center ci. Each sample xj will be assigned to each cluster i
with a membership degree uij. The second term in (2) attempts to learn the
weights of the different Neural Networks. When both terms are combined and α
is chosen properly, the algorithm seeks to partition the data into compact and
homogeneous clusters (called also contexts) while learning optimal weights for
each Neural Network within each cluster.

To minimize JNN with respect to the centers cik, we fix U = [uij ], V = [vkli],
and W = [ωil], and set the gradient to zero. We obtain

cik =

N∑
j=1

um
ijxjk

N∑
j=1

um
ij

. (4)

Minimizing JNN w.r.t the membership degree uij ,we fix C = [cik], V = [vkli],
and W = [ωil], and set the gradient to zero. We obtain
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uij =
1

C∑
l=1

(Dij/Dlj)1/(m−1)

, (5)

where
Dij = ‖xj − ci‖2 + α(oj − tj)2 . (6)

In (6), Dij can be viewed as the total cost when considering point xj in cluster
i. This cost depends on: (i) the distance between the considered point and the
cluster’s centroid ci; and (ii) the deviation of the combined algorithms’ decision
from the desired output.

To adjust the weights of the different layers of the Neural Networks, we fix
C = [cik], and U = [uij ], and optimize JNN with respect to oij using gradient
descent methods. Given a constant η, It can be shown that the weights need to
be adjusted using:

Δωil = ηδoij xlij and Δvkli = ηδxlij
ykj , (7)

where δoij = 2αum
ij (tj − oij)f ′

oij
, δxlij

= f ′
xlij

δoij ωil, and f ′ is the derivative
of the activation function f . In this paper, we use the bipolar sigmoidal and
f ′

o = (1 − o2)/2.
The resulting algorithm is summarized below.

CELF with NN fusion

Inputs: X , Y, T , C, m, α, L, and η.

Outputs: U, C, W, and V.

1: Initialize U, W, and V.

2: repeat
3: Update C using (4).

4: Update U using (5).

5: Update W and V using (7).

6: until parameters do not change significantly

7: return C, U, W, and V

3 Experimental Results

To illustrate the performance of the proposed adaptive fusion, we use it to label
MPEG-1 movies from the TRECVID-2002 data collection [9].

This collection consists mainly of Internet Archive of advertising, educational,
industrial, amateur films produced between 1930 and 1970 by corporations, non-
profit organizations, and trade groups. This collection included a total of 73.3
hours of video data partitioned into a search test set (40.12 hours); a feature
development set (training and validation; 23.26 hours); a feature test set (5.07
hours); and a shot boundary test set (4.85 hours). For our experiment, we used
the feature development set for training and the feature test set for testing
and evaluation. Each shot in this collection can belong to one (or more) of
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the 10 semantic concepts: ’Outdoors’, ’Indoors’, ’Face’, ’People’, ’Cityscape’,
’Landscape’, ’Text Overlay’, ’Speech’, ’Instrumental Sound’, and ’Monologue’.
For all data, we used the shot boundaries provided by NIST [9].

The goal of our experiment is to illustrate that the proposed context depen-
dent fusion is a framework that can improve the performance by partitioning
the feature space into disjoint regions and identifying local expert algorithms for
each region. Thus, we did not attempt to optimize the feature extraction nor the
classifier design components. We simply use a set of generic MPEG-7 descriptors
(namely, the Color Structure Descriptor (CSD), the Scalable Color Descriptor
(SCD), the Edge Histogram Descriptor (EHD), and the Homogeneous Texture
Descriptor (HTD)) [10] and a simple k−NN classifier [11]. Other descriptors and
classifiers can be easily integrated into our approach. In particular, the following
set of low-level multi-modal descriptors are extracted and used to construct the
low-level feature space for context extraction.

CELF-NN was used to partition the feature space into 20 clusters. Since we
are using only visual features, we only use the first 6 semantic concepts as the
last 4 concepts require textual and audio features.

For comparison purposes, we fuse the 4 classifiers (k−NN based on CSD, SCD,
EHD, and HTD) using global Neural Network. The performance of the different
classifiers and fusion algorithms is measured in terms of the ’Mean Averaged
Precision (MAP)’ [12]. and is reported in Table 1.

Table 1. MAP values for the individual classifier and the fusion algorithms averaged

over the test data

CSD SCD EHD HTD Neural Network CELF-NN

Outdoors 0.58 0.64 0.72 0.58 0.74 0.81

Indoors 0.22 0.23 0.31 0.29 0.25 0.37

Face 0.21 0.23 0.33 0.32 0.33 0.41

People 0.28 0.35 0.40 0.37 0.38 0.46

Cityscape 0.40 0.48 0.49 0.39 0.52 0.54

Landscape 0.08 0.08 0.16 0.12 0.15 0.21

We note that, for all concepts, the proposed CELF-NN approach outperforms
all individual classifiers and the global fusion. For some concepts, the global Neu-
ral Network fusion is not able to improve the result of the individual classifiers.
The improved performance of CELF-NN is due to the context identification and
the adaptation of the fusion to each context.

4 Conclusions

In this paper, we have proposed a new multi-algorithm fusion method, called
CELF-NN, and applied it to the semantic video indexing problem. This ap-
proach is local and adapts the Neural Network fusion method to different regions
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of the feature space. The different regions, or contexts, correspond to groups of
keyframes that share common low-level semantics descriptors. Our initial ex-
periments have indicated that the proposed fusion approach outperforms the
individual algorithms and the global fusion of these algorithms.

In the current implementation of CELF-NN, only 2-class problems are sup-
ported. Future work will include adaptation of CELF-NN to support fusion for
the general multi-class case.

Acknowledgments. This work was supported in part by U.S. Army Research
Office Grants Number W911NF-08-0255 and W911NF- 07-1-0347, and by NSF
awards No. CBET-0730802 and CBET-0730484.
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Abstract. It is still an open question how preliminary visual reflexes

can be structured by auditory and visual modalities in order to recognize

objects. Therefore, we propose a new method for a controlling strategy

for an active vision system that learns to focus on relevant multi modal

aspects of the environment. The method is bootstrapped by a bottom

up visual saliency process in order to extract important visual points.

In this paper, we present our first results and focus on the unsupervised

generation of training data for a multi-modal object recognition. The

performance is compared to a human evaluated database.

Keywords: adaptive learning, active vision, object recognition.

1 Introduction

Active vision starts from retinal filtering and is understood as a process that
actively interacts with the environment in order to control the gaze towards
relevant aspects like objects. Most object recognition systems suffer from train-
ing with hand annotated data resulting in an inflexibility regarding spontaneous
changes. So far, little work has been done in the computational modeling of an
object recognition process, which automatically extracts a structure of auditory
and visual cues in order to gain an object representation. Object recognition
in an online learning scenario features a wide range of challenges. This means
to build up a system that incrementally learns the structure of a demonstrated
object. The ability to enhance the visual sensitivity on repeated exposures to
multi-modal sources like movements of the mouth and speech requires the inte-
gration of bimodal signals. In addition, this requires a mechanism which selects
stimulus driven relevant visual and auditory features in an initial learning phase
in order to define unsupervised learned classifiers. Walter and Koch [1] propose
a model that links a bottom up attention model to an object recognition sys-
tem with an attentional modulation. This approach focuses on visual perceptual
properties of the environment. In order to maintain object constancy for an
object recognition, Newell [2] proposes that a constancy can be achieved by a
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multi sensory representation and refers to the interaction with haptic cues. Xiao
[3] studies the effect of task irrelevant sound on the oculomotor system. The
analysis with different pitch deviants shows that the smooth pursuit ability in-
creases with an increasing of the pitch. Lehmann [4] investigates the influence
of past audio-visual object representations on an unimodal object recognition
task. The criteria of memory performance and accuracy are improved if an ob-
ject has been perceived in both modalities. Molholm [5] also suggests that an
audio-visual representation leads to a faster and more accurate object detection
performance and hypothesizes that auditory input modulates the processing in
regions of the lateral occipital cortex. This challenges to find features that link
the auditory and visual part of an object. Furthermore, a system needs to dis-
criminate relevant information from irrelevant information automatically. Roy
et. al [6] addresses the problem of finding significant features for the learning of
auditory and visual cues between objects and speech. This approach uses the
mutual information as clustering criterion and selects images and speech seg-
ments according to their mutual information maximization. A few approaches
have been suggested to estimate audio-visual correlations [7], [8]. In contrast
to this methods, our approach researches the correlation of auditory and visual
properties from an active vision perspective and therefore focuses on space vari-
ant regions. In section 2, we present a system architecture for the control of an
active vision system. Section 3 focuses on the correlation of auditory and visual
properties with respect to center activity. A conclusion about the performance
of unsupervised generation of training data is given in section 4.

2 System Architecture

In the following, the architecture [9] (fig. 1) is described with respect to the
shown components. At each time when the camera moves onto a new position
and tracks the scene for a defined time, the field of vision is processed with
visual filters. The central region of the observed scene is correlated with auditory
cues. The visual filtering is initially determined by predefined filters (6) and
results into a saliency map. In relation to the new position, the movement is
defined by a saccade logic (7) that calculates the center position by using the
saliency map. The extraction of the most important point defines the camera
movement. The moment of the movement is determined by a timer logic (8) that
defines a new saccade and the system reevaluates the scene center. During the
track of the scene, the system separates the acquired sound in active and non
active audio segments. In a first learning phase the audio signal is not classified
and is not accessible for the saliency computation with a weighting by auditory
classifiers. The properties of the active audio segments are correlated with visual
properties of the camera center and serves as criterion for retaining auditory
and visual segments. The correlation computation provides a basis to extract
visual and auditory segments in order to cluster them (11, 12) and to prepare
classes for learning of an auditory classifier and for additional visual saliency
filters. The correlation computation (9) is carried out during the tracking and
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Fig. 1. An active vision system that attends on multi-modal relevant aspects. In the

initial phase, the gaze selection of the architecture is reactive and the controlling strat-

egy is defined by [10]. This model extracts visual salient points of the environment. An

object classification based on auditory characteristics requires an associative learning of

visual and auditory concepts (e.g. mouth/speech, hand/knocking). Therefore a learn-

ing of additional visual saliency filters (2) and auditory classifiers (3) are proposed. The

association of learned concepts is defined by a weighting (1) of the relative importance

of visual saliency filters that determines the saliency computation.

results in a statistic that provides indications about the mutuality of visual and
auditory properties. The decision (10) of retaining single segments depends on
the observed mutuality and extracted visual regions and auditory segments that
have been correlated in particular. In this paper, we focus on part 9 and 10.

3 Selection of Relevant Visual and Auditory Segments

The proposed selection mechanism serves as a criterion for what to learn and
suppresses the processing of noise with respect to missing coherence of auditory
and visual information. Hershey et. al [7] define temporal synchronous observa-
tions of audio at and visual signals v(x, y)t as Mutual Information I (1). Both
events at timestamp t are drawn independently from a joint Gaussian process
with variances ĈAt and ĈV (x,y)t

belonging to a joint covariance matrix ĈAV (x,y)t
.

I(x, y)t = −1
2

log

(
|ĈAt | · |ĈV (x,y)t

|
|ĈAV (x,y)t

|

)
. (1)

This approach suffers from a constant time averaging and hence temporal
changes of I are not adapted. Therefore, we use the method proposed by Rolf
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[8]. We investigate in the analysis of the audio energy at and motion activity
vt defined by the difference of intensity images with respect to center activity
w (x, y) = exp

((−x2 − y2
)
/σ2

)
. For ĈV (x,y)t

we estimate a threshold γ̂t (2)
during the tracking:

γ̂t = γ̂t−1 + β · (γt − γ̂t−1) with γt =
∑
x,y

w · ĈV (x,y)t
. (2)

Those regions that don’t exhibit significantly a large variance of vt are removed
for a further correlation computation:

ĈV (x,y)t
=

{
0, if γ̂t > ĈV (x,y)t

ĈV (x,y)t
, else

(3)

Active acoustic segments are obtained by applying a fixed threshold. After each
tracking step k the observed mutuality is summarized with Ik =

∑
x,y w ·I (x, y)t.

In order to select relevant visual and auditory events r̂v,a that have been corre-
lated, Ik is evaluated after each tracking sequence (4). Firstly, the thresholding
step ensures that visual and auditory information are removed that obtain low
correlation activity. The threshold θ1 is adapted by removed correlation mea-
surements during the whole observation of the scene. The filtering includes a
second threshold θ2 and is determined by a randomization step Irk computed in
parallel. For this a is drawn from a normal distribution with σ and μ estimated
from origin active acoustic segments.

r̂v,a =

{
1 if Ik > max(θ̂1, θ2)
0 and θ̂1k

= θ̂1k−1 + β · (θ1k
− θ̂1k−1) else

(4)

If the estimated Ik yields a higher mean value as the estimated θ1 and the
randomized correlation θ2, than the visual and auditory information are selected
as relevant. Otherwise the correlation is caused by noise.

4 Results

The manual classification contains the separation between relevant and not rele-
vant information of the sequences. The next saccade movement is determined by
a saliency map that is computed by color, motion and orientation. An inhibition
of return leads to a gaze selection to locations that have not been attended before.
A new saccade is triggered each second. The Mutual Information I is weighted
with α = 0.05 and w is defined with σ = 0.1/cut-off = 0.5. The threshold for
motion activity ĈV (x,y)t

and θ̂1 are adapted with β = 0.5. In order to analyze
the performance of our approach, we use a dataset that is manually classified by
humans into relevant and irrelevant patches. The dataset is recorded under labo-
ratory conditions and shows a speaking person. The dataset comprises sequences
of images with sound. Figure 2 shows a set of visual patches marked as relevant
and irrelevant. As our thresholding criterion (4) contains a random parameter,
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Fig. 2. Example dataset of relevant and irrelevant information (upper/bottom row).

For the evaluation, the sequences are extracted in a predefined step with our algorithm.

They contain always the last image and the sound information from start to the end

of the tracked scene. The image view is restricted according w. The labeling criterion

is defined by the appearance of redundant information of both modalities. This means

if the sequence contains a mouth and is coherent with speech, the sequence is marked

as relevant. Otherwise the sequence is marked as irrelevant. We conducted our analysis

on 105 tracking sequences k. Sequences without any sound activity are removed from

the dataset. By the manual annotation, we get 35 relevant combinations of auditory

and visual information and 70 not relevant combinations.

Table 1. Evaluation results: The true positive error tp and false negative error fn
describes those patch combinations that are selected as important and unimportant

from relevant ones. The false positive error fp and true negative error tn describes those

patch combinations that are selected as important and unimportant from irrelevant

ones.

tp fn tn fp relevant irrelevant

relative 0.46 0.54 0.83 0.17

average total 16 19 58.2 11.8 35 70

dμ 26 39.4 251.2 217.1

dσ 17.6 31.4 165.8 148.4

we repeated our analysis for five times on the dataset. The results are averaged
by the number of trails. Compared to the manually annotated data, our auto-
matic approach finds 46 % (table 1) of the dataset that are selected as relevant
(tp). Our method classifies 54 % combinations as not relevant. The fn error
shows a loss of training data. This does not implicate an influence of a further
clustering step. The most difficult task for an object recognition system consists
in the unsupervised description of not relevant information. The tn error is 83
% and shows the effectiveness of our approach. Most irrelevant combinations are
identified. Only 17 % are detected as relevant. Hence an unsupervised extrac-
tion of valid training data is ensured for a further clustering step. An additional
analysis of the spatial distribution of center views of selected and rejected infor-
mation shows a difference in the different conditions. This similarity is measured
by the euclidean distance d between the centers resulted from a sequence k. The
results show that in case of the tp the average distance is smaller than in the
case of fp. This means the accepted visual information from false wise accepted
correlation events are distributed to center reference and can not share common
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features. In contrast to this, the visual fields that are evaluated as tp provides a
basis for a common feature representation reasoned by the low dμ.

5 Conclusion

This paper introduces an active vision architecture that is bootstrapped by a vi-
sual bottom up process and a correlation computation. A threshold adaptation
takes place during the tracking and removes not significant aligned audio-visual
events. The results provide a significant discrimination of relevant auditory-visual
information. The investigation in the analysis with respect to center reference pro-
vides a preliminary clustering and a basis for learning of visual saliency filters.

Acknowledgments. The work described was supported by the Honda Research
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Abstract. The shortest path problem is an archetypal combinatorial

optimization problem arising in a variety of application settings. For

real-time applications, parallel computational approaches such as neural

computation are more desirable. This paper presents a new recurrent

neural network with a simple structure for solving the shortest path

problem (SPP). Compared with the existing neural networks for SPP, the

proposed neural network has a lower model complexity; i.e., the number

of neurons in the neural network is the same as the number of nodes

in the problem. A simple lower bound on the gain parameter is derived

to guarantee the finite-time global convergence of the proposed neural

network. The performance and operating characteristics of the proposed

neural network are demonstrated by means of simulation results.

Keywords: Recurrent neural networks, global convergence in finite

time, shortest path problem.

1 Introduction

The shortest path problem is concerned with finding the shortest path from a
specified origin to a specified destination in a given network while minimizing the
total cost associated with the path. The shortest path problem is an archetypal
combinatorial optimization problem with widespread applications in a variety of
settings. The applications of the shortest path problem include vehicle routing in
transportation systems [1], traffic routing in communication networks [2,4], and
path planning in robotic systems [3]. Furthermore, the shortest path problem
also has numerous variations such as the minimum weight problem, the quickest
path problem, the most reliable path problem, and so on.
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Since Tank and Hopfield’s seminal work [5], neurodynamic optimization has
been a major area in neural network research. In the literature, recurrent neu-
ral networks for solving shortest path problems have been widely investigated
[6,8,9,10]. In [8], Wang investigated the primal and dual neural networks for
solving the shortest path problems. In [9], based on the primal-dual optimiza-
tion approach, a discrete-time recurrent neural network with global convergence
was constructed to solve the shortest path problems. These investigations have
shown the sufficient potentials for the neural network approach to the shortest
path problem.

This paper presents a recurrent neural network with lower implementation
complexity to solve the shortest path problem. The proposed neural network
can solve the routing network problem with global finite-time convergence. Fur-
thermore, the proposed network is realizable in parallel digital circuits.

2 Problem Formulation and Model Description

We consider the shortest path from vertex 1 to vertex n in a directed graph G
with n vertices, m edges, and a cost cij associated with each edge (i; j) in G.
Based on the edge path representation, the primal shortest path problem can be
formulated as a linear integer program as follows:

minimize
n∑

i=1

n∑
j=1

cijxij ,

subject to
n∑

k=1

xik −
n∑

l=1

xli =

⎧⎪⎨⎪⎩
1, if i = 1
0, if i = 2, 3, . . . , n − 1
−1, if i = n

xij ∈ {0, 1}, i, j = 1, 2, . . . , n,

(1)

where xij denotes the decision variable associated with the edge from vertices i
to j, as defined below

xij =

{
1, if the edge from vertices i to j is in the path;
0, otherwise.

If an optimal solution exists and unique, we may solve the above integer program
as the following linear program:

minimize
n∑

i=1

n∑
j=1

cijxij ,

subject to
n∑

k=1

xik −
n∑

l=1

xli = δi1 − δin,

xij ≥ 0, i, j = 1, 2, . . . , n,

(2)

where δij is the Kronecker delta function defined as δij = 1(i = j) and δij =
0(i �= j).
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By the duality of convex program [11], we see that the dual shortest path
problem is as follows:

maxmize yn − y1,
subject to yj − yi ≤ cij , i, j = 1, 2, . . . , n,

(3)

where yi denotes the dual decision variable associated with vertex i and yi − y1

is the shortest distance from vertex 1 to vertex i at optimality.
According to the Karush-Kuhn-Tucker (KKT) conditions [11], the proposed

recurrent neural network for solving the dual shortest path problem can be
described as follows:

ε
dyk

dt
= −δk1 + δkn − σ

n∑
i=1

n∑
j=1

(δjk − δik)g(yj − yi − cij), k = 1, 2, . . . , n, (4)

where ε is a positive scaling constant, σ is a nonnegative gain parameter, δij is
defined in (2), g(v) is the unipolar hard-limiting activation function defined as

g(v) =

⎧⎪⎨⎪⎩
1, if v > 0,

[0, 1], if v = 0,

0, if v < 0.

(5)

The proposed neural network (4) has one-layer structure only with n neurons
(same as the number of decision variables in the dual shortest path problem
(3)). Compared with the primal neural networks [6,7,8] with n2 neurons and the
primal-dual neural networks [9] with n2+n neurons, the proposed neural network
herein has lower model complexity with one order fewer neurons. The proposed
neural network has the same model complexity as the dual neural networks
[7,8]. Nevertheless, the parameter selections for the dual neural networks therein
are not straightforward, whereas the proposed dual neural network herein is
guaranteed for exact optimal solutions if the single gain parameter in the model
is larger than a derived lower bound, as will be discussed in the ensuing section.

3 Global Convergence

In this section, the finite-time global convergence to optimality of the proposed
recurrent neural network (4) is proved with a derived lower bound of the gain
parameter σ. Throughout this paper, we always assume that the optimal solution
set is not empty and solutions are finite.

Denote y = (y1, y2, . . . , yn)T , b = (c11, . . . , c1n, c21, . . . , c2n, . . . , cn1, . . . , cnn)T

and c = (1, 0, . . . , 0,−1)T ∈ R
n, then the neural network in (4) can be written

as the following vector form

ε
dy

dt
= −c − σAT g(Ay − b), (6)
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where g(v) : R
n2 → R

n2
and its component is defined as that in (5), A = M −E

with

M =

⎛⎜⎜⎜⎝
I
I
...
I

⎞⎟⎟⎟⎠ , E =

⎛⎜⎜⎜⎝
e o · · · o
o e · · · o
...

...
. . .

...
o o · · · e

⎞⎟⎟⎟⎠ ,

in which e = (1, 1, . . . , 1)T ∈ R
n and I is the identity matrix.

Let ψ(y) = cT y +σeT φ(Ay− b), where φ(v) = (φ1(v), φ2(v), . . . , φm(v))T and
φi(v) = max{0, v}. Then its generalized gradient is ∂ψ(y) = c+σAT K[g(Ay−b)],
where K(·) denotes the closure of the convex hull. That is, the neural network
in (6) is a gradient system of energy function ψ(y). Since ψ(y) is convex, the
minimum point of ψ(y) corresponds to the equilibrium point of neural network
(6). In addition, if the gain parameter σ is large enough, the optimal solution of
problem (3) can be obtained. Next, we give the finite-time global convergence of
the proposed neural network.

Theorem 1. If ψ(y) has a finite minimum, then the state variables of (6) (or
(4)) are globally convergent to an equilibrium point in finite time with any σ ≥ 0.

Proof: From the assumption, the equilibrium point set of neural network (6) is
not empty. Let ȳ be an equilibrium point of neural network (6), then there exists
γ̄ ∈ K[g(Aȳ − b)] such that

c + σAT γ̄ = 0.

Consider the following Lyapunov function:

V (y) = ε

∫ 1

0

(y − ȳ)T [F (ȳ + t(y − ȳ)) − F (ȳ)]dt +
ε

2
‖y − ȳ‖2, (7)

where F (y) = c + σAT g(Ay − b) and ‖ · ‖ denotes the Euclidian norm. We have

∂V (y) = ε {K[F (y)] − K[F (ȳ)] + y − ȳ} ,

where K[F (y)] = c + σAT K[g(Ay − b)].
Similar to the proof of Theorem 3 in [12], we have

V̇ (y(t)) ≤ − inf
η∈K[F (y)]

‖η‖2, (8)

and any state trajectory of neural network (6) is globally convergent to an equi-
librium point.

Suppose that y(t) is not an equilibrium, so that c + σAT γ �= 0, where γ ∈
K[g(Ay − b)]. Since the set K[g(Ay − b)] is nonempty and compact, the set
K[F (y)] is also nonempty, compact and 0 /∈ K[F (y)]. Thus, infη∈K[F (y)] ‖η‖2 is
a positive constant, denoted as β. Then, from (8), we have

V̇ (y(t)) ≤ −β.
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Integrating both sides of previous inequality from t0 = 0 to t, it is easily to
verify that V (y(t)) = 0 for t ≥ V (y(t0))/β. From (7), it follows that V (y(t)) ≥
ε‖y − ȳ‖2/2, then we have y = ȳ for t ≥ V (y(t0))/β. That is, x(t) is globally
convergent to an equilibrium point in finite time.

From above analysis, the proposed neural network is guaranteed to reach an equi-
librium point in finite time. To obtain the optimal solution of the dual shortest
path problem in (3), the following theorem reveals the relationship between the
optimal solution of problem (3) and the equilibrium point of neural network (4).

Theorem 2. Any equilibrium point of neural network (4) is an optimal solution
of the dual shortest path problem (3) and vice verse, if σ >

√
2.

Proof: The proof is similar to that of Theorem 2 in [12] and omitted here.

Combining Theorems 1 and 2, the state variables of neural network (4) are
globally convergent to an optimal solution of the dual shortest path problem (3)
in finite time if σ >

√
2.

4 Simulation Results

Consider a shortest path problem with n being 20. The origin and destination
vertices are, respectively, vertices 1 and 20. The network topology is shown in
Fig. 1, where the solid lines indicate the shortest path and the dash lines indicate
the existing arcs.
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Fig. 1. Network topology and the shortest path in the example
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This shortest path of this problem is {n1, n4, n7, n10, n12, n17, n20}; i.e., {a14,
a47, a7,10, a10,12, a12,17, a17,20}. Let ε = 10−6, Figs. 2 and 3 show the simula-
tion results of the neural network constructed from the dual linear program-
ming (3). Specifically Fig. 2 depicts the convergence of the state variables with
σ = 2. Fig. 3 shows the convergence of the dual objective function yn − y1 (i.e.,∑n

i=1

∑n
j=1 cijxij in the primal shortest path problem) with three different val-

ues of σ. The optimal dual solution needs post-processing to decode the optimal
primal solution in terms of edges. According to the Complementary Slackness
Theorem: given the feasible solutions of xij and yi to the primal and dual prob-
lems, respectively, the solutions are optimal if and only if 1) xij = 0 is implied
by yj − yi < cij and 2) xij = 1 is implied by yj − yi = cij for i, j = 1, 2, . . . , n.
In this example, after post-processing, the optimal primal solution is obtained
as high lighted by the dark lines in Fig. 1.

5 Conclusions

This paper presents a recurrent neural network with a unipolar hard-limiting
activation function for solving the shortest path problem in its dual form. The
dual neural network is guaranteed to be globally convergent to the optimal so-
lutions in finite time if its single gain parameter is larger than a derived lower
bound. A numerical example with simulation results is given to illustrate the
effectiveness and performance of the proposed neural network.
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Abstract. Hierarchical Temporal Memory (HTM) is an emerging com-

putational paradigm consisting of a hierarchically connected network of

nodes. The hierarchy models a key design principle of neocortical orga-

nization. Nodes throughout the hierarchy encode information by means

of clustering spatial instances within their receptive fields according to

temporal proximity. Literature shows HTMs’ robust performance on tra-

ditional machine learning tasks such as image recognition. Problems in-

volving multi-variable time series where instances unfold over time with

no complete spatial representation at any point in time have proven trick-

ier for HTMs. We have extended the traditional HTMs’ principles by

means of a top node that stores and aligns sequences of input patterns

representing the spatio-temporal structure of instances to be learned.

This extended HTM network improves performance with respect to tra-

ditional HTMs in machine learning tasks whose input instances unfold

over time.

Keywords: Sequence Encoding, Motion Analysis, Multidimensional

Signal Processing, Neural Network Architecture, Pattern Recognition.

1 Introduction

Hierarchical Temporal Memory (HTM) [1], [2] is a conexionist paradigm with
a novel set of bio-inspired assumptions encapsulating theories about neocortical
function into a set of algorithms [3]. HTM theory incorporates the hierarchical
organization of the mammalian neocortex into its topological architecture [4], [5].
HTM also uses spatio-temporal codification as a way to encapsulate and learn
the structure and invariance of problems’ spaces [6]. Spatio-temporal coding and
hierarchical organization are well documented principles of information process-
ing in living neural systems [7], [8].
� This work was supported by grants from ’Consejeŕıa de Educación de la Comunidad
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HTM hypothesizes that time is used by the neocortex as a supervisory signal
for clustering together spatially different input patterns that tend to present
themselves close together in time. The usage of temporal integration minimizes
storage requirements and reduces the need for supervised training.

The theoretical aspects of the HTM paradigm were throughly described in [2],
[9]. An up to date version of the theory with a probabilistic model of temporal
aggregation and feedback information flowing from parent nodes to children
nodes to disambiguate noisy inputs can be found in [1]. HTM algorithms can be
used to solve problems on different domains: pattern recognition, control theory
or behavior generation among others [10]. In this paper we center our attention
to HTMs applied within the realm of temporal pattern recognition.

The main objective of an HTM network trained for pattern recognition is the
development of invariance capabilities [11]. That is, given a set of categories, each
one of them represented by a set of instances, the system should learn to properly
separate the category-space using a small subset of training instances from each
category set. After training, the system should be able to generalize and properly
assign the correct categories to unseen instances from the category space.

HTM algorithms perform robustly in traditional machine learning tasks such
as image recognition [11]. Problems where HTM excel are those with an inherent
spatio-temporal structure and whose instances are represented completely at any
given time instant. For problems where an instance is composed of a time series
of spatial arrangements, HTMs performance is not as robust.

In this paper we develop a feature for HTMs to perform better on learning
tasks whose instances unfold over time: we modify the HTM’s top node by
enabling it to store sequences of spatio-temporal input patterns arriving at the
top node over time. This top node also performs similarity measurements among
incoming sequences in order to map unseen instances to known categories. The
rationale for using sequences to map stimuli to categories has been justified
in [12], [7], [13].

We illustrate the performance of our modified HTM system in the problem of
sign language recognition. Sign language is used by deaf people to communicate
by means of using sequences of hand movements instead of speech. Sign Lan-
guage constitutes a good fit for the type of problem that we wanted to tackle:
category spaces whose instances are composed of an ordered sequence of spa-
tial arrangements. Therefore, we chose a data set containing time series of hand
movements representing signs from Australian Sign Language (ASL) as a proof
of principle that our expanded HTM system can perform well on problems whose
instances develop over time.

2 HTM Formalism

HTM’s network topology consists of a set of layers arranged in a hierarchy,
Fig. 1(a). Each layer is composed of one or several computational nodes operating
in discrete time steps. Nodes are related through children-parent relationships.
Each node throughout the hierarchy possesses an intrinsic receptive field formed
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(a) (b)

Fig. 1. HTM Basis. Panel a shows an HTM’s topology containing 3 layers. Each

layer is composed of one or several nodes. Bottom level nodes are fed with input

from a sensor, in this case an ”artificial retina”. Figure adapted from [3]. Panel b
shows instances of 2-Dimensional spatial coincidences from a small receptive field in

an artificial retina. The spatial coincidences in the first two rows do not have a high

pixel-to-pixel similarity but since they appear often in a sequence they are temporally

adjacent, so an HTM node clusters them into the same temporal group. Non frequent

sequences of spatial coincidences are not clustered together. Figure adapted from [2].

by its children nodes or, in the case of bottom level nodes, a portion of the
sensors’ input space. Nodes of HTM networks can receive many types of input
vectors that specifically encapsulate the input space properties of the receptive
field to which they are exposed. All nodes through-out the hierarchy, except the
top node, carry out unsupervised learning.

Each node in an HTM network can be thought of as composed of two critical
elements: a spatial pooler and a temporal pooler. These two identifiers serve as
abstractions to refer to the form by which input vectors received during training
are partitioned and stored into sets of temporally adjacent vectors. All nodes
start off with their spatial and temporal poolers empty. Nodes undergo two
modes of function during their lifetime: a training mode and an inference mode.

During the training mode, a node stores input vectors coming from children
nodes that are different enough, according to a threshold, from the vectors al-
ready stored on its spatial pooler. These input vectors are also referred to in the
HTM literature as spatial coincidences [11].

When the spatial pooler is full or a sufficiently large number of training it-
erations has been carried out, the node creates a time-adjacency matrix. Each
row and each column of this matrix represents a spatial coincidence, and the in-
tersection between a row and a column maintains a probability value indicating
the likelihood of a spatial coincidence, represented by the row, transitioning into
the spatial coincidence, represented by the column, in the next time step.

Training is completed when a time-adjacency matrix’ modification coefficient
falls bellow a certain threshold. The node initiates then a segmentation algorithm
that uses the transition frequencies stored in the time adjacency matrix to cluster
the vectors in the spatial pooler into groups according to how frequently they
tend to follow each other in time. These temporally adjacent groups are stored
in the temporal pooler of the node. The rationale for this is the fact that input
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patterns with a large spatial distance might be closely related or have a common
cause if they tend to follow each other in time repeatedly, Fig. 1(b).

After the node spatial pooler has been partitioned into temporal groups, the
node switches its state from training mode towards inference mode. During infer-
ence mode, the node continues to receive input vectors, but it does not perform
any more learning of new vectors, it just calculates to which temporal group the
incoming input vector most likely belongs. This is done by calculating the simi-
larity between the incoming input vector and the vectors stored in the temporal
groups. The node then emits an output vector containing as many elements as
temporal groups are stored on its temporal pooler. Each element of the output
vector could indicate a probability value of that temporal group being active. In
a simplified version of the system, all elements of the output vector can be bi-
nary with all elements of the vector being 0s except for the element representing
the temporal group to which the node believes the actual input vector belongs,
which contains a 1. This vector is propagated toward the node’s parent node.
Fig. 2(a) shows the stages a node goes through during its life time.

In traditional HTM, the network’s top node functions in a slightly different
fashion to the rest of the nodes in the hierarchy. The top node does receive input
vectors from children nodes, but it does not perform temporal aggregation of the
data and it does not emit output vectors. During training, a signal is given to
the top node as a cue about the particular category to which the system is being
exposed to at a particular time instant. The top node just maps incoming input
vectors to the signaled category in a supervised fashion.

(a) (b)

Fig. 2. Node inner-workings. Panel a shows how a node starts out with its spatial

and temporal poolers empty. Input vectors formed by 1s and 0s (s1,s2. . . ,s6) received

during training are stored in the spatial pooler. After training, the time adjacency ma-

trix is used to determine the temporal groups of the node (t1,. . . ,t4). During inference

mode, the node maps input vectors to temporal groups and emits the corresponding

output vector. In Panel b, a parent node aggregates output vectors from children nodes

to form its own input vector. These aggregated patterns from several children nodes

constitute the spatial coincidences of a parent node’s input space.
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Training starts off on the bottom level layer and propagates throughout the
hierarchy one layer at a time, with parent nodes transitioning into training mode
right when their children nodes initiate their inference mode. First, only nodes
at the bottom layer of the hierarchy are active and in training mode, the rest of
the nodes in the hierarchy are silent. Once the bottom layer has completed its
training mode, its nodes are switched to inference mode, and the nodes starts
to emit output vectors, which conform the input data for the nodes higher up
in the hierarchy. Parent nodes aggregate incoming vectors from several children
nodes, Fig. 2(b), and use this aggregated pattern as their input vector.

When all the nodes in all the layers of the hierarchy have undergone their
training mode, training for the whole network has been completed and the net-
work is ready to perform inference.

3 Proposed Extension for the HTM Formalism

We have developed a version of the HTM theory as proposed in [2]. Message
passing from children nodes to parent nodes nodes is implemented using binary
vectors, containing just 1s and 0s in each element without feedback from parent
nodes. This binary vector indicates which temporal group is active at a time. This
extended HTM formalism has been developed in order to adjust the system to
the specific needs of multivariable time-series problems whose instances develop
over time.

The fundamental modification of our local HTM system with respect to tradi-
tional HTM networks is the modification of the network’s top node whose task in
original HTM algorithms is simply to map incoming vectors from children nodes
to categories. The newly defined top node stores instead complete sequences of
spatio-temporal input vectors in its sequential pooler and maps those sequences
to categories.

Besides storing sequences of input vectors during training, the top node also
performs similarity measurements among incoming sequences during both train-
ing and inference. The similarity calculation is needed in order to map unknown
incoming sequences to the sequences already stored in the top node. Similarity
measurements are carried out by sequence alignment using dynamic program-
ming [14] as explained below.

We have tested our approach in the problem of Sign language recognition. Sign
language recognition is fundamentally different from previously tried out prob-
lems within the HTM community, [11]. Most problems undertaken by HTMs,
[10], consist of instances whose spatial configuration are fully represented at any
time instant. Sign language is composed of sequences of spatial arrangements
over time that together constitute a sign. At any given time t, the complete
representation of the sign is not available, just a particular spatial arrangement
of the hands. It is the particular temporal sequence of hand arrangements what
constitutes a sign. The fundamentally different nature of this kind of problem
and the poor performance of traditional HTM networks to deal with it justified
the undertaking of modifications within the HTM inner-workings. Figure 3(a)
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(a) (b)

Fig. 3. Extended Top Node. Panel a shows how the top node stores sequences of

spatial coincidences during training in its sequential pooler. First the node stores on its

spatial pooler the set of spatial coincidences to which it is exposed to during training.

Then it learns common sequences of those spatial coincidences. Panel b shows how the

extended top node uses sequence alignment using dynamic programming to measure

similarity among two sequences. The external row and column represent 2 sequences

formed by spatial coincidences units. The score at the bottom right of the matrix

indicates the top global alignment between both sequences. A scoring scheme was used

to score matches, gaps and mismatches in the alignments.

illustrates how the learning of a sign comes about over time in our modified top
node by storing the sequence of spatial coincidences that follow each other in
time during the ”utterance” of the sign.

4 Example Application: Sign Language Recognition

We illustrate the extended HTM formalism on a data set consisting of several
instances from sign language. The data set was obtained from [15] and it was
captured using a pair of electronic data gloves1 containing accelerometers and
sensors to track 11 channels of information for each hand: x, y and z spatial
coordinates of the hand, the roll, pitch and yaw rotation angles of the wrist and
a bend coefficient for each finger. A particular configuration of all the channel
variables at one instant in time is referred to in this paper as a frame.

When a user puts on this gloves and performs a particular sequence of hands
movements representing a sign, the gloves provide dynamic data representing the
spatio-temporal transitions of the tracked variables as they oscillate over time
while the hands ”utter” a particular sign. A total of 95 different sign-categories
with 27 sign-samples per category were recorded from a single volunteer native
signer using ASL [15].

1 Data Gloves from 5DT Fifth Dimension Technologies (http://www.5dt.com).

http://www.5dt.com
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(a) (b)

Fig. 4. Optimal Network Topology. Panel a shows a cross-correlation matrix of the

22 channels from the data set. This matrix was used to find the optimal topology of

the network since highly correlated input channels should be grouped in the network’s

lower layers. All the fingers of each hand are highly correlated as wells as the x,y and z

coordinates of each hand and the roll, pitch and yaw angles of the wrist. Panel b shows

what was determined to be the optimal HTM network topology for the illustrated

problem of sign recognition.

For each simulation, the data was automatically partitioned in a random
fashion into two sets, 90% of the available data became the training set and the
remaining 10% became the test set. The partitions were different for each simu-
lation and were determined ad-hoc right before each simulation. This prevented
over-fitting during the search for optimum HTM training parameters.

We created an HTM topology formed by 3 layers as shown in Fig. 4(b) that
proved to be the one that optimized the performance of the network over several
alternative network designs as explained below. The bottom layer nodes received
their input data from the 11 channels of input data coming from each glove. Sev-
eral topologies were tried out varying the number of layers, nodes, fan-in edges,
fan-out edges, spatial-pooler specificity coefficients and clustering coefficients for
the nodes.

The original data contained intrinsic noise, making it necessary to filter the
data. For each channel an average value for each category was determined. Then,
when any instance differed significantly from the category average, the difference
was subtracted from the absolute values for that particular instance. This pro-
cedure visibly reduced noise deviations in the data set.

Since the original data contained continuous variables, the next filtering step
was to discretize the continuous input values into discrete input values. That is,
the continuous input space had to be converted into a discrete input space. For
each channel, the range of possible values was segmented into a finite number of
regions. Each region represented a particular discrete value of the input space.
If the value of a continuous variable from an input channel fell into a particular
region, the channel adopted the discrete value associated with that region.
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Fig. 5. Entropy analysis of left hand Determining the right partitioning values,

ν, to transform the continuous input variable into ν discrete states. The optimum ν
according to simulation trials coincided with low entropies when comparing different ν
values’ impact on performance. The entropy of a sequence of values in a channel X =

x1, x2, x3, ..., xN is defined by the formula in the figure with pi being the probability

of value i, |xi| being the number of times value xi occurs and |X| being the length of

the sequence.

An entropy analysis for each channel was performed in order to determine the
proper segmentation value for each channel, Fig. 5. That is, in how many discrete
segments the continuous variable should be divided in order to minimize entropy.
The optimal parameters suggested by the entropy analysis and confirmed by
manual supervision settled down on segmentations values between 2-6 regions
for each channel.

The input data’s absolute x, y and z coordinates of the hands is sometimes not
enough to completely describe a sign. Other variables such as first and second
derivatives of the x, y, and z coordinates further describe a particular sequence
of hand movements. Therefore, we used derived data from the absolute values
provided by the data set and performed simulations using the derived velocity
and acceleration information corresponding to the x, y and z variables.

Since our Extended HTM formalism consisted of a top node that stored se-
quences of spatio-temporal patterns, we needed some means to perform compar-
isons among stored and incoming sequences in order to determine similarity. The
need for a measurement of similarity was two-fold: It was needed during training
in order to determine which sequences to store and which ones to disregard, in
case of high similarity to an already stored sequence. A similarity measurement
was also needed during inference to determine which sequence, from the set of
stored sequences in the sequential pooler of a top node had the highest degree
of similarity to an incoming input sequence. We measured sequence similarity
by performing sequence alignment using dynamic programming. Dynamic pro-
gramming has been successfully used by the bioinformatics research community
to calculate the degree of similarity between genetic sequences [14]. Dynamic
Programming sequence alignment consists of using a scoring matrix to align two
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sequences according to a scoring scheme by tracing down the optimal global
alignment, Fig. 3(b).

Combinations of different HTM networks that exploit different data repre-
sentations improves the performance of the algorithm. Therefore, a method was
needed in order to carry out the combination of the results of several simula-
tions. We settled down with a simple aggregated sum of results from different
simulations as a way of pooling the results of several simulations into a combined
result, Fig. 6(a). That is, each trained HTM network was tested by making it to
perform inference over a set of unseen instances. For each inference over an un-
seen instance, a rank of sequences stored in the sequential pooler of the top node
which were similar enough to the input instance was generated. Every sequence
in the rank had a particular score and category associated with it. The score
was the result of performing a global alignment between the input sequence and
this specific sequence stored in the sequential pooler. Pooling the results of sev-
eral simulations simply consisted of adding all the scores associated to a certain
category in the similarity rank generated for each input instance, Fig. 6(b).

(a) (b)

Fig. 6. Aggregation of Results. The results of HTM networks with different con-

figuration parameters and fed with different data representations can be pooled to

improve overall performance, Panel a. Panel b shows how the results tables of two

different HTM network simulations can be combined into a single table by adding up

the scores associated to each category in the similarity rank.

We measured the performance of the algorithms by testing what percentage
of unseen signs’ instances were assigned to their proper categories after training.
Two types of measurements were used: Measurement A indicated the percentage
of times the algorithm correctly first guessed an unseen utterance of a sign.
Measurement B indicated the percentage of times the algorithm guessed the
correct category of the unseen instances within its top three guesses.

Several simulations were carried out with different network parameters. The
optimal topology used in the simulations was that of Fig. 4(b). The results of
the simulations using a traditional HTM network were poor, just above 30% for
Measure A, since they are not optimized to handle patterns unfolding over time.
The addition of our own node with sequence storage and sequence alignment
capabilities proved to be of critical importance with results jumping up to the
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Fig. 7. Comparison of Simulations Performance under different arrange-
ments. Measure A refers to the percentage of times the simulation correctly first

guessed the appropriate category of an unseen instance. Measure B refers to the per-

centage of times the simulation correctly guessed the appropriate category of an unseen

instance within its top 3 guesses. Aggregated results of several simulations are indicated

with the + operator.

70-80% range for Measure A. Figure 7 provides a summary of results for different
simulation types.

In Fig. 7, ’traditional HTMs’ simulation type refers to HTMs as described
in [2]. The rest of the simulations were carried out with the expanded top node
as described previously in this paper. Several simulations with different data
representations were carried out: Simulations optimized for specificity (Spe) or
generalization (Gen), simulations using derived data from the original x, y and
z coordinates: derivatives (Der), second derivatives (Der2), integrals (Int), aver-
ages (Ave) and simulations using data just from the right hand (Rha).

Simulations combining several single type simulations improve inference’s per-
formance. Combination of results from individual networks are referred to in
Fig. 7 as addition of the specific tags associated with each simulation type.

5 Discussion

HTMs perform successful pattern recognition over data sets whose instances’
spatial components are perceived completely at a particular time instant, for in-
stance, image recognition [11]. That is, through one single flash-shot, the system
perceives the whole spatial representation of an instance from a category.

Instances whose composition unfolds over time as a particular timed sequence
of spatio-temporal configurations of input variables have not been shown in the
literature to be as robustly recognised by existing HTMs networks [10]. Our
data set consisted of precisely that: instances of sign language composed by an
ordered sequence of frames.
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Traditional HTM algorithms as described in the literature perform poorly on
our selected dataset, Fig. 7. This comes about because of the specific nature of
our tackled problem which is fundamentally different from image recognition. In
our data set, each frame considered in isolation does not represent any partic-
ular sign just a flash-view spatial arrangement of the hands in space. Only the
appropriate sequence of spatial arrangements over time uniquely constitutes a
sign. The top node in traditional HTMs just tries to guess the proper category of
an instance for every given frame during the performance of a sign. But a given
time frame or arrangement of the 11 channels of information for each hand can
be shared by several signs and hence the poor results.

To overcome the traditional HTMs shortcomings, our Extended HTM formal-
ism creates a top node whose main task is to store sequences of spatio-temporal
input vectors as incoming input instances unfold over time 3(a).

A cross correlation analysis was performed in order to find out correlations
among input channels, Fig. 4(a). This information was used to design the optimal
network topology, Fig. 4(b). HTMs work better if highly correlated channels are
grouped locally in the lower levels of the hierarchy [2], leaving the upper layers
to find out more complex, distant or not so obvious correlations. Accordingly our
network topology grouped in its bottom layers those variables that were highly
correlated according to Fig. 4(a).

A critical aspect for the performance of the algorithm is the degree of granu-
larity used for the discretization of the continuous input space. The discretization
process represents a trade-off between specificity and generalization capabilities
of the network. Excessive granularization, that is, partitioning the continuous
input space into too many regions, increases the specificity of the learning, but
leads to over-fitting and less generalization abilities of the network. Obviously,
the more instances available for training, the higher the degree of specificity that
can be reached, but our data set was constrained to just 27 samples for each
sign. On the other hand, a very unspecific partition of the input space, favors
generalization capabilities but also decreases the specificity of the network, that
is, the number of false positives increases. An entropy analysis was performed,
Fig. 5, to find out the optimum degree of granularity needed to transform the
continuous input space into a discrete space.

The types of errors committed for different simulations were different in terms
of sensibility and specificity. Simulations optimized for generalization improved
the sensibility with the cost of getting too many false positives. Simulations opti-
mized for specificity were very accurate in terms of always getting true positives,
yet they would miss several true positives due to their lack of generalization ca-
pabilities. Too much specificity also lead to an explosion in terms of storage and
processing requirements.

The relatively good results of simulations using just information from the
right hand (Rha) 7 are due to the fact that in Australian Sign Language most
signs are perform just with the right hand while the left hand stays still.

Performing several simulations for different data representations of the data
set and then using a pooling system to aggregate the results of different network
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simulations improves overall performance, Fig. 7. This is due to the fact that
some granularizations, or data representations, are optimal just for the recog-
nition of some signs with no obvious optimal data representation for all signs.
Therefore, combinations of HTM networks that exploit different data represen-
tation overcomes this limitation.

Our approach improves performance of HTMs significantly for recognition
of multivariable time series. There is however a trade-off since the sequence
alignment methodology used by our modified top node is NP-hard underlining
the high computational costs of this approach.

The results of applying our method on the ASL Date Set, Table 7 are slightly
worse than those obtained by cite [16] which achieves accuracy percentages of up
to 96%. However, the method described by [16] is intrinsically of a highly super-
vised nature, since the features to be matched by the algorithm were previously
defined by the author. The nature of our algorithm is fundamentally different
since it is highly unsupervised in its feature learning methodologies and therefore
highly adaptable to a wide array of problems.

Other authors have recently used HTMs for Polish sign language recognition
[17]. These authors have used a video based recognition approach while we used
data captured with a data glove. Although in [17] they get slightly better results
for Polish Sign Language than our algorithm for ASL, around 94%, they also
fed the HTM algorithm with additional channels about movement type, and
visemes [17] something which our data set lacked [17]. Also their training set
contained more instances for each sign, 40, as opposed to our data set which
only contained 27.

In summary, our reformulation of the top node in an HTM system by providing
it with sequence storage and alignment capabilities improves performance when
used upon classifying signs from a data set containing Australians sign language
data recorded using electronic gloves. This approach can be easily generalized
for machine learning applications where the patterns to be learned also unfold
over time.
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Abstract. Independent Component Analysis (ICA) is a statistical computation 
method that transforms a random vector in another one whose components are 
independent. Because the marginal distributions are usually unknown, the final 
problem is reduced to an optimization of a contrast function, a function that 
measures the independence of the components. In this paper, the stochastic 
global Particle Swarm Optimization (PSO) algorithm is used to solve the opti-
mization problem.  The PSO is used to separate some selected benchmarks sig-
nals based on two different contrast functions. The results obtained using the 
PSO are compared with classical ICA algorithms. It is shown that the PSO is a 
more powerful and robust technique and capable of finding the original signals 
or sources when classical ICA algorithms give poor results or fail to converge.  

Keywords: Independent Component Analysis, Particle Swarm Optimization. 

1   Introduction 

Independent Component Analysis (ICA) and its most popular application Blind 
Source Separation (BSS) is a very active research area. The theoretical problem has 
been clearly stated since a long time [1]. In this paper we will concentrate in the linear 
noiseless instantaneous model =x As where x  is the observed vector that is a linear 
transformation (matrix A ) of a random vector s  whose components are statistically 
independent. In BSS terminology, x  is the mixture vector, A is the mixing matrix 
and s  is the source vector. Many ICA algorithms can be decomposed into two steps; 
in the first one, the second order statistics are exploited, imposing the decorrelation of 
the signals (whitening step). The second step consists in the estimation of an orthogo-
nal matrix that imposes the independence, being necessary the use of higher order 
statistics. In matrix notation,  

= =y Bx UWx  (1) 
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where W is the whitening matrix and U  is the orthogonal one. The whitened vector is 

expressed as =z WAs , with [ ]TE =zz I , and the uncorrelated unit variance con-

straint [ ]TE =yy I , being y  the recovered or estimated sources. 

The independence hypothesis must be approximated and, as a consequence, the es-
timation of the sources is transformed in an optimization problem defined by a con-
trast (cost) function that is minimum when the estimated sources are as independent 
as possible, i.e., the matrix BA equals the product of a permutation (order indetermi-
nacy) and a diagonal matrix (scale indeterminacy). We present in this paper the Parti-
cle Swarm Optimization PSO approach to solve the ICA problem. The use of the PSO 
to solve the ICA problem is proposed to overcome the trapped-in-local-optimum 
problems of gradient descent traditional approaches. Although PSO and ICA are very 
active research areas, there are few works about the application of PSO in ICA; see, 
e.g., [5], [6], and they are focused in some particular part of the ICA solution, not in a 
general analysis of cost functions. 

2   Contrast Functions in ICA 

2.1   Mutual Information 

The Mutual Information MI is defined as the Kullback-Leibler divergence or relative 
entropy between the joint density and the product of the marginal distributions; it is 
non negative and equals to zero only if the distributions are the same, i.e., MI is a 
contrast function for ICA: 

( )
( ) ( ; ( )) ( ) log

( )
i

i i

i

p
MI KL p y p d

p y
= =∏ ∫ ∏

y
y y y y  

 
(2) 

It is related to the differential entropy, ( ) ( ) ( )
i

i

MI H y H= −∑y y , where the dif-

ferential entropy of a random variable u  is defined as ( ) ( ) log ( )H u p u p u du= −∫ , 

that can be seen as a measure of the randomness of the variable u . Using 

( ) ( ) log detH H= +y x B  , the contrast, up to an additive constant term, can be ex-

pressed as: 

( ) ( ) log det
i

i

MI H y= −∑y B  (3) 

with the advantage that only one dimensional distributions are involved instead of 
multidimensional densities. In the case where the observations are first whitened, 

i.e., =y Uz , [ ]TE =zz I , we only have to estimate the remaining orthogonal matrix, 

and the contrast is reduced to the sum of the marginal entropies of y : 

( ) ( ) , [ ]T

i

i

MI H y E= =∑y yy I  (4) 
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As a conclusion, ICA can be interpreted as a minimum entropy method under the 
whitening assumption. Hence, the MI contrast is equivalent to find the marginal dis-
tributions as far as possible from Gaussianity. 

2.2   Higher Order Cumulants 

The cross-cumulants are equal to zero for independent variables. In ICA, it means that 
2( ) , ( )

ij i ij ijkl i ijkl
C C kσ δ δ= =s s

 
with 1

ij
δ =

 
for i j=  and 0

ij
δ =

 
other-

wise, 1
ijkl

δ = for i j k l= = =  and 0
ijkl

δ =  otherwise, 2

i
σ is the variance and ik  is the 

kurtosis of the source component is  , i.e., 4 2 2[ ] 3 [ ]
i i i

k E s E s= − . Then, if there is no 

prior knowledge about the kurtosis, the contrast function cumJ is: 

2 ( )
cum iiii

i

J C= −∑ y  (5)  

This is equivalent up to a constant to 2 ( )
ijkl

ijkl iiii

C
≠

∑ y  since [ ]TE =yy I . JADE algorithm 

[4] approximates the independence by minimizing a smaller number of cross cumu-

lants, 2 ( )
JADE ijkl

ijkl ijkk

Cφ
≠

= ∑ y . 

3   Particle Swarm Optimization for ICA 

PSO is a stochastic optimization technique that was first introduced in 1995 by Eber-
hart and Kennedy [5]. It is a global optimization algorithm that simulates the swarm-
ing behavior of birds, bees, fish, etc. The PSO has a comparable performance to other 
stochastic optimization technique like genetic algorithm (GA) and simulated anneal-
ing. A major advantage of the PSO is its ease of implementation in both the context of 
coding and parameter selection.  

The PSO starts with an initial population of individuals (to be termed swarm of par-
ticles). Each individual (particle) in the swarm is randomly assigned an initial position 
and velocity within the solution space. The position of the particle is an N-dimensional 
vector that represents a possible set of the unknown parameters to be optimized. Each 
particle in the swarm starts from its initial position at its initial velocity in order to find 
the position with global minimum (or maximum). During the algorithm search, the 
velocity and position of each particle is updated based on the individual and the swarm 
experience according to: 

 

1 1 1

1 1 2 2
(0, )( ) (0, )( )t t t t t t t t

mn mn n mn mn n mn mn
v v U pbest x U gbest xϕ ϕ− − −= + − + −   

1t t t

mn mn mnx x t v−= + Δ  (6) 

where 
mn

v  and 
mn

x  represents the velocity and position of the m-th particle in the nth 

dimension, respectively. The superscripts t and t-1 denote the time index of the  
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current and the previous iterations, 
1 1
(0, )t

n
U ϕ and 

2 2
(0, )t

n
U ϕ are two different, uni-

formly distributed random numbers in the intervals [0, 1ϕ ] and [0, 2ϕ ], respectively . 

These random numbers are generated at each iteration and for each particle. The first 
term in (6) indicates that particle’s current velocity depends on its previous velocity 
while the other two terms represent the effect of the individual (particle’s best posi-
tion (pbest)) and the swarm experience (neighborhood best position (gbest)) on the 
behavior of the particle. tΔ  represents a given time step (usually chosen to be one). 
The goodness of the new particle position (possible solution) is measured by evaluat-
ing a suitable contrast or fitness function. 

In this article, Clerc's constriction method is used [6]. It consists on a strategy for 
the placement of constriction coefficient ( χ ) by which the whole equation (6) is 

multiplied. This coefficient is used to control the convergence of the particle, prevent 
explosion and ensure convergence.  

2

2

2 4
χ

ϕ ϕ ϕ
=

− + −
 

 
(7) 

where 
1 2

4ϕ ϕ ϕ= + > . The parameter ϕ  is commonly set to 4.1 and 
1 2

ϕ ϕ= which 

result in an approximate value of 0.7298 for χ . 

4   Results and Discussion 

In this section, the use of Clerc's constriction PSO method to solve the optimization 
problem in ICA is demonstrated and different simulation examples are presented. In 
our implementation of the PSO algorithm, a swarm size of 25 particles, 500 iterations, 

1 2
2.05ϕ ϕ= = , 0.7298χ =  and circular population topology were used. The results 

obtained are compared with classical ICA algorithm FastICA [7]. In order to test the 
performance of the algorithm with different but standard signals, we use the bench-
marks proposed in the ICALAB package [8]. The ICA contrasts analyzed are the sum 
of the marginal entropy and the fourth order cumulant (kurtosis), corresponding to 
equations (4) and (5), respectively. It is worth mentioning that the elements of the 
PSO output vector are reshaped to form the demixing matrix B in equation (1), which 
is then normalized and made orthogonal before used in the contrast function in order 
to impose these constraints on the demixing matrix. The PSO output is an N-
dimensional vector (position of the particle with best fitness) that represents a possi-
ble set of all the elements of the matrix B in equation (1). The reshaping is necessary 
to transfer the vector into a square matrix.  

In the first example, 10 sparse (smooth bell-shape) sources that are approximately 
independent are randomly mixed. Some ICA algorithms have failed to separate such 
sources, so we want to test if PSO can overcome these difficulties. The corresponding 
recovered signals using the PSO and the two different contrast functions are shown in 
the Figures 1 and 2. The recovered signals are in a very good agreement with the  
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Fig. 1. The recovered signals of Example 1 
using PSO and the entropy contrast function 

Fig. 2. The recovered signals of Example 1 
using PSO and the cumulant contrast function 
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Fig. 3. The original signals of Example 2 Fig. 4. The Histogram of the signals in 

Example 2 

original signals (we do not show them for the lack of space) with a different ordering 
and some of them with a change of sign. The recovered signals using FastICA algo-
rithm are also in comparable agreement with the original signals. 

Five fourth order colored sources with a distribution close to Gaussian belonging to 
the same ICALAB package were used in the second example. This is the most chal-
lenging case, since the signals are close to Gaussian distribution and ICA algorithms 
can estimate at most one Gaussian component. Figure 3 shows the original signals of 
Example 2.  

The histograms of the sources are shown in Figure 4 to indicate proximity to Gaus-
sianity. The recovered signals of Example 2 using the PSO with the kurtosis contrast 
function are shown in Figure 5. 

Comparing the signals in Figure 3 and 5, it can be seen that the proposed method-
ology was successful in recovering some of the original signals with acceptable qual-
ity and the other signals with poor quality. On the other hand, the FastICA algorithm 
has completely failed to separate the mixed signals of this example. The algorithm in 
the ICALAB package only outputs one signal and does not give any output for the 
remaining signals. In addition, the algorithm outputs the statement “Too many failures 
to converge. Giving up”. This example shows the robustness of PSO compared to  
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Fig. 5. The recovered signals of Example 2 using PSO and the kurtosis contrast function 

classical optimization techniques. In order to assure this result, other ICA algorithms 
based on other optimization paradigms (gradient based and versions of it) was tested 
and confirmed this result, which is in agreement with the comments included in the 
ICALAB toolbox “This is a rather difficult benchmark”. 
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Abstract. The paper deals with the minimization of a quadratic functional in 
the configuration space of binary states. To increase the efficiency of the ran-
dom-search algorithm, we offer changing the functional by raising the matrix it 
is based on to a power. We demonstrate that this brings about changes of the 
energy surface: deep minima displace slightly in the space and become still 
deeper and their attraction areas grow significantly. The experiment shows that 
use of the approach results in a considerable displacement of the spectrum of 
sought-for minima to the area of greater depths, while the probability to find the 
global minimum increases abruptly (by a factor of 103 in the case of a two-
dimensional Ising model). 

Keywords: binary minimization, global minimum, random search, Ising model. 

1   Introduction 

The goal of the paper is to make a random-search procedure used in binary-
minimization problems more effective.  

The problem of binary minimization can be formulated as follows: there is N N×  
symmetrical matrix ijT  with zero diagonal, the goal is to find N-dimensional configu-

ration vector ( ) ( ) ( )
1 2( , ,..., )m m m

m NS s s s=  ( ( ) 1m
is = ± , 1,i N= ,) that ensures a minimum 

for the energy functional 1( )E S : 

 1 1
1 1

( )
N N

ij i j
i j

E S c T s s
= =

= − ∑∑ ,     2 2
1

1

( 1)
N N

ij
i j

c N N T−

=

= − ∑∑   (1) 

where normalization coefficient 1c  is introduced to allow us to correctly compare the 

results for different matrices. 
For minimization we use the Hopfield model [1] which is the basis of most today’s 

algorithms of binary optimization. The model is a one-dimensional system of N spins 
whose interactions are governed by the energy functional 1( )E S . Only conventional 

(asynchronous) behavior of the Hopfield model is considered: we compute the local 
field 1( ) /i ih E S s= −∂ ∂  that acts on an arbitrary spin (i-th spin): 
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1

N

i ij j
j i

h c T s
≠

= ∑ .                                                     (2) 

If the spin is in an unstable state ( 0i ih s < ), then the spin changes its state in accor-

dance with the decision rule sgni is h= . The procedure is applied successively to all 

neurons until the network comes to a stable energy-minimum state mS .  

This minimum mS  is very likely to be a local one despite our wish to find the 

deepest (global) minimum of the functional. That is why we have to turn to random 
search which involves descents from different random initial configurations repeated 
until the minimum of a specific depth (probably a global minimum) is reached. Below 
we will denote this simple algorithm as SRS (Standard Random Search) and use it for 
comparison with the algorithm we offer.  

The problem of binary minimization is NP-complete in the general case. For this 
reason heuristic methods are used to solve it [1-3]. Because of a large number of local 
minima, such methods do not work efficiently, though allow acceptable solutions. 
Despite of these difficulties, heuristic methods based on random search have found 
wide use in binary-optimization problems. Usually [4-9], one tries to make the ran-
dom-search procedure more efficient by changing the algorithm of the descent down 
the surface described by functional 1( )E S . A good review of the methods is given in 

papers [4-6].  
In contrast to that approach, we offer alteration of the surface itself rather than the 

dynamics of the descent by increasing the radius of the attraction area of the global 
minimum (and other minima that are almost as deep as the global one). Following the 
theory developed in [11], we consider the simplest kind of alteration which involves 
raising matrix T to power k ( 2,3,...k = ). The approach proved quite effective: the 

change of the surface increases the chance of finding the global minimum by 
310 times and makes the spectrum of the sought-for minima move far into a deeper-

depth region. 

2   Surface Transformation 

Basic relation. Before coming to the question of surface transformation, let us define 
basic relations involving the depth of a global (local) minimum. 

The first relation deals with the limitation on the depth of a minimum.  Let 
(0) (0) (0)

0 1 2( , ,..., )NS s s s=  be a configuration corresponding to global minimum 

0 1 0( )E E S= . Following to [12] the matrix T can be represented as 

 0 1T T T= + ,     where    0 0 0 0TT r S Sσ +=  ,    1 0T T T= −  ,  00 Er −=  ,              (3) 

and Tσ  is standard deviation of elements ijT  (for the simplicity sake we assume that 

mean value of ijT  is equal to zero). Then by using statistical physics methods [13] we 

can state that the following limitation on the depth of a minimum are true: 
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 01 cr r≥ ≥       and    cc rEE −=≤≤− 01  ,   where   
1

2
c

c

r
Nα

=   (3) 

and 0.138cα ≈  is the threshold value of the load parameter [13].  

The second necessary expression relates the depth and width of a minimum. As 
shown in [3], the width of minimum 0E  increases with its depth. Correspondingly, 

the chance to find this minimum grows exponentially as ( )2 2
0 0( ) ~ exp /cP E NE E− .  

The result is that we have determined two formulas: a) the deeper the minimum 0E , 

the greater the weight 0r  of an addition to configuration 0S  in the initial matrix T  and 

the higher the probability of finding the minimum, b) point 0S  can be a minimum only 

if 0 cr r≥ , that is, if the depth of the minimum 0E  is greater than the value cE .  

These formulae set the direction of our efforts to improve the efficiency of the ran-
dom-search algorithm: energy surface should be altered so that the global minimum 
will become deeper and, therefore, the chance to find it will grow. 

All of the above conclusions have to do with configuration 0S  corresponding to the 

global minimum. However, they are true for any extreme mS  of functional 1( )E S . 
 

Surface transformation. A surface defined by functional 1( )E S  can be transformed 

only by changing the corresponding matrix. Let us put matrix kM T=  into expression 
(1). Here kT  is a matrix resulted from raising matrix T  to power k  and zeroing its 
diagonal elements. Correspondingly, the surface determined by functional 1( )E S  

turns into the surface described by functional ( )kE S : 

 
1 1

( )
N N

k k ij i j
i j

E S c M s s
= =

= − ∑∑   ,    
1

( 1)k
M

c
N Nσ

=
−

,  (4) 

where Mσ  is the standard deviation of the elements of matrix M . Transformation of 

the global minimum is taken as a basis for all considerations. It is clear that when we 
alter the surface, the minimum moves with its depth and attraction area changing. We 
will show below that when parameter k  is small ( 2 5k≤ ≤ ) this transformation 
causes the minimum to change its depth noticeably and to move slightly. 

Correspondingly we offer a two-stage algorithm of minimization. The first stage 
suggests a descent over surface ( )kE S  and finding configuration ( )k

mS  which brings 

functional ( )kE S  to a minimum. The second stage involves correction: we descend 

over surface 1( )E S  from point ( )k
mS  to the nearest minimum mS  of functional 1( )E S . 

The method of descending surface ( )kE S  is exactly the same as that described above: 

we compute the local field ( ) ( ) /k
i k ih E S s= −∂ ∂  at the i-th spin: 

 ( )
N

k
i k ij j

j i

h c M s
≠

= ∑   (5) 

and if ( ) 0k
i ih s < ,  then the spin’s state changes as ( )sgn k

i is h= . 
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Algorithm  DDK  ( Double  Descent  with  parameter  K=2, 3, … ) 
begin 

       Step 1.   Random Initialization  ( random  state  S   generation ) 

      Step 2.   Descent  over  landscape   kE     from   S    to  minimum  
)(k

mS  

      Step 3.   Correction:  descent  over  landscape  1E    from   
)(k

mS    to  minimum  mS  

end   algorithm 

 
Fig. 1. DDK algorithm of random search using a two-stage descent 

Using this two-stage descent, we realized the random-search method whose short 
description is given in Fig. 2. Below we will refer to it as DDK (Double Descent 
algorithm with parameter 2,3,...K = ). To avoid misunderstanding, note that when 

1k = , the transformed functional ( )kE S  is identical to the original one 1( )E S , and 

the DDK method does not differ from the common SRS ( 1DD SRS≡ ). 

To ground the DDK algorithm, we turn to the case when 3k = . We will show that 
the surface transformation makes the global minimum significantly deeper, while its 
position changes only slightly. 
 

The deepening of the minima. Let us consider energy 30 3 0( )E E S=  at point 0S . In 

view of relations 0 1 0 0S T S + =  and 3
M TNσ σ=  we get from (4): 

 3 2 3 (0) (0)
30 0 0 1 13 3

1

1
(2 )

N N

T ij i j
i j iT

E NE Nr T T s s
N

σ
σ = ≠

= − +∑∑ .  (6) 

It follows from (6) that when 1N >> , energy 30E  can be regarded as a normally 

distributed quantity with the mean 30E  and relatively small standard deviation Eσ : 

 3
30 0E NE=     ,        2 2

0 0(1 ) 4 1 /E r r N Nσ ≈ − + .  (7) 

Since 2 2
30 0 0/ 1.76cE E r N r N= ≥ ≈ , the minimum should be expected to become 

deeper after surface transformation ( 30 0E E< ). The probability of that event is given 

by the expression: 

 { } ( )3030 1
2

1
Pr γerfEE +=<     where    

E

EE

σ
γ

2
300

3

−
=  .  (8) 

From 0 cr r≥  it follows that 3 0.25 Nγ ≥ , hence the probability of the minimum 

deepening { }30 0Pr E E<  approaches unit with growing N. In other words, the surface 

transformation is most likely to cause the minimum to deepen considerably, which, 
according to [3], leads to the probability of finding it growing with N  exponentially. 

 

The shift of the minimum. The average distance of the shift can be represented as 
(0) ( )Pr{ 0}k

k i id N s h= < , where (0) ( )Pr{ 0}k
i is h <  is the probability of spin (0)

is  and local 

field ( )k
ih  having different directions given configuration 0S . For our case of 3k =  

we can get the following expression: 
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 3 3(1 )
2

N
d erf η= − ,      where    

3
0

3 2
0(1 ) 2

N N E

r
η ≈

−
 .  (9) 

It is seen that the shift of the minimum is not large: given 0 cE E≥ , we get that 

3 1.7η ≥ , which means that 3 0.008d N≤ .  

Relations 761030 ./ ≥EE  and 3 0.008d N≤  are in accordance with experiment. 

3   Experimental Results and Discussion 

The DDK algorithm efficiency was evaluated for 2 7k = ÷ . The experimental results 
for the matrices of the two-dimensional Ising model are given in Table 1. The first 
column holds data for the SRS algorithm. The other columns hold data for the DDK 
algorithm. To evaluate the efficiency of the algorithm, we picked three characteristics: 

the first row contains deviation ( )0 0/mE E E Eδ = − ; the second the probability of 

entering the energy interval 0 0[ , 0.99 ]E E  in the close vicinity of the global minimum; 

the third the probability of hitting the global minimum. 

Table 1. Comparison of the DDK algorithm efficiency with the results of using the SRS algo-
rithm performed for a two-dimensional Ising model with 100N =  

 SRS DD2 DD3 DD4 DD5 
Deviation  

( )0 0/mE E E Eδ = −  16% 11% 6% 10% 5% 

Probability of entering the 
energy interval 0 0[ , 0.99 ]E E  2.8*10-5 2.3*10-3 1.1*10-2 5.6*10-3  2.5*10-2 

Probability of hitting the 
global minimum ( 0)kP d =  2.4*10-6 3.8*10-4 2.1*10-3 1.2*10-3 4.1*10-3 

 
It is seen that the results for 5k =  little differ from the results for 3k = . When 

5k > , the results become worse. That is why a further increase of k does not make 
much sense: as k grows, the efficiency of the algorithm falls and computations begin 
consuming too much time. It seems that the efficiency provided by the DDK algorithm 
only grows with k. However, it does not make sense to raise the matrix to power end-
lessly and expect the probability of hitting deep minima to grow. Functional 2E  exhib-

its chimera minima which are deeper than the global minimum of the initial functional 

1E . The higher the power of the matrix, the more chimera minima the corresponding 

functional holds and the deeper they are. It should be also noticed that raising the ma-
trix to a power may result in the global minimum becoming invisible at all.  

Comparison shows that the surface transformation increases the optimization algo-
rithm efficiency significantly. In particular, the use of the DD3 method allows the 
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following improvements: probability of hitting the global minimum increases by 
almost 103 times and reaches quite a reasonable value of ~ 0.2% ; the difference be-

tween the average energy mE  and the energy of the global minimum decreases by 

three times; the probability that 0 0[ , 0.99 ]mE E E∈  grows by several hundred times. 

Besides, the superiority of the DDK algorithm over the SRS one only grows with 
increasing dimensionality N .  
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Abstract. This paper presents a method for approximating the Pareto

front of a given function using Artificial Immune Networks. The proposed

algorithm uses cloning and mutation to create local subsets of the Pareto

front, and combines elements of these local fronts in a way that maximizes

the diversity. The method is compared against SPEA and NSGA-II in a

number of problems from the ZDT test suite, yielding satisfactory results.
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1 Introduction

Finding the Pareto front of a given function is a complex task since both the
Pareto optimality and the diversity of the proposed solutions must be simul-
taneously addressed. Analytical methods are often computationally infeasible,
rendering Evolutionary Algorithms a dominant approach in the field. In this pa-
per we suggest a method of approximating the Pareto front of a given function
based on Artificial Immune Networks.

The proposed method evolves a population of candidate solutions using cloning
and non-uniform mutation, and evaluates the population using both Pareto-
dominance and distribution criteria. Our method is tested on the well-known ZDT
Test Suite [5], and the solutions suggested are compared to the NSGA-II [2] and
SPEA [3] algorithms.

The rest of the paper begins by giving an overview of the Artificial Immune
Networks in Section 2. Sections 3 discusses the concepts of Pareto dominance
and the diversity of the Pareto front. The algorithm is presented in Section 4
and the experimental results are listed in Section 5.

2 Artificial Immune Networks

The immune system consists of a complex of cells, molecules and organs, whose
primary function is to limit the damage that invading pathogens cause to the host
organism. To confront these invaders (antigens), the organism secrets receptor
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molecules called antibodies which bind with the invading antigen. The shape
of the antibodies can change to better match with the corresponding antigen
through a process known as Clonal Selection. For each antibody a number of
clones are created and mutated at a high rate. The clones that better match
the antigen survive while the ones that do not die out. Gradually, this leads to
antibodies of higher ability to match the invading antigen.

Another critical addition to the biological model of the immune system is
Jerne’s theory of the Immune Network. According to this, antibodies can recog-
nize and eliminate other antibodies, even in the absence of antigens. To avoid
recognizing its own antibodies as invaders, the immune system must ensure that
antibodies not only match antigens, but do not match other antibodies already
present in the organism. This means that the network must ensure the diver-
sity of its antibody population, by removing antibodies that are too similar to
already existing antibodies and replacing them by new ones.

Based on the biological principles described above, a multitude of correspond-
ing computational models have been developed (we refer the reader to [7] for a
thorough analysis). All of them address the problem by maintaining a evolving
population of antibodies. Throughout the evolution, some antibodies are ran-
domly created, some evolve according to the Clonal Selection process, and some
die according to the Immune Network principles. The fact that the Immune
Network addresses both the quality and the diversity of the population simulta-
neously makes it particularly suitable to multiobjective optimization problems.

3 Pareto Dominance and Diversity Evaluation

3.1 Pareto Dominance

In what follows, let us consider an optimization problem with k objectives that
are all, without loss of generality, to be minimized and equally important. Let
f : X → Y be the function that is to be optimized. This function performs a
mapping of a decision vector x = {x1, x2, . . . , xn} in the decision space X ⊆ R

n

to an objective vector y = {y1, y2, . . . , yk} in the objective space Y ⊆ R
k.

Each decision attribute xj takes values in the interval Xj = [lj , uj ], hence
the decision space is the Cartesian product of those intervals, namely X =
X1 ×X2 × . . .×Xn. Accordingly each attribute yj of the objective space lies in
Yj = [Lj, Uj ] and thus y ∈ Y = Y1 × Y2 × . . . × Yk.

Given two such objective vectors y1, y2 ∈ Y, we say that y1 Pareto-dominates
y2 if y1 is smaller than y2 in at least one attribute and not larger in any of the
others, that is

y1 � y2 ⇔ {(∃j : y1
j < y2

j ) ∧ (∀j : y1
j ≤ y2

j } (1)

Accordingly, we can say that solution x1 is better than x2 if the corresponding
mapping y1 dominates y2, that is x1 � x2 ⇔ f(x1) � f(x2). Given this equiv-
alence, for the remaining of the paper, each time a solution yi in the objective
space is selected as optimal, it is implied that the corresponding vector xi in the
decision space is also selected.
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An objective vector yi (and the corresponding xi) is considered optimal if
it is not dominated by any other vector in the objective space. The goal of
the algorithm is to find a set of such mutually non-dominated solutions, each
representing a different trade-off between the multiple objectives. This set of
vectors is called the Pareto front of the function, denoted P, while the set of the
corresponding decision vectors is called the Pareto set S.

3.2 Diversity Evaluation

To evaluate the diversity of the proposed solutions, we use the S metric, a common
diversity criterion proposed by Zitzler in [6]. Specifically, given a candidate Pareto
front y, we select a reference point yref dominated by all points in y. We then
calculate the hypervolume dominated by all members in y bounded by yref . This
volume is used as an indicator of the diversity of the suggested Pareto front.

Formally, for a given yi ∈ y, the region dominated by yi and bounded by yref

is the set
R(yi, yref ) = {y|yi < y < yref , y ∈ R

k} (2)

The region dominated by all points in y and bounded by yref we be the union
of all such sets for 1 ≤ i ≤ m. That is

R(y, yref) = ∪1≤i≤mR(yi, yref ) (3)

The value of the metric S(y, yref ) is equal to the Lebesgue integral of the set
R(y, yref ). The details of Lebesgue integration are omitted here for brevity.

The selection of the reference point used to compute S(y, yref ) is arbitrary.
Zitzler suggests that we use as such the vector consisting of the maximum values
of all attributes in the objective space, that is yref = {U1, U2, . . . , Uk}. This
number has widely been employed in the literature and is also used here.

4 Algorithm

The artificial immune network proposed here attempts to approximate the Pareto
front of a given function by maintaining a population of antibodies B. Each anti-
body bi ∈ B represents a point x = {x1, x2, . . . , xn} in the decision space of the
problem. This section explains how each antibody evolves by mutation, and how
the antibodies are combined to form the complete Pareto front of the function.

4.1 The Pareto Cloud

Let b be an antibody, representing a point in the decision space and f(b) the
corresponding mapping in the objective space. Then, the non-uniform mutation
operator (described in [1]) acts on b producing a variant b′. The point b′ may be
situated anywhere in the decision space, but as time progresses and the mutation
rate decreases, it becomes more likely that it will be closer to the original b.
As a result, its corresponding mapping f(b′) will be closer to f(b) as training
progresses.
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Fig. 1. The effect of non-uniform mutation

Given the above, if C is a set of mutated clones of the antibody b and f(C)
the set of their corresponding mappings in the objective space, the points in
f(C) will form a ’cloud’ surrounding the point f(b). The exact shape of this
cloud depends on the objective function, but in general it will become smaller
(covering less volume around f(b)) as time progresses.

Among the points that make up this cloud, we select the ones that are not
dominated by any other point in the cloud, thus composing the Pareto front
P of the cloud. The corresponding points in the decision space are also stored
as S, where f(S) = P. A number of points from this local Pareto front will
be selected to form the whole Pareto front of the function. Figure 1 gives an
illustrative example of clouds formed around a point situated at [0, 0] and the
corresponding local Pareto fronts produced for various mutation rates

4.2 Evolution of the Network

Given a number of antibodies having the form described above, a population
B consisting of NB such antibodies is randomly initialized, with each antibody
given a value in the decision space X. Then, for a given number of generations,
the following procedure is repeated:

For each antibody bi ∈ B a set of clones is created, and the clones undergo
a non-uniform mutation process, producing a set of mutated clones Ci. The
number of clones NC will be constant and defined as a parameter of the training.
Among the mutated clones Ci, the ones whose mappings are situated on the
Pareto front of the set f(Ci) are selected, forming a local Pareto front Pi of the
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antibody. After the process has been repeated for all the antibodies, we construct
the union set P∗ = ∪1≤i≤NBPi of all the local Pareto fronts Pi of the antibodies.
The Pareto front P produced by the algorithm will be a subset of P∗, which will
be extracted in two steps.

First, we must remove dominated points that may result from the union of the
local Pareto fronts. Second, we must select only the best NB antibodies, to pre-
vent a size explosion that would render the problem computationally infeasible
after the first few generations. The selected points are the ones that maximize
the diversity metric defined in Section 3. Given all of the above, the algorithm
is formulated as follows.

Step 1. [Network initialization] In the beginning NB antibodies are created.
Each is initialized to a random point in the decision space.

Step 2. [Candidate Pareto set] The candidate Pareto set is initialized to ∅.
For each antibody a number of clones are created and mutated. The ones
situated on the local Pareto front are added to the candidate Pareto set.

Step 3. [Remove dominated points] We remove the dominated points that may
result from the union of local Pareto fronts.

Step 4. [Keep best points] If the number of points in the candidate Pareto set
is larger than NB, the NB points that maximize the diversity are selected.

Step 5. [Refresh antibodies] At this point, each of the antibodies is re-initialized
to a point in the Pareto set. If the size of the Pareto set is smaller than NB,
new antibodies are randomly created to cover the desired number.

Step 6. [Loop] Repeat the procedure from step 2 until the desired of number
of generations is completed.

5 Experiments

In this section our algorithm is tested on four problems from the well-known
ZDT Test Suite, described in [5]. The results are compared against the NSGA-
II [2] (a state-of-the-art algorithm) and SPEA [3] algorithms. To compare the
performance of the algorithms, we use two metrics. The first measures the mean
Euclidean distance of the proposed points to the true Pareto front, and the
second the deviation of the proposed solutions. A description of these metrics is
given in [2].

Our model was trained for 200 generations, using a population of NB = 40
antibodies and NC = 200 clones for each antibody. The dependency of non-
uniform mutation on time was set to d = 2. The number of samples of the ideal
Pareto front in the performance metric was set to h = 500, since both competing
algorithms used this number in evaluating their performance.

Table 1 lists the results obtained by the 3 algorithms. Specifically, (a) illus-
trates the values obtained for the distance metric and (b) the values of the
diversity metric. These values correspond to the average values of different runs
of each algorithm (10 runs for our algorithm). The variance between different
runs was negligible for all algorithms and is therefore omitted for brevity.
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Table 1. Result Comparisons

(a) Distance Metric

Problem Immune NSGA − II SPEA

ZDT1 0.0009 0.0009 0.0018

ZDT2 0.0010 0.0008 0.0013

ZDT3 0.0024 0.0434 0.0475

ZDT6 0.0041 0.2965 0.2211

(b) Diversity Metric

Problem Immune NSGA − II SPEA

ZDT1 0.2009 0.4632 0.7845

ZDT2 0.2536 0.4351 0.7551

ZDT3 0.4584 0.5756 0.6729

ZDT6 0.1495 0.6680 0.8494

The results listed show the performance of the proposed algorithm to be
very satisfactory. In the distance metric, our algorithm surpasses SPEA in all
problems and NSGA-2 in two out of four problems. Our method also outperforms
both NSGA-2 and SPEA in diversity for all problems.

The results listed do not necessarily mean that the proposed algorithm is
better that NSGA-II or SPEA. All 3 algorithms converge very closely to the
true Pareto front of the functions, so the differences in their performance may
not be fully indicative of their quality in general. However, the fact that our
algorithm compares favorably to a state-of the-art algorithm and a classic one
shows that it is a promising method for Pareto front approximation.
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Garćıa, Sandra I-422
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Mažgut, Jakub I-317

Meftah, Boudjelal I-117

Melacci, Stefano III-315

Melo, Jorge III-397

Mérida Casermeiro, Enrique III-471

Mesin, Luca III-489

Metin, Selin II-228

Metta, Giorgi II-234

Miao, Jun I-174

Miller, Bartosz I-97

Miro-Borras, Juli II-519

Miro-Borras, Julio I-199

Mitianoudis, Nikolaos I-450

Mitrakis, Nikolaos III-464

Miyoshi, Seiji III-339

Mohan, Vishwanathan II-234

Moioli, Renan C. II-245

Morabito, Francesco C. I-217

Morán, Antoni II-392

Morasso, Pietr II-234

Moreau, Yves I-267

Moshou, Dimitrios II-410

Mouraud, Anthony I-272
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Torres-Huitzil, Cesar II-276

Travieso, Carlos M. I-565

Tsagkaris, Kostas II-382

Tsalkidis, Aggelos I-241

Tsapanos, Nikolaos III-333

Tsapatsoulis, Nicolas I-442

Tscherepanow, Marko III-157

Tsinaslanidis, Prodromos III-130

Tsioliaridou, Ageliki III-477

Tsoi, Ah Chung II-372, III-237

Tsuboyama, Manabu III-528

Tsujino, Hiroshi II-204

Tsuji, Toshio I-291, I-401

Turchenko, Volodymyr I-521, III-327

Turitsyn, Sergei K. II-448

Tzelepi, Areti II-362

Tzikas, Dimitris I-87

Tzikopoulos, Stylianos D. I-251
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