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Region-Based Segmentation:
Fuzzy Connectedness, Graph Cut
and Related Algorithms

Krzysztof Chris Ciesielski and Jayaram K. Udupa

Summary. In this chapter, we will review the current state of knowledge on region-
based digital image segmentation methods. More precisely, we will concentrate on
the four families of such algorithms: (a) The leading theme here will be the frame-
work of fuzzy connectedness (FC) methods. (b) We will also discuss in detail the
family of graph cut (GC) methods and their relations to the FC family of algorithms.
The GC methodology will be of special importance to our presentation, since we will
emphasize the fact that the methods discussed here can be formalized in the lan-
guage of graphs and GCs. The other two families of segmentation algorithms we
will discuss consist of (¢) watershed (WS) and (d) the region growing level set (LS)
methods. Examples from medical image segmentation applications with different FC
algorithms are also included.

10.1 Introduction and Overview

In this chapter, we will review the current state of knowledge in region-based
digital image segmentation methods, with a special emphasis on the fuzzy con-
nectedness (FC) family of algorithms. The other image segmentation methods
are discussed in the other chapters of this book and we will refer to them only
marginally. We will put a special emphasis on the delineation algorithms, that
is, the segmentation procedures returning only one Object Of Interest (OOI)
at a time rather than multiple objects simultaneously. This will make the
presentation clearer, even for the methods that can be easily extended to the
multi-object versions.

We will discuss only the region-growing-type delineation algorithms, which
in Chap. 1 are referred to as agglomerative or bottom-up algorithms. More pre-
cisely, we will concentrate on the four families of such algorithms. The leading
theme will be the framework of FC methods developed since 1996 [1-6], includ-
ing a slightly different approach to this methodology, as presented in papers
[7-9]. For some applications of FC, see also e.g. [10,11]. We will also discuss
the family of Graph Cut (GC) methods [12-20] and their relations to the FC
family of algorithms. The GC methodology will be of special importance to
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our presentation, since we will formalize the FC framework in the language of
graphs and graph cuts. The other two families of segmentation algorithms we
will discuss consist of Watershed (WS) [21-23] and region growing Level Set
(LS) methods from [24,25].

The common feature of all the presented algorithms is that the object
to be segmented by them is indicated (by user, or automatically) by one or
more space elements (spels) referred to as seeds. In addition, if P is an object
returned by such an algorithm, then any spel belonging to P is connected to at
least one of the seeds indicating this object. The word “connected” indicates,
that the topological properties of the image scene play important role in this
class of segmentation processes. So, we will proceed with explaining what we
mean by the image scene, its topology, as well as the notion of connectedness
in this context.

For the rest of this chapter, n > 2 will stand for the dimension of the image
we consider. In most medically relevant cases, n is either 2 or 3, but a time
sequence of 3D images is often considered as a 4D image.

10.1.1 Digital Image Scene

A digital image scene C can be identified with any finite subset of the n-
dimensional Euclidean space R". However, we will concentrate here only on
the case most relevant for medical imaging, in which C is of the rectangular
form C; x- - -x Cy, and each C; is identified* with the set of integers {1,...,m;}.

A topology on a scene C = (C,«a) will be given in terms of adjacency
relation «, which intuitively determines which pair of spels ¢,d € C' is “close
enough” to be considered connected. Formally, an adjacency relation « is a
binary relation on C', which will be identified with a subset of C' x C, that is,
spels ¢,d € C are a-adjacent, if and only if, (¢,d) € «. From the theoretical
point of view, we need only to assume that the adjacency relation is symmetric
(i.e., if ¢ is adjacent to d, then also d is adjacent to ¢).? However, in most
medical applications, it is enough to assume that c is adjacent to d when the
distance® ||c—d|| between ¢ and d does not exceed some fixed number. In most
applications, we use adjacencies like 4-adjacency (for n = 2) or 6-adjacency
(in the Three-dimensional (3D) case), defined as ||c — d|| < 1. Similarly, the
8-adjacency (for n = 2) and 26-adjacency (in 3D) relations can be defined as

lle —d|| < V3.

! This identification of the coordinates of spels with the integer numbers is relevant
only for the computer implementations. For theoretical algorithmic discussion,
especially for anisotropic images, we will assume that C;’s are the real numbers
of appropriate distances

2 Usually, it is also assumed that « is reflexive (i.e., any spel ¢ is adjacent to itself,
(c,c) € @), but this assumption is not essential for most considerations

3 In the examples, we use the Euclidean distance || - ||. But any other distance
notion can be also used here
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The adjacency relation on C' translates to the notion of connectivity as fol-
lows. A (connected) path p in a subset A of C'is any finite sequence {cy, . .., cx)
of spels in A such that any consecutive spels ¢;, ¢;+1 in p are adjacent. The
family of all paths in A is denoted by P4. Spels ¢ and s are connected in A
provided there exists a path p = (c1,...,¢;) in A from ¢ to s, that is, such
that ¢; = ¢ and ¢ = s. The family of all paths in A from ¢ to d is denoted
by P4,.

10.1.2 Topological and Graph-Theoretical Scene Representations

The topological interpretation of the scene given above is routinely used in the
description of many segmentation algorithms. In particular, this is the case
for FC, WS, and most of the LS methods. On the other hand, the algorithms
like GC use the interpretation of the scene as a directed graph G = (V, E),
where V' = C is the set of vertices (sometimes extended by two additional
vertices) and FE is the set of edges, which are identified with the set of pairs
(¢,d) from V = C for which ¢ and d are joined by an edge.

Note that if we define E' as the set of all adjacent pairs (¢, d) from C (i.e.,
when E = a), then the graph G = (V, E) and the scene C = (C,a) are the
identical structures (i.e., G = C), despite their different interpretations. This
forms the basis of the duality between the topological and graph-theoretical
view of this structure: any topological scene C = (C, a) can be treated as a
graph G = (C,a) and, conversely any graph G = (V| E) can be treated as
topological scene C = (V, E).

Under this duality, the standard topological and graph theoretical notions
fully agree. A path p in C' is connected in C' = G in a topological sense, if and
only if, it is connected in the graph G = C. A subset P of C is connected, in a
topological sense, in C = G, if and only if, it is connected in the graph G = C.
The symmetry of « translates into the symmetry of the graph G = (C, «),
and since any edge (¢,d) in G can be reversed (i.e., if {¢,d) is in F = «, then
s0 is (d, ¢)), G can be treated as an undirected graph.

10.1.3 Digital Image

All of the above notions depend only on the geometry of the image scene and
are independent of the image intensity function. Here, the image intensity
function will be a function f from C into R¥, that is, f: C — R*. The value
f(e) of f at ¢ is a k-dimensional vector of image intensities at spel ¢. A digital
image will be treated as a pair (C, f), where C'is its scene (treated either as
a topological scene or as a related graph) and f is the image intensity. We will
often identify the image with its intensity function, that is, without explicitly
specifying associated scene adjacency. In case when k = 1 we will say that the
image is scalar; for k£ > 1 we talk about vectorial images. Mostly, when giving
examples, we will confine ourselves to scalar images.
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10.1.4 Delineated Objects

Assume that with an image (C, f) we have associated an energy function e,
which for every set P C C' associates its energy value e(P) € R. Assume also
that we have a fixed energy threshold value 6§ and a non-empty set S C C
of seeds indicating our OOI. Let P(S,0) be a family of all objects P C C,
associated with e, S, and 6, such that e(P) < 0, S C P, and every ¢ € P
is connected in P to some seed s € S. Threshold 6 will be always chosen
so that the family P(S,0) is non-empty. Any of the region-based algorithms
we consider here will return, as a delineated object, a set P(S,0) € P(S,0).
Usually (but not always) P(S,0) is the smallest element of P(S, ).

In the case of any of the four methods FC, GC, WS, and LS, the value
e(P) of the energy function is defined in terms of the boundary bd(P) of P,
that is, the set K = bd(P) of all edges (c,d) of a graph C = (C, E) with
¢ € P and d not in P. We often refer to this boundary set K as a graph cut,
since removing these edges from C' disconnects P from its complement C'\ P.
The actual definition of e depends on the particular segmentation method.

Let k: E — R be a local cost function. For {c¢,d) € E the value k(c,d)
depends on the value of the image intensity function f on ¢, d, and (sometimes)
nearby spels. Usually, the bigger is the difference between the values of f(c)
and f(d), the smaller is the cost value x(c,d). This agrees with the intuition
that the bigger the magnitude of the difference f(c)— f(d) is, the greater is the
chance that the “real” boundary of the object we seek is between these spels.
In the FC algorithms, & is called the affinity function. In the GC algorithms
Kk is treated as a weight function of the edges and is referred to as local
cost function. For the classical GC algorithms, the energy function e(P) is
defined as the sum of the weights of all edges in K = bd(P), that is, as
> (e.yex (¢, d). The delineations for the FC family of algorithms are obtained
with the energy function e(P) defined as the maximum of the weights of
all edges in K = bd(P), that is, as max. gcx #(c,d). The same maximum
function works also for the WS family with an appropriately chosen k. The
energy function for LS is more complicated, as it depends also on the geometry
of the boundary, specifically its curvature.

10.2 Threshold-Indicated Fuzzy Connected Objects

Let I = (C, f) be a digital image, with the scene C = (C, E) being identified
with a graph. As indicated above, the FC segmentations require a local mea-
sure of connectivity x associated with I, known as affinity function, where for
a graph edge (c¢,d) € E (i.e., for adjacent ¢ and d) the number x(c,d) (edge
weight) represents a measure of how strongly spels ¢ and d are connected to
each other in a local sense. The most prominent affinities used so far are as
follows [26], where o > 0 is a fixed constant. The homogeneity-based affinity

Yo (c,d) = eI @=F@IF/o* ywhere (¢,d) € E (10.1)
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with its value being close to 1 (meaning that ¢ and d are well connected)
when the spels have very similar intensity values; 1, is related to the notion
of directional derivative.

The object feature-based affinity (single object case, with an expected
intensity vector m € R” for the object)

b0 (c,d) = e~ IF@=mILIF@=mI/o* here (e.d)e B (10.2)

with its value being close to one when both adjacent spels have intensity values
close to m. The weighted averages of these two forms of affinity functions —
either additive or multiplicative — have also been used. The values of these
affinity functions, used in the presented algorithms, are in the interval [0, 1].

10.2.1 Absolute Fuzzy Connectedness Objects

Let x be an affinity associated with a digital image I. As stated in Sect. 10.1,
an FC delineated object Ppax(S,60), indicated by a set S of seeds and an
appropriate threshold 8, can be defined as

Prax(S,0) is the smallest set belonging to the family Prc(S,6),  (10.3)

where Prc(S,6) is the family of all sets P C C such that: (a) S C P; (b)
every ¢ € P is connected in P to some s € S; (¢) k(c,d) < 0 for all boundary
edges (c,d) of P (i.e., e(P) = max(. gyepd(p) #(c,d) < 6). This definition of
the object is very convenient for the comparison of FC with GC and with
the other two methods. Nevertheless, for the actual implementation of the FC
algorithm, it is more convenient to use another definition, standard in the FC

literature. The equivalence of both approaches is given by Theorem 1.

A path strength of a path p = (c1,...,¢g), & > 1, is defined as u(p) def

min{k(c;—1,¢;): 1 < i < k}, that is, the strength of the x-weakest link of p.
For k =1 (i.e., when p has length 1) we associate with p the strongest possible
value: pu(p) 49 4 For ¢,d € A C C, the (global) k-connectedness strength in
A between ¢ and d is defined as the strength of a strongest path in A between

c and d; that is,
def
1 (c,d) = max {up):pe ]P’fd} . (10.4)

Notice that u4(c,c) = u({c)) = 1. We will often refer to the function u* as a

connectivity measure (on A) induced by k. For ¢ € A C C and a non-empty

D C A, we also define u“(c, D) Lef maxgep p(c, d). The standard definition

of an FC delineated object, indicated by a set S of seeds and an appropriate

4 For k = 1 the set {r(ci—1,¢:): 1 < i < k} is empty, so the first part of the
definition leads to equation p({c1)) = min@. This agrees with our definition of
w({c1)) = 1 if we define min @) as equal to 1, the highest possible value for . Thus,
we will assume that min() = 1
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threshold # < 1 and referred to as Absolute Fuzzy Connectedness (AFC)
object, is given as Psg = {c € C: 0 < u%(c,S)}.°

Theorem 1. Psg = Pyax(S,0) for all S C C and 6 < 1.

10.2.2 Robustness of Objects

If a set of seeds S contains only one seed s, then we will write Py for the
object Psg = Py4y9. It is easy to see that Psg is a union of all objects Psy for
s € S, that is, Psg = [J,cg Pso- Actually, if Gy = (C, Ep) is a graph with Ej
consisting of the scene graph edges (c, d) with weight x(c,d) greater than 0,
then Py is a connected component of Gy containing s, and Pgy is a union of
all components of Gy intersecting S.

One of the most important properties of the AFC objects is known as
robustness. Intuitively, this property states that the FC delineation results do
not change if the seeds S indicating an object are replaced by another nearby
set T of seeds. Formally, it reads as follows.

Theorem 2. (Robustness) For every digital image I on a scene C =
(C,E), every s € C and 0 < 1, if Py is an associated FC object, then
Pro = Psg for every non-empty T C Pgg. More generally, if S C C and
T C Pgg intersects every connected component of Gy intersecting Psg (i.e.,
TN Py # O for every s € S), then Prg = Psy.

The proof of this result follows easily from our graph interpretation of the
object, as indicated above. The proof based only on the topological description
of the scene can be found in [2,5]. The robustness property constitutes the
strongest argument for defining the objects in the FC fashion. Note, that none
of the other algorithms discussed here have this property.

10.2.3 Algorithm for Delineating Objects

The algorithm presented below comes from [1].

Algorithm k0 FOEMS

Input: Scene C' = (C, E), affinity x defined on an image I = (C, f), a
set S C C of seeds indicating the object and a threshold 6 < 1.

Output: AFC object Pgy for the image I.

Auxiliary Data A characteristic function g: C—{0, 1} of Pgg and a queue

Structures: Q of spels.

5 1In the literature, an AFC object is usually arrived at (see [3,5]) as P§, =
{c €C:0<pu(c, S)} However, if 81 denotes the smallest number greater than
0 of the form k(c,d), with {c,d) € E, then Psg = Ps§9+' Thus, our definition of
AFC object can be also expressed in the standard form, with just slightly different
threshold. On the other hand, the following presentation is considerably easier

expressible with the AFC object defined with the strict inequality
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begin
1. set g(s)=1forallse Sand g(c)=0forallce C\S;
2. push to @ all spels ¢ € C for which k(c, s) > 6 for some s € S;
3. while @ is not empty do
4. remove a spel ¢ from Q;
5. if g(c) =0 then
6. set g(c) = 1;
7. push to @ all spels d € C for which k(d, c) > 6;
8. endif
9. endwhile;
10.  create Pgg as a set of all spels ¢ with g(c) = 1;
end

It is easy to see that k0 FOEM S runs in linear time with respect to the
size n of the scene C. This is the case, since any spel can be pushed into
the queue @ (Line 7) at most A-many times, where A is the degree of the
graph C' (i.e., the largest number of spels that can be adjacent to a single
spel; e.g., A = 26 for the 26-adjacency). Specifically, k§ FOEM S runs in time
of order O(An).

10.3 Optimization in Foreground-Background Case

So far, we discussed algorithms delineating an object, P, indicated by some
seeds S belonging to P. Since we had no direct information on the spatial
extent of the desired object, the actual extent of the delineated object P was
regulated only by a mysterious parameter: a threshold 6 setting the upper limit
on the energy function value e(P). The difficulty of choosing this threshold is
overcome by setting up and solving an appropriate optimization problem for
an energy function e. The setting part is done as follows.

First, we choose a proper initial condition, which, in the case of FC and
GC algorithms, consists of indicating not only the foreground object (i.e., the
OOI) by a set S of seeds, but also a background (i.e., everything except the
OOI) by another set T' of seeds. The stipulation is that S is contained in the
delineated P, while T is disjoint with P. This ensures that we will consider
only non-trivial sets P as possible choices for the object.

Let P(S,T) be the family of all sets P C C such that S C P and TNP = (.
We like the desired object P to minimize the energy e(P) over all P € P(S,T),
that is, sets P satisfying the initial condition indicated by seeds S and T'. In
other words, if we define ey, = min{e(P): P € P(S,T)}, then the OOI
Pg 7 will be chosen, by an algorithm, as an element of the family Ppin =
{P €P(5T): e(P) = emin}- This is a typical setup for the energy optimiza-
tion image delineation algorithms.

Notice that, although the minimal energy e, is always uniquely defined,
the family Ppin may have more than one element, so our solution Ps 7 € Prin
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still may not be uniquely determined. In the case of GC framework, the family
Pmin has always the smallest element (smallest in terms of inclusion) and this
element is taken as Pg 7. The situation is the same in the FC framework,
when S is a singleton. In the case when S has more seeds, the family Py, is
refined to a smaller family Py, and Ps r is the smallest element of Py, . All

of this is discussed in more detail below.

10.3.1 Relative Fuzzy Connectedness

In the FC framework, the optimization technique indicated above is called
Relative Fuzzy Connectedness (RFC). Once again, the actual definition of
the RFC object Psr (see [2]) is in a slightly different format from the one
indicated above — it emphasizes the competition of seed sets S and T for
attracting a given spel ¢ to their realms. The attraction is expressed in terms
of the strength of global connectedness 1(c, S) and u(e,T): Psr claims a
spel ¢ when p(c, S) exceeds u“(c,T), that is,

Psr={ce C: u€(e,8) > u€(e, )}

Notice that, Psr = {c € C: (s € S)u(c,s) > p(c,T)} = U,es Prsyor
as p¢(c,S) = maxses p(c,s). Below, we will show that, if the number
pC (S, T) = maxgesu(s,T) is less than 1, then Psr € P(S,T), that is,
that Ps 7 contains S and is disjoint with T'. (If u©(S,T) = 1, then sets S and
T need not be disjoint. In this case the set Ps r is empty.) It is also important
that

if P € P(S,T), then e(P) > u“(S,T) (10.5)

Indeed, choose a path p = (c1,...,ck) from s € S to at € T such that p(p) =
pC(S,T). Since ¢; = s € P and ¢, =t ¢ P, there exists a j € {2,...,k}
with ¢;_1 € P while ¢; ¢ P. This means that (c;—1,¢;) € bd(P). Hence,
e(P) = max(. gyeba(p) k(¢ d) > k(cj_1,¢;) > min{k(ci—1,¢): 1 <i < k} =
p(p) = p< (S, 7).

Next note that each object Py 1 is indeed a result of the optimization,
as stated above.

Lemma 1. Assume that 0, = u(s,T) < 1. Then Proy 7 = Psg,. Moreover,
0s equals emin = min{e(P): P € P({s},T)} and Psg,_ is the smallest set in
the family Pmin = {P € P({s},T): e(P) = emin}-

The description of the RFC object Pgr when S has more than one seed
is given in the following theorem. Intuitively, it says that each seed s € S
generates separately its own part Ppgy p € P({s},T) and although their union,
Ps r, minimizes only its own lower bound 05 = u®(S,T), each component
P4y, 7 minimizes its own version of the minimum, 05 = 1€ (s, T), which may
be (and often is) smaller than the global minimizer 05 = p©(S,T). In other
words, the object Psr can be viewed as a result of minimization procedure
used separately for each s € S, which gives a sharper result than a simple
minimization of global energy for the entire object Pg 7.
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Theorem 3. Assume that 05 = u®(S,T) < 1. Then e(Ps 7) = 05 = emin
and Ps 1 = J,cg Pso. is the smallest set in the family Py, of the sets of the
form \U,cg P?, where each P® belongs to Py, = {P € P({s},T): e(P) = 0s}.
Moreover, P*. C Puin-

min

10.3.2 Algorithm for Delineating Objects

The algorithm presented below is a multiseed version of the algorithm from
[1]. Tt is a main step for defining the RFC object Pgs 1.

Algorithm kFOEMS

Input: Scene C' = (C, E), affinity x defined on an image I = (C, f), a
set T C C.

Output: A connectivity function h: C' — [0,1], h(c) = u€ (e, T).

Auxiliary Data Structures: A queue @ of spels.

begin
1. seth(t)=1forallt €T and h(c) =0forallce C\ T}
2. push to @ all spels ¢ € C for which k(c,t) > 0 for some t € T;
3. while @ is not empty do
4. remove a spel ¢ from Q;
5. find M = max{min{h(d), x(d,c)}: (d,c) € E}
6. if M > h(c) then
7. set h(c) = M;
8. push to @ all d € C for which min{M, k(c,d)} > h(d);
9. endif ;

10. endwhile;
11.  output connectivity function h: C — [0,1], h(c) = u (¢, T);
end

The algorithm runs in quadratic time with respect to the size n of a scene
C'. More precisely, the maximal number of possible values for the connectivity
function h is the size of the range of x, which does not exceed the size of the
set of all edges F, that is, An. Therefore, each spel d may be pushed back to
Q@ at most An many times: when the value h(c) is changed (maximum An-
many times) for each of A-many spels ¢ adjacent to d. Since each instance of
performing the while command operation is of time order O(A) and we have
n spels, the kFOEM S ends, in the worst case, in time of order O(A2n?).

If a connectivity function h(c) = u®(c,T) is calculated, then numbers
0, = u(s,T) < 1 are readily available, and object Psr = Uscg Pso.
can be delineated, in quadratic time of order O(A%n?), by calling algorithm
KOFOEMS for each s € S.

10.3.3 Graph Cut Delineation

For the GC algorithms, a graph G! = (V| E) associated with the image I =
(C, f), where C = (C, «), is a slight modification of the graph (C, «) discussed
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above. Specifically, the set of vertices V' is defined as CU{s, t}, that is, the stan-
dard set C' of image vertices is expanded by two new additional vertices s and
t called terminals. Individually, s is referred to as source and ¢ as sink. The set
of edges is defined as E = aU{(b,d): one of b,d is in C, the other in {s,t}}.
In other words, the edges between vertices in C remains as in C, while we
connect each terminal vertex to each ¢ € C.

The simplest way to think about the terminals is that they serve as the
seed indicators: s for seeds S C C indicating the object; ¢ for seeds T C C
indicating the background. The indication works as follows. For each edge
connecting a terminal r € {s,t} with a ¢ € C associate the weight: oo if either
r=sand c€ S,orr =tand ¢ € T; and 0 otherwise. This means, that the
source s has infinitely strong connection to any seed c in S, and the weakest
possible to any other spel ¢ € C. (We assume that all weights are nonnegative,
that is, in [0, cc].) Similarly, for the sink ¢ and seeds ¢ from T'.

Now, assume that for every edge (c,d) € a we give a weight k(c,d) asso-
ciated with the image I = (C, f). Since the algorithm for delineating RFC
object uses only the information on the associated graph (which includes the
weights given by the affinity ), we can delineate RFC object Pf‘s}){t} cVv

associated with this graph GT. It is easy to see that the RFC object Ps 7 C C
associated with I is equal to P{, ,, N C. Similarly, for § <1, if Pj C V' is

an AFC object associated with the graph G', then the AFC object Pgg C C
associated with I is equal to P%, N C. All of this proves that, from the FC
framework point of view, replacing the graph G = (C,a) with G! is only
technical in nature and results in no delineation differences.

Historically, the rationale for using in GC frameworks graphs G’, with
distinctive terminals, is algorithmic in nature. More precisely, for a weighted
graph G = (V, E) with positive weights and two distinct vertices s and ¢
indicated in it, there is an algorithm returning the smallest set Pg in the family
Piin = {P € P(s,t): e(P) = emin}, where P(s,t) = {P C V \ {t}: s € P},
emin = min{ex(P): P € P(s,t)}, ex(P) = 3 cpq(p) We, and we is the weight
of the edge e in the graph.

Now, let G = (C' U {s,t}), E) be the graph associated with an image I as
described above, that is, weights of edges between spels from C are obtained
from the image I (in a manner similar to the affinity numbers) and weights
between the other edges by seed sets S and T indicating foreground and
background. It is easy to see that the object P§T = C' N Pgr contains S, is
disjoint with 7', and has the smallest cost ey among all such sets. Thus, the
format of definition of the GC object PgT is the same as that for RFC object
Pg 7, the difference being only the energy functions e they use.

In spite of similarities between the GC and RFC methodologies as indi-
cated above, there are also considerable differences between them. There are
several theoretical advantages of the RFC framework over GC in this setting:
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o Speed: The FC algorithms run faster than those for GC. Theoretical esti-
mation of FC algorithms worst scenario run time (for slower RFC) is O(n?)
with respect to the scene size n (Sect. 10.3.2), while the best theoretical
estimation of the run time for delineating P§T is of order O(n?®) (for
the best known algorithms) or O(n?%) (for the fastest currently known),
see [15]. This is also confirmed by experimental comparisons.

e Robustness: The outcome of FC algorithms is unaffected by small (within
the objects) changes of the position of seeds (Theorems 2 and 4). On the
other hand, the results of GC delineation may become sensitive for even
small perturbations of the seeds.

o Multiple objects: The RFC framework handles easily the segmentation
of multiple objects, retaining its running time estimate and robustness
property (Sect.10.4.1). The GC in the multiple object setting leads to
an NP-hard problem [12], so all existing algorithms for performing the
required precise delineation run in exponential time. However, there are
algorithms that render approximate solutions for such GC problems in a
practical time [12].

e Shrinking problem: In contrast to RFC methods, the GC algorithms have a
tendency of choosing the objects with very small size of the boundary, even
if the weights of the boundary edges is very high [16,19]. This may easily
lead to the segmented object being very close to either the foreground
seed set S, or the complement of the background seed set T'. Therefore,
the object returned by GC may be far from desirable. This problem has
been addressed by many authors, via modification of the GC method.
Notice that RFC methods do not have any shrinking problem.

o [terative approach: The FC framework allows an iterative refinement of its
connectivity measure z*, which in turn makes it possible to redefine e as
we go along. From the viewpoint of algorithm, this is a powerful strategy.
No such methods exist for GC at present.

All of this said, it should be noticed that GC has also some nice properties
that FC does not possess. First notice that the shrinking problem is the result
of favoring shorter boundaries over the longer, that is, has a smoothing effect
on the boundaries. This, in many (but not all) cases of medically important
image delineations, is a desirable feature. There is no boundary smoothing fac-
tor built in to the FC basic framework and, if desirable, boundary smoothing
must be done at the FC post processing stage.

Another nice feature of GC graph representation G! of an image I is that
the weights of edges to terminal vertices naturally represent the object feature-
based affinity, see (10.2), while the weights of the edges with both vertices in
C' are naturally connected with the homogeneity type of affinity (10.1). This
is the case, since homogeneity-based affinity (a derivative concept) is a binary
relation in nature, while the object feature-based affinity is actually a unary
relation. Such a clear cut distinction is difficult to achieve in FC framework,
since it requires only one affinity relation in its setting.
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10.4 Segmentation of Multiple Objects

Now, assume that we like to recognize m > 1 separate objects, Py, ..., Py, in
the image I = (C, f). What general properties the family P = {Py,..., Py}
should have? The term “segmentation” suggests that P should be a parti-
tion of a scene C, that is, that sets are pairwise disjoint (i.e., no two of then
have common element) and that they cover C' (ie., C = [J!; P;). Unfor-
tunately, insuring both of these properties is usually neither desirable not
possible for the medical image segmentation problems. We believe, that the
most reasonable compromise here is to assume that the objects P; are pair-
wise disjoint, while they do not necessarily cover the entire image scene C.
The motivation here is the delineation of major body organs (e.g., stomach,
liver, pancreas, kidneys). Therefore, the term image segmentation refers to a
family P = {P, ..., Pn} of pairwise disjoint objects for which the background
set Bp = C'\ U;~, P; might be nonempty.

It should be stressed, however, that some authors allow overlap of the
objects, while ensuring that there is no nonempty background Bp [7,8]. Other
methods (like classical WS algorithms) return a partition of a scene.

10.4.1 Relative Fuzzy Connectedness

Assume that for an image I = (C, f) we have a pairwise disjoint family
S = {51,...,Sm} of sets of seeds, each S; indicating an associated object
P;. If for each i we put T; = (U;nzl S}) \ S;, then the RFC segmentation is
defined as a family P = {Ps,s: ¢ = 1,...,m}, where each object Pg,s is equal
to Ps, 7, = {c € C: u(c,S;) > u(c, Ty)}.

Since, by Lemma 1, each Ps, 1, equals U,cg, Prsy, 1 = Uses Pso,, Where
0, = (s, T;), using the algorithms from Sect. 10.3.2, the partition P can be
found in O(n?) time. Also, the robustness Theorem 2 can be modified to this
setting as follows.

Theorem 4. (Robustness for RFC) Let S = {S1,...,Sn} be a family of
seeds in a digital image I and let P = {Pg,s: 1 =1,...,m} be an associated
RFC segmentation. For every i and s € S; let g(s) be in Py r,. If ' =
{S1,--+, S}, where each S; = {g(s): s € S;}, then Ps,s = Ps;s: for every i.

In other words, if each seed s present in S is only “slightly” shifted to a
new position ¢(s), then the resulting RFC segmentation {PS;S/ ci=1,...,m}
is identical to the original one P. '

When an RFC object Ps,s is indicated by a single seed, then, by Theo-
rem 3, it is equal to the AFC object Py,g, for appropriate threshold 6;. But
even when all objects are in such forms, different threshold 6; need not be
equal, each being individually tailored.

This idea is best depicted schematically (Fig. 10.1). Figure 10.1a represents
a schematic scene with a uniform background and four distinct areas denoted
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P

sistu} P

t{s,tu}

6=0.5

schematic scene segmentation

Fig. 10.1. Relative fuzzy connectedness. Each object is optimized separately. Panels
(c) and (d) show delineations

by S, T, U, W, and indicated by seeds marked by x. It is assumed that each
of these areas is uniform in intensity and the connectivity strength within
each of these areas has the maximal value of 1, the connectivity between the
background and any other spel is < 0.2, while the connectivity between the
adjacent regions is as indicated in the figure: u(s,t) = 0.6, u(s,u) = 0.5,
and pu(u,w) = 0.6. (Part b): The RFC segmentation of three objects indi-
cated by seeds s, t, and u, respectively. (Part ¢):Three AFC objects indicated
by the seeds s,t,u and delineated with threshold 8 = 0.6. Notice that while
P 560y = Ps.6 and P (51 4y = P 6, object P ¢ is smaller than RFC indi-
cated P, (5 4}- (Part d): Same as in Part (c) but with § = 0.5. Note that
while Py, 5.¢u) = Pu,.5, objects Ps 5 and P 5 coincide and lead to an object
bigger than Ps,{s,t,u} and Pt,{s,t,u}-

10.4.2 Tterative Relative Fuzzy Connectedness

The RFC segmentation P = {Pg,s: ¢ = 1,...,m} of a scene can still leave
quite a sizable “leftover” background set B = Bp of all spels ¢ outside any
of the objects wherein the strengths of connectedness are equal with respect
to the seeds. The goal of the Iterative Relative Fuzzy Connectedness (IRFC)
is to find a way to naturally redistribute some of the spels from Bp among
the object regions in a new generation (iteration) of segmentation. Another
motivation for IRFC is to overcome the problem of “path strength dilution”
within the same object, of paths that reach the peripheral subtle and thin
aspects of the object.

In the left part of Fig. 10.2, two object regions A and B, each with its core
and peripheral subtle parts, are shown, a situation like the arteries and veins
being juxtaposed. Owing to blur, partial volume effect and other shortcom-
ings, the strongest paths from s; to t1, s; to ta2, s to t1, and ss to to are
all likely to assume similar strengths. As a consequence, the spels in the dark
areas may fall in Bp, the unclaimed background set.

The idea of IRFC is to treat the RFC delineated objects Ps,s as the first
iteration Péi s approximation of the final segmentation, while the next step
iteration is designed to redistribute some of the background spels ¢ € Bp,
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Fig. 10.2. RFC vs. IRFC. Left: The strongest paths from s1 to t1, s1 to t2, s2 to t1,
and s2 to to are likely to have the same strength because of partial volume effects;
Right: Pictorial illustration of IRFC advantages over RFC

for which p%(c,S;) = u(c,T;) for some i. Such a tie can be resolved if the
strongest paths justifying u(c, S;) and p®(c,T;) cannot pass through the
spels already assigned to another object. In other words, we like to add spels
from the set P* = {¢ € B: pPYPsis (¢, S;) > uP 5% (e, S;) for every j # i},
to a new generation ngs of Péfs’ that is, define ngs as Péis U P*. This
formula can be taken as a definition. However, from the algorithmic point of
view, it is more convenient to define P s as

Pis = Phsu{ce O\ Phs: uC(c,5:) > n\ 5 (e, T0) }

while the equation P3 ¢ = P§ g U P* always holds, as proved in [5, thm. 3.7].
Thus, the IRFC object is defined as Pg°s = Urz, Pg?i s> Where sets P§ s are
defined recursively by the formulas Péi s = Ps,s and

Pé“:gl = Péis U {c eC\ Pgis: 1€ (e, S;) > uC\PSiS(c,Ti)} (10.6)

The right side of Fig. 10.2 illustrates these ideas pictorially. The initial seg-
mentation is defined by RFC conservatively, so that Pg,s corresponds to the
core aspects of the object identified by seed s € 5; (illustrated by the hatched
area containing s). This leaves a large boundary set B where the strengths of
connectedness with respect to the different seeds are equal (illustrated by the
shaded area containing ¢). In the next iteration, the segmentation is improved
incrementally by grabbing those spels of B that are connected more strongly
to Pg,s than to sets Ps;s. When considering the object associated with s,
the “appropriate” path from s to any ¢ € B is any path in C. However, all
objects have to compete with the object associated with s by allowing paths
from their respective seeds ¢t € T; to ¢ not to go through Pg,s since this set
has already been declared to be part of the object of s.

The IRFC segmentation is robust in the sense of Theorem 4, where in its
statement the objects Ps,s are replaced by the first iteration Péi s of P§s.
This follows easily from Theorem 4 [5]. It is also worth to notice that the
witnessing strongest paths from ¢ € P§s to S; can be found in P§’s [5].
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10.4.3 Algorithm for Iterative Relative Fuzzy Connectedness

The algorithm presented below comes from [5]. Note that we start the recur-
sion with Pg 5 = 0. It is easy to see that with such definition P§ g obtained
with (10.6) is indeed equal to Pg,s.

Algorithm xIRMOFC
Input: Scene C = (C, E), affinity x defined on an image I = (C, f),
a family § = {S1,...,5,} of pairwise disjoint set of seeds, a

sequence (Th,...,Ty), with T; = (U;nzl S}) \ S; for every i.

Output: A sequence (P§’s, . .., P§° ) forming IRFC segmentation.
Auxiliary A sequence of characteristic functions g;: C' — {0,1} of
Data objects Pg?is and affinity x4, equal to x for pairs (c, d) with
Structures: gi(c) = gi(d) = 0, and 0 otherwise. Note that u© (-, T;) for
kg, equals to puC\Fsis (- T;) for Ps,s indicated by g;.
begin
1.  fori=1tom do
2. invoke k FOEM S to find ho(-) = u°(-, Si);
3. initiate g;(c¢) = 0 for all ¢ € C;
4. set kg, = Kk and flag = true;
5. while flag = true do;
6. set flag = false;
7. invoke Kk FOEMS to find h(-) = p° (-, T;) for ky,;
8. for all ce C do
9. if gi(c) =0 and ho(c) > h(c) then
10. set g;(c) =1 and flag = true;
11. for every d € C, d # ¢, adjacent to ¢ do
12. set kg, (c,d) =0 and kg, (d,c) = 0;
13. endfor;
14. endif;
15. endfor;
16. endwhile;
17. endfor;
18. output sets P§’s indicated by characteristic functions g;;
end

The proof that the algorithm stops and returns proper objects can be
found in [5]. Since it can enter while loop at most once for each updated spel,
it enters it O(n) times, where n is the size of C. Since KkFOEM S runs in time
of order O(A?n?), the worst scenario for kI RMOFC is that it runs in time
of order O(A?n3).

A slightly different approach to calculating IRFC objects comes from the
Image Foresting Transform (IFT) [20,27]. This approach distributes the spels
unassigned by IRFC to different objects, according to some ad hoc algorithmic
procedure.
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10.4.4 Variants of IRFC

In the papers [7-9] (in particular, see [8, page 465]), the authors employ differ-
ent affinity k; for each i-th obJect to be delineated, and apply the algorithm
that returns the objects PS s = = Uz OPS s> With sets Pgs being defined
recursively by the formulas PSi s =0 and
k+1 _ Pk Sk .. C C\P§, s
Py =PEsul {c €C\Phg: ul(c,Si) > p; (c, sj)} (10.7)
i

where ; is the global connectivity measure associated with the affinity ;.

In general, the segmentations defined with different affinities, in the format
of (10.7) (even with just one step iteration, that is, in the RFC mode), are
neither robust nor have path connectedness property mentioned at the end of
Sect. 10.4.2 (See [2]). Although, the lack of path connectedness property may
seem to be of little consequence, it undermines the entire philosophy that
stands behind TRFC definitions. Nevertheless, it solves some problems with
dealing with the object-feature based affinity in single affinity mode, which
was discussed in [28].

10.5 Scale-Based and Vectorial Fuzzy Connectedness

In our discussion so far, when formulating affinities x, we considered «(c, d) to
depend only (besides the spatial relation of ¢ and d) on the (vectorial or scalar)
intensities f(c) and f(d) at ¢ and d, cf. (10.1) and (10.2). This restriction can
be relaxed, yielding us scale-based and vectorial affinity.

In scale-based FC [26], instead of considering just ¢ and d, a “local scale
region” around each of ¢ and d is considered in scene C for defining k. In the
ball scale approach, this local region around c is the largest ball b., centered
at ¢, which is such that the image intensities at spels within b, are homoge-
neous. For defining x(c, d) then, the intensities within b. and by are considered.
Typically a filtered value f'(x) is estimated for each = € {c, d} from all inten-
sities within b, by taking their weighted average, the weight determined by
a k-variate Gaussian function centered at f(z). The filtered values f’(c) and
f/(d) are then used in defining (¢, d) instead of the original intensities f(c)
and f(d). In place of the ball, an ellipsoid has also been proposed for the scale
region, which leads to the tensor scale approach [29]. The underlying idea
in these approaches is to reduce the sensitivity of FC algorithms to spel-level
random noise. Note that when local scales are used in this manner, none of the
theoretical constructs of FC needs change. Actually, the scale-based approach
can be seen as a preprocessing step: replace the original intensity function f
with its scale-based filtered version f’, and then proceed with the regular FC
algorithm applied to the image I’ = (C, f’) in place of I = (C, f).

In vectorial FC [6], the vectorial intensity function f(x) € R¥ is used in
defining x. For example, in such a case, (10.1) and (10.2) become k-variate
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Gaussian functions (i.e., we apply k-variate Gaussian to a vector, like f(c¢) —
f(d), instead of simple Gaussian function to its length || f(c) — f(d)||). Obvi-
ously, the scale concept can be combined with the vectorial idea [6]. In fact,
these two concepts can be individually or jointly combined with the principles
underlying AFC, RFC, and IRFC.

10.6 Affinity Functions in Fuzzy Connectedness

An affinity function for an image I = (C, f), with C = (C, «), is a function,
say K, defined on a set C' x C. More precisely, it is of importance only for the
adjacent pairs (¢, d), that is, from o C C x C. The affinity functions defined
in (10.1) and (10.2) have the values in the interval [0, 1], are symmetric (i.e.,
k(e,d) = k(d, c) for all ¢,d € C) and have the property that k(c,¢) = 1 for all
c € C. We will refer to any such affinity as a standard affinity.

In general, any linearly ordered set (L, =< ) can serve as a range (value
set) of an affinity[30]: a function x: C' x C' — L is an affinity function (into
(L,=)) provided x is symmetric and x(a,b) < k(c,c) for every a,b,c € C.
Note that x(d,d) < k(c,c) for every ¢,d € C. So, there exists an element in
L, which we denote by a symbol 1,, such that x(c,¢) = 1, for every ¢ € C.
Notice that 1, is the largest element of L, = {k(a,b): a,b € C}, although it
does not need to be the largest element of L. Clearly, any standard affinity «
is an affinity function with (L, <) = ([0,1], <) and 1,, = 1. In the discussion
below, (L,= ) will be either the standard range ([0,1],< ) or ([0,00],> ).
Note that, in this second case, the order relation =< is the reversed standard
order relation >.

10.6.1 Equivalent Affinities

We say that the affinities k1: C x C' — (L1, =1 ) and ka: C X C — (L2, =2 )
are equivalent (in the FC sense) provided, for every a,b,c,d € C

k1(a,b) =1 k1(c,d) if and only if ka(a,b) <2 ka(c, d).

For example, it can be easily seen that for any constants o,7 > 0 the
homogeneity-based affinities 1, and ., see (10.1), are equivalent, since
for any pairs (a,b) and (c,d) of adjacent spels: ¥, (a,b) < Y,(c,d) <=
1£(@) = FO > 1f(e)— f@)I] <> 1(a,b) < +(c, d). (Symbol <= means
“if and only if.”) Equivalent affinities can be characterized as follows, where o
stands for the composition of functions, that is, (gox1)(a,b) = g(x1(a,b)) [31].

Theorem 5. Affinities k1: C X C — (L1,=1 ) and ka: C x C — (Lg, =2 )
are equivalent if and only if there exists a strictly increasing function g from
(L, =1 ) onto (L,, =2 ) such that ke = go K1.
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The FC objects, defined in the previous sections, have the same definition
with the general notion of affinity, when the standard inequality ‘<’ is replaced
by ‘=<.” The implications of and our interest in equivalent affinities are well
encapsulated by the next theorem, which says that any FC segmentation
(AFC, RFC, or IRFC) of a scene C remains unchanged if an affinity on C
used to get the segmentation is replaced by an equivalent affinity.

Theorem 6 ([31]). Let k1: C x C — (L1,=1) and ka: C x C — (L2, =2 )
be equivalent affinity functions and let S be a family of non-empty pairwise
disjoint subsets of C'. Then for every 61 <1 1, in L1, there exists a 02 <2 14,
in Lo such that, for every S € S and i € {0,1,2,...}, we have Pgj = Pgj ,
PiL = PS%, and P25 = PLs?.

Moreover, if g: C — C is a strictly monotone function such that ko = gor
(which exists by Theorem 5), then we can take 62 = g(67).

Keeping this in mind, it makes sense to find for each affinity function an
equivalent affinity in a nice form:

Theorem 7 ([31]). Every affinity function is equivalent (in the FC sense) to
a standard affinity.

Once we agree that equivalent affinities lead to the same segmentations, we
can restrict our attention to standard affinities without losing any generality
of our method.

Next, we like to describe the natural FC equivalent representations of the
homogeneity-based ¥, (10.1) and object feature-based ¢, (10.2) affinities. The
first of them, 1, (¢, d), is equivalent to an approximation of the magnitude of

the directional derivative |D fle | = ’f ‘Tz £|(|d) of f in the direction of the

vector cd. If spels ¢ and d are adjacent when ||c — d|| < 1, then for adjacent

c,d € C we have 9(c,d) of ‘D ’ = |f(¢) — f(d)|. Such defined ¢ is
an affinity with the range (L, < > <[0 o0l, > ). The equivalence of 1/1 w1th
1o is justified by Theorem 5 and the Gaussian function g,(z) = e~ i , as

Yo (e, d) = (g5 0 9)(c, d) for any adjacent ¢,d € C.

The natural form of the object feature-based ¢, affinity (for one object)
and a spel ¢ is the number ||f(c) — m||, a distance of the image intensity
f(e) at ¢ from the expected object intensity m. For two adjacent distinct
spels, this leads to the definition ¢(c, d) = max{||f(c) —ml||,||f(d) —m]||}. We
also put ¢(c,c) = 0, to insure that ¢ is an affinity function, with the range
(L, =) = {[0,00], > ). Once again, ¢ is equivalent with (ﬁm as ¢g = gy 0 ¢.

The homogeneity-based connectivity measure, py, = ,uw, can be elegantly
interpreted if the scene C' = (C, f) is considered as a topographical map in
which f(c) represents an elevation at the location ¢ € C. Then, py(c,d) is
the highest possible step (a slope of f) that one must make in order to get
from ¢ to d with each step on a location (spel) from C and of unit length.
In particular, the object Pj(; ={c e C:0 > py(s,c)} represents those spels
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¢ € C which can be reached from s with all steps lower than 6. Note that all
we measure in this setting is the actual change of the altitude while making
the step. Thus, this value can be small, even if the step is made on a very steep
slope, as long as the path approximately follows the altitude contour lines —
this is why on steep hills the roads zigzag, allowing for a small incline of the
motion. On the other hand, the measure of the same step would be large,
if measured with some form of gradient induced homogeneity-based affinity!
(Compare Sect. 10.7.2.)

The object feature-based connectivity measure of one object has also a nice
topographical map interpretation. For understanding this, consider a modified
scene C = (C,|f(-) —m|) (called membership scene in [1]) as a topographical
map. Then the number py(c,d) represents the lowest possible elevation (in
C) which one must reach (a mountain pass) in order to get from c to d,
where each step is on a location from C and is of unit length. Notice that
te(c, d) is precisely the degree of connectivity as defined by Rosenfeld [32—
34]. By the above analysis, we brought Rosenfeld’s connectivity also into the
affinity framework introduced by [1], particularly as another object feature
component of affinity.

10.6.2 Essential Parameters in Affinity Functions

Next, let us turn our attention to the determination of the number of
parameters essential in defining the affinities:

e Homogeneity-based affinity 1, has no essential parameter, that is, the
parameter ¢ in its definition is redundant, as ¥, = g, o ¥ is equivalent
to 1, which is independent of o. This beautiful characteristic says that
FC partitioning of a scene utilizing homogeneity-based affinity is an inher-
ent property of the scene and is independent of any parameters, besides a
threshold in case of AFC.

o Object feature-based affinity ¢, for one object has two explicit parameters,
m and o, of which only parameter m is essential. Parameter ¢ is redundant,
since ¢, = g, © ¢ is equivalent to ¢ defined above.

o Object feature-based affinity ¢5 for n > 1 objects is usually defined as
d(c,d) = max;—1._n ¢o,(c,d) [28], where each ¢,, is defined by (10.2),
with the parameter m replaced with the ith object average intensity m;.
Here ¢ = (01,...,0,). This affinity has 2n explicit parameters, but only
2n — 1 are essential. Indeed, if § = (1,62,...,d,), where §; = 0; /01, then
65 and ¢j are equivalent, since ¢5 = h,, © ¢5, where hy(x) = 2.

Similar results for the averages, additive and multiplicative, of ¥ and ¢,
as well as their lexicographical order combination, can be found in [28].
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10.7 Other Delineation Algorithms

We have already discussed deep similarities between FC and GC methods.
In both cases, the image scene can be represented as weighted graphs (with
different ways of assigning these weights) and the segmentations consist of
different subsets P’s of the graph vertices. In both cases, we associate with
each object P in the graph its energy (cost) value e(P) represented in terms
of the weights of edges in the boundary of P, that is, with one spel in P,
another in its complement. The difference is the format of the energy cost
function: in GC it is a sum of the weights of the boundary edges, while in FC
it is the maximum among all these numbers.

10.7.1 Generalized Graph Cut

Despite the similarities, the segmentations resulting from FC and GC have dif-
ferent properties. For example, the FC segmentations are robust with respect
to seed choice, but GC delineations are not. On the other hand, GC output
smoothes the boundary of the resulting object (via penalizing long bound-
aries) — which is sometimes desirable — while FC have no such properties. An
interesting problem was considered in [35]:

“For what classes of graph energy cost functions e(P) (not necessarily
defined in terms of the edge weights) can we find graph weights such
that the GC optimization of the resulting graph is identical to the
optimization of the original function e?”

The necessary condition given there implies, in particular, that the maxi-
mum energy of FC cannot be represented that way. This also follows from the
fact that FC and GC segmentations have different properties, like robustness.

It should be clear that, if one uses in FC an object feature-based affinity,
then, under an interpretation of y as Rosenfeld’s degree of connectivity, the
resulting segmented object is the water basin, as in the WS segmentations. If
one desires more than one basin/object, then RFC results agree with the WS
basin interpretation, as long as one “stops pumping the water” when a spill
to another basin occurs.

At that point, we face a problem discussed in Sect. 10.4.1: should we leave
the spels where competition breaks unassigned to any object, or should we find
a way to redistribute them among the objects. In RFC, we opt for the first of
these choices. In standard WS, the second option is followed by “building the
dams” at the “mountain passes” where conflict occurs, and then continuing
“land submerging” process until every spel is assigned. In other words, the
outcome of WS can be viewed as the outcome of RFC used with proper object
feature-based affinity, if we opt for leaving unassigned the spels where “ties”
occur.

In summary, the FC, GC, and WS methods, to which we will refer here
as Generalized Graph (GG) methods, can be viewed as the same class of
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segmentation methods, with their outcomes — resulting from the optimization
of appropriate energy functions — obtained as segmentations of appropriate
weighted graphs. This was clearly demonstrated above, if one chooses treating
segmentation as an assignment of disjoint regions, when some spels belong
to no object. In the other extreme, when the “spels with ties” are assigned
according a proper (slightly ad hoc) procedures typical for each method, the
GG algorithms are also equivalent. They all can be expressed in the IFT
framework [20, 27, 36].

10.7.2 Level Set vs. Generalized Graph Cut

The relation of GG to LS is not straightforward. First of all, we will under-
stand that the name relates to the image segmentation methods that have the
following properties:

1. Set the segmentation problem in the continuous setting (i.e., images are
defined on the regions (2 in the Euclidean space R", usually with n =2 or
n = 3), solve it as such, and, only at the last stage of method development,
use discretization (i.e., finite approximation) of the continuous case to the
digital image case

2. In the problem set-up, use an energy function e associating with image
segmentation P its energy value e(P)

3. Usually (but not always) considered as a problem solution a segmentation
‘P that minimizes e in an appropriate class of segmentations

4. Usually (but not always) the minimization is achieved by variational meth-
ods, which leads to a differential equation and returns a local minimum
for e

Some optimization methods, like active contour (snake) [37] satisfy all
these properties, but are not region-based methods, since they concentrate on
finding only parts of a region boundary at a time. Some others actually do
not explicitly optimize an energy (i.e., there is no clear Step 3), but it can be
viewed as a solution for a variational problem (i.e., Step 4), that is, a solution
for an implicitly given optimization problem [24]. Perhaps the most influential
and prominent LS delineation method is that of Mumford and Shah [38], and
its special case, due to Chan and Vese [39].

The biggest difference between such described LS methods and GG meth-
ods is the property (1) of LS: it makes a precise theoretical comparison
between the methods difficult, and, at the purely discrete level, actually impos-
sible. This is the case, since the precise outcome of LS is a segmentation of
{2, while the other methods return segmentations on a discrete scene C. If
we try to compare LS and GG segmentations of a discrete scene C, then
the comparison is between a precisely defined GG output and an unspeci-
fied approximation of the continuous LS segmentation, and any conclusion
of such effort will be only approximate. Therefore, the only precise theoret-
ical comparison between LS and GG segmentation methods can be made at
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the continuous level, that is, on the images defined on an Euclidean scene
2. A natural approach how to relate the GG with the continuous output is
described in [40].

For a continuous image F': 2 — RF and a digital scene C' C 221let F | C be
a digital image on C approximating F'. We think about it here as a restriction
of F (e, (F | C)(c) = f(c) for all ¢ € C). For a segmentation algorithm
A let A(F | C,p) be the output of A applied to the image F [ C and
some parameters p, like seeds and cost function. We like to think of an A-
segmentation of the entire scene {2 of I’ as a result of application of A to
the “image F' | C' obtained with infinite resolution.” More formally, it will be
understood as a limit A*(F,p) = limc_.o A(F | C,p) over all appropriate
finite sets C' C (2 [40]. In this set-up, we can say that a discrete segmentation
algorithm A agrees (or is equivalent) at infinite resolution with a continuous
(say, level set) segmentation model M in the class F of images F': 2 — R
provided for every F' € F and appropriate parameter vector p, the limit
A*(F,p) exists and is equal to a segmentation M (F,p) of 2 predicted by
M. In this sense, we have proved

Theorem 8. [40] The FC delineation algorithm Ag used with the gradient
based affinity is equivalent, at infinite resolution, with a level set delineation
model Mg from Malladi, Sethian, and Vemuri paper [24].

Here, the gradient based affinity is a natural discretization of a notion
of gradient (see [40]) similar in spirit to the homogeneity based affinity. We
should stress that there are a few hidden elements in this theorem. First of all,
we consider, after the authors of [24], the outcome of the model as the viscosity
solution of the propagation problem, in which the curvature parameter used
in the model goes to zero. In other words, the actual outcome of the model
M does not guarantees smoothness (in a curvature sense) of the boundary.
This is the only way the equivalence with GG algorithms can be achieved
(at least, with the energy functions we consider), as the graphs associated
with the images consist only of the first order image intensity information
(the weights of edges are based on the intensities of at most two adjacent
spels, which can be viewed as an approximation of the first derivative of the
intensity function), while the curvature is the second order (based on the
second derivative) notion, which requires information of at least three spels
to be defined [16].)

The strange twist of Theorem 8 is that, in fact, it tells us nothing on the
level set algorithm Apg, which is obtained as a discretization of the model
Ms. Although we proved [40] that the limit limeo_ o Ay (F | C,p) exists
and is equal to M s(F, p), there is no formal prove in the literature that, for
appropriate functions F, the limit limg_ o Ars(F | C,p) exists or that it is
equal to Mys(F,p). Although there are general results in the theory of dif-
ferential equations indicating when a discretization of a differential equation
converges to its continuous solution (in the Mg case, the discrete approx-
imation of the level set function, property (iv), can indeed converge to the
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continuous level set function), such convergence implies neither the existence
of the limit limg— o Ars(F [ C,p) nor, even if it exists, that it is equal to the
continuous object indicated by the limiting surface. The story of other level
sets algorithms is similar — there is a great ravine between their continuous,
mathematical models and the associated discrete approximation algorithms,
which should approximate the continuous models, but that are unknown (at
least, theoretically) when they do so.

10.8 Medical Image Examples

The FC algorithms have been employed in segmenting medical Computed
Tomography (CT), Magnetic Resonance Imaging (MRI), and ultrasound
under various medical applications. They have also been used in non-medical
image segmentation tasks. Our own application focus has been medical. These
include:

e Delineation of gray matter, white matter, Cerebrospinal Fluid (CSF),
lesions, diseased parts of white matter, and parcellations of these entities
in different anatomic and functional regions of the brain via multi-protocol
MRI for studying the multiple sclerosis disease (Fig.10.3) and in elderly
subjects to study aging-related depression and dementia

e Delineation of bone and soft tissue structures in CT images for craniomax-
illofacial surgery planning (Fig. 10.4)

e Separation of arteries and veins in Magnetic Resonance Angiography
(MRA) images (Fig. 10.5)

Delineation of brain tumors in multi-protocol MRI (Fig. 10.6)
Delineation of upper airway and surrounding structures in MRI for study-
ing pediatric Obstructive Sleep Apnea (OSA) (Fig.10.7)

Fig. 10.3. FC and AFC segmentation of brain images. Top: Cross-sectional brain
image from visible woman data set, white and gray matter segmentations via vecto-
rial scale-based FC, and proton density-weighted MRI; Bottom: T2-weighted MRI,
white matter, gray matter, CSF and lesion segmentations via AFC
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Fig. 10.4. Skin peeling via
AFC segmentation. Left:
volume rendering from CT
image of a patient with mid
facial clefts; Right: Result
after skin peeling

Fig. 10.5. Vessel separation
via IRFC. Left: A segment of
the peripheral vascular tree
from MRA; Right: arteries
and veins separated via
IRFC

The need for image segmentation in medical applications arises from our
desire to:

1. Characterize and quantify a disease process

2. Understand the natural course of a disease

3. Study the effects of a treatment regimen for a disease
4. Guide therapeutic procedures

In our applications, the motivation came from 1 to 3. The performance of
the different FC algorithms has been evaluated in these applications quite
extensively; please refer to the specific application related papers cited in
[41]. The reasons for choosing FC in these applications are mainly three-fold:

e We are intimately familiar with the FC technology, have the full resources
of its implementation, and have the expertise for optimally utilizing them
in medical applications. These are crucial requirements for the optimal use
of any segmentation algorithm.

e Among comparable other families of algorithms (such as graph cuts, water-
shed, level sets), FC constitutes one of the fastest groups of algorithms.

e The FC formulation is entirely digital starting from first principles, and
so there are no ad hoc/unspecified continuous-to-digital conversion issues.
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Fig. 10.6. Tumor
segmentation. Left column:
FLAIR and T1 weighted
MRI without and with
contrast agent; Right
column: The edematous
tumor region segmented via
AFC from the FLAIR image
and from the subtracted
(post from pre-contrast)
image showing enhancing
aspects of the tumor

Fig. 10.7. Surface rendering of
AFC-segmented MRI. Left: Upper
airway and other surrounding
structures (mandible, adenoid, tonsils,
tongue) of a normal child; Right: a
child with OSA
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10.9 Concluding Remarks

Focusing mainly on FC methods, we have presented a unified mathematical
theory wherein four currently predominant, purely image-based approaches —
GC, WS, LS, and FC — are described in a single framework as energy opti-
mization methods in image segmentation. Among these, LS has a continuous
formulation and poses some challenges, unenunciated in the literature, on how
to reconcile it with the eventual computational/algorithmic requirements of
discretization. The remaining — GC, WS, FC — have an inherently discrete
formulation and lend themselves naturally to combinatorial optimization solu-
tions. The unifying treatment has helped us in delineating the similarities
and differences among these methods and in pinpointing their strengths and
weaknesses.

All segmentation methods rely on a (local) attribute functional of some
sort — we called them affinity for FC and edge cost in general — for trans-
forming intensity information into contributions to the energy functional. The
notion of equivalent affinities is useful in characterizing the distinct and unique
aspects of this function that have a real impact on the energy functional. Such
an analysis can also be carried out for the attribute functionals of GC, WS,
and LS, and of any other segmentation methods, although this does not seem
to have been done (cf., [35]). Its consequence on nailing down the real inde-
pendent parameters of a segmentation algorithm has implications in setting
the segmentation algorithm optimally for a given application domain and in
evaluating its robustness to parameter settings.

In all FC developments so far, for theoretical and algorithmic simplic-
ity, only 2-ary fuzzy relations have been considered (meaning, affinity and
connectedness have been considered only between two spels). Further, in the
composition of fuzzy relations such as ¥, and ¢, (for a given object and for
all objects), only union and max-min constructs have been employed for the
same reasons. Relaxing these restrictions may lead to new, more powerful and
effective algorithms. For example, m-ary relations can be defined by consid-
ering all spels in the local scale region. Further, considering fuzzy relations as
both fuzzy subsets of the scene and as m-ary relations (m > 2), various fuzzy
subset operations (e.g., algebraic union, product) and compositing operations
(e.g., max-star, sum-min, sum-product, algebraic sum-min) can also be used.
Prior object shape and appearance fuzzy models can also be brought into this
realm. These require considerable theoretical, algorithmic, and application
related work.
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