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Preface

This volume is part of the three-volume proceedings of the 20th International
Conference on Artificial Neural Networks (ICANN 2010) that was held in Thes-
saloniki, Greece during September 15–18, 2010.

ICANN is an annual meeting sponsored by the European Neural Network
Society (ENNS) in cooperation with the International Neural Network Soci-
ety (INNS) and the Japanese Neural Network Society (JNNS). This series of
conferences has been held annually since 1991 in Europe, covering the field of
neurocomputing, learning systems and other related areas.

As in the past 19 events, ICANN 2010 provided a distinguished, lively and
interdisciplinary discussion forum for researches and scientists from around the
globe. It offered a good chance to discuss the latest advances of research and also
all the developments and applications in the area of Artificial Neural Networks
(ANNs). ANNs provide an information processing structure inspired by biologi-
cal nervous systems and they consist of a large number of highly interconnected
processing elements (neurons). Each neuron is a simple processor with a limited
computing capacity typically restricted to a rule for combining input signals
(utilizing an activation function) in order to calculate the output one. Output
signals may be sent to other units along connections known as weights that excite
or inhibit the signal being communicated. ANNs have the ability “to learn” by
example (a large volume of cases) through several iterations without requiring a
priori fixed knowledge of the relationships between process parameters.

The rapid evolution of ANNs during the last decades has resulted in their
expansion in various diverse scientific fields, like engineering, computer science,
mathematics, artificial intelligence, biology, environmental science, operations
research and neuroscience. ANNs perform tasks like pattern recognition, image
and signal processing, control, classification and many others.

In 2010 ICANN was organized by the following institutions: Aristotle Uni-
versity of Thessaloniki, University of Macedonia at Thessaloniki, Technologi-
cal Educational Institute of Thessaloniki, Hellenic International University and
Democritus University of Thrace.

The conference was held in the Kapsis Hotel and conference center in Thes-
saloniki, Greece. The participants were able to enjoy the atmosphere and the
cultural heritage of Thessaloniki, which is built by the seaside and has a glorious
history of 2300 years.

As a matter of fact, a total of 241 research papers were submitted to the
conference for consideration. All of the submissions were peer reviewed by at
least two academic referees. The international Program Committee of ICANN
2010 carefully selected 102 submissions (42%) to be accepted as full papers.
Additionally 68 papers were selected for short presentation and 29 as posters.



VI Preface

The full papers have up to 10 pages, short ones have up to 6 pages and posters
have up to 4 pages in the proceedings.

In addition to the regular papers, the technical program featured four keynote
plenary lectures by the following worldwide renowned scholars:

– Prof. Alessandro E.P. Villa: NeuroHeuristic Research Group, Information
Science Institute, University of Lausanne, Switzerland and Institut des Neu-
rosciences, Université Joseph Fourier, Grenoble, France. Subject: “Spatiotem-
poral Firing Patterns and Dynamical Systems in Neural Networks”;

– Prof. Stephen Grossberg: Department of Cognitive and Neural Systems, Cen-
ter for Adaptive Systems, and Center of Excellence for Learning in Edu-
cation, Science, and Technology, Boston University. Subject: “The Predic-
tive Brain: Autonomous Search, Learning, Recognition, and Navigation in a
Changing World”;

– Prof. Sergios Theodoridis: Department of Informatics and Telecommunica-
tions, National and Kapodistrian University of Athens. Subject: “Adaptive
Learning in a World of Projections”;

– Prof. Nikola Kasabov: Knowledge Engineering and Discovery Research Insti-
tute (KEDRI), Auckland University of Technology. Subject: “Evolving Inte-
grative Spiking Neural Networks: A Computational Intelligence Approach”.

Also two tutorials were organized on the following topics:

– Prof. J.G. Taylor: Department of Mathematics, King’s College London. Sub-
ject: “Attention versus Consciousness: Independent or Conjoined?”;

– Dr. Kostas Karpouzis: Image, Video and Multimedia Systems Lab, Institute
of Communication and Computer Systems (ICCS/NTUA). Subject: “User
Modelling and Machine Learning for Affective and Assistive Computing”.

Finally three workshops were organized namely:

– The First Consciousness Versus Attention Workshop (CVA);
– The Intelligent Environmental Monitoring, Modelling and Management Sys-

tems for Better QoL Workshop (IEM3);
– The First Self-Organizing Incremental Neural Network Workshop (SOINN).

The ENNS offered 12 travel grants to students who participated actively
in the conference by presenting a research paper, and a competition was held
between students for the best paper award.

The three-volume proceedings contain research papers covering the following
topics: adaptive algorithms and systems, ANN applications, Bayesian ANNs, bio
inspired-spiking ANNs, biomedical ANNs, data analysis and pattern recognition,
clustering, computational intelligence, computational neuroscience, cryptogra-
phy algorithms, feature selection/parameter identification and dimensionality
reduction, filtering, genetic-evolutionary algorithms, image, video and audio pro-
cessing, kernel algorithms and support vector machines, learning algorithms and
systems, natural language processing, optimization, recurrent ANNs, reinforce-
ment learning, robotics, and self organizing ANNs.
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As General Co-chairs and PC Co-chair and in the name of all members of
the Steering Committee, we would like to thank all the keynote invited speakers
and the tutorial-workshops’ organizers as well. Also, thanks are due to all the
reviewers and the authors of submitted papers. Moreover, we would like to thank
the members of the Organizing Committee headed by Prof. Yannis Manolopoulos
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Sandra Garćıa, Ricardo Aler, and Inés Maŕıa Galván
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XVIII Table of Contents – Part I

No-Reference Video Quality Assessment Design Framework Based on
Modular Neural Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 569

Dragan D. Kukolj, Maja Pokrić, Vladimir M. Zlokolica,
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Roseli S. Wedemann, Lúıs Alfredo V. de Carvalho, and
Raul Donangelo

SOINN Workshop

How to Use the SOINN Software: User’s Guide (Version 1.0) . . . . . . . . . . 521
Kazuhiro Yamasaki, Naoya Makibuchi, Furao Shen, and
Osamu Hasegawa

Unguided Robot Navigation with Using Continuous Action Space . . . . . . 528
Sirinart Tangruamsub, Manabu Tsuboyama, Aram Kawewong, and
Osamu Hasegawa



Table of Contents – Part III XXXI

Self-Organizing Incremental Neural Network and Its Application . . . . . . . 535
Furao Shen and Osamu Hasegawa

Machine Learning Approaches for Time-Series Data Based on
Self-Organizing Incremental Neural Network . . . . . . . . . . . . . . . . . . . . . . . . . 541

Shogo Okada, Osamu Hasegawa, and Toyoaki Nishida

Online Knowledge Acquisition and General Problem Solving in a Real
World by Humanoid Robots . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 551

Naoya Makibuchi, Furao Shen, and Osamu Hasegawa

Incremental Learning Using Self-Organizing Neural Grove . . . . . . . . . . . . . 557
Hirotaka Inoue

Fast and Incremental Attribute Transferring and Classifying System
for Detecting Unseen Object Classes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 563

Aram Kawewong and Osamu Hasegawa

Author Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 569



K. Diamantaras, W. Duch, and L.S. Iliadis (Eds.): ICANN 2010, Part I, LNCS 6352, pp. 1–11, 2010. 
© Springer-Verlag Berlin Heidelberg 2010 

IF-Inference Systems Design for Prediction of Ozone 
Time Series: The Case of Pardubice Micro-region  

Vladimír Olej and Petr Hájek 
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Faculty of Economics and Administration, University of Pardubice, Studentská 84 

532 10 Pardubice, Czech Republic 
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Abstract. The paper presents basic notions of fuzzy inference systems based on 
the Takagi-Sugeno fuzzy model. On the basis of this fuzzy inference system 
and IF-sets introduced by K.T. Atanassov, novel IF-inference systems can be 
designed. Thus, an IF-inference system is developed for time series prediction. 
In the next part of the paper we describe ozone prediction by IF-inference sys-
tems and the analysis of the results. 

Keywords: Fuzzy inference systems, IF-sets, IF-inference systems, time series, 
ozone prediction. 

1   Introduction 

Classification and prediction [1], [2] can be realized by fuzzy inference systems 
(FISs). Based on general FIS structure, we can design two basic types - Mamdani type 
and Takagi-Sugeno type [1], [2]. Both types of FISs differ in the way of obtaining the 
output. Different output formulation results in different if-then rules construction. 
These rules can be designed by user (based on their experience), or the user can ob-
tain them through extraction from historical data. Fuzzification of input variables and 
application of operators in if-then rules are the same in both types of FISs.  

At this time, there are several generalizations of the fuzzy set theory for various ob-
jectives [3], [4]. The intuitionistic fuzzy sets (IF-sets) theory represents one of the 
generalizations, the notion introduced by K.T. Atanassov [5], [6]. The concept of IF-
sets can be viewed as an alternative approach to define a fuzzy set in cases where 
available information is not sufficient for the definition of an imprecise concept by 
means of a conventional fuzzy set. In this paper we will present IF-sets as a tool for 
reasoning in the presence of imperfect facts and imprecise knowledge. The IF-sets are 
for example suitable for the ozone prediction as they provide a good description of 
object attributes by means of membership functions μ and non-membership functions 
ν. They also present a strong possibility to express uncertainty.  

In the paper we present basic notions of Takagi-Sugeno type FIS for time series 
prediction. Based on the FIS defined in this way and the basic notions of IF-sets, we 
define a novel IF-inference system. Further, the paper includes a comparison of the 
prediction results obtained by the FIS characterized by membership functions μ, by 
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the FIS characterized by non-membership functions ν,  and by the IF-inference sys-
tem. The comparison is realized for the example of ozone prediction in the Pardubice 
micro region, the Czech Republic. 

2   IF-Inference System Design 

General structure of FIS is defined in [2], [7]. It contains a fuzzification process of 
input variables by membership functions μ, the design of the base of if-then rules or 
automatic extraction of if-then rules from input data, application of operators 
(AND,OR,NOT) in if-then rules, implication and aggregation within these rules, and 
the process of defuzzification of gained values to crisp values. In the process of de-
fuzzification, standardization of inputs and their transformation to the domain of the 
values of membership functions μ takes place. The input to fuzzification process is a 
crisp value given on the universum (reference set). The output of the fuzzification 
process is the membership function μ value. The design of the base of if-then rules 
can be realized by extraction of if-then rules from historical data, provided that they 
are available. In [2], [7] there are mentioned optimization methods of the number of 
if-then rules. Operator AND between elements of two fuzzy sets can be generalized 
by t-norm [8] and operator OR between elements of two fuzzy sets can be generalized 
by s-norm [8]. 

The Takagi-Sugeno type FIS was designed in order to achieve higher computa-
tional effectiveness. This is possible as the defuzzification of outputs is not necessary. 
Its advantage lies also in involving the functional dependencies of output variable on 
input variables. The output level yk of each of the k-th if-then rule Rk is weighted by 
wk=μ(x1) AND μ(x2) AND … AND μ(xm). The final output y of the Takagi-Sugeno 
type FIS is the weighted average of all N if-then rule Rk outputs yk, k=1,2, … ,N, 
computed as follows 

∑

∑

=

=

×

= N

k

N

1k
kk

1k

w

wy

y .                                               (1) 

The concept of IF-sets is the generalization of the concept of fuzzy sets, the notion 
introduced by L.A. Zadeh [8]. The theory of IF-sets is well suited to deal with vague-
ness. Recently, in this context, IF-sets have been used for intuitionistic classification 
[9] and prediction models which can accommodate imprecise information. 

Let a set X be a non-empty fixed set. An IF-set A in X is an object having the form 
[5], [6] 

A = { 〈x, μΑ(x), νΑ(x) 〉 | x∈X},                                        (2) 

where the function μΑ:X→ [0,1] defines the degree of membership function μΑ(x) and 
the function νΑ:X→ [0,1] defines the degree of non-membership function νΑ(x),  
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respectively, of the element x∈X to the set A, which is a subset of X, and A⊂X, re-
spectively; moreover for every x∈X, 0 ≤ μΑ(x) + νΑ(x) ≤ 1, ∀x∈X must hold. The 
amount  

πΑ(x) = 1 − (μΑ(x) + νΑ(x)) (3) 

is called the hesitation part, which may cater to either membership value or non-
membership value, or both. For each IF-set in X, we will call πΑ(x) 
= 1 − (μΑ(x)+νΑ(x)) as the intuitionistic fuzzy index (IF-index) of the element x in set 
A. It is a hesitancy degree of x to A. It is obvious that 0 ≤ πΑ(x) ≤ 1 for each x∈X. 
The value denotes a measure of non-determinancy. The IF-indices πΑ(x) are such that 
the larger πΑ(x) the higher a hesitation margin of the decision maker. The IF-indices 
allow us to calculate the best final results (and the worst one) we can expect in a proc-
ess leading to a final optimal decision.  

Next we define an accuracy function H to evaluate the degree of accuracy of IF-set 
by the form H(A) = μΑ(x) + νΑ(x), where H(A)∈[0,1]. From the definition H, it can be 
also expressed as follows H(A) = μΑ(x) + νΑ(x) = 1− πΑ(x). The larger value of H(A), 
the more the degree of accuracy of the IF-set A. If A and B are two IF-sets of the set 
X, then 

• A∩B = {〈x, min(μΑ(x), μΒ(x)), max(νΑ(x), νΒ(x))〉 | x∈X}, 
• A∪B = {〈x, max(μΑ(x), μΒ(x)), min(νΑ(x), νΒ(x))〉 | x∈X}, 
• A⊂B iff ∀x∈X, (μΑ(x) ≤ μΒ(x)) and (νΑ(x) ≥ νΒ(x)), 
• A⊃B iff B⊂A, 
• A=B iff ∀x∈X, (μΑ(x) = μΒ(x) and νΑ(x) = νΒ(x)),  
• A ={〈x, νΑ(x), μΑ(x)〉 | x∈X}. 

Let there exist a general IF-system defined in [10]. Then it is possible to define its 
output yη as 

yη = (1− πΑ(x)) × yμ + πΑ(x) × yν, (4) 

where yμ is the output of the FISμ using the membership function μΑ(x), yν is the 
output of the FISν using the non-membership function νΑ(x). Then, based on equation 
(4), it is possible to design the IF-inference system of Takagi-Sugeno type presented 
in Fig. 1. For the IF-inference system designed in this way, the following facts hold. If 
IF-index: 

• πΑ(x)=0, then the output of IF-inference system yη=(1− πΑ(x)) × yμ
 (Takagi-

Sugeno type FIS is characterized by membership function μ). 
• πΑ(x)=1, then the output of IF-inference system yη=πΑ(x) × yν

  (Takagi-Sugeno 
type FIS is characterized by non-membership function ν). 

• 0< πΑ(x) <1, then the output of IF-inference system yη = (1− πΑ(x)) × yμ + πΑ(x) 
× yν

  (Takagi-Sugeno type FIS is characterized by membership function μ and 
non-membership function ν). 

Let x1,x2, ... ,xj, ... ,xm be input variables FISη
 defined on reference sets X1,X2, ... , 

Xj, ... ,Xm and let yη be an output variable defined on reference set Y. Then FISη has m 
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  x1 x2   …  xm      x1 x2  …  xm

(x) y(1 (x)) y

y

FIS FIS

 

Fig. 1. IF-inference systems 

input variables x1,x2, ... ,xj, ... ,xm and one output variable yη, where η=μ are member-
ship functions (η=ν are non-membership functions). 

Further, each set Xj, j=1,2, ... ,m, can be divided into i=1,2, ... ,n fuzzy sets which 
are represented by following way 

ηj,1(x),ηj,2(x), ... ,ηj,i(x), ... ,ηj,n(x). (5) 

Individual fuzzy sets, where η=μ are membership functions (η=ν are non-
membership functions) represent a mapping of linguistic variables values which are 
related to sets Xj. Then the k-th if-then rule Rk in FISη can be defined as follows 

Rk: if x1 is A1,i(1,k)
η AND x2 is A2,i(2,k)

η AND ... AND xj is 
Aj,i(j,k)

η AND ... AND xm is Am,i(m,k)
η then yη=h,  

or yη=f(x1,x2, ... ,xm), j=1,2, ... ,m; i=1,2, ... ,n, (6) 

where A1,i(1,k)
η,A2,i(2,k)

η, ... ,Aj,i(j,k)
η, ... ,Am,i(m,k)

η represent the values of linguistic vari-
able for FISμ and FISν, h is constant, f(x1,x2, ... ,xm) is a linear or polynomial function. 
The output yμ of FISμ (the output yν

  of FISν) is defined in the same way as presented 
in equation (1). 

3   Inference Mechanism of IF-Inference Systems 

The results of the designed IF-inference system of Takagi-Sugeno type can be inter-
preted by means of the following rationale. Fuzzy sets, the notion introduced by L.A. 
Zadeh, are represented by membership function μA (x) degree, that is  

A={〈x, μA (x)〉| x∈X}. (7) 

Fuzzy sets have associated a non-membership function νA(x)  degree  

A={〈x, μA (x),νA(x)〉| x∈X}={〈x, μA (x),1− μA (x)〉| x∈X}. (8) 

Since μA (x) +νA(x) = μA (x) + 1− μA (x) = 1, fuzzy sets are considered as a particular 
case IF-sets. Let be given an automorphism [11] of the unit interval, i.e. every  
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function ψ : [0,1] →[0,1], that is continuous and strictly increasing such that ψ(0)=0 
and ψ(1)=1. Further, let be given a function n: [0,1] → [0,1] in such a way that it 
holds n(0) =1 and  n(1) =0. It is called a strong negation and it is always strictly de-
creasing, continuous and involutive. Then, as proved by [11], n: [0,1] → [0,1] is a 
strong negation if and only if there exists an automorphism ψ of the unit interval such 
that n(x) = ψ−1 (1 − ψ(x)). Let L* be a set for which 

L*={(x,y)|(x,y)∈[0,1] × [0,1] and x+y≤1} (9) 

and the elements 0L*=(0,1) and 1L*=(1,0). Then ∀((x,y),(z,t))∈L* it holds: 

– (x,y) ≤L*(z,t) iff x≤ z and y≥t. This relation is transitive, reflexive and antisym-
metric. 

– (x,y) = (z,t) iff (x,y) ≤L*(z,t) and (z,t) ≤L*(x,y). 

– (x,y)≼ (z,t) iff x≤ z and y≤t. 

The designed IF-inference system of Takagi-Sugeno type works with the inference 
mechanism, based on Atanassov’s intuitionistic fuzzy t-norm and t-conorm, by means 
of t-norm and t-conorm [12] on interval [0,1]. A function T: (L*)2 → L* is called 
Atanassov’s intuitionistic fuzzy t-norm if it is commutative, associative, and increas-
ing in both arguments with respect to the order ≤L* and with neutral element 1L*. 
Similarly, a function S: (L*)2 → L* is called Atanassov’s intuitionistic fuzzy t-conorm 
if it is commutative, associative, and increasing with neutral element 0L*. Atanassov’s 
intuitionistic fuzzy t-norm T is called t-representable if and only if there exists a t-
norm T and t-conorm S on interval [0,1] such that ∀(x,y),(z,t)∈L* it holds 

T((x,y),(z,t)) =(T(x,z),S(y,t)) ∈L*. (10) 

If T=min on interval [0,1] then min((x,y),(z,t)) = (min(x,z),max(y,t)). Accordingly, 
Atanassov’s intuitionistic fuzzy t-conorm S can be defined, and it is called t-
representable if and only if there exist a t-norm T and t-conorm S on interval [0,1] 
such that ∀(x,y),(z,t)∈L* it holds 

S((x,y),(z,t)) =(S(x,z),T(y,t)) ∈L*. (11) 

If S=max on interval [0,1] then max((x,y),(z,t)) = (max(x,z),min(y,t)). An 
Atanassov’s intuitionistic fuzzy negation [12] is a function n: L* → L* such that it is 
decreasing with respect to the ≤L* and n(0L*)= 1L*.and n(1L*)= 0L*. Then if 
∀((x,y),(z,t))∈L* n(n((x,y))) = (x,y), it is said that n is involutive. Function n: L* → 
L* is an involutive Atanassov’s intuitionistic fuzzy negation if there exists an involut-
ive fuzzy negation n such that 

n((x,y)) =(n(1−y), 1−n(x)).                                    (12) 

Based on presented facts a generalized Atanassov’s IF-index can be defined as a func-
tion πG: L* → [0,1] associated with the strong negation n if it satisfies the following 
conditions: 

– πG(x,y)= 1 iff x=0 and y=0. 
– πG(x,y)= 0 iff x+y=1. 
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– If (z,t)≼(x,y), then πG(x,y) ≤ πG(z,t). 
– πG(x,y) = πG(n((x,y))) ∀(x,y)∈L* such that n is generated from an involutive 

negation n. 

4   Modelling and Analysis of the Results 

It is known that ozone (O3) is an effective anti-greenhouse gas particularly in the 
upper troposphere, thus playing a direct role in climate change. In addition to its po-
tential human health hazard, ozone adversely impacts the yields of agricultural crops 
and causes noticeable foliage damage. Therefore, the development of effective predic-
tion models [13], [14], [15], [16], [17], [18] of ozone concentrations in urban areas is 
important. Development of these models is difficult because the meteorological pa-
rameters and photochemical reactions involved in ozone formation are complex [19], 
[20].  

The data for our investigations was obtained from the Czech Hydro-meteorological 
Institute. This data contains the average daily ozone measurements and the average 
daily meteorological variables (such as temperature, wind speed, wind direction, hu-
midity, air pressure and solar radiation), vehicle emission variables (nitrogen dioxide 
NO2, carbon monoxide CO, nitric oxide NO, and nitrogen oxides NOx, sulphur diox-
ide SO2, particulate matter PM10 and PM2.5), and other dummy variables (working 
day, month). All the measured variables used in this study are actual same day values. 
The genetic algorithm [21] was used to reduce the original set of input variables and 
thus to select only significant variables. It was shown that oxides of nitrogen NOx, 
nitric oxide NO, nitrogen dioxide NO2, month of measurement, humidity, solar radia-
tion, and the ozone level at day ahead were important to predict daily average ozone 
levels. The general formulation of the model is as follows y = f(x1

t,x2
t, … ,xm

t), m=7, 
where y is daily average ozone level at time t+1, x1

t is oxide of nitrogen, x2
t is nitric 

oxide, x3
t is nitrogen dioxide, x4

t is dummy variable (month), x5
t is humidity, x6

t is 
solar radiation, x7

t is daily average ozone level at time t. Samples of time series x1
t 

and x2
t are presented in Fig. 2 and Fig. 3. 

 

              Fig. 2. Time series x1
t               Fig. 3. Time series  x2

t 

The data for years 2005-2007 was selected from the city of Pardubice, the Czech 
Republic. The data for 2005-2006 was used as training set Otrain, and the data for 2007 
was used as testing set Otest to test the prediction ability of the models. The basic sta-
tistics on the used data are shown in Table 1. 
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Table 1. Basic statistics of ozone data 

Parameter Mean Standard deviation Min Max 
x1

t 31.14 22.26 7 168.8 
x2

t 6.89 8.94 0.5 66.4 
x3

t 20.09 9.45 4.8 69.8 
x4

t 7.27 3.36 1 12 
x5

t 76.51 11.55 35 99 
x6

t 4.72 4.09 0 12.6 
x7

t 50.53 24.00 3.6 125.4 
y 50.41 23.69 3.6 125.4 

Based on the given facts (chapter 2), such FISμ is designed which is characterized 
by means of membership function μ, and  FISν characterized by non-membership 
function ν (with input variables x1

t,x2
t, … ,xm

t, m=7). Input variable x1
t in time t is 

represented by two membership functions μ for FISμ
 and two membership functions ν 

for FISν. Membership functions μ and non-membership functions ν, for IF-index 
π=0.2, are shown in Fig. 4 and Fig. 5.  

 

Fig. 4. Input membership function μ  for x1
t of FISμ   Fig. 5. Input non-membership functions 

ν  for x1
t of FISν 

The other input variables are represented in a similar manner. Membership func-
tion μ and non-membership function ν, and if-then rules were designed using subtrac-
tive clustering algorithm [22]. The idea behind fuzzy clustering is to divide the data 
space into fuzzy clusters. After projecting the clusters onto the input space, the ante-
cedent parts of the fuzzy if-then rules can be found. The consequent parts of the if-
then rules are represented by functions yη=f(x1,x2, ... ,xm). In this way, one cluster 
corresponds to one if-then rule. 

To be specific, two if-then rules are designed for FISμ and FISν respectively. The 
output level yk of each of the k-th if-then rule Rk is weighted (see chapter 2). The final 
outputs yμ and yν of the FISμ

  and FISν are the weighted averages of all the if-then rule 
Rk outputs yk, k=1,2, … ,N. The output of IF-inference system is represented by the 
predicted value yη in time t+1. The results of the ozone prediction on testing data Otest 
for μmax=0.6 for IF-index π=0.2 are presented in Fig. 6, where μmax represents the 
maximum value of input membership functions μ and Fig. 7 include the daily average 
ozone level at time t+1 and output variable yη. 

Appendix shows the quality of ozone prediction represented by Root Mean 
Squared Error (RMSE) for different values of μmax and different values of IF-index π. 
A higher value of IF-index π shows on a higher indeterminacy or uncertainty. For  



8 V. Olej and P. Hájek 

IF-index π=1 we are not able to say if the value of input variable belongs or not be-
longs to an IF-set. The results show that the RMSEμ is for FISμ constant. The size of 
μmax does not affect the resulting error of FISμ. This results from the fact that the out-
put yμ is a weighted average of outputs yk from the single if-then rules Rk. Relative 
weights wk remain the same for different values of μmax. Maximum RMSE is obtained 
for the FISν and the FISη, for which νmin=0 holds, i.e. μmax+π=1. Therefore, non-
membership functions ν limited in this way are not suitable for the used data. The 
RMSE for FISν and FISη increases with a higher IF-index π, i.e. with a higher uncer-
tainty and a lower accuracy function H(A). Extreme situations of the IF-inference 
system are to be found when IF-index π=0, then μ + ν = 1 (fuzzy sets are considered 
as a particular case IF-sets) and if IF-index π=1, then μ = 0 and ν = 0 (complete igno-
rance of the problem). 

 

Fig. 6. The results of ozone prediction for  testing data Otest 

 

Fig. 7. The daily average ozone level y at time t+1 and output variable yη
 

The results, however, show that it is possible to achieve a relatively low level of 
RMSE (on training and testing data) even in the cases where it is not possible to de-
termine the membership functions μ and non-membership functions ν unambiguously 
(i.e. for a high IF-index π). 

5   Conclusion 

The model based on IF-sets is designed in the paper as it allows processing uncer-
tainty and the expert knowledge. IF-sets can be viewed in the context as a proper tool 
for representing hesitancy concerning both membership and non-membership  of an 



 IF-Inference Systems Design for Prediction of Ozone Time Series 9 

element to a set. The IF-inference system FISη defined this way works more effec-
tively than the standard of Takagi-Sugeno type FISμ as it provides stronger possibility 
to accommodate imprecise information and to better model imperfect fact and impre-
cise knowledge. 

In this study we present a novel approach to times series prediction based on the 
extension of Takagi-Sugeno type FISμ which is characterized by membership function 
μ with Takagi-Sugeno type FISν which is characterized by non-membership function 
ν. The central point in the design of IF-inference system lies in the IF-index π ex-
pressing the level of uncertainty. The model design was carried out in Matlab in MS 
Windows XP operation system. 

Acknowledgments. This work was supported by the scientific research project of the 
Ministry of Environment, the Czech Republic under Grant No: SP/4i2/60/07 with title 
Indicators for Valuation and Modelling of Interactions among Environment, 
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Appendix: RMSE on testing data Otest for different values of μmax and IF-index π  

π=0.1 
μmax 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 

RMSEμ 12.47 12.47 12.47 12.47 12.47 12.47 12.47 12.47 12.47 
RMSEν 14.87 14.94 15.02 15.13 15.28 15.51 15.88 16.60 23.03 
RMSEη 12.61 12.62 12.63 12.64 12.65 12.67 12.70 12.76 13.18 

π=0.2 
RMSEμ 12.47 12.47 12.47 12.47 12.47 12.47 12.47 12.47  
RMSEν 14.88 14.95 15.06 15.20 15.42 15.77 16.47 23.03  
RMSEη 12.78 12.80 12.81 12.84 12.88 12.94 13.06 14.00  

π=0.3 
RMSEμ 12.47 12.47 12.47 12.47 12.47 12.47 12.47   
RMSEν 14.89 14.98 15.11 15.31 15.65 16.33 23.03   
RMSEη 12.97 13.00 13.04 13.09 13.18 13.36 14.93   

. . . 

π=0.6 
RMSEμ 12.47 12.47 12.47 12.47      
RMSEν 14.95 15.20 15.77 23.03      
RMSEη 13.72 13.86 14.19 18.13      

π=0.7 
RMSEμ 12.47 12.47 12.47       
RMSEν 15.02 15.51 23.03       
RMSEη 14.05 14.38 19.30       

π=0.8 
RMSEμ 12.47 12.47        
RMSEν 15.20 23.03        
RMSEη 14.50 20.51        

π=0.9 
RMSEμ 12.47         
RMSEν 23.03         
RMSEη 21.76         
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Abstract. A CMOS voltage reference with a logarithmic curvature-correction 
will be presented. The first-order compensation is realized using an original 
OVF (Offset Voltage Follower) block as PTAT  voltage generator, with the 
advantages of reducing the silicon area and of increasing accuracy. The new 
logarithmic curvature-correction technique will be implemented using an 
ADA  (Asymmetric Differential Amplifier) block for compensating the 

logarithmic temperature dependent term from the first-order compensated 
voltage reference. In order to increase the circuit accuracy, an original 
temperature dependent current generator will be designed for computing the 
exact type of the implemented curvature-correction. The SPICE simulations 
confirm the theoretical estimated results, showing very small values of the 
temperature coefficient. The circuit is implemented in m35.0 μ  CMOS 
technology and consumes only A9μ  for Ct o25= , being supplied at the 
minimal supply voltage VVDD 7.1= . The temperature coefficient of the 
reference voltage is Cppm o/5.8 , while the line sensitivity is VmV /7.0  
for a supply voltage between V7.1  and V7 . 

Keywords: Temperature dependence, superior-order curvature-correction 
technique, voltage reference circuit. 

1   Introduction 

Very important stages in applications such as A/D and D/A converters, data 
acquisition systems, memories or smart sensors, voltage reference circuits and theirs 
temperature behavior are intensively studied in the last decade and many researches 
have been developed for improving them. 

Because of the superior performance of bipolar voltage references with respect to 
the circuits using MOS transistors, the first approaches of high-performance voltage 
reference were implemented in bipolar technology. However, because of the 
nonlinear temperature dependence of the base-emitter voltage [1], there exists a 
theoretical limit for improving the temperature stability of a simple BGR. Basic 
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bandgap references, with a temperature coefficient of about hundred Kppm / , useful 
only for applications that do not require a very good accuracy of the reference 
voltage, have been presented in literature [2]. In order to improve the temperature 
behavior of the bipolar bandgap reference, correction techniques [3] have been 
developed. In CMOS bandgap references that are still using bipolar transistors, the 
required bipolar devices are realized as parasitic vertical or lateral transistors, 
available in CMOS technology. The result will be a small degradation of the 
temperature behavior of the circuit because of the poorer match of MOS devices’ 
parameters with respect to those of bipolar transistors.  

Another approaches of CMOS references [4]-[8], using exclusively MOS devices 
and (or without) resistors implements the CTAT  voltage reference using a threshold 
voltage extractor circuit, which generates the MOS device threshold voltage, with 
negative linear temperature dependence. The disadvantage of this class of CMOS 
references is that the exact temperature dependence of TV  is not so simple to 
estimate, so a curvature correction technique for improving the thermal behavior of 
the voltage reference is relatively difficult to design. 

The new proposed realization of a CMOS voltage reference uses a gate-source 
voltage of a MOS transistor working in weak inversion as CTAT  voltage generator. 
The idea is that the negative linear dependent term from )(TVGS  expression to be 
compensated by a complementary term implemented using an OVF  (Offset Voltage 
Follower) block. The new curvature-correction technique proposes the compensation 
of the nonlinear temperature dependence of the gate-source voltage using an original 
block, ADA  (Asymmetric Differential Amplifier), biased at drain currents with 
different temperature dependencies ( PTAT  and αPTAT , respectively). 

In order to improve the circuit accuracy, a digitally selected curvature-correction 
technique will be implemented, based on an original implementation of a 
temperature-dependent current generator circuit. 

2   Theoretical Analysis 

The block diagram of the voltage reference is presented in Fig. 1. 

 CTAT 
voltage 

generator 
OVF block ADA  VREF

 

Fig. 1. The block diagram of the voltage reference 

The CTAT  voltage generator is designed using the gate-source voltage for a 
subthreshold operated MOS transistor. The OVF  block implements the first-order  
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compensation of the gate-source voltage, while ADA  block compensates the 
logarithmic temperature dependence of )T(VGS . 

2.1   The Superior-Order Curvature-Corrected Voltage Reference 

The temperature dependence of the gate-source voltage. The gate-source voltage 
of a MOS transistor working in weak inversion represents the simplest 
implementation in CMOS technology of a voltage generator with a negative linear 
temperature dependence ( CTAT ). Considering a αPTAT  dependence of the drain 
current, where α  is a constant parameter, it results the following expression for the 
gate-source voltage temperature dependence: 

( )
00

0GFB0GS
0GFBGS T

T
ln2

q

nkT
T

T

EV)T(V
EV)T(V −++

−−
++= γα ,

       
(1) 

                      
 

0T  being the reference temperature and γ  - a technology dependent parameter. The 

first term is a constant term, the second one is a linear term, which will be 
compensated by a complementary linear dependent on temperature voltage and the 
last term models the nonlinearity of the gate-source voltage temperature dependence. 
This term will be compensated by a suitable logarithmic dependent on temperature 
voltage, also added with )(TVGS .  

The Offset Voltage Follower block. The main temperature dependence of GSV  from 

(1) is given by the linear dependent on temperature term. The new technique [4] for 
obtaining a PTAT  voltage is based on an Offset Voltage Follower ( OVF ) block, 
presenting an improved accuracy and a much smaller silicon area consumption with 
respect to the classical PTAT  voltage generator because matched transistors replace 
matched resistors. The first-order curvature-corrected reference voltage will have the 
following expression: 

( )
0

GFB
I

REF T

T
1

q

nkT
EVTV ln)()( −++= γ .

                             
(2) 

The superior-order curvature-correction technique using an Asymmetric 
Differential Amplifier. After the first-order compensation, the last logarithmic 
temperature dependent term from (2) represents the main temperature dependence of 
the reference voltage. The new superior-order curvature correction technique 
proposed for minimized this undesired behavior uses an Asymmetrical Differential 
Amplifier ( ADA ) for compensating the logarithmical term from (3). The ADA  block 
presented in Fig. 2 is a PMOS differential amplifier whose drain currents have 
different temperature dependencies: 1I  is linear increasing with temperature ( PTAT ) 

and αI  is αPTAT  current.   
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B C 

VDD

I1                       I2 

 

Fig. 2. The ADA  for logarithmic curvature-correction 

Taking into account the expression (1) of )T(VGS , for a weak inversion operation 

of all transistors from Fig. 2, the )T(VCB  voltage expression will be: 

0
GSGSCB T

T
ln

q

nkT
)1()PTAT(V)PTAT(V)T(V αα −=−= .               (3) 

The curvature-corrected reference voltage is: 

( )
0

GFBCB
)I(

REF
(sup)
REF T

T
ln

q

nkT
EV)T(V)T(V)T(V αγ −++=+= .            (4) 

In order to remove the temperature dependence (4) of REFV , it is necessary to bias 

the transistor from the CTAT  generator at a αPTAT  drain current, with γα = . 

2.2   The Temperature-Dependent Current Generator Circuit 

The necessity of designing this circuit is derived from the difficulty of an exact 
estimation of technological dependent parameter γ , having usual values is included 
in the ),( 32  range. The original method for obtaining (with improved accuracy) the 
desired value of γ  is to obtain a circuit having an output current with the following 
temperature dependence: 

22
OUT TTctTctTI −== γγ ..)( .                                  (5) 

It is possible to obtain OUTI  current in two steps: 

• The implementation of a 2PTAT  current 

• The implementation of a γ−2PTAT  

The set of the desired value of γ  will be digitally made by setting the temperature 
dependence of γ−2PTAT  current. 
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The current-mode square-root circuit. The core of the temperature dependent 
current generator circuit is represented by a current-mode square-root circuit (Fig. 3). 

   

1/21 

VDD

IA 

IA 

IB 

ID 

     2IC  4IC

ID 

 

Fig. 3. The current-mode square-root circuit 

In order to improve the circuit frequency response, only MOS transistors working 
in saturation will be used. The silicon occupied area is strongly reduced by replacing 
classical MOS devices by a FGMOS (Floating Gate MOS) transistor. The symbolic 
representation of the square-root circuit is shown in Fig. 4. 

a         b 

Ia              Ib

c        c 

Ic              Ic  

Fig. 4. The symbolic representation of the square-root circuit 

After some computations, the output current of the circuit from Fig. 3 could be 

expressed as BAC III = .                                   

The current multiplier circuit. Another circuit required for obtaining the desired 
temperature dependence of the output current is the current multiplier circuit from 
Fig. 5. In order to increase the circuit modularity, two square-root circuits from Fig. 3 
and a current mirror have been used. 
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a         b 
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Fig. 5. The current multiplier circuit 

The symbolic representation of the current multiplier circuit is shown in Fig. 6. 
The implementing relation between the currents is: Onmp I/III = . 

Im   

In    

m    

n     
p     

O    

IO    

Ip    

 

Fig. 6. The symbolic representation of the current multiplier circuit 

The current squaring circuit. The next block used for obtaining the exact value of 
parameter γ  is the current squaring circuit (Fig. 7). This block is derived from the 

current square-root circuit from Fig. 3. The implementing relation between the 

currents is b
2
ca I/II = . 

b         c 

Ib              Ic

a 

Ia    

Fig. 7. The current squaring circuit 

The current selection circuit. In order to select the active currents from the output 
current expression, a selection circuit (Fig. 8) will be used. 

Iin   

IO    

u     

v     
w    

ak    

Iin(IO)  

 

Fig. 8. The current selection circuit 
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The implementation of 2PTAT  current generator. The main part of the 

temperature dependence of OUTI  current is represented by its 2PTAT  variation. The 

block diagram of the circuit that implements this function is shown in Fig. 9. OI  is, 

in a first-order approximation, independent on temperature, while 1I  current has a 

PTAT  variation. 
 

b         c 

IO              I1

          a 

 IOUT 1=(I1)
2/IO  

Fig. 9. The 2PTAT  current generator 

The implementation of the γ−2PTAT  current generator. The precision of 
computing the exact value of he parameter γ  is associated to the possibility of a very 

accurated modifying of γ−2PTAT  temperature dependence. In order to increase the 
circuit accuracy, a digitally-selected current generator will be implemented in Fig. 10. 
A digital word 41 aa −  will be used for selecting the desired value of the output 

current temperature dependence. The expression of the currents from Fig. 10 will be: 

2
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O2OUT III .                                            (10) 

So, the temperature dependence of 2OUTI  current could be modified by changing the 

digital word 41 aa − . The maximal error (the error is considered equal to the 

difference between the desired and the impleented values of the T  exponent) is 
161T / . This error could be reduced by increasing the number of the square-root 

blocks from Fig. 10. The result will be a compromise between complexity and circuit 
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accuracy. In conclusion, the exact value of parameter γ  could be digitally-selected 

with an error equal to 161T /  for 4n =  current squaring circuits. 
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Fig. 10. The γ−2PTAT  current generator 

3    Simulated Results 

The current consumption of the proposed voltage reference is maintained under Aμ9 , 

making the proposed voltage reference circuit valuable for low-power low-voltage 
applications. The SPICE simulation of the temperature dependence for the reference 
voltage is shown in Fig. 11. The SPICE software was used as it gives very accurate 
results in CMOS VLSI designs. The temperature coefficient of the reference voltage 

is Cppm o/5.8 , for the maximal variation range of the temperature 

CC oo 10030 −− , mainly caused by the technological errors and by the mismatches 

of devices’ parameters. The circuit consumes only Aμ9  for Ct o25= , being 

supplied at VVDD 7.1= .  
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Fig. 11. The SPICE simulation for the superior-order curvature-corrected voltage reference 

In order to evaluate the line sensitivity of the superior-order curvature-corrected 
voltage reference, the temperature dependence of the reference voltage is simulate 
having the supply voltage as parameter  (Fig. 12). 

 

Fig. 12. The SPICE simulation )(TVREF  with DDV  as parameter 

The line sensitivity of the proposed circuit is VmV /7.0  for a supply voltage 
between V7.1  and V7 . A comparison between the proposed circuit and the previous 
reported voltage references is presented in Table 1.  

Table 1. Comparison between the proposed circuit and the previous reported voltage references 

 Techn 
(μm) 

VDD (V) 
(min) 

IDD 

(μA) 

TC 
(ppm/oC) 

Line 
sens. 

(mV/V) 

VREF 

(mV) 

This 
work 

0.35 1.7 9 8.5 0.7 1220 

[4] 0.6 1.5  15 4.4 603 
[5] 0.4 4.4  117 1.1 515 
[6] 1.2 1.2 500 100 2.5 1000 
[7] 0.6 3 9.7 36.9 0.83 309 
[8] 0.8 0.95 92 19  536 
[9] 0.7 3 30 15  1210 
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For the minimal value of the supply voltage, VVDD 7.1= , the low-power 
operation of the proposed circuit is achieved by a very small value of the supply 
current, AI DD μ= 9  comparing with other circuits. The voltage reference presented 
in this paper has better values for temperature coefficient, Cppm o/5.8  and for line 
sensitivity, VmV /7.0  with respect to the results reported by previous similar works. 

4    Conclusions 

A CMOS voltage reference with a logarithmic curvature-correction was presented. In 
order to increase the circuit accuracy, an original temperature dependent current 
generator has been designed for computing the exact type of the implemented 
curvature-correction. The circuit was implemented in mμ35.0  CMOS technology 
and consumes only Aμ9  for Ct o25= , being supplied at the minimal value of the 
supply voltage, VVDD 7.1= . The temperature coefficient of the reference voltage is 

Cppm o/5.8 , while the line sensitivity is VmV /7.0  for a supply voltage between 
V7.1  and V7 . The voltage reference has many applications in VLSI designs, such as 

data acquisition systems or analog signal processing designs. 
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Abstract. In this work, we present a neural network (NN)-based method

for 3D affine registration of FMRI time series, which relies on a limited

number of Fourier coefficients of the images to be aligned. These coeffi-

cients are comprised in a small cubic neighborhood located at the first

octant of a 3D Fourier space (including the DC component). Since the

affine transformation model comprises twelve parameters, the Fourier co-

efficients are fed into twelve NN during the learning stage, so that each

NN yields the estimates of one of the registration parameters. Different

sizes of subsets of Fourier coefficients were tested. The construction of

the training set and the learning stage are fast requiring, respectively,

90 s and 2 to 24 s, depending on the number of input and hidden units

of the NN. The mean absolute registration errors are of approximately

0.03 mm in translations and 0.05 deg in rotations (except for pitch),

for the typical motion amplitudes encountered in FMRI studies. Results

with an actual time series suggest that the proposed method is suited to

the problem of prospective (in frame) FMRI registration, although brain

activation must be simulated, and learned, by the NN.

1 Introduction

Registration aims at determining the spatial transformation between images
of the same or different subjects, acquired with the same or different imaging
modalities, and also to align images with the coordinate system of a treatment
device or tracked localizer [7]. Registration is an important concept in medi-
cal image processing, specially when accurately relating information of different
images for diagnosis or treatment.

According to [11], the registration methods proposed in the literature can be
broadly classified into three categories: feature-based, data-reductive and voxel
similarity-based (VSB). The latter are widely accepted as the best registration
methods since they are fully automatic and reproducible.

K. Diamantaras, W. Duch, L.S. Iliadis (Eds.): ICANN 2010, Part I, LNCS 6352, pp. 22–31, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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VSB methods often rely on a trial-and-error optimization scheme during which
a similarity measure is maximized or minimized. It is generally accepted that
VSB methods that rely on similarity measures that assume a functional [15,12]
or a statistical [2] relation between the values of corresponding voxels in the two
images, yield the best results. However, the computation time of VSB methods is
often long, which is due not only to the trial-and-error nature of the optimization
scheme, but also to the necessity of re-interpolating the floating image, at the
lattice points of the reference image, every time the d-dimensional search space
- in which d defines the number of registration parameters - is sampled. For
these reasons, VSB methods have traditionally been employed in retrospective
registration, i.e., the motion estimates are determined after the acquisition of
the image is concluded.

However, prospective registration is an equally interesting, and challenging,
issue. For instance, suppose one wants to use the registration parameters to
influence certain acquisition-related parameters, such as in FMRI studies, in
which motion estimates could be used to modify the acquisition parameters
in order to minimize motion-related artifacts. This would, however, require an
extremely fast registration method, preferably based on a limited dataset of the
K-space rather than on the full data from direct space. In this work, we propose
a NN-based registration method, which relies on small data subsets extracted
from the images’ Fourier spaces.

NN have been used in different registration problems. Elhanany and co-workers
performed affine registration of 2D non-medical images using a Multiple-Layer
Perceptron (MLP), whose inputs are sub-samples of the original images’ DCT co-
efficients [3]. Other authors also performed affine registration of 2D non-medical
images using a MLP, but using a 2D PCA scheme to extract features to feed the
NN [16]. These approaches seem to be accurate, being both remarkably robust to
noise. The authors that use NN for surface-based rigid-body registration empha-
size the celerity improvement of this approach, with a sub-voxel accuracy com-
parable to the conventional methods [17]. On the other way, Liu and co-workers
registered 3D ear models with PCA extraction and concluded that this method
is faster and more robust than the traditional ones [10]. Another rigid applica-
tion (not surface-based) used 2D MR and CT brain images [14]. The authors per-
formed a registration based on PCA using a NN to compute the first principal
directions and centroids of the images. We too have once proposed a NN-based
method for multimodality image registration [4]. However, this method was lim-
ited to 2D (affine) registration and was based on geometric features’ extraction.
A NN-based method which relies on Fourier coefficients has also been proposed
by Abche and co-workers for 2D registration of MRI images [1].

The NN-based method proposed in this work is tested using simulated and
real data, considering a 3D affine geometric model. We emphasize that, con-
trary to other learning-based approaches, which learn the optimal similarity
measures [9,5,13,8], the proposed method learns the translation, rotation, scal-
ing and shearing parameters, making use of the interpolation properties of the
MLP.
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2 Materials and Methods

2.1 The Neural Network

In this work, the determination of the registration parameters is done using
one NN per registration parameter. Abche indicates that the simultaneous de-
termination of the registration parameters may lead to a better-optimized set of
estimates [1]. However, our preliminary results on this issue do not support that
strategy (results not presented here).

Each NN comprises an input layer, a hidden layer and an output layer. The
different layers are fully connected. The determination of the coefficients between
consecutive layers is done through the Generalized Delta Learning Rule, using
a sigmoidal activation function of the form sgm(x) = 1/(1 + e−x).

During the supervised training, the weighting coefficients between consecutive
layers are updated by minimizing the squared error between the optimal (known)
solution - represented through ”vector” yk - and the observed soution - ”vector”
Ok. The Wkj and wji coefficients are updated following the relations:

Wkj = Wkj + ηδkhj (1)
wij = wij + ηδkWkjhj(1 − hj)xi, (2)

where δk = (yk − Ok)Ok(1 − Ok) and xi is the value in the ith input unit. wji

represents the weighting coefficient between the ith input unit and the jth hidden
unit and Wkj the weighting coefficient between the jth hidden unit and the kth

output unit. In the proposed method, each of the twelve NN contains only one
output unit (i.e., k=1), which is used as an interpolator of the corresponding
registration parameter. The sigmoid function is applied to O and y values in
order to render them between 0 and 1. In Figure 1, one may see a schematic
representation of each NN used to estimate a registration parameter.

2.2 Simulations

The training of the NN is done using one learning dataset which comprises one
thousand Fourier subsets, obtained from images created by applying the same
number of random affine transformations to an actual FMRI 3D image. This
image had dimensions 64 × 80 × 18, 3.75 × 3.75 × 6.00 mm, but it was reduced
to a 64 × 64 × 16 geometry by eliminating the 8 most anterior and posterior
coronal slices and the 2 bottom axial slices (see Figure 2). This reduction in
image dimensions allowed the application of a IFFT algorithm.

The affine geometric model is characterized by 12 degrees of freedom: 3 trans-
lations (tx, ty and tz), 3 rotations (rx, ry and r : z), 3 scalings (sx, sy and
sz), and 3 shearings (shx, shy and shz). The geometric parameters of the simu-
lated misregistrations follow uniform distributions between -1.0 and 1.0 mm for
translations, between -1.0 and 1.0 degrees for rotations, and between -1.0 and
1.0 % for scaling and shearing. These values were chosen considering that larger
amplitudes are not expected in a typical FMRI study. All simulated data were
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Fig. 1. Basic architecture of each of the twelve NN. The different layers of the NN are

fully connected. The number of input units ranges from 129 to 1459; the number of

hidden units, from 18 to 60 (see text below). The output unit yields the estimate of

the corresponding registration parameter (of tx, ty, tz, rx, ry, rz, sx, sy, sz, shx, shy

and shz).

corrupted with rician noise obtained considering Gaussian distributions with
FWHM of 1% of mean brain value.

However, in order to assess the influence of the range of the simulated mis-
registrations on the final accuracy, the experiment was repeated considering
movements between -2.0 and 2.0 mm for translations, between -2.0 and 2.0 de-
grees for rotations, and between -2.0 and 2.0 % in both scaling and shearing.
In both experiments, the mean absolute registration errors were compared to
the ones provided by a custom VSB (Mutual Information) registration method
(characterized by a Powell optimization scheme and a cubic-spline interpolation
method).

For each 3D image in the data set, the corresponding Fourier space was cal-
culated by IFFT. The learning dataset of the NN is constructed by selecting
a cubic subset of the Fourier space (in both real and imaginary spaces), with
dimensions n × n × n. In both experiments, we have tested subsets with n =
4, 5, 6, 7, 8, and 9, yielding, respectively, 128, 250, 432, 686, 1024 and 1458
coefficients (i.e., 2n3). The number of input units is increased by 1 in order to
accommodate for bias, which has always the value 1.

In each case, the number of hidden units in each NN was adjusted to the
number of input units. Using a pure heuristic formula, we have decided to set the
number of hidden units to 18, 25, 33, 41, 51 and 60, respectively. No exploratory
work aimed at optimizing these values was conducted.

2.3 Evaluation of the Training Process

The evolution of the training process was assessed using an evaluation dataset,
which comprises 100 simulated examples - generated in the same way the learn-
ing datasets were. The accuracy of the NN-based motion correction method was
assessed by calculating the mean absolute error, in each registration parameter,
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Fig. 2. Axial slice of the original image, before resizing it to a 64 × 64 × 16 geometry.

Horizontal bars indicate image limits after resizing.

between the simulated (known) misregistration value and the experimental (mo-
tion correction) value yielded by the corresponding NN. The method was finally
applied on an actual FMRI time series.

3 Results and Discussion

The results for both experiments mentioned above are presented in Tables 1
and 2, respectively. These results refer to the mean absolute errors for the 12
registration parameters, which are expressed in mm, degrees, or percentage. The
bottom row presents the mean absolute errors for the custom VSB(MI) method,
for comparison purposes.

We may see from Tables 1 and 2 that the mean absolute errors are in the
order of hundredths or tenths of mm, degrees or %. We may also see that an
increase in the size of the Fourier subset leads to a decrease in registration
accuracy, which may be due to the augmented complexity of the NN and to the
curse of dimensionality associated to the increasing number of inputunits. This
is observed for all transformation parameters except for rx, which may be due a
confounding influence between pitch and shearing. In fact, the Fourier coefficients
containing spectrum power associated to these small rotations/shearing effects
may be contained inside the smaller neighborhoods. Besides, it is known that
the rx parameter is difficult to estimate due to simmetry of the head around the
x axis (left-right).

In Table 1, it is also possible to see that the proposed method yields results
similar to the VSB (MI) custom method mentioned above, except for rx, in which
the latter yields better results, and for sz, in which one observes the opposite.
Surprisingly, for larger displacements, the VSB(MI) method yields the worst
results than the NN(5 × 5 × 5) method.
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Table 1. Mean absolute registration error, for each registration parameter and Fourier-

space subset, for experiment 1 (random transformation parameters uniformely dis-

tributed between ±1 mm, deg and %). Translation and rotation errors are expressed

in mm and degrees, respectively; scaling an shearing errors in %. Botton lines refers to

the custom VSB(MI) method.

Fourier subset δtx δty δtz δrx δry δrz δsx δsy δsz δshx δshy δshz

(n × n × n) [mm] [mm] [mm] [deg] [deg] [deg] [%] [%] [%] [%] [%] [%]

4 × 4 × 4 0.029 0.032 0.028 0.155 0.051 0.068 0.025 0.026 0.023 0.008 0.005 0.005

5 × 5 × 5 0.026 0.031 0.032 0.122 0.043 0.047 0.031 0.028 0.030 0.007 0.005 0.004

6 × 6 × 6 0.025 0.031 0.030 0.100 0.043 0.049 0.037 0.036 0.037 0.006 0.007 0.006

7 × 7 × 7 0.036 0.028 0.036 0.084 0.038 0.042 0.049 0.055 0.050 0.007 0.006 0.007

8 × 8 × 8 0.031 0.037 0.034 0.069 0.046 0.041 0.056 0.056 0.054 0.009 0.008 0.009

9 × 9 × 9 0.038 0.042 0.042 0.070 0.049 0.053 0.066 0.068 0.067 0.018 0.011 0.010

VSB(MI) 0.021 0.026 0.048 0.059 0.055 0.034 0.015 0.024 0.119 0.042 0.032 0.092

Table 2. Mean absolute registration error, for each registration parameter and Fourier-

space subset, for experiment 2 (random transformation parameters uniformely dis-

tributed between ±2 mm, deg and %). Translation and rotation errors are expressed

in mm and degrees, respectively; scaling an shearing errors in %. Botton lines refers to

the custom VSB(MI) method.

Fourier subset δtx δty δtz δrx δry δrz δsx δsy δsz δshx δshy δshz

(n × n × n) [mm] [mm] [mm] [deg] [deg] [deg] [%] [%] [%] [%] [%] [%]

4 × 4 × 4 0.079 0.081 0.073 0.242 0.085 0.124 0.024 0.024 0.022 0.013 0.009 0.009

5 × 5 × 5 0.026 0.031 0.032 0.122 0.043 0.047 0.031 0.028 0.030 0.007 0.005 0.004

6 × 6 × 6 0.025 0.031 0.030 0.100 0.043 0.049 0.037 0.036 0.037 0.006 0.007 0.006

7 × 7 × 7 0.036 0.028 0.036 0.084 0.038 0.042 0.049 0.055 0.050 0.007 0.006 0.007

8 × 8 × 8 0.031 0.037 0.034 0.069 0.046 0.041 0.056 0.056 0.054 0.009 0.008 0.009

9 × 9 × 9 0.038 0.042 0.042 0.070 0.049 0.053 0.066 0.068 0.067 0.018 0.011 0.010

VSB(MI) 0.017 0.021 0.068 0.103 0.070 0.030 0.018 0.035 0.231 0.095 0.058 0.167

We note that these errors correspond to the motion correction estimates
yielded by the 12 NN after having learned the one thousand simulated examples.
Figure 3 represents, for the first evaluation dataset, the evolution of the mean
absolute error as the number of learning examples increases. These error curves
follow a negative exponential-like curve starting at approximately 0.7 mm or
0.7 degrees, which corresponds to the RMS of the simulated misregistration val-
ues. This indicates that the one thousand images may not be entirely necessary
for the NN to learn. Besides, these error curves do not decrease monotonically
(mainly for translations and rotations), which stresses the necessity of a robust
stopping criterion for the learning process, which is currently being developed.
For scaling and specially for shearing, the curves decrease monotonically.

The learning stage requires computation times ranging from 2 s to 24 s, on
an ordinary computer, depending on the size of the Fourier space subset. The
calculation of the registration parameters for the 100 examples comprised in the
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Fig. 3. Evolution of the mean absolute error for the first evaluation dataset, as the

number of learning images increases: top: for translations and rotations; bottom: for

scaling and shearing

evaluation dataset, takes less than 0.1 s. Our custom VSB(MI) method takes
approximately 2 hours.

The construction of the learning dataset (Fourier subsets of the one thousand
images) requires approximately 90 seconds, which is possible due to the fact that
one reduced the image dimensions to powers of 2 in order to allow the use of a
IFFT algorithm.

The application of the proposed method to an actual time series (the one from
which the 3D frame used for simulations was extracted) yielded encouraging
results, such as the ones presented in Figure 4, which shows the translation and
rotation estimates obtained using the proposed method (with 5 × 5 × 5 Fourier
coefficients) and the custom VSB(MI) registration method, considering the affine
transformation model.

We may see that for the different motion estimates, the proposed method
yields results that follow the general tendency of VSB(MI) estimates. However,
it is also possible to see that in almost all registration parameters, NN motion
estimates are biased by the presence of functional activation (the functional
paradigm of the actual time series comprises 10 on-of periods). This suggests
that brain activation must be simulated, and learned, by the NN.

It is also important to emphasize that the direct comparison between motion
estimates obtained by the proposed method and by the custom VSB(MI) may
not be the most adequate criterion since both methods seem affected by the
increasing number of transformation parameters. This can be seen in Figure 5,
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Fig. 4. Translation and rotation estimates for the 180 frames of the actual time series

in which we present the rotation estimates for VSB(MI), considering the affine
(12 DOF) and a rigid-body (6 DOF) geometric models. We may see that for the
latest frames, the VSB(MI) consistently diverge from each other.

The NN motion estimates also present a general behavior that is more ir-
regular than VSB(MI) estimates, which stresses the necessity of improving the
general robustness of the method. This may be due to the increased number of
motion parameters, which is known to reduce the smoothness of the energetic
landscape of any registration method.

Nevertheless, the proposed work indicates that for each single actual FMRI
time series, comprised by one reference image followed by typically hundreds of
test images, one may establish the following acquisition protocol:

1. acquire one reference image after the scanner reached the steady-state (which
typically occurs after acquiring 10 to 20 images);

2. construct the training set of 1000 images from this reference image (elapsed
time of 90 s, or less, if less training images are generated);
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Fig. 5. Rotation parameters for the 180 frames of the actual time series using the

VSB(MI) registration method

3. train the NN (elapsed time comprised between 2 and 24 s, depending on the
number of input and hidden units);

4. start acquiring (and registering) the test images (after a total elapsed time
of approximately 110 s, or less).

4 Conclusion

This work shows that the proposed method seems suitable for fast 3D affine mo-
tion correction of images using data from the corresponding Fourier space. The
use of a limited (small) subset of data extracted from the Fourier space of each
image indicates that the presented method may be eventually used for prospec-
tive registration during the acquisition of 3D frames, possibly from navigation
echoes.

The registration is treated as a regression problem, which is possible since NN
have the ability of modeling complex (non-linear) functions and are considered
universal estimators [6]. Based on a training set of simulated images, the NN
learn how to relate a subset of the Fourier space to the registration parameters,
which are the output of the twelve NN. After the learning stage, the NN is able to
compute the transformation parameters almost instantly. In fact, as mentioned
in other works (e.g. [18]), the main advantage of NN modeling is that once
trained, the computational effort needed to compute the function is extremely
small.

Further work involves improving the robustness of the proposed method against
activation presence, which shall be taken into consideration during the learning
stage.
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Abstract. In this paper we extend regression Neural Networks (NNs)

based on the Conformal Prediction (CP) framework for accompanying

predictions with reliable measures of confidence. We follow a modifica-

tion of the original CP approach, called Inductive Conformal Predic-

tion (ICP), which enables us to overcome the computational inefficiency

problem of CP. Unlike the point predictions produced by conventional

regression NNs the proposed approach produces predictive intervals that

satisfy a given confidence level. We apply it to the problem of predict-

ing Total Electron Content (TEC), which is an important parameter in

trans-ionospheric links. Our experimental results on a dataset collected

over a period of 11 years show that the resulting predictive intervals are

both well-calibrated and tight enough to be useful in practice.
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1 Introduction

Conformal Prediction (CP) is a novel framework for complementing the pre-
dictions of traditional machine learning algorithms with valid measures of their
confidence. Confidence measures indicate the likelihood of each prediction being
correct and therefore provide the ability of making much more informed deci-
sions. This makes them a highly desirable feature of the techniques developed
for many real-world applications.

CP was initially proposed in [1] and later greatly improved in [2]. In these
papers CP was applied to Support Vector Machines for classification. Soon it
started being applied to other popular algorithms, such as k -Nearest Neighbours
for classification [3], Neural Networks for classification [4], Ridge Regression [5]
and k -Nearest Neighbours Regression [6]. The results reported in these papers
show that the generated algorithms, called Conformal Predictors (CPs), produce
confidence measures that are both reliable and useful in practice. Furthermore, to
date CPs have been applied to a variety of problems, such as the early detection
of ovarian cancer [7], the classification of leukaemia subtypes [8], the prediction
of plant promoters [9] and the diagnosis of acute abdominal pain [10].
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In this paper we develop a regression CP based on Neural Networks (NNs),
which is one of the most popular machine learning techniques. Some indicative
fields in which NNs have been used with success are medicine, image process-
ing, environmental modelling, robotics and the industry; see e.g. [11,12,13,14].
In order to apply CP to NNs we follow a modified version of the original CP ap-
proach, called Inductive Conformal Prediction (ICP). ICP was proposed in [15]
for regression and in [16] for classification, in an effort to overcome the compu-
tational inefficiency problem of CP. As demonstrated in [4], which describes ICP
and its application to classification NNs, this computational inefficiency problem
renders the original CP approach highly unsuitable for being coupled with NNs;
and in general any method that requires long training times.

In the case of regression, instead of the point predictions produced by con-
ventional techniques, CPs produce predictive intervals that satisfy a given level
of confidence. The important property of these intervals is that they are well-
calibrated, meaning that in the long run the intervals produced for some confi-
dence level 1 − δ will not contain the true label of an example with a relative
frequency of at most δ. Moreover, this is achieved without assuming anything
more than that the data are independent and identically distributed (i.i.d.),
which is the typical assumption of most machine learning methods.

We apply the proposed method to the problem of predicting Total Electron
Content (TEC) which is an important parameter that represents a quantitative
measure of the detrimental effect of the ionosphere (an ionised region in the upper
atmosphere) on electromagnetic signals from space-based systems propagating
through it. Prediction of TEC enables mitigation techniques to be applied in
order to reduce these undesirable ionospheric effects on communication, surveil-
lance and navigation systems. For this reason, the use of NNs for TEC prediction
was addressed in many studies such as [17,18,19]. In this work we make one step
further and provide predictive intervals, which make mitigation techniques more
effective as they allow taking into account the highest possible TEC value at a
desired confidence level.

2 Inductive Conformal Prediction

This section gives a brief description of the CP framework and its inductive ver-
sion which is followed in this paper, for a more detailed description the interested
reader is referred to [20]. We are interested in making a prediction for the label
of an example xl+g , based on a set of training examples {(x1, y1), . . . , (xl, yl)},
where each xi ∈ IRd is the vector of attributes for example i and yi ∈ IR is the
label of that example. Our only assumption is that all (xi, yi), i = 1, 2, . . . , are
independent and identically distributed.

The idea behind CP is to assume every possible label ỹ of the example xl+g

and check how likely it is that the extended set of examples

{(x1, y1), . . . , (xl, yl), (xl+g , ỹ)} (1)

is i.i.d. This in effect will correspond to the likelihood of ỹ being the true label
of the example xl+g since this is the only unknown value in (1).



34 H. Papadopoulos and H. Haralambous

To do this we first assign a value αỹ
i to each pair (xi, yi) in (1) which indi-

cates how strange, or nonconforming, this pair is for the rest of the examples in
the same set. This value, called the nonconformity score of the pair (xi, yi), is
calculated using a traditional machine learning algorithm, called the underlying
algorithm of the corresponding CP. More specifically, the nonconformity score
of a pair (xi, yi) is the degree of disagreement between the actual label yi and
the prediction ŷi of the underlying algorithm, after being trained on (1); note
that in the case of the pair (xl+g , ỹ) the actual label is replaced by the assumed
label ỹ. The function used for measuring this degree of disagreement is called
the nonconformity measure of the CP.

The nonconformity score αỹ
l+g is then compared to the nonconformity scores

of all other examples to find out how unusual (xl+g, ỹ) is according to the non-
conformity measure used. This comparison is performed with the function

p((x1, y1), . . . , (xl, yl), (xl+g , ỹ)) =
#{i = 1, . . . , l, l + g : αỹ

i ≥ αỹ
l+g}

l + 1
, (2)

the output of which is called the p-value of ỹ, also denoted as p(ỹ). An important
property of (2) is that ∀δ ∈ [0, 1] and for all probability distributions P on Z,

P l+1{((x1, y1), . . . , (xl, yl), (xl+g , yl+g)) : p(yl+g) ≤ δ} ≤ δ; (3)

a proof can be found in [20]. This makes it a valid test of randomness with
respect to the i.i.d. model. According to this property, if p(ỹ) is under some very
low threshold, say 0.05, this means that ỹ is highly unlikely as the probability
of such an event is at most 5% if (1) is i.i.d.

Assuming it were possible to calculate the p-value of every possible label
following the above procedure, we could then exclude all labels with a p-value
under some very low threshold, or significance level, δ and have at most δ chance
of being wrong. Consequently, given a confidence level 1 − δ a regression CP
outputs the set

{ỹ : p(ỹ) > δ}, (4)

in other words the interval containing all labels that have a p-value greater than
δ. Of course it is impossible to explicitly consider every possible label ỹ ∈ IR, so
regression CPs follow a different approach which makes it possible to compute
the predictive interval (4). This approach is described in [5] for Ridge Regression
and in [6] for k-Nearest Neighbours Regression.

The only drawback of the original CP approach is that due to its transductive
nature all its computations, including training the underlying algorithm, have
to be repeated for every test example. This makes it very computationally ineffi-
cient especially for algorithms that require long training times such as NNs. ICP
is based on the same theoretical foundations described above, but performs in-
ductive rather than transductive inference. As a result ICP is almost as efficient
as its underlying algorithm [4].

ICP splits the training set (of size l) into two smaller sets, the proper training
set with m < l examples and the calibration set with q := l − m examples.
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It then uses the proper training set for training its underlying algorithm and
the calibration set for calculating the p-value of each possible label ỹ. More
specifically, it trains the underlying algorithm on (x1, y1), . . . , (xm, ym) and uses
it to compute the nonconformity score αm+i of each example in the calibration
set xm+i, i = 1, . . . , q. This needs to be done only once as now xl+g is not
included in the training set of the underlying algorithm. From this point on, it
only needs to compute the nonconformity score aỹ

l+g of each new example xl+g

being assigned each possible label ỹ and calculate the p-value of ỹ as

p(ỹ) =
#{i = m + 1, . . . , m + q, l + g : αi ≥ αỹ

l+g}
q + 1

. (5)

Again it is impossible to explicitly go through every possible label ỹ ∈ IR to
calculate its p-value, but it is possible to compute the predictive interval (4) as
we show in the next section.

3 Neural Networks Regression ICP

In order to use ICP in conjunction with some traditional algorithm we first have
to define a nonconformity measure. Recall that a nonconformity measure is a
function that measures the disagreement between the actual label yi and the
prediction ŷi for the example xi. In the case of regression this can be easily
defined as the absolute difference between the two

αi = |yi − ŷi|. (6)

We first describe the Neural Networks Regression ICP (NNR ICP) algorithm
with this measure and then define a normalized nonconformity measure, which
has the effect of producing tighter predictive intervals by taking into account the
expected accuracy of the underlying NN on each example.

The first steps of the NNR ICP algorithm follow exactly the general scheme
given in Section 2:

– Split the training set {(x1, y1), . . . , (xl, yl)} into two subsets:
• the proper training set: {(x1, y1), . . . , (xm, ym)}, and
• the calibration set: {(xm+1, ym+1), . . . , (xm+q, ym+q)}.

– Use the proper training set to train the NN.
– For each pair (xm+i, ym+i), i = 1, . . . , q in the calibration set:

• supply the input pattern xm+i to the trained NN to obtain ŷm+i and
• calculate the nonconformity score αm+i with (6).

At this point however, it becomes impossible to follow the general ICP scheme as
there is no way of trying out all possible labels ỹ ∈ IR in order to calculate their
nonconformity score and p-value. Notice though that both the nonconformity
scores of the calibration set examples αm+1, . . . , αm+q and the prediction of the
trained NN ŷl+g for the new example xl+g will remain fixed as we change the
assumed label ỹ. The only value that will change is the nonconformity score
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αỹ
l+g = |ỹ − ŷl+g|. Thus p(ỹ) will only change at the points where αỹ

l+g = αm+i

for some i = 1, . . . , q. As a result, for a given confidence level 1− δ we only need
to find the biggest αm+i such that when αỹ

l+g = αm+i then p(ỹ) > δ, which
will give us the maximum and minimum ỹ that have a p-value greater than δ
and consequently the beginning and end of the corresponding predictive region.
More specifically, after calculating the nonconformity scores of all calibration
examples the NNR ICP algorithm continues as follows:

– Sort the nonconformity scores of the calibration examples in descending order
obtaining the sequence α(m+1), . . . , α(m+q).

– For each new test example xl+g:
• supply the input pattern xl+g to the trained NN to obtain ŷl+g and
• output the predictive interval

(ŷl+g − α(m+s), ŷl+g + α(m+s)), (7)

where s = �δ(q + 1)�.

3.1 A Normalized Nonconformity Measure

We extend nonconformity measure definition (6) by normalizing it with the
predicted accuracy of the underlying NN on the given example. This leads to
predictive intervals that are larger for the “difficult” examples and smaller for
the “easy” ones. As a result the ICP can satisfy the required confidence level
with intervals that are on average tighter. This measure is defined as

αi =
|yi − ŷi|
exp(μi)

, (8)

where μi is the prediction of the value ln(|yi − ŷi|) produced by a linear NN
trained on the proper training patterns with the corresponding labels (and exp
is the exponential function). We use the logarithmic instead of the direct scale
to ensure that the estimate is always positive. When using (8) as nonconformity
measure the predictive interval produced by the ICP for each new pattern xl+g

becomes
(ŷl+g − α(m+s) exp(μl+g), ŷl+g + α(m+s) exp(μl+g)), (9)

where again s = �δ(q + 1)�.

4 Total Electron Content Prediction

TEC is defined as the total amount of electrons along a particular line of sight
and is measured in total electron content units (1 TECu = 1016 el/m2). It is
an important parameter in trans-ionospheric links since when multiplied by a
factor which is a function of the signal frequency, it yields an estimate of the
delay imposed on the signal by the ionosphere (an ionized region ranging in
height above the surface of the earth from approximately 50 to 1000 km) due
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(a) 24-hour variability (b) Seasonal variability

Fig. 1. 24-hour and seasonal variability of TEC for low and high solar activity

to its dispersive nature [21]. Consequently, accurate prediction of TEC can be
used in the application of mitigation techniques for the reduction of ionospheric
imposed errors on communication, surveillance and navigation systems.

The density of free electrons within the ionosphere and therefore TEC depend
upon the strength of the solar ionizing radiation which is a function of time of
day, season, geographical location and solar activity [22]. Figure 1a shows two
examples of the 24-hour variability of TEC during low and high solar activity,
which is expressed by an index called sunspot number. Examples of its seasonal
variability are shown in Figure 1b, which plots the noon values of TEC again
for low and high sunspot. As can be observed from these figures solar activity
has an important effect on both the 24-hour and seasonal variability of TEC.

The TEC measurements used in this work consist of a bit more than 60000
values recorded between 1998 and 2009. The parameters used as inputs for mod-
elling TEC are the hour, day and monthly mean sunspot number. The first two
were converted into their quadrature components in order to avoid their unreal-
istic discontinuity at the midnight and change of year boundaries. Therefore the
following four values were used in their place:

sinhour = sin(2π
hour

24
), (10)

coshour = cos(2π
hour

24
), (11)

sinday = sin(2π
day

24
), (12)

cosday = cos(2π
day

24
). (13)

It is worth to note that in ionospheric work solar activity is usually represented
by the 12-month smoothed sunspot number, which however has the disadvantage
that the most recent value available corresponds to TEC measurements made six
months ago. In our case in order to enable TEC data to be modeled as soon as
they are measured, and for future predictions of TEC to be made, the monthly
mean sunspot number values were modeled using a smooth curve defined by a
summation of sinusoids.
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Table 1. Tightness and empirical reliability results

Interdecile Percentage

Nonconformity Median Width Mean Width of Errors (%)

Measure 90% 95% 99% 90% 95% 99% 90% 95% 99%

(6) 16.15 21.88 38.17 16.32 22.02 38.67 10.12 5.02 1.01

(8) 13.04 16.24 25.91 14.20 17.69 28.27 9.73 4.92 1.00

5 Experiments and Results

The experiments were performed following a 2-fold cross-validation process. The
60421 examples of the dataset were split randomly in two parts of almost equal
size (one with 30211 and one with 30210 examples) and our tests were repeated
twice, each time using one of the two parts as training set and the other as test
set. This was done in order to evaluate the proposed method on the whole range
of possible sunspot values (which exhibit an 11 year cycle), since solar activity
has a strong effect on the variability of TEC. The choice of two rather than more
folds was made due to the large size of the dataset.

The underlying NN had a fully connected two-layer structure, with 5 input,
13 hidden and 1 output neurons. The hidden layer consisted of neurons with
hyperbolic tangent activation functions, while the output neuron had a linear
activation function. The number of hidden neurons was determined by trial
and error on the original NN. The training algorithm used was the Levenberg-
Marquardt backpropagation algorithm with early stopping based on a validation
set created from 10% of the proper training examples. In an effort to avoid local
minima ten NNs were trained with different random initialisations and the one
that performed best on the validation set was selected for being applied to the
calibration and test examples. The calibration set consisted of 999 examples
which were selected randomly from the training set; this resulted in q + 1 in (5)
being 1000. The inputs of the network were normalized setting their minimum
value to −1 and their maximum value to 1. Finaly, in order to ensure that the
results reported here do not depend on the particular split of the dataset in the
two folds or in the particular choice of calibration examples, our experiments
were repeated 10 times with different permutations of the examples.

In terms of point predictions both our method and the original NN perform
quite well with a RMSE of 5.5 TECu and a correlation coefficient between the
predicted and the actual values of 0.94. However since the advantage of our
method is that it outputs predictive intervals, the aim of our experiments was to
check their tightness and therefore usefulness, and their empirical reliability. To
this end the first and second parts of Table 1 report the median and interdecile
mean widths of the obtained predictive intervals with the two nonconformity
measures, while the third and last part reports the percentage of errors, which
is in fact the percentage of intervals that did not contain the true label of the
example. We chose to report the median and interdecile mean values instead of
the mean for evaluating predictive interval tightness so as to avoid the strong
impact of a few extremely large or extremely small intervals.
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(a) Low Sunspot

(b) Medium Sunspot

(c) High Sunspot

Fig. 2. Examples of the predictive intervals produced by nonconformity measure (6) on

the left and (8) on the right for typical days in low, medium and high sunspot periods

The values in the first two parts of Table 1 do not really give us much infor-
mation on their own, in order to evaluate them we should consider the range
of the measured values in our dataset, which are between 0 and 110 TECu. If
we now transform the values in the table to the percentage of this range that
they represent we see that the predictive intervals of the proposed method are
quite impressive. For example, the median width obtained with nonconformity
measure (8) for a confidence as high as 99% covers 23.5% of the range, while for
the 95% confidence it only covers 14.8%. It is also worth to mention that, since
the produced intervals are generated based on the size of the absolute error that
the underlying algorithm can have on each example, a few of the intervals start
from values below zero, which are impossible for the particular application. So
we could in fact make these intervals start at zero without making any addi-
tional errors and this would result in slightly smaller values than those reported
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in this table. We chose not to do so here in order to evaluate the actual intervals
as output by our method without any intervention. The third part of Table 1
demonstrates clearly the reliability of the obtained predictive intervals. The per-
centages reported in this part are almost equal to the required significance level
in all cases.

By comparing the median and interdecile mean values of the intervals pro-
duced when using each of the two nonconformity measures we see that, as ex-
pected, our normalized nonconformity measure (8) gives on average tighter in-
tervals. The difference between the two measures is further demonstrated graph-
ically in Figure 2, which plots the intervals obtained by each measure for three
typical days in the low, medium and high sunspot periods. We can see that un-
like the intervals of measure (6), those of measure (8) are larger at noon and
in the high sunspot period, when the variability of TEC is higher, but they are
much smaller during the night and in the low sunspot period.

6 Conclusions and Future Work

We have developed a regression ICP based on NNs, which is one of the most
popular techniques for regression problems. Unlike conventional regression NNs,
and in general machine learning methods, our algorithm produces predictive
intervals that satisfy a required confidence level. Our experimental results on the
prediction of TEC show that the predictive intervals produced by the proposed
method are not only well-calibrated, and therefore highly reliable, but they are
also tight enough to be useful in practice. Furthermore, we defined a normalized
nonconformity measure, which results in tighter predictive intervals. Our main
direction for future research is the development of more such measures, which
will hopefully give even tighter intervals. Moreover, our future plans include the
application and evaluation of the proposed method on other problems for which
provision of predictive intervals is highly desirable.
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Abstract. New experimental data discussed in [5] are used in the present paper. 
Application of the penalized error function, Principle Data Analysis and Bayes-
ian criterion of Maximum Marginal Likelihood enabled design and training of 
numerically efficient small neural networks. They were applied for identifica-
tion of two compaction characteristics, i.e. Optimum Water Content and Maxi-
mum Dry Density of granular soils. 

Keywords: Compaction characteristics, granular soils, neural networks. 

1   Introduction 

Engineering structures which involve earthworks such as roadway embankment, earth 
dams and soil liners often require compaction to improve soil conditions. In case of 
granular soils, Optimum Water Content (OWC) and Maximum Dry Density (MDD) 
are essential characteristics for the design of compacted earthwork. These characteris-
tics can be found experimentally by means of Proctor’s Standard laboratory Test 
ASTM D558-57, cf. [1].  

Proctor’s Test is laborious and time consuming. That is why Artificial Neural Net-
works (ANNs) have been used to predict compaction characteristics, cf. [2], [3], [4], 
[5]. The application of standard ANNs was discussed in [3], [4] in case of synthetic 
soils composed of four different components. In book [2] it was proved that granular 
soils can be analyzed only by means of grain size distribution {Dx}. New measure-
ment of these data discussed in [5] is an experimental base of the present paper. 

The application of network error measure with penalty terms and application of the 
Principle Component Analysis (PCA) enabled obtaining satisfactory results for effi-
cient networks without losing the approximation accuracy.  

2   Adopted Data 

According to [2] input and output vectors are composed of variables corresponding to 
grain size distribution and compaction characteristics: 

}%90,%,10,{ U)110( ==× xDC xx ,   y(2×1) = {OWC, MDD},            (1) 
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where x [%] is the percentage of grain diameters D [mm] below which soil mass  
is placed. The uniformity coefficient CU = D60 /

 D10 is also introduced as an input 
variable. 

The total number of patterns P = 121 was randomly split into the learning (train-
ing) and testing sets of pattern numbers L and T, respectively. Basic computations 
were carried out for 30% of training patterns, i.e. T = 0.3 P. In [1], [5] the total set of 
patterns was split into the learning, validation and testing sets composed of L = 0.5 P, 
V = T = 0.25 P patterns, respectively. 

3   Neural Network Analysis 

The following network error was applied: 
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where the first term EDi  is the standard Least Square Error function and EWi corre-
sponds to a penalized, regularization function. Both terms are weighted by hyper-
parameters α and β.  

The MATLAB neural toolbox [6] was used applying a single hidden layer com-
posed of H sigmoid neurons and linear output. The networks were trained by means 
of the Levenberg-Marquardt learning method. In Table 1, values of the Root Mean 

Square Errors S
iRMSE  and determination 2)( S

iR have been listed.  

The computations carried out in [5] were based on the application of the network 
standard error restricted to remaining only the term ED  in (2). The conclusions from 
papers [3] and [4] that the ANN of single outputs should be applied for prediction of 
compaction was confirmed in [5]. The errors obtained for the best networks 5-4-1 for 
prediction of OWC and network 10-4-1 for MDD, are shown in Table 1.  

Table 1. Network learning and testing errors 

S
iRMSE  2)( S

iR  
 

ANN 
No. 

 

ANN 
architecture 

 
Outputs 

L T L T 

1* 
2* 

5-4-1 
10-4-1 

OWC 
MDD 

0.121 
0.077 

0.159 
0.085 

0.75 
0.91 

0.65 
0.89 

 

3 10-4-2 
PCA 

OWC 
MDD 

0.098 
0.055 

0.112 
0.065 

0.89 
0.96 

0.79 
0.90 

 

4 4-5-2 
PCA 

OWC 
MDD 

0.110 
0.070 

0.139 
0.081 

0.78 
0.87 

0.60 
0.80 

    * T= 0.25 P. 

 
The neural analysis is based on the error measure (2) with the penalized term. In 

(2) hyperparameters α and β are introduced. In the computations performed in the 
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present paper, the fixed values α = 0.01 and β = 50.0 were adopted, taken from [7] as 
initial values in the Bayesian Evidence procedure 

In the present paper the PCA (Principle Component Analysis) was applied, cf. [8]. 
The (10×10) covariance matrix, computed for the input data set of P = 121 patterns, 
was formulated. The first four eigenvalues proved to be significantly higher than 
others. The errors corresponding to the original number of ten inputs, i.e. ANN No3 
and network ANN No4 with the compressed inputs, are shown in Table 1.  

For the prediction purposes the relative error Rei= (yi / ti − 1) × 100% is introduced, 
where coordinates yi , ti determine points on the planes i = OWC, MCC . In Figs 1a 
the lines Re = ± C % bound the area in which prediction points with the relative errors 
|Re | ≤ C are placed. The bounded area corresponds to the cumulative parameter SR 
[%], called Success Ratio. SR is defined by the formula SR = (SRe / S) × 100%, 
where: SRe − number of prediction points in the Re area, S − total number of points of 
data sets S = L, T. 

In Figs 1b the cumulative curves )( S
i

S
i ReSR  are shown for the learning and testing 

sets computed by the networks 10-4-2, PCA and 4-5-2, PCA.  
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Fig. 1. a) Areas of SR = 90% with error bounds Re shown for network ANN: 10-4-2, PCA,  
b) Cumulative curves of Success Ratios SR (Re) for the Re percent of correctly predicted com-
paction characteristics OWC and MDD and networks ANN: 10-4-2. 4-5-2, PCA 
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4   Final Remarks 

1. The application of the penalized network error function (2) enables formula-
tion of efficient networks with two outputs for the compaction characteristics OWC 
(Optimum Water Content) and MDD (Maximum Dry Density) prediction. 

2. The application of the Bayesian criterion MML (Maximum Marginal Likeli-
hood) makes it possible to design ANN with the use of only training set of patterns 
and compute optimal values of hyperparameters in the error function (2). 

3. PCA transformation improves the accuracy of neural approximation. The net-
work ANN: 10-4-2, PCA gives the best results from among all the networks presented 

in Table 1. This concerns especially the testing determination 2)( T
iR . The network 

ANN: 4-5-2 PCA with compressed inputs gives slightly higher values of errors than 
network 10-4-2, PCA.  

4. The Success Ratio curves SC(Re) shown in Figs 1b, are close to each other for 
the above discussed networks for both the training and testing results. If we assume 
that about 80% of testing patterns are correctly predicted with SR ≈ 90%, the error 
area bounds are |Re | ≈ 25% and |Re | ≈ 5% for the compaction characteristics OWC 
and MDD, respectively. 
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Abstract. In this paper, we propose two different neural network (NN)

approaches for industrial process signal forecasting. Real data is available

for this research from boiling water reactor type nuclear power reactors.

NNs are widely used for time series prediction, but it isn’t utilized for

Olkiluoto nuclear power plant (NPP), Finland. Preprocessing, suitable

input signals and delay analysis are important phases in modelling. Op-

timized number of delayed input signals and neurons in hidden-layer

are found to make possible prediction of idle power process signal. It is

mainly concentrated on algorithms on input signal selection and finding

the optimal model for one-step ahead prediction.

Keywords: Nuclear Power Plant, Neural Networks, One-step Ahead

Prediction, Model Input Selection, Evaluation Methods.

1 Introduction

In this paper, Feed-Forward back-propagation [1] (FF) and Elman Neural Net-
work [2] (ENN) with different parameters are used for modelling the system.
The main goal in our group is to develop monitoring and forecasting methods
by given data, not the analysis of the recorded events [3,4].

Conventional way for time series modelling by NNs is using numerical data
of delayed signals as inputs. The first temporal event is represented by the first
element in the input vector, and so on. Therefore the number of inputs in pre-
diction model is high, though a rather small group of process signals are selected
for model. At Olkiluoto thousands of signals are measured, and only few signals
help on modelling output. The high dimensionality of the system makes input
signal selection hard. A subset of signals are selected automatically when there
exists a large amount of process signals [4]. It is possible to decrease number of
inputs by paying attention to model signal selection or with use of ENN, be-
cause it has an additional units in hidden-layer. Recurrent connections are used
to associate a static pattern with a serially ordered output pattern. With these
connections it is possible to have its own previous output, so NN has its own
memory. FF is selected, because it is used frequently in time series forecasting.
Prediction was performed by selecting one stored data set for deeper analysis.
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2 Description of Used Methods

2.1 Signal Selection for Modelling

The complexity of delays is the most common reason, why it is usually expected
that there are no delays between variables. In practice, the unwanted effect of
delay can be decreased by filtering, for example by Moving Average (MA) with
larger size of time window [3].

Time series prediction is estimation of future values based on its and other
signals past samples. A signal, which is responding latest, can be predicted by
its delayed signal measurements and other process signals. Delays and linear
correlation are examined before modelling. Observations on signals are made at
the same unit time intervals over the same time period. Delays are detected by
cross-correlation function. It is standardized cross-covariance function and for
two signals T and P it is defined as

rTP (τ) =
E[(T (t) − μT )(Pi(t + τ) − μPi)]

σT σPi

, (1)

where τ is the time lag, σ denotes the standard deviation, T is the idle power
measurements and Pi is one of the potential inputs with delayed measurements.

2.2 Elman Recurrent and Feed-Forward Neural Networks

In an ENN all neurons are in one hidden-layer [2] and there are connections to a
context layer from each node, so previous hidden-layer output values are saved.
Delayed values are re-connected to all nodes in hidden-layer, see Fig. 1.

Comparative method in our experiments is a FF with one hidden-layer. It is
similar as shown in Fig. 1, but without the context layer. Major problem is that it
can learn only static input-output mapping [1]. The training mode begins in our
experiments with randomly selected weights and those are optimized in training.

Fig. 1. In ENN re-connections to hidden-layer are simplified by one arrow. Input signals

are delayed idle power values and other process signal values Pi, which rely with output

T (t). The number of delayed input signals N is depending on the cross-correlation

analysis.
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In each epoch the NN adjusts the weights in the direction that reduces the error.
The weights gradually converge to the locally optimal set of values. Many epochs
are usually required before training is completed, but then probability of over-
training is higher.

2.3 Model Evaluation Methods

Most of the existing literature [5] on time series prediction frequently employ
only one performance criterion for prediction evaluation. Mean Squared Error
(MSE) is also a default criterion in Matlab, when training NNs. In industry,
process signals can have unexpected large changes. Quality of model cannot be
evaluated just using MSE,because information of error distribution is not given.

The Normalized Mean Square Error (NMSE) is an estimator of the overall
deviations between predicted Xi and measured values divided by sample size
and variance of the real measured signal outputs T . Median of Absolute Error
(MAE) is the absolute value of the difference between the model and the mea-
surement. This can be expressed as a percentage error by dividing absolute error
by measurement value. It describes the common error of predictions.

3 Experiments

In our experiments all input signals are scaled from −1 to 1. Predicted output
signal is rescaled and examined in the original scale. Data was divided for training
and testing parts. Training part was used for input signal selection and for
optimizing weight values in the NN. The most effective training method was
Levenberg-Marquardt back-propagation method.

Data set was divided to two different training and testing sets, see output in
Fig. 1. In set 2 there is unexpected large changes in data (t=235,546). Based on
practical experience it is useful to detect these abnormalities, therefore results
in this paper are performed using training and testing area 2. It is divided to
training t =]max(delayedinput)..400] and testing t =]400..800] areas.

Number of epochs is selected by minimizing the training and test errors.
NMSE and MAE are used as criteria for evaluation. With large number of epochs
net is over-trained. Six hidden neurons and 10 epochs seems to be better selection
than 50 epochs, when other parameters are fixed. These parameters are optimal
only on the case of four delayed input signals and three delayed steps for effective
power and generator voltage. Number of hidden-units and number of delayed
inputs are changed to find optimized results. Each NN is trained by using rather
small number of hidden neurons with sigmoid transfer functions.

Results with different parameter values are listed on Table 1. NNs cannot be
compared straight with the same parameter values. FF is faster, but ENN is
better when comparing the best evaluation results.The parameter combination,
which gives the best result on testing area is not the best on training area. It is
recommended to examine MAE, when interest is on normal operation states.
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Table 1. Results for the idle power prediction using training and testing area 2. Pa-

rameter I is the number of delayed inputs: idle power + effective power + generator

voltage. Parameter N is the number of nodes in the hidden-layer. The best evaluation

results are underlined.

Train Test

NN I N MSE NMSE MAE MSE NMSE MAE

ENN 4 + 2 5 0.0470 0.0124 0.1384 0.2949 0.1798 0.1412

ENN 6 + 6 + 6 4 0.0433 0.0114 0.1326 0.1536 0.0936 0.1410

ENN 3 + 2 + 2 4 0.0477 0.0126 0.1377 0.0868 0.0529 0.1437

ENN 3 + 2 + 2 8 0.0424 0.0112 0.1339 0.5177 0.3157 0.1406

ENN 4 + 2 + 2 5 0.0474 0.0125 0.1378 0.0524 0.0138 0.1440

FF 4 + 2 5 0.0486 0.0128 0.1385 0.0860 0.0524 0.1414

FF 4 + 2 + 2 5 0.0572 0.0151 0.1413 0.1392 0.0593 0.1439

FF 3 + 2 + 2 8 0.0502 0.0133 0.1438 0.1855 0.1131 0.1465

4 Conclusions

Two different approaches for idle power forecasting was presented in this paper.
Cross-correlation method gives valuable information of possible input signals.
Both, FF and ENN gave good prediction results. ENN with five hidden-neurons
and input signals NT = 4 and NPi = 2 gave the best results for the test set.

Possible limitation for the NN is the slowness of the method. In the real
world application the selection of parameters and modelling will be problematic,
if frequency of time series is high. Before implementation NN to NPP, research
work on nonstationary processes has to be done. NN should be re-trained on
larger process state changes.
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Abstract. Accurate time series forecasting are important for several business, 
research, and application of engineering systems. Evolutionary Neural  
Networks are particularly appealing because of their ability to design, in an 
automatic way, a model (an Artificial Neural Network) for an unspecified non-
linear relationship for time series values. This paper evaluates two methods to 
obtain the pattern sets that will be used by the artificial neural network in the 
evolutionary process, one called ”shuffle” and another one carried out with 
cross-validation and ensembles. A study using these two methods will be shown 
with the aim to evaluate the effect of both methods in the accurateness of the fi-
nal forecasting.  

Keywords: Evolutionary Computation, Genetic Algorithms, Artificial Neural 
Networks, Time Series, Forecasting, Ensembles. 

1   Introduction 

Time series forecasting is an essential research field due to its applications in several 
research, commercial and industry areas, and can be performed by Statistical methods 
or Artificial Neural Networks (ANN) [1]. The ANN have the capability, without any 
information but the data, of extracting the nonlinear relationship between the inputs 
and outputs of a process. There are, in the literature some “state of art” by Abraham 
[2] and Yao [3] about automatic methods to design ANN based on Evolutionary 
Computation (EC).  

In order to deal with model unction xt = f(xt-1, xt-2, …, xt-k), time series known val-
ues will be transformed into a patterns set, depending on the k inputs nodes of a par-
ticular ANN. If the number of input nodes are different their pattern set are different 
and will be used to train and validate each ANN generated in the GA. The fitness 
value for each individual will be then the minimum validation error along the training 
of ANN topology. Once that GA reaches the last generation, the best individual (i.e. 
ANN) is used to forecast the future (and unknown) time series values (at) one by one 
using the k previous known values (at-1, …, at-k). Value k is the number of input nodes 
of the best individual. 



 Time Series Forecasting by Evolving ANN 51 

 

This contribution reports two methods, “Shuffle” and cross-validation, to obtain 
the pattern sets used for ANN learning algorithm in a previous approach [4] based on 
Genetic Algorithms (GA). ”Shuffle” refers to the way the whole pattern set will be 
split between train pattern set and validation pattern set. Cross-validation will be used 
for time series with few elements, so that cross-validation will be used to obtain sev-
eral pattern subsets which will help to evaluate more accurately every specific ANN 
obtained in the GA. 

2   “Shuffle”, Cross-Validation and Ensembles 

In previous work, train and validation sets are obtained in a sequentially manner 
(train first 70%, validation last 30%). But, in this new approach, “shuffle”, the process 
of splitting the patterns set will consist of obtaining train and validation sets in a ran-
dom way from time series data, see (Fig. 1). So it will let different parts of the time 
series to train the ANN and also different parts of the time series to validate the ANN, 
in order to obtain better generalization ability. 

 

(a) 
 

(b) 

Fig. 1. Passengers: train and validation patterns sequentially (a) and randomly (b) obtained 

Cross-validation has been used to forecast time series. In this study, the total pat-
tern set will be split into n complementary pattern subsets (n from 2 to 8). Fig.2 shows 
an example of cross-validation with three pattern subsets. So that a individual in GA 
is an ANN topology, applying cross-validation to this individual gives n different 
ANN architectures (i.e. topology plus connection weights) and it n different fitness 
values depending on which patterns are used to train and validate the topology. So, 
applying cross-validation, the final fitness value for an individual will be the average 
of all its fitness values from each of its architectures. 

When last generation of the GA is reached and its best individual have to be used 
to forecast, what of the its n architecture from cross-validation should be used? To 
solve this new problem Ensembles similar to Yao in [5] will be used to obtain only 
one model to carry out the final forecasting send to any competition or any company 
that need just a forecast (not several). In [5] the ensemble takes the different architec-
tures obtained in last generation of the evolving cross-validation process, rather than 
an individual, to form the final result. But in our work, the different architectures (the 
same input and hidden nodes but different weight values) from the best individual in 
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the last generation using cross-validation are linearly combined as an ensemble. And 
this ensemble will be used to give only one forecast. The weight for each model of the 
linear combination is given by the eq. 1 (a), and the ensemble output is given by eq. 1 
(b). (n is the number of models into the ensemble and β is a scaling factor). 

 

 

Fig. 2. Example of cross validation with 3 patterns subsets 
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3   Experimental Results and Conclusions 

Five time series [6] have been be used to evaluate our methods. Sequential and “Shuf-
fle” ways to obtain train and validation subsets are evaluated into the system. Fore-
casted values are compared with real values (i.e. test set) and two error values are 
used: MSE (mean squared error) and SMAPE (symmetric mean absolute percent 
error) [7]. The results are shown in Table 1. 

As it can be observed applying shuffle method to these time series does not achieve 
better forecasting in Passengers and Dow-Jones time series. It could be explained 
because of the few elements of those time series (less than 200). If train and valida-
tion pattern subsets obtained are split in a random way, then all the patterns used to 
adjust the connection’s weights does not correspond to consecutives time series val-
ues. So the relationship between inputs and output could be harder to learn if there are 
few patterns for learning and they are not consecutive (i.e. mixing up the training and 
validation patterns). On the other hand, the same experiment was also carried out with 
Quebec and Mackey-Glass time series, larger than previous ones (about 730 ele-
ments) Applying shuffle to these time series gets better results, specially for Mackey-
Glass. 

Our approach does not seem to achieve an improvement using “Shuffle” with short 
time series (i.e. Passengers, Temperature and Dow-Jones), so cross-validation, usually 
used when not too many data are given, have been tried for these time series. The 
number of subsets in which the total pattern set has been split goes from two to eight. 
All forecasted values, obtained from the ensemble of the ANN architectures are com-
pared with real values and SMAPE error is shown. Results are shown in Table 2. We 
can observe that applying cross-validation to these time series obtain different results 
depending on the time series and the number of subsets the total pattern set has been 
split. The problem now arise in which is the optimum number of subsets which should 
be used to forecast a time series using cross-validation. 
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Table 1. SMAPE and MSE error for the best individual in the last generations 

Sequentially Shuffle  
MSE %SMAPE MSE %SMAPE 

Passengers (120 values) 0.00039 3.065 0.00521 8.999 
Temperature (206 values) 0.00406 4.845 0.00384 4.441 
Dow-Jones (129 values) 0.01437 5.512 0.02065 6.689 
Quebec (735 values) 0.02149 12.121 0.01312 9.218 
Mackey-Glass (731 values) 0.00363 8.672 0.00016 1.818 

Table 2. SMAPE error using Cross-validation and Ensembles 

 0 Sub 2 Sub 3 Sub 4 Sub 5 Sub 6 Sub 7 Sub 8 Sub 
Passengers 3.065 16.227 11.104 6.774 4.519 9.136 4.198 2.790 
Temperature 4.845 3.385 3.413 3.625 3.730 3.952 3.842 3.817 
Dow-Jones 5.512 6.194 6.728 7.581 7.112 5.093 6.962 6.125 

 
The results disclose that shuffle only improves forecasting for not short time series. 

An issue arises at this point: how the positive/negative effect of shuffle depends on 
the number of time series elements (i.e. size of training/validation subsets). On the 
other hand, cross-validation let us improve the result for short time series, but another 
issue arise, the optimum number of subsets to split the total pattern set. As it is a to-
tally automatic method, it will not be necessary any previous knowledge from the 
user. The user just have to give the time series he wants to forecast and the number of 
future elements he wants to be forecasted to the system; and this method will give 
these forecasted values as result to the user. This approach got 6th position in NN5 
Forecasting Competition [7]. 
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Abstract. The problem of prediction of 24-hour ahead power consumption in a 
small power region is a very important practical problem in power engineering. 
The most characteristic feature of the small region is large diversity of power 
consumption in the succeeding hours of the day making the prediction problem 
very hard. On the other side the accurate forecast of the power need for each of 
24 hours of the next day enables to achieve significant saving on power deliv-
ery. The paper proposes the novel neural based method of forecasting the power 
consumption, taking into account the trend of its change associated with the 
particular hour of the day, type of the day as well as season of the year 

Keywords: Load forecasting, 24-hour ahead power consumption prediction, 
detrending operation. 

1   Introduction 

Electricity-supply planning requires the optimization of the decisions concerning the 
short-term demand for each of 24 hours of the next day. Accurate forecast allows to 
minimize the cost of delivery of electrical energy for customers and thus is very im-
portant to economize the power engineering.  

Most papers devoted to load forecasting consider the large power systems, usually 
concerning the whole country [1],[5],[6]. The prediction problem for such systems is 
relatively easy, since the constant part of the total load is usually very large with  
respect to its peak values. Much more difficult is small power region, where the vari-
ability of load is very large and hence more difficult to predict.  

If we look for example at the hourly consumption of the electrical energy of the 
small power region of Lodz in Poland (Fig. 1) we can see the trends concerning these 
dependencies. The upper figure represents the period of 2 years and in the bottom one 
we have limited this period to one week only. The upper figure shows clearly the 
yearly seasonal changes and the bottom one - the daily changes associated with dif-
ferent days of the week (from Monday to Sunday). 

It is well known that reducing the variability of the predicted time series leads to 
the increase of prediction accuracy [2],[4]. The most straightforward approach to 
reduce the variation of the predicted time series is to remove the trends due to the 
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Fig. 1. The hourly consumption of the electrical energy in a small power region: a) of the whole 
2 years, b) of one chosen week 

daily, weekly and seasonal cycles of the power demand. The paper develops this 
direction of the time series processing. We propose the indexation of the time series 
aimed in elimination of the trends due to the type of the day, daily hour cycle and the 
season of the year. The transformed time series after removing these trends are sub-
ject to prediction by applying the neural network models, either the multilayer percep-
tron (MLP) or Support Vector Machine (SVR).  

2   The Proposed Approach 

Our main task is to predict the power demand P(d,h) for dth day and hth hour of the 
power region by considering its past history and the predicted temperature of the day 
under prediction. To reduce the variability of the predicted time series we index the 
time series, eliminating the trends due to the type of the day, daily hour cycle and the 
season of the year. We apply the multiplicative model of this indexation. 

2.1   Elimination of Trends 

The elimination of the trends is performed in few phases. The first step is to deter-
mine the index corresponding to jth day of the weak (j = 1, 2, …, 7). To estimate this 
index we calculate the mean value of the load for each jth day of the year, divide it by 
the mean of the year and average by the years. Denoting it by αdw we can use the 
following formula  
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In this expression Pm(y,j) denotes the average power consumption of jth day of the 
week corresponding to yth year, and Pm(y) is the mean power for all days of yth year. 
The final value of this index is averaged over all years under consideration. After 
calculating this index we can remove the daily trend by dividing the real time series 
P(w,j)=[P1(w,j), P2(w,j),…, P24(w,j)] of each jth day of wth week by the value of daily 
index αdw(j), i.e.,  
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Additionally we recognize also the load patterns corresponding to workdays and holi-
days. We will recognize 5 types of the days: the workday just before non-working day 
(holiday or weekend), the workday just after non-working day (holiday or weekend), 
the workday between two non-working days, all other working days, the non-working 
days. To remove this trend we define the day type index αdt in the same way as  
before. 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

)(

),(
)(

1

1

yP

tyP
meant

m

m

yearsdt
α  (3) 

where P1m(y,t) denotes the average power consumption P1 of the days of the same 
type t (workdays or holidays) corresponding to yth year, and Pm(y) is the mean power 
for all days of yth year. The final value of this index is averaged over all years under 
consideration. Removing this trend corresponds to the division of the real time series 
P1 by the value of αdt(t), i.e., 
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The next step is removing the trend corresponding to the particular hour h of the day 
(h=1, 2, …, 24). The procedure is identical to the previous ones. The hourly index 
αh(h), is then defined as 
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To remove the trend corresponding to the particular hour of each dth day we perform 
the detrending operation 
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The last operation is to remove the seasonality trend characterizing the succeeding 
day of the year (d=1, 2, …, 365). If we denote the seasonality index by αs we can 
define it in the form 
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where P3m(y,d) denotes the average power consumption P3 of all 24 hours of the day d 
corresponding to yth year, and P3m(y) is the mean power for all days of yth year. In 
this way we define the transformed load pattern P4(d,h) of each hour of the days un-
der consideration as  
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As a result of all these steps we get the final detrended time series P4(d)=[P4,(d,1), 
P4(d,2),…, P4(d,24)] corresponding to all days under consideration (d=1, 2, …, p). 
This time series is of much lower variance than the original one. The ratio std/mean 
for the whole data has been reduced from 0.289 (original data) to 0.128 (after detrend-
ing operation). 

The prediction task is now moved to the time series represented by P4(d,h) of much 
smaller variability. Smaller variance of this time series means easier prediction task 
for the neural network and higher probability of achieving better accuracy. 

After predicting the time series P4(d,h) we can return to the original values. Taking 
into account the cumulation of all indexing operations the real load pattern corre-
sponding to hth hour of dth day can be presented as follows 

)()()()(),(),(
4

dhtjhdPhdP
shdtdw
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The index j corresponds here to proper day of the week (j = 1, 2, …,7) and t denotes 
the actual type of the working or nonworking day. For each day d and hour h the 
proper values of indices should be applied. Knowing them in advance the prediction 
task is simplified to prediction of the detrended values P4(d,h). This task will be done 
by applying the neural network predictor.  

2.2   Neural Network Predictors 

The prediction of the detrended time series P4(d,h) will be done by applying two types 
of supervised neural networks: the MLP and SVR. The predictive model is built for 
each hour independently. In building this model for dth day and hth hour we assume 
that all previous values of P4(i,j) are available for i= d-1, d-2, … and j= 24, 23 ,…1. 
The assumed model of prediction takes into account the predicted value of minimal 
Tmin(d) and maximal Tmax(d) temperatures of the next dth day, the values of the load in 
the last 2 hours of two previous day, as well as the load of hth and (h-1) hours of the 
same type of day (the same day a week ago). This model may be generally written in 
the following form 
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The values denoted by hat mean the predicted and without hat – the real power con-
sumption. The expression f() represents here the approximation function implemented 
by the neural network. As the neural approximator we have tried two very efficient 
solutions of neural networks: the multilayer perceptron [3] and Support Vector Ma-
chine working in the regression mode [7]. 

The expression (10) defines explicitly the input signals to the neural predictors. 
They are equal to the variables appearing in the brackets on the right side of the equa-
tion. Irrespective of the applied neural network they are composed of 8 signals: six 
correspond to the previous (detrended) load and two to the predicted minimal (night) 
and maximal (day) temperatures of the day. 
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3   The Numerical Results of Prediction 

In the numerical experiments we have used the analysed data of the small power re-
gion of Lodz. All experiments have been performed using Matlab platform [8]. In the 
first phase the detrending process of the whole data was done and all four indexing 
coefficients determined. As a result of it the detrended time series P4(d,h) correspond-
ing to all data set has been determined. This data set has been normalized column 
wise by dividing all entries by the maximum value of each hour. 

In the next phase the neural predictors of different forms have been applied to pro-

vide the estimation of the normalized ),(4̂ hdP . The whole set of data has been split 

into two parts. Two third of it was used for learning the predictor and one third left for 
testing the network. We have applied two neural networks: the MLP and SVR. Both 
used the same structure of input data defined by expression (10). There were 8 inputs: 
6 corresponded to the power consumption of the previous hours and days and two 
others to the maximum and minimum temperatures predicted for the day under pre-
diction. Irrespective of the network solution there was single output neuron, responsi-
ble for predition of the normalized power of the particular hour h. 24 neural predictors 
corresponding to each hour of the day were trained.  

In the case of MLP the number of hidden neurons was adjusted by using the cross 
validation approach. This task was performed for each hour independently. As a re-
sults the number of hidden neurons of MLP was changing from 5 to 8 neurons of 
sigmoidal nonlinearity. 

In the case of Gaussian kernel SVR we have applied similar strategy. The tolerance ε 
was fixed to 0.005, while the optimal values of C, and σ have been determined in a 
similar fashion as in the case of MLP by trying the predefined values of them and using 
the validation data set. As a result of such introductory experiments we have fixed the 
regularization constant for all 24 SVR networks on C=100 and the Gaussian width 
σ=10. These hyperparameters have been used in real learning procedure of all SVRs.  

After learning procedure the parameters of the neural predictors have been fixed 
and the networks tested using the testing data set. In this way we got the forecasted 

values of ),(4̂ hdP , on the basis of which we were able to recover the real predicted 

values P(d,h) for the days used in testing, by applying the equation (9). The quality of 
prediction system has been assessed on the basis of mean absolute percentage errors 
(MAPE), maximum percentage error (MAXPE) and root mean squared error 
(RMSE).  

Table 2 presents the total results of testing in the form of MAPE, MAXPE and 
RMSE. We have compared them with the results of prediction by using crude data, 
without detrending procedure (the direct application of SVM and MLP). 

Table 2. The comparison of the results of prediction by using different solutions of forecasting 
systems 

Prediction method MAPE [%] MAXPE [%] RMS [kW] 
Indexation+SVM 3.4855 49.1397 1.4531e4 
Indexation+MLP 3.5352 50.0892 1.5162e4 
Direct SVM 3.5824 81.0938 1.5782e4 
Direct MLP 3.6559 94.7229 1.5836e4 
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Direct application of neural predictors (without detrending) was evidently less effi-
cient. All measures of quality were the worst, irrespective of the applied type of pre-
dictor. The best results of forecasting correspond to the application of indexation 
combined with neural predictors. Both SVM and MLP predictors were of comparable 
accuracy, although the SVM was slightly better. Especially high improvement was 
observed for maximum percentage error. Application of detrending procedure has 
reduced this error in a very significant way. For example at direct application of SVM 
the MAXPE=81.09%. After detrending the data this error was reduced to 49.14% 
(39.5% of relative improvement). The explanation for this may be the fact, that the 
detrending procedure reduces significantly the abrupt changes of the time series com-
ponents corresponding to the specific types and certain hours of the day. Hence their 
accurate prediction is much easier. 

4   Conclusions 

The paper has presented the new approach to the forecasting problem of the power 
consumption in  the small power region. The most important point in this approach is 
application of the indexation of the data in order to remove different trends related to 
the type of the date, hour of the day and season of the year. Combination of this in-
dexation approach with the neural type predictors has resulted in a great reduction of 
the forecasting error and improving the accuracy of forecasting. The numerical results 
have shown significant improvement of accuracy with respect to the direct approach 
(prediction of the crude data without detrending).  
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Abstract. Predictive maintenance of industrial machinery has steadily

emerge as an important topic of research. Due to an accurate automatic

diagnosis and prognosis of faults, savings of the current expenses devoted

to maintenance can be obtained. The aim of this work is to develop an

automatic prognosis system based on vibration data. An on-line ver-

sion of the Sensitivity-based Linear Learning Model algorithm for neural

networks is applied over real vibrational data in order to assess its fore-

casting capabilities. Moreover, the behavior of the method is compared

with that of an efficient and fast method, the On-line Sequential Extreme

Learning Machine. The accurate predictions of the proposed method pave

the way for future development of a complete prognosis system.

1 Introduction

Common maintenance strategies in industry nowadays are reactive maintenance
(repairing a fault when it appears), which is being abandoned progressively be-
cause of its high costs; and preventive maintenance (based on physical inspec-
tions at scheduled intervals of time). Predictive maintenance is one of the main
areas of research nowadays for industrial engines and also for aerospace, au-
tomotive, and marine vehicles, because it results in a significant reduction of
the overall operating costs. It is based on the fact that a mechanical compo-
nent breakdown is usually preceded by a period in which a smooth and crescent
degradation of behavior and performance can be detected. If suitable on-line
monitoring is used, these incipient faults can be identified and action can be
taken before causing major problems or damage to other parts of the equip-
ment. In case of mechanical components of a windmill, the monitoring of secu-
rity relevant components and signals is the state of the art and is required by
certification guidelines. The existence of a fault detection system in this setting
is of prime importance because it has a number of potential benefits, such as the
avoidance of premature breakdown, reduction of maintenance costs avoiding the
replacement of intact parts of the preventive maintenance, possibility of remote
diagnosis (very important because windmill are usually placed at remote sites),
and prognosis and adaptation of the repairing actions to the time which is more
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convenient for the wind plant (i.e. when low wind speed), improving the produc-
tion factor of the plant. In the case of rotating machines, such as the mechanical
parts of the windmills (bearings, gearboxes, etc.), vibration monitoring is used
and fault detection systems evaluate spectral analysis data, such as FFT, Cep-
strum, envelope curve analysis, etc. to yield diagnosis and also estimations of
remaining lifetime of the piece. The rationale for this is that almost any fault can
be detected through the vibrations that are present along all the components of
a mechanical machine. The vibration analysis is based on the alterations that ap-
pear in the vibrational behavior of a machine when a latent defect appears in any
of its components. Currently, predictive maintenance in windmills is done man-
ually or in a semi-automatic way by qualified experts, thus making maintenance
a high cost service. Several models have been used for automatic diagnosis and
prognosis [1,2], among which some of them use Artificial Intelligence techniques
[3,4]. Specifically in the case of prognosis, very few papers can be found [5,11]. In
this paper, a prognostic model based on a supervised feedforward on-line learn-
ing algorithm [9] for two-layer feedforward neural networks based on sensitivity
analysis, called on-line SBLLM (Sensitivity-Based Linear Learning Method) is
described. The algorithm offers a very appealing combination of speed, reliability
and simplicity, very adequate for real-time prediction.
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Fig. 1. System architecture

2 The Overall System for Diagnosis and Prognosis

The final aim of our work is the development of an automatic predictive main-
tenance system based on Machine Learning and Knowledge-based systems tech-
niques. Figure 1 depicts the main architecture of GIDAS c© system. In the first
stage, raw vibrational data is acquired directly from the machine using a set
of accelerometers and acquisition systems specifically programmed for this task.
Subsequently these measures are transmitted via a TCP/IP connection (mainly
wireless connections due to the target application environments) to a central
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node which treats these data to obtain informational parameters. The most
used parameters in vibration-based diagnosis are Root Mean Square (RMS) of
the signal and Fast Fourier Transform (FFT). The present fault diagnosis sub-
system uses a combination of (a) an Artificial Neural Network (ANN), (b) a
sequential statistical test and (c) a rule based system which reflects the possi-
ble diagnostics for each component. Although vibration-based fault diagnosis has
been treated in recent years, few papers studying fault prognosis can be found in
the literature [5,8]. Our aim is to extend the analysis capabilities of the system
introducing a forecaster of future machine state. This subsystem will forecast
the state of diagnosis parameters extracted from raw vibration measurements
of a component and hence predict future possible faults. Although some other
works used neural networks for this task [11], the capability of incremental on-
line adaptation owing to changes in the latent state of the physical component
was not taken into account and will be needed in the model used. An adaptive
system based on state of the art concept drift forecasters and an on-line version
of the SBLLM learning algorithm [9] can give us a accurate forecaster able to
adapt to latent changes.

3 The Machine Learning Model Used for Prediction

The on-line SBLLM learning method was developed for a two-layer feedfor-
ward neural network. It considers the network as composed of two subnetworks
and the novelty is that the weights of layers 1 and 2 are calculated indepen-
dently by minimizing for each layer l a loss function, Q(l). The method consid-
ers Q as the sum of squared errors before the nonlinear activation functions
(gk and fj) instead of after them as is the standard case in learning algo-
rithms. Thus, being S the size of the training data set, with I inputs (xis)
and J desired outputs (djs), zks is the desired output for hidden neuron z and
z̄ks = g−1

k (zks), the alternative loss functions used for solving subnetwork 1

and subnetwork 2 can be written as Q(1) =
∑S

s=1

∑K
k=1

(∑I
i=0 w

(1)
ki xis − z̄ks

)2

Q(2) =
∑S

s=1

∑J
j=1

(∑K
k=0 w

(2)
jk zks − d̄js

)2

where d̄js = f−1
j (djs), djs is the de-

sired output for output neuron j. This loss function, that measures the error
before the nonlinearity, was proposed in [10]. In this previous work it was shown
that the optimum of this alternative loss function, up to first order of a Taylor
series, is the same as that of the loss function that is obtained when the sum
of squared errors after the nonlinear activation functions is employed. The ad-
vantage of the presented loss function is that the optimum set of weights, for
each layer, can be easily calculated by solving a system of linear equations that
are obtained deriving Q(1) and Q(2) with respect to the weights and equating to
zero. Considering these ideas the proposed learning method is described.

Step 0: Initialization. Initialize the outputs of the intermediate layer (zks)
as the outputs associated with some random weights.
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For the current sample (index s) performs the following steps.

Step 1: Subproblem solution. The weights of layers 1 and 2 are calculated
independently by solving the system of linear equations that are obtained deriv-
ing Q(1) and Q(2) with respect to the weights and equating to zero:

I∑
i=0

(
Â

(1)
pi + xisxps

)
w

(1)
ki = b̂

(1)
pk + z̄ksxps; p = 0, 1, . . . , I; k = 1, . . . , K

K∑
k=0

(
Â

(2)
qk + zkszqs

)
w

(2)
jk = b̂

(2)
qj + d̄jszqs; q = 0, . . . , K; j = 1, . . . , J,

where Â(l) and b̂(l)(l = 1, 2), are a matrix and a vector that store the coeffi-
cients obtained in previous epochs to calculate the values of the weights. They
handle the knowledge previously acquired and use it to progressively approach
the optimum value of the weights. The on-line learning algorithm is updating
its knowledge depending on the information that is acquired over time. In the
initial epoch the matrix Â(l) and vector b̂(l) contain values equal to zero.

Step 2: Calculate the sensitivities. Obtain the sensitivities of the cost
function Q with respect to the output z of the hidden layer,

∂Q

∂zks
=

−2
(

I∑
i=0

w
(1)
ki xis − g−1

k (zks)
)

gk′(zks)
+ 2

J∑
j=1

(
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r=0
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(2)
jr zrs − f−1

j (djs)

)
w

(2)
jk

being z̄ks = g−1
k (zks), d̄js = f−1(djs), k = 1, ..., K; j = 1, ..., J and z0s = 1, ∀s.

Step 3: Update intermediate outputs. Using the Taylor series approxima-

tion over the cost function, Q(z + Δz) = Q(z) +
K∑

k=0

S∑
s=1

∂Q(z)
∂zks

Δzks ≈ 0, the

following increments are calculated to update the desired outputs of the hidden

neurons Δz = −ρ
Q(z)

||∇Q||2∇Q, where ρ is a relaxation factor or step size. This

procedure continues from Step 1 using the next available sample.

4 The Experimental Settings

In order to show the adequacy of the proposed algorithm for prognosis of faults
in mechanical components, the bearing dataset provided by the Center for In-
telligent Maintenance Systems (IMS), University of Cincinnati was used [6].
For obtaining the data, four bearings were installed in one shaft. All bearings
are forced lubricated and accelerometers were installed in each of them. The
rotation speed was kept constant at 2000 rpm, and a 6000lb radial load was
placed onto the shaft and bearing by a spring mechanism (Figure 2). Two of
the three datasets containing acceleration measurements corresponding to the 8
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Fig. 2. The bearing test rig and sensor placement for obtaining the bearing dataset

used in the experiment

accelerometers installed were employed in this paper. Set 2 contains vibration
data collected every 10 minutes by a NI DAQ Card 6062E with a sampling rate
of 20Khz during 7 days. At the end of the test-to-failure experiment an outer
race failure occurred on bearing 1. Set 3 contains vibration data collected as in
set 2, during 30 days. At the end of the test-to-failure experiment, an outer race
failure occurred on bearing 3. The on-line SBLLM was applied over the two data
sets in order to check its forecasting ability. In machine vibration monitoring,
the common practice is to extract from the raw acceleration signal the root mean
square (RMS), that is to be used as a global parameter to assess the state of the
machine component. The normal functioning of the forecasting system will be
on-line and sequentially, as the samples are obtained in a real environment, so
the algorithm was applied directly over the RMS signal (without filtering), and
several trials with different number of hidden neurons were carried out. So as
to complete the experiment, the algorithm was also applied over a filtered RMS
signal. Finally, the results of the SBLLM are compared with those obtained by
the OSELM (On-line Sequential Extreme Learning Machine)[7], an state of the
art algorithm due to its generalization performance and its fast learning speed.

5 Results

Figures 3(a) and 3(b) show the results obtained after applying the on-line SBLLM
and the OSELM algorithms, respectively to the Set 2 of the IMS bearing data
and predicting the t+15 sample using the samples t and t-1. There are two dif-
ferent situations explored: without filtering the RMS signal (left column), trying
to reproduce the real monitoring scenario of a fault monitoring system, and
filtering the RMS signal (right columm). In both cases, the number of hidden
neurons is varied for a more complete study of behavior. The original RMS sig-
nal is displayed with a discontinuous line, while the prediction is displayed on
a continuous line. As it can be seen, the behavior of our proposed algorithm
is very stable, obtaining very low errors for any number of hidden neurons in
both cases, filtered and raw RMS. The OSELM algorithm shows an adequate
behavior when the number of hidden neurons is similar to the number of inputs
(2 in this case) when using filtered and non filtered RMS signals. However, it is
very unstable when the number of hidden neurons is different from the number
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of inputs, specially in the case of non filtered RMS. Figures 4(a) and 4(b) display
the results of applying on-line SBLLM and OSELM to the vibration data of Set
3, that is for forecasting the outer race failure on bearing 3. The results obtained
are of the same type as in the case above.
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Fig. 3. Results obtained using SBLLM and OSELM as forecasters in Set 2
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Fig. 4. Results obtained using SBLLM and OSELM as forecasters in Set 3

6 Conclusions

An algorithm called on-line SBLLM has been applied to the prediction of faults
in mechanical components using vibration monitoring. To prove its adequacy, an
experimental analysis was carried out over real data sets in which bearing failures
occurred under different circumstances. The algorithm was applied directly to
the raw RMS signal, trying to emulate the normal conditions in which a real-time
on-line monitoring system will work. However, and for the sake of completeness
it was also tried over a filtered RMS signal. In both cases, the algorithm showed
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stability and robustness. The results were compared to OSELM, one of the on-
line algorithm with better generalization power and fast learning speed. As it
was shown in the experiments carried out, on-line SBLLM showed a more stable
behavior, specially in the most interesting case of non-filtered signals.
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Abstract. Many statistical methods have been proposed to estimate

causal models in classical situations with fewer variables than observa-

tions. However, modern datasets including gene expression data increase

the needs of high-dimensional causal modeling in challenging situations

with orders of magnitude more variables than observations. In this pa-

per, we propose a method to find exogenous variables in a linear non-

Gaussian causal model, which requires much smaller sample sizes than

conventional methods and works even when orders of magnitude more

variables than observations. Exogenous variables work as triggers that

activate causal chains in the model, and their identification leads to more

efficient experimental designs and better understanding of the causal

mechanism. We present experiments with artificial data and real-world

gene expression data to evaluate the method.

Keywords: Bayesian networks, independent component analysis, non-

Gaussianity, data with more variables than observations.

1 Introduction

Many empirical sciences aim to discover and understand causal mechanisms un-
derlying their objective systems such as natural phenomena and human social
behavior. An effective way to study causal relationships is to conduct a con-
trolled experiment. However, performing controlled experiments is often ethi-
cally impossible or too expensive in many fields including bioinformatics [1] and
neuroinformatics [2]. Thus, it is necessary and important to develop methods
for causal inference based on the data that do not come from such controlled
experiments.

Many methods have been proposed to estimate causal models in classical sit-
uations with fewer variables than observations (p<n, p: the number of variables
and n: the number of observations). A linear acyclic model that is a special case
of Bayesian networks is typically used to analyze causal effects between continu-
ous variables [3,4]. Estimation of the model commonly uses covariance structure
of data only and in most cases cannot identify the full structure (edge direc-
tions and connection strengths) of the model with no prior knowledge on the
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structure [3,4]. In [5], the authors proposed a non-Gaussian variant of Bayesian
networks called LiNGAM and showed that the full structure of a linear acyclic
model is identifiable based on non-Gaussianity without pre-specifying any edge
directions between the variables, which is a significant advantage over the con-
ventional methods [4,3].

However, most works in statistical causal inference including Bayesian net-
works have discussed classical situations with fewer variables than observations
(p<n), whereas modern datasets including microarray gene expression data in-
crease the needs of high-dimensional causal modeling in challenging situations
with orders of magnitude more variables than observations (p
n)[1,2]. Here
we consider situations in which p is on the order of 1,000 or more, while n is
around 50 to 100. For such high-dimensional data, the previous methods are
often computationally intractable or statistically unreliable.

In this paper, we propose a method to find exogenous variables in a linear
non-Gaussian causal model, which requires much smaller sample sizes than con-
ventional methods and works even when p
n. The key idea is to identify which
variables are exogenous instead of estimating the entire structure of the model.
The simpler task of finding exogenous variables than that of the entire model
structure would require fewer observations to work reliably. The new method is
closely related to a fairly recent statistical technique called independent compo-
nent analysis (ICA).

Exogenous variables work as triggers that activate a causal chain in the model,
and their identification leads to more efficient experimental designs of practical
interventions and better understanding of the causal mechanism. A promising
application of Bayesian networks for gene expression data is detection of drug-
target genes [1]. The new method proposed in this paper can be used to find
which genes a drug first affects and how it triggers the gene network.

The paper is structured as follows. We first review ICA and linear causal
models in Section 2. We then define a non-Gaussian causal model and propose
a new algorithm to find exogenous variables in Section 3. The performance of
the algorithm is evaluated by experiments on artificial data and real-world gene
expression data in Sections 4 and 5. Section 6 concludes the paper.

2 Background Principles

2.1 Independent Component Analysis

Independent component analysis (ICA) [6] is a statistical technique originally de-
veloped in signal processing. ICA model for a p-dimensional observed continuous
random vector x is defined as

x = As, (1)

where s is a p-dimensional continuous random vector whose components si are
mutually independent and non-Gaussian and are called independent compo-
nents, and A is a constant p×p invertible matrix. Without loss of generality, we
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assume si to be of zero mean and unit variance. Let W̃=A−1. Then we have
s=W̃x. It is known that the matrix W̃ are identifiable up to permutation of
the rows [7].

Let ŝ=Wx. A major estimation principle for W̃ is to find such W that
maximizes the sum of non-Gaussianity of estimated independent components
ŝi, which is known to be equivalent to maximize independence between the
estimates when the estimates are constrained to be uncorrelated [6]. In [8], the
author proposed a class of non-Gaussianity measures:

J(ŝi) = JG(wi) = [E{G(wT
i x)} − E{G(z)}]2, (2)

where wT
i is the i-th row of W and is constrained so that E(ŝ2

i )=E{(wT
i x)2}=1

due to the aforementioned assumption on unit variance of si, G is a nonlinear
and non-quadratic function and z is a Gaussian variable with zero mean and unit
variance. In practice, the expectations in Eq. (2) are replaced by their sample
means. In the rest of the paper, we say that a variable u is more non-Gaussian
than a variable v if J(u)>J(v). The author of [8] further proposed an estimation
method based on maximization of non-Gaussianity and proved a theorem to show
its (local) consistency:

Theorem 1. Assume that the input data x follows the ICA model in Eq. (1).
Assume that G is a sufficiently smooth even function. Then the set of local max-
ima of JG(wi) under the constraint E{(wT

i x)2}=1 includes the rows of W̃ for
which the corresponding independent components si satisfy the following condi-
tion E{sig(si)−g′(si)}[E{G(si)}−E{G(z)}]>0, where g(·) is the derivative of
G(·), and g′(·) is the derivative of g(·).
Note that any independent component si satisfying the condition in Theorem 1 is
a local maximum of JG(w) but may not correspond to the global maximum. Two
conjectures are widely made [6], Conjecture 1: the assumption in Theorem 1
is true for most reasonable choices of G and distributions of the si; Conjecture
2: the global maximum of JG(w) is one of si for most reasonable choices of G
and the distributions of si. In particular, if G(s)=s4, Conjecture 1 is true for any
continuous random variable whose moments exist and kurtosis is non-zero [8],
and it can also be proven that there are no spurious optima [9]. Then the global
maximum should be one of si, i.e., Conjecture 2 is true as well. However, kurtosis
often suffers from sensitivity to outliers. Therefore, more robust functions such
as G(s)=− exp(−s2/2) are widely used [6].

2.2 Linear Acyclic Causal Models

Causal relationships between continuous observed variables xi (i = 1, · · · , p)
are typically assumed to be (i) linear and (ii) acyclic [3,4]. For simplicity, we
assume that the variables xi are of zero mean. Let k(i) denote such a causal
order of xi that no later variable causes any earlier variable. Then, the linear
causal relationship can be expressed as

xi :=
∑

k(j)<k(i)

bijxj + ei, (3)
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where ei is an external influence associated with xi and is of zero mean. (iii)
The faithfulness [4] is typically assumed. In this context, the faithfulness implies
that correlations and partial correlations between variables xi are entailed by the
graph structure, i.e., the zero/non-zero status of bij , not by special parameter
values of bij . (iv) The external influences ei are assumed to be independent,
which implies there are no unobserved confounders [4].

We emphasize that xi is equal to ei if it is not influenced by any other observed
variable xj (j �=i) inside the model, i.e., all the bij (j �=i) are zeros. That is, an
external influence ei is observed as xi. Then the xi is called an exogenous observed
variable. Otherwise, ei is called an error. For example, consider the model defined
by

x1 = e1

x2 = 1.5x1 + e2

x3 = 0.8x1 − 1.3x2 + e3.

x1 is equal to e1 since it is not influenced by either x2 or x3. x1 is an exogenous
observed variable, and e2 and e3 are errors. Note that it is obvious that there
exists at least one exogenous observed variable xi(=ei) due to the acyclicity and
no unobserved confounder assumptions.

3 A New Method to Identify Exogenous Variables

3.1 A New Non-gaussian Linear Acyclic Causal Model

We make two additional assumptions on the distributions of ei to the model (3)
and define a new non-Gaussian linear causal model. Let the observed variables
xi in a p-dimensional vector be x and external influences ei in a p-dimensional
vector e. Let a p×p matrix B consist of the causal effects bij where the diagonal
elements bii are all zeros. Then the model (3) is written in a matrix form as:

x = Bx + e. (4)

Recall that the set of the external influences ei consist of both exogenous ob-
served variables and errors. To distinguish the exogenous variables and errors, we
make the following additional assumptions, Assumption 1: External influences
that correspond to exogenous observed variables are non-Gaussian; Assump-
tion 2: External influences that correspond to errors are non-Gaussian but less
non-Gaussian than the exogenous observed variables. That is, the model (4)=the
model (3)+Assumptions 1 and 2. The first assumption is made to explain why
observed data are often considerably non-Gaussian in many fields [6]. The second
assumption reflects two facts: i) in statistics, errors have been typically consid-
ered to arise as sums of a number of unobserved (non-Gaussian) independent
variables, which is why classical methods assume that errors are Gaussian re-
sorting to the central limit theorem; ii) the distinction between Gaussian and
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non-Gaussian variables is artificial in practice, though. In reality, many vari-
ables are not exactly Gaussian. Therefore, we allow the errors to be strongly
non-Gaussian as long as they are less non-Gaussian than exogenous variables.1

The distinction between exogenous variables and errors leads to a very simple
estimation of exogenous variables proposed in the next subsections.

3.2 Identification of Exogenous Variables Based on Non-gaussianity
and Uncorrelatedness

We relate the linear non-Gaussian causal model (4) with ICA similarly to [5].
Let us solve the model (4) for x and then we have an ICA model represented by
Eq. (1) as follows

x = (I − B)−1e = A′e. (5)

Note that I−B is invertible since it can be permuted to be lower triangular due
to the acyclicity assumption if one knew causal orders k(i) [5] and its diagonal
elements are all non-zero (unity). In the next section we propose a new algorithm
to find exogenous variables xi(=ei) using the relation (5). In this section we
present two lemmas that ensures the validity of the algorithm.

Lemma 1. Assume that the input data x follows the model (4) and that Con-
jecture 2 (Section 2.1) is true. Let us denote by Vx the set of all the observed
variables xi. Then, the most non-Gaussian observed variable in Vx is exogenous:
J(xi) is maximum in Vx ⇒ xi=ei.

Proof. Eq. (5) shows that the model (4) is an ICA model, where external influ-
ences ei are independent components (ICs). The set of the external influences
consist of exogenous observed variables and errors. Due to the model assump-
tion (Assumption 2 in Section 3.1), exogenous observed variables are more non-
Gaussian than errors. Therefore, the most non-Gaussian exogenous observed
variable is the most non-Gaussian IC. Next, according to Conjecture 2 that is
here assumed to be true, the most non-Gaussian IC, i.e., the most non-Gaussian
exogenous observed variable, is the global maximum of the non-Gaussianity mea-
sure J(wT x)=JG(w) among such linear combinations of observed variables wT x
with the constraint E{(wT x)2}=1, which include all the observed variables xi

in Vx. Therefore, the most non-Gaussian observed variable is the most non-
Gaussian exogenous variable.

Lemma 2. Assume the assumptions of Lemma 1. Let us denote by E a strict
subset of exogenous observed variables so that it does not contain at least one
exogenous variable. Let us denote by UE the set of observed variables uncorrelated
with any variable in E. Then the most non-Gaussian observed variable in UE is
exogenous: J(xi) is maximum in UE ⇒ xi=ei.

1 It would be rather easy to show that our algorithm in Section 3.3 allows Gaussian

errors as well.
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Proof. First, the set Vx is the union of three disjoint sets: E, UE and CE , where
CE is the set of observed variables in Vx\E correlated with a variable in E. By
definition, any variable in UE are not correlated with any variable in E. Since the
faithfulness is assumed, the zero correlations are only due to the graph structure.
Therefore, there is no directed path from any variable in E to any variable in
UE . Similarly, there is a directed path from each (exogenous) variable in E to
a variable in CE . Next, there can be no directed path from any variable in CE

to any variable in UE . Otherwise, there would be a directed path from such a
variable in E from which there is a directed path to a variable in CE to a variable
in UE through the variable in CE . Then, due to the faithfulness, the variable
in E must correlate with the variable in UE , which contradicts the definition of
UE .

To sum up, there is no directed path from any variable in E ∪ CE to any
variable in UE . Since any directed path from the external influence ei associated
with any variable xi in Vx must go through xi, there is no directed path from
the external influence associated with any variable in E ∪CE to any variable in
UE . In other words, there can be directed paths from only the external influences
associated with any variables in UE to some variables in UE . Then, we again
have an ICA model: x̃=Ã′ẽ, where x̃ and ẽ are vectors whose elements are the
variables in UE and corresponding external influences in e in Eq. (5), and Ã′

is the corresponding submatrix of A′ in Eq. (5). Recursively applying Lemma 1
shows that the most non-Gaussian variable in UE is exogenous.

To find uncorrelated variables, we simply use the ordinary Gaussianity-based
testing method [10] and control the false discovery rate [11] to 5% for multiplicity
of tests. Though non-parametric methods [10] is desirable for more rigorous
testing in the non-Gaussian setting, we used the Gaussian method that is more
computationally efficient and seems to work relatively well in our simulations.
Future work would address what is the better testing procedure taking non-
Gaussianity into account.

3.3 Exogenous Generating Variable Finder: EggFinder

Based on the discussions in the previous subsection, we propose an algorithm
to find exogenous variables one by one, which we call EggFinder (ExoGenous
Generating variable Finder):

1. Given Vx, initialize E=∅, U
(1)
E =Vx, and m:=1.

2. Repeat until no variables xi are uncorrelated with exogenous variable can-
didates, i.e., U

(m)
E =∅:

(a) Find the most non-Gaussian variable xm in U
(m)
E :

xm = arg max
x∈U

(m)
E

J(x), (6)

where J is the non-Gaussianity measure in Eq. (2) with

G(x) = − exp(−x2/2). (7)
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(b) Add the most non-Gaussian variable xm to E, that is, E=E∪{xm}.
(c) Let U

(m+1)
E to be the set of variables xi uncorrelated with any variable

in E, and m:=m+1.

In Step 2c, we use the Gaussianity-based testing method and control the false
discovery rate to 5%.

4 Experiments on Artificial Data

We studied the performance of EggFinder when p
n under a linear non-Gaussian
acyclic model having a sparse graph structure and various degrees of error non-
Gaussianity. Many real-world networks such as gene networks are often consid-
ered to have scale-free graph structures. However, as far as we know, there is no
standard way to create a directed scale-free graph. Therefore, we first randomly
created a (conventional) sparse directed acyclic graph with p=1,000 variables
using a standard software Tetrad (http://www.phil.cmu.edu/projects/tetrad/).
The resulting graph contained 1,000 edges and �=171 exogenous variables. We
randomly determined each element of the matrix B in the model (4) to follow
this graph structure and make the standard deviations of xi owing to parent
observed variables ranged in the interval [0.5, 1.5].

We generated non-Gaussian exogenous variables and errors as follows. We
randomly generated a non-Gaussian exogenous observed variable xi(=ei) that
was sub- or super-Gaussian with probability 50%. We first generated a Gaussian
variable zi with zero mean and unit variance and subsequently transformed
it to a non-Gaussian variable by si = sign(zi)|zi|qi . The nonlinear exponent
qi was randomly selected to lie in [0.5, 0.8] or [1.2, 2.0] with probability 50%.
The former gave a sub-Gaussian symmetric variable, and the latter a super-
Gaussian symmetric variable. Finally, the transformed variable si was scaled
to the standard deviation randomly selected in the interval [0.5, 1.5] and was
taken as an exogenous variable. Next, for each error ei, we randomly generated
h (h=1, 3, 5 and 50) non-Gaussian variables having unit variance in the same
manner as for exogenous variables and subsequently took the sum of them. We
then scaled the sum to the standard deviation selected similarly to the cases of
exogenous variables and finally took it as an error ei. A larger h (the number of
non-Gaussian variables summed) would generate a less non-Gaussian error due
to the central limit theorem.

Finally, we randomly generated 1,000 datasets under each combination of h
and n (n=30, 60, 100 and 200) and fed the datasets to EggFinder. For each
combination, we computed percentages of datasets where all the top m esti-
mated variables were actually exogenous. In Fig. 1, the relations between the
percentage and m are plotted for some representative conditions due to the lim-
ited space. First, in all the conditions the percentages monotonically decrease
when m increases. Second, the percentages generally increase when the sample
size n increases. Similar changes of the percentages are observed when the errors
are less non-Gaussian. This is reasonable since a larger n enables more accurate
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Fig. 1. Percentages of datasets where all the top m estimated variables were actually

exogenous under (a) n=60; (b) n=200

estimation of non-Gaussianity and correlation, and a larger h generates data
more consistent with the assumptions of the model (4). In summary, EggFinder
successfully finds a set of exogenous variables up to more than m=10 in many
practical conditions. However, EggFinder may not find all the exogenous vari-
ables when p
n, although it asymptotically finds all the exogenous variables if
all the assumptions made in Lemmas 1 and 2 hold.

Interestingly, EggFinder did not fail completely and identified a couple of ex-
ogenous variables even for the h=1 condition where the distributional assump-
tion on errors was most likely to be violated. This is presumably because the
endogenous variables are sums of non-Gaussian errors and exogenous variables,
so due to the central limit theorem they are likely to be less non-Gaussian than
the exogenous variables, even if the errors and exogenous variables have the same
degree of non-Gaussianity.

5 Application to Microarray Gene Expression Data

To evaluate the practicality of EggFinder, we analyzed a real-world dataset of
DNA microarray collected in experiments on human breast cancer cells [12],
where epidermal growth factor EGF was dosed to the breast cancer cells, and
their gene expression levels were measured. The experiment was conducted with
completely random sampling of the cells under every combination of two factors.
The first factor was the concentration of EGF (0.1, 0.5, 1.0, and 10.0 nmol/�),
and the second factor was the elapsed time after its dose (5, 10, 15, 30, 45,
60 and 90 minutes). The total number of experimental conditions was 27. No
experiment under the condition of the concentration of EGF 10.0 nmol/� at 45
minutes elapsed time was conducted. For each condition, gene expression levels
of 22,277 genes of were measured using Affymetrix GeneChip microarrays.

As a standard preprocessing, we first conducted t-tests for the differences of
means of the gene expression levels between the lowest and highest concentration
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Table 1. Candidates of exogenous genes

found by EggFinder

The genes likely
The others

to be exogenous

ACBD3 CAPRIN2

ARPC2 CDC2L6

EIF3M FKBP15

GULP1 IFT52

MED13 KDM6B

MUT LOC100134401

NCOA2 LOC202181

NOLC1 PHF20L1

PPIB PMS2L2

RBMS1 PPDPF

RRM1 PPIH

RSRC1 PPPDE1

SET RAB14

SKAP2 SH3YL1

UBE2D2

Fig. 2. A part of the pathway net-

work from EGFR to candidates found by

EggFinder. The genes boxed and indi-

cated in italic type are the candidates.

conditions of EGF under 5, 10, 15 and 30 minutes elapsed time. We then selected
1,000 genes that expressed the most significance of the differences since such
genes were likely to relevant to EGF dosing. Thus, we obtained a data matrix
with the number of variables p=1,000 and the sample size n=27.

Subsequently, we applied EggFinder to the data matrix. Table 1 shows 29 can-
didates of exogenous genes found by EggFinder. To evaluate the candidates, we
obtained gene pathways from EGF receptor EGFR to the candidates by Ingenu-
ity Pathways Database (http://www.ingenuity.com/) which is a literature-based
biological pathway database. A part of the gene pathways are shown in Fig. 2
where both a dashed line and a solid line stand for a direct influence from a
gene to another gene. A dashed line goes through some intermediate factor such
as enzymes, while a solid line does not. In the obtained gene pathway network,
15 of the 29 candidates listed in the left column in Table 1 are reached from
EGFR within two edges. These 15 candidates are likely to be exogenous under
the biological knowledge. However, it dose not mean that the other 14 candi-
dates listed in the right column in Table 1 are not exogenous at all since the
biological knowledge on the exogeneity of genes has not been sufficiently accu-
mulated in the database. We merely obtained no strong evidence that the 14
candidates are exogenous by Ingenuity Pathways Database. For instance, among
the 14 candidates, CAPRIN2 might be also expected to be exogenous since it is
known to be induced by FGF (Fibroblast Growth Factor) similar to EGF [13].
In biological aspects, the relation between EGFR and these 14 candidates are
worth to be examined. By using EggFinder, we can narrow down to the genes
worth for examining.
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6 Conclusion

We proposed a method to find exogenous variables from data having orders of
magnitude more variables than observations. Experiments on microarray gene
expression data showed that our method is promising. This would be an impor-
tant first step for developing advanced causal analysis methods in the challenging
situations p
n.
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Bayesian Joint Optimization for Topic Model
and Clustering

Tikara Hosino

Nihon Unisys, Ltd.

Abstract. Statistical clustering is the method for dividing the given

samples by assumed distributions. In high dimensional problems, such

as document or image clustering, the direct method is suffered from

over-fitting and the curse of the dimensionality. In many cases, we firstly

reduce the dimensionality, then apply the clustering algorithm. However

these methods neglect the interaction among two processes. In this re-

port, we propose the hierarchical joint distribution of Latent Dirichlet Al-

location and Polya Mixture and give the parameter estimation algorithm

by Gibbs sampling method. Some benchmarks show the effectiveness of

the proposed method.

1 Introduction

We often face the situation which we acquire the large collection of samples
that is not well structured. Then, we firstly divide the given samples into the
category which shares some characteristics of the samples. Statistical clustering
is the method for dividing the set of given samples by using the user assuming
distributions which is called the generative models. For example, the generative
models such as the mixture of Gaussian and the mixture of the multinomial are
widely used and shows their effectiveness.

In the case of clustering for image or document data, the main obstacle lies
in their high dimensional feature vectors. For example, in the image clustering,
if we directly use the pixels as the feature vector, even the small black-white
16 pixel’s image has 256 dimension. Moreover, the case of document clustering,
the words are commonly used feature vector, has the dimension whose order is
higher than ten thousands.

In high dimensional clustering, if we apply the algorithm directly, then we are
suffered from the scarcity of the number of samples against the dimension, or the
curse of the dimensionality which is cause by the concentration on the sphere. In
an ordinary case, we preprocess the data by the dimensionality reduction or the
feature selection. For dimensionality reduction, we usually chose the principal
component analysis (PCA) for continuous data and the latent Dirichlet alloca-
tion (LDA) for the discrete data [1,2]. After the dimensionality reduction, we
apply the clustering algorithm to the compressed samples. However, the prob-
lem of these methods are neglecting the interaction among the dimensionality
reduction and clustering processes. Therefore, for example, they cannot project
the samples to the subspace which facilitates the clustering.

K. Diamantaras, W. Duch, L.S. Iliadis (Eds.): ICANN 2010, Part I, LNCS 6352, pp. 77–86, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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Recently, to tackle the problem, the joint optimization approaches are pro-
posed [4,5]. These methods naturally synthesize the dimensionality reduction
and the clustering via the generative joint model which has hierarchical struc-
ture. In this paper, we give the joint hierarchical distribution of LDA and Polya
mixture (PM) for the discrete data clustering. Additionally, we propose the ef-
ficient parameter estimation algorithm by Gibbs sampling (which is a kind of
Markov Chain Monte Carlo (MCMC) method). Some benchmark experiments
show the effectiveness of our proposed method.

2 Hierarchical Joint Model

In this chapter, we firstly introduce LDA as the compressed model and PM
as the clustering model. Then, we propose the hierarchical joint distribution of
them. In the following explanation, we use the document generation process as
examples.

2.1 LDA

Generative Model. We assume the document is generated from K topics and
each topic has M words. Moreover, we assume the document D (length L) is
generated from the following processes.

– θ ∼ Dir(α) Sampling topic parameters θ from Dirichlet distribution with
parameter α

– ηk ∼ Dir(βk) Sampling each topic’s word parameters ηk from Dirichlet dis-
tribution with parameter βk

Then, each word wl is generated from
– zl ∼ Mul(1; θ) Sampling topic zl from multinomial with parameter θ
– wl ∼ Mul(1; ηzl

) Sampling word wl from multinomial with parameter ηzl

which is conditional on the topic zl

Another point of view, LDA is considered as the matrix factorization whose
elements is restricted to non-negative and has some normalizing constraints.
The N × M document word matrix whose row represents the document and
whose column represents the word, LDA factorizes the matrix to N × K and
K × M matrices. In general, we chose the number of the topics K in K << N ,
therefore the number of parameter satisfies NM << (N + M)K which shows
the approximation of the matrix with the smaller number of parameters.

Definition. We define the LDA model. Let the observed word sequence as
w = (w1, . . . , wL) and the hidden topic sequence as Z = (z1. . . . , zL). Moreover,
let the model parameters θ, η, α, β as introduced above. Then, the probability
distribution of LDA is written by

p(w, z, θ, η|α, β) = p(θ|α)
K∏

k=1

p(ηk|βk)
L∏

l=1

p(wl|η, zl)p(zl|θ).
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where p(wl|ηzl
), p(zl|θ) are multinomial distributions which are given by

Mul(θ|l; p) ≡
(

l
θ1 · · · θk

)
pθ1
1 · · · pθk

k ,

k∑
j=1

pj = 1, (1)

and p(θ|α), p(ηk|βk) are Dirichlet distributions which are given by

Dir(θ|α) ≡ Γ (α1 + · · · + αk)
Γ (α1) · · ·Γ (αk)

θα1−1
1 · · · θαk−1

k (2)

Then, we can integrate out the parameters θ, η and the complete likelihood is
written by

p(w, z|α, β) =
∫

p(w, z, θ, η|α, β)dθdη

=
Γ (
∑

k αk)∏
k Γ (αk)

∏
k Γ (nk + αk)

Γ (L +
∑

k αk)

K∏
k=1

Γ (
∑

m βm)∏
m Γ (βm)

∏
m Γ (nkm + βm)

Γ (nk +
∑

m βm)
,

(3)

where nk is the number of the topic k and the nkm is the number of topic k and
word m. Remarkably, nk and nkm are the count of hidden variables.

2.2 PM

Generative Model. The generative processes of PM are as follows. The doc-
ument D which has length L is sampling from

– z ∼ Mul(1; θ) Sampling the component z from multinomial with parameter
θ

– q ∼ Dir(αz) Sampling the parameter q from the Dirichlet which is condi-
tioned on component z.
Then L length words are sampled from multinomial with parameter q

– wl ∼ Mul(L; q).

Definition. Let the observed bag of words as w = (w1, . . . , wL) and let the
model parameters z, q, α as described above. Then, the complete likelihood is
written by

p(w, z, q|α) = p(w|q)p(q|α, z)p(z|θ). (4)

Following the same argument of LDA, we can integrate out the distribution by
q.

p(w, z|α) =
∏
k

(θk
Γ (
∑

m αkm)
Γ (
∑

m nm + αkm)

∏
m

Γ (nm + αkm)
Γ (αkm)

)zk , (5)

where, nm is count of wm. Additionally, in the case of PM, we can sum over the
hidden variable zk.

p(w|α) =
∑

k

θk
Γ (
∑

m αkm)
Γ (
∑

m nm + αkm)

∏
m

Γ (nm + αkm)
Γ (αkm)

(6)
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2.3 Joint Model

In this paper, we propose the method for binding these models by the hierarchical
joint distribution. Concretely, we set the prior probability of LDA to PM. Then,
the generative model of the document is as follows.

– Sampling the document cluster z0 from multinomial with parameter θ0

– Sampling the topic parameter θ1 from Dirichlet with parameter α0 which
condition on z0.

– Sampling the topic z1 from multinomial with parameter θ1

– Sampling the word w from multinomial with parameter θ2 which condition
on z1

The proposed model assumes the clustering process is generated on low dimen-
sional topic space. Additionally, we assume the number of cluster is K and the
number of topics is J , and we choose the prior distributions are conjugate form
of the likelihoods. Then, the joint probability distribution of the proposed model
is defined by

p(w, θ0, θ1,θ2, α0, α1, z0, z1|a0, b0, a1, b1, α2)

=
K∏

k=1

J∏
j=1

Mul(w|θ2j)z1j Dir(θ2j |α1)Ga(α1|a1, b1)Mul(z1|θ1)Dir(θ1|α0k)z0k

Ga(α0k|a0, b0)Mul(z0|θ0)Dir(θ0|α2) (7)

where Ga(α|a, b) is gamma distribution which is given by

Ga(α|a, b) =
ba

Γ (a)
αa−1e−bα. (8)

The graphical model of the proposed distribution is represented as figure (1).

3 Learning Algorithm

In this chapter, we introduce the Gibbs sampling algorithm for the proposed
distribution. Since the learning algorithm is repeating Gibbs sampling of LDA
and PM models, we introduce the each method respectively.

3.1 Learning of LDA

Collapsed Gibbs Sampling is known as the efficient LDA learning method[6]. By
the discussion of the previous chapter, the core of the algorithm is the estimation
of the hidden variable sequence Z = (z1, . . . , zL). The predictive distribution of
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α0

Θ0
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a0 b0
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Fig. 1. The graphical model of the proposed method. The same parameter symbols

belong to the same distributions

the model given all hidden variables except for zl is written by,

p(zl = tk′ , wl = vm′ |W, Z, α, β)

=
Γ (
∑

k αk)∏
k Γ (αk)

∏
k Γ (nk+αk+δkk′ )
Γ (L+

∑
k αk+1)

Γ (
∑

k αk)∏
k Γ (αk)

∏
k Γ (nk+αk)

Γ (L+
∑

k αk)

∏K
k=1

Γ (
∑

m βm)∏
m Γ (βm)

∏
m Γ (nkm+βm+δmm′δkk′ )

Γ (nk+
∑

m βm+δkk′ )∏K
k=1

Γ (
∑

m βm)∏
m Γ (βm)

∏
m Γ (nkm+βm)

Γ (nk+
∑

m βm)

=
nk + αk

L +
∑

k αk

nkm + βm

nk +
∑

m βm
. (9)

Here, we use the characteristic of the Gamma function and Kronecker δij which
are defined by

Γ (x + 1)
Γ (x)

= x, δij =

{
1 i = j

0 i �= j
(10)

Therefore, if hidden variables are given, the update algorithm is given by which
subtract the zl from the predictive distribution(9),

nk + αk − δkk′

L +
∑

k αk − 1
nkm + βkm − δmm′δkk′

nk +
∑

m βkm − 1
(11)

We sample the hidden variable zl from the predictive distribution (9). We esti-
mate all Z = (z1, . . . , zL) by repeating the these processes. If we use the given
Z, the estimation of hyper parameters α, β comes down to the learning of Polya
distribution. From the description of the algorithm, the computational cost and
the memory requirements is the number of elements of samples O(N × L).
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3.2 Learning of PM

Gibbs Sampling for PM is already known [3].

Preparation. Subsequently, we use the characteristics of the Gamma Function,

Γ (x + 1) = xΓ (x) (12)

and the definition of Beta integral.

B(p, q) =
Γ (p)Γ (q)
Γ (p + q)

=
(p − 1)!(q − 1)!

(p + q − 1)!

=
∫ 1

0

xp−1(1 − x)q−1dx (13)

Derivation of the Algorithm. Firstly, we derive the estimation algorithm for
αk.

The second term of the formula (6), by using the definition of the Beta inte-
gral(13), is written by ∫ 1

0

xα1+···+αK−1(1 − x)ni−1dx. (14)

Therefore, we introduce the auxiliary variable xi which is given by the sample
from the Beta distribution.

xi ∼ Beta(α1 + · · · + αK , ni) (15)

From the characteristics of the Gamma function, the third term of the equation
(6) is rewritten as

Γ (nik + αk)
Γ (αk)

=
nik−1∏
j=0

(α + j) =
nik−1∏
j=0

∑
yj=0,1

α
yj

k j1−yj (16)

Therefore, we introduce the auxiliary variable yi from the sample of the Bernoulli
distribution.

yj ∼ Bernoulli(
αk

αk + j
) (17)

Using these auxiliary variables xi, yi the posterior distribution of α is given by
Bayes theorem.

p(αk|D) ∝ p(αk)
N∏

i=1

xαk
i

nik−1∏
j=0

α
yj

k (18)
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Then, if the prior of p(αk) is the Gamma distribution Ga(αk|a, b). The posterior
distribution is given by

p(αk|D) ∝ α−1+a+
∑N

i=1
∑nik−1

j=0 yj e−αk(b−∑N
i=1 log(xi)). (19)

Therefore, the estimation of αk is given by the sample from the following Gamma
distribution.

αk ∼ Ga(a +
N∑

i=1

nik−1∑
j=0

yj , b −
N∑

i=1

log(xi)) (20)

Secondly, we derive Gibbs sampling for pm. The hidden variables of the pm is
sampled from

p(k|w, α) ∝ θk
Γ (
∑

m αkm)
Γ (
∑

m nm + αkm)

∏
m

Γ (nm + αkm)
Γ (αkm)

(21)

Then, using these hidden variables, the parameters θ are sampled from

θ ∼ Dir(nkm + α2k) (22)

and the parameter αk is sampled from equation (20). The computational cost
and the memory requirement are O(N × L).

3.3 Estimation of Proposed method

As shown by the Graphical model of figure (1), the conditional probability of
the LDA and PM is separated with the hidden topic vectors z1. Therefore,
Gibbs sampler of the proposed method is achieved by iterating the following
steps. Firstly, estimate LDA by Collapsed Gibbs sampling. Secondly, estimate
PM by auxiliary sampling using the estimated topic vector of LDA. Then, we
set the prior distribution of LDA to the estimated PM parameter. The detailed
inference process is given at algorithm (1). The computational cost and the
memory requirements are the addition of LDA and PM algorithm, O(N × L).

Algorithm 1. Gibbs Sampling for Proposed Method
while convergence do

for n = 0 to N do
For each document, Gibbs Sampling LDA using equation (11) and get Zn

end for
for n = 0 to N do

For given Zn Gibbs Sampling PM using equation (20) and equation (21)

end for
Set the prior of LDA αK to estimated PM parameter.

end while
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4 Experiment

We execute the numerical experiments for testing the performance of the pro-
posed method. For comparison, we chose Maximum Margin Clustering (MMC)
[8,9] which has high accuracy rate in the clustering algorithm. Moreover, to in-
vestigate the effect of joint estimation, we chose the pipelined estimation through
LDA to PM.

4.1 Correct Rate

In the experiments, we set the number of clusters equal to the true number
of classes k for all the clustering algorithm. To assess clustering accuracy, we
firstly take a set of labeled data, remove the labels for all data samples and run
the clustering algorithm, then we label each of the resulting clusters with the
majority class according to the original training labels, and finally measure the
number of correct classifications made by each clustering.

4.2 Datasets

We use 4 data sets in experiments, which are image and documents datasets.
Digits from the UCI repository1 and MNIST Hand Written Digits2 are image
datasets. 20 newsgroup3 and RCVI [11] are documents datasets. For the 20 news-
group dataset, we chose the label which contains autos, motorcycles, baseball,
hockey from the version 20-news-18829. For RCVI, we use the data samples
with the four topic codes (CCAT, ECAT, GCAT, and MCAT) from the “Topic
Codes” in the sample set. Number of samples, classes, dimension for each dataset
are shown by table 1.

Table 1. Datasets for Experiments

Dataset Samples Classes Dimension

UCI Digit 1279 2256 4 64

MNIST 1-7 13007 2 784

MNIST 3-8 11982 2 784

News20 3977 4 22275

RCV1 20371 4 28068

4.3 Result

The results are summarized on table 2. Topics represents the number of topics
in LDA. The results of MMC are quoted from [8,9].

1 http://archive.ics.uci.edu/ml/datasets/
2 http://yann.lecum.com/exdb/mnist
3 http://people.csail.mit.edu/jrennie/20newsgroups/

http://archive.ics.uci.edu/ml/datasets/
http://yann.lecum.com/exdb/mnist
http://people.csail.mit.edu/jrennie/20newsgroups/
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Table 2. Correct Rate

Dataset Topics MMC Pipelined Proposed

UCI Digit 1279 16 94.0 82.8 89.5

MNIST 1-7 32 97.3 98.5 98.7

MNIST 3-8 32 81.9 83.6 82.7

News20 8 70.6 89.7 94.4

RCV1 8 62.0 62.9 70.1

4.4 Discussion

Firstly, in the experiments, the proposed method shows that the digit data is
competitive or slightly worse and the document data is outperform to the or-
dinary methods. For explaining the reason, we investigate the estimated topics
and clusters from their posterior distributions. Then, we observed that the doc-
ument cluster shares the topics, for example at the News20 data, the topic which
has high probability words ‘the”, “to” and “and” is shared by all clusters, which
is implicitly assumed in our proposed method. However, the digit data has no
topic sharing among the clusters. In our primary experiments, the mixture of
LDA models which has no shared topic assumption improves the performance
of the digit data.

Secondly, the proposed joint method consistently outperforms the pipelined
one. This result suggests that the feedback from the clustering facilitates the
finding the well structured subspace.

5 Conclusion

We propose the clustering model for discrete data which jointly estimate the di-
mensionally reduction and the clustering. Then, we give the efficient parameter
estimation algorithm by Gibbs sampling. In numerical experiments, the proposed
method outperform previous method on some datasets which have high dimen-
sionality and shares the topics among clusters. Model selection for the number
of topics and clusters using WAIC [10] are future works.

Acknowledgments. This research is supported by Promotion program for Re-
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Abstract. The multilayer perceptron (MLP) is a well established neu-

ral network model for supervised learning problems. Furthermore, it is

well known that its performance for a given problem depends crucially on

appropriately selecting the MLP architecture, which is typically achieved

using cross-validation. In this work, we propose an incremental Bayesian

methodology to address the important problem of automatic determi-

nation of the number of hidden units in MLPs with one hidden layer.

The proposed methodology treats the one-hidden layer MLP as a linear

model consisting of a weighted combination of basis functions (hidden

units). Then an incremental method for sparse Bayesian learning of lin-

ear models is employed that effectively adjusts not only the combination

weights, but also the parameters of the hidden units. Experimental re-

sults for several well-known classification data sets demonstrate that the

proposed methodology successfully identifies optimal MLP architectures

in terms of generalization error.

1 Introduction

The multilayer perceptron (MLP) is a very popular neural network model for
supervised learning problems. Assuming a training set {xn, tn}N

n=1, we can model
the data generation process using a function y so that tn = y(xn) + εn, where
εn is an error term. The MLP is a parametric form that is commonly used for
the underlying function y. We are interested in the two-layer MLP which has
one hidden layer with M hidden units and an output layer with a single unit.
The output of such an MLP can be considered as a weighted linear model with
respect to the hidden units:

y(x) = wT h(x) + b =
M∑

j=1

wjhj(x) + b, (1)

where b is the output bias,w = (w1, . . . , wM )T are theweights,h(x) = (h1(x), . . . ,
hM (x))T and the functions hj(x) are the outputs of the hidden units. Each hidden
unit computes a weighted sum of the input x = (x1, . . . , xd)T , which is then passed
through an activation function. Here, the hyperbolic tangent function tanh(z) =

K. Diamantaras, W. Duch, L.S. Iliadis (Eds.): ICANN 2010, Part I, LNCS 6352, pp. 87–96, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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e2z−1
e2z+1 is used,whoseoutput ranges from−1 to+1. Itmustbenoted that the sigmoid
logistic function could also have been used. The weights of the j-hidden unit are
denoted with uj = (uj1, . . . , ujd)T and we also assume a bias aj :

hj(x) = tanh
(
uT

j x + aj

)
= tanh

(
d∑

i=1

ujixi + aj

)
. (2)

Once the number M of hidden units is given, training of an MLP, i.e. estimating
the parameters (weights w, u and the biases a, b) of the network is relatively
simple, because the derivatives of the MLP can be easily computed and general–
purpose optimization algorithms, (e.g. quasi-Newton methods such as BFGS)
can be effectively employed.

Multilayer perceptrons (with one hidden layer) have the property that they
can approximate any function with arbitrary accuracy if a sufficient number of
hidden units is used. Although this result is important, it must be noted that
training MLPs with large numbers of hidden units usually leads to poor general-
ization performance. Therefore, in practice, best results are obtained when using
the smallest number of hidden units that are sufficient to model the unknown
function. Although some sampling-based Bayesian methods based on Markov
Chain Monte Carlo have been proposed for tackling the MLP model selection
problem [6], such methods have not achieved widespread use due to high compu-
tational complexity and the difficulty in deciding when to terminate the sampling
procedure. For this reason the cross-validation approach is considered as the typ-
ical method used to estimate the number of MLP hidden units by considering
several MLP architectures with different number of hidden units and selecting
the network that exhibits the best cross-validation performance.

In this paper, we propose a training methodology for the MLP with one hid-
den layer, that automatically estimates the appropriate number of hidden units
and also learns the network parameters. The methodology is based on the sparse
Bayesian linear model [1] and the underlying automatic relevance determination
(ARD) principle that automatically determines the number of basis functions
in linear models. We follow an incremental approach that starts with only one
hidden unit and iteratively adds hidden units to the model. For each added hid-
den unit, optimal values for the weights and bias are estimated. In order to stop
adding units when a sufficient number has been added to the model, we assume
a sparse distribution for the weights of the output unit. This sparse prior distri-
bution enforces the removal of hidden units that do not sufficiently contribute
to the model, by setting the corresponding hidden to output connection weights
equal to zero.

In the next section we describe the main idea of our method where the MLP
is treated as a weighted linear combination of basis functions (hidden units),
thus the incremental sparse Bayesian learning framework can be applied to es-
timate both the combination weights and the parameters of the hidden units.
The sparsity enforcing prior imposed on the combination weights enforces many
of them to become zero, thus the corresponding hidden units are removed from
the network. Section 3 summarizes sparse Bayesian learning for linear models,
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while Section 4 presents the proposed method for incremental Bayesian MLP
training. Experimental results are presented in Section 5, while the last section
provides conclusions and some directions for future work.

2 Automatic Model Selection for the Multilayer
Perceptron

The multilayer perceptron of eq. (1) can be considered as a linear model, where
the hidden units hj(x) play the role of basis functions. Linear models are very
popular models, possibly because the weights w of the linear model can be com-
puted very efficiently. Recent advances in sparse Bayesian modeling [1] allow for
the automated estimation of the number of basis functions as follows: initially
a model with many basis functions is assumed and then by imposing a sparse
prior on the weights and ii) performing Bayesian inference of the weight values,
we achieve pruning of basis functions that are not supported by the training
data, i.e. the corresponding weights are found to be zero. This is very impor-
tant, because by pruning irrelevant basis functions, an appropriate model is
automatically selected. Following this aproach, we can use very flexible models
with many basis functions, even if we have a small training set; irrelevant basis
functions will be pruned and overfitting will be avoided.

A major shortcoming of the typical sparse Bayesian linear model is that basis
functions are fixed and they have to be selected a priori. On the other hand, the
hidden units of the MLP, which we treat as basis functions, contain parameters
uji, aj that are essential to be estimated. In this work, we employ an incremen-
tal Bayesian methodology [2], that simultaneously estimates the weights of the
sparse linear model and parameters of its basis functions. This methodology, al-
lows to treat a two-layer MLP as a sparse Bayesian linear model with adjustable
basis function parameters. The weights of the connections from the hidden to
the output layer correspond to the weights of the linear model and can be ef-
ficiently computed. Furthermore, imposing a sparse prior on these weights we
could estimate the appropriate number of hidden units. The weights of the con-
nections from input to the hidden layer of the MLP, correspond to parameters
of the basis functions and could estimated simultaneously to the linear model
weights using the methodology proposed in [2].

3 Sparse Bayesian Learning

3.1 Sparse Bayesian Linear Regression

In this section we briefly describe learning of sparse Bayesian linear models [1],
which have the form of (1). We assume that the observations of the training
set {xn, tn}N

n=1 have been corrupted with additive Gaussian noise with precision
(i.e. inverse variance) βn:

p(tn|B) = N(tn|y(xn), β−1
n ). (3)



90 D. Tzikas and A. Likas

where B is a diagonal matrix with elements β1, . . . , βN . Assuming that the
basis functions hj(x) are fixed, and defining the fixed ‘design’ matrix Φ =
(h(x1), . . . , h(xN ))T , with h(x) = (h1(x), . . . , hM (x))T , the likelihood of the
observations can be written as:

p(t|w, B) = N(t|Φw, B). (4)

In order to achieve sparse solutions, i.e. prune irrelevant basis functions, a Gaus-
sian prior distribution with separate variance α−1

i is assumed for each weight
wi:

p(w|α) =
M∏
i=1

N(wi|0, α−1
i ), (5)

where α = (α1, . . . , αM )T . Moreover, we assume that each αi is drawn from a
Gamma distribution whose parameters are set to near zero values so as to be
uninformative.

The posterior distribution of the weights given the observations can be com-
puted using Bayes’s law:

p(w|t, α, B) =
p(t|w, B)p(w|α)

p(t|α, B)
, (6)

where p(w|a) is given by (5). It can be shown that the weight posterior distri-
bution follows a Gaussian distribution [1]:

p(w|t, α, B) = N(w|μ, Σ), (7)

with

μ = ΣΦT Bt, (8)

Σ = (ΦT BΦ + A)−1, (9)

and A = diag(α).
When the basis functions contain adjustable parameters the linear model is

very flexible and a stronger prior on α is needed. Such a prior has been proposed
in [3] and penalizes models with large number of ‘effective’ parameters. The prior
depends on the trace of a so called ‘smoothing matrix’ S = ΦΣΦT B as follows:

p(α) ∝ exp(−c trace(S)), (10)

where the sparsity parameter c provides a mechanism to control the amount of
desired sparsity. When using specific values of the sparsity parameter c, some
known model selection criteria are obtained [4]:

c =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
0 None,
1 AIC (Akaike information criterion),
log(N)/2 BIC (Bayesian information criterion),
log(N) RIC (Risk inflation criterion).

(11)
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When using this prior, the following update formulas for the weight precisions
α can be obtained [2]:

αi =
γi

μ2
i − 2cγiΣii

, (12)

where μ and Σ are given from equations (8) and (9) respectively and γi =
1 − αiΣii.

The learning algorithm iteratively applies the updates of α, μ and Σ until
convergence. During those iterations, due to the sparse prior on the weights,
some parameters αi take very large values, thus the corresponding weights wi

are set to zero and the corresponding basis functions hi(x) are removed from
the model. In this way automatic model selection is achieved.

3.2 Sparse Bayesian Classification

In this work for simplicity we only consider binary classification problems and
assume that the outputs are coded so that tn ∈ {0, 1} 1. Then, the likelihood of
the training set is given by:

p(t|w) =
N∏

n=1

ytn
n (1 − yn)1−tn , (13)

where yn = σ(y(xn|w)) with σ(z) being the logistic sigmoid function. Using
the Laplacian approximation, the classification problem can be mapped to a
regression problem [1] with heteroscedastic noise p(εn) = N(εn|0, βn). The noise
precision is given by:

βn = yn(1 − yn), (14)

and the regression targets t̂ = (t̂1, . . . , t̂N )T are:

t̂ = Φw + B−1(t − y), (15)

where y = (y1, . . . , yN)T and B = diag(β1, . . . , βN ).

3.3 Incremental Sparse Bayesian Learning

Notice that the computational cost of the sparse Bayesian learning algorithm
is high for large datasets, because the computation of Σ in (9) requires O(N3)
operations. A more computationally efficient incremental algorithm has been
proposed in [5]. It initially assumes that αi = ∞, for all i = 1, . . . , M , which
corresponds to assuming that all basis functions have been pruned because of
the sparsity constraint. Then, at each iteration one basis function may be either
added to the model or re-estimated or removed from the current model. When
adding a basis function to the model, the corresponding parameter αi is set to
the value that maximizes the likelihood.
1 Multiclass problems can be solved using the one-vs-all approach, which builds only

two class models.
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More specifically, the method is based on the remark that the terms of the
likelihood that depend on a single parameter αi are [5]:

li =
1
2

(
log αi − log(αi + si) +

q2
i

αi + si

)
, (16)

where

si = hT
i C−1

−i hi, qi = hT
i C−1

−i t̂, (17)

hi = (hi(x1), . . . , hi(xN ))T and C−i = B+
∑

j �=i αjhjh
T
j . In regression we have

t̂ = t and usually B = βI , while in classification B and t̂ are given by (14) and
(15) respectively.

Based on the above likelihood decomposition, in [2] the following update equa-
tion for αi has been derived when the the sparsity prior p(α) of equation (10)
is assumed:

αi =
s2

i

q2
i − (2c + 1)si

if q2
i > (2c + 1)si,

αi = ∞ if q2
i ≤ (2c + 1)si. (18)

The incremental training algorithm proceeds iteratively, by selecting at each
iteration a basis function hi (from a fixed pool of basis functions) and adding
this basis function to the model if q2

i > (2c + 1)si or removing it otherwise.
An important question that arises in the incremental algorithm is which basis
function to select at each iteration. There are several possibilities, for example we
could choose a basis function at random or with some additional computational
cost, we could test several and select the one whose addition will cause the
largest increase to the marginal likelihood. However in the above description
we have made the assumption that the basis functions contain no adjustable
parameters which is not convenient for the MLP case where the hidden units
contain parameters to be learnt from the data. Such an approach is described
next.

4 Incremental Bayesian MLP Learning

The proposed algorithm for incremental Bayesian MLP training is based on an
extension [2] of the incremental method described above. This extension also
allows for learning the parameters of the basis functions. In the MLP case,
basis functions correspond to hidden units and we will use this term in the
description that follows. More specifically, at each iteration we select the most
appropriate hidden unit to add to the model as measured by the increment in
the likelihood li. Therefore, in order to select a hidden unit for addition to the
model we perform an optimization of the marginal likelihood with respect to
the parameters of the hidden unit. Since we assume continuous parameters for
the hidden units, continuous optimization methods should be employed, which
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exploit the derivatives of the likelihood li with respect to the parameters of the
hidden unit.

The incremental algorithm performs three operations at each iteration; it first
attempts to add a hidden unit to the model and adjusts its parameters, then
updates all parameters of the current model and finally removes any hidden
units that no longer contribute to the model. The algorithm is summarized in
by following steps:

1) Select a Hidden Unit to Add to the Model. In order to add a hidden
unit i, we maximize the likelihood li with respect to its parameters θik (weights
and bias). We can perform this maximization using a continuous numerical op-
timization method. The required derivatives are computed as [2]:

∂li
∂θik

= −
(

1
αi + si

+
q2
i + cαi

(αi + si)2

)
ri +

qi

αi + si
ωi, (19)

where

ri ≡ 1
2

∂si

∂θik
= hT

i C−1
−i

∂hi

∂θik
, ωi ≡ ∂qi

∂θik
= tT C−1

−i

∂hi

∂θik
. (20)

Notice that since we use a local optimization method (in our case the quasi-
Newton BFGS), we can only attain a local maximum of the marginal likelihood,
which depends on the initialization. For this reason, in order to add a hidden
unit we perform this maximization several times, each time with different initial-
ization and then we keep the parameters that correspond to the best solution.
Note that this optimization is not computationally demanding, since it involves
only the parameters related to a hidden unit and not all the parameters of the
current network model.

2) Optimize Current Model. Although we optimize the parameters of each
hidden unit at the time that we add it to the model, it is possible that the
optimal values for the already existing network parameters will change, because
of the addition of the new hidden unit. For this reason, after the addition of a
hidden unit, we further optimize the parameters αi and θi of all hidden units
of the current model. Again, this optimization is performed using a continuous
numerical optimization method (BFGS), and it is usually very efficient because
the starting values are usually very close to the optimal.

4) Remove Hidden Units. After updating the hyperparameters α of the
current model, it is possible that some of the existing hidden units will no longer
contribute to the model. This happens because of the sparsity prior, which allows
only few of the basis functions (i.e. hidden units) to be used in the estimated
model. For this reason, we remove from the model those hidden units that no
longer contribute to the model, specifically those with αi > 1012. Note that αi

is the inverse variance of the weight wi which follows a zero mean Gaussian
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distribution. Thus a large αi value implies an almost zero variance, thus the
weight wi is equal to its mean which is zero and the corresponding unit is removed
from the model. The removal of hidden units is important, not only because
we avoid the additional computational cost of updating their parameters, but
also because we avoid possible singularities of the covariance matrices due to
numerical errors in the updates.

5) Repeat Until Convergence. We assume that the algorithm has converged
when the increment of the likelihood is negligible (ΔL < 10−6) for ten successive
iterations.

5 Numerical Experiments

In this section we provide numerical experiments that demonstrate the effec-
tiveness of the proposed method. We have considered several commonly used
benchmark data sets2 that are summarized in Table 1. The purpose of these ex-
periments is to compare the performance of the proposed methodology against
the typical approach where the number of hidden units is selected through cross-
validation, and to demonstrate the ability of the proposed method to automati-
cally determine the appropriate model complexity.

Table 1. Dataset Description

Dataset patterns (N) features (d)

wdbc 569 30

bupa 345 6

sonar 208 60

pima-diabetes 768 8

ionosphere 351 34

For each dataset, we use the Levenberg-Marquardt optimization method to
train multilayer perceptrons with one hidden layer and number of hidden units
M in the range from 1 to 10. We then apply the proposed methodology that auto-
matically estimates the appropriate number of hidden units, using c = log(N/2)
that corresponds to the BIC (Bayesian information criterion). In order to evalu-
ate the methods, we use 10-fold cross validation. Moreover, in order to account
for the dependence of the typical MLP training algorithm on the initial values of
its parameters, we train each MLP ten times, starting from different initial val-
ues. Then, the solution with the minimum error (on the training set) is evaluated
on the test set.
2 These datasets can be obtained from the UCI Machine Learning Repository, at

http://archive.ics.uci.edu/ml/

http://archive.ics.uci.edu/ml/
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The average error values (using 10-fold cross validation) for all datasets are
reported in Table 2 and Table 3. In Table 2 bold values indicate the best result
for each data set using the typical training approach. It is clear that for every
data set the proposed method provides an estimate of M (Table 3) that is
nearly equal to the best performance result of Table 2. This indicates that our
method successfully estimates the number M of hidden units that define the
MLP architecture with the minimum cross-validation error. Furthermore, the
error rates obtained using the proposed method are comparable and in some
cases superior to the error rates of the best MLP in Table 2.

Table 2. Average classification error rates using MLP with M hidden units

M wdbc bupa sonar pima-diabetes ionosphere

1 3.34 35.68 22.57 23.18 12.83

2 4.05 31.62 24.45 23.56 14.24

3 3.87 32.19 19.69 23.04 11.69
4 3.87 30.73 19.74 25.25 16.51

5 3.87 32.46 26.88 24.35 15.35

6 4.22 32.77 23.48 25.25 12.23

7 3.16 35.10 25.40 25.51 18.52

8 4.75 35.06 22.12 27.08 17.97

9 3.87 36.23 20.60 24.74 15.67

10 4.22 32.71 21.67 26.29 18.82

Table 3. Average classification error rates and estimated number of hidden units M
using the proposed method

wdbc bupa sonar pima-diabetes ionosphere

M 1.40 3.10 3.00 1.00 3.30

Error 2.81 29.32 19.24 23.18 11.97

6 Conclusions

We have proposed a methodology to automatically obtain an effective estimation
of the number of hidden units of the multilayer perceptron. The methodology
is based on treating the MLP as a linear model, whose basis functions are the
hidden units. Then, we use a sparse Bayesian prior on the weights of the linear
model that enforces irrelevant basis functions (equivalently unnecessary hidden
units) to be pruned from the model. In order to train the proposed model, we use
an incremental training algorithm which at each iteration attempts to add a hid-
den unit to the network and adjusts its parameters assuming a sparse Bayesian
learning framework. Numerical experiments using well-known classification data
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sets demonstrate the effectiveness of the proposed method in providing low com-
plexity networks exhibiting low generalization error.

We consider that the proposed method provides a viable solution to the well-
studied problem of estimating the number of hidden units in MLPs. Therefore, is
our aim to perform more extensive experiments with this method considering not
only classification, but also regression data sets. In addition we plan to compare
the method against other classification or regression models like SVM, RVM
and Gaussian Processes. Finally, it would be interesting to extend the method
in order to be used for training MLPs with two hidden layers.
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Abstract. Possible yielding of the cross-section of a structure might

significantly decrease the safety margin of the investigated structure.

The cross-section yielding causes a change of structure stiffness and, fur-

ther, dynamic characteristics. The measurement of the changes of the

dynamic parameters may provide information necessary to identify the

load causing yielding of the cross-section, and further the yielding index

(calculated when the load causing yielding is known) enables evaluation

of structure safety margin. In the paper the semi-Bayesian neural net-

works are utilized to solve the identification problem.

Keywords: Identification, inverse problems, Bayesian neural networks,

finite element method, dynamics.

1 Introduction

Plastic deformation of a structure may arise as a result of external actions and/or
as a result of section defects (microdefects) [3]. Determination of the section
yielding index (possible when the load applied to the structure is known) en-
ables evaluation of the safety margin of the structure [6]. When the load param-
eters are unknown, they may be identified e.g. by the modal analysis of dynamic
responses and estimation of dynamic characteristics (eigenfrequencies and eigen-
vectors). By measuring the dynamic response changes, the structure state might
be assessed, and the load causing the partial yielding (herein called main load)
may be identified. In the paper the dynamic responses are measured for the
current state of the structure (with cross-section yielding) and for the current
state disturbed by a known, small in comparison with the load to be identified,
external load (control load). The changes of the characteristics between the cur-
rent and the disturbed state of the structure (loaded with both the main and
the control loads) are taken into account.

The investigated structure is a simply supported beam (see Fig. 1a), the
cross-section (see Fig. 1b) refers to standard I-beam I340 and the material
model applied is shown in Fig. 1c, the values of E = 205 GPa, ν = 0.3 and
σ0 = 345 MPa correspond to the properties of high-strength steel 18G2A.

K. Diamantaras, W. Duch, L.S. Iliadis (Eds.): ICANN 2010, Part I, LNCS 6352, pp. 97–100, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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Fig. 1. a) Investigated beam with the load to be identified (left: resultant value R,

location l) and control load (right: resultant value K, location lK), b) cross-section, c)

material model: elastic–perfect plastic

Themeasurablequantitiesadoptedhereinare formulatedaspseudo-experimental
data simulated by the FE commercial code ADINA [1]. As a tool to solve the in-
verse problem, namely the identification of load parameters, Semi-Bayesian Neu-
ral Networks (SBNNs) [2,8,4] are used. In the commonly used BNN package [7] the
recommended procedure of network training is Scaled Conjugate Gradient (SCG)
optimization. This method is compared to the Levenberg-Marquardt (LM) opti-
mization also applied in the present paper.

The number of considered eigenfrequencies (possible values of j) and eigenvec-
tors elements (possible values of P ) was widely discussed in [5], finally the follow-
ing input vector was adopted: x = {lK , Δfj , vjP |j = 1, 2, 3; P = A, B, C, D}T ,
where lK is the location of the control load (see Fig. 1), Δfj is the relative
change of the jth eigenfrequency caused by the application of the control load,
vjP is jth eigenvector element measured in point P (points A, B, C and D are
located to the right of the left support, at a distanfe of 50cm, 150cm, 250cm and
475cm, respectively, see [5]).

The output vector is composed of location l of the load resultant and the
resultant R: y = {l, R}T .

2 Application of SBNN

In Fig. 2a and Fig. 2b results obtained from SBNN, trained by SCG algorithm,
are presented. The horizontal axis corresponds to the errors in percent, while the
vertical axis shows the percentage of testing patterns with a particular relative
error of identification.

The SCG training algorithm needs an enormous number of training epochs to
obtain networks working with satisfactory accuracy. In order to avoid a very long
training the LM algorithm was adopted also for the SBNN training. The appli-
cation of LM algorithm gives significant improvement in the obtained accuracy,
see Fig. 2c and Fig. 2d. The ratio of correct identification of load parameters
increases about 20% after the application of LM algorithm.

As shown in Fig. 2e and Fig. 2f, further improvement of the results can be
obtained by the application of two separate one output networks instead of a
single two output network. The application of two one output networks increases
the prediction of correct identified load parameters up to almost 80% of all the
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d) f)b) RMSE=1651.6N RMSE=1037.2N RMSE=947.1N

RMSE=0.046m RMSE=0.026m RMSE=0.020m
ARE=4.79% ARE=2.49% ARE=1.74%

ARE=1.97% ARE=1.10% ARE=1.02%

Fig. 2. Relative errors of identification obtained by: two-output SBNN trained by SCG

algorithm for a) load location, b) load resultant, two-output SBNN trained by LM

algorithm for c) load location, d) load resultant and by two single-output SBNN trained

by LM algorithm for e) load location, f) load resultant

considered patterns. Fig. 2 presents also numerical values of the Average Relative
Error (ARE) and Root Mean Square Error (RMSE).

3 Final Remarks

The paper presents identification of the load causing the cross-section partial
yielding. The main novelties are the application of SBNN and the identification
performed without the knowledge of an initial state of the investigated structure
and the application of LM algorithm in the SBNN training.

In the identification procedure, the dynamic characteristics are used as the
source of data describing the current state of the structure. The additional data
are obtained after loading the structure with an additional, known load. No data
describing the initial state of the structure are used.

Semi-Bayesian neural networks, used as a tool to solve the identification prob-
lem, seem to be very efficient and give a possibility to use the Maximum of
Marginal Likelihood criterion [9] for design of the optimal network architecture.
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Moreover, this enables the use of all the patterns for learning since the testing
set is not required.

The accuracy of the obtained results is high. Numerically simulated measure-
ments, involved in the identification procedure, are obtained by three accelerom-
eters. The measurement set-up is therefore, using present-day equipment, rather
easy to implement. However, in practical cases it can be necessary to use the
data obtained from one accelerometer as a datum point, so the number of ac-
celerometers may be enlarged by one.

Acknowledgements

Financial support by the Polish Ministry of Science and High Education, grant
No. N N506 432636 Connection of neural networks and Bayesian inference in
the identification analysis of structural dynamics and geomechanics problems, is
gratefully acknowledged.

References

1. ADINA R&D Inc. Theory and Modeling Guide. Watertown, MS, USA (2009)

2. Bishop, C.M.: Pattern Recognition and Machine Learning. Springer, Heidelberg

(2006)

3. Chen, W.F., Han, D.J.: Plasticity for structural engineers. Springer, Heidelberg

(1988)

4. K�los, M., Waszczyszyn, Z.: Modal analysis and modified cascade Neural networks

in identification of geometrical parameters of circular arches. Paper Submitted for

Publication in the Journal Computers&Structures

5. Miller, B., Waszczyszyn, Z., Ziemiański, L.: Identification of Load Parameters for an

Elastic-Plastic Beam Basing on Dynamic Characteristics Changes. In: Rutkowski,

L., et al. (eds.) ICAISC 2010. LNCS, vol. 6114, pp. 590–597. Springer, Heidelberg

(2010)

6. Moran, M.M.: Change of dynamic characteristics due to plastification. In: Compu-

tational Plasticity. Fundamentals and Applications 1995, Pineridge Press-CIMNE,

Swansea-Barcelona (1967-1997)

7. Nabney, I.T.: NETLAB Algorithms for Pattern Recognition. Springer, Heidelberg

(2004)
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Abstract. The problem of finding a Bayesian network structure which maxi-
mizes a score function is known as Bayesian network structure learning from 
data. We study this problem in this paper with respect to a decomposable score 
function. Solving this problem is known to be NP-hard. Several algorithms are 
proposed to overcome this problem such as hill-climbing, dynamic program-
ming, branch and bound, and so on. We propose a new branch and bound algo-
rithm that tries to find the globally optimal network structure with respect to the 
score function. It is an any-time algorithm, i.e., if stopped, it gives the best solu-
tion found. Some pruning strategies are applied to the proposed algorithm and 
drastically reduce the search space. The performance of the proposed algorithm 
is compared with the latest algorithm which showed better performance to the 
others, within several data sets. We showed that the new algorithm outperforms 
the previously best one. 

Keywords: Bayesian networks, structure learning, discrete variables. 

1   Introduction 

A Bayesian network or Belief Network (BN) is a directed acyclic graph (DAG) where 
nodes stand for random variables and edges stand for conditional dependencies. The 
random variables can be discrete or continuous. In this paper, learning Bayesian net-
work structure for discrete variables is studied. 

Bayesian network structure learning from data has attracted a great deal of research 
in recent years. Finding the best structure for Bayesian network is known to be NP-
Hard [1, 2]. Consequently, much of the research has focused on methods that find 
suboptimal solutions. Generally, there are several approaches to learn a structure. 
Some methods are based on scoring functions that depend on the data and some ap-
proaches are based on statistical similarities among variables. We focus on those 
methods that are based on scoring functions and try to find the optimal solution ac-
cording to this function. 

Buntine in [3] proposes a hill-climbing method that performs a stochastic local 
search. However, this algorithm may get stuck in a local maximum. Although the 
approach is simple and applicable to small networks, since it is an exhaustive method 
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it cannot be applied to networks with large number of variables due to large number 
of possible edge modifications. Most exact methods that guarantee to find the optimal 
structure according to a scoring function, are based on dynamic programming [4, 5, 
6], and branch and bound [7, 8] techniques. The time and/or space complexities of the 
methods that use dynamic programming approach forbid the application of those 
approaches to networks with large number of variables (n > 30). Campos et al. in [7] 
propose a branch and bound algorithm that extremely reduces the search space of 
possible structures, while guaranteeing to obtain the optimal solution. The procedure 
runs at most ∏i

iC |)(| steps, where C(i) is the size of the cache for variable i, which 

is the needed space to store the required local scores for variable i. Memory require-

ment for storing this cache is ∑i
iC )( (in the worst case it is )2(nO n ). It is an any-

time algorithm and gives the current best solution whenever stopped. 
We present a new branch and bound (B&B) algorithm that guarantees to find the 

global optimal Bayesian network structure in less time and memory requirements 
comparing to the best exact previous methods. It uses a decomposable scoring func-
tion and drastically reduces the search space for possible structures. 

The rest of the paper is organized as follows: In Section 2, the Bayesian networks 
and scoring functions (i.e. problem description) are introduced. The proposed algo-
rithm is explained in Section 3. The performance of the new method through experi-
ments is showed in Section 4 and the paper ends with new ideas for future work in 
Section 5. 

2   Problem Description 

A BN is a DAG, composed of n random variables, that represents joint probability 
densities over these variables. Usually, a BN can be defined as a triple (G, V, P), 
where G denotes the DAG, V denotes the set of random variables },...,{ 1 nVV (nodes in 

G) and P is a set of conditional probability densities )|( iiVp π  where iπ  denotes the 

parents of iV  in the graph. Each discrete variable iV  has a finite number of values, ir  

and the number of configurations of the parent set, iq , that is ∏ ∈=
iiV ii rq π .  

The goal of Bayesian network structure learning is to find the globally optimal 
structure from data. We assume data is complete with no missing values and consisted 
of discrete variables. If not, the data is cleaned by removing rows with missing values 
and discretizing the continuous variables. Given the complete discrete data D with N 
instances, we want to find a network structure that maximizes a scoring function:   

)(max GscoreG . (1)

In this study, we assume a scoring function that is decomposable, i.e.: 

∑=
i iiVlocalScoreGscore )|()( π . (2)

where )|( iiVlocalScore π is the local score for node iV given its parents iπ . Many 

common scores such as BDeu [3], BIC [8], BD [9], BDe [10] and AIC [11] are  
decomposable. 
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3   The Proposed Branch and Bound Algorithm  

In this section, the proposed branch & bound algorithm used to find global optimum 
structure of the Bayesian networks and its complexity is explained.  

We define each node of the branch & bound tree, as follows: 
 
Definition 1. A tree node tn of the branch & bound tree is defined by tn(NS, s), where 
NS is the network structure that this node stores and s is the score of this network 
structure. 

The main idea of our proposed method is: 

1. calculate the needed local scores of each node considering Lemmas in [7] 
2. create the root of the branch & bound tree by considering the best local score 

for each node in the network structure 
3. if the network structure store in the node is a DAG then algorithm is finished 

and global best network structure is found, otherwise let d = 1 
4. create the children of this node by replacing the parent set of variable dV (node 

in the network) with its 1th, 2nd, … best parent configurations (the parent sets 
that provide 1th, 2nd, … best local score for dV ) 

5. while creating a child, if a DAG is found, update the best network found. In 
addition, check the new child and create the other children if needed  

6. choose the next leaf node (if existed) and assign d with the depth of this node   
7. if the next node is null the algorithm is finished, otherwise go to step 3. 

The proved Lemmas in [7] are used here in the first step to reduce the cache size. 
Therefore, the size of cache memory (required to keep local scores for the next step) 
is equal to [7]. In the proposed algorithm, it is supposed to replace the parent set of 
each node dV  with its all possible parent configurations (which are sequentially cho-

sen based on the computed local scores sorted in a descending order) in the dth depth 
of the tree with a pre-set order. We consider a fixed ordering of variables when the 
algorithm begins and we keep it to the end of the algorithm. Therefore, node iV  al-

ways denotes the ith variable in the ordering. However, we try not to create all the 
tree nodes. We prune this tree using the criteria explained later according to Bayesian 
networks properties. The pruning, in practice, extremely decreases the number of 
nodes to be created to find the global best network structure, in comparison with [7].  

The bounding rules considered are as follows: 

1. If NS is a DAG, the best net score found for the DAG until that point is up-
dated (if NS leads to a better score). Here, there is no need to add further nodes 
to the tree, otherwise:  

2. If the new node obtains worse score than the best score found for a DAG until 
that point, then this node cannot lead to a better result. We do not add this 
node to the tree. 

3. Suppose we are at dth depth of the tree (i.e. we want to replace the parent set 
of dV with its 1th, 2nd, … best parent configuration). If there is a cycle that 

contains only },...,{ 11 −dVV , this cycle cannot be removed. The reason is that 
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the parent sets of ndd VVV ,...,, 1+  are replaced with their other best parent sets 

from depth d to the maximum depth (depth n). However, the cycle contains the 
nodes ( },...,{ 11 −dVV ) that never change from depth d to the maximum depth n 

and no DAG can be found from this new node in the tree.  
4. If the new node is in the depth n, there is no need to add it to the tree because 

it cannot lead to a result since the network nodes are finished and it is not a 
DAG. 

The new child (if one of the above criteria is satisfied we put null in new child) is 
added to the parent node. 

Fig. 1 shows the new branch & bound algorithm. The input to this algorithm is the 
local scores that are computed and stored in a file, previously and the output is the 
global best network structure. After creating all possible children nodes for parent-
Node, the next node to be expanded is selected. We select a leaf with the maximum 
score to be the parentNode next time.  

 
Algorithm 1. EtminaniB&B(localScores) 

),( rr sNSrootNode = create a node by considering the best parent config for each node 

parentNode = rootNode  
d = 1       // d shows depth of tree  
while (parentNode) do  
/* expand nodes for each kth maximum local score for node dV  (if needed)*/ 

     for each |)(| dVlocalScorek ∈  

     childNode = CreateNode(k) 
     if (NotNeeded(childNode)) 
          exit for 
end for 
parentNode = MaxPossibleLeafNode()  //continue from the next maximum leaf(if existed)   

end while 
return best network found 

Fig. 1. The proposed branch & bound algorithm  

The required memory for the proposed algorithm for storing the needed local 
scores is the same as [7] and it is data dependent. In the worst case, all tree nodes 
should be created and none of the criteria satisfies to prune the tree and reduces the 
search space (this case practically never happens but we consider it as the worst case), 

so the maximum number of nodes is∑∏
= =

n

i

i

j

jC
1 1

|)(| . 

4   Experiments  

In this study, datasets available at the UCI repository were used [12], to demonstrate 
the capability of our method. Some of these datasets contain missing data which were 
removed. The properties of the datasets, the size of the generated cache (the reduced 
cached based on proven Lemmas in [7]) and the size of the cache if all local scores 
were computed for the BIC scoring function are presented in Table 1.  
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Table 2 presents the results of two distinct algorithms: the proposed branch & 
bound algorithm described in Section 4 (EtminaniB&B), and the branch & bound 
algorithm presented in [7] (CassioB&B)1 . Number of nodes in the branch & bound 
tree are shown to facilitate a better comparison between the two algorithms. The time 
column represents only the time of running the algorithms. The time required to com-
pute the needed local scores is not included, because it is similar for both algorithms.  

Table 1. Dataset properties and cache size for B&B algorithm and total cache size without 
reduction 

name n N Reduced Cache size Total cache size ( nn2 ) 
Abalone 9 4177 65 2.112  
Tic-tac-toe 10 958 28 3.132  
Bc-wisconsin 11 669 97 5.142  
Wine 14 178 98 8.172  
Heart-hungerian 14 294 8246 8.172  
Heart-cleveland 14 303 45 8.172  
Mushroom 22 5644 260 4.262  
Spect-heart data 23 80 275 5.262  
King rock 36 3196 524 2.412  

Table 2. Comparison of BIC scores, number of created tree nodes and running time among 
EtminaniB&B and CassioB&B 

EtminaniB&B CassioB&B Name 
Score No. tree 

nodes 
Time 

(s) 
Score No. tree 

nodes 
Time 

(s) 
Abalone -16571.7 76 < 1 -16571.7 1205 < 1 

Tic-tac-toe -9656.2 33 < 1 -9656.2 65 < 1 

Bc-wisconsin -3359.6 43 < 1 -3359.6 3909 9 

Wine -1889.8 155 < 1 -1889.8 259 1.2 

Heart-hungerian -2368.0 18 < 1 -2368.0 170 < 1 

Heart-cleveland -3410.8 21 < 1 -3410.8 18 < 1 

Mushroom -691.0 1 < 1 -691.0 1 < 1 

Spect-heart data -761.0 343 4.5 -761.0 288 2.8 

King rock -290.5 1 < 1 -290.5 1 < 1 

 
In mushroom and king rock datasets, both of them create only one node. The rea-

son is that the root of the B&B tree was already a DAG in this data set (best parent set 
for each node leads to DAG) and no additional node is created. 

Our method (EtminaniB&B) most of the time creates smaller number of nodes in 
the branch & bound tree and leads to the global optimal result in less running time 
than the previous B&B (CassioB&B).  

The new algorithm can result into the same result in almost less running time and 
smaller number of nodes in the B&B tree. In [7], Cassio et al. show the superiority of 

                                                           
1 We have run the dynamic programming idea of [4], (which is worse than the two branch & 

bound algorithm in time and space). We omit it because of lack of space. 
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their algorithm compared to the previous methods [4, 5]. Now, we show the advan-
tages and the performance of our new method to [7].  

5   Conclusion and Future Work 

In this study, learning the Bayesian network structure from data for discrete variables 
is studied. A new branch and bound algorithm is presented that guarantees global 
optimality with respect to a decomposable scoring function. It is an any-time method, 
i.e. if stopped it provides the best solution found so far. We made use of two previ-
ously proven lemmas to reduce the search space and the required memory.  

Several common datasets are used to demonstrate the benefits of the proposed 
method. The experiments show that the proposed approach provides better results, i.e. 
resulting in smaller number of nodes and less running time, most of the cases.  

Several aspects remain for the future work such as applying other criteria to forbid 
unnecessary computing for local scores and creating unneeded B&B tree nodes which 
can reduce the search space and the required memory. 
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Abstract. Spike timing dependent plasticity (STDP) requires the tem-

poral association of presynaptic and postsynaptic action potentials (APs).

However, some synapses in the CA1 region of the hippocampus are

suprisingle unreliable at signaling the arrival of single spikes to the post-

synaptic neuron [4]. In such unreliable synapses pairing of excitatory

postsynaptic potentials (EPSPs) and single APs at low frequencies is

ineffective at generating plasticity [2], [3]. A recent computational study

[7] has shown that the shape of the STDP curve strongly depends on

the burst interspike interval in the presence/absence of inhibition when a

presynaptic dendritic burst and a postsynaptic somatic spike were paired

together. In this study, we investigate via computer simulations the con-

ditions under which STDP is affected when now a high frequency somatic

burst instead of a single spike is paired with another dendritic spike. We

show that during such pairing conditions in the absence of inhibition a

symmetric STDP profile with a distinct positive LTP region is evident at

10-30ms interstimulus interval and flat LTD tails at all other interstimu-

lus intervals. The symmetry is preserved at all burst interspike intervals.

When inhibition is present, the STDP profile shape into a Mexican hat

shaped one or an inverted symmetrical one with flat LTP tails.

Keywords. Computer model, bursts, STDP, GABA inhibition, LTP,

LTD, calcium.

1 Introduction

Experimental studies in pyramidal neurons in the hippocampus have shown that
the magnitude and sign of changes in synaptic strength depend critically on the
precise timing of pre- and postsynaptic action potentials (APs), with postsy-
naptic APs preceding EPSPs typically leading to long-term depression (LTD),
while APs evoked just after EPSP onset typically lead to long-term potenti-
ation (LTP) [5]. Spike-timing-dependent plasticity (STDP) is an extension of
Hebb’s law, which states that neurons that simultaneously fire together, they
wire together [1]. While the cellular mechanisms underlying STDP are not well
understood, most studies agree NMDA receptors play an important role be-
cause they are able to detect coincident pre- and postsynaptic activity via relief
of voltage-dependent magnesium block [5]. During STDP the voltage driving the
unblockage of NMDA receptors is supplied by postsynaptic APs, which actively
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propagate back into the dendrites of many neuronal types . However, under cer-
tain experimental conditions single APs attenuate and can fail to backpropagate
into some dendrites of pyramidal neurons [13]. This failure of AP backpropa-
gation can be rescued during high-frequency AP bursts due to boosting of AP
backpropagation following AP summation and the generation of dendritic cal-
cium spikes [3]. Consistent with the potential role of AP burst-evoked dendritic
calcium spikes in synaptic plasticity, a number of studies indicate a role of AP
burst firing in STDP[3]. These findings prompted me to investigate how STDP
is affected when a somatic burst is paired with a dendritic spike in the presence
of a high frequency inhibition (GABA). Previous work from my group [6], [7],
[8] has shown that the experimentally observed asymmetric STDP curve in the
hippocampus undergoes an asymmetry-to-symmetry transition [10], [11], [12],
which depends on the frequency of inhibition (theta vs. gamma), the conduc-
tance value of GABA inhibition, the relative timing between the GABAergic
spike train and the excitatory pre-postsynaptic interstimulus interval, and on
the burst interspike interval.

Fig. 1. Model CA1 neuron with its three transient inputs to the soma and dendrite.

Synaptic plasticity at the dendritic synapses (circled region) is governed by a model

calcium detector system [9]. P detector: potentiation detector; D detector: depression

detector; V detector: veto detector; W: synaptic weight.

2 The Model

The CA1 pyramidal cell model with its three calcium detectors used herein has
been described in detail in [6], [7], [8]. Briefly, the model pyramidal cell consists of
two compartments: a soma and a dendrite. The generation of action potentials
is due to the interplay of a wealth of ionic currents such as Na+, K+, Ca2+-
activated K+ and Ca2+ currents as well as synaptic currents (AMPA, NMDA
and GABAA). Hodgkin-Huxley mathematical formalism was used to describe
the ionic and synaptic mechanisms of the modelled pyramidal cell. The model
used calcium as the postsynaptic signaling agent for STDP and it has been
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shown to be consistent with classical long-term potentiation (LTP) and long-
term depression (LTD) induced by several doublet stimulation paradigms in the
absence and presence of inhibition [6], [7], [8].

In the model, calcium enters the neuron through: (1) voltage-gated calcium
channels (VGCCs), and (2) NMDA channels located at the dendrite. VGCCs are
activated by the arrival of backpropagating action potentials (BPAPs) initiated
in the soma by excitatory postsynaptic spikes. The NMDA channels are activated
by the synergistic action of excitatory and inhibitory postsynaptic potentials and
sufficient membrane potential depolarization due to the BPAP, which removes
the magnesium block and allows calcium to enter the cell. In the model, calcium
influx from neither channels alone elicits plasticity. Plasticity results only from
the synergistic action of the two calcium sources (NMDA and VGCC).

The mechanism for plasticity has a modular structure consisting of three bio-
chemical detectors, which respond to the instantaneous calcium level and its time
course in the dendrite. The detection system consists of: (1) a potentiation (P)
detector which detects calcium levels above a high-threshold (4μM) and triggers
LTP, (2) a depression (D) detector which detects calcium levels exceeding a low
threshold level (0.6μM), remains above it for a minimum time period and trig-
gers LTD, and (3) a veto (V) detector which detects levels exceeding a mid-level
threshold (2μM) and triggers a veto to the D response. A graphical schematic of
the model neuron and its calcium detectors for spike timing dependent plasticity
(STDP) is shown in Figure 1.

In this study we investigate how the pairing of an excitatory spike applied to
the dendrite and an excitatory burst of action potentials applied to the soma
both repeated every 300ms (every theta cycle) affect the STDP in the dendrite in
the presence and/or absence of high frequency inhibition applied to the dendrite.

3 Experiments

To investigate how the STDP profile is affected by the pairing of excitatory bursts
and excitatory single spikes in the presence/absence of GABAergic inhibition,we
designed the following experimental protocol: Excitatory burst of spikes with
variable burst interspike interval and single spikes, which were repeatedly applied
to the soma and dendrite, respectively, for 2 s (7 times at about 3 Hz) were
paired in the absence and presence of an 100 Hz GABAergic inhibitory spike
train applied between the excitatory pair interval Δτ . Based on this protocol,
we designed the following four physiological experiments (see figure 2), where
the burst interspike interval, ISI, was allowed to vary:

– ISI = 1.6 ms
– ISI = 5 ms
– ISI = 10 ms
– ISI = 20 ms

During all experimental paradigms, we varied the conductance of GABA inhibi-
tion and observed its effects on the amplitude of the dendritic Ca2+ spike and
the STDP curve. These results are reported in the next section.
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Fig. 2. (A) Model CA1 neuron with its three transient inputs to the soma and dendrite.

Inputs: an excitatory burst to the soma, an excitatory spike to the dendrite and an

inhibitory spike to the dendrite. Each input repeats every 300 ms for about 2 sec.

(B) Pairing of a dendritic spike with a somatic burst in the absence of inhibition

(GABA). (C) Pairing of a dendritic spike with a somatic burst in the presence of

GABA inhibition.

4 Results

4.1 Pairing of a Somatic Burst and a Dendritic Spike in the
Absence of GABA Inhibition as a Function of Burst Interspike
Interval

In this section we investigate the effects of the burst ISI on the STDP profile in
the absence of GABA inhibition. A presynaptic (dendritic) spike is paired with
a postsynaptic (somatic) burst. The interstimulus interval Δτ is the interval
between the presynaptic spike and the first spike ofthe postsynaptic burst (see
Figure 2). The simulated STDP profile as a function of the interstimulus interval
Δτ for different ISIs in the absence of GABA is depicted in Figure 3. A symmetric
STDP profile centered at +10 ms is evident for all ISIs. Interestingly the LTP
value when the ISI is 5 ms and 10 ms is greater than when ISI is 1.6 ms, but
lower when ISI is 20 ms.

In the preSpike10postBurst stimulation paradigm (see Figures 4A-L), where
a presynaptic (dendritic) spike preceeds by 10ms a postsynaptic (somatic) burst,
calcium influx results from two sources: (1) through NMDA channels activated
by the presynaptic spike, and (2) through VGCCs activated by the postsynaptic
burst. This results in more than two calcium spikes depending on the ISI (see
Figure 4C). The first calcium spike, which is the result of the presynaptic spike
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Fig. 3. Simulated asymmetric STDP profile as a function of burst interspike intervals

in the absence of GABA inhibition. Δτ (tpost - tpre) is the interstimulus interval

between the dendritic spike and the first spike of the somatic burst. Δτ ranges from

-100 to 100 in increments of 10 ms. (Inset-left) PostBurst - PreSpike scenario, where

the dendritic spike follows by Δτ the somatic burst, comprised of three spikes. Δτ
takes values from -10 ms to -100 ms. The pairing repeats every 300 ms. (Inset-right)

PreSpike - PostBurst scenario, where a dendritic spike precedes the somatic burst by

Δτ . Δτ takes values from +10 ms to +100 ms. The pairing repeats every 300 ms.

activated NMDA channels, is always above 4μM regardless of the burst ISI. This
high peak calcium spike on its own trigger all calcium detectors (P, D and V).
Increases in P response assisted by the inhibition of the D response due to the
activated V response will lead to the growth of W (see Figure 4D). In the case
where burst ISI is either 5 ms, 10 ms or 20 ms additional calcium spikes will be
generated (see blue, red and green traces in Figure 4C). When the ISI is 5 ms or
10 ms, the second peak calcium values are above 4μM and the weight (W) will
be extra boosted (see Figure 4C). When the ISI is 20 ms, the peak values of the
third and fourth calcium peaks are all below the 4μM threshold, but still above
the 2μM threshold. This means that the 3rd and 4th calcium spike will result
from a reduced P response. But because they are above the 2μM threshold, the
veto response will be activated, which will prevent the intermediate agents A
and B from activating the depression (D) detector. Hence at ISI = 20 ms, W
will plateau at lower value than when ISI is 1.6 ms, 5 ms and 10 ms (see Figure
4D - L).
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Fig. 4. (A) PreSpike-10-PostBurst stimulation paradigm used. The interstimulus inter-

val between the dendritic spike (pre) and somatic burst (post) is set to +10ms. (B-L)

Direct comparison of Vd, [Ca2+ ], W, P and D, and LTD agents at various burst ISIs

in the absence of GABA inhibition.
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Fig. 4. (continued)
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Fig. 5. STDP profiles from the pairing of a burst of spikes with variable burst inter-

spike interval applied to the soma and a single spike applied to dendritic synapses in

the absence and presence of a 100 Hz GABA spike train as a function of increasing

GABA conductance. Δτ (tpost - tpre) ranges from -100 to 100 in increments of 10ms.

(Top-left) Burst interspike interval is 1.6 ms. (Top-right) Burst interspike interval is 5

ms. (Bottom-left) Burst interspike interval is 10 ms. (Bottom-right) Burst interspike

interval is 20 ms.
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4.2 Pairing of a Somatic Burst and a Dendritic Spike in the
Presence of an 100Hz GABA Spike Train as a Function of
Increasing GABA Conductance

Figure 5 is a composite figure of four graphs of W∞ vs Δτ as a function of burst
ISI and GABA conductance. The effect of GABA on the STDP profile is different
for each ISI. When ISI is 1.6 ms, 5 ms and 10 ms, the gaussian shaped STDP
curve centered at +10 ms, is transforms to a Mexican hat one when gGABA =
0.1-0.2 mS/cm2 to an asymmetric one at gGABA = 0.3-0.4 mS/cm2. When ISI is
20 ms, the gaussian shaped STDP curve switches to an a Mexican hat one with
asymmetric LTD tails when gGABA is 0.1 mS/cm2 and to an inverted gaussian
one when gGABA is greater than 0.1 mS/cm2 with the largest LTD value at
+30-40 ms.

5 Conclusion

A Ca2+ dynamics model of the CA1 pyramidal neuron with three calcium am-
plitude detectors was used to study the pairing effects of somatic AP bursts and
dendritic single spikes on the spike timing dependent plasticity in the dendrite in
the presence/absence of inhibition. In contrast to previous computational work
[6], [7], [8], where an asymmetrical-to-symmetrical STDP curve is evident when
somatic spikes are paired with dendritic bursts, in this study the STDP profile
is symmetrical for all burst ISI and GABA conductance values. In the future, I
intend to investigate whether this STDP symmetry is present when a dendritic
burst is paired with a somatic one in the presence of different GABA gamma
frequency sub-bands and conductance values.
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Abstract. Spiking Neuron Networks (SNNs) overcome the computa-

tional power of neural networks made of thresholds or sigmoidal units.

Indeed, SNNs add a new dimension, the temporal axis, to the represen-

tation capacity and the processing abilities of neural networks. In this

paper, we present how SNN can be applied with efficacy for cell micro-

scopic image segmentation. Results obtained confirm the validity of the

approach. The strategy is performed on cytological color images. Quan-

titative measures are used to evaluate the resulting segmentations.

Keywords: Cell microscopic images, Hebbian learning, Segmentation,

Spiking Neuron Networks.

1 Introduction

Image analysis in the field of cancer screening is a significant tool for cytopathol-
ogy [1],[2]. Two principal reasons can be highlighted. First, the quantitative
analysis of shape and structure of nuclei coming from microscopic color images
brings to the pathologist valuable information for diagnosis assistance. Second,
the quantity of information that the pathologist must deal with is large, in partic-
ular when the number of cancer screening increases. That is why, a segmentation
scheme for microscopic cellular imaging must be efficient for reliable analysis.

Many cellular segmentation methods have been presented so far [3],[4]. They
include watershed [5],[6],[7], region-based [8] and threshold-based methods [9].
Application of active contour has been widely investigated for cell segmentation
[10],[11]. Cells stained with Papanicolaou international staining make it possible
to classify the color pixels among three classes [12]: background, cytoplasm or
nucleus. However, this classification cannot be perfect. Indeed, a fraction on
nuclei pixels have the same color then cytoplasm pixels because of the variability
of the nuclei according to the type of the cells and to the chromatin distribution.
Moreover, for some cytopathologies, the mucus present in the background has
the same color than some cells (cytoplasm and nucleus).
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Another problem for the design of cellular segmentation schemes is on how to
evaluate the segmentation quality. Indeed, almost all the segmentation schemes
have some parameters. Human observation highlights that the values chosen for
these parameters are significant for the quality of the segmentation. However,
for an automatic selection of the optimal parameter values, the quality of seg-
mentation must be also automatically evaluated. In literature, there are several
quality segmentation criteria: Lui and Borsotti [13], classification rates and other
statistical measures [14].

Spiking Neuron Networks (SNNs) are often referred to as the 3rd generation
of neural networks [15]. Highly inspired from natural computing in the brain
and recent advances in neuroscience, they derive their strength and interest
from an accurate modeling of synaptic interactions between neurons, taking into
account the time of spike firing. SNNs overcome the computational power of
neural networks made of thresholds or sigmoidal units [16]. The use of spiking
neurons promises high relevance for biological systems and, furthermore, might
be more flexible for computer vision applications [17].

In this paper, a spiking neural network is used to segment cellular microscopic
images with two approaches : unsupervised and supervised training with Hebbian
based winner-take-all learning. This learning modifies the weights of the pre-
synaptic neurons with the winning output [18]. This observation is in agreement
with the fact that, in biological neural networks, different axonal connections will
have different signal transmission delays [19]. In this article, we seek, through a
series of experiments, the best parameters of the SNN network to have a good
segmentation.

The paper is organized as follows : in the first Section, related works are pre-
sented within the literature of spiking neural network (SNNs). Second Section is
the central part of the paper and is devoted to the description of the architec-
ture of a spiking neural network with multiple delay connections, the encoding
mechanism for converting the real valued inputs into time vectors and the learn-
ing rule. Results and discussions of the experiments are reported in the third
Section. Last Section concludes.

2 Spiking Neuron Networks

Spiking neural networks (SNNs) are a class of ANNs that are increasingly receiv-
ing the attention as both a computationally powerful and biologically plausible
mode of computation [20],[21]. SNNs model the precise time of the spikes fired
by a neuron, as opposed to the conventional neural networks which model only
the average firing rate of the neurons. It is proved that the neurons that convey
information by individual spike times are computationally more powerful than
the neurons with sigmoidal activation functions [22].

A network architecture consists in a feedforward network of spiking neurons
with multiple delayed synaptic terminals (Fig.1(a)). Neurons in the network gen-
erate action potentials, or spikes, when the internal neuron state variable, called
”membrane potential”, crosses a threshold ϑ. The relationship between input
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spikes and the internal state variable is described by the spike response model
(SRM), as introduced by Gerstner [23]. Depending on the choice of suitable
spike-response functions, one can adapt this model to reflect the dynamics of
a large variety of different spiking neurons. Formally, a neuron j, having a set

Fig. 1. (a) Spiking neural network architecture; (b) Multiple synapses transmitting

multiple spikes

Γj of immediate predecessors (”pre-synaptic neurons”), receives a set of spikes
with firing times ti, i ∈ Γj . Any neuron generates at most one spike during the
simulation interval, and fires when the internal state variable reaches a thresh-
old ϑ. The dynamics of the internal state variable xj(t) are determined by the
impinging spikes, whose impact is described by the spike-response function ε(t)
modeling a simple α-function weighted by the synaptic efficacy wij :

xj(t) =
∑
i∈Γj

m∑
k=1

wk
ijε(t − ti − dk) (1)

In the network as introduced in [24], an individual connection consists in a fixed
number of m synaptic terminals, where each terminal serves as a sub-connection
that is associated with a different delay and weight (Fig.1(b)). The delay dk of
a synaptic terminal k is defined by the difference between the firing time of the
pre-synaptic neuron, and the time the post-synaptic potential starts rising.

3 Network Architecture, Learning and Encoding

However, before building a SNN, we have to explore three important issues:
network architecture, information encoding and learning method. Then, we will
use a SNN to segment cellular images.

3.1 Network Architecture

The network architecture consists in a fully connected feedforward network of
spiking neurons with connections implemented as multiple delayed synaptic ter-
minals. We consider two different topologies for unsupervised and supervised
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learning. For unsupervised learning, the SNN performs its learning directly on
the pixels of the image to classify. For unsupervised learning, a reference data
set of pixels from different images is used for learning.

In both topologies depicted in Figure 2(a) and Figure 2(b), the network con-
sists in an input layer, a hidden layer, and an output layer. The first layer is
composed of RGB values of pixels. Each node in the hidden layer has a localized
activation Φn = Φ(‖X − Cn‖, σn) where Φn(.) is a radial basis function (RBF)
localized around Cn with the degree of localization parameterized by σn. Choos-
ing Φ(Z, σ) = exp − (Z2/2σ2) gives the Gaussian RBF. This layer transforms
the RGB values of pixels in first layer to temporal values. Third layer consist in
class outputs (cell background, cytoplasm and nuclei).

(a)

(b)

Fig. 2. (a) Network topology for unsupervised training; (b) Network topology for su-

pervised training

Instead of a single synapse, with its specific delay and weight, this synapse
model consists in many sub-synapses, each one with its own weight and delay dk,
as shown in Figure 1.b. The total contribution of all presynaptic neurons is given
by equation (1). The neuron model implemented is the SRM0 [23]. The delays
dk are fixed for all sub-synapses k, varying from zero in 1ms fixed intervals.
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3.2 Information Encoding

Bohte et al. [25], presented a method for encoding the input data to enhance the
precision. Each neuron of entry is modeled by a local receiving field (RF). For
a variable with range of [Max..Min], a set of m Gaussian receptive RF neurons
are used. The center Ci and the width σi of each RF neuron i are determined
by the following equations:

Ci = Imin +
(

2i − 3
2

)(
Imax − Imin

m − 2

)
(2)

σi =
1
γ

Imax − Imin

m − 2
(3)

where m is number of receptive fields in each population and a value of 1.5
is used for the variable γ. For each n-dimensional input pattern, the encoding
scheme results in a matrix n × m of values between 0 and 1. These values are
then converted to delay times. While converting the activation values of RFs into
firing times, a threshold has been imposed on the activation value. A receptive
field that gives an activation value less than this threshold will be marked as
not-firing and the corresponding input neuron will not contribute to the post-
synaptic potential.

3.3 Learning Method

The approach presented here implements the Hebbian reinforcement learning
method through a winner-take-all algorithm [26],[27]. For unsupervised learning,
a Winner-Takes-All learning rule modifies the weights between the input neurons
and the neuron first to fire in the output layer using a time-variant of Hebbian
learning. The synaptic weights should be randomly initialized. When an input
pattern is presented to the network, neurons are expected to fire. The first neuron
to fire is called the winner of the competitive process. Only the weights of the
winner neuron are updated using a Hebbian learning rule L(Δt). This learning
function controls the learning process by updating the weight. It increases the
weights of the connections that received spikes immediately before the fire of j
and decrease remaining weights. For a weight with delay dk from neuron i to
neuron j we use [28]:

Δwk
ij = ηL(Δtij) (4)

And
L(Δt) = (1 + b)e

(Δt−c)2

2(k−1) − b (5)

with

k = 1 − ν2

2ln b
1+b

where: L(.) is the learning function; η is the learning rate; ν determines the width
of the learning window; Δt is the difference between the arriving of the spike
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and the fire of neuron j; b determines the negative update given to a neuron; c
fixes the peak of the learning function; wk

ij is the increase of the kth connection
between neurons i and j. The weights are limited to the range 0 to wmax, the
maximum value that a weight can take.

4 Experimental Results and Discussion
4.1 Microscopic Cells Database

For the considered class of microscopic images, a microscopy expert has to choose
judicious images that well describe the whole segmentation problem (a ground
truth). This ground truth database can be used for the learning step and also as
a reference segmentation to evaluate the relevance of an automatic segmentation.
In the sequel, we will consider a publicly available database1 [29] of 8 microscopic
images of bronchial tumors (752 x 574 pixels). The pixels of these images have
to be classified into one of the three following classes background, cell cytoplasm
and cell nucleus. Figure 3(a)-(b) shows a microscopic color image and its ground
truth. Pixel dataset has been split to produce training, validation and test sets.

(a) (b)

Fig. 3. (a) Original image; (b) Ground truth

4.2 Segmentation Results

Several experiments are carried out by changing the number of synapses, the
number of receptive fields and the size of training corpus to select the best
network parameters. Table 1 show these parameters.

Table 1. Best parameter of the SNN

Receptive

field

Subsynapse Threshold Training

set

η τ υ b c

8 12 9 10% 0.0025 3 5 -0.007 -2.3

1 http://users.info.unicaen.fr/~lezoray/database.php

http://users.info.unicaen.fr/~lezoray/database.php


Cell Microscopic Segmentation with Spiking Neuron Networks 123

Fig. 4. Cell microscopic images (First row); expert segmentation (Second row); seg-

mentation produced by unsupervised training (Third row) and segmentation produced

by supervised training (Fourth row)

Images in Figure 4 show segmentation results with our segmentation scheme
in comparison with the expert segmentation. It is worth to note that the mucus
present in all images is correctly identified as background.

4.3 Evaluation Methods

To evaluate our approach, we use several classification rates. These classifications
rates are expressed as follows:

R0 = Number of pixels well classified
Number of pixels of the image

R1 = Number of nuclei pixels well classified
Number of nuclei pixels of the image

R2 = Number of background pixels well classified
Number of background pixels of the image

R3 = R1+R2
2

(6)
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Results in Table 2 show that SNN with supervised training has the best classi-
fication accuracies as compared to SNN with unsupervised training.

Table 2. Classification rates (best rates bold faced)

SNN with unsupervised

training

SNN with supervised train-

ing

R0 89.07% 94.27%

R1 69.57% 80.37%

R2 94.55% 99.06%

R3 82.06% 89.71%

Table 3 presents a comparison of the the classification accuracies obtained
by Meurie et al. [29] for different classifiers as well as with our SNN supervised
training. Our approach clearly outperforms all these state-of-the-art methods.

Table 3. Segmentation rates and comparison with Meurie et al. approaches [29], with

best rates bold faced

Classifier R1

SVM 74.2%

Bayes 74.6%

K-means 74.4%

MLP 73%

Fisher 1 72.3%

KNN 70%

Supervised SNN 80.37%

5 Conclusion

An automated approach for the segmentation of cells has been presented. Seg-
mentation is based on spiking neural networks with unsupervised training and
supervised training. At first, the network is build, a subset of the images pixels
is taken to be learned by the network and finally the SNN processes the rest of
the images to have as a result a number of classes quantizing the cell image.
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Abstract. Assessing brain wave functions that are evoked by auditory

stimuli is an important area of study that may lead to the development of

brain computer interface (BCI) systems that incorporate natural features

of auditory perception such as tone, pitch, and sound-source locations

(e.g. direction). We analyzed event-related potentials (ERPs) evoked by

auditory stimuli that are applicable to BCI systems. In recent studies,

sound localization systems have been intensively studied in order to en-

hance BCI system development in a way that reproduces a virtual 3D au-

ditory environment, applicable to human-machine communications. We

conducted experiment using a sound localization system in which sub-

jects were instructed to listen to a sound cue and answering the relative

direction (i.e. the direction to which the sound cue is emitted from an

observer) of the sound source. For each trial, a target direction was indi-

cated by the experimenter, although the direction of the sound cue emit-

ted during the trials was not necessarily the target direction. Changes

in brain activity were measured using an electroencephalogram (EEG) .

Experimental results showed that prominent excitations in EEG signals

were observed during a trial where the target direction corresponded to

the sound source direction, by subtracting the mean EEG signal of the

non-target trials from that of the target trials.

1 Introduction

Recently, brain computer interfaces (BCIs),which are systems that stablish a
direct pathway connecting an external device (e.g. computer, robot) and the
human brain, have increasingly been a topic of research. If further development
of BCI systems that are capable of manipulating machines that are controlled
by a user’s brain activity is attained, then those machines or robots are expected
to become a powerful communication tool, especially for disabled people such as
patients with amyotrophic lateral sclerosis (ALS).

There are two ways to assess human brain activity; one way uses invasive
equipment that involves injecting electrodes directly into the brain, while the
other uses noninvasive equipment such as electrodes attached to the scalp. In
this study, we used the noninvasive electroencephalogram (EEG), with focus
placed on assessing event related potentials (ERPs). ERPs are thought to contain
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patterns that make it possible to discriminate external events. These ERPs are
thought to be generated at the area around the median line of the parietal region.
BCI systems that apply ERPs have an advantage in that users only have to focus
attention on the stimulus. In this study, we measured ERPs that can be evoked
in response to auditory stimuli and then evaluated whether the methods are
applicable to BCI systems.

2 Audio Stimulus BCI

To develop a BCI system capable of performing a variety of tasks, it is necessary
to design control rules in which a particular brain activity pattern corresponds
to a control command to the machine. In this study we employed an auditory
stimulus as a component to develop a novel BCI system with high flexibility
involving auditory-related parameters such as sound-source direction and the
auditory tone. We designed a task using sound cues that required subjects to dis-
criminate the cue parameters. Interestingly, those parameters can be evaluated
in parallel. For example, a task that requires discrimination of four directions
and two tones at the same time results in a flexibility rating of eight for that
task. Thus, the flexibility increases exponentially in response to an increase in
the number of combined tasks. In addition, if we employ a sound localization
[1,2] system that simulates the placement of auditory cues in virtual 3D space,
it is not necessary to use speakers placed in a real space, and we can expect to
develop a simple BCI that requires only an earphone (Fig. 1).

In this study, we conducted an experiment in which the subject had to dis-
criminate a target and non-target using two directions of sound-source locations
in two patterns, ”right or left” or ”front or rear,” and the count the number of
sound cues heard from the target direction.

3 Experiment

3.1 Subject

Five healthy men aged 22-24 years old participated in the experiments. Informed
consent was obtained from each subject and approved by the ethics committee
of Nagaoka University of Technology.

3.2 Experimental Environment

Fig. 2 shows the positional relationship of the subject and the loudspeakers dur-
ing the experiments. We measured two auditory tasks: to discriminate right (R)
from left (L) directions, and to discriminate front (Fr) from rear (Re) directions.
Two computers were used for this experiment. One was connected to an elec-
troencephalograph to record the EEG, and the other one controlled the sound
emitted from the speakers. The computer controlling the sound was connected
to the electroencephalograph with a parallel cable, and trigger signal was sent to
the electroencephalograph for each trial from this computer. This trigger signal
was used to mark task onset on EEG data.
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Fig. 1. Image of BCI system: The development of a simple and flexible BCI that

requires only an earphone with the use of sound localization is anticipated

3.3 Measurement Instrument

We used a digital electroencephalograph (Biosemi, ActiveTwo AD-box ADC-12)
to measure the EEGs. Fig. 3 shows the measurement configuration. EEG elec-
trodes were arranged according to the international standardized 10-20 system.
The reference electrode was applied to the right ear and is identified as CMS.

3.4 Experiment Task

Fig. 4 shows the time sequence of one trial. After a pre-rest of 1500 milliseconds,
a sound was presented from the L or R speaker, as in Fig. 2(a), or was presented
from the Fr or Re speaker as in Fig. 2(b). We employed pure sound of 440 [Hz]
for the sound, and the duration was 500 milliseconds. The next trial was started
after a post-auditory rest of 3500 [ms]. Subjects were told the target direction
that for each session, and were instructed to count the number of times they
heard sound cues from the target direction. Target trials were presented at the
rate of 13-20 % per session. One session was composed of 30 trials, and we
measured five sessions for each discrimination task. We instructed subjects to
close their eyes to avoid the influence of visual stimuli or blinks during tasks.

4 Data Analysis

4.1 Preprocessing

In EEG measurements, we used a bandpass filter (3-pole Butterworth 1-5 [Hz])
to filter out alpha rhythms causing the eyes to close (blinking) and because
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Fig. 2. Experimental environment: discrimination task for right or left direction (a)

and front or rear direction (b)
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mark task onset on EEG data. PC2 was used to record EEG data
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the ERPs were composed of low-frequency components. The trigger signal input
time was set to be 0, and the data were extracted from -200 [ms] to 1000 [ms]
at each trial. The baseline correction was determined as the average value from
-100 [ms] to 0 [s].

4.2 Target and Non-target Discrimination

It is necessary to discriminate ERPs from one trial EEG wave to attain BCI
-applied ERPs. Therefore, we checked whether ERPs were discriminated from
our measured data, and the discriminating rate.

To discriminate between target and non-target trials from the EEG data, we
focused on the gradient of the wave when ERPs were evoked. In the target trials,
the amplitude of the wave tended to be larger than in the non-target trials, and
the gradient of the wave was larger too.

We measured peak-to-peak amplitude for each unit time window (App) and
compared App to the threshold amplitude (Ath). If App exceeded Ath, we counted
how many Apps exceeded Ath consecutively. We defined the number of times as
C, and compared C to a minimum threshold (Cthmin) and maximum threshold
(Cthmax). If C fitted between Cthmin and Cthmax, that trial was discriminated
as a target; anything else was discriminated as a non-target; Cthmax was set to
reject abnormal amplitude levels due to noise. Fig. 5 is a pattern diagram that
shows the sequence of discrimination. We checked the optimal value of the three
thresholds, Ath, Cthmin, and Cthmax, for each electrode.

App

1

a. b.

2
3

C

Fig. 5. Discrimination method: (a) we compared peak-to-peak amplitude for each time

window (App) to threshold amplitude (Ath). If App was larger than Ath, we counted the

number of Apps where the magnitude was larger than the magnitude of Ath for each

trial, with the number referred to as C. (b) We counted C until App continued to exceed

Ath, and compared C to the minimum threshold of C (Cthmin) and maximum threshold

of C (Cthmax). If C was between Cthmin and Cthmax, that trial was discriminated as

a target direction corresponding to the sound source direction.
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5 Result

We calculated the average EEG of the target and non-target trials for each
direction. Additionally, we subtracted the averaged non-target trials from the
averaged target trials so that it removes fluctuations uncorrelated to the event-
related potentials evoked by target selection. Fig. 6 shows the subtracted EEG
signals for the electrodes Fz, Cz, and Pz for each direction. The five narrow
waves indicate the subtracted EEG signals for each of the five subjects, and the
bold wave is the average of the five waves.

Thus, those fluctuations indicate endogenous potentials evoked in response
to the perceived direction. The electrode that showed the largest amplitude was
Pz, and prominent negative electrical potentials were observed for each direction.
These results suggest that ERPs were evoked by discriminating the sound-source
direction. This suggests it is possible to develop a BCI that estimates auditory
stimuli while providing the ability to detect the direction subjects are currently
paying attention to.

Table 1 lists the results of the discrimination rates of the target and non-
target trials for each subject. In the target and non-target trials, the respective
discrimination rates were 65.4 - 76.3 % and 66.4 - 70.5 % on average. Fig. 7
shows selected electrodes indicated in Table 1. These were mainly distributed
at the right rear scalp, and in particular, P2, P6, PO8 were selected more than
once.
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Fig. 6. Subtracted EEG at Fz, Cz, and Pz: the mean non-target trials were subtracted

from those of the target trials to remove external components. The five narrow waves

indicate the subtracted EEG signals for each of the five subjects, and the bold wave is

the average of the five waves.
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Table 1. Discrimination rate, threshold values, and selected electorodes on each target

directions: threshold values were:

Ath: 0.1-4.0 [μV](0.1 μV intervals), Cthmin: 1-10 (1 interval), Cthmax: 3-12 (1 interval)

Subject Cthmin Cthmax Ath [uV] electrode Target [%] Nontarget [%]
M.M 10 12 0.8 CP5 65.4 75
T.I 8 11 0.7 CP4 76.9 66.1
T.S 3 5 2.7 FC3 92.3 66.9
T.Y 5 7 1.7 T8 65.4 66.9
Y.S 1 3 3.1 P2 81.5 67.5

Average 76.3 68.5

Subject Cthmin Cthmax Ath [uV] electrode Target [%] Nontarget [%]
M.M 5 7 1.7 P6 69.2 66.9
T.I 6 8 1 O2 69.2 68.5
T.S 5 7 1.6 P2 69.2 68.5
T.Y 3 5 2.8 Pz 57.7 65.3
Y.S 4 6 1.9 PO8 61.5 62.9

Average 65.4 66.4

Subject Cthmin Cthmax Ath [uV] electrode Target [%] Nontarget [%]
M.M 3 5 2 T8 69.2 74.2
T.I 8 10 0.5 P6 76.9 66.9
T.S 7 9 0.9 F7 73.1 61.3
T.Y 10 12 0.5 P6 73.1 67.7
Y.S 7 9 0.9 F7 84.6 73.4

Average 75.4 68.7

Subject Cthmin Cthmax Ath [uV] electrode Target [%] Nontarget [%]
M.M 4 6 1.9 Oz 69.2 70.2
T.I 8 10 0.9 F1 57.7 69.4
T.S 5 7 3.8 Fp1 73.1 70.2
T.Y 4 6 1.8 P1 84.6 66.1
Y.S 9 12 0.8 PO8 52.4 76.8

Average 67.4 70.5
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Fig. 7. Selected electrodes: the distribution of selected electrodes indicated in Table 1.

These were distributed mainly at the right rear scalp, and in particular, P2, P6, and

PO8 were selected more than once.
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6 Conclusion

We analyzed ERPs involving discrimination of external events, and assessed the
applicability of incorporating the ERPs evoked by auditory stimuli into BCI
systems. A task to discriminate the sound source direction of auditory stimuli
was carried out to investigate the possibility of applying it to develop a BCI.

We conducted an experimental in which subjects counted the number of sound
cues emitted from a target direction (there were two patterns; either ”Left or
Right” or ”Front or Rear”). We observed that ERPs were shown that reflected a
target selection, which was calculated by subtracting the average of non-target
trials from the average of target trials. Thus, it may be possible to develop a
BCI that is capable of estimating the direction of a sound source.

To detect ERPs from EEG data from one trial, we calculated the discrimina-
tion rate using the difference in the EEG amplitude and gradient. As a result,
the discrimination rate in the target trials was 65.4 - 76.3 %, while that in the
non-target trials was 66.4 - 70.5 %.

In a future study, we plan to investigate the development of BCI systems
with greater flexibility by conducting experiments using more patterns of sound-
source directions in discrimination tasks, and to assess ERP patterns evoked by
auditory tones.
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Abstract. Complex neural modules with embedded neural development

and synaptic plasticity features have been connected to form a hier-

archical recurrent circuit. Virtual electrodes have been used to record

a “neural” generated signal, called electrochipogram EChG, from each

module. The EChG are processed by frequency domain methods to deter-

mine the modifications in functional connectivity by assessing quadratic

phase coupling. The experimental paradigm is aimed to describe what

happened prior to, at the beginning, towards the end, and after repeat-

ing an external input at fixed frequency. The results are discussed by

comparing with the same signal processing methods applied to a human

study.

Keywords: Spiking neural networks, hierarchical neural networks, dis-

tributed computing, computational neuroscience, EEG.

1 Introduction

At mesoscopic level, the recording of brain activity by means of electroen-
cephalography (EEG), electrocorticography (ECoG) and local field potentials
(LFP) collects the signals generated by multiple cell assemblies. The neurophys-
iological processes underlying those signals are determined by highly non-linear
dynamical systems [1]. Because of these nonlinearities the functional interactions
between brain areas that are simultaneously sampled by electrophysiological
techniques generate signals that can be better analyzed by third order polyspec-
tral methods that retain phase relationships [2]. This analysis was applied to
EEG by pioneers as early as the 1970s [3]. Phase coupling frequencies can be

K. Diamantaras, W. Duch, L.S. Iliadis (Eds.): ICANN 2010, Part I, LNCS 6352, pp. 135–144, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

http://www.neuroheuristic.org/


136 V. Shaposhnyk et al.

interpreted as frequencies of resonance of standing waves whose wavelength is
associated to the average distance between interacting cell assemblies [4,5].

In the present study we simulate the activity of interconnected neural networks
undergoing neural developmental phases. The implementation of such complex
models requires high performance of the simulation that can be achieved thanks
to a powerful hardware platform, its bio-inspired capabilities, its dynamical
topology, and generic flexibility of artificial neuronal models presented elsewhere
[6,7]. The outcome is the implementation of each neural network into a Ubidule
and a network of Ubidules as a Ubinet. Within each Ubidule the emergence of
functional connectivity driven by neural development, cell and synaptic prun-
ing, and selective external stimuli was assessed by recording Electrochipograms
(EChG) which are analog signals similar to EEG generated by virtual electrodes
located into each Ubidule [8].

The experimental paradigm is aimed to describe what happened prior to, at
the beginning, towards the end, and after repeating an external input at fixed fre-
quency. The rationale is that the spike timing dependent plasticity (STDP) em-
bedded in the neural network models would drive the build-up of auto-associative
network links, within each Ubidule, such to generate an areal activity, detected
by EChG, that would reflect the changes in the corresponding functional connec-
tivity within and between Ubidules. This experiment is compared to a small set
of recordings performed in patients suffering of primary insomnia whose EEG
recordings were analyzed during several sleep phases, before and after a clinical
treatment.

2 Hybrid System Implementation

The Ubidule is a custom reconfigurable electronic device allowing an implemen-
tation of several bio-inspired mechanisms such as growth, learning, and neu-
ral processing [9]. The common Ubidule platform is an hybrid system with an
XScale-class processor that manages the software components of the system,
such as ontogenetic processes, communications with other Ubidules, monitoring
and recording of the activity. This processor is equipped with an open hardware
subsystem which allows connecting any sort of USB device (sensors, actuators,
Wifi / Bluetooth dongles, mass storage, etc.). The processor runs an embedded
Linux operating system which facilitates Ubidule programming and management
while ensuring portability at the same time.

Both hardware and software platforms are based upon modular architecture
that offers interoperability among the hardware and the software parts of the
system and simplifies the usage of bio-inspired features of the hardware. The
neural system simulator consists of multiple computational modules, each one
corresponding to a neural network, exchanging their neural activity and/or re-
ceiving input data from hardware sensors (camera, photodiode, radars, etc.)
and/or providing output to hardware actuators (motor, diode array, etc.). The
characteristics of the implementation naturally geared the modeling framework
towards agent oriented programming. An evaluation of the available platforms
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of this kind led us to select JADE [10] for the development and runtime execu-
tion of peer-to-peer applications which are based on the agent oriented paradigm
[11]. It is a JAVA-based multi-agent development system that fulfils the FIPA
specifications [12].

In this study each network is a 2D lattice of 20 x 20 units that includes
80% of excitatory units and 20% of inhibitory units. Our framework implements
several features of brain maturation, including apoptosis active during the very
initial 700 time units and STDP active from the end of apoptosis until the
end of simulation. This framework was extensively described elsewhere [13,6,7].
Synaptic pruning occured when the activation level of a synapse reached a value
of zero, so that besides cell death and axonal pruning of dead cells provoked by
apoptosis, the units whose all synaptic connections were characterized by a zero
level of activation were definitely eliminated from the network. All units were
simulated by leaky integrate-and-fire neuromimes with background activity used
to simulate the effect of afferences that were not explicitly simulated within a
network. The background activity to each neuron was set to 900 spikes/s with a
low amplitude (1 mV ) generated by uncorrelated Poisson distributed inputs. In
each Ubidule two sets of 20 excitatory units were randomly selected among the
excitatory units corresponding to the “input” and “output” layers of the Ubidule.
The neurons of these layers send and receive connections from the other units
of both types (excitatory and inhibitory) within the network in addition to the
connections with other Ubidules.

Our circuit topology remained fixed during all simulations and the Ubidules
were characterized by their role in the network, i.e., sensory, processing, or mo-
tor (Fig. 1). In our network, the u1Sensory Ubidule has a pure sensory role.
Ubidules labeled u3Process, u4Process, u5Process, u6Process have a pure infor-
mation processing role and are characterized by having neither external inputs
nor afferences from the motor Ubidule. They are all reciprocally interconnected
and send efferent projections to u2Motor.

u1Sensory

u3Process u4Process

u5Process u6Process

u2Motor

LA
YE
R
1

LA
YE
R
2

Fig. 1. The Ubinet hierarchical circuit used in all simulations. Solid arrows depict

connections and directions of information flow between the Ubidules
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3 Electrochipograms

Our design of the bio-inspired artificial neural networks allowed us to imple-
ment realistic virtual electrodes to record neuro-mimetic signals, called Elec-
trochipograms (EChG), characterized by dynamics and features similar to those
recorded in living brain structures. In our implementation the virtual electrode
measures the potentials over a certain ‘area’ of the 2D lattice neuronal network
according to an appropriate weighted sum [8]. The main parameters of the elec-
tode are its position over the neural network and its sensibility function. The tip
of the virtual electrode was located in the middle of the 2D lattice of each Ubidule
neural network. The sensibility function depends only on the distance between a
given point of the lattice and the centre of the electrode field. According to this
model, all neurons located at the same radial distance from the center of the
electrode field make an equivalent contribution to the final electrode output and
thus form an equi-potential layer [8]. In this study, the sensibility radius was set
equal to 9 with a linear decaying function.

The EChG was recorded with a 6 channels virtual electrode system with one
channel per Ubidule during 350 trials. Each trial had a fixed duration and in-
cluded two intervals: a stimulation interval followed by an inter-stimulus interval.
The stimulation was generated by spatio-temporal external stimuli applied only
to the input layer of u1Sensory lasting 128 (Type A) and 512 (Type B) time steps.
The group of simulations with higher stimulation frequency (0.89 Hz) was called
“Simulations A” and the group with lower stimulation frequency (0.67 Hz) was
called “Simulations B”. The extensive use of Fast Fourier Transform in our signal
analysis imposed, for improved efficiency, sampling frequencies which are powers
of two. In practice the time-steps of the simulator were selected for convenient
time units, i.e., 1024 time steps corresponding to 1000 ms. The inter-stimulus
interval was always equal to 1000 ms. The recording time was divided into four
periods defined following the amount of time the Ubinet was exposed to the
stimulation: (i) PRE-learning beginning at time zero and lasting 27 trials char-
acterized by the absence of any external stimulation (i.e., only the background
activity was present during the stimulation interval); (ii) EARLY-learning last-
ing 50 trials, between trials #28 and #77; (iii) LATE-learning lasting 50 trials,
between trials #228 and #277; and (iv) POST-learning lasting 50 trials, be-
tween trials #278 and #327 again characterized by the absence of any external
stimulation.

The signals recorded during the stimulation interval were averaged across
several trials in order to compute evoked potentials (e.g., Fig. 2). The signals
recorded during the inter-stimulus interval were used for frequency domain anal-
yses that included power spectrum, bispectrum and bicoherence analyses.

4 Power Spectrum Analysis

Figure 3 shows the averaged evoked potentials for the “first” (u3P,u4P) and the
“second” (u5P,u6P) processing layers and their corresponding Power Spectrum
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Fig. 2. Evoked potentials averaged over 50 trials obtained from u1Sensory (blue solid

trace) and from u4Process (green dotted trace) Ubidules during the EARLY-learning
stage. The stimulus was applied during 256 time steps. The upper panel displays the

raw evoked potentials and the lower panel shows the signals smoothed by a Blackmann

smoothing window in order to emphasize the low frequency components.

Densities (PSD). In the PSD several peaks could be observed around 10 Hz,
15 Hz and 25 Hz. The results obtained during the EARLY-learning stage were
not significantly different from the PRE recording condition. This suggests that
PSD is little affected by the stimulus structure and by the subsequent functional
connectivity at the begin of the stimulation. This is probably due to the fact
that stimulus-driven selective cell and synaptic pruning were not yet producing
any effect. During the LATE period the PSDs were characterized by a general-
ized decrease in the power and the preservation of the peak near 10 Hz with
a noticeable decrease of the other peaks. It is interesting to notice that in the
POST-learning stage the multiple peaks tended to appear again, thus suggest-
ing that they are mainly driven by the combined effect of background activity
and internal features of the model. Another general observation is that in ma-
ture networks, i.e. during the LATE- and POST-learning phases in comparison
with EARLY- and PRE-learning phases, PSD is getting lower, which means the
total amount of energy transferred by the neural networks is decreasing. The
POST-learning phase was characterized by 3.5 dB/Hz lower values of power
than appropriate values during PRE-learning phases. This decrease is likely to
be associated to the pruning of synpatic links and cell death.
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Fig. 3. Evoked Potentials and Power Spectrum Densities for the averaged recordings of

the pair of Ubidules in Layer 1 and in Layer 2. The left panels correspond to stimulus

Type A and the right panels to stimulus Type B. The gray stripes correspond to the

periods of stimulation. From top to bottom the results referred to the PRE-learning,
EARLY-learning, LATE-learning and POST-learning periods.

5 Quadratic Phase Coupling

The bispectral analysis was performed for all channels separatedly and the val-
ues of phase-coupled frequencies (i.e., the frequencies of resonance f3) were de-
termined. Let us consider the distribution of all phase-coupled frequencies f3

observed in single-channel and cross-channel analyses. Let us consider the fre-
quency band ]1 − 24] Hz for EChG and LF the relative number of f3 falling
into this low frequency range. Let us consider the frequency band ]60 − 84] Hz
and HF the relative number of f3 falling into this high frequency range. The
index of resonant frequencies IRF is defined in the range 0–100 as follows:
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Fig. 4. Relative distribution of the frequencies of resonance for each period for Simu-

lations A and B. Bin size corresponds to 2 Hz intervals. The dotted lines delineate the

limits of LF and HF bands.

IRF = 1
2 ×
(
100 +

(
HF−LF
HF+LF × 100

))
. A value of IRF close to 100 corresponds

to a shift of f3 towards higher frequencies and value of IRF close to 0 corresponds
to a shift of f3 towards lower frequencies. IRF values close to 50 indicates the
phase-coupling was equally distributed in low- and high-frequency bands. The
raw frequency ratio is simply defined by RFR = LF

HF . This means a large value
of RFR corresponds to a shift of phase-coupling towards higher frequencies and
a low value of RFR corresponds to a shift towards lower frequencies.

Figure 4 shows the distribution of f3 in the range 1 to 100 Hz during all
recording periods and for the two types of stimulus used in the Ubinet simulation.
These histograms show a shift towards an increase in low-frequencies resonances
during the LATE-learning phase, especially when compared with the distribution
during the POST-learning, when the input stimulus was absent. The quantitative
assessment of this analysis presented in Table 1 emphasizes the change in the
value of IRF between EARLY- and LATE-learning phases. IRF ≈ 60 decreased
to IRF ≈ 14 followed by an increase to the range 26–29 during the POST-
learning phase suggests that the shift towards low frequencies of phase-coupling
was provoked by the learning protocol and not only due to the maturation of the
network. The analysis of IRF and RFR shows also that in the POST-learning
stage the resonant features remained affected by the functional connectivity
that developed during the trials with external stimulation and the values were
intermediate between PRE/EARLY-learning and LATE-learning phase.

Table 2 shows the relative count of phase-coupling in the frequency bands
of interest and the values of indexes IRF and RFR for all recording periods in
controls and patients suffering primary insomnia before and after treatment [14].
The frequency ranges of the bands refer to those generally used for human studies
and are different from those used for studying the Ubinet activity. However,
there is a linear correspondence between the two sets of frequency bands. The
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general pattern was a high level of high frequency coupling in the group of
patients before treatment. The main effect of the treatment was to reduce high-
frequency coupling and shift phase-coupling towards low frequencies, somehow
with a significant increase of low frequency coupling compared to the controls.
The treatment significantly increased the phase-coupling in the low frequency
band during all other intervals, either re-establishing a level close to the controls
or even beyond that level, as observed during the REM sleep phases.

Table 1. Percentage of phase-coupled frequencies in each frequency bands of interest

for the stimulus Type A and B within neural network development stages. IRF: index

of resonant frequencies. RFR: raw frequency ratio.

Learning Percentage of phase-coupled frequencies Indexes

Phase LF: ] 1-24]Hz ]24-60]Hz HF: ]60-84]Hz IRF RFR

Stimulus Type A
PRE 27 53 20 43 1.34

EARLY 20 50 30 60 0.66

LATE 38 56 6 13 6.67

POST 38 49 13 26 2.83

Stimulus Type B
PRE 20 48 32 62 0.62

EARLY 21 47 31 60 0.68

LATE 49 43 8 14 6.00

POST 44 38 18 29 2.43

Table 2. Percentage of phase-coupled frequencies in each frequency bands of interest

for the the control group and for the group of patients before and after treatment.

REM: rapid eye movement sleep. NREM: rapid eye movement sleep.

Subject Group Percentage of phase-coupled frequencies Indexes

LF: ] 1-13]Hz ]13-33]Hz HF: ]33-48]Hz IRF RFR

Eyes Closed
Control 12 74 14 54 1.17

Patient before 2 77 21 91 10.50

after treatment 8 88 4 33 0.50

NREM
Control 57 30 13 19 0.23

Patient before 27 60 13 33 0.48

after treatment 42 57 1 2 0.02

REM
Control 4 90 5 56 1.25

Patient before 4 85 12 75 3.00

after treatment 19 79 2 10 0.11
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6 Discussion

This paper described the implementation of a neuronal system simulator on a
hybrid scalable multi-agent hardware platform based on the Ubidules framework
[9] and its application to the study of information processing in hierarchically
organized neural networks circuits. We have explored one simple Ubinet network
circuit characterized by a sensory network processing the external input that
projects to a hierarchically organized multilayered (in our case formed by only
two layers) recurrent network of processing areas which eventually project on
a motor network that generates an activity keen to be encoded into actuators.
The experimental approach to the Ubinet activity by recording the EChG was
aimed to assess the effect of a repeated stimulation on the functional connectiv-
ity established between the Ubidules. Our PRE-learning stage could represent a
control situation driven exclusively by the background activity of the subject’s
brain. The subject is naive to the coming stimulus so that a learning process
can occur. During the EARLY-learning stage the repetition of the stimuli at
regular intervals might initiate an unsupervised recognition process that eventu-
ally shaped the functional connectivity of feature detecting cell assemblies after
selective synaptic and cell pruning.

The third order spectral analysis of EChG and EEG allows to determine the
frequency range of quadratic phase coupling (resonant frequency) across cortical
areas [4,5]. According to the usual interpretation based on standing waves theory,
high resonant frequencies mean that information processing is transmitted at
short distance (i.e., the distance between two nodes of the wave). A coupling
that occurs at high frequencies may be interpreted as a sign of focal cortical
interactions. Conversely, a coupling at low frequencies suggests an increased
cross-areal involvement in neural processing.

A remarkable result is the finding that in the Ubinet simulations the LATE-
learning stages were characterized by IRF ≈ 14 compared with PRE- and
EARLY-learning stages (IRF ≈ 43− 62). In the study with human Subjects we
observed that controls and patients after treatment were characterized, during all
sleep phases by values of IRF lower than insomniac patients before treatment.
It is also worth reporting that the only condition that let appear a difference
of resonant frequencies in the range ]13-33] Hz was during NREM sleep irre-
spective of the treatment. This last result suggests that despite an overall shift
of resonant frequencies towards recovery, focal cortical interactions tended to
persist in patients during NREM sleep periods. Both an appropriate stimula-
tion of the Ubinet and the cognitive brain therapy appear to modify the ratio
of resonant frequencies provoking a shift of the indexes towards low frequencies
at all brain states. Our findings suggest that new tools provided by modular
and scalable neural network simulators offer new opportunities to neurophysiol-
ogists and clinicians to test hypotheses based on the analysis of neural signals
at mesoscopic levels.
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Abstract. This study investigates the ability of a diverging/converging

neural network to transmit and integrate a complex temporally orga-

nized activity embedded in afferent spike trains. The temporal infor-

mation is originally generated by a deterministic nonlinear dynamical

system whose parameters determine a chaotic attractor. We present the

simulations obtained with a network formed by simple spiking neurons

(SSN) and a network formed by a multiple-timescale adaptive threshold

neurons (MAT). The assessment of the temporal structure embedded in

the spike trains is carried out by sorting the preferred firing sequences

detected by the pattern grouping algorithm (PGA). The results suggest

that adaptive threshold neurons are much more efficient in maintain-

ing a specific temporal structure distributed across multiple spike trains

throughout the layers of a feed-forward network.

Keywords: Spiking neural networks, synfire chains, adaptive threshold

neurons, computational neuroscience, preferred firing sequences.

1 Introduction

A neuronal network can be considered as a highly complex nonlinear dynamical
system able to exhibit deterministic chaotic behavior, as suggested by the ex-
perimental observations of single unit spike trains, which are sequences of the
exact timing of the occurrences of action potentials [1,2]. Previous studies [3,4]
showed that deterministic nonlinear dynamics in noisy time series could be de-
tected by applying algorithms aimed at finding preferred firing sequences with
millisecond order time precision from simultaneously recorded neural activities.
A neural network is also characterized by the presence of background activity of
unspecified or unknown origin that is often represented by stochastic inputs to
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each cell of the network. Then, a neuron belonging to a cell assembly, somehow
associated to a deterministic nonlinear system, within the network is expected
to receive inputs characterized by an embedded temporal structure as well as
inputs corresponding to the stochastic background activity. It has been shown
that the characteristic transfer function of a neuronal model and the statistical
feature of the the background activity may affect the transmission of temporal
information through synaptic links [5].

In the current paper we extend our previous analysis to diverging/converging
feed-forward neuronal networks–synfire chains–which are supposed to represent
the most appropriate circuits able to transmit information with the best tem-
poral accuracy [6]. Moreover the temporally organized activity was fed to the
network in a distributed way across the input spike trains [7]. We suggest that
adaptive threshold neurons are much more efficient in maintaining a specific
temporal structure throughout the layers of a synfire chain.

2 Methods

2.1 Spiking Neuron Model

We investigated two neuron models aimed to reproduce the dynamics of regular
spiking neurons. The first is a simple spiking neuron (SSN) [8] described as:

dv

dt
= 0.04v2 + 5v + 140 − u + Iext(t) , (1)

du

dt
= a(bv − u) ,

with the auxiliary after-spike resetting, v ← c and u ← u+d when v ≥ +30 mV .
v represents the membrane potential [mV ], u is a membrane recovery variable,
a and b control the time scale of the recovery variable and its sensitivity to
the subthreshold fluctuation of the membrane potential. This model generates
an action potential with a continuous dynamics followed by a hyperpolarization
modeled as a discontinuous resetting. Parameters were set as a = 0.02, b = 0.2,
c = −65, d = 8 so to mimic the behavior of a regular spiking neuron [8].

The second model is a multiple-timescale adaptive threshold (MAT) model
[9] derived from [10]. In this model, the dynamics of the membrane potential is
described as a non-resetting leaky integrator,

τm
dV

dt
= −V + R A Iext(t) , (2)

where τm, V, R and A are the membrane time constant, membrane potential,
membrane resistance, and scaling factor, respectively. A spike is generated when
the membrane potential V reaches the adaptive spike threshold θ(t),

θ(t) = ω + H1(t) + H2(t) ,

dH1

dt
= −H1/τ1 , (3)

dH2

dt
= −H2/τ2 ,
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where ω is the resting value, H1 and H2 are components of the fast and slow
threshold dynamics (characterized by decaying time constants τ1 and τ2, respec-
tively) which has a discrete jump when V (t) ≥ θ(t),

H1 = H1 + α1 , H2 = H2 + α2 . (4)

Parameters were set to values τm = 5 ms, R = 50 MΩ, A = 0.106, ω = 19 mV,
τ1 = 10 ms, τ2 = 200 ms, α1 = 37 mV, α2 = 2 mV. The model with the above
parameter values reproduces the activity of a regular spiking neuron [9].

Let us denote Iext the input synaptic current, defined as

Iext = −Aext

∑
k

gsyn(t − tk) , (5)

where Aext is an intensity of the synaptic transmission of the spike received as
an external input (Aext = 1 was used here for all simulations), tk represents time
when the k-th spike arrives to the neuron model, and gsyn is the post synaptic
conductance represented by

gsyn(t) = C0
e−t/τ̃1 − e−t/τ̃2

τ̃1 − τ̃2
, (6)

where τ̃1 and τ̃2 are rise and decay time constants given by 0.17 and 4 ms,
respectively, and C0 is a coefficient used to normalize the maximum amplitude
of gsyn(t) to 1. Notice that a single synaptic current given to a neuron is not
strong enough to evoke post-synaptic neuronal discharges. Hence, it is necessary
for a post-synaptic neuron to integrate several arriving synaptic currents for a
spike generation.

2.2 Input Spike Train

We consider the deterministic dynamical system described by Zaslavskii [11]:{
xn+1 = xn + v(1 + μyn) + εvμ cosxn , (mod. 2π)
yn+1 = e−γ(yn + ε cosxn) ,

(7)

where x, y, μ, v ∈ R, the parameters are μ = 1−e−γ

γ , v = 400
3 and initial condi-

tions set to x0 = y0 = 0.3. With this parameter set the system exhibits a chaotic
behavior. Time series {xn} are generated by iterative calculation. A new time
series {wn} corresponding to the sequence of the inter-spike-intervals is derived
by wn = xn+1 − xn + C, where C = min{(xn+1 − xn)} + 0.1 is a constant to
make sure wn > 0. The dynamics was rescaled in milliseconds time units with
an average rate of 5 events/s (i.e., 5 spikes/s) in order to let the mean rate
of the Zaslavskii spike train be comparable to neurophysiological experimental
data. We calculated N = 10000 points of time series {wn} which corresponds to
a spike train lasting L = 2000 seconds.

Given a dynamical information ratio D, where 0 ≤ D ≤ 1, a percentage
of spikes corresponding to (1 − D) × 100 % are selected at random (uniformly
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Fig. 1. Return maps of input spike trains with an average rate of 5 spikes/s as a

function of the dynamical information ratio (D). The (n+1)-st inter-spike-interval are

plotted against the n-th inter-spike-interval. The axes are scaled in ms time units. (a)

D = 1, (b) D = 0.7, (c) D = 0.5, (d) D = 0.3, (e) D = 0.

distributed) and deleted from the initial Zaslavskii spike train, thus yielding a
sparse Zaslavskii spike train. Then, the sparse Zaslavskii spike train is merged
with a Poissonian spike train with mean firing rate N(1 − D)/L spikes/s, thus
yielding an input spike train with an average rate close to 5 spikes/s and a
duration of 2000 s. In case of overlapping spikes only one event is kept in the
input spike train. Notice that if D = 1 all input spike trains are identical to the
original Zaslavskii spike train and if D = 0 all input spike trains are independent
Poissonian spike trains. For a given dynamical information ratio D this procedure
is repeated 20 times such to provide 20 different input spike trains. In the current
simulations the dynamical information ratio ranged from 0 to 1.0 with 0.1 steps.
Return maps of input spike trains are shown in Fig. 1.

2.3 Neuronal Network

We consider a diverging/converging neural network composed of three layers
(Fig. 2). Each layer includes 20 neurons characterized by the same neuronal
model with identical parameter values. Each neuron belonging to the first layer
receives fifteen input spike trains randomly selected out of the twenty that were
generated for a given dynamical information ratio D. Hence, a neuron in the first
layer receives afferences from 15 input spike trains (each one firing on average at
= 5 spikes/s) and an independent Poissonian spike train with a mean firing rate
of 425 spikes/s as background activity. This means a neuron of the first layer
integrates about 500 spikes in 1000 millisecond by the fourth order Runge-Kutta
numerical integration method with 0.01 ms time steps. Each neuron of the next
layer receives afferences from 15 neurons randomly selected in the previous layer.
In addition, each neuron receives an independent Poissonian spike train with a
mean firing rate of 425 spikes/s as background activity. We observed that those
neurons integrated between 490 and 540 spikes in 1000 ms The explicit synaptic
transmission delay is not considered here. All connections were hardwired, and
no synaptic plasticity was taken into account. Each simulation run lasted 2000 s.
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Fig. 2. Convergent/divergent feed-forward circuit formed by three neuron layers. Each

cell receives 15 afferent spike trains randomly selected out of 20 and a PST (independent

Poissonian spike train).

2.4 Pattern Detection and Reconstruction of Time Series

Subsets of spike trains were obtained by using the Pattern Grouping Algorithm
(PGA) [12,13,14] as follows. Firing sequences repeating at least 5 times and
above the chance level (p = 0.05) are detected by PGA. The interval between the
first and the last spike of the firing sequence defines the duration of the pattern
that was set to ≤ 600 ms. Given a maximum allowed jitter in spike timing
accuracy (±3 ms) clusters of firing sequences are represented by a template
pattern. For example, if there are 9 triplets (i.e., firing sequences formed by 3
spikes) belonging to the same cluster, a subset of the original spike train that
includes 27 spikes (= 9 × 3) can be determined by a template pattern. Then,
the subset of the original spike train referred to as “reconstructed spike train” is
obtained by pooling all spikes belonging to all template pattern clusters [4]. The
reconstructed spike train from the original Zaslavskii series included 92.3% of the
original spikes and its return map is shown in Fig. 3a. In a case of a Poissonian
spike train with an average rate of 5 spikes/s the reconstructed spike train
included only 0.4% spikes of the original series (Fig. 3b).

Moreover, we have measured the dispersion of spike distribution by the Fano
factor [15], which is F = 1 for a Poissonian spike train, and the similarity ratio
S between two spike trains defined as follows. Suppose that spike trains A and
B contain NA and NB spikes and M spikes occur in A and B at the same
time. The similarity ratio is defined by S = 2M/(NA + NB), which is S = 1 for
two identical spike trains. If we allow the coincidence to occur within a given
jitter (Δ = 5 ms here), then the condition tnB − Δ ≤ tkA ≤ tnB + Δ satisfies the
coincidence of the n-th spike in train B with the k-th spike in train A.
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Fig. 3. Return maps of reconstructed spike trains with mean firing rate at 5 spikes/s.
(a) from the original Zaslavskii spike train; (b) from a Poissonian spike train.

3 Results

We investigated the continuous dynamics of the membrane potential for neurons
characterized by the models SSN and MAT and analyzed their output spike
trains at all layers. Table 1 summarizes the mean firing rates as a function of
the layer and of dynamical information ratio D. The rates increased with an
increase of D and for the same D they increased with the order of the layer.

In the 1st layer we analyzed the effect of the model by comparing cells that
received the same inputs. Figure 4 shows the example of two different neurons
(cells no. 114 and 115) located in the 1st layer. In the bottom panel the in-
put spike trains with dynamical information ratio D = 0.5 and the Poissonian
background are sorted in order to emphasize the spikes belonging to Zaslavskii.
Zaslavskii spikes increase the chance to overlap and to produce a stronger post-
synaptic current by temporal summation with an increase in D. In this example,
eight spikes belonging to the original Zaslavskii spike train arrive simultaneously
at t = 2150 ms (see the upward arrow in the last panel of Fig. 4) and evoke a
suprathreshold current that generates a spike.

The return maps of the raw output spike trains of one representative neuron
of each layer and for each neuronal model are shown in Fig. 5a as a function of D.
As D decreased, the attractor contour become blurred. Notice that for exclusive
Poissonian input spike trains (D = 0) the return maps of the SSN model (Fig. 5a
(rightmost column) show a bias in the distribution of points, with empty bands

Table 1. Mean firing rate (spikes/s) of a neuron of SSN and MAT models as a function

of the order of the layer (1st-2nd-3rd) and of the dynamical information ratio D. SD

ranged between 0.02 and 0.03 spikes/s.

SSN model MAT model

D 1 0.7 0.5 0.4 0.3 0.2 0 1 0.7 0.5 0.4 0.3 0.2 0

1st 6.4 6.1 5.9 5.7 5.4 5.1 4.8 6.6 6.4 6.1 5.7 5.3 4.9 4.5

2nd 6.8 6.6 6.4 6.2 5.8 5.4 5.0 7.7 7.1 6.7 6.4 5.8 5.2 4.5

3rd 7.0 6.9 6.7 6.5 6.1 5.7 5.2 8.9 7.9 7.3 6.9 6.3 5.6 4.7
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Fig. 4. Left and right panels shows data from two neurons belonging to the 1st layer.

Dynamics of the membrane potentials for model SSN (first row) and for model MAT

(second row), and the total post-synaptic input current (third row) are shown as a

function of the input spike trains (bottom panels) where Zaslavskii and Poissonian

spike trains are sorted out. The dynamical information ratio was set to D = 0.5.

near the axis, due to an internal temporal structure embedded within the model
dynamics. In the MAT model it is interesting to observe that with an increase in
the order of the layer the attractor contour become clearer even for D as low as
D = 0.3. The “reconstructed spike trains” statistics are summarized in Table 2
and the return maps illustrated by Fig. 5b clearly show the noise filtering effect
obtained by applying PGA, thus revealing the underlying attractor contour.

Table 2. Firing rate statistics of the reconstructed spike trains of SSN and MAT

neurons shown in Fig. 5b as a function of the order of the layer (1st-2nd-3rd) and of

the dynamical information ratio D

SSN model MAT model

D 1 0.7 0.5 0.4 0.3 0.2 0 1 0.7 0.5 0.4 0.3 0.2 0

Firing rate (spikes/s)

1st 5.2 3.9 2.7 2.1 1.6 1.2 1.1 5.0 5.1 3.4 1.8 1.1 0.3 0.2

2nd 5.0 4.1 3.3 2.7 2.4 1.8 1.3 5.2 5.2 4.6 3.4 1.4 0.3 0.2

3rd 4.8 4.1 3.0 2.9 2.0 1.7 1.5 5.2 5.2 4.8 3.7 1.8 0.8 0.1

Fano factor

1st 0.55 0.64 0.97 1.21 1.53 1.86 1.79 0.67 0.64 0.84 1.36 1.84 2.74 2.68

2nd 0.56 0.64 0.81 1.00 1.08 1.37 1.90 0.71 0.73 0.69 0.83 1.71 2.72 2.56

3rd 0.58 0.66 0.91 0.95 1.34 1.50 1.64 0.67 0.70 0.69 0.79 1.48 2.39 3.26

Similarity ratio (%)

1st 79.9 58.8 31.9 18.8 9.8 4.6 2.0 89.1 86.7 64.2 38.7 20.0 2.9 0.4

2nd 25.5 8.0 5.1 4.6 4.3 2.7 2.0 86.6 85.2 74.8 57.3 24.4 3.8 0.4

3rd 5.5 5.7 4.8 4.4 3.6 2.8 2.0 87.4 82.0 67.9 49.3 22.1 5.8 0.1
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Fig. 5. Return maps of neuronal output spike trains and spike trains reconstructed from

them. One neuron from each layer was selected as an example for several dynamical

information ratio D and for both of the SSN and MAT models.
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With a decrease of D, the number of spikes detected by PGA decreased (i.e.
the firing rate of the reconstructed spike trains decreased). In the case of SSN
significant amount of spikes were detected by PGA even for D ≤ 0.3, but the
return maps don’t show the contour of the Zaslavskii attractor and the preferred
firing sequences detected by PGA can be attributed to the intrinsic dynamics
of the model. On the opposite, the MAT model seldom introduced a tempo-
ral structure in the output spike train due to intrinsic model dynamics. With
the MAT model notice that the similarity ratio and the firing rate of the re-
constructed spike train increased from the 1st to the higher order layers with
D = 0.4. In both models, the Fano factor was larger for small values of D and
became less than 1 at the third layer for both models with D ≥ 0.4. Looking
at the similarity ratio the two models behaved very differently. Furthermore, for
the MAT model only the similarity ratio tended to be preserved across the layers
for D ≥ 0.5 and was even near 0.5 in the 3rd layer with d = 0.4.

4 Discussion

The deterministic sequence of spikes generated by a chaotic attractor was dis-
tributed and embedded in the input spike trains fed to a partially conver-
gent/divergent feed-forward layered network. We have provided evidence that
a multiple-timescale adaptive threshold (MAT) neuronal model [9] was able to
retain and transmit a sizable amount of the initial temporal information up to
the 3rd layer with dynamical information ratio as low as D = 0.4. Conversely, a
simple spiking neuron (SSN) model [8] introduced a bias in the temporal pattern
of the output spike train associated to its model dynamics which interfered with
the input temporally organized information. It is interesting to notice that by
passing through the successive layers, the similarity ratio of the SSN neurons
decreased drastically despite the fact the reconstructed spike train and the Fano
factor were kept rather high.

The current study does not pretend to exclude SSN models from being able
to preserve and transmit temporal information through complex neural network
circuits because we did not carry out a parameter search of that class of models
in order to optimize the performance. The MAT model is interesting because
in presence of a pure stochastic input very few spikes were detected by the
PGA filtering procedure, thus indicating that this model did not introduce a
bias. We consider that this work may be viewed as seminal addressing the novel
problem because it suggests that MAT class of models might represent a good
candidate for integrating a distributed deterministic temporal information and
preserve its dynamics through networks of cell assemblies. Our further work is
aimed to determine the limits of this performance by increasing the number of
layers, designing inhomogeneous and diverging/converging networks with recur-
rent connections and with the introduction of explicit synaptic delays and spike
timing dependent plasticity.
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Abstract. Formations of neuronal networks and body tissues are con-

trolled by multi-cellular collective migration during embryonic develop-

ment. Despite the fact that individually migratory cells show stochastic

behaviors, the development is precisely regulated. Although such a prop-

erty of single cell migration has been investigated, relationship between

microscopic property of individual cell migration and macroscopic multi-

cellular migration remains largely unknown. To explore this, we focused

on migration of neural crest cells, during which cells collectively migrate

accompanied with autonomous formation of stream. Computer simula-

tions of our multi-cellular model suggested that the stochastic migration

in the level of single cells works to efficiently achieve collective migration.

1 Introduction

During embryonic development, cell migration plays an essential role of many bi-
ological functions, such as axon guidance for wiring neuronal networks and tissue
formations. Such cell migration is directed by extra-cellular cue molecules as a
chemo-attractant or repellant. The migrating behaviors at the level of individual
cells are often not deterministic but instead innately stochastic, as they perform
a biased random walk up toward gradient of chemo-attractants [1,2]. Although
such a stochastic nature of single cells may seem disadvantageous for precise
control, the embryonic development is a reproducible phenomenon. There must
be homeostatic mechanism by which cellular stochastic nature is absorbed at
the level of multi-cellular systems, although developmental processes should be
unstable enough to break the symmetry for forming biological patterns, whereas
being stable to maintain the reproducibility of the patterns.

Multi-cellular migration shows various types of migration mode, depending
on cell types and time scales of their development. These modes are classified
into two main categoriess, individual and collective migrations [3]. Individual
one is very dispersive allowing cells to cover local area, for example, as im-
mune cell trafficking [4]. Collective migration consists of cohesive multi-cellular
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units, which function for building complex tissues and axonal projection of de-
veloping neurons. It has been recently shown that the migration modes can be
experimentally interconverted between individual and collective migrations by
manipulating the expression level of proteins underling cell properties [5]; up-
regulation of cell adhesion molecule (CAM) in individually migratory cells leads
to collective migration [6], whereas down-regulation of CAM in collectively mi-
grating cohort results in individual migration [7,8]. The migrating mode could
be transited through alternation of many physical parameters of cell migration,
such as driving force, stiffness of the cell and randomness of the migration.

In this study, we examine how these parameters contribute the transition be-
tween migration modes. To this end, we focus on “neural crest migration” as
a model biological system, because even without extra-cellular signals, neural
crest cells collectively migrate to branchial arches from rhombomeres accompa-
nied with forming stream. We constructed a bio-physical model of multi-cellular
migration and performed a computer simulation, which led us to hypothesize
that migratory cells exploit the stochasticity within the multi-cellular system to
efficiently achieve collective migration with autonomous stream.

2 Model

Although the cellular migration is a complicated process, during which a cell
receives extracellular signals and processes those through intracellular signal
transduction, which controls the cell shape by regulating the reorganization of

O

Attractant gradient

Fig. 1. Model for simulation. If cells indicated by white circles are overlapped, repulsive

force Frep is induced (left panel). A migrating cell indicated by a black circle generates

driving forces Fmigij , Fmigik and their reaction forces Fmigji, Fmigki are also applied

to both contacted cells.
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cytoskeleton and motor proteins, a minimum of cellular characteristics was ex-
tracted in our model, as follows. The model multi-cellular system consists of a
number of mechanically interacting cells (Fig. 1). These cells were, for simplic-
ity, regarded as two-dimensional disks whose radiuses are slightly variant, and
packed in the two-dimensional rectangular space. In this model, when cells con-
tact, repulsive forces are generated, because deformation of their morphologies is
assumed to produce elastic force (Fig. 1, left). To address cell migration, we con-
sider two types of cell, actively migrating and non-migratory cells. The migratory
cells are assumed to have chemotactic ability and be attracted by extra-cellular
signals toward the same direction with certain randomness. The non-migratory
cells are adhered by migratory cells and utilized as ground surface for generating
the driving force of migration, satisfying principle of action and reaction (Fig. 1,
right). Also, the non-migratory cells are assumed to spontaneously yield random
movement. Thus, the dynamics of cellular positions are described as:

ηdri =

⎧⎨⎩∑
j∈Ni

Frepij
+
∑

j∈Mi

Fmigij

⎫⎬⎭dt + σidWi (1)

Frepij
= k ((Ri + Rj) − ‖ri − rj‖) ri − rj

‖ri − rj‖ (2)

Fmigij
=
(

Fmigx
Fmigy

)
= s(i)

( ‖Δy‖
‖ri−rj‖

− ‖Δy‖
Δy

Δx
‖ri−rj‖

)
(3)

s(i) =

{
1 cell i is migratory
−1 cell i is not migratory

(4)

where k: Young modulus, Ri: radius of cell i, ri: position of cell i, σi: fluctua-
tion intensity of cell i, dWi: independent random variable sampled by Gaussian
distribution with variance of (dt)2, Ni: set of indices of all cells contacting with
cell i, Mi: index set of another type of cells contacting with i, and η: viscous
modulus. In this formulation, acceleration was not addressed under the assump-
tion that viscosity of cellular environment is enough high. In this model, driving
forces for rightward migration of a migrating cell depend on the number of con-
tacts with non-migratory cells because action-reaction forces are generated at
constant intensity for each contact. Then, a simple geometrical constraint is
satisfied, Fmig · (ri − rj) = 0, ‖Fmig‖ = 1 and (Fmig)x > 0, leading to equa-
tion (3). To avoid the effect from the boundary of the two-dimensional space,
torus condition was employed. Parameters used are listed as follows, k = 10,
η = 1, Ri is sampled from Gaussian distribution with mean 1 and variance 0.16,
and σi depend on the simulation, because noise effects are our interest in this
study.
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Fig. 2. Snapshots in a single series of simulation. White and black disks indicate mi-

gratory and non-migratory cells, respectively. The migratory cells are initially dis-

tributed as a cluster at t = 0 (upper left panel), then migrate rightward progressively

at t = 16, 32, 48 (the other three panels). Fluctuation intensities are set to σmig = 0,

σn = 0.

3 Result

3.1 Noise-Induced Collective Migration

In our simulation, migratory cells were initially distributed in the center of the
space and migrated rightward (Fig. 2). Through many simulation runs with
changing parameter values, we found there are three specific migration patterns
depending on the stochasticity of single cells (Fig. 3). First, when cells are not
fluctuated by themselves, the migrating cells form chain-like structure, but this
structure is not stably maintained and frequently divided to a couple of small
clusters. Second, when migratory cells are strongly fluctuated and non-migratory
cells are weakly fluctuated, migratory cells actively move forming one large cellu-
lar stream. Third, when migratory cells are weakly fluctuated and non-migratory
cells are strongly fluctuated, migratory cells are rapidly dispersed. These simu-
lation results suggest that even though streams of migratory cells are not routed
by extra-cellular signals, multi-cellular system has a potential to show such pat-
terns, and that the modes of multi-cellular migration are regulated by both
intrinsic noise and environmental noise.

To quantitatively evaluate such an aggregation of migratory cells, we defined
an order parameter which is a mean number of migratory cells around them-
selves:

φ =
1

#C
∑
i,j∈C

H(R̄ − ‖ri − rj‖), (5)



Noise-Induced Collective Migration for Neural Crest Cells 159

σmig σn snapshot property

0 0 Unstable stream

0.8 0.2 Stable stream

0.2 0.8 Dispersed
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0.4
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Noise Strength σ
n

Order parameter φ

Fig. 3. Effect of cellular stochastic property on migrating modes. Left table summarizes

specific migrating patterns depending on the parameters, where σmig and σn indicate

fluctuation intensities of migratory and non-migratory cells. Right figure shows the

order parameter indicated by equation (5), against various pairs of noise strengths of

migratory and non-migratory cells.

where C is the index set of chemotactic cells, R̄ is a constant set to 5 here, and
H(x) is the Heaviside step function. Fig. 3 (right) shows how this order parameter
depends on the strength of stochasticity in migrating and non-migratory cells.
Even though fluctuation intuitively facilitates mixing the migratory cells, an
optimal stochasticity exists for achieving collective migration as Fig. 3 (right)
shows.

3.2 Long-Distant Interaction between the Migratory Cells

Although each cell has solely repulsive force with adjacent cells, in our model,
the migratory cells seem to be attractive each other for the collective mode,
so that their interaction could be complex and long-distant. To examine the
effective interaction between migratory cells, we reconstruct effective potential
field between the cells, assuming that cellular movement is determined by

dr

dt
= −∂U

∂r
+
(

v
0

)
, (6)

where v indicates average velocity due to driving force for migration. To recon-
struct the potential, we simulated the system including only two migratory cells,
and then obtained vector field of velocity as a function of relative coordinates
between the two cells. Although the potential is usually obtained by directly in-
tegrating vector field with respective to r, we took a different approach; potential
was described by a parametric polynomial function;

U(x, y) = a00 + a10x + a01y + a20x
2 + a11xy + a02y

2 + · · · , (7)
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where aij is coefficient of xiyj and x = (x, y) denotes the relative coordinates
on the two-dimensional space. Relative velocity of the migrating cell is then
re-expressed by

vx =
∂U

∂x
= a10 + 2a20x + a11y + · · · , (8)

vy =
∂U

∂y
= a01 + a11x + 2a02y + · · · , (9)

where v is included in a10. These coefficients are estimated by the least square
method, based on the vector field sampled by simulations:⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

a10

a01

a20

a11

a02

a30

a21

a12

a03

...

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
= −

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 2x1 y1 0 3x1
2 2x1y1 y1

2 0 . . .
0 1 0 x1 2y1 0 x1

2 2x1y1 3y1
2 . . .

1 0 2x2 y2 0 3x2
2 2x2y2 y2

2 0 . . .
0 1 0 x2 2y2 0 x2

2 2x2y2 3y2
2 . . .

1 0 2x3 y3 0 3x3
2 2x3y3 y3

2 0 . . .
0 1 0 x3 2y3 0 x3

2 2x3y3 3y3
2 . . .

...
...

...
...

...
...

...
...

...
. . .

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

†⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

vx1

vy1

vx2

vy2

vx3

vy3

...

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (10)

where † denotes Moore-Penrose pseudoinverse.
Potential landscapes were determined for two cases that the cluster of the

migratory cells was and was not stably maintained (Fig. 4). In the first case, the
potential landscape shapes as saddle-node, which indicates that the migratory
cells in parallel are attracting each other and then tandemly arrayed in, leading
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Fig. 4. Potential landscape representing interaction between the two migratory

cells.The cell migrates according to the slope of the potential due to the effect of

the other cell at the original point, which is migrating along a line y = 0. Left and

right panels indicate the cases where the collective migration was and was not stably

maintained which correspond to stable stream and dispersed as shown in Fig. 3.
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to the collective migration. In the latter case, the potential becomes almost flat
(slightly saddle-node), suggesting no attractive interaction between the migra-
tory cells. These results also support our hypothesis of noise-induced collective
migration

3.3 The Speed of Collective Migration

Next, we investigated the effect of population size of migrating cells. We found
that increase in the population allows the collective migration to emerge more
stably and to speed up in a saturating manner (Fig. 5, green line), which is con-
sistent with experiments [9]. We additionally examined the relationship between
the speed and stiffness which is another important property of cells (Fig. 5, red
and blue lines). When all the cells are soft, the speed of the collective migrating
becomes independent of the population size, because the driving force of migra-
tion is enough to overcome the potential field produced by surrounding cells.
When they are hard, on the other hand, the collective migration slows down due
to strong potential barrier produced by hard surrounding cells.
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Fig. 5. The average speed profile of migratory cells depending on their population

size and stiffness. Soft, intermediate and hard cells are represented by k = 5, 10, 15,

respectively. Other parameters are set as follows, σmig = 0.8, σn = 0.2.

4 Disccusion

By simulating multi-cellular migration by simple mechanistic cells, we have found
such a system can emerge collective migration typically seen in neural crest cell
systems. In our model, the cellular migration is modeled as just applying driving
force to the cell toward a specific direction with randomness, while reaction
forces are applied to neighboring cells. However, an in vivo mechanism of cellular
migration must be more complicated than we have assumed here. In reality, a
chemotactic cell extends special structures called filopodia and lamellipodia,
with which cytoskeletal network regulates cell motility. Although we ignored a
complex rheological property of such structures [10], the minimum model that
we adopted was still informative in understanding the system property of multi-
cellular migration.
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Our model can explain neural crest migration with formation of stream. This
collective migration was hypothetically thought to be extra-cellularly regulated
by repulsive cue molecule [11]. Recently, however, it has been reported that
down-regulation of repulsive cue, neurophilin-1, does not affect the collective
migration of neural crest cells [12]. Our model indicates that a combination of
physical interplay between the cells and stochastic nature of migration leads to
the collective migration with autonomous formation of stream.

How chemotactic cells manage to suppress intrinsic stochasticity of signal
transduction has been previously discussed [1], whereas multi-cellular functions
that are actively organized by stochastic migration of individual cells have not
been examined. Therefore, our work is first presenting a possible model for
emerging collective motion of multi-cellular systems.
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Abstract. Learning processes allow the central nervous system to learn

relationships between stimuli. Even stimuli from different modalities can

easily be associated, and these associations can include the learning of

mappings between observable parameters of the stimuli. The data struc-

tures and processing methods of the brain, however, remain very poorly

understood. We investigate the ability of simple, biologically plausible

processing mechanisms to learn such relationships when the data is rep-

resented using population codes, a coding scheme that has been found in

a variety of cortical areas. We require that the relationships are learned

not just from the point of view of an omniscient observer, but rather

the network itself must be able to make effective use of the learned re-

lationship, within the population code representations. Using a form of

Hebbian learning, local winner-take-all, and homeostatic activity regula-

tion away from the periphery, we obtain a learning framework which is

able to learn relationships from examples and then use the learned rela-

tionships for a variety of routine nervous system tasks such as inference,

de-noising, cue-integration, and decision making.

1 Introduction

One of the key properties of the brain is the ability to notice and learn the
relations between inputs in an unsupervised manner [1, 2, 3, 4]. It is believed
that this is achieved by modifying the structure [5, 6, 7] and the dynamics
[8, 9, 10] of biological neural networks, for example through the plasticity of
synapses or other neural processes [11, 12, 13].

Phenomenologically, the ability of brains to discover relationships between
otherwise independent events has been known since the pioneering work by
Pavlov [2]. His work on dogs showed that a neutral stimulus (the ringing of
a bell) can be induced to elicit an associated reaction (production of saliva)
by ringing a bell every time the dog gets food. After training, the association
between the bell and salivation may be due to the food representation being
activated by the bell representation.
� Supported by EU Project Grant FET-IP-216593.

�� Supported by ETH Research Grant ETH-23 08-1.
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In the following decades, it became clear that the ability to learn relations
between different sensory inputs is in fact omnipresent in our brains. As an
example of an inference task, when we hear a sound, we can use the audio input
to estimate (inference) the visual location of the corresponding visual input.
This process is continually maintained by learning mechanisms: if we wear prism
glasses that shift the visual input, it is possible to re-learn the correspondence.
Or, given uncertain visual and audio cues about the location of a stimulus, we
can combine these cues (cue-integration) to get a better estimate of the location.
If visual and audio cues differ so much as to be inconsistent, for example due to
light or sound being reflected so as to appear to have a different source, then we
simply base our position estimate on the stronger of the two competing inputs
(decision).

Biological data shows that neural populations, regions and areas encode spe-
cific sensory, motor, and cognitive modalities (see e.g. [14, 15] and contained
references). Connected regions exchange signals and thus influence their mutual
activity [14], and simulations have also exhibited such interactions in networks
with hand-crafted connectivity [9, 15, 16]. Simulations such as these have shown
how inference, de-noising, cue-integration, or decision tasks can be performed
on input received from different visual, motor, or other sources, for complex
problems like coordinate transformations. However, exhibiting these abilities in
networks that learn the relationships, rather than using hand-crafted weights,
has remained a challenge.

Given the presence of such abilities in the brain, the question that imme-
diately arises is how the brain implements them. A major step in this regard
was achieved by Zipser and Andersen [17], who trained an artificial neural net-
work with simulated biological data using the backpropagation algorithm [18].
In their network, hidden nodes developed gain field properties [17]. While their
result shows that neural networks are able to learn such tasks in principle, the
learning strategy they used seems unlikely to be the one used in our brains:
the back-propagation algorithm is a supervised learning scheme, using an ex-
ternally generated error signal, and it is generally considered to be biologically
implausible [19, 20].

Our goal is to exhibit the ability to learn arbitrary relationships using bio-
logically plausible learning. We present a model that can learn the relationships
between inputs in an unsupervised way (that is, without externally supplied error
signals). In fact, our model is purely based on biologically motivated building
blocks like population coding, Hebbian learning, and homeostatic activity regu-
lation. After learning the relationship, our model can use the learned relation to
improve its population code representations: the network will produce popula-
tion codes for missing inputs based on supplied inputs (inference), will smooth
noisy population codes (de-noising), will adjust population codes to be more
consistent with each other (cue-integration), and will choose between alternative
population code representations when faced with inconsistent data (decision).
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A key feature of our network is that its dynamics do not have to be modified from
outside in order to switch between these tasks, or even to re-learn a relationship
when it changes.

2 The Network and Its Dynamics

In this paper we consider the following network (see Figure 1) to demonstrate
how relations between two sets of parameters X and Y can be learned. The
network consists of two populations, A and B, consisting of n rate coded units
each.

2.1 The Network

The units in A get input from an external source X by point-to-point connec-
tions, i.e., each unit in A receives input from exactly one unit in X and each unit
in X sends input to exactly one unit in A. Similarly, a second input Y , is con-
nected to B by point-to-point connections. X and Y are supposed to encode one
single scalar value each. To realize this encoding we use what is known as pop-
ulation coding, see e.g. [21]. Intuitively, this means that each unit in X has one
preferred value and that its firing rate depends on how close its preferred value
is to the actual value. In Figure 1 we illustrated this encoding by representing
X and Y by two (noisy) population codes.

Fig. 1. Projection diagram of the sample network discussed in the text: two populations

with bidirectional connectivity. Labeled ellipses represent populations of neural nodes.

Dark gray arrows depict directed, full connectivity, light gray arrows indicate point

to point connections used to feed population coded input into the network. Blue dots

show one possible input of this kind.

The units within each of the populations A and B are laterally interconnected
such that each population is effectively a soft winner-take-all circuit [22]. The
connection weight wi,j between units i and j is defined as:

wi,j = γ · e− 1
2 (d(i,j)/σ)2 − δ . (1)

The distance d between i and j is d(i, j) = min{|i − j|, n − |i − j|}. In order
to avoid boundary effects we let the distance measure wrap around. (Note that
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this implies that we identify the smallest value vmin and the largest value vmax

encoded by the population code. In the case vmin = 0 this means that we perform
calculations modulo vmax.)

Besides being laterally connected, the units in A and B are also intercon-
nected. Effectively we connect each unit i ∈ A to all units j ∈ B and vice versa.
The initial connection weights wi,j are set to values chosen randomly in [0, 1].

Learning the relations between the inputs X and Y is done by adapting the
connections between the populations A and B using a Hebbian learning rule [23].

2.2 The Dynamics

We simulate our network over discrete time steps. At time t the rate-coded
units in A and B each have a real-valued activity level a, which we denote with
a superscript as at. At each time step t each unit j updates its activity level
at

j . This update is influenced by (i) the activities of the neurons in the same
populations (via the lateral connections), (ii) the activities of the units in the
other population (via the connections between A and B), and (iii) a homeostatic
activity regulation term ht

j (used to keep the activity level of each unit roughly
constant over time).

We explain the details of the update below. Here we just outline the interplay
between the main ingredients. The lateral connections implement soft winner-
take-all dynamics (WTA) [22]. Essentially, they are used to “clean-up” noisy
input. The weights wt

i,j between the populations A and B are updated by a
Hebbian learning (HL) scheme, eventually encoding the learned relationship. The
homeostatic activity regulation (HAR) [24] forces units to regulate themselves
so that each unit is active roughly a given proportion of the time. This makes
sure that every unit is used, and that each unit is used in moderation.

It is worth noting that the presented components work on quite different time
scales. The WTA dynamics operate on a short time scale, allowing the network
to converge quickly. HAR and HL operate on a much longer time scale, averaging
over a much larger sample of inputs. A sketch of how Hebbian learning (HL), soft
winner-take-all (WTA) and homeostatic activity regulation (HAR) play together
is illustrated in Figure 2.

Hebbian Learning. The update of the weights wt
i,j depends on (i) the activities

at
i and at

j of units i and j at time t, and (ii) two global parameters αl and
αd. The Hebbian learning rate αl regulates the speed at which connections get
learned and is usually set to the same value as αd, the Hebbian decay rate. The
weights are updated according to:

wt+1
i,j = (1 − αd) · wt

i,j + αl · at
i · at

j . (2)

To speed up the running time of simulations it suffices to do these updates only
after the WTA converged.
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Fig. 2. The presented mechanism is a combination of three strategies. Synaptic con-

nections between areas are controlled by Hebbian learning (HL). Local connections

within an area support soft winner-take-all (WTA) dynamics, so nearby units within

an area exhibit similar activity patterns. Homeostatic activity regulation (HAR) within

each unit modulates the Hebbian learning so that a unit does not become permanently

active or inactive, but maintains a desired average activity level.

Homeostatic Activity Regulation. We use the following update formula for the
homeostatic activity terms:

ht
j = −c · (āt

j − atarget) , (3)

where atarget is a parameter and

āt
j = (1 − ω)āt−1

j + ωat
j (4)

for some additional parameter ω defining the decay rate of the averaging.

Neural Units and Update Dynamics. At each discrete time step t each unit j
updates its activity level at

j. To compute it we first take the weighted sum over
the activity levels of all units connected to unit j. This includes both the lateral
connectivity within the population as well as the connections coming from other
populations. This sum is corrected by the homeostatic activity regulation term
ht

j . Finally we apply a non-linear function θ that restricts the activity level to
the range [0, 1]. Formally the update rule is defined as

at+1
j = θ(ht

j +
∑

i∈Γ in
j

wt
i,j · at

i) , (5)

where Γ in
j is the set of units connected to unit j, and

θ(x) =
1

1 + e−m(x−s)
(6)

and m and s are parameters that determine the slope and the shift of θ(x).

3 Results

In the following we present our experimental results. Note that the network
dynamics introduced in the previous chapter remains unchanged throughout all
experiments that we present. In order to switch from one task to another we
only change the input fed to the network.
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(a) (b) (c) (d) (e)

Fig. 3. The time course of learning and relearning in the sample network. Each plotted

subfigure shows a snapshot of the connection weights WAB (top row) and WBA (bottom

row) for different times during learning and relearning. The weights are color coded

(black for strong, white for weak connections). (a) Initial random weights. (b) Weights

captured during learning. (c) Weights after the relation y = x3 was learned. (d)
Weights captured during relearning. (e) Weights after the relation y = x2 was learned.

3.1 Learning and Relearning

In order to feed interpretable input we have set a preferred stimulus pi for each
node i in A and B. To encode the value v in X (or Y ) we set the input xi (yi)
for node i in A (B) according to:

xi(v) = C · e−(v−pi)
2/(2σ2) . (7)

This enables us to feed arbitrary scalar values to populations A and B. If these
values satisfy any functional relation, the network will learn the relationship
hidden in a sequence of input pairs. Note that the weights between populations
A and B are constantly changing over time. If after a certain relationship was
learned the input changes and a different relation is presented the weights will
change to reflect the new relation. Figure 3 shows how the weight matrices WAB

and WBA change in the course of learning and relearning.

3.2 Inference Tasks

After the network has learned a relation we can then also omit one of the inputs
and infer the other value. This is done as follows. We only feed input in X (or
in Y ) and let the network converge. After convergence one can use the activities
in A and B to compute the population vector [25] giving us the values vA and
vB encoded by A and B.

Figure 6 shows the result of such inference tasks. We tested the inference
accuracy by encoding all values vi ∈ {pi|i ∈ A} in X (respectively all values
vj ∈ {pj|j ∈ B} in Y ) and observing the values vB (respectively vA) computed
by the network.
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(a) (b)

Fig. 4. Simple inference in sample network after the network has learned the relation

y = x3 (green thin line in both plots). (a) shows the results of the inference tasks

(thick blue line) for a set of population codes fed to A (horizontal axis). (b) like (a)

but for the opposite inference direction.

3.3 De-noising and Cue-Integration Tasks

In all of the following examples we add some noise on top of the activations com-
puted with Equation (7). Figure 5(a) shows how the network performs inference
with noisy input.

In addition to such noisy input signals our network can also cope with noisy
values vX and vY . Figure 5(b) is an example for the case when the inputs in
X and Y are not in line with the learned relation R. The network settles in a
state where the computed values vA and vB are again consistent with R. Figure
5(c) shows the same experiment but with different input strength set in X and
Y . Note that the population receiving the stronger input gets significantly less
shifted towards a place consistent with R than the other one.

Note that the soft winner-take-all implemented in our populations A and B
is the reason for the described phenomena to work.

(a) (b) (c)

Fig. 5. Inference and de-noising: (a) An example of inference from X to B which shows

also the de-noising properties of the network with respect to noise in the firing rates of the

units, (b) when two inputs are presented which are inconsistent with the learned relation

the network shifts both peaks until their positions are in accordance with the relation,

(c) same as (b) but with unequal reliability of the inputs (unequal input strength); note

that the larger (more reliable) peak is much less shifted than in (b).
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Clearly, such a de-noising task gets more and more difficult (and unreliable)
depending on “how much” the value fed into Y differs from the “true” value that
is consistent with the input in X . Eventually, if this difference gets too large,
then the system will stop to find a compromise between these two values and
instead will start to neglect one of the inputs. That, is the network will decide
between the two values.

(a) (b)

(c) (d)

Fig. 6. Decision tasks. (a) when the peaks of the inputs are not close to the learned

relationship the network uses one of the inputs and infers the other one, (b) when

in X there are two contradicting inputs present, while one is being supported by the

input in Y , the network decides for that combination of peaks., (c) in the case of a

non-invertible function like y = x2 there exist two possible peak positions and the

system decides for one of the two, (d) same as (c) but the network’s decision is biased

by a very small input fed to X.

3.4 Decision Tasks

As indicated at the end of the previous section, the network can be forced to
decide whether to follow input X or input Y . Figure 6 shows the input and the
settled state for four decisions being performed by the network.

Given inputs of similar strength the variance in the noise determines how
the network will decide. If the inputs are of equal strength the network will
essentially decide on one of them “randomly”, meaning that small artifacts from
the learning history will be responsible for the decision.

Figure 6(b) illustrates another, more complicated decision task. In this exam-
ple the input in X actually contains two peaks. If the second input relates to
one of these two peaks (with respect to R), the network will reinforce this peak
and settle in a state consistent with R.
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If the learned relation R corresponds to a non-invertible function (like y = x2

for x in [−1, 1]) then, clearly, an input in Y may be in correspondence with
more than one consistent X-value. The network will then have to pick one of
the possible solutions. This example is illustrated in Figure 6(c). In addition,
Figure 6(d) illustrates that already a seemingly small “noise” in the input in X
suffices to move the generated value to the one that has a higher consistency
with the input.

4 Discussion
In this paper we showed that it is possible to setup the dynamics of a simple
network in such a way that it can learn the relations between two inputs X
and Y . After learning, that is, after presentation of sufficiently many related
input pairs, the network is then able to (i) infer missing input, (ii) to medi-
ate between slightly conflicting inputs (de-noising), (iii) cue-integration, and
(iv) decide between strongly conflicting inputs. If one would continue to present
strongly conflicting inputs the system will then gradually change and eventually
have learned the new relation.

The building blocks of our network, population coding, soft winner-take-all,
Hebbian learning, and homeostatic activity regulation, are all biologically well
motivated.

The next step, clearly, is to learn higher order relations between more than
two input signals. To achieve this it will be necessary to replace the effectively
one-dimensional populations used in our network by more complex recurrent
networks capable of encoding these higher order relationships. Indeed, the inter-
nal connectivity of the areas, reflecting the topology of the input space, would
ideally be learned based on the observed inputs themselves. This would allow
both higher dimensional transformations (such as those related to gain fields [9])
and more abstract relationships to be learned with the same mechanisms.
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Abstract. Visual context plays a significant role in humans’ gaze movement for 
target searching. How to transform the visual context into the internal represen-
tation of a brain-like neural network is an interesting issue. Population cell cod-
ing is a neural representation mechanism which was widely discovered in  
primates’ visual neural system. This paper presents a biologically inspired neu-
ral network model which uses a population cell coding mechanism for visual 
context representation and target searching. Experimental results show that the 
population-cell-coding generally performs better than the single-cell-coding 
system.  

Keywords: Visual context, Neural Coding, object search. 

1   Introduction 

Contextual cues play an important role in target searching in human vision system, 
which are proved by psychological experiments [1]. Only a small number of research 
work [2-5] utilized global or local context for object locating. Miao and et al. [5] 
proposed a visual perceiving and eyeball-motion controlling neural network to search 
target by reasoning with visual context that is encoded with a singe cell coding 
mechanism. This representation mechanism led to a relatively large encoding quantity 
for memorizing the prior knowledge about the target’s spatial relationship contained 
in the visual context. The single-cell-coding means using one cell or one response to 
represent one object or control the movement. In contrast to it, the population-cell-
coding uses an ensemble of cells or responses to represent an object or synthesize a 
movement [6].  Single and population cell coding mechanisms have been an argumen-
tative issue in understanding human brain and vision functions, which was discussed 
and debated in the special issue for binding problem [7]. Wang [8] addressed that the 
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main problem of the single-cell-coding is that it would not allow perceiving novel 
objects, which is an ability of the perceptual system. In this paper, we propose a vis-
ual neural network system that encodes the top-down knowledge of visual context and 
reasoning the location of the target using population cell coding mechanism. 

2   Visual Context Encoding Architecture and Algorithms 

Visual context is related to two types of features: low-level features for global or local 
image representation and the high-level features for representing spatial relationship 
in terms of horizontal and the vertical distances (Δx, Δy) between two object centers 
or between the center of a target and the center of global or local image. 

 

Fig. 1. Single or population cell coding structure for visual field image representation and gaze 
movement controlling  

A unified neural coding structure is designed for learning the internal representa-
tion of the visual context, which can implement single and population cell coding 
mechanisms, as illustrated in Fig. 1. The coding structure consists of two parts. The 
first part is visual field image encoding, which includes the first three layers: the first 
layer - input neurons, the second layer - feature neurons, and the third layer - single or 
population cell coding neurons. This coding system inputs a local image from a group 
of visual fields in different resolutions. Then it extracts features and encodes the cur-
rent visual field image in terms of connection weights between the second layer and 
the third layer. The second part is the spatial relationship encoding and decoding, 
which includes the last two layers: the third layer - single or population coding neu-
rons and the fourth layer- movement control neurons. It encodes the spatial relation-
ship either between two object centers or between the center of the target and the 
center of the current visual field image in the connection weights between the third 
layer and the fourth layer, which correspond to the horizontal and vertical shift dis-
tances (Δx, Δy) from the center position (x, y) of the current visual field to the center 
of the target. 
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Fig. 2. Extend LBP features extracted by 256 feature neurons, each of which is computed by a 
sum of eight pairs of differences between surrounding pixels (labels=0~7) and the central pixel 
(label=8) in its receptive field (RF) =3×3 input neurons (pixels). They are illustrated in the 256 
feature templates above, in which the gray box represents weight 1 while the black box repre-
sents weight –1. 

2.1   Features Employed for Encoding Visual Field Image 

As illustrated in Fig. 2, we extended the LBP (local binary patterns) [9] features to the 
new features with continuous output Rij by using the basis functions { ( )j if x  } 

(0≤j≤255) in Equations (1) and (2), where the vector T
0 2 8(  ... )i i i ix x x=x represents the 

i-th image block or receptive field image of  3×3 pixels or 3×3 input neurons. The 
term 

ijR  represents the response of the j-th feature extracted from the i-th image block. 

In our coding system illustrated in Fig. 1, for each receptive field image 
ix , there are 

256 feature neurons in the second layer extracting the above extended LBP features 
{ ( )ij j iR f= x }( j=0~255 ) and only the first m (1≤m≤256) neurons having the largest 

responses {
' ' ( )ij j iR f= x }( ' { }ij ijR R∈ , j’=1~m, j=0~255) win through the competi-

tion. To maximally decrease the coding quantity, m may be set to 1 for enough  
sparsity. 
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2.2   Visual Context Encoding 

In our paper, the visual context refers to the visual field image and the spatial rela-
tionship (Δx, Δy) from the centers of the visual field to the center of the target. Thus 
encoding such context need to calculate and store the representation coefficients of 
the spatial relationship and the visual field images which are centered at all the possi-
ble positions surrounding the target center and are in all the possible scales. The  
algorithm is described as follows: 
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BEGIN LOOP1 Select a scale s from the set {sI} for the current visual field; 
BEGIN LOOP2 Select a starting gaze point (xJ, yJ) as the center of the visual field from an initial 
point set {(xJ, yJ)} distributed in the context area of the target; 

1. Input an image from the current visual field, and output a relative position prediction for the real 
relative position of target center ( , )x yΔ Δ in terms of gaze movement distances ˆ ˆ( , )x yΔ Δ ;  

2. If the prediction error ER= 2 2ˆ ˆ( ) ( )x x y yΔ − Δ + Δ − Δ is larger than the maximum error limit 

ER(s) for the scale s of the current visual field, move the center of the visual field to the new 

gaze point position ˆ ˆ( , )x x y y+ Δ + Δ ; go to 1 until ER≤ER(s) or the iteration number is lar-

ger than a maximum limit; 
3. If ER>ER(s), generate a new coding neuron (let its response Rk=1); encode the visual context by 

computing and storing the connection weights {wij,k}(initialized to zeros) between the new cod-
ing neuron and the feature neurons (their responses ( )ij j iR f= x ) and the connection weights 

(wk,∆x , wk,∆y) (initialized to zeros) between the new coding neuron and two movement control 
neurons (let their responses R∆x=∆x and R∆y=∆y) respectively using the Hebbian rule 
∆wa,b=αRaRb; 

END LOOP2 
END LOOP1 

2.2.1   Encoding of Visual Field Images 
The k-th coding neuron in layer 3 represents or encodes a visual field image pattern 

( )kx  with a group of connection weights { wij,k } between the feature neurons in the 
second layer and the k-th coding neuron. The ij-th feature neuron extract the j-th fea-

ture { ( )( )k
ij j iR f= x } (0≤j≤255) from the i-th receptive field image ( )k

ix  (1≤i≤n). 

All the receptive field images { ( )k
ix } compose the visual field image ( )kx . The con-

nection weights { wij,k } are computed with Hebbian rule in Equation (3 ), where α is 
the learning rate; t is the iteration number; Ra and Rb are responses of two neurons 

which are connected by a synapse with a connection weight ,a bw . Thus each weight 

wij,k between the ij-th feature neuron and the k-th coding neuron is formularized in 
Equation (4), where α and Rk  are the learning rate and the response of the k-th coding 
neuron respectively. Both they are set to be 1 for simplifying computation, and then 
Equation (4) is changed to Equation (5). The lengths of all the weights { wij,k } are 
finally normalized to one for unified similarity computation and comparison. 

,

, , ,

( )

( 1) ( ) ( )
a b a b

a b a b a b

w t R R

w t w t w t

αΔ =⎧
⎨ + = + Δ⎩

 (3)  
( )

, ,
( )

, , ,

(0) 0, (0) ( )

(1) (0) (0) ( )

k
ij k ij k ij k j i k

k
ij k ij k ij k j i k

w w R R f R

w w w f R

α α
α

⎧ = Δ = =⎪
⎨ = + Δ =⎪⎩

x
x

 (4)  ( )
, (1) ( )k

ij k j iw f= x  (5) 

2.2.2   Encoding of Spatial Relationship 
The spatial relationship (∆xk, ∆yk) between the center of the visual field and the center 
of the target is encoded in terms of two connection weights (wk,∆x, wk,∆y) between the 
k-th coding neuron and the two movement control neurons with Hebbian rule in Equa-
tions (6) and (7), whereβand Rk are the learning rate and the response of the k-th  
coding neuron respectively. Similarly, both of them are set to 1 for simplifying com-
putation, and then Equations (6) and (7) are simplified to Equations (8). 
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2.3   Visual Context Decoding for Gaze Movement Control 

Visual context decoding includes the responding of a single or population coding 
neuron(s) and the decoding of spatial relationship.  

2.3.1   Response of a Single or Population Coding Neuron(s) 
When the coding system inputs a visual field image Y for test, a single cell or popula-
tion cells in the third layer may respond(s) through competition among the total N 
coding neurons to represent a visual field image pattern. With reference to Fig. 1, for 

the i-th receptive field image iY , the k-th coding neuron inputs m responses { 'ijR } 

(1≤j’≤m≤256) weighted by {wij’,k}  from m feature neurons which extract features 

{ ' ' ( )ij j iR f= Y } from iY . Therefore for the visual field image Ywhich is composed 

of the receptive field images { iY } (1≤i≤n), the response of the k-th coding neuron in 

the third layer is:       

1 2 ', ' ', '
1 ' 1 1 ' 1

( ) (  ... ) ( )
n m n m

k k k n ij k ij ij k j i
i j i j

R C C w R w f
= = = =

= = = =∑∑ ∑∑Y Y Y Y Y                    (9)  

where , ' ,{ }k ij k ijw w∈ , 
' { }ij ijR R∈ , ' ( ) { ( )}j i j if f∈Y Y , j’=1~m and j=0~255. The 

weights {wk,ij'} are obtained at the encoding or training stage discussed in Section 
2.2.1. The Rij’ is the response of the j’-th feature neuron for the receptive field im-

age iY , belonging to the first m largest responses among the total feature responses 

{Rij}. Substituting Equation (5) into (9), we get Equation (9a). 
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f x x x , and 
T

' 1 1 ' 2 1 '( ( ) ( )... ( ))j i j i j m i nf f f= = = = = ==Yf Y Y Y , then Equation (9a) is changed to its inner 

product form between two groups of features shown in Equation (9b). Equation (9) 
indicates that the response of the k-th coding neuron in the third layer is a similarity 
measure between the new image Yand the k-th visual field image pattern ( )kx memo-
rized in the coding system. 

2.3.2   Decoding of Spatial Relationship for Gaze Movement Control 
Gaze movement control is directly responsible for visual object research. This has 
been implemented in a structure that consists of the two layers of neurons: single or 
population cell coding neurons and movement control neurons (see Fig. 1). The 
movement control neurons, divided into ∆x and ∆y neurons, whose responses (R∆x, 
R∆y) represent the relative position (∆x, ∆y) of the target to the current gaze point (x, 
y) or the center of the current visual field image. For the current visual field image 
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input, the first M coding neurons which have the largest responses play the main role 
in activating the movement control neurons.  If M=1, it is the single-cell-coding con-
trolling mechanism, otherwise it is the population-cell-coding mechanism.  The re-
sponses of gaze movement control neurons can be formulated as Equation (10), where 
Rk’ is the k’-th largest response of a coding neuron among the total N coding neurons; 

*
'kR   is the percentage form of the Rk’ and is used for the synthesis of gaze move-

ment; ',k xw Δ  and ',k yw Δ  are the connection weights from the k’-th coding neuron to 

the movement control neurons in x and y directions respectively. At learning or en-

coding stage, both of ',k xw Δ and ',k yw Δ are calculated using Equations (6) ~ (8). Sub-

stituting Equation (8) into Equation (10), the synthesis of movement is represented by 
Equation (11). 
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Formula (11) means that the gaze movement distances (decoded at the perception or 
test stage) is the weighted sum of the spatial relationship (encoded at the learning or 
training stage, which are weighted by the first M largest responses of coding neurons). 
Especially, when M=1 (single cell coding), the responses (R∆x, R∆y) of two movement 
control neurons are activated by a single neuron who has encoded a historical spatial 

relationship (∆xk’=1, ∆yk’=1) in connection weights ' 1,k xw = Δ and ' 1,k yw = Δ respectively. 

In this case, Equation (11) is simplified to Equation (12). 
An entire algorithm for gaze movement control for target search is given as  

follows: 
 

BEGIN LOOP1 Select a starting gaze point (xJ, yJ) as the center of the visual field from a random initial 
point set {(xJ, yJ)} distributed in the image area; 
BEGIN LOOP2 Select a scale s from the set {sI} for the current visual field in the order of from the 

maximum to the minimum; 
Input an image from the current visual field, and output a relative position prediction in 

terms of gaze movement ˆ ˆ( , )I Ix yΔ Δ for the real relative position of the target cen-

ter ( , )x yΔ Δ ;  

END LOOP2 
The position of the target center (x, y) starting from the initial gaze point (xJ, yJ) is predicted by  

ˆ ˆJ J I
I

x x x= + Δ∑  and ˆ ˆJ J I
I

y y y= + Δ∑  

END LOOP1 

Computing the density D(x, y) of the gaze point distribution ˆ ˆ{( , )}J Jx y  

Select the position with the largest density as the finally predicted target position: 

ˆ ˆ( , ) arg max{ ( , )}x y D x y= .  
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The algorithm uses a gradual search strategy that move an initial gaze point to the 
center of target from the largest visual field to the smallest visual field by decoding 
global and local context. 

3   Learning Properties of Single and Population Coding 

A learning problem can be proposed as: Given a group of visual context pat-
terns{ ( ( )kx , (∆xk, ∆yk) ) } (1≤k≤N) and a visual field image Y , how to estimate the 
relative position (∆x, ∆y) of the target? One solution is letting the half-unknown vis-
ual context ( Y , (∆x, ∆y)) be represented or synthesized by the known visual context 
patterns { ( ( )kx , (∆xk, ∆yk) ) } (1≤k≤N), i.e. Equation (13). Then the leaning problem 
becomes a problem of how to determine the values of the coefficients { 

kc }. To com-

pute the coefficients {
kc }, dividing Equation (13) into Equation (14). 
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(a)                           (b) 

Fig. 3. Illustration of encoded visual field image patterns { ( )kx } with their neighbor areas 
(radius r), the test visual field image Y and their distances {di} or the similarity measurement 
(e.g. 1/(1+di) ) in data space. (a) Densely encoded samples suitable for single cell decoding for 
a new sample (e.g. using ( ' 1)k =x  to represent Y for distances d1 < r << d2 < d3 < d4); (b) 
Sparsely encoded samples suitable for population cell decoding (e.g. using { ( ')kx } (k’=1~3) to 
represent Y for distances r <d1 < d2 < d3 << d4 ). 

The coefficients {
kc } could be obtained by decomposing Y based on the basis 

functions { ( )kx }, and then are used to synthesize the unknown relative position (∆x, 
∆y) by known spatial relationships { (∆xk, ∆yk) }. Usually the exact decomposition 

coefficients { kc } for the basis functions { ( )kx } can not be obtained in a simple and 

easy way. We use an estimated visual context ˆ ˆ ˆ( , ( ,  ))x yΔ ΔY to approximate the real 

visual context ( , ( ,  ))x yΔ ΔY instead. Then Equation (14) is transformed to Equation 

(15), where ' { }k kc c∈ , ( ') ( ){ }k k∈x x , ' '( , ) {( , )}k k k kx y x yΔ Δ ∈ Δ Δ , k’=1~M, k=1~N, 
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and M =1~N. Substituting the equation (9b) into equation (11), we get the responses 
of two movement control neurons as the estimation of (∆x, ∆y) in Equation (16). 
Thus, encoding the visual context and decoding the spatial relationship with 
( , )x yR RΔ Δ  to produce a gaze movement for target locating can be modeled with a 

regression function shown in Equation (17), where the coefficient 'kc  is the percent-

age form of the similarity between the new visual field image Yand the k’-th encoded 
visual field image pattern ( ')kx . Particularly, when using the single coding mecha-
nism (M=1), the equation (17) is simplified to Equation (18). 
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From the equation (18), it can be learned that for the case of single cell coding, the 
system produces a movement associated to the memorized visual field image pattern 
to which the new visual field image is most similar. If the coding system encoded 
enough visual field image patterns { ( )kx } (1≤k≤N) and associated spatial relationship 
{ ( , )k kx yΔ Δ } (1≤k≤N), a new visual field image Y  can be easily located in the 

neighbor area of an encoded ( )kx in the data space, as illustrated in Fig. 3(a). In this 
case, the single cell coding is suitable and the associated prediction ( , )k kx yΔ Δ is 

exact enough. However, the encoding quantity for coding system to memorize such 
visual context could be very large. From the equation (17), for the case of population 
cell coding, the system produces a movement according to a group of encoded visual 
field image patterns to which the new visual field image is similar. If the sparse visual 
field image patterns are stored in the coding system, the possibility of a new visual 
field image located in the neighbor area of an encoded image pattern is very small, as 
illustrated in Fig. 3(b). In this case, the single cell coding can not provide exact repre-
sentation and prediction. Thus, the prediction should be compensated by other cells 
that are also similar to the new input. Therefore population cell coding is suitable here 

and the gaze movement is synthesized by a group of movements { ( , )k kx yΔ Δ } 

(1≤k≤M) associated to the similar encoded image patterns { ( ')kx } (1≤k≤M). By trans-
forming the distance measurement into the similarity measurement, e.g., 

' '1/(1 )k ks d= + , Fig. 3(b) shows that there are M encoded visual field images 

{ ( ')kx }(k’=1~M , here M=3) are most similar to the new visual field image Y , i.e., 

1 2 1... ...M M Ns s s s s+> > > >> > > . Our experimental results showed that M is not a stable 

parameter to be selected directly for the system’s best generalization performance. 
Instead, we use a similarity factor 

1/MP s s= to control M. The parameter P can be 

obtained by the following algorithm: 
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BEGIN LOOP  Pi=1 to p (0≤p<1) with a step ∆p(∆p<0), where Pi is the factor determining Mi , i.e., the 
number of first Mi largest response coding neuron; 

1. Train the coding system with the given maximum error limit and the value of M which is con-
trolled by the factor Pi, then get the system complexity Ni after training, where Ni is the num-
ber of layer-3 coding neurons generated in the system; 

2. Sort all the Ni coding neurons’ responses in a sequence from the maximum response MaxR to 
the minimum response; if the (Mi+1)-th (1≤Mi≤Ni) neuron’s response is the first one smaller 
than or equaling to Pi*MaxR, then Pi and Ni are recoded as candidates; 

END LOOP  
Get P among {Pi}, where P corresponds to the smallest Ni. 

Please note that the result of M will be 1 and N when P =1 and P =0 respectively. 

4   Experiments 

We constructed two visual context coding systems respectively using single-cell-
coding and population-cell-coding mechanisms for target search experiments. The 
head-shoulder image database from the University of Bern has been used. In this 
database, totally there are 300 images with 30 people in ten different poses (ten im-
ages each person). The image size is 320×214 pixels. The average radius of the eye-
balls of these 30 persons is 4.02 pixels. The two coding systems are compared by 
applying them to search the left eye centers. Visual context was encoded or learned 
with a group of initial gaze points placed in a uniform distribution, while decoded or 
tested with a group of initial gaze points in a random distribution. For each target 
searching, two experiments were designed to compare the systems’ performances. 
The first experiment (Exp.1) used 30 images (30 people, one image in frontal pose 
each person) for training and the rest for testing. The second experiment (Exp.2) used 
90 images (9 people, 10 images each person) for training and the rest for testing. 

We compare the population cell coding and the single cell coding on the database. 
Table 1 listed the details of the number of total feature neurons in layer 2, the number 
of total coding neurons in layer 3, the number of connections between feature neurons 
and coding neurons, the mean and standard deviation of locating errors and the com-
prehensive test error, where P=0.9 and P=0.8 make the two systems for Exp.1 and 
Exp.2 have the smallest complexities respectively; P=1.0 means a single cell is re-
sponsible for context coding. 

Table 1. Performance comparison between two coding systems 

locating error (unit: pixel) 
experiment coding system #1* #2*  mean 

(mn) 
standard  

deviation (sd)
comprehensive error 

2 2mn sd+  

Single cell (P=1.0) 2314 0.43 2.15 4.33 4.83 Exp.1 (30 
vs. 270) Population cell (P=0.9) 1906 0.35 1.93 2.44 3.11 

Single cell (P=1.0) 7340 5.02 1.64 1.47 2.20 Exp.2 (90 
vs. 210) Population cell  (P=0.8) 5405 1.02 1.89 1.22 2.25 

* #1：number of coding neurons in layer 3； #2：number of connections between feature neurons and 
coding neurons ( unit: million). 
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From Table 1, it can be learned: (1)With large samples, i.e., the case of Exp. 2, the 
locating accuracy of the population coding system is almost same to the accuracy of 
the single cell coding system, but it required the lest coding information. The ratios of 
the average coding quantity required by the population coding to the coding required 
by the single cell coding system are about 77%. (2) With small samples, i.e., the 
case of Exp. 1, the locating accuracy of the population coding system is 35.6% 
higher than the accuracy of the single cell coding system. Meanwhile, the coding 
quantity required by the population coding is 12% smaller than the single cell 
coding systems. 

5   Conclusion 

In this paper, an internal presentation model of visual context in form of neural coding 
network is presented. Experimental results indicated that population-cell-coding is 
generally more efficient than the single-cell-coding system in representing the context 
as well as controlling the gaze motion for target search. 
 
Acknowledgments. This research is supported in part by NSFC (60673091, 
60702031 and 60970087), Hi-Tech R&D Program of China (2006AA01Z122), 
BJNSF (4072023 and 4102013), BMEC (No.KM200610005012), BMF for Excellent 
Talents (No.20061D0501500211) and National Basic Research Program of China 
(2009CB320902). 

References 

1. Chun, M., Jiang, Y.: Contextual Cueing: Implicit Learning and Memory of Visual Context 
Guides Spatial Attention. Cognitive Psychology 36, 28–71 (1998) 

2. Torralba, A.: Contextual Priming for Object Detection. IJCV 53(2), 169–191 (2003) 
3. Kruppa, H., Santana, M., Schiele, B.: Fast and Robust Face Finding via Local Context. In: 

Proc. Joint IEEE International Workshop on Visual Surveillance and Performance Evalua-
tion of Tracking and Surveillance (2003) 

4. Bergboer, N., Postma, E., van den Herik, H.: Context-based object detection in still images. 
Image and Vision Computing 24, 987–1000 (2006) 

5. Miao, J., Chen, X., Gao, W., Chen, Y.: A Visual Perceiving and Eyeball-Motion Control-
ling Neural Network for Object Searching and Locating. In: Proc. IJCNN, pp. 4395–4400 
(2006) 

6. Bear, M., Connors, B., Paradiso, M.: Neuroscience: Exploring the Brain, 2nd edn. Lippin-
cott Williams & Wilkins (2001) 

7. Special issue on binding problem. Neuron 24(1) (1999) 
8. Wang, D.: The Time Dimension for Scene Analysis. IEEE-TNN 16(6), 1401–1426 (2005) 
9. Ahonen, T., Hadid, A., Pietikainen, M.: Face Recognition with Local Binary Patterns. In: 

Pajdla, T., Matas, J. (eds.) ECCV 2004. LNCS, vol. 3021, pp. 469–481. Springer, Heidel-
berg (2004) 



Simulating Biological-Inspired Spiking Neural Networks
with OpenCL

Jörn Hoffmann, Karim El-Laithy, Frank Güttler, and Martin Bogdan
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Abstract. The algorithms used for simulating biologically-inspired spiking neu-
ral networks (BIANN) often utilize functions which are computationally complex
and have to model a large number of neurons - or even a much larger number of
synapses in parallel. To use all available computing resources provided by a stan-
dard desktop PC is an opportunity to shorten the simulation time and extend the
number of simulated neurons and their interconnections. OpenCL offers an open
platform for heterogeneous computing to employ CPUs, GPUs, DSP or FPGAs
in an uniform way. This paper introduces a handy simulation framework being
sufficient to accelerate different kinds of neural networks with off-the-shelf hard-
ware. To illustrate this, different large networks comprising a complex synaptic
model in combination with a leaky Integrate-and-Fire neuron model are imple-
mented as standard Matlab code and with OpenCL separately. In comparison to
the Matlab model, OpenCL reaches a speedup of � 83 on a quad-core processor
and of � 1500 on a GPU.

Keywords: Neural networks, OpenCL, Data parallelism, GPGPU.

1 Introduction

A crucial point of the detailed models representing the anatomic facts in neurobiology
is the corresponding needed computational power. Supercomputers have been used to
simulate neurons and synapses into depth to ion channels. Unfortunately, high perfor-
mance computing clusters are not always accessible for a wide range of researchers
simulating even simplified bioanalogical models. Thus, simulating complex biological
inspired neural models on standard hardware is highly desired. Recent computer archi-
tectures tend to increase the computing performance by adding more and more distinct
computing units. Based on the computing history, an observable trend tells that the
number of transistors will be doubled approximately every two years.

To unveil the potential an off-the-shelf platform provides, one has to make use of
both the parallel and the specialized compute units. Multipurpose neuro-simulators have
been written in the past, mainly exploiting one special hardware, see e.g. the simula-
tors described in [1–4]. The major part of the simulators just mentioned are targeting
to computational-efficient neurons, e.g. Izhikevich Spiking Neuron [5]. These models
describe the underlying dynamics of both neuronal and synaptic activities within the

K. Diamantaras, W. Duch, L.S. Iliadis (Eds.): ICANN 2010, Part I, LNCS 6352, pp. 184–187, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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neural system. They are useful to build large networks and fit for different applications,
e.g. real-time use for robots and pattern matching. However, the precise description of
neural activity involves a large number of synergistic and cooperative variables, that
may prevent the understanding of the underlying dynamics.

OpenCL is an open standard for parallel programming a heterogeneous collection
of discrete computing devices within a single system. The framework, includes a C-
like language, an API, libraries and a runtime system at once. It provides a low-level
hardware abstraction formulated in a hierarchy of models which made OpenCL feasible
for different hardware architectures like CPUs, GPUs, DSPs and others. Primarily it
allows to write portable and data-parallel executed code which can be used on different
computing devices at once.

In this paper an approach towards the efficient use of standard hardware, especially
the graphical processor unit (GPU), in order to boost up simulation time of complex
biological inspired neural networks is presented. The objective is to show the possibility
to use OpenCL as a generalized platform for more models than presented in this paper.

2 Neural Representations

The neurons in our simulations are Leaky-Integrate-and-Fire (LIF) units. The synap-
tic representation uses a recently proposed synaptic model for both fast and short-term
spike-time dependent potentiation (STDP) whereas the synaptic model is computation-
ally complex [6]. Since the models are not the simplest available representation they
are chosen in order to exhibit a real processing load for the proposed implementation
techniques.

Each synaptic connection is modeled as a stochastic activity-dependent connections
using the modified synaptic stochastic model (MSSM) [6]. In this model, the transmis-
sion probability of an arriving action potential, i.e. spike, from a presynaptic neuron
via a synapse to a postsynaptic neuron is estimated. The probability-of-release involved
is governed by two counteracting mechanisms: facilitation and depression. Facilitation
reflects the Ca2+ concentration in the presynaptic neuron, while depression represents
the effect of the concentration of ready-to-release vesicles in the pre-synaptic neuron.
For details and description of the model, please review [6].

3 Simulation

We have implemented a generic, object-oriented simulation framework called LpzNeuro
in C++. Within the framework, OpenCL is used since it offers a data parallel program-
ming and execution model which fits well for neural networks due to their inherently
concurrent nature. Network entities, i.e. neurons and synapses, functionally correlate
to OpenCL kernels which operate on all neural structures at the same time. From the
user point of view, mainly OpenCL kernels, thus ”functions” have to be provided to
the framework. To represent conditions of a network entity, variables can be described,
transferred and assigned to kernels in a generic way. If a simulation doesn’t fit this
frame, simulation base classes can be derived and altered by means of the object ori-
ented nature.
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For the mentioned neural model, we’ve realize a concrete simulator which realizes a
time discrete, straightforward process. Within each step, all kernels manipulating net-
work entities are sequentially issued. A typical kernel sequence could be the following:
Kernel Neuron, Kernel Synapse and Kernel Reduce to compute action potentials, to
adjust the synaptic values and to summarize the post-synaptic-potential induced to the
affected neurons in the next step.

For this simulator, the neuron data is completely transferred to a device at the be-
ginning of the simulation. Thereafter no further host-to-device transfers are necessary.
While this is true for neurons, a large connection matrix has to be piecewise up- and
downloaded to the device in every step if the device memory capacity isn’t sufficient
large enough. As a consequence, the synapse kernel invocation also has to be done in
consecutive manner relating to the fraction (rows) of the matrix which can be stored on
the device. To minimize the static time OpenCL needs to issue kernels or to enqueue
memory transfers, LpzNeuro copies as much rows as possible to a defined I/O-buffer on
the device. Regarding a concrete connection scheme, within this simulator almost a full
connected network is assumed. This implies not to use an event based approach. Instead
the current implementation follows a static approach, which better fits to our synapse-
centric view. Within the simulation process, every possible synapse is processed but
only the actually present synapses are allowed to store their states.

4 Measurements

Matlab simulation was tested on a Sun Fire X4440 Server with four quad-core AMD
Opteron, while LpzNeuro was executed on a desktop PC equipped with an Intel Core
i7-950 quad-core processor at 3.06 GHz and with 12 GB RAM. For the GPU test a
NVidia 9800GT (G92 architecture) with 512 MB RAM was used. The Matlab neuron
and synapse source code has been used for transcription as kernels under LpzNeuro.
Due to the C-alike Syntax of Matlab, transcriptions are easy to perform. Only nested
conditional clauses and variable access had to be adapted to the data parallel program-
ming model of a kernel.

For this setup, Matlab and LpzNeuro simulation trails are compared, confer figure 1.
The y-axis shows the mean time of 1,000 simulation steps and uses a logarithmic scale.
On the x-axis the number of synaptic connection is drawn. In both cases the network
was connected in exactly the same manner. To mimic an ordinary use case, LpzNeuro
was configured such that after every step all values of interest were transferred back to
the host, for example the count of the neurotransmitters or the action potentials of all
neurons. Additionally, the simulator transferred the connection matrix to the device in
ever step. This isn’t necessary for small networks but for large ones which won’t fit to
the device global storage. As depicted, the simulation on the GPU is clearly superior to
the Matlab implementation: the Matlab solution needs roughly 3 days (236912 seconds)
to process 223437 synapses whereas the proposed solution using OpenCL needs only
158 seconds. This leads to a speedup of approx. 1500 times. For comparison, the quad-
core needs 2850 seconds resulting in a speedup of 83 times (not shown in the figure).
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Fig. 1. Comparison between Matlab and LpzNeuro based simulation of a pre-connected network

5 Conclusion and Future Work

In this paper LpzNeuro for accelerating simulation time for biological inspired neural
networks using OpenCL was presented. This approach shows that even complex mod-
els can profit from standard hardware used in desktop PC. Using LpzNeuro a complex
biological inspired neural model obtained a speed up of � 1500. Remark, the neural
model used here can be easily replaced by other models already implemented e.g. in
Matlab or C/C++. Although our simulation results are promising, the approach can still
be improved in future. E.g. using a sparse representation for the connection matrix on
the processing device leads to a more efficient memory usage. Besides, our approach
can be easily expanded to several processing devices with reference to piecewise com-
putation of the connection matrix. Moreover, the often unnecessary and thus inefficient
computation for not connected or not affected synapses is to be considered. Results for
not existing connections are thrown away at the end that waste some of the available
computing power. Thus, algorithms to avoid this case to improve the usage available
resources are to be considered in future.
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Abstract. In this paper we propose a bio-inspired architecture to de-

tect, describe and distinguish objects in motion. By using neuronal and

physiological mechanisms in primary visual cortex (V1), middle tempo-

ral (MT) and inferotemporal (IT) areas we can start isolating the objects

from their environment; then, track, label and distinguish the humans

from non-human figures in motion and finally, represent the person’s sil-

houette to get a better understanding of the body structure.

Keywords: Bio-inspired architecture; complex and simple neurons.

1 Introduction

The visual recognition systems have become very important in our daily lives.
Despite many obstacles, the recognition task has drawn attention of many re-
searchers who created applications to recognize human figures in motion. Some
applications have focused on tasks like video surveillance for security [1] and
control applications usually involving human-machine interaction. These appli-
cations can be summarized into three main categories:

– First, the model-free approaches, that identify the subject by matching the
hypotheses of pose structure from the observation and choose the most sim-
ilar hypothesis from a DB [5] without using explicit information of the body.

– Second, the 3D model-based approaches. Some of them use probabilistic in-
formation to construct a 3D model from 2D views [4].

– Third, the partial-model-based approaches. Some researchers use an a priori
knowledge of the human body which is usually represented as a reference
model [2].

– Fourth, the bio-inspiration. This approach mainly mimics the brain capa-
bilities of the primates. It generalizes the shape detection of objects in the
environment without the presence of background motion nor uniformity of
the illumination conditions [6].

In this paper, we focus on a mix of the bio-inspired and partial-model-based
approaches in order to achieve the task of recognizing humans in motion. In
the following sections we will mention the biological motivations and founda-
tions of our work, our proposed architecture, some of our results and finally, the
conclusions achieved so far.
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2 Proposed Architecture

The proposed architecture to detect, describe and distinguish the moving objects
is an extension of our previous work to detect articulated or non-articulated
objects in motion [9,7]. This architecture is basically divided into four stages (see
part (a) of figure 1). This work also includes some ideas of partial-model-based
approaches as the ratios (pre-calculated empirically) to improve the localization
of the legs and the head.

The first stage is the spatial treatment, a convolution with our Gabor-like
oriented filters with two phases. Next, the V1 complex cells modelled with a
temporal treatment to integrate the information from both phases of the Gabor-
like filter. Then we use a neural model, based on the SOM neural network, to
simulate the retinotopical map of MT [10] to track the figures in motion [3].
These figures produce different activation patterns in the neurons which are
used to define the type of object in motion (for example, to determine whether
or not the figure is a human). Finally, the location of the objects is mapped into
the IT module. It processes the information to decompose the object into more
basic elements: polygon and lines-like [8]. The obtained lines are used to describe
the motion in the upper and lower extremities of the body (for example, head
and legs).

2.1 First Stage (A): Spatial Treatment

Our architecture begins by applying our Gabor-like oriented filters that model
the responses of the simple cells in V1. This filtering ensures the capacity to
detect the local motion in a simple and local way as defined by Castellanos [7].

2.2 Second Stage (B): Integrated Information

There are biological clues [12] about the integration of several phases of simple
cells in V1 by complex cells in the same area. These complex cells respond
selectively to lines or edges at particular orientations. This property can be
modelled by the so called Gabor energy function which is related to the behaviour
of complex cells in V1 [13] and defined by Sanchez [9]. The result is a new non-
linear filter bank of 8 channels, each one represents a different orientation.

2.3 Third Stage (C): Tracking

We simulate a retinotopical neural map in MT by using a SOM architecture to
determine the motion direction and object type in the scene. This neural map
is used to learn the upper part motion of the body (the head) since this part
remains unchanged during the motion. Then, we manipulate the SOM learning
rule as follows:

Wv(t + 1) = Wv(t) + θ(v, t)α(t)(D(t) − Wv(t)) (1)
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In the above equation D is the euclidean distance function, α is the learning
function. These weights are used to initialize the following net to track the
head in the whole image sequence (T1,...,n). The final location of the neurons
is averaged to determine a centroid, then we calculate the angle θ of the slant
between the images Ti and Ti+1.

2.4 Fourth Stage (D): Extraction of Basic Elements

Once located the top and lower part of the motion object (head and legs in our
case), these parts are described by simpler elements as polygon or lines (in out
case, lines). We manipulate again the learning rule of Kohonen model to allow a
map construction to simulate lines in certain orientations between the neurons
in the following way:

Wv(t + 1) = Wv(t) + θ(v, t)α(t)(Lθ(i, j) − Wv(t)) (2)

where L is a function of line construction that uses two neurons initialised in
the position of the pattern activation of the complex cells. The L function is
described as follows:

Lθ(x, y) =
n∑
i,j

(Cθ(i), C360−θ(j)) (3)

where C is the response of complex cells, θ is the proposed orientation for the
neuron communication. To evaluate the lines, they must fulfill Lθ < (Di,j) ∗
(C(i) + C(j))/2, where D is the euclidean distance of the two involved complex
cells. This ratio allows us to discriminate the lines that do not cover a certain
portion of active complex neurons C.

3 Results and Conclusions

Our bio-inspired architecture describes human figures in motion into real and
uncontrolled scenarios. Also, this architecture helps us to understand the mech-
anisms that have a key role in the generation of important information for shape
reconstruction in motion into our brain. We tested our model using a set of 56
natural image sequences of a walking person in different angles (from 0 to 315
degrees) and distances (between 10 and 15 meters) with the camera standing
still in uncontrolled outdoor conditions (see part (b) of figure 1).

We combine our previous technique of detection and refinement of human
shapes into video sequences to isolate and refine them by reconstruction of mul-
tiple orientations from V1 complex cells. Besides,the pattern representation al-
lows to describe the object shape. Another advantage of our architecture is the
angle measure between lines that could work for applications like face or gait
recognition.

However, our architecture doesn’t infer the missing information. Seeing the
part (b) of figure 1, there are some images where the occlusion between the
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Fig. 1. (a) Our proposed architecture is composed by 2 phases and 8 oriented simple

cells bank, a non-linear integration complex cell model, a MT and IT model to rep-

resent the motion objects. (b) Results projected onto the original sequence of images.

Our architecture allows to detect and reconstruct a human body even from different

perspectives.

moving parts of the body hinders the representations of them. This could be
solved by adding extra information in the process of locating the limbs following
the partial-model-based approaches.
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Abstract. In many fields including digital image processing and artificial retina 
design, they always confront a balance issue among real-time, accuracy, com-
puting load, power consumption and other factors. It is difficult to achieve an 
optimal balance among these conflicting requirements. However, human retina 
can balance these conflicting requirements very well. It can efficiently and eco-
nomically accomplish almost all the visual tasks. This paper presents a bio-
inspired model of the retina, which simulates various types of retina cells and 
complex structure of retina. The Model can be used in bionic chip design, 
physiological assumptions verification, image processing, and a variety of 
goals. 

Keywords: Retina, Bio-inspired Neural Computing, Simulation, Balance. 

1   Introduction 

In recent decades, computer vision has been widely applied to target tracking, object 
detection, position estimation, even missile guidance, and many other fields. How-
ever, many computer vision applications are still far from meeting all the require-
ments especially in real-time and accuracy balance, but our visual system not only can 
meet the real-time processing, but also can ensure high precision, not only can satisfy 
the various computing load requirements, but also can keep low power consumption. 
It might be an effective way to model retina's structure to try to solve the problem 
above. 

This paper presents a realistic simulation retina model. With the help of this model, 
we can study retina internal representation of outside world and corresponding infor-
mation processing pathways, and further, the model can guide the design of artificial 
retina chips. 

2   Designs and Implementation of Retina Model 

2.1   Overall Structure of Retina Model 

Generally, retina includes photoreceptor cells, horizontal cells, bipolar cells, amacrine 
cells and ganglion cells, each of which includes a number of subtypes. The synaptic 
connections among cells constitute a very complex structure. There are a variety of 
synapses such as feed-forward synapse, feedback synapse, and horizontal connections 
synapse. Figure 1 is the overall structure of retina model which is abstracted from 
physiology and is used as a basis of our computing model. Based on this information 
processing diagram of retina, the paper presents a simulation retina model. 
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Fig. 1. Main information processing pathways model of retina 

2.2   Photoreceptor Layer Simulation 

Photoreceptor layer samples external optical signals and converts the external infor-
mation into electronic signals. Fig.2 is a flow chart of photoreceptor layer simulation. 

 

Fig. 2. Flow chart of photoreceptors layer simulation 

Actually, photoreceptor layer simulation is a complex process. Generally, there are 
three steps. First, different types and distributions of photoreceptors are generated. Sec-
ondly, the corresponding wavelength is calculated according to the input RGB image 
information. Wavelength is the only factor to trigger photoreceptors to fire. Finally, cal-
culating the strength of photoreceptors response based on the photoreceptor-wavelength 
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sensitivity curve. (For detailed information, please refer to <<Realistic Emulation on 
Retina Photoreceptor Layer>> [10]). 

2.3   Horizontal Cells and Bipolar Cells Simulation 

Horizontal cell layer and bipolar cell layer are highly related to each other so they are 
put together to simulate. A new weight assignment method based on traditional DOG 
function is presented here to simulate horizontal and bipolar layer. This method solves 
some problems caused by DOG function in discrete situation. If there are n cells in 
central area of a bipolar cell's receptive field, the weight of ith cell is as Formula 1:  
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If there are m cells in surrounding area, the weight of jth cell is as Formula 3: 
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Now the final output of the bipolar cell is as Formula 5: 

BipolarR（x0,,y0）=Centerexc（x0,y0）-Surroundinh（x0,,y0）                        (5) 

2.4   Amacrine Cells Simulation 

Amacrine cells play a significant role in visual signals integration and modulation. 
Dark vision, motion detection, non-classical receptive field formation, and time-
domain information encoding are all relevant to amacrine cells. AII amacrine is simu-
lated because AII has largest number and is regarded as the most important amacrine 
types. The information AII received from off-rod bipolar is as Formula 6: 
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The information AII exchanged with on-cone bipolar cells: 
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The C represents exchange rate. According to physiological data, C is set to 20%． 
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2.5   Ganglion Cells Simulation 

As the final layer in retina, ganglion cell is responsible for collecting all information 
and transmitting information to brain. There are four types of ganglion cells consider-
ing P and M taxonomy and on and off taxonomy. The specific input proportion and 
relationships among different cells are shown in Figure 3: 

 

Fig. 3. Input proportion and relationships among different cells 

On-center P type cells and on-center M type cell's reaction function is as Formula 10: 
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The off-center P type cells receive off-center bipolar cell input. Its response function 
is shown as Formula 11: 
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The off-center M type cells receive AII input. Its response function is as Formula 12: 
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3   Experiment Design and Results Analysis 

3.1   Perception Efficiency of Retina for Different Stimulus Size in Different 
Position of Retina 

It is known that the photoreceptors are in non-uniform distribution. The experiment is 
designed to test what size of an object can be fully perceived in different position of 
retina. We divided retina photoreceptors into 10 rings according to distribution data. 
In each ring, different size objects were used to test whether this part of retina can 
perceive the stimulus. The object size changed from smallest to bigger, if a certain 
size can always cause action potential, that means the size can be fully 100%  
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perceived in this ring of retina. This size stimulation is called "threshold stimulation". 
If an object is smaller than this size, it can not always cause response. 

The experimental result is as shown in Fig.4 and Fig.5. In Fig.4, XYZ axes repre-
sent ring number, object size and perception percentage respectively. If all threshold 
stimulation sizes were recorded, they can be drawn into a curve as Fig5. 

  

Fig. 4. Perception efficiency of different         Fig. 5. The threshold stimulation size stimulus 
size in different position                                       in different position of retina 
 

Physiology shows that density of ganglion cells decreases with the increase of ec-
centricity, which indicates that the perceive ability of retina may be weaker and 
weaker with increase of eccentricity. But it is not always true from the Fig.5, the rea-
son is that we can not just consider ganglion cells density, but also need to take the 
photoreceptor cells density into account. For example, in the central area, although 
ganglion cells density is very high but the final response depends on the collected 
signals within all its receptive field, so how large the receptive field is and how many 
photoreceptors located within receptive field are the key to activate ganglion cells.  

3.2   Ganglion Cells Representation of the Object 

In ganglion cell layer, the final response may be quite different from original input 
image because the signals are classified and processed by different pathway, but the 
important information such as boundary, brightness and complexity will still be  
shown in the ganglion cells output. Figure 6 is an input image, Figure 7 is the corre-
sponding ganglion cells output. 

    

Fig. 6. Input image: Chinese chess     Fig. 7. Vertical view of ganglion cell layer response 
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As seen from Figure 7, the central area responses were much stronger than the pe-
ripheral area, which is consistent with the human eye characteristics that there are 
very high density and resolution in central area to distinguish detailed and fine infor-
mation, and also more information in central area is transmitted into higher cortex. In 
addition, the edge information, as one of the most factors to understand the world, is 
well demonstrated in the ganglion cells layer. Meanwhile distribution characteristic of 
ganglion cells mentioned above is also can be seen from the Figure 7. Further, the 
ganglion cells response can be utilized to study the meaning of neural information 
coding. 

4   Discussion 

In this paper, the retina model closely integrated physiology data with simulation 
model, which makes model much closer to the real retina. But the model does not 
simulate dynamic visual information processing. That will be the next step to do. 
Retina's functions and structures are complex and diverse, there are still a lot of se-
crets waiting for us to explore. 
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Abstract. The determination of the compounds that are present in

molecular clouds is carried out from the study of the infrared spectrum

of astrophysical ices. This analysis plays a fundamental role in the pre-

diction of the future evolution of the cloud under study. The process

is simulated in the laboratory under similar conditions of thermal and

energetic processing, recording the infrared absorption spectrum of the

resultant ice. The spectrum of each ice can be modeled as the linear in-

stantaneous superposition of the spectrum of the different compounds, so

a Source Separation approach is proper. We propose the use of Alternat-

ing Least Squares (ALS) and a Regularized version (RALS) to identify

the molecules that are present in the ice mixtures. Since the spectra and

abundances are non-negative, a non-negativity constraint can be applied

to obtain solutions with physical meaning. We perform several simula-

tions of synthetic mixtures of ices in order to compare both solutions

and to show the usefulness of the approach.

1 Introduction

The knowledge of the chemistry of the ice clouds of the Interstellar Medium leads
to the study of the determination of the necessary conditions for biogenic mate-
rials to appear [1]. The study is based on the analysis of the infrared spectrum
of the different ices found in the cloud in order to identify their components.
This study is usually carried out in the laboratory where the experiment can be
controlled and the influence of variables such as the temperature or irradiation
can be evaluated. Finally, the purpose is to simulate real environments in the
laboratory to predict the future evolution of the cloud [2].

Different Blind Source Separation (BSS) techniques have been applied to iden-
tify the compounds present in astrophysical ice mixtures. The main advantage
of these signal processing tools over spectral libraries is the possibility of identi-
fying new unexpected compounds. The application of the simple linear instan-
taneous mixture model has been firstly addressed in [3]. An ensemble learning
solution and a detailed explanation of the Independent Component Analysis
model can be found in [4]. A Non-negative Matrix Factorization approach in-
cluding a sparseness restriction is applied in [5]. All these BSS algorithms were
revealed as powerful techniques to analyze large databases in order to determine
the compounds present in every ice.
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Alternating Least Squares (ALS) is a classical algorithm for decomposing
a data matrix into the product of two matrices under certain constraints. It
is widely used as optimization technique in Self-Modeling Curve Resolution
(SMCR) [6]. SMCR is a technique for separating pure spectra and concentration
profiles from a matrix of spectra obtained from mixtures of components with
varying concentrations [7]. Like the BSS methods, the SMCR methods attempt
to determine the composition of the mixtures without, or with incomplete prior
knowledge of the pure components or of the mixture procedure. An overview of
the application of SMCR optimized by ALS to spectroscopic data acquired by
monitoring chemical reactions and other processes is presented in [8].

In this study, we investigate the application of ALS in the analysis of astro-
physical ices as a new application. We propose the use of a regularized ALS
version exploiting the prior information about the sources (sparseness) to im-
prove the quality of the analysis. Finally, we show that ALS and RALS are
useful tools for the task of identifying the compounds in laboratory simulations
of astrophysical ice mixtures.

2 Methods and Materials

2.1 Observation Model

We state the formulation of the problem as follows: the infrared absorption
spectrum of the ices, x, is the linear superposition of the absorption spectra of
the molecules present in each ice, s. The relative abundance of every molecule
in the ices is modeled by the mixing matrix A. In matrix form, the model is
expressed in the following way:

X = AS + V (1)

where X(M ,N ) is the matrix of experimental data of dimensions M ices (mix-
tures) by N wavenumbers (observations); A(M ,K ) is the matrix of relative
abundances profiles (mixing matrix) of the K different molecules (sources) present
in the mixtures; S(K ,N ) is the matrix of the molecule spectra, whose K rows
contain the pure spectra associated with the K molecules present in the mix-
tures and V(M ,N ) is the additive noise term that must be considered in real
measurements.

The review of some physical considerations about the absorption spectra and
the molecules to justify the conditions of suitability of the BSS model (2) for the
problem is carried out in [4].

2.2 Regularized Alternating Least Squares

ALS is a signal processing technique for estimating the matrices A and S of the
model (2) from the observation data matrix X. The algorithm consists of two
alternating steps:
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S =
(
ATA

)−1
AT X (2)

A = XST
(
SST

)−1
(3)

Equations (3) and (4) can be derived by first estimating the gradients of the
squared Euclidean distance, DF (X ‖AS ) = 1

2 ‖X − AS‖2
F with respect to A

and S and then, equating them to zero.
We can exploit an interesting property of the sources to adapt the ALS al-

gorithm to the application. Considering the histogram of the spectra of the
molecules, most of them correspond to supergaussian signals, due to the fact
that there is no absorption in most wavelengths. This constraint can be in-
troduced adding a new term to the corresponding cost function enforcing the
sparseness. Hence, the cost function of the regularized version (RALS) reads:

DF (X ‖AS ) =
1
2
‖X − AS‖2

F + αSJS(S) (4)

where αS ≥ 0 is the regularization parameter and the function JS(S) =
∑
jk

sjk

is used to enforce the sparse representation of the solution. In this case, the
corresponding alternating least squares estimation is given by the following two
equations:

S =
(
AT A + αS

)−1
ATX (5)

A = XST
(
SST

)−1
(6)

The parameter αS of RALS is given by the exponential rule αS = α0e
(−k/τ)

where α0 and τ are constant values and k is the iteration number. This choice
avoids getting stuck in local minima [9].

Two constraints must to be applied to the algorithm. The first one is the non-
negativity: the solutions are obtained by projecting (3), (4) and (6), (7) onto
IR+, i.e., S ← max{ε,S} and A ← max{ε,A}. The second constraint refers to
the normalization: the k-column of the matrix A must accomplish ‖ak‖ = 1, ∀k.

2.3 Database

The data corresponds to the public ice analogs database of the University of
Leiden [10]. This database contains the infrared spectra of laboratory analogs of
interstellar ices. Different mixtures of molecules (from one up to three compo-
nents selected from H2, H2O, NH3, CH4, CO, H2CO, CH3OH, HCOOH, O2, N2

and CO2) at different temperatures and UV radiation exposures were produced,
the final spectrum being calculated ratioing the measured and the background
spectrum. The units of the data are absorbance and cm−1. Fig. 1 shows the
spectra of the pure ices (molecules) used in the experiments.
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Fig. 1. Spectrum of the pure ices: CH3OH, CO, CO2, H2O and HCOOH

3 Simulation Results

The algorithms ALS (defined by equations (3) and (4)) and RALS (defined by
equations (6) and (7)) were tested with synthetic mixtures of ices. In addition,
we compared the perfomance of ALS and RALS with the regularized version
of the NMF algorithm based on Frobenius norm (RNMF) [5] (the MATLAB
implementation of the three algorithms can be found in [11]). The optimal values
corresponding to the regularization parameters were calculated experimentally
for this dataset according to the SIR of the estimated sources. The obtained
values were α0 = 100 and τ = 100 for RALS and αS = 0.06 for RNMF.

We mixed the five pure molecule spectra shown in Fig. 1 with a uniformly
distributed randomly generated mixing matrix A ∈ IR10x5. For the three algo-
rithms, we choose an initial A and S with the following procedure: the algorithm
was run 10 times for a number of 200 iterations; then we calculated the SIR and
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chose the best out of the ten trials as the initialization point. Fig. 2 shows a
box and whisker plot of the results of the mean-SIR obtained by a Montecarlo
analysis performed for 100 runs. RALS outperforms RNMF and ALS in terms of
SIR. The SIR obtained by RALS was 29.08±1.41 ·10−13 dB confirming that the
choice of the exponential rule for the regularization terms avoids getting stuck in
local minima. Comparing the results of the non-regularized version (ALS) with
those of both regularized versions (RALS and RNMF), it can be seen that the
sparsness constraint fits the algorithms better to the application.

S
IR

S
(d

B
)

ALS RALS RNMF
5

10

15

20

25

30

Fig. 2. Box and whisker plot of the SIR for S obtained by the different methods

4 Conclusions

In this paper we have proposed a new application of ALS in Astrophysics. We
have addressed how ALS can be adapted to the applicaton improving the results.
The supergaussian statistical behaviour of the ice spectra can be taken into ac-
count as a sparseness constraint added to the ALS cost function. The use of a
self-compensate regularization term generally leads to a convergence to the global
desired solution. The performance of RALS is compared with the non-modified
version of the algorithm, ALS, and with the modified version of the classical NMF
algorithm imposing sparseness, RNMF. RALS is shown to be superior in terms
of performance with synthetic mixtures of ices. The proposed RALS method is a
promising tool for the identificacion of compounds in astrophysical ices.
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In: Rosca, J.P., Erdogmus, D., Pŕıncipe, J.C., Haykin, S. (eds.) ICA 2006. LNCS,

vol. 3889, pp. 368–375. Springer, Heidelberg (2006)

4. Igual, J., Llinares, R.: An informed source separation of astrophysical ice analogs.

Digital Signal Processing 17, 947–964 (2007)

5. Igual, J., Llinares, R.: Nonnegative Matrix Factorization of Laboratory Astrophys-

ical Ice Mixtures. IEEE Journal of Selected Topics in Signal Processing 2, 697–706

(2008)

6. Jiang, J., Liang, Y., Ozaki, Y.: Principles and methodologies in self-modeling curve

resolution. Chemom. Intell. Lab. Syst. 71, 1–12 (2004)

7. de Juan, A., Cassasas, E., Tauler, R.: Sot-Modeling of analytical data. Encyclopedia

of analytical chemistry: instrumentation and applications (2000)

8. Garrido, M., Rius, F.X., Larrechi, M.S.: Multivariate curve resolution–alternating

least squares (MCR-ALS) applied to spectroscopic data from monitoring chemical

reactions processes. Analytical and Bioanalytical Chemistry 390, 2059–2066 (2008)

9. Cichocki, A., Zdunek, R.: Regularized alternating least squares algorithms for non-

negative matrix/tensor factorization. In: Liu, D., Fei, S., Hou, Z., Zhang, H., Sun,

C. (eds.) ISNN 2007. LNCS, vol. 4493, pp. 793–802. Springer, Heidelberg (2007)

10. http://www.strw.leidenuniv.nl/~schutte/database.html

11. Cichocki, A., Zdunek, R.: NMFLAB for signal processing. Technical report, Labo-

ratory for Advanced Brain Signal Processing, BSI RIKEN, Saitama, Japan (2006)

http://www.strw.leidenuniv.nl/~schutte/database.html


A BCI System Based on Orthogonalized EEG
Data and Multiple Multilayer Neural Networks

in Parallel Form

Kenji Nakayama, Hiroki Horita, and Akihiro Hirano

Graduate School of Natural Science and Technology, Kanazawa University

Kanazawa, 920-1192, Japan

nakayama@t.kanazawa-u.ac.jp

http://leo.ec.t.kanazawa-u.ac.jp/~nakayama

Abstract. A BCI system, using orthogonalized EEG data sets and mul-

tiple multilayer neural networks (MLNNs) in a parallel form, is proposed.

In order to emphasize feature of multi-channel EEG data, Gram-Schmidt

orthogonalization has been applied. Since there are many channel orders

to be orthogonalized, many kinds of orthogonalized data sets can be gen-

erated for the same EEG data set by changing the channel order. These

data sets have different features. In the proposed method, different chan-

nel orders are assigned to the multiple MLNNs in a training phase and in

a classification process. A good solution can be searched for by changing

the channel orders within a small number of trials. By using EEG data

for five mental tasks, a correct classification rate is increased from 88%

to 92%, and an error classification rate is decreased from 4% to 0%.

Keywords: BCI, EEG, Brain waves, Neural network, Mental task, Or-

thogonal components, Gram-Schmidt.

1 Introduction

Approaches to BCI systems include nonlinear classification by using spectrum
power, adaptive auto-regressive model and linear classification, space patterns
and linear classification, hidden Markov models, and so on [1]. Furthermore,
neural networks have been also applied [2]. In our previous works, FFT of EEG
data and a multilayer neural network (MLNN) have been applied to the BCI.
Efficient pre-processing techniques to extract features have been also employed
[5]. Furthermore, the generalization learning methods have been applied [4],[6].
Effects of sensor locations has been analyzed for BCI using MEG data [7].

Methods to extract essential features of the multi-channel EEG data have
been proposed. In our previous work, Gram-Schmidt orthogonalization has been
applied to generate the orthogonal components [8]. The orthogonalized data
sets have different features for the different channel order to be orthogonalized,
resulting in different classification performances. For this reason, the optimum
channel order should be searched for [8].
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2 BCI System Based on Multiple MLNNs

2.1 Gram-Schmidt Orthogonalization

The vectors {x1, x2, · · · , xM}, which express the brain waves at M-channels, are
usually linearly independent. This set can be transferred into the orthogonal
vector set {v1, v2, · · · , vM} by Gram-Schmidt orthogonalization [9]. {vi} are
Fourier transformed and their amplitude are pre-processed [5], and are used as
the MLNN input data [8].

2.2 Proposed BCI System Using Orthogonalized EEG and Multiple
MLNNs in Parallel Form

In order to overcome the above channel order problem, a BCI system using
multiple MLNNs in a parallel form, shown in Fig.1, is proposed in this paper.
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Fig. 1. A BCI system using orthogonalized EEG data and multiple MLNNs in parallel

form. L kinds of channel orders are used for MLNN-1∼MLNN-L.

Let vij be the i-th orthogonalized input data set generated by using the i-th
channel order. L input data sets, vij , i = 1 ∼ L, j = 1 ∼ M , are generated from
the same EEG data set, and are applied to MLNN-i, i = 1 ∼ L individually. They
are trained independently so as to output the desired response. In the classifica-
tion process, letting the output of MLNN-i be yi = [yi1, yi2, · · · , yiK ]T , i = 1 ∼ L,
the total output ytk is given by Eq.(1). The mental task is classified based on
the maximum element in yt = [yt1, yt2, · · · , ytK ]T [5].

ytk =
1
L

L∑
i=1

yik, k = 1 ∼ K (1)

2.3 Conventional Multiple MLNNs in Parallel Form

A similar structure has been proposed as shown in Fig.2 [10], denoted ’Method-
I’ in this paper. MLNN-i, i = 1 ∼ L receive the same input data, that is
x1, x2, · · · , xM , and provide the outputs, yi = [yi1, yi2, · · · , yiK ]T , i = 1 ∼ L,
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which represent the corresponding mental task. In order to realize high general-
ization performances, different initial connection weights are assigned to MLNN-
1 ∼MLNN-L. Each MLNN is trained so as to output the desired targets. The
final outputs are also given by Eq.(1)
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Fig. 2. Conventional Method-I: EEG data are not orthogonalized. Initial connection

weights of MLNN-1 ∼ MLNN-L are different.

Another conventional approach using multiple MLNNs is ’Bagging Method’
[11], called ’Method-II’ in this paper. MLNN-1 ∼MLNN-L are trained by using
different EEG data for the same mental task. Each MLNN is trained to output
the desired targets, and the final outputs are given by Eq.(1). In the classification
process, a single EEG data set is applied to all MLNNs.

In the proposed method (Fig.1), the EEG data are orthogonalized. On the
other hand, the conventional methods, that is Method-I and Method-II, use the
original EEG data. As described in Sec.2.1, the Gram-Schmidt orthogonalization
process can generate different orthogonalized data sets by changing the channel
order. This means that feature of each channel can be emphasized, at the same
time, different kinds of feature sets can be generated, which can be effectively
applied to MLNNs. These two points of the proposed method can improve the
mental task classification performance.

3 Simulations and Discussions

In this paper, EEG data, available from the web site of Colorado State University
[3], are used. The following five kinds of mental tasks are employed. (1)Baseline-
relaxed situation, (2)Multiplication, (3)Letter composing, (4)Rotation of a 3-D
object, (5)Counting numbers.

3.1 Simulation Setup

The EEG data with a 10 sec length for five mental tasks were measured 10
times. Therefore, 10 data sets are available. Among them, 8 data sets are used
for training and the remaining 2 data sets are used for testing. Five different
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combinations of 2 data sets are used for the testing. Thus, five independent
trials are carried out. Classification accuracy is evaluated based on the average
over five trials [1].

Mental task classification is evaluated based on a correct classification rate
(Pc), an error classification rate (Pe) and a rate of correct and error classification
(Rc) as follows:

Pc =
Nc

Nt
× 100%, Pe =

Ne

Nt
× 100% (2)

Rc =
Nc

Nc + Ne
, Nt = Nc + Ne + Nr (3)

Nc, Ne and Nr are the numbers of correct and error classifications and rejec-
tions, respectively. When the MLNN outputs are smaller than the threshold, no
estimation is provided, that is ’Rejected’. Nt is the total number of the testing
data. Rc is used to evaluate a correct classification rate except for ’Rejection’.

The number of hidden units is 20. The threshold for rejection is set to be 0.7.
The MLNNs are trained by the error back propagation learning algorithm.

3.2 Classification Performances

Table 1 shows classification performances of the proposed BCI system shown in
Fig,1. In the learning process, small random numbers, uniformly distributed in
[−0.05, 0.05], are added to the MLNN input in ’Generalization’ and not added
in ’No Generalization’. The channel orders, with which good classification per-
formances are obtained in the BCI system using a single MLNN shown in Fig.1,
are used. ’L’ is the number of the MLNNs in a parallel form. For example, in
the case of ’L = 5’, five kinds of the above channel orders are used for MLNN-
1∼MLNN-5. ’Average’ means average values of Pc, Pe and Rc of the BCI system
for all channel orders. In this table, Pe is always zero. Pc can be improved by
the generalization method.

Table 1. Classification performance of proposed method

No Generalization Generalization

L Pc[%] Pe[%] Rc Pc[%] Pe[%] Rc

Average 71.5 12.2 0.855 82.3 8.1 0.911

5 76 0 0.947 80 0 0.957

10 80 0 0.929 78 0 0.978

20 78 0 1.0 84 0 1.0

30 76 0 1.0 84 0 1.0
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Table 2 shows classification performance of Method-I. Even though Pc can be
improved from the proposed method, Pe stil remains 4 ∼ 6%. Table 3 shows clas-
sification performances of Method-II. Compared to the previous two methods,
the classification accuracy is not so good.

Table 2. Classification performance of Conventional Method-I

No Generalization Generalization

L Pc[%] Pe[%] Rc Pc[%] Pe[%] Rc

Average 76.1 7.3 0.912 86.8 5.4 0.942

5 76 6 0.927 88 4 0.957

10 76 6 0.927 88 4 0.957

20 76 6 0.927 88 4 0.957

30 76 6 0.927 88 4 0.957

Table 3. Classification performance of Conventional Method-II (Bagging Method)

No Generalization Genaralization

L Pc[%] Pe[%] Rc Pc[%] Pe[%] Rc

Average 65.5 13.9 0.825 75.9 11.5 0.867

5 60 8 0.882 76 0 1.0

10 66 6 0.917 76 0 1.0

20 66 6 0.917 76 2 0.974

30 68 6 0.919 76 2 0.974

3.3 Searching for Good Solution in Proposed BCI System

The following searching method is proposed in this paper. In one trial, the com-
bination of the channel orders, which are randomly determined and are used in
the BCI system shown in Fig.1, is changed 10 times. 10 kinds of solutions for the
BCI system can be obtained. Among them, the best solution is selected. This
kind of the trial is repeated 5 times (Trial: 1st, 2nd, 3rd, 4th, 5th), in order to
confirm general efficiency. The simulation results are shown in Table 4. Good
solutions with the highest Rc are selected in each trial, and are listed in this
table. As shown in this table, very high Pc, that is more than 90%, and very low
Pe, that is zero, can be obtained for L = 10. These results are very superior to
the results of the conventional methods.

This result means (1) the channel orders assigned to multiple MLNNs can be
determined randomly, and (2) the good solution can be searched for by changing
the combination of the channel orders only 10 times. The same results were
obtained for another subjects.
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Table 4. Classification performance of proposed method. Best solution is searched for.

L = 5 L = 10

Trial Pc[%] Pe[%] Rc Pc[%] Pe[%] Rc

1st 88 0 1.0 92 0 1.0

2nd 88 0 1.0 92 0 1.0

3rd 88 2 0.978 92 0 1.0

4th 92 0 1.0 92 0 1.0

5th 88 0 1.0 92 0 1.0

4 Conclusion

A BCI system, which uses multiple MLNNs in a parallel form with the orthogo-
nalized EEG data sets, is proposed. Different channel orders are assigned to the
multiple MLNNs. By searching for good solutions for different combinations of
the channel orders, the correct classification of Pc = 92% and the error classifi-
cation of Pe = 0% can be obtained. These results are very superior to those of
the conventional methods.
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Abstract. The present study introduces a new approach for modeling

electrical properties of epithelia. Artificial neural networks (ANNs) are

used to estimate key parameters that otherwise can only be measured

directly by applying complex and time-consuming laboratory methods.

Assuming an electrical model equivalent to an epithelial layer, an ANN

can be trained to learn the relation between these parameters and exper-

imentally obtained impedance spectra. We demonstrate that even with a

naive ANN our approach reduces the error rate of parameter estimation

to less than 20 per cent. Successful test runs provide a proof of concept.

Keywords: Artificial neural network, epithelia, electrical circuit,

impedance spectroscopy, FlexNet.

1 Introduction

Epithelia form barriers between external and internal compartments of an organ-
ism. Dysfunctions of epithelial layers can lead to diseases, e.g. to severe diarrhea
in inflammed or infected gut. Another major task is the uptake or secretion of
solutes. Driving force for this transport results from concentration, hydrostatic
and potential gradients, and is mediated by ion channels or carrier molecules in
the apical and basolateral cell membranes (transcellular pathway) and by pore-
forming proteins within the tight junction between two adjacent cells (paracellu-
lar pathway). Tight junctions can block as well as selectively admit transport of
ions, macromolecules and water. This selectivity varies between different tissues
and can be altered under physiological or pathophysiological conditions.

Electrical properties of epithelia can be depicted as an equivalent circuit (Fig.
1a). The present work is based on a two-membrane model for ion and water
transport, which implies an apical capacitance Cap and resistance Rap as well
as a basolateral capacitance Cbl and resistance Rbl and further a conductive
pathway between epithelial cells (Rpara).

While the overall transepithelial resistance (RT = Rsub + Repi) can easily
be measured, and a method to discriminate between transcellular (Rtrans =
RapRbl/(Rap +Rbl)) and paracellular resistance has recently been published [1],
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Fig. 1. (a) Equivalent electrical circuit for a model discriminating between the apical

(index ap) and the basolateral (index bl) side of an epithelium. In this model, Cepi is

composed of Cap and Cbl (Cepi = CapCbl

Cap+Cbl ). (b) Overlap of two Nyquist diagrams

obtained from colonic carcinoma HT-29/B6 cells at 42 different AC frequencies between

1.3 and 16,000 Hz. At high AC frequencies Zre approaches Rsub, at low frequencies

RT = Rsub + Repi. Cepi can be calculated from the frequency ω at which Zim reaches

a minimum (Cepi = 1
ωZimmin

Repi ). In untreated cells the Nyquist diagram yields a

semicircle, as τap ≈ τ bl. Apical application of the ionophor nystatin causes a decrease

in Rap and τap and a deviation of the curve from its original semicircular form.

existing techniques fail to provide a fast and reliable way of determining all
parameters for the model given in Fig. 1a.

A technique suggested in 1998 allowed computer-aided dynamic modeling for
intact epithelia [2]. By using conventional transepithelial voltage clamp and a
least squares algorithm, the total membrane capacitance Cepi could be estimated
with a confidence of 99 per cent. For single model parameters like Cap or Cbl,
however, only a precision of ±20% was possible.

Here, we introduce an ANN based approach for estimating Cap, Cbl, Rap and
Rbl with less than 20 per cent error rate from epithelial measurements.

2 Principles of Data Processing

Network training and testing is based on impedance spectra obtained from exper-
iments on epithelial cell layers. Whereas the testing data are actually measured
impedance spectra, the training data are calculated according to the electrical
model (Fig. 1a) and by deriving information from the actual measurement.

It is an essential prerequisite that the testing impedance spectra are obtained
from a cell layer in the presence of a substance altering either Rap or Rbl. Such
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alteration affects the relation τap
˜ τbl. Fig. 1b shows data from an experiment

where Rap has been decreased by apical drug application, leading to τap � τbl. A
second prerequisite is that the values for Cepi and Rpara have to be determined,
e.g. by two-path impedance spectroscopy as described by Krug et al. [1].

Impedance spectroscopy is a well-established method for analysis of electrical
properties of solid state bodies, but also common in electrophysiological analy-
sis of tissues and cells (see e.g. [1,3,4]). During an impedance measurement an
alternating current (AC) of known frequency ω and amplitude I0 is applied to a
system, while amplitude V0 and phase difference φ of the concomitant electrical
potential are measured. Z can be expressed as a complex number Z = R + iX .
Real part Zre and imaginary part Zim describe the resistance R and the reac-
tance X , respectively.

It has been demonstrated that the subepithelial resistance Rsub and the ep-
ithelial resistance Repi (Fig. 1a) can be determined by impedance measurements
[3]. In a plot of Zre versus Zim (Nyquist diagram, Fig. 1b) the lower root indi-
cates the value for Rsub, and the upper root for RT = Rsub + Repi.

Considering all components in Fig. 1a, the equation for an impedance ZT at
a specific frequency ω can be derived. As the ohmic resistances Rsub, Rpara,
Rap, Rbl, and the reactances (= 1

iωC ) of the capacitors Cap and Cbl are used,
an epithelial impedance Zepi can be derived as:

Zepi(ω) = ZT − Rsub (1)

=
Rpara(Rap + Rbl) + iω[Rpara(Rapτbl + Rblτap)]

Rap + Rbl + Rpara(1 − ω2τblτap) + iω[Rpara(τap + τbl) + Rapτbl + Rblτap]

3 Creating Appropriate Training Data

As an impedance can be deduced from the electrical model (Eq. (1)), the follow-
ing relation between a Nyquist diagram consisting of n impedance data points
(with frequencies ω0, ω1, . . . , ωn−1) and the electrical model ensues:

(Zω0 , Zω1 , . . . , Zωn−1) ∼ (Rap, Cap, Rbl, Cbl, Rpara, Rsub) (2)

While Rpara and Cepi are given as prerequisite, Rsub and Repi have to be de-
termined or extrapolated from the Nyquist diagram of the sample. If Repi and
Rpara are known, Rtrans can easily be deduced from the electrical model.

Varying Rap, Rbl, Cap and Cbl allows to simulate Nyquist diagrams for dif-
ferent hypothetical experiment settings for the test measurement:

(Rap, Cap, Rbl, Cbl) ∈ (R+ × R+ × R+ × R+) (3)

However, there are implicit constraints. Values for Rap are limited by Rap ≤
Rtrans, values for Cap are limited by Cap ≥ Cepi. Unfortunately, no feasible
upper limit Cmax can be calculated; this value has to be specified manually.
Values for Rbl depend on Rtrans and Rap, as Rbl = Rtrans −Rap. Values for Cbl
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depend on Cepi and Cap, as 1
Cbl = 1

Cepi − 1
Cap . To ensure efficient ANN training,

equally distributed subsets of possible values have to be used.
It is extremely important to note that the model of the electrical properties

of epithelia used here can lead to identical impedance data (or Nyquist diagrams
respectively) for different parameter tuples (Rap, Rbl, Cap, Cbl). This is due to
the symmetry of the RC components of the transcellular pathway (Fig. 1a).
Training an ANN more than once with the same input data will decrease training
efficiency and estimation quality if the correlated output is not identical.

There are two scenarios, in which such harmful redundancy can appear:

– Interchanging Rap ↔ Rbl, Cap ↔ Cbl: Assuming two pseudo measure-
ments with corresponding tuples (Rap

1, R
bl

1, C
ap

1, C
bl

1) and (Rap
2, R

bl
2,

Cap
2, C

bl
2), calculations will result in the same impedances if:

Rap
1 = Rbl

2, Rbl
1 = Rap

2, Cap
1 = Cbl

2, Cbl
1 = Cap

2 (4)

– τap = τbl: If the apical and basolateral time constants τ = RC are of same
value, it is not possible to distinguish apical or basolateral properties from a
Nyquist diagram. But moreover, distinct tuples (Rap

1, C
ap

1, R
bl

1, C
bl

1) and
(Rap

2, C
ap

2, R
bl

2, C
bl

2) - that do not appear in the first scenario - can lead
to identical values for τap and τbl and therefore cause redundancy.

The easiest way to ensure that the first scenario is not produced, is to add less-
than relation constraints (Rap < Rbl, Cap < Cbl). The second scenario can be
avoided by simply excluding tuples where τap = τbl. Note that this exclusion of
tuples does not prevent feasible approximation of parmeter values. Only apical/
basolateral assignment for resistances and capacitances is lost; actual values will
be correct. The assignment can be deduced from experiment settings, i.e. if two-
path impedance spectroscopy has been used to determine Rpara.

4 ANN Architecture and Test Settings

The present approach was examplarily tested with two different ANN approaches
using the ANN simulation tool FAST [5]. Both architectures are based on a fixed
equally distributed subset of eight data points of the Nyquist diagrams. In both
approaches, standard backpropagation was used as learning rule.

The first approach used the network construction algorithm FlexNet [6] to
determine an appropriate architecture. FlexNet allows network construction for
given data with a basically unlimited number of hidden layers and units. Special
features of this algorithm, such as cross-cut connections, were not exploited.

As a second approach, a bottle neck architecture with 20 hidden units in three
layers was used (layer structure: 16-8-4-8-4). Each unit in the first hidden layer
represents an impedance Z, or data point of a Nyquist diagram respectively,
where Zre and Zim are represented each by an input unit. The parameters of
interest (Rap, Rbl, Cap, Cbl) are represented by four output units.
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Prerequisitory parameters. Values for Cepi and Rpara were derived from a
physiological experiment: Cepi = 3.5 μF/cm2, Rpara = 4069 Ωcm2. For determi-
nation of Rsub and Repi an ideal estimation has been assumed: Rsub = 9.8 Ωcm2,
Repi = 772 Ωcm2. Rtrans was deduced to amount to 952 Ωcm2.

Training data. Each vector starts with 16 inputs values representing Zre and
Zim each. The four following values are the values of the corresponding parame-
ters of interest. Rap and Rbl have been chosen with value distances of 10 Ωcm2

and Cap and Cbl with value distances of 0.1 μF/cm2; Cmax was chosen as 15
μF/cm2. This resulted in a total of 61,664 training vectors.

Test data. The τ quotient was assumed to be ≥ 5.0, and parameter tuples
chosen appropriately. Values for Rap and Rbl ranged between 111.111 Ωcm2

and 841.639 Ωcm2, values for Cap and Cbl ranged between 4.111 μF/cm2 and
14.444 μF/cm2. A total of five impedance measurements matching the prereq-
uisitory constraints were calculated according to section 2 and used as test data.

5 Results

Without avoiding harmful redundancy error rates cannot be notably reduced
for FlexNet or for the standard backpropagation during the training progress;
instead, oscillation is observed. Therefore, these redundancies in the training
data were eliminated as described in section 3. Notable reduction of error rate
for both ANN approaches, however, was only observed with very small learning
rates. With a learning rate ≤ 0.0001, FlexNet could achieve error rates ≤ 5%
for known and ≤ 20% for unknown Nyquist diagrams (Fig. 2a). Same holds true
for the standard backpropagation architecture (Fig. 2b).

A learning rate of 0.00001 showed only minimal distortions (like oscillation)
while steadily reducing the error rate. By this, the above mentioned error rates
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Fig. 2. Progress of training with learning rate 0.00001
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were achieved within less than 7,500 epochs for both approaches. Estimations
were, however, considerably more unprecise, if test data were used where the
apical and basolateral time constant did not differ at least by a factor of five.

The network architecture built by FlexNet consisted of 20 units in two hidden
layers. Although the same number of units is used as for the standard backprop-
agation, the structure is different here (16-10-10-4).

6 Discussion and Conclusions

Pattern recognition based on the electrical model for epithelia showed good
learning progress and small error rates. The foreseen problems in creating ap-
propriate training data could be solved. No notable oscillation was observed. For
a learning rate of 0.00001 the slope of the error rate graph was <0.

A crucial point is that typical impedance measurements consist of 40-50 data
points. Using all data points as input is not efficient. However, focussing on an
equally distributed subset of impedance data points is only acceptable if there
is evidence that this is the optimal subset. This is not the case here. Therefore,
appropriate feature selection algorithms [7] have to be investigated in the future.

Nevertheless, with the present work a new computational approach for deter-
mining electrical properties of epithelia has been successfully introduced. Our
tests showed that theoretical considerations on calculating training data were
correct. Thus, the present work represents a proof of concept.

Moreover, the precision of the estimations even with the present unsophis-
ticated ANN approaches were already better than the error rates reported by
Bertrand et al. [2]. Further optimization of our approach appears therefore to
be promising and will be the subject of further investigations.
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Abstract. In this paper a novel gene selection method based on personalized 
modeling is proposed and is compared with classical machine learning tech-
niques to identify diagnostic gene targets and to use them for a successful diag-
nosis of a medical problem - acute graft-versus-host disease (aGvHD). An 
analysis using the integrated approach of new data with the existing models is 
evaluated. Identifying a compact set of genes from gene expression data is a 
critical step in bioinformatics research. Personalized modeling is a recently in-
troduced technique for constructing clinical decision support systems. This is a 
novel study which utilises both computational and biological evidence and the 
use of a personalized modeling for the analysis of this disease. Directions for 
further studies are also outlined. 

Keywords: Gene selection, GvHD, machine learning, personalized modeling,  
wrapper. 

1   Introduction 

Identifying a compact set of informative genes from microarray data (gene expression 
data) is critical in the construction of an efficient clinical decision support system.  
Microarray analysis might help to identify unique markers (e.g. a set of gene) of clini-
cal importance. Diagnosis and prediction of a biological state/disease is likely to be 
more accurate by identifying clusters of gene expression profiles (GEPs) performed 
by macroarray analysis. Based on a genetic profile, it is possible to set a diagnostic 
test, so a sample can be taken from a patient, the data related to the sample processed, 
and a profile related to the sample obtained [1]. We apply this approach here to detect 
acute graft-versus-host disease (aGvHD) in allogeneic hematopoietic stem cell  
transplantation (HSCT), a curative therapy for several malignant and non malignant 
disorders. Acute GvHD remains the major complication and the principal cause of 
mortality and morbility following HSCT [2], and its diagnosis is merely based on 
clinical criteria and may be confirmed by biopsy of one of the 3 target organs (skin, 
gastrointestinal tract, or liver) [2]. There is no definitive diagnostic blood test for 
aGvHD. In the current project, our primary objective was to validate a novel and not 
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invasive method to confirm the diagnosis of aGvHD in HSCT patients at onset of 
clinical symptoms. In medical area, personalized modeling has significant potential to 
benefit the patients who need tailored treatment, such as cancer diagnosis and drug 
response. The main idea of personalized modeling is to create a model for each objec-
tive sample, which is able to discover the most important information specifically for 
this sample. Since personalized modeling focuses on the individual sample rather than 
simply on the global problem space, it can be more appropriate to build clinical deci-
sion support systems for new patients. Previous work has reported that using person-
alized modeling can achieve better classification results than the results from global 
modeling [1][4]. This study used a Personalized Modeling based Gene Selection 
method (PMGS) proposed in [3] for macroarray data analysis integrating new data 
with the existing models [1].  The organization of the rest of this paper is as follows: 
section 2 gives an overview about gene selection methods describing the PMGS algo-
rithm and personalized modelling; section 3 describes results about the experiments 
conducted with the integrated approach for new data samples; section 4 gives conclu-
sions inferred with some possible future applications. 

2   Gene Selection Methods and Personalized Modeling 

Many attempts have been made to identify which genes are most important for  diag-
nosing different diseases (e.g. cancer diagnosis) and prognosis task using microarray 
and macroarray technology. Generally, most developed gene selection methods can 
be categorized into two groups, filter and wrapper methods. The performance from 
wrapper methods is usually superior to that from filter methods, because the result 
comes from the optimized classification model. A standard wrapper gene selection 
method can be found in [5]. Wrapper gene selection methods can generally yield high 
classification accuracy using a particular classifier with an expensive computational 
cost. In wrapper method, the gene selection process is heavily dependent on a search 
engine, a search area (data), and an evaluation criterion for optimizing the learning 
model [3]. We have seen in [4] the critical state of the global modelling. More impor-
tantly, it is difficult to incorporate previous developed models or existed knowledge 
into global modeling. Personalized modeling is a relative new method in bioinformat-
ics research, which is less found in literature. A representative work is published in 
[4]. One main difficulty in gene selection is how to optimize the learning function to 
evaluate the candidate genes during the training process. Genetic algorithm(GA) is a 
powerful method that is capable of exploring the combination of features and princi-
pally able to converge to the best solution. However, classical GA is often criticized 
for its huge computational cost and the difficulty of parameter setting. Compact ge-
netic algorithm(cGA) [6] is a GA based algorithm that drives the evolution towards a 
better probability distribution. Compared to classical GA, compact GA is able to 
discover and maintain the relationships between the features through the entire opti-
mization, which creates a much faster discovery of the global optimum. 

2.1   Algorithm of PMGS Method  

In this study, we propose and want to compare with classical wrapper (global model), 
a new gene selection method based on personalized modeling for GEP based on 
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macroarray method data analysis, especially for aGvHD diagnosis and prognosis. In 
the proposed PMGS method, we employ wrappers to search candidate gene sets and 
then use the selected most important genes to profile individual data sample. This 
gene selection method can incorporate any classifier models for optimizing the learn-
ing function during the training process. In this study, we have investigated two clas-
sification algorithms, including Weighted distance K-nearest neighbor (WKNN) [4] 
and NaiveBayes to make a comparison. The algorithm and the block diagram of the 
PMGS method has been described in [3], and is not explained here for brevity. 

3   Experiment 

The goal of this study is to design a model to select a compact set of genes that can 
profile the pattern of objective microarray data. 

3.1   Data 

Fifty-nine HSCT patients were enrolled in our study between March 2006 and July 
2008 in Transplants Regional Center of Stem Cells and Cellular Therapy "A. Neri" 
Reggio Calabria, Italy, during a Governative Research Program of minister of the 
Health with the title: “Project of Integrated Program: Allogeneic Hemopoietic Stem 
Cells Transplantation in Malignant Hemopathy and Solid Neoplasia Therapy - Pre-
dictive and prognostic value for graft vs. host disease of chimerism and gene expres-
sion”. Because experimental design plays a crucial role in a successful biomarker 
search, the first step in our design was to choose the most informative specimens and 
achieve adequate matching between positive cases aGvHD (YES) and negative con-
trols aGvHD (NO) to avoid bias. This goal is best achieved through a database con-
taining high-quality samples linked to quality controlled clinical information. Patients 
with clinical signs of aGvHD (YES) were selected, and in more than 95% of them 
aGvHD was confirmed by biopsy including those with grade I. We used 26 samples 
from aGvHD (YES) patients that were taken at the time of diagnosis and we selected 
33 samples from patients that didn’t experienced aGvHD (NO). All together YES/NO 
patient groups comprised a validation set. Total RNA was extracted from whole pe-
ripheral blood samples using a RNA easy Mini Kit (Qiagen) according to the manu-
facturer’s instructions. Reverse transcription of the purified RNA was performed 
using Superscript III Reverse Transcriptase (Invitrogen). A multigene expression 
assay to test occurrence of aGvHD were carried out with TaqMan® Low Density 
Array Fluidic (LDA-macroarray card) based on Applied Biosystems 7900HT com-
parative dd CT method,  according to manufacturer’s instructions. Expression of each 
gene was measured in triplicate and then normalized to the reference gene 18S 
mRNA, who was included in macroarray card. About the project of macroarray card, 
we selected 47 candidate genes from the published literature, genomic databases, 
pathway analysis. The 47 candidate genes were involved in immune network and 
inflammation pathogenesis. Finally a group of new patients is enrolled for testing the 
new approach explained in this paper. 
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Table 1. The 13 genes selected from CFS, the 7 genes selected through the wrapper- naïve 
Bayes method [5] are marked with °, the 5 genes selected with SVM are marked with *. Names 
and meaning of genes are shown in [5]. 

 Gene Name  
BCL2A1 EGR2° SELP 
CASP1°* FAS SLPI° 
CCL7 ICOS°* STAT6 
CD83 IL4 Foxp-3 * 
CXCL10° IL10°* CD52 °* 

3.2   Experimental Setup – Wrapper Approach 

In table 1 is shown some results published in previous [5], with the addition of a new  
wrapper analysis with SVM as Classifier. The global dataset has been divided in  
training data set with 29 patient samples (13 aGvHD(Yes) and 16 aGvHD(No)) and in  
testing  data set consisted of 30 patient samples (13 aGvHD(Yes) and 17 
aGvHD(No)). Here as classifier we have used a SVM. SVMs use a kernel function to 
implicitly map data to a high dimensional space. Then, they construct the maximum 
margin hyperplane by solving an optimization problem on the training data. Sequen-
tial minimal optimization (SMO) [7] has been used in this paper to train a SVM. 
However, due to the high computational cost it is not very practical to use the wrapper 
method to select genes for SVMs. Also here, consistently with the analysis in [5] the 
search algorithm was the best-first with forward selection, starting with the empty set 
of genes. The search for the best subset is based on the training data only. Once the 
best subset has been determined, and a classifier has been built from the training data 
(reduced to the best features found), the performance of that classifier is evaluated on 
the test data. The 5 Genes selected using the wrapper method are shown in table 1 in 
comparison with gene selected from the previous analysis [5]. A leave-one-out cross 
validation (LOOCV) procedure was performed to investigate the robustness of the 
method over the training set: in 29 runs, the subset of 5 genes was selected 29 times 
(100%) by the SMO. Section 3.5 has shown the performance of this technique esti-
mated on the testing data. 

3.3   Experimental Setup – Personalized Modeling Based Gene Selection Method 

Here we want to employ the PMGS approach described in the 2, to compare it with 
the techniques used in 3.2 and to integrate these models with new data. For each data 
sample, the final selected most important genes may be different. The selected fre-
quency of some genes is significantly high, which means they can be recognized 
highly representative of the data pattern. For example CASP1, FOXP3, ICOS, CD52 
are the most important genes for sample 20 and CASP1 is often present in the best 
subgroups. As previous shown the main goal of developing PMGS method is to dis-
cover the personalized information for each sample (can be a patient clinical evidence 
sample), rather than simply to compare the classification accuracy with published 
results in literature. For this purpose, PMGS is designed to be able to give a detailed  
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profile for the new testing data sample(a new patient sample), which can contribute to 
clinical decision support system. However, LOOCV was performed to investigate the 
robustness of the method over the training set: in 29 runs, the personalized best subset 
was selected  29 times (100%). Section 3.5 has shown the performance of this tech-
nique estimated on the testing data. 

3.4   Experimental Setup – Integrated Approach for New Data and Existing 
Models 

Here we want to employ the PMGS approach described in section 2, to compare it 
with the techniques used in 3.2 and to integrate these models with new data. For this 
aim, we have used a group of 7 new patients as new dataset D [1], [5],with 3 case of 
aGvHD,  in a different subspace of the problem space and we have obtained a very 
good modeling of the pathology. We have used like the other models training and 
testing dataset. Section 3.6 has shown the performance of this technique estimated on 
the testing data. 

3.5   Experimental Results 

In this study SVM classifier and classifiers previously used [5] obtain similar results 
with the PMGS method. The results confirm that it is possible to diagnose the aGvHD 
using a selected number of variables. Only one case escaped all our classification 
models, which achieved 97% accuracy in a LOOCV on the testing data set. Experi-
mental results are shown in Table 2.  

3.6   Experimental Results of the Integrated Approach 

For the 7 patients of the new dataset D we have a new situation for the clinical symp-
toms and for the general clinical situation, furthermore a different modality of infu-
sion of the cell is occurred, so, in particular in these situations the integration of the 
existing models is a good method. The Model M seen above, does not perform very 
well on the new data D. The model is used to train on a dataset D0 in a subspace of 
the problem space where it performs well. The new dataset D is in another subspace 
of the problem space. Data D0tr extracted from D0 is first used to evolve one of the 
models seen above M0, and with the rule extracted the model M is transformed into  
equivalent local models. The model M0 is further evolved on Dtr into a new model 
Mnew, the first representing data D0tr and the last two, data Dtr. Although on the test 
data D0tst both models performed equally well, Mnew generalizes better on Dtst. 
Building alternative models of the same problem could help to understand the prob-
lem better and to choose the most appropriate model for the task. The new model 
created for each step is trained (D0tr) with the personalized model for 50 runs (9 
cases has been removed because not clinically good for the training) and a LOOCV 
(92% for the integrated method) is calculated in comparison with single standard 
methods on the new dataset D of 7 patients (table 2).  
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Table 2. Experimental results of a CFS with ANN classifier and a wrapper method combined 
with SVM and of the PMGS with naïve bayes and with WKNN. The starting set has been 
divided in training set and test set, a LOOCV has been calculated for the two subsets. Experi-
mental results of a CFS with ANN classifier and a wrapper method combined with SVM with 
PMGS. In the last two rows the Integrated approach marked with (i).  

Method Test set (Dtst) Training set Test set 

CFS-ANN 3(7) 28(29) 29(30) 

Wrapper-SVM 4(7) 29(29) 29(30) 

PMGS-naïve Bayes 3(7) 27(29) 29(30) 

PMGS-WKNN 4(7) 29(29) 29(30) 

(i)PMGS- naïve Bayes 6(7) - - 

(i)PMGS- WKNN 6(7) - - 

4   Biomedical Conclusions and Future Work 

We examined the immune transcripts to study the applicability of gene expression 
profiling (macroarray) as a single assay in early diagnosis of aGVHD. From a bio-
logical point of view, the results are  reliable, as reported in [5]. Others have reasoned 
that Th2 cell therapy could rapidly ameliorate severe aGVHD via IL-4 and IL-10 
mediated mechanisms [8]. It is noteworthy that in our study a set of genes, indicated 
by computational analysis, included same mediators of Th2 response such as IL10, 
and signal transducer and activator of transcription 6, interleukin-4 induced (STAT6). 
In our study increased expression levels of CXCL10 and CCL7 were identify as in-
formative biomarker of alloreactive disease. Altogether our results strongly outlined 
the importance and utility of non-invasive tool for aGVHD diagnosis based on GEP. 
As a clinical trial, tissue biopsies were performed to confirm the above diagnostic 
results. In conclusion, our models may prevent the need for an invasive procedure. 
This study demonstrated, for the first time, that the proposed integrated methodology 
for the personalized selection of gene diagnostic targets and their use for diagnosis of 
aGVHD results in a satisfactory 92% accuracy over independent  test data set of 
HSCT population. We plan to extend the system  including all clinical and genetic 
variables [9], testing with new data samples this method and for a larger group of 
patients to capture their  peculiarity. The authors are engaged in this direction. 
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Abstract. In this paper, we propose a simple supervised associative learning 
approach for spiking neural networks. In an excitatory-inhibitory network para-
digm with Izhikevich spiking neurons, synaptic plasticity is implemented on 
excitatory to excitatory synapses dependent on both spike emission rates and 
spike timings. As results of learning, the network is able to associate not just 
familiar stimuli but also novel stimuli observed through synchronised activity 
within the same subpopulation and between two associated subpopulations.  

Keywords:  Spiking neural network, Associative learning, Supervised learning, 
Excitatory-Inhibitory network, Izhikevich spiking neurons. 

1   Introduction 

There is evidence in neurophysiology that long-term association between stimuli, 
which involves synaptic plasticity, is triggered by overlapping short-term activity, 
which only involves activity dynamics (e.g. [1], [7] and [8]), linking neuronal activity 
and long-term memory.  

Associative-based learning can be implemented using unsupervised or supervised 
approaches [6]. For unsupervised learning, perhaps the temporal variant of Hebbian 
learning known as spike-timing dependent plasticity (STDP) is the most biologically 
plausible approach. However, the purely unsupervised approach is often not suitable 
for goal-oriented applications, so it is used in this paper with prescribed target stimuli 
as a form of supervision. Such supervisory signal could be assumed to come from 
another part of the brain [2]. 

In this study, we explore a supervised associative learning algorithm as a combina-
tion of spike emission rate dependent and STDP approaches from [9] on a learning 
task similar to [8]. Supervision in learning is only through intensified currents into 
paired target neuron subpopulations. Learning is performed by associating two differ-
ent stimuli with synchronisation of network activity within and between subpopula-
tions of neurons as the key measure of stimulus association. 

2   Simulation Model 

For our simulation, the network structure is an adaptation of excitatory-inhibitory neural 
network model similar to [7]-[8]. The neuron model used with simple computational 
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properties is based on the Izhikevich spiking neuron (IM) with standard parameters 
governing the dynamics of membrane potential (further details of the IM can be found 
in [3] and [4]). 

The network is composed of 1000 neurons (N=1000) with 800 excitatory neurons 
(NE=800) and 200 inhibitory neurons (NI=200). Each neuron receives synaptic con-
tacts from 20% of excitatory neurons (CE=0.2NE) and 20% of inhibitory neurons 
(CI=0.2NI), randomly. The excitatory neurons population is divided into subpopula-
tions that each represents an object for the memory under study, meanwhile the in-
hibitory subpopulation acts as the global network inhibition. In our simulations, there 
are four (p=4, P1-P4) subpopulations of excitatory neurons with 160 (selectivity, 
ƒ=0.2 → ƒNE=160) units each with the following allocation: P1: neurons 1-160, P2: 
neurons 161-320, P3: neurons 321-480 and P4: neurons 481-640, while neurons from 
801-1000 are inhibitory and the remaining excitatory neurons 641-800 are the non-
selective pool of neurons. The connection strengths of excitatory synapses on excita-
tory neurons are denoted W1/0/a, excitatory on inhibitory neurons WEI, inhibitory on 
excitatory neurons WIE, and inhibitory on inhibitory WII. Within W1/0/a, W1 are the syn-
aptic connections within the same subpopulation, Wa is the synaptic connection be-
tween two associated subpopulations and W0 labels the non-associated subpopulation. 

3   Learning Implementation 

For our simulation experiments, learning is performed through implementation of 
synaptic plasticity on excitatory to excitatory synapses (W1/0/a). Other synapses (WEI, 
WIE, and WII) are set to random values with moduli drawn uniformly the range from 
between 0 and 1 and with signs of connections depending on the type of the neuron 
(excitatory or inhibitory). 

Learning is implemented in a Hebbian paradigm, considering both spike rate and 
timings of both pre-synaptic and post-synaptic neurons in a learning window [9]. In a 
learning trial with 500 milliseconds (ms) simulated time, the time window is divided 
into 100 ms (T=100) wide overlapping bins at 50 ms intervals (Fig. 1). For each 
learning time bin, the average spike rate of every excitatory neuron (Spre and Spost) is 
estimated as the ratio of the number of spikes emitted in the bin divided by T [8]. The 
weight adjustments, ΔW are calculated as a function of time difference, Δt = tj

(f) – ti
(f), 

where tj
(f)  and ti

(f) are the last firing times of post-synaptic neuron j and pre-synaptic 
neuron i, respectively, within the learning time bin (Fig. 2) [9]. To avoid saturation of 
synaptic strength values infinitely, we keep the values within the range 0 to 3. 

A synapse W is highly potentiated (if W(t)) = 0) to the maximal synaptic strength 
(wmax = 3) if both pre- and postsynaptic neurons emit spikes above the high rate 
threshold T+  and only if the time difference of the last firing between the pre- and 
postsynaptic neurons is above 0 (Δt > 0). W is weakly potentiated with an amount of 
ΔW (derived from Fig. 2), if the pre synaptic (postsynaptic) neuron emits spikes with 
rate above T+ whilst the postsynaptic (pre synaptic) neuron spike emission rate is be-
low T+ but above the low threshold, Ta. For depression of W, where Δt < 0 from Fig. 2, 
it is applied if the pre synaptic (postsynaptic) neuron emits spikes above T+ and the  
 

 



226 N. Yusoff and A. Grüning 

 

T1.E T2.ET2.S

1

1000

500

N
eu

ro
n

msT1.S  
10 20 ms

-0.5

100

potentiation

depression

t

W

1.0

 
Fig. 1. Learning time bins with overlap-
ping windows, TN.S is the beginning of a 
time bin which ends at TN..E with TN..E - 
TN.S =100 ms, and TN.S increasing in steps 
of 50 ms [8]. 

Fig. 2. A function of time difference between last 
firing of pre-, ti

(f), and post synaptic neuron, tj
(f), 

Δt = tpost – tpre = tj
(f) – ti

(f), on excitatory neurons 
[9], Fig. 2. 

 
post-synaptic (pre synaptic) neuron emits spikes below Ta. The synaptic plasticity 
rules are summarised in 1-3.  

                 

Wij (t+1)   =

wmax, Wij(t) = 0, (Spre  T+  , Spost  T+) , t > 0

max(wmin,min(wmax, Wij (t)+ W), [ (Spre  T+ ,Ta  Spost   T+) ; 
 (Ta  Spre  T+ , Spost   T+ )],  t > 0 

max(wmin,min(wmax, Wij (t ) - | W|), [ (Spre  T+ , Spost   Ta)  ; 
 (Spost  T+ , Spre   Ta) ] , t  0

(1)

(2)

(3)
 

4   Simulation Results 

In our simulation, for every ms in each trial, each neuron receives background noisy 
external currents ξi(t), where ξi(t) is Gaussian noise with mean μ and stdev σ. Excita-
tory and inhibitory neurons receive external currents with standard deviations σNe=3 
and σNi=1, respectively. During a learning trial, for t>150 to t≤ 350 ms, the external 
current distribution to target stimulus subpopulation 1 is changed to a uniform one 
from range 0 to γ with γ=30. Then, for t>250 to t≤ 450 ms, the target stimulus sub-
population 2 is stimulated with the same range of currents as its subpopulation to be 
associated. We ran two batches of simulations: 1) learning with familiar stimuli and 
2) learning with novel stimuli. For (1), a stimulus is assumed to have been learned 
prior to establishing relationship between two different stimuli, while for (2) only a 
small subset of synapses are initialised with some strength values. 

4.1   Learning with Familiar Stimuli 

For implementing associative learning with familiar stimulus, neurons in the same 
subpopulation are connected with a set of random W1 values in the range of 0 and 3. 
With such pre-initialised synaptic connections, neurons in the same subpopulation 
always fire synchronously. An example of associative learning results between two 
stimuli, P1 and P3 is depicted in Fig. 3.  
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A. Trial 1 

 

B. Trial 2 

 

Fig. 3. Synchronisation of neuronal network activity after two learning trials for a pair of famil-
iar stimuli P1 ↔ P3. Currents to excitatory subpopulation neurons of P1 (neurons: 1-160) are 
intensified for 200 ms (t>150 to t<= 350 ms), then P3 (neurons: 321-480) is stimulated for the 
same duration (t>250 to t<= 450 ms). Association of patterns is measured based on synchro-
nous activity in each member of a stimuli learning pair subpopulation. A) Learning trial 1: acti-
vation of P1 is observed in between 350 to 450 ms, B) Learning trial 2: activation of P3 (in 
between t>150 to t<= 250 ms) and activation of P1 (in between t>350 to t<= 450 ms) as the 
results of pattern association. 

 
After two trials, association of P1 ↔ P3 could be established. Initially, intensified 

currents to subpopulations P1 and P3 activate their respective subpopulation only. 
Then, at times 350 < t ≤ 450 ms, there exists prolonged activity of P1 by activation 
through P3. In trial 2, prospective activity can be observed with activation of P3 
within stimulation period of P1 (in 150 < t ≤ 250 ms) and activation of P1 within 
stimulation period of P3 (in 350 < t ≤ 450 ms). 

4.2   Learning with Novel Stimuli 

For learning with novel stimuli, only 20% of neurons within the same subpopulation 
are initialised with W1 values in the range of 0 and 1. The initial values of W1 repre-
sent some random connectivity assumed to result from any previous learning. Ini-
tially, in our simulation, the so intialised synaptic connections are not enough to have 
synchronous activity within a subpopulation compared to when learning with familiar 
stimuli. Results of association learning with novel stimuli P1 and P3 are depicted in 
Fig. 4.  

From Fig. 4, during the early phase of learning, after stimulations to P1 and P3, the 
neurons in both subpopulations only fire asynchronously caused by the injected  
current within t>150 to t≤350 ms and t>250 to t≤ 450 ms for P1 and P3, respectively. 
A spill-over of activity from P1 to P3 and vise-versa can only be observed after ten 
trials.  
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A. Trial 1 

 

B. Trial 10 

 
 

Fig. 4. Neuronal network activity after one and ten learning trials for stimuli pair P1 ↔ P3. 
Currents to excitatory subpopulation neurons of P1 is intensified for 200 ms (t>150 to t<= 350 
ms), then P3 is stimulated for the same duration (t>250 to t<= 450 ms). A) In the early phase 
of learning, after one trial, neurons in subpopulations P1 and P3 fire asynchronously as both 
stimuli are novel and activity are only dependent on the external currents. B)  After ten trials, 
neuronal activity within each subpopulation is more synchronised as the result of learning. Ac-
tivation of P3 (within t>150 to t<= 250 ms) and activation of P1 (within t>400 to t<= 500 ms) 
indicate association of P1 ↔ P3. 

5   Conclusion 

We have explored a simple associative learning scheme utilising Hebbian learning 
both for spike rates and timings (STDP) for synaptic plasticity, similar to [9]. Unlike 
other supervised approaches [5] where neuronal activity is forced to have relatively 
precise spike timing to match the desired target spike train, this scheme uses supervi-
sory currents to establish an association between two stimuli. And unlike previous 
approaches [8], that only rely on sliding average spike rates, our approach has a plau-
sibility advantage by incorporating spike timings, too [9]. However, it remains to  
examine whether a single branch (1), (2) or (3) of the weight update rule has a domi-
nating affect on learning. The associations show in spill-over of activity between the 
two stimuli involved. This demonstrates once more that long-term associations be-
tween stimuli involving synaptic plasticity are triggered by overlapping short-term 
activity involving only short-term activity dynamics. We have run a series of simula-
tion experiments for learning associations of familiar stimuli and novel stimuli. For 
learning with familiar stimuli, associations between pair patterns are learned faster 
compared to novel stimuli.  
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Abstract. The hippocampus is known to be involved in spatial learning

in rats. Spatial learning involves the encoding and replay of temporally

sequenced spatial information. Temporally sequenced spatial memories

are encoded and replayed by the firing rate and phase of pyramidal cells

and inhibitory interneurons with respect to ongoing network oscillations

(theta and ripples). Understanding how the different hippocampal neu-

ronal classes interact during these encoding and replay processes is of

great importance. A computational model of the CA1 microcircuit [3],

[4], [5] that uses biophysical representations of the major cell types, in-

cluding pyramidal cells and four types of inhibitory interneurons is ex-

tended to address: (1) How are the encoding and replay (forward and

reverse) of behavioural place sequences controlled in the CA1 microcir-

cuit during theta and ripples? and (2) What roles do the various types

of inhibitory interneurons play in these processes?

Keywords: Computational model, microcircuit, inhibitory interneurons,

STDP, calcium, theta, ripples, medial septum, CA1.

1 Introduction

Spatial memories in the hippocampus are encoded (stored) and replayed by the
firing frequency and spike timing of pyramidal cells and inhibitory interneurons
during network oscillations. Theta oscillations (4-10 Hz) are observed in rats
during exploration and rapid eye movement (REM) sleep, whereas sharp wave-
associated ripples (100-200 Hz) are observed during immobility, slow-wave sleep
(SWS) and consummatory behaviours. During exploration hippocampal place
cells have been shown to systematically shift their firing phase with respect to
theta as the animal transverses the place field (a phenomenon known as phase
precession) [19].

Many theories have been proposed over the years trying to understand how
memories in the hippocampus are encoded and replayed during network oscil-
lations [7],[15]. Buzsaki’s two-stage memory model [15] hypothesized that both
theta and sharp-wave (ripple) states of the hippocampus are essential to mem-
ory trace encoding and replay. During theta (exploratory behavior) neocortical
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Fig. 1. (A) Pyramidal cell model with calcium detectors in distal and proximal den-

drites. (B) Entorhinal cortical (EC) and Schaffer collateral (CA3) inputs during theta

rhythm. (C) Forward replay of CA3 spatial memories used as inputs to CA1 during

ripple activity (location A in figure 2). (D) Reverse replay of CA3 spatial memories

used as inputs to CA1 during ripple activity (location B in figure 2).

information is transmitted to the hippocampus via the dentate gyrus, where it is
encoded by pyramidal cells via synaptic plasticity mechanisms. During the sharp-
wave associated ripple state the pyramidal cells initiate population bursts, which
then cause the already stored memories in the hippocampus to reach the neocor-
tex and hence to be replayed. Hasselmo’s and colleagues’ oscillatory model [7]
hypothesized that hippocampal theta rhythm (4-7 Hz) can contribute to mem-
ory formation by separating encoding (storage) and retrieval of memories into
independent functional sub-cycles. Recent experimental evidence has shown that
in the CA1 area of the hippocampus the same set of excitatory and inhibitory
cells, which fire at specific phases during theta, are active at completely different
phases during ripples [10], [11], [12]. Similarly, medial septal GABAergic neurons
differentially phase their activities with respect to theta and ripple [14], [17].

Here we investigate, via computer simulations, the biophysical mechanisms by
which encoding and replay of behaviourally relevant spatial memory sequences
are achieved by the CA1 microcircuitry. A model of the CA1 microcircuit [3], [4],
[5], [6] is extended that uses simplified biophysical representations of the major
cell types, including pyramidal cells (PCs) and four types of inhibitory interneu-
rons: basket cells (BCs), axo-axonic cells (AACs), bistratified cells (BSCs) and
oriens lacunosum-moleculare (OLM) cells. Inputs to the network come from the
entorhinal cortex (EC), the CA3 Schaffer collaterals and medial septum (MS).
Our model addresses three important issues: (1) How is the mechanism of phase
precession of place cells in the CA1 microcircuit achieved in presence of various
types of inhibitory interneurons? (2) How are the encoding and replay (forward
and reverse) of behavioural place sequences controlled in the CA1 microcircuit
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during theta and ripples? and (3) What roles do the various types of inhibitory
interneurons play in these processes?

2 Model Architecture and Properties

The CA1 network model consisted of 4 pyramidal cells and four types of in-
hibitory interneurons: two basket cells, an axoaxonic cell, a bistratified cell and
an oriens lacunosum-moleculare (OLM) cell. Hodgkin-Huxley mathematical for-
malism was used to describe the ionic and synaptic mechanisms of all cells. All
simulations were performed using XPPAUT [20] running on a PC under win-
dows XP. The biophysical properties of each cell were adapted from cell types
reported in the literature [5], [9].

Pyramidal Cells. Each pyramidal cell consisted of 4 compartments: an axon,
a soma, a proximal dendrite and a distal dendrite. Active properties included a
fast Na+ current, a delayed rectifier K+ current, an LVA L-type Ca2+ current,
an A-type K+ current, and a calcium activated mAHP K+ current. No recurrent
connections between pyramidal cells in the network were assumed.

Eachpyramidal cell receivedproximal anddistal excitation (AMPAandNMDA)
from the CA3 Schaffer collaterals and entorhinal cortex (EC), respectively, and
synaptic inhibition (GABAA) from theBC,AAC,BSC, andOLMcells in the soma,
axon, proximal dendrite and distal dendrite, respectively.

A mechanism for spike timing dependent plasticity (STDP) in each dendrite
was used to measure plasticity effects. The mechanism had a modular structure
consisting of three biochemical detectors, which responded to the instantaneous
calcium level and its time course in the dendrite [1]. The detection system con-
sisted of: (1) a potentiation (P) detector which detected calcium levels above
a high-threshold (e.g. 4μM) and triggered LTP, (2) a depression (D) detector
which detected calcium levels exceeding a low threshold level (e.g. 0.6μM), re-
mained above it for a minimum time period and triggered LTD, and (3) a veto
(V) detector which detected levels exceeding a mid-level threshold (e.g. 2μM)
and triggered a veto to the D response. Calcium entered the neuron through:
(1) voltage-gated calcium channels (VGCCs), and (2) NMDA channels located
at each dendrite. Calcium influx from neither channels alone elicited plasticity.
Plasticity resulted only from the synergistic action of the two calcium sources
(NMDA and VGCC). A graphical schematic of the model pyramidal cell and its
calcium detectors for STDP is shown in Figure 1A.

Inhibitory Interneurons. All inhibitory interneurons consisted of a single
compartment (soma). Active properties of BC, AAC and BSC included a fast
Na+, a delayed rectifier K+ and a type-A K+ currents [5]. Active properties
of the OLM cell included a fast Na+ current, a delayed rectifier K+ current, a
persistent Na+ current and an h-current [9]. During theta, axoaxonic and basket
cells received excitatory inputs from the EC perforant path and the CA3 Schaffer
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Fig. 2. Virtual linear track paradigm used. The rat must transverse the track starting

from location A and stopping at location B. Gray filled ellipses represent the place

fields (PF) of three pyramidal cells (PCs) in the network. Note their fields are non-

overlapping. As the rat transverses the PF, each PC shifts its firing to earlier phases

of the theta rhythm. At locations A and B the rats retrieve either the track locations

to be transversed or the track locations already transversed, respectively.

collateral, inhibition from the medial septum, and recurrent excitation from the
pyramidal cells. Basket cells recurrently inhibited each other and received addi-
tional inhibition from the bistratified cells. Bistratified cells were excited by the
CA3 Schaffer collateral input only, inhibited by the medial septum, synaptically
excited by PC recurrent excitation and synaptically inhibited by the basket cell.
OLM cells received recurrent excitation from the PCs and forward inhibition
from the medial septum. During ripples, the AAC, BC and BSC were excited
only by the CA3 Schaffer collaterals and inhibited by the MS cells (see MODEL
INPUTS subsection for details). The OLM cell was excited by the PCs and
inhibited by the MS cells (see MODEL INPUTS subsection for details).

Model Inputs. Excitatory inputs (spikes) to network cells originated from the
entorhinal cortex (EC) and CA3 Schaffer collaterals, whereas external inhibitory
one from the medial septum (MS). During theta, the EC and CA3 inputs were
continuously present, but at different frequencies (see Figure 1B). The interspike
interval of the EC input was set to 10ms (100Hz), whereas the ISI of the CA3
input was set to 20ms (50Hz) [22]. Both EC and CA3 inputs arrived at the same
time in the CA1-PC dendrites. The MS inputs were modelled as burst cells,
which fired at specific phases of the theta rhythm. One MS burst cell fired at the
peak of the extracellular theta (type 1 ) [14], whereas the other one at its trough
(type 2 ) [17]. MS cells inhibited only the network inhibitory interneurons.
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During ripples, the CA1 PCs received forward or reversed excitatory rippled
input only from the CA3 Schaffer collaterals (see Figure 1C and 1D) [15], [21].
The inhibitory inputs from the MS cells were of two types: (1) a cell with a theta-
like oscillation during the ripple-centered epoch, pausing its activity before the
ripple peak and increasing its firing right after the ripple peak (type 1 ) [17], and
(2) a cell that paused its activity during the ripple episode (type 2 ) [17].

3 Results

3.1 Virtual Linear Track

Our virtual linear track consisted of a rat running from station A to station B
(see Figure 2). In stations A and B the rat was allowed to stand still awaiting
for the GO signal to transverse the linear track. The linear track consisted of
four non-overlapping place field representations of equal dimensions (≈ 25cm).
The virtual rat took 2.25 sec (9 theta cycles) to tranverse through one place
field. Figure 4 shows the firing activities of two place cells (PC 1 and PC4) and
all inhibitory interneurons in two place fields (PF1 and PF4 in Figure 2). Each
place field was encoded by the firing of a single pyramidal cell, whose phase of
firing shifted with respect to the external theta rhythm [19]. As the rat entered
a place field (first theta cycle) of a given pyramidal cell, the first spikes occured
close to the trough of the theta cycle. As the rat was approaching the end of the
field (last theta cycle), they occured near the peak of the cycle, having precessed
almost 180 degrees over the course of 9 theta cycles (see figure 4) [23]. This was
accomplished by the constantly increasing strength of the proximal synapses
due to the STDP learning rule, which increased the tendency of PCs to fire
at earlier theta phases in the presence of a constant level inhibitory threshold
(BSC inhibition) (simulation result not shown). Once the rat reached station B,
it was rewarded and allowed to be engaged into consummatory behaviours. At
the stations A and B, our hippocampal simulation entered a different state of
waking without theta rhythmic oscillations, where sharp wave associated ripple
activity dominated the input and output of CA1 [16], [18]. As experimental
studies have shown at station A the rat experienced forward replay of neural
activity coding the track locations to be transversed [16], whereas at station B
the rat experienced reverse replay of neural activity coding the track locations
it has just tranversed [18].

3.2 Encoding of Spatiotemporal Memories during Theta

Figure 3 depicts the encoding process of spatiotemporal memories during theta.
During theta, input from EC enters the distal dendrite of the CA1 PC cells,
whereas input from CA3 Schaffer collaterals enters the proximal dendrite of
the PC cells. On their own, the EC inputs generate dendritic spikes in the distal
dendrites, which get attenuated on their way to the soma (see figure 3A) [2]. The
CA3 inputs generate excitatory postsynaptic potentials (EPSPs), which fail to
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Fig. 3. Schematic of encoding of spatiotemporal memories during the theta rhythm

(see text for details)

Fig. 4. (Left) Firing activities of pyramidal cell 1 and all inhibitory interneurons with

respect to theta rhythm. (Right) Firing activities of pyramidal cell 4 and all inhibitory

interneurons with respect to theta rhythm. Vertical arrows indicate phase precession

of pyramidal cell firings in every theta cycle. Nine theta cycles comprise a pyramidal

cell’s (place cell’s) place field.

generate somatic action potentials, because they are presynaptically inhibited by
GABAB (see figure 3B) [8]. The presynaptic GABAB inhibition in CA1 cyclically
changed its strength with respect to theta (active during the first half of theta,
inactive during the second half) [8]. During the first half of theta, the strength
of CA3 input to PC proximal dendrites was reduced by 50%. When the EC and
CA3 inputs were concident in the proximal dendrites of the PCs, then action
potentials are generated in the PC somas (figure 3C).
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Figure 3D-F depicts which cells are active during theta. Figure 4 depicts the
firing activities of all network cells during theta. During the first half-cycle of
theta (0-180 degrees), we propose the following: the coincident EC and CA3
inputs cause first the AAC to fire action potentials with interspike interval (ISI)
equal to 20ms, which inhibit the PCs at their axons and prevent them from firing
APs (Figure 3D) [11]. Once the AAC stops firing, BCs, which are modeled as
slow integrators [11], start to fire due to the coincident EC and CA3 inputs to
their somas. Because of their mutual recurrent inhibition, each BC fires every
40ms as in [11]. The role of BCs is to inhibit the PCs and prevent them from
firing, pace subthreshold theta oscillations in PCs [13] and prevent the BSC from
ruining learning in the PC proximal dendrite by inhibiting it (Figure 3E). BSC,
along with the OLM cell, is also inhibited by the type 2 MS cell (Figure 3E).
The type 2 MS cell also inhibits the type 1 MS cell, which in turn disinhibits the
AAC and BCs and allows them to fire and carry-on with their inhibitory duties
(Figure 3E).

Figure 3F depicts the second sub-cycle of theta, which begins as the presynap-
tic GABAB inhibition to CA3 Schaffer collateral input to PC synapses declines
and type 1 MS cell approach maximum activity. Because of this septal input,
the basket and axoaxonic cells are now inhibited, releasing pyramidal cells, bis-
tratified cells and OLM cells from inhibition. Pyramidal cells may now fire more
easily, thus, allowing previously learned memories to be recalled. Type 1 MS cell
also inhibits the type 2 MS cell, which in turn disinhibits the BSC and OLM
cell. To ensure the correct place memory of the sequence is recalled, the disin-
hibited BSC broadcasts to all PCs a non-specific inhibitory signal, which allows
the PCs that learned the place memory to recall it, while quenching all other
spurious places memories (e.g. subsequent memories in the sequence). The OLM
cell, which gets activated by the PCs, in turn send an inhibitory signal to the
distal PC dendrite, which prevents the EC input from interfering with the recall
of the pattern.

3.3 Forward and Backward Replay of Memories during Ripple
Activity

Figure 5 depicts the replay processes during a ripple episode. In contrast to theta
(figure 4), during the ripple episode (forward or reverse) the firing patterns of
inhibitory interneurons in the network change (figure 6) [11], [12]. During ripple
activity what was locally learned during theta oscillations, it is now retrieved
by the subiculum, entorhinal cortex and the neocortex, where it reached con-
sciousness [15]. The synaptic weights of the proximal dendrite are now fixed (no
changing). Forward and reverse replay activity arise from the highly synchronous
activity of the CA3 PCs [15], [21]. This highly synchronous activity excites first
the AAC, which is disinhibited by the type 1 MS cell (as we mentioned before
the type 1 MS cell pauses its activity for about 25ms before the peak of the
ripple episode and increases it right after it), and in turn inhibit the axons of all
CA1 PCs in the network. The duration of this axonal inhibition is short (less than



Dynamics and Function of a CA1 Model 237

Fig. 5. Schematic of the forward and backward replay processes of spatiotemporal

memories during ripple activity (see text for details). Vertical dashed gray line indicates

the peak of the ripple episode.

Fig. 6. Firing activities of all network cells with respect to ripples during both forward

and reverse replay of spatiotemporal memories. Dashed yellow line indicates peak am-

plitude of ripple episode. Axoaxonic, basket, bistratified and OLM cells fire the same

way during both forward and reverse replay of memories [11], [12]. During forward re-

play, pyramidal cells fire in a specific order: black, blue, red, and green. During reverse

replay the order is reversed: green, red, blue, and black.
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25 ms), since the AAC pauses its firing right after the peak of ripple episode due
to increased activity of the type 1 MS cell. The role of the AAC is to silence the
CA1 network and prepare it for the appropriate retrieval of information based
on the current context. Similar firing activity has the OLM cell in the network,
because it is also (dis)inhibited by a type 1 MS cell. The role of the OLM cell is
to prevent the EC input from interfering with the recall of the memory.

Next, BCs and BSC, which were inhibited by the type 2 MS cells during the
start of the ripple episode are now disinhibited by them and become active from
the highly synchronous CA3 input. The role of the BSC is to provide a non-
specific inhibition to all PCs, allowing this way only the ”appropriate” PCs that
learned the pattern(s) to recall it(them). The role of the BCs is to maintain the
highly syncronous ripple activity of the PCs. A similar role is played by the gap
channels in the PC axons [24].

4 Conclusion

A reduced version of a previously published CA1 microcircuit model [3], [4],
[5], [6] is extended to simulate how spatiotemporal patterns are encoded and re-
trieved in the CA1 area of the hippocampus during theta and ripples. Our model
demonstrates: (1) How is phase precession of place cells in CA1 achieved in the
presence of various types of inhibitory interneurons? and (2) How are encoding
and replay (forward and reverse) of behavioural sequences of spatial memories
controlled in CA1 during theta and ripples in the presence of various types of
inhibitory interneurons. Much more work is needed to further explore why the
model place cells don’t precess beyond 180 degrees with respect to theta. Does
a full 360 degrees phase precession result from the interactions of a larger and
noiser network of cells or is it driven by phase precessed CA3 inputs? How does
a larger number of simulated theta cycles contribute to phase precession? Also,
what happens to network dynamics and its ability to learn when the presenta-
tion frequencies of inputs change? Finally, what role does dopamine in CA1 play
in binding together temporally sequenced spatial memories?
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Abstract. This study examines Probabilistic Neural Network (PNNs) models in 
terms of their classification efficiency in the Vesicoureteral Reflux (VUR) dis-
ease. PNNs were developed for the estimation of VUR risk factor. The obtained 
results lead to the conclusion that in this case the PNNs can be potentially used 
towards VUR risk prediction. There is a redundancy in the diagnostic factors, 
so pruned PNN was used in order to evaluate the contribution of each one. 
Moreover, the Receiver Operating Characteristic (ROC) analysis was used in 
order to select the most significant factors for the estimation of VUR risk. The 
results of the pruned PNN model were found in accordance with the ROC 
analysis. The obtained results may support that a number of the diagnostic fac-
tors that are recorded in patient’s history may be omitted with no compromise 
to the fidelity of clinical evaluation. 

Keywords: Artificial Neural Networks, Probabilistic Neural Networks, ROC 
analysis, Vesicoureteral Reflux. 

1   Introduction 

Medical prognosis is the attempt of a physician to reach a valid decision upon the 
nature of a patient’s disease, to predict its likely expected course and to foresee  
the chances of recovery based on an objective set of criteria that are applicable to the 
particular case. Clinician’s decision is based on accurately classifying the findings of 
an examination into groups of high and low risk factors. The problem of generating 
prognosis for medical diseases is complex due to the non linear interaction between 
different diagnostic factors [1]. 
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Effective simulating methods based on computer usage for assessing of medical 
diseases diagnostic factors were searched. Computer simulations became more effec-
tive and they started to assist in experiments or clinical and laboratorial examinations. 
The prognosis possibility of a disease is valuable for physicians as well as for pa-
tients, bringing also measurable advantages, because time-consuming and expensive 
examinations are reduced to the indispensable minimum [2].  

Artificial Neural Networks (ANNs) are suitable for disease prognosis since there is 
no need to posses the function of input and output parameter in evident form. If the 
function exists, it will be established through the network during the training process 
and it will be written down as weighted individual neurons. Nowadays, ANNs have 
been widely used in medicine [3], successfully, such as oncology [4], urology [4], [5], 
[6], [7], surgery [8], [9], orthopaedics [10], cardiology [11], pediatrics [5], pediatric 
surgery [12] etc. 

This study implements Probabilistic Neural Networks (PNN) which have not been 
used in similar research efforts in the past [5], [6], [7]. The main purpose of this paper 
is the estimation of the significant Vesicoureteral Reflux (VUR) risk factors in neo-
nates, infants and children, as reliable and on-time detection of VUR is crucial in the 
effective treatment of the disease and the avoidance of relapses. 

Moreover, the available data underwent to statistical processing using the Receiver 
Operating Characteristic (ROC) analysis [13] in order to select the most significant 
factors for the estimation of VUR risk. 

2   Vesicoureteral Reflux and Factors Related to the Prognosis 

Urinary Tract Infections (UTIs) are diagnosed by the identification of bacteria in 
urine culture (in concentration greater than 105/ml), irrespectively of the microorgan-
ism the route and the level of infection. The frequency of UTI in neonates is about 1-
2% and 2-4% in infants and children [14], [15]. 

The type and the frequency that bacteria cause urinary tract infection depend on the 
age, sex, and the presence or not of renal tract anatomical abnormalities. The most 
common bacteria are: E.Coli, Proteus, Klembsiella, Pseudomonas, Streptococcus and 
others. 

The clinical presentation (Systsymp) is usually whit non specific symptoms like: 
fever, vomiting, diarrhea, feeding problems. Patients have failure to thrive or even 
lose weight. Older children may present dysuria, enuresis, frequency or loin pain [16]. 

Today’s clinical routine for diagnosis is based on positive urine cultures. An anti-
biogramme is very important in order to find out the sensitivity of the causative or-
ganism and to provide the most appropriate antibiotic treatment. Urine collection is 
obtained, always under aseptic conditions, by urine bag, suprapubic aspiration or 
catheterization, depending on the age of the patient and the severity of the clinical 
presentation. It is also necessary a blood laboratory testing that includes FBC (Full 
Blood Count), (where WBC: number of white blood cells, WBC type, Ht: haema-
tocrite, Hb: haemoglobine, PLT: platelets). Erythrocyte Sedimentation Rate (ESR) 
and C-Reactive Protein (CRP) (positive or negative) are also tested [15]. 

A young child with documented UTI should be further evaluated with renal / blad-
der ultrasound and Cysteourethrogram (CUG) in order to detect VUR, obstruction or 
other congenital abnormality. 
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The normal flow of urine begins in the collecting system of each kidney. Urine 
then flows out of each kidney and into a tube called ureter. Each ureter leads into the 
bladder, where the urine collects until it is passed out of the body. Normally, urine 
should flow only in this direction. In VUR, however, urine that has already been col-
lected in the bladder is able to flow backwards from the bladder, along the ureter, and 
back into the collecting system of the kidney. VUR may be present in either one or 
both ureters [16]. 

The VUR is an anatomical and functional disorder with potentially serious conse-
quences because the bacteria have direct access to the kidneys and cause a kidney 
infection (pyelonephritis) [14]. In particular, when the ureter inserts into the trigone, 
the distal end of the ureter courses through the intramural portion of the bladder wall 
at an oblique angle. The intramural tunnel length–to–ureteral diameter ratio is 5:1 for 
a healthy non-refluxing ureter. As the bladder fills with urine and the bladder wall 
distends and thins, the intramural portion of the ureter also stretches, thins out, and 
becomes compressed against the detrusor backing. This process allows a continual 
antegrade flow of urine from the ureter into the bladder but prevents retrograde 
transmission of urine from the bladder back up to the kidney; thus, a healthy intramu-
ral tunnel, within the bladder wall, functions as a flap-valve mechanism for the intra-
mural ureter and prevents urinary reflux.  

An abnormal intramural tunnel (i.e. short tunnel) results in a malfunctioning flap-
valve mechanism and VUR. When the intramural tunnel length is short, urine tends to 
reflux up the ureter and into the collecting system. Pacquin reports that refluxing 
ureters have an intramural tunnel length–to–ureteral diameter ratio of 1.4:1. To pre-
vent reflux during ureteral reimplantation, the physician must obtain a minimum tun-
nel length–to–ureteral diameter ratio of 3:1. 

The human kidney contains two types of renal papillae: simple (convex) papilla 
and compound (concave) papilla. Compound papillae predominate at the polar re-
gions of the kidney, whereas simple papillae are located at nonpolar regions. Ap-
proximately 66% of human papillae are convex and 33% are concave. 

Intrarenal reflux or retrograde movement of urine from the renal pelvis into the re-
nal parenchyma is a function of intrarenal papillary anatomy. Simple papillae possess 
oblique, slitlike, ductal orifices that close upon increased intrarenal pressure. Thus, 
simple papillae do not allow intrarenal reflux. However, compound papillae possess 
gaping orifices that are perpendicular to the papillary surface that remain open upon 
increased intrarenal pressure. These gaping orifices allow free intrarenal reflux. 

In children, particularly those in the first 6 years of life, urinary infection can cause 
kidney damage [15]. The VUR is recognized in 25-40% of causes of UTIs in children 
[16]. 

CUG is obtained by catheterization of the bladder, infusion of a special dye-
contrast material. Then a series of images with x-ray radiation are taken. This is a 
painful procedure and demands the exposure of the patient in radiation and also mal-
treats the patient’s genitals. Despite the negative side-effects, the use of CUG is es-
sential, in today’s clinical routine, in order to identify anatomical abnormalities and to 
provide information for the appropriate therapy and prophylaxis avoiding the creation 
of renal scarring and subsequenty renal dysfunction. 

Time interval between the appearance of the symptoms and UTI diagnosis (DUR-
SYMPT) and time interval between the appearance of the symptoms and the initiation 
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of treatment (STARTTRE) are very crucial for the best possible management in the 
acute phase and the prevention of long term consequences in the renal function of the 
subjects. 

The VUR data, which are used at the design of proposed ANN structure, are ob-
tained from the Pediatric Clinical Information System (CIS) of Alexandroupolis’ 
University Hospital, Greece. 

The clinical and laboratorial parameters that were considered for VUR diagnosis 
were 21, namely, sex, age, siblings, utsymp, systsymp, WBC, WBC type, hematocrit, 
hemoglobin, platelets, ESR, CRP, bacteria, sensitivity, ultrasound, Dimercaptosuc-
cinic Acid (DMSA) scintigraphy, symptoms duration, start treatment, risk factor, 
collect and resistance. These parameters have been explained previously. Both of 
utsymp and DMSA scintigraphy were not known for all cases, so they were dropped 
from the data set, thus reducing the number of parameters to 19. It is emphasized that 
some of the parameters may take more than one values simultaneously. For example, 
the parameter age can have a value between 1 and 3, depending on the child’s age, 
less than 1 year old, or between 1 and 5 years old, or greater than 5 years old. In the 
other hand, the parameter sensitivity has 6 available values, penic, cephal2, chephal3, 
aminogl, sulfonamides and other, and it is possible the patient’s clinical results of this 
parameter to be simoultaneouly cephal3 and aminogl. The insertion of sensitivity’s 
values to ANN demands the division of this parameter to 6 independent sub-
parameters instead of a universal parameter. Similar process is applied at systsymp 
and risk factor. As a result, the number of parameters for ANN was extended to 34. 

The VUR clinical and laboratorial parameters and their values are depicted in Ta-
ble 1. The 1st column of Table 1 is corresponded the ANN inputs with VUR parame-
ters, which are represented in 2nd column of the table. The existence of a range of NN 
inputs means that the corresponding VUR parameter can have, simultaneously, more 
than one value. 

Table 1. Vesicoureteral reflux clinical and laboratorial factors and their values  

NN
inputs

Factors Factors’ Values 

1 Sex Boy Girl
2 Age < 1 year 1 – 5 years > 5 years
3 Siblings 1 2 3

4–8 Systsymp Fever Vomiting / diarrhea Anorexia Loss of weight Others
9 WBC < 4500 4500–10500 > 10500
10 WBCtype n L m E b
11 HT < 37 37 – 42 > 42
12 HB < 11.5 11.5 – 13.5 > 13.5
13 PLT < 170 170 – 450 > 450
14 ESR < 20 20 – 40 > 40
15 CRP + -
16 Bacteria e.coli proteus kiebsielas strep stapf psedom others

17–22 Sensitiv penic cephal2 cephal3 aminogl sulfonamides other
23 Ultrasoun rsize nrm rsize abn rstract nrm rstract abn Normal other
24 Dursymp 2 days 3 days 4 days 5 days > 5 days
25 Starttre 2 days 3 days 4 days 5 days

26–27 Riskfact Age < Ttreat
28 Collect u-bag catheter Suprapubi

29–34 Resistan Penicillin Kefalosp2 Kefalosp3 Aminoglyc Sulfonam Others
Utsymp Dysouria Frequency Burning Enuresis Abdominal pain
DMSA + -
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As mentioned above, CUG is the principal medical examination for VUR diagno-
sis. At the same time, this imaging technique is dangerous for children patients’ health 
and there is no alternative method for diagnosis of VUR. This paper proposes a com-
putational method, which is based on ANNs, predicting VUR existence, without the 
exposure of children in radiation. 

The VUR data used at the design of PNN model, were obtained from the Pediatric 
Clinical Information System of Alexandroupolis’ University Hospital in Greece.  

The present study is based on a dataset consisting of 160 cases (children patients 
with UTI). Some of these patients presented VUR. This data set was divided into a set 
of 120 records for the training of PNNs and another set of 40 records for the evalua-
tion and testing of their classification efficiency. 

3   PNNs for VUR Prediction 

The proposed pattern recognition models for VUR factor classification are based on a 
non-symbolic computational intelligence method implemented by ANN [5]. The 
development of such an ANN demands the determination of a number of parameters, 
such as the type of ANN, the number of neurons in each layer and the applied learn-
ing algorithm. 

PNNs are a variant of Radial Basis Function Networks and approximate Bayesian 
statistical techniques, combining new input vectors with existed storage data in order 
to classify correctly the input data; a process familiar to human behavior [17]. 

PNNs are based on Parzen’s Probabilistic Density Function (PDF) estimator [18] 
and their aim is the correct classification of input vectors to one of the available target 
classes of the problem. A PNN is a three-layer feed-forward network, consisting of an 
input layer, a radial basis and a competitive layer [19]. The first layer transfers the 
input data to a hidden layer. The radial basis function layer computes distances from 
the input vector to the training input vectors and produces a vector whose elements 
indicate how close the input is to a training input. The third layer sums these contribu-
tions for each class of inputs to produce as its net output a vector of probabilities. 
Finally, a competitive transfer function on the output of the third layer classifies the 
input vector into a specific class because this one has the maximum probability of 
being correct. 

The PNNs do not require iterative learning process, so that may managed magni-
tude of data faster that other ANN architectures. This PNNs’ feature results by the 
Bayesian technique’s behavior. 

The number of input nodes of PNN equals to the number of variables of the prob-
lem and the number of nodes for output layer equals to the number of classes, as they 
are defined by the problem. It was clarified in section 2 that input parameters are 
thirty four and output classes are two; consequently, in this study, the input layer 
consists of thirty four neurons and the output layer has two neurons that determines 
the patients’ VUR risk factor. The number of nodes for hidden layer is the number of 
patterns during the PNN’s construction. Consequently, the proposed PNN had 120 
neurons for hidden layer, as the available data set for PNN implementation, consisted 
of 120 cases. PNNs’ design is straightforward and does not depend on training, thus 
no learning algorithm was selected during PNN’s implementation [20]. 
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The PNNs architecture is constrained by the available features of specific problem, 
however, the width of the calculated Gaussian curve for each probability density func-
tion have to be defined. In the present study, this spread factor varied from 0.1 to 100. 

4   PNNs’ and ROC Analysis Results 

The construction and the classification efficiency of the developed PNNs were based 
on MATLAB Neural Network Toolbox, due to its effectiveness and user-friendly 
interface [20]. 

The three level architecture of the PNNs is 34-120-2. The spread of the radial basis 
function, representing the width of the Gaussian curve, varied during the experimental 
design phase of the PNNs. The spread’s value ranged from 0.1 to 5.0. 

The evaluation criterions for PNNs’ performance are the percentages of successful 
prognosis over pathological and overall cases. The obtained results of PNNs with 
satisfactory performance are summarized in Table 2. The second column of the Table 
presents the spread’s value of the RBF. The performance of the proposed PNNs is 
depicted in columns third through eighth. The classification efficiency of PNNs was 
based on the percentages of correct classified cases over testing (40 cases), training 
(120 cases) and overall data set (160 cases) they are presented in columns third to 
fifth. The proper classification of pathological cases is a critical feature for the evalua-
tion of the PNNs’ generalization ability. The implemented PNNs have to recognize 
patients with increased VUR risk factor, so the fields 6th to 8th store the percentage 
of pathological cases that have been categorized correctly, for testing, training and 
overall data, respectively. 

Table 2. The PNNs for the VUR risk factor prediction 

Percentage of Successful Prognosis Percentage of Successful Prognosis Over 
Pathological Situations ANN 

model Spread

Testing Set Training Set Overall Set Testing Set Training Set Overall Set 

PNN1 0.4 87.50 100.00 96.88 100.00 100.00 100.00 

PNN2 1.5 85.00 99.12 95.63 61.12 90.91 85.57 

 
The results of PNN1 and PNN2 simulations, as they are presented in Table 2, con-

clude that their classification efficiency is similar. However, the proposed PNN2 mis-
classified VUR cases as normal cases, as obtained by results of Table 2. On the other 
hand, PNN1 did not misclassify VUR cases as normal, as obtained by the results of 
Table 2. It is an important feature of the PNN1’s behavior, as it has the ability to dis-
tinguish the VUR patients by diagnostic factors. It is clear the satisfactory perform-
ance of PNN1 in terms of VUR estimation. Therefore, the PNN can be potentially 
used towards VUR risk prediction. 

The PNN1 was used for the significance estimation of the diagnostic risk factors 
and it was trained with 34 pruned data sets. Each of these sets used values related to 
33 diagnostic factors instead of the total 34 ones. In other words, one different diag-
nostic factor was omitted in each data set. The PNN1 was constructed and tested with 
the pruned data sets. 
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As it was shown in Table 1, the number of diagnostic factors is N = 34, so the pos-
sible combinations of input data subsets are given by N!/k!(N-k)! , for k = 1 ... 34. 
The total number of combinations is 17.179.869.183, so exhaustive search is time-
consuming.  

Table 3. Experimental results using Pruned PNN 

Omitted 
Percentage of Successful 

Prognosis 
Percentage of Successful Prognosis

over Pathological Situations 

Factors Testing
Set

Training
Set

Overall
Set

Testing
Set

Training
Set

Overall
Set

AUC AUC 

Sex 80.00 100.00 95.00 78.13 100.00 94.21 0.549 0.549
Age 81.98 100.00 97.32 92.50 100.00 94.00 0.523 0.523

Siblings 97.62 100.00 98.12 100.00 100.00 100.00 0.468 0.532

Systsymp1 (Fever) 98.23 100.00 98.78 100.00 100.00 100.00 0.445 0.555
Systsymp2

(Vomitting/ diarrhea) 97.62 100.00 98.12 100.00 100.00 100.00 0.460 0.540

Systsymp3 (anorexia) 98.23 100.00 98.78 100.00 100.00 100.00 0.445 0.555
Systsymp4

(Loss of weight) 87.50 100.00 96.85 100.00 100.00 100.00 0.503 0.503

Systsymp5 (Others) 82.89 100.00 97.82 100.00 100.00 100.00 0.515 0.515

WBC 97.11 100.00 97.86 100.00 100.00 100.00 0.477 0.523

WBCtype 97.11 100.00 97.86 100.00 100.00 100.00 0.475 0.525

HT 87.50 100.00 96.85 100.00 100.00 100.00 0.504 0.504

HB 98.53 100.00 99.11 100.00 100.00 100.00 0.428 0.572

PLT 98.53 100.00 99.11 100.00 100.00 100.00 0.420 0.580

ESR 62.50 100.00 90.63 50.00 100.00 89.71 0.603 0.603

CRP 97.11 100.00 97.86 100.00 100.00 100.00 0.473 0.527

Bacteria 70.00 100.00 92.25 72.13 100.00 93.86 0.576 0.576

Sensitiv1 (penic) 99.32 100.00 99.68 100.00 100.00 100.00 0.380 0.620

Sensitiv2 (cephal2) 98.53 100.00 99.11 100.00 100.00 100.00 0.430 0.570

Sensitiv3 (cephal3) 81.18 100.00 96.12 100.00 100.00 100.00 0.535 0.535

Sensitiv4 (aminogl) 98.23 100.00 98.78 100.00 100.00 100.00 0.443 0.557
Sensitiv5

(Sulfonamides) 99.67 100.00 99.80 100.00 100.00 100.00 0.339 0.661

Sensitiv6 (others) 82.89 100.00 97.82 100.00 100.00 100.00s 0.518 0.518

Ultrasound 80.00 100.00 95.00 72.18 100.00 93.71 0.569 0.569

Dursympt 97.62 100.00 98.12 100.00 100.00 100.00 0.468 0.532

Starttre 98.92 100.00 99.28 100.00 100.00 100.00 0.404 0.596
Riskfact1

(Age < 1 year) 98.92 100.00 99.28 100.00 100.00 100.00 0.411 0.589

Riskfact2 (Ttreat) 98.40 100.00 99.02 100.00 100.00 100.00 0.437 0.563

Collect 82.89 100.00 97.82 100.00 100.00 100.00 0.518 0.518

Resistan1 (Penicillin) 81.18 100.00 96.12 100.00 100.00 100.00 0.537 0.537

Resistan2 (Kefalosp2 80.00 100.00 95.00 78.13 100.00 94.21 0.548 0.548

Resistan3 (Kefalosp3 87.50 100.00 96.85 100.00 100.00 100.00 0.503 0.503
Resistan4

(Aminoglyc) 97.62 100.00 98.12 100.00 100.00 92.86 0.452 0.548

Resistan5 (Sulfonal) 80.00 100.00 95.00 78.13 100.00 94.21 0.544 0.544

Resistan6 (Others) 87.50 100.00 96.85 100.00 100.00 100.00 0.504 0.504
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The available data set of VUR’s records was processed by ROC analysis. The aim 
of this data processing was the evaluation of importance role of each diagnostic factor 
for VUR estimation. The Area Under Curve (AUC) is an important statistic of ROC 
analysis. The mathematical expressions for AUC, sensitivity and specificity are ex-
plained in [13]. A value of area larger than 0.5, indicates the importance contribution 
of a specific diagnostic factor. 

The obtained results for pruned PNN and ROC analysis are summarized in Table 3. 
The diagnostic factor which was not considered during the PNN1’s development is 
presented in the first column of the Table 3. The 2nd to 7th columns depict the per-
formance of PNN1 for each of pruned data sets. The results of the 2nd to 4th columns 
are the percentages of successful prognosis over testing (40 cases), training (120 
cases) and overall pruned data sets (160 cases). The 5th to 7th columns records the 
percentage of successful prognosis of pathological cases for testing, training and 
overall pruned data sets. The eighth column presents the AUC of ROC for the diag-
nostic factor in the first column. 

The obtained results of PNN’s simulation with pruned data sets as well as the ROC 
analysis exhibit that some diagnostic factors reinforce the VUR estimation, while 
other diagnostic factors reduce the classification efficiency of PNN1. As it is shown 
in Table 3, the percentages of successful prognosis for pathological and normal cases 
are unchangeable and equal to 100%. This behavior of pruned PNN1 declares that the 
proposed neural network has adaptation ability, so that the training patterns can be 
classified correctly during the simulation process. 

There is not improvement of pruned PNN1 in terms of the percentages of success-
ful prognosis over pathological situations; due to the PNN1 with full-sized data set 
achieved the optimal classification for pathological cases. However, the percentages 
of successful prognosis for testing, training and overall pruned data sets are signifi-
cantly increased due to PNN1’s implementations omitted some diagnostic factors. 

The results of the pruned PNN1 were compared to the ones related to the full-sized 
PNN1. The performance of PNN1 is significantly decreased in the case of the omission 
of the sex, age, ESR, bacteria, ultrasound, resistan2 (Kefalosp2) and resistan5 (Sul-
fonal) diagnostic factors. 

The omission of the resistan1 (Penicillin), sensitiv3 (Cephal3), sensitiv6 (others), 
collect and systsymp5 (others) diagnostic factors improves the pruned PNN1’s classi-
fication efficiency of normal cases according to experimental values as presented in 
Table 3. Both the simulation results of pruned PNN1 and ROC analysis’ values show 
that performance of pruned ANN is unchanged in case of the systsym4 (loss of 
weight), HT, resistan3 (Kefalosp3) and resitstan6 (others) were not considered during 
the PNN1’s development. The PNN1’s implementation, without the sensitiv5 (Sul-
fonamides), yields satisfactory results in terms of the discrimination of pathological 
and normal cases.  

5   Conclusions 

Urinary tract infections (UTIs) are one of the most frequent diseases in infants and 
children. The VUR has serious consequences as the bacteria have direct access to the 
kidneys and cause a kidney infection (pyelonephritis). Despite the serious complica-
tions of VUR, no investigation has been done on the effectiveness and weightiness of 
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the various diagnostic factors in the clinical evaluation of the patients with UTIs. A 
method for the evaluation of the most significant diagnostic factor towards VUR risk 
is proposed in the present work. The method presented here utilized an optimal PNN. 
The PNN was designed, implemented and tested with data sets of 33 parameters in-
stead of full-sized data set. 

The obtained results of pruned PNN1 were in accordance with ones of the ROC 
analysis. The most significant diagnostic factors for VUR risk estimation, as proposed 
by PNN1 with pruned data sets, are sex, age, ESR, bacteria, ultrasound, resistan2 
(Kefalosp2) and resistan5 (Sulfonal). Consequently, a number of diagnostic factors 
may be omitted without any loss in the clinical assessment validity. From this point of 
view, the obtained results may support that a number of recorded diagnostic factors 
that are recorded in patient’s history may be omitted with no compromise to the fidel-
ity of clinical evaluation. 

In future work, it would be used advanced optimization searching techniques, such 
as Genetic Algorithms search, in order to be defined a complete set of diagnostic 
factors for VUR estimation. 
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Abstract. This paper presents an experimental ”morphological analy-

sis” retrieval system for mammograms, using Relevance-Feedback tech-

niques. The features adopted are first-order statistics of the Normalized

Radial Distance, extracted from the annotated mass boundary. The sys-

tem is evaluated on an extensive dataset of 2274 masses of the DDSM

database, which involves 7 distinct classes. The experiments verify that

the involvement of the radiologist as part of the retrieval process improves

the results, even for such a hard classification task, reaching the precision

rate of almost 90%. Therefore, Relevance-Feedback can be employed as a

very useful complementary tool to a Computer Aided Diagnosis system.

1 Introduction

Over the recent years, content-based image retrieval (CBIR) systems are gaining
in importance [1,2,3]. Such systems extract visual features from the ”query”
image, e.g. color, texture or shape and perform a comparison of it with the
available images in a database, using specific similarity measures. The most
similar images are returned to the user.

The scenario described above uses low-level features, which are not capable
of capturing the image semantics, e.g. the high-level semantic concept that is
meaningful for a user. This is known as the semantic gap. In order to address
this gap, Relevance Feedback techniques have been developed since the early
and mid-1990’s [4,5]. In such a system, the user interacts with the search engine
and marks the images that he perceives as relevant or non-relevant. Taking into
account this feedback information, the engine ”learns” and improved results are
returned to the user during the next iteration.

The search engine is usually a classifier, trained by the relevant and non-
relevant samples, labelled by the user [6]. Support Vector Machines (SVMs) [7]
are often chosen for this classification scheme. They allow fast learning and eval-
uation, they do not need restrictive assumptions regarding the data, they are
flexible and they turn out to be less sensitive, compared to density-based learn-
ers with respect to the problem of class imbalance. Therefore, many Relevance
Feedback schemes use the 2-class SVMs for the classification step [8,9,10,11].

K. Diamantaras, W. Duch, L.S. Iliadis (Eds.): ICANN 2010, Part I, LNCS 6352, pp. 251–260, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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The type of the patterns that the search engine returns to the user for labelling
is of high importance. For example in [11], the user labels patterns that have
been classified as relevant with high confidence, e.g., the furthest patterns to the
positive (relevant) side of the classifier. This can be easier for the user, but gives
no useful information to the system, leading to slow convergence. More popular
approaches adopt the active technique [9]. This approach provides the user with
the most informative patterns, e.g. the patterns closest to the decision boundary,
in order to improve the speed of the convergence.

Besides image retrieval, Relevance Feedback can also be employed to other
systems. In fact, Relevance Feedback was first introduced for the retrieval of text
documents [12], music [13], 3D objects [14] and more recently it was used for
medical image retrieval [15,16,17,18]. In such a context, the aim of a retrieval
system is to function in conjunction with a Computer Aided Diagnosis (CAD)
system. The radiologists can be provided with relevant past cases -according to
the query-, along with proven pathology and other information, making the diag-
nosis more reliable. Relevance Feedback seems an ideal scheme for the improve-
ment of the performance of medical image retrieval systems, as it incorporates
the radiologist’s judgement, in order to capture the some higher-level semantic
concepts of the medical images. The judgement of such an expert is the result of
a very complex and vague procedure, combining a multitude of quantitative and
qualitative facts, as well as the radiologist’s experience, and therefore should be
taken into consideration.

From these works, only the one in [18] is referred to mammograms. However, it
restricts to a small number of images and focuses on micro-calcification clusters,
in contrast to our work, which is based on a larger database and focuses on
masses. Furthermore, the whole approach is different, as it will become clear in
the following sections.

In this work, a Relevance Feedback scheme for the retrieval of mammograms
is presented. The system retrieves mammograms containing masses of the same
morphology as the query image. The system is tested on a dataset of 2274 masses
of the DDSM database [19], that originate from 7 distinct classes. The adopted
features for the shape description are first-order statistics of the mass boundary.
The latter is given as part of the annotation of the database. The obtained
results are promising, according to specific statistical measures and they show a
convergence of the relevant retrieved images, reaching the success rate of almost
90%.

The rest of the paper is organized as follows: In section 2, the mammographic
image database used is presented. The shape features extracted and the classifier
used are described in detail in section 3. Section 4 presents the results obtained,
while discussion and conclusion are summarized in section 5.

2 Dataset

The methodology presented in this work was applied to images of the Digital
Database of Screening Mammography (DDSM), that are provided and described



Shape-Based Tumor Retrieval in Mammograms 253

in [19], available online freely for scientific purposes. This database consists of
2589 cases and each case corresponds to four mammograms, representing the two
breasts at craniocaudal (CC) and mediolateral (MLO) oblique views. The images
of the database are the result of a digitization procedure, using three different
scanners. All the images are analysed by expert radiologists and the correspond-
ing abnormalities (4775) are annotated as calcifications (2201), masses (2556) or
other abnormalities (18). Each abnormality has been associated by pixel-level
ground truth information, provided by a radiologist, and a complete description
of the abnormality is given, including diagnostic assessment, subtlety and proven
pathology, as described in [19]. In addition, in case of calcifications, information
about the type and the distribution are available and in case of masses, the
description includes the mass shape and the mass margin.

The spatial resolution of the images is 50 �m/pixel or 43.5 �m/pixel and the
bit depth is 12 or 16 bits, according to the scanner used. A typical image of the
database is shown at figure 1.

Fig. 1. Left MLO image of the case 3088 of the database

3 Methods

3.1 Feature Extraction

For the case of a mass abnormality of a mammogram, a detailed pixel-based
ground-truth description is available, as figure 2(a) shows. In addition, character-
ization of the mass shape is given, including the following classes: Architectural
Distortion, Irregular, Lobulated, Lymph Node, Oval, Round, Tubular or Other.
Our goal is to predict the class of the shape, using the morphological charac-
teristics of the boundary. The features adopted for this purpose are first-order
statistics of the Normalized Radial Distance, as presented in [20,21]. Obviously,
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other features may also be used. Our choice is justified, by the simplicity of these
two features and by the high accuracy that is finally obtained.

First, the centroid of the mass is calculated, using cumulative distributions of
the projections in both x and y axes. Then, the radial distance sequence of the
centroid and the border pixels are extracted, using equation (1).

d (i) =
√(

(x (i) − X0)
2 + (y (i) − Y0)

2
)
, i = 1, 2, ..., N (1)

where the point (X0, Y0) is the centroid and x (i) , y (i) are the parametric data
series of length N , corresponding to the border pixels.

In order to overcome problems associated with the non-convex shape of the
boundary, in relation to the mass centroid, the Radial Distance Function sam-
ples are calculated from the mass perimeter towards the centroid (and not vice
versa, as commonly used), as it has been pointed out in [22]. In addition, a
pre-processing stage of image dilation [23], using a 3× 3 mask, is applied before
acquiring the borderline curve, so that to avoid problems with edge-following
techniques in cases of sharp corners. The boundary is traced at pixel level, start-
ing from the pixel that corresponds to angle 0. The sequence of the pixels con-
tinues to follow the mass boundary counter-clockwise as figure 2(a) illustrates.
Finally, a normalization step is adopted using equation (2). The Normalized
Radial Distance extracted from the mass boundary of figure 2(a) is shown at
figure 2(b).

dn (i) =
d (i) − dmin

dmax − dmin
(2)

Seven simple curve features are now extracted from the Normalized Radial Dis-
tance, meaning the dn sequence, using the following equations (3)–(9).

1. The mean value is estimated using equation (3)

m =
1
N

N∑
i=1

dn (i) (3)

2. The standard deviation is calculated using equation (4)

s =

√√√√ 1
N

N∑
i=1

(dn (i) − m)2 (4)

3. The mass circularity is extracted according to equation (5)

C =
P 2

A
(5)

where A is the area and P the perimeter of the mass.
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(a) (b)

Fig. 2. a) The segmented mass of the right MLO mammogram of case 3129, annotated

as Irregular, the mass centroid and the starting pixel on the boundary, and b) the

corresponding normalized radial distance signal.

4. The entropy is calculated using equation (6)

E =
B∑

i=1

Pk log (Pk) (6)

where Pk are the probability values estimated using a B = 100 bins
histogram.

5. The area ratio parameter is estimated by equation (7)

AR =
1

m · N
N∑

i=1

(dn (i) − m) (7)

where AR = 0, ∀d (i) ≤ m.
6. The zero-crossing count Zc is computed as a count of the number of times

the dn signal crossed the average dn value.
7. The roughness index R is calculated by dividing the dn signal into small

segments of equal length and then estimating a roughness index for each one
of them according to equations (8) and (9)

R (j) =
L+j∑
i=j

|d (i) − d (i + 1) |, j = 1, . . . , �N

L
� (8)

R =

∑k
j=1

(
R (j) + Lk+1

L · R (k + 1)
)

k + Lk+1
L

, k = �N

L
� − 1 (9)
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where R (j) is the roughness index for the j segment, L = 16 the number
of boundary points in each segment, k denotes the last segment of length L
and N is the total number of boundary points available.

3.2 Classification

For the classification of the masses of the database at step 0 of the Relevance
Feedback procedure, a simple Euclidean minimum distance classifier [24] is used.
The Euclidean distance Ei of query pattern q from all the available patterns pi,
where i = 1, 2, . . . , Nt, is estimated according to equation (10).

Ei =

√√√√ S∑
j=1

(q (j) − pi (j))2 (10)

where Nt is the number of all the patterns of the database and S = 7 is the
dimension of the feature space.

On the next steps of the process, an SVM classifier [25,26] is trained accord-
ing to the feedback of the user. In the simple SVM case, the system returns the
most ”confident” relevant patterns for labelling, while in the active SVM case,
the system returns the most ”ambiguous” patterns for labelling, as described in
section 1.

4 Experiments and Results

For the evaluation of the Relevance Feedback scheme, the 2556 masses, included
in the database, are used. Note that apart from the detailed boundary of each
mass, a classification of the shape of the masses in the following classes is also
available: Architectural Distortion, Irregular, Lobulated, Lymph Node, Oval,
Round, Tubular or Other. The masses corresponding to the Architectural Dis-
tortion class are excluded from the experiments, as this characterization can be
extracted mainly by a comparison between the pair of breasts and not from a
mass boundary itself. We further exclude 27 masses that have been annotated
to belong to more than one classes. Thus the resulting size of the database is
2274 masses with 7 distinct classes. In order to evaluate the performance of the
retrieval results at each round of the RF, the precision curve [27] is used. The
precision at each round is defined as pr = R

N , where N = 10 is the total number
of returned images to the user and R are the relevant images among them.

The experiments were carried out according to the following scenario:

– The user chooses a mass from the database as query image
– Repeat for steps 0 (no feedback yet) to 10 (user gave feedback 10 times)

• The system returns to the user 10 images for evaluation and the precision
is estimated

• The system returns to the user 10 images to label
• The user labels a subset of the images, as ”relevant” or ”non-relevant”
• The system is re-trained, using the feedback of the user as new

information
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Fig. 3. Average precision at different steps of the RF procedure

The above scenario is repeated for all the images of the database, in order to
achieve more focused results. The system uses the simple SVM scheme [11],
according to which the user labels the most confident relevant patterns, or the
active SVM scheme [9], where the user labels the most uncertain patterns that
lie closest to the classifier’s decision boundary. In addition, the user is modeled
as follows:

– The ’patient’ user, that marks all the patterns returned by the system at
each step as relevant or non-relevant, that can lead to imbalanced training
sets.

– The less ’patient’ user, that marks up to four relevant and four non-relevant
patterns, among the patterns that the system returns at each step.

– The ’impatient’ user, that marks up to three relevant and three non-relevant
patterns, among the patterns that the system returns at each step.

– The ’lazy’ user, that marks up to two relevant and two non-relevant patterns,
among the patterns that the system returns at each step.

The average precision achieved at each iteration step for all the above configu-
rations is shown in figure 3. Note that all the curves start from the same point
at step 0, as no information is given from the user. At step 1, the simple and
active techniques of the same type of user achieve equal precision rate, as the
available images at step 0 for each user type are the same for these two scenar-
ios. However, at step 1 the user of the active scenario provides more informative
feedback than the one of the simple scenario, leading to a quicker convergence
of the classifier. This is the reason for the fact that active SVM outperforms the
simple SVM at steps greater than or equal to 2, always for the same type of user.
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Fig. 4. Average precision per class for active-3pos-3neg scenario

The maximum precision rate of 89.7% is observed for the case of active scenario
that the user marks up to 4 relevant and 4 non-relevant patterns and not for
the ’patient’ user, because probably the latter one creates sometimes imbalanced
training sets.

Figure 4 shows the average precision for each one of the 7 classes for the
scenario of active SVM and a usual user -not ’patient’, nor ’lazy’- labeling at
most 3 relevant and 3 non-relevant images at each step. The size of each class is
given in parenthesis, indicating the number of the masses in the database that
belong to each class. It is obvious that all the precision curves, except for the one
of the Tubular class (only 4 samples), are increasing monotonically. Therefore,
the retrieval process gives better results, on average, for all the classes as the
Relevance Feedback proceeds.

5 Discussion and Conclusion

In this work, Relevance Feedback has been employed as a complementary tool
to a Computer Aided Diagnosis system, that retrieves masses with similar shape
as the query one. The judgement of the radiologist is considered to be of high
importance to such a sensitive system as a medical application, where the errors
should be eliminated and therefore it is suggested to be taken into consideration.
The results, which almost reach 90% precision rate, show that the retrieval
process can be improved significantly, when the radiologist is incorporated in the
retrieval process, even for a hard classification task of 7 classes, using features
of first-order statistics.
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The system converges much faster when the user is more actively involved
in the process, by labeling more samples as ”relevant” or ”non-relevant”. In
addition, the active technique converges faster to better results than the simple
one, while the average precision for each class (figure 4) follows the rules of the
Relevance Feedback scheme. The mammographic dataset used for the evaluation
is rather extensive, consisting of the large number of 2274 masses, categorized in
7 distinct classes; these facts ensure that the results presented are very useful,
reliable and consistent.

The system is also available online for any user at [28].
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Abstract. The purpose of this work is to further study the relevance of

accelerating the Monte Carlo calculations for the gamma rays external

radiotherapy through feed-forward neural networks. We have previously

presented a parallel incremental algorithm that builds neural networks

of reduced size, while providing high quality approximations of the dose

deposit. Our parallel algorithm consists in a regular decomposition of the

initial learning dataset (also called learning domain) in as much subsets

as available processors. However, the initial learning set presents het-

erogeneous signal complexities and consequently, the learning times of

regular subsets are very different. This paper presents an efficient learn-

ing domain decomposition which balances the signal complexities across

the processors. As will be shown, the resulting irregular decomposition

allows for important gains in learning time of the global network.

Keywords: Pre-clinical studies, Doses Distributions, Neural Networks,

Learning algorithms, External radiotherapy.

1 Introduction

The work presented in this paper takes place in a multi-disciplinary project called
Neurad [2], involving medical physicists and computer scientists whose goal is to
enhance the treatment planning of cancerous tumors by external radiotherapy.
In our previous works [4,9], we have proposed an original approach to solve
scientific problems whose accurate modeling and/or analytical description are
difficult. That method is based on the collaboration of computational codes
and neural networks used as universal interpolator. Thanks to that method, the
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Neurad software provides a fast and accurate evaluation of radiation doses in any
given environment (possibly inhomogeneous) for given irradiation parameters.

More precisely, the Neurad project proposes a new mechanism to simulate the
dose deposit during a clinical irradiation.The neural network is used to obtain the
deposit in a homogeneous environment whereas the specific algorithm expresses
the rules to manage any inhomogeneous environment. The feasibility of this
original project has been clearly established in [3]. It was found that our approach
results in an accuracy similar to the Monte Carlo one and suppresses the time
constraints for the external radiotherapy evaluation. The accuracy of the neural
network is a crucial issue; therefore it is the subject of many research works
on neural network learning algorithms. To optimize the learning step, we have
proposed to learn regular subdomains of the global learning dataset. Although
satisfactory results were obtained, we could observe different level of accuracy
among the subdomains. Thus, in this paper we describe a new decomposition
strategy of the global learning set to solve this problem.

2 Quantification of the Complexity of the Learning
Domain

The goal of this work is to propose a solution allowing a decomposition of a
data set in subdomains taking into account the complexity of the data to learn.
Complexity influences the time and the accuracy of the learning step for a neural
network. Therefore a work about the complexity management is necessary to
ensure a homogeneous learning in both time and accuracy for all subdomains
composing the global data set.

To identify the complexity of our learning domain, we have chosen to study the
variance between the data. The interest of this technique, used in many contexts,
is to establish precisely the local and the global complexities of a domain. In
our case, we have evaluated the learning domain complexity using the following
variation function for the following function:

lCi,j =
i+r∑

x=i−r,x �=i

j+r∑
y=j−r,x �=j

|f(x, y) − f(i, j)|
||−−−→(x, y) −−−→

(i, j)||
(1)

So, in order to evaluate the local complexity lCi,j at spatial point (i, j), we use
the variations between that point and a given set of its neighbors (x, y), each of
them being distance weighted. The interest of this function is to take into account
all informations of complexities composing the dataset after a sampling of the
dose values. The global complexity of a global learning domain is described by
the sum of all the local complexities (in absolute value). The r parameter allows
to determine the size of the neighborhood taken into account to evaluate the
local complexity of a point. We do not use the average of local complexities,
because the number of values in a subdomain has a direct impact on the final
accuracy of the learning, and even more on the learning time.
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3 Decomposition Strategy

In our previous works [1] we have used a classical dimensional strategy to subdi-
vide the learning domain. This first choice was only motivated by its simplicity of
use and the regularity of the resulting subdomains: as it can be seen in our previ-
ous results, a regular decomposition only based on the dimension characteristic
does not provide a set of subdomains with a constant degree of complexity. In
spite of that, we propose to use another decomposition strategy based on a tree
structure. This strategy of decomposition, denoted URB (Unbalanced Recursive
Bisection) in the literature, was proposed by Jones and Plassman [7,8].

The URB strategy divides each dimension alternatively in two parts to obtain
two subdomains having approximately the same complexity estimation. The two
parts are then further divided by applying the same process recursively. Finally,
this algorithm provides a simple geometric decomposition for a given number
of processors. One of its advantages is to provide rectangular sub-parts which
do not imply any sensible management overhead. In our case, dividing the di-
mension alternatively gives quickly subdomains which are spatially unbalanced.
To further highlight this difference, we facilitate the comparison between the
complexities of the subdomains by rescaling them between 0 and 100, so that
100 corresponds to the highest complexity. And again, we can see a very impor-
tant difference between the two strategies. On the one hand the regular strategy
exhibits a wide range of complexities: from 4.9 to 100; on the other hand the
URB strategy presents a limited range: from 30.9 to 35.4. Consequently, the
proposed local correlation based on irregular domain decomposition allows us to
build subdomains with homogeneous complexities. The remainder of this arti-
cle shows why this characteristic is important in the context of neural network
learning.

4 Experimental Results

In this section, both quality and performance of our algorithm are experimentally
evaluated. Our algorithm has been implemented in standard C++ with Open-
MPI for the parallel part, and all computations were performed at Mesocentre
de calcul de Franche-Comte machine.

4.1 Data Description

In the context of external radiotherapy, an essential parameter is the width of
the beam. The radiation result is directly dependant on this parameter. Indeed,
if the beam has a small width, it cannot reach the electronic balance and does
not present a tray as large as could be seen in Figure 1. The main constraint
in the scope of our work is the limited tolerance about the final learning error.
Indeed, the neural network described here represents one tool in a very complex
chain of treatments for the global evaluation of the dose deposit in complex
environments. The use of the neural network is central in our overall project and
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Fig. 1. Dose deposits at the depth of 60 mm in water and in TA6V4

a too large error at this stage could imply that our final solution may be out of
the medical error tolerance.

For these experiments, we have trained our network using a set of data pro-
vided by Monte Carlo simulations [5]. These data represent the doses deposit for
different beams. We have chosen to work specifically on small width beams to
study the different behaviors of the learning process for data with and without
electronic stability. The dataset is built from the result of irradiation in water
and TA6V4 for three widths (2, 15 and 30 mm). The water is the principal
element composing the human body (similar to the human tissue composition
and used for medicinal accelerator calibrations) and the TA6V4 is a common
compound used in prosthesis [6].

Since the dataset is generated using a grid of 120x100 points and consid-
ering two materials with three beam widths for each one, it is composed of
120x100x3x2 elements. Each element has seven input components: the position
in the three spatial dimensions; the beam width (min and max information); the
environment density and the distance between it and the irradiation source. We
propose to test different decomposition configurations to quantify the accuracy
of the learning and to determine the limits of our solution.

4.2 Decomposition Results

First, we will study how the complexities are balanced by comparing decompo-
sitions induced by our URB based algorithm to regular ones. Therefore Table 1
describes the minimum, maximum and means complexity value obtained for the
different subdomains with increasing levels of partitioning. As explained pre-
viously, the global data set is composed of irradiation results corresponding to
different configurations (two materials, three beam widths). To evaluate the com-
plexity value of a subdomain, we have chosen to use only the sum of its local
complexities. The objective is to get a finer partitioning in the areas of larger
complexities. The values in Table 1 show clearly the good behavior of our ap-
proach: the complexities are better balanced with our algorithm than with the
regular partitioning.



Efficient Domain Decomposition for a Neural Network Learning Algorithm 265

4.3 Learning Results

As shown in the previous subsection, our approach is able to produce dataset par-
titions with less heterogeneity across the complexity values. Similar complexity
values should mean similar learning tasks and thus similar learning times. From
Table 1, which presents also the training times , we can observe that these times
are still not very homogeneous. This can be explained by the complexity of the
learning domain which is evaluated for each curve of dose deposit independently.
Indeed, it is not realistic to find any correlation parameter between the different
simulation results. The choice to use the sum of the local complexities to evaluate
the global complexity does take into account all situations. This explains why
all the learning times gained for URB based decomposition are not equal. For-
tunately, in all cases the mean learning times resulting from our decomposition
clearly outperform the ones obtained with the regular decomposition.

Table 1. Global evaluation of our solution with a selection and the full dataset

subdomaine

Initial test Full dataset

Decomposition learning times Qualitative evaluation

URB REG URB REG URB REG

SD1 SD SD Means2 SD Means Means Means

4 1.0 87.9 270 424 1122 739 * *

8 3.5 73.3 291 348 2399 880 1604 11498

16 3.1 60.7 72 26 1225 273 1098 8632

24 8.7 47.6 125 23 355 100 113 5259

4.4 Qualitative Evaluation

With this test, we want to control the quality of the learning and the accuracy
of interpolation induced by of our neural networks. For this, we have enlarge the
training set by adding two more beam widths (9 and 23 mm) for both water and
TA6V4. The learning dataset is thus composed of 120x100x5x2 points. Globally,
we can say that our optimized URB based decomposition approach gives more
precise results. Furthermore, and more important, we can note very shorter
computing times (Table 1) with our approach. Those overall good performances
(accuracy and learning times) show the relevance of our work, and are crucial
for the ongoing of the whole medical project.

5 Conclusion and Future Work

A strategy for the domain decomposition has been presented. Its principle is
based on a domain decomposition on the input parameters of the learning data
set taking into account the complexity of the dose deposit signal in order to
1 Standard Deviation (in %).
2 Means of the learning time (in seconds).
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balance the learning times and to improve the global accuracy. Qualitative and
quantitative evaluations of the algorithm have been performed experimentally
on real data sets. They confirm the good behavior of our algorithm in terms of
performance and quality. The small differences between the subdomain learning
times show the improvement of our solution in a realistic context of use. In
the following of the Neurad project, it should be interesting to add another
important feature to our learning process which is a dynamic load balancing
who could have some interests in the context of very large learning. And with
this efficient parallel learning algorithm we have the capabilities to learn all the
data necessary to the medicinal context.
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méthodes de Monte Carlo. Radioprotection 44(1), 77–88 (2009)

http://www.irs.inms.nrc.ca/BEAM/beamhome.html


 

K. Diamantaras, W. Duch, L.S. Iliadis (Eds.): ICANN 2010, Part I, LNCS 6352, pp. 267–271, 2010. 
© Springer-Verlag Berlin Heidelberg 2010 

Towards Better Receptor-Ligand Prioritization: 
How Machine Learning on  

Protein-Protein Interaction Data 
Can Provide Insight Into Receptor-Ligand Pairs 

Ernesto Iacucci and Yves Moreau 

KULeuven, ESAT/SISTA, Kasteelpark Arenberg 10, 
3001 Leuven-Heverlee, Belgium  

{Ernesto.Iacucci,Yves.Moreau}@esat.kuleuven.be 

Abstract. The prediction of receptor-ligand pairs is an active area of biomedi-
cal and computational research. Oddly, the application of machine learning 
techniques to this problem is a relatively under-exploited approach. Here we 
seek to understand how the application of least squares support vector machines 
(LS-SVM) to this problem can improve receptor-ligand predictions. Over the 
past decade, the amount of protein-protein interaction (PPI) data available has 
exploded into a plethora of various databases derived from various wet-lab 
techniques.  Here we use PPI data to predict receptor ligand pairings using LS-
SVM.  Our results suggest that this approach provides a meaningful prioritiza-
tion of the receptor-ligand pairs.  

Keywords: Bioinformatics, Machine Learning, Kernels, Protein-Protein Inter-
action, Receptor, Ligand, LS-SVM. 

1   Introduction 

The prediction of receptor-ligand pairs is an active area of biomedical and computa-
tional research.  Oddly, the application of machine learning techniques to this prob-
lem is a relatively under-exploited approach.  Here we seek to understand how the 
application of least squares support vector machines (LS-SVM) to this problem can 
improve receptor-ligand predictions.  Over the past decade, the amount of protein-
protein interaction (PPI) data available has exploded into a plethora of various data-
bases derived from various wet-lab techniques [1].  Here we use PPI data to predict 
receptor ligand pairings using LS-SVM. 

As the task of pairing receptors and ligands is essentially the elucidation of a sub-
graph of a much larger PPI network, much can be learned from use of the rest of the 
graph.  Given a well defined PPI network, we consider the first neighbors of the re-
ceptors and ligands to be informative; as different ligands and receptors can regulate 
the same processes, the neighbors will likely be involved in the same processes as 
those regulated by the putative receptor-ligand pairing.  In order to integrate PPI in-
formation without any bias from know receptor ligand pairs we consider the first 
neighbors excluding any receptor-ligand edges.  
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We look into the use of creating a kernel classifier to carry out the receptor-ligand 
learning task. While many kernel-based machine learning techniques have been ap-
plied to the PPI task [2,3], it has hitherto never, to our undertanding, been used on the 
receptor-ligand problem.  Kernel learning provides the means to utilize related data 
and perform classification in higher dimensional space via methods.  In our work, we 
use a least-squared support vector machine (LS-SVM) method based on the work 
presented by Suykens et al. (2002)[4].   

We organize the work presented here by first describing our data sources.  Follow-
ing this we describe the building and tuning of the the kernel classifer.  We then fol-
low with a presentation of results.  We conclude with a discussion of the results and 
future directions for this work. 

 
Fig. 1. Schematic of receptor-ligand and protein-protein intereaction model.  The top image is a 
representation of in-vivo interact of proteins and receptors and ligands while the bottom image 
is the graph representation from which the adjacency matrix is derived.  

2   Methods 

Our objective is to prioritize receptor-ligand candidates using a LS-SVM classifier 
based on PPI data. 

2.1   Data Sources  

The PPI profile of each candidate protein was created by taking PPI sub-graph defined 
by the candidates and their first neighbors, a PPI vector for each candidate protein was 
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then created by indicating the presence of a PPI with each member of the subgraph 
with a’1’ and absence of  by ‘0’(or rather, an adjacency matrix was created). The PPI 
kernel was generated from this data. 

We take as our “Golden Standard” the receptor-ligand dataset from the The Data-
base of Ligand-Receptor Partners (DLRP) [5].  This is an experimentally derived 
dataset of known receptors and their corresponding ligands.  These interactions are an 
recorded in an adjacency matrix where known interaction is represented as a ‘1’ and 
lack of interaction is represented as a ‘0’.  These are the values which are used to train 
the classifier and are the values which the classifer is trying to predict. 

2.2   Kernels and LS-SVM Classifier 

The PPI vectors (described above) were used to create the PPI kernel.  A LS-SVM [4] 
was trained using this kernel to predict outcomes for the receptor-ligand pairs known 
from our “Golden Standard”. 

Creating the kernel involved trials with several different kernel functions, linear 
functions being found to give the best performance in all cases.  The regularization 
parameters for the LS-SVMs was tuned using a two tier grid search which first uni-
formly ranged from 10-6 to 10+6. in 101.0 steps followed by a second finer search with 
100.1 steps.  Data was partitioned into training, testing, and validation (10% of data).  
The model was checked for over-fitting by observation of lack of decrease in per-
formance in the test data. 

Apply  
Kernel fn 

Kernel Matrix 

Partition 

Train 

Test 

      Create 
Classifiers

Validate 

 

Fig. 2. Workflow of the kernel classifier creation and use.  The PPI vectors are organized into a 
PPI matrix.  A PPI kernel is derived from this matrix.  The data is then partitioned into training, 
testing, and validation segments.  The LS-SVM is used to create a classifier and then applied to 
the data.  The method is then evaluated using receiver operating characteristic curves.  
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3   Results and Discussion 

The known tgfβ receptor-ligand set used here consisted of 80 known receptor-ligand 
pairs.  We assessed the performance of our kernel classifier with the ligands of this 
family.  The results are summarized in table 1.  We examined the area under the curve 
(AUC) of the receiver operating characteristic curves for each.  We find that the aver-
age AUC was 0.71.   

When we do not consider the family members which have the fewest number of 
known partners (AMH, TGFB1, TGFB2, and TGFB3) the results increase dramati-
cally, with a range of AUC values from 0.7 to 1.0 with an average AUC of 0.89.  This 
observation suggests that an increase in training examples is important for better clas-
sification.  

Evaluation of the receptor-ligand predictions via AUC value reflects a real-word 
practicality as we expect that wet-lab investigation of the predictions would have to 
be prioritized as candidates are numerous and the ability to investigate putative pairs 
scarce due to the expense and time involved in in-vivo investigation.  

Table 1. AUC values for the ligands which are members of the tgfβ family as predicted by the 
kernel classifier method  

Ligand AUC 
TGFB2 0 

BMP7 1.0 

AMH 0 

TGFB1 0.25 

BMP5 1.0 
BMP8 0.7 

TGFB3 0.78 

INHBA 0.75 

INHA 0.7 

BMP4 1.0 

BMP2 1.0 
BMP15 1.0 

BMP3 1.0 

BMP6 0.89 

INHBB 1.0 

BMP10 0.78 

 
Looking forward, we expect to exend our method to include other sources of in-

formation.  This has certainly worked in the broader field of PPI prediction.  Bhrdwaj 
et al. (2005) [6] used this strategy to introduce expression data to predict PPI data in 
addition to the use phylogenetic data.  Their findings support the idea that integrating 
these two types of data (gene expression profile and phylogenetic)  increases the accu-
racy of predictions rather than phylogenetic analysis alone.  Co-expression data can 
be seen as as an indicator of protein-protein interaction as  proteins which interact for 
the purpose of performing a similar function are likely to be co-expressed to carry-out 
their biological activity [7,8]. 
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Certainly, the ever-expanding amount of high-throughput data which continues to 
become available to the bioinformatics community represents an excellent opportu-
nity to enhance the kernel classifier prioritization method presented here. 
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Abstract. The DAMNED simulator is a Distributed And Multithreaded Neural
Event-Driven framework designed for implementing Spiking Neuron Networks
(SNNs). This paper shows the power of DAMNED for simulating the tempo-
ral dynamics of a biologically inspired model of the system controlling saccadic
eye movements. A fundamental neural structure for the saccade generation is the
Superior Colliculus (SC). The proposed model relies on two pathways leaving
this structure: A first one supervises the motor error and the movement initiation
and a second one provides a direct drive to premotor centers. This simple model,
its SNN implementation and its dynamic behaviour reproduce the evolution of
movement amplitude as a function of activity location in the SC. It also accounts
for classical results obtained when the SC is subjected to electrical stimulations.

Keywords: Spiking neuron network, event-driven simulation, distributed simu-
lation, saccadic eye movement control.

1 Introduction

Many models are proposed by neuroscientists for explaining how the neural activity
could be the basis of behavioural control or cognitive mechanisms. The models are
mostly defined by a scheme on a paper, and they are very useful for designing experi-
ments on human or animals, but they are seldom implemented in a way that may show
how they work and behave through time. A gap is thus induced between models and
experiments, the latter accounting more and more for temporal recordings. However,
Spiking Neuron Networks (SNNs) are excellent candidates for simulating the dynam-
ics of interactions between several neural substrates in a biologically plausible way.

The DAMNED simulator has been designed for realizing simulations of biologically
plausible large scale SNNs in a distributed and event-driven way [1]. The present paper
proposes to take advantage of the DAMNED simulator to implement and analyze the
dynamic behaviour of a theoretical model of the brainstem neural network involved in
the saccadic eye movements generation. Saccades are the high velocity displacements
of the eye produced to align the greatest accuracy zone of the retina, the fovea, with
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targets of interest. The saccadic part of the oculomotor system has been studied since
decades through animal and human experiments [2,3,4]. A fundamental characteristic
of this system is its organization in a feedback loop that would control the amplitude of
the saccade [2]. The precise description of the neural circuit that produces saccades has
been attractive for modelling. Many models of the saccadic system have already been
proposed [5] but none of them has been implemented with spiking neuron networks.
All these computational models have brought both informations and hypotheses about
the interactions of the underlying neural networks. In the present paper we propose a
slightly different model that tests a new hypothesis for the organization of the feedback
loop in the brainstem. For validation, the model has been implemented in the form of a
modular SNN and its dynamics has been simulated with DAMNED.

Section 2 briefly outlines the simulator characteristics. Section 3 presents the model
proposed for the sub-collicular saccade generation system. Section 4 details the exper-
imental protocols applied to the SNN simulating the model and the functionalities of
the saccadic system studied in simulation. Section 5 comments the behaviour observed
through time in the eye movement control system and discusses the model validation.

2 Simulation Framework

DAMNED is not the only spiking neuron networks simulator but to our best knowl-
edge DAMNED is the only one that gathers event-driven, distributed and multithreaded
characteristics as the basis of its design [6]. The computational performance of the sim-
ulator has been tested on a common hardware architecture and analyzed for large scale
SNNs [7]. The principles of the DAMNED simulation framework previously defined in
[1] are summarized in the following subsections.

2.1 The DAMNED Simulator

The simulator takes advantage of both distributed hardware and concurrent threads.
Communications via message passing between CPUs (multi-core, computer network,
cluster or parallel machine), and also local concurrency between calculation and com-
munication (threads), speed up the computation and enlarge the available memory, com-
pared to sequential SNN simulation. Figure 1 proposes a layered view of the DAMNED
global architecture. The first layer is the distributed hardware (processor/memory cou-
ples). DAMNED achieves communications between hardware resources via the Mes-
sage Passing Interface (MPI) with ssh (secured shell) for the message delivery (second
and third layers). In case of a multiprocessor hardware, messages are passed through
the local bus. For each MPI node the DAMNED simulator creates two threads (fourth
layer): A CoMmunication Controller (CMC) sends and receives spike event messages
and a ComPutation Controller (CPC) allocates each time-stamped spike event to an
Event-driven Cell (EC), aka the target spiking neuron that computes the event and even-
tually creates a new spike event in response. The last layer is the SNN to be simulated.

2.2 Mapping an SNN on DAMNED

Through a user interface, the simulator allows the definition of network structures based
on specification of populations and projections between them. User defined models of
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Fig. 1. Layered view for the global architecture of the DAMNED simulator

neuron, synapse and projection can be registered in the simulator through the interface.
An environment process gives input stimulations to the simulated network and gets
back output activities. This behaviour lets the environment free to use neural activities
during the simulation, for instance to drive motor commands of robotic devices. At the
end of the simulation the user may also access spikes, membrane potentials or synaptic
weights and display their evolution during the simulation. DAMNED simulates the net-
work activity in discrete time with an event-driven strategy [8]. The time scale used for
simulation is up to the user. In present experiments the time scale is 0.1 ms. Mapping
the SNN onto the hardware is also user defined through the simulator interface. Each
neuron is identified by an index and ranges of neuron indexes are associated with each
simulation node.

3 Model of Saccade Generation

3.1 Physiological Background

In the brain, the neural network that generates motor commands for orienting the line
of sight (i.e. to displace the eye to orient the fovea) toward stimulus of interest is among
the best understood sensorimotor system, notably in its output part. The superior col-
liculus (SC), a paired and layered structure located at the roof of the brainstem (Fig. 2),
plays a pivotal role to control saccadic eye displacement. Each SC controls saccades
toward targets in the contralateral visual hemifield. The intermediate and deep layers
of this structure are organized in a motor map with the amplitude and the direction of
the movement respectively represented on its rostro-caudal and medio-lateral axes. Ac-
tivities of several cortical areas involved in gaze orientation (Lateral Intra-Parietal area,
Frontal Eye Field, Supplementary Eye Field) converge on this motor map. Collicular
neurons send their axons toward premotor centers housing neurons called "Excitatory
Burst Neurons" (EBNs). These neurons in turn directly control motoneurons of extra-
ocular muscles.
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Importantly, EBNs form an homogeneous pool without topography: The amplitude
of the saccade is coded through the frequency and duration of the discharge. Hence, a
spatial to temporal transformation has to be performed between the SC and the premo-
tor centers.This spatio-temporal transformation is performed through a synaptic density
gradient as anatomically observed between SC and EBNs [9,10] : neurons located in
the SC rostral pole make less synaptic boutons than those in the caudal pole (graded
strength). In addition, the amplitude of the movement is controlled by a feedback loop [2]
driving EBNs to discharge until a desired displacement signal is nullified.

The central mesencephalic reticular formation (cMRF) is another structure involved
in gaze control. It is reciprocally connected with the SC [11] and projects notably toward
a particular pool of neurons called omnipause neurons (OPNs) [4]. These OPNs are
neurons that strongly inhibit EBNs. They are tonically active during fixation and silent
during saccades. The shut off of their discharge is required for the initiation of the
saccade. Given cMRF afferences from the SC and projections toward the OPNs, some
neurons in this structure could be inhibitory interneurons that inhibit OPNs to trigger
the saccade initiation.

To sum up, activity at the level of the SC is transmitted to at least two downstream
structures: cMRF and EBNs. Finally, it is also known that the cMRF receives feedback
from the EBNs.

3.2 Theoretical Model

Several papers proposed schemes including the cMRF but to our best knowledge no
model including the cMRF has been yet implemented and tested. In previous schemes,
roles assigned to the cMRF mostly concern the regulation and the update of SC activity.
Indeed connections between SC and cMRF are reciprocal [11]. We propose that the
cMRF could in addition be the point of comparison of the feedback loop.

In the present paper, for the sake of simplification, only the ouput part of the net-
work is modelled. This simplification corresponds in fact to an experimental situation
of electrical stimulation of the SC that evokes saccadic eye movements similar to nat-
ural ones [12,13]. We based our model on the following characteristics of the saccadic
system. First, the feedback loop closes downstream of the SC [14]. Second, rather than
organizing the feedback loop around a single output pathway from the SC, like for al-
ready proposed models [5], we suggest that one output pathway of the SC (the cMRF)
could contain the desired displacement signal and that another one would be the forward
branch of the organization through EBNs toward motoneurons. In addition, the EBNs
activity would also be fed back to cMRF through an inhibitory interneuron. When the
activity in cMRF neurons (the desired displacement) is reduced to zero through the
feedback coming from EBNs, the inhibition of OPNs is removed and the saccade stops.

3.3 Modular Spiking Neuron Network

A modular spiking neuron network is proposed for implementing the theoretical model
of saccade generation (Figure 2). The sub-collicular feedback loop relies on the inter-
action between three neuron populations. First, a population made of 100 EBNs which
show a burst activity during saccade. Second a population of 100 OPNs which are toni-
cally active before and after a saccade. Third, a population of 100 cMRF neurons. OPNs
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Fig. 2. Left : Anatomical locating of the Superior Colliculus at the top of the brainstem (top)
and relationship between the amplitude of evoked saccades and the position of an electrical stim-
ulation (bottom). Right : Topology of the modular spiking neural network. Black arrows show
excitatory influence and red round ended arrows show inhibitory influence.

and cMRF populations are inhibitory and EBNs population is excitatory. An inhibitory
intermediate 100 neurons population (IcMRF) between EBNs and cMRF is introduced
to implement the inhibitory influence of EBNs upon cMRF. OPNs inhibit EBNs and
receive a constant external input activity in order to maintain a tonic activity before and
after a saccade. cMRF in turn inhibits OPNs to trigger saccade initiation and ending.

As OPNs shut off under cMRF influence, the hyperpolarisation of EBN neurons is
released. EBNs emit a burst of action potential indicating the saccade velocity (fre-
quency of the burst). The discharge ends when the EBNs inhibition on cMRF, mediated
by IcMRF, becomes stronger than the SC influence on cMRF. The saccade amplitude is
determined by the frequency and duration of the EBNs burst.

As shown in Figure 2, a unidimensionnal 1000 neurons population of the Superior
Colliculus (SC) is implemented and projects on both EBNs and cMRF populations.
This SC population represents a rostro-caudal line in the right colliculus. The projection
weights from SC to EBNs and cMRF are exponentially decreasing from the caudal to
the rostral pole of the SC map. Consequently a range of horizontal saccade amplitudes
to the left can be generated by such a saccade generation model. Excitatory gaussian
shaped lateral excitation and long range inhibition are implemented in the collicular
map to generate activation in a subpart of the SC map depending on the position of the
stimulation.

Stimulations of the SC map at predefined positions are achieved by a 45 electrodes
array. In the model each electrode is implemented as a cell connected to a subpart of the
SC map. Stimulations are applied by making these cells fire spikes like impulsions to
the connected neurons. The neuron model implemented in this network is a conductance
based leaky integrate and fire neuron (LIF) [15].
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4 Experiments and Results

4.1 Experimental Protocols

The electrical microstimulation of SC evokes saccadic gaze shifts similar to natural
ones [12,13]. This artificial situation implies that the feedbacks to SC, for example
from the cMRF, are neglected.

Each of the 45 electrodes generates an excitatory potential on the targeted neurons
on the SC map. The impact range of the electrodes reaches 10% of the map around the
electrode (Fig. 2). A competition between lateral excitations and long range inhibitions
in the SC recruits about 20% of the map when the stimulation occurs. A supplementary
electrode stimulates the OPNs during the whole experiment.

Fig. 3. Example of a generated saccade. Top : spike raster plot for each neuron function of time.
Bottom left : instantaneous discharge frequencies of OPNs, EBNs and cMRF populations (aver-
aged for all neurons in the populations). Bottom right : horizontal eye displacement in terms of
number of EBNs spikes through time.
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Stimulations on the SC are applied during 150 ms with a frequency set to 300 Hz
and generates an activity in the map of 500 to 600 Hz on average. The OPNs population
receives a constant external input at 400 Hz during the same period. An example of the
network model response to stimulation is shown on Figure 3. Time is in ms−1.

4.2 Stimulation Position

The network model have been stimulated at seven different sites on the SC map to
evaluate its ability to reproduce saccade amplitudes observed in biological microstim-
ulation experiments. Saccade amplitude is computed from the number of fired EBNs
spikes. The EBNs discharge frequency represents the eye velocity (Fig. 3). Despite the
sustained stimulation on the SC map, saccades terminate with an amplitude that de-
pends on the stimulation site. A caudal stimulation leads to a larger saccade amplitude
than more rostral stimulations (Fig. 4).

The non-linearity of the relationship between stimulation site position and saccade
amplitude that is found in experimental studies is also present in our model. The SNN
dynamic simulation confirms that the phenomenon is a logical consequence of the ex-
ponential weight gradient of the projection between the SC map and EBNs.

4.3 Stimulation Parameters

Both current intensity and pulse frequency variations have been observed in the model.
The influence of these variations has been tested on two stimulation sites on the elec-
trodes array : position 10 and position 30. Current intensity in the model is given by the
weight (w) and radius (r in % of the SC map) of the electrodes impact on the SC map.
In standard conditions, the values of these parameters are set to w = 3.7 and r = 5
and allow to elicit a range of saccade amplitudes comparable to those obtained in bio-
logical studies (Figure 4). For the sake of comparison with experimental studies, let us

Fig. 4. Saccade amplitude function of the position on the SC map. Position is given in terms of
the electrodes indexes.
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label this condition as the 2×T condition, where T is the threshold value of the couple
(w,r) necessary to elicit a saccade in response to electrical input. In order to study the
behaviour of the model when varying current intensity, the model has been stimulated
with three distinct intensities : 1, 3 × T (w = 2.8, r = 3.25), 2 × T (w = 3.7, r = 5)
and 6 × T (w = 11, r = 15). The saccade amplitudes obtained are shown on Figure 5
(left).

Fig. 5. Left : Saccade amplitude function of the stimulus intensity. Right : Saccade amplitude
function of the stimulation frequency. Stimulations are applied at sites 10 and 30 on the electrode
array.

Decreasing the current intensity (1, 3× T ) leads to a decrease in saccade amplitude.
Conversely, increasing the intensity (6×T ) does not result in a clear substantial increase
in saccade amplitude. This pattern is in accordance with biological observations.

Tested stimulation pulse frequencies range from 150 Hz to 750 Hz. The stimulation
frequency in control condition was set to 300 Hz. Results show that from 300 Hz to
500 Hz, the amplitude of evoked saccades remains constant (Fig. 5, right). If the fre-
quency is lowered (below 300 Hz) or increased (beyond 500 Hz), the saccade amplitude
decreases.

5 Discussion

A new organization of the neural network controlling saccadic eye movements has been
proposed. The behaviour of the theoretical model has been simulated through time by
implementing several neural populations in a modular spiking neuron network. The dy-
namics of the SNN has been observed and analyzed in event-driven simulations com-
puted with the DAMNED simulator.

The control of saccadic eye movements is supposed to rely on a mechanism of feed-
back loop. Initially the required movement is coded on a motor map that is present in
the SC. This collicular activity is transmitted to two downstream structures, the cMRF
and the EBNs. The cMRF would control the movement initiation and contain a signal
of desired displacement. The activity of the EBNs would produce the eye displacement
and would be fed back to decrease the cMRF activity. When the activity in the cMRF is
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terminated, the eye movement stops. We show that our proposition based on two output
pathways from the SC - one handling the desired displacement and one correspond-
ing to a direct drive toward pre-motor neurons - is defensible when implemented with
a modular SNN. Indeed, experimental results in simulation account for the classical
results observed for electrical stimulations in the SC.

Despite its simplicity, the present scheme integrates the two major known projections
from the SC to cMRF and to EBNs [11]. Given the implementation of projection gradi-
ents, moving the stimulation site toward the caudal pole of the SC leads to an increase
in the amplitude of evoked saccades. The well-established organization in motor map
is respected. Regarding the influence of the current intensity used for electrical stim-
ulations, it is classically observed that increasing this parameter leads to a first phase
of saccade amplitude increase, followed by a saturation when the site specific ampli-
tude is reached (the amplitude for which cells under the electrode discharge for natural
saccades) [12]. This pattern of amplitude evolution as a function of current intensity
is obtained in the present work. The amplitude saturation is due to a saturation in the
development of the activity at the level of the SC, itself due to intrinsic connectivity
in the map (short range excitation and long range inhibition). Concerning frequency
variation, results are also qualitatively similar to biological ones: A first phase of am-
plitude increase is followed by a saturation and later by an amplitude decrease [13].
This observation could result from local interactions in the SC, delays and/or refractory
period of the LIF neuron model implemented. Interestingly, in the saturation range, the
increase in stimulation frequency results in an increase of the displacement velocity.
This is also an observation made in biological experiments.

The scheme proposed in the present paper remains very simple and several improve-
ments could be considered. For example, the well described projection from the cMRF
to the SC have been neglected since simulations have been limited to the condition of
electrical stimulations. In future work, these projections would be added to capture the
dynamics of the network in the situation of natural saccades toward visual target.

In conclusion, the DAMNED simulator has proved to be an excellent tool for testing
by SNN implementation the dynamic behaviour of a new scheme for the organization
of the neural network controlling saccade generation. Simulations have shown that our
theoretical model accurately accounts for the dynamics of neural activities involved in
the control of saccadic eye movements.
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Abstract. We model the role played by the Basal Ganglia (BG) in generation of 
voluntary saccadic eye movements. Performance of the model is evaluated on a 
set of tasks such as feature and conjunction searches, directional selectivity and 
a successive saccade task. Behavioral phenomena such as independence of 
search time on number of distracters in feature search and linear increase in 
search time with number of distracters in conjunction search are observed. It is 
also seen that saccadic reaction times are longer and search efficiency is im-
paired on diminished BG contribution, which corroborates with reported data 
obtained from Parkinson’s Disease (PD) patients. 

Keywords: Saccades, basal ganglia, reinforcement learning, Parkinson’s disease.  

1   Introduction 

Saccades are rapid, frequent eye movements that shift the fovea onto objects of 
interest. Several areas of the brain, including the frontal cortical areas, Lateral 
Intraparietal (LIP) cortex, Basal Ganglia (BG), Superior Colliculus (SC) and the 
brainstem reticular formation are believed to be involved in saccade generation. 
Models of saccade generation, however, tend to focus heavily on the determina-
tion of saccadic saliency in the Superior Colliculus and eye movement dynamics 
thereafter. The aim of this paper is to emphasize the role played by the BG in 
modulating SC activity during voluntary saccades. 

1.1   Basal Ganglia 

The Basal Ganglia (BG) [1] are a set of seven deep brain nuclei believed to be 
involved in several forms of motor learning and function, including generation of 
voluntary saccades. They receive projections from the cortex through the Stria-
tum, and send projections back to the cortex via the Thalamus. 

A prominent school of thought on BG function regards this circuit as a Reinforce-
ment Learning (RL) [2] engine that uses reward information from the environment to 
inform and modulate sensory-motor cortex engaged in motor function. Particularly, 
the neurotransmitter dopamine released by mesencephalic nuclei like the Ventral 
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Tegmental Area (VTA) and Substantia Nigra pars compacta (SNc) is thought to repre-
sent Temporal Difference (TD) error signal. The proposed BG model has explicit 
representations of the 5 key BG nuclei: Striatum, Globus Pallidus externa (GPe), 
Subthalamic Nucleus (STN), Substantia Nigra pars reticulata (SNr) and Substantia 
Nigra pars compacta (SNc). Reward information conveyed by dopamine release to 
BG nuclei switches striato-pallidal transmission between the direct pathway and indi-
rect pathways of the BG. 

1.2   Saccades 

Robinson [3] proposed one of the earliest models of saccade generation in which the 
desired eye position is compared with an internally generated estimate; the resulting 
error signal is used to correct eye position. Since SC receives convergent afferents 
from several cortical visual and cognitive centers, it is believed to be the location for 
the integration of signals from various information pathways in the brain for saccadic 
control. Hence, models typically focused on the role played by the SC in controlling 
saccades and in determining the firing pattern observed in brainstem motor and pre-
motor neurons (e.g. [4], [5], [6]). Most of these models attempted to explain observed 
effects of various well-studied paradigms such as the removal of fixation, presence of 
distracters, the gap effect and the anti-saccade task on Saccade Reaction Times 
(SRT). Arbib and Dominey [7] model the role of BG in controlling sequential eye 
movements. Their model includes a large number of structures subserving saccade 
control like SC, Thalamus, Caudate, Frontal Eye Fields and SNr but does not include 
the indirect pathway of BG. In the proposed model, the IP plays an important com-
plementary role to DP, as will be described in Section 2.  

2   Model Implementation 

Figure 1 shows the architecture of the BG involved in saccade generation. The 
circuitry of the BG is often divided into two major pathways, the Direct Pathway 
(DP) and the Indirect Pathway (IP). The DP is formed by inhibitory GABA-ergic 
projections from the striatum (input layer of BG) to neurons in the SNr (output 
layer of BG). Striatal activation inhibits neurons in SNr, which in turn disinhibits 
the SC. The IP consists of projections from striatum to SNr via the STN-GPe 
loop. Various well-studied paradigms such as conjunction search and feature 
search are simulated. Effect of diminished BG output on saccade reaction time 
and search efficiency is studied to understand PD saccade behavior. 

2.1   Visual Stimuli and Feature Maps 

The visual stimuli used in the present simulation study consist of oriented (verti-
cal/horizontal), colored (red/green) bars.  Therefore, in the model, the cortical inputs 
to the BG comprises of maps of various features (red and green colors, and horizontal 
and vertical orientations), which are assumed to be generated in the relevant visual 
cortical areas. Orientation information is extracted using Gabor filters. Sections of the 
maps representing the foveated portion of the scene are given higher resolution. We 
assume that color is a basic feature and color information is available at all points of 
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the visible scene, while orientation is a higher level feature and the strength of orien-
tation information diminishes with increasing distance from the point of fixation. 

2.2   Striatum and Value Function 

The striatum (Caudate) is modeled as two 2D Continuous Attractor Neural Net-
works (CANNs) [8]. One of these, comprising of neurons of the D1 receptor type, 
sends projections along the Direct Pathway to SNr; the other, comprising of neurons 
of the D2 receptor type, sends projects along the Indirect Pathway to the GPe. Corti-
cal afferents to the striatum are passed through a weight stage, before it is input to 
each striatum as follows: 

1 _ 1
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ij k ijk
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I W I
=

=∑  

This is presented as input to each of the CANNs that comprise the striatum. The 
state of a node with index (i,j) is given by:  
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1 1 1 1
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where τ is the time constant, κx is a scaling factor, 1StrD
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The lateral connections consist of short-range excitation and long-range inhibi-
tion given as: 

2

221 2 2
, ; ( ) ( )w

d

StrD
ij pqw Ae C d i p j qσ

−

= − = − + −   (4) 

The output, 1StrD
ijU , of the neuron at (i,j) in STRIATUM_D1 is given as: 

1 1 1tanh( )StrD StrD StrD
ij ijU sλ=     (5) 

where 1StrDλ  is the slope of activation function of neurons in STRIATUM_D1. 

Note that though eqns. (2-5) commonly describe dynamics of the two CANNs 
(consisting of D1 and D2 neurons respectively) only one set of equations is 
shown for the sake of brevity of presentation. Both the CANNs receive the same 
cortical afferents Istr (of eqn. (1)). Activity of striosomes in the dorsal striatum is  
 

     (1) 
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believed to correspond to net expected future reward [9], which is nothing but 
the value function associated with the current state. We compute value function 
from the net input coming into D1-receptive striatal neurons: 

1( ) ( )StrD
ij

i j

V t I t=∑∑     (6) 

2.3   STN-GPe Loop 

The STN-GPe modules are connected in feedforward-feedback fashion in such a way 
that their joint activity produces oscillations. We had earlier shown that if inhibitory 
interactions dominate lateral interactions in GPe, the STN-GPe system produce  
complex activity; when excitatory interactions dominate, STN-GPe neurons exhibit 
regular forms of activity like traveling waves and synchronized bursts [10]. Electro-
physiological data from STN-GPe reveal that these structures exhibit complex spiking 
activity in an intact brain; under dopamine-deficient conditions, as in Parkinson’s 
disease, the activity here degrades to synchronized bursting patterns. In light of the 
above considerations, we had earlier hypothesized that if the BG is a reinforcement 
learning machine, STN-GPe is the Explorer [11]. The STN-GPe model of (Gangadhar 
et al,[10]) is used in the present model.  

2.4   Dopamine Signal and Direct/Indirect Pathways 

The Temporal Difference (TD) error is interpreted as dopamine signal and calcu-
lated as: 

( ) ( ) ( 1) ( )t r t V t V tδ γ= + + −    (7) 

where r(t) represents the reward delivered at time t. The δ(t) signal is broadcast to 
striatum where it switches transmission of corticostriatal signals between DP and IP. 
The switching is done by differentially controlling the steepness of activation func-
tions of the D1 and D2 sublayers of the striatum as follows: 

32
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where α denotes the slope of the activation function, β1 , β2 and β3 denotes the 
thresholds for dopamine regimes 1, 2 and 3 respectively. In the simulation we 
have used values of α = 30, β1 = -0.3, β2 = 0.3, and β3 = 3.  
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2.5   Substantia Nigra Pars Reticulata 

The SNr is simply a summing unit, which adds the contributions along the DP 
coming from the striatum and those along IP coming from the STN.  

2.6   Training 

Training takes place at three levels, Cortico-striatal DP & IP and from STN   
SNr. A set of weights is used for each of the levels. The DP Cortico-striatal 
weights are trained such that the striatum learns the most rewarding feature(s). 
The training rule used is: 

_ 1 1
1

Ctx StrD StrD Ctx
k ij ijk

i j

W U Iη δΔ = ∑∑   (10) 

where η1  is the learning rate, δ  is the dopamine signal (TD error), 
1StrD

ijU  is the 

current output of the D1 CANN and 
Ctx
ijkI  is the cortical input to striatum as de-

fined before (see eqn (1)). 
The IP cortico-striatal weights are trained to activate non-rewarding fea-

tures(s) so that the D2 CANN activates and suppresses inputs at the correspond-
ing points. The training rule used here is: 

_ 2 2
1

Ctx StrD StrD Ctx
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W U Iη δΔ = − ∑∑    (11) 

where η 3 is the learning rate and 
2StrD

ijU  is the current output of the D2 CANN. 

This ensures that when δ is highly negative, the weights are trained in the direc-
tion of enhancing the activity of the D2 CANN. 

These weights are trained with the objective of enhancing the negative con-
nections from the STN to SNr so that the output at the SNr is negative for regime 
1 operation. They are initialized to take a value of -1 initially and subsequently 
trained according to the rule: 

_
4

IP SNr STN SNr
ij ij ijW U Uη δΔ =   (12) 

where η 4 is the learning rate, STN
ijU  and SNr

ijU   are the current outputs of the 

STN and SNr grids respectively.   

2.7   Superior Colliculus 

The activity of SNr is given as input to the SC along with the direct input from 
the Feature Maps, which represent the cortical input. Note that BG output (from 
SNr) modulates the direct cortical inputs to SC as follows: 
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Fig. 1. Model Architecture  

3   Results 

We applied the model to learn a series of voluntary saccade paradigms, as discussed 
below. In all the cases the input scene is a 240x240 grid, the central 80x80 window of 
which contains the targets involved in the task. 

3.1   Saccading to a Single Target 

Figure 2 shows the contribution of the BG and the corresponding dopamine levels in a 
single target saccade task where a reward is administered on saccading to it. Before 
training, the value of a scene containing the target is low so that δ on target appear-
ance is low (=0.02). However, positive reward is administered on saccading to the 
target, and therefore δ increases (=0.998) (figure 2a). After training, the Value of the  
 

(a) Before training           (b) After training     (c) No reward 

     Retinal Image   SNr state      Deltaa   Retinal Image   SNr state     Delta Retinal Image   SNr state    Delta 

 

Fig. 2. BG Contribution for a Single Target Task. Three cases (a,b & c) are shown. Each case is 
depicted by a 2 X 2 array of images: the rows (t=1 & 2) represent the instants when the target is 
presented (t=1) and when the saccade is made to the target (t=2), and the columns represent the 
retinal image (left) and the state of the SNr (right). The number on the right of each case denote 
instantaneous values of δ at t=1 & 2.  
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scene containing the target becomes high, and a positive fluctuation in δ (=7.17) ("do-
pamine burst") occurs right at the instant of target appearance (figure 2b). Moreover, δ 
takes a negative value (=-0.645) if the expected positive reward is not administered on 
making the saccade (figure 2c). These results are strongly reminiscent of the experi-
mentally observed response properties of dopamine neurons found in a monkey reach-
ing for food [9]. 

3.2   Feature Search  

Feature search involves searching for targets defined by a unique visual feature (color 
in this case). A search grid consisting of a single green target amongst red distractors 
was used (Figure 3a). A positive reward was administered only on saccading to the 
green dot and negative reward on saccading to a red dot. Figure 3b shows that search 
time does not show significant dependence on the number of targets, which conforms 
to human behavioral data on similar tasks [12]. 
 
 

 

 
 
 
 
 
 
 

Fig. 3. (a) Feature Search grid. (b) Effect of Display Grid Size on Search time.  

3.2   Conjunction Search 

The target in a conjunction search is not defined by any single visual feature, but by a 
combination of two or more features (color and orientation in this case). A search grid 
consisting of a single horizontal green bar amongst horizontal red and vertical green 
bars was used (Figure 4 a). A positive reward was administered only on saccading to  
 

 

Fig. 4. (a) Conjunction Search grid. (b) Effect of Display Grid Size on Feature search time.  
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the horizontal green bar and negative reward on saccading to any other bar. Figure 4b 
shows that search time increases almost linearly with the number of distracters, which 
conforms to human behavioral data on such tasks [12]. 

3.3   Effect of Lowered BG Output 

BG contribution to saccade generation comes in three forms: 1) representation of 
error in dopamine signal (δ), 2) use of δ for learning the saccade task, 3) the explora-
tory influence of the Indirect Pathway than enables moving away of the eye from the 
current point of fixation. It was observed that the model failed to perform even simple 
feature search when the BG output was scaled down by a factor < 0.5. Figure 5a com-
pares the number of saccades needed to reach the target in case of normal and lowered 
(by a factor of 0.6) BG output in a feature search. Search time increases very sharply 
for display size > 3. 

As shown by figure 5b, it was also observed that average reaction times were 
longer  in case of weakened BG output (We measured reaction times in terms of 
the time taken by the saliency map to reach a peak of height > 95% of the maxi-
mum value it can reach). This is consistent with the increase in saccade reaction 
times observed in MPTP-infused monkeys (MPTP infusion results in degenera-
tion of dopaminergic fibers to the striatum and results in a net lower BG output) 
by Kato et al [14].  

 

 

 

 
 
 
 
 
 
 
 

Fig. 5. Effect of lower BG output on (a) Feature search Efficiency, and (b) Saccade reaction 
time  

4   Discussion 

We propose here that the role of the BG in voluntary saccades is to either reinforce the 
parts of the saliency map that correspond to rewarding positions and suppress those 
corresponding to unrewarding ones. The BG circuit is modeled as a comprehensive 
reinforcement learning machinery in which the DP subserves exploitation while the IP 
is engaged in exploration. Dopamine signal to the striatum, which is interpreted as the 
TD error, switches the onward transmission of corticostriatal signals between DP and 
IP.  A key feature incorporated is the calculation of the value of a scene in the striatum 
based on corticostriatal input. Dopaminergic cell activity strongly resembles experi-
mental data [9]. The proposed model describes the role the BG plays in both learning 
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and performance of voluntary saccade tasks. In feature and conjunction searches, the 
pattern of dependence of search time on display size is shown to conform to behavioral 
data. Increased saccade reaction time with scaled-down BG output agrees with data 
obtained from monkeys in dopamine-depleted condition [14].  
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Abstract. Caenorhabditis elegans changes its NaCl-associated behavior

from attraction to avoidance following exposure to NaCl in the absence

of food (salt chemotaxis learning). To understand the changes induced by

chemotaxis learning at the neuronal network level, we modeled a neu-

ronal network of chemotaxis and estimated the changes that occurred

in the nervous system by comparing the neuronal connection weights

prior to and after chemotaxis learning. Our results revealed that neuro-

transmission involving ASE and AIA neurons differed prior to and after

chemotaxis learning. This partially corresponded to the experimental

findings of previous studies. In addition, our computational inference

results suggest the involvement of novel synapse connections in chemo-

taxis learning. Our approach to estimate changes of neurotransmission

corresponding to learning may help in planning experiments in order of

importance.

Keywords: Computational neuroscience, neuronal network model, salt

chemotaxis learning, neurotransmission, C. elegans.

1 Introduction

The nematode C. elegans is one of the major model organisms for the nervous
system. Its neuronal networks consisting of 302 neurons [1] enable it to respond
adequately to various stimuli such as attractant/repellent chemicals, variations
in temperature, and mechanical stimulation [2]. C. elegans typically approaches
NaCl, as a soluble chemoattractant. Behavioral plasticity is observed in this
organism after it experiences a particular combination of multiple stimuli [3]; for
example, C. elegans modifies its movement response to NaCl from attraction to
avoidance following exposure to NaCl in the absence of food for several hours (see
Fig. 1). Since the anatomical structure of the nervous system in C. elegans is well-
characterized [1] and does not change at the adult stage, by using this organism
it may be possible to understand the specific changes in neuronal states (the
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Fig. 1. Salt chemotaxis learning in C. elegans

response-characteristic of a neuron and the synaptic transmission efficiency at
a certain time) corresponding to behavioral changes. Because of this advantage,
in recent years many studies on the mechanisms of learning and memory have
been carried out using C. elegans [3]–[6].

The behavioral plasticity in response to NaCl, termed ’salt chemotaxis learn-
ing’, can be explained, at the neuronal network level, as the changes over time of
both the response-characteristics of each neuron and the degree of synapse trans-
mission (neurotransmission). In the previous studies, the involvement of some
neurons in learning was determined from molecular experiments. However, even
using physiologic and/or advanced imaging techniques [7]–[8], it is not possible
to measure signal transduction in whole synapse connections and gap junctions
in C. elegans at the same time. For this reason, whether the change of neuronal
states corresponding to the behavioral changes extends to the whole nervous
system or only to a limited part of the nervous system is not known.

Therefore, to understand the behavioral changes induced by learning at the
neuronal network level, we here propose a novel approach in which the neuronal
network is modeled based on the actual neuronal connections, and the neuronal
changes corresponding to learning are estimated. The purpose of our computa-
tional inference study is to provide novel information that cannot be obtained
using conventional experimental techniques. These results will help us to plan
experiments in order of importance. This paper covers estimation of the neuronal
changes relating particularly to salt chemotaxis learning.

2 Computational Inference of Neuronal States Using a
Neuronal Network Model

2.1 Stimulation Response in C. elegans and Its Neuronal Structure

C. elegans has a simple cylindrical body approximately 1 mm in length and the
body is composed of 959 cells. Neuronal networks consisting of 302 neurons in-
clude approximately 5000 chemical synapse connections, approximately 600 gap
junctions and approximately 2000 connections between neurons and muscles [1].
The neuronal network processes information from various kinds of stimuli inside
and outside the body, and produces differing types of movement appropriate for
each stimulus; for example, avoiding obstacles or repellent chemicals. As men-
tioned previously, in addition to transient responses, C. elegans has the capacity
to learn some amount of environmental information [3]. Although C. elegans usu-
ally prefers NaCl and approaches the high-concentration area of a NaCl gradient,
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Fig. 2. A model of the chemotactic neuronal network in C. elegans

after having experienced starvation and NaCl at the same time, the response
changes to avoidance of NaCl. Neurons of C. elegans are classified into three
main groups by function: sensory neurons, interneurons and motor neurons. The
sensory neurons detect external stimuli first, and then the interneurons process
information from the stimuli. Finally, the motor neurons control the muscles on
the basis of signals from the interneurons. These neuronal networks enable C.
elegans to respond adequately to various stimuli.

2.2 A Model of the Chemotactic Neuronal Network in C. elegans

Estimation of the neurotransmission prior to and after chemotaxis learning is
meaningful towards an understanding of the changes in the nervous system in-
duced by learning. Therefore, we here propose a neuronal network model of C.
elegans, and use this model to estimate the changes in neurotransmission re-
lating particularly to salt chemotaxis learning. Figure 2 shows a model of the
neuronal network in relation to chemotaxis, in which the neuronal connections
were connected based on the anatomical structure [1] of C. elegans. There are
66 connections in this model.

’ASE’ represents a pair of sensory neurons as one neuron, in which the sen-
sory neurons ASEL and ASER, which sense soluble chemicals such as NaCl,
were simplified. We expressed the other sensory neurons relating to chemotaxis
in our model, in which AWA(L/R) and AWC(L/R) sense volatile chemoattrac-
tants and AWB(L/R) senses volatile repellents. Neurons that have the same
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function were presented as one neuron in the same way as ASE neuron. On the
other hand, the details of the neurons that sense starvation are not known. We
here focused on sensory neurons, ADF(L/R), ASG(L/R) and ASI(L/R), which
relate to the formation of dauer larvae under conditions without food at the lar-
val stage [9] and/or sense stress at the adult stage [10]. We represented these as a
sensory neuron ’F’ that sense starvation. Subsequently, 10 types of interneurons,
AIA(L/R), AIB(L/R), AIY(L/R), AIZ(L/R), RIA(L/R), RIB(L/R), RIM(L/R),
AVA(L/R), AVE(L/R) and AVB(L/R), connecting with the 5 sensory neurons
were included in this model. Finally, we modeled motor neurons. For various
types of movement such as turn and locomotion in C. elegans, muscles are con-
trolled by motor neurons existing in the whole body. In fact, turns in response to
stimuli are considered to be dependent on neuromuscular controls in the head.
Therefore, we considered only the outputs of 14 motor neurons for head control,
and these neurons were simplified as only 2 neurons, i.e., a dorsal (D) motor
neuron and a ventral (V) motor neuron, where the former controls the dorsal
side of the head and the latter controls the ventral side.

In this model, multiple connections existing between a pair of neurons were
simplified as a single connection and the efficiency (information content) of neu-
rotransmission of each connection was expressed by the connection weight, wi

(i = 1, 2, · · · , 66). Signal transductions on chemical synapse connections are one
way transductions, while gap junctions are interactive. A positive value of wi

indicates an excitatory signal and a negative value signifies an inhibitory signal.

2.3 Description of the Characteristics of Neurons

Output of the sensory neurons Oj (j ∈{ASE, AWC, AWA, AWB, F} was
expressed by the following nonlinear equation based on the general neuronal
characteristics:

Oj = cj/[1 + exp{−aj(Ij − bj)}] (1)

where aj is an inclination with output function, bj is the value of the stimula-
tion input at which the output of the neuron takes a central value, and cj is a
gain (0 < cj ≤ 1) to the output and is equivalent to the stimulation reception
sensitivity. The input Ij to each neuron is the sum of a value that multiplies
the connection weight wi by the stimulation input Sj and/or the output of the
connected neuron. Stimulation inputs Sj to sensory neurons are the step-less
inputs of the range of [0, 1], which quantifies the strength of the stimulation.
Therefore, Oj outputs the continuation value of [0, 1] which is normalized by
the maximum output from the actual neuron. The output characteristics Ok

(k ∈ {AIA, AIB, AIY, AIZ, RIA, RIB, RIM, AVA, AVE, AVB, D, V}) of interneu-
rons and motor neurons were also represented by Eq. (1).

2.4 Settings for Output of Motor Neurons Based on Behavior

In the proposed model of the neuronal network, if the output of motor neurons
D and V corresponding to stimulation input sensed by sensory neurons is known,
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Table 1. Settings for output of motor neurons based on behavior

Stimulation Behavior Motor neuron State Output

Non-stimuli Forward D Inhibition TD = 0

(Nomal) V Inhibition TV = 0

Attractants Forward D Excitation TD = 1

(Attraction) V Excitation TV = 1

Repellents Dorsal-side turn D Excitation TD = 1

(Case 1) (Avoidance) V Inhibition TV = 0

Repellents Ventral-side turn D Inhibition TD = 0

(Case 2) (Avoidance) V Excitation TV = 1

we can estimate the neurotransmission for each synapse connection and each gap
junction on the basis of the input-output relationship. However, it is impossible
to measure the output of each motor neuron even using advanced techniques.

Therefore, we provided the output of the motor neurons from the correspond-
ing behavioral responses, such as forward movement or turn. Here we assumed
that C. elegans moves forward when the internal states of 2 motor neurons bal-
ance, and it turns when the states do not balance. Turns are classified into 2
cases, i.e., the dorsal-side turn (Case 1) and ventral-side turn (Case 2). Mo-
tor neuron D is in an excited state when the dorsal-side muscles contract and
C. elegans turns to its dorsal side, and motor neuron V is in an excited state
when the ventral-side muscles contract and the worm turns to its ventral side.
Based on this, the settings for outputs of the motor neurons corresponding to
each stimulation input were provided as shown in Table 1. Outputs for forward
movement (attraction) were given as TD = TV = 1. In the same way, for turn
(avoidance), the desired outputs were given as TD = 1 and TV = 0 or TD = 0
and TV = 1. Therefore, in the case of normal chemotaxis (prior to learning),
response to stimulation sensed by the ASE, AWC or AWA neurons is forward
movement, and the desired outputs of the motor neurons were TD = TV = 1.
Also, the response to stimulation sensed by the AWB neuron is turn, and the
desired outputs of the motor neurons were TD = 1 and TV = 0 or TD = 0 and
TV = 1.

2.5 Optimization of the Neuronal Network Model by a Real-Coded
Genetic Algorithm (GA)

In this study, the desired outputs of the motor neurons, TD and TV, were provided
so as to correspond to each of u (u = 1, 2, · · · , U = 10) patterns of stimulation
inputs to sensory neurons. Note that TD and TV for responses after learning were
set to different values from those for prior to learning only in the response to NaCl
which was sensed by the ASE neuron. To search for an adequate set of neuronal
connection weights that fulfills the input-output relationship provided in Table
2, we employed a real-coded genetic algorithm (GA) that we previously used for
parameter tuning of some neuronal network models of C. elegans and confirmed
its effectiveness [11]. All the connection weights, wi (i = 1, 2, · · · , 66), included
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Table 2. Desired outputs of motor neurons corresponding to stimulation inputs

(Case 1)

Input Output prior to learn. Output after learn.

u SASE SAWC SAWA SAWA SF TD TV Behav. TD TV Behav.

1 1 0 0 0 0 1 1 FW 1 0 DT

2 0 1 0 0 0 1 1 FW 1 1 FW

3 0 0 1 0 0 1 1 FW 1 1 FW

4 0 0 0 1 0 1 0 DT 1 0 DT

5 0 0 0 0 1 0 0 FW 0 0 FW

6 1 0 0 0 1 1 1 FW 1 0 DT

7 0 1 0 0 1 1 1 FW 1 1 FW

8 0 0 1 0 1 1 1 FW 1 1 FW

9 0 0 0 1 1 1 0 DT 1 0 DT

10 0 0 0 0 0 0 0 FW 0 0 FW

FW denotes forward movements and DT denotes dorsal-side turns.

Fig. 3. The outline of the GA method for searching for an adequate set of connection

weights prior to chemotaxis learning. The method for connection weights after learning

is similar to this.

in the model shown in Fig. 2 were represented as individual genes (see Fig. 3). A
string including all the connection weights (genes) of the model was treated as
an individual in the GA, and the procedures, (1) selection, (2) crossover, and (3)
mutation, were repeated at each generation g (g = 1, 2, · · · , Gfin). An individual
of a GA consisted of a string arraying a set of connection weights included in
the neuronal network model.

For each GA generation, the adequacy of each individual was evaluated to
determine which individuals will be included in the next generation. The function
for evaluating error values during GA-searching was defined by the following
equation.

F (p) =
U∑

u=1

(|TD(u) − OD(p, u)| + |TV(u) − OV(p, u)|) (2)
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where p (p = 1, 2, · · · , P ) is the serial number of the GA individual. Searching
for an adequate set of connection weights for prior to and after learning was
conducted using a GA in each case, and a set of connection weights that provides
a minimal value of F (p) in the final generation, Gfin (∈ {priorGfin (for weights
prior to learning), afterGfin (for weights after learning)}) was employed in the
model.

3 Estimated Changes in Neurotransmission After
Chemotaxis Learning

In searching for an adequate set of connection weights by a GA, we set the desired
outputs of motor neurons corresponding to sensory inputs prior to and after
chemotaxis learning as shown in Table 2. We repeated the search priorN = 50
times under the same calculation conditions to ensure statistical power, and 50
distinct sets of neuronal connection weights were thus obtained. On the other
hand, searching for connection weights for after learning was conducted where
each of the previous 50 sets of connection weights were used as initial values, and
the calculations were repeated afterN = 50 times for each set of initial values.
Finally, the average variation in the sets of connection weights after learning
was derived from the results of 2500 (50 50) sets of connection weights. Because
turns to another direction occurred, we partially changed the desired outputs
(Case 2), in which the outputs of motor neurons for turn were inverted from
those of Case 1 shown in Table 2. Under these settings, we conducted the same
searching as described above.

We evaluated quantitatively the change in neurotransmission on each neuronal
connection after salt chemotaxis learning, based on a variation, vi(x, y). The
variation of neurotransmission of each neuronal connection, prior to and after
learning, was calculated by the following equation:

vi(x, y) = |priorwi(x) −after wi(x, y)| (3)

where priorwi(x) is the i (i = 1, 2, · · · , 66)-th connection weight prior to learning
that is included in the x (x = 1, 2, · · · ,prior N)-th adequate set of weights, and
afterwi(x, y) is the i-th connection weight after learning that was obtained from
an initial value of priorwi(x) and is included in the y (y = 1, 2, · · · ,after N)-th
adequate set of weights. Subsequently, the mean variation of v̄i(x) was calculated
by:

v̄i(x) =
1

afterN

afterN∑
y=1

vi(x, y) (4)

For each of the 50 sets of initial connection weights prior to learning, this cal-
culation was performed and the integrated value of mean variation Vi of each
neuronal connection was calculated by:

Vi =

priorN∑
x=1

v̄i(x) (5)

Note that Vi in Case 1 and Case 2 were individually calculated.
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Fig. 4. Estimated changes in neuronal networks induced by salt chemotaxis learning

We focused on the neural connections whose connection weight changed in
the same way in the 2 types of input-output settings (Case 1 and Case 2). Ten
connections where substantial changes (Vi > 20) occurred are shown as heavy
lines in Fig. 4. The solid lines denote connections that resulted in excitatory
neurotransmission, and the dotted lines denote those that resulted in inhibitory
neurotransmission. Among the 10 connections, 4 connections connected with
ASE neuron. It is known that ASE sensory neuron and AIY interneuron play
a significant role in chemotaxis learning [4]. In addition, the activity of ASE
neuron is inhibited by the function of AIA neuron, which results in the inhibition
of neurotransmission to AIB or AIY neuron from an ASE neuron [5]. Our results
partially corresponded to this experimental finding.

Furthermore, the connections at which neurotransmission was barely altered
(Vi < 10) were concentrated in those connections from the F sensory neuron
(Figure not shown). This indicates that neurotransmission relating to starva-
tion maintains a constant level regardless of learning. The weights of neuronal
connections from the F neuron were values in the range of -0.3 to 0.3 on av-
erage, which were lower than that of other connections. These results suggest
the possibility that salt chemotaxis learning can be realized by inhibiting the
activity of neurotransmission involving ASE neuron. Nevertheless, the substan-
tial changes corresponding to chemotaxis learning were newly estimated in this
study on synapse connections to AVA and AVB interneurons. Although biolog-
ical experiments using advanced imaging techniques could measure the changes
of neurotransmission at a few neuronal-levels, our method could estimate the
changes in neurotransmission concerned with learning at a neuronal network
level.
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4 Discussion and Conclusions

The purpose of our study was to establish a novel computational approach,
which provides information that cannot be obtained using well-known physio-
logical and/or advanced imaging techniques, and that provides information for
selecting experiments in order of importance. To understand the changes induced
by chemotaxis learning in C. elegans at the neuronal network level, we modeled
the chemotactic neuronal network based on the actual neuronal connections. In
this model, we simplified the neuronal connections and properties of neurons
on the basis of their function and estimated the changes that occurred in the
nervous system by comparing the neuronal connection weights prior to and after
salt chemotaxis learning.

The results revealed that signal transduction in several connections, such as
that from AIA interneuron to ASE sensory neuron, differed prior to and af-
ter salt chemotaxis learning. This corresponded partially to the experimental
findings of previous studies which suggested the involvement of some synapse
connections in salt chemotaxis learning. The significant point is that we used
the simplified model and obtained results similar to the actual experimental re-
sults. These results are meaningful with respect to discussions concerning the
adequacy of simplification and assumptions on modeling of living organisms.
Another important point is that we could estimate involvement of some novel
neuronal connections in chemotaxis learning by computational approach. The
involvement in chemotaxis learning will need to be examined in greater detail
through biological experiments at the neuronal-level.

On the other hand, comparative studies on learning dynamics between the
neuronal network model and the actual C. elegans are also important, partic-
ularly focusing on the effects of external noisy input and the time needed for
learning. These results will provide suggestive knowledge on learning. We will
investigate these relationships through more-detailed analyses of the data pre-
sented in this paper. Furthermore, updating the model to correspond to the novel
knowledge is important to obtain more accurate results. Since it is much impor-
tant to establish a framework for estimation of neurotransmission that does not
change even if the targeted model is changed, we developed such the method for
computational inferences in this study. The method we proposed is not depen-
dent on a model and can also be applied to the distinct neuronal-network model
for estimating changes in neurotransmission prior to and after learning. We will
use the proposed method to estimate the neurotransmission underlying various
types of phenomena.
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Abstract. It has been one of the great challenges of neuro-symbolic

integration to represent recursive logic programs using neural networks

of finite size. In this paper, we propose to implement neural networks

that can process recursive programs viewed as inductive definitions.
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1 Introduction

Neuro-symbolic integration is the area of research that endeavours to synthesize
the best of two worlds: neurocomputing and symbolic logic. The area was given
a start in 1943 by the pioneering paper of McCulloch and Pitts that showed
how Boolean logic can be represented in neural networks; we will call these
Boolean networks. Neuro-symbolism has since developed different approaches to
inductive, probabilistic and fuzzy logic programming [2,3,11].

Various neuro-symbolic approaches that use logic programs run over finite
domains have been shown effective as a hybrid machine learning system [3].
However, when it comes to recursive logic programs that describe infinite sets,
Boolean networks become problematic, for they may require networks of infinite
size. Some approaches to solve this problem use finite approximations of such
networks, [1,5], but the approximations may be difficult to obtain automatically.

In this paper, we propose to take a new look at recursive logic programs, that
is, to approach them not from the point of view of first-order logic, but from
the point of view of functional programming [9]. As an example, consider how a
formal grammar generates the strings of a language. Grammars are inductive def-
initions, i.e. rules that generate a set. In [7], we have introduced neuro-symbolic
networks that can process inductive definitions given in a functional language,
and applied these networks to data type recognition. In this paper, we show how
this neuro-symbolic construction can be applied to processing recursive logic
programs. The idea is that inductive definitions can be used as set generators or
term recognisers. The former can generate elements of a set from the inductive
definition, the latter can recognise whether an element satisfies the inductive
definition, and hence belongs to the defined set.
� The work was supported by EPSRC, UK; PDRF grant EP/F044046/2.
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2 Neural Networks as Inductive Generators

In the standard formulations of logic programming [8], a logic program consists
of a finite set of clauses (or rules) of the form A ← A1, . . . , An where A and
the Ai’s are atomic formulae, typically containing free variables; and A1, . . . , An

denotes the conjunction of the Ai’s. Note that n may be 0, such clauses are called
facts. We assume that the logical syntax has a numerical encoding suitable for
neural networks, cf. [6]. Let us start with an example.

Example 1. The program below corresponds to the inductive definition of the set
of natural numbers in functional languages, where S(n)=n+1. Using the syntax
below, number 3 will be given by a term S(S(S(O))).
nat(O) <- // zero is a natural number
nat(S(n)) <- nat(n) // if n is a natural number, so is S(n)

Recursive clauses require the predicate (e.g. nat) appearing on the left-hand side
(called the head) of a clause to appear also on the right-hand side (called the
body) of the clause, and variables (e.g. n) appearing in the head to appear in the
body within the same predicate. The head must contain a function symbol (e.g.
O or S); such functions play the role of constructors in the inductive definitions
of functional languages. Certain inductive definitions do not contain recursion
of any kind. Such programs inductively define finite sets.

Example 2. Logic program defining the set of boolean values:
bool(t) <-//true is a boolean bool(f) <-//false is a boolean

The last distinction we need to make is between simple and dependent defini-
tions. All the inductive definitions we have considered so far were simple, in that
they did not depend on other inductive definitions. Consider the example of the
dependent inductive definition of lists of elements of a certain type, e.g. nat. The
definition of this type not only involves recursion, but it is also dependent on
another inductive definition: nat. See [7]. Inductive definitions have two common
uses: read from right to left they can be used to generate the elements of a set,
and read from left to right they can be used for type-checking expressions. Both
implementations require finite and terminating computations. Figure 1 shows
some network architectures for generating and recognising expressions.

3 Neural Networks as Recursive Recognisers

We now turn to networks that can process recursive logic programs viewed as
inductive definitions, see [7] for the full formal analysis of these networks. It has
been shown in [7] that there exists a general method that allows to construct
the networks from the specification of an inductive definition. Given a recursive
clause X(C(y)) ← X(y), the recursive recogniser for C is a one layer network,
consisting of n > 1 neurons with the following properties. The length n of the
single layer is the length of the input vector that the network will process. Each
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neuron has one input connection, with weight 1. The biases of all but the first
neuron are set to 0; the bias of the first neuron is set to −nC , where nC is a
numerical representation of C. The first neuron has an output connection that
can be received externally. The outputs of the 2nd to nth neurons, called recur-
sive outputs, are connected to the same layer, as follows: the output connection
of the kth neuron (k ∈ 2, . . . , n) is sent as an input to the k − 1 neuron. Note

S 1/0

S

O S 1/0 �������	�

��


������O
1

��


������S
1

��

��
1
S��

= 0?

1

��

= 0?

1
������

= 0?

1
������

1

1
������

1
������

�������	−s

1
��

�������	−t

1
��

�������	−f

1
��

x

1
��

x

1 		����
1

����

Fig. 1. Left: Generating elements of set nat. The input 1 is sent to the two neurons

with zero biases and activation functions f(x) = x ∗ O and f(x) = x ∗ S, where O(S)

are the numerical encodings of O(S). The recursive weight is set to 1
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network outputs O and S standing for natural numbers 0 and 1, at time 2, it will

generate another S, standing for S(S(0)) - or natural number 2. In the diagram - it

is time 3, and the term S(S(S(O))) is formed. Centre: Recognising symbol s. The

input is sent to the neuron with bias −s; it outputs 0 if the input matches s and some

non-zero value otherwise. This neuron may be connected to a zero-recogniser (in the
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that the first neuron of such network is the symbol recogniser for the function
C. The other n − 1 neurons in the layer are designed to recursively process the
remaining n − 1 elements of the input vector, see Figure 2.

It is possible to connect vectors of neurons in a cascade to recognise dependent
types. For example, to recognise a symbolic term of type list(nat), composed of
nested cons in the standard way, we can use two layers of neurons: a lower layer
to recognise the list structure, and an upper layer to recognise nat structure, [7].

4 Conclusions and Future Work

In this paper, we have applied the general method [7] to recursive logic programs.
We have explained two neuro-symbolic methods that work with inductive def-
initions: inductive generators and recursive recognisers. The methods can be
applied to logic programs with infinite Herbrand bases for which the traditional
model-theoretic methods cannot be applied directly.

Taking on board the “logic programs as inductive definitions” idea, we wish
to revise the traditional methods of building neuro-symbolic networks. The goal
is to compare results with the traditional implementations of semantic operators
and proof systems, resolution and unification. The hope is that the functional
approach would be more natural to integrate with neural networks [4,10].
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Abstract. A model for image coding based on Gabor-like stimulus-

dependent receptive fields has been recently introduced, where the param-

eters of the coding functions are obtained from the Fourier transform of

the input. Here we extend such model, by showing that it can also be based

on center-surround structures, such as found in the retina and the lateral

geniculate nucleus. Consistent with the interpretation of these early vi-

sual stages as providing a decorrelated signal to the cortex, we propose

center-surround stimulus-dependent receptive fields which yield whitened

representations of natural inputs. Our model receptive fields are found to

replicate properties of the mammalian center-surround structures.

1 Introduction

The classical description of the receptive field assumes a fixed spatial organiza-
tion, but this has been challenged by neurophysiological findings which indicate
that the receptive-field structure changes with neuronal input [1,2,3]. Motivated
by these, we have recently proposed a model for image coding by the mam-
malian visual cortex [4], in terms of Gabor-like, signal-dependent receptive field
functions of the form

ψc(x, y; ωx, ωy) = ei[ωxx+ωyy+ϕĨ ]e
−
(

x2+y2

2σ2
c

)
(1)

where ϕĨ is the phase of the signal’s Fourier transform, and σc is related to its
magnitude as

σc(ωx, ωy) =
1

(2π)3/2

√
|Ĩ(ωx, ωy)| (2)

A representation of the signal I(x, y), assumed square-integrable, has been ob-
tained, in terms of the ψc functions, as

I(x, y) =
∫ ∞

−∞

∫ ∞

−∞
dωxdωye

i(ωxx+ωyy) ∗ ψc(x, y; ωx, ωy) (3)

where the asterisk denotes spatial convolution. Although Eq. (3) holds exactly
only over an infinite domain, it has been shown to remain approximately valid
over finite windows, with different σc values computed at each window. For a
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typical image, the coding functions ψc show properties which are consistent with
those of the receptive fields of the cortical simple cells, what lends neurophysio-
logical plausibility to the model (see [4] for details).

Here we show how the above approach can be extended to receptive fields with
a center-surround organization, such as found in the retina and in the lateral
geniculate nucleus (LGN). The center-surround organization has been explained,
based on information theoretic principles, by assuming that the early visual
system produces a decorrelated version of the input signal, which is then relayed,
for further processing, to the cerebral cortex [5,6]. Neural cells in the retina
and the LGN would thus have developed receptive field structures which are
best suited to whiten natural images, whose Fourier spectra are known to decay,
approximately, as the inverse magnitude of the frequency − i.e., ∼ (ω2

x+ω2
y)−1/2

[7]. Consistent with such interpretation, we introduce circularly symmetrical,
stimulus-dependent coding functions in terms of which a similar representation
as Eq. (3) is defined for the whitened input. The resulting coding functions are
found to replicate properties of the neurophysiological receptive field structures.

2 Center-Surround Signal-Dependent Representation

We propose to represent the output of the center-surround cells as

Iwhite(x, y) =
∫ ∞

−∞

∫ ∞

−∞
dωxdωyei(ωxx+ωyy) ∗ ψ(r; ωx, ωy) (4)

where Iwhite(x, y) is a whitened image, modeled as the convolution of the input
image and a suitable zero-phase whitening filter, W (x, y):

Iwhite(x, y) = W (x, y) ∗ I(x, y) (5)

The receptive field is here modeled by ψ(r; ωx, ωy) − for r =
√

x2 + y2 −, which
is a circularly symmetrical coding function, chosen under the form

ψ(r; ωx, ωy) = −eiϕĨ(ωx,ωy)

πr
{1 − cos[σ(ωx, ωy)πr] − sin[σ(ωx, ωy)πr]} (6)

where ϕĨ is the phase of the Fourier transform of the input signal, as already
defined, and σ(ωx, ωy) is related to the magnitude of the transform, as shown in
the Appendix, as

σ(ωx, ωy) =
ρ

π

√√√√1 −
[
1 +

ρW̃ (ωx, ωy)|Ĩ(ωx, ωy)|
4π

]−2

(7)

In the above, W̃ (ωx, ωy) is the Fourier transform of the whitening filter, and we

have defined ρ as the frequency magnitude: ρ =
√

ω2
x + ω2

y.
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The absolute value of the function ψ(r; ωx, ωy) reaches a maximum of σ, at
r = 0, its first zero appears at r = r0 = 1/2σ, and the second one at r = r1 =
2/σ, the range between them, of length 3/2σ, defining the surround of the model
receptive field. There are additional zeros for r > r1, and thus additional side
lobes, but the depth of those is less than one third of that of the first lobe.
The coding function therefore displays a single dominant surround whose size
will depend on the spectral content of the input image, and on the choice of
whitening filter (see Eq. 7). Following the interpretation proposed in [5,6], we
assume that the center-surround receptive field structures are such as to equalize
the spectrum of natural images − which decays as 1/ρ, as already noted −, at the
same time suppressing high-frequency noise. We therefore chose the whitening
filter spectrum as

W̃ (ωx, ωy) =
ρ

1 + κρ2
(8)

where κ is a free parameter. Other filters with the same general spectral prop-
erties could have been chosen, without substantially altering our model.

(a) (b)

(c)

Fig. 1. Plots of the magnitude of the coding functions of Eq. (6), obtained from a 3×3

fragment of the original image in Fig. 2a. The represented frequencies, (ωx, ωy), in (a),

(b) and (c), are (0,1), (2,0), and (3,1), respectively.

Fig. 1 shows examples of the coding functions resulting from the above ap-
proach. These have been obtained from a 3×3 patch of the natural image shown
in Fig. 2a, and serve to illustrate the general behavior of our signal-dependent
receptive fields. The figure displays the magnitude of ψ(r; ωx, ωy) divided by σ,
such that all functions reach the same maximum value of 1 (when the phase fac-
tor eiϕĨ (ωx,ωy), in Eq. (6), is considered, we obtain both center-on and center-off
structures). It is easy to see that our model does not respond to uniform in-
puts, since, when ρ = 0, σ is also zero, and the coding function vanishes. On the
other hand, at low frequencies, as illustrated by Fig. 1a, the receptive fields show
a marked center-surround organization. As ρ increases, the surround tends to
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become less important (Fig. 1b), all but disappearing at the higher frequencies
(Fig. 1c). Such behavior has been found to hold irrespectively of the κ value cho-
sen (we considered 0.05 < κ ≤ 1), and is in keeping with our whitening model:
the relative weight of the low frequencies − which tend to be dominant in the
natural images − should be attenuated; that of the middle-range ones should
be enhanced, and the high-frequency noise should be suppressed. Therefore, the
low-frequency receptive fields would tend to be of bandpass character, while the
high-frequency ones would tend to be low-pass, what is consistent with the pro-
files in Fig. 1 (a similar change in receptive field structure, associated with the
change in mean luminance level, has been reported for retinal ganglion cells [8]).

Fig. 2 shows examples of natural images (from the van Hateren database [9])
coded by the signal-dependent receptive fields. We present the input image −
from which σ(ωx, ωy) and the coding function (receptive field) ψ(r; ωx, ωy) are
obtained − and the resulting whitened representation, obtained by computing
Eq. (4) over finite windows. For comparison, the log-log spectra of the input and
whitened signals are also presented (in the plots, the vertical axis is the rotational
average of the log magnitude of the Fourier transforms, and the horizontal axis is
log ρ). It is apparent that the representation tends to equalize the input spectra,
the resulting images looking like edge maps which code both edge strength (the
intensity variation across the edge) and edge polarity (the sign of that variation).
We present results obtained with 3 × 3 and 5 × 5 windows, for κ = 0.05. The
smaller window gives better definition for narrow edges, but can miss larger ones.
The effect of κ is not pronounced, but, consistent with its role as a measure of
noise level, larger values of the parameter usually enhance the low-frequency
portion of the spectra.

(a) (b)

Fig. 2. a) Top: input image and its log-log spectrum (see text). Bottom: whitened

image and its log-log spectrum. Similarly for b). We have used 5 × 5 (a) and 3× 3 (b)

windows, with κ = 0.05. The images are 192 × 192.
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3 Concluding Remarks

We have introduced a model for stimulus-dependent center-surround receptive
fields, extending an earlier approach used for modeling Gabor-like neurons [4].

As we have shown, besides performing whitening, our model receptive fields
present the following neurophysiologically plausible properties: they appear both
with center-on and with center-off organization; they do not respond to uniform
inputs; they are frequency-dependent; their surrounds tend to be better defined
for lower frequencies, and less so for higher frequencies − what lends them the
character of a bandpass filter in the first case, and of a low-pass filter, in the
latter. All such properties have been experimentally verified either for retinal
ganglion cells or for cells of the lateral geniculate nucleus.

The center-surround receptive fields presented here can be associated with
the Gabor-like ones introduced in [4], to configure a general model of signal-
dependent representation and processing in the visual pathway, between the
retina and V1: the output of the center-surround cells would define the Gabor-
like receptive fields (see Eq. (1)), and these would then act as projection filters,
to generate a sparse signal representation, as advocated, for instance, in [10].
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Appendix

Here we obtain the parameter σ(ωx, ωy) of the coding function ψ(r; ωx, ωy), given
in Eq. (7).

Taking the Fourier transform of both sides of Eq. (4) (with the integration
variables changed to ω′

x and ω′
y), using Eq. (5) and the sifting property of the

delta, we find

W̃ (ωx, ωy)Ĩ(ωx, ωy) = 2π

∫ ∫
dω′

xdω′
yδ(ω′

x − ωx, ω′
y − ωy)ψ̃(ρ; ω′

x, ω′
y) =

= 2πψ̃(ρ; ωx, ωy) (9)

for ρ =
√

ω2
x + ω2

y, and with W̃ and ψ̃ denoting, respectively, the Fourier trans-
forms of the filter and of the coding function. The latter can be found, from Eq.
(6), as

ψ̃(ρ; ωx, ωy) = −2eiϕĨ(ωx,ωy)

{
1
ρ
− 1 − cyl(ρ/2πσ)√

ρ2 − π2σ2
− cyl(ρ/2πσ)√

π2σ2 − ρ2

}
(10)

where cyl(ρ/2πσ) = 1, if 0 ≤ ρ ≤ πσ, and zero, otherwise.
Using the above in Eq. (9), this can be solved for σ(ωx, ωy), and we will get

two different solutions, depending on wheter we assume σ < ρ/π or σ ≥ ρ/π.
As already noted, the length of the surround region of the model receptive field
defined by ψ(r; ωx, ωy) is 3/2σ. Since the retinal and LGN cells are experimen-
tally found to have large surround areas, we chose to work here with the solution
for σ < ρ/π (we noticed very little change in our results, when the alternative
solution was used). In this case, Eqs. (9) and (10) yield

W̃ (ωx, ωy)|Ĩ(ωx, ωy)| = −4π

[
1
ρ
− 1√

ρ2 − π2σ2

]
(11)

where we have identified Ĩ(ωx, ωy) = |Ĩ(ωx, ωy)|eiϕĨ (ωx,ωy). Through a straight-
forward manipulation, the above can be solved for σ, yielding the result in Eq.
(7), and thus proving the validity of the representation in Eq. (4).

We conclude by remarking that the most commonly used model for center-
surround receptive fields, the difference of Gaussians [11], has not been used here,
because it would have required two parameters (the width of the two Gaussians)
for the definition of the coding functions, while the above approach provides a
single equation for this purpose.
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Abstract. Zero-lag synchronous oscillations have been confirmed sev-

eral times in biological experiments as well as successfully reproduced and

simulated by theoreticians. But it has not been analyzed yet how synap-

tic changes develop through STDP (spike timing-dependent plasticity) in

a neural network of this type, and which physiological parameters have

a qualitative influence on the synaptic strengths in long-term behavior.

We analytically calculate these synaptic changes based on a simplified

scheme which enables us to make conclusions about local and global

connectivity patterns with the ability to produce zero-lag synchronous

oscillations.

1 Introduction

Zero-lag synchronous oscillations between different cortical areas over large dis-
tances have been observed many times in different studies ([1], [2], [3], [4]).
Moreover, it is commonly believed that oscillations observed in LFP (local field
potential) measurements correspond to zero-lag synchronisation as well. Oscilla-
tion frequencies, especially those in the gamma band (40−80 Hz), are considered
correlates of higher cognitive functions in the mammalian brain ([5]) and are ex-
emplarily used in our investigation. Experimentalists and theoreticians agree on
the importance of this phenomenon. Several EEG (electroencephalography) and
MEG (magnetoencephalography) studies recorded such oscillations and theo-
reticians tried to model these in artificial neural networks ([6], [7]). Two popular
connectivity principles originated from this idea: Local, mutually exciting neural
groups (local assemblies) and more global bidirectionally coupled populations,
distributed across two or more cortical areas (global assemblies).

Although we already know that artificial neural networks of this kind can be
built, the precise synaptic changes which co-occur with their activity are often
neglected. STDP is the most recently found category of local synaptic learning
([8], [9]). Today people tend to use STDP models instead of symmetric Hebbian
rules, but usually in their pair-based and additive framework. There is much
debate which STDP model accounts for the biologically most plausible learning
rule. But we show what kind of problems arise if we confine ourselves to the
simplest STDP framework.
� Corresponding author.
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By considering just the pre- and post-synaptic spike patterns as in experi-
mental methods without extensive modeling of neural activity we can simplify
our analytical calculations. Although measured oscillations give us the amount
of neural activity in a certain time window of a few milliseconds, we can assume
that at every peak of an oscillation period the majority of neurons are zero-lag
synchronized. This allows us to look at a two-neuron scheme and investigate
their synaptic changes over time. Although zero-lag synchronization is an ideal-
ized concept rarely found in experimental data, jittering applied to the STDP
function does not result in a qualitative change in the synaptic modification.
Fig. 1 (left) visualizes this by convolving the STDP function with a Gaussian
distribution of temporal jittering.

−50 −25 0 25 50
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0.000
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0.010

t

Δw

1 20 40 60

−0.6

−0.4

−0.2

0.0
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0.4

0.6

Δw

D

Fig. 1. Left : STDP window with parameters A+ = 0.01, A− = −0.005, τ+ = 16 ms and

τ− = 33 ms (solid). Same STDP window convolved with N (0, σ), the Gaussian with

σ = 2 ms (dashed). Difference of post- and pre-synaptic spike times in milliseconds

on the t axis and amounts of weight change on the Δw axis. Right : Plot of synaptic

change Δw with axonal delays D in realistic ranges ([10]) after an experiment duration

of 2 seconds, i.e. D ∈ [1, 60] ms, N = 100 and pairing frequency ρ = 50 Hz. STDP

parameters are the same as in left plot. The solid line corresponds to ΔwNN(D, N) and

the dashed one to ΔwU(D, N).

2 Simplified Scheme

To keep the analytical investigation simple, we abstract from any neural or
synaptical dynamics and its consequent neural network towards an experimen-
tal setup akin to the work of physiologists which already studied several kinds of
long-term potentiation and depression mechanisms ([11]). The so called pairing
of pre- and post-synaptic events given a certain repetition frequency ρ is the
standard procedure used by experimentalists. STDP results in the evolution of
weight changes depending on the order of the pre-synaptic EPSP onset (exci-
tatory post-synaptic potential) and post-synaptic AP (action potential). If the
pre-synaptic event precedes the post-synaptic, the weight of the synapse is in-
creased by a certain amount (and decreased when the order is reversed). We use a
scheme for our investigation with only two neurons which are connected through
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one synapse. If we take into account another recurrent synapse with equal ax-
onal delay, no qualitative change occurs because both synapses undergo the same
changes over time. Therefore we can approximate synchronized feedforward as
well as recurrent structures. If pre- and post-synaptic neurons fire synchronously,
the pre-synaptic AP always arrives later at the synapse due to the axonal delay.
Varying the axonal delays enables modeling of local and global structures as well
as different post-pre-pairing times in experimental setups and gives an insight
into qualitative changes of weight evolution. Given a certain oscillation period T
which corresponds with the experimentalist’s pairing frequency ρ and an axonal
delay D, our artificial experimental setup is fully described.

3 Synaptic Changes

We use the standard additive STDP function W (Δt) from the review [12] on
phenomenological models of STDP. Using a pre-synaptic event as reference, we
can distinguish between a Nearest-Neighbor and an Unrestricted (also called
All-to-All, [13]) interaction. Whereas in the first case a pre-synaptic event is
paired with the both nearest post-synaptic ones in time, the Unrestricted inter-
action considers all possible pairing combinations. For every interaction scheme
we look for a function Δw(D, N) which gives us the amount of changes at a
synapse with axonal delay D after N pairings. These explicit pairings always
belong to the post-pre case due to the positive axonal delay. With an previously
given initial synaptic strength w0, w(D, N) = w0 + Δw(D, N) gives us the final
synaptic strength. So we are able to get explicit equations for the single synapse,
mentioned in Section 2. For better readability we set k =

⌊
D
T

⌋
. The resulting

equation for the Nearest-Neighbor interaction is given by

ΔwNN(D, N) =(N − k)A−e
−D−kT

τ− + (N − k − 1)A+e
− (k+1)T−D

τ+

+
k∑

i=1

A−e
−D−(k−i)T

τ− .
(1)

The Unrestricted interaction leads to equation

ΔwU(D, N) =
N−1−k∑

i=1

N−i∑
j=k+1

A+e
− jT−D

τ+

+
N−k∑
i=1

i−1∑
j=−k

A−e
−D+jT

τ−

+
N∑

i=N−k+1

i−1∑
j=−N+i

A−e
−D+jT

τ− .

(2)

Fig. 1 (right) shows plots of Eq. 1 and Eq. 2 with STDP parameters which satisfy
Eq. 3, i.e. A+ = 0.01, A− = −0.005, τ+ = 16 ms, τ− = 33 ms and T = 20 ms.
The number of pairings is fixed to N = 100, matching an overall time of 2
seconds.



314 F. Hauser, D. Bouchain, and G. Palm

4 Results

The STDP function W (Δt) depends on the amplitude parameters A+, A− and
time constants τ+, τ−. All together this gives us a certain time window in which
both, potentiation and depression, are able to interact. Roughly speaking, if we
take into account a repetition frequency ρ = 1

T such that T is smaller than the
STDP time window, post-pre pairings coincide with previous ones and vice versa,
which is indeed the case for the gamma band considering physiological measured
values for the STDP parameters. To determine how the STDP parameters influ-
ence the long-term behavior of synaptic changes we can use standard analysis.
If we want to draw conclusions about the existence of several types of neural
networks under the additive STDP regime, the moment of change to exclusively
potentiation for all axonal delays has to be the point of interest. Our first defi-
nition is a stability criterion ([14]) which is often considered when choosing the
STDP parameters. This means if we think of independent pre- and post-synaptic
firing rates which are chosen from stationary Poisson statistics, depression has
to outweigh potentiation which can be assured by requiring

∫∞
−∞ W (Δt)dΔt < 0

leading to the inequality
A+τ+ + A−τ− < 0 (3)

for Unrestricted interaction under the assumptions A+, τ+, τ− > 0 and A− <
0. This constraint will also be used for the Nearest-Neighbor interaction as a
consequence of the satisfiability of Eq. 4.

On the other hand we want to find an interval in the STDP parameter
space which leads to potentiation in our experiments, i.e. lower and upper
bounds for some parameters which then can be tested within experimental
ranges. In the Nearest-Neighbor case the desired result can be achieved by tak-
ing ∂ΔwNN(D,N)

∂N > 0 which is N -independent and looking at the limit value
for D → 0. So potentiation occurs if W (T ) > −A− holds which also implies
A+ > −A−. Inserted into the stability inequality we further constrain τ− > τ+.
It should be noted that the potentiation criterion additionally depends on the
pairing frequency ρ = 1

T as desired. To test our derived inequalities in combina-
tion, we deduce the potentiation constraint1

τ−
τ+

>
A+

−A−
> e

T
τ+ . (4)

The same procedure can be used for Unrestricted interaction except that the
left-hand side of ∂ΔwU(D,N)

∂N > 0 is still a function in N so we have to look at
N → ∞ as well. As a result of combining the inequality again with the STDP
stability criterion we obtain

τ−
τ+

>
A+

−A−
> e

T
τ+

⎛⎝1 − e
−T
τ+

1 − e
−T
τ−

⎞⎠ . (5)

1 E.g. for T = 20 ms we need τ+ > 30 ms such that A+ ≤ −2A−. It follows that

τ− > 2τ+ ≥ 60 ms.
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The difference between both interaction schemes results in a scaling factor > 1
on the right-hand side of Eq. 5 if the constraint τ− > τ+ holds which is usu-
ally the case in physiological measurements. As a consequence the Unrestricted
interaction causes a different interval of synaptic strenghts dependent on both
time constants.

5 Discussion and Conclusions

We notice for our example plot in Fig. 1 (right) that a reset of potentiation
strength occurs at every multiple of the oscillation frequency. So a consequent
sharp transition constraint of the delay-specific strengthening arises together
with the oscillation frequency. To overcome this problem with regard to local
assemblies, i.e. small delays, we derived upper and lower bounds for STDP pa-
rameter relationships. We tested these inequalities with several STDP parameter
settings from experimental measurements ([9],[15], [16]) with a 50 Hz pairing fre-
quency and didn’t find a single satisfying setting. As a consequence it appears
that pair-based additive STDP as defined by e.g. [12] does not permit the per-
sistence of local assemblies and strongly controls delay-specific strengthing of
synapses of global assemblies. Similar results were produced by [17] and [18]
through simulations which can now be explained in terms of physiological pa-
rameters and their exact dependencies among each other.

On the other hand, recent studies indicate that pair-based models are not suf-
ficient, especially in high frequency pairing experiments ([19], [20]). So one should
specify STDP models more carefully in future simulations. There are already a
few recent models which take into account triplet or even quadrupel settings
which are able to reproduce experimental findings to a much more satisfying
degree ([21], [22], [20]). We will investigate those rules in the near future.

Acknowledgements. This research has been supported by a scholarship from
the Graduate School of Mathematical Analysis of Evolution, Information and
Complexity at Ulm University. Special thanks to Andreas Knoblauch who read
early drafts of the manuscript and made a number of valueable suggestions and
corrections.
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Abstract. Current methods capable of processing tensor objects in their

natural higher-order structure have been introduced for real-valued ten-

sors. Such techniques, however, are not suitable for processing binary

tensors which arise in many real world problems, such as gait recogni-

tion, document analysis, or graph mining. To account for binary nature

of the data, we propose a novel generalized multi-linear model for prin-

cipal component analysis of binary tensors (GML-PCA). We compare

the performance of GML-PCA with an existing model for real-valued

tensor decomposition (TensorLSI) in two experiments. In the first ex-

periment, synthetic binary tensors were compressed and consequently

reconstructed, yielding the reconstruction error in terms of AUC. In the

second experiment, we compare the ability to reveal biologically mean-

ingful dominant trends in a real world large-scale dataset of DNA se-

quences represented through binary tensors. Both experiments show that

our GML-PCA model is better suited for modeling binary tensors than

the TensorLSI.

Keywords: Generalized multilinear principal component analysis, bi-

nary data, tensor objects, dimensionality reduction.

1 Introduction

Traditional methods for data dimensionality reduction, such as principal compo-
nent analysis (PCA), have been designed to process data objects in the form of vec-
tors. To use these methods for tensorial data decomposition, one needs to break
the natural higher order tensor structure and reshape the tensors into vectors.
However, higher order dependencies presented in the data structure of tensors can
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potentially lead to more compact and useful representations [1]. Moreover, vector-
ization of tensors often results in high-dimensional vectors. Since PCA involves
eigendecomposition of the covariance matrix, processing of such vectors could be
computationally infeasible.

An increasing number of practical applications involves manipulation of multi-
dimensional tensors, stimulating development of new methods for processing
tensorial data in their natural higher-order structure, without the need for data
vectorization (e.g. [1,2]). Many real world problems involve data in the form of
binary tensors, for example gait recognition [1], document analysis [2], or graph
mining (with graphs represented by adjacency tensors). However, to the best
of our knowledge, at present, there is no systematic framework capable of pro-
cessing tensors with binary values. In this contribution we propose a principled
framework for decomposing binary tensors – a generalized multi-linear model for
principal component analysis of binary tensors (GML-PCA).

2 Overview of Basic Multilinear Algebra

We denote vectors by lowercase boldface letters (e.g. u), matrices by italic up-
percase (e.g. U), and tensors by calligraphic letters, (e.g. A). Elements of an
N -th order tensor A ∈ RI1×I2×...×IN are addressed by N indices in ranging
from 1 to In, n = 1, 2, ..., N . For convenience, we will often write a particular
index setting (i1, i2, ..., iN ) ∈ Υ = {1, 2, ..., I1} × {1, 2, ..., I2} × ...× {1, 2, ..., IN}
for a tensor element using vector notation i = (i1, i2, ..., iN ), so that instead of
writing Ai1,i2,...,iN we write Ai.

A rank-1 tensor A ∈ RI1×I2×...×IN can be obtained as an outer product of
N vectors u(n) ∈ RIn , n = 1, 2, ..., N : A = u(1) ◦ u(2) ◦ ... ◦ u(N). If we consider
an orthonormal basis {u(n)

1 ,u(n)
2 , ...,u(n)

In
} for the n-mode space RIn , any tensor

A can be expressed as a linear combination of
∏N

n=1 In rank-1 basis tensors
(u(1)

i1
◦ u(2)

i2
◦ ... ◦ u(N)

In
):

A =
∑
i∈Υ

Qi · (u(1)
i1

◦ u(2)
i2

◦ ... ◦ u(N)
iN

) (1)

with expansion coefficients stored in the Nth order tensor Q ∈ RI1×I2×...×IN , so
that each tensor element Aj, j ∈ Υ is equal to

Aj =
∑
i∈Υ

Qi ·
N∏

n=1

u
(n)
in,jn

. (2)

Several methods have been proposed for reduced rank representations of real-
valued tensors [3,4]. For example, one can assume that a reduced set of basis
tensors in the expansion (2) is sufficient to approximate all tensors in a given
dataset:

A ≈
∑
i∈K

Qi · (u(1)
i1

◦ u(2)
i2

◦ ... ◦ u(N)
iN

), (3)



Multilinear Decomposition and Topographic Mapping of Binary Tensors 319

where K ⊂ Υ . In other words, tensors in a given dataset can be found ‘close’ to
the |K|-dimensional hyperplane in the tensor space spanned by the rank-1 basis
tensors (u(1)

i1
◦ u(2)

i2
◦ ... ◦ u(N)

iN
), i ∈ K.

Note that orthonormality of the basis vectors {u(n)
1 ,u(n)

2 , ...,u(n)
In

} for the n-
mode space RIn can be relaxed. It can be easily shown that as long as for each
mode n = 1, 2, ..., N , the vectors u(n)

1 ,u(n)
2 , ...,u(n)

In
are linearly independent,

their outer products (u(1)
i1

◦ u(2)
i2

◦ ... ◦ u(N)
iN

), i ∈ Υ , will be linearly independent
as well. If all the n-mode space basis are orthonormal, the tensor decomposition
is known as the Higher-Order Singular Value Decomposition (HOSVD) [3]. Ex-
tending matrix (2nd-order tensor) decompositions (such as SVD) to higher-order
tensors is not straightforward. Familiar concepts such as rank become ambigu-
ous and more complex. However, the main purpose of the decomposition remains
unchanged: represent a tensor as a sum of rank-1 tensors.

3 The Model

Consider a set of Nth-order binary tensors D = {A1,A2, ...,Am, ...,AM}, where
Am ∈ {0, 1}I1×I2×...×IN and each tensor element Am,i is independently gen-
erated from a Bernoulli distribution with mean Pm,i (all mean parameters for
the data are collected in the tensor P ∈ [0, 1]M×I1×I2×...×IN of order N + 1).
Assuming independence among the data tensors, the model likelihood reads

L(P) =
M∏

m=1

∏
i∈Υ

P (Am,i|Pm,i) =
M∏

m=1

∏
i∈Υ

P
A

m,i
m,i · (1 − Pm,i)

1−A
m,i . (4)

A more detailed model description can be found in [5].
Our goal is to find a lower dimensional representation of the binary ten-

sors in D while still capturing the data distribution well. The mean Bernoulli
parameters are confined to the interval [0, 1]. To solve our problem in an un-
bounded domain, we rewrite the Bernoulli distribution using the log-odds pa-
rameters θm,i = log [Pm,i/(1 − Pm,i)] and the logistic link function σ(θm,i) =

(1 + e
−θ

m,i)−1 = P
m,i. We thus obtain the log-likelihood

L(Θ) =
M∑

m=1

∑
i∈Υ

Am,i log σ(θm,i) + (1 −Am,i) log σ(−θm,i), (5)

where we collect all the natural parameters θm,i in a tensor Θ ∈ RM×I1×I2×...×IN .
Now, θ

m,i ∈ R, which allows us to easily constrain all the Nth-order parame-
ter tensors θm to lie in a subspace spanned by a reduced set of rank-1 ba-
sis tensors (u(1)

r1 ◦ u(2)
r2 ◦ ... ◦ u(N)

rN ), where rn ∈ {1, 2, ..., Rn}, and Rn ≤ In,
i = 1, 2..., N . The indices r = (r1, r2, ..., rN ) take values from the set ρ =
{1, 2, ..., R1} × {1, 2, ..., R2} × ... × {1, 2, ..., RN}.
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We further allow for an Nth-order bias tensor Δ ∈ RI1×I2×...×IN , so that the
parameter tensors θm are constrained onto an affine space. Using (2) we get

θm,i =
∑
r∈ρ

Qm,r ·
N∏

n=1

u
(n)
rn,in

+ Δi. (6)

To get analytical parameter updates in the maximum likelihood framework, we
use the the trick of [6] and take advantage of the fact that while the log-likelihood
of the constrained model is not convex in the parameters, it is convex in any of
these parameters, if the others are fixed. Derivation of the parameter updates
is rather involved and (due to space limitations) we refer the interested reader
to [5], where details of the derivations, as well as the update formulas can be
found.

3.1 Decomposing Unseen Binary Tensors

Note that our model (5-6) is not fully generative (the expansion coefficients are
not explicitly governed by a distribution). To decompose an N -th order tensor
A′ ∈ {0, 1}I1×I2×...×IN not included in the training dataset D we maximize
the model log-likelihood with respect to the expansion coefficients Qr, while
keeping the basis vectors and the bias tensor fixed. When using gradient ascent,
the updates take the form [5]

Qr ← Qr + η
∑
i∈Υ

Cr,i

[
A′

i − σ

(∑
v∈ρ

Qv Cv,i + Δi

)]
, (7)

where Cr,i =
∏N

n=1 u
(n)
rn,in

.

4 Experiments

In this section we present two types of experiments designed to evaluate:
(1) the amount of preserved information in compressed tensor representations
by decomposing and consequently reconstructing synthetic binary tensors and
(2) the ability to topographically organize binary tensors representing a real
word large-scale dataset of DNA subsequences originating from different func-
tional regions of genomic sequences.

In the experiments we compare our GML-PCA model with an existing real-
valued tensor decomposition method (TensorLSI) [2].

4.1 Synthetic Data

We first generated 10 synthetic data sets, each containing 10,000 2nd-order binary
tensor of size (250,30). Each data set was sampled from a different Bernoulli nat-
ural parameter (linear) subspace determined by 10 randomly generated linearly
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independent basis tensors. The order and size of the synthetic tensors were se-
lected to match the sizes of tensors representing DNA sub-sequences in the second
experiment.

On each synthetic data set, both models (GML-PCA and TensorLSI) were
used to find latent subspaces spanned by different number of basis tensors
(L = 1, 2, 4, 6, 8, 10, 15, 20, 30) using 80% (8,000) of the tensors (training sets).
To evaluate the amount of preserved information in the low dimensional rep-
resentations, tensors in each hold out set (2,000 tensors) were projected onto
the reduced-dimensionality latent space (see section 3.1) and then reconstructed
back into the original binary tensor space.

Both models yield a real-valued “prediction” for every binary value in tensors
to be reconstructed. To evaluate the match between the real-valued “predictions”
and the target binary values we employ the area under the ROC curve (AUC).
Let {x1, x2 . . . xJ} and {y1, y2 . . . yK} represent the model outputs for all nonzero
and zero elements of tensors from the test set (targets). The AUC value for that
particular prediction (reconstruction) of the test set of tensors can be calculated
as a normalized Wilcoxon-Mann-Whitney statistic [7],

AUC =

∑J
j=1

∑K
k=1 C(xj , yk)
J · K , C(xj , yk) =

{
1 if xj > yk,
0 otherwise,

where J and K are the total number of nonzero and zero tensor elements in the
test set, respectively, and C is a scoring function. Reconstruction results in terms
of AUC for different dimensionality of the latent space are shown in figure 1.
Higher AUC values imply more accurate reconstructions. Our GML-PCA clearly
outperforms TensorLSI in a statistically significant manner.
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Fig. 1. AUC analysis of hold-out binary tensor reconstructions obtained by GML-PCA

and TensorLSI using different tensor subspace dimensionalities. Shown are the means

and standard deviations across 10 synthetic data sets.
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4.2 Topographic Mapping of DNA Sequences

Current systems for analyzing and predicting promoter regions in DNA se-
quences are based on the underlying principle that sub-sequences from different
functional regions differ in local term1 composition [8]. To capture both the term
composition and position, we represent the DNA sequences as binary second-
order tensors A where rows i1 represent terms, columns i2 positions within the
sequence, and the binary tensor element Ai1,i2 is an indicator whether the se-
quence represented by A has a term i1 at position i2.

To reveal natural groupings of sub-sequences from different functional regions,
we employ GML-PCA and TensorLSI models to compress their representations
into a principal subspace and visualize their distributions. As a dataset we use
30,964 human promoter sequences of length 250 nucleotides and the same num-
ber of intronic sequences (of length 250) employed in [8]. Promoters and introns
represent two different functional regions of DNA. Promoters are special regions
upstream of a gene that contain regulatory binding sites controlling the process
of gene expression. Introns, on the other hand, may contain important control
signals for splicing a gene product.

Terms used in the binary tensor representation of DNA sequences were found
using a suffix tree construction that identified terms that were statistically signif-
icant longest words preserving the within-class frequencies [5]. Having identified
31 such terms, each DNA subsequence was represented by a binary 2nd-order
tensor with 31 rows (terms) and 250 columns (positions).

The binary sequence representations were decomposed via TensorLSI using
10 principal tensors and via GML-PCA model using 5 column and 2 row basis
vectors2. Such decompositions assign to each sequence a 10-dimensional vec-
tor of expansion coefficients. Based on the assumption of different local term
composition of sequences from different functional regions of DNA, one would
expect some level of separation between promoter and intronic sequences in
the principal 10-dimensional subspace, even when the models are trained in a
completely unsupervised manner (no class information (promoter vs. intron)
supplied during the model fitting). To visualize the distribution of sequences in
the principal subspaces we used principal component analysis to project the 10-
dimensional vectors of expansion coefficients onto the three-dimensional space
spanned by the leading 3 principal vectors (figure 2). TensorLSI decomposition
fails to discriminate between promoter and intronic sequences. On the other
hand, GML-PCA analysis clearly separates a large subset of promoters from
intronic sequences. Analyzing the sequences with higher latent dimensionalities
of GML-PCA/TensorLSI did not improve separation of promoters from introns.

For a more detailed analysis of topographic organization of DNA sequences
in the latent subspace we projected the 10-dimensional expansion vectors onto
the two-dimensional principal subspace (see figure 3) and analyzed how the
1 As a term, we denote a short and widespread sequence of nucleotides that has or

may have a biological significance.
2 For GML-PCA model, outer products of 5 column and 2 row basis vectors give 10

principal tensors, which is equivalent with TensorLSI settings of 10 basis tensors.
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Fig. 2. Three-dimensional PCA projections of 10% randomly sampled promoter and

intronic sequences from the tensor space spanned by 10 basis tensors obtained by the

GML-PCA (left) and TensorLSI (right)

sequence composition depends on the positions in the two-dimensional plot. The
study (not reported here) reveals that well separated promoter sequences from
introns have frequent occurrences of CG di-nucleotides around the transcription
start sites (TSS). These so-called CpG islands are known to be associated with
functional promoter regions-approximately 60% of mammalian genes [9]. On the
other hand, intronic sequences from intron-rich regions have a higher concen-
tration of terms GT and AT which are known signals for splicing and are thus
expected to occur in introns. We manually selected one intron and two promoter
sequences, and in figure 3 visualized their binary tensor representations. In the
binary matrices we highlighted important terms (marked with black dots) that
have a strong influence on the sequence position. Well separated and “close”
promoters (P-1,P-2) have similar term composition structure and higher occur-
rences of terms (GGCG and GCG) that contain di-nucleotids CG. On the other
hand, the intron (I-1) is characterized by high occurrences of terms GT and AT.

To further investigate the relevance of topographic mapping of DNA sequences
by GML-PCA, we searched the compressed feature space for biologically relevant
structure. Genes that are transcribed by the same factors are often functionally
similar [10]. Carrying specific biologically relevant features, suitable represen-
tations of promoters should correlate with the roles assigned to their genes. If
the topographic mapping highlights such features, it is an indication that our
method can be valuable for screening of biological sequences in terms of their
biological function. To assign biologically meaningful labels to promoters, all se-
quences were mapped to gene identifiers using the Gene Ontology (GO; [11]).
We could assign zero or more GO terms (labels) to each promoter sequence. In
total there are 8051 unique GO terms annotating 14619 promoters.

To evaluate whether promoters deemed similar by GML-PCA are also func-
tionally similar, we need a methodology for calculating a “distance” between
each pair of promoters. Euclidean distance between the 10-dimensional expansion
vectors is not appropriate as a distance measure for two reasons: first, the basis
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Fig. 3. Detailed visualization of second-order binary tensors for manually selected pro-

moter and intron sequences. Important terms that have a strong influence on the

sequence coordinates in the top left 2D plot are marked with black dots.

tensors are not orthogonal; second, they span a subspace of Bernoulli natural pa-
rameters that have a nonlinear relationship with the data values. To determinate
the model-based ‘distance’ between two promoter sequences m and l in a prin-
cipled manner, we calculated the sum of average symmetrized Kullback-Leibler
divergences between noise distributions for all corresponding tensor elements
i ∈ Υ :

D(m, l) =
∑
i∈Υ

(
KL[pm,i || pl,i] + KL[pl,i || pm,i]

2

)
,

where KL represents the KL divergence between two Bernoulli distributions
defined by their means pm,i and pl,i.

The following test aims to analyze if the compressed tensorial promoter rep-
resentations are biologically meaningful. For each labeled promoter m in the
dataset, we label the group of all promoters l within a pre-specified distance
D(m, l) < D0 as “positives” and all others as “negatives”.

In the tests we consistently use a distance of D0 = 25, usually rendering over
one hundred “positives”. For each GO term that was assigned at least to one
promoter, Fisher’s exact test resolves if it occurs more often amongst “positives”
than would be expected by chance. The null hypothesis is that the GO term
is not attributed more often than by chance to the topological neighborhood
“positives”. A small p-value indicates that the term is “enriched” at the position
of the reference promoter m. We adjust for multiple hypothesis testing and set
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the threshold at which to report a term as significant accordingly (p < 5 · 10−7).
To understand the tendency of false discovery, we also repeated the tests (with
the same significance threshold) after shuffling the points assigned to promoters.
Re-assuringly, in no case did this permutation test identify a single GO term as
significant.

In total, at the given level of significance, we found 75 GO terms that were
locally enriched around one or more reference promoters in the two-dimensional
plot of promoters shown in figure 3. The observation that a subset of promoter se-
quences are functionally organized after decomposition into 10 basis tensors adds
support to the methods’ ability to detect variation at an information-rich level.
More specifically, we find a number of terms that are specifically concerned with
chromatin structure (that packages the DNA), e.g. GO:000786 “Nucleosome”,
GO:0006333 “Chromatin assembly or disassembly” and GO:0065004 “Protein-
DNA complex assembly”. Interestingly, we found several enriched terms related
to development, e.g. GO:0022414 “Reproductive process” and GO:0007565 “Fe-
male pregnancy”. Anecdotally, we note that CpG islands (that are clearly dis-
tinct in the promoter sequence data) are associated with open DNA, leading to
constitutive gene expression.

5 Conclusion

Traditionally, dimensionality reduction is formulated on vectorial data. However,
an increasing number of practical applications involves manipulation of tensors.
In order to apply methods developed for vectorial data to tensors, one is forced
to break the natural higher order tensor structure and reshape the tensors into
vectors. Moreover, many real world problems involve data in the form of binary
tensors. At present, there is no systematic framework for processing tensors with
binary values.

We have introduced a novel generalized multilinear model for principal com-
ponent analysis of binary tensors (GML-PCA). The model is designed to account
for binary nature of the data by modeling the tensor elements with Bernoulli
noise distribution and constraining their natural parameters to lie in a subspace
spanned by a reduced set of principal tensors.

In two experiments we have shown that our GML-PCA model is better suited
for modeling binary tensors than the existing real-valued tensor decomposi-
tion method (TensorLSI). In the first experiment, synthetic binary tensors were
compressed and consequently reconstructed, yielding the reconstruction error in
terms of AUC. In the second second experiment, we compare the ability to re-
veal biologically meaningful dominant trends in a real world large-scale dataset
of DNA sequences represented through binary second-order tensors. Experimen-
tation with higher-order binary tensors is a matter for future work and the results
will be published elsewhere.
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Abstract. This paper proposes a Radial Basis Function Neural Network

(RBFNN) which reproduces different Radial Basis Functions (RBFs) by

means of a real parameter q, named q-Gaussian RBFNN. The architec-

ture, weights and node topology are learnt through a Hybrid Algorithm

(HA) with the iRprop+ algorithm as the local improvement procedure.

In order to test its overall performance, an experimental study with

four gene microarray datasets with two classes taken from bioinformatic

and biomedical domains is presented. The Fast Correlation–Based Filter

(FCBF) was applied in order to identify salient expression genes from

thousands of genes in microarray data that can directly contribute to

determining the class membership of each pattern. After different gene

subsets were obtained, the proposed methodology was performed using

the selected gene subsets as the new input variables. The results confirm

that the q-Gaussian RBFNN classifier leads to promising improvement

on accuracy.

1 Introduction

The importance of the use of Artificial Neural Networks (ANNs) in the classifi-
cation of microarray gene expression as an alternative to other techniques was
stated in serveral research works [1,2] due to their flexibility and high degree
of accuracy to fit to experimental data. In this work, we focus on Radial Basis
Function Neural Networks (RBFNNs) which have been succesfully employed in
different pattern recognition problems including the classification of microarray
gene [2].

In high-dimensional space, the distances to the nearest and furthest neigh-
bours look nearly identical. Therefore, in this kind of problem, the distances are
concentrated and the Gaussian kernel looses its interpretation in terms of local-
ity around its centre [3]. For that reason, we propose a novelty RBF based on

K. Diamantaras, W. Duch, L.S. Iliadis (Eds.): ICANN 2010, Part I, LNCS 6352, pp. 327–336, 2010.
� Springer-Verlag Berlin Heidelberg 2010
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the q-Gaussian Distribution which parametrize the standard Normal distribu-
tion by replacing the exponential expressions for q-exponential expressions, and
maximizing Tsallis entropy [4] under certain constraints [5]. This novelty basis
function incorporates a real parameter q (besides the centers and width of the
RBF) which can relax or contract the shape of the kernel. This basis function
matches better the shape of the kernel and the distribution of the distances, since
the modification of the q parameter allows representing different basis functions
(Cauchy RBF, Gaussian RBF, etc). Due to severe ill-conditioning of the coeffi-
cient matrix of the q-Gaussian RBF, a Hybrid Evolutionary Algorithm (HEA)
based on heuristics is employed to select the parameters of the model.

The motivation for applying feature selection (FS) techniques has shifted from
being an optional subject to becoming a real prerequisite for model building. The
main reason is the high–dimensional nature of many modelling task in this field.
A typical microarray dataset may contain thousands of genes but only a small
number of samples (often less than two hundred).

Based on the generation procedure, FS can be divided into individual feature
ranking (FR) and feature subset selection (FSS). FR measures the feature-class
relevance, then rank features by their scores and select the top–ranked ones. In
contrast, FSS attempts to find a set of features with good performance. Hybrid
models were proposed to handle large datasets to take advantage of the above
two approaches (FR, FSS). In this work, the relevant features were obtained by
the Fast Correlation–Based Filter (FCBF), a hybrid approach proposed in [6].

One of the major advantages of the proposed method is the reduced num-
ber of features and q-Gaussian RBFs included in the final expression, since the
HEA reduces its complexity by pruning connections and removing hidden nodes.
Therefore, using the proposed approach, the feature selection is performed in two
stages: Firstly, in the preprocessing by means of the features selector and sec-
ondly, in the HEA by pruning connections.

This paper is organized as follows: Section 2 formally presents the q-Gaussian
RBF model considered in this work and the main characteristics of the algo-
rithm used for training the model. Section 3 introduces the feature selection
algorithm used in this paper. Section 4 describes the experiments carried out
and discusses the results obtained. Finally, Section 5 completes the paper with
the main conclusions and future directions suggested by this study.

2 Classification Method

2.1 Related Works

A RBFNN is a three-layer feed-forward neural network. Let the number of nodes
of the input layer, of the hidden layer and of the output layer be p, m and 1
respectively. For any sample x = [x1, x2, . . . , xp], the output of the RBFNN is
f(x). The model of a RBFNN can be described with the following equation:

f(x) = β0 +
m∑

i=1

βi · φi(di(x)) (1)
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where φi(di(x)) is a non-linear mapping from the input layer to the hidden layer,
β = (β1, β2, . . . , βm) is the connection weight between the hidden layer and the
output layer, and β0 is the bias. The function di(x) can be defined as:

di(x) =
‖x− ci‖2

θ2
i

(2)

where θi is the scalar parameter that defines the width for the i-th radial unit, ‖.‖
represents the Euclidean norm and ci = [c1, c2, . . . , cp] the center of the RBFs.
The standard RBF (SRBF) is the Gaussian function, which is given by:

φi(di(x)) = e−di(x), (3)

The radial basis function φi(di(x)) can take different forms, including the Cauchy
RBF (CRBF) or the Inverse Multiquadratic RBF (IMRBF). Fig. 1a ilustrates
the influence of the choice of the RBF in the hidden unit activation. One can
observe that the Gaussian function presents a higher activation close to the
radial unit center than the other two RBFs. In this paper, we propose the use
of the q-Gaussian function as RBF. This basis function is obtained by replacing
the exponential expression of the SRBF for a q-exponential expression [5]. The
q-Gaussian can be defined as:

φi(di(x)) =
{

(1 − (1 − q)di(x))
1

1−q if (1 − (1 − q)di(x)) ≥ 0
0 Otherwise.

(4)

The q-Gaussian can reproduce different RBFs for different values of the real
parameter q. As an example, when the q parameter is close to 2, the q-Gaussian
is the CRBF, for q = 3, the activation of a radial unit with an IMRBF for di(x)
turns out to be equal to the activation of a radial unit with a q-Gaussian RBF for
di(x)/2 and, finally, when the value of q converges to 1, the q-Gaussian converges
to the Gaussian function (SRBF). Fig. 1b presents the radial unit activation for
the q-Gaussian RBF for different values of q.

2.2 q-Gaussian RBF for Classification

To construct a probabilistic classification model, we consider a RBFNNs with
softmax outputs and the standard structure: an input layer with a node for every
input variable; a hidden layer with several RBFs; and an output layer with 1
node. There are no connections between the nodes of a layer and none between
the input and output layers either. The activation function of the i-th node in
the hidden layer (φi(di(x))) is given by Eq. 4 and the activation function of the
output node (f(x)) is defined in Eq 1. The transfer function of all output nodes
is the identity function.

In this work, the outputs of the neurons are interpreted from the point of view
of probability through the use of the softmax activation function.

g(x) =
exp f(x)

1 + exp f(x)
(5)
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Fig. 1. Radial unit activation in one-dimensional space with c = 0 and θ = 1 for

different RBFs: (a) SBRF, CRBF and IMRBF and (b) q-Gaussian with different values

of q

where g(x) is the probability that a pattern x belongs to class 1. The probability
a pattern x has of belonging to class 2 is 1 − g(x).

The error surface associated with the model is very convoluted. Thus, the
parameters of the RBFNNs are estimated by means of a HEA (detailed in Section
2.3). The HEA was developed to optimize the error function given by the negative
log-likelihood for N observations, which is defined for a classifier g:

l(g) =
1
N

N∑
n=1

[−ynf(xn) + log exp f(xn)] (6)

where yn is the class that the pattern n belongs to.

2.3 Hybrid Evolutionary Algorithm

The basic framework of the HEA is the following: the search begins with an initial
population of RBFNNs and, in each iteration, the population is updated using a
population-update algorithm which evolves both its structure and weights. The
population is subject to operations of replication and mutation. We consider
l(g) as the error function of an individual of the population. The fitness measure
needed for evaluating the individuals is a strictly decreasing transformation of
the error function l(g) given by A(g) = 1

1+l(g) , where 0 < A(g) ≤ 1. Figure 2
describes the procedure to select the parameters of the radial units. The main
characteristics of the algorithm are the following:

1. Initialization of the Population. First, 5, 000 random RBFNNs are generated.
The centers of the radial units are firstly defined by the k-means algorithm
for different values of k, where k ∈ [Mmin, Mmax], being Mmin and Mmax the
minimum and maximum number of hidden nodes allowed for any RBFNN
model. The widths of the RBFNNs are initialized to the geometric mean of
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1: Hybrid Algorithm:

2: Generate a random population of size N
3: repeat
4: Calculate the fitness of every individual in the population

5: Rank the individuals with respect to their fitness

6: The best individual is copied into the new population

7: The best 10% of population individuals are replicated and they substitute the

worst 10% of individuals

8: Apply parametric mutation to the best (pm)% of individuals

9: Apply structural mutation to the remaining (100 − pm)% of individuals

10: until the stopping criterion is fulfilled

11: Apply iRprop+ to the best solution obtained by the EA in the last generation.

Fig. 2. Hybrid Algorithm (HA) framework

the distance to the two nearest neighbours and the q parameter to values
near to 1, since when q → 1 the q-Gaussian reduces to the standard Gaussian
RBFNN. A random value in the [−I, I] interval is assigned for the weights
between the hidden layer and the output layer. Finally, the initial population
is obtained by selecting the best 500 RBFNNs.

2. Parametric and Structural Mutations. Parametric mutation consists of a sim-
ulated annealing algorithm. Structural mutation implies a modification in
the structure of the RBFNNs. There are four different structural mutations:
hidden node addition, hidden node deletion, connection addition and con-
nection deletion. More information about genetic operators proposed can
be seen in [7,8]. It is important to describe the structural and parametric
mutations of the q parameter:
– Structural Mutation: If the structural mutator adds a new node in the

RBFNN, the q parameter is assigned to 1, since when q = 1 the q-
Gaussian RBF reproduce to the Gaussian RBF.

– Parametric Mutation: The q parameter is updated by adding a ε value,
where ε ∈ [−0.25, 0.25], since the modification of the q-Gaussian is very
sensible to q variation.

3. iRprop+ Local Optimizer. The local optimization algorithm used in our pa-
per is the iRprop+ [9] optimization method. In the proposed methodology,
we run the EA and then apply the local optimization algorithm to the best
solution obtained by the EA in the last generation.

3 Feature Selection: Fast Correlation–Based Filter
(FCBF)

The limitations of FR and FSS approaches in high-dimensional spaces, clearly
suggest the need for a hybrid model. The FCBF method can be labelled as this
kind of framework, Hybrid–Generation Feature Selection.
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In feature subset selection, it is a fact that two types of features are generally
perceived as being unnecessary: features that are irrelevant to the target concept,
and features that are redundant given other features.

Notions of feature redundancy are normally in terms of feature correlation. It
is widely accepted that two features are redundant to each other if their values
are completely correlated. There are two widely used types of measures for the
correlation between two variables: linear and non–linear. In the linear case, the
Pearson correlation coefficient is used, and in the non–linear case, many measures
are based on the concept of entropy, or measure of the uncertainty of a random
variable. Symmetrical uncertainty (SU) is frequently used, defined as

SU(x,y) = 2
[

IG(x|y)
H(x) + H(y)

]
where H(x)= −∑p

i p(xi) log2(p(xi)) is the entropy of a variable x and IG(x|y)=
H(x)−H(x|y) is the information gain from x provided by y. Both of them are
between pairs of variables. However, it may not be as straightforward in deter-
mining feature redundancy when one is correlated with a set of features. [10]
apply a technique based on cross–entropy, named Markov blanket filtering, to
eliminate redundant features.

FCBF calculates SU–correlation between any feature Fi and the class C gen-
erating a list in descending order, and heuristically decides a feature Fi to be
relevant if it is highly correlated with the class C, i.e., if SUi,c > δ, where δ is
a relevance threshold which can be determined by users. The selected relevant
features are then subject to redundancy analysis. Similarly, FCBF evaluates the
SU–correlation between individual features for redundancy analysis based on
an approximate Markov blanket concept. For two relevant features Fi and Fj

(i �= j), Fj can be eliminated if SUi,c ≥ SUj,c and SUi,j ≥ SUj,c. The iteration
starts from the first element in the ranking and continues as follows. For all the
remaining features, if Fi happens to form an approximate Markov blanket for
Fj , Fj will be removed from list. After one round of filtering features based on
Fi, the algorithm will take the remaining feature right next to Fi as the new ref-
erence to repeat the filtering process. The algorithm stops until no more features
can be eliminated.

4 Experiments

This section presents the experimental results and analysis of q-Gaussian RBF
models on 4 public microarray datasets with high dimensionality/small sample
size and two classes (Table 1). At the beginning, the datasets and several machine
learning algorithms used in this analysis are briefly described. Subsequently,
experimental results are given and discussed from different aspects.

4.1 Microarray Data

These datasets were taken from bioinformatic and biomedical domains. They
are often used to validate the performance of classifiers and gene selectors. Due
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Table 1. Characteristics of the four datasets used for the experiments: number of

instances (Size), number of Real (R), Binary (B) and Nominal (N) input variables,

total number of inputs (#In.), number of classes (#Out.), per-class distribution of the

instances (Distribution) and the number of generations (#Gen.)

Dataset Source Size R B N In Out Distribution Gen

Breast Van’t Veer et al [11] 97 493 - - 493 2 (46,51) 100

CNS Pomeroy et al [12] 60 170 - - 170 2 (21,39) 10

Colon Alon et al [13] 62 59 - - 59 2 (40,22) 10

Leukemia Golub et al [14] 72 203 - - 203 2 (42,25) 50

Table 2. Comparison of the proposed method to other probabilistic methods: Results

of accuracy (CG(%)), Root Mean Square Error (RMSEG) and Area Under Curve

(AUCG) on the generalization set

RBFN MLogistic SLogistic C4.5 LMT SVM QRBF

Dataset Metric Result Result Result Result Result Result Mean ± std

Breast C 80.00 84.00 84.00 64.00 84.00 76.00 85.00 ± 3.05
CNS C 86.66 100.00 80.00 60.00 80.00 66.67 97 .38 ± 1 .02
Colon C 87.50 75.00 81.25 75.00 75.00 62.50 85 .35 ± 2 .06

Leukemia C 94.44 94.44 83.33 83.33 83.33 66.67 100.00 ± 0.00

Breast AUC 0.85 0.91 0.96 0.71 0.96 0.81 0.88 ± 0.08
CNS AUC 0.78 1.00 0.78 0.58 0.78 0.50 0 .93 ± 0 .03
Colon AUC 0.86 0.75 0.90 0.70 0.90 0.50 0.83 ± 0.12

Leukemia AUC 0.95 0.95 0.80 0.83 0.80 0.50 1.00 ± 0.00

Breast RMSE 0.41 0.37 0.34 0.57 0.34 0.42 0.32 ± 0.02
CNS RMSE 0.37 0.00 0.46 0.61 0.46 0.47 0 .23 ± 0 .05
Colon RMSE 0.33 0.50 0.36 0.48 0.39 0.49 0.29 ± 0.08

Leukemia RMSE 0.23 0.23 0.40 0.39 0.40 0.47 0.00 ± 0.00

The best result is in bold face and the second best result in italics.

to high dimensionality and small sample size, gene selection is an essential pre-
requisite for further data analysis. The selected datasets were: Breast [11], CNS
[12], Colon [13] and Leukemia [14]. In these 4 microarray datasets, all expres-
sion values of genes are reals. For convenience, they were standarized before our
experiments, that is, for each represented gene, its mean and standard deviation
were zero and one, respectively, after the standarized operation had been per-
formed. Finally, in the preprocessing stage, the number of features was reduced
by means of the FCBF feature selector.

4.2 Alternative Statistical and Artificial Intelligence Methods Used
for Comparison Purposes

Different state-of-the-art Statistical and Artificial Intelligence algorithms have
been implemented for comparison purposes. Specifically, the results of the
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following algorithms have been compared with the q-Gaussian RBF (QRBF)
model presented in this paper:

1. A Gaussian Radial Basis Function Network (RBFN), deriving the centres
and width of hidden units using k-means, and combining the outputs ob-
tained from the hidden layer using logistic regression.

2. The MultiLogistic (MLogistic) algorithm. It is a method for building a multi-
nomial logistic regression model with a ridge estimator to guard against
overfitting by penalizing large coefficients.

3. The SimpleLogistic (SLogistic) algorithm. It is based on applying LogitBoost
algorithm with simple regression functions and determining the optimum
number of iterations by a five fold cross-validation.

4. The C4.5 classification tree inducer.
5. The Logistic Model Tree (LMT) classifier.
6. The Support Vector Machine (SVM) classifier with RBF kernels.

These algorithms have been selected because many of these approaches have also
been tested before in the classification problem of microarray gene expression.
The detailed description and some previous results of these methods can be
found in [15].

4.3 Experimental Design

The evaluation of the different models has been performed using three different
measures: Correctly Classified Rate (C) or accuracy, Root Mean Square Error
(RMSE) and Area Under the ROC Curve (AUC) because they have been iden-
tified as three of the most commonly used metric to determine the performance
of a classifier [16]. C represents threshold metrics, AUC is a probability metric,
and RMSE is a rank metric.

All the parameters used in the HA (Section 2.3) except the number of gener-
ations (#Gen) have the same values in all problems analyzed below (Table 1).
The maximun and minimun number of RBFs in the hidden layer ([Mmin, Mmax])
is [1, 3]. The connections between hidden and output layer are initialized in the
[−5, 5] interval (i.e. [−I, I] = [−5, 5]). The size of the population is N = 500.

For the selection of the SVM hyperparameters (regularization parameter, C,
and width of the Gaussian functions, γ), a grid search algorithm has been applied
with a ten-fold cross-validation, using the following ranges: C ∈ {2−5 , 2−3 , . . . ,
215} and γ ∈ {2−15 , 2−13 , . . . , 23}.

The experimental design was conducted using a holdout cross validation pro-
cedure with 3n/4 instances for the training dataset and n/4 instances for the
generalization dataset. In order to evaluate the stability of the methods, the
evolutionary algorithm is run 30 times.

The HA and the model proposed was implemented in JAVA. We also used
“libsvm” [17] to obtain the results of the SVM method, and WEKA to obtain
the results of the remaining methods.
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4.4 Results

Table 2 shows the results of the correct classification rate (CG), Root Mean
Square Error (RMSEG) and Area Under the ROC Curve (AUCG) in the gener-
alization set for each dataset and the RBFN, MLogistic, SLogistic, C4.5, LMT,
SVM and QRBF methods.

From the analysis of the results, it can be concluded, from a purely descriptive
point of view, that the QRBF model obtained the best results for two datasets in
CG, for one datasets in AUCG and for three datasets in RMSEG. Importantly,
the perfect classification is obtained with the best QRBF model for leukemia
dataset. The results confirm that the QRBF classifier leads to promising im-
provement on accuracy.

Finally, since the proposed model (QRBF) is stochastic and the remaining
classifiers are deterministic, the use of statistical tests for comparison of means
or ranking would not make much sense.

5 Conclusions

In this paper, we propose a methodology (composed by two stages) for mi-
croarray gene classification that allows reducing the number of features of thou-
sands to tens. This reduction of features is obtained by applying the FCBF
feature selector algorithm, in the preprocessing stage and by means of perform-
ing the operations of remove connections and hidden nodes that incorporates
the Hybrid Evolutionary Algorithm (HEA) which evolves the proposed base
classifier, namely q-Gaussian Radial Basis Function Neural Networks. The pro-
posed methodology achieved for the best models, the best results in CG over all
datasets, which justifies the proposal.

Finally, because of the reduced number of features that included the best
models, it is possible to interpret them and then analyze the causal relationship
between gene characteristics and the probability of belonging to each class.
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Abstract. Genome-wide association (GWA) studies provide large

amounts of high-dimensional data. GWA studies aim to identify vari-

ables that increase the risk for a given phenotype. Univariate examina-

tions have provided some insights, but it appears that most diseases are

affected by interactions of multiple factors, which can only be identi-

fied through a multivariate analysis. However, multivariate analysis on

the discrete, high-dimensional and low-sample-size GWA data is made

more difficult by the presence of random effects and nonspecific coupling.

In this work, we investigate the suitability of three standard techniques

(p-values, SVM, PCA) for analyzing GWA data on several simulated

datasets. We compare these standard techniques against a sparse cod-

ing approach; we demonstrate that sparse coding clearly outperforms

the other approaches and can identify interacting factors in far higher-

dimensional datasets than the other three approaches.

Keywords: Sparse Coding, GWA, SNP, Feature Selection, Machine

Learning.

1 Introduction

Genome-wide association (GWA) studies provide large amounts of high-
dimensional genotype data. The aim of these studies is to reveal the genetic
factors that explain an increase in risk e.g. for myocardial infarction. Modern
GWA techniques can simultaneously genotype over one million single nucleotide
polymorphisms (SNPs) for a human genome and thus enable extensive compar-
isons between groups with and without a specific phenotype. There is a growing
body of studies – mainly focusing on single-SNP statistics (p-values) – that have
identified genetic loci influencing the risk of complex diseases such as diabetes [1],
myocardial infarction [2,3], and Crohn’s disease [4].
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To date, however, these findings have had only limited impact on risk assess-
ment and clinical treatments [5]. This is probably due to the fact that a disease
effect may come about only through the interaction of multiple loci. A search for
single-locus effects alone is not likely to reveal the more complex genetic mech-
anisms underlying multifactorial traits [1,6,7]. Analyzing the enormous GWA
datasets for more than just single effects is however not straightforward: Not
only are we dealing with extremely high-dimensional data (typically hundreds
of thousands of genetic loci), we also face the additional challenge of having a
relatively small sample size, as even large GWA datasets typically consist of only
several thousands of individuals (see e.g. [8]). A further challenge is that, most
likely, not all of the affected individuals (cases) consistently express the same
characteristic disease pattern, making the search for these patterns even more
difficult.

A standard approach for classification and multivariate feature selection is
the support vector machine (SVM)[9,10]. SVMs have successfully been applied
in several GWA studies [1,11,12]. However, because we are searching for small
subgroups of individuals with similar genetic patterns rather than looking for
a perfect two-class classification, the SVM might not be the most appropriate
method.

Principal component analysis (PCA), one of the most commonly used feature
selection methods, has also been used in a number of GWA studies. In these
studies, however, PCA was primarily used not for feature selection but to correct
for population stratification [13,14,15]. In datasets with a large number of SNPs,
PCA may not be able to identify the disease-specific patterns due to the presence
of a large number of randomly formed patterns. It would therefore be desirable
to use a feature selection method that is more robust against noise.

In this work, we propose Sparse Coding (SC) as such a feature selection
method. We will compare SC against the standard techniques described above
(single-SNP statistics, SVM, PCA) on simulated GWA datasets containing mul-
tifactorial patterns. As we will show, only PCA and SC are able to identify the
multifactorial patterns at all, and SC can detect patterns in datasets with large
numbers of SNPs where PCA no longer works well. A fundamental advantage
of SC in this respect is that, whereas the principal components of the PCA are
constrained to be orthogonal, the codebook vectors of SC are not subject to
this constraint [16]. SC will thus not miss the disease-specific patterns due to
non-orthogonal alignment to random structures.

2 Data and Methods

2.1 Simulated GWA Data

Up to now, most GWA studies have mainly identified single SNPs that influence
the risk of a given phenotype. Some studies have combined these SNPs to develop
risk scores [17]. Single SNPs that do not show any effect on the phenotype might
increase the risk of a disease in combination with other SNPs. However, we do
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not expect all cases to have the same SNP-pattern; otherwise it could be easily
identified.

Furthermore, there are diseases where the phenotype label might be rather
fuzzy, i.e., we have a large group of individuals that are labeled as cases but the
labeling might not be due to genetic patterns but rather due to other factors.
In other words, we seek to find disease-specific genetic patterns for subgroups
of the data. Furthermore, we also expect structures in the data that are present
across the population without any disease-specific effect.

To obtain synthetic datasets with these properties, we proceeded as follows:
First we simulated datasets by random sampling with the constraint of genotype
distributions according to the Hardy Weinberg Equilibrium (HWE) [18] with a
minor allele frequency of 0.4–0.5. This was done twice, once for the cases and
once for the controls.

The next step was to integrate SNP patterns for a subset of the cases. In order
to obtain a dataset as described above, we cannot change the distribution of the
SNPs since this would result in a significant difference between cases and controls
(small p-values) as well as a deviation from the HWE. The pattern was thus
introduced by resorting the genotypes. The resorting was realized by swapping
the genotypes for a number of SNPs, one at a time, so that the predefined
subgroup featured the same genotypes. In this way, we retain the original non-
significant distribution of the SNPs as well as a disease-specific pattern.

To account for unspecific patterns in the data, we additionally introduced
patterns covering subsets of cases as well as controls. This was done in the same
way as for the disease-associated pattern, but this time for both the cases as well
as the controls with equal pattern sizes. For evaluation purpose we simulated
several datasets of varying dimensions and pattern sizes as shown in Table (1).

In the following, we will introduce a set of points X = (x1, . . . ,xN ), xi ∈
RD, consisting of the simulated individuals xi, described by D features (here
SNPs), which are the dimensions that actually span our feature space. Further
we introduce the corresponding class information Y = (y1, . . . , yN), yi ∈ {1,−1}
that denotes whether a individual xi belongs to the cases (yi = 1) or to the
controls (yi = −1).

2.2 Single SNP Statistics

The significant differences of the distribution of the SNP alleles for each SNP
respectively were calculated with the Chi-square statistic. The SNPs were sub-
sequently ranked according to their p-values. The 100 best ranked SNPs were
selected and the number of the known relevant SNPs among them counted.

2.3 SVM

We consider given data samples X and corresponding class information Y . In
the SVM approach one looks for a hyperplane that separates the two classes of
data samples with maximum margin. The SVM can be used for feature selection
by considering the influence of each data dimension on the margin.
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Table 1. For each kind of dataset we varied the total amount of SNPs as well as the

patternsizes. The first datatype consist of 1 disease specific pattern and 1 unspecific

pattern. The second datatype hold 1 disease specific pattern as well as 5 unspecific

patterns. All the patterns for each dataset respectively are of the same size.

pattern size/

15000 SNPs

pattern size/

20000 SNPs

pattern size/

25000 SNPs

pattern size/

30000 SNPs

1 disease specific pattern

10 10 10 10

20 20 20 20

30 30 30 30

1 unspecific pattern 40 40 40 40

50 50 50 50

1 disease specific pattern

10 10 10 10

20 20 20 20

5 unspecific pattern 30 30 30 30

In order to find the maximum margin solution one considers a constant mar-
gin of 1 and minimizes the norm of the normal vector of the separation hyper-
plane which is an equivalent problem, i.e., one solves the following optimization
problem

ŵ = arg min
w

wTw subject to yi

(
wTxi − b

) ≥ 1 (1)

where ŵ is the normal vector of the maximum margin separation hyperplane.
In the linear case the influence of a data dimension on the margin can be mea-

sured by considering the absolute value of the entries of ŵ. In the experiments,
we trained a linear hard-margin SVM on the simulated data and sorted the data
dimensions according to the absolute values of the corresponding entries of ŵ in
descending order. We took the first 100 data dimensions and counted how many
of the relevant data dimensions were found among them.

2.4 PCA

Again, we consider given data samples X and corresponding class information Y .
For each of the two classes we separately compute the principal components that
correspond to the M largest eigenvalues, i.e., M largest directions of variance.
Let V 1 = (v1

1, . . . ,v
1
M ) contain the principal components of class 1 and V −1 =

(v−1
1 , . . . ,v−1

M ) contain the principal components of class −1.
The larger the absolute value of an entry of a principal component is, the larger

the contribution of the corresponding primal data dimension to this direction of
variance is. In order to find data dimensions that contribute differently to the
variance of both classes, i.e., in order to measure how different the primal data
dimension j contributes to the directions of maximum variance in class 1 and −1,
we consider

rj = |max
i

|(v1
i )j | − max

i
|(v−1

i )j || (2)
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We sort the data dimensions according to the rank rj in descending order. Again,
we consider the first 100 data dimensions and check how many of the relevant
dimensions can be found among them. We tested a number of choices for M , the
number of principal components. Finally, we used M = 5 which provided the
best results.

2.5 Sparse Coding

Sparse coding employs low-dimensional subspaces in order to encode high-dimen-
sional signals, i.e., it looks for a dictionary C ∈ RD×M that minimizes the
representation error

1
L

L∑
i=1

‖xi − Cai‖2
2 (3)

where xopt
i = Cai with ai = arg mina ‖xi − Ca‖ ,‖a‖0 ≤ k1 denotes the best

k-term representation of xi in terms of C. There is a similarity between Sparse
Coding and PCA, i.e., the columns of the dictionary matrix C also correspond to
directions of large variance, however in contrast to PCA there isn’t any orthog-
onality constraint imposed on the directions of large variance. Furthermore due
to the constraint on the maximum number of non-zero entries of the coefficient
vectors ai, it is possible to control the dimensionality of the subspaces that are
used to cover the data, independently from the number of directions that are
used. In order to evaluate if the additional control capabilities can be used to
improve feature selection performance, we separately learned a dictionary for
class 1, i.e., C1 = (c1

1, . . . , c
1
M ) and class −1, i.e., C−1 = (c−1

1 , . . . , c−1
M ). We

used a combination of neural gas and the bag of pursuits method, which was
proposed in [16].

As for PCA, the larger the absolute value of an entry of a direction c is,
the larger the contribution of the corresponding primal data dimension to this
direction of variance is. Hence, we obtain a feature ranking of the data dimensions
in the same way. In order to obtain the rank of primal data dimension j, we
consider

rj = |max
i

|(c1
i )j | − max

i
|(c−1

i )j || (4)

In contrast to PCA, SC has two parameters that have to be chosen by the
user, M , the number of non-orthogonal directions to consider and k, the number
of non-zero entries in the coefficient vectors a. Again, we experimented with
different choices for these parameters and took those values that provided the
best results, i.e., M = 5 and k = 4.

As for PCA, we sort the data dimensions according to the rank rj in descend-
ing order. Then again, we consider the first 100 data dimensions and check how
many of the relevant dimensions can be found among them.

1 ‖a‖0 is equal to the number of non-zero entries of a.
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Fig. 1. Selection by p-values, SVM, PCA and SC score on a 10000 dimensional dataset

with one disease specific pattern and 5 random patterns. The pattern specific SNPs

are marked with red circles. In contrast to the first two algorithms, the pattern specific

SNPs stand out through scoring with PCA and SC. For the scoring with PCA we used

the first 5 principal components (M=5). The number of columns of the dictionary C is

the same as the number of principal components (M=5), and the number of non zero

entries k in the coefficient vector ai is 4.

3 Results and Discussion

In order to measure the performance of the algorithm on GWA datasets, we sim-
ulated datasets with a minor allele frequency of 0.4-0.5 and genotypes according
to Hardy Weinberg equilibrium.

3.1 Comparing Feature Selection Methods

In the first experiment, we compared the performance of different feature se-
lection approaches, i.e., feature selection by p-values, SVM, PCA and SC, by
simulating a 10000 dimensional dataset containing a pattern that was specific
for a subgroup of 100 cases as well as a 5 noise pattern of 100 cases and 100
controls. All patterns consisted of 30 pairwise disjunct SNPs (see the Section 2.1
for further details).

We applied a Chi-square test and ranked the SNPs according to their signif-
icance values (p-values) as described in section 2.2. We trained a SVM on the
data and ranked the SNPs by their influence on the classification hyperplane as
described in section 2.3. For the feature selection by PCA, we calculated a score
based on the contribution of the SNPs to the directions of maximum variances
as described in section 2.4. For the SC approach we calculated the score in the
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same way but the directions of large variance were obtained from a sparse coding
algorithm (see the Section (2.5) for further details).

As shown in Figure (1) selecting SNPs on the basis of their p-values will not
lead to the identification of the SNP pattern that is specific for a subgroup of
the cases. The weakness of this approach is obvious; SNPs that are part of a
multi-dimensional pattern might only have a combined effect and not an effect
for each SNP respectively. Hence, the pattern will not become visible when only
one SNP at a time is considered.

The feature selection by SVM also fails to identify the SNPs. In contrast to
the selection by the p-values, the SVM allows for a classification of the classes
by implementing a multi-dimensional decision boundary. However, its weakness
lies in the attempt of solving a two-class problem. Due to the nature of the data,
i.e. only a rather small group of the cases contains the pattern of interest, we
do not deal with a pure two class problem, but aim to identify subgroups that
can be identified by sets of SNPs that have the same value for a large number
of persons.

In contrast to the previously discussed approaches, feature selection by PCA
and SC successfully identifies the targeted SNPs. Randomly distributed geno-
types will have similar variances. However, if there is a pattern present in the
data, due to the non-random distribution of the SNPs that belong to this pat-
tern, directions of large variance will point in the direction of the pattern. The
principal components cover as much of the variability of the data as possible,
thus the class-specific SNPs will have a high influence on the class-specific prin-
cipal components and thus be identified by PCA. Like PCA, SC also looks for
directions of large variance but does this in low dimensional subspaces.

3.2 PCA and SC on High Dimensional Data

Next, we evaluated the performance of SC and PCA by varying the number of
dimensions as well as the pattern size. To compensate for the random variations
in the experiments, a total of 10 random datasets were generated for each di-
mensionality and pattern size. We assessed the quality of the results by counting
how many of the targeted SNPs were found among the first 100 ranked SNPs.

First, we measured the performance on datasets where 1 pattern specific for
a subgroup of the cases, and 1 noise pattern (pattern is present in both cases
and controls) was present. The results are shown in Figure (2).

The power to detect the SNPs decreases with increasing dimensionality of
data and with decreasing fraction of case-specific SNPs. This can be explained
by the increasing probability of having random patterns in the data that have
properties similar to the targeted SNPs. However, SC seems to be more robust
against this effect than PCA.

Both PCA and SC provide a poor performance when applied to datasets where
the size of case specific patterns is small. However, since the performance does
not change substantially with an increasing number of dimensions, we assume
that there exists a minimal pattern size that is required in order to be able to
identify case specific patterns.The performance of both algorithms in the case of
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large patterns is close to 100%, thus implying that these settings do not challenge
the algorithms to their limit.

In order to study the effect of a greater number of random structures in the
data in the second round we repeated the experiments but this time with 5 noise
patterns that were present in cases and controls. Since we want to compare the
algorithms at their limits, we only run the algorithms on pattern sizes up to 30
SNPs. The results are shown in Figure (3).

The mean performance of PCA tends to decrease compared to the perfor-
mance on the datasets where only one noise pattern is present whereas the
performance of SC remains more stable. Due to the weaker performance of the
PCA, SC significantly outperforms PCA for these more complex datasets.

0

20

40

60

80

100

10/15000
20/15000

30/15000
40/15000

50/15000
10/20000

20/20000
30/20000

40/20000
50/20000

10/25000
20/25000

30/25000
40/25000

50/25000
10/30000

20/30000
30/30000

40/30000
50/30000

amount of SNPs in pattern / total amount of SNPs

pe
rc

en
ta

ge
 o

f p
at

te
rn

 s
pe

ci
fic

 S
N

P
s 

fo
un

d

SC

PCA

Fig. 2. The plot shows the mean percentage of identified pattern specific SNPs with the

corresponding standard deviations for the varying amount of dimensions and pattern

size for datasets with 1 noise patterns. The parameters are the same as described in

figure 1. SC works more robustly than PCA for critical scenarios.
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Fig. 3. This plot corresponds to Figure 2, except this time 5 noise patterns are used,

and the pattern size is only varying from 10 to 30, since bigger patterns do not challenge

whether PCA nor SC.
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The improved performance of SC compared to PCA might be due to the
orthogonality constraint that holds for PCA. Due to this constraint it might
not be possible to learn certain directions if there are other stronger (random)
structures in the data that allow only learning of structures that are orthogonal
to these random structures. These restrictions are not present in the sparse
coding approach.

4 Conclusion

The demand for identifying SNP interaction becomes more and more present for
GWA studies. However because of the complexity and computational burden the
number of studies reporting interacting loci remain small relative to the amount
of GWA studies. In this work, we have shown that extracting SNPs by their
p-values will not lead to the identification of multivariate gene patterns. The
prominent multivariate SVM approach also fails to identify the disease specific
patterns. A pattern that is present in only a small subset of the cases will not
be detected due to the fact that the SVM seeks a good classification of all the
cases and controls and hence for a random dataset the SNPs with the largest
differences in the distribution of the genotypes (low p-values) be a good choice
for the classifier.

PCA as a feature extraction shows good results for large pattern sizes with
only a low number of noise patterns. However by introducing greater numbers
of patterns to simulate disease unspecific coupling between SNPs, as it is likely
to appear in real data, the performance of PCA is weakened.

The proposed sparse coding (SC) approach clearly outperforms SNP selection
by p-values and SVM scores. In addition it demonstrated a significant higher
stability on high-dimensional datasets with multiple noise patterns.

SC can thus be used as a preprossessing tool to select a subset of relevant
SNPs. The relatively small amount of identifyed SNPs can subsequently be fur-
ther analyzed in order to establish a risk prediction or for classification purpose.
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Abstract. The layered neural networks are considered as very general tools for 
approximation. In the presented contribution, a neural network with a very sim-
ple rule for the choice of an appropriate number of hidden neurons is applied to 
a material parameters’ identification problem. Two identification strategies are 
compared. In the first one, the neural network is used to approximate the  
numerical model predicting the response for a given set of material parameters 
and loading. The second mode employs the neural network for constructing  
an inverse model, where material parameters are directly predicted for a given 
response.  

Keywords: Artificial neural network, multi-layer perceptron, approximation, 
nonlinear relations, back-propagation, parameter identification. 

1   Introduction 

A variety of engineering tasks nowadays leads to an inverse analysis problem, where 
the goal is to identify parameters of a numerical model describing properly the ex-
periment. In overall, there are two main philosophies to solution of identification 
problems [4]. A forward (classical) mode is based on the definition of an error func-
tion of the difference between outputs of the model and experimental measurements. 
A solution comes with the minimum of this function. This mode of identification 
could be considered as more general and robust, but repeated application is relatively 
computationally expensive. The second philosophy, an inverse mode, assumes the 
existence of an inverse relationship between outputs and inputs. If such relationship is 
established, then the retrieval of desired inputs is a matter of seconds and could be 
easily executed repeatedly.  

Artificial neural networks (ANNs) [2] are powerful computational systems consist-
ing of many simple processing elements – so-called neurons – connected together to 
perform tasks analogously to biological brains. Their main feature is ability to change 
their structure based on external information that flows through the ANN during the 
learning (training) phase. A particular type of ANN is so-called feedforward neural 
network, which consists of neurons organized into layers where outputs from one 
layer are used as inputs into the following layer.  
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In this contribution, two different applications of ANN to parameter identification 
are presented. In the forward mode of identification, ANN is used to approximate the 
computationally expensive numerical model. ANN can be then efficiently used in the 
phase of parameter optimization where the huge number of numerical model evalua-
tions is replaced by very fast evaluations of ANN. In the inverse mode, the ANN is 
applied to approximate the inverse relation between inputs and outputs. This problem 
is often ill-posed, but once such relation is established, it can be very quickly and 
repeatedly used for estimation of parameters from any new experiment. 

When dealing with ANNs, the key point is the choice of its architecture. The num-
ber of units in an input and output layer is usually given, but it remains to decide the 
number of units in hidden layer. In this contribution, a very simple self-adaptive ANN 
is applied to parameters identification of the microplane model M4 [1]. The forward 
and inverse strategy is compared. 

2   Architecture of Artificial Neural Network 

Despite of ANN’s popularity there are only few recommendations for the choice of 
ANN’s architecture. The authors, e.g. in [3], show that ANN with any of a wide vari-
ety of continuous nonlinear hidden-layer activation functions, one hidden layer with 
an arbitrarily large number of units suffices for the “universal approximation” prop-
erty. Therefore, we limit our numerical experiments to such a case. But there is no 
theory yet to decide how many hidden units are needed to approximate any given 
function.  

In general the choice of the number of hidden units (NH) depends on many factors 
such as the number of input and output units, the number of training samples, the 
complexity of the function to be approximated etc. The choice of NH can be driven by 
following principles: (i) if ANN produces a high error on both the training and testing 
data due to so-called underfitting, ANN’s architecture is probably too simple and 
more hidden units should be added; (ii) if ANN produces relatively small error on 
training data, but in orders of magnitude higher error on testing due to overfitting, 
there are probably too many hidden units and some of them should be eliminated. 
Regarding these principles, we employ a simple ANN with the ability to adapt the 
number of hidden neurons. The ANN starts with one hidden neuron and the process of 
ANN’s training is executed. We compute the average absolute error on training data 
ETR and testing data ETE. When the ETE/ETR ratio is smaller than a chosen value of 
testing to training error ratio TTER, new hidden neuron is added into the ANN and 
the training process and testing of ETE/ETR is repeated till it is smaller than TTER. 
The value of TTER is fixed to 3.2 with respect to the study presented in [5]. 

3   Application of ANN in Parameters Identification of Microplane 
Model M4  

Concrete is a heterogeneous material and therefore the simulation of its behaviour 
encounters serious difficulties, both theoretical and numerical. The microplane model 
M4 [1] is a fully three-dimensional material law, which includes different types of 
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material loading. The major disadvantage of this model, however, is an enormous 
computational cost associated with structural analysis and phenomenological material 
parameters without clear physical interpretation. Here, we would like to present two 
possible applications of the ANN in parameters identification of the microplane 
model. 

Because of the limited space for this contribution, we focus on identification of 
three parameters – Young’s modulus E, k1 and c20 – which should be identified from 
the uniaxial compression test. When simulating uniaxial compression, the model 
output is a stress-strain diagram. We discretize the stress-strain diagram into 18 dis-
crete points corresponding to fixed values of strain. Because of high computational 
demands of each compression test simulation, only 60 and 10 samples were generated 
for a training and a testing set, respectively.  

We start by the inverse mode of identification where ANN is supposed to ap-
proximate the inverse relation between model outputs and model parameters (here, 
considered as inputs). Only several values of stresses are chosen with respect to their 
correlation with parameters. The computed values of correlation are presented e.g. 
in [4]. To simplify the training process, one ANN is trained with adaptivity for each 
model parameter. The set of inputs and resulting architecture together with resulting 
relative errors of ANN’s predictions are described in Table 1. 

Table 1. Inverse mode of identification 

Parameter Inputs Architecture Av. ETR [%] Av. ETE [%] 

E σ1, σ2, σ3 3 – 5 – 1    0.18    0.34 

k1 σ5, σ18, σpeak, σpeak, Eprediction 5 – 4 – 1    0.46    0.86 

c20 σ6, σ8, σ12, σ16, Epredict., k1,predict. 6 – 3 – 1  10.44   22.43 

 
One can see that ANN can very precisely find the inverse relation for prediction 

Young’s modulus and parameter k1, but it is unable to approximate the inverse rela-
tion for parameter c20 with satisfactory precision. So the application of ANN in the 
inverse mode is not always trivial. 

In the case of the forward mode, the ANN can be used for the approximation of the 
numerical model itself. In that case, however, there is a relatively small number of 
ANN’s inputs – only four model parameters (Poison’s ratio, which cannot be identi-
fied only from axial deformation, but has still an indispensable influence on its shape, 
is added). But there is a larger number of outputs corresponding to discrete points of 
stress-strain diagram. In order to predict stress values in these points, there are two 
possibilities of ANN implementation.  

In the first scenario, one independent ANN can be trained to predict the stress in 
one chosen point. Such ANN can be very simple, the training process can be also fast 
and easy, but we must train 18 different ANNs. Fig. 1(a) shows the prediction error 
for each ANN predicting the stress value in one of 18 points. One can see that 
an average error on both the training and testing data of all ANNs is smaller than 4% 
and worst cases have not exceeded the error of 8%. The only disadvantage of this 
approach remains the necessity of training a number of independent ANNs. 
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Fig. 1. Forward mode of identification: (a) Relative errors in predictions of 18 simple ANNs; 
(b) Relative errors in prediction of one complex ANN  

In the second scenario, only one ANN can be trained, if we add the value of strain 
as the fifth input. 60 training and 10 testing diagrams consisting of 18 points change 
to 1080 training and 10 testing samples. The relation to be approximated becomes of 
course more complicated. Prediction errors computed relatively to bounds of stresses 
corresponding to particular diagram points are depicted in Fig. 1(b). When comparing 
to the first scenario of the forward mode, the errors are in general higher, but the us-
age of one ANN is of course simpler. 

4   Conclusions 

In the presented contribution, we focus on an application of artificial neural networks 
in parameters identification. A very simple adaptive ANN is applied to parameters 
identification of the microplane model. Three different scenarios are demonstrated 
and their particular advantages and drawbacks are discussed. 
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Abstract. In this article, we use the model adjectives using a vector space model.
We further employ three different dimension reduction methods, the Principal
Component Analysis (PCA), the Self-Organizing Map (SOM), and the Neigh-
bor Retrieval Visualizer (NeRV) in the projection and visualization task, using
antonym test for evaluation. The results show that while the results between the
three methods are comparable, the NeRV performs best of the three, and all of
them are able to preserve meaningful information for further analysis.

1 Introduction

Large number of studies indicate that methods using co-occurrence data provide use-
ful information on the relationships between the words, as words with similar or re-
lated meaning will tend to occur in similar contexts [1]. This intuition has been care-
fully assessed, in particular, for nouns and verbs. In this article, we study whether co-
occurrence statistics provide a basis for automatically creating a representation for a
group of adjectives as well. Further, we compare dimension reduction methods, in par-
ticular, the Principal Component Analysis [2], the Self-Organizing Map [3] and Neigh-
bor Retrieval Visualizer (NeRV) [4] affect the quality of the final representation. We
study the neighborhoods of the adjectives in the created vector space, and use antonyms
pairs to evaluate the result.

Nouns and verbs have received much more attention than adjectives in language
technology, knowledge engineering and related research fields. For instance, the nodes
of ontologies are mainly entities labeled with nouns. In linguistics, verbs have been
the subject of very active study as verbs usually serve as the ordering elements of a
sentence. Adjectives are not very well described in ontologies, but Wordnet and Eu-
roWordnet have considered including a small set of lexical conceptual relations that
allow to encode adjectives.

The Self-Organizing Map has been earlier used in several studies to create word
clusters automatically from statistical features obtained from corpora. In [5], analysis
of 150 English word types was carried out using the self-organzing map. The resulting
map divided into separate areas of verbs and nouns, with nouns further dividing into
areas of animate and inanimate nouns. The verbs were studied in [6], where a verb
map was created using features, such as case marking and adverbs. The resulting verb

� This work has been supported by the Academy of Finland and the Finnish Funding Agency
for Technology and Innovation.
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clusters depicted organization related to emotional content. In addition, [7], an adjective
map based on emotive aspects of words was created with manually provided features.

2 Methods

The word vector space model is a standard method for representing text data in numeri-
cal form. In the model, words are represented as feature vectors. Features of a word are
often words that co-occur with it in a certain context or window [8]. We obtain feature
vectors statistically from a corpus, using a window of a small size, and counting the
co-occurrences of the feature words that appear with the target word in this window.
The similarity of the words can be then measured as the Euclidean distance between
them in the vector space.

The original dimensionality of the vector space is usually high and dimesion reduc-
tion methods are needed. This can be done by either feature selection, i.e. selecting a
subset of the original features that give most information of the object in question, or
by feature extraction, using features that are combinations of original dimensions. Both
are frequently applied to word vector spaces.

Generally, a dimension reduction method is good, if the neighbors of the data points
in the original space can be retrieved well based on the projected points in the visual-
ization. We use three feature extraction methods that project the data to two dimensions
for visualization purposes, the Principal Component Analysis [2] the Self-Organizing
Map (SOM) [3] and the Neighbor Retrieval Visualizer (NeRV) [4]. In the following, we
give the basic details of each method.

The PCA is an orthogonal linear transformation which transforms the possibly cor-
related data into new variables, in such a way that the greatest variance lies on the
first principal component and most of the variance is contained in a few first principal
components. This makes it a practical tool for dimension reduction, as the remaining
components can be dropped with minimal loss of information.

The SOM is a classical unsupervised learning method which typically produces a
two-dimensional discretized representation of the input space. It preserves the topolog-
ical properties of the input space, which makes it an useful tool for visualizing high-
dimensional data.

The novel NeRV method for nonlinear dimensionality reduction and data visualiza-
tion [4] conceptualises the dimensionality reduction as an information retrieval problem
and rigorously quantifies the goodness of the dimension reduction method in terms of
precision and recall. The NeRV algorithm [9] is able to optimise the cost function (1)
that allows an optimal balance between these two. The cost function is given as

ENeRV = λ[Ei[D(pi,qi)]]+ (1−λ)Ei[D(qi, pi)] , (1)

where Ei[D(pi,qi)] is the number of misses and Ei[D(qi, pi)] the number of false posi-
tives. Minimising Ei[D(pi,qi)] maximizes the recall, and minimizing Ei[D(qi, pi)] max-
imizes the precision. The relative cost parameter λ can be used to focus to either of
them.
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Fig. 1. Comparison of different methods used to create an adjective space based on word co-
occurrence statistics. The y-axis shows the percentage of antonyms successfully found for the
72 test adjectives among the n nearest neighbors and the x-axis provides different values of n,
from 1 to 10. The high-dimensional spaces are marked with an asterisk (24868 dimensions) and
a circle (500 dimensions). The methods for creating the 2-dimensional projection from the 500-
dimensional data are the NeRV (marked with a square), the SOM (marked with a triangle), and
the PCA (marked with a plus sign).

3 Experiments

The objective of the experiments was to study the effect of the dimension reduction on
the data and see whether there are differences in the dimension reduction methods. The
text collection used in the experiments was extracted from English Wikipedia articles.
The statistics of the two closest context words were collected for each of the 72 adjec-
tives included in the analysis. For each adjective, a 24868-dimensional feature vector
was created. The original feature dimensionality contains all the words that occur in
the collection over 100 times. We then reduced the dimensionality of matrix by feature
selection: Only the 500 words that occur most frequently with the 72 adjectives are
included. Further, we use the matrix with 500-dimensional feature vectors to project
the data into two dimensions using the PCA, the SOM and the NeRV. The PCA was
implemented using standard Matlab functionalities, the SOM with its common func-
tionalities using the SOM Toolbox. The NeRV is implemented in the dredviz software
package developed for information visualization.1

1 The software package, developed in the Adaptive Informatics Research Centre, Aalto Univer-
sity School of Science and Technology, is available at
http://www.cis.hut.fi/projects/mi/software/dredviz/

http://www.cis.hut.fi/projects/mi/software/dredviz/
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Fig. 2. The set of adjectives used in the study projected into a 2-dimensional space using the
Neighbor Retrieval Visualizer (NeRV) method. The words in bold have the antonym in their
local neighborhood.

There does not seem to exist a consensus among linguists on how adjectives should
be divided into categories in general. We then considered two alternatives, i.e., syn-
onyms and antonyms. Antonyms are words that have an opposite meaning, and syn-
onymous words have a same or almost the same meaning. They both offer a means
for evaluating the ordering of the obtained vector space. As synonymity is not clearly
defined, we used the antonyms for which the definitions are clearer. Each adjective had
an antonym in the set: long–short, good–bad, etc. We then calculated the recall, that is
checked whether the antonym could be found within the [1,2, . . .10] nearest neighbors.
The result of this experiment is presented in Fig. 1.

The fact that the high-dimensional spaces provide higher percentages than the 2-
dimensional spaces is understandable. Lower-dimensional spaces are often used to reach
lower computational complexity. Moreover, a 2-dimensional space is particularly useful
in visualization. Thus, it is to be noted that the nearest neighbors in the case of SOM,
NeRV and PCA were calculated in the 2-dimensional space. The NeRV method seems
to reach better performance than the SOM which again exceeds the performance of the
PCA method. Figure 2 shows the results for the NeRV. We can see that many antonym
pairs are located close to each other in the visualization. The pairs ancient-modern,
old-new and early-late form their own cluster in the top-left corner of the figure. An-
other group is formed by the pairs hot-cold, dry-wet in close vicinity with cool and
warm. Other pairs close to each other include poor-rich, innocent-guilty, happy-sad and
difficult-easy.
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4 Conclusions and Discussion

In this article, we studied the representation of the adjectives based on the short context
they appear in. The results, based on an antonym test, show that the context provides
a reasonably good means for automatically extracting meaningful relationship between
adjectives. While the NeRV performs best in this setting, based on this evaluation, all
methods tested preserve meaningful information for further analysis.

The antonym test is a very simple evaluation method which only measures one side
of the problem: whether the words with opposite meaning can be found close to each
other in the word vector space. A closer look at Fig. 2 reveals that there are several other
words for which the meaning is close or which seem to belong to a same category as
well. To obtain concrete results, though, we would need linguistically or semantically
defined groupings of adjectives and lists of adjectives in each group - which we could
then use as a basis of more thorough evaluation.
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Abstract. An Echo State Network transforms an incoming time series signal 
into a high-dimensional state space, and, of course, not every dimension may 
contribute to the solution. We argue that giving low weights via linear regres-
sion is not sufficient. Instead irrelevant features should be entirely excluded 
from directly contributing to the output nodes. We conducted several experi-
ments using two state-of-the-art feature selection algorithms. Results show sig-
nificant reduction of the generalization error. 

Keywords: Echo State network, feature selection. 

1   Introduction 

Machine learning methods minimize the training error, i.e. they approximate a model 
which might have produced the training data. In case of high-dimensionality data, 
machine learning algorithms exploit also redundant and irrelevant features if these (by 
chance) minimize the training error. A model trained like this may not perform well 
later on previously unseen data. This problem is known as 'overfitting'. 

Echo State Networks (ESNs) are a recent approach of training recurrent neural 
networks which showed excellent performance on learning temporal tasks [1] [2]. In 
the very end, training boils down to determining the weights of the connections to the 
output nodes using a single large linear regression. The connection weights inside the 
net are sparse, generated randomly, and not changed during training.  

Regression computes weights for every output connection. Many of these weights 
may be small, but this possibly leads to the effect described above, i.e. redundant or 
irrelevant nodes are considered if they minimize the training error. 

Sparse connectivity has been observed in biological brains and there are many sci-
entists which advocate that sparsity is also beneficial in artificial neural networks [3]. 
The internal layer of ESNs is sparsely connected, and so it seems to be a contradiction 
that each output node is connected to all internal nodes. 

The hypothesis we investigate in this paper is: The reduction of output connections 
reduces the generalization error, i.e. the error when trained ESNs are applied on pre-
viously unseen data. 

2   Echo State Networks 

An Echo State Network is an artificial recurrent neural network (RNN) which at each 
time step t computes its output y(t) based on its internal state x(t).   
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y(t) = fout (x(t)T Wout) . (1) 

where Wout is the output weight matrix, and T denotes the transpose of a matrix. fout(.) 
is the output activation function. We use identity (fout(.) = x) in this paper. State x(t)  
of  internal  nodes  is  computed  based  on  the  input  u(t), and the previous state  
x(t-1). Optionally the previous net output y(t-1) can be fed back to the net. 

x(t) = f (Win u(t) + W x(t-1) + Wfb y(t-1)) . (2) 

where W, Win, and Wfb are weight matrices of the connections between the internal 
nodes, (W) between the input nodes and the net (Win) and between the output nodes 
and the net (Wfb). 

An ESN is constructed in the following way. First, the number of input nodes, out-
put nodes, and internal nodes are chosen. The weight matrices W, Win and, optionally, 
Wfb are chosen randomly. The weight matrix W connecting the internal nodes has to 
be sparse, i.e. only a few connection weights (e.g. 10%) are non-zero. Furthermore, 
matrix W has to ensure the echo state property [4] [5].  

After the ESN is constructed, the training data (the input utrain and the given train 
outputs ytrain) is fed into the net thereby computing states xtrain(t) according to (2). 

xtrain(t) = f (Win utrain(t) + W xtrain(t-1) + Wfb ytrain(t-1)) . (3) 

All collected training states xtrain(t) are collected in a state matrix Xtrain and all given 
train outputs in matrix Ytrain. In case of a single output node, Ytrain is  a vector. 
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were Ntrain is the number of training samples. Then according to equation (1), and with 
fout(.) = x, the following should hold. 

Ytrain = Xtrain Wout. (5) 

As Xtrain and Ytrain are given, the output weight matrix Wout can be computed via re-
gression. Regression can be computed in several ways, e.g. SVM regression [6]. One 
simple but effective way is Ridge Regression which introduces a penalty term λ  for 
preventing high weights thereby reducing the sensitivity to noise and overfitting. 

2 1( )T T
out train train train trainW X X I X Yλ −= +  . (6) 

with I  being the identity matrix and -1 the inverse of a matrix. 

3   ESN Training as a Feature Selection Problem 

The idea is to exclude irrelevant (or superfluous) states in Xtrain from Wout (i.e. setting 
connection weights in Wout to zero). The remaining connection weights are then com-
puted via regression. 
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The states of an internal node can be regarded as values of a stochastic variable. 
Therefore we treat the selection of non-zero output connection weights as a variable 
selection problem, in the literature more often known as 'feature selection' [7]. 

Feature selection is an iterative process where different subsets of features are 
evaluated. The number of all possible feature subsets is 2N, with N being the number 
of features. For large numbers of features, feature selection algorithms are needed to 
search the solution space within a reasonable time. In this paper, we use a greedy 
algorithm, 'Backward Elimination' (also known as 'Backward Deletion’ or 'Backward 
Selection') [8], and a genetic one, 'Markov blanket-embedded genetic algorithm' 
(MBEGA) [9]. 

3.1   Fitness Function 

For both algorithms, the performance of a particular feature set has to be assessed by 
computing the training error. In case of ESNs, this can be divided into two steps. 

1. Computation of Wout . First the columns corresponding to the features to be 
excluded are deleted from matrix Xtrain. Then Wout is computed using Ridge 
regression, using equation (6).  

2. Using Wout to compute the error. Applying the ESN on possibly another 
training data set creates another X’train. Again, the columns of deleted fea-
tures have to be reduced, and Y is computed: Y = X’reducedtrain Wout . Finally 
from the difference between Y and Ytrain the RMSE is computed.  

This scheme allows doing different things in these steps, in particular using different 
data sets, and we benefited from this during our experiments. 

4   Experiments 

4.1   ARTINOS Data  

The data sets we used for the experiments were coming from a, so called, 'electronic 
nose' sensor, named ARTINOS [11]. Each measurement consists of a time series 
coming from a sensor array of 16 elements over 142 time steps. The ESN has to de-
tect the concentration of dangerous gases. The problem is that the sensors operate in 
freight containers containing all possible kinds of goods and smells. The sensor signal 
also contains the influence of these atmospheres present in a container, thus the sig-
nal-to-noise-ratio could be bad and the gas isn't detectable. But when target gases are 
detectable, the background noise in the signal can't be predicted, i.e. we are unable to 
construct a training data set which represents the noise of the learning task properly.  

Therefore in our experiments, we divided the training and test data sets such that 
they contain data from different measurements (having different background noise) in 
order to be realistic. 

4.2   ARTINOS Data Used in the Experiments 

The ARTINOS data consists of 1365 measurements taken at different days over a 
period of 3 weeks. We divided the data into 7 sets, each measured at different days, 
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and therefore taken from different freight containers each having its own kind of 
background noise in the measurement data. Five of these sets were chosen to be used 
for training, while the remaining two were left for testing.  

Using Backward Elimination, the feature set is reduced during each round based on 
the training data until only one feature is left. All the feature sets found during this 
procedure are evaluated on one test set and the best one is selected to be the final 
feature set. This feature set is finally assessed using the other test set. 

4.3   Backward Elimination with Variations in Computing Error Estimations 

In experiment A, the 5 training data sets are separated for weight computation (3 data 
sets) and error estimation (2 data sets), as explained in 3.1. In experiment B, we 
joined all 5 training data sets into one matrix Xtrain and use it for both weight computa-
tion and error estimation. In experiment C, weight computation was done as in ex-
periment B (using one big state matrix Xtrain) but error was computed by cross valida-
tion, i.e. computing Xi

train and the error for each of the 5 training data sets, and then 
used the mean error. 
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and error estimation (2 data sets) 
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Fig. 3. Error on training data and two test sets when applying Backward Elimination 

Experiment A performed worse and experiment C performed slightly better than B. 
Obviously it is advantageous to exploit the whole training set for both weight compu-
tation and error estimation. Instead of computing the error on all training data (ex-
periment B), it seems to be better to compute the error in a cross validation manner 
(experiment C). 
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More interesting than the differences between the experiments are their similarities. 
The test error can be improved in all cases. The improvements for test set 1 and test 
set 2 both have their minimum error in the same region (7 to 15 features). The error 
on test set 1 can be reduced from 1.49 down to 0.87 (with 10 features) and the error of 
test set 2 goes down from 0.74 to 0.69 (with the same 10 features). It is astonishing 
that a feature set of 230 features can be pruned down to less than 5%.  

4.4   Experiments Using MBEGA 

Greedy algorithms, like Backward Elimination, are computationally expensive. Ge-
netic algorithms usually reach acceptable solutions rather quick. But during experi-
ments, MBEGA searched in rather irrelevant areas of the solution space. The reason 
for this was the fitness function used. It looks for minimizing the error and thus search 
gets stuck in some local minima..  

Then we used MBEGA to optimize the result of Backward Elimination. After find-
ing promising feature set sizes using Backward Elimination (section 4.3), we used 
MBEGA with a cost function which raises a penalty for feature set sizes above 30. 
But even with this modified cost function, MBEGA did not yield better solutions.  

So, additionally, we introduced a variation of the error estimation, according to the 
scheme introduced in section 3.1. Instead using, for example, the cross validation 
error (like in experiment C, section 4.3), we switched between different data sets for 
computing the error. For each generation of the genetic algorithm, another data set is 
randomly chosen out of the 5 data sets used for training. This seems to decrease the 
stability of local minima, and eases candidate solutions of MBEGA to escape from 
there. As a result, better solutions (0.78 for test set 1, and 0.54 for test set 2) compared 
to the ones obtained by Backward Elimination were found, having 29 features. Again, 
both test sets have their minima at the same areas, so the best solution for one of them 
is the best for the other, and hopefully for other unknown measurement data, too. 

5   Conclusions 

An Echo State Network transforms input time series into a high-dimensional state 
space, but many dimensions don’t contribute to the solution. We argue that irrelevant 
features should be excluded from directly contributing to the output nodes. 

We conducted experiments using two feature selection algorithms (Backward 
Elimination and MBEGA). The algorithms were applied on training data. From the 
resulting feature sets, the one performing best on a test data set (not used for training) 
was selected. The resulting feature set is finally assessed based on another data set. 

In the fitness function (of both Backward Elimination and MBEGA), we separated 
error estimation from the computation of connection weights (see section 3.1). During 
experiments, we investigated several ways of doing error estimation, and improved 
the results of the two feature selection algorithms.  

The results of the experiments (including experiments on other ARTINOS data and 
the Japanese Vowels data set [12]. These experiments are not described here due to 
space restrictions) were quite surprising. Improvements were achieved in each case, 
even they vary depending on the dataset between twenty and several hundred percent of 
the test error. The best feature set is always only a small fraction of the total feature set. 
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The initial hypothesis, that the reduction of output connections reduces the gener-
alization error of ESNs, holds for the experiments performed so far. This work is in 
line with the results of Dutoit et. al. [10] who also showed excellent results (i.e. error 
reduction by a factor of 5) by applying pruning and regularization techniques on ESN 
output connections. We expect that feature selection on output connection will be-
come a commonly used technique for improving ESN performance. 
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Abstract. Mutual Information (MI) is a powerful concept from infor-

mation theory used in many application fields. For practical tasks it is

often necessary to estimate the Mutual Information from available data.

We compare state of the art methods for estimating MI from continuous

data, focusing on the usefulness for the feature selection task. Our results

suggest that many methods are practically relevant for feature selection

tasks regardless of their theoretic limitations or benefits.

Keywords: Mutual Information, Probabilitty Density Estimation, Fea-

ture Selection.

1 Introduction

Mutual Information (MI) is a well known concept from information theory and
has been utilized to capture the dependence structure between pairs of random
variables X and Y . In contrast to approaches like correlation coefficients MI is
not limited to the linear dependencies but includes any nonlinear ones. In an
information theoretic sense, MI quantifies the information variable X contains
about Y and vice versa.

Identifying relevant features for a given learning problem in order to eliminate
irrelevant and redundant inputs that complicate the learning process is defined
as the feature selection task. Applying Mutual Information to calculate the rel-
evance of a given input channel is a very intuitive and common approach. In its
most simple form it allows a feature ranking, but there are more sophisticated
filter approaches based on MI.

The practical challenge of using Mutual Information for feature selection is
the estimation of this measure from the available data. Similar to [1], we compare
different approaches of estimating MI, but in contrast we include new approaches
for estimation and focus on the feature selection task.

A brief recap of all the considered methods will be given in the next section.
The results of our tests will be shown in section 3, where we draw conclusion
about the usefulness of different methods for feature selection.
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2 Methods for Estimating Mutual Information

The goal is to estimate the mutual information, which is given by

I(X ; Y ) =
∫ ∫

p(x, y)log2
p(x, y)

p(x)p(y)
dxdy (1)

In this paper, we consider the histogram estimation with Scott’s rule [2], Cel-
lucci’s adaptive partitioning of the XY plane [3], an approach using an ensemble
of histograms, kernel density estimation (KDE) [4], least-squares mutual infor-
mation (LSMI) [5] and k-nearest neighbor estimation (K-NN) [6].

This selection is far from complete, literature thrives with other methods, but
it captures the intuitive methods (Histogram and KDE) as well as the current
standard method (K-NN) and a very recent method that claims superiority to
this (LSMI).

2.1 Histogram Approach

The standard histogram partitions the axes into distinct bins of width wi and
then counts the number ni of observation falling into the bin i. In order to turn
this count into a normalized probability density, we simply divide by the total
number N of observations and by the width w of the bins to obtain probability
values

pi =
ni

Nwi
(2)

for which
∫

p(x)dx = 1. This gives a model for the density p(x) that is constant
over the width of each bin.

The mutual information between X and Y given by eqn.1 changes to eqn.3

I(X ; Y ) =
∑

i

∑
j

Pij log2

(
Pij

PiPj

)
(3)

where Pi = pi · w is the probability of bin i in the marginal space and Pij =
pij · w2 is the probability of bin ij in the joint space. We use Scott’s rule [2] to
approximate the value of the bin width.

2.2 Ensemble of Histograms

Histograms, especially histograms with a constant bin width, are highly depen-
dent on the choice of the width of the bins. Histograms with different bin widths
applied to the same dataset can provide very different results of Mutual Infor-
mation due to estimation errors.

One possibility to handle this problem is using an ensemble of many his-
tograms, all using different bin widths. We use Scott’s rule and the parameter λ
to determine the size of the ensemble n and the width of the bins or the number
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of bins, respectively. Let kScott be the number of bins calculated by Scott’s rule.
All integer values in the interval [kScott/λ� , �kScott · λ�] provide the number of
bins for one instance.

After creating the histograms and estimating the values for the mutual infor-
mation for each different bin width Ii(X ; Y ) as shown in the previous section
(Eqn. 3), the final Mutual Information can be calculated by using the arithmetic
average over the estimated mutual information values.

2.3 Adaptive Partitioning of the XY Plane

Instead of using a constant bin width, it is possible to define variable sized bins
based on the data. One of these methods is Cellucci’s adaptive partitioning of
the XY plane [3]. The plane is partitioned by dividing each axis into multiple
equiprobable segments. Additionally it should satisfy the Cochran criterion on
the expectancies E(nij) of the bins, which requires E(nij) ≥ 1 for all elements
of the partition and E(nij) ≥ 5 for at least 80% of the bins.

To obtain this, each axis is partitioned that Px(i) = 1/k and Py(j) = 1/k,
where Px(i) is the probability of segment i of the x-axis and k denotes the number
of bins in the marginal space and should be equal for each axis.

The bins in the marginal space are chosen such that each one has an occupancy
of N/k points. Eqn. 3 is used to compute the values.

2.4 Kernel Density Estimation (KDE)

With kernel density estimation, the probability density function of X can be
estimated by the superposition of a set of kernel functions k(u), centered on the
data points:

p(x) =
1

Nhd

∑
k

(
x − xn

h

)
(4)

In general, the kernel function satisfies k(u) ≥ 0 and
∫

k(u)du = 1. Using Gaus-
sian kernel funtions, the probability density functions are given as

p(x, y) =
1
N

∑ 1
2πh2

exp

(
− (x − xn)2 + (y − yn)2

2h2

)
. (5)

2.5 Least-Squares Mutual Information (LSMI)

The least-squares Mutual Information [5] uses a concept named density ratio
estimation. Instead of approximating the probability density functions p(x), p(y)
and p(x, y) separately, the density ratio function

ω(x, y) =
p(x, y)

p(x) p(y)
(6)

is estimated here in a single shot. The advantage of doing this is to avoid the
division by estimated densities, which tend to magnify the estimation error.
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Therefore, the approximated density ratio function ω̂α(x, y) is modeled by a
linear model ω̂α(x, y) := αT ϕ(x, y) where α = (α1, ..., αb)T is a vector of pa-
rameters to be learned from samples, ϕ(x, y) = (ϕ1(x, y), ..., ϕb(x, y))T denotes
a vector of basis functions, such that ϕ(x, y) ≥ 0 for all (x, y) ∈ Dx × Dy. To
determine α the squared error J0 is minimized

J0(α) =
1
2

∫
x

∫
y

(ω̂α(x, y) − ω(x, y))2p(x) p(y) dx dy. (7)

2.6 K-Nearest Neighbor Approach(K-NN)

The K-NN approach uses a fixed number k of nearest neighbors to estimate the
MI. For each point in the dataset, the minimum volume V that encompasses K
points is determined. By counting the number of points inside this volume in
the marginal spaces the Mutual Information can be estimated.

The Mutual Information is estimated as

I(X ; Y ) = ψ(k) − 1
k
− 1

N

N∑
i=1

[ψ(nx(i)) + ψ(ny(i))] + ψ(N) (8)

where ψ(x) is the digamma function and nx denotes the neighbours in one
dimension.

It can be expanded easily to m variables approximating the Joint Mutual
Information (JMI):

I(X1; ...; Xm) = ψ(k)−m − 1
k

− 1
N

N∑
i=1

[ψ(nx1(i))+...+ψ(nxm(i))]+(m−1)ψ(N)

(9)

3 Experiments

Our first batch of experiments resembles those presented in [1]. All approaches
had to approximate the MI between two variables where the real Mutual In-
formation was known due to the design of experiments. This includes linear,
quadratic and trigonometric dependencies with different levels of noise and a
changing number of available samples. For details, refer to [1]. The results are
in line with those presented by Khan. The most precise and most consistent
results were achieved by the K-NN, which proved to be the standard everyone
has to compare to, and the KDE approach. The adaptive histogram approach
turned out to be very inconsistent in case of sparse data, while LMSI showed a
tendency for strong deviations of the MI for different data sets. The ensemble of
histograms evinced small benefits compared to the basic histogram in high noise
scenarios.

For the second batch of experiments, we focused on the feature selection tasks.
For feature extraction the exact value of the Mutual Information is secondary,
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Table 1. Results on the UCI data sets. Given is the balanced error rate, bold entries

mark the best results.

Method Ionosphere German Credit Breast Cancer Parkinsons Hearts

Histogram 0.0994 0.3791 0.0463 0.1601 0.3679

Ensemble 0.1193 0.3791 0.0463 0.1601 0.3752

Adapt. Hist 0.1009 0.3596 0.0639 0.0921 0.4554

KDE 0.1193 0.3693 0.0463 0.1576 0.3752

LSMI 0.0817 0.3693 0.0548 0.1356 0.3621

KNN 0.1126 0.3956 0.0632 0.0647 0.4068

KNN JMI 0.1432 0.3866 0.0775 0.1632 0.3512

more important is the correct ranking of the features, where systematic estima-
tion errors will cancel out each other.

For the actual feature selection two different algorithms were used. The first
is MIFS - Mutual Information for Feature Selection [7], which is a simple ap-
proximation of the JMI. At each step of the algorithm, the feature is selected,
which possesses the highest MIFS value:

MIFS = I(Xi; Y ) − β
∑
s∈S

I(Xi; s) (10)

where S denotes the set of already selected features, Xi is the feature for which
the MIFS value is calculated and Y are the labels. Furthermore, β is a free pa-
rameter stating the influence of the already selected features on the remaining
candidate features. β was heuristically determined to keep the MIFS value pos-
itive for the first eight features. This method was combined with all approaches
to consider multi-dimensional influences presented in Sec. 2.

The second algorithm uses a forward selection strategy based on the Joint Mu-
tual Information (JMI) [8]. In each step the feature that possesses the maximum
JMI between the candidate feature, the already selected features and the labels
is chosen. The computation of the JMI was done using the K-NN approach.

The feature selection test were performed on five different datasets from the
UCI Machine Learning repository [9]. We used the algorithms to extract the eight
best features from the data sets and tested them by using a nearest neighbor
classifier and the leave one out strategy to compute the balanced error rate. The
resulting error rates are shown in Tab. 1. Equal error rates for different methods
are the result of selecting the same features (not necessarily in the same order).

On one hand, the table shows that each method achieves for one data set the
best results. On the other hand, every method is inferior to others for some data
sets. The most consistent results based on the ranking were achieved by LMSI,
the KDE and the histogram approach, while the worst outputs are resulting
from the K-NN approach directly estimating the JMI. This particular way of
handling the JMI is outperformed by the MIFS approximation on a regular basis.
In terms of computational costs, the histogram and KDE are cheapest, while the
LSMI is the most expensive method due to the inherent cross validation.
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4 Conclusions

In this paper, we investigated methods for estimating Mutual Information from
data. For application scenarios, in which the exact value is required, our results
are very similar to those published in [1]. The conclusion is to use either the
Kernel Density Estimation or the Kraskov’s Nearest Neighbor method.

Concerning the feature selection task only a correct ranking of the input
variables is required. Most consistent performers are the Least Squares Mutual
Information, the Kernel Density Estimation and simple Histogram estimation.
The most problematic approach is the direct estimation of the Joint Mutual
Information using the Kraskov Nearest Neighbor Method, in almost every case
it was outperformed by the MIFS approximation.

The basic conclusion to be drawn from these investigations is that there is no
best method to estimate Mutual Information in the feature selection context,
but all considered method are more or less useful depending on the data. Never-
theless, we suggest using the KDE method, because of its good results in both
types of experiments.
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Abstract. In this article, we study the scale-dependent dimensionality

properties and overall structure of text data with a method that mea-

sures correlation dimension in different scales. As experimental results,

we present the analysis of text data sets with the Reuters and Europarl

corpora, which are also compared to artificially generated point sets. A

comparison is also made with speech data. The results reflect some of the

typical properties of the data and the use of our method in improving

various data analysis applications is discussed.

Keywords: Correlation dimension, dimensionality calculation, dimen-

sionality reduction, statistical natural language processing.

1 Introduction

Knowing the intrinsic dimensionality of a data set can be a benefit, for instance,
when deciding the parameters of a dimension reduction method. One popular
technique for determining the intrinsic dimensionality of a finite data set is
calculating its correlation dimension, which is a fractal dimension. This is usually
done according to the method introduced by Grassberger and Procaccia in [1].
Usually the goal in these dimensionality calculations is to characterise a data
set by a single statistic. Not much emphasis is always put to the notion of the
dependence of correlation dimension on the scale of observation. However, as
we will show, the scale-dependent dimensionality properties can vary between
different data sets according to the nature of the data. Most neural network and
statistical methods such as singular value decomposition or the self-organising
map are usually applied without considering this fact. Even in papers studying
dimensionality calculation methods (e.g. [2] and [3]) the scale-dependence of
dimensionality is noted, but usually left without further discussion.

We focus on natural language data. It has been observed that the intrinsic
dimensionality of text data, such as term-document matrices, is often much
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lower than the dimensionality of the original data space due to its sparseness
and correlation in the data. In addition to term-document matrices, we also
consider speech data and data about co-occurences of words inside the same
sentence, which is another approach of encoding semantic information in text.

In a research closely related to ours, [4] studies the local dimensionality of a
word space concluding that the small-scale dimensionality is very low compared
to the dimensionality of the data space. In that paper, the word space was built
with the random indexing method, whereas we use a more standard setting. In
[5] a method for calculating dimensionality is presented and the effect of different
term-weighting methods on the dimensionality estimates is studied. Also in [6]
dimensionality calculations were made for natural language data, in this case
partly with the same data sets that we use. For the calculations, they used a
modified version of a method originally proposed by [7] based on eigenvalue
information of the autocorrelation matrix of the data.

2 The Scale-Dependent Correlation Dimension

Correlation dimension can be measured for a finite data set {x1, . . . xN} ⊂ Rn

by the Grassberger-Procaccia (GP) algorithm [1]. First we define the correlation
sum C(r) as the probability of a randomly chosen pair of data points being
within distance r from each other:

C(r) =
2

N(N − 1)

N∑
i=1

N∑
j=i

I(ρ(xi, xj) < r),

where I(x) is the indicator function (i.e. 1, if the argument condition holds and 0
otherwise) and ρ is the metric. We will use the Euclidean distance as the metric.
In the usual implementation of the GP-algorithm the correlation dimension is
then defined as the slope of the linear segment in the plot of the correlation sum
C(r) against r in double logarithmic coordinates.

In other words, one first finds a scale [ri, rj ], where the loglog-plot of the
correlation sum appears linear and then computes the correlation dimension ν̂
as the logarithmic derivative on this interval:

ν̂ = ν̂(ri, rj) =
log(C(rj)/C(ri))

log(rj/ri)
.

However, instead of defining only one segment or scale [ri, rj ], the dimension-
ality of a data set can actually be measured scale-dependently by studying the
local derivatives with different r. For estimating these dimensionality curves,
we decided throughout the paper (after experimenting with different values) to
use 100 measuring points r1, . . . , r100, distributed logarithmically on the interval
[r1 = min ρ(xi, xj), r100 = max ρ(xi, xj)]. For illustration purposes, we use an
additional smoothing method by a simple triangular kernel of window length w.
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The window length then defines the width of the scale of observation. Thus we
can finally define the scale-dependent dimensionality of the data set as

ν(r) =
1

2w

i+w∑
j=i−w,

j �=i

ν̂(ri, rj), when r ∈ [ri, ri+1]. (1)

Again, after experimenting with different window lengths, we fixed the value at
w = 6 throughout the paper.

3 Experiments

3.1 Reuters

The first data set for experiments with the method presented above is a document
collection gathered from the Reuters corpus of news articles [8]. We took a subset
of the corpus consisting of 10 000 articles. The documents have been preprocessed
by removing stop words and reducing all words into their stems. The frequencies
of the subset’s 300 most frequent terms were counted for each article resulting in
a matrix of 10 000 vectors with dimensionality 300. As a common preprocessing
method, a term frequency–inverse document frequency or tf/idf –weighting [9]
was performed for the raw frequencies.

The dimensionality curve for the Reuters data set is shown in Figure 1(a). The
curve indicates some essential properties of a term-document matrix. Starting
from the large scale on the right end of the curve, the dimensionality starts
increasing from zero as the scale narrows down from the diameter of the data set.
It soon reaches a maximum value which would traditionally be interpreted as the
dimensionality of the set. For our 10 000 article subset of the Reuters collection
the dimensionality would thus be approximately ν(r) = 7.5. Continuing on to
smaller scales on the left of the maximum value, the dimensionality decreases
significantly.
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Fig. 1. The dimensionality curve of ν(r) for the Reuters data set (a), the data set

consisting of 200 3-D clusters with 40 points scattered in 20-D space (b) and the

illustration of 2-D clusters scattered in 3-D space
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The low values of ν(r) with small r mean that the data shows high auto-
correlation locally. We will simulate this kind of behaviour with an artificially
generated set of points that consists of low-dimensional clusters scattered in a
high-dimensional embedding space. This idea is illustrated in Figure 1(c), which
shows 2-dimensional clusters scattered in 3-dimensional space. Our example data
set contains 200 subsets of 40 points from uniform distribution in a 3-dimensional
unit cube. These 200 clusters are each rotated by a random rotating matrix and
then shifted by a randomly generated vector in a 20-dimensional embedding
space. The dimensionality curve for this data set is shown in Figure 1(b).

The high autocorrelation at small distances suggests that the documents dif-
fer only in the frequencies of a few different key terms from each other. This
phenomenon can cause problems with large document collections because there
is not enough information for making a detailed analysis of the collection. Thus
the dimensionality curve could possibly be used to evaluate the differentia-
bility of a word-document data set and to develop a better feature selection
method through a hierarchical clustering. For instance, expanding the feature
space within proper clusters with terms that are significant to the documents in
that cluster making the differentiation of the document vectors easier. Related
work has already been done in [10] and also in [11].

3.2 ISOLET

To contrast the shape of the dimensionality curve for text data we will use the
ISOLET speech data set [12]. It consists of 7797 samples of spoken English
letters of which 617 acoustic features were measured resulting in 7797 vectors in
617-dimensional space. The dimensionality curve is shown in Figure 2(a)1. One
can interpret a part with linear behaviour in the correlation integral in the scale
between r = 4.7 and r = 6.8, where we get a rough estimate of ν(r) = 13.3.

An interesting feature of the ISOLET data set dimensionality curve is in the
small scale where the dimensionality value seems to explode. This explosion is
caused by the noise in the acoustic speech data which produces variance in small
scale in all the noisy feature components of the embedding space. Again we use
an artificially generated data set to support this observation. Figure 2(b) shows
the dimensionality curve of a data set consisting of 8 000 random points from
the 3-dimensional unit hypercube to which 20-dimensional Gaussian white noise
with a variance of 10−3 has been added.

Figures 1(b) and 2(b) can now be compared to each other. The sets repre-
sented by the curves differ quite a lot in their scale-dependent dimensionalities,
but show also similarity in dimensionalities in certain scales. In the extreme
case, a bad method or a careless examination could lead to an interpretation of
the sets having the same dimensionality. This again supports the significance of
investigating dimensionality properties of data sets in several scales.

1 Here we omitted the smallest point-pair distance from further analysis as it was

several magnitudes smaller than the rest of the distances forcing the curve to drop

to zero at the left end.
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Fig. 2. ν(r) for the ISOLET data set (a), the 3-D data set with 20-D Gaussian white

noise (b) and for the English (solid line) and Finnish (dashed line) Europarl data

sets (c)

3.3 Europarl

The Europarl corpus version 3 contains the minutes from the sessions of the EU
parliament from the years 1997-2006 in 11 languages [13]. We used it to study
dimensionality properties of word co-occurence data. Only the results of experi-
ments conducted with the English and Finnish parts of the corpus are presented
here. We used a subset of the corpus containing the sessions of 591 days that
were recorded for both languages. Both of the subsets were preprocessed by first
removing the XML-tagging used in the files, then applying sentence boundary
detection, tokenization and removal of punctuation and special characters.

The data matrix had the 1 000 most frequent words as the term vectors and
the 20 000 most frequent words as the context features. For the elements of the
matrix, we counted the frequencies of each term and feature word occuring in
the same sentence. Finally, we took the logarithm of the frequencies increased
by one as is done in the tf/idf -method, however preserving the frequency rank
information in this case.

The dimensionality curves for the English and Finnish Europarl data sets are
shown in Figure 2(c). The overall shape of both curves looks the same. The long
and thin right tails imply that some of the 1 000 data points in both sets are
spread very far from the others and also that there are large scale correlations
in the data. However, the sharp peak in both curves shows that the interpoint
distances are concentrated on a narrow scale causing rather high dimensionality
estimates in both cases. The peak dimensionality values are 35.9 for English and
38.1 for Finnish. On the left of the peak value, the dimensionality curves both
descend showing low-dimensionality in small scales for both data sets. However,
this effect is not as pronounced as with the Reuters data set because of the
shortness of the left tail in both curves. One more thing worth noting is the
different positioning of the curves on the horizontal axis. Further experiments,
not reported here, suggest that the location of the peak value on the horizontal
axis correlates highly with the average sentence length in words of the language,
but also the word type/token ratio may have an impact on this phenomenon.
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4 Conclusions and Discussion

We have presented a method for observing the scale-dependent dimensionality
of a finite data set based on the Grassberger-Procaccia algorithm. The dimen-
sionality curves obtained with our method give interesting information about
the structure of the data set and show some typical characteristics of the phe-
nomenon causing the data. We illustrated the method with natural language
data and artificially generated data discussing its indications and benefits.

The relevance of scale-dependent dimensionality for dimensionality reduction,
clustering and other data analysis methods seems to be an interesting topic for
future research, which, according to our knowledge, has not received much atten-
tion before. Also the reliability of the GP-algorithm, as used in our study, needs
to be studied more. An additional interesting question is how different data anal-
ysis methods respond to scale invariance or self-similarity (or the lack of them)
in a data set. These ideas and questions will get the authors’ attention in future
investigations and also serve as the motivation to the whole content of this article.
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Abstract. In this article we exploit the discrete-time dynamics of a sin-

gle neuron with self-connection to systematically design simple signal fil-

ters. Due to hysteresis effects and transient dynamics, this single neuron

behaves as an adjustable low-pass filter for specific parameter configura-

tions. Extending this neuro-module by two more recurrent neurons leads

to versatile high- and band-pass filters. The approach presented here

helps to understand how the dynamical properties of recurrent neural

networks can be used for filter design. Furthermore, it gives guidance

to a new way of implementing sensory preprocessing for acoustic signal

recognition in autonomous robots.
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1 Introduction

To date, recurrent neural networks (RNNs) have been employed to a wide field
of applications due to their excellent properties, like robustness, adaptivity, and
dynamics. Examples include the use of RNNs in chaotic systems [1], [2], robot
control and learning [3], trajectory generation [4], and others. Many applications
require effective learning methods [5], [6] to train the networks. As a consequence,
the networks, in particular for signal processing [7], [8], [9], end up with a massive
connectivity or cascaded recurrent structures. The complexity of such networks
requires a large memory during learning. In addition, their high dimensionality
makes it difficult to analyze them and even to understand the neural dynamics
in detail. However, a thorough understanding of the network dynamics is one
important part to further develop and apply these networks to other applications,
like robot control. This is also a basic step towards the development of complex
systems [10]. As a small step forward in this direction, we want to show here
how neural dynamics, e.g., hysteresis effects, can be applied to systematically
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design simple nonlinear low-pass, high-pass, and even band-pass filters. With
one or only a few neurons such filters can be used for sensory signal processing
in autonomous robots, where preprocessed signals will drive (complex) robot
behavior, e.g., for (non-speech) sound recognition.

The following section shortly describes the discrete-time dynamics of a single
recurrent neuron. Section 3 explains how we develop low-pass filters by utilizing
hysteresis effects of the single recurrent neuron. Sections 4 and 5 show the ex-
tension of the low-pass filters to high- and band-pass ones. Section 6 presents an
application of using the proposed neural filers for acoustic signal recognition in
a walking robot. The last section provides summary and discussion.

2 Discrete Dynamics of a Single Recurrent Neuron

A single neuron with self-connection (see Fig. 1(a)) has several interesting (dis-
crete) dynamical features[11]. For example, an excitatory self-connection leads
to a hysteresis effect, while stable oscillation with period-2 orbit can be observed
for an inhibitory self-connection. Both phenomena occur for specific parameter
domains, where the input and the strength of the self-connection are considered
as parameters. In this article, hysteresis effects are utilized for designing sim-
ple filters. The corresponding discrete-time dynamics is parameterized by the
input I and the self-connection ws (see Fig. 1(a)), and for a recurrent neuro-
module is given by a(t+1) = wsf(a(t))+ θ with the sigmoidal transfer function
f(a) = tanh(a). The parameter θ stands for the sum of the fixed bias term b
and the variable input I to the neuron. O(t) = f(a(t)) is the output signal. We
refer the reader to [12] for the presentation of the dynamics of a neuron with
excitatory self-connection in the (θ, ws)-parameter space.

3 Low-Pass Filters

In this section we describe how simple low pass filters can be designed based on
the hysteresis effect of the single recurrent neuron mentioned above. We simulate
a sine wave input signal varying from 100 Hz to 1000 Hz (compare Fig. 1(b)).
It is used as an input signal for the recurrent neuro-module configured as a
hysteresis element L (see Fig. 1(a)). The network is constructed and analyzed
using the Integrated Structure Evolution Environment (ISEE) [5] which is a
software platform for developing and evolving recurrent neural networks. To
observe the low-pass filter characteristics of the network, we fixed the presynaptic
weight (wi1 = 1.0) from the input to the neuron and the bias term (b1 = −0.1)
while the self-connection ws1 of the output unit is varied (see Fig. 1(c)). Using
this setup, the network performs as a low-pass filter at different cutoff frequencies
according to the strength of ws1. Figure 1(c) presents the correlation between
ws1 and the cutoff frequency. For example, selecting ws1 = 2.42 the network
suppresses signals with frequencies higher than 500 Hz. This effect together with
the characteristic curve of this network is shown in Fig. 2.
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Fig. 1. Low-pass filter setup. (a) Recurrent neuro-module realizing a simple low-pass

filter. Its input weight wi1 and bias term b1 are fixed to 1.0 and −0.1, respectively, while

the weight ws1 is changeable in order to obtain certain cutoff frequencies. (b) Example

of the input signal at increasing frequencies (from 100 Hz to 1 kHz, 44.1 kHz sampling

rate). (c) Cutoff frequency of a low-pass filter module depending on the self-connection

ws1. The x -axis represents the self-connection ws1 and the y-axis represents the ratio

between frequency [Hz] and sampling rate (44.1 kHz). Note that this diagram will be

used later for defining lower cutoff frequencies fL of the band-pass filters described

below.
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To visualize the hysteresis effect of the 500 Hz low-pass filter, output versus
input signals are plotted in Fig. 2(d). This shows that the hysteresis effect dis-
appears for the high-frequency signals (e.g., 1000 Hz), whereas for low-frequency
signals (e.g., 100 Hz and 500 Hz) the hysteresis switches the amplitude between
(almost) saturation values (approximately −1 and +1). As the bias term defines
the base activity of the neuron, the amplitude of the high-frequency output os-
cillates with a small magnitude between around −0.6 and −0.998. Eventually it
will never rise above 0.0 again. Due to the slowness of the transient dynamics
and the bias term the upper saturation domain (high stable fixed points (≈ +1))
is never reached if high frequency signals are applied. Furthermore, because of
the hysteresis effects, the low-pass filter output is slightly shifted and its shape
is distorted. Therefore, the system acts as a nonlinear low-pass filter.

4 High-Pass Filters

Having established a single neuron low-pass filter, the following step is to derive
networks, which behave like high-pass filters based on the presented low-pass.
The simplest way to do this would be to subtract the low-pass filter output
(see, e.g., Fig. 2(c)) from the input (see Fig. 1(b)). In other words, the low-pass
filter neuron L (see Figs. 1(a) and 3(a)) would here act as an inhibiting neuron
which inhibits transmission of all low-frequency signals of the input. However,
due to the hysteresis effect, the low-pass filter output is shifted and its shape
is distorted compared to the input (see Fig. 2(d)). Thus the input cannot be
directly subtracted. To overcome this problem, we again utilize the hysteresis
effect to shape the input to match it to the low-pass filter output. For doing this,
we simply add one more hysteresis unit H (see Fig. 3(a)) receiving its input via
a fixed presynaptic weight (wi2 = 1.0). Its neural parameters (self-connection
ws2 and bias term b2, see Fig. 3(a)) are experimentally adjusted and we set them
to ws2 = 2.34 and b2 = −0.1 for which a suitable hysteresis loop is achieved (see
Fig. 3(b)). According to this specific weight and bias term, this hidden neuron
H actually performs as a low-pass filter with a cutoff frequency of around 1000
Hz. Thus it shapes the input and allows all signals having frequencies up to
around 1000 Hz to pass through. After preprocessing at H , the shaped input
signal is transmitted to the output neuron O through a positive connection
weight (wc2 = 1.0, see Fig. 3(a)). It is then subtracted by the low-pass filter
output due to a negative connection weight (wc1 = − 1.0, see Fig. 3(a)). Still
the resulting signal consists of a few spikes in the low frequency components.
Therefore, we add a self-connection ws3 together with a bias term b3 at O to
obtain an appropriate third hysteresis loop (see Fig. 3(c)) that eliminates these
spikes. The neural parameters of this output unit are experimentally tuned and
they are set to ws3 = 2.45 and b3 = −1.0. The resulting network structure is show
in Fig. 3. Using this network, we then obtain high-pass filters at certain cutoff
frequencies by tuning only the weight ws1 shown in Fig. 1(c). For example,
choosing ws1 = 2.39 the network functions as a 700 Hz high-pass filter. This
high-pass effect and the characteristic curve of the network are shown in Fig. 4.
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pass filter. All weights and bias terms are fixed (wi1,2 = 1.0, ws2 = 2.34, ws3 = 2.45,
wc1 = −1.0, wc2 = 1.0, b1,2 = −0.1, and b3 = −1.0), while the weight ws1 is changeable

according to Fig. 1(c) in order to obtain certain cutoff frequencies. (b), (c) Hysteresis

effect between the input and output of the hidden neuron H and the output neuron O,

respectively. The input of H varies between −1.0 and +1.0 while the sum of the inputs

of O varies between −2.0 and +2.0. Due to the hysteresis effect the output of H and

O has its low (≈ −1.0) and high (≈ +1.0) activations at different points. The output

of H will show high activation when the input increases to values above 0.88. On the

other hand, it will show low activation when the input decreases below −0.68. For the

output of O, it will show high activation when the input increases to values above 1.86

while it will show low activation when the input decreases below 0.135. Arrows show

how the output develops according to the change of the input.

5 Band-Pass Filters

In this section, we describe how band-pass filters can be achieved by simply
changing the self-connections of the high-pass filter network (see Fig. 3(a)) while
its structure remains unchanged. Interestingly, due to the fact that the output
neuron of the network (see Fig. 3(a)) behaves as a hysteresis element, we only
need to increase its self-connection ws3 (i.e., increasing its hysteresis size [12])
up to a certain point. As a consequence of the transient dynamics [12], the high
frequency signals will then be suppressed.

To observe this phenomenon, we first let the network behave as a 100 Hz
high-pass filter; i.e., it passes only signals with frequencies above 100 Hz. The
neural parameters are given as follows: wi1,2 = 1.0, ws1 = 2.479, ws2 = 2.34,
ws3 = 2.45, wc1 = −1.0, wc2 = 1.0, b1,2 = −0.1, and b3 = −1.0. Now gradually
increasing ws3 from approximately 2.47 to 2.57 the high frequency boundary of
the network decreases. Thus, in order to design our band-pass filters, this weight
will be used to set the upper cutoff frequency fU . It defines the upper limit
at which the frequencies pass through. Beyond this limit, signals will be can-
celled out. The correlation between weight ws3 and the upper cutoff frequency
fU is shown in Fig. 5(a). As shown in the previous sections, the self-connection
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the network with its cutoff frequency at approximately 700 Hz. (d) Output signal of
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Relation between input and output signals at certain frequencies. Due to the hysteresis

effect and the subtraction process, the shape of the output signal is distorted, e.g., 800

Hz. Arrows show how the output develops according to the change of the input.

ws1 is generally applied to set the frequency at which the signal will be passed
(for high-pass filters) or filtered (for low-pass filters). Here we make use of this
weight (ws1, see Fig. 1(c)) to set the lower cutoff frequency fL which allows
only signals having frequencies above this point to pass. For example, selecting
ws1 = fL = 2.47 and ws3 = fU = 2.51 from the (ws1,3, cutoff frequencies)-spaces
shown in Figs. 1(c) and 5(a), the network (see Fig. 5(b)) lets signals pass which
have frequencies between 200 Hz and 850 Hz (see Fig. 5(c)). Decreasing ws1 to
2.455 but increasing ws3 to 2.532 the signal bandwidth is reduced to the range
from around 300 Hz to around 600 Hz (see Fig. 5(d)). Furthermore, it is even
possible set the weights to narrow the frequency range to around 500 Hz by
choosing, e.g., ws1 = 2.43 and ws3 = 2.542 (see Fig. 5(e)). Thus, the network
behaves as a versatile band pass filter.

6 Robot Behavior Control

To show the capability of the neural filters presented here for real world appli-
cations, we have applied, e.g., a 400 Hz low-pass filter network (see Fig. 1(a)),
to generate acoustic-driven walking behavior (see Fig. 6) of our hexapod robot
[2], [12]. The network receives the input–a multi frequency signal mixing be-
tween a target low frequency signal (e.g., 300 Hz) and unwanted noise from
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Fig. 5. Example of a band-pass filter. (a) Upper cutoff frequency fU of a band-pass

filter network depending on the weight ws3. (b) The band-pass filter network. The

self-connection ws1 of neuron L defines the lower cutoff frequencies (cf. Fig. 1(c)) while

ws3 of the output neuron O is for controlling the upper cutoff frequencies (a). (c)

Response of the network for ws1 = 2.47, ws3 = 2.51. Upper panel: Characteristic curve

of the network with bandwidth from 200 Hz to 850 Hz. Lower panel: Output signal

of the network according to the input given in Fig. 1(b). (d) Response of the network

for ws1 = 2.455, ws3 = 2.532. Upper panel: Characteristic curve of the network with

bandwidth from around 300 Hz to around 600 Hz. Lower panel: Output signal of the

network using the same input as above. (e) Response of the network for ws1 = 2.43,
ws3 = 2.542. Upper panel: Characteristic curve of the network with its bandpass of

around 500 Hz. Lower panel: Output signal of the network. Note that Amp means the

amplitude of neuron activation.

motors as well as locomotion (see Figs. 6(a)–(c))–from an acoustic sensor system
of the robot. It suppresses the unwanted noise including acoustic signals hav-
ing frequencies above 400 Hz (see Figs. 6(d) and (e)) while the low frequency
signals pass through (see Fig. 6(f)). As a consequence, it enables the robot to
autonomously react on a specific acoustic signal in a real environment; i.e., the
robot changes its gait from a slow wave gait (default gait, see Figs 6(g) and (h))
to a fast one (acoustic-driven gait, see Fig. 6(i)) as soon as it detects the signal
at the carrier frequency of 300 Hz. The video clip of the experiments can be seen
at http://www.manoonpong.com/ICANN2010/AcousticDrivenBehavior.mpg.

These acoustic-driven walking behavioral experiments show that the simple
recurrent neural filters are appropriate for robot applications like background
noise elimination, and/or non-speech sound recognition.



Simple Nonlinear Filters Using Hysteresis of Single Recurrent Neurons 381

Walking Walking and 800 Hz sound Walking and 300 Hz sound 

-1.0

-0.5

0.0

0.5

1.0

-1.0

-0.5

0.0

0.5

1.0

0 200  400  600 800  1000  1200

0 200  400  600 800  1000  1200

-1.0

-0.5

0.0

0.5

1.0

-1.0

-0.5

0.0

0.5

1.0

0 200  400  600 800  1000  1200

0 200  400  600 800  1000  1200

-1.0

-0.5

0.0

0.5

1.0

-1.0

-0.5

0.0

0.5

1.0

0 200  400  600 800  1000  1200

0 200  400  600 800  1000  1200

  fast caterpillar gait

L
1

L
2

L
3

R
1

R
2

R
3

slow wave gait

L
1

L
2

L
3

R
1

R
2

R
3

slow wave gait

L
1

L
2

L
3

R
1

R
2

R
3

TimeTime Time

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Time [steps] Time [steps] Time [steps]

Time [steps] Time [steps] Time [steps]

In
p

u
t

In
p

u
t

In
p

u
t

O
u

tp
u

t

O
u

tp
u

t

O
u

tp
u

t

Fig. 6. Input and output signals of the 400 Hz low-pass filter network and correspond-

ing walking patterns in three example situations (only walking (left), walking and

receiving 800 Hz sound (middle), and walking and receiving 300 Hz sound (right)).

(a)–(c) The input signal to the network for the different conditions. (d)–(f) The out-

put of the network according to the given input for the different conditions. (g)–(i)

Examples of the corresponding walking patterns in a certain period for the different

conditions. The x -axis represents time and the y-axis represents the legs. During the

swing phase (white blocks) the feet have no ground contact. During the stance phase

(black blocks) the feet touch the ground. R1: Right front leg, R2: Right middle leg, R3:

Right hind leg, L1: Left front leg, L2: Left middle leg, L3: Left hind leg. Note that we

use an additional low-pass filter neuron to eliminate the remaining noise ((d), (e)) and

smooth the desired acoustic signal (f) before activating the desired walking pattern

(here, caterpillar-like gait (i) through modular neural locomotion control [2].

7 Discussion and Conclusions

In this study, we have addressed the exploitation of hysteresis effects and tran-
sient dynamics of a single neuron with an excitatory self-connection to design
different filters. Starting from one single recurrent neuron, we have observed that
this simple network with its specific parameters has the property of a low-pass
filter. As such it has comparable properties of an infinite impulse response fil-
ter in digital filter theory (IIR filter) because its recurrent connection provides
feedback to the system as the output of the IIR filter does. Based on this sim-
ple low-pass filter network, by adding two recurrent neurons we obtained high-
and band-pass filters, where these neurons also act as hysteresis elements. The
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cutoff frequencies of the high-pass filter are controlled by only one self-connection;
while the upper and lower cutoff frequencies of the band-pass filter are deter-
mined by two self-connections. An advantage of the small number and limited
range of all relevant parameters (ws1,3, see Figs. 1(c) and 5(a)) is that these pa-
rameters could be self-adjusted for obtaining a desired frequency range through
a learning mechanism, like correlation based differential Hebbian learning [13],
or by evolutionary algorithms [5]. Moreover, the presented filter networks can
be implemented as analog filters by using Schmitt trigger circuits which also ex-
hibit the hysteresis effect. This kind of filtering technique is different from many
others [14], [15], [16], [17], [8], [7], [9] which are in use.

Several successful digital filter techniques have been developed, like Butter-
worth, Elliptic, Chebyshev filters, as well as by using Fourier methods [14]. In
general they are based on impulse and frequency response methods. As described
by [15], these classical methods, however, are founded on three basic assump-
tions: linearity, stationary, and second-order statistics with particular emphasis
on Gaussian characteristic. Thus advanced techniques like artificial neural net-
works have become an alternative way for in particular nonlinear signal pro-
cessing [15]. In most cases, feed-forward multi layer perceptrons (MLP) with a
gradient descend based learning algorithm have been extensively used for this
[16], [17]. On the other hand, the use of recurrent neural networks for digital
signal processing applications is now increasing, too. For example, Hagen et al.
[8] presented a multi-loop recurrent network with a cascaded structure to predict
an acoustic signal. Becerikli [7] used dynamic neural networks with Levenberg-
Marquardt based fast training for nonlinear filtering design. Squartini et al. [9]
employed echo state networks for identification of nonlinear dynamical systems
for digital audio processing. Compared to many of these approaches, we present
here a minimal and analyzable filter set based on simple neural dynamics. Due to
the neural dynamics, these filters provide a sharp cut-off but the shape of the out-
put signal is distorted; i.e., the filter networks act as nonlinear filters. Thus, these
networks are appropriate for applications like background noise elimination, or
non-speech sound recognition as shown here. One can also combine different
filter modules or modify the neural structure to achieve more complex signal
preprocessing [12]. To this end, we believe that here the described technique
for filter design may lead to another way of modelling sensory preprocessing
for robotic systems. More demanding tasks will be a deeper investigation of the
mathematical properties of these filter networks and their dynamical behavior
(e.g., spectral characteristics) using the framework of a nonlinear autoregressive
moving average (NARMA) model [18]. We will also intensively evaluate the ca-
pability of our networks by comparing them to conventional liner filters (i.e. IIR
filters).
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Abstract. This paper addresses the problem of lip segmentation in color space,
which is a crucial issue to the success of a lip-reading system. We present a new
segmentation approach to lip contour extraction by taking account of the color
difference between lip and skin in color space. Firstly, we obtain a lip segment
sample via a color transformation sequence in 1976 CIELAB and LUX color
spaces. Secondly, we establish a Gaussian model and make use of the hue and
saturation value of each pixel within the lip segment to estimate the model param-
eters. Subsequently, the memberships of lip and non-lip regions are calculated,
respectively. Thirdly, we employ morphological filters to obtain the desirable lip
region approximately based on the memberships. Finally, we extract the lip con-
tour via convex hull algorithm with the prior knowledge of the human mouth
shape. Experiments show the efficacy of the proposed approach in comparison
with the existing lip segmentation methods.

1 Introduction

In the past decade, lip segmentation has received considerable attention from the com-
munity because of its widespread applications[1], [2]. In general, lip segmentation is a
non-trivial task because the color difference between the lip and the skin regions is not
so noticeable sometimes. In the literature, a few image segmentation techniques have
been proposed. One class of methods is based on the clustering with color features [3]
provided that the number of clusters is known in advance. However, from the practical
viewpoint, the number of clusters should be selected adaptively. Consequently, such a
method is unable to operate fully automatically. Another class of widely-used methods
is model-based ones [1]. Empirical studies have shown its success, but manually work
on landmarks is needed for training.

In this paper, we will present a new method for automatic segmentation of lip images
provided that the lower part of a face (i.e. the part between nostril and chin) has been
available. A color transformation sequence is proposed to enlarge the distinction be-
tween the lips and the skin. Different from the existing methods, the proposed one only
extracts a segment of lip rather than the whole lip region. Then, based on the lip seg-
ment sample, we establish a Gaussian model in a modified HSV color space so that the
memberships of lip and non-lip region are calculated, respectively. We further utilize
morphological filters to obtain the lip region candidate based on the two memberships.
Finally, convex hull algorithm is employed to extract lip contour. Experiments have
shown the efficacy of the proposed approach in comparison with the existing methods.

K. Diamantaras, W. Duch, L.S. Iliadis (Eds.): ICANN 2010, Part I, LNCS 6352, pp. 384–387, 2010.
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2 Lip Membership Based on Color Space Transformation

We transform the source image into 1976 CIELAB color space and employ the his-
togram equalization to cover the a∗ component to the range of [0, 255], denoted as Ia∗ .
Furthermore, we get the U component via the method proposed in [4] with histogram
equalization, denoted as IU .

Let Isub = Ia∗ − IU .1 We establish a Gaussian model for Isub based on the gray-
level value for each non-zero pixel with the mean μ̂sub and the standard deviation σ̂sub.
The candidate lip segment can be obtained by

Icandidate =

⎧⎨⎩
0 if Isub ≤ μ̂sub − 2σ̂sub,

1 otherwise.
(1)

The morphological reconstruction based method proposed in [5] is performed to sup-
press border connected noisy structures. The output image is denoted as I∗candidate. In
I∗candidate, the nearest connected foreground block to gravity center, as the extracted
segment, makes a segment sample that corresponds to the lip segment. Note that it is
enough to extract a part of lip rather than the whole region because the extracted seg-
ment is used for sample data so as to establish a probability model.

For each pixel in HSV image, we perform the following transformation to get a
vector: C = (H ·cos(2π ·S), H ·sin(2π ·S))T . Then, we establish a probability model
as follows:

P =
1

2π
√

Σ̂
· exp(− (X − μ̂)Σ̂−1(X − μ̂)T

2
) (2)

where the mean μ̂ and the covariance matrix Σ̂ can be evaluated by C vectors of the
pixels in source image restricted by the lip segment region in the previous steps. As the
input of the model of Eq.(2), the C vector for each pixel in the whole source image is
obtained. Thus, we can calculate the lip membership denoted as Mlip.

Similarly, we can also establish a probability model to calculate the non-lip member-
ship as Mnon−lip. Moreover, considering the convenience of visibility, we project the
memberships from [0, 1] to [0, 255].

3 Lip Contour Extraction

We obtain a mask image by letting

Mask = 255 − Mnon−lip − IU . (3)

While the lip membership is labeled as marker, morphological reconstruction operation
can be employed.

We further utilize a gray-level threshold selection method proposed in [6] to trans-
form the reconstruction result into a binary image denoted as BRT with boundary

1 In this paper, all equations are employed in positive area. That is, as long as a result is negative,
it will be set at 0 automatically.
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connected structures suppressed, and mark the biggest continued foreground block by
Blip1

.
According to the following equation

ITTM = IU − Ia∗ , (4)

the region we have obtained covers the teeth, tongue and some parts of oral cavity
approximately.

We further transform ITTM into a binary image as BTTM by the threshold selection
method. Then, morphological closing is employed to BRT ∪ BTTM by performing a
5 × 5 structuring element operation. We select the biggest foreground block denoted
as Blip2

in the closing operation result. Hence, the binary image Blip1
∪ Blip2

can
represent the whole lip region. Furthermore, we utilize morphological opening with
3 × 3 structuring element to smooth the edge, resulting as Blip. Finally, the quickhull
algorithm proposed in [7] is employed to draw the contour of lip.

4 Experimental Results

Comparison is made to demonstrate the performance of the proposed approach with
Liew03 proposed in [3], and Guan08 in [8]. Four databases: (1) AR face database [9],
(2) CVL face database [10], (3) GTAV face database, and (4) a database established by
ourselves, are used to test the accuracy and robustness in different capture environments.
We randomly selected 800 images in total and manually segmented the lip to serve as
the ground truth. Some segmentation results can be found in Figure 1.

Two measures (OL and SE) defined in [3] are used to evaluate the performance of
the algorithms. Table 1 shows the segmentation results on the four different databases.

Fig. 1. Some samples of lip contour extraction in different databases

Table 1. The segmentation results across the four databases

Algorithm Liew03 Guan08 Proposed Approach

average OL, % 80.73 45.10 90.12
average SE, % 20.15 55.21 9.33
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5 Conclusion

In this paper, we have proposed a new approach to automatic lip segmentation via the
probability model in color space and morphological filter. This approach features the
high stability of lip segmentation and robust performance against the disparate capture
environment and different skin color. Experiments have shown the promising result of
the proposed approach in comparison with the existing methods.
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Learning in a Unitary Coherent Hippocampus
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Abstract. A previous paper [2] presented a model (UCPF-HC) of the hippocam-
pus as a unitary coherent particle filter, which combines the classical hippocam-
pal roles of associative memory and spatial navigation, using a Bayesian filter
framework. The present paper extends this model to include online learning of
connections to and from the CA3 region. Learning in the extended neural net-
work is equivalent to learning in a temporal restricted Boltzmann machine under
certain assumptions about neuromodulatory effects on connectivity and learning
during theta cycles, which suggest detailed neural mappings for Bayesian infer-
ence and learning within sub-stages of a theta cycle. After-depolarisations (ADP)
are hypothesised to play a novel role to enable reuse of recurrent prior informa-
tion across sub-stages of theta.

1 Introduction

Anatomy. The principal input structures of the hippocampus are the superficial layers
of Entorhinal Cortex (ECs). ECs projects to Dentate Gyrus (DG) which is believed to
sparsify the encoding of ECs. Both ECs and DG project to CA3, which also receives
strong recurrent connections that are disabled [3] by septal ACh. CA3 and ECs project
to CA1, which in turn projects to the deep layers of Entorhinal cortex (ECd), closing a
loop if ECd sends information back to ECs. ECs, CA1 and ECd outputs appear to share
a coding scheme, as evidenced by one-to-one topographic projections. In contrast, DG
and CA3 outputs are thought to work in a second basis or latent space. In a second loop,
ECs and CA1 both project to Subiculum (Sub), which projects to the midbrain Septum
(Sep) via fornix. Septal ACh and GABA fibres project back to all parts of hippocampus.

UCPF-HC model. A previous paper [2], mapped this hippocampal circuit onto a
modified Temporal Restricted Boltzmann machine (TRBM, [8]). The TRBM assumes
Boolean observation vectors (including a bias node), z′; Boolean hidden state vectors
(including a bias node), x′; weight matrices Wx′z′ and Wx′x′ , and specifies joints,

P (xt, xt−1, zt) =
1
Z

exp
∑

t

(−x′
tWx′x′x′

t−1 − x′
tWx′z′z′t). (1)

Unlike the standard TRBM, UCPF-HC uses the following deterministic update to obtain
maximum a posteriori estimates:

x̂t ← argmax P (xt|x̂t−1, zt) = {x̂t(i) = (P (xt(i)|x̂t−1, zt) >
1
2
)}i (2)

which is the zero-temperature limit of an annealed sequential Gibbs sampler.
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The noisy inputs zt = yt + εt are mapped to the combined ECs and DG, where the
DG activations are functions of the ECs activations, zt = (ECst, DGt(ECst)). CA3
is mapped to the hidden state, xt. CA1 performs a partial decoding into the DG basis.
Finally the estimated de-noised output is mapped to ECd, ŷt = ECdt. Each neural
population is a Boolean vector at each discrete time step t.

A major problem with UCPF-HC tracking is tracking loss, as it approximates the
whole posterior with a single sample. To deal with this, performance of the filter is
monitored to heuristically detect when tracking is lost – by thresholding a moving av-
erage of discrepancy between observed and denoised sensors – then the priors are dis-
abled when lostness is detected. In UCPF-HC, the Subiculum-Septum circuit performs
this monitoring. Sub then compares the partially decoded CA1 information against the
original ECs input, receiving one-to-one connections from both regions. If they differ
for an extended period of time, this indicates loss of tracking. Tonic cholinergic pro-
jections from Sep, activated via Sub, are well-placed to disable the CA3 priors when
lostness occurs, as they are known [3] to disable the recurrent connections in CA3.

The present study presents a new version of UCPF-HC, using the plus maze en-
vironment detailed in [2], and extendend with ADP to perform learning in CA3. The
plus-maze consists of 13 discrete locations as shown in fig. 4(a). The agent sees unique
visual markers if facing two of the arms; it also has touch sensors to report walls to
its immediate left, right and front. The original UCPF-HC model included mechanisms
to perform path integration in the grid and heading cells using odometry and denoised
ECd states – to simplify the present study we assume that grid and heading cells give
uncorrelated noisy (Global Positioning System style) estimates of location and orienta-
tion, as would be obtained if the UCPF-HC’s outputs were always perfect or known to
be lost but the odometry was noisy.

ADP Physiology. CA3 pyramidal cells [1] exhibit a single cell short-term memory ef-
fect called after-depolarisation (ADP), illustrated in fig. 4(b). A spike (1) in membrane
potential, V , is followed by a fast after-hyper-polarisation (AHP, 2), then an after-
depolarisation (ADP, 3) and a second, slower AHP (4), before returning to its resting
potential (5). (See [7] sections 5.2.5 and 5.3.5 for a detailed review.) ADP has previously
been suggested [5] as a basis for multiplexed short-term memories in hippocampus, en-
abling around seven patterns to be stored simultaneously by re-activating themselves
after other patterns, using the ADP gain plus an external excitatory oscillator. We will
suggest a related but novel role for ADPs, allowing priors to be restored during separate
wake and sleep cycles [4] in a temporal network. ADP is dependent on the presence
of ACh or 5HT [6], and septal phasic ACh has been suggested to play a role in the
hippocampal theta rhythm [3].

2 On-Line Learning for the UCPF-HC Model

The previous version [2] of UCPF-HC did not perform any realistic learning. CA3
cell semantics were specified by hand – for example cells were specified to respond to
conjunctions of places, headings and light states. Ideal CA3 responses were computed
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infert waket sleep1
t sleep2

t

Fig. 1. The four substeps, infer, wake, sleep1, sleep2 within one theta cycle in the learning
neural network model. Circles denote populations of neurons. Arrows indicate fully connected
neural network projections (this is not a Bayesian network diagram). Thick arrows indicate con-
nections whose weights are updated with Hebbian (+) and anti-Hebbian (-) rules. Dotted arrows
indicate where learning occurs but no information is projected (i.e. when the child population is
clamped from elsewhere). Filled-in nodes are fixed values at each substep, unfilled nodes are to
be computed. The bias population contains a single neuron which is always on, and abstracts the
threshold values in CA3. In the first substep of the next cycle, infert+1, CA3 receives a θ signal
which disconnects the recurrent connections and switches to ADP recurrent activation.

offline, from these hand-set specifications and ground truth data sets, then weights for
each input population to CA3, pop, were set using independent wake-sleep [4] updates,

Δwij = α(〈CA3ipopj〉P̂ (pop,CA3|b) − 〈CA3ipopj〉P (pop,CA3|b)) (3)

where P̂ is the empirical data distribution including the hand-set ideal hidden values;
P is the model’s generative distribution; and b is the set of hidden nodes biases, preset
empirically to model priors on the handset semantics. This was not indented as a realis-
tic learning model, rather just a computational method to set the weights. In particular
the computation was greatly simplified by having access to ground-truth hidden states,
which made the weights mutually independent given the bias. In reality the agent does
not have access to ground truth hidden states – only to sensors.

We do not give the new model access to ideal CA3 states or hand-set their semantics –
this time the semantics must be learned. The semantics of DG and CA1, and hence the
weights WEC→DG and WCA1→EC remain set by hand – we focus only on extending
the model to learn all connections to and from CA3: namely WECs→CA3, WDG→CA3,
WCA3→CA3 and WCA3→CA1.

To simplify both the presentation and implementation of the learning model, we will
first present the hippocampal learning algorithm for the UCPF-HC neural network as
a fait accompli, then describe a graphical model simplification used in the implemen-
tation. The graphical model formulation also provides insight into the purposes of the
neural network processes, which were in fact derived from the graphical model during
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θ
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+
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-
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Fig. 2. The reduced TRBM model. This network is equivalent to the neural network, but includes
undirected connections, and groups the information from EC,DG and CA1 into a single observ-
able population, OBS.

development. The algorithm is based on the wake-sleep process but is now intended as
a biological model.

2.1 Neural Network Model

The neural learning algorithm is based on the wake-sleep algorithm [4] and is illus-
trated in fig. 1. It assumes that for every discrete time step t there are four substeps,
infert, waket, sleep

1
t , sleep

2
t corresponding to different phases of one hippocampal

theta cycle. These substeps have differing connectivity and learning dynamics, which
might be controlled by neuromodulators during the theta cycle. The substeps occur se-
quentially. But importantly, CA3 activation during the infert substep is required to
directly influence CA3 at waket; and CA3 activation at infert is required to directly
influence CA3 at infert+1; as shown by the arrows in the figure. We tentatively sug-
gest that ADP, discussed in section 1, might play a role in such temporally incontiguous
transmission of information.

The infert substep is identical to inference in the UCPF-HC model. ECs sensor
data is observed; deterministic DG activations (via handset WEC→DG) are computed,
and thus act as observations too. We assume that the state of CA3 at infert−1 was
inferred exactly and correctly by the UCPF, and is available as an input via recurrent
transmission weights WCA3→CA3. Using these inputs, CA3 is updated with a Gibbs
sampling step at temperature T = 0. CA1 and ECd decode it to retrieve denoised
sensor estimates.

In the waket substep, the same input vector is maintained in EC and DG; and CA1
activation becomes clamped by a training signal from the ECs input. We assume that
conjunctions of facts from ECs are represented perfectly in CA1 by this process, as in
DG. We require a delayed copy of the recurrent CA3 input from infert−1 as was re-
ceived in the infert step – not a recurrent CA3 input from infert – as the recurrent
input to CA3 in waket. CA3 is resampled at T = 1 and Hebbian learning is performed
at all synapses to and from CA3. In the sleep1

t substep, the recurrent CA3 connections
are used directly so that CA3’s state now is influenced by its previous state, waket. Its
connections from ECs and DG are made ineffectual. CA3 is sampled again at temper-
ature T = 1, then CA1 and ECd is decoded from it. In sleep2

t we assume that ECs
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becomes clamped to the ECd result – feeding back the denoised output into the input.
CA3 is resampled again at T = 1 and antihebbian learning is performed in all synapses
to and from CA3. The theta cycle is now complete, and the next one begins at infert+1.

2.2 Reduced Undirected Model

We next explain why the neural network is equivalent to the reduced graphical model
shown in fig. 2. It is a new variant of the temporal restricted Boltzmann machine [8].

DG consists entirely of cells whose receptive fields are copies or conjunctions of ECs
fields. In the reduced model, we form a single population, OBS, which contains both
DG and ECs cells. CA1 in the neural model consists of cells with identical fields to DG
cells, which are thus also implicitly contained in OBS. The weights WOBS−CA3 are
undirected as in the TRBM, though the steps of learning them correspond to the steps
learning the weights in the neural model.

In phase infert, CA3 is driven by inputs from EC and DG in the directed neural
model, which is equivalent to the undirected link to the observed OBS population in
the reduced model. (The bias link is also changed from directed to undirected in the
reduced model – again this is an equivalence as the bias is always observed.) In this
phase, the temperature is zero so the inferences are always the MAPs. This gives the
best denosied estimate of the state of the world.

Fig. 3. (a) Training errors. Error is the sum of ECs-ECd discrepancies over all training data in
each epoch. (b) Lostness probabilities in learned, random and handset-semantics weights. Error
bars show one standard deviation of uncertainty about the population mean.

In phase waket, the drivers of CA3 are the same, but the temperature is T = 1. In
the neural model, CA1 is clamped to EC, and Hebbian learning occurs in WEC→CA3,
WDG→CA3 and WCA3→CA1. This is equivalent to clamping OBS again in the reduced
model, and Hebbian learning on WCA3−CA1. As in the neural model there is also Heb-
bian learning on the recurrent CA3 connections.

In phase sleept of the undirected model, a CA3 sample is drawn conditioned on its
recurrent state only. Then an OBS sample is drawn conditioned on CA3, and finally
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a new CA3 sample is drawn conditioned on its recurrents and on the OBS sample.
Antihebbian learning is performed on all connections to CA3. This is equivalent to the
process in the neural model’s sleep1

t and sleep2
t , and is a standard TRBM sleep step.

Phase infert+1 is the start of the next cycle, and like the neural model, requires
historical CA3 input from infert, as might be obtained using ADP.

3 Results

We tested the learning algorithm in the plus-maze world (see [2]), using a path of 30,000
random walk steps. The path was replayed for several epochs until the weights con-
verged. For computational simplicity, learning was performed used the equivalent re-
duced model, though inference was performed with the full neural model, sharing the
learned weights. Python code for the simulation is available from the authors. There
is some subtlety in handling learning for cases where the Sub-Sep lostness circuit is
activated, which is detailed in the appendix. Fig. 5(a) shows the training errors during
learning – using a learning rate of α = 0.001 – most of the learning takes place in the
first 10 epochs. As in the original [2] UCPF-HC model, the neural network is used to
infer denoised ECd estimates of position and sensors. Fig. 5(b) shows the average rate
of location errors using the learned weights, compared against the handset semantic of
the original UCPF-HC model. A run with randomised, untrained weights is shown for
comparison. Inspecting the receptive fields of CA3 cells learned by the training, we find
cells in fig. 4(a) responding to individual places (3 and 4); regions around a place (2);
the ends of the arms (5); and less well defined fields (1 and 6).

(a) Examples of learned CA3 receptive
fields, over the plus maze.

1

2

3

4

5

t

V

(b) Typical membrane time course following
a spike under ADP dynamics.

Fig. 4.

4 Discussion

We have presented a top-down mapping of a wake-sleep learning algorithm onto the bi-
ological hippocampal circuit and existing UCPF-HC model. The UCPF-HC model was
extended by adding detailed substeps within theta cycles, which specify the connec-
tivity and learning operations required by the algorithm, as biological hypotheses. Our
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revised model demonstrates a biological plausible online learning mechanism for CA3
pyramidal cells, and thus lends support to our general hypothesis that the hippocampal
system may operate as a unitary coherent particle filter. This type of mapping necessar-
ily makes strong predictions about what neurons would be required to do to implement
the algorithm. In particular we have relied on specific timing features of ADP and on
ACh to switch between recurrent CA3 activation and ADP-based CA3 memories. It re-
mains to be seen whether biological ADP and ACh are able to provide these functions.

The inference step was performed at zero temperature, separately from higher tem-
perature wake and sleep steps. There are several possible variations on this theme. First,
both wake and sleep could be performed at zero temperature, removing the need for a
separate inference step, and resulting in a different type of optimisation during learning
(minimising KL[QT ||PT ] rather than KL[Q||P ]. In the limit Q = P they would give
the same result). Second, wake and sleep steps could be extended to run for several
steps. This would result in longer sequences of uninterrupted tracking of observations,
alternating with longer ‘hallucinated’ sequences of generated samples. The latter would
resemble sequence replay and preplay known to take place in CA3.

Future work could implement the neural learning model directly, in place of the
reduced simplification. It could also consider memories of the agent’s own actions as
way to increase the predictability of plus maze sequences. Finally the agent should
iteratively estimate the amount of error in its own location estimates rather than rely on
the artificial noisy GPS assumption used in this proof-of-concept implementation.
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Abstract. In this paper, we describe and compare two distinct algo-

rithms aiming at the low-rank approximation of a user-item ratings

matrix in the context of Collaborative Filtering (CF). The first one imple-

ments standard Principal Component Analysis (PCA) of an association

matrix formed from the original data. The second algorithm is based on

h-NLPCA, a nonlinear generalization of standard PCA, which utilizes

an autoassociative network, and constrains the nonlinear components

to have the same hierarchical order as the linear components in stan-

dard PCA. We examine the impact of the aforementioned approaches

on the quality of the generated predictions through a series of experi-

ments. Experimental results show that the latter approach outperforms

the standard PCA approach for most values of the retained dimensions.

Keywords: Collaborative Filtering,Low-rank Approximation, Artificial

Neural Networks, Principal Component Analysis.

1 Introduction

With the term Collaborative Filtering (CF) we refer to intelligent techniques
which are employed by Recommender Systems (RSs) and are used to generate
personalized recommendations. The basic idea of CF is that users who have
agreed in the past tend to agree in the future. A common and successful approach
to collaborative prediction is to fit a factor model to the original rating data,
and use it in order to make further predictions. A factor model approximates the
observed user preferences in a low dimensionality space in order to uncover latent
features that explain user preferences. In this paper, we will focus on two PCA
implementations, aiming at the low-rank approximation of the corresponding
user-item ratings matrix.

PCA is a well-established data analysis technique that relies on a simple
transformation of recorded observations, to produce statistically independent
score variables. It has been extensively used for lossy data compression, feature
extraction, data visualization, and most recently in the field of Collaborative
Filtering [1,2,3]. The linear assumption underlying PCA makes it insufficient for
capturing nonlinear patterns among variables. Artificial Neural Network (ANN)
models, a class of nonlinear empirical modeling methods, allow for nonlinear
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mappings between the original and the reduced dimensional spaces. Various
ANN methods have been described in a PCA framewok [4,5,6,7]. ANNs have been
utilized for the generation of CF predictions: Billsus and Pazzani [8] formulate
CF as a classification problem by feeding their data matrix of reduced dimensions
to an ANN. Lee et al. [9] put users into clusters by using a Self-Organizing
Map neural network, and then apply CF on those clusters in order to extract
recommendations. Gong and Ye [10] utilize a backpropagation neural network
to fill the missing values of the original data matrix, and then apply item-based
CF to form the item neighborhood.

The aim of this paper is to examine two implementations of PCA in the
context of CF. The first implementation utilizes PCA through the Singular Value
Decomposition (SVD) of the covariance matrix. For our second implementation
we apply a hierarchical nonlinear PCA algorithm, denoted as h-NLPCA [11]. The
primary contribution of this work lies in the application of h-NLPCA, which is
based on a multi-layer perceptron with an auto-associative topology, for the
generation of personalized recommendations. The main advantage of h-NLPCA
is that it enforces a hierarchical order of principal components which always
yields the same solution of uncorrelated features.

The remainder of this paper is organized as follows: Section 2 is devoted to
a general presentation of the two PCA approaches, through SVD and ANNs,
respectively. Section 3 discusses the proposed algorithms in the context of CF,
outlining the distinct implementation steps. The efficiency of each approach is
demonstrated in Section 4 through a set of experiments on a publicly available
data set. The paper concludes in Section 5.

2 Two PCA Implementations

2.1 SVD-Based PCA

PCA summarizes the variation in correlated multivariate attributes to a set of
non-correlated components, called principal components, each of which is a par-
ticular linear combination of the original variables [1]. PCA can be performed by
applying the SVD to either a covariance or a correlation matrix of the original
data set, in order to extract the smallest number of components while retaining
as much of the original variance as possible. The eigenvalues of the covariance
(correlation) matrix indicate the amount of variance along the direction given by
the corresponding eigenvector. That is, when a covariance matrix A is decom-
posed by SVD, i.e., A = USVT , the matrix U contains the variables’ loadings
for the principal components, and the matrix S has the corresponding variances
along the diagonal [1]. A reduction to k dimensions is obtained by projecting the
original data matrix on the subspace consisting of eigenvectors corresponding to
the largest k eigenvalues of the covariance matrix.

2.2 h-NLPCA

Nonlinear PCA is based on a multi-layer perceptron (MLP) with an autoassocia-
tive topology, also known as an autoencoder. The network consists of two parts:
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the first part represents the extraction function, Φextr : X → Z . The second part
represents the inverse, reconstruction function, Φgen : Z → X̂ . A hidden layer in
each part enables the network to perform nonlinear mapping functions [11]. The
autoassociative network performs an identity mapping, which means that the
input is approximated at the output layer with the highest possible accuracy.
This property of the network is achieved by minimizing the squared reconstruc-
tion error E = 1

2 ||x̂ − x||2. This task, which is nontrivial, is accomplished by a
‘bottleneck’ layer in the middle, of smaller dimension than either the input or
output layers. Thus, the data have to be projected or compressed into a lower
dimensional representation Z, for the subsequent layers to reconstruct the input.
If network training succeeds in finding an acceptable solution, we may assume
that data compression achieved at the ‘bottleneck’ layer may force hidden units
to represent significant features in data.

Hierarchical nonlinear PCA (h-NLPCA), as proposed by Scholz et al. [11],
provides the optimal nonlinear subspace spanned by components, but also con-
strains the nonlinear components to have the same hierarchical order as the
linear components in standard PCA. This means that the first n components
explain the maximal variance that can be covered by an n-dimensional subspace
and that the i-th component of an n component solution is identical to the i-th
component of an m component solution.

E1 and E1,2 are the squared reconstruction errors when using one or two
components in the ‘bottleneck’ layer, respectively. In order to perform the h-
NLPCA, we have to minimize both E1,2 (as in plain NLPCA, or s-NLPCA),
and E1. In practice, this is equal to minimizing the hierarchical error, EH :EH =
E1 +E1,2. The optimal network weights for a minimal error in h-NLPCA can be
found by using the conjugate gradient descent algorithm [31]. At each algorithm’s
iteration, the single error terms E1 and E1,2 have to be calculated separately.
In standard s-NLPCA, this is performed by a network with either one or two
units in the ‘bottleneck’ layer. In the case of h-NLPCA, one network is the
subnetwork of the other. The hierarchical error function can be easily extended
to k components (k ≤ d): EH = E1 + E1,2 + E1,2,3 + · · · + E1,2,3,...,k.

In other words, for the minimization of EH , we search for a k-dimensional
subspace of minimal mean square error (MSE) under the constraint that the
(k − 1)-dimensional subspace is also of minimal MSE. This requirement is ex-
tended so that all 1, . . . , k dimensional subspaces are of minimal MSE. Hence,
each subspace represents the data with regard to its dimensionalities best. Hi-
erarchical nonlinear PCA can therefore be seen as a true and natural nonlinear
extension of standard linear PCA [11].

3 The Proposed Algorithms

In this section we will describe how the aforementioned PCA implementations
can be combined with CF in order to make prediction generation both scalable
and effective. In both cases, once PCA is applied for the low rank approxima-
tion of the original user-item ratings matrix, we compute a neighborhood for
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each user. Finally, user similarity is utilized for the generation of the requested
prediction.

3.1 CF through h-NLPCA

We start with the following basic definitions. For i = 1, . . . , n users, ratings
on j = 1, . . . , m items are collected in the n × m data matrix R. Each of the
corresponding items takes on k different rating values (levels or categories) from
a given range, i.e. (1, 2, 3, 4, 5).
Step 1. Data representation. Impute the missing values in the original user-item
matrix, R, with the corresponding column average, r̄j , which leads to a new
filled-in matrix, A.
Step 2. Low rank approximation. The conjugate gradient descent algorithm [11]
is used to train the h-NLPCA network as described in Section 2. The hierarchical
error Eh is minimized at each training iteration. The reduced or reconstructed
matrix is denoted as Ak, where k is the number of retained components.
Step 3. Neighborhood Formation. Calculate the similarity measure between each
user and his closest neighbors in order to form the user neighborhood. To find
the proximity between two users, ua and ui, we utilize the Pearson correlation
coefficient, which is computed as follows:

corai =

∑l
j=1 rajrij√∑l

j=1 raj

∑h
j=1 rij

where rij denotes the rating of user ui on item ij . Note that the summations over
j are calculated over the l items for which both users ua and ui have expressed
their opinions.
Step 4. Prediction Generation. Prediction generation requires that a user neigh-
borhood of size h is already formed for the active user, ua. Then, we compute
the prediction rating paj for user ua on item ij , using the following equation:

paj = r̄j +
∑h

i=1 rrij ∗ corai∑h
i=1 |corai|

It is important to note that the user ratings, rrij , are taken from the reduced
matrix Ak. Also, we have to add the original item average back, r̄j , since it was
subtracted during the normalization step of the preprocessing.

3.2 CF through SVD-Based PCA

Step 1. Data representation and normalization. Impute the missing values in the
original user-item matrix, R, with the corresponding column average, r̄j . Then
obtain the column centered matrix A.

Step 2. Low rank approximation. Compute the SVD of A and keep only the first
k eigenvalues. This is equivalent to the factorization of the covariance matrix
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TA [1]. The reduced or reconstructed matrix is denoted as Ak, where k
is the number of retained components.
Neighborhood formation and prediction generation (steps 3 and 4) are executed
as described in the h-NLPCA implementation.

4 Experiments

In this section the efficiency of each approach is demonstrated through a series
of experiments. We utilized MovieLens, a dataset publicly available from the
GroupLens research group, which consists of 100,000 ratings, assigned by 943
users on 1682 movies. The sparsity of the data set is high, at a value of 93.7%.
Starting from the initial data set, a distinct split of training (80%) and test (20%)
data was utilized. Mean Absolute Error (MAE) was the metric we employed to
evaluate the accuracy of the methods. MAE measures the deviation of predictions
generated by the RSs from the true rating values, as they were specified by the
user.

For our experiments, we kept a fixed user neighborhood size and evaluated
the effect of a varying number of retained dimensions, k, on prediction accuracy.
Figure 1 depicts the MAE for values of k ranging between 2 and 15. Based on
that figure, it is clear that h-NLPCA outperformed SVD-based PCA for almost
all the values of retained dimensions. In particular, h-NLPCA generated the
overall most accurate prediction, MAE=0.7843, for k=10, meaning that only
10 pseudo-items, out of the 1682 original ones, were able to capture the latent
relations existing in the initial user-item ratings matrix. In contrast, SVD-based
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PCA reached its lowest error value, MAE=0.7933, for a slightly larger value of
k, k=14.

5 Conclusions and Future Work

In this paper we described two factor models, SVD-based PCA and h-NLPCA
for the low-rank approximation of a user-item ratings matrix in the context of
CF. h-NLPCA, which can be considered as a neural based non-linear extension
of PCA, gave the most accurate predictions according to MAE when applied
to the MovieLens dataset. The main advantage of the proposed approach stems
from the fact that h-NLPCA is able to account for more of the variance in the
data compared to SVD-based PCA, when the variables are (or may be) nonlin-
early related to each other. However, the prediction accuracy of a certain method
depends on the structure of the data it is used on. A detailed comparison on
different data sets is beyond the scope of this article. In both PCA implementa-
tions, the sparse user-item ratings matrix is filled using the average ratings for
users to capture a meaningful latent relationship. Future considerations include
PCA methods that are robust against missing data and that allow for missing
value estimation. For example, non linear PCA approaches, such as Kernel PCA
and Regularized PCA [1], may provide a valuable insight into the CF framework.
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Abstract. Neural oscillators with a ladder-like structure is one of the

central pattern generator (CPG) model that is used to simulate rhyth-

mic movements in living organisms. However, it is not easy to realize

rhythmical cycles by tuning many parameters of neural oscillators. In

this study, we propose an automatic tuning method. We derive the tun-

ing rules for both the time constants and the coefficients of amplitude

by linearizing the nonlinear equations of the neural oscillators. Other

parameters such as neural connection weights are tuned using a genetic

algorithm (GA). Through numerical experiments, we confirmed that the

proposed tuning method can successfully tune all parameters.

Keywords: Central pattern generator (CPG), neural oscillators, pa-

rameter tuning, genetic algorithm, C. elegans.

1 Introduction

The central pattern generator (CPG) is a network of neuronal cells that con-
trol rhythmic reciprocating movements such as walking (humans), meandering
(snakes), and swimming (fish) [1]. The CPG generates rhythmic electric signals
via signal transduction between neurons. These internally-generated signals are
then modified on the basis of sensory information about the external environ-
ment, received via sensory neurons. A number of mathematical models, termed
‘neural oscillators’, have been developed to describe how CPG’s function [2], [3].

Recently, several research groups have simulated rhythmic movements in an-
imals using neural oscillators [3], [4]. For example, Ekeberg developed a neural
oscillator for the lamprey CPG which was then used to conduct swimming sim-
ulations [3]. Suzuki et al. constructed a neural network model of the nematode
C. elegans [4], [5] using Matsuoka’s neural oscillators and then used this model
to simulate rhythmic movements such as sinusoidal locomotion [4], [6].
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In all of these simulations, the neural oscillators had a ladder-like structure.
This structure incorporates a large number of parameters which makes tuning
difficult when attempting to reproduce rhythmic reciprocating movements on
a computer. Parameter-tuning rules and the methods for tuning for these pa-
rameters to generate the desired output have only been evaluated for neural
oscillators that are composed of a small number of oscillators [7], [8]. There
is currently no effective tuning method for setting the parameters of a neural
oscillator that is composed of a large number of oscillators. Thus, the parame-
ters included in neural oscillators that have a ladder-like structure are currently
tuned by trial-and-error.

In this dissertation, we propose an automatic tuning method for all parame-
ters included in neural oscillators with a ladder-like structure. In this method,
the tuning rules for both the time constants and the coefficient of amplitude are
derived by linearizing the nonlinear equations of neural oscillators. Other param-
eters, such as the neural connection weights, are tuned using a genetic algorithm
(GA) [9]. To avoid stagnation in GA-based tuning (‘tuning’ denotes ‘learning’
in a GA) for a large number of parameters, we propose a two-step GA. This
consists of a GA for the early stages of tuning and a GA for the mid-late stage
of tuning. The former GA reduces large scale learning errors and the latter re-
duces errors for each oscillator individually. We evaluate the effectiveness of the
proposed method through numerical experiments of rhythmic-signal generation
in C. elegans.

2 Characteristic Analysis of Neural Oscillators with a
Ladder-Like Structure

2.1 Neural Oscillators with a Ladder-Like Structure [2]

Matsuoka’s model is representative of neural oscillators that have a ladder-like
structure. This model is composed of excitatory oscillators (white circle in Fig. 1)
and inhibitory oscillators (gray circle in Fig. 1). An excitatory oscillator connects
with adjacent excitatory oscillators that are located in the Nth column of the
2nd row. An inhibitory oscillator connects with the corresponding excitatory
oscillator. The strength of signal transduction of the neural connection between

・・・ ・・・
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Fig. 1. Schematic of the neural oscillator with a ladder-like structure
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two excitatory oscillators is represented by the connection weight wi,j (i �= j ∈
{1, 2, . . . , 2N}). Three types of signals are input to each excitatory oscillator from
adjacent oscillators. These include signals from excitatory oscillators, wi,jxj ,
signals coding for an adaptation effect from an inhibitory oscillator, bifi, and a
sensory feedback signal, si. bi is a fatigue coefficient and fi is an output of the
inhibitory oscillator. The output xi of the excitatory oscillator and the output
fi of the inhibitory oscillator are represented by the following equations [2]:

Tr i
dxi

dt
+ xi =

2N∑
j=1, j �=i

wi,jh(xj) − bifi + si (1)

Ta i
df i

dt
+ fi = h(xi) (2)

h(ε) = max(ε, 0) (3)
yn = αn (h(x2n) − h(x2n−1)) (4)

where, Tr i and Ta i are the time constants and h(ε) is a threshold function of
xj . yn is the total output of a pair of oscillators in the n (n ∈ {1, 2, . . . , N})th
column. αn is a coefficient of the output amplitude. To generate a desired output
for each pair of oscillators, wi,j , bi, Tr i, Ta i, and αn must be properly tuned.

2.2 Derivation of the Tuning Parameters Based on Oscillation
Analysis of the Neural Oscillators

Although proper tuning of the parameters included in a neural oscillator is im-
portant to generate the desired output, a detailed analysis of a neural oscillator
is difficult because of its nonlinear characteristics. Therefore, we evaluated the
relationship between the neural oscillator output and the input parameters. The
nonlinear equations that describe the neural oscillator are linearized at the equi-
librium position as follows:

First, equation (3) is approximated by the differentiable function h̃(ε) = ε/(1+
e−Tε), where , T is a constant with a large value. Under this condition, equations
(1) and (2) are linearized with an equilibrium position x̄i of dxi/dt = 0 and f̄i

of df i/dt = 0, respectively. Thus, equations (1) and (2) are represented by the
following:

Tβri
dxi

dt
+ xi =

2N∑
j=1, j �=i

wi,j h̃
′(x̄j)xj − bifi (5)

Tβai
df i

dt
+ fi = h̃′(x̄i)xi (6)

where, h̃′ = dh̃/dε. The time constants Tr i and Ta i are represented by Tr i = Tβri

and Ta i = Tβai. Tβ is a time constant that is common in all oscillators, and ri and
ai are coefficients of the time constant. In equation (5), si is deleted because of
the time-invariant input. To solve the simultaneous linear differential equations
(5) and (6), these equations are expressed using the following matrices:
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[
Ẋ
Ḟ

]
= 1

Tβ
A
[
X
F

]

A =
[
W′ B′

H′ T′

]
⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭ (7)

where, X, F, Ẋ, and Ḟ are matrices relating to the output of the excitatory
oscillator xi and the inhibitory oscillator fi. These matrices are represented by:

Ẋ =

⎡⎢⎢⎢⎣
dx1
dt

dx2
dt
...

dx2N

dt

⎤⎥⎥⎥⎦ , Ḟ =

⎡⎢⎢⎢⎣
df1
dt
df2
dt
...

df2N

dt

⎤⎥⎥⎥⎦ ,X =

⎡⎢⎢⎢⎣
x1

x2

...
x2N

⎤⎥⎥⎥⎦ , F =

⎡⎢⎢⎢⎣
f1

f2

...
f2N

⎤⎥⎥⎥⎦
W′, B′, H′, and T′ are matrices describing the neural connection weight wi,j ,
the fatigue coefficient bi, and the coefficients of the time constants ri and ai.
These matrices are represented by:

W′ =

⎡⎢⎢⎢⎢⎢⎣
− 1

r1

w1,2h̃′(x̄2)
r1

· · · w1,2N h̃′(x̄2N )
r1

w2,1h̃′(x̄1)
r2

− 1
r2

· · · w2,2N h̃′(x̄2N )
r2

...
...

. . .
...

w2N,1h̃′(x̄1)
r2N

w2N,2h̃′(x̄2)
r2N

· · · − 1
r2N

⎤⎥⎥⎥⎥⎥⎦ ,B′ =

⎡⎢⎢⎢⎣
− b1

r1
0 · · · 0

0 − b2
r2

· · · 0
...

...
. . .

...
0 0 · · · − b2N

r2N

⎤⎥⎥⎥⎦ ,

H′ =

⎡⎢⎢⎢⎢⎢⎣
h̃′(x̄1)

a1
0 · · · 0

0 h̃′(x̄2)
a2

· · · 0
...

...
. . .

...
0 0 · · · h̃′(x̄2N )

a2N

⎤⎥⎥⎥⎥⎥⎦ ,T′ =

⎡⎢⎢⎢⎣
− 1

a1
0 · · · 0

0 − 1
a2

· · · 0
...

...
. . .

...
0 0 · · · − 1

a2N

⎤⎥⎥⎥⎦
Therefore, solving for the output xi of the excitatory oscillator in equations (1)
and (2) is represented by:

xi =
4N∑
k=1

Cq kQi,ke
γk
Tβ

t
[
cos(

λk

Tβ
t) + i sin(

λk

Tβ
t)
]

(8)

where, Qk,k is an eigenvector of A, and γk (k ∈ {1, 2, . . . , 4N}) and λk are the
real and imaginary numbers of Qk,k, respectively. Cq k is calculated using the
initial values of xi and fi. A solution for xi can be expressed by an oscillation
equation that is a compound trigonometric function. The equation indicates
that the angular frequency of xi is decided by λk/Tβ. Thus, the relationship
between the input parameters and the output of the neural oscillator is partially
explained. In the next section, the tuning rules for the time constants and the
amplitude of the oscillatory output are derived based on equation (8).
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3 Parameter-Tuning Method of Neural Oscillators with a
Ladder-Like Structure

The parameters included in the neural oscillators are divided into the following
three groups: (1) time constants, Tr i and Ta i, (2) the amplitude coefficient, αn,
and (3) the connection weight, wi,j , and fatigue coefficient, bi. The parameters
in groups (1) and (2), but not (3), were derived using tuning rules that were
based on the oscillation analysis in 2.2. The parameters in group (3) were tuned
using a genetic algorithm (GA) [9].

In the proposed tuning algorithm, the tuning methods for (1) and (2) are
combined with a GA for (3). The parameters are tuned by both a local GA and
a global GA. The former is used for all parameters during the early stages of
tuning whereas the latter is used for a limited pair of oscillators at the mid-
late stage of tuning. This two-step tuning method is designed to avoid learning
stagnation during GA-based tuning. A procedure of the proposed parameter-
tuning algorithm is outlined below.

Step 0: Initialization
The parameters for each pair of oscillators are arranged in order (shown in
Fig. 2). All the parameters included in the neural oscillators are represented
as individual genes. A string including all the parameters (genes) of the neural
oscillator is treated as an individual in the GA. During the initialization step, P
individuals are produced and the initial value for each gene is given as a uniform
random number.

・・・ ・・・

NN - 11 2 j - 1 j j + 1

1st pair

The neural oscillator
Ta 2 α1

w1,2 w2,4 b 1 b 2・・・Tr 2Ta 1Tr 1

・・・ N th pair parameters1st pair parameters j th pair parameters ・・・

Fig. 2. A string of a GA

Step 1: Global Parameter-Tuning Using a GA (GA1)

(1) The tuning rule of the time constants
Based on the oscillation analysis in 2.2, the output-cycle length for neural
oscillators with a ladder-like structure is proportional to the time constants.
Thus, when a desired output-cycle length CD

s is given, the time constants
after tuning, T new

r i and T new
a i , are represented by:
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T new
r i =

CD
s

Cs
T old

r i (9)

T new
a i =

CD
s

Cs
T old

a i (10)

where Cs is the output-cycle length of the neural oscillators and T old
r i and

T old
a i are time constants prior to tuning. Thus, the time constants Tr i and Ta i

at the g (g ∈ {1, 2, . . . , G1}) th generation may be set to a unique value as
T new

r i and T new
a i that are calculated from equations (9) and (10) using T old

r i ,
T old

a i and Cs at the g − 1th generation.
(2) The tuning rule of the amplitude coefficient

In equation (4), the output, yn, of the neural oscillator in the n (n ∈
{1, 2, . . . , N})th column is calculated by multiplying the difference in out-
put between a pair of excitatory oscillators by αn. Thus, the error between
the total output yn of a pair of oscillators and its desired output yD

n is de-
creased by tuning αn. An amplitude error, eαn(l) (l ∈ {1, 2, . . . , L}) denotes
an output error between yn(l) and its desired output yD

n (l), where yn is dis-
cretized with L and the output from the lth sampling is yn(l). A square
summation of eαn(l) is expressed by:

Eαn =
L∑

l=1

(
yn(l) − yD

n (l)
)2

(11)

The amplitude coefficient αn that minimizes Eαn is given by the following
equation:

α new
n =

L∑
l=1

(
yn(l)yD

n (l)
)

L∑
l=1

(yn(l))2
α old

n (12)

where, α new
n is the amplitude coefficient after tuning and α old

n is the coeffi-
cient before tuning. yn is expressed by yn = α old

n (h(x2n) − h(x2n−1)). Thus,
the amplitude coefficient αn at the gth generation is set to a unique value
of α new

n that is calculated from equation (12) using α old
n at the (g − 1)th

generation.
(3) Genetic evolution-inspired operation for parameter optimization

An individual of a GA consists of a string arraying a set of parameters
included in the neural oscillators. For each GA generation, the adequacy of
each individual is evaluated to determine which individuals will be included
in the next generation. The function for evaluating error values during tuning
is defined by the following equation.

J =
1
N

1
L

N∑
n=1

L∑
l=1

∣∣yn(l) − yD
n (l)

∣∣ (13)



A Novel Tuning Method for Neural Oscillators 407

where the desired output yD
n is given by an arbitrary function. The value of J

decreases accordingly with a decrease in the error between the total output
yn(l) of the nth pair of neural oscillators and its desired output yD

n (l). At
each generation, individuals are sorted into ascending order based on J . Jelite

denotes the smallest value of J that is obtained by an elite individual. Based
on this evaluation, individuals with greater diversity are produced by a series
of GA-operation with (a) selection, (b) crossover, and (c) mutation.

The above procedures from (1) to (3) are repeated until g1 reaches G1.

Step 2: Local Parameter-Tuning with a GA (GA2)
During local parameter-tuning using a GA (GA2), the parameters (Tr i, Ta i, bi,
αn, and wi,j) that are arranged for each pair of oscillators from the first column to
the Nth column are tuned individually. All parameters are tuned simultaneously
using GA1, whereas the tuning is limited to the parameters in one column of
the neural oscillator using GA2. During this process, the following procedures:
(1) tuning of the time constants, (2) tuning of the amplitude coefficient, and (3)
genetic evolution-inspired operation for parameter optimization, are conducted
for each column of the neural oscillator until g2 reaches G2. The parameters of the
first column are tuned first. The process is then repeated up to the Nth column.
Once the parameter tuning of Nth column is completed, the tuning is repeated
for individual columns using a GA2, beginning with first column. During this
phase of individual tuning, the parameters, except those of the column targeted
for tuning, are set to their previously tuned values. The tuning process is then
repeated until the total generation, gtotal, for GA1 and GA2 reaches Gtotal.

4 Numerical Experiments

We evaluated the effectiveness of the proposed tuning method of the ladder-like
neural oscillators. As an example to reproduce the complex rhythmic signals like
living animals, we applied the proposed tuning method to a rigid link model of
C. elegans, which includes 12 pairs of neural oscillators [4]. We conducted the
parameter tuning by using the conventional method (the ‘simple tuning method’)
as well as the proposed method, and compared these results.

4.1 Acquisition of C. elegans Rhythmic Signal

The rigid link model for C. elegans [4] used in this experiment represents the
body of C. elegans and is based on the actual neuromuscular structure, inner-
vated by 12 pairs of motor neurons (see Fig. 3). The angle qn of the nth link
is controlled by the output yn of the nth pair of ladder-like neural oscillators.
To acquire observations of rhythmic signals in C. elegans, five or more animals
were placed on a plate containing nematode growth medium [5]. Their sinusoidal
locomotion was recorded using a video camera mounted on a stereomicroscope
for approximately 1 min at 24 frames per second. Each frame of the video was
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processed using the following procedures: (a) binarization, (b) denoising, (c)
skeletonizing, and (d) division of body line into the 16 parts, using image pro-
cessing software. Because the rhythmic signals acquired from C. elegans had
high levels of background noise, the signal was approximated using the following
equation:

qD
n = AD

0 n +
K∑

k=1

AD
n,k sin

(
2kπ

CD
s

t − dD
n,k

)
(14)

AD
0 n is a bias, AD

n,k is the amplitude of oscillatory output, CD
s is the output-cycle

length, and dD
n,k is the phase. The link angle was approximated by K = 2. The

data were discretized by sampling L, and were set to the desired link angle qD
n (l).

In addition, qD
n (l) was normalized to the maximum value of the desired link angle

and denoted as the desired output yD
n (l) of the corresponding pair of oscillators.

4.2 C. elegans ’s Rhythmic Signal Generation

To generate the desired outputs from the 12 columns of ladder-like neural oscilla-
tors, the parameters were tuned using the proposed tuning method. The number
of neural oscillator columns was set to N = 12, and the desired output of the
nth pair of oscillators was calculated using data acquired from C. elegans. The
range of parameters used in this study were Tr i = [0,∞) [sec], Ta i = [0,∞) [sec],
wi,j = (−∞,∞), bi = [0,∞), si = 1.0. The generation number of tuning method
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Fig. 5. Results of reproduction of the rhythmic signals in C. elegans)

were G1 = 200, G2 = 20, and Gtotal = 2, 000. To reduce the computational
load, the time constants Tr, Ta and the fatigue coefficient bi were represented by
equivalence at all oscillators.

We conducted five trials using different initial values for both tuning methods,
the proposed tuning method and simple tuning method. The best trial T best was
the one that yielded the lowest error judgment value, J , at Gtotal = 2, 000th
generation of a GA among five trials. The worst trial Tworst yielded the highest
value of J . The values for J in the elite individual at each GA generation in the
two trials, T best and T worst, are shown in Fig. 4. The solid line represents Jelite

the proposed tuning method and the dotted line represents the simple tuning
method. The evolution curves, Jelite produced by the proposed tuning method
decreased smoothly prior to the 200th generation in comparison with Jelite of
the simple tuning method. In addition, Jelite was lower for the proposed tuning
method than for the simple tuning method at the 2,000th generation. The total
output, yn, of the nth pair of oscillators which used the parameters tuned by
T best in Fig. 4 is shown in each panel of Fig. 5 (solid line; data not shown for
n = 2, 4, 6, 8, 10, 12). Panels (a) and (b) illustrate the results of the proposed
and simple tuning methods, respectively. The dotted line represents the desired
outputs, yD

n , of the nth pair of the oscillator. From the results, we confirmed that
the outputs of all pairs of oscillators correlate with the desired output for the
parameters tuned using the proposed method. In contrast, the output of a few
pairs of oscillators did not reproduce the desired output using the simple tuning
method. Although, it has been difficult to tune the parameters for 12 pairs of
neural oscillators to generate complex signals of animals [4], the proposed tuning
method appears to generate the desired oscillatory outputs (shown in Fig. 5).
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5 Conclusions

There was no effective tuning method for setting the parameters of a nonlin-
ear neural oscillators that have a ladder-like structure. Therefore, we proposed a
novel method for automatically tuning the parameters included in neural oscilla-
tors with a ladder-like structure. To clarify the relationship between parameters
and each output of oscillators, we linearized the equations of the neural oscil-
lators and derived the tuning rules for both the time constants and amplitude
of the oscillatory outputs. Underivable other parameters were tuned by using a
genetic algorithm (GA). To avoid the stagnation of GA-learning, we formulated
a two-step GA. In this algorithm after tuned all parameters of neural oscillators
generally by a Global GA, parameters of each pair of oscillators were individu-
ally tuned by a Local GA. Based on numerical simulation of mimicked rhythmic-
signal generation in C. elegans, the proposed method successfully tuned all the
parameters included in the neural oscillators, and generated sinusoidal complex
signals. Given the success of the proposed method, future studies may evaluate
tuning methods for neural oscillators that have a non-ladder-like structure.
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Abstract. In this paper, we investigate the use of genetic algorithms and en-
semble systems in cancellable biometrics, using fingerprint-based identification 
to illustrate the possible benefits accruing. The main aim is to analyze the per-
formance of these well-established structures on transformed biometric data to 
determine whether they have a positive effect on the performance of this com-
plex and difficult task.  

1   Introduction 

Cancellable biometrics use intentionally-distorted data instead of original sample data 
for template protection in biometric identification [2,5]. Proposed methods are di-
vided into two broad classes [2]: biometric cryptosystems and feature transform ap-
proaches. In the latter, a transformation function (f) is applied to the biometric tem-
plate and only the transformed template is stored. These schemes can be further cate-
gorized as salting (f is invertible) and noninvertible transforms. Here, we focus on the 
use of noninvertible transformation functions. Various functions are proposed for 
different biometrics, but the fingerprint modality has offered the most template pro-
tection methods [4, 6, 7]. Although the use of cancellable biometrics balances the 
convenience of biometric authentication with security, there is a risk that using such 
transformed data will decrease performance, since the complexity of the transformed 
biometric is much higher than that of the original. Hence a good tradeoff between 
discriminability and noninvertibility is essential when using feature transformations. 
We present a way to achieve this by using established classification structures (single 
classifiers and ensemble systems [1,3]) in both original and transformed fingerprint 
images. In order to increase effectiveness, we use a genetic algorithm to distribute the 
attributes among the ensemble elements. A modified version of a non-invertible trans-
formation [4] is presented. The aim is to analyze performance on transformed biomet-
ric data and investigate the benefits available in the transformed domain.  

2   The Transformation Function 

The transformation method we use is a modified version of [4], as follows: 

                                                           
* Corresponding author. 



412 A. Canuto et al. 

1. Choose a minutia to be the reference minutia; 
2. Define a 3D dimensional array in which the width (WX) and height (WY) of the 

array are twice the size of an input fingerprint image and the depth (WZ) is 2π. 
3. Map the reference minutia into the 3D array with the reference minutia in the 

centre of the array. The other minutiae are rotated and translated to align the ori-
entation of the reference minutia into the x-axis of the array. 

4. Define the values of the cells of the 3D array such that the cell is set to 1 if it 
contains more than one minutia, and otherwise, the cell is set to 0; 

5. A 1D bit-string is generated and the order of the array is permuted. This permu-
tation is based on the type of reference minutiae and the user’s PIN. 

6. If the number of reference minutiae has reached its maximum, stop. Otherwise, 
go to step 1. 

According to step 5 of the algorithm, a 1D string is defined for each reference minu-
tia. This action brings two problems: the first concerns the definition of the exact 
number of minutiae to be used. The definition of a small number means that some 
useful minutiae information might be lost. In contrast, the use of a large number 
means that the fingerprint samples with few minutiae should be either disregarded or 
looped. The second problem is related to the large dimension of the input pattern.  

To address these problems, we use a simpler version of the original transformation 
where, instead of creating one 3D array for each minutia, a 3D array is created for all 
reference minutiae and the values of all corresponding 3D array cells are summed. 
Thus, the resulting array is not binary, but represents the frequency of minutia present 
in that particular 3D cell. However, it can be easily transformed into binary form by 
means of simple thresholding. In using this modified algorithm, all minutiae are used 
as reference and the complexity of the problem is low. In addition, we still use a 1D 
binary string, as was proposed in the original version. 

3   Methods and Materials 

For our investigation, the original and transformed fingerprint data will be processed 
by individual classifiers and also by both homogeneous and heterogeneous ensemble 
structures. Initial experiments have shown that the simpler transformation function 
has a similar performance to the original, and thus we have used only the modified 
function presented above in analysing classification performance. The main compo-
nents of our experimental work [2] are as follows: Individual classifiers: k-NN (near-
est neighbour), C4.5 (decision tree) and MLP neural network; Combination Methods: 
Sum, weighted sum, majority voting, support vector machine (SVM) and k-NN; En-
semble size: 3, 6 and 12 individual classifiers; Dataset division: 10-fold cross valida-
tion; Statistical test: T-test with α = 0.05. 

It is important to emphasize that the heterogeneous structures include ensembles 
with 2 and 3 different types of classifiers taken into consideration. As there are sev-
eral possibilities for each structure, the average accuracy delivered by all possibilities 
within the corresponding structure is determined. Our individual classifiers and com-
bination methods were exported from the WEKA machine learning visual package 
(http:www.cs.waikato.ac.nz/~ml/weka). Some of the combination methods are train-
able. In this sense, a validation set is used. For the weighted sum, the simple recogni-
tion rate over a validation set was used as weights.  
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Genetic algorithms are used for finding the optimal subset of attributes. A binary 
chromosome (size L (number of classifiers) x N (number of attributes)) is used to 
represent a possible solution for the problem, and a population of 30 chromosomes is 
used. Termination occurs after a maximum number of iterations (500 for transformed 
and 2500 for original data). The fitness of the possible solutions is analyzed in terms 
of a intra-classifier correlation, a criterion that defines the correlation within one clas-
sifier. The correlation of each classifier is calculated and then averaged to provide the 
intra-class correlation. Finally, as the genetic algorithm is a non-deterministic tech-
nique, 10 runs were performed.  

We use the FVC2001 database [8], which consists of 800 fingerprint images (8 
samples of 100 users). Minutiae are extracted, each generating 7 features: (x-y coor-
dinates), direction, reliability measure, minutia type, feature type and feature identi-
fier. To choose the target minutiae, a standard core detection procedure was applied 
and the N (N=10 here) closest minutiae to the core selected. In the transformation 
procedure, only x and y coordinates and direction information are used. The cell sizes 
used were as in [3], Cx=Cy=30 and Cz = π/3. 

4   Results and Discussion 

Table 1 illustrates the accuracy and standard deviation of the classification structures. 
The best results achieved by the classification methods in each row are in bold. The 
statistical test compared the best results with the other results, on a two-by-two basis. 
Statistically significant results are underlined. It is seen that classification accuracy 
increases for the transformed fingerprint data, showing that adopting the transforma-
tion functions was positive for all configurations. This is because the transformation 
function utilizes all the extracted fingerprint minutiae. However, the improvement can 
also be analyzed from a statistical viewpoint. Classification accuracy with the trans-
formed data was compared to that using the original data, statistically significant im-
provements being observed in all cases.  

Table 1. The accuracy level of the classification systems using three ensemble sizes (3,6 and 
12), with ensembles homogeneous (HOM) and heterogeneous (HET)  

Original Dataset 
 Ind k-NN SVM Sum Voting WS 
3-HOM 19.08±7.41 59.13±13.42 65.29±12.19 66.29±10.32 52.63±11.1 59.54±10.95 
3-HET 49.84±5.16 60.73±7.23 67.68±5.56 65.55±3.81 52.89±8.26 62.59±6.73 
6-HOM 63.11±6.7 77.63±7.52 79.38±6.63 78.79±7.11 76.29±9.05 77.08±8.55 
6-HET 63.24±3.06 81.55±2.49 83.21±1.5 82.3±1.55 79.54±2.69 81.36±1.75 
12-HOM 62.86±5.61 81.38±3.91 82.79±2.37 80.03±4.18 78.58±5.55 77.96±6.97 
12-HET 63.09±2.41 84.09±1.83 84.98±1.12 83.39±2.04 81.71±2.93 82.57±2.81 

Transformed dataset 
3-HOM 71.29±7.02 79.38±8.84 81.46±8.25 80.08±11.19 75.54±7.65 80.88±8.2 
3-HET 71.37±2.74 78.2±4.19 82.77±1.7 81.63±3.38 77.5±1.72 82.59±1.62 
6-HOM 70.9±6.84 84.79±4.56 87.42±2.59 89.0±2.47 87.42±1.55 89.0±3.0 
6-HET 71.02±2.66 87.34±1.48 89.27±1.13 90.73±0.89 89.91±0.79 90.91±1.37 
12-HOM 75.22±9.41 87.67±5.6 90.71±1.8 93.13±1.94 92.58±1.85 92.96±1.87 
12-HET 75.24±6.64 90.15±1.65 92.04±0.65 94.13±0.85 93.54±1.04 94.69±0.82 
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Classification accuracy increases considerably with the number of component clas-
sifiers. Hence, the improvement achieved by the ensemble systems is higher for sys-
tems with 12 classifiers than for 3. As expected, ensembles with fewer classifiers 
were more unstable, with a high standard deviation. This means that both combination 
method and individual classifier choice is more critical.  From a statistical viewpoint, 
there were 14 statistically significant improvements for ensembles with size 3 and 6, 
while there were 16 for ensembles with size 12. 

When comparing the accuracy of the different ensemble structures, it is seen that 
the accuracy of heterogeneous structures was higher than homogeneous structures in 
all cases. In addition, the improvement in the accuracy comparing original and trans-
formed data was higher for heterogeneous structures than homogeneous case.  

Of the combination methods, SVM generated the best results in 7 cases (out of 12), 
while weighted sum provided the best results in 3 cases, sum in 4 cases and weighted 
sum in 2 cases. It is important to note that SVM provided the highest accuracy for the 
most difficult situations (original dataset and small number of individual classifiers). 

5   Final Remarks 

This paper has presented an analysis of ensemble systems as a tool to enhance the 
performance of cancellable fingerprint recognition processing. This has demonstrated 
that the use of our modified version of a non-invertible transformation function pro-
duces an increase in classification accuracy of. This gain was more marked for the 
ensemble systems than for individual classifiers. The results obtained are very promis-
ing since the performance of the ensemble structure improved in the transformed 
space, using a simpler transformation procedure than the original version proposed in 
[4]. The use of other transformation functions as well as the use of other modalities is 
the subject of on-going research. 
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Abstract. Computer systems are facing an increased number of security

threats, specially regarding Intrusion detection (ID). From the point of

view of Machine learning, ID presents many of the new cutting-edge chal-

lenges: tackle with massive databases, distributed learning and privacy-

preserving classification. In this work, a new approach for ID capable of

dealing with these problems is presented using the KDDCup99 dataset

as a benchmark, where data have to be classified to detect an attack. The

method uses Artificial Neural Networks with incremental learning capa-

bility, Genetic Algorithms and a feature selection method to determine

relevant inputs. As supported by the experimental results, this method

is able to rapidly obtain an accurate model based on the information

of distributed databases without exchanging any compromised data, ob-

taining similar results compared with other authors but offering features

that make the proposed approach more suitable for an ID application.

Keywords: Intrusion detection, distributed machine learning, large

scale learning, artificial neural networks, genetic algorithms.

1 Introduction

With the rapid expansion of Internet in recent years, computer systems are fac-
ing an increased number of security threats. One aspect receiving a great deal
of attention is the detection of intruders. The earliest reference in the field of
intrusion detection (ID) can be credited to J.P.Anderson [6] who discussed the
need for adapting system auditing mechanisms for investigating possible attacks.
Later on, the IDES (Intrusion Detection Expert System) [7] appeared that em-
ployed statistical techniques and heuristic rules to detect security breaches. After
that, several ID systems began to figure in the literature. All of them have used
different techniques for ID, being the most successful and popular that based
on signatures rules. This technique, however, has a major drawback in that it
is only capable of detecting known attacks and requires an expert to create the
rules for detecting each attack. Other approaches based on the use of artificial
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neural networks [9], genetic algorithms [8], or simulations of the human immuno-
logical system have also been attempted. However, the question of security in
the computerized world is a highly complex and active one, and we are still a
long way from obtaining systems that are highly reliable and secure.

In order to be able to detect any suspicious activities in the system, an Intru-
sion Detection System (IDS) must analyze network traffic data. It is, therefore,
interesting to develop systems able to learn from data how to identify an attack.
Moreover, new kinds of attacks are constantly appearing and an IDS must be
able to easily incorporate this new knowledge. For these reasons, ID is an ade-
quate problem to be treated with machine learning (ML) techniques. However,
from the point of view of ML, intrusion detection presents many of the new
cutting-edge ML challenges: 1) tackle with massive and complex databases, 2)
learning in a distributed environment, and 3) preserving the privacy of data used
for classification. As it is not an easy ML problem, in 1999 the KDD (Knowledge
Discovery and Data Mining Tools Conference) Cup competition [3] proposed an
ID challenge in which, using data derived from the DARPA1, the problem was
to distinguish among four types of attacks or a non-attack by using as inputs
several variables extracted from traffic data. It is a hard dataset for the sake of
classification because of its large size (it contains an enormous number of con-
nection records) and the complexity of the input features, some of them with
unbalanced values. This set has become a valuable benchmark to test IDS and,
broadly, to test pattern recognition and machine learning algorithms.

Nowadays, this challenge remains opened and new works have been appearing
to overcome the competition winner. However, all are focused only on improving
the classification accuracy and they do not tackle other aspects of the environ-
ment of an ID system to be truly applicable. In this paper, a new approach
for ID in computer networks capable of dealing with the aforementioned prob-
lems is presented. This method is based on a combination of feature selection,
a novel classification method using Artificial Neural Networks with incremental
learning capability and Genetic Algorithms. Using the KDDCup99 dataset as a
benchmark its results are compared with that obtained by other authors.

2 The KDD Cup 99 Dataset and Data Preprocessing

The KDDCup99 dataset [3] was constructed in 1998 from a simulation performed
by DARPA to deal with the ID problem [1]. It contains about 5 million connec-
tion records that are sequences of TCP packets represented by 41 continuous
and discrete attributes. Each connection is labeled as either normal, or as an
attack. There exists 38 training attack types grouped into four main categories.
As in general, the interest is distinguishing between attack and no-attack, the
KDDCup99 problem can be treated as a binary classification problem.

As established in [13] the KDDCup99 training dataset is a good candidate to
feature selection. Feature Selection techniques try to eliminate irrelevant and/or
redundant attributes. Classification algorithms benefit from the decrease in the
1 Defense Advanced Research Project Agency.
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number of features, improving their predictive accuracy and shortening their
learning period. In fact, one of the main problems when facing the KDDCup99
dataset is the computational efficiency due to its enormous size. In this paper
we employed a method [13] combining discretization algorithms and filters to
achieve an important reduction in the number of input features. Specifically,
the Consistency-Based filter [10] and the Entropy Minimization Discretization
(EMD) [11] were used. The consistency-based filter evaluates the worth of a
subset of features by the level of consistency in the class values when the train-
ing instances are projected onto the subset of attributes. However, this filter
cannot deal directly with numerical attributes and, in addition, some features
of the KDDCup99 dataset present high imbalance and variability. These prob-
lems, that may cause a malfunction in most classifiers, are softened up by using
discretization methods and, therefore, the EMD was employed in this work.

3 The Proposed Method for Intrusion Detection

The KDDCup99 on ID represents several important challenges to current ML
methods. Among them, it is the necessity of moving towards the construction of
scalable learning methods able to deal with massive databases, as many sophis-
ticated ML methods found problems due to their memory or processing-time
requirements. The scalability problem can be tackled by horizontally partition-
ing the training data and building a global model with the models derived from
all the data splits, that is, by distributing learning. This is the approach taken in
this paper. However, new problems arise. On one hand, it has to be determined
how to combine the knowledge locally acquired to obtain a unique classifier.
The second problem is related with privacy-preserving when the local models
are distributed over a network, as no party wants to disclose its private data set
to each other or any third party. The aim of this research area is therefore to
develop efficient methods that enable this type of computation while minimizing
the amount of the private information each party has to disclose to the other.

On the other hand, from the ID point of view similar and parallel character-
istics arise: a machine can receive thousands of new connections records to be
analyzed every day; the ID system must be able to rapidly learn from these new
data in order to detect new types of attacks; and, in a real network training
data is originally geographically distributed, i.e., every computer in the network
suffers its own attacks. Therefore, a distributed machine learning approach is
very suitable also to tackle with the described ID scenario.

In order to obtain a global classifier able to learn from several distributed local
classifiers, each one obtained from different data partitions, we have developed
a model based on genetic algorithms and artificial neural networks [5]. In our
approach, first, several local classifiers, as many as data partitions, are built.
These local classifiers are single layer neural networks using a fast linear learning
method [4]. The advantages of this method for our purposes are:

– it obtains the optimal weights of the network by solving a system of linear
equations with a matrix of coefficients C by applying classical methods of
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linear algebra with a complexity of O(J(I + 1)2) (I number of network’s
inputs and J number of outputs), thus requiring much less computational
resources than classical iterative methods.

– It presents incremental and distributed learning capacity. This can be achieved
by summing the corresponding matrices of coefficients C of the systems of lin-
ear equations of the M trained networks and then obtaining the new weights
by solving the system of equations for this new matrix of coefficients.

Although the chosen local model present several advantages it is very sensitive
to skewness. For this reason, instead of constructing the global model by simply
summing all local models, we have developed a merging method based on genetic
algorithms. Each individual of the population is a local model represented by
the coefficients C from which networks’ weights are obtained. Once each local
network is trained, they are sent to the genetic algorithm. Taking advantage of
the incremental learning capability of the local classifiers, the genetic algorithm
is used to combine these local models. New generation of networks are obtained
by crossing individuals (summing their coefficients matrices C) and mutation
(changing any number in C). At the end, the best individual will be selected
as the final global classifier. In addition to improve the scalability, our proposed
scheme of distributed learning is specially suited for the ID domain. Thus, on
a real ID system, when the system starts there is only one node alive, called
the central node, whose objective is to combine the local neural networks along
the time. The first time a new client node is deployed, it asks the central node
if there is any available neural network to be used as its local classifier and, if
it is the case, the coefficients C are sent to the client node. From this point,
every local classifier is autonomous, i.e. they can work and protect its client
node without communicating with other classifiers. Moreover, they can improve
over time by incrementally learning from new connections to the client node
they are protecting. In order to combine the existing knowledge along a network
of local classifiers, the central node periodically requests all the local neural
networks and combine them by employing the genetic algorithm approach. Once
the new classifier has been obtained, it will be sent again to all client nodes. As
evolution always improves, or at least equals, the existing classifier success rate,
it is expectable that the system will gradually tend towards a better approach.

It is important to remark that, thanks to the incremental learning capacity
of the local models, distributed learning is done without exchanging connec-
tion records between the different entities involved, as only the coefficients C of
the system of linear equations are sent, thus preserving privacy and very much
reducing the amount of data that needs to be transmitted.

4 Experimental Results over the KDD Cup 99 Dataset

In this work, the experimental study performed involves applying the proposed
method to the binary version of the KDDCup99 dataset.



A Privacy-Preserving Distributed and Incremental Learning Method 419

4.1 Experimental Conditions

Although our proposed system is able to deal with larger datasets, in this study
we employed a subset of 10% of the original DARPA training set to get results
comparable with other authors as this was the dataset used in the original com-
petition. This subset of 494.021 instances was further partitioned into 3 new
sets: 45% of instances were used to train the local neural networks, 45% were
used by the genetic algorithm to obtain new generations, and 10% were used by
the genetic algorithm to select the best individual. For the test set, we used the
original KDDCup99 dataset containing 331.029 patterns. In every case, 20% of
the datasets are normal patterns (no attacks).

Regarding the genetic algorithm, we tested different number of individuals and
generations (25, 50, 75 and 100 in both cases), allowing 1% of mutation rate. As
fitness function the Error rate E = (FP + FN)/(TP + FP + TN + FN) was
employed where FP , FN , TP and TN are, respectively, the number of false
positives, false negatives, true positives and true negatives, taking the attack
class as the positive one. For each experiment, a 7-trial, 10-fold cross validation
was used to train and test the classifier. Three performance measures –standard
for previous authors– were calculated in terms of average error in the testing data
across trials: Error(E), already defined, indicates the overall error rate for both
classes –Normal and Attack–; True Positive Rate (TPR), or Attack Detection
Rate, shows the overall rate of detected attacks; and False Positive Rate (FPR),
indicates the proportion of normal patterns erroneously classified as attacks.

4.2 Results

Table 1 presents the Error, the TPR and the FPR obtained over the test set
employing different number of generations and individuals.

Table 1. Error(%), TPR(%) and FPR(%) obtained over the Test Set. Font in boldface

indicates the best results. Mean training simulations time (in seconds) for the proposed

method is also included.

Generations

Error(%) TPR(%) FPR(%) Time (s)

ind 25 50 75 100 25 50 75 100 25 50 75 100 25 50 75 100

25 8.89 8.88 8.86 8.85 89.56 89.58 89.63 89.66 2.47 2.51 2.61 2.65 59 116 172 230

50 8.87 8.84 8.83 8.82 89.60 89.66 89.68 89.72 2.53 2.62 2.68 2.79 116 225 340 459

75 8.87 8.82 8.83 8.83 89.60 89.68 89.67 89.70 2.52 2.65 2.65 2.74 176 346 521 681

100 8.85 8.82 8.81 8.81 89.64 89.70 89.72 89.72 2.58 2.70 2.75 2.77 235 458 674 894

Being the training time a critical aspect when dealing with massive databases,
we have also measured the mean training time as shown in column 4 of Table 1.

Finally, we have selected as the best results those obtained using a population
of 75 individuals and 50 generations, as it presents Error, TPR and FPR near
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to the minimum but requiring less computational time to learn. Hereafter, the
results of the proposed method for the best individual are compared with those
obtained by other authors [12,14,13,15,16], as can be seen in Table 2.

Table 2. Comparison with the results obtained by other authors over the test set

Method Error TPR FPR Method Error TPR FPR

Proposed method 8.82 89.68 2.65 5FNs exp 6.70 92.75 0.75

KDD Winner 6.70 91.80 0.55 SVM Linear 6.89 91.83 1.62

PKID+Cons+C4.5 5.14 94.08 1.92 SVM RBF 6.86 91.83 1.43

EMD+INT+C4.5 6.69 91.81 0.49 ANOVA ens. 6.88 91.67 0.90

5FNspoly 6.48 92.45 0.86 Pocket 2cl. 6.90 91.80 1.52

5FNs fourier 6.69 92.72 0.75 PKID+Cons+FVQIT 5.95 92.73 0.48

5 Conclusions

We have described an algorithm that hybridizes the classification power of ANN
algorithms with the search and optimization power of the genetic algorithm.
The result is an algorithm that requires computational capabilities above that
of the ANN algorithm alone, but handles correctly the problems of scalability,
privacy and data distribution. Although the results over the KDDCup obtained
by previous authors are from a 2% upto a 5% better, the proposed algorithm
provides some other remarkable advantages for ID like:

– The system is able to handle massive datasets. Even if the dataset is dis-
tributed geographically (as it could occur in a real ID system) or if it is
a one-file massive dataset (like the KDDCup file) the proposed model is
suitable, as a file can be partitioned and distributed along local nodes in a
unique or several machines. In fact, our method achieves good results using
the complete KDDCup99 in just 59 seconds while most of the previous works
have to use a subset of the training set containing less than 50.000 instances.

– A normal approach to exchange classifiers between different nodes is by
sending training patterns through the network. In this case two problems
arise: firstly, as the dimensions of the dataset are high it would be a very
time-consuming task and, secondly, exchanging patterns would be against
preserving data privacy. In this paper, we propose another way of exchanging
knowledge. The unique data which is really necessary to exchange among
learning nodes are the neural networks coefficients C, which were obtained
with each partition of the dataset. The transmitting cost of C is depreciable
if we compare it with the cost of sending patterns.

– Finally, the developed IDS using the proposed scheme will be able to learn
through time as new data is acquired without the need to gather old training
samples as no retrain is needed due to its incremental learning properties.

Currently, we are working on introducing this learning scheme into a multiagent
system whose aim will be intrusion detection in computer networks.
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5. Guijarro-Berdiñas, B., Martinez-Rego, D., Fernandez-Lorenzo, S.: Privacy-

Preserving Distributed Learning based on Genetic Algorithms and Artificial Neural

Networks. In: 2nd Int. Symp. on DCAI, pp. 195–202 (2009)

6. Anderson, J.P.: Computer Security Threat Monitoring and Surveillance. Technical

Report, James P. Anderson Co. (1980)

7. Lunt, T.F., et al.: IDES: The Enhanced Prototype. A Real-Time Intrusion-

Detection Expert System. Tech. Rep. SRI Project 4185-010, CSL SRI International

(1988)

8. Crosbie, M., Spafford, G.: Active Defense of a Computer System Using Autonomous

Agents. Tech. Rep., Purdue University (1995)

9. Lippmann, R.P., Cunningham, R.K.: Improving Intrusion Detection Using Key-

word Selection and Neural Networks. Computer Networks 34, 597–603 (2000)

10. Dash, M., Liu, H.: Consistency-based Search in Feature Selection. Artificial Intelli-

gence Journal 151, 155–176 (2003)

11. Fayyad, U.M., Irani, K.B.: Multi-Interval Discretization of Continuous-Valued

Attributes for Classification Learning. In: Proc. 13th IJCNN, pp. 1022–1029 (1993)

12. Elkan, C.: Results of the KDD 1999 Classifier Learning. ACM SIGKDD Explo-

rations Newsletter 1(2), 63–64 (2000)

13. Bolon-Canedo, V., Sanchez-Marono, N., Alonso-Betanzos, A.: A Combination of

Discretization and Filter Methods for Improving Classification Performance in

KDD Cup 1999 Dataset. In: Proc. IJCNN, pp. 305–312. IEEE Press, Los Alamitos

(2009)

14. Fugate, M., Gattiker, J.R.: Computer Intrusion Detection with Classification

and Anomaly Detection, using SVMs. Int. J. Pattern Recognition and Artif. In-

tell. 17(3), 441–458 (2003)

15. Alonso-Betanzos, A., Sanchez-Marono, N., Carballal-Fortes, F.M., Suarez-Romero,

J., Perez-Sanchez, B.: Classification of Computer Intrusions Using Fuctional Net-

works. A Comparative Study. In: Proc ESANN 2007, pp. 25–27 (2007)

16. Porto-Diaz, I., Martinez-Rego, D., Alonso-Betanzos, A., Fontenla-Romero, O.:

Combining Feature Selection and Local Modelling in the KDD Cup 1999 Dataset.

In: Alippi, C., Polycarpou, M., Panayiotou, C., Ellinas, G. (eds.) ICANN 2009.

LNCS, vol. 5768, pp. 824–833. Springer, Heidelberg (2009)

http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html


Using Evolutionary Multiobjective Techniques
for Imbalanced Classification Data
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Abstract. The aim of this paper is to study the use of Evolutionary

Multiobjective Techniques to improve the performance of Neural Net-

works (NN). In particular, we will focus on classification problems where

classes are imbalanced. We propose an evolutionary multiobjective ap-

proach where the accuracy rate of all the classes is optimized at the

same time. Thus, all classes will be treated equally independently of their

presence in the training data set. The chromosome of the evolutionary

algorithm encodes only the weights of the training patterns missclassi-

fied by the NN. Results show that the multiobjective approach is able to

consider all classes at the same time, disregarding to some extent their

abundance in the training set or other biases that restrain some of the

classes of being learned properly.

1 Introduction

Classification is one of the main areas within Machine Learning. Typically, clas-
sification is formulated as an optimization problem: given a family of parame-
terized functions, the goal is to find the optimal that minimizes some error or
loss function on the training set. For instance, the function might be the family
of Feed-Forward Neural Networks (NN) with a given architecture and a set of
connection weights [9].

Different optimization algorithms can be used, however, most of the optimiza-
tion approaches are single-objective. Yet, classification problems lead very easily
to considering several objectives, for instance, in order to avoid overfitting [4].

So, it is possible to consider classification as a Multiobjective Optimiza-
tion problem. Several works on Evolutionary Multiobjective Machine Learning
(EMOML) have shown that generalization can be improved [5,7].

The aim of this paper is to improve the generalization in classification prob-
lems for NN where classes are imbalanced. This means that there is much more
data for some of the classes than for the rest (see for instance [6,13]). Usually,
learning algorithms that minimize the training error, tend to focus in majority
classes at the expense of the rest. In this paper we have found that it is not
always the case that it is the minority classes that obtain low accuracies, but it
is common that there is some bias against some of the classes. In order to avoid
this problem, we propose an EMOML approach where the accuracy rates of all

K. Diamantaras, W. Duch, L.S. Iliadis (Eds.): ICANN 2010, Part I, LNCS 6352, pp. 422–427, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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the classes are optimized at the same time. Thus, during learning all classes
will be treated equally, independently of their abundance in the training set or
other biases. At the end of the learning process, the evolutionary algorithm will
produce a Pareto front that represents the tradeoff between the learning rates
of the different classes. There remains the issue of selecting this point from the
front that will be discussed in next section.

Our approach is closely related to the optimization of ROC curves. They
have been used in Machine Learning as an alternate way of comparing different
algorithms, specially if classes are imbalanced or not all classes have the same
cost[1,3]. The goal of our study is not finding the optimal ROC curve, but to use
the accuracy rates as secondary objectives with the aim of indirectly optimize
the total accuracy.

In the present work the chromosome encodes the weights for some of the
training data. The learning algorithm will use the weighted sample instead of
the original dataset. The rationale behind this decision is that it gives to the evo-
lutionary algorithm the possibility of focusing in some of the classes by increasing
the weights of some of its instances. The idea of adaptive weights for training
data has been successfully used in several areas of Machine Learning [12]. In
this paper we follow a similar approach of Boosting: the chromosomes will be
defined as an ordered list of weights. Each weight is a real number that tells how
many times the correspondient pattern from the missclassified sample must be
replicated. Each chromosome will have an associated NN, constructed by means
of backpropagation on a training sample made of the correctly classified patterns
and the set of missclassified samples, replicated according to chromosome.

The NN have been chosen because it is known that they are sensitive to re-
weighting of the training sample. Training will be carried out with Standard
Backpropagation [9] which is an algorithm for training multilayer NN. NSGA-II
[11] has been the evolutionary multiobjective optimization algorithm.

2 Multiobjective Approach for Imbalanced Classification
Data

As NSGA-II must optimize all class accuracies at the same time, our encoding
allows NSGA-II to improve some of the classes by replicating some of its patterns.
However, this might worsen some of the other classes. Thus, the evolutionary
algorithm is in charge of finding the best weighting for all the classes involved.
Its output is the best non-dominated set (the front) available at the end of the
search. However, we want to produce a single classifier, and not a whole set so we
will choose the classifier that minimizes the total error on the same training set.
In case that more than one individual have the same total error, we will choose
the one which has the smaller sum of weights. After that, the generalization of
the NN selected will be evaluated on a separate test set.

As mentioned before, chromosomes only contain the weights of the missclas-
sified samples. Chromosomes will be defined as an ordered list of real numbers
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(the weights 1): z = zi, i = 1 : |M |. Each weight zi tells how many times pattern
i from the missclassified sample M must be replicated.

But before calling to the NSGA-II, several steps have to be carried out:

– A NN is trained with the original training set T .
– The set of missclassified patterns M is computed. The set of correctly clas-

sified patterns is T − M .
– The lenght of the chromosomes is set to |M |.
– The performance of a NN trained by backpropagation depends on the train-

ing data but also on the initial connections weights w0, which are typically
a set of small values generated randomly. This means that during the search
process, a chromosome might outperform another, not because it is intrinsi-
cally better, but because of the initial weights. This adds some noise to the
fitness function. In order to remove the noise, a set of random initial weigths
w0 is fixed. Therefore, the backpropagation algorithm will always start from
the same fixed set of initial weights w0 for all neural networks created dur-
ing the search process, instead of generating new random weights everytime
backpropagation is run.

Now, the NSGA-II algorithm can start. Initially, all the chromosomes will be
generated randomly by NSGA-II, the weights will be random numbers, uniformly
generated in the range [0, K], where K is a parameter. Every generation, the
chromosomes are evaluated by the fitness function, which is computed as follows:

– The replicated sample Mz is computed, according to weights in z.
– A neural network is trained with the correctly classi ed sample T − M and

the replicated one Mz. Backpropagation is used for training, it starts from
the set of weights w0 generated before running NSGA-II.

– Those values are returned to NSGA-II.

We can define the NSGA-II objectives as: let C the number of classes in the
problem and |Tc| the number of patterns belonging to class c. Tc = {(xi, c), i =
1 : |Tc|} is the set of patterns belonging to class c. As NSGA-II is a minimization
algorithm, the class errors will be used instead of class accuracies. The error for
class c is the 0-1 loss for neural network NNz associated to chromosome z, is de-
fined in Eq.1. Ec is computed on the original training sample (not the replicated
one). Therefore, the set of goals to be minimized by NSGA-II is Ec, c = 1 : C.

Ec(z) =
1

|Tc| ∗
i=|Tc|∑

i=1

δ(yi, NNz(xi)) (1)

3 Experimental Validation

3.1 Experimental Setup

Table 1 shows a summary of the characteristics of the data sets used in this work.
The data sets have been selected from the UCI Machine Learning Repository [2]
1 Not to be confused with the NN weights w0.
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and the Proben Repository [8]. Balance-scale, Car,and Thyroid have the largest
differences between the majority and the minority classes, whereas Card displays
almost no imbalance. Breast-cancer and Ionosphere show some imbalance.

Table 1. Classification Domains

Dataset N. of Attributes N. of Classes N. of Patterns N. Class Patterns Source

Thyroid 21 3 7200 (3428 Test) 166/368/6666 Proben

Car 6 4 1728 1210/384/69/65 UCI

Balance Scale 4 3 645 288/49/288 UCI

Breast Cancer - W 9 2 699 241/458 Proben

Ionosphere 34 2 351 225/126 UCI

Card 51 2 690 307/383 Proben

First of all, different architectures of NN have been trained for each domain,
in order to select an appropriate number of hidden neurons. In this work, the
number of hidden neurons of the NN must be fixed from the start, under the
hypothesis that a wide range of architectures will provide similar performance.
The objective of this study is to show the advantage of using a multiobjective
approach, not to find the optimal architecture for the NN.

All NN are trained with the backpropagation algorithm during 500 iterations
and a learning rate of 0.1. They are composed by 3 hidden layers each of them
with 15 neurons. The FANN software library has been used [10].

The genes in the NSGA-II chromosome are randomly initialized with real
numbers in the interval [0,5]. The population size was set to 30 and NSGA-II
was run for 50 generations with a crossover and mutation probabilities of 0.5
and 0.01, respectively.

3.2 Experimental Results

In this paper we will use ”total classification rate” to refer to the percentage
accuracy classification rate of the dataset. ”Class classification rate” will be em-
ployed to refer to classification rates broken down for each one of the different
classes in the problem. Table 2 shows both the total and the class rates ob-
tained by the initial NN for test. 5-fold cross validation has been used for all
domains except ”Thyroid”, because the latter is provided with a test set. Ma-
jority and minority classes have been marked with + and −, respectively. It can
be observed that, in some of the imbalanced domains (Thyroid, Balance-Scale,
and Ionosphere), the NN obtains much lower classification rates for the minority
classes than for the rest. However, this is not true for Car and Breast Cancer.

The multiobjective algorithm provides a Pareto front with non-dominated
individuals. Using the criteria selection described in section 2 we choose one
individual and check its classification success rate (studying the total one and
the rate per each class). These rates are also shown in Table 2.

The largest increment in total classification rate (+5.22%) occurs in the Bal-
ance Scale data set. This improvement is due to a +57.35% increase in the
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Table 2. Classification Rate

Dataset Test Initial NN Test MO Aproach

Total — Class Classification Rate (%) Total — Class Classification Rate (%)

Thyroid 97.81 — 71.23−/94.31 /98.61+ 98.24 — 72.60−/95.45 /98.99+

Car 94.21 — 93.55+/80.41 /88.75−/96.46− 95.25 — 97.43+/86.46 /93.57−/98.46−

Balance Scale 89.14 — 90.74+/26.98−/99.29+ 94.36 — 92.85+/84.33−/98.13+

Breast Cancer 96.42 — 96.72−/96.96+ 96.70 — 97.38−/95.42+

Ionosphere 88.59 — 97.34+/73.74− 89.15 — 97.73+/74.8−

Card 82.75 — 79.70−/85.33+ 82.46 — 82.23−/82.65+

minority class, without decreasing significantly the rest of the classes. The Car
domain also shows a total rate improvement (+1%). In this case, all classes
are improved with no particular focus on the minority classes. The accuracy
increases range from +2.0% to +6.05%. Let us remember that in Car, the NN
obtained higher accuracies for the minority classes, therefore it makes sense that
the multiobjective approach will focus on the majority classes. In the Thyroid,
and Ionosphere domains, there is some total rate improvement over the initial
NN (less than 1%). It does so by focusing mainly on the minority classes. In the
Breast Cancer and Card domains there is no significant change over the initial
NN results. For the Breast Cancer this is reasonable because it is hard to im-
prove the classification rate for the classes already provided by the NN (96.72%
and 96.96% respectively). With regard to Card, the classes were not imbalanced,
so the multiobjective approach could not take advantage of focusing in some of
the classes in order to improve results.

4 Conclusions

In this paper we have explored a multiobjective evolutionary technique to deal
with imbalanced classification problems with Neural Networks (NN). The NN
Backpropagation algorithm tends to learn better some of the classes (typically
the majority ones) at the expense of the rest of the classes. In order to remove
this tendency, we have proposed an evolutionary multiobjective approach that
uses NSGA-II, where the accuracy rates of all the classes is optimized at the same
time. At the end of the evolutionary process, a Pareto front of NN is obtained.
The aim is to improve the accuracies of all the classes but at the same time,
increase the total classification rate. The latter is achieved by selecting the NN
with maximum total classification rate among the NN in the Pareto front. If
there are more than one point with the same total rate, the one with minimum
sum of weights was chosen.

In order to generate a diverse front of NN, NSGA-II explored the space of
training instance weighs: each input-output pair was associated to a weight.
Thus, NN were trained not on the original sample, but on a weighted sample.
The NSGA-II chromosomes contain different weighting sets that give rise to
different NN after being trained by Backpropagation on the weighted sample. In
order to work with shorter chromosomes, only weights for the training instances
missclassified by an initial NN were considered.
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The experiments show that in some of the cases, the total classification rate
is improved by focusing on the classes that were not learned well by the initial
NN. In other cases the total rate was not significantly improved but in general,
the accuracy rates of some of the classes improved without decreasing the total
classification rate. In summary, the algorithm gives equal opportunity to all
classes, independently of their abundance in the training set or independently of
other biases, because they are all optimized at the same time.
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Abstract. The motivation for this paper is to investigate the use of alternative 
novel neural network architectures when applied to the task of forecasting and 
trading the ASE 20 Greek Index using only autoregressive terms as inputs. This 
is done by benchmarking the forecasting performance of 4 different neural net-
work training algorithms with some traditional techniques, either statistical such 
as an autoregressive moving average model (ARMA), or technical such as a 
moving average convergence/divergence model (MACD), plus a naïve strategy. 
For the best training algorithm found, we used a genetic algorithm to find the 
best feature set, in order to enhance the performance of our models. More  
specifically, the trading performance of all models is investigated in a forecast 
and trading simulation on ASE 20 fixing time series over the period 2001-2009 
using the last one and half year for out-of-sample testing. As it turns out, the 
combination of the neural network with genetic algorithm, does remarkably 
well and outperforms all other models in a simple trading simulation exercise 
and when more sophisticated trading strategies as transaction costs were  
applied. 

Keywords: Quantitative Trading Strategies, transaction costs, genetic algo-
rithms, feedforward neural networks, momentum and backpropagation.  

1   Introduction 

The use of intelligent systems for market predictions has been widely established. 
This paper deals with the application of combined computing techniques for forecast-
ing the Greek stock market. The development of accurate techniques is critical to 
economists, investors and analysts. The traditional statistical methods, on which the 
forecasters were reliant in recent years, seem to fail to capture the interrelationship 
among market variables. This paper encourages search of methods capable of identi-
fying and capturing all the discontinuities, the nonlinearities and the high frequency 
multipolynomial components characterizing the financial series today. The category 
that promises such effective results is the combination of Genetic algorithms with 
Neural Networks named Genetic-trainlm model. Many researchers have argued that 
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combining many models for forecasting gives better estimates by taking advantage of 
each model’s capabilities and comparing them with single time series models.  

The literature review using that index in academic research is quite enough, with 
first Dunis et al. (2010a) proved that combined models can have better forecasting 
accuracy. Dunis et al (2010b) continues to show better results in terms of annualized 
return, using another mixed neural network model. Moreover the ASE-20 has been 
used in a BA dissertation (2009) and lastly when Dunis et al. (2010c) tried to compare 
the genetic programming algorithms with neural networks using as forecasting index 
the ASE-20, they came up with the interesting result, that GP algorithm can give us 
better forecasting performance. 

2   The ASE 20 Greek Index and Related Financial Data 

For Futures on the FTSE/ASE-20 that are traded in derivatives markets the underlying 
asset is the blue chip index FTSE/ASE-20. The FTSE/ASE-20 index is based on the 
20 largest ASE stocks. It was developed in 1997 by the partnership of ASE with 
FTSE International and is already established benchmark. It represents over 50% of 
ASE's total capitalization and currently has a heavier weight on banking, telecommu-
nication and energy stocks. 

Table 1. Explanatory variables for Neural Networks 
p y

Number Variable Lag

1 Athens Composite all share return 1

2 Athens Composite all share return 2

3 Athens Composite all share return 3

4 Athens Composite all share return 4

5 Athens Composite all share return 5

6 Athens Composite all share return 6

7 Athens Composite all share return 7

8 Athens Composite all share return 8

9 Moving Average of the Athens Composite all share return 10

10 Athens Composite all share return 11

11 Athens Composite all share return 12

12 Athens Composite all share return 14

13 Moving Average of the Athens Composite all share return 15

14 Athens Composite all share return 16
 

  
The FTSE/ASE 20 index is traded as a futures contract that is cash settle upon ma-

turity of the contract with the value of the index fluctuating on a daily basis. The cash 
settlement of this index is simply determined by calculating the difference between 
the traded price and the closing price of the index on the expiration day of the con-
tract. Furthermore, settlement is reached between each of the participating counterpar-
ties. Whilst the futures contract is traded in index points the monetary value of the 
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contract is calculated by multiplying the futures price by the multiple of 5 euro per 
point. For example, a contract trading at 1,400 points is valued at 7,000 EUR.  

The ASE 20 Futures is therefore adapted to a level in which to suit institutional 
trading. As a result, our application is deemed more realistic and specific to the series 
that we investigate in this paper. 

The observed ASE 20 time series is non-normal (Jarque-Bera statistics confirms 
this at the 99% confidence interval) containing slight skewness and high kurtosis. It is 
also non-stationary and we decided to transform the ASE 20 series into stationary 
series of rates of return.  

As inputs to our neural networks, based on the autocorrelation function and some 
ARMA experiments we selected 1 set of autoregressive and moving average terms of 
the ASE 20 returns. 

In order to train the neural networks we divided our dataset as follows: 

• The Total Dataset with 2283 days from 1/1/2001 to 30/9/2009 
• The Training Dataset with 1874 days from 24/1/2001 to 31/3/2008 
• The Test Dataset with 350 days from 28/11/2006 to 31/3/2008 
• The out-of-sample Dataset with 392 days from 1/4/2008 to 30/9/2009. 

3   Forecasting Models 

3.1   Benchmark Models 

In this paper, we benchmark our neural network models with 3 traditional strategies, 
namely an autoregressive moving average model (ARMA), a moving average conver-
gence/divergence technical model (MACD) and a naïve strategy [5, 6]. 

The naïve strategy takes the most recent period change as the best prediction of the 
future change. 

The MACD strategy used is quite simple. Two moving average series are created 
with different moving average lengths. The decision rule for taking positions in the 
market is straightforward. Positions are taken if the moving averages intersect. If the 
short-term moving average intersects the long-term moving average from below a 
‘long’ position is taken. Conversely, if the long-term moving average is intersected 
from above a ‘short’ position is taken. 

Autoregressive moving average models (ARMA) assume that the value of a time 
series depends on its previous values (the autoregressive component) and on previous 
residual values (the moving average component). Using as a guide the correlogram in 
the training and the test sub periods we have chosen a restricted ARMA (12,12) 
model. All of its coefficients are significant at the 99% confidence interval. The null 
hypothesis that all coefficients (except the constant) are not significantly different 
from zero is rejected at the 99% confidence interval. 

3.2   Combining Genetic Algorithms with Neural Networks 

Genetic Algorithms are general search algorithms, based on evolutions principles of 
nature, able to solve tough problems. Holland (1975) was the first to implement those 
using chromosomes of bit-strings. Genetic Algorithms are useful and efficient if the 
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search space is big and complicated or there is not any available math analysis of the 
problem. They have been used in many problems in the past including timetabling 
problems[1], neural networks[2], health and medical problems[3], scheduling prob-
lems[4] etc.  

Genetic Algorithms have their root in biology where every living organism has 
cells and every cell has the same number of chromosomes. Chromosomes are DNA 
strings, used as a model of the organism.   

In Genetic Algorithms, chromosome is the solution of a problem, consisted of 
genes, which are the optimizing parameters. A Genetic Algorithm creates an initial 
population of chromosomes, evaluates this population and evolves it through several 
generations searching the best solution for the problem. The chromosomes that 
achieved the biggest evaluation score are more likely to be selected for the evolution 
of the population. 

 

Fig. 1. Architecture of the proposed method 
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In this specific application, we used genetic algorithms in order to extract the best 
feature set which we must use for modeling the ASE index Greek index. The structure 
of the proposed method is shown in figure 1. In this method, genetic algorithms with 
artificial neural networks were used for determining the best set of inputs and then 
artificial neural networks were used for building the finale forecasting model. 

In this paper, we used feed forward neural networks. A feed-forward neural net-
work is an artificial neural network where connections between the units do not form 
a directed cycle. This is different from recurrent neural networks. 

The feed-forward neural network was the first and arguably simplest type of artifi-
cial neural network devised. In this network, the information moves in only one direc-
tion, forward, from the input nodes, through the hidden nodes (if any) and to the out-
put nodes. There are no cycles or loops in the network. 

In order to use the best training algorithm for the artificial neural networks, we ex-
perimented with 3 different training algorithms (TRAINLM, TRAINGDM, 
TRAINGDA) [9]. All these algorithms are different variations of the back propaga-
tion algorithm. 

For implementing these artificial neural networks we used the Matlab 7.9.0 
(R2009b) Toolbox. 

4   Forecasting Accuracy Measures 

In order to evaluate statistically our forecasts, we compute the RMSE, the MAE, the 
MAPE and the THEIL-U statistics. The RMSE and MAE statistics are scale-
dependent measures but give a basis to compare volatility forecasts with the realized 
volatility while the MAPE and the Theil-U statistics are independent of the scale of 
the variables. In particular, the Theil-U statistic is constructed in such a way that it 
necessarily lies between zero and one, with zero indicating a perfect fit. A more de-
tailed description of these measures can be found on [5, 6, 7]. For all three of the error 
statistics retained (RMSE, MAE, MAPE) the lower the output, the better the forecast-
ing accuracy of the model concerned. In the table below we present our results for the 
out of sample period. 

As we can see in Table 2, the ARMA model do remarkably well and presents the 
most accurate forecasts in statistical terms in out-of-sample period. Second comes the 
neural network model which used genetic algorithms and RNN comes third in our 
statistical evaluation. 

Table 2. The statistically results in out of sample period 

NAIVE MACD ARMA Genetic traingdm
    Algorithm
    with trainlm

RMSE 0.0349 0.0272 0.0261 0.0267 0.0278
    

MAE 0.0265 0.0201 0.0192 0.0195 0.0199
    

MAPE 635.9% 352.4% 151.5% 172.5% 287.1%
    

THEIL- U 0.6786 0.7497 0.8848 0.7684 0.7559
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traingda trainlm

RMSE 0.0548 0.0287

MAE 0.0285 0.0200

MAPE 372.46% 168.51%

THEIL-U 0.7283 0.07736
 

4.1   Empirical Trading Simulation Results 

The trading performance of all the models considered in the out of sample subset is 
presented in table 3. We choose the network with the higher profit in the test sub-
period. Our trading strategy applied is simple and identical for all the models: go or 
stay long when the forecast return is above zero and go or stay short when the forecast 
return is below zero. As shown in table 3 below the Genetic Algorithm with trainlm 
perform significantly better than the other neural networks. 

Table 3. Out-of-sample results  

NAIVE MAC ARMA Genetic traingdm
D   Algorithm

   with
   trainlm

Information Ratio 0.65 0.38 0.28 0.78 0.66
(excluding costs)      

Annualized Volatility 39.26% 40.86% 40.87% 40.83% 40.84%
(excluding costs)      

Annualized Return 25.49% 15.72% 11.56% 31.76% 26.85%
(excluding costs)      

Maximum Drawdown -46.10% -50.63% -30.295% -45.29% -63.82%
(excluding costs)      

Positions Taken 117 38 198 118 117
(annualized)     

Transaction costs 16.38% 5.32% 27.72% 16.52% 16.38%
     

Annualized Return 9.11% 10.4% -16.15% 15.24% 10.47%
(including costs)     

    
    

    traingda trainlm

       
Information Ratio (excluding costs)    0.69 0.71

Annualized Volatility (excluding costs)    40.84% 40.83%

Annualized Return (excluding costs)    28.18% 28.98%

Maximum Drawdown (excluding costs)    -31.01% -69.17%

Positions Taken  (annualized)    103 120
    

Transaction costs    14.42% 16.08%
    

Annualized Return (including costs)    13.76% 12.8  
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Following [6], we check for potential improvements to our models through the ap-
plication of transaction costs. A transaction cost is trading strategy devised to filter 
out those trades with expected returns below a threshold d around zero. They suggest 
to go long when the forecast is above d and to go short when the forecast is below d. 
According to the Athens Stock Exchange, transaction costs for financial institutions 
and fund managers dealing a minimum of 143 contracts or 1 million Euros is 10 Eu-
ros per contract (round trip). Dividing this transaction cost of the 143 contracts by 
average size deal (1 million Euros) gives us an average transaction cost for large 
players of 14 basis points (1 base point=1/100 of 1%) or 0.14% per position. 

Putting the models in order and despite larger drawdowns it is easy to understand 
that the best model is Genetic Algorithm with trainlm and second comes the trainlm. 
With small differences traingda model comes third and lastly is the traingdm. 

5   Concluding Remarks 

In this paper, we apply a combination of genetic algorithm with neural networks, a 
traingdm neural network, a traingda neural network and a trainlm neural network to a 
one-day-ahead forecasting and trading task of the ASE 20 fixing series with only 
autoregressive terms as inputs. We use a naïve strategy, a MACD and an ARMA 
model as benchmarks. We develop these different prediction models over the period 
2001 - 2008 and validate their out-of-sample trading efficiency over the following 
period from September 2008 through 2009. 

The Genetic Algorithm-Neural Network demonstrates the highest trading perform-
ance in terms of annualized return and information ratio before transaction costs and 
when more elaborate trading strategies are applied. When refined trading strategies 
are applied and transaction costs are considered the Genetic Algorithm-neural net-
work again continues to outperform all other models achieving the highest annualized 
return. The traingdm, the traingda and the trainlm neural network models perform 
remarkably well and seem to have great ability in providing good forecasts when 
autoregressive series are only used as inputs. 

Finally, the application of genetic algorithms reduced the inputs which should be 
used by the artificial neural networks while improving the models’ performance. 
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Abstract. This paper presents a hybrid approach for extreme artifact detection 
in electroencephalogram (EEG) data, recorded as part of the polysomnogram 
(psg). The approach is based on the selection of an “optimal” set of features 
guided by an evolutionary algorithm and a novelty detector based on Parzen 
window estimation, whose kernel parameter h is also selected by the evolution-
ary algorithm. The results here suggest that this approach could be very helpful 
in cases of absence of artifacts during the training process.  

Keywords: Genetic Algorithms, Feature Selection, Parzen Novelty Detection, 
Artifact Detection. 

1   Introduction 

Valid automated computer-based sleep analysis system development relies upon the 
creation of efficient automated computer-based artifact processing methodologies [1]. 
This paper introduces a hybrid  computational based method for the automated detec-
tion of a commonly observed electroencelphalogram (EEG) artifact within human psg 
data [2]. The artifact of interest is usually created by excessive patient movement 
(EPM), which is visually characterized by increased signal amplitude and variance 
values within the EEG. However, the characteristics of EPM make the underlying 
physiological EEG signal attributes visually unrecognizable and interfere with sleep 
technician and physician psg analysis [3]. During automated/computerized psg analy-
sis these body movements may also be misinterpreted [4].   

Due to the common occurrence of EPM artifacts within human psg recordings the 
signal analysis approaches obtained within this study are vital to the establishment of an 
efficient automated computer-based artifact processing methodology. Implementation of 
the latter will advance the development of a valid automated computer-based sleep 
analysis system, which will directly impact the diagnosis and treatment of people af-
fected by sleep related illnesses. Further emphasis on the importance of this work  
is provided by the National Institutes of Health which states, “At least 40 million 
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Americans each year suffer from chronic, long-term sleep disorders each year. These 
disorders account for an estimated $16 billion in medical costs each year” [5].  

Presently, no standardized approaches for psg computer-based automated artifact 
removal and/or compensation are widely accepted within clinical practice of human 
sleep analysis. However, two main research approaches are used to address artifacts 
within human psg data and have been cited in the literature, which include psg artifact 
prevention and treatment [1], [2]. The second approach, artifact treatment focuses, on 
artifact removal by utilizing computational artifact data elimination and compensation 
techniques. The primary focus of this work is computational artifact data elimination. 

The artifact problem can be formulated as a two class classification problem. How-
ever when one class is either under-sampled or not present at all, then the problem 
becomes more difficult and a different approach is needed. In the latter case a novelty 
detector can be used [6], which attempts to model, only, the known class.  

2   Materials and Methods 

As mentioned in the introductory section, the main idea behind this research work is 
to treat the artifact detection as a novelty (anomaly) detection or as a one class classi-
fication problem [6]. By this approach, we treat artifacts as anomalous situations and 
we focus on modeling the normal EEG behavior. Deviations from the “Standard EEG 
Model” are considered artifact.  

As in the general two-class (or multi-class) classification problems, we usually 
have to move from the original space (the “raw data” space) to a feature space of a 
(much) smaller dimension through a feature extraction process. By doing so, we hope 
to condense the relevant information and get rid of potential “noise” and also alleviate 
the problem of the curse of dimensionality. Therefore we often tend to extract more 
features than are necessary based upon expert knowledge and intuition and then em-
ploy a feature selection stage to come up with a near optimum set of variables [7]. 

2.1   Data Description  

The proposed work was tested using a psg record sampled at 200 Hz for a total dura-
tion of 7.25 hours provided in compliance with Emory University Institutional Re-
view Board protocol by the Emory Clinic Sleep Disorders Center (ECSDC) located in 
Atlanta, Georgia, USA.  

In order to extract the psg recording, surface electrodes from calibrated sleep moni-
toring equipment were attached to subjects by sleep technicians at the ECSDC. The 
electroencephalogram (EEG) data channel C3-A2 was extracted from the central 
electrode (C3) and referenced to anterior electrodes (A2), according to the interna-
tional 10-20 electrode placement system [8].  

A visual example of a 30 second epoch/segment of EPM artifact contamination in 
the EEG is displayed in the top panel of Figure 1. Increased EEG signal amplitude 
(C3-A2) is shown in the vertical axis displaying an amplitude value exceeding 700µV 
indicated by the arrow.  
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Twenty features (Table 1) were extracted from 1 sec time windows, EEG (C3-A2), 
after consultations with sleep physicians at ECSDC, an exhaustive review of prior 
bio-signal/psg data artifact detection methods, and a detailed visual analysis of the 
signal characteristics of EPM artifact and Non-artifact corrupted psg data sets [9]. 

 

Fig. 1. Example of EPM artifact displayed in the top panel EEG channel  

2.2   Genetic Algorithm Feature Selection Stage  

Feature selection can be performed in more than one way utilizing different criteria 
[13]. In this work, a wrapper [10] approach was adopted to assist in selecting a set of 
features that maximizes a portion of the area under the ROC curve (AUC) [11]. 

More specifically a GA is utilized to select the features that are used by the nov-
elty detector (which at the same time tries to optimize a design parameter of the detec-
tor). The GA population consists of binary chromosomes divided into five competing 
subpopulations [12]. Each of the subpopulations (containing different mutation rate 
ranges that provide varying degrees of search space exploration) competes for re-
sources with the subpopulation having the best performance given a greater number 
of chromosomes/individuals [12].  

The GA was implemented using the GEATBx toolbox [12] and it run for 500 
“generations”. Apart from twenty bits reserved to encode the selected set, we also 
genetically encoded the kernel parameter h of the Parzen detector using ten more bits. 

 
Fitness Function. Due to the imbalanced nature of the data set, the selection of accu-
racy (overall classification rate) as a metric is not the best choice for this case. Thus, 
the classifiers are compared by using their corresponding receiver operating charac-
teristic (ROC) curves. The ROC curve plots the True Positive (TP) rate (such that 
positive are the artifact free segments and negative are artifact segments) against the 
False Positive (FP) rate as an acceptance threshold is varied (Figure 2). AUC is a 
single scalar value that can be used for classifier comparison [11].  

For this work because we were also looking for a high True Negative (TN) rate we 
substituted the AUC for a portion of the area that was between specific (small) values 
(0.005-0.05) of the FP rate which corresponded to high TN rates (Figure 2).  
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Table 1. Extracted Features 

Feature 
Number 

Feature Name Symbol 

1 Mean Absolute Amplitude MAA 
2 Curve Length  L 
3 Mean Energy  MnE 
4 Power Spectrum Sub-band, Delta Power  {Delta} 
5 Power Spectrum Sub-band, Theta Power  {Theta} 
6 Power Spectrum Sub-band, Alpha Power  {Alpha} 
7 Power Spectrum Sub-band, Spindle Power {Spindle 
8 Power Spectrum Sub-band, Beta Power  {Beta} 
9 Mean/Expected Value  E 
10 Variance  Var 
11 Standard Deviation  Std  
12 Spectral Edge Frequency  SEF 
13 Kurtosis  Kurt 
14 Skewness  Skew 
15 Mobility  Mobi 
16 Complexity  CmP 
17 Zero Crossing  C 
18 Entropy  EnT 
19 75th Amplitude Percentile  75 Amp 
20 Non-Linear Energy  NE 
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Fig. 2. Typical ROC curve for an imbalanced data set (“negative” class under-sampled) 

2.3   Parzen Novelty Detector 

In this work the Parzen window method is used to estimate the probability density 
function of the training data (the underlying stochastic model). It is a non-parametric 
kernel based method and the most widely used kernel is the Gaussian kernel which is 
controlled by a single parameter h. The latter is employed with h being automatically 
selected by the GA (10 bit encoding –(0.005-2.0 phenotype)).  

The Parzen detector was implemented using the Data Description Toolbox [13]. 
The threshold to decide whether a sample comes from the underlying statistical model 
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is put such that a fraction (a user defined parameter) of the training objects is rejected 
(0.01 in our case). 

2.4   Experimental Procedure 

In order to test the proposed approach we used manually labeled EPM artifacts within 
the EEG data sets. Manual/expert EPM artifact labeling was based upon instruction 
from ECSDC physicians and technicians in visual artifact identification. A total of 
26098 epochs (25882 not artifact and 216 artifact epochs) were involved in this work. 

We employed the k-fold cross validation with k set equal to five. Due to the abun-
dant number of non-artifact samples we used only part of the available non-artifact 
data in order to reduce processing time. After that, we divided the non-artifact training 
data into two sets and we used 70% of them to train the novelty detector (to build the 
statistical model and select the corresponding threshold) and the remaining 30% along 
with the corresponding artifact data to calculate the performance measure (the portion 
of the AUC as described above).  

3   Results 

The procedure described in section 2.4 was repeated 5 times and the results were 
averaged. The overall achieved performance was 98.44%±0.41 (mean±standard de-
viation) for the non artifact segments and 80.93%±11.33 for the artifacts. The TP rate 
is close to the expected value since a 0.01 rejection error was selected during the 
training process. The TN rate is worse but it can be improved on the expense however 
of the TP rate.  

The GA always selected the curve length and the standard deviation in all but one 
repetition. Surprisingly it did not select the, variance which might be considered a 
viable feature based upon Figure1. It also frequently selected the mean energy and the 
nonlinear energy. The highest number of features selected were 8 with the most oc-
currences at 5 features being selected 7 times and the lease occurrences with 1 feature 
being selected zero times. Therefore, the GA was “biased” toward parsimonious solu-
tions, selecting on average five (out of the original twenty) features. 

4   Conclusions  

In this paper, we proposed a novel hybrid approach to artifact detection based on a 
combination of a GA algorithm for feature selection and a novelty detector. The re-
sults indicate that this approach can be used as an alternative to the standard two class 
classification approach especially when the information about the artifact class is 
missing. 

Even though the feature selection module was not directly dictated to favor solu-
tions with a lower number of features it frequently used only ¼ of the original vari-
ables resulting in a more compact representation of the problem. It is important to 
mention that most of the features were selected in a concise manner revealing a cer-
tain inherent pattern of the problem.  
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On the other hand the results are not as good as in the case of a two class formula-
tion [14]. Nevertheless they are promising and the proposed approach can be applied 
toward cases where minimal to zero information about the artifacts exist. 
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Abstract. It is on human nature to seek for recommendation before any

purchase or service request. This trend increases along with the enormous

information, products and services evolution, and becomes more and

more challenging to create robust, and scalable recommender systems

that are able to perform in real time. A popular approach for increas-

ing the scalability and decreasing the time complexity of recommender

systems, involves user clustering, based on their profiles and similarities.

Cluster representatives make successful recommendations for the other

cluster members; this way the complexity of recommendation depends

only on cluster size. Although classic clustering methods have been often

used, the requirements of user clustering in recommender systems, are

quite different from the typical ones. In particular, there is no reason to

create disjoint clusters or to enforce the partitioning of all the data. In

order to eliminate these issues we propose a data clustering method that

is based on genetic algorithms. We show, based on findings, that this

method is faster and more accurate than classic clustering schemes. The

use of clusters created, based on the proposed method, leads to signifi-

cantly better recommendation quality.

Keywords: Recommender systems, collaborative filtering, user cluster-

ing, genetic algorithms.

1 Introduction

Recommender systems have been proved to be an important response to the
information overload problem; they provide users with more proactive and per-
sonalized information. One of the most successful variations of recommender
systems, called collaborative filtering, has been developed and improved over
the past decade to the point where a wide variety of algorithms exist for gen-
erating recommendations [7], [6]. Contemporary recommendation systems in or-
der to tackle the scalability problem, caused by the increasing number of users,
group users into clusters based on their preferences (ratings) toward similar data
objects (like movies, jokes, etc) [1], [10]. From each cluster a user, or a group
of users, are identified, are used as reference for recommendations to the other
cluster members [2]. Traditional clustering algorithms create disjoint clusters and
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attempt to assign every data point to exactly one cluster [8]. However, in recom-
mender systems it is desirable to allow users to belong to several clusters based
on different properties of their profile or based on there on line choices [11]. On
the other hand, cluster-based recommendation must be based on clearly defined
clusters; sparse clusters are of limited importance [3] and may lead to wrong pre-
dictions and unsuccessful recommendations. Furthermore, the time complexity
of clustering algorithms [9] is a very important issue since typical recommender
systems include hundreds of thousands users per cluster [6],[4].

In this paper we propose a data clustering method which is based exclusively
on genetic algorithms [5]. It creates dense clusters sharing common elements and
converges rapidly even in very high dimensional spaces like the ones encountered
in recommender systems. Challenging cases, like the existence of users, with
extremely high total ratings difference, in the same cluster, were impossible using
the traditional clustering methods. Additionally for maximizing the reduction
of time complexity, we introduce the identification of representative users, from
each cluster using an appropriate similarity metric. The efficiency of the proposed
method is tested along two axes: The sparsity of each cluster is measured using
the Minkowski distance while the efficiency of prediction is used to prove the
appropriateness of this method for recommender systems.

2 User Clustering and Recommender Systems

The recommendation problem can be formulated as follows: Let C be the set of
users (customers) and let I be the set of all possible items that the users can rec-
ommended, such as books, movies, or restaurants. Let also u be a utility function
that measures the usefulness (as may expressed by user ratings) of item i to user
cj , i.e., u : C × I → �. The usefulness of all items to all users can be expressed
as a matrix U with rows corresponding to users and columns corresponding to
items. An entry u(cj , i) of this matrix may have either positive value indicating
the usefulness (rating) of item i to user cj or a zero value indicating that the
usefulness u(cj , i) has not been evaluated. The recommendation problem can be
seen as the estimation of zero values of matrix U from the non-zero ones.

Recommendation in the collaborative filtering approach requires some sim-
ilarity r(ca, cb) between users ca and cb to be computed based on the items
that both of them evaluated with respect to their usefulness. The most popular
approaches for user similarity computation are Pearson correlation and Cosine-
based metrics. Both of these methods produce values r(ca, cb) ∈ [−1 1]. In this
paper we use the Pearson correlation to calculate the similarity of users:

r(a, b) =

∑
i∈Ica,cb

(u(ca, i) − ūca)(u(cb, i) − ūcb
)√∑

i∈Ica,cb
(u(ca, i) − ūca)2

√∑
i∈Ica,cb

(u(cb, i) − ūcb
)2

(1)

where u(ca, i) and u(cb, i) are the ratings of users ca and cb on item i, ūca and
ūcb

are the average ratings over all rated items for ca and cb, and the set Ica,cb

stands for the items co-rated by user ca and cb. It is important to note that
Pearson coefficient can be computed only if Ica,cb

�= ∅.



444 O. Georgiou and N. Tsapatsoulis

Collaborative filtering based recommender systems build a neighborhood of
users having similar preferences. The neighborhood formation process is actually
the model-building or learning process for a recommender system algorithm. The
aim of neighborhood formation, is to find for an active user ca, an ordered list of
k users Na = {N1, N2, ..., Nk} such that ca /∈ Na and r(ca, N1) ≥ r(ca, N2)... ≥
r(ca, Nk). Recommendations for user ca are obtained either as predicted use-
fulness values û(ca, i) for a particular item i, or as a recommendation list of N
items, Ia = {I1, I1, ..., IN} that the active user will like the most. The recom-
mended list consists of items not already rated by the active user. The latter
form of recommendation is known as Top-N recommendation while the former
is usually referred to as prediction.

Nearest neighbor based recommender systems suffer from the scalability prob-
lem: the computation grows with both the number users and items making it
difficult to provide successful recommendations in reasonable time. Furthermore,
the estimation of an appropriate value for k is very difficult since it depends on
the active user as well as on the form of the user similarity matrix R (defined
as a 2D matrix with entries r(ca, cb) ∈ �, and ca, cb ∈ N). In most of these
approaches, the similarity between two users is based on the ratings of common
items, therefore many pairs of users have no correlation at all, facing the known
sparsity problem. In an attempt to moderate the scalability and sparsity prob-
lems clustering methods were employed. A cluster is a collection of data objects
that are similar to one another within the same cluster and are dissimilar to
the objects in other clusters. A cluster’s sparsity can be defined with the aid of
Minkowski distance. Let X = {x1, x2, ..., xn} be a set of vectors. A measure of
sparsity for set X is defined as:

d(X) =
√√√√ ∑

xi,xj∈X,i�=j

‖xi − xj‖ (2)

where ‖x‖ denotes the magnitude of vector x. Obviously, the lowest the sparsity
of set, the highest its compactness.

In order for clustering methods to be efficient, in the context of a recommender
system, the clusters that are created must be dense and the data points should
not necessarily classified into exactly one cluster. Clusters should be allowed to
overlap while some data points might not be assigned to any cluster. In this way
it is secured that the cluster members that will be used for recommendations
do share common properties. Finally, a representative data object of a cluster is
usually used for the recommendation to address time complexity.

3 Clustering Using Genetic Algorithms

Let us consider again the usefulness matrix U , introduced in the beginning of Sec-
tion 2, whose rows correspond to users and columns correspond to items. By ap-
plying a threshold T to all matrix entries we get a binary matrix B whose entries
b(cj , i) indicate that the user cj either liked item i (b(cj , i) = 1) or disliked / not
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rated it (b(cj , i) = 0). Assuming that the usefulness ratings u(cj , i) take values in
the interval [0 rmax] a reasonable choice for threshold T is 0.6rmax. The rows of
matrix B express a simplified form of user preferences by encoding the items they
liked.

In order to apply a genetic algorithm optimization for cluster creation we
consider a set binary vectors G = {gi|i = 1, . . . , PN}, with gi ∈ RL. Each
vector gi corresponds to an initial cluster formation. Thus, the length L, of
vector gi is equal to the total number of users of the recommender system while
the positions of the ones in vector gi indicate that the corresponding users belong
to the cluster. According to this formulation PN is the number of initial solutions
(clusters). Once the initial population has been created the process of creating
new generations starts and consists, typically, of three stages:

1. A fitness value (measure of “optimality”) of each string in the random pop-
ulation is calculated.

2. Genetic operators, corresponding to mathematical models of simple laws of
nature, like reproduction, crossover and mutation are applied to the popu-
lation and result in the creation of a new population.

3. The new population replaces the old one.

In our case optimization aims to increase both the number of users included
in a cluster as well as the number of items these users co-rated high. Let us
consider a set of indexes Jgi = {j|gij = 1}, where gij is the j-th element of
vector gi. Let also Igi =

⋂
j∈Jgi

bj be the intersection of the rows bj , j ∈ Jgi

corresponding to the preferences of users belonging to cluster gi. The non-zero
elements of vector Igi correspond to the highly co-rated items by these users.
Thus, the fitness value of cluster gi is given by:

F (gi) = N Igi + NJgi (3)

where N Igi is the number of non-zero elements of vector gi and NJgi is the
cardinality of set Jg

i . The objective is to find binary strings gi that maximize
the fitness function F (gi). The realization of the genetic operators reproduction,
mutation and crossover is as follows:

Reproduction. The fitness function F (gi) is used in the classical “roulette”
wheel reproduction operator that gives higher probability of reproduction to the
strings with better fitness according to the following procedure:

1. An order number, q, is assigned to the population strings. That is q ranges
from 1 to PN , where PN is the size of population.

2. The sum of fitness values (Fsum) of all strings in the population is calculated.
3. The interval [0 Fsum] is divided into PN sub-intervals each of one being

[SFq−1 SFq]
where SFq−1 =

∑q−1
j=1 F (gi) for q > 1 and SFq−1 = 0 for q = 0 or q = 1,

and SFq =
∑q

j=1 F (gi) for every q.
4. A random real number R0 lying in the interval [0, Fsum] is selected.
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5. The string having the same order number as the subinterval of R0 is selected
6. Steps (4) and (5) are repeated PN times in order to produce the intermediate

population to which the other genetic operators will be applied.

Crossover. Given two strings of length k (parents) an integer number is ran-
domly selected. The two strings retain their gene values up to gene r and inter-
change the values of the remaining genes creating two new strings (offspring).

Mutation. This operator is applied to each gene of a string and it alters its
content, with a small probability. The mutation operator is actually a random
number that is selected and depending on whether it exceeds a predefined limit
it changes the value of a gene.

4 Experimental Evaluation

The aim of experimental evaluation is to prove the efficiency of the proposed
clustering based recommendation method with the aid of real data. The averaged
density of the created clusters is measured for various number of clusters and
comparisons are made against, the widely used in recommender systems, K-
means clustering algorithm. The quality of recommendation is also measured
and compared against the traditional collaborative filtering method, and the
K-means clustering method.

4.1 Evaluation Framework

Experimental evaluation of the proposed method was done with the aid of
Dataset 1 of the Joke Recommender System [4]. This datasets contains over
than 4.1 million continuous ratings [−10.00 10.00] of 100 jokes from 73421
users. It is one of the most widely used dataset for evaluating algorithms for
recommender systems. We divided the dataset ratings into 60% for training and
40% for test set producing two matrics Tr ∈ �UxJ1 and Ts ∈ �UxJ2 respectively,
where U = 73421, J1 = 60 and J2 = 40.

Our experiments where conducted on a typical PC, running Windows XP,
and with the aid of Matlab platform (http://www.mathworks.com/). First, the
proposed GA-based clustering algorithm was applied to the training set to create
100 user clusters. This resulted in clusters of an average cardinality of 35 users,
while the average jokes commonly rated by cluster members was 25. Due to
cluster overlapping the total number of users selected by GA-clustering was
1603. In order to have a fair comparison with the K-means algorithm as well
as to the other recommendation methods we have used the training and test
data for these users only. The K-means algorithm was used to partition the 1603
users into a varying number of clusters. Then we identify the representative user
(user with highest similarity score), from each cluster, with the aid of Pearson
coefficient (see eq.1).

Recommendations were considered to be the jokes rated by representative
users, higher than a threshold T (set a T = 2 but threshold value does not

http://www.mathworks.com/
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actually affects the experiment). Let Cj
i be the i-th member of the j-th cluster

and Cj
r be the representative of that cluster. Let us, also, denote the set of

items rated by Cj
i as Ij

i and the set of high rated items of the same user as
Hj

i (obviously Hj
i ⊆ Ij

i ). For each cluster member two values are computed:
the satisfaction without recommendation sj

i and the satisfaction after receiving
recommendation by the cluster representative s̃j

i . The last value was computed
using three different methods: the representatives of clusters created using GA,
the representatives of clusters created using K-means and the nearest neighbor
(across all users) recommendation (1-NN). The sj

i and s̃j
i values are computed

as follows:

sj
i =

Car(Hj
i )

Car(Ij
i )

s̃j
i =

Car(Hj
i

⋂
Hj

r)
Car(Ij

i )
⋂

Hj
r)

(4)

where Car(X) denotes the cardinality of set X.

4.2 Results and Discussion

Figure 1 presents the average cluster sparsity for a varying number clusters
created using genetic algorithms and K-means. The average sparsity value is
computed with the aid of eq.2 across all the clusters of a given partitioning
of user space. The genetic algorithm clustering creates far more dense clusters
(lower sparsity value). GA based clustering allows cluster overlapping; as a re-
sult the average sparsity remains constant and independent of the number of
created clusters. This is a very important result because as the number of users
is increased the number of clusters is also increased, therefore, keeping the size of
clusters almost constant guarantees scalability both in time complexity as well
as in recommendation quality. The average sparsity of K-means clusters reduces
as the number of partitions increases; this is due to the fact that the more the
cluster the less the cluster members. The latter, however, leads to deterioration
of recommendation quality (see also Figure 2).

Figure 2 shows recommendation quality as a function of the number of clusters
for three methods: 1-NN, GA based clustering and K-means clustering. For com-
parison we plot also the user satisfaction without receiving any recommendation.
The latter, as well as the nearest neighbor method, are independent of the clus-
ter number since they are computed across all user population. The GA-based
clustering method presents almost constant performance. The recommendation
quality is always higher than that of K-means and 1-NN. We should note here
that the time complexity for nearest neighbor estimation is prohibitive for real
time performance. The K-means clustering algorithm presents pour performance
as the number of clusters increases. in some cases also, the quality was worsed
when recommendations was used, as opposed, when it was not used. Results were
expected, since the fixed number of users, lead to an increase of clusters number
and decrease of clusters size. Cluster overlapping preserves cluster cardinality
and causing high quality.



448 O. Georgiou and N. Tsapatsoulis

10 20 30 40 50 60 70 80 90
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Number of partitions

Average cluster sparsity for partitioning into a varying number of clusters
A

ve
ra

ge
 c

lu
st

er
 s

pa
rs

ity

 

 
GA based clustering
K−means clustering

Fig. 1. Average cluster sparsity for partitioning into a varying number of clusters using
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5 Conclusion and Further Work

In order to keep up with this information explosion the scalability of recom-
mender systems must be improved while the time complexity of recommenda-
tion algorithms must be kept low. These are the main reasons the clustering
based recommendation systems gain attention. In this paper, we have proposed
a genetic algorithm based clustering method which creates dense clusters appro-
priate for recommendation systems. The clusters are allowed to overlap; thus
both density of clusters and recommendation efficiency are kept almost constant
and independent of the number of clusters. Given that the number of clusters
increase proportionally with the number of data objects the proposed method
ensures scalability. In addition, recommendations are made by cluster represen-
tatives minimizing the time complexity.

Future work includes testing the proposed method in sparse datasets. The
creation of dense clusters in such datasets is challenging. In addition Top-N
recommendation methods will be investigated using all cluster members recom-
mendations instead of the ones of clusters’ representatives. Finally, methods for
choosing the best cluster representatives will be also explored.
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Abstract. In this work, a novel probability distribution is proposed

to model sparse directional data. The Directional Laplacian Distribu-

tion (DLD) is a hybrid between the linear Laplacian distribution and

the von Mises distribution, proposed to model sparse directional data.

The distribution’s parameters are estimated using Maximum-Likelihood

Estimation over a set of training data points. Mixtures of Directional

Laplacian Distributions (MDLD) are also introduced in order to model

multiple concentrations of sparse directional data. The author explores

the application of the derived DLD mixtures to cluster sound sources

that exist in an underdetermined two-sensor mixture.

Keywords: Audio Source Separation, Mixture Models, Directional Data,

Sparse Data Modelling.

1 Introduction

Circular Statistics is the branch of statistics that addresses the modeling and
inference from circular or directional data, i.e. data with rotating values. Many
interesting circular models can be generated from known probability distribu-
tions by either wrapping a linear distribution around the unit circle or trans-
forming a bivariate linear r.v. to its directional component [1]. There also exist
several distributions that are periodic by definition and can therefore be em-
ployed to model directional data. The von Mises distribution (also known as the
circular normal distribution) is a continuous probability distribution on the unit
circle [1]. It may be considered the circular equivalent of the normal distribution
and is defined by:

p(θ) =
ek cos(θ−m)

2πI0(k)
, ∀ θ ∈ [0, 2π) (1)

where I0(k) is the modified Bessel function of order 0, m is the mean and k > 0
describes the “width” of the distribution. The von Mises distribution has been
extensively studied and many methods that fit the distribution or its mixtures
to normally distributed circular data have been proposed [2,1,3,4].

This study proposes a novel distribution to model directional sparse data.
Sparsity is mainly used to describe data that are mostly close to their mean
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value with the exception of several large values. There are several sparse models
that have been proposed for linear sparse data [5] and several attempts to model
circular sparse signals by wrapping a Laplace distribution [6,7]. This paper
proposes a Directional Laplacian Distribution (DLD) as a direct modelling solu-
tion for circular sparse data. The Maximum Likelihood estimates (MLE) of the
model’s parameters are derived, along with an Expectation-Maximisation (EM)
algorithm that estimates the parameters of a Mixture of Directional Laplacian
Distributions (MDLD).

One application where directional statistical modelling is essential is Under-
determined Audio Blind Source Separation (BSS) [5,7,8]. Assume that a set of K
sensors x(n) = [x1(n), . . . , xK(n)]T observes a set of L (K < L) sound sources
s(n) = [s1(n), . . . , sL(n)]T . The instantaneous mixing model can be expressed
in mathematical terms, by x(n) = As(n), where A represents the mixing ma-
trix and n the sample index. The blind source separation problem provides an
estimate of the source signals s, based on the observed microphone signals and
some general source statistical profile. The two-channel (K = 2) BSS scenario is
often reduced to an angular clustering problem of sparse data, which has been
addressed using Wrapped Laplacian Mixtures [7]. The proposed DLD model
is tested with several synthetic modelling experiments and in real audio BSS
examples.

2 A Directional Laplacian Density

2.1 Definition

Assume a r.v. θ modelling directional data with π-periodicity.

Definition 1. The following probability density functionmodels directional Lapla-
cian data over [0, π) and is termed Directional Laplacian Density (DLD):

p(θ, m, k) = c(k)e−k| sin(θ−m)| , ∀ θ ∈ [0, π) (2)

where m ∈ [0, π) defines the mean, k > 0 defines the “width” (approximate
variance) of the distribution, c(k) = 1

πÎ0(k)
and Î0(k) = 1

π

∫ π

0
e−k sin θdθ.

The normalisation coefficient c(k) = 1/πÎ0(k) can be easily derived from the
fundamental property of density functions. In Figure 1, the DLD is depicted for
m = 0.1 and various values of k. The DLD is a heavy-tailed density that exhibits
a π periodicity. The above definition can be amended to reflect a “fully circular”
phenomenon (2π), however, we will continue with the π periodicity since it is
required by our source separation application.

2.2 Maximum Likelihood Estimation Using Directional Laplacian
Priors

Assume a population of angular data Θ = {θ1, . . . , θn, . . . , θN} that follow a
Directional Laplacian Distribution. Maximum Likelihood Estimation (MLE) can
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Fig. 1. The proposed Directional Laplacian Density (DLD) for m = 0.1 and various

values of k

be used to fit the proposed Directional Laplacian Distribution to a set of angular
data Θ. Assuming statistical independence between the observed data points, the
MLE problem [9] can solve by maximising the log-likelihood function J(Θ, m, k)
in terms of m, k. Assuming a DLD prior, the log-likelihood function J(Θ, m, k)
can be expressed, as follows:

J(Θ, m, k) = −N log π − N log Î0(k) − k

N∑
n=1

| sin(θn − m)| (3)

To estimate the parameters that maximise the log-likelihood, alternating up-
dates for m and k iteratively yields an optimum of the log-likelihood. It is
not straighforward to obtain a closed-form solution by solving the equations
∂J(Θ, m, k)/∂m = 0 and ∂J(Θ, m, k)/∂k = 0 for m and k respectively. Thus,
one has to resort to alternative solutions to estimate m and k.

Estimation of m. Iterative optimisation is employed to estimate m. To achieve
faster convergence, a Newton-step optimisation will be pursued. The Newton-
step updates for m can be given by the following update equation [9]:

m+ ← m +
[
∂2J(Θ, m, k)

∂m2

]−1
∂J(Θ, m, k)

∂m
(4)

where m+ denotes the new update of the estimated parameter and

∂J(Θ, m, k)
∂m

=
N∑

n=1

ksgn(θn − m) cos(θn − m) (5)
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∂2J(Θ, m, k)
∂m2

=
N∑

n=1

k(δ(θn − m) + | sin(θn − m)|) (6)

The Newton-step for m is independent from k and can be estimated, as follows:

m+ ← m +
∑N

n=1 sgn(θn − m) cos(θn − m)∑N
n=1 δ(θn − m) + | sin(θn − m)| (7)

Estimation of k. In order to avoid the iterative update of k via gradient ascent
on the log-likelihood [9], an alternative solution is to solve ∂J(Θ, m, k)/∂k = 0
numerically. From the first derivative of J(·) along k, and

∂p

∂kp
Î0(k) = (−1)p 1

π

∫ π

0

sinp θe−k sin θdθ = (−1)pÎp(k) (8)

it is straightforward to derive the following:

Î1(k)
Î0(k)

=
1
N

N∑
n=1

| sin(θn − m)| (9)

Calculating k from the ratio Î1(k)/Î0(k) analytically is not very straightfor-
ward. However, through numerical evaluation, it can be shown that the ratio
Î1(k)/Î0(k) is a monotonic 1−1 function of k. In Figure 2, the ratio Î1(k)/Î0(k)
is estimated for uniformly sampled values of k ∈ [0.01, 30]. Since this ratio is
not dependent on data, one can create a look-up table for a variety of k val-
ues and use interpolation to estimate k from an arbitrary value of Î1(k)/Î0(k).
This look-up table solution is more efficient compared to iterative optimisation
approaches and generally accelerates the model’s training.

Initialisation of the ML Approach. In [2], there exists a methodology to esti-
mate closed-form solutions for m, k in the case of the Von-Mises distribution. The
methodology can not yield direct solutions of m, k for the DLD prior, however,
one can employ the strategy in [2] to derive an upper bound of the log-likelihood
in (3). The derived upper bound can be used to extract closed-form estimates
of minit that can be used as initialisations of the iterative solutions proposed
in the previous section. Let C =

∑
n | cos θn|, S =

∑
n | sin θn|, R =

√
C2 + S2,

θ̄ = atan(S/C), | cos θ̄| = C/R, | sin θ̄| = S/R. Using the triangular inequality
|x| − |y| ≤ |x ± y| ≤ |x| + |y|, we manipulate the last term of the log-likelihood
in (3).

∑
n

| sin(θn − θ̄ + θ̄ − m)| ≥
∑

n

| sin(θn − θ̄)|| cos(θ̄ − m)| −
∑

n

| cos(θn − θ̄)|| sin(θ̄ − m)|

=
∑

n

| sin θn cos θ̄ − cos θn sin θ̄|| cos(θ̄ − m)| −
∑

n

| cos θn cos θ̄ + sin θn sin θ̄|| sin(θ̄ − m)|

≥ (S| cos θ̄| − C| sin θ̄|)| cos(θ̄ − m)| −
∑

n

(| cos θn|| cos θ̄| + | sin θn|| sin θ̄|)| sin(θ̄ − m)|

≥ (S
C

R
− C

S

R
) − C2 + S2

R
| sin(θ̄ − m)| = −R| sin(θ̄ − m)|
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Fig. 2. The ratio Îp(k)/Îp−1(k) is a monotonic 1 − 1 function of k

Thus, the log-likelihood appears to have the following upper bound:

J(m, k) ≤ kR| sin(θ̄ − m)| − N log π − N log Î0(k) = Ju(m, k) (10)

To find the maximum of the bound, we set

∂Ju

∂m
= −sgn(sin(θ̄ − m)) cos(θ̄ − m) = 0 (11)

The above equation yields the solutions m = θ̄ or m = θ̄ ± π/2. For the second
solution set, only the m = θ̄ + π/2 solution can be valid, since m ∈ [0, π) and
θ̄ ∈ [0, π/2). The two solutions arose to account for the use of absolute values in
the estimation of θ̄ and thus θ̄ is restricted to θ̄ ∈ [0, π/2). A simple method to
define the correct solution is to evaluate the expression sgn(

∑N
n=1 atan tan θn).

If the expression is positive, the correct solution is minit = θ̄. In the opposite
case, the correct solution is minit = θ̄ + π/2. In Figure 3, a comparison between
the estimated optimum minit and the actual m for all values of m ∈ [0, π) is
performed for two values of k. The accuracy of the bound seems to depend on
the value of m. In addition, the tightness of the bound depends clearly on the
value of k. For great values of k, the estimated bound approximates the actual
cost function accurately, thus the estimated minit is very close to the actual m.
For low values of k, the accuracy of the estimated minit depends on the actual
m. In general, the optimal value minit that was estimated in this section can
only serve as a valid initialisation of the ML approach.

2.3 Mixtures of Directional Laplacian Distributions

In a similar fashion to Gaussian Mixture Models (GMM), one can employ Mix-
tures of Directional Laplacian Distributions (MDLD) in order to model a mixture
of directional “heavy-tailed signals”.
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Definition 2. Mixtures of Directional Laplacian Distributions are defined by
the following pdf:

p(θ, mi, ki) =
M∑
i=1

aic(ki)e−ki| sin(θ−mi)| , ∀ θ ∈ [0, π) (12)

where ai denotes the weight of each distribution in the mixture, mi, ki denote
the mean and the approximate variance of each distribution and M the number
of DLDs used in the mixture.

Training via Expectation-Maximisation (EM). A common method that
can be employed to train a mixture model is the Expectation-Maximization (EM)
algorithm. Bilmes estimates Maximum Likelihood mixture density parameters
using the EM [10]. Assuming N training samples for θn and Directional Laplacian
mixtures (12), the log-likelihood of these training samples takes the following
form:

J(ai, mi, ki) =
N∑

n=1

log
M∑
i=1

ai

πÎ0(ki)
e−ki| sin(θn−mi)| (13)

Introducing unobserved data items that can identify the components that “gen-
erated” each data item, we can simplify the log-likelihood of (13) for MDLD, as
follows:

I(ai, mi, ki) =
N∑

n=1

M∑
i=1

(log
ai

π
− log Î0(ki) − ki| sin(θn − mi)|)p(i|θn) (14)

where p(i|θn) represents the probability of sample θn belonging to the ith Direc-
tional Laplacian of the MDLD. In a similar fashion to Gaussian Mixture Models,
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the updates for p(i|θn) and αi can be given by the following equations:

p(i|θn) ← aic(ki)e−ki| sin(θn−mi)|∑M
i=1 aic(ki)e−ki| sin(θn−mi)|

(15)

ai ← 1
N

N∑
n=1

p(i|θn) (16)

Based on the derivation of the MLE estimates for DLD prior, it is straightfor-
ward to derive the following updates for the MDLD parameters mi and ki, by
optimising I(ai, mi, ki). The means mi are estimated using a Newton-step on
I(ai, mi, ki), as follows:

m+
i ← mi +

∑N
n=1 sgn(θn − mi) cos(θn − mi)p(i|θn)∑N

n=1(δ(θn − mi) + | sin(θn − mi)|)p(i|θn)
(17)

To estimate ki, we will resort to the numerical estimation of ki. The first deriva-
tive is given by:

∂I(ai, mi, ki)
∂ki

=
N∑

n=1

(
Î1(ki)
Î0(ki)

− | sin(θn − mi)|)p(i|θn) (18)

Equating (18) to zero yields:

Î1(ki)
Î0(ki)

=
∑N

n=1 | sin(θn − mi)|p(i|θn)∑N
n=1 p(i|θn)

(19)

Using the lookup table solution that was discussed in the previous section, one
can estimate ki directly from (19).

Training Initialisation. The training of a mixture model is dependent on the
initialisation of its parameters, especially the means mi. Depending on different
initialisations, in general, the EM algorithm may yield different mixture models
that approximate the observed pdf, implying that the EM algorithm may get
trapped in several local maxima. In a similar fashion to Gaussian Mixture Model
initialisation, a Directional K-Means [11] is used to initialise the means mi of
the DLDs in the MDLD EM training, described in the previous section.

3 Experiments

In this section, we evaluate the efficiency of the derived EM algorithms for the esti-
mation of the Directional Laplacian Density Mixtures. To generate 1D Directional
Laplacian data, we employed the Inverse Transform Sampling technique [12]. We
created a mixture of 5 concentrations of DLD samples centred at 0.3, 0.9, 1.5, 2.5, 3
respectively. The values of ki for each DLD were 12, 10, 12, 14, 14. Each of the 5
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Table 1. Parameter Estimation for a Mixture of Directional Laplacian (M = 5) using

the proposed EM algorithm. Average parameter results for 50 independent runs.

mi ki ai m̂i |k̂i − ki|/ki âi

DLD1 0.3 12 0.1071 0.4743 0.0616 0.0906

DLD2 0.9 10 0.2143 0.9001 0.1735 0.2377

DLD3 1.5 12 0.3571 1.5068 0.0403 0.3576

DLD4 2.5 14 0.1429 2.4262 0.1946 0.1307

DLD5 3 14 0.1786 2.9650 0.0281 0.1834

Table 2. The proposed MDLD approach is compared in terms of SDR (dB) with

MoL-EM hard, MoWL-EM hard and Hyvärinen’s approach and the average SDR of

the mixtures

Groove Dataset Latino Dataset

s1 s2 s3 s4 s1 s2 s3 s4

Mixed

Signals -30.02 -10.25 -6.14 -21.24 -2.47 -11.8 -2.04 -9.14

MDLD-EM 4.20 -4.32 -0.75 2.07 9.31 -0.04 8.17 3.53

MoWL-EM hard 4.32 -4.35 -1.16 3.27 8.72 -0.04 8.13 3.03

MoL-EM hard 2.85 -4.47 -0.86 3.28 8.65 -0.075 8.15 3.51

Hyvärinen 3.79 -3.72 -1.13 1.49 10.03 -1.74 8.16 3.42

concentrations contained different number of samples in order to create different
contributions to the overall density. The total number of samples was set to 3000.
We ran 50 independent runs of the EM-algorithm as described in Section 2.3. An
average of the estimated m̂i, k̂i and âi is shown in Table 1. In most of the 50 cases,
we witnessed accurate estimation of the underlying concentrations.However, there
were several cases (5-6 out of 50), where the initialisation offered by the Directional
K-Means was not accurate for some of the clusters. Since most mixture estimation
algorithms are sensible to initialisation, this resulted into a drop of the average ac-
curacy in mixture training. Nonetheless, most of the clusters were correctly iden-
tified and the overall results are promising. Also it is important to mention that
two of the cluster centres were chosen to be at 0.3 and 3 which are very close to the
borders π and 0 that would be causing problems in the linear case. The MDLD is
not affected at all, since it it is circular by definition.

The next step is to evaluate the proposed algorithm for audio source separa-
tion. Moving the sensor signals to a sparser domain (MDCT domain), the sources
become sparser and thus smaller coefficients are more probable and most of the
signal’s energy is concentrated in few large values. Therefore, the density of
the data in the mixture space shows a tendency to cluster along the directions of
the mixing matrix columns and the two-sensor multiple-source separation prob-
lem is reduced to an angular clustering problem of θn = atan(x2(n)/x1(n)) [7,8].
In these experiment, we will use Hyvärinen’s clustering approach [13], the MoL-
EM [7] and the WMoL-EM [8] for comparison. After Mixture fitting with the EM
algorithm, separation will be performed using hard thresholding, as described in
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our previous work [7,8]. In order to quantify the performance of the algorithms,
we are estimating the Signal-to-Distortion Ratio (SDR) from the BSS EVAL
Toolbox [14]. The frame length for the MDCT analysis is set to 64 msec for the
test signals sampled at 16 KHz and to 46.4 msec for those at 44.1 KHz. We
initialise the parameters of the MoL, MoWL and MDLD as follows: αi = 1/N
and ci = 0.001, T = [−1, 0, 1] (for MoWL only) and ki = 15 (for Circular Lapla-
cian only). The centres mi were initialised in either case using the Directional
K-means step.

We tested the algorithms with the Groove and the Latino dataset, available by
(BASS-dB) [15], sampled at 44.1 KHz. The “Groove” dataset features four widely
spaced sources: bass (far left), distorted guitar (center left), clean guitar (center
right) and drums (far right). The “Latino” dataset features four widely spaced
sources: bass (far left), drums (center left), keyboards (center right) and distorted
guitar (far right). In Table 2, we can see the results for the four methods in terms
of SDR. The average SDR of the two input signals, treating them as estimates
of each input signal, is also provided for comparison (Mixed Signals row). The
proposed MDLD approach seems to provide the best performance for most of
the audio sources with small difference though. The important advantage of the
proposed MDLD approach is that it is not susceptible to bordering effects. It is
slightly slower compared to the original MoL approach and also faster compared
to the previous MoWL, since the proposed EM is more efficient compared to the
one for MoWL.

4 Conclusions

In this paper, the author addresses the problem of modelling Directional Sparse
data. Sparsity is often modelled using the Laplacian density for data with infinite
linear support, which is not directly applicable in the case of directional or
circular data. This work is building on previous work on directional Gaussian
models (i.e. the von-Mises densities) to propose a novel Directional Laplacian
model for modelling directional sparse data. ML estimates and an EM-algorithm
were introduced to handle sparse circular data modelling problems. The proposed
circular density was applied to the underdetermined source separation problem.
The proposed solution featured a complete solution to the problem, compared
to previous efforts. For future work, the author is planning to expand the model
to handle multi-dimensional circular data.
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Abstract. In this paper, the problem of frontal view recognition on still

images is confronted, using subspace learning methods. The aim is to ac-

quire the frontal images of a person in order to achieve better results in

later face or facial expression recognition. For this purpose, we utilize a

relatively new subspace learning technique, Clustering based Discrimi-

nant Analysis (CDA) against two well-known in the literature subspace

learning techniques for dimensionality reduction, Principal Component

Analysis (PCA) and Linear Discriminant Analysis (LDA). We also con-

cisely describe spectral clustering which is proposed in this work as a

preprocessing step to the CDA algorithm. As classifiers, we use the K-

Nearest Neighbor the Nearest Centroid and the novel Nearest Cluster

Centroid classifiers. Experiments conducted on the XM2VTS database,

demonstrate that PCA+CDA outperforms PCA, LDA and PCA+LDA

in Cross Validation inside the database. Finally the behavior of these

algorithms, when the size of training set decreases, is explored to demon-

strate their robustness.

Keywords: Dimensionality Reduction, Subspace Learning, Spectral

Clustering.

1 Introduction

Frontal view recognition is a binary approach to the more general head pose
estimation problem. Pose estimation means to infer the orientation of a person’s
head relative to the view of the camera. Given an image that depicts a person’s
head, actually frontal view recognition aims at classifying it to frontal or non-
frontal.

Frontal view recognition is very important to bridge the gap in communica-
tion between humans and computers and could be integrated to many available
technologies. For instance, it should be used as a preprocessing task in order to
achieve better results in later face or facial expression recognition. The point is
that face and facial expression recognition techniques require frontal view images
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because they convey more information about the face and its expressions than
non-frontal images.

The ability to gain efficient results with a little computational effort is an issue
that arises at this point. There is a variety of methods that have been proposed
for head pose estimation and specifically for frontal view recognition. In [1] the
authors organize all of these methods into categories, according to the funda-
mental approach that underlies the implementation of them. The categories that
they present are: Appearance Template methods, Detector Array methods, Non-
linear Regression, Manifold Embedding, Flexible Models, Geometric Methods,
Tracking Methods and Hybrid Methods which combine the above.

In this paper we have focused on the Manifold Embedding Methods. The prob-
lem that becomes apparent is that usually initial images lie on a high dimensional
space, which is, of course, intractable. To resolve this issue, these methods seek
for low-dimensional manifolds which lie on the initial high-dimensional space
and model the continuous variation of the head pose. In this category, several
methods have been proposed. Some of them are: Principal Component Analy-
sis (PCA), Linear Discriminant Analysis (LDA) and their kernelized versions,
Isomap, Locally Linear Embedding (LLE), Laplacian Eigenmaps (LE) and the
linear approximations of the latter two, Locally Embedded Analysis (LEA) and
Locality Preserving Projections (LPP), respectively.

Here, we have utilized three linear subspace learning methods, PCA, LDA
and CDA. This approach simplifies the problem of dimensionality reduction to
a simple multiplication between a matrix (transformation matrix) and a vector
(initial image). While PCA is an unsupervised method, (in that it does not
need any prior information about the labeling of the data points into classes),
the other two are supervised. Specifically CDA introduces a different kind of
labeling which relies on the clustering of the data points.

Clustering techniques are unsupervised methods to extract groups of “similar”
data points in a data set. Formally speaking, given a set X = {x1, x2, · · · , xN}
of N data points and the desired number K of groups, clustering means to find a
partition (Xk)K

k=1 of the set X such that ∪K
k=1 (Xk) = X and Xk∩Xl = ∅ if k �= l.

There are many approaches to cluster the points of a given data set. Here we
have employed a category of clustering algorithms, called Spectral Clustering.
The great advantage of the Spectral Clustering algorithms is that they are simple
to implement by using basic knowledge of Linear Algebra.

From the above discussion, someone may ask how should the number K of
groups be extracted, and additionally if is there any method to automatically
learn this number using the data set. In [2] the authors propose an automatic
multiscale data clustering to extract different plausible data partitionings by
using the eigenvalues of an affinity matrix. In parallel, the proposed method
associates each partition to a numerical measure that indicates its plausibility.

Obviously, after the clustering step, every data point gets a new label that
denotes the group in which it belongs to. CDA makes use of this supervised
information to project the data from their initial dimensionality to a lower di-
mensionality in a manner that the classes in which they belong to, become more
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discriminant. The difference between LDA and CDA is that LDA may not be
able to separate samples from different classes if multiple clusters per class exist
in input feature space. Conversely, CDA tries to benefit from this additional
information and it is expected to work well in problems characterized by the
existence of clusters inside the classes. As we will see in Section 5, the frontal
view recognition problem is indeed one such. In the following analysis, every 2D
image has been decomposed to a 1D vector by row-wise scanning. From now on,
these vectors are denoted as data-points.

2 Spectral Clustering

As it became apparent in the previous section, clustering of the data-points is
an important and imperative step of the CDA algorithm. Thus, we need an
algorithm to cluster our data in a meaningful way. In our study, we have utilized
the Spectral Clustering technique which has become one of the most popular
clustering algorithms and it often outperforms traditional clustering algorithms
such as K-means algorithm.

Two important mathematical tools for the development of spectral clustering
are the similarity graph and the affinity matrix. Consider a set of data-points
X = {x1, x2, · · · , xN} lying on the data space Rm, a metric d (xm, xn) and
some parametric monotonically decreasing function fmn (σ) = f (d (xm, xn) , σ)
which measures the similarity between every pair of such data points. We define
the similarity graph as the graph (X , E), where X is the set of the data points
and E is the set of the edges between the data-points. The weights of the edges
calculated with the similarity function f constitute a matrix W which has at
position (m, n) the weight fmn (σ) between the m, n edges. Of course, W has
to be a symmetric matrix. Relying on this new concept, we may interpret the
problem of clustering in a nice new way: Find a partition of the graph such that
the edges between different groups have very low weights (which means that
points in different clusters are dissimilar from each other) and the edges within
a group have high weights (which means that points within the same cluster are
similar to each other) [3].

The affinity matrix P is an N × N matrix, where N is the number of data
points and contains the whole information about the neighboring of the data.
There are several ways to define the affinity matrix. Here we have used the
random walk approach:

P = D−1W . (1)

D is called the degree matrix. It is diagonal with Dnn =
∑N

i=1 fni. W is the
weight matrix defined above. P can be interpreted as the transition table of a
random walk among the set of vertices X . Each row of P sums to 1.

Given the number K of clusters, Spectral Clustering algorithm firstly com-
putes the K largest eigenvalues of P . Then constructs an N × K matrix who
has as columns the K corresponding eigenvectors. It has been shown in [3] that
the rows of this matrix could be used as a new representation of the initial
data, which is more useful from a clustering perspective. Thus on this new data
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representation any common clustering algorithm should be employed in a more
efficient way. Here, for our needs, we have employed the K-means algorithm.

An issue that arises from the above discussion is how to estimate the “correct”
number of clusters. There is a variety of methods in the literature (e.g. isodata),
but the purpose here is to stay in the framework that has been presented. A tool
that has been widely used in this framework is the eigengap heuristic:

– Perform eigenanalysis on the affinity matrix P
– Rank the eigenvalues in descending order: (λ1, λ2, · · · , λN )
– Find the maximum gap δ between consecutive eigenvalues (λi, λi+1)
– Use the index i as an estimation of the total number of clusters
– Use this eigengap δ as a plausibility measure, where δ takes values between

0 and 1.

A. Azran and Z. Ghahramani in [2] extended this heuristic. They showed that
by letting the random walk take multiple steps, different scales of partitioning
are explored. In the case where the number of steps is M , the transition matrix
is given by multiplying P with itself M times and is then called the Mth order
transition matrix. This matrix contains the probabilities of the random walk to
transit from one state to another in M steps. The idea behind this approach is
to use the eigengap heuristic to these Mth order transition matrices for several
values of M . It can be easily shown that the set of the eigenvalues of P M is(
λM

1 , λM
2 , · · · , λM

N

)
. Using the eigengap heuristic on these sets for diverse values

of M (1 ≤ M ≤ Mmax), results in a set of eigengaps {δ (M)}M . The local maxima
of this set are estimations of different scales of partitioning with plausibility
measured by the corresponding δ.

3 Subspace Learning Methods

Subspace learning methods aim at finding a projection subspace, of the initial
data, in which a specific criterion is optimized in order to achieve better represen-
tation or better discrimination. Usually, the subspace is of lower dimensionality
in order to overcome the curse of dimensionality of initial high dimensional data-
points. Discriminant subspace methods aim at reducing the dimensionality of a
data set in a way that increases the discriminative power of the data. This is
done by the optimization of an objective function, which usually leads to the
eigenvalue decomposition of a matrix or the generalized eigenvalue decomposi-
tion of two matrices. Here we have utilized three such methods, PCA, LDA and
CDA. In our analysis we have firstly used PCA as a preprocessing step retaining
a cumulative percentage of the total variation of the data [4]. This percentage
essentially indicates the proportion of information been retained. When PCA
is not referred, it is implicitly considered that a 100% percentage of the total
variance has been retained. Thus, in this case we have rejected the zero eigenval-
ues of the covariance matrix of the data. This is done in order to keep as many
dimensions as the number of non-zero eigenvalues of the covariance matrix of
the data.
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Linear Discriminant Analysis (LDA) [5] as mentioned is a supervised method
for dimensionality reduction. Let x be an m dimensional random vector. LDA
tries to find a transform to a low-dimensional space such that when x is pro-
jected, classes are well separated. Let us denote by c the total number of classes,
by μi the mean vector of class i, by μ the mean vector of the whole data set
and by ni the number of samples belonging to class i. The objective of LDA is
to find W that maximizes

J (W ) =
tr{W T SBW }
tr{W T SW W } . (2)

where tr{·} denotes the trace of a matrix,

SB =
c∑

i=1

(μi − μ) (μi − μ)T
. (3)

is the between-class scatter and

SW =
c∑

i=1

Ni∑
k=1

(
xi

k − μi

) (
xi

k − μi

)T
. (4)

is the within-class scatter matrix. In a few words LDA tries to separate the
means of classes while gathering the points inside every class. The solution of
this problem is given by the generalized eigenvalue decomposition of S−1

W SB.
The transformation matrix W consists of the eigenvectors which correspond to
the largest eigenvalues. LDA in contrast to PCA, takes into consideration both
the within-class scatter and the between-class scatter carrying more discriminant
information of the data. In LDA, the maximum number of retained dimensions
is confined to c − 1, where c is the total number of classes.

Clustering Based Discriminant Analysis (CDA) [6], like LDA, looks for a trans-
form W , such that the projections z = W T x for each class are well separated.
The difference with LDA is that the classes might contain many clusters (sub-
classes). Let us denote the total number of classes by c, the total number of
clusters inside the i-th class by di and the mean vector for the j-th cluster of
the i-th class by μi

j . CDA tries to maximize

J (W ) =
tr{W T RW }
tr{W T CW } . (5)

where

R =
c−1∑
i=1

c∑
l=i+1

di∑
j=1

dl∑
h=1

(
μi

j − μl
h

) (
μi

j − μl
h

)T
. (6)

is the between-cluster scatter and

C =
c∑

i=1

di∑
j=1

∑
s

(
xs − μi

j

) (
xs − μi

j

)T
. (7)
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is the within-cluster scatter matrix [6]. In a few words, CDA tries to separate
clusters belonging to different classes while minimizing the within scatter in every
cluster. Also it puts no constraints on clusters of the same class. The solution is
given by the generalized eigenvalue decomposition of C−1R, keeping again the
largest eigenvalues. As already mentioned, the main advantage of CDA against
LDA is that CDA exploits clustering information to separate the classes. One
more advantage is that CDA is capable of retaining d − 1 dimensions, where d
is the total number of clusters of the data. Of course d − 1 is greater than or
at least equal to c− 1, which is the maximum retained dimensionality by LDA.
It is worth stressing that if no clusters are found on data classes, then CDA is
identical to LDA. We propose the use of spectral clustering as described in the
previous Section in order to automatically extract both the number of clusters
in each class and the samples that belong to each cluster.

4 Classifiers

The next task after the dimensionality reduction of initial data points is the
classification of the data into classes. Since the number of retained dimensions is
small, due to the use of subspace learning methods, it is able to avoid the use of
complex classifiers, like SVMs. Here we have employed the K-Nearest Neighbor
(KNN), the Nearest Centroid (NC) and the Nearest Cluster Centroid (NCC)
classifiers. The K-Nearest Neighbor is a non-linear voting classifier. A datapoint
is assigned to the most common class among its K nearest neighbors. In Nearest
Centroid the centroids of the several classes are calculated and the data-point is
assigned to the class with the nearest centroid to it. Finally, the Nearest Cluster
Centroid is a modified version of NC. The difference is that NCC takes into
consideration the clusters of the classes. In NCC the centroids of the several
clusters are calculated and the data-point is assigned to the class in which the
nearest cluster centroid belongs to. In our experiments, for the PCA and LDA
algorithms we have used the Nearest Centroid while for the CDA algorithm we
have used the Nearest Cluster Centroid.

5 Experimental Results

Experiments were performed on XM2VTS database. The XM2VTS database
has been acquired at the University of Surrey. It contains four recordings of
295 subjects from the university. The volunteers visited the recording studio of
the university four times at approximately one month intervals. On each visit
(session) two recordings (shots) were made. The first shot consisted of speech
whilst the second consisted of rotating head movements. Digital video equipment
was used to capture the entire database [7]. Face tracking was applied on the
head rotation shot videos that depict people that start from a frontal pose, turn
their heads to their right profile, back to frontal pose then to the left profile.
The images were then resized to 40× 30. There are 1000 facial images captured
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this way. 500 of them are frontal and 500 non-frontal. Fig. 1 depicts some image
examples from the database. The first row contains frontal examples and the
second row contains non-frontal examples.

Fig. 1. Image examples from database (1st row: Frontal, 2nd row: Non-frontal)

Due to the lack of another testing database we confined our analysis inside
this database. Firstly, we conducted a 10-fold cross validation to compare PCA,
LDA, CDA, PCA+LDA and PCA+CDA one against each other. Secondly, we
conducted a series of reverse cross validation experiments, (by reducing the num-
ber of the training data samples), to assess the robustness of the algorithms and
to find out whether they collapse. We actually reversed the training set with the
test set, so that increasing the number of cross validation steps, the size of the
training set decreased.

5.1 10-Fold Cross Validation

On clustering step, we have used the Euclidean metric

d (xm, xn) =

√√√√i=M∑
i=1

(xi
m − xi

n)2 . (8)

and as similarity function the Gaussian similarity function which is defined as:

fmn (σ) = exp
(
−d (xm, xn)

σ2

)
. (9)

The parameter σ plays the role of the variance and determines the scale of
the neighborhood of every data point. Our empirical study, has shown that
σ = 0.25 · E (d (xm,xn)) is a value which offers intuitively satisfactory results.
Using this value as σ, Spectral clustering systematically returned 2 clusters on
non-frontal class and 3 clusters on frontal class at every step of cross validation
procedure. In PCA+CDA, Spectral Clustering was performed after the PCA
step, as proposed in [6]. The centroid image of every cluster is depicted on Fig. 2
(a). It is interesting to observe that the first cluster of non-frontal class consists
of those faces that are turned to their left profiles and the second cluster consists
of those turned to their right. Also, careful inspection shows that the 3 clusters
of the frontal class consist of a group of dark faces, a group of medium brightness
faces and a group of brighter faces respectively.
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(a) (b)

Fig. 2. (a) Centroid images of clusters. (First row: Non-frontal, Second row: Frontal),
(b) 2D projection of the data

Using these 5 clusters extracted by the spectral clustering algorithm, CDA
was capable of retaining up to 4 dimensions by keeping the four eigenvectors
which correspond to the greatest four eigenvalues of C−1R. Fig. 2 (b) depicts
the projections of initial data points to the first two eigenvectors. The several
clusters of the data are clearly shown on this figure.

On table 1 we present the accuracy values that the several algorithms achieved
at the 10-fold cross validation procedure. The approach that has been used is given
on the 1st column. The proportion of the energy retained by PCA is given on the
2nd column. The accuracy value achieved by the specific method utilizing the NC
and the NCC classifiers for PCA/LDA and CDA respectively, are given on the 3rd
column. The accuracy values utilizing KNN classifier with K = 1 and K = 3, are
given on the 4th and 5th column respectively. The bold value indicates the best
performance. Its value is 98.9% and it has been reached by the PCA(95%)+CDA
approach combined with the Nearest Cluster Centroid classifier. It is interesting
to observe that PCA+KNN has similar performance to PCA+CDA approach and
outperforms PCA+LDA approach.

5.2 Reducing the Size of the Training Set

In the next experiment we compared the robustness of PCA(95%)+CDA+NC,
PCA(95%)+LDA+NC and PCA+NC to the size of the training set. For the
Spectral Clustering preprocessing we fixed the value of σ to 0.25 ·E (d (xm, xn))
as before. Fig. 3 demonstrates how does the size of the training set affect the
accuracy value of the several algorithms. On the horizontal axis the size of the
training set is given and on the vertical axis the accuracy value is depicted.
There are three curves corresponding to the three aforementioned methods. Of
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Table 1. 10-fold cross validation rates

Dim. Reduction Classification

approach PCA (%) NC/NCC 1-NN 3-NN

PCA - 91.9 98.3 98.2

100 97.8 97.8 97.7

LDA 95 98.1 97.7 97.9

90 98.1 97.7 98.1

80 97.1 97 97.7

100 98 98.3 98

CDA 95 98.9 98.6 98.7

90 98.3 98.7 98.8

80 97.9 98.8 98.8

course, as can be seen, as the size of the training set decreases, the perfor-
mance of all three methods also decreases. However, it is clear that the PCA
and LDA algorithms are more robust than CDA. The numbers on the edges of
the PCA(95%)+CDA curve indicate the mean number of the clusters returned
for the specific size of the training set. An explanation about the instability of
the CDA algorithm can be given with the help of these numbers. We can see
that while the size of the training set decreases, the number of clusters returned
increases in a way that it no more represents the actual clustering structure of
the data. For instance, there might arise a situation where a data point (e.g.
outlier) constitutes a whole cluster on its own. In this case the CDA algorithm
achieves the opposite results.

Fig. 3. Consecutive cross validation experiments
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One reason for this unsuccessful clustering of the data is the fact that the
Spectral Clustering algorithm is very sensitive to the choice of parameter σ. So,
by fixing it to a standard value across the experiments makes the algorithm
inflexible.

6 Conclusions

Frontal view recognition on still images has been explored in this paper. Sub-
space learning techniques (PCA, LDA and CDA) have been used for this purpose
to achieve computationally easy and efficient results. Due to the low dimension-
ality of the reduced feature vectors, the use of complex classifiers like SVMs has
been avoided and instead the K-Nearest Neighbor, Nearest Centroid and Nearest
Cluster Centroid classifiers have been employed. Spectral Clustering performed
on the XM2VTS database yielded interesting results which indicate that the
problem of frontal view recognition is characterized by the existence of clusters
inside the classes. 10-fold cross validation on the same database yielded an accu-
racy value equal to 98.9%, which was reached by the PCA(95%)+CDA approach.
A set of eight consecutive experiments indicated that even though PCA+CDA
beats PCA and PCA+LDA in 10-fold cross validation, however the latter two
are more robust than CDA when the size of the training set decreases. Actually,
what has been shown is the strong dependance of the CDA on the clustering of
the data and the sensitivity of the clustering to the σ parameter.
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Abstract. In this paper, the robustness of appearance-based, subspace

learning techniques for facial expression recognition in geometrical trans-

formations is explored. A plethora of facial expression recognition algo-

rithms is presented and tested using three well-known facial expression

databases. Although, it is common-knowledge that appearance based

methods are sensitive to image registration errors, there is no system-

atic experiment reported in the literature and the problem is considered,

a priori, solved. However, when it comes to automatic real-world ap-

plications, inaccuracies are expected, and a systematic preprocessing is

needed. After a series of experiments we observed a strong correlation

between the performance and the bounding box position. The mere in-

vestigation of the bounding box’s optimal characteristics is insufficient,

due to the inherent constraints a real-world application imposes, and

an alternative approach is demanded. Based on systematic experiments,

the database enrichment with translated, scaled and rotated images is

proposed for confronting the low robustness of subspace techniques for

facial expression recognition.

Keywords: Facial Expression Recognition, Appearance Based Tech-

niques, Subspace Learning Methods.

1 Introduction

Visual communication plays a central role in human communication and inter-
action. Verbal information does not consist the total information used in human
communication. Facial expressions and gestures are also of great importance
in everyday life, conveying information about emotion, mood and ideas. Conse-
quently, the successful recognition of facial expressions will significantly facilitate
the human-computer interaction.

Research in psychology [1] has indicated that at least six emotions (anger,
disgust, fear, happiness, sadness and surprise) are universally associated with
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distinct facial expressions. According to this approach these are the basic emo-
tional states which are inherently registered in our brain and recognized globally.
Several other facial expressions corresponding to certain emotions have been pro-
posed but remain unconfirmed as universally discernible. In this paper we focus
on the facial expressions deriving from these particular emotions and the neutral
emotional state.

A transparent way of monitoring emotional state is by using a video camera,
which automatically detects human face and captures the facial expressions. Fol-
lowing this approach the data used for input to the expression analyst tool would
be a video stream, namely successive luminance images. Many techniques have
been proposed in the literature for facial expression recognition [2]. Among them,
appearance based methods followed by subspace learning methods are the most
popular approach. In subspace techniques the initial image is decomposed in a
1-D vector by row-wise scanning and bases that optimize a given criterion are
calculated. Then, the high dimensionality of the initial image space is reduced
into a lower one. A simple distance measure is usually applied at the new space
in order to perform classification. Various criteria have been employed in order
to find the bases of the low dimensional spaces. Some of them have been de-
fined in order to find projections that express the population in an optimal way
without using the information about the way the data are separated to different
classes, (e.g., Principal Component Analysis (PCA) [3], Non-Negative Matrix
Factorization (NMF) [4]). While, other criteria deal directly with the discrimi-
nation between classes, e.g. Discriminant NMF (DNMF) [5], Linear Discriminant
Analysis (LDA) [6].

The appearance based methods disadvantage is their sensitivity to image reg-
istration errors. However, for all the cases, the problem of image registration
prior to recognition is considered solved and isn’t discussed. As a result, the
preprocessing steps are not clearly described, implying that only small displace-
ments of the bounding box may occur, which cannot result in considerable lower
performance. This is not the case in automatic real-world applications, which,
often, significantly fail to calculate the optimal geometrical characteristics of
the bounding box, when even slight distortions could lead in great differences
regarding the performance.

The aim of this paper is two fold. Firstly, to illustrate the sensitivity of ap-
pearance based subspace learning methods when the registration of the face
prior to recognition fails, even for one pixel. Secondly, to propose a training set
enrichment approach and the corresponding subspace learning methods for im-
proving significantly the performance of these techniques in the facial expression
recognition problem.

In the analysis done in this paper, the 2-D images have been decomposed
into 1-D vectors in order to be used as inputs in the subspace techniques. The
remainder of the paper is organized as follows: Section 2 is devoted to Subspace
Learning Techniques. It is divided into three subsections. PCA, LDA and DNMF
are presented in each of them respectively. In Section 3 K-Nearest Neighbor
(KNN), Nearest Centroid (NC) and Support Vector Machines (SVM) classifiers
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are concisely described while in Section 4 a number of experimental results on
BU, JAFFE and KOHN-KANADE databases are presented. Finally, in Section
5 the conclusion is drawn.

2 Subspace Techniques

2.1 Principal Component Analysis

Principal Component Analysis (PCA) is an unsupervised subspace learning tech-
nique. Let x ∈ RM be a random vector. The objective in PCA is to find projec-
tion vectors wi that maximize the variance of the projected samples zi = wTx.
Assuming that the expected value of x is zero, the problem of finding the projec-
tions wi is an eigenanalysis problem of the covariance matrix C = E[xxT ]. The
transformation matrix W = [w1w2 · · ·wN ] comprises by the eigenvectors of C
that correspond to the M ′ maximum eigenvalues of C. Any data point (vector)
x from the initial space can now be approximated by a linear combination of the
M ′ first eigenvectors to produce a new M ′-dimensional vector. This approach
achieves projection of the data from the initial space to a new feature space with
a predefined dimensionality. In PCA someone has to decide beforehand on the
new dimensionality M ′ or alternatively the new dimensionality may be defined
by the percentage of the total sum of the eigenvalues that should be retained
after the projection. This percentage essentially indicates the proportion of the
information to be retained. The main property of PCA is that it generates un-
correlated variables from initial possibly correlated ones. The disadvantage of
PCA is that it might lose much discriminative information of the data, since it
does take into account the class labels of the data.

2.2 Linear Discriminant Analysis

Linear Discriminant Analysis (LDA) in contrast to PCA is a supervised method
for dimensionality reduction. It tries to find a transform to a low-dimensional
space such that when x is projected, classes are well separated. Let us denote by
C the total number of classes, by μi the mean vector of class i, by μ the mean
vector of the whole data set and by Ni the number of samples belonging to class
i. The objective of LDA is to find w that maximizes

J (W) =
tr[WT SBW]
tr[WT SWW]

,

where tr[·] denotes the trace of a matrix and

SB =
C∑

i=1

(μi − μ) (μi − μ)T

is the between-class scatter and

SW =
C∑

i=1

Ni∑
k=1

(
xi

k − μi

) (
xi

k − μi

)T
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is the within-class scatter. That is, LDA tries to maximize the distance between
the mean vectors of the classes, while minimizing the variance inside each class.
The solution of this problem is given by the generalized eigenvalue decomposition
of S−1

W SB keeping again the largest eigenvalues. LDA in contrast to PCA, takes
into consideration both the within-class scatter and the between-class scatter
carrying more discriminant information of the data. LDA is capable of retaining
up to C − 1 dimensions, where C is the total number of classes.

2.3 Discriminant Non-negative Matrix Factorization

The DNMF is a supervised NMF based method that decomposes the feature vec-
tors into parts enhancing the class separability at the same time. The 2-D image
of F pixels is row-wise scanned resulting in the vector x = [x1, x2, · · · , xF ]T .
The NMF then tries to approximate the vector x with a linear combination of
the columns of the vector h such that x � Zh, where h ∈ RM

+ . In general,
M < F , namely the NMF produce a vector of a lower dimension, compared to
the initial vector x. The matrix Z ∈ RF×M

+ is a non negative matrix, whose
columns sum to one. The approximation x � Zh imposes a certain error, whose
value is calculated using the Kullback- Leibler divergence KL (x‖Zh) [7]. The
decomposition cost is the sum of the KL divergences for the total number of the
feature vectors. This way the following metric can be calculated:

D (X‖ZH) =
∑

j

KL (xj‖Zhj) =

=
∑
i,j

(
xi,j ln

(
xi,j∑

k zi,khk,j

)
+
∑

k

zi,khk,j − xi,j

)

as the measure of the cost for approximating X with ZH [7]. The NMF is the
outcome of the following optimization problem:

min
Z,H

D (X‖ZH) subject to

zi,k ≥ 0, hk,j ≥ 0,
∑

i

zi,j = 1, ∀j.

All the elements of Z and H should be non negative real numbers. This way, the
vector hj represents the weight vector and the Z matrices the M basis images,
whose linear combination result in the initial image, permitting only additions
between the different basis images.

The DNMF algorithm can be considered as an alternative to NMF plus LDA
method [5]. In the case of DNMF, discriminant constraints are incorporated
inside the cost of NMF. This form of decomposition leads to the creation of
basis images that correspond to discreet parts of the face (e.g., mouth, eyes).
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The modified divergence is constructed deriving from the minimization of the
Fisher criterion using the new cost function given by:

Dd (X‖ZH) = D (X‖ZH) + γtr[Sw] − δtr[Sb],

where γ and δ are constants and tr[·] is the trace of its argument. The minimiza-
tion of this function is done by finding the minimum for the tr[Sw] term, and
the maximum for the tr[Sb] one.

The vector hj that corresponds to the j-th column of the matrix H, is the
coefficient vector for the ρ-th facial image of the r-th class and will be denoted
as h(r)

ρ = [h(r)
ρ,1, h

(r)
ρ,2, · · · , h

(r)
ρ,M ]T . The mean vector of the vectors h(r)

ρ for the rth

class is denoted as μ
(r)
ρ = [μ(r)

1 , μ
(r)
2 , · · · , μ

(r)
M ]T and the mean of all the classes

as μ = [μ1, μ2, · · · , μM ]T . Then, the within scatter for the coefficient vectors
hj is defined as:

Sw =
K∑

r=1

Nr∑
ρ=1

(
h(r)

ρ − μ(r)
)(

h(r)
ρ − μ(r)

)T

,

whereas the between scatter matrix is defined as:

Sb =
K∑

r=1

Nr

(
μ(r) − μ

)(
μ(r) − μ

)T

.

The matrix Sw defines the scatter of the sample vector coefficients around their
class mean and a convenient measure for the dispersion of the samples is the
trace of Sw. While, the matrix Sb denotes the between-class scatter matrix and
defines the scatter of the mean vectors of all classes around the global mean
μ. At this point become obvious why by minimizing and maximizing the traces
of Sw and Sb respectively, we shrink the classes and increase the separability
among them.

This class-specific decomposition is intuitively motivated by the theory that
humans use specific discriminant features of the human face for memorizing and
recognizing them [8].

All the above methods, aim at projecting the initial high-dimensional data-
points to a feature space with low dimensionality. In that new space, the data-
points are likely to be classified in a more efficient way. In our study, we use
three well-known in the literature classifiers, the K-Nearest Neighbor (KNN),
the Nearest Centroid (NC) and the Support Vector Machines (SVMs). They are
all concisely described in the following paragraph.

3 Classifiers

The K-Nearest Neighbour is a non-linear voting classifier. A datapoint is assigned
to the most common class among its K nearest neighbours. In NC the centroids
of the several classes are calculated and the datapoint is assigned to the class
with the nearest centroid to it.
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A support vector machine tries to calculate the optimal hyperplane or set
of hyperplanes in a high dimensional space. Intuitively, a good separation is
achieved by the hyperplane that maximizes the functional margin, since, in gen-
eral, the larger the margin the lower the generalization error of the classifier.
The SVMs used for our experiments were proposed in [9], and use a modified
method to calculate the maximum functional margin, inspired by the Fisher’s
discriminant ratio. The SVMs are successively applied for a 2-class problem each
time. The winning class is then compared with one of the remaining classes fol-
lowing the same method and the procedure is repeated until the prevailing class
for each test sample is found.

4 Experimental Results

For our experiments we used the BU [10], JAFFE [11] and COHN- KANADE
[12] databases for facial expression recognition. BU contains images from 100
subjects, captured in four facial expressions intensities for each of the six, uni-
versally recognized, emotions (anger, disgust, happiness, fear, sadness, surprise)
and one neutral pose for each person, namely a total of 2500 images. It contains
subjects (56% female, 44% male), ranging from 18 years to 70 years old, with a
variety of ethnic/racial ancestries, including White, Black, East-Asian, Middle-
east Asian, Indian and Hispanic Latino. We used the most expressive of each
facial expression. Thus, the final database we utilized consisted of 700 images.

The JAFFE database contains 213 images of the 7 aforementioned facial ex-
pressions, posed by 10 Japanese female models. Each image has been rated on
these emotion adjectives by 60 Japanese subjects. Finally, from the COHN-
KANADE we used 407 images from 100 subjects. Subjects, in this case, range in
age from 18 to 30 years. Sixty-five percent were female; 15 percent were African-
American and three percent Asian or Latino. In Figures 1 and 2 typical examples
of the six expressions and the neutral case for the JAFFE and COHN-KANADE
database are illustrated, respectively.

(a) (b) (c) (d) (e) (f) (g)

Fig. 1. The JAFFE Facial Expression Database (a) neutral, (b) angry, (c) disgusted,

(d) feared, (e) happy, (f) sad, (g) surprised

We preprocessed the images manually in order to have the eyes in fixed pre-
defined positions in the frame. Firstly, we gathered the coordinates of the eyes in
the initial images. The initial distance between the eyes was calculated and the
image was down-scaled in an isotropic way, in order to succeed a 16-pixel eyes
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(a) (b) (c) (d) (e) (f) (g)

Fig. 2. The Cohn-Kanade Facial Expression Database (a) neutral, (b) angry, (c) dis-

gusted, (d) feared, (e) happy, (f) sad, (g) surprised

distance. In the final step we cropped the image to the size of 40× 30 producing
a bounding box centered to the subject’s face. The image cropping was based on
the eyes due to their inherent attribute of maintaining fixed position, indepen-
dently to the various facial expressions. Other features of the face (e.g., mouth,
eye-brows) have the tendency to be shifted in other positions, regarding certain
expressions. For example, in the case of surprise the eye-brows appear in higher
position in comparison with the neutral expression. Thus, manual cropping based
on other features, apart from the eyes, could produce discriminant information
on itself leading to overestimation of the performance of the classification.

Under this perspective, we constructed two versions of enriched databases.
For the first one (enriched database), the above mentioned centered images were
shifted one pixel in the four basic directions (left, right, up and down). In the
second case (fully enriched database), one cross of five possible positions for
each eye was considered (original position, one-pixel left, right, up and down),
resulting into 25 different possible pairs of eyes. The position of these pairs of
eyes were then used for the production of the final centered following the above
mentioned procedure for centering the images, resulting in translated, rotated
and scaled images.

In a second level, we implemented a number of combinations of subspace learn-
ing techniques exploiting the PCA, LDA and DNMF algorithms and the three
well known classifiers NCC, KNN and SVMs in order to examine their effective-
ness in classifying the aforementioned facial expressions along with the neutral
emotional state. For this purpose we conducted a five-fold cross-validation. Re-
garding the PCA and LDA outputs we used the Nearest Centroid algorithm,
while, the SVM method was applied at the DNMF algorithm outputs.

We conducted three series of experiments. In the first one, the centered images
were used to form both the training and the testing set. Secondly, the centered
images were used for the training set, while the left-shifted images were used
for the testing set, in order to examine the sensitivity of the performance in
displacements of the bounding box. In the last series of experiments, the training
was formed from the whole set of the images (both centered and shifted images),
while the centered images alone constituted the testing set.
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The comparative results, for the KANADE, JAFFE and BU database, are
depicted in the Tables 1, 2 and 3 respectively. In the first two columns of the ta-
bles the various methods utilized are given, both for reducing the dimensionality
and for classifying the samples.

KNN was used for K = 1 and K = 3. The second case is presented, due to its
better results. As far as the presented method of PCA plus LDA is concerned,
PCA used for maintaining the 95% of the covariance matrix energy while the
LDA reduced the resulted vector to the dimension of 6. The cases of maintaining
other percentages of the covariance matrix energy were tested as well, without
leading to better results. Regarding the DNMF followed by SVM approach, the
dimension of the feature vector was reduced from 1200 to 120 by the DNMF
and then the SVM realized the classification using a RBF kernel. Other type of
kernels were, also, used producing similar results.

In the third column of the tables there are the success rates, in the case of
the centered images, for both the training and testing set. The next column
shows the performance when misplaced images are used for the testing set (1-
pixel misplacement on the horizontal axis in this case). In the fifth column, the
performance of the enriched database, exploiting, merely, the translated images,
is depicted. Finally in the last column, the performance of the fully enriched
database is appeared, where the 25 transformed versions of the original database
were used.

On one hand, it can be, easily observed, that even a slight divergence from
the centered images (one pixel in the case of our experiments) lead in signifi-
cant lower performance (up to 8%). On the other hand, after the enrichment
with transformed images, a clear improvement in the performance is observed
in the vast majority of the cases for both the two versions of the database en-
richment (up to 15.9% for the enrichment with the translated images and 22.3%
for the fully enriched version). Both the sensitivity in small translations of the
bounding box and the robustness when enriching the training set are systemat-
ically observed in our experiments. Additionally, it was observed that the more
transformations are used the greater the improvement of the accuracy becomes.

Table 1. KANADE 5-fold cross validation accuracy rates

Classifier Approach Centered(%) Misplaced(%) Enriched(%) Fully Enriched(%)

PCA 36.4 36.0 36.5 39.7

NC LDA 62.5 55.0 72.4 74.9

PCA+LDA 67.0 65.1 68.8 73.7

PCA 39.0 39.2 39.7 38.5

KNN LDA 63.3 55.7 71.6 75.7

PCA+LDA 67.3 65.8 67.6 69.4

SVM DNMF 56.4 49.4 67.6 69.2
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Table 2. JAFFE 5-fold cross validation accuracy rates

Classifier Approach Centered(%) Misplaced(%) Enriched(%) Fully Enriched(%)

PCA 29.0 26.0 27.5 34.6

NC LDA 53.5 45.5 51.5 62.9

PCA+LDA 54.5 46.5 63.5 62.4

PCA 31.5 31.0 26.0 40.0

KNN LDA 52.5 44.5 51.5 62.0

PCA+LDA 57.0 48.5 58.5 64.9

SVM DNMF 41.6 34.6 57.5 63.9

Table 3. BU 5-fold cross validation accuracy rates

Classifier Approach Centered(%) Misplaced(%) Enriched(%)

PCA 34.6 34.0 34.9

NC LDA 56.0 54.4 62.3

PCA+LDA 63.3 62.3 64.9

PCA 33.1 33.0 32.7

KNN LDA 56.6 53.7 61.3

PCA+LDA 60.4 60.0 62.1

SVM DNMF 55.4 53.0 61.4

5 Conclusion

Facial expressions consist an integral part of the human communication. Effi-
cient methods for recognizing human emotions, exploiting the facial expressions,
are expected to revolutionize the scientific field of human-machine interaction.
Subspace learning techniques followed by well known classifiers are among the
most used methods for human facial expression recognition. However, after a
series of experiments we observed a great sensitivity of this kind of algorithms
to geometrical translation of the images, even for the case of one pixel. Real-
world applications carry an inherent difficulty regarding the precise detection of
the facial characteristics’ position, resulting in inaccurate image registering. The
experiments, we conducted, show that the systematic enrichment of a database
with geometrically transformed (translated, scaled and rotated) images results
in significant improvement in the performance in the majority of the cases. By
using more sophisticated transformations for enriching the initial databases, in
the future, further improvement in the performance could is expected.
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Abstract. With the term super-resolution we refer to the problem of

reconstructing an image of higher resolution than that of unregistered

and degraded observations. Typically, the reconstruction is based on the

inversion of the observation generation model. In this paper this prob-

lem is formulated using a variational Bayesian inference framework and

an edge-preserving image prior. A novel super-resolution algorithm is

proposed, which is derived using a modification of the constrained vari-

ational inference methodology which infers the posteriors of the model

variables and selects automatically all the model parameters. This algo-

rithm is very intensive computationally, thus, it is accelerated by har-

nessing the computational power of a graphics processor unit (GPU).

Examples are presented with both synthetic and real images that demon-

strate the advantages of the proposed framework as compared to other

state-of-the-art methods.

Keywords: Variational Inference, Bayesian Super-Resolution, Image Prior

Student’s-t distribution, CUDA, GPGPU.

1 Introduction

The problem of super-resolution is defined as obtaining an image with enhanced
resolution from a set of lower resolution unregistered degraded images. The
super-resolution problem has a long history. In this paper we will not attempt
overview it; for this purpose the interested reader is referred to [1], [2] and [3].
An important category of methodologies used for this problem formulates it
as an ill posed reconstruction problem. Thus, prior information is introduced
(regularization) to complement the available observations and reconstruct the
super-resolved image.

One powerful stochastic methodology to apply regularized reconstruction to
inverse problems is Bayesian inference [4]. The main advantage of Bayesian in-
ference is that the unknown image is treated as a random variable and the poste-
rior pdf given the observations is found. Thus, unlike the maximum a posteriori
(MAP) estimation approach, which only provides point estimates, Bayesian in-
ference provides variance information also about the estimate [4]. However, the
application of Bayesian inference is difficult when complex models and large data
sets are used. Therefore, MAP estimation has been much more popular for image
super-resolution problems [3].
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In this work the Bayesian inference framework using the variational approxi-
mation is applied for the first time to the image super-resolution problem. In this
formulation a spatially varying edge-preserving image prior is used. This prior
has been used previously with success for the image restoration problem in a
Bayesian inference framework [8]. Bayesian inference is easier for image restora-
tion than for super-resolution because the imaging operator in restoration is a
simple convolutional operator. In contrast, in super-resolution the imaging oper-
ator is more complex and is not convolutional [3]. Thus, for the super-resolution
problem a similar in spirit prior was applied only in a MAP framework [5].

Another novel aspect of this work is the use of graphics processor unit (GPU)
to speed up the proposed super-resolution algorithm for large images. Specifi-
cally, a parallel CUDA [10] implementation of the linear solver in this algorithm
was used to speed up the computations required.

The rest of this paper is organized as follows. In Sect. 2 and 3 the imaging
model and the proposed image prior models are presented, respectively. In Sect.
4 the variational algorithm is derived. In Sect. 5 the implementation details of
the GPU linear solver used to accelerate our algorithm, and the initialization
method of the proposed algorithm are presented. In Sect. 6 experiments with
synthetic and real data that demonstrate the properties of our algorithm are
presented. Finally, in Sect. 7 conclusions and thoughts for future research are
provided.

2 Imaging Model

In what follows for simplicity we use one-dimensional notation. A linear imaging
model is assumed according to which P low-resolution images (observations)
y1,y2, ...,yP of size NL × 1 are produced by operating on the high-resolution
image x of size NH ×1. Thus the decimation factor d can be defined as the ratio
d = NH/NL. Each observation is produced by first translating and rotating the
high-resolution image, then blurring and decimating it by the factor d. Lastly, a
noise vector nk, k = 1, ..., P is added at each observation. This is mathematically
expressed by the following P equations:

yk = Bk(ζk)x + nk = DHW(ζk)x + nk, k = 1, ..., P , (1)

where Bk = Bk(θk) = DHW(θk), D is the known decimation matrix of size
NL×NH , H is the square NH ×NH known convolutional blurring matrix that is
assumed circulant and W(ζk) is the NH×NH geometric transformation operator
that translates and rotates the image. For the k − th observation, ζk = [γk, δk]
is the parameter vector that contains the unknown rotation angle γk and the
unknown translation parameter δk. Lastly, nk is the NH ×NH noise vector that
is modeled as white Gaussian with the same (unknown) precision β for each
observation, i.e. nk ∼ N (0, βI), where 0 and I are the NH × NH zero and
identity matrices, respectively.
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Let y be a PNL × 1 vector, containing the P low-resolution images: y =[
yT

1 ,yT
2 , . . . ,yT

P

]T . Using this notation, the observations are given by:

y = Bx + n , (2)

where n =
[
nT

1 ,nT
2 , . . . ,nT

P

]T and B is the PNL × NH imaging operator:

B =
[
BT

1 ,BT
2 , . . . ,BT

P

]T
.

Lastly, in this work, to model the geometric transformation (rotation-translation)
operation the Shannon (sinc) interpolator is used, which is linear and thus can
be represented by the matrix W.

3 Image Model

In what follows we introduce the image prior for the high-resolution image x of
the imaging model described in Sect. 2. We first define K linear convolutional
operators (filters) Q1, . . . ,QK of size NH × NH . These filters are high-pass,
such as first order differences in the vertical and horizontal direction. The filter
outputs ε = (εT

1 , . . . , εT
K)T are produced according to the following K equations:

εl = Qlx, l = 1, . . . , K . (3)

Then, it is assumed that all εl(i) for every i are iid zero mean Student’s-t dis-
tributed with parameters λl and νl:

p(εl(i)) = St(0; λl, νl) =
Γ (νl/2 + 1/2)

Γ (νl/2)

(
λl

νl

)νl/2(
1 +

λlεl(i)2

νl

)−νl/2−1/2

,

for l = 1, . . . , K, where the parameters λl and νl are different for every filter but
remain the constant as the spatial location i varies. To analyze the properties of
the Student’s-t distribution we write it down as the integral:

p(εl(i)) =
∫

al(i)

p(εl(i)|al(i))p(al(i))dal(i) (4)

where al(i)’s are random variables that are iid Gamma distributed p(al(i)) =
Gamma(νl, νl) , and p(εl(i)|al(i)) = N (

0, al(i)−1
)
. The Student’s-t distribution

can be viewed as an infinite mixture of zero mean Gaussians [4] with different
precisions. Thus, it can be heavy-tailed. Therefore, when used as a prior on
the outputs of the Ql high-pass filters it allows reconstructed images to have
sharp edges. In contrast Gaussian based models have the tendency to smooth
out edges.
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4 Variational Inference

The variational methodology for Bayesian inference proposed in [8] for the imag-
ing model in equation (2) is applicable only when the imaging operator B is
convolutional and thus commutes with Ql, which is not the case for the super-
resolution problem. In this section we present a modification of the variational
algorithm in [8] which overcomes this difficulty, it is more general and can be
applied to any linear imaging model of the form in (2).

As in [8], to perform Bayesian inference we introduce an alternative imaging
model, which is derived by applying the operators Ql to (2):

y = BQ−1
l εl + n, l = 1, . . . , K, (5)

where we have used the relationships x = Q−1
l εl, l = 1, . . . , K, stemming from

the definitions of the εl’s in 3. Here, the key difference from [8] is that we
avoided the multiplication with the operators Ql but we embedded directly the
relationships between the image and the filter outputs. This is the main reason
for which the following derivation of the variational algorithm is novel and differs
from that in [8].

With this imaging model, we work in the field of the filter outputs, and we
treat ε = (εT

1 , . . . , εT
K)T , where εl = (εl(1), . . . , εk(NH))T , for l = 1, . . . , K and

a = (a1, . . . ,aK), where al = (al(1), . . . , al(NH)), for l = 1, . . . , K, as hidden
variables. Then, according to Bayesian inference we find the posterior distri-
butions for the hidden variables and estimate the parameters θ = λk, νk. The
marginal of the observations p(y; θ), which is required to find the posteriors of
the hidden variables is hard to compute [4]. More specifically, the integral

p(y) =
∫

ε,a

p(y, ε,a)dεda , p(y, ε, a) = p(y|ε)p(ε|a)p(a) , (6)

p(y|ε) =
K∏

l=1

p(y|εl), p(y|εl) = N
(
BQ−1

l εl, βI
)

, (7)

p(ε|a) =
K∏

l=1

N∏
i=1

p(εl(i)|al(i)), p(a) =
K∏

l=1

NH∏
i=1

p(al(i)) ,

is intractable. Notice here that we have combined the K observation equations
of (5) in one, by assuming that the data likelihood of a single observation is
given by the product: p(y|ε) =

∏K
l=1 p(y|εl). This idea stems from the principal

of opinion pooling proposed in [6] that combines multiple probabilities.
The variational methodology, bypasses the difficulty of computing the integral

in (6) and maximizes a lower bound L(q(ε, a), θ) that can be found instead of
the log-likelihood of the observations log p(y; θ) [4]. This bound is obtained by
subtracting from log p(y; θ) the Kullback-Leibler divergence, which is always
positive, between an arbitrary q(ε,a) and p(ε, a|y; θ).

When q(ε,a) = p(ε,a|y; θ), this bound is maximized and L(q(ε, a), θ) =
log p(y; θ). Because the exact posterior p(ε,a|y; θ) = p(ε,a,y;θ)

p(y;θ) cannot be found
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we are forced to find an approximation of it. The mean field approximation is a
commonly used approach to maximize the variational bound w.r.t. q(ε,a) and
θ [4]. According to this approach the hidden variables are assumed to be inde-
pendent, i.e. q(ε,a) = q(ε)q(a). Thus, next we derive the variational algorithm
that maximizes the bound L(q(ε)q(a), θ), aiming at maximizing approximately
the logarithm of the likelihood.

Unconstrained maximization of the bound L(q(ε)q(a), θ) is suboptimal for this
formulation. Thus, we resort the modified constrained variational approximation,
as explained above. In short, the goal is to combine all the information given by
the K observation equations of the new model in (5). According to this approach,
each q(εl) is constrained to have the form:

q(εl) = N(Qlm,QT
l RQl), (8)

where m is a NH × 1 vector, is taken as mean of the high-resolution image,
and R the NH ×NH its covariance matrix. Using this model the parameters m
and R are learned instead of q(εl) in the framework of the proposed constrained
variational methodology.

In the VE-step, the maximization of L(q(ε), q(a), θ) is performed with respect
to q(a), m and R keeping θ fixed, while in the VM-step, the maximization of
the same quantity is performed with respect to θ keeping q(a), m, and R fixed.
At the j-th iteration of the variational algorithm we have:

VE-step:

[mj ,Rj, qj(a)] = arg max
m,R,q(a)

L(q(ε;m,R), q(a), θj−1) (9)

VM-step:
θj = argmax

θ
L(qj(ε;m,R), qj(a), θ) (10)

The updates for the VE-Step are:

qj(εl;m,R) = N(Qlmj,QlRjQT
l ), (11)

mj = βRjBTy, Rj =

(
βBTB +

1
K

K∑
l=1

λj−1
l QT

l Aj−1
l Ql

)−1

. (12)

From the above equations it is clear that m merges information from all filters
Ql to produce the estimate of m which is used as the estimate of x.

Finally, the approximate posterior of a in the VE-step is given by

qj(a) =
K∏

l=1

NH∏
i=1

qj(al(i)) ,

qj(al(i)) = Gamma

(
al(i);

νj−1
l

2
+

1
2
,
νj−1

l

2
+

λj−1
l

2
uj(i)

)
, (13)
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uj(i) = (mj
l (i) + Cj

l (i, i)),m
j
l = Qlmj , Cj

l = QlRjQT
l ,

for l = 1, 2, . . . , K, i = 1, 2, . . . , NH . Also, mj
l (i) is the i-th element of mj

l and
Cj

l (i, i) is the i-th diagonal element of Cj
l .

In the VM-step, the bound is maximized w.r.t the parameters. For λl we have
that the update formula is

λj
l =

N∑N
i=1 < al(i) >qj(a) uj(i)

. (14)

Similarly, for νl, l = 1, 2, . . . , K, we have that νj
l is taken as the root of the

function φ:

φ(νl) =
1

NH

NH∑
i=1

log < al(i) >qj(a) − 1
N

NH∑
i=1

< al(i) >qj(a) +ψ

(
νj−1

l

2
+

1
2

)

− log

(
νj−1

l

2
+ 2

)
− ψ

(νl

2

)
+ log

νl

2
+ 1 , (15)

where ψ is the digamma function. We find φ(νj
l ) = 0 numerically using the

bisection method.

5 Computational Implementation

In this section we describe some of the implementation details of the variational
algorithm derived in Sect. 4, given by (12), (14) and (15).

5.1 GPGPU Linear Solver

The most computationally intensive operation of our algorithm is the multipli-
cation of the matrix R−1 (its inverse is given by (12)), which is the matrix of the
linear system we aim to solve, with a vector p. To parallelize these operations,
we take advantage of the structure of R−1, which is composed by products and
sums of circulant and diagonal matrices and implement them efficiently on the
GPU using CUDA.

The multiplication of the diagonal matrix Al with a vector, can be viewed as
an element wise multiplication of two vectors and is parallelized very easily. For
the implementation of this operation, each thread running on the GPU performs
a multiplication of two elements.

The products of circulant matrices H and Ql with vectors is similarly straight
forward to parallelize, though it is slightly more complicated. We first note that
a circulant matrix can be diagonalized in the DFT domain. We use this diagonal
form and perform the operation with circulant matrices by alternating between
the spatial and frequency domain.

The computation of the diagonal elements Cj
l (i, i) in (13) is also a very

challenging computational task since the matrix R is of size NH × NH with
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NH = 65, 536 for 256× 256 high-resolution images. In this work a random sam-
pling Monte-Carlo method is used for this computation. Due to space constraints
we will not provide the details. However, generation of each sample requires the
solution of the linear system Rd = e where e is a random vector. The paral-
lelization described above is used for the solution of this system. However, this
computation is very expensive computationally and slows down significantly the
proposed algorithm. Thus, we also propose an algorithm which avoids this com-
putation.

5.2 Initialization

Initially, the image m and the noise variance β are set equal to the estimates
obtained from the application of the super-resolution algorithm in [9], where a
stationary simultaneously auto-regressive image prior is used. This algorithm is
very efficient because it can be implemented entirely in the DFT domain.

The registration parameters for the proposed algorithm are computed by the
BFGS [7] optimization by solving the following minimization problem:

ζ∗k = arg min
ζk

‖|WNL(ζk)yk − y1||22, k = 1, . . . , P , (16)

where WNL(ζk) is the low-resolution counterpart of W(θk) of size NL × NL.
Finite differences are used to compute the gradient required by this approach.

The overall algorithm proposed can be summarized as:

1. Find the registration parameters using (16).
2. Find the initial high-resolution image m0 and the noise variance β0 by using

the algorithm in [9]
3. Repeat the computations in (12), (14) and (15) until convergenece.

6 Numerical Experiments

In order to test the proposed methodology, we used both artificially generated
and real data. We compared the proposed algorithm with two previous state-
of-the-art algorithms. The total variation (TV) regularization proposed in [13]
and the non-stationary prior proposed in [5]. Both of these works deal with
the super-resolution problem, however, they assume an imaging model different
from (2). For a fair comparison we modify these algorithms to include the same
registration model and in addition we initialize then with the same procedure
described in Sect. 5. The non-stationary prior with the Maximum a Posterior
(MAP) proposed in [5] and the Majorization-Minimization (MM) in [13] are ab-
breviate as MMTV and NSMAP, respectively. Furthermore, we use the same
GPU linear solver described in Sect. 5 in order to solve the linear systems used
by these algorithms to reconstruct the high-resolution image. This is straight-
forward because the matrices of the linear systems are of the same form with
R−1. The model parameters for both algorithms were found by trial and error
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experiments, contrary to the proposed algorithm where the model parameters
are found automatically.

In order to conduct experiments where the ground truth is known, we used
synthetic data. One set of eight 128× 128 low-resolution images were generated
using the well-known ”Cameraman” image of size 256 × 256 according to the
imaging model given by (1), with decimation factor d = 2. One type of blur
and three types of noise were used (resulting in three image sets): uniform point
spread function (PSF) of size 5 × 5 and AWG noise corresponding to signal
to noise ratio (SNR) SNR = 40, 30 , and 20dB. This metric and the MSE
metric between the restored image and the original that was used to evaluate
the performance of the algorithm, are defined as

SNR = 10 log10

‖zi‖2
2

NHσ2
dB, MSE =

‖x− x̂‖2
2

NH
,

where σ2 is the variance of the additive noise and NH is the size of the zero
mean image zi and x and x̂ are the original and estimated images, respectively.

In Fig. 1a the low-resolution image of the experiment with uniform blur 5× 5
and SNR = 20 is shown. In Fig. 1 we show the super-resolved images (b) with
MMTV, (c) with NSMAP, (d) the herein proposed variational algorithm without
the diagonal elements Cj

l (i, i) labeled as ALG1 and (e) the herein proposed
variational algorithm with the diagonal elements Cj

l (i, i) labeled as ALG2.
In Table 1 we provide the MSE results for these three experiments. From

these results it is clear that the proposed algorithms provides superior results as
compared to MMTV and NSMAP.

Table 1. MSE’s for the experiments using synthetic data

Method SNR = 40 SNR = 30 SNR = 20

[13] 85 92 141

[5] 78 82 113

ALG1 63 72 95
ALG2 62 71 97

We also used the proposed super-resolution algorithm on a real data set that
includes four low-resolution degraded images that contain both translations and
rotations. One of them is shown in Fig. 2a. Each low-resolution image is of size
256 × 256. The 2× super-resolved images obtained by (b) MMTV, (c) NSMAP
and (d)-(e) the herein proposed variational algorithms are shown in Fig. 2.

We tested the proposed algorithms in terms of their speed also. The main body
of the algorithms was implemented in MATLAB (R2009a). The graphics chip
used is NVIDA’s GTX 285, which contains 240 CUDA cores, 1GB RAM and 1.47
GHz core clock frequency. For 256 × 256 image, the proposed algorithm ALG2
with use of the GPU takes about 60’ while the other three NSMAP, MMTV



488 G. Chantas

and ALG1 take about 1’. This large difference is due to the computation of the
diagonal elements Cj

l (i, i). The acheived speed up by running these algorithm
on the GPU was 8-10x as compared to using a CPU (Intel Core i7, 2.47Mhz).

(a)

(b) (c) (d) (e)

Fig. 1. (a) Low-resolution observation and 2× super-resolved images using: (b) MMTV,

(c) NSMAP, (d) and (e) and the herein proposed variational algorithms ALG1 and

ALG2

(a) (b) (c) (d) (e)

Fig. 2. (a) Low-resolution observation and 2× super-resolved images using: (b) MMTV,

(c) NSMAP and the proposed (d) ALG1 and (e) ALG2

7 Conclusions and Future work

We proposed a variational inference super-resolution algorithm where all the
model variables and parameters are estimated automatically. We demonstrated
numerical experiments that showed the superiority of the proposed methodol-
ogy. Precisely, the resolution of the super-resolved images shown in Fig. 1 and 2
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has greatly improved. Furthermore, the super-resolved images with the proposed
algorithm have better edge structure and are visually more pleasant. Also, the
MSE in Table 1 with the experiments on the artificial data the proposed algo-
rithm to be superior to all other tested algorithms.

The GPU implementation of the linear solver achieved up to a 10x speed-up
as compared to the CPU. This allowed us to estimate the diagonal elements of
the inverse of matrix, which gave significant better results in terms of MSE,
compared to other two state-of-the-art algorithms.
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Abstract. Sound localization is an important ability intrinsic to ani-

mals, being currently explored by several researches. Even though several

systems and implementations have being proposed, the majority is very

complex and not suitable for embedded systems. This paper proposes a

new approach for binaural sound localization and the corresponding im-

plementation in an Field Programable Gate Array (FPGA) device. The

system is based on the signal processing modules of a previously pro-

posed sound processing system, which converts the input signal to spike

trains. The time difference extraction and feature generation methods

introduced in this paper create simple binary feature vectors, used as

training data for a standard LVQ neural network. An output temporal

layer uses the time information of the sound signals in order to reduce

the misclassifications of the classifier. Preliminary experimental results

show high accuracy with small logic and memory requirements.

1 Introduction

Being able to localize sound sources is a very sophisticated ability of animals. In
recent years, sound localization and spacial hearing have been extensively stud-
ied. Many works aim to model biological hearing systems, while others try to
reproduce their basic functionality with artificial systems. However, the devel-
opment of a consistent and robust artificial hearing system remains a challenge.
Nevertheless, several practical implementations have been proposed, the major-
ity of them based on the estimation of time-delay between signals from one or
more pairs of microphones.

Several authors proposed methods for time-delay estimation based on varia-
tions of the Generalized Cross-Correlation technique [1]. Although mathemati-
cally consistent and achieving good performance, these methods present complex
implementations and have no relation to real biological hearing systems. More
recently, several biologically inspired sound localization approaches based on
spiking neural networks have emerged. These methods have the advantage of
naturally dealing with temporal data and presenting a simpler implementation
in hardware [2] when compared to the cross-correlation based methods.

K. Diamantaras, W. Duch, L.S. Iliadis (Eds.): ICANN 2010, Part I, LNCS 6352, pp. 490–499, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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Fig. 1. Proposed sound localization system structure

Kuroyanagi and Iwata [3] proposed a spiking neural model for detecting loca-
tion of a sound source based on inter-aural time difference (ITD) and inter-aural
level difference (ILD). This model was further expanded through the addition of
a competitive learning spiking neural network [4] in order to combine the output
of ITD extractors of all frequency channels. Schauer and Paschke [5] proposed
a similar structure except for the use of a Winner-Takes-All (WTA) spiking
neuron structure that combines the several frequency channels outputs. Later,
the model was extended to a 360◦ localization model by using a special micro-
phone arrangement [6]. Schauer and Paschke also presented a partial hardware
implementation of their system [7].

Due to high computational costs, sound localization systems are often im-
plemented in hardware for real-time application, using Field Programable Gate
Array (FPGA) devices. Methods such as the ones proposed in [4,5] suffer from
the disadvantage of presenting a large number of critical parameters, while re-
quiring a large FPGA area, despite of claims of implementation efficiency of
spiking neural networks in digital hardware.

This paper proposes a new approach for sound localization and its corre-
sponding hardware implementation in an FPGA device. A very robust feature
generation method enables high accuracy for a predefined number of directions
with an efficient implementation in hardware. The proposed method presents few
parameters on the learning process, and these parameters are all non-critical.

2 3 4 5 61 7

pL(t + 2)

pR(t + 2)

pL(t)

pR(t)spikes are deleted when 
a coincidence is detected

firing cell

2 3 4 5 61 7

pL(t + 1)

pR(t + 1)

pL(t - 1)

pR(t - 1)non-firing cell

(a) (b)

Fig. 2. Time difference extraction using modified Jeffress’s model: (a) spike coincidence

at t = 0 (b) spike removal at t = 1
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2 Binaural Sound Localization

Several researchers defend the theory that information being processed in the
brain is represented by the rate of the spikes. However, temporal patterns of
spikes are believed to be present in specialized organisms. The mammals hearing
system is a very well known example of the timing of the spikes being used to
process information [8]. The human hearing system presents a structure that
maps the signal of the two ears in a spatial representation of frequency and delays
of these two signals. This model was proposed by Jeffress [9] more than 60 years
ago, but it still remains as the core of most of the reviewed models published
afterwards. Recently, evidence of structures similar to the ones proposed by this
model were found in the human brain.

The basic model proposed by Jeffress contains two antiparallel delay lines
that receive the spike trains corresponding to the sound coming from the left
and right ear. The delay lines are connected to coincidence detectors along their
lengths, which generate a spike if its two inputs receive a spike simultaneously.
If there is no delay between the two sound signals, the majority of the spikes
will coincide in the center of the delay lines. For instance, as more to the left
the sound source is, the earlier the spikes from the left ear arrive in the delay
line and the coincidence happens closer to the right side of the model. Thus, the
temporal information is transformed to spatial information.

This paper uses the most simple implementation of the Jeffress model, uti-
lizing AND logical coincidence detectors. Spatial spike mapping is then used to
generate a set of binary features, which are then to be classified into the final
localization estimate.
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Fig. 4. Binary features for the noise sound signal (a) channel 5 (337 Hz) and (b)

channel 12 (2.8 kHz)

3 Proposed Method

Kugler et al. [10,11] demonstrated a sound recognition system specifically de-
veloped for hardware implementation. This system can be divided into three
main parts: signal processing, feature extraction and classification block. The
signal processing block, inspired by the human hearing system, is composed by
a bandpass filter bank, a hair-cell non-linear function and a spike generator. The
classification consists of a Learning Vector Quantization (LVQ) neural network
followed by an integration layer named time potentials. These modules form a
robust framework for classifying real-time sound-related data, with the require-
ment that the generated features must be binary. The proposed system is based
on the same framework, except for the time difference extraction and feature
generation modules. Its main structure is shown in Figure 1.

The stereo sound signal is sampled at 48kHz, converted to single-precision
floating-point representation and sent to the filter bank module, which divides it
into N frequency bands. The experiments in this paper use 15 bands per channel,
logarithmically spaced from 200 Hz to 7 kHz. Each bandpass filter consists of
two stages of second order elliptical Infinite Impulse Response (IIR) filters. After
that, the signals are applied into a non-linear hair-cell like function and their
amplitude is used for controlling the period of the spike generator’ output. All
the spike trains pn (t) (n = 1 . . .N) become the input data of the time difference
extraction module. An important difference from the system described in [10,11]
is the removal of the lowpass filter after the hair-cell function. With this, the
quality of the pulses generated on the ITD extractor are increased, and thus,
the accuracy for high frequency sounds is improved.

The ITD extraction is performed by a Jeffress’s model of C cells using simple
AND logical coincidences, including the spike canceling modification proposed
in [12]. For each frequency band n, the left and right channels’ spikes are used
as inputs in opposed sides of the extractor, and are sequentially shifted at each
new sample. At a given time t, if the cth cell received spikes from both left and
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right simultaneously, an output spike qc
n (t) is generated and both left and right

spike is removed from the shift line. This is diagrammatically show in Figure 2.
Following the same framework as proposed in [11], the energy in each ITD

cell c for each band n is determined by counting the number of spikes in a time
window of length W , as shown in equation (1). Figure 3 shows the energy of
ITD cells for a white noise sound, used in the experiments in Section 5. The
sound changes directions every 2 seconds, from 0◦ to 180◦ in 45◦ intervals, with
C = 31 and the window W set to 1000 samples.

xc
n (t) =

W∑
i=1

qc
n (t − i) (1)

Even though the order of the highest firing rates may contain information about
the pattern, a robust set of features can be obtained by ignoring this information
and selecting the F highest features of each frequency band as follow:

zc
n =

{
1 if xc

n ≥ max
i

F xi
n ∧ xc

n > 0

0 otherwise
(2)

where maxf represents the f th highest element in a vector. It is important to
notice that, in case there are no spikes in a certain window, its correspondent zc

n

is not set. This is due to the fact that, in the case of very low level signals, few
or no spikes are generated in the ITD extractor, sometimes for more than W
samples. In this case, less than F features will contain non-null spikes counting.

Finally, the new feature vector becomes a binary vector composed of the
concatenation of all the bands’ vectors, C ·N bits in total with up to F ·N bits
equal to 1. Figure 4 shows examples of the binary features for channels 5 (337
Hz) and 12 (2.8 kHz) of the noise sound signal.

As previously mentioned, the classification is performed by a standard LVQ
neural network [13]. The learning rate α was reduced linearly along the training
epochs by a β factor. The codebook vectors were initialized using the Max-Min
Distance clustering algorithm [14]. As the patterns were reduced to simple binary
vectors, they can be compared by Hamming distance:

d (r, ω) =
CN∑
i=1

|ri − ωi| (3)

where r represents the samples formed by all concatenated vectors and ω are the
reference vectors. The elements of ω, during the training process, are converted to
binary values only for distance calculation. Up to this point, the resolution of the
sound localization depended on the distance of the microphones, the number of
cells C in the ITD extractors and the sampling frequency. As the LVQ classifier
requires a limited number of categories, a number K of directions has to be
chosen as the categories of the classifier. In the experiments for this paper, five
directions (0◦, 45◦, 90◦, 135◦ and 180◦) were used. This eliminates the problem
of irregular resolution of the ITD extractor, in which the cells that are closer to
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Fig. 5. Hardware implementation of the time difference extraction module

the center present higher resolution than the cells that are closer to the left and
right end. Instead, the sinusoidal nature of the ITD extractor is learned by the
LVQ network.

Up to the LVQ neural network block, no time information had been used for
the classification. It can be assumed that the sound sources being recognized
will not present instant changes in position, i.e. their approximate position will
last for periods of time much larger than the size of the time window. Thus, by
the use of potentials similar to the membrane potential of spiking neurons, one
can remove instant errors from the LVQ neural network without modifying the
training process. The time potentials are defined as:

uk (t) =

{
min (umax, uk (t − 1) + γ) if k = y (t)

max (0, uk (t − 1) − 1) if k �= y (t)
(4)

where uk is the potential of the kth category, y (t) is the output of the LVQ
classifier, γ is the increment for the winner category and umax is the maximal
potential. Hence, the winner category at time t is the one with higher uk (t)
value. It must be noted that, by setting the umax parameter, the increment γ
does not need to be adjusted. In the experiments mentioned in this paper, γ was
fixed to 2.

4 Hardware Implementation

The circuit was implemented in an Altera Stratix II EPS260F484C4, which con-
tains 48352 Adaptive Look-Up Tables (ALUT) and more than 2M bits of internal
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memory. As mentioned before, the signal processing modules are identical to the
ones used in [11], as well as the LVQ and time potential modules.

The ITD extraction module is shown in Figure 5. When the spike vector from
the pulse generator is written on the input, each nth bit of the left (s0) and right
(s1) channel is written on the respective delay line. The past bit vectors L1 and
R1 are read from a circular shift-register. Every time two new bits are processed
(p0 and p1), the circular shift-register shifts one position and the coincidences
are detected by a logic structure composed of three AND gates. The signal p2

is a simple AND of the two input bits, while p3 and p4 are the bits shifted for
the next sample, or reset by the logic circuit if a coincidence is detected. The
shifted vectors L2 and R2 are inputted in the respective circular shift-registers.
For each processed bit, the ITD vector is written into the Feature Extraction
block, shown in Figure 6.

The spike counters of the feature extraction block would require an enor-
mous amount of logic if naively implemented. A better alternative is to keep
the counting values in the internal memory. In this way, when the first of the
N ITD vectors is written on the input FIFO (First In First Out) memory, each
bit (p0) is used to update the current counting (p1). Until the samples’ count is
less than the window length W , the updated count values (p2) are rewritten on
the shift-register input (p3). When a window is completed, the final countings

Table 1. FPGA resources utilization

Stratix II - EPS260F484C4

Module ALUTs DLRs DSP Elements Memory

Signal Pre-Processing 4677 (9.67%) 4229 (8.75%) 56 (19.44%) 36171 (1.42%)

ITD Extraction 267 (0.55%) 149 (0.31%) 0 (0.00%) 780 (0.03%)

Feature Extraction 3231 (6.68%) 1174 (2.43%) 0 (0.00%) 7314 (0.29%)

LVQ Neural Network 2564 (5.30%) 518 (1.07%) 0 (0.00%) 479232 (18.84%)

Time Potentials 268 (0.55%) 43 (0.09%) 0 (0.00%) 0 (0.00%)

Total 48352 48352 288 2544192
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are written in a second FIFO memory and zero is written onto the shift-register.
In an independent process, the maximal countings are sequentially searched and
set as ‘1’ in the final feature vector.

Table 1 shows the resource utilization of the sound localization system related
modules, for N = 15, C = 31 and 5 directions. The feature extraction and LVQ
modules use a larger amount of data, as their interface is a single vector of
CN = 465 bits. Also, no post-processing of the reference vectors obtained by
the LVQ training was performed. Thus, several redundant vectors might exist
and their removal could reduce the LVQ memory utilization significantly.

5 Experiments

Nine sound signals were used on the experiments: alarm bell, interphone, kettle,
phone ring, human voice, 500Hz, 1kHz, 4kHz and noise. The database was split
into training and test sets in a 2:1 rate, with a total of 178.33 s (8559 samples)
for training and 89.17 s (4280 samples) for testing. The sounds were recorded
using WM-E13UY omnidirectional microphones, spaced by 20 cm, at a 1 meter
distance from the sound source.

The LVQ network was trained with α0 = 0.1, β = 0.99 and a maximum of
1000 learning epochs. Figure 7(a) shows the raw LVQ localization accuracy for
the nine sounds in five used directions. From the nine sounds, seven achieved
raw accuracies higher than 85%. The bell and the 4kHz sounds present high
frequency components and their ITD firing patterns are much more complex
than the others sounds. The interphone sound contains large segments of very
low sound levels (intervals between dings) during which the localization fails. If
only the segments of true sound are considered, it performs as good as the other
signals. Figure 7(b) shows the variation in total accuracy when changing the
number of neurons and the number of features. As can be seen, these parameters
have small influence on the accuracy and do not need to be exhaustively tuned.

Figure 8 shows the results when calculating time potentials, for a maximal
potential umax equal to 50. In this figure, all sounds’ signals from each direction



498 M. Kugler et al.

0°

45°

90°

135°

180°
0

500
1000

1500
2000

2500
3000

3500
4000

0°

45°

90°

135°

180°
0

500
1000

1500
2000

2500
3000

3500
4000

0°

45°

90°

135°

180°
0

500
1000

1500
2000

2500
3000

3500
4000

0°

45°

90°

135°

180°
0

500
1000

1500
2000

2500
3000

3500
4000

0

50

p
o

te
n

ti
al

directions

directions

directions

directions

time (windows)

time (windows)

time (windows)

time (windows)

final output

LVQ output

original labels

Fig. 8. Time potentials and final classification results

were concatenated, and the resulting signal processed by the localization system.
All the misclassifications were eliminated, with the drawback of a small delay
introduced to the response of the system.

6 Conclusions

This paper proposed a new method for implementing a sound localization sys-
tem on an FPGA device. The proposed feature generation approach permits the
use of a very simple classifier, a standard LVQ neural network, while an indepen-
dent temporal layer eliminates most of the misclassifications. The final hardware
implementation is compact and can be easily extended.

Some of the used sound signals (e.g. bell, 4kHz ) present a high frequency spec-
trum that results in very complex mapping in the ITD extraction and low raw
accuracy in the LVQ classifier. One of the reasons might be the fact that, as the
frequencies are log-spaced, the width of the high frequency filters is larger and
proportionally more spikes are generated for these channels. This, together with
the fact that wavelengths shorter than the distance between the microphones
generate multiple coincidences in the ITD extraction, creates very complex and
noisy patterns. Preliminary experiments with gain correction in order to com-
pensate for this difference and also with linearly spaced filters seem to resolve
this problem, increasing the raw LVQ accuracy of the high frequency sounds.
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Future works include experiments with a higher resolution in directions, as
well as alternative methods for spike generation that are less dependent on signal
amplitude. Experiments dealing with reflection and multiple sound sources are
currently being planned.
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dre, L.A., Duch, W., Mandic, D.P. (eds.) ICANN 2007. LNCS, vol. 4669, pp. 748–

757. Springer, Heidelberg (2007)

13. Fausett, L.: Fundamentals of Neural Networks: architectures, algorithms and ap-

plications. In: Neural Networks Based on Competition, 1st edn., Fundamentals of

Neural Networks, New Jersey, pp. 156–217 (1994)

14. Friedman, M., Kandel, A.: Introduction to Pattern Recognition: statistical, struc-

tural and fuzzy logic approaches. In: Classification by Distance Functions and

Clustering, 1st edn., pp. 73–77. Imperial College Press, London (1999)



K. Diamantaras, W. Duch, L.S. Iliadis (Eds.): ICANN 2010, Part I, LNCS 6352, pp. 500–510, 2010. 
© Springer-Verlag Berlin Heidelberg 2010 

Color Segmentation Using  
Self-Organizing Feature Maps (SOFMs) 

Defined Upon Color and Spatial Image Space 

Ioannis M. Stephanakis1, George C. Anastassopoulos2, and Lazaros S. Iliadis3 

1 Hellenic Telecommunication Organization S.A. (OTE),  
99 Kifissias Avenue, GR-151 24, Athens, Greece 

and  
Technological Educational Instutute of Pireaus, 

GR-122 44, Pireaus, Greece 
stephan@ote.gr 

2 Democritus University of Thrace, Medical Informatics Laboratory, GR-681 00, 
Alexandroupolis, Greece 

and 
Hellenic Open University, Parodos Aristotelous 18, GR-262 22, Patras, Greece 

anasta@med.duth.gr 
3 Democritus University of Thrace, Department of Forestry &  

Management of the Environment & Natural Resources, GR-682 00 
Orestiada, Thrace, Greece 

liliadis@fmenr.duth.gr 

Abstract. A novel approach to color image segmentation is proposed and formu-
lated in this paper. Conventional color segmentation methods apply SOFMs – 
among other techniques – as a first stage clustering in hierarchical or hybrid 
schemes in order to achieve color reduction and enhance robustness against 
noise. 2-D SOFMs defined upon 3-D color space are usually employed to render 
the distribution of colors of an image without taking into consideration the  
spatial correlation of color vectors throughout various regions of the image. 
Clustering color vectors pertaining to segments of an image is carried out in a 
consequent stage via unsupervised or supervised learning. A SOFM defined 
upon the 2-D image plane, which is viewed as a spatial input space, as well as 
the output 3-D color space is proposed. Two different initialization schemes are 
performed, i.e. uniform distribution of the weights in 2-D input space in an or-
dered fashion so that information regarding local correlation of the color vectors 
is preserved and jointly uniform distribution of the weights in both 3-D color 
space and 2-D input space. A second stage of Density-Based Clustering of the 
nodes of the SOM (utilizing an ad hoc modification of the DBSCAN algorithm) 
is employed in order to facilitate the segmentation of the color image.         

Keywords: Color segmentation; Self-Organizing Feature Maps (SOFM); Den-
sity-Based Spatial Clustering (DBSCAN algorithm). 
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1   Introduction 

Image segmentation consists of determining K disjoint segments of an image, denoted 
as I, that are compact in image space, feature smooth boundaries and are homogene-
ous regarding color distribution within each region, i.e. a partition  

{ }KRRRRIP ,,,,)( 321 …= ,  (1)

where ∅=∩ ji RR  with  ],1[, Kji ⊂  and ji ≠ . Image segmentation is an essen-

tial processing step inherent in a variety of algorithms that are intended for image 
enhancement (in the context of acquisition of medical imagery, outdoor and vision 
imaging systems etc), for automatic pattern recognition (as implemented in radar and 
sonar systems, in medical diagnostic systems or in the context of automatic recogni-
tion of machine printed or handwritten texts), for shape recognition (as implemented 
in the context of robot vision and low-level vision), for coding of video sequences and 
still images (MPEG-4/H.264 and JPEG-2000), for multimedia retrieval in object-
oriented databases (DB) and for a variety of other image processing tasks. Many seg-
mentation methods for gray level images have been applied directly or with slight 
modifications to the segmentation of color images.     

1.1   Approaches to Image Segmentation  

Image segmentation methods for gray level and color images may be classified into 
the following categories:   

 Histogram thresholding using two or more thresholds based on the peaks and 
the valleys of the global histogram of an image [1]. Histogram thresholding 
may be crisp or fuzzy [2], [3].  

 Local filtering approaches such as the Canny edge detector [4] and similar 
techniques. 

 Region-growing and merging techniques based on pixel classification in some 
feature space [5], [6]. 

 Deformable model region growing [7]. 
 Global optimization approaches based on energy functionals [8] and/or mix-

ture models of individual component densities (usually Gaussians). These ap-
proaches employ such techniques as Bayesian/Maximum a-posteriori criteria 
[9], the Expectation Maximization (EM) Algorithm [10], propagating 
fronts/level set segmentation [11], [12] and Minimum Description Length 
(MDL) criteria. 

 Morphological methods like watersheds, morphological image analysis [13], 
[14] and hybrid morphological-statistical techniques [15]. 

 Fuzzy/rough set methods like fuzzy clustering and others [2], [3].  
 Methods based on Artificial Neural Networks (ANNs) like unsupervised learn-

ing and evolutionary/genetic algorithms [16]. 
 Hybrid methods that attempt to unify several of the above approaches. 

Particular segmentation algorithms are, generally, not applicable to all images. Prac-
tice shows that a specific method may yield segmentation results of varying quality 
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when applied to images with different characteristics. This implies that different  
algorithms are not equally suitable for a specific application. Edge detection and  
histogram thresholding methods work well with gray level images, but may not be 
suitable for color images because the color components should not be processed sepa-
rately in view of their interdependence. Neighborhood-based methods such as region 
growing use only local information, while global methods such as feature space clus-
tering do not take advantage of local spatial knowledge. Color Structure Code (CSC) 
[17] is a segmentation method that employs hierarchical region growing for color 
images.    

Colors are perceived as combinations of the three primary colors, red (R), green 
(G) and blue (B). The attributes generally used to distinguish one color from another 
are brightness, hue and saturation. There are several standard color spaces that are 
widely used in image processing like RGB, CMY, HIS, YIQ and others. All systems 
can be calculated from the tristimuli R, G, B by appropriate transformations. How-
ever, these models are not uniform color spaces [18]. The use of a uniform color 
space such as L*u*v* or L*a*b* [19] is recommended for good performance in color 
clustering because the difference between two colors can be simply measured by their 
Euclidean distance. In L*u*v* color space, u* and v* represent color chromaticities and 
L* the intensity.           

1.2   Self-organizing Feature Maps 

The Self-Organizing Feature Map (SOFM) [20] is an efficient method for cluster 
analysis of a high-dimensional feature space onto 2-D arrays of reference vectors. 
Frequently, there exists no-apriori knowledge about the distributions of the features. 
There are three basic steps involved in the application of the SOFM algorithm after 
initialization, namely, sampling, similarity matching, and updating. These three steps 
are repeated until the map formation is completed. The algorithm is summarized as 
follows:   

1. Initialization. Choose the initial values for the weight vectors wj(0), which in 
the proposed approach are comprised by the weights of the spatial coordinates 

(denoted as )0(x
jw ) and the weights (denoted as )0(c

jw ) of the color vectors 

at pixel of the image specified by the spatial coordinates. Index j equals 
1,2,…,N, where N is the number of neurons in the lattice. It may be desirable 
to keep the magnitude of the weights small.        

2. Sampling. Choose randomly a pair of image coordinates, ),( 21 xx=x , and the 

corresponding color of the sampled pixel, ),,( *** vuL=v .    

3. Similarity Matching. Find the best-matching (winning) neuron i(x,v) at time t, 
using the minimum complex Euclidean distance:   

 )| )()(| )1( |)()(|( min arg),( 22 tttti c
j

x
j

j
wvwxvx −−+−= αα ,  (2)

where Nj ,...,2,1=  and ]1  0[∈α . For α equal to zero one gets the similarity 

matching criterion of the conventional SOFM algorithm whereas for α equal to one 
gets local mean color vectors.         
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4. Updating. Adjust the synaptic weight vectors of all neurons, using the update 
formula 

          ( )
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where ηx(t) and ηc(t) are the learning-rate parameters, and Λi(x,v)(t) is the neighbor-
hood function centered around the winning neuron i(x,v); ηx(t), ηc(t) and Λi(x,v)(t) are 
varied dynamically during learning for best results.      

5. Continuation. Continue with step 2 until no noticeable changes in the feature 
map are observed.  

 

Alternative updating rules can be used which preserve the topology of the distribution 
of data points in the complex color and image space by producing a graded mesh. One 
may apply for example visualization-induced SOM (ViSOM) [21] or other multidi-
mensional scaling (MDS) techniques employed for structural dimensionality reduc-
tion like the ISOMAP (isometric feature mapping) algorithm [22]. Nevertheless  
standard SOM is used in the context of an initial attempt to segment the original im-
age since we are interested in performing color reduction by exploiting the vector 
quantization properties of the SOM in color space rather than visualizing the image as 
a 2-D surface in a complex 5-D space.      

2   Initialization and Training     

Two different initialization schemes are used to assign values to the weights of the 
SOFM at t equal to 0. The first scheme initializes separately the spatial weights wx 
from uniform distributions over the spatial coordinates of the image. Initial values of 
wc are conditioned upon the initialization of wx. This approach suggests spatial index-
ing of the nodes of the network over the plane of the image and allows for skeletoni-
zation of the images should pruning of the nodes be carried out. Alternatively, wx and 
wc may by jointly initialized in a 5-D space assuming uniform distributions.   

2.1   Original Images  

The medical images used to apply the proposed approach to image segmentation are 
selected from a histological database that has been developed in the Laboratory of 
Histology of the Democritus University of Thrace, Greece. They represent histologi-
cal intestinal sections of rats with apoptotic cells. The induction of enterocyte apop-
tosis is made by counting the positive TUNEL staining cells (red cells in Fig. 1). The 
detection of apoptotic cells is performed at a 400X magnification by the Olympus 
BX40 microscope, saved in JPEG format. 
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Fig. 1. Initial image and its analysis into L*u*v* color space 

2.2   Conventional Approach Using a 2-D SOFM Defined in 3-D Color Space  

The distribution of color vectors of the image in Fig. 1 in L*u*v* space is depicted in 
Fig. 2.a. A 2-D SOFM featuring 10 by 10 nodes is employed for reducing the number 
of colors in the test image. Conventional uniform initialization of the weight vectors 
in color space is employed. The resulting map after a training cycle of 100 epochs 
with a dynamically varying learning rate parameter is depicted in Fig. 2.b. One may 
easily see that it approximates reasonably well the actual distribution of color vectors.  

    
a.                                                           b.  

Fig. 2. Distribution of color vectors (-a-) and 2-D SOFM (-b-) after a training cycle of 100 
epochs 
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2.3   Training a SOFM Defined Upon Color and Image Space  

A 10 by 10 node SOFM initialized jointly in color and image space following a uni-
form distribution is used to in order to obtain spatial information. The resulting map 
in color space after a training cycle of 100 epochs with a dynamically varying learn-
ing rate parameter is depicted in Fig. 3.a. It resembles the map obtained for the con-
ventional case. Spatial information is best retained when initialization is carried out 
on the image plane in a uniform fashion. SOFMs featuring 15 x 20 nodes are initial-
ized in such a way and trained with learning rate parameters - ηx(t) and ηc(t) - equal to 
0.02 for the winning neuron (Λi(x,v)(t)=0) and equal to 0.0005 for all other neurons 
within a neighborhood Λi(x,v)(t)=1. Several variants of training cycles of 100 epochs 
for different values of α in Eq. 2 are performed. The resulting maps approximate 
reasonably well the actual distribution of color vectors but they are slightly distorted 
compared with the previous obtained results. Nevertheless nearest neighbor nodes are 
uniformly distributed on image plane even after training.           

 

a. Uniform initial. in color and image space b. α=0.2 (uniform initial. on image plane)     

 

c. α=0.5 (uniform initial. on image plane)    d. α=0.8 (uniform initial. on image plane)  

Fig. 3. 2-D SOFM after a training cycle of 100 epochs (uniform initialization of the weight 
vectors in a combined 5-D color and image space and uniform initialization of the weight vec-
tors in 2-D image space for α=0.2, α=0.5 and α=0.8) 
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3   Assigning SOFM Clusters to Image Regions 

3.1   The DBSCAN Algorithm  

Nodes of the SOFM may be used to obtain a color reduced image after the first stage 
of the segmentation. Nevertheless clustering of the network nodes is necessary to 
determine the segments. The DBSCAN algorithm [23] and [24] is used to carry out 
this task. It introduces the notion of core points, directly-density-reachable points, 
border points and density-reachable points. The neighborhood of a given point within 
a radius of Eps is called the Eps neighborhood of this point. If the Eps neighborhood of 
a point contains at least a minimum number of points, MinPts, this point is called a 
core point. A point p is directly density-reachable from a point q if p is within the Eps 
neighborhood of q and q is a core point, i.e.      

dis(p,q)<=Eps    and    |{r|dis(r,q)<=Eps}|>=MinPts . (4)

Density-reachability is the transitive closure of direct density-reachability and it is an 
asymmetric relationship. Directly density-reachable points that are not core points are 
called border points. The DBSCAN algorithm has been applied to image segmenta-
tion in [25]. Two different Eps distances one in image space and one in color space are 
employed. Core points are determined by projecting pixels within SpatialEps upon 
ColorEps. The following modified DBSCAN algorithm is used to cluster the nodes of 
the SOFM in a consequent processing stage in the context of this work. Only nearest 
neighbor nodes are considered as candidates for directly-reachable points for the sake 
of simplicity. This reduces the complexity of the algorithm from O(n log n) to O(n).  

                           

Fig. 4. Definition of the notion of density-reachability and density-connectivity and the applica-
tion of the Eps neighborhood in color and image spaces 

Input:
D={t1,t2,…,tN} // Nodes of the SOFM after training 

  MinPts // Number of nearest neighbor nodes for core points 
Eps // A combination maximum distance for density measure 

Output:
K={K1,K2,…,Kk} // Set of clustered SOFM nodes

Begin algorithm:
K=0; // Initially there are no clusters
for i=1 to N do

   if ti is not assigned to a cluster
    Following NN find X={tj|tj is density-reachable from ti};
    if X is a valid cluster, then

 k=k+1;
 Kk=X;  
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3.2   Segmentation Results   

One may utilize the colors corresponding to the weights of the nodes after training to 
substitute for color values of the pixels of the initial image, i.e. 

{ } )()()( 1
x
Ν

x
j

x ColorColorColorColor www∈ . This is called color reduction and it is 

a straightforward procedure in the case in which the SOFM is defined upon 3-D color 
space.  Nevertheless one  may   devise   several  alternative  ways  to  accomplish  this 
task when spatial information is used to train the weights of the SOFM. The following 
relationship,      

  
a. Conventional (initial. in color space)      b. β=0 (initial. in color and image space) 

  

c. α=β=0.2 (initialization in image space)    d. α=β=0.5 (initialization in image space) 

  
d. α=β=0.8 (initialization in image space) f. α=0.8 and β=1.0 (initial. in image space) 

Fig. 5. Color reduction after first stage clustering 
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 ))| ])( )( )([| )1( ||( min arg())(( 22 c
j

x
j

j
vuLColorIColor wxxxwxx −−+−= Tββ , (5)

where β is equal to α in Eq. 2, yields results that are similar to results obtained for the 
conventional case regardless of the value of α. Values of β approaching 1 yield color 
reduced images with prominent image segments. Nevertheless this holds true only 
when the weights of the nodes of the SOFM are uniform initialized in 2-D image 
space (see Fig. 5). The use of a composite ColorEps and SpatialEps for the modified 
DBSCAN algorithm that is not directly related to the selection of α during training is, 
thus, advisable in order to take full advantage of the spatial information conveyed by 
the trained SOFM.       

  
a.                                         b.  

 

Fig. 6. Distribution of the distances between nearest neighbor nodes of the SOFM for α=0.5 (a. 
in color space and b. in image space) 

Table 1 summarizes the results of the segmentation for different values of α and 
for various parameters of the modified DBSCAN algorithm.  

Table 1. Segmentation parameters for the proposed method (uniform initial. in image space) 

 α=β Eps MinPts Segments Qualitative remarks 
0.2 0.25 x SpatialEps + 0.75 x ColorEps= 16 4 29 Non-compact segments 
0.5 0.10 x SpatialEps + 0.90 x ColorEps= 12 4 23 Non-compact segments 
0.8 0.05 x SpatialEps + 0.95 x ColorEps= 8 4 23 Compact segments 

4   Discussion  

Values of α less than 0.6 yield non-compact image segments whereas values of α 
around 0.8 yield compact image segments. Compact patches of color are produced 
during color reduction as well for values of β approaching 1 when uniform initializa-
tion in image space has been carried out. The DBSCAN algorithm is applied directly 
to the color reduced image to produce the segments in such a case. This is not possi-
ble when the weights of the nodes of the SOFM have been jointly initialized in color 
and image space following a uniform distribution in 5-D.   
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Abstract. Multi-channel near-infrared spectroscopy (NIRS) is increasingly used 
in empirical studies monitoring human brain activity. In a recent study, an inde-
pendent component analysis (ICA) technique using time-delayed decorrelation 
was applied to NIRS signals since those signals reflect cerebral blood flow 
changes caused by task-induced responses as well as various artifacts. The decor-
relation technique is important in NIRS-based analyses and may facilitate accurate 
separation of independent signals generated by oxygenated/deoxygenated hemo-
globin concentration changes. We introduce an algorithm using time-delayed cor-
relations that enable estimation of independent components (ICs) in which the 
number of components is fewer than that of observed sources; the conventional 
approach using a larger number of components may deteriorate settling of the so-
lution. In a simulation, the algorithm was shown capable of estimating the number 
of ICs of virtually observed signals set by an experimenter, with the simulation 
reproducing seven sources where each was a mixture of three ICs and white 
noises. In addition, the algorithm was introduced in an experiment using ICs of 
NIRS signals observed during finger-tapping movements. Experimental results 
showed consistency and reproducibility of the estimated ICs that are attributed to 
patterns in the spatial distribution and temporal structure. 

Keywords: Near-infrared Spectroscopy, Independent Component Analysis, 
Time-delayed Decorrelation, Neuroimaging. 

1   Introduction 

Human brain activity has been actively measured in recent studies clarifying underly-
ing mechanisms such as cognitive and motor-learning processes. Near-infrared  
spectroscopy (NIRS) is increasingly used in neuroimaging studies because of the 
convenience of the equipment and the decreased restriction of a subject’s movement. 
However, NIRS analysis can be hampered by artifacts induced by various factors 
(e.g., periodic factors that reflect blood flow regulation and physical factors due to 
unsuited equipment). Therefore, many methods, including Independent Component 
Analysis (ICA), have been introduced to facilitate analysis of brain activity induced 



512 T. Sano, S. Matsuzaki, and Y. Wada 

 

purely by an experimental task. Conventional ICAs, such as fast-ICA[1] and 
JADE[2], have been used to estimate independent components (ICs) that optimize 
independence of the sources as the cost function[3]. On the other hand, Statistical 
Parametric Mapping (SPM)[4] using the regressive approach is increasingly applied 
to fMRI and NIRS analyses, although whether those analyses accurately separates the 
source signals is still under discussion. The regressive approach can exclude a signal 
induced by brain activities if it is not interpreted as a selected Hemodynamic Re-
sponse Function (HRF) in the model. In contrast, since ICA can directly separate 
observed signals, it preserves information about brain activities as long as the number 
of components can be estimated.  

The characters of ICA highly depend on the cost function. Medvedev et al.[5]  
applied fast-ICA using non-Gaussianity, and Kohno et al.[6] applied ICA using time-
delayed correlations to an observed signal by NIRS. Both works succeeded in estimat-
ing a heartbeat, skin blood flow and white noise as ICs to be removed. We selected 
time-delayed correlations as a measure of independence, since we consider that 
changes in NIRS signals are not represented by the linear coupling of random  
variables, but by a temporal fluctuation induced by a certain event. In this case, the 
stationary process does not exist and only the second order statistics (variance and 
correlation) can be treated according to the weak stationary process. However, NIRS 
signals have a strong temporal structure. The structure is stronger than that of a mere 
random variable. Conventional ICA models, except those in which ICs are extracted 
individually, such as fast-ICA, have assumed the number of ICs is equivalent to the 
number of measurement channels. However, this assumption is not always correct 
since the number of channels is usually set irrespective of the state of observed sig-
nals. For example, when we use a 24-channel system to measure a subject’s brain 
activity, ICs, such as a signal evoked by blood flows and artifacts, are usually much 
fewer than the number of channels. In this case, even if 24 ICs are estimated, the 
possibility that each IC shows the true change of the cerebral blood flow and the arti-
facts is low. Kohno et al.[6] proposed an ICA technique designed to reduce the ICs in 
a way that removes signals that are considered noise or artifacts. 

In the present study, we applied the ICA algorithm proposed by Kawamoto et 
al.[7] that is used for NIRS signal analysis. Using the algorithm, we estimated the 
number of ICs through time-delayed decorrelations. We confirmed whether the algo-
rithm can accurately estimate ICs for virtually observed signals made by a simulation. 
Moreover, we actually conducted a finger-tapping experiment having three trials. We 
evaluated whether ICs estimated using this experiment data exhibit components with 
correlating temporal and spatial structures. 

2   Materials and Method 

2.1   ICA Model for Temporal Sources 

ICA models can be classified into two types: one is represented by the linear coupling 
of independent random variables and the other by temporal signals. NIRS signals can 
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be regarded as temporal because they are subject to the concentration changes of 
oxygenated and deoxygenated hemoglobin, which are presumably affected by events 
during experiment. 

The simplest expression for the temporal structure of NIRS signals x(t) is given by 
the time-delayed correlation, i.e., 

)s()x( tt A= , (1)

where A is a suitable mixture matrix and s(t) is a set of source signals, such as brain 
activity and artifact signals. Moreover, if the separation matrix W satisfying A-1=W 
can be estimated, then estimated source signal y(t) is obtained by 

)y()x( tt =W . (2)

When x(t) has n components and y(t) has m components, we cannot estimate the 
model unless n ≥ m. Here W is not the square matrix, so we use the pseudo-inverse 
matrix for the calculation of the inverse matrix because we are handling the case of 
n>m. The time-delayed correlation matrix for y(t) is shown by 

{ }Ttt )-y( )y( Ey ττ =C . (3)

Because components of y(t) are mutually independent signals, 

{ } 0)-(y )(y E ji =Ttt τ  (4)

when using arbitrary i ≠ j and τ. Therefore, ICA using time-delayed correlations leads 

to an eigenvalue problem for y
τC . If time-delayed correlations are used, enough in-

formation for estimating ICs is obtained. Higher-order information is unnecessary. 

2.2   Algorithm of ICA Using Time-Delayed Correlations 

When S is chosen as appropriate sets of τ, the cost function is shown by 

( )

( )∑∑

∑∑

∈ ≠

∈ ≠

=

=

Sτ ji

2

ij
x

Sτ ji

2

ij
y

1

TWWC

C

τ

τJ

, (5)

which minimizes the off-diagonal element of y
S∈τC . The algorithm by Herault and 

Jutten[8] was advocated by Molgedey and Schuster[9] to solve J1. Kohno et al.[6] 
applied this method to data observed by NIRS. However, we use the cost function for 
diagonalizing the proposal by Kawamoto et al.[7], which is different from J1. 

Mdetlogm log
i

ii ≥∑ . (6)
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In Eq. (6), M is an arbitrary positive definite matrix and m is an element of M. The 
equation only holds when M is a diagonal matrix. Therefore, diagonal indication of M 
can be measured by 

MM detlogm log)(
i

ii −=∑F . (7)

When z(t) is shown by 

( )

)x()z(

 d d ddiag
21-
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x
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EDV
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=
=

==0

 (8)

as a white signal obtained by PCA for x(t), the cost function using F(W) becomes 
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by use of Eq. (8) because W is an orthogonal matrix. The inclination of J2 is 

∑
∈

=
∂
∂

Sτ

z
τ

2
τWCQ

W
J

. (10)

However, Qτ is shown by 

( ) 1z
τ diag

−
= TWWCQ τ . (11)

After each repeat, W should be orthogonalized. This is done by 

( ) WWWW
21 /−

← T , (12)

using the square root of the matrix. Uniform random numbers in section (-1,1) were 
used for an initial value of W. The algorithm proposed by Kawamoto et al.[7] is supe-
rior, because it is simpler than JADE[2] and is better global convergence than the 
algorithm by Herault and Jutten[8]. 

Moreover, x(t) is reconstructed by 

( ) )y()y()(x
121- ttt T AEDW ==

−
. (13)

An element of A  at row i column j shows a contribution from yj(t) to xi(t). 

2.3   Using Virtually Observed Signals by NIRS 

We generated NIRS signals that measure brain activity in a simulation to apply and 
consider ICA that uses time-delayed decorrelations. Only concentrations of oxygenated 
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hemoglobin (oxyHb[mMcm]) were used in this study, though oxyHb and deoxyHb can 
be observed in the measurement of brain activity by NIRS because the correlation of 
oxyHb with the blood oxygenation level dependent (Bold) signal by fMRI is high. 
Buxton et al.[10] developed the model 

h

k

hh 1)!(kk

1
)h( τ

ττ
te

t
t −

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

= , (14)

which is called the hemodynamic response function (HRF) and shows the response 
based on the dynamics of blood circulation. Degree k is assumed to be 3. A full width 
at half maximum (FWHM) is given by the expression τh= 0.242τf. Moreover, in the 
event-related experiment, oxyHb observed by NIRS had two signal changes identified 
by Kato[11]. The negative change is called the Fast Effect, with a peak about 4[s] 
after the event onset, while the positive change is called the Wash Out Effect, with 
respective peak about 20[s] after the event onset. hf(t) and hw were generated with Eq. 
(14) as those changes. Figure 1(a) shows hf(t) and hw. g(t) was defined as a pseudo 
Meyer wave with a peak of about 0.1[Hz], also shown in Fig. 1(a). 

( )( )ttt 03025cos102sin)g( .π.π +=  (15)

Where g(t) is an artifact signal reflecting the low frequency blood pressure weave. 
The problem was simplified in the simulation. The observed signal was measured by 
7 channels (Fig. 1(b)). Moreover, ICs s(t) signal are assumed to be only hf(t), hw(t), 
g(t) with added white gaussian noise. Therefore, the virtually observed signal xsimu(t) 
can be shown by the general ICA model with noise. 

ε+= )s()(x simu tt A . (16)

For xsimu(t) to look like the actual NIRS signal, mixture matrix A was appropriately 
defined. 

2.4   Finger-Tapping Experiment 

The NIRS signal of finger tapping was measured in a study by Morihiro et al.[12] 
whereas our analysis employed only one of those subject’s data. Informed consent 
was obtained from each subject and approved by the ethics committee of Nagaoka 
University of Technology. ICA using time-delayed correlations was applied in our 
experiment. The experimental environment is shown in Fig. 2(a). Subjects sat in a 
chair with their bodies held shill by a belt. Their right hands were placed on the desk 
and their left hands on their thighs. A x-mark, about 10[cm] in height and width, was 
set on a white screen. The movement was tapping of the right hand. Subjects were 
instructed to do a multi-finger tapping task in time with an electronic metronome at 
3.00–3.17[Hz]. The multi-finger tapping task consisted of the thumb ”tapping” each 
of the other fingers in turn. While resting, the subjects were instructed to gaze at the 
sign and relax. While moving, they were instructed to close their eyes. The NIRS 
system used in the trials (an OMM-3000 from Shimadzu Corporation, Japan)  
consisted of 8 near-infrared light-source probes and 8 detectors, resulting in 24 
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source-detector pairs. A schematic illustration of the probe placement is shown in 
Fig.2(b). The probes covered an area from the left primary motor cortex to the sup-
plementary motor cortex (positioned according to the international 10/20 system for 
electrode placement). The sampling rate was 1/0.13[Hz]. Each trial took 60[s] (10[s]: 
rest; 20[s]: action; 30[s]: rest). The time for the NIRS signals to stabilize before the 
next trial started was about 60[s]. The subjects were informed of the start and end of 
the movement periods by a beep. The observed signal for three trials in the subject 
was assumed to be xa(t), xb(t) and xc(t) (see Fig. 4). The ICs ya(t), yb(t) and yc(t) of 
each trial were estimated and compared. 
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Fig. 1. Components of s(t) and virtual observed signals xsimu(t) used in a simulation. The simu-
lation up to 150[s] is set to the sampling frequency of 10[Hz]. (a) Stimulation in the simulation 
began at 40[s]. hf(t) had a peak at 45[s]. hw had a peak beginning at 45[s]. g(t) was defined as a 
pseudo Meyer wave with a peak of about 0.1[Hz]. (b) Measured by 7 channels and assumed to 
be only hf(t), hw(t), g(t) and white gaussian noise. xsimu(t) is shown by Eq. (16). 

 
 
 
 
 
 
 
 

Fig. 2. Conditions in finger-tapping experiment. (a) Experimental environment. (b) Probe 
placement.  

3   Results 

3.1   Analytical Results of Using Virtually Observed Signal by NIRS 

ICA using time-delayed correlations was applied to the virtually observed signals 
shown in Fig. 1(b). x(t) has n=7 components, therefore y(t) should have m=3 compo-
nents. However, we show the results estimated for m=7 as well as m=3 and compared 
them. { } S50  , 0.2 , 0.1 ∈  is assumed because in this case time-delayed correlations 

(a) (b)

(a) (b)
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were simultaneously diagonalized as 50 ≥ τ ≥ 0[s]. Each component of y(t) is shown 
in Fig. 3(a) for m=7 and Fig. 3(b) for m=3.  

In Fig. 3(a), it is estimated that each of y(t) signals is considered a mixture of s(t) 
components. In contrast, in Fig. 3(b), the temporal structure of estimated y(t) looks 
like that of each component of s(t). 

 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 3. Typical changes in virtual signals. Results of ICA using time-delayed correlations where 
(a) m=7, (b) m=3. 

3.2   Analytical Results of Finger-Tapping Experiment 

The results of ICA using time-delayed correlations applied to the observed signal in 
the tapping experiment are shown in Fig. 5. The number m of ICs of y(t) must be 
estimated, but m is not strictly given for an actual observed signal. Here, IC y(t) is 
estimated for the observed signal in each of three trials as m=3. xa(t) is polluted by an 
artifact that has a frequency of about 0.1[Hz]. However, oxyHb in all the trials tends 
to increase with an onset at 10[s] to an offset at 30[s] after the event. A tendency to 
decrease is also seen in the oxyHb in all the trials from the event offset. Next, ICs 
ya(t), yb(t) and yc(t) are shown in Fig. 5. They are the ICA results for xa(t), xb(t) and 
xc(t) respectively. ya1(t), yb1(t) and yc1(t) are each the first component of ya(t), yb(t) and 
yc(t) respectively. They each include the oxyHb change related to the experiment task. 
Moreover, the component of the artifact that appeared for xa(t) was calculated as 
ya2(t), and calculated to independent for ya1(t). 

To evaluate the weight of ya1(t), yb1(t) and yc1(t) for xa(t), xb(t) and xc(t) respec-

tively, each respective element a1A , a2A  and a3A  is shown in Fig. 6. The maps in 

Fig. 6 correspond to the measurement site and calculated by smoothing the element of 

A . A large positive weight is seen in Fig. 6 in the field centered on channel 23, this is 
also clear from Fig. 4. Therefore, from the results of an experiment consisting of three 
trials of the same experiment task, an independent signal with a temporal structure 
related to the onset and offset of the event can be effectively estimated. We were able 
to confirm that the components have weight in the common field in the map between 
the trials. 
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Fig. 4. Changes in oxyHb concentration (NIRS signals) in finger-tapping experiments. (a), (b) 
and (c) are respective measured results of xa(t), xb(t) and xc(t). Vertical axis indicates oxyHb 
concentration change in mmol-cm. Horizontal axis indicates time in seconds measured within 
sampling period of 130[ms]. 

4   Discussion 

We discuss an appropriate setting for obtaining estimated values of components and 
discuss effectiveness of ICA using time-delayed correlation from the results. The set-
ting having more independent elements than the number of observed signals  
deteriorates the estimation accuracy, as seen in simulation results in Fig. 3. Kohno  
et al. succeeded in estimating a heart beat, skin blood flow and white noise as ICs to be   
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Fig. 5. Analytical results for finger-tapping experiment data by ICA. Estimation ICA for ob-
served signal in three trials, xa(t), xb(t) and xc(t). Horizontal axis indicates time in seconds 
measured within sampling period of 130[ms]. 

 
 
 
 
 
 
 

Fig. 6. Contribution from y(t) to x(t) represented by elements of a1A , a2A  and a3A . Map 
corresponds to measurement site and calculated by smoothing the elements of A . 

removed. In the results in Fig. 3(a), independent signal y1 mostly reflects white noise, 
and y2 and y3 reflect artifact signal g. Removing these components and recomposing 
then looks like deflation by PCA. However, after removing and recomposing the y2 
component that seems to contain a small amount of component hf(t), part of observed 
signal hf(t) is lost. Therefore, deflation by removal and recomposition of the artifact 
components is effective when an accurate estimation of the ICA model. As shown in 
Fig. 3(b), when the number of ICs is the same as the number of present signals, pre-
sent signal s(t) is estimated almost exactly. 

Figure 5 shows the results of estimation by ICA for the observed signal in three tri-
als xa(t), xb(t) and xc(t), where the three components that should be estimated are the 
ICs. ya1(t), yb1(t) and yc1(t) include the oxyHb change related to the experiment task. 
Moreover, the component of the artifact that appeared for xa(t) was calculated as ya2(t) 
and the IC was calculated as ya1(t). In Fig. 6, we were able to confirm that the compo-
nents have weight in the common field of the map between the trials. An independent 
signal with a temporal structure related to the onset and offset of the movement event 
and related to the offset can be clearly estimated. 

In summary, we defined the number of ICs as three, but we did not prove whether 
the setting is appropriate. However, the results for an assumption of 3 components 
were accurate and reproducible. In addition, this paper did not explain if the ICA 
method using time-delayed correlations is more effective than other methods using 
non-Gaussianity. As discussed by Medvedev et al.[5], since ICs by NIRS signals can 
be regarded as non-Gaussian signals, ICA method using non-Gaussianity was  
effective. Thus, like the approach by Vigário et al.[13], the approach to evaluate ICA 
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algorithms that applied for NIRS signals involving various artifacts and brain activi-
ties is necessary; However, we show that ICA using time-delayed correlations is  
effective in analysis of the NIRS signal. 

5   Conclusion 

We used an algorithm using time-delayed correlations that was able to estimate the 
number of ICs when it was less than the number of observed sources. The algorithm 
was able to estimate a specific number of ICs for a virtually observed signal. More-
over, the algorithm could estimate the ICs of the observed signal in three actual trials 
in a finger-tapping experiment. The estimated ICs exhibited reproducible spatial dis-
tribution and temporal structures. 
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Abstract. The application of the convolution neural network for detection of 
the micro nucleuses in the human lymphocyte images acquired by the image 
flow cytometer is considered in this paper. The existing method of detection, 
called IMAQ Match Pattern, is described and its limitations concerning zoom 
factors are analyzed. The training algorithm of the convolution neural network 
and the detection procedure were described. The performance of both detection 
methods, convolution neural network and IMAQ Match Pattern, were re-
searched. Our results show that the convolution neural network overcomes the 
IMAQ Match Pattern in terms of improvement of detection rate and decreasing 
the numbers of false alarms. 

Keywords: Micro nucleus detection, Convolutional neural network, Image 
processing. 

1   Introduction 

The recent literature has highlighted that the lymphocytes can be used as biological 
dosimeter in order to relive the presence and the action of carcinogenic factors [1]. In 
order to relieve structural chromosome aberrations [2], [3], [4], a new architecture of 
flow cytometer measurement device (image flow cytometer IFC) [5] able to recognize 
and automatically count the Micro Nucleuses (MNs) on the acquired images of hu-
man lymphocytes has been pointed out. Biology experts recommend specific criteria 
to identify one or more MNs in the cell [6], [7]. In particular, the condition that the 
MNs are in the range [1/3, 1/16] of the diameter of the associated nucleus is the fun-
damental constrain to perform correct detection. The assessment of this condition is 
absolutely necessary and permits to distinguish the MN from the remaining objects in 
the image.  

One of the most used ways to detect the MN in real medical systems is to run the 
pattern matching software. Due to the overall software architecture of the IFC, the 
used pattern matching algorithm is the one implemented in the LabVIEW IMAQ 
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Vision [8]. It calls IMAQ Match Pattern (IMP) method. The IMP method is robust to 
image alterations with intensity belonging to a well defined range. However the IFC 
can introduce the alteration of bad exposure, out of focus and Gaussian noise. These 
alterations have caused doubtful detection when we use the IMP method. Therefore 
we have developed a preprocessing block [9], [10] able to evaluate the image quality 
and, on the basis of this evaluation, the image is corrected or rejected. This permits to 
improve the correctness of the final medical response.  

Another cause of doubtful detection using IMP method is the zoom of the acquisi-
tion system. In this case our preprocessing block considers zoom as an alteration of 
the image that can be evaluated and corrected. It resizes the MN according to the 
zoom factor evaluated on the acquired image using the algorithm of digital zoom and 
the learning phase is repeated. This digital zoom introduces artifacts that do not per-
mit the correct detection of the MNs. One of the possible solutions of this problem is 
to apply artificial neural networks (NNs) due to their good classification and detection 
properties based on similarity, high adaptability and fault tolerance [11]. In this case 
the NNs can easily analyze the similarity in zoomed and un-zoomed images, detect 
the MNs and avoid repeating the learning phase.  

Nowadays more preferable are the appearance-based methods for object detection 
[12] in terms of detection validity and speed. They are based on the scanning of an 
input image at some scale levels by fixed-size window in order to find objects in dif-
ferent positions and scales. Each window is handled by a two-class (object/non-
object) classifier presented by NNs [13], [14], support vector machines [15], [16], 
Bayesian classifiers [17], etc. After classification the detected objects are grouped and 
the areas with some number of multiple detections are accepted as objects of interest. 

In 2001, P. Viola and M. Jones [18] presented one of the fastest appearance-based 
object detection approach which is able to process input image in near real-time 
mode. The novelty of their approach comes from the integration of a new image rep-
resentation (integral image), a learning algorithm (based on AdaBoost) and a method 
for combining classifiers (cascade of weak classifiers). They used a set of rectangular 
Haar-like features instead of raw pixels information as an input for the weak classifi-
ers. R. Lienhart [19] extended the Haar-like features set with rotated ones and S. Li et 
al. [20] proposed a novel learning procedure called FloatBoost. One of the highest 
validity is demonstrated by the object detection approach of C. Garcia and M. Delakis 
[14]. They used a convolutional neural network (CNN) that processes an input image 
in two stages: coarse and fine detection. During the coarse detection, the CNN han-
dles an image of any size at once and detects object candidates. The same CNN is 
used then to verify these candidates within fine detection. The CNN may be used in 
more usual way by scanning an input image with fixed-size window at some scale 
levels. The last approach was used in this paper for detection of the MNs in zoomed 
and un-zoomed human lymphocyte images. 

The goal of this paper is to investigate the method of C. Garcia and M. Delakis 
[14] for the detection of the MNs. We use the CNN because it promises to be one of 
the best classifiers in pattern recognition. The rest of the paper is organized as fol-
lows. First we shortly introduce the IFC image acquisition system and general Lab-
VIEW IMP method. After the proposed CNN training algorithm and the detection 
procedure are presented. On the experimental stage the comparison between the Lab-
VIEW IMP method and CNN is fulfilled. 
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2   IFC Image Acquisition System and LabVIEW IMP Detection 
Method 

In this section we provide a short description of the IFC and standard LabVIEW IPM 
method which have been used to detect the MNs in the acquired images. 

After the chemical treatment of the lymphocyte by biology expert in order to block 
the cytodieresis process and to mark the genetic material with the citocalasina B, the 
lymphocyte, in fluid suspension, is introduced on the input of the Image Flow Cy-
tometer (Fig. 1). Then the cell reaches the flow cell through a system of pump and 
conduct. Then it is photographed by the image acquisition system. The picture of the 
cell is stored into the databases for further elaboration in order to evaluate the image 
quality and to detect the MNs [5]. 

 

Fig. 1. A block-scheme of the operations implemented in the IFC 

The image acquired by the IFC is 8 bit grayscale level. Due to the biological proc-
ess applied to the lymphocytes to mark the genetic components [5], the darker levels 
are used to represent the nucleus and MNs, the middle levels are used to represent the 
cytoplasm and the lighter levels are used to represent the background. First it is de-
fined the template to be searched. It is important to choose a template with a high 
contrast because the search routine does not simply try to find exact matches to the 
template’s grayscale intensity matrix. Instances of the template can often be detected 
in the source image under different ambient lighting conditions and with different 
background information [15]. Moreover it is necessary to select only the characteristic 
of the template avoiding the background. In order to define the templates the follow-
ing steps are performed. Once the source image has been loaded, the user defines a 
region of interest. This forms the search template. The next step is to train the system 
to recognize it, which is achieved by first defining the learn pattern parameters using 
IMAQ Setup Learn Pattern. This virtual instrument creates a learn pattern parameter 



524 I. Paliy et al. 

 

string. These parameters specify the invariance mode to use. Three parameters must 
be set: (i) Shift (default), which extracts information to specify shift (position) invari-
ant pattern matching; (ii) Rotation, which extracts information to specify rotation 
invariant pattern matching; (iii) All, which extracts information to specify both shift 
and rotation invariant pattern matching. Once the template is learned, the next step is 
to search for it. The virtual instrument simply constructs a match pattern parameter 
string based on its inputs: (i) Minimum contrast, which defines the minimum contrast 
you expect to find in the image. It assists the searching when the source image has 
lighting variances relative to the template image; (ii) Match mode, which sets the 
invariance mode to either shift (default) or rotation invariant; (iii) Subpixel accuracy, 
which sets the search routines to use interpolation to attempt searches on a subpixel 
level and (iv) Rotation angle ranges, which sets a part of an image that will be placed 
in a front of the lens with a rotation of a particular range of angles. The actual search-
ing process is executed using the convolution of the template on the image. 

3   CNN Architecture and Detection Procedure 

We have used the CNN for the MN detection due to its robustness to noise, variations 
of position, scale, angle, and shape [14]. It is a deep multi-layer neural network with a 
brain-inspired architecture motivated by vision tasks [21]. Every CNN layer consists 
of the planes which extract different features during the training. Each unit in a plane 
receives input from a small neighborhood (biological local receptive field) in the 
planes of the previous layer. The trainable weights (convolutional mask) forming the 
receptive field for a plane are forced to be equal at all points in the plane (weight 
sharing). Each plane can be considered as a feature map that has a fixed feature 
detector that corresponds to a pure convolution with a trainable mask, applied over 
the planes in the previous layer. A trainable bias is added to the results of each 
convolutional mask. The multiple planes are used in each layer so that multiple 
features can be detected.  

Y. LeCun [21] distinguishes two kinds of the layers: convolutional and subsam-
pling, but the CNN’s structure proposed by P. Simard et al. [22] joins both layers’ 
types into one, thus decreasing the layers number and making the network faster. 

The output value of a neuron with the coordinates (m,n) of p-plane and l-layer [23] 

, ,
, ,( ) ( ( ))l p l p

m n m ny x F S x= ,   (1) 

where x  is an input sub-image, F is a neuron’s transfer function and ,
, ( )l p

m nS x  is a 

neuron’s weighted sum. According to the recommendation of [24] the bipolar sigmoid 
transfer function is used for CNN with the output interval [-1; 1]. Therefore, the last 
expression (1) may be represented as 
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where a neuron’s weighted sum is defined by expression [23] 
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where K  is the input planes’ number (as well as convolutional kernels), R  and C  are 

the convolutional kernel’s height and width, , ,
,

l p k
r cw  is the synaptic weight with coor-

dinates (r, c) in the convolutional kernel between k-plane of the (l-1)-layer and p-
plane of the l-layer, ,l pb  is the neurons’ threshold of the p-plane and l-layer.  

The sparse structure of the CNN is used instead of the full-connected structure as 
well as the number of layers is decreased by performing convolution and subsampling 
operations in each plane simultaneously [22] (Fig. 2) in order to increase the neural 
network’s processing speed.  

 

Fig. 2. CNN structure for the MN detection 

We have fulfilled the process of automatic CNN structure creation depending on 
the following input parameters: training image size, convolutional kernel size and 
steps, input layer planes’ number and planes’ coefficient. The training image size, 
kernel size and steps are chosen in order to provide the integer values of planes’ sizes 
calculated using (2) and (3), and also to achieve the output layer plane’s size equal to 
1x1 neurons. 
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where lh  and lw  are the l-layer plane’s height and width, 1+l

kh  and 1+l

kw  are the (l+1)-

layer convolutional kernel’s height and width and 1

,

+l

rks  and 1

,

+l

cks  are the (l+1)-layer 

convolutional kernel’s steps across rows and columns. 
The planes’ number for the next layer  

PKpp ll ×=+1 , 

where PK is the planes’ coefficient. 
The random-number generator is used to calculate the planes’ number for each 

layer (except the last one). The input planes for the connections are chosen randomly 
too. The last plane of each layer and the output layer’s plane are connected with all 
planes of the previous layer. 

On-line gradient backpropagation algorithm with an adaptive training step [25] is 
used to calculate the modifications of CNN weights and biases on each training epoch 
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where pl ,α  is the adaptive training step for p-plane of l-layer, M and N are the height 

and width of p-plane of l-layer, pl

nm

,

,γ  is the error of the neuron with coordinates (m, n) 

on p-plane of l-layer, )( ,

,

pl

nmSF ′  is the derivative of the neuron’s output value. 

The detection strategy of the MNs across pose and scale supposes the gradual de-
crease of the input image with a scale coefficient of 1.2 [13], [14]. The detection is 
performed by scanning each pyramid image with a fixed size window of 24x24 pixels 
size. The motion step of this window is equal to 4 pixels in both horizontal and verti-
cal directions. Each of the sub-images selected by scanning window is classified by 
CNN. The convolutional kernel sizes for CNN planes were chosen empirically. The 
plane size for each layer may be calculated using (2) and (3). Multiple detections are 
often happen in object detection issues. They are handled by averaging the detections 
with close positions and sizes. Only the objects with the multiple detections above the 
threshold of 2 are concerned as the MNs. This allows decreasing the number of false 
detections.  

4   Experimental Results 

For the training within both CNN and IMP approaches we have gathered 75 positive 
(which includes correct image of the MN) images (Fig. 3a). Also 75 negative images for 
training were also chosen (Fig. 3b) besides the positive images (the proportion of posi-
tive and negative images was 50% per 50%). A minimum detected MN size is equal to 
24x24 pixels. The CNN's input size of 24x24 is chosen as a result of analysis of known 
object (face) detection methods. For example, P.Viola and M.Jones [18] used 24x24 
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window as an input for their face/non-face classifier, H.Rowley at el. [13] - 20x20, 
T.Poggio and K.Sung - 19x19, C.Garcia and M.Delakis [14] - 32x36. At the same time 
the selection of input image size should provide integer values for planes' sizes in all 
layers of CNN. 

The average processing time of an input image (400x400 pixels or near 27000 win-
dows) by CNN method is equal to 20 sec using the workstation with Dual Core Cel-
eron E1200 1.6GHz. The 50 nucleus images were used for the testing the performance 
of IMP and CNN methods. Several examples of the nucleus images with detected 
MNs by the CNN method are presented in Fig. 4. 

 

     

     

     

     
a)  b)  

Fig. 3. Examples of positive (a) and negative (b) training images 

     

Fig. 4. The images of nucleuses with detected MNs 

We present the comparison of the detection results within the CNN and IMP meth-
ods on the example of three nucleus images with different zoom factors in Table 1. 
We have evaluated the number of correct matches, the false positive and false nega-
tive detections. The column “# of false positive” represents the number of the detec-
tions not associated with the MN (it is known as false alarms in literature). The  
column “# of false negative” shows the number of MNs not detected by the detection 
algorithm. Therefore, for each image, the sum of the correct matches and the number 
of false negative detections must be equal to the number of MNs presented in the 
image. On the basis of these data we have obtained the detection or hit rate 

%100×=
sNumberOfMN

tchesNumberOfMa
ateDetectionR , which is specified in Table 2. Also the 

total number of false alarms is presented in Table 2 for both methods. 
As we can see, the CNN method provides no false alarms for each zoom factor of 

the tested images. The number of false negative detections is much lower in compari-
son with the IMP method. The detection rate of 87.5% of the CNN method is much 
higher than 25% of detection rate of IMP method for the considered examples. 
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Table 1. Experimental results obtained using CNN and IMP methods 

CNN IMP 

Image  
Zoom  
factor 

# of 
MN Match

# of 
False 

Positive

# of False
Negative

Match
# of 

False 
Positive 

# of False 
Negative 

1,0 1 1 0 0 1 0 0 
0,5 1 1 0 0 0 0 1 
2,0 1 1 0 0 0 2 0 

image2 

 3,0 1 1 0 0 0 1 0 
1,0 4 3 0 1 2 0 2 
0,5 4 1 0 3 0 0 4 
2,0 4 2 0 2 2 2 2 

image4 

 3,0 4 3 0 1 0 2 4 
1,0 3 3 0 0 3 0 0 
0,5 3 3 0 0 0 0 3 
2,0 3 3 0 0 0 1 3 

image6 

 3,0 3 3 0 0 0 4 3 

Table 2. Comparison of detection rate and false alarms for both methods 

CNN IMP 
Image 

Zoom  
factor Detection 

 rate, % 
False 

alarms 
Detection 

rate, % 
False 

alarms 
1,0 100 0 1 0 
0,5 100 0 0 0 
2,0 100 0 0 2 

image2 

 3,0 100 0 0 1 
1,0 75 0 50 0 
0,5 25 0 0 0 
2,0 50 0 50 2 

image4 

 3,0 100 0 0 2 
1,0 100 0 100 0 
0,5 100 0 0 0 
2,0 100 0 0 1 

image6 

 3,0 100 0 0 4 
Average detection rate  87,5  25  
Total number of false 

alarms 
  0  12 

5   Conclusions 

The application of the convolution neural network for detection of the micro nucle-
uses in the human lymphocyte images acquired by the image flow cytometer is con-
sidered in this paper. The existing method of detection, called IMAQ Match Pattern, 
implemented inside of the image acquisition system is described and its limitations 
concerning zoom factors are analyzed. The convolution neural network is chosen to 
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fulfill the detection due to its robustness to noise, variations of position, scale, angle, 
and shape. The training algorithm of the convolution neural network and the detection 
procedure were described. The performance of both detection methods, convolution 
neural network and IMAQ Match Pattern, were researched on the 50 test images of 
human lymphocytes and the results obtained on 12 images (3 images with different 
zoom factors) are presented. Experimental results show that the convolution neural 
network gives very promising results. It provides no false alarms for each zoom fac-
tor. The number of false negative detections is much lower in comparison with the 
IMP method. The detection rate of 87.5% provided by the convolution neural network 
is much higher than 25% of detection rate of IMAQ Match Pattern method on the 
considered example images.  

The latest medical researches have proved that the human lymphocytes can be used 
as biological dosimeter in order to relive the presence and the action of carcinogenic 
factors. The application of the neural network approaches for this important task of 
detection of micro nucleuses on human lymphocyte images, in particularly convolu-
tion neural network, allows improving the correctness of the final medical response.  

The application of convolution neural network for the detection of micro nucleuses 
under other alterations conditions, for example, bad exposure, out of focus, Gaussian 
noise, etc could be considered as a future line of the research. We also plan to paral-
lelize the training and detection stages for convolutional neural network using MPI 
technology. 
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Abstract. Histograms of local features—bags of visual words (BoV)—

have proven to be powerful representations in image categorisation and

object detection. The BoV representations have usefully been extended

in spatial dimension by taking the features’ spatial distribution into ac-

count. In this paper we describe region matching strategies to be used

in conjunction with such extensions. Of these, the rigid region matching

is most commonly used. Here we present an alternative based on the In-

tegrated Region Matching (IRM) technique, loosening the constraint of

geometrical rigidity of the images. After having described the techniques,

we evaluate them in image category detection experiments that utilise

5000 photographic images taken from the PASCAL VOC Challenge 2007

benchmark. Experiments show that for many image categories, the rigid

region matching performs slightly better. However, for some categories

IRM matching is significantly more accurate an alternative. As a conse-

quence, on average we did not observe a significant difference. The best

results were obtained by combining the two schemes.

1 Introduction

Large quantities of digital image and video material are continuously produced in
the world of today. Lots of useful information could potentially be extracted by
analysis of such material, but the data volumes involved make manual analysis
unappealing in most cases. Automatic methods for analysis of the visual content
can hugely extend the range of applications where content analysis becomes
worthwhile.

Large variety of visual content analysis tasks—e.g. automatic image anno-
tation, semantic multimedia search, object detection and visual mobile robot
navigation—can be phrased as visual category detection problems. In the exper-
iments of this paper, we limit ourselves to still photographic images, although
similar methods can be applied also for analysis of video content. In supervised
image category detection the goal is to predict whether a novel test image be-
longs to a category defined by a training set of positive and negative example
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images. The categories can correspond, for example, to the presence or absence
of a certain object, such as a dog. In order to automatically perform a visual
category detection task, one must use a representation for the properties that
can be extracted automatically from the images.

Histograms of local features have proven to be powerful image representations
in category detection. Consequently their use has lately become commonplace
in image content analysis tasks (e.g. [1,2]). This paradigm is also known by the
name Bag of Visual Words (BoV) in analogy with the successful Bag of Words
paradigm in text retrieval. In this analogue, images correspond to documents
and different local descriptor values to words.

In its basic form the BoV approach does not take into account the local
features’ spatial distribution within images. However, many image categories
are such that spatial structure could be useful in their detection. A common
extension to BoV is to partition all the images geometrically with the same tiling
pattern. Each part is then described with a separate histogram and the image
dissimilarity is formulated as the sum of the dissimilarities of corresponding tiles.
This often used matching scheme (subsequently denoted as rigid matching) seems
to assume the image categories to be sensitive to the overall ordering of objects
that the images contain. For example, an image with a car on the left side and
a motorbike on the right side would be considered very different from images
where the ordering is opposite. It would seem that such requirement of rigidity
of image layout is too strict in many object recognition and scene analysis tasks.
In practice many categories are, for example, completely invariant to left-right
mirroring of the images.

In this paper we present an alternative to the rigid matching scheme, namely
a matching scheme based on Integrated Region Matching (IRM), which has orig-
inally been proposed for matching automatically segmented images [3]. In IRM,
the image segments, or the geometric tiles, can be completely freely permuted.
Although using IRM for category detection is not a completely novel idea, the
image segment features used in the original publication were very primitive in
comparison with the local feature histograms that represent the state of the art
in visual content analysis nowadays. It is therefore of interest to experimentally
compare the two region matching strategies when region descriptions themselves
are of comparable top quality. In this paper, we perform such comparisons using
images and categories of the popular PASCAL VOC 2007 object recognition
benchmark. Using this experimental setup, we investigate several issues related
to region matching, including fusion of the matching strategies.

The rest of this paper is organised as follows. In Section 2 we delineate the
processing stages in a BoV visual category detection system and describe our
implementation of those stages. Section 3 discusses spatial BoV extensions, in-
cluding region matching. In Section 4 we define the experimental task and proce-
dures that we subsequently use in Section 5 for experimentally comparing region
matching techniques. Finally, in Section 6 conclusions from the experiments are
presented.
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2 Bag of Visual Words (BoV) Framework for Image
Category Recognition

2.1 System Architecture

The use of local image feature histograms for supervised image classification and
characterisation can be divided into four steps:

Step 1. Selecting image locations of interest. This can be implemented e.g. by
interest point detection or regular dense sampling of locations.

Step 2. Describing each location with suitable visual descriptors (e.g. SIFT [4]).
Step 3. Characterising the distribution of the descriptors within each image

with a histogram.
Step 4. Using the histograms as feature vectors of the images in a supervised

vector space algorithm, such as the support vector machine (SVM).

2.2 Our BoV Implementation

In the first step of our implementation of the BoV pipeline, interest points are
detected from each image with a Harris-Laplace detector [5] that outputs around
1200 interest points per image on average with the images used in the current
experiments. In Step 2 the image area around each interest point is individu-
ally described with a 128-dimensional SIFT descriptor [4], a widely-used and
rather well-performing descriptor. In Step 3 each image is described by form-
ing a histogram of the SIFT descriptors. We determine the histogram bins by
clustering a sample of the interest point SIFT descriptors (20 per image) with
the Linde-Buzo-Gray (LBG) algorithm. In the current experiments, we set the
histogram size to be 2048 bins. In our earlier experiments [6] we have found such
codebooks to perform reasonably well while the computational cost associated
with the clustering still remains manageable.

A clustering tree structure is used in order to facilitate fast approximate
nearest neighbour search and thus reasonably fast histogram generation. In the
histogram generation phase, we employ the soft histogram technique [7] that has
been observed to provide a significant performance gain. Strictly speaking, due
to softness the obtained image descriptors are no longer exactly histograms but
can still be used as the feature vector for an image exactly the same way in final
fourth BoV step, where the soft histograms of both training and test images
are fed into a probabilistic supervised classifier algorithm. For this purpose, we
employ weighted C-SVC variant of the SVM algorithm combined with probabil-
ity estimation stage, as implemented in the version 2.84 of the software package
LIBSVM [8]. As the kernel function g we use the exponential function

g(i, j) = exp (−γd(i, j)) (1)

of the distance d(i, j) between images i and j. In Section 3.2 we describe such
distance functions. Details of the SVM classification stage can be found in [9].



534 V. Viitaniemi and J. Laaksonen

3 Spatial Extensions to BoV

3.1 Partitioning Images with Tiling Masks

In the basic BoV method, the image-wide distribution of values of interest point
descriptors is described by means of a single histogram. Every interest point has
exactly equal contribution to the histogram, regardless of its spatial location.
However, in practical category detection tasks, exploiting spatial information has
proven to be useful. To this end, the BoV model can be extended by partitioning
several sub-images with geometric masks. In the experiments of this paper, we
consider partitioning the image area with a 2 × 2, 3 × 3, 4 × 4, 5 × 5 and 6 × 6
rectangular grids.

Instead of crisp tiling masks, one can also consider the technique of spatially
soft tiling, which we proposed in [10]. There the tile borders are made fuzzy, so
that interest points near the tile boundary contribute to the histograms of not
only one but several tiles. The soft tiling can be presented with spatially varying
tile membership masks. In the experiments we have normalised the memberships
of each image pixel to sum to one. Figure 1 shows 2× 2 and 4× 4 tiling patterns
and some of the corresponding membership masks for spatially soft tiling. The
dark areas correspond to large membership degrees.

2 × 2: 4 × 4:

Fig. 1. 2 × 2 and 4 × 4 hard tiling masks and some of the corresponding membership

masks for spatially soft tiling

3.2 Image Tile Matching

When the image area has been partitioned with a tiling mask into N tiles, one
obtains several histograms Hi1, Hi2, . . . , HiN for each image i. One has to the
decide, how to define the similarity of or distance between two images i and j in
terms of the histograms. A traditional approach is to first compare histograms
of spatially corresponding tiles and then sum the distances over all the tiles:

dR(i, j) =
N∑

n=1

dχ2(Hin, Hjn). (2)

The χ2 distance dχ2 between M -dimensional vectors x and x′ is given by

dχ2(x,x′) =
M∑

m=1

(xm − x′
m)2

xm + x′
m

. (3)
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We denote this matching scheme as rigid matching of regions as each tile of
image i has only one possible corresponding tile—the tile in exactly the same
geometric location.

Another alternative that we consider is a region matching scheme that is
adapted from Integrated Region Matching (IRM) [3]. Originally the regions for
IRM were result of an unsupervised segmentation step, but in this paper we
use the geometrically determined image tiles instead. Whereas the rigid region
matching is one extreme in terms of rigidity constraint, the IRM scheme repre-
sents the other extreme where no geometric constraints are imposed to regulate
which tiles can correspond to each other, as long as each tile in image i corre-
sponds to exactly one tile in image j. In the IRM scheme, the distance between
the images i and j is given by

dIRM(i, j) = min
S

N∑
k=1

N∑
l=1

skldχ2 (Hik, Hjl) (4)

where the matrix S = {skl} describes the correspondence of regions of the im-
ages. The matrix is subject to constraints

skl ≥ 0 ∀k, l

N∑
k=1

skl ≤ wjl ∀l

N∑
l=1

skl ≤ wik ∀k (5)

with wik being the weight or importance of the k:th tile in the image i. Here
we set all wik = 1, so that the constraints translates precisely to requiring that
each tile in image i corresponds to exactly one tile in image j.

Evaluating dIRM between a pair of images requires one to find the optimal S
for that pair. In [3], a heuristic greedy algorithm called “most similar highest pri-
ority” (MSHP) is proposed for approximately searching the optimal alignment.
In that algorithm, one continuously looks for the best-matching pairs of regions.
Those regions are then marked as corresponding and the involved regions are
no longer considered as candidates to match any other region. An alternative
to this greedy algorithm is the exact solution of the problem, which actually
is a transportation problem. Rather efficient algorithms exist for finding the
solution. In the experiments of this paper we consider the algorithm described
in [11], implemented by the authors of [12] for evaluating earth mover’s distances
(EMD).

In addition to rigid and IRM matching schemes, we consider also combining
the two schemes. Our first combination method alternative is forming a linear
combination of the distances:

dC(i, j) = λ
dR(i, j)

d̄R
+ (1 − λ)

dIRM(i, j)
d̄IRM

. (6)

Here d̄R and d̄IRM are empirical average values of the distance measures. In the
second alternative we first perform image analysis separately on basis of both
rigid and IRM matching. Then we combine the results using Bayesian Logistic
Regression (BBR) [13].
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4 Experimental Task and Procedures

In the experiments we consider the supervised image category detection prob-
lem. Specifically, we measure the performance of several algorithmic variants for
the task using images and categories defined in the PASCAL NoE Visual Object
Classes (VOC) Challenge 2007 collection [14]. In the collection there are alto-
gether 9963 photographic images of natural scenes. In the experiments we use
the half of them (5011 images) denoted “trainval” by the challenge organisers.
Each of the images contains at least one occurrence of the predefined 20 object
classes, including e.g. several types of vehicles, animals and furniture.

In the experiments the 5011 images are partitioned approximately equally
into training and test sets. Every experiment is performed separately for each of
the 20 object classes. The category detection accuracy is measured in terms of
non-interpolated average precision (AP). The AP values were averaged over the
20 object classes resulting in mean average precision (MAP) values. To obtain
more reliable results, the MAP values are further averaged over six different
train/test partitionings. The average MAP values tabulated in the result tables
have 95% confidence intervals of order 0.01 in all the experiments.

5 Experiments and Results

5.1 Comparison of Region Matching Schemes

In our first set of experiments, we compare the effectiveness of rigid and IRM
region matching schemes in our category detection tasks. The experiments are
repeated for a number of different individual tiling masks. Figure 2 shows the
results of the comparison. The rightmost set of bars in the images corresponds
to the fusion of tiling masks, where the category detection is performed first
separately on basis of each tiling mask and then the results are fused using the
BBR fusion technique.

We can make several observations from the figures. First of all, on average
the rigid matching scheme (white bars) works slightly better than exactly op-
timised IRM matching (grey bars). The MSHP algorithm for calculating IRM
distances produces clearly inferior performance. This is somewhat surprising, as
the correlation between the two distance measures is empirically observed to be
almost perfect and the distance values differ only by a few percents on average.
Possibly the numerically small errors that the greedy MSHP approach makes in
the relative ordering of similar images are of large importance when detecting
image categories.

By comparing the subfigures 2a and 2b we notice that the individual soft
tilings generally give better performance than corresponding hard tilings. We
notice that the performance of individual hard tilings starts to degrade as the
tiling mask becomes finer. With soft tilings, this is not so strongly the case, but
the performance first improves and then saturates. The fusion of different tilings
is essential for good performance in case of hard tilings. The mask fusion still
helps somewhat in the soft tiling case, but is not that essential. Similar kinds
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(a) (b)

Fig. 2. Performance comparison of region matching schemes when either (a) hard, or

(b) soft assignment of interest points to tiles is employed

of observations were made in [10] for the rigid matching scheme and now we
can confirm that they hold also for IRM matching. Altogether, the soft tiling
technique seems to be compatible with IRM matching.

5.2 Combining Region Matching Schemes

Figure 3 shows the result of combining the rigid and IRM region matching
schemes with the linear combination and BBR techniques. We see that combin-
ing the region matching schemes results in somewhat better performance than
either the rigid or IRM matching alone. We notice that in case of soft tilings,
fusion of tilings is no longer better than the best individual tilings (5 × 5 and
6 × 6). For these results, we have set the parameter λ in Eq. 6 to value 0.5. A
fixed value for all cases is naturally somewhat suboptimal, but this value seems
to be a rather safe choice, as was observed in an experiment where we scanned
a range of values for λ (results not shown here due to lack of space).

5.3 Class-Wise Results

Class-wise breakdown of the category detection results might be interesting as
it seems plausible to think that different image categories could be different in
the respect how rigid their spatial structure is. Identifying such differences might
give insight to the role of region matching in visual category detection. In the
results of our experiments, there indeed seems to be a category (“bus”), for
which IRM matching tends to work quite much better than the rigid matching.
Also a few other classes show similar tendency, although less strongly.

However, the statistical fluctuations between the six sets of trials are strong.
It is therefore challenging to obtain reliable object class specific results. In the
MAP values some of the variation tends to average out. In order to be able
to identify systematic class-specific patterns, we try to maximise the number
of trials whose outcomes can be considered as i.i.d. random variables. To this
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(a) (b)

Fig. 3. Comparing the performance of rigid and IRM matching (white and black bars)

to the fusion of the matching techniques in the case of either hard (a) or soft (b) spatial

tiling

Fig. 4. Category-wise comparison of rigid and IRM region matching when soft spatial

tile assignment is employed

end, we combine together the results obtained by the four different rectangular
tiling masks. Combined with the six partitionings of the data, this results in 24
different experimental conditions. For each condition, we perform the experiment
using both rigid and IRM region matching and subtract the AP results. We
assume the AP differences come from the same normal distribution. Repeating
this analysis for each class, we can assess whether the mean of the distribution
deviates significantly from zero, and to which direction, i.e. whether rigid region
matching is significantly better than IRM or vice versa.

Figure 4 shows the results of the category-wise analysis for the case of spa-
tially soft tiling. For hard tiling, the results are very similar. In the figures, the
thick bars represent average performances across all the rectangular tiling pat-
terns. The error bars indicate 95% confidence intervals. The relative AP differences
have been normalised to the performance level of 2×2 hard tiling employing rigid
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region matching. The analysis is indeed able to confirm the existence of system-
atic differences between image categories. For a couple of image categories (“bot-
tle”,”bus” and “cow”) IRM matching consistently works significantly better than
rigid matching. There is a larger number of image categories for which rigid match-
ing works consistently better, but the differences between the matching methods
are smaller for those categories. The rightmost bar (MAP) in the figures confirms
the impression that on average, rigid region matching may work slightly better
than IRM matching, but the difference is not practically significant.

6 Conclusions

In this paper, we have described two different region matching schemes to be
used in a BoV image category detection system: traditionally employed rigid
region matching and an alternative scheme based on Integrated Region Matching
(IRM). We also discussed implementation details related to IRM.

In the experiments, the rigid and IRM region matching schemes showed only
insignificant performance difference on average. However, for many image cate-
gories, rigid matching works somewhat better. This is balanced by the observa-
tion that for a smaller set of image categories, IRM matching produces notably
better detection accuracy. We obtain our best results by combining the rigid
and IRM region matching schemes. We could not observe significant difference
between the two investigated fusion methods: linear combination of image dis-
tances and late fusion by BBR. When evaluating the IRM distance, the MSHP
heuristic proposed earlier [3] is not accurate enough for image category detection.
Instead, the distances have to be evaluated exactly. This is despite the fact that
the heuristic distances differ only slightly from the true distances on average.

Spatially soft tiling seems to be compatible with IRM matching as well as rigid
region matching. We observe our best performance when tiling is performed by
the 5 × 5 soft tiling mask, and rigid and IRM region matching are combined.
In particular, accuracy is not improved over this single-mask result by multi-
mask fusion. This is somewhat different from [10], where multi-mask fusion was
observed to be slightly advantageous when rigid matching was used. In the case
of hard spatial masks, multi-mask fusion is more important, both here and in
the experiments of [10].

The investigated region matching schemes represent two extremes in terms of
geometrical rigidity required from the matched images. It is somewhat surprising
that the rigid region matching scheme works as well as it does. Certainly the im-
age categories of the current experiments are invariant to some geometric image
transforms. One explanation could be that in our experiments there are enough
training images so that it is effectively possible to enumerate all the possible
geometric configurations in the training material. If this was the case, one would
expect IRM matching to perform relatively better as the number of training im-
ages is decreased. However, this seemed not to be the case when we performed
such preliminary experiments. Apparently the complete geometric invariance
of IRM is thus excessive. One would probably benefit from a region matching
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scheme that allows for some more transformations than the rigid matching, but
would still not completely abandon rigidness as IRM matching does. Designing
such a matching scheme is a possible direction for future research.
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Abstract. Critical information that is related to vital processes of the

cell can be revealed comparing several two-dimensional electrophore-

sis (2DE) gel images. Through up to 10 000 protein spots may appear in

inevitably noisy gel thus 2DE gel image comparison and analysis proto-

cols usually involve the work of experts. In this paper we demonstrate

how the problem of automation of 2DE gel image matching can be grad-

ually solved by the use of artificial neural networks. We report on the

development of feature set, built from various distance measures, se-

lected and grounded by the application of self-organizing feature map

and confirmed by expert decisions. We suggest and experimentally con-

firm the use of k-means clustering for the pre-classification of 2DE gel

image into segments of interest that about twice speed-up the comparison

procedure. We develop original Multilayer Perceptron based classifier for

2DE gel image matching that employs the selected feature set. By experi-

mentation with the synthetic, semi-synthetic and natural 2DE images we

show its superiority against the single distance metric based classifiers.

1 Introduction

The discovery of clinical biomarkers, identification of prognostic and diagnos-
tic markers makes possible to understand the human disease and its treatment
better. The two-dimensional electrophoresis (2DE) is the tool for achieving this
for the modifications that cannot be predicted by the analysis of genome se-
quences [5,7]. Through up to 10 000 protein spots may appear in the gel, the
comparison of two 2DE gels is very complicated and time consuming. To speed
up this process, the automatic pre-analysis of 2DE gel images needs to be im-
plemented. Comparison of 2DE gels reveals the critical information about differ-
ences in protein samples, related to the vital processes of the cell [1]. In order to
find differences, correct matches of protein spots between the examined 2DE gel
pairs needs to be found, i.e., gels must be aligned. Existing gel image registration
methods are feature (landmark) based, image intensity based, or hybrid [12].

Feature based image registration methods [6] are of low computational cost
and of high distinctiveness. They operate on features that are extracted from
protein spots: spot positions, intensities, areas, appearance. To this group be-
long the following methods: point pattern matching, point matching based on
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graphs [4], spot position descriptors, Delaunay triangulation [9]. The main dis-
advantage of feature based image registration methods is the fact that protein
spots must be detected before their matching procedure. Comparison of several
2DE gel images highly depends on the spot extraction results so failing in a
first stage brings feature matching problems. 2DE gel images without process
noise can be pre-processed without problems however most gels are produced
according to 2DE protocols that are fine-tuned for ongoing specific experiment.
Thus during the pilot experiments formed 2DE gel images are far from the ideal
and all methods presented in publications and commercially available software
fail or do not present satisfactory results. The process noise manifests as: highly
merged protein spots (separation problems) [10]; varying background, streaks,
leftovers, saturated spots (sample preparation protocol variations); oversatu-
rated spots (silver staining of highly abundant proteins) [11].

Intensity based image registration methods exploit computational power of
modern computers. They are based on the maximization of similarity or min-
imization of the distance between regions of images [8]. Usually correlation
coefficient-based [8,13] or mutual information-based [8] registration methods are
used. Image intensity based registration methods do not require feature extrac-
tion so they do not inherit false feature extraction errors. However image inten-
sity based registration methods are not satisfactory robust against geometric and
large intensity distortions usually present in 2DE gels. Other disadvantages of
them are: computational complexity, low distinctiveness and low capture range.

Hybrid image registration approaches exploit both intensity and feature in-
formation, thus the erroneous feature extraction still influences performance of
2DE gel image alignment. One possible solution is to develop based on image
intensities distance measure that is sensitive to the characteristic protein spot
patterns. So, in Sect. 2 we present tests of distance measures and select the
promising ones. In order to speed-up a pair-wise comparison in Sect. 3 we sug-
gest and experimentally confirm the use of k-means clustering for 2DE gel im-
age segments pre-classification. Section 4 presents the development of Multilayer
Perceptron based detector, that unifies all our propositions and by pair-wise de-
termination of 2DE gel image segments correspondence allows alignment of gel
images under registration.

2 Development of Feature Set

Various metrics are used to compare 2DE gels. In the following we: outline the
selected for evaluation distance measures, present the development of gel image
sets, and report on evaluation of distance measures by SOM and by experts.

2.1 Selected Distance Measures for Initial Evaluation

Distance between image samples x and y is denoted by d(x, y). In general, dis-
tance on N is a function d : N ×N → IR, where N is a set, and for any x, y ∈ N
holds: d(x, y) >= 0; d(x, y) = d(y, x); d(x, x) = 0. We aim to determine how well
each distance measure represents the dissimilarity of two 2DE gel images.
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Table 1. Distance measures selected for comparison

Distance measure d(x, y) Alternatives

Squared Euclidean
∑

i
(xi − yi)

2
– (1)

Cosine 1 −
∑

i xiyi√∑
i xixi ·

√∑
i yiyi

– (2)

Pearson correlation 1 −
∑

i (xi − x̄) (yi − ȳ)√(∑
i (xi − x̄)2

)(∑
i (yi − ȳ)2

) – (3)

Spearman’s rank

correlation

6 ·∑n
i=1 (rank(xi) − rank(yi))

2

n (n2 − 1)
– (4)

Chebyshev max
i

|xi − yi| – (5)

Histogram intersection 1 −
∑

i
min (pi(x), pi(y)) 1−∑i min (x̂i, ŷi) (6a,b)

Jeffrey divergence

∑
i
pi(x) ln

2 · pi(x)

pi(x) + pi(y)
+∑

i
pi(y) ln

2 · pi(y)

pi(x) + pi(y)

∑
i
x̂i ln

2 · x̂i

x̂i + ŷi
+∑

i
ŷi ln

2 · ŷi

x̂i + ŷi

(7a,b)

Bhattacharyya

(Hellinger)

√
1 −

∑
i

√
pi(x)p(y)

√
1 −

∑
i

√
x̂iŷi (8a,b)

χ2
∑

i

(pi(x) − pi(y))
2

2 · (pi(x) + pi(y))

∑
i

(x̂i − ŷi)
2

2 · (x̂i + ŷi)
(9a,b)

Normalized mutual

information

1

2

(
1 − H(x) + H(y)

H(x, y)

)
– (10)

Here: rank(·) – position of the data after sorting in ascending order;

p(x), p(y) – probability density functions of discrete random variables x and y;∑
i pi(x) = 1;

∑
i pi(y) = 1;

∑
i x̂i = 1;

∑
i ŷi = 1; x̄ = 1

n

∑
i xi; ȳ = 1

n

∑
i yi;

H(x),H(y) – marginal entropies; H(x, y) – joint entropy;

H(·) = −∑i pi(·) ln pi(·); H(x, y) = −∑i

∑
j pij(x, y) ln pij(x, y).

Distance measures selected for the comparison are summarized in Table 1.
Distances in (1)–(5) and their alternatives in (6b–9b) are computed directly
on 2DE gel image pixels so they concern spatial properties of image structure.
Distances in (6a–9a) and (10) are information-theoretic measures computed on
probabilistic distributions.

2.2 Creation of Image Sets for Evaluation

Distance measure must respond to features that are specific for images under
registration so it could facilitate comparison accuracy. If a set of images that are
sorted by their monotonically changing true similarity could be available, then
measured dissimilarity should increase when the first image is compared with all
the subsequent ones. However it is impossible to sort natural 2DE gel images as
similarity measure tools do not exist. Thus synthetic and semi-synthetic sorted
image sets that represent the essential 2DE gel image features were developed.
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Fig. 1. Illustrations of created image sets

Synthetic image set Z1. Parametric 2D Gaussian model was used to generate
synthetic protein spot patterns. This model is fully capable to represent regular
protein spots. 2D Gaussian function to model one protein spot is given by:

z(n, m) = A(m) · exp
(
− i2R(n)

2σ2
i

)
· exp

(
− j2

R(n)
2σ2

j

)
, (11)

here iR(n) = cos(α)(i− i0(n)) + sin(α)(j − j0(n)); jR(n) = − sin(α)(i− i0(n)) +
cos(α)(j − j0(n)); α – rotation angle in radians; (i0, j0) – centre of the function;
A – height of the peak; σi, σj – widths in vertical and horizontal directions.

An image set Z1 of size N × M = 25 × 25 was produced by monotonically
changing a pair of parameters {n, m} that define the particular synthetic im-
age. These are the parameters of the Gaussian function: centre coordinates
(i0(n), j0(n)) and amplitude A(m). Other parameters of the Gaussian function
are constant for the same image set but differ between the sets. Thus, synthetic
2DE gel images differ in position and size of one spot. At the same time, few
synthetic spots are added in all images (for illustration see Fig. 1(a)).

Semi-synthetic image set Z2. Spatial and geometrical variations from natu-
ral 2DE gel images were used to generate semi-synthetic images. Having corre-
sponding image areas x and y from different 2DE gels, we generated intermediate
images by morphing from one image to another. Morphing consists of warping
and cross-fading procedures. Manipulating these processes independently, i.e.,
gradually changing warping parameters and generating linear combinations of
original images, we generated a set Z2 of similar to Z1 size (cf. Fig. 1(b)).

Having two of the same size sample images x and y′ (y′ being a variant of y
registered on x) collected from original registered 2DE gel images, cross-fading
is achieved through linear combination of those images:

Z(1, m) = x
M − m

M − 1
+ y′ m − 1

M − 1
. (12)
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Here M – preferred number of images, counting original and generated images
(M = 25); m = {1 : M} – image cross-fading index; Z(1, 1) = x; Z(1, M) = y′.

Geometrical distortions are modelled by extracting match vectors (mapping
image f : y → y′) from images x and y. Each cross-faded image Z(1, m) is
monotonically warped onto image Z(N, M) = y in equal 25 steps (n = {2 : N} –
image warping index), by thin-plate spline transformation:

f(n, m) = a1(n) + ai(n)i + aj(n)j +
k∑

p=1

wp(n)U (‖ (ip, jp) − (i, j) ‖) . (13)

2.3 Evaluation of Distance Measures

Let us recall that the purpose of the following tests is to select a group of distance
measures that must represent similarity of 2DE gel images under the registration.
For a comparison and selection of distance measures seven independent tests were
performed and their ranked results are summarized in Table 2. By rank equal
to 1 we indicate the best result in a group (row of table), higher rank values
indicate worse results (rank equal to 14 beeing the worst result).

During the comparison of distance measures three factors were taken under
the consideration: a) time needed to compute value of particular distance mea-
sure (1st row of Table 2); b) results of Self-Organizing feature Map (SOM) classi-
fiers (2–6 rows); c) results of classification by experts (7th row). In order to have
more general view of SOM applicability, we performed five tests utilising one,
two, or three distance measures (indicated by 1DM, 2DM, or 3DM, correspond-
ingly) calculated on synthetic, semi-synthetic or both image data sets (indicated
by Z1, Z2, or Z∗, correspondingly).

Input for SOM classifiers consisted of the selected type(-s) of distance(-s)
between image Z(1, 1) and the rest images, i.e., d(Z(1, 1), Z(n, m)), where n =
{1 : N}, m = {1 : M}. All SOMs were tested for the task of classification into
3 classes. As distances d(Z(1, 1), Z(1, 1)) (self similarity) and d(Z(1, 1), Z({1 :
N}, M)) are the largest ones, preferred classification of SOM into three classes
should be such that images appearing near Z(1, 1) in the set were assigned to the

Table 2. Raking of 2DE gel image sets pairwise comparison results

Comparison way
Distance measure, d(x, y)

(1) (2) (3) (4) (5) (6a) (6b) (7a) (7b) (8a) (8b) (9a) (9b) (10)

Processing time 4 6 7 14 1 11 3 10 8 12 5 9 2 13

SOM/1DM/Z1 8 6 1 5 3 13 2 11 9 10 13 14 4 7

SOM/1DM/Z2 7 6 1 4 2 10 3 12 9 11 14 13 5 8

SOM/1DM/Z∗ 8 7 1 5 2 13 3 10 6 11 12 14 4 9

SOM/2DM/Z∗ 8 7 1 5 2 13 3 10 6 11 12 14 4 9

SOM/3DM/Z∗ 6 2 1 4 3 9 5 12 8 13 14 11 7 10

Expert/1DM/ZN 8 2 1 4 9 10 3 13 6 14 11 12 5 7
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same class, images near Z(N, M) were assigned to the other marginal class and
the middle part of data set appeared in the third class. During the tests we were
seeking for classifications that are topologically similar to the preferred. The
number of correct classifications of given image sets using each one of distance
measures were counted and represented as ranks in 2–6 rows of Table 2.

For expert classification dataset ZN was collected taking parts of natural
2DE gel images that should be registered. Image samples were taken at expert-
defined control point positions. Control points (landmarks) show positions of
corresponding areas of 2DE gel images with the same proteins. During the test
we calculated the number of times the use of distance measure allows correct
matching in a ZN set and represented as ranks in 7 row of Table 2.

After assessing all tests results, a group of three distance measures (in Ta-
ble 2 marked in bold): Pearson correlation distance (3), Histogram intersection
computed on normalized image pixel values (6b), and χ2-distance on normalized
pixel values (9b), were selected for the further development. Spearman’s rank
correlation (4) and Chebyshev (5) distance measures produced competitive re-
sults, however were not selected either because of the slow speed or the lack of
relevance to what a human expert would use.

3 Automation of Selection of Segments of Interest

Nevertheless that 2DE gels possibly may have thousands of protein spots, not
all image area needs (in cases of artifacts even is prohibited) to be used for
matching. In the following we propose k-means clustering for the initial pre-
classification of 2DE gel image into segments of interest and report on evaluation
of pre-classification results.

3.1 k-means Clustering for Pre-Classification of Image Segments

The parametric k-means clustering is selected for the classification of 2DE gel
images. The algorithm partitions image samples into two subsets C1 and C2

(the first defining segments of interest) by minimising the sum-of-squares of
the distance between feature vector, representing image segment, and geometric
centroid of the data points in the feature subset.

Feature vectors for pre-classification are calculated based on rectangular non-
intersecting segments taken on a regular basis from natural 2DE gel image. In
total six features are taken into account: mean intensity, intensity median, inten-
sity variance, intensity standard deviation, skewness (the asymmetry measure)
and Kurtosis (the peakedness of pixel intensity distribution). All statistical es-
timates are computed along protein molecular mass (MM) axis.

3.2 Evaluation of Pre-classification Results

The use of feature vectors for pre-classification prevents image segments with
noise peaks passing into subset C1. Such drawback has classification methods
that analyse the pixel intensity range in each segment (compare images in Fig. 2).
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Fig. 2. Illustration of pre-classification results using different algorithms. Selected seg-

ments are enclosed in boxes; noisy segments are additionally crossed.

To ascertain the suitability of pre-classified samples for 2DE gel image match-
ing an experimental investigation is performed on a natural 2DE gel images.
Three distance measures (1),(3) and (5) are selected for the experiment (see
Table 1). Each distance measure gives one or several extremum points during
image sample matching. The global minima in distance measure means the high-
est match in the search space. For the same image sample the position of global
minima may vary for the different distance measures. The standard deviation
of all highest match points for each image sample are calculated along isoelec-
tric point and along molecular mass axes. For the optimal image matching, the
standard deviation for each sample should vanish to zero. Total of 1025 image
samples from C1 and C2 subsets were analysed. Using three selected measures,
the mean standard deviation of the highest match points for the C1 subset is
equal to 4.01 along isoelectric point axis and 4.36 along molecular mass axis. For
the subset C2 the mean value of standard deviation is equal to 8.49 and 12.45,
respectively. The mismatch for subset C1 is 2–3 times less than for subset C2.

To evaluate the influence of additional measures, used for image sample match-
ing, three additional distance measures: (6a), (8a), (10), were added to the exper-
iment. The mean standard deviation of highest match points for the subset C1

using six distance metrics increases to 8.78 along isoelectric point axis and 13.44
along molecular mass axis. For the subset C2 the mean value of standard devi-
ation increases to 11.16 and 16.17, respectively. These experiments shows, that
pre-classification of image samples increases the accuracy of image matching,
which also depends on the number of distance measures used.

4 Automatic Matching of 2DE Gel Images

2DE gel images under registration needs to be aligned by the use of landmarks.
In the following we: outline automatic matching procedure, that uses Multilayer
Perceptron (MLP) for a landmark detection; present the development of MLP de-
tector; by experimentation with synthetic, semi-synthetic and natural 2DE images
show its superiority against the single distance metric based classifiers.
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4.1 Procedure of 2DE Gel Image Automatic Matching

MLP classifier selects one pair of the most similar image segments as follow:

1. 2DE gel segment from one image is paired with all selected segments of
interest in a second image (extracted according to description in Sect. 3).

2. In Sect. 2 grounded three distance measures are computed between all paired
image segments.

3. According to distance measures, segment pairs are compared by MLP clas-
sifier and one pair is selected as containing the most similar images.

4. Selected segment pair is marked as corresponding regions in two gel images
and is used as control point for 2DE gel image registration.

4.2 Development of MLP Based Classifier

Structure of MLP was constrained by the available dataset. Supervised learning
requires target vectors, and it was possible to provide only information about
relative distances between image pairs – not absolute values d(x, y1) and d(x, y2)
but which one of them is smaller. Distances d(x, y1) and d(x, y2) are presented
to MLP as inputs. If the first distance is smaller (x segment is more similar to
y1 than to y2), then MLP output value should be “1” (value “−1” – otherwise).

All MLP training samples were collected from three sources – synthetic, semi-
synthetic and natural image sets (Z1, Z2, ZN, correspondingly). Such combina-
tion of samples allows to cover a wider range of variations in gel images. Training
samples from ZN set were composed according to matched regions by an expert.

Let us by xm and ym denote image regions (m = 1, . . . , M) by the expert taken
from two natural 2DE gel images X and Y and marked as corresponding. Then
d(xm, ym) are distances between corresponding image areas. Distances between
all mismatching areas xm �= yi we denote by d(xm, yi), here i = 1, . . . , imax

and imax is a number of all image Y areas selected using procedure proposed in
Sect. 3. Similarly, distances between all mismatching areas ym �= xj we denote
by d(ym, xj), here j = 1, . . . , jmax and jmax is a number of all image X areas
selected using proposed procedure.

MLP training set is composed as follows: a) for all training samples Smi1 =
{d(xm, ym), d(xm, yi)} and Smi3 = {d(ym, xm), d(ym, xi)} target value Tmi1 = 1
is assigned; b) for all training samples Smi2 = {d(xm, yi), d(xm, ym)} and Smi4 =
{d(ym, xi), d(ym, xm)} target value Tmi2 = −1 is assigned.

Considered four core structures of MLP are presented in Fig. 3. Blocks in
diagrams denote the layers of neurons. Layer I represents triplet of inputs where
features from each pair of segments under comparison are fed. H1, H2, H3 rep-
resent hidden layers of selectable {5; 10; 15; 20; 30; 40} size. O represent a single
output, where the final decision about similarity is computed. Transfer functions
of neurons in H1 layer are Log-Sigmoid (LS), in H3 layer are Tan-Sigmoid (TS),
while in H2 layer they can be Log-Sigmoid or Tan-Sigmoid. MLP-A–MLP-C type
structures are partitioned into two parallel, symmetrical and same size branches
of layers, while MLP-D type – reasambles traditional MLP structure.
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Fig. 3. Generalized pictorial representation of considered core MLP structures

All possible specific MLP structures were tested on 57 380 images randomly par-
titioned for training (60%), validation (20 %) and testing (20%) purposes.
Each MLP was initialized using Nguyen-Widrow rule and trained by Levenberg-
Marquard algorithm.Used training parameters:maximumnumber of epochs – 100;
performance goal – 0; maximum validation failures – 5; minimum performance gra-
dient – 10−10; μinit = 0.001; μdec = 0.1; μinc = 10; μmax = 1010. Best MLPs from
each group were selected: MLP-A – 3-5(LS)-5(TS)-30(TS)-1; MLP-B – 3-40(LS)-
15(TS)-1; MLP-C – 3-30(LS)-5(TS)-1; MLP-D – 3-30(LS)-10(TS)-1. They were
used in the follwing natural 2DE gel image matching experiments.

4.3 Results of Automatic Matching of Natural 2DE Gel Images

Testing 2DE image sets for matching experiments were collected in the same
way as during the collection of training set from the natural images. There were
used images from three biochemical experimental groups where proteins from
the specific cells were analysed: HL-60 cells, Human heart conduction system
cells and Mesenchymal stem cells. From the first group of images testing set of
186,992 image samples was generated; from the second – 76,722 image samples;
and from the third – 101,007 image samples.

Summarized results of the use of single distance measure classifiers and pre-
viously found the best MLPs from each four core structures are presented in
Table 3. Results are shown in percentage of successful similarity comparisons
from each test group. The best achieved results outlined in bold font. Compar-
ative testing results show that MLP structures with separated symmetric input
layers have advantages at similarity comparison of image regions. These struc-
tures firstly allow to make a separated fusion of distance measures of image pairs
and decision about most similar pair is made in the terminal part of the network.

Table 3. Percentages of succesful natural 2DE gel image similarity comparisons

Origin of 2DE gel sets
Single feature classifier Multilayer Perceptron

(3) (6b) (9b) A B C D

HL-60 cells 99.965 99.985 99.987 99.983 99.990 99.961 99.973

Human heart cells 98.915 99.014 98.811 99.363 99.589 99.159 99.253

Mesenchymal stem cells 99.919 99.864 99.868 99.959 99.974 99.930 99.954
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5 Conclusions

Automatic matching procedure for 2DE gel image registration was developed
and the following main outcomes can be listed:

1. From considered and investigated 14 distance measures, the feature set of
three measures: Pearson correlation distance, Histogram intersection com-
puted on normalized image pixel values, and χ2-distance on normalized pixel
values, was shown representing well similarities in 2DE gel images.

2. k-means clustering for pre-classification of 2DE gel image into segments of
interest that about twice speed-up the comparison procedure was proposed.

3. Multilayer Perceptron detector for 2DE gel image registration was proposed,
and with the found the best structure outperformed sigle distance measure
based classifiers in the test with three natural 2DE gel image sets.
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Abstract. Monitoring real world environments such as industrial scenes

is a challenging task due to heavy occlusions, resemblance of different pro-

cesses, frequent illumination changes, etc. We propose a robust frame-

work for recognizing workflows in such complex environments, boasting

a threefold contribution: Firstly, we employ a novel holistic scene de-

scriptor to efficiently and robustly model complex scenes, thus bypassing

the very challenging tasks of target recognition and tracking. Secondly,

we handle the problem of limited visibility and occlusions by exploit-

ing redundancies through the use of merged information from multiple

cameras. Finally, we use the multivariate Student-t distribution as the

observation likelihood of the employed Hidden Markov Models, in order

to further enhance robustness. We evaluate the performance of the exam-

ined approaches under real-life visual behavior understanding scenarios

and we compare and discuss the obtained results.

Keywords: Robust workflow recognition, Hidden Markov Models, clas-

sifier grids, multi-camera fusion.

1 Introduction

Event understanding in video sequences is a research field rapidly gaining mo-
mentum over the last few years. This is mainly due to its fundamental applica-
tions in automated video indexing, virtual reality, human-computer interaction,
assistive living and smart monitoring. Especially throughout the last years we
have seen an increasing need for assisting and extending the capabilities of hu-
man operators in remotely monitored large and complex spaces such as public
areas, airports, railway stations, parking lots, industrial plants, etc.
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Fig. 1. Sequences from the dataset. The relatively low resolution and the several oc-

clusions and self occlusions make very difficult the task of tracking thus necessitating

holistic features and a robust model to recognize workflows. The first two rows depict

two different tasks that would be difficult to distinguish even for the human eye; the

third row shows some example frames of occlusions, outliers, and other challenges faced

in this industrial dataset.

Focusing on industrial scenes, the serious visibility problems, the heavy oc-
clusions, along with the high diversity, complexity or sometimes resemblance
of the behaviors and events taking place, make workflow recognition extremely
challenging. In this paper the case study is an assembly line of an automobile
manufacturer, where several different tasks are performed, and a sequence of
specific tasks forms a workflow. The goal of recognizing these tasks (classes) and
workflows is even more difficult to achieve when taking into consideration the
high intraclass and low interclass variance, as shown in Fig. 1. Typical meth-
ods tend to fail in such environments, since they rely on object detection and
tracking, which are rarely successful under such circumstances. To overcome the
aforementioned problems, we propose a robust framework for workflow recogni-
tion that contributes to the solution in the three following ways:

– We propose new holistic features, which can be efficiently computed, do not
rely on target detection and tracking and can be used to model complex
scenes, thus resulting in robust input.

– In addition, we include redundant data by using multiple cameras in order to
provide wider scene coverage, solve occlusions and improve accuracy. This is
achieved by fusing time series of the above mentioned holistic image features,
which is, according to our knowledge, a novel approach.

– Moreover, we scrutinize the effectiveness of the multivariate Student-t distri-
bution, instead of the Gaussian, as the observation likelihood of the employed
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Hidden Markov Models (HMMs), so as to solve the problem of outliers and
further enhance the robustness of the model.

The rest of this work is organized as follows. In Sec. 2 we briefly survey the related
work. Sec. 3,4 and 5 describe details of our approach, with respect to efficiency
and robustness respectively. In Sec. 6 we verify our methods experimentally on
a real-world dataset from an assembly line of an automobile industry. Finally,
Sec. 7 concludes the paper.

2 Related Work

The field of behavior and workflow recognition has attracted the interest of
many researchers. Holistic methods, which define features at the pixel level and
try to identify patterns of activity using them directly, can bypass the challeng-
ing processes of detection and tracking. Such methods may use pixel or pixel
group features such as color, texture or gradient, see e.g. [1] (histograms of spa-
tiotemporal gradients), [2] (spatiotemporal patches). Of particular interest due
to efficiency and representation of motion are approaches such as [3], which intro-
duced Motion Energy Images (MEIs) and Motion History Images (MHIs), and
[4], where Motion History Volumes are extracted from multiple cameras. Pixel
Change History is used in [5] to represent each target separately after frame dif-
ferencing. What is needed to model complex scenes is a representation that will
be able to operate in any adverse condition effected by occlusions, illumination
changes or abrupt motion.

As far as multiple cameras are concerned, to our knowledge no previous work
has investigated fusion of holistic time series. The works on multicamera behavior
recogition that have been reported so far try to solve the problem of position or
posture extraction in 3D or on ground coordinates (e.g. [6,7]). However, camera
calibration or homography estimation is required and in most cases there is still
dependency on tracking or on extraction of foreground objects and their position,
which can be easily corrupted by illumniation changes and occlusions.

Concerning the classification part, a very popular approach is HMMs ([8], [9],
[10]) due to the fact that they can efficiently model stochastic time series at
various time scales. Several fusion schemes using HMMs have been presented,
which were typically used for fusing heterogeneous feature streams such as audio-
visual systems, but can be applied to streams of holistic features from multiple
cameras as well. Such examples are the early fusion, the synchronous HMMs
[11], the parallel HMMs [12] and the multistream HMMs [13]. The reliability
of each stream has been expressed by introducing stream-wise factors in the
total likelihood estimation as in the case of parallel, synchronous or multistream
HMMs.

3 Robust Scene Representation

Classifier grids were initially introduced to perform background modeling [14].
In this approach, an input image It is spatially (location and scale) sampled with
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a fixed highly overlapping grid. For each grid element i, an adaptive classifier
Ci is created. These classifiers can now be used in a static camera setting in
order to aggregate scene and location specific information. Classifier grids have
been successfully used for pedestrian detection, e.g. [15]. Experiments show that
very good detection results can be achieved compared with the sliding window
technique, which uses a fixed pre-trained classifier which scans the whole image.

In our work, we propose to use the output of the classifier grid as scene
descriptor. In other words, the local classifiers can be seen as features which
extract “high level” information from each image. Hence, our proposed approach
analyses time series, and afterwards all classifier responses are concatenated into
one vector. These vectors observed over time t define finally the grid time matrix.
The principle is depicted in Fig. 2.

(a) Input image (b) Classifier grid (c) Grid time matrix

Fig. 2. Grid time matrix composition: An input image (a) is analyzed by a highly

overlapping grid of classifiers (b). Classifier responses are concatenated over time and

used as holistic image description.

4 Multi-view Learning

The goal of automatic behavior recognition may be viewed as the recovery of a
specific learned behavior (class or visual task) from the sequence of observations
O. Each camera frame is associated with one observation vector and the obser-
vations from all cameras have to be combined in a fusion framework to exploit
complementarity of the different views. The sequence of observations from each
camera composes a separate camera-specific information stream, which can be
modelled by a camera-specific HMM.

The HMM framework entails a Markov chain comprising a number of N
states, with each state being coupled with an observation emission distribution.
An HMM defines a set of initial probabilities {πk}N

k=1 for each state, and a matrix
A of transition probabilities between the states; each state is associated with a
number of (emitted) observations O (input vectors). Gaussian mixture models
are typically used for modeling the observation emission densities of the HMM
hidden states. Given a learned HMM, probability assignment for an observation
sequence is performed.
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(a) HMM using fusion at the fea-

ture level

(b) State synchronous HMM

(c) Multistream fused HMM (d) Parallel HMM

Fig. 3. Various fusion schemes using the HMM framework for two streams

In a multicamera setup each sensor stream can be used to generate a stream
of observations. The ultimate goal of multicamera fusion is to achieve behavior
recognition results better than the results that we could attain by using the
information obtained by the individual data streams (stemming from different
cameras) independently from each other. We will examine in the following some
representative approaches, which can support scalable behavior recognition with
several overlapping cameras.

Among existing approaches Feature fusion is the simplest; it assumes that
the observation streams are synchronous. The related architecture is displayed
in Fig. 3(a). For streams from C cameras and respective observations at time t
given by o1t,..., oCt, the proposed scheme defines the full observation vector as
a simple concatenation of the individual observations: ot = {oct}C

c=1. Then, the
observation emission probability of the state st = i of the fused model, when
considered as a k-component mixture model, yields:

P (ot|st = i) =
K∑

k=1

wikP (ot|θik) (1)

where wik denotes the weights of the mixtures and θik the parameters of the kth
component density of the ith state.

In the state-synchronous multistream HMM (see Fig. 3(b)) the streams are
assumed to be synchronized. Each stream is modelled using an individual HMM;
the postulated streamwise HMMs share the same state dynamics. Then, the like-
lihood for one observation is given by the product of the observation likelihood



556 A. Voulodimos et al.

of each stream c raised to an appropriate positive stream weight rc [11]:

P (ot|st = i) =
∏

c=1..C

[
K∑

k=1

wikP (oct|θik)]rc (2)

The weight rc is associated with the reliability of the information carried by the
cth stream. Another alternative is the parallel HMM (see Fig. 3(c)); it assumes
that the streams are independent from each other. This HMM model can be
applied to cameras that may not be synchronized and may operate at different
acquisition rates. Similar to the synchronous case, each stream c may have its own
weight rc depending on the reliability of the source. Classification is performed
by selecting the class l̂ that maximizes the weighted sum of the classification
probabilities from the streamwise HMMs:

l̂ = argmax
l

([
C∑

c=1

rclogP (o1...oT |λcl)]) (3)

where λcl are the parameters of the postulated streamwise HMM of the cth
stream that corresponds to the lth class.

The multistream fused HMM is another promising method for modeling of
multistream data [13] (see Fig. 3(d)) with several desirable features: (i) it is
appropriate for both synchronous and asynchronous camera networks; (ii) it has
simple and fast training and inference algorithms; (iii) if one of the component
HMMs fails, the remaining HMMs can still work properly; and (iv) it retains
the crucial information about the interdependencies between the multiple data
streams Similar to the case of parallel HMMs, the class that maximizes the
weighted sum of the log-likelihoods over the streamwise models is the winner.

5 Robustness to Outliers

Outliers are expected to appear in model training and test data sets obtained
from realistic monitoring applications due to illumination changes, unexpected
occlusions, unexpected task variations etc, and may seriously corrupt training
results. Here we propose the integration of the Student-t distribution in our
fusion models, in order to address the problem.

The probability density function (pdf) of a Student-t distribution with mean
vector μ, positive definite inner product matrix Σ, and ν degrees of freedom is
given by:

t (xt; μ, Σ, ν) =
Γ
(

ν+p
2

) |Σ|− 1
2 (πν)−

p
2

Γ
(

ν
2

) {1 + d (xt, μ; Σ) /ν} ν+p
2

(4)

where Γ (.) denotes the gamma function and d the Mahalanobis distance. The
heavier tails of the Student-t distribution compared to the Gaussian ensure
higher tolerance to outliers. The Gaussian distribution is actually a special case
of the Student-t for ν → ∞. Recently, it has been shown that the adoption
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of the multivariate Student-t distribution in the observation models allows for
the efficient handling of outliers in the context of the HMM framework with-
out compromising overall efficiency [16]. Based on that we propose the following
adaptations in the above fusion schemes: For the feature fusion, synchronous,
parallel and multistream models we use the Student-t pdf as predictive function
for the streamwise models. We use a modified EM training algorithm and solve
numerically to obtain ν. For the interstream fusion model we employ a mixture
of Student-t functions to increase robustness.

6 Experiments

We experimentally verified the applicability of the described methods. For this
purpose, we have acquired very challenging videos from the production line of a
major automobile manufacturer1. Two synchronized, partially overlapping views
are used. Challenges include occlusions, similar colors of the individual people
clothing and the background, and real-working conditions, such as shaking cam-
eras and sparks.

Experimental setup. The production cycle on the production line included tasks
of picking several parts from racks and placing them on a designated cell some
meters away, where welding took place. Each of the above tasks was regarded as
a class of behavioral patterns that had to be recognized. A specific sequence of
those tasks constitutes a workflow. The information acquired from this procedure
can be used for the extraction of production statistics or anomaly detection. The
workspace configuration and the cameras’ positioning is given in Fig. 4. The
behaviors we are aiming to model in the examined application are briefly the
following:

1. A worker picks part #1 from rack #1 and places it on the welding cell.
2. Two workers pick part #2a from rack #2 and place it on the welding cell.
3. Two workers pick part #2b from rack #3 and place it on the welding cell.
4. A worker picks parts #3a, #3b from rack #4 and places them on the cell.
5. A worker picks part #4 from rack #1 and places it on the welding cell.
6. Two workers pick part #5 from rack #5 and place it on the welding cell.
7. Welding: two workers grab the welding tools and weld the parts together.

For our experiments, we have used 20 segmented sequences representing full
assembly cycles, each one containing each of the seven behaviors/tasks. The
total number of frames was approximately 80,000. The videos were shot by two
PTZ cameras at an approximate framerate of 25 fps and at a resolution of
704 × 576. The annotation of these frames has been done manually. For more
dependable results, in our experiments we used cross-validation, by repeating the
employed training algorithms several times, where in each repetition all scenarios
are considered except for one used for testing (leave-one-out cross-validation).

1 We are currently investigating legal issues of making the dataset publically available.
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Fig. 4. Depiction of workcell along with the position of the cameras and racks #1-5

Representation and feature extraction. We created a classifier regular grid with
overlap 0.5 (50%). Each frame was eventually represented by a 42-dimensional
feature vector. For learning and adapting the classifiers we have used a sim-
ple motion based heuristic. Each local classifier learns a simple background
model [17]. As classification function, the amount of moving pixels, i.e. the dif-
fernce between the current image and the background model, is used. For each
stream corresponding to a different viewpoint we have selected a region of inter-
est, to which the classifier grids have been applied, as the activity taking place
in the remaining area of the frame is noise.

Learning. We trained our models using the EM algorithm. We used the typical
HMM model for the individual streams as well as feature fusion, synchronous,
parallel and multistream HMMs. We experimented with the Gaussian observa-
tion model as well as with the multivariate Student-t model. We used three-state
HMMs with a single mixture component per state to model each of the seven
tasks described above, which is a good trade-off between performance and effi-
ciency. For the mixture model representing the interstream interactions in the
context of the multistream HMM we use mixture models of two component
distributions.

Results. The obtained results of the experiments are shown in Fig. 5. It becomes
obvious that the sequences of our features and the respective HMMs represent
quite well the assembly process. Information fusion seems to provide significant
added value when implemented in the form of the multistream fused HMM, and
about similar accuracy when using parallel HMMs. However, the accuracy dete-
riorates significantly when using simple feature level fusion or state-synchronous
HMMs, reflecting the known restrictions of these approaches.

The confusion matrices in Fig. 6 show the percentage of successful and un-
successful task recognitions averaged across all classes (tasks). A look at the
matrices would justify the complementarity between the two camera streams
due to the different viewpoints. Camera 1 performs well for task number 2 and 7
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(a) Single camera (b) Fusion

Fig. 5. Success rates obtained using Student-t distribution and (i) individual HMM

for camera 1 (HMM1); (ii) individual HMM for camera 2 (HMM2); (iii) feature-level

fusion (FEAT); (iii) state-synchronous HMMs (SYNC); (iv) parallel HMMs (PARAL)

and (v) multistream fused HMMs (MSTREAM)

(a) Camera 1 (HMM1) (b) Camera 2 (HMM2) (c) Multistream fusion

Fig. 6. Confusion matrices for individual tasks

while camera 2 performs better for the rest. For example, camera 1’s viewpoint is
such, that discerning task 1 from task 5 is extremely difficult - even for a human -
hence the low success rates in these particular tasks; on the contrary, camera 2’s
viewpoint is much better for viewing tasks 1 and 5 and therefore allows for a sig-
nificantly higher performance, which can be confirmed by noticing the confusion
matrices. This complementarity of the two streams results in the improvement
of the accuracy by the streams’ fusion when the latter is implemented as a mul-
tistream fused HMM. Finally, the employment of the Student-t distribution as
observation likelihood of the employed HMM provides additional improvement
from 81.43% (Gaussian) to 83.44% (Student-t) in recognition rates.

7 Conclusion

It has been shown that a fused holistic scene representation, which uses a grid
time matrix, is very well suited for monitoring and classifying well structured
processes such as the production tasks in an assembly line. Using the proposed
holistic features to bypass the challenging tasks of detection and tracking, which
are usually unsuccessful in such environments, leads to a rather satisfactory
representation. Furthermore, exploiting redundancies by fusing time series from
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multiple cameras using the multistream fused HMMs results in higher recog-
nition rates than those achieved when employing one single camera. Finally,
employing an outlier-tolerant observation model based on the Student-t mul-
tivariate distribution instead of the Gaussian further enhances accuracy and
robustness.
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Abstract. Image thresholding (as the simplest form of segmentation) is a very
challenging task because of the differences in the characteristics of different im-
ages such that different thresholds may be tried to obtain maximum segmentation
accuracy. In this paper, a supervised neural network is used to “dynamically”
threshold images by assigning a suitable threshold to each image. The network
is trained using a set of simple features extracted from medical images randomly
selected form a sample set and then tested using the remaining medical images.
The results are compared with the Otsu algorithm and the active shape models
(ASM) approach.

1 Introduction

Image thresholding can be viewed as the simplest technique for image segmentation
since it separates an object from its background (bivalent pixel classification). However,
because of the differences in the properties of the images, by using any thresholding
algorithm we may achieve accurate segmentation for some images and low accuracy
for others. Therefore, the threshold may always need to be altered in order to receive
higher segmentation accuracies. A “dynamic” approach is more flexible in adjusting the
threshold for each image. In this paper, a neural network is used to segment images by
assigning a different threshold to different images according to the inherent features.

There exist a vast number of methods to threshold gray-level images [1]. The Otsu
method uses the image histogram to assign a threshold to the image [2]. It divides the
image into two different classes of gray levels and assigns a threshold to the image
where the variance of these two level is minimal. It is difficult to provide an in-depth
review of all neural approaches to image segmentation. Suchendra et al. [3] discuss
the advantages of a hierarchical self-organizing neural network for image segmentation
over the traditional (single-layer) self-organizing feature neural network. Mohamed N.
Ahmed et al. [4] present a two-stage neural network for volume segmentation of med-
ical images. Other neural approaches can be found in[5–8]. In other group of segmen-
tation techniques, Cootes et al. [9] proposed a new statistical technique termed active
shape models (ASM), which iteratively adapt to refine estimates of the pose, scale and
shape of models of image objects. They propose a method to generate a model of shape
and appearance of 2D images objects.
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2 Proposed Approach

The proposed algorithm uses a trained neural network to segment the images directly
by generating the threshold; the neural network estimates the suitable threshold based
on the image characteristics. This technique starts with extracting features from a set of
randomly selected images with known optimal thresholds (e.g. through trial-and-error
manual segmentation, or via brute force). These optimal thresholds which are used to
train the neural network are generated by adjusting the Otsu threshold ( the Otsu method
delivers the initial guess and then the proposed approach finds the best threshold by
trying the neighboring values). The proposed technique uses the test images along with
their optimal thresholds to train a backpropagation neural network. After being trained,
the neural network is used to segment a set of new images. The average accuracies
are calculated for each segmented image by comparing it with its gold standard image
generated via applying the optimal threshold.

Feature Extraction – The proposed technique starts with extracting a set of features
from every image and uses these features to assign best thresholds to different images.
We use several sub-images constructed around multiple points in every image as differ-
ent seeds such that every sample image can be used multiple times. In order to obtain
an initial seed point we can ask an expert user to click inside the region of interest,
here the algorithm starts to operate internally and divide the image from this point into
four sub-images and the features of these four sub-images are calculated. The algorithm
continues and randomly selects n points (e.g. n = 20 points for each image) within the
region of interest and for every point the process is repeated as the image is divided into
four sub-images and the features for each sub image are calculated. The valid points
inside the region of interest are known during the training since gold standard images
are available. As we have multiple seed points inside every image, every point divides
the image in four sub-images if we draw a vertical and a horizontal line going through
that point. So, for every image we will have 4n sub-images (e.g. 80 for n = 20). More-
over, for each sub-image, the optimal threshold is calculated in order to be used for
supervised learning. We use simple features that can be calculated fast: 1) the mean
gray level μSi for each sub-image Si. The average gray level of a sub-image is indi-
cation of its darkness/brightness, 2) the standard deviation σSi for each sub-image Si.
The intensity variation captured by the standard deviation quantifies our confidence in
darkness/brightness of the sub-image, 3) the distance dSi = maxi Si−mini Si between
the maximum and the minimum of each sub-image. This distance provides additional
information to distinguish between different variation levels captured by standard devi-
ation. For n = 20, 4 sub-images (created for each seed point) and F = 3 features, we
will have n × F × 4 = 240 features from every image.

Training the neural network – A feed-forward backpropagation neural network is
used to learn the set of sample images. The network consists of one input layer with
nodes as many as we have seed points and one hidden layer with 40 nodes and the
output layer with one output (=the estimated threshold). For every training set, five
different sample images are randomly selected from a larger database to train the neural
network. The optimal thresholds for these five images are assigned as the target of the
neural network. The network is trained using Matlab trainrp function with desired error
set to 0.00001 to be achieved within maximum 50000 epochs.
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Testing the neural network – In this step any new image is processed by a detection
algorithm which calculates the position of the first seed point inside the region of inter-
est. This point is calculated by tracing a 10 × 10 mask over the image and calculating
the sum and the standard deviation of every mask and the correlation between the mask
and its neighbors. For our images, the region of interest has the lowest graylevel and
so it always has the minmum standard deviation and the minimum sum. Moreover, to
be sure that the minimum sum and the minimum standard deviation are indeed from
inside the region of interest, the correlation coefficients between each 10 × 10 mask
and its preceding mask and its following mask are calculated. The algorithm takes this
point and divides the image into four sub-images and calculates the features for every
sub-image. We test 1) NNAVER: Taking the average of thresholds T1, · · · , T4 assigned
by the neural network to each sub-image: T ∗ = 1

4

∑
i Ti, and 2) NNINTER: Interpo-

lating the thresholds T1, · · · , T4 assigned by the neural network to each sub-image:
T∗ : T2×2 → TM×N (from 4 thresholds we generate a threshold for each pixel in an
M × N image).

3 Experiments and Results

A set of 20 medical images are used to train and test the proposed technique. We ran-
domly select five of the images as a training set and the remaining 15 images are used
for testing. This process is repeated 4 times to generate different training sets and in-
vestigate the generalization ability of the network. The purpose of this experiment is to
compare the results from the proposed technique with average thresholds (NNAVER) and
interpolating thresholds (NNINTER) with the results by Otsu segmentation technique and
active shape models (ASM) via accuracy calculation using the gold standard images to
verify the improvement (Figure 1). The following metrics have been employed: 1) the
average segmentation accuracy J is calculated using the area overlap (also called Jac-
card Index): J(A, B) = |A∩B|

|A∪B| where A is the binary image and B is the gold standard
image, 2) the standard deviation σ of the average of accuracy, and 3) the confidence
interval (CI) of J . The Table 1 summarizes the results of the four training sets.

Fig. 1. Sample result (from left to right): original image, Otsu, ASM, NNAVER, NNINTER, and the
gold standard image

Table 1 shows a summary of the results of the four training sets. Generally, it is
obvious that the proposed algorithm in both approaches has the highest average seg-
mentation accuracy, the lowest standard deviation and the shortest confidence intervals
over the Otsu and ASM algorithms, which means that the proposed system has more
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Table 1. Summary of the results for the Jaccard Index J , σ and 95%-confidence interval CI of J

First Training set Second Training set Third Training Set Fourth Training Set
Method J CI σ J CI σ J CI σ J CI σ

Otsu 73% 63%-83% 18% 73% 63%-83% 18% 75% 64%-85% 19% 72% 59%-84% 22%
ASM 75% 68%-83% 13% 74% 67%-82% 13% 75% 67%-82% 13% 76% 69%-82% 12%
NNINTER 83% 77%-88% 9% 83% 78%-88% 8% 83% 79%-90% 9% 81% 78%-88% 14%
NNAVER 82% 75%-88% 12% 80% 74%-86% 10% 84% 77%-89% 10% 82% 75%-88% 11%

accurate and more consistent results. For example, in the first training set, the average
accuracy of the proposed system using average threshold raised from 73% (Otsu) and
75% ASM to 82% and to 83% with interpolation. Moreover, the confidence interval of
the proposed system using average thresholds is pushed higher from 63%–83% (Otsu)
and 68%–83% (ASM) to 75%–88% and to 77%–88% using interpolation of the thresh-
olds which means that the proposed system is more consistent.

4 Conclusions

Intelligent segmentation by training a neural network to generate the threshold for un-
seen images seems to be a viable alternative. This process extracts features from each
image by dividing it into several sub images. The extracted features are then used to
train a feed-forward backpropagation neural network along with their optimal thresh-
olds as target values of the network. The neural network could provide a threshold for
new images resulting in higher accuracies compared to another intelligent technique
(ASM) and a “static” technique such as Otsu method.
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Abstract. In this work a novel system for sea surface images pre-processing 
and processing has been developed in order to detect bubbles on the sea surface. 
This application is fundamental to verify radiometer satellite systems which are 
used to the study of the floor humidity and the sea salinity. 160 images of 8 
kinds of salinity have been processed, 20 per class. Two main steps have been 
implemented; the first step is the image pre-processing and enhancing, in order 
to improve the bubbles detection. The second step is the segmentation and the 
bubbles detection. A combination system has been used in order to improve the 
final result, getting a recognition rate of 95.43%. 

Keywords: Bubble Detection, Image Processing, Pattern Recognition. 

1   Introduction 

The weather and nature disaster prediction depends on the availability of global and 
periodicity information from humidity and sea salinity on their superficial layers. 
Therefore, in 1999, European Space Agency (ESA) approved the SMOS mission (Soil 
Moisture and Ocean Salinity), whose objectives were the study of the floor humidity 
and the sea salinity on the oceanic surface, doing use of the radiometer in the L-band 
[1][2]. The goal was to improve the emissivity models of the sea surface, including 
the effects of the rain and the surf which had not been considerate before [3]. There-
fore, the goal of this present work is to isolate the sea surf of the images and the bub-
bles of the surface layer, applying image processing techniques and image analysis, in 
order to find the kind of salinity from bubbles and surf patterns. 

2   Database Used 

The studied salinities were 0 psu, 5 psu, 10 psu, 15 psu, 20 psu, 25 psu, 30 psu and 34 
psu, where psu stands for “practical salinity unit”. These images were recorded with a 
video-camera, multisession and with different videos for session. From video were 
extracted frames each 3 seconds, storing each image on gray-scale, with 8 bits and a 
resolution of 640x480 pixels with 160 images, 20 per class. This quality is chosen in 
order to have initial resolution for the bubbles detection. 
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3   Image Pre-processing 

The first step of the final proposed system is to detect the different layers of the sea-
images and the bubbles shape detection, but it is a hard and strong task due to low 
contrast and the similarity between classes. Therefore, it is required an image pre-
processing in order to increase the contrast, in particular, between the different layers 
and the variability in the same layer.  

The borders appear enhanced because it has been found the subtraction between an 
image with smooth borders (filtering image) and another image with strong borders. If 
the difference found between both images is mayor or minor, the enhancement will be 
mayor or minor in order to increase the dynamic range of the interesting zone. The 
applied function responses to (2) [5]: 

 (1)

where, 
),(1 yx

M
k

σ
⋅ is the gain factor used to enhance the image contrast, and k2·m(x,y) 

is a factor to restore the medium intensity image level (m(i,j) and σ(i,j) are the average 
and standard deviation intensity levels of a centered window in the pixel (x,y)).  

This image pre-processing has modified the contrast and the dynamic range and 
does easier the following tasks, because we will work in spatial domain for the fea-
tures extraction. 

4   Image Pre-processing 

In this section, the segmentation of the different layers and the bubbles detection are 
implemented thanks to the choice of the best empirically threshold in each step. 
 
Method 1. It was applied eight convolution masks, one per each angle, 0º, 45º, 90º, 
135º, 180º, 225º, 270º and 315º, on the enhanced image. The enhanced image contains 
much information in its different layers, but the present work only needs the surf 
layer. Besides, many pixels have been detected as edges, but they are not. In order to 
solve those problems, this work only uses the surf layer, and it is fixed a certain 
threshold, whose value is chosen empirically from the  gray  levels  of  each image,  
in order to eliminate the mayor quantity of false edges. Only those pixels whose level 
of intensity surpasses the threshold value will be considerate as edge.  

Sometimes, the edges of diverse bubbles appear united formed a unique object. It is 
applied mathematical morphology, in order to separate them. Fig. 5 shows the edges 
from the both methods and its logic combination.  
 
Method 2. This method treats to find the edge based on the different gray levels 
which belong to the bubbles and the gray levels of the rest of pixels of the surf layer. 
The surf layer is divided in diverse regions applying the segmentation with multilevel 
threshold, and finally, the image is binarized, getting the bubbles edges. 
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Fig. 1. Schedule of segmentation and bubbles detection  

Combination system: evaluation. In order to justify the use of both methods in the 
process of bubbles detection, it is shown an example, seeing the detection of both 
methods, and after logic combination, the detection of the most bubbles. The method 
1 does not detect certain bubbles of small size. On the other hand, method 2 detects 
some bubbles with more precision, different bubbles from bubbles detection of 
method 1. Combining both methods is achieved a better approximation.  

Once the main process in this work (pre-processing and segmentation image) has 
been done, to finalize, it has been used a Support Vector Machine (SVM) [6] to verify 
how the proposed method works, in supervised classification and using features from 
bubbles edges and other parameters. Each experiment has been done 5 times. The 
recognition rate is 95.43 ± 0.3%, using 50% of our database for training process. 

This experiment is the indicator of a good result of the proposed method, that it is 
the most important issue in this work. 

5   Conclusions 

In this present work has been shown the automated image pre-processing and process-
ing for the bubbles detection. The measure of quality has been implemented with 
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supervised classification, reaching a 95.43% in order to discriminate the different 
kinds of salinity; using independent samples from our database for our experimental 
setting. The use of constants and thresholds is a particular case for this application, in 
the next future; authors will check the real images and will use general expression or 
automatic method for calculating those values. 
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Fig. 2. Result of our method proposed for bubbles detection.  
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Abstract. This paper presents a novel no-reference video quality assessment 
(VQA) model which is based on non-linear statistical modeling. In devised non-
linear VQA model, an ensemble of neural networks is introduced, where each 
neural network is allocated to the specific group of video content and features 
based on artifacts. The algorithm is specifically trained to enable adaptability to 
video content by taking into account the visual perception and the most repre-
sentative set of objective measures. The model verification and the performance 
testing is done on various MPEG-2 video coded sequences in SD format at dif-
ferent bit-rates taking into account different artifacts. The results demonstrate 
performance improvements in comparison to the state-of-the-art non-reference 
video quality assessment in terms of the statistical measures. 

Keywords: Video quality assessment, modular neural networks, data clustering. 

1   Introduction 

In recent years there has been an increased development of media networks for vari-
ous applications, the video being one of the most important and demanding media. 
Since the perceived quality of the video for the end-user is an important issue, a ne-
cessity has arisen for constant video quality monitoring in different applications, such 
as mobile telephony, internet and TV broadcast. Digital video signal is compressed 
prior its transmission to the end-user in order to reduce the bandwidth requirements. 
Depending on the network bandwidth and the end-user application, different video 
formats at different resolution, are compressed at different bit rates. Depending on the 
compression rate and the content characteristics, the artifacts are more or less notice-
able, and may significantly influence the viewer subjective impression of the video 
quality. In this paper we consider the following video artifacts related to broadcasting 
coded video signals: (i) blocking, (ii) blurring, (iii) ringing, and (iv) motion related.  

In recent past, a number of algorithms were proposed for the estimation of coded 
video artifacts (some of them given in references [1]-[5]). In order to develop a true 
video quality assessment model a set of objective measures for defined type of  
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artifacts and video content have to be combined and validated with the results of vis-
ual perception tests (i.e. subjective assessment). Subjective video quality assessment 
includes a panel of people estimating the visual quality of displayed video using the 
values on a predefined scale. In proposed scheme, the score is obtained from the tests 
performed according to ITU-R BT.500-10 recommendations using Double-Stimulus 
Impairment Scale (DSIS) method in which random pairs of original and impaired 
sequences are presented to the viewer [6]. The mean opinion score (MOS) is then 
obtained by averaging all scores. 

In this paper we present a practical way to devise a single visual perception-based 
video quality assessment model through use of neural networks [7], [8]. The model 
derivation is based on a statistical evaluation of a set of considered objective measures 
in conjunction with the subjective video quality assessment which incorporates modu-
lar neural network (MNN) scheme with video content based artifact clustering.  

2   VQA Framework Description 

In the proposed video quality assessment model two main stages can be distinguished: 
(i) VQA model design phase and (ii) VQA exploitation phase. The VQA model de-
sign model phase relates to the construction of the VQA model based on training on 
test video sequences and their corresponding subjective quality assessments. This is 
essentially enabled by a “learning-system” capability of the proposed modular neural 
network scheme. The exploitation VQA phase, on the other hand, is intended for a 
real-time processing of video streams, not know a priori.  

The general block-scheme of the proposed framework for the video quality as-
sessment system design phase is shown in Fig. 1.  

Set of 
Objective
Measures

VQA Model

RMSE

Subjective Quality
Assessment 

(MOS)

Overall Quality 
Score

Test Video
Sequence

 

Fig. 1. General block scheme of the VQA training model 

As shown in Fig. 1 the idea is to derive a non-linear VQA model based on the 
training test video sequences objective and subjective descriptors. The derived model 
represents the least difference between the desired MOS and determined combination 
of selected objective measures (estimated MOS). The proposed VQA model is trained 
until the difference between the overall quality score (OQS) and MOS is minimized. 

The model design phase can be roughly divided into three sequential stages in the 
following order (see Fig. 2): (i) feature selection, (ii) feature based clustering and (iii) 
VQA model training based on modular neural network (MNN) scheme. 
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Fig. 2. Detailed scheme of the VQA design phase 

From Fig. 2 it can be seen that firstly the objective quality measures are combined 
with subjective quality measures (MOS) in order to reduce the set of objective meas-
ures. The feature space reduction is performed by unsupervised clustering algorithm. 
The resulting data clusters contain the data samples which are the most similar but at 
the same time sufficiently different from data belonging to different clusters. The 
main principle of the no-reference VQA model derivation is based on a model train-
ing phase using a modular structure of non-linear MOS estimators. In the past  
complex problem decomposition into a number of sub-tasks such as modules and 
ensembles had been addressed [9]. In VQA framework, the modular NN (MNN) 
scheme is adopted comprising a number of modules each being represented by a mul-
tilayer perceptron NN. In addition, to increase accuracy and robustness the “bias-
variance decomposition” principle is incorporated in the MNN modeling [10].  

VQA exploitation phase is effectively VQA implementation stage at which a video 
quality is estimated automatically, in a real-time, without the necessity for subjective 
quality assessment. In this phase, clustering is not necessary and only the level of a 
cluster membership is determined based on the distance of a data sample from the 
corresponding cluster centers. The estimated MOS (i.e. video quality score) is com-
puted as a weighted averaging of outputs of individual NN.  

3   The Selection of the Objective Quality Measures 

In the proposed framework we have included 29 objective measures (some given in 
[1]-[5]) that mainly describe video artifacts present in the video sequences coded 
according to MPEG-2 standard. The input feature space at the starting stage contains 
29 features (measures) with various degrees of the contribution to the overall video 
quality. The selection is performed by taking the five most representative features 
with the highest correlation to the MOS. The selection of the dominant features is 
based on feature vector statistical analysis and its correspondence to the MOS, 
through the implementation of NN prediction models using forward selection  
approach and a RMSE as ranking criteria of the selection process. In the feature selec-
tion scheme, we have chosen the non-linear model for mapping the objective meas-
ures to MOS in the form of multilayer perceptrons (MLPs) NNs [11].  
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4   Feature Space Clustering and Modular Neural Network 
Framework 

The selected set of five video features is further used for video quality modeling 
within the VQA system design phase. The features are computed for all training se-
quences and all frames separately with feature data samples grouped in appropriate 
data clusters. The determined clusters correspond to distinctive feature space areas 
reflecting different artifact-free video content (e.g. temporal and spatial activity) and 
different types of video coding artifacts. The clustering is done in the selected five-
dimensional feature space using clustering methods such as: (i) K-means (KM) and 
(ii) fuzzy C-means (FCM), crisp and fuzzy approach respectively. The data clusters 
are utilized for definition of the MNN scheme, whereby each NN is assigned to the 
particular data cluster (see Fig. 2).  

5   Algorithm Verification and Experimental Results 

In our experiments we have used a set of 9 sequences in SD format available from the 
Video Quality Experts Group (http://www.its.bldrdoc.gov/vqeg/). The MPEG-2 com-
pression scheme was used and degradation introduced at five different levels at fol-
lowing bit rates: 0.5, 1, 2, 3, and 4 Mbps. The sequences were used for the VQA train-
ing and testing applying cross-validation procedure for model verification. 

The forward selection approach used for the feature selection has found the follow-
ing five most relevant features: blocking occurrence [5], global motion detection [1], 
zero-crossing rate [3], blocking [3] and HVS variance [2]. For the evaluation of the 
proposed MNN based VQA algorithm, we have used the video sequences which were 
not used for the algorithm design procedure, within the cross-validation test scheme. 
Namely, this scenario assumes that all samples from the test sequence (used for the 
evaluation) are completely excluded from the MNN training (VQA design phase) and 
represents completely unknown video sequence.  

 
(a)                                                          (b) 

Fig. 3. (a) Cross-validation accuracy of MOS estimation on 9 SD sequences with FCM based 
MNN structures (b) Cross-validation accuracy of MOS estimation on nine SD sequences with 
FCM selected MNN structure with 3 NNs and k-means selected MNN structure with 3 NNs 
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For the MNN structure combined with the clustering, we have evaluated MNN 
structures based on FCM clustering with two, three and four NN, and additional case 
with the single NN. From the evaluation tests for these 4 examined configurations 
with 5 inputs with selected features, the following results were obtained in terms of 
the averaged RMSE across all 9 SD sequences: (i) single NN: 0.57, (ii) the MNN with 
two NN: 0.37, (iii) MNN with three NN: 0.36, (iv) MNN with four NN: 0.384 (see 
Fig. 3a). Fig. 3a shows a significant increase of the estimated MOS accuracy (in re-
spect to “true” MOS) in case of FCM based MNN configuration with 2 and 3 NN in 
comparison to the single NN scheme. Apart from the sequence 8, for which the esti-
mated MOS using the single NN configuration is better, for all other cases the MNN 
structure is obviously superior, as expected. The results do not show significant influ-
ence of the number of NNs variation on the estimated MOS accuracy, which renders 
additional analysis. The Fig. 3b illustrates the cross-validation accuracy of the esti-
mated MOS, which shows that the performance between the KM clustering and the 
FCM clustering approach is very small (in terms of the average RMSE 0.357 and 
0.359 for the (i) and (ii), respectively) with the FCM performing slightly better, hence 
being incorporated into the VQA framework.  

The results of nine-fold cross-validated MOS estimation of the proposed MNN 
structure of VQA framework are shown in Fig. 4, along with the single NN solution, 
Wang et al. VQA algorithm of [4] and the “true” MOS. 

The number of hidden neurons in the all NNs neural networks was set to 12. The 
results shown represent the estimated MOS for 9 sequences with 5 degradation levels, 
giving thus in total 9 x 5 = 45 points. Each point on the plot represents the median of 
the quality estimates across all evaluated frames for the corresponding sequence. As 
can be seen from the figure, both the single NN and MNN approach achieve better 
performance results than Z-score of  Wang et al. [4], where (for a fair comparison) the 
parameters of the Z-score were tuned and adopted to all the SD sequence frames.  

 
Fig. 4. Estimated MOS vs true MOS 

Additionally, in terms of the average RMSE (ARMSE), the Z-score [4] has shown 
to be of significantly lower accuracy (ARMSE=0.915) then both NN based ap-
proaches, the MNN and the single NN, with ARMSEs 0.359 and 0.57, respectively.  
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Moreover, by comparing the single NN and the MNN VQA frameworks it is ap-
parent that the accuracy of the estimated MOS using MNN is higher for each ana-
lyzed sequence. 

6   Conclusions 

In the proposed VQA framework, we have introduced a novel scheme for selecting 
the most relevant video features out of a larger feature set, which are further used for 
the design of the content-driven MNN structure scheme. The proposed MNN struc-
ture, within the VQA model, is based on the selected features space clustering which 
enables training of separate models related to the corresponding video content and the 
MOS. The proposed VQA framework for video coding applications which includes 
five selected features, three clusters and MNN structure with three NN, has been 
found to be superior in terms of RMSE to the compared VQA method of [3] and the 
VQA framework with the single NN. 
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Abstract. CNN Universal Machine which contains Digital Signal Processor 
(DSP) in addition to ACE16k which is the hardware verification of Cellular 
Neural Networks are used increasingly in image processing applications with 
their advanced computational features. In this study, an removing an object 
from video sequence algorithm on a Bi-i Cellular Vision System which is a 
CNN Universal Machine was applied and the running times of both processors 
were evaluated.  
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1   Introduction 

The Cellular Neural Network (CNN) theory suggested in 1988 is an analog, non-
linear neural network model performing real-time operations [1]. CNNs have  
advanced features for image processing. Therefore, CNN Universal Machine the 
architecture of which consists of Analogical Cellular Engines (ACE4k, ACE16k etc.) 
which tare the hardware realization of the CNN are very suitable for image processing 
applications with their advanced computational features [2]-[3]. The Bi-i Cellular 
Vision System which is a CNN Universal Machine can be defined as a compact, 
standalone and intelligent camera capable of real time operations at very high speed. 
The B-i Cellular Vision System has high resolution sensors and two inter-
communicating processors, namely a CNN processor (ACE16k) and a Digital Signal 
Processor (DSP) [4]. 

The processing of moving images attract increasingly more attention and the fields 
of application of processing of moving images expand further every day. In this study, 
we will discuss the Removing an Object from Video Sequence Algorithm (ROVSA). 
This algorithm has been applied by using the both the analog processing feature 
(ACE16k) and digital processing feature (DSP) of Bi-i Cellular Vision System, and 
the results have been compared. 
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2   CNN Architecture and Bi-i Cellular Vision System  

2.1   Architecture and of the Cellular Neural Networks 

Each cell of a 4x4 CNN is represented by a square and shown in Figure 1. 

 

Fig. 1. A 4x4 cell two-dimensional CNN 

In this CNN architecture, each cell is linked only to its neighbors. 
Let us assume a CNN with MxN cells arranged in M rows and N columns, the cell 

in row i column j is shown as C(i,j)[1]. r-neighborhood of a C(i,j)cell is defined as 
follows provided that r is a positive value: 
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2.2   CNN Universal Machine 

The hardware verification of CNN is easier compared to the Artifical Neural Net-
works as there is only connection between the neighbor cells and the cell structure. 
Analogical Cellular Engines (ACE4k, ACE16k etc. [5]) are based on CNN Universal 
Machine architecture. CNN Universal Machine architecture has been called by Roska 
and Chua as analogical computation since it can perform analog array operations and 
logical operations together [2].  

2.3   ACE16k Processor 

ACE16k, is a CNN based processor of CNN Universal Machine which can perform 
analog operations. ACE16k which is used to perform various image processing opera-
tions contain low resolution (128 x 128) CMOS gray level image sensor and analog 
processor arrays. This processor array is much faster (30000 frames per second) than 
the conventional processors in image processing applications since it can processes 
the whole image in parallel.  
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2.4   Bi-i Cellular Vision System 

The Bi-i Cellular Vision System which contains two different processors, a CNN 
based ACE16k and a DSP that can be defined as a compact, standalone and intelligent 
camera capable of real time operations at very high speed [4]. The images are stored 
in local memories with the help of two different sensors as a (1280x1024) color 
CMOS sensor, and a (128x128) ACE16K sensor. 

2.5   Bi-i Programming 

CNN Universal Machine has two different programming methods. One of them is 
AMC (Analogical Macro Code) language which is a conventional Bi-i programming 
method. The codes written in AMC language are converted to binary basis and run on 
Bi-i. Another method is the Bi-i (Software Development Kit - SDK) which is used to 
develop more complex applications. Bi-i SDK, consists of the C++ programming 
library which is a group used to develop applications. These libraries can also used for 
the Digital Signal Processor (DSP) with the development unit Code Composer Studio 
and they contain many functions to control the whole ACE16k circuit [6]. 

3   Removing an Object from Video Sequence Algorithm 

An algorithm determining certain objects and their features in moving images by 
using Bi-i Cellular Vision System and removing the objects with pre-defined charac-
teristics from the moving image has been developed. The block diagram of this algo-
rithm is shown in Figure 2. 

When applying this algorithm, first, the features of the object desired to be deleted 
from the moving image is entered into the system. Then, a frame is loaded to the 
system as input from the moving image to be processes to identify the objects con-
tained and their features. The features of an object obtained is compared to the fea-
tures of the object introduced to the system. The matching objects are extracted from 
that frame. When this operation is applied to all frames of the moving image, a new 
moving image not containing the specified object is obtained as the output. 

As it can be seen in Figure 2, currently processed frame first passes through a Low 
Pass Filter to eliminate the noise and a gray level mage is obtained [7]. Then, this 
gray level image is subject to a thresholding operation by using ConvLAMtoLLM 
function on ACE16k, and a binary image is obtained an intermediary value. The bi-
nary image obtained is subjected to set of morphological operations for better identi-
fication of the objects contained. 

In this algorithm, we created a Negation function that negates binary objects and 
used Opening8, HoleFiller, Dilate8 functions in Instant Vision Signal and Image 
Processing Library. Opening8 function was applied to eliminate the small objects 
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which are considered as noise in the moving image. HoleFiller function was used to 
fill the holes on the objects in order to identify them better, and finally, a dilation was 
applied with Dilate8 function [8]. 
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Fig. 2. Block diagram of an Removing an Object from Video Sequence Algorithm 

Following the morphological operations, the Feature Extraction processed in In-
stant Vision Signal and Image Processing Library were applied to find the number 
and features of the objects in the binary moving image. Feature Extraction converts 
the visual information of a binary image into numeric values. It is based on indexing 
the array of connected in the image and then identifying some features of each (area, 
boundary values, extremes, orientation, center etc.) [6]. 
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(a) 
 

(b) (c) (d) 

Fig. 3. (a) Original image (b) Image filtered through a low pass filter (c) Unmatched image (d) 
Image after morphological processing 

In this study, some features as Bounding Box, Extremes, Eccentricity, Diameter, 
Orientation, Extent and Center are used to identify an object [6]. 

After the algorithm identifies features of the object in the frame, a set of functions, 
first, compare the object whose features have been identified to the features of the 
object. When there is a match, it executes the related function to delete the object 
from the frame taking into consideration the color features of the sought object. 

After each frame of the moving image is processed according to that algorithm, a 
moving object in which the specified object does not exist is obtained as the output. 

 

  
(a) (b) 

Fig. 4. (a) Original Moving Image (b) Output Moving Image 

4   Experimental Results 

Functions coded again in C++ were used to identify the distribution of the features 
used in the application referred to in section 3, and some statistical information was 
obtained, such as the maximum, minimum and average values of such features. Some 
of the statistical values obtained as a result of these functions are presented in Table 1. 

Table 1. Statistics of certain features of the object 

Feature Min. Max. Average 
Area 229 1546 733.93 
Eccentricity 0.50 0.99 0.96 
Diameter 17.08 44.37 30.31 
Orientation 0.01 179.99 92.88 
Extent 0.32 0.87 0.66 
Center x value 17.42 108.23 60.98 
Center y value 12.58 76.70 48.36 
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All of these statistical information have been computed by processing the whole 
moving image (1394 frames). Since the object does not have exactly the same shape 
and position in every frame of the moving image, average values were used to de-
scribe the object to facilitate identification. 

Table 2 shows the time that application runs on DSP only and with both DSP and 
ACE16k. Although only thresholding and morphological operations portions of the 
algorithm are applied on ACE16k, when both DSP and ACE16k are used together, it 
is 25491µs faster compared to running only on DSP. 

Table 2. Running times of the algorithm 

Operation DSP DSP+ACE16k 
Segmentation 41285 μs 15794 μs (ACE16k) 
Feature Extraction 519107μs 519107 μs (DSP) 
Find and delete the object 59826 μs 59826 μs (DSP) 
TOTAL 620218 μs 594727 μs 

5   Conclusion 

In this study, the removing an object from video sequence algorithm developed by 
using Cellular Vision System was used. The segmentation step of algorithm consist-
ing of thresholding and morphological operations was performed on ACE16k while 
all other steps such as identifying the features of the object, finding the object and 
extracting it from the image was executed on DSP, and as a result a moving object in 
which the specified object does not exist was obtained. 

The results presented that when the algorithm is executed by using both DSP and 
ACE16k, it is much faster than using only DSP. 
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Garcez, Artur d’Avila I-301

Garcia, Christophe II-154
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Grim, Jǐŕı III-31

Grimaldi, Domenico I-521

Gross, Horst-Michael I-362, II-190,

II-222

Grossberg, Stephen III-495
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Hájek, Petr I-1
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Kubásek, Miroslav III-483
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Neto, Antonino Feitosa I-411

Neto, Guenther Schwedersky III-423

Neves, João III-277

Nieminen, Ilari T. I-368

Nishida, Toyoaki II-468, III-541

Okada, Shog II-468

Okada, Shogo III-541

Olej, Vladimı́r I-1

Ono, Katsuya III-339
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Şengör, Neslihan Serap II-228

Serackis, Artūras I-541
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